File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaType.cpp |
Warning: | line 960, column 13 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // This file implements type-related semantic analysis. | ||||
10 | // | ||||
11 | //===----------------------------------------------------------------------===// | ||||
12 | |||||
13 | #include "TypeLocBuilder.h" | ||||
14 | #include "clang/AST/ASTConsumer.h" | ||||
15 | #include "clang/AST/ASTContext.h" | ||||
16 | #include "clang/AST/ASTMutationListener.h" | ||||
17 | #include "clang/AST/ASTStructuralEquivalence.h" | ||||
18 | #include "clang/AST/CXXInheritance.h" | ||||
19 | #include "clang/AST/DeclObjC.h" | ||||
20 | #include "clang/AST/DeclTemplate.h" | ||||
21 | #include "clang/AST/Expr.h" | ||||
22 | #include "clang/AST/TypeLoc.h" | ||||
23 | #include "clang/AST/TypeLocVisitor.h" | ||||
24 | #include "clang/Basic/PartialDiagnostic.h" | ||||
25 | #include "clang/Basic/TargetInfo.h" | ||||
26 | #include "clang/Lex/Preprocessor.h" | ||||
27 | #include "clang/Sema/DeclSpec.h" | ||||
28 | #include "clang/Sema/DelayedDiagnostic.h" | ||||
29 | #include "clang/Sema/Lookup.h" | ||||
30 | #include "clang/Sema/ParsedTemplate.h" | ||||
31 | #include "clang/Sema/ScopeInfo.h" | ||||
32 | #include "clang/Sema/SemaInternal.h" | ||||
33 | #include "clang/Sema/Template.h" | ||||
34 | #include "clang/Sema/TemplateInstCallback.h" | ||||
35 | #include "llvm/ADT/SmallPtrSet.h" | ||||
36 | #include "llvm/ADT/SmallString.h" | ||||
37 | #include "llvm/ADT/StringSwitch.h" | ||||
38 | #include "llvm/IR/DerivedTypes.h" | ||||
39 | #include "llvm/Support/ErrorHandling.h" | ||||
40 | #include <bitset> | ||||
41 | |||||
42 | using namespace clang; | ||||
43 | |||||
44 | enum TypeDiagSelector { | ||||
45 | TDS_Function, | ||||
46 | TDS_Pointer, | ||||
47 | TDS_ObjCObjOrBlock | ||||
48 | }; | ||||
49 | |||||
50 | /// isOmittedBlockReturnType - Return true if this declarator is missing a | ||||
51 | /// return type because this is a omitted return type on a block literal. | ||||
52 | static bool isOmittedBlockReturnType(const Declarator &D) { | ||||
53 | if (D.getContext() != DeclaratorContext::BlockLiteral || | ||||
54 | D.getDeclSpec().hasTypeSpecifier()) | ||||
55 | return false; | ||||
56 | |||||
57 | if (D.getNumTypeObjects() == 0) | ||||
58 | return true; // ^{ ... } | ||||
59 | |||||
60 | if (D.getNumTypeObjects() == 1 && | ||||
61 | D.getTypeObject(0).Kind == DeclaratorChunk::Function) | ||||
62 | return true; // ^(int X, float Y) { ... } | ||||
63 | |||||
64 | return false; | ||||
65 | } | ||||
66 | |||||
67 | /// diagnoseBadTypeAttribute - Diagnoses a type attribute which | ||||
68 | /// doesn't apply to the given type. | ||||
69 | static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr, | ||||
70 | QualType type) { | ||||
71 | TypeDiagSelector WhichType; | ||||
72 | bool useExpansionLoc = true; | ||||
73 | switch (attr.getKind()) { | ||||
74 | case ParsedAttr::AT_ObjCGC: | ||||
75 | WhichType = TDS_Pointer; | ||||
76 | break; | ||||
77 | case ParsedAttr::AT_ObjCOwnership: | ||||
78 | WhichType = TDS_ObjCObjOrBlock; | ||||
79 | break; | ||||
80 | default: | ||||
81 | // Assume everything else was a function attribute. | ||||
82 | WhichType = TDS_Function; | ||||
83 | useExpansionLoc = false; | ||||
84 | break; | ||||
85 | } | ||||
86 | |||||
87 | SourceLocation loc = attr.getLoc(); | ||||
88 | StringRef name = attr.getAttrName()->getName(); | ||||
89 | |||||
90 | // The GC attributes are usually written with macros; special-case them. | ||||
91 | IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident | ||||
92 | : nullptr; | ||||
93 | if (useExpansionLoc && loc.isMacroID() && II) { | ||||
94 | if (II->isStr("strong")) { | ||||
95 | if (S.findMacroSpelling(loc, "__strong")) name = "__strong"; | ||||
96 | } else if (II->isStr("weak")) { | ||||
97 | if (S.findMacroSpelling(loc, "__weak")) name = "__weak"; | ||||
98 | } | ||||
99 | } | ||||
100 | |||||
101 | S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType | ||||
102 | << type; | ||||
103 | } | ||||
104 | |||||
105 | // objc_gc applies to Objective-C pointers or, otherwise, to the | ||||
106 | // smallest available pointer type (i.e. 'void*' in 'void**'). | ||||
107 | #define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \ | ||||
108 | case ParsedAttr::AT_ObjCGC: \ | ||||
109 | case ParsedAttr::AT_ObjCOwnership | ||||
110 | |||||
111 | // Calling convention attributes. | ||||
112 | #define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll \ | ||||
113 | case ParsedAttr::AT_CDecl: \ | ||||
114 | case ParsedAttr::AT_FastCall: \ | ||||
115 | case ParsedAttr::AT_StdCall: \ | ||||
116 | case ParsedAttr::AT_ThisCall: \ | ||||
117 | case ParsedAttr::AT_RegCall: \ | ||||
118 | case ParsedAttr::AT_Pascal: \ | ||||
119 | case ParsedAttr::AT_SwiftCall: \ | ||||
120 | case ParsedAttr::AT_SwiftAsyncCall: \ | ||||
121 | case ParsedAttr::AT_VectorCall: \ | ||||
122 | case ParsedAttr::AT_AArch64VectorPcs: \ | ||||
123 | case ParsedAttr::AT_MSABI: \ | ||||
124 | case ParsedAttr::AT_SysVABI: \ | ||||
125 | case ParsedAttr::AT_Pcs: \ | ||||
126 | case ParsedAttr::AT_IntelOclBicc: \ | ||||
127 | case ParsedAttr::AT_PreserveMost: \ | ||||
128 | case ParsedAttr::AT_PreserveAll | ||||
129 | |||||
130 | // Function type attributes. | ||||
131 | #define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll \ | ||||
132 | case ParsedAttr::AT_NSReturnsRetained: \ | ||||
133 | case ParsedAttr::AT_NoReturn: \ | ||||
134 | case ParsedAttr::AT_Regparm: \ | ||||
135 | case ParsedAttr::AT_CmseNSCall: \ | ||||
136 | case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \ | ||||
137 | case ParsedAttr::AT_AnyX86NoCfCheck: \ | ||||
138 | CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll | ||||
139 | |||||
140 | // Microsoft-specific type qualifiers. | ||||
141 | #define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr \ | ||||
142 | case ParsedAttr::AT_Ptr32: \ | ||||
143 | case ParsedAttr::AT_Ptr64: \ | ||||
144 | case ParsedAttr::AT_SPtr: \ | ||||
145 | case ParsedAttr::AT_UPtr | ||||
146 | |||||
147 | // Nullability qualifiers. | ||||
148 | #define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified \ | ||||
149 | case ParsedAttr::AT_TypeNonNull: \ | ||||
150 | case ParsedAttr::AT_TypeNullable: \ | ||||
151 | case ParsedAttr::AT_TypeNullableResult: \ | ||||
152 | case ParsedAttr::AT_TypeNullUnspecified | ||||
153 | |||||
154 | namespace { | ||||
155 | /// An object which stores processing state for the entire | ||||
156 | /// GetTypeForDeclarator process. | ||||
157 | class TypeProcessingState { | ||||
158 | Sema &sema; | ||||
159 | |||||
160 | /// The declarator being processed. | ||||
161 | Declarator &declarator; | ||||
162 | |||||
163 | /// The index of the declarator chunk we're currently processing. | ||||
164 | /// May be the total number of valid chunks, indicating the | ||||
165 | /// DeclSpec. | ||||
166 | unsigned chunkIndex; | ||||
167 | |||||
168 | /// Whether there are non-trivial modifications to the decl spec. | ||||
169 | bool trivial; | ||||
170 | |||||
171 | /// Whether we saved the attributes in the decl spec. | ||||
172 | bool hasSavedAttrs; | ||||
173 | |||||
174 | /// The original set of attributes on the DeclSpec. | ||||
175 | SmallVector<ParsedAttr *, 2> savedAttrs; | ||||
176 | |||||
177 | /// A list of attributes to diagnose the uselessness of when the | ||||
178 | /// processing is complete. | ||||
179 | SmallVector<ParsedAttr *, 2> ignoredTypeAttrs; | ||||
180 | |||||
181 | /// Attributes corresponding to AttributedTypeLocs that we have not yet | ||||
182 | /// populated. | ||||
183 | // FIXME: The two-phase mechanism by which we construct Types and fill | ||||
184 | // their TypeLocs makes it hard to correctly assign these. We keep the | ||||
185 | // attributes in creation order as an attempt to make them line up | ||||
186 | // properly. | ||||
187 | using TypeAttrPair = std::pair<const AttributedType*, const Attr*>; | ||||
188 | SmallVector<TypeAttrPair, 8> AttrsForTypes; | ||||
189 | bool AttrsForTypesSorted = true; | ||||
190 | |||||
191 | /// MacroQualifiedTypes mapping to macro expansion locations that will be | ||||
192 | /// stored in a MacroQualifiedTypeLoc. | ||||
193 | llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros; | ||||
194 | |||||
195 | /// Flag to indicate we parsed a noderef attribute. This is used for | ||||
196 | /// validating that noderef was used on a pointer or array. | ||||
197 | bool parsedNoDeref; | ||||
198 | |||||
199 | public: | ||||
200 | TypeProcessingState(Sema &sema, Declarator &declarator) | ||||
201 | : sema(sema), declarator(declarator), | ||||
202 | chunkIndex(declarator.getNumTypeObjects()), trivial(true), | ||||
203 | hasSavedAttrs(false), parsedNoDeref(false) {} | ||||
204 | |||||
205 | Sema &getSema() const { | ||||
206 | return sema; | ||||
207 | } | ||||
208 | |||||
209 | Declarator &getDeclarator() const { | ||||
210 | return declarator; | ||||
211 | } | ||||
212 | |||||
213 | bool isProcessingDeclSpec() const { | ||||
214 | return chunkIndex == declarator.getNumTypeObjects(); | ||||
215 | } | ||||
216 | |||||
217 | unsigned getCurrentChunkIndex() const { | ||||
218 | return chunkIndex; | ||||
219 | } | ||||
220 | |||||
221 | void setCurrentChunkIndex(unsigned idx) { | ||||
222 | assert(idx <= declarator.getNumTypeObjects())((void)0); | ||||
223 | chunkIndex = idx; | ||||
224 | } | ||||
225 | |||||
226 | ParsedAttributesView &getCurrentAttributes() const { | ||||
227 | if (isProcessingDeclSpec()) | ||||
228 | return getMutableDeclSpec().getAttributes(); | ||||
229 | return declarator.getTypeObject(chunkIndex).getAttrs(); | ||||
230 | } | ||||
231 | |||||
232 | /// Save the current set of attributes on the DeclSpec. | ||||
233 | void saveDeclSpecAttrs() { | ||||
234 | // Don't try to save them multiple times. | ||||
235 | if (hasSavedAttrs) return; | ||||
236 | |||||
237 | DeclSpec &spec = getMutableDeclSpec(); | ||||
238 | for (ParsedAttr &AL : spec.getAttributes()) | ||||
239 | savedAttrs.push_back(&AL); | ||||
240 | trivial &= savedAttrs.empty(); | ||||
241 | hasSavedAttrs = true; | ||||
242 | } | ||||
243 | |||||
244 | /// Record that we had nowhere to put the given type attribute. | ||||
245 | /// We will diagnose such attributes later. | ||||
246 | void addIgnoredTypeAttr(ParsedAttr &attr) { | ||||
247 | ignoredTypeAttrs.push_back(&attr); | ||||
248 | } | ||||
249 | |||||
250 | /// Diagnose all the ignored type attributes, given that the | ||||
251 | /// declarator worked out to the given type. | ||||
252 | void diagnoseIgnoredTypeAttrs(QualType type) const { | ||||
253 | for (auto *Attr : ignoredTypeAttrs) | ||||
254 | diagnoseBadTypeAttribute(getSema(), *Attr, type); | ||||
255 | } | ||||
256 | |||||
257 | /// Get an attributed type for the given attribute, and remember the Attr | ||||
258 | /// object so that we can attach it to the AttributedTypeLoc. | ||||
259 | QualType getAttributedType(Attr *A, QualType ModifiedType, | ||||
260 | QualType EquivType) { | ||||
261 | QualType T = | ||||
262 | sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType); | ||||
263 | AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A}); | ||||
264 | AttrsForTypesSorted = false; | ||||
265 | return T; | ||||
266 | } | ||||
267 | |||||
268 | /// Completely replace the \c auto in \p TypeWithAuto by | ||||
269 | /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if | ||||
270 | /// necessary. | ||||
271 | QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) { | ||||
272 | QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement); | ||||
273 | if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) { | ||||
274 | // Attributed type still should be an attributed type after replacement. | ||||
275 | auto *NewAttrTy = cast<AttributedType>(T.getTypePtr()); | ||||
276 | for (TypeAttrPair &A : AttrsForTypes) { | ||||
277 | if (A.first == AttrTy) | ||||
278 | A.first = NewAttrTy; | ||||
279 | } | ||||
280 | AttrsForTypesSorted = false; | ||||
281 | } | ||||
282 | return T; | ||||
283 | } | ||||
284 | |||||
285 | /// Extract and remove the Attr* for a given attributed type. | ||||
286 | const Attr *takeAttrForAttributedType(const AttributedType *AT) { | ||||
287 | if (!AttrsForTypesSorted) { | ||||
288 | llvm::stable_sort(AttrsForTypes, llvm::less_first()); | ||||
289 | AttrsForTypesSorted = true; | ||||
290 | } | ||||
291 | |||||
292 | // FIXME: This is quadratic if we have lots of reuses of the same | ||||
293 | // attributed type. | ||||
294 | for (auto It = std::partition_point( | ||||
295 | AttrsForTypes.begin(), AttrsForTypes.end(), | ||||
296 | [=](const TypeAttrPair &A) { return A.first < AT; }); | ||||
297 | It != AttrsForTypes.end() && It->first == AT; ++It) { | ||||
298 | if (It->second) { | ||||
299 | const Attr *Result = It->second; | ||||
300 | It->second = nullptr; | ||||
301 | return Result; | ||||
302 | } | ||||
303 | } | ||||
304 | |||||
305 | llvm_unreachable("no Attr* for AttributedType*")__builtin_unreachable(); | ||||
306 | } | ||||
307 | |||||
308 | SourceLocation | ||||
309 | getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const { | ||||
310 | auto FoundLoc = LocsForMacros.find(MQT); | ||||
311 | assert(FoundLoc != LocsForMacros.end() &&((void)0) | ||||
312 | "Unable to find macro expansion location for MacroQualifedType")((void)0); | ||||
313 | return FoundLoc->second; | ||||
314 | } | ||||
315 | |||||
316 | void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT, | ||||
317 | SourceLocation Loc) { | ||||
318 | LocsForMacros[MQT] = Loc; | ||||
319 | } | ||||
320 | |||||
321 | void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; } | ||||
322 | |||||
323 | bool didParseNoDeref() const { return parsedNoDeref; } | ||||
324 | |||||
325 | ~TypeProcessingState() { | ||||
326 | if (trivial) return; | ||||
327 | |||||
328 | restoreDeclSpecAttrs(); | ||||
329 | } | ||||
330 | |||||
331 | private: | ||||
332 | DeclSpec &getMutableDeclSpec() const { | ||||
333 | return const_cast<DeclSpec&>(declarator.getDeclSpec()); | ||||
334 | } | ||||
335 | |||||
336 | void restoreDeclSpecAttrs() { | ||||
337 | assert(hasSavedAttrs)((void)0); | ||||
338 | |||||
339 | getMutableDeclSpec().getAttributes().clearListOnly(); | ||||
340 | for (ParsedAttr *AL : savedAttrs) | ||||
341 | getMutableDeclSpec().getAttributes().addAtEnd(AL); | ||||
342 | } | ||||
343 | }; | ||||
344 | } // end anonymous namespace | ||||
345 | |||||
346 | static void moveAttrFromListToList(ParsedAttr &attr, | ||||
347 | ParsedAttributesView &fromList, | ||||
348 | ParsedAttributesView &toList) { | ||||
349 | fromList.remove(&attr); | ||||
350 | toList.addAtEnd(&attr); | ||||
351 | } | ||||
352 | |||||
353 | /// The location of a type attribute. | ||||
354 | enum TypeAttrLocation { | ||||
355 | /// The attribute is in the decl-specifier-seq. | ||||
356 | TAL_DeclSpec, | ||||
357 | /// The attribute is part of a DeclaratorChunk. | ||||
358 | TAL_DeclChunk, | ||||
359 | /// The attribute is immediately after the declaration's name. | ||||
360 | TAL_DeclName | ||||
361 | }; | ||||
362 | |||||
363 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, | ||||
364 | TypeAttrLocation TAL, ParsedAttributesView &attrs); | ||||
365 | |||||
366 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||
367 | QualType &type); | ||||
368 | |||||
369 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, | ||||
370 | ParsedAttr &attr, QualType &type); | ||||
371 | |||||
372 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||
373 | QualType &type); | ||||
374 | |||||
375 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, | ||||
376 | ParsedAttr &attr, QualType &type); | ||||
377 | |||||
378 | static bool handleObjCPointerTypeAttr(TypeProcessingState &state, | ||||
379 | ParsedAttr &attr, QualType &type) { | ||||
380 | if (attr.getKind() == ParsedAttr::AT_ObjCGC) | ||||
381 | return handleObjCGCTypeAttr(state, attr, type); | ||||
382 | assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((void)0); | ||||
383 | return handleObjCOwnershipTypeAttr(state, attr, type); | ||||
384 | } | ||||
385 | |||||
386 | /// Given the index of a declarator chunk, check whether that chunk | ||||
387 | /// directly specifies the return type of a function and, if so, find | ||||
388 | /// an appropriate place for it. | ||||
389 | /// | ||||
390 | /// \param i - a notional index which the search will start | ||||
391 | /// immediately inside | ||||
392 | /// | ||||
393 | /// \param onlyBlockPointers Whether we should only look into block | ||||
394 | /// pointer types (vs. all pointer types). | ||||
395 | static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator, | ||||
396 | unsigned i, | ||||
397 | bool onlyBlockPointers) { | ||||
398 | assert(i <= declarator.getNumTypeObjects())((void)0); | ||||
399 | |||||
400 | DeclaratorChunk *result = nullptr; | ||||
401 | |||||
402 | // First, look inwards past parens for a function declarator. | ||||
403 | for (; i != 0; --i) { | ||||
404 | DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1); | ||||
405 | switch (fnChunk.Kind) { | ||||
406 | case DeclaratorChunk::Paren: | ||||
407 | continue; | ||||
408 | |||||
409 | // If we find anything except a function, bail out. | ||||
410 | case DeclaratorChunk::Pointer: | ||||
411 | case DeclaratorChunk::BlockPointer: | ||||
412 | case DeclaratorChunk::Array: | ||||
413 | case DeclaratorChunk::Reference: | ||||
414 | case DeclaratorChunk::MemberPointer: | ||||
415 | case DeclaratorChunk::Pipe: | ||||
416 | return result; | ||||
417 | |||||
418 | // If we do find a function declarator, scan inwards from that, | ||||
419 | // looking for a (block-)pointer declarator. | ||||
420 | case DeclaratorChunk::Function: | ||||
421 | for (--i; i != 0; --i) { | ||||
422 | DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1); | ||||
423 | switch (ptrChunk.Kind) { | ||||
424 | case DeclaratorChunk::Paren: | ||||
425 | case DeclaratorChunk::Array: | ||||
426 | case DeclaratorChunk::Function: | ||||
427 | case DeclaratorChunk::Reference: | ||||
428 | case DeclaratorChunk::Pipe: | ||||
429 | continue; | ||||
430 | |||||
431 | case DeclaratorChunk::MemberPointer: | ||||
432 | case DeclaratorChunk::Pointer: | ||||
433 | if (onlyBlockPointers) | ||||
434 | continue; | ||||
435 | |||||
436 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
437 | |||||
438 | case DeclaratorChunk::BlockPointer: | ||||
439 | result = &ptrChunk; | ||||
440 | goto continue_outer; | ||||
441 | } | ||||
442 | llvm_unreachable("bad declarator chunk kind")__builtin_unreachable(); | ||||
443 | } | ||||
444 | |||||
445 | // If we run out of declarators doing that, we're done. | ||||
446 | return result; | ||||
447 | } | ||||
448 | llvm_unreachable("bad declarator chunk kind")__builtin_unreachable(); | ||||
449 | |||||
450 | // Okay, reconsider from our new point. | ||||
451 | continue_outer: ; | ||||
452 | } | ||||
453 | |||||
454 | // Ran out of chunks, bail out. | ||||
455 | return result; | ||||
456 | } | ||||
457 | |||||
458 | /// Given that an objc_gc attribute was written somewhere on a | ||||
459 | /// declaration *other* than on the declarator itself (for which, use | ||||
460 | /// distributeObjCPointerTypeAttrFromDeclarator), and given that it | ||||
461 | /// didn't apply in whatever position it was written in, try to move | ||||
462 | /// it to a more appropriate position. | ||||
463 | static void distributeObjCPointerTypeAttr(TypeProcessingState &state, | ||||
464 | ParsedAttr &attr, QualType type) { | ||||
465 | Declarator &declarator = state.getDeclarator(); | ||||
466 | |||||
467 | // Move it to the outermost normal or block pointer declarator. | ||||
468 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | ||||
469 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | ||||
470 | switch (chunk.Kind) { | ||||
471 | case DeclaratorChunk::Pointer: | ||||
472 | case DeclaratorChunk::BlockPointer: { | ||||
473 | // But don't move an ARC ownership attribute to the return type | ||||
474 | // of a block. | ||||
475 | DeclaratorChunk *destChunk = nullptr; | ||||
476 | if (state.isProcessingDeclSpec() && | ||||
477 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) | ||||
478 | destChunk = maybeMovePastReturnType(declarator, i - 1, | ||||
479 | /*onlyBlockPointers=*/true); | ||||
480 | if (!destChunk) destChunk = &chunk; | ||||
481 | |||||
482 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
483 | destChunk->getAttrs()); | ||||
484 | return; | ||||
485 | } | ||||
486 | |||||
487 | case DeclaratorChunk::Paren: | ||||
488 | case DeclaratorChunk::Array: | ||||
489 | continue; | ||||
490 | |||||
491 | // We may be starting at the return type of a block. | ||||
492 | case DeclaratorChunk::Function: | ||||
493 | if (state.isProcessingDeclSpec() && | ||||
494 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||
495 | if (DeclaratorChunk *dest = maybeMovePastReturnType( | ||||
496 | declarator, i, | ||||
497 | /*onlyBlockPointers=*/true)) { | ||||
498 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
499 | dest->getAttrs()); | ||||
500 | return; | ||||
501 | } | ||||
502 | } | ||||
503 | goto error; | ||||
504 | |||||
505 | // Don't walk through these. | ||||
506 | case DeclaratorChunk::Reference: | ||||
507 | case DeclaratorChunk::MemberPointer: | ||||
508 | case DeclaratorChunk::Pipe: | ||||
509 | goto error; | ||||
510 | } | ||||
511 | } | ||||
512 | error: | ||||
513 | |||||
514 | diagnoseBadTypeAttribute(state.getSema(), attr, type); | ||||
515 | } | ||||
516 | |||||
517 | /// Distribute an objc_gc type attribute that was written on the | ||||
518 | /// declarator. | ||||
519 | static void distributeObjCPointerTypeAttrFromDeclarator( | ||||
520 | TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) { | ||||
521 | Declarator &declarator = state.getDeclarator(); | ||||
522 | |||||
523 | // objc_gc goes on the innermost pointer to something that's not a | ||||
524 | // pointer. | ||||
525 | unsigned innermost = -1U; | ||||
526 | bool considerDeclSpec = true; | ||||
527 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||
528 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||
529 | switch (chunk.Kind) { | ||||
530 | case DeclaratorChunk::Pointer: | ||||
531 | case DeclaratorChunk::BlockPointer: | ||||
532 | innermost = i; | ||||
533 | continue; | ||||
534 | |||||
535 | case DeclaratorChunk::Reference: | ||||
536 | case DeclaratorChunk::MemberPointer: | ||||
537 | case DeclaratorChunk::Paren: | ||||
538 | case DeclaratorChunk::Array: | ||||
539 | case DeclaratorChunk::Pipe: | ||||
540 | continue; | ||||
541 | |||||
542 | case DeclaratorChunk::Function: | ||||
543 | considerDeclSpec = false; | ||||
544 | goto done; | ||||
545 | } | ||||
546 | } | ||||
547 | done: | ||||
548 | |||||
549 | // That might actually be the decl spec if we weren't blocked by | ||||
550 | // anything in the declarator. | ||||
551 | if (considerDeclSpec) { | ||||
552 | if (handleObjCPointerTypeAttr(state, attr, declSpecType)) { | ||||
553 | // Splice the attribute into the decl spec. Prevents the | ||||
554 | // attribute from being applied multiple times and gives | ||||
555 | // the source-location-filler something to work with. | ||||
556 | state.saveDeclSpecAttrs(); | ||||
557 | declarator.getMutableDeclSpec().getAttributes().takeOneFrom( | ||||
558 | declarator.getAttributes(), &attr); | ||||
559 | return; | ||||
560 | } | ||||
561 | } | ||||
562 | |||||
563 | // Otherwise, if we found an appropriate chunk, splice the attribute | ||||
564 | // into it. | ||||
565 | if (innermost != -1U) { | ||||
566 | moveAttrFromListToList(attr, declarator.getAttributes(), | ||||
567 | declarator.getTypeObject(innermost).getAttrs()); | ||||
568 | return; | ||||
569 | } | ||||
570 | |||||
571 | // Otherwise, diagnose when we're done building the type. | ||||
572 | declarator.getAttributes().remove(&attr); | ||||
573 | state.addIgnoredTypeAttr(attr); | ||||
574 | } | ||||
575 | |||||
576 | /// A function type attribute was written somewhere in a declaration | ||||
577 | /// *other* than on the declarator itself or in the decl spec. Given | ||||
578 | /// that it didn't apply in whatever position it was written in, try | ||||
579 | /// to move it to a more appropriate position. | ||||
580 | static void distributeFunctionTypeAttr(TypeProcessingState &state, | ||||
581 | ParsedAttr &attr, QualType type) { | ||||
582 | Declarator &declarator = state.getDeclarator(); | ||||
583 | |||||
584 | // Try to push the attribute from the return type of a function to | ||||
585 | // the function itself. | ||||
586 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | ||||
587 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | ||||
588 | switch (chunk.Kind) { | ||||
589 | case DeclaratorChunk::Function: | ||||
590 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
591 | chunk.getAttrs()); | ||||
592 | return; | ||||
593 | |||||
594 | case DeclaratorChunk::Paren: | ||||
595 | case DeclaratorChunk::Pointer: | ||||
596 | case DeclaratorChunk::BlockPointer: | ||||
597 | case DeclaratorChunk::Array: | ||||
598 | case DeclaratorChunk::Reference: | ||||
599 | case DeclaratorChunk::MemberPointer: | ||||
600 | case DeclaratorChunk::Pipe: | ||||
601 | continue; | ||||
602 | } | ||||
603 | } | ||||
604 | |||||
605 | diagnoseBadTypeAttribute(state.getSema(), attr, type); | ||||
606 | } | ||||
607 | |||||
608 | /// Try to distribute a function type attribute to the innermost | ||||
609 | /// function chunk or type. Returns true if the attribute was | ||||
610 | /// distributed, false if no location was found. | ||||
611 | static bool distributeFunctionTypeAttrToInnermost( | ||||
612 | TypeProcessingState &state, ParsedAttr &attr, | ||||
613 | ParsedAttributesView &attrList, QualType &declSpecType) { | ||||
614 | Declarator &declarator = state.getDeclarator(); | ||||
615 | |||||
616 | // Put it on the innermost function chunk, if there is one. | ||||
617 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||
618 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||
619 | if (chunk.Kind != DeclaratorChunk::Function) continue; | ||||
620 | |||||
621 | moveAttrFromListToList(attr, attrList, chunk.getAttrs()); | ||||
622 | return true; | ||||
623 | } | ||||
624 | |||||
625 | return handleFunctionTypeAttr(state, attr, declSpecType); | ||||
626 | } | ||||
627 | |||||
628 | /// A function type attribute was written in the decl spec. Try to | ||||
629 | /// apply it somewhere. | ||||
630 | static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, | ||||
631 | ParsedAttr &attr, | ||||
632 | QualType &declSpecType) { | ||||
633 | state.saveDeclSpecAttrs(); | ||||
634 | |||||
635 | // C++11 attributes before the decl specifiers actually appertain to | ||||
636 | // the declarators. Move them straight there. We don't support the | ||||
637 | // 'put them wherever you like' semantics we allow for GNU attributes. | ||||
638 | if (attr.isStandardAttributeSyntax()) { | ||||
639 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
640 | state.getDeclarator().getAttributes()); | ||||
641 | return; | ||||
642 | } | ||||
643 | |||||
644 | // Try to distribute to the innermost. | ||||
645 | if (distributeFunctionTypeAttrToInnermost( | ||||
646 | state, attr, state.getCurrentAttributes(), declSpecType)) | ||||
647 | return; | ||||
648 | |||||
649 | // If that failed, diagnose the bad attribute when the declarator is | ||||
650 | // fully built. | ||||
651 | state.addIgnoredTypeAttr(attr); | ||||
652 | } | ||||
653 | |||||
654 | /// A function type attribute was written on the declarator. Try to | ||||
655 | /// apply it somewhere. | ||||
656 | static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, | ||||
657 | ParsedAttr &attr, | ||||
658 | QualType &declSpecType) { | ||||
659 | Declarator &declarator = state.getDeclarator(); | ||||
660 | |||||
661 | // Try to distribute to the innermost. | ||||
662 | if (distributeFunctionTypeAttrToInnermost( | ||||
663 | state, attr, declarator.getAttributes(), declSpecType)) | ||||
664 | return; | ||||
665 | |||||
666 | // If that failed, diagnose the bad attribute when the declarator is | ||||
667 | // fully built. | ||||
668 | declarator.getAttributes().remove(&attr); | ||||
669 | state.addIgnoredTypeAttr(attr); | ||||
670 | } | ||||
671 | |||||
672 | /// Given that there are attributes written on the declarator | ||||
673 | /// itself, try to distribute any type attributes to the appropriate | ||||
674 | /// declarator chunk. | ||||
675 | /// | ||||
676 | /// These are attributes like the following: | ||||
677 | /// int f ATTR; | ||||
678 | /// int (f ATTR)(); | ||||
679 | /// but not necessarily this: | ||||
680 | /// int f() ATTR; | ||||
681 | static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, | ||||
682 | QualType &declSpecType) { | ||||
683 | // Collect all the type attributes from the declarator itself. | ||||
684 | assert(!state.getDeclarator().getAttributes().empty() &&((void)0) | ||||
685 | "declarator has no attrs!")((void)0); | ||||
686 | // The called functions in this loop actually remove things from the current | ||||
687 | // list, so iterating over the existing list isn't possible. Instead, make a | ||||
688 | // non-owning copy and iterate over that. | ||||
689 | ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()}; | ||||
690 | for (ParsedAttr &attr : AttrsCopy) { | ||||
691 | // Do not distribute [[]] attributes. They have strict rules for what | ||||
692 | // they appertain to. | ||||
693 | if (attr.isStandardAttributeSyntax()) | ||||
694 | continue; | ||||
695 | |||||
696 | switch (attr.getKind()) { | ||||
697 | OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership: | ||||
698 | distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType); | ||||
699 | break; | ||||
700 | |||||
701 | FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll: | ||||
702 | distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType); | ||||
703 | break; | ||||
704 | |||||
705 | MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr: | ||||
706 | // Microsoft type attributes cannot go after the declarator-id. | ||||
707 | continue; | ||||
708 | |||||
709 | NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified: | ||||
710 | // Nullability specifiers cannot go after the declarator-id. | ||||
711 | |||||
712 | // Objective-C __kindof does not get distributed. | ||||
713 | case ParsedAttr::AT_ObjCKindOf: | ||||
714 | continue; | ||||
715 | |||||
716 | default: | ||||
717 | break; | ||||
718 | } | ||||
719 | } | ||||
720 | } | ||||
721 | |||||
722 | /// Add a synthetic '()' to a block-literal declarator if it is | ||||
723 | /// required, given the return type. | ||||
724 | static void maybeSynthesizeBlockSignature(TypeProcessingState &state, | ||||
725 | QualType declSpecType) { | ||||
726 | Declarator &declarator = state.getDeclarator(); | ||||
727 | |||||
728 | // First, check whether the declarator would produce a function, | ||||
729 | // i.e. whether the innermost semantic chunk is a function. | ||||
730 | if (declarator.isFunctionDeclarator()) { | ||||
731 | // If so, make that declarator a prototyped declarator. | ||||
732 | declarator.getFunctionTypeInfo().hasPrototype = true; | ||||
733 | return; | ||||
734 | } | ||||
735 | |||||
736 | // If there are any type objects, the type as written won't name a | ||||
737 | // function, regardless of the decl spec type. This is because a | ||||
738 | // block signature declarator is always an abstract-declarator, and | ||||
739 | // abstract-declarators can't just be parentheses chunks. Therefore | ||||
740 | // we need to build a function chunk unless there are no type | ||||
741 | // objects and the decl spec type is a function. | ||||
742 | if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType()) | ||||
743 | return; | ||||
744 | |||||
745 | // Note that there *are* cases with invalid declarators where | ||||
746 | // declarators consist solely of parentheses. In general, these | ||||
747 | // occur only in failed efforts to make function declarators, so | ||||
748 | // faking up the function chunk is still the right thing to do. | ||||
749 | |||||
750 | // Otherwise, we need to fake up a function declarator. | ||||
751 | SourceLocation loc = declarator.getBeginLoc(); | ||||
752 | |||||
753 | // ...and *prepend* it to the declarator. | ||||
754 | SourceLocation NoLoc; | ||||
755 | declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction( | ||||
756 | /*HasProto=*/true, | ||||
757 | /*IsAmbiguous=*/false, | ||||
758 | /*LParenLoc=*/NoLoc, | ||||
759 | /*ArgInfo=*/nullptr, | ||||
760 | /*NumParams=*/0, | ||||
761 | /*EllipsisLoc=*/NoLoc, | ||||
762 | /*RParenLoc=*/NoLoc, | ||||
763 | /*RefQualifierIsLvalueRef=*/true, | ||||
764 | /*RefQualifierLoc=*/NoLoc, | ||||
765 | /*MutableLoc=*/NoLoc, EST_None, | ||||
766 | /*ESpecRange=*/SourceRange(), | ||||
767 | /*Exceptions=*/nullptr, | ||||
768 | /*ExceptionRanges=*/nullptr, | ||||
769 | /*NumExceptions=*/0, | ||||
770 | /*NoexceptExpr=*/nullptr, | ||||
771 | /*ExceptionSpecTokens=*/nullptr, | ||||
772 | /*DeclsInPrototype=*/None, loc, loc, declarator)); | ||||
773 | |||||
774 | // For consistency, make sure the state still has us as processing | ||||
775 | // the decl spec. | ||||
776 | assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((void)0); | ||||
777 | state.setCurrentChunkIndex(declarator.getNumTypeObjects()); | ||||
778 | } | ||||
779 | |||||
780 | static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, | ||||
781 | unsigned &TypeQuals, | ||||
782 | QualType TypeSoFar, | ||||
783 | unsigned RemoveTQs, | ||||
784 | unsigned DiagID) { | ||||
785 | // If this occurs outside a template instantiation, warn the user about | ||||
786 | // it; they probably didn't mean to specify a redundant qualifier. | ||||
787 | typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc; | ||||
788 | for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()), | ||||
789 | QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()), | ||||
790 | QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()), | ||||
791 | QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) { | ||||
792 | if (!(RemoveTQs & Qual.first)) | ||||
793 | continue; | ||||
794 | |||||
795 | if (!S.inTemplateInstantiation()) { | ||||
796 | if (TypeQuals & Qual.first) | ||||
797 | S.Diag(Qual.second, DiagID) | ||||
798 | << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar | ||||
799 | << FixItHint::CreateRemoval(Qual.second); | ||||
800 | } | ||||
801 | |||||
802 | TypeQuals &= ~Qual.first; | ||||
803 | } | ||||
804 | } | ||||
805 | |||||
806 | /// Return true if this is omitted block return type. Also check type | ||||
807 | /// attributes and type qualifiers when returning true. | ||||
808 | static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, | ||||
809 | QualType Result) { | ||||
810 | if (!isOmittedBlockReturnType(declarator)) | ||||
811 | return false; | ||||
812 | |||||
813 | // Warn if we see type attributes for omitted return type on a block literal. | ||||
814 | SmallVector<ParsedAttr *, 2> ToBeRemoved; | ||||
815 | for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) { | ||||
816 | if (AL.isInvalid() || !AL.isTypeAttr()) | ||||
817 | continue; | ||||
818 | S.Diag(AL.getLoc(), | ||||
819 | diag::warn_block_literal_attributes_on_omitted_return_type) | ||||
820 | << AL; | ||||
821 | ToBeRemoved.push_back(&AL); | ||||
822 | } | ||||
823 | // Remove bad attributes from the list. | ||||
824 | for (ParsedAttr *AL : ToBeRemoved) | ||||
825 | declarator.getMutableDeclSpec().getAttributes().remove(AL); | ||||
826 | |||||
827 | // Warn if we see type qualifiers for omitted return type on a block literal. | ||||
828 | const DeclSpec &DS = declarator.getDeclSpec(); | ||||
829 | unsigned TypeQuals = DS.getTypeQualifiers(); | ||||
830 | diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1, | ||||
831 | diag::warn_block_literal_qualifiers_on_omitted_return_type); | ||||
832 | declarator.getMutableDeclSpec().ClearTypeQualifiers(); | ||||
833 | |||||
834 | return true; | ||||
835 | } | ||||
836 | |||||
837 | /// Apply Objective-C type arguments to the given type. | ||||
838 | static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type, | ||||
839 | ArrayRef<TypeSourceInfo *> typeArgs, | ||||
840 | SourceRange typeArgsRange, | ||||
841 | bool failOnError = false) { | ||||
842 | // We can only apply type arguments to an Objective-C class type. | ||||
843 | const auto *objcObjectType = type->getAs<ObjCObjectType>(); | ||||
844 | if (!objcObjectType || !objcObjectType->getInterface()) { | ||||
845 | S.Diag(loc, diag::err_objc_type_args_non_class) | ||||
846 | << type | ||||
847 | << typeArgsRange; | ||||
848 | |||||
849 | if (failOnError) | ||||
850 | return QualType(); | ||||
851 | return type; | ||||
852 | } | ||||
853 | |||||
854 | // The class type must be parameterized. | ||||
855 | ObjCInterfaceDecl *objcClass = objcObjectType->getInterface(); | ||||
856 | ObjCTypeParamList *typeParams = objcClass->getTypeParamList(); | ||||
857 | if (!typeParams) { | ||||
858 | S.Diag(loc, diag::err_objc_type_args_non_parameterized_class) | ||||
859 | << objcClass->getDeclName() | ||||
860 | << FixItHint::CreateRemoval(typeArgsRange); | ||||
861 | |||||
862 | if (failOnError) | ||||
863 | return QualType(); | ||||
864 | |||||
865 | return type; | ||||
866 | } | ||||
867 | |||||
868 | // The type must not already be specialized. | ||||
869 | if (objcObjectType->isSpecialized()) { | ||||
870 | S.Diag(loc, diag::err_objc_type_args_specialized_class) | ||||
871 | << type | ||||
872 | << FixItHint::CreateRemoval(typeArgsRange); | ||||
873 | |||||
874 | if (failOnError) | ||||
875 | return QualType(); | ||||
876 | |||||
877 | return type; | ||||
878 | } | ||||
879 | |||||
880 | // Check the type arguments. | ||||
881 | SmallVector<QualType, 4> finalTypeArgs; | ||||
882 | unsigned numTypeParams = typeParams->size(); | ||||
883 | bool anyPackExpansions = false; | ||||
884 | for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) { | ||||
885 | TypeSourceInfo *typeArgInfo = typeArgs[i]; | ||||
886 | QualType typeArg = typeArgInfo->getType(); | ||||
887 | |||||
888 | // Type arguments cannot have explicit qualifiers or nullability. | ||||
889 | // We ignore indirect sources of these, e.g. behind typedefs or | ||||
890 | // template arguments. | ||||
891 | if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) { | ||||
892 | bool diagnosed = false; | ||||
893 | SourceRange rangeToRemove; | ||||
894 | if (auto attr = qual.getAs<AttributedTypeLoc>()) { | ||||
895 | rangeToRemove = attr.getLocalSourceRange(); | ||||
896 | if (attr.getTypePtr()->getImmediateNullability()) { | ||||
897 | typeArg = attr.getTypePtr()->getModifiedType(); | ||||
898 | S.Diag(attr.getBeginLoc(), | ||||
899 | diag::err_objc_type_arg_explicit_nullability) | ||||
900 | << typeArg << FixItHint::CreateRemoval(rangeToRemove); | ||||
901 | diagnosed = true; | ||||
902 | } | ||||
903 | } | ||||
904 | |||||
905 | if (!diagnosed) { | ||||
906 | S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified) | ||||
907 | << typeArg << typeArg.getQualifiers().getAsString() | ||||
908 | << FixItHint::CreateRemoval(rangeToRemove); | ||||
909 | } | ||||
910 | } | ||||
911 | |||||
912 | // Remove qualifiers even if they're non-local. | ||||
913 | typeArg = typeArg.getUnqualifiedType(); | ||||
914 | |||||
915 | finalTypeArgs.push_back(typeArg); | ||||
916 | |||||
917 | if (typeArg->getAs<PackExpansionType>()) | ||||
918 | anyPackExpansions = true; | ||||
919 | |||||
920 | // Find the corresponding type parameter, if there is one. | ||||
921 | ObjCTypeParamDecl *typeParam = nullptr; | ||||
922 | if (!anyPackExpansions
| ||||
923 | if (i < numTypeParams) { | ||||
924 | typeParam = typeParams->begin()[i]; | ||||
925 | } else { | ||||
926 | // Too many arguments. | ||||
927 | S.Diag(loc, diag::err_objc_type_args_wrong_arity) | ||||
928 | << false | ||||
929 | << objcClass->getDeclName() | ||||
930 | << (unsigned)typeArgs.size() | ||||
931 | << numTypeParams; | ||||
932 | S.Diag(objcClass->getLocation(), diag::note_previous_decl) | ||||
933 | << objcClass; | ||||
934 | |||||
935 | if (failOnError) | ||||
936 | return QualType(); | ||||
937 | |||||
938 | return type; | ||||
939 | } | ||||
940 | } | ||||
941 | |||||
942 | // Objective-C object pointer types must be substitutable for the bounds. | ||||
943 | if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) { | ||||
944 | // If we don't have a type parameter to match against, assume | ||||
945 | // everything is fine. There was a prior pack expansion that | ||||
946 | // means we won't be able to match anything. | ||||
947 | if (!typeParam) { | ||||
948 | assert(anyPackExpansions && "Too many arguments?")((void)0); | ||||
949 | continue; | ||||
950 | } | ||||
951 | |||||
952 | // Retrieve the bound. | ||||
953 | QualType bound = typeParam->getUnderlyingType(); | ||||
954 | const auto *boundObjC = bound->getAs<ObjCObjectPointerType>(); | ||||
955 | |||||
956 | // Determine whether the type argument is substitutable for the bound. | ||||
957 | if (typeArgObjC->isObjCIdType()) { | ||||
958 | // When the type argument is 'id', the only acceptable type | ||||
959 | // parameter bound is 'id'. | ||||
960 | if (boundObjC->isObjCIdType()) | ||||
| |||||
961 | continue; | ||||
962 | } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) { | ||||
963 | // Otherwise, we follow the assignability rules. | ||||
964 | continue; | ||||
965 | } | ||||
966 | |||||
967 | // Diagnose the mismatch. | ||||
968 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||
969 | diag::err_objc_type_arg_does_not_match_bound) | ||||
970 | << typeArg << bound << typeParam->getDeclName(); | ||||
971 | S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here) | ||||
972 | << typeParam->getDeclName(); | ||||
973 | |||||
974 | if (failOnError) | ||||
975 | return QualType(); | ||||
976 | |||||
977 | return type; | ||||
978 | } | ||||
979 | |||||
980 | // Block pointer types are permitted for unqualified 'id' bounds. | ||||
981 | if (typeArg->isBlockPointerType()) { | ||||
982 | // If we don't have a type parameter to match against, assume | ||||
983 | // everything is fine. There was a prior pack expansion that | ||||
984 | // means we won't be able to match anything. | ||||
985 | if (!typeParam) { | ||||
986 | assert(anyPackExpansions && "Too many arguments?")((void)0); | ||||
987 | continue; | ||||
988 | } | ||||
989 | |||||
990 | // Retrieve the bound. | ||||
991 | QualType bound = typeParam->getUnderlyingType(); | ||||
992 | if (bound->isBlockCompatibleObjCPointerType(S.Context)) | ||||
993 | continue; | ||||
994 | |||||
995 | // Diagnose the mismatch. | ||||
996 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||
997 | diag::err_objc_type_arg_does_not_match_bound) | ||||
998 | << typeArg << bound << typeParam->getDeclName(); | ||||
999 | S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here) | ||||
1000 | << typeParam->getDeclName(); | ||||
1001 | |||||
1002 | if (failOnError) | ||||
1003 | return QualType(); | ||||
1004 | |||||
1005 | return type; | ||||
1006 | } | ||||
1007 | |||||
1008 | // Dependent types will be checked at instantiation time. | ||||
1009 | if (typeArg->isDependentType()) { | ||||
1010 | continue; | ||||
1011 | } | ||||
1012 | |||||
1013 | // Diagnose non-id-compatible type arguments. | ||||
1014 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||
1015 | diag::err_objc_type_arg_not_id_compatible) | ||||
1016 | << typeArg << typeArgInfo->getTypeLoc().getSourceRange(); | ||||
1017 | |||||
1018 | if (failOnError) | ||||
1019 | return QualType(); | ||||
1020 | |||||
1021 | return type; | ||||
1022 | } | ||||
1023 | |||||
1024 | // Make sure we didn't have the wrong number of arguments. | ||||
1025 | if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) { | ||||
1026 | S.Diag(loc, diag::err_objc_type_args_wrong_arity) | ||||
1027 | << (typeArgs.size() < typeParams->size()) | ||||
1028 | << objcClass->getDeclName() | ||||
1029 | << (unsigned)finalTypeArgs.size() | ||||
1030 | << (unsigned)numTypeParams; | ||||
1031 | S.Diag(objcClass->getLocation(), diag::note_previous_decl) | ||||
1032 | << objcClass; | ||||
1033 | |||||
1034 | if (failOnError) | ||||
1035 | return QualType(); | ||||
1036 | |||||
1037 | return type; | ||||
1038 | } | ||||
1039 | |||||
1040 | // Success. Form the specialized type. | ||||
1041 | return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false); | ||||
1042 | } | ||||
1043 | |||||
1044 | QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, | ||||
1045 | SourceLocation ProtocolLAngleLoc, | ||||
1046 | ArrayRef<ObjCProtocolDecl *> Protocols, | ||||
1047 | ArrayRef<SourceLocation> ProtocolLocs, | ||||
1048 | SourceLocation ProtocolRAngleLoc, | ||||
1049 | bool FailOnError) { | ||||
1050 | QualType Result = QualType(Decl->getTypeForDecl(), 0); | ||||
1051 | if (!Protocols.empty()) { | ||||
1052 | bool HasError; | ||||
1053 | Result = Context.applyObjCProtocolQualifiers(Result, Protocols, | ||||
1054 | HasError); | ||||
1055 | if (HasError) { | ||||
1056 | Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers) | ||||
1057 | << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc); | ||||
1058 | if (FailOnError) Result = QualType(); | ||||
1059 | } | ||||
1060 | if (FailOnError && Result.isNull()) | ||||
1061 | return QualType(); | ||||
1062 | } | ||||
1063 | |||||
1064 | return Result; | ||||
1065 | } | ||||
1066 | |||||
1067 | QualType Sema::BuildObjCObjectType(QualType BaseType, | ||||
1068 | SourceLocation Loc, | ||||
1069 | SourceLocation TypeArgsLAngleLoc, | ||||
1070 | ArrayRef<TypeSourceInfo *> TypeArgs, | ||||
1071 | SourceLocation TypeArgsRAngleLoc, | ||||
1072 | SourceLocation ProtocolLAngleLoc, | ||||
1073 | ArrayRef<ObjCProtocolDecl *> Protocols, | ||||
1074 | ArrayRef<SourceLocation> ProtocolLocs, | ||||
1075 | SourceLocation ProtocolRAngleLoc, | ||||
1076 | bool FailOnError) { | ||||
1077 | QualType Result = BaseType; | ||||
1078 | if (!TypeArgs.empty()) { | ||||
1079 | Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs, | ||||
1080 | SourceRange(TypeArgsLAngleLoc, | ||||
1081 | TypeArgsRAngleLoc), | ||||
1082 | FailOnError); | ||||
1083 | if (FailOnError && Result.isNull()) | ||||
1084 | return QualType(); | ||||
1085 | } | ||||
1086 | |||||
1087 | if (!Protocols.empty()) { | ||||
1088 | bool HasError; | ||||
1089 | Result = Context.applyObjCProtocolQualifiers(Result, Protocols, | ||||
1090 | HasError); | ||||
1091 | if (HasError) { | ||||
1092 | Diag(Loc, diag::err_invalid_protocol_qualifiers) | ||||
1093 | << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc); | ||||
1094 | if (FailOnError) Result = QualType(); | ||||
1095 | } | ||||
1096 | if (FailOnError && Result.isNull()) | ||||
1097 | return QualType(); | ||||
1098 | } | ||||
1099 | |||||
1100 | return Result; | ||||
1101 | } | ||||
1102 | |||||
1103 | TypeResult Sema::actOnObjCProtocolQualifierType( | ||||
1104 | SourceLocation lAngleLoc, | ||||
1105 | ArrayRef<Decl *> protocols, | ||||
1106 | ArrayRef<SourceLocation> protocolLocs, | ||||
1107 | SourceLocation rAngleLoc) { | ||||
1108 | // Form id<protocol-list>. | ||||
1109 | QualType Result = Context.getObjCObjectType( | ||||
1110 | Context.ObjCBuiltinIdTy, { }, | ||||
1111 | llvm::makeArrayRef( | ||||
1112 | (ObjCProtocolDecl * const *)protocols.data(), | ||||
1113 | protocols.size()), | ||||
1114 | false); | ||||
1115 | Result = Context.getObjCObjectPointerType(Result); | ||||
1116 | |||||
1117 | TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result); | ||||
1118 | TypeLoc ResultTL = ResultTInfo->getTypeLoc(); | ||||
1119 | |||||
1120 | auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>(); | ||||
1121 | ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit | ||||
1122 | |||||
1123 | auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc() | ||||
1124 | .castAs<ObjCObjectTypeLoc>(); | ||||
1125 | ObjCObjectTL.setHasBaseTypeAsWritten(false); | ||||
1126 | ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation()); | ||||
1127 | |||||
1128 | // No type arguments. | ||||
1129 | ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation()); | ||||
1130 | ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation()); | ||||
1131 | |||||
1132 | // Fill in protocol qualifiers. | ||||
1133 | ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc); | ||||
1134 | ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc); | ||||
1135 | for (unsigned i = 0, n = protocols.size(); i != n; ++i) | ||||
1136 | ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]); | ||||
1137 | |||||
1138 | // We're done. Return the completed type to the parser. | ||||
1139 | return CreateParsedType(Result, ResultTInfo); | ||||
1140 | } | ||||
1141 | |||||
1142 | TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers( | ||||
1143 | Scope *S, | ||||
1144 | SourceLocation Loc, | ||||
1145 | ParsedType BaseType, | ||||
1146 | SourceLocation TypeArgsLAngleLoc, | ||||
1147 | ArrayRef<ParsedType> TypeArgs, | ||||
1148 | SourceLocation TypeArgsRAngleLoc, | ||||
1149 | SourceLocation ProtocolLAngleLoc, | ||||
1150 | ArrayRef<Decl *> Protocols, | ||||
1151 | ArrayRef<SourceLocation> ProtocolLocs, | ||||
1152 | SourceLocation ProtocolRAngleLoc) { | ||||
1153 | TypeSourceInfo *BaseTypeInfo = nullptr; | ||||
1154 | QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo); | ||||
1155 | if (T.isNull()) | ||||
| |||||
1156 | return true; | ||||
1157 | |||||
1158 | // Handle missing type-source info. | ||||
1159 | if (!BaseTypeInfo
| ||||
1160 | BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc); | ||||
1161 | |||||
1162 | // Extract type arguments. | ||||
1163 | SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos; | ||||
1164 | for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) { | ||||
1165 | TypeSourceInfo *TypeArgInfo = nullptr; | ||||
1166 | QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo); | ||||
1167 | if (TypeArg.isNull()) { | ||||
1168 | ActualTypeArgInfos.clear(); | ||||
1169 | break; | ||||
1170 | } | ||||
1171 | |||||
1172 | assert(TypeArgInfo && "No type source info?")((void)0); | ||||
1173 | ActualTypeArgInfos.push_back(TypeArgInfo); | ||||
1174 | } | ||||
1175 | |||||
1176 | // Build the object type. | ||||
1177 | QualType Result = BuildObjCObjectType( | ||||
1178 | T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(), | ||||
1179 | TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc, | ||||
1180 | ProtocolLAngleLoc, | ||||
1181 | llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(), | ||||
1182 | Protocols.size()), | ||||
1183 | ProtocolLocs, ProtocolRAngleLoc, | ||||
1184 | /*FailOnError=*/false); | ||||
1185 | |||||
1186 | if (Result == T) | ||||
1187 | return BaseType; | ||||
1188 | |||||
1189 | // Create source information for this type. | ||||
1190 | TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result); | ||||
1191 | TypeLoc ResultTL = ResultTInfo->getTypeLoc(); | ||||
1192 | |||||
1193 | // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an | ||||
1194 | // object pointer type. Fill in source information for it. | ||||
1195 | if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) { | ||||
1196 | // The '*' is implicit. | ||||
1197 | ObjCObjectPointerTL.setStarLoc(SourceLocation()); | ||||
1198 | ResultTL = ObjCObjectPointerTL.getPointeeLoc(); | ||||
1199 | } | ||||
1200 | |||||
1201 | if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) { | ||||
1202 | // Protocol qualifier information. | ||||
1203 | if (OTPTL.getNumProtocols() > 0) { | ||||
1204 | assert(OTPTL.getNumProtocols() == Protocols.size())((void)0); | ||||
1205 | OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc); | ||||
1206 | OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc); | ||||
1207 | for (unsigned i = 0, n = Protocols.size(); i != n; ++i) | ||||
1208 | OTPTL.setProtocolLoc(i, ProtocolLocs[i]); | ||||
1209 | } | ||||
1210 | |||||
1211 | // We're done. Return the completed type to the parser. | ||||
1212 | return CreateParsedType(Result, ResultTInfo); | ||||
1213 | } | ||||
1214 | |||||
1215 | auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>(); | ||||
1216 | |||||
1217 | // Type argument information. | ||||
1218 | if (ObjCObjectTL.getNumTypeArgs() > 0) { | ||||
1219 | assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((void)0); | ||||
1220 | ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc); | ||||
1221 | ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc); | ||||
1222 | for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i) | ||||
1223 | ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]); | ||||
1224 | } else { | ||||
1225 | ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation()); | ||||
1226 | ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation()); | ||||
1227 | } | ||||
1228 | |||||
1229 | // Protocol qualifier information. | ||||
1230 | if (ObjCObjectTL.getNumProtocols() > 0) { | ||||
1231 | assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((void)0); | ||||
1232 | ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc); | ||||
1233 | ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc); | ||||
1234 | for (unsigned i = 0, n = Protocols.size(); i != n; ++i) | ||||
1235 | ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]); | ||||
1236 | } else { | ||||
1237 | ObjCObjectTL.setProtocolLAngleLoc(SourceLocation()); | ||||
1238 | ObjCObjectTL.setProtocolRAngleLoc(SourceLocation()); | ||||
1239 | } | ||||
1240 | |||||
1241 | // Base type. | ||||
1242 | ObjCObjectTL.setHasBaseTypeAsWritten(true); | ||||
1243 | if (ObjCObjectTL.getType() == T) | ||||
1244 | ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc()); | ||||
1245 | else | ||||
1246 | ObjCObjectTL.getBaseLoc().initialize(Context, Loc); | ||||
1247 | |||||
1248 | // We're done. Return the completed type to the parser. | ||||
1249 | return CreateParsedType(Result, ResultTInfo); | ||||
1250 | } | ||||
1251 | |||||
1252 | static OpenCLAccessAttr::Spelling | ||||
1253 | getImageAccess(const ParsedAttributesView &Attrs) { | ||||
1254 | for (const ParsedAttr &AL : Attrs) | ||||
1255 | if (AL.getKind() == ParsedAttr::AT_OpenCLAccess) | ||||
1256 | return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling()); | ||||
1257 | return OpenCLAccessAttr::Keyword_read_only; | ||||
1258 | } | ||||
1259 | |||||
1260 | /// Convert the specified declspec to the appropriate type | ||||
1261 | /// object. | ||||
1262 | /// \param state Specifies the declarator containing the declaration specifier | ||||
1263 | /// to be converted, along with other associated processing state. | ||||
1264 | /// \returns The type described by the declaration specifiers. This function | ||||
1265 | /// never returns null. | ||||
1266 | static QualType ConvertDeclSpecToType(TypeProcessingState &state) { | ||||
1267 | // FIXME: Should move the logic from DeclSpec::Finish to here for validity | ||||
1268 | // checking. | ||||
1269 | |||||
1270 | Sema &S = state.getSema(); | ||||
1271 | Declarator &declarator = state.getDeclarator(); | ||||
1272 | DeclSpec &DS = declarator.getMutableDeclSpec(); | ||||
1273 | SourceLocation DeclLoc = declarator.getIdentifierLoc(); | ||||
1274 | if (DeclLoc.isInvalid()) | ||||
1275 | DeclLoc = DS.getBeginLoc(); | ||||
1276 | |||||
1277 | ASTContext &Context = S.Context; | ||||
1278 | |||||
1279 | QualType Result; | ||||
1280 | switch (DS.getTypeSpecType()) { | ||||
1281 | case DeclSpec::TST_void: | ||||
1282 | Result = Context.VoidTy; | ||||
1283 | break; | ||||
1284 | case DeclSpec::TST_char: | ||||
1285 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) | ||||
1286 | Result = Context.CharTy; | ||||
1287 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) | ||||
1288 | Result = Context.SignedCharTy; | ||||
1289 | else { | ||||
1290 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((void)0) | ||||
1291 | "Unknown TSS value")((void)0); | ||||
1292 | Result = Context.UnsignedCharTy; | ||||
1293 | } | ||||
1294 | break; | ||||
1295 | case DeclSpec::TST_wchar: | ||||
1296 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) | ||||
1297 | Result = Context.WCharTy; | ||||
1298 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) { | ||||
1299 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) | ||||
1300 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||
1301 | Context.getPrintingPolicy()); | ||||
1302 | Result = Context.getSignedWCharType(); | ||||
1303 | } else { | ||||
1304 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((void)0) | ||||
1305 | "Unknown TSS value")((void)0); | ||||
1306 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) | ||||
1307 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||
1308 | Context.getPrintingPolicy()); | ||||
1309 | Result = Context.getUnsignedWCharType(); | ||||
1310 | } | ||||
1311 | break; | ||||
1312 | case DeclSpec::TST_char8: | ||||
1313 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1314 | "Unknown TSS value")((void)0); | ||||
1315 | Result = Context.Char8Ty; | ||||
1316 | break; | ||||
1317 | case DeclSpec::TST_char16: | ||||
1318 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1319 | "Unknown TSS value")((void)0); | ||||
1320 | Result = Context.Char16Ty; | ||||
1321 | break; | ||||
1322 | case DeclSpec::TST_char32: | ||||
1323 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1324 | "Unknown TSS value")((void)0); | ||||
1325 | Result = Context.Char32Ty; | ||||
1326 | break; | ||||
1327 | case DeclSpec::TST_unspecified: | ||||
1328 | // If this is a missing declspec in a block literal return context, then it | ||||
1329 | // is inferred from the return statements inside the block. | ||||
1330 | // The declspec is always missing in a lambda expr context; it is either | ||||
1331 | // specified with a trailing return type or inferred. | ||||
1332 | if (S.getLangOpts().CPlusPlus14 && | ||||
1333 | declarator.getContext() == DeclaratorContext::LambdaExpr) { | ||||
1334 | // In C++1y, a lambda's implicit return type is 'auto'. | ||||
1335 | Result = Context.getAutoDeductType(); | ||||
1336 | break; | ||||
1337 | } else if (declarator.getContext() == DeclaratorContext::LambdaExpr || | ||||
1338 | checkOmittedBlockReturnType(S, declarator, | ||||
1339 | Context.DependentTy)) { | ||||
1340 | Result = Context.DependentTy; | ||||
1341 | break; | ||||
1342 | } | ||||
1343 | |||||
1344 | // Unspecified typespec defaults to int in C90. However, the C90 grammar | ||||
1345 | // [C90 6.5] only allows a decl-spec if there was *some* type-specifier, | ||||
1346 | // type-qualifier, or storage-class-specifier. If not, emit an extwarn. | ||||
1347 | // Note that the one exception to this is function definitions, which are | ||||
1348 | // allowed to be completely missing a declspec. This is handled in the | ||||
1349 | // parser already though by it pretending to have seen an 'int' in this | ||||
1350 | // case. | ||||
1351 | if (S.getLangOpts().ImplicitInt) { | ||||
1352 | // In C89 mode, we only warn if there is a completely missing declspec | ||||
1353 | // when one is not allowed. | ||||
1354 | if (DS.isEmpty()) { | ||||
1355 | S.Diag(DeclLoc, diag::ext_missing_declspec) | ||||
1356 | << DS.getSourceRange() | ||||
1357 | << FixItHint::CreateInsertion(DS.getBeginLoc(), "int"); | ||||
1358 | } | ||||
1359 | } else if (!DS.hasTypeSpecifier()) { | ||||
1360 | // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says: | ||||
1361 | // "At least one type specifier shall be given in the declaration | ||||
1362 | // specifiers in each declaration, and in the specifier-qualifier list in | ||||
1363 | // each struct declaration and type name." | ||||
1364 | if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) { | ||||
1365 | S.Diag(DeclLoc, diag::err_missing_type_specifier) | ||||
1366 | << DS.getSourceRange(); | ||||
1367 | |||||
1368 | // When this occurs in C++ code, often something is very broken with the | ||||
1369 | // value being declared, poison it as invalid so we don't get chains of | ||||
1370 | // errors. | ||||
1371 | declarator.setInvalidType(true); | ||||
1372 | } else if ((S.getLangOpts().OpenCLVersion >= 200 || | ||||
1373 | S.getLangOpts().OpenCLCPlusPlus) && | ||||
1374 | DS.isTypeSpecPipe()) { | ||||
1375 | S.Diag(DeclLoc, diag::err_missing_actual_pipe_type) | ||||
1376 | << DS.getSourceRange(); | ||||
1377 | declarator.setInvalidType(true); | ||||
1378 | } else { | ||||
1379 | S.Diag(DeclLoc, diag::ext_missing_type_specifier) | ||||
1380 | << DS.getSourceRange(); | ||||
1381 | } | ||||
1382 | } | ||||
1383 | |||||
1384 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
1385 | case DeclSpec::TST_int: { | ||||
1386 | if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) { | ||||
1387 | switch (DS.getTypeSpecWidth()) { | ||||
1388 | case TypeSpecifierWidth::Unspecified: | ||||
1389 | Result = Context.IntTy; | ||||
1390 | break; | ||||
1391 | case TypeSpecifierWidth::Short: | ||||
1392 | Result = Context.ShortTy; | ||||
1393 | break; | ||||
1394 | case TypeSpecifierWidth::Long: | ||||
1395 | Result = Context.LongTy; | ||||
1396 | break; | ||||
1397 | case TypeSpecifierWidth::LongLong: | ||||
1398 | Result = Context.LongLongTy; | ||||
1399 | |||||
1400 | // 'long long' is a C99 or C++11 feature. | ||||
1401 | if (!S.getLangOpts().C99) { | ||||
1402 | if (S.getLangOpts().CPlusPlus) | ||||
1403 | S.Diag(DS.getTypeSpecWidthLoc(), | ||||
1404 | S.getLangOpts().CPlusPlus11 ? | ||||
1405 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | ||||
1406 | else | ||||
1407 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); | ||||
1408 | } | ||||
1409 | break; | ||||
1410 | } | ||||
1411 | } else { | ||||
1412 | switch (DS.getTypeSpecWidth()) { | ||||
1413 | case TypeSpecifierWidth::Unspecified: | ||||
1414 | Result = Context.UnsignedIntTy; | ||||
1415 | break; | ||||
1416 | case TypeSpecifierWidth::Short: | ||||
1417 | Result = Context.UnsignedShortTy; | ||||
1418 | break; | ||||
1419 | case TypeSpecifierWidth::Long: | ||||
1420 | Result = Context.UnsignedLongTy; | ||||
1421 | break; | ||||
1422 | case TypeSpecifierWidth::LongLong: | ||||
1423 | Result = Context.UnsignedLongLongTy; | ||||
1424 | |||||
1425 | // 'long long' is a C99 or C++11 feature. | ||||
1426 | if (!S.getLangOpts().C99) { | ||||
1427 | if (S.getLangOpts().CPlusPlus) | ||||
1428 | S.Diag(DS.getTypeSpecWidthLoc(), | ||||
1429 | S.getLangOpts().CPlusPlus11 ? | ||||
1430 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | ||||
1431 | else | ||||
1432 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); | ||||
1433 | } | ||||
1434 | break; | ||||
1435 | } | ||||
1436 | } | ||||
1437 | break; | ||||
1438 | } | ||||
1439 | case DeclSpec::TST_extint: { | ||||
1440 | if (!S.Context.getTargetInfo().hasExtIntType()) | ||||
1441 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1442 | << "_ExtInt"; | ||||
1443 | Result = | ||||
1444 | S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned, | ||||
1445 | DS.getRepAsExpr(), DS.getBeginLoc()); | ||||
1446 | if (Result.isNull()) { | ||||
1447 | Result = Context.IntTy; | ||||
1448 | declarator.setInvalidType(true); | ||||
1449 | } | ||||
1450 | break; | ||||
1451 | } | ||||
1452 | case DeclSpec::TST_accum: { | ||||
1453 | switch (DS.getTypeSpecWidth()) { | ||||
1454 | case TypeSpecifierWidth::Short: | ||||
1455 | Result = Context.ShortAccumTy; | ||||
1456 | break; | ||||
1457 | case TypeSpecifierWidth::Unspecified: | ||||
1458 | Result = Context.AccumTy; | ||||
1459 | break; | ||||
1460 | case TypeSpecifierWidth::Long: | ||||
1461 | Result = Context.LongAccumTy; | ||||
1462 | break; | ||||
1463 | case TypeSpecifierWidth::LongLong: | ||||
1464 | llvm_unreachable("Unable to specify long long as _Accum width")__builtin_unreachable(); | ||||
1465 | } | ||||
1466 | |||||
1467 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||
1468 | Result = Context.getCorrespondingUnsignedType(Result); | ||||
1469 | |||||
1470 | if (DS.isTypeSpecSat()) | ||||
1471 | Result = Context.getCorrespondingSaturatedType(Result); | ||||
1472 | |||||
1473 | break; | ||||
1474 | } | ||||
1475 | case DeclSpec::TST_fract: { | ||||
1476 | switch (DS.getTypeSpecWidth()) { | ||||
1477 | case TypeSpecifierWidth::Short: | ||||
1478 | Result = Context.ShortFractTy; | ||||
1479 | break; | ||||
1480 | case TypeSpecifierWidth::Unspecified: | ||||
1481 | Result = Context.FractTy; | ||||
1482 | break; | ||||
1483 | case TypeSpecifierWidth::Long: | ||||
1484 | Result = Context.LongFractTy; | ||||
1485 | break; | ||||
1486 | case TypeSpecifierWidth::LongLong: | ||||
1487 | llvm_unreachable("Unable to specify long long as _Fract width")__builtin_unreachable(); | ||||
1488 | } | ||||
1489 | |||||
1490 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||
1491 | Result = Context.getCorrespondingUnsignedType(Result); | ||||
1492 | |||||
1493 | if (DS.isTypeSpecSat()) | ||||
1494 | Result = Context.getCorrespondingSaturatedType(Result); | ||||
1495 | |||||
1496 | break; | ||||
1497 | } | ||||
1498 | case DeclSpec::TST_int128: | ||||
1499 | if (!S.Context.getTargetInfo().hasInt128Type() && | ||||
1500 | !S.getLangOpts().SYCLIsDevice && | ||||
1501 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||
1502 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1503 | << "__int128"; | ||||
1504 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||
1505 | Result = Context.UnsignedInt128Ty; | ||||
1506 | else | ||||
1507 | Result = Context.Int128Ty; | ||||
1508 | break; | ||||
1509 | case DeclSpec::TST_float16: | ||||
1510 | // CUDA host and device may have different _Float16 support, therefore | ||||
1511 | // do not diagnose _Float16 usage to avoid false alarm. | ||||
1512 | // ToDo: more precise diagnostics for CUDA. | ||||
1513 | if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA && | ||||
1514 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||
1515 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1516 | << "_Float16"; | ||||
1517 | Result = Context.Float16Ty; | ||||
1518 | break; | ||||
1519 | case DeclSpec::TST_half: Result = Context.HalfTy; break; | ||||
1520 | case DeclSpec::TST_BFloat16: | ||||
1521 | if (!S.Context.getTargetInfo().hasBFloat16Type()) | ||||
1522 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1523 | << "__bf16"; | ||||
1524 | Result = Context.BFloat16Ty; | ||||
1525 | break; | ||||
1526 | case DeclSpec::TST_float: Result = Context.FloatTy; break; | ||||
1527 | case DeclSpec::TST_double: | ||||
1528 | if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long) | ||||
1529 | Result = Context.LongDoubleTy; | ||||
1530 | else | ||||
1531 | Result = Context.DoubleTy; | ||||
1532 | if (S.getLangOpts().OpenCL) { | ||||
1533 | if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts())) | ||||
1534 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||
1535 | << 0 << Result | ||||
1536 | << (S.getLangOpts().OpenCLVersion == 300 | ||||
1537 | ? "cl_khr_fp64 and __opencl_c_fp64" | ||||
1538 | : "cl_khr_fp64"); | ||||
1539 | else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts())) | ||||
1540 | S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma); | ||||
1541 | } | ||||
1542 | break; | ||||
1543 | case DeclSpec::TST_float128: | ||||
1544 | if (!S.Context.getTargetInfo().hasFloat128Type() && | ||||
1545 | !S.getLangOpts().SYCLIsDevice && | ||||
1546 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||
1547 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1548 | << "__float128"; | ||||
1549 | Result = Context.Float128Ty; | ||||
1550 | break; | ||||
1551 | case DeclSpec::TST_bool: | ||||
1552 | Result = Context.BoolTy; // _Bool or bool | ||||
1553 | break; | ||||
1554 | case DeclSpec::TST_decimal32: // _Decimal32 | ||||
1555 | case DeclSpec::TST_decimal64: // _Decimal64 | ||||
1556 | case DeclSpec::TST_decimal128: // _Decimal128 | ||||
1557 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported); | ||||
1558 | Result = Context.IntTy; | ||||
1559 | declarator.setInvalidType(true); | ||||
1560 | break; | ||||
1561 | case DeclSpec::TST_class: | ||||
1562 | case DeclSpec::TST_enum: | ||||
1563 | case DeclSpec::TST_union: | ||||
1564 | case DeclSpec::TST_struct: | ||||
1565 | case DeclSpec::TST_interface: { | ||||
1566 | TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()); | ||||
1567 | if (!D) { | ||||
1568 | // This can happen in C++ with ambiguous lookups. | ||||
1569 | Result = Context.IntTy; | ||||
1570 | declarator.setInvalidType(true); | ||||
1571 | break; | ||||
1572 | } | ||||
1573 | |||||
1574 | // If the type is deprecated or unavailable, diagnose it. | ||||
1575 | S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc()); | ||||
1576 | |||||
1577 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((void)0) | ||||
1578 | DS.getTypeSpecComplex() == 0 &&((void)0) | ||||
1579 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1580 | "No qualifiers on tag names!")((void)0); | ||||
1581 | |||||
1582 | // TypeQuals handled by caller. | ||||
1583 | Result = Context.getTypeDeclType(D); | ||||
1584 | |||||
1585 | // In both C and C++, make an ElaboratedType. | ||||
1586 | ElaboratedTypeKeyword Keyword | ||||
1587 | = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType()); | ||||
1588 | Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result, | ||||
1589 | DS.isTypeSpecOwned() ? D : nullptr); | ||||
1590 | break; | ||||
1591 | } | ||||
1592 | case DeclSpec::TST_typename: { | ||||
1593 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((void)0) | ||||
1594 | DS.getTypeSpecComplex() == 0 &&((void)0) | ||||
1595 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1596 | "Can't handle qualifiers on typedef names yet!")((void)0); | ||||
1597 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||
1598 | if (Result.isNull()) { | ||||
1599 | declarator.setInvalidType(true); | ||||
1600 | } | ||||
1601 | |||||
1602 | // TypeQuals handled by caller. | ||||
1603 | break; | ||||
1604 | } | ||||
1605 | case DeclSpec::TST_typeofType: | ||||
1606 | // FIXME: Preserve type source info. | ||||
1607 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||
1608 | assert(!Result.isNull() && "Didn't get a type for typeof?")((void)0); | ||||
1609 | if (!Result->isDependentType()) | ||||
1610 | if (const TagType *TT = Result->getAs<TagType>()) | ||||
1611 | S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc()); | ||||
1612 | // TypeQuals handled by caller. | ||||
1613 | Result = Context.getTypeOfType(Result); | ||||
1614 | break; | ||||
1615 | case DeclSpec::TST_typeofExpr: { | ||||
1616 | Expr *E = DS.getRepAsExpr(); | ||||
1617 | assert(E && "Didn't get an expression for typeof?")((void)0); | ||||
1618 | // TypeQuals handled by caller. | ||||
1619 | Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc()); | ||||
1620 | if (Result.isNull()) { | ||||
1621 | Result = Context.IntTy; | ||||
1622 | declarator.setInvalidType(true); | ||||
1623 | } | ||||
1624 | break; | ||||
1625 | } | ||||
1626 | case DeclSpec::TST_decltype: { | ||||
1627 | Expr *E = DS.getRepAsExpr(); | ||||
1628 | assert(E && "Didn't get an expression for decltype?")((void)0); | ||||
1629 | // TypeQuals handled by caller. | ||||
1630 | Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc()); | ||||
1631 | if (Result.isNull()) { | ||||
1632 | Result = Context.IntTy; | ||||
1633 | declarator.setInvalidType(true); | ||||
1634 | } | ||||
1635 | break; | ||||
1636 | } | ||||
1637 | case DeclSpec::TST_underlyingType: | ||||
1638 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||
1639 | assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((void)0); | ||||
1640 | Result = S.BuildUnaryTransformType(Result, | ||||
1641 | UnaryTransformType::EnumUnderlyingType, | ||||
1642 | DS.getTypeSpecTypeLoc()); | ||||
1643 | if (Result.isNull()) { | ||||
1644 | Result = Context.IntTy; | ||||
1645 | declarator.setInvalidType(true); | ||||
1646 | } | ||||
1647 | break; | ||||
1648 | |||||
1649 | case DeclSpec::TST_auto: | ||||
1650 | case DeclSpec::TST_decltype_auto: { | ||||
1651 | auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto | ||||
1652 | ? AutoTypeKeyword::DecltypeAuto | ||||
1653 | : AutoTypeKeyword::Auto; | ||||
1654 | |||||
1655 | ConceptDecl *TypeConstraintConcept = nullptr; | ||||
1656 | llvm::SmallVector<TemplateArgument, 8> TemplateArgs; | ||||
1657 | if (DS.isConstrainedAuto()) { | ||||
1658 | if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) { | ||||
1659 | TypeConstraintConcept = | ||||
1660 | cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()); | ||||
1661 | TemplateArgumentListInfo TemplateArgsInfo; | ||||
1662 | TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc); | ||||
1663 | TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc); | ||||
1664 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||
1665 | TemplateId->NumArgs); | ||||
1666 | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||
1667 | for (const auto &ArgLoc : TemplateArgsInfo.arguments()) | ||||
1668 | TemplateArgs.push_back(ArgLoc.getArgument()); | ||||
1669 | } else { | ||||
1670 | declarator.setInvalidType(true); | ||||
1671 | } | ||||
1672 | } | ||||
1673 | Result = S.Context.getAutoType(QualType(), AutoKW, | ||||
1674 | /*IsDependent*/ false, /*IsPack=*/false, | ||||
1675 | TypeConstraintConcept, TemplateArgs); | ||||
1676 | break; | ||||
1677 | } | ||||
1678 | |||||
1679 | case DeclSpec::TST_auto_type: | ||||
1680 | Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false); | ||||
1681 | break; | ||||
1682 | |||||
1683 | case DeclSpec::TST_unknown_anytype: | ||||
1684 | Result = Context.UnknownAnyTy; | ||||
1685 | break; | ||||
1686 | |||||
1687 | case DeclSpec::TST_atomic: | ||||
1688 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||
1689 | assert(!Result.isNull() && "Didn't get a type for _Atomic?")((void)0); | ||||
1690 | Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc()); | ||||
1691 | if (Result.isNull()) { | ||||
1692 | Result = Context.IntTy; | ||||
1693 | declarator.setInvalidType(true); | ||||
1694 | } | ||||
1695 | break; | ||||
1696 | |||||
1697 | #define GENERIC_IMAGE_TYPE(ImgType, Id) \ | ||||
1698 | case DeclSpec::TST_##ImgType##_t: \ | ||||
1699 | switch (getImageAccess(DS.getAttributes())) { \ | ||||
1700 | case OpenCLAccessAttr::Keyword_write_only: \ | ||||
1701 | Result = Context.Id##WOTy; \ | ||||
1702 | break; \ | ||||
1703 | case OpenCLAccessAttr::Keyword_read_write: \ | ||||
1704 | Result = Context.Id##RWTy; \ | ||||
1705 | break; \ | ||||
1706 | case OpenCLAccessAttr::Keyword_read_only: \ | ||||
1707 | Result = Context.Id##ROTy; \ | ||||
1708 | break; \ | ||||
1709 | case OpenCLAccessAttr::SpellingNotCalculated: \ | ||||
1710 | llvm_unreachable("Spelling not yet calculated")__builtin_unreachable(); \ | ||||
1711 | } \ | ||||
1712 | break; | ||||
1713 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
1714 | |||||
1715 | case DeclSpec::TST_error: | ||||
1716 | Result = Context.IntTy; | ||||
1717 | declarator.setInvalidType(true); | ||||
1718 | break; | ||||
1719 | } | ||||
1720 | |||||
1721 | // FIXME: we want resulting declarations to be marked invalid, but claiming | ||||
1722 | // the type is invalid is too strong - e.g. it causes ActOnTypeName to return | ||||
1723 | // a null type. | ||||
1724 | if (Result->containsErrors()) | ||||
1725 | declarator.setInvalidType(); | ||||
1726 | |||||
1727 | if (S.getLangOpts().OpenCL) { | ||||
1728 | const auto &OpenCLOptions = S.getOpenCLOptions(); | ||||
1729 | bool IsOpenCLC30 = (S.getLangOpts().OpenCLVersion == 300); | ||||
1730 | // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images | ||||
1731 | // support. | ||||
1732 | // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support | ||||
1733 | // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the | ||||
1734 | // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices | ||||
1735 | // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and | ||||
1736 | // only when the optional feature is supported | ||||
1737 | if ((Result->isImageType() || Result->isSamplerT()) && | ||||
1738 | (IsOpenCLC30 && | ||||
1739 | !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) { | ||||
1740 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||
1741 | << 0 << Result << "__opencl_c_images"; | ||||
1742 | declarator.setInvalidType(); | ||||
1743 | } else if (Result->isOCLImage3dWOType() && | ||||
1744 | !OpenCLOptions.isSupported("cl_khr_3d_image_writes", | ||||
1745 | S.getLangOpts())) { | ||||
1746 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||
1747 | << 0 << Result | ||||
1748 | << (IsOpenCLC30 | ||||
1749 | ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes" | ||||
1750 | : "cl_khr_3d_image_writes"); | ||||
1751 | declarator.setInvalidType(); | ||||
1752 | } | ||||
1753 | } | ||||
1754 | |||||
1755 | bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum || | ||||
1756 | DS.getTypeSpecType() == DeclSpec::TST_fract; | ||||
1757 | |||||
1758 | // Only fixed point types can be saturated | ||||
1759 | if (DS.isTypeSpecSat() && !IsFixedPointType) | ||||
1760 | S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec) | ||||
1761 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||
1762 | Context.getPrintingPolicy()); | ||||
1763 | |||||
1764 | // Handle complex types. | ||||
1765 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) { | ||||
1766 | if (S.getLangOpts().Freestanding) | ||||
1767 | S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex); | ||||
1768 | Result = Context.getComplexType(Result); | ||||
1769 | } else if (DS.isTypeAltiVecVector()) { | ||||
1770 | unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result)); | ||||
1771 | assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((void)0); | ||||
1772 | VectorType::VectorKind VecKind = VectorType::AltiVecVector; | ||||
1773 | if (DS.isTypeAltiVecPixel()) | ||||
1774 | VecKind = VectorType::AltiVecPixel; | ||||
1775 | else if (DS.isTypeAltiVecBool()) | ||||
1776 | VecKind = VectorType::AltiVecBool; | ||||
1777 | Result = Context.getVectorType(Result, 128/typeSize, VecKind); | ||||
1778 | } | ||||
1779 | |||||
1780 | // FIXME: Imaginary. | ||||
1781 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary) | ||||
1782 | S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported); | ||||
1783 | |||||
1784 | // Before we process any type attributes, synthesize a block literal | ||||
1785 | // function declarator if necessary. | ||||
1786 | if (declarator.getContext() == DeclaratorContext::BlockLiteral) | ||||
1787 | maybeSynthesizeBlockSignature(state, Result); | ||||
1788 | |||||
1789 | // Apply any type attributes from the decl spec. This may cause the | ||||
1790 | // list of type attributes to be temporarily saved while the type | ||||
1791 | // attributes are pushed around. | ||||
1792 | // pipe attributes will be handled later ( at GetFullTypeForDeclarator ) | ||||
1793 | if (!DS.isTypeSpecPipe()) | ||||
1794 | processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes()); | ||||
1795 | |||||
1796 | // Apply const/volatile/restrict qualifiers to T. | ||||
1797 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { | ||||
1798 | // Warn about CV qualifiers on function types. | ||||
1799 | // C99 6.7.3p8: | ||||
1800 | // If the specification of a function type includes any type qualifiers, | ||||
1801 | // the behavior is undefined. | ||||
1802 | // C++11 [dcl.fct]p7: | ||||
1803 | // The effect of a cv-qualifier-seq in a function declarator is not the | ||||
1804 | // same as adding cv-qualification on top of the function type. In the | ||||
1805 | // latter case, the cv-qualifiers are ignored. | ||||
1806 | if (Result->isFunctionType()) { | ||||
1807 | diagnoseAndRemoveTypeQualifiers( | ||||
1808 | S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile, | ||||
1809 | S.getLangOpts().CPlusPlus | ||||
1810 | ? diag::warn_typecheck_function_qualifiers_ignored | ||||
1811 | : diag::warn_typecheck_function_qualifiers_unspecified); | ||||
1812 | // No diagnostic for 'restrict' or '_Atomic' applied to a | ||||
1813 | // function type; we'll diagnose those later, in BuildQualifiedType. | ||||
1814 | } | ||||
1815 | |||||
1816 | // C++11 [dcl.ref]p1: | ||||
1817 | // Cv-qualified references are ill-formed except when the | ||||
1818 | // cv-qualifiers are introduced through the use of a typedef-name | ||||
1819 | // or decltype-specifier, in which case the cv-qualifiers are ignored. | ||||
1820 | // | ||||
1821 | // There don't appear to be any other contexts in which a cv-qualified | ||||
1822 | // reference type could be formed, so the 'ill-formed' clause here appears | ||||
1823 | // to never happen. | ||||
1824 | if (TypeQuals && Result->isReferenceType()) { | ||||
1825 | diagnoseAndRemoveTypeQualifiers( | ||||
1826 | S, DS, TypeQuals, Result, | ||||
1827 | DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic, | ||||
1828 | diag::warn_typecheck_reference_qualifiers); | ||||
1829 | } | ||||
1830 | |||||
1831 | // C90 6.5.3 constraints: "The same type qualifier shall not appear more | ||||
1832 | // than once in the same specifier-list or qualifier-list, either directly | ||||
1833 | // or via one or more typedefs." | ||||
1834 | if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus | ||||
1835 | && TypeQuals & Result.getCVRQualifiers()) { | ||||
1836 | if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) { | ||||
1837 | S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec) | ||||
1838 | << "const"; | ||||
1839 | } | ||||
1840 | |||||
1841 | if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) { | ||||
1842 | S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec) | ||||
1843 | << "volatile"; | ||||
1844 | } | ||||
1845 | |||||
1846 | // C90 doesn't have restrict nor _Atomic, so it doesn't force us to | ||||
1847 | // produce a warning in this case. | ||||
1848 | } | ||||
1849 | |||||
1850 | QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS); | ||||
1851 | |||||
1852 | // If adding qualifiers fails, just use the unqualified type. | ||||
1853 | if (Qualified.isNull()) | ||||
1854 | declarator.setInvalidType(true); | ||||
1855 | else | ||||
1856 | Result = Qualified; | ||||
1857 | } | ||||
1858 | |||||
1859 | assert(!Result.isNull() && "This function should not return a null type")((void)0); | ||||
1860 | return Result; | ||||
1861 | } | ||||
1862 | |||||
1863 | static std::string getPrintableNameForEntity(DeclarationName Entity) { | ||||
1864 | if (Entity) | ||||
1865 | return Entity.getAsString(); | ||||
1866 | |||||
1867 | return "type name"; | ||||
1868 | } | ||||
1869 | |||||
1870 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, | ||||
1871 | Qualifiers Qs, const DeclSpec *DS) { | ||||
1872 | if (T.isNull()) | ||||
1873 | return QualType(); | ||||
1874 | |||||
1875 | // Ignore any attempt to form a cv-qualified reference. | ||||
1876 | if (T->isReferenceType()) { | ||||
1877 | Qs.removeConst(); | ||||
1878 | Qs.removeVolatile(); | ||||
1879 | } | ||||
1880 | |||||
1881 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from | ||||
1882 | // object or incomplete types shall not be restrict-qualified." | ||||
1883 | if (Qs.hasRestrict()) { | ||||
1884 | unsigned DiagID = 0; | ||||
1885 | QualType ProblemTy; | ||||
1886 | |||||
1887 | if (T->isAnyPointerType() || T->isReferenceType() || | ||||
1888 | T->isMemberPointerType()) { | ||||
1889 | QualType EltTy; | ||||
1890 | if (T->isObjCObjectPointerType()) | ||||
1891 | EltTy = T; | ||||
1892 | else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>()) | ||||
1893 | EltTy = PTy->getPointeeType(); | ||||
1894 | else | ||||
1895 | EltTy = T->getPointeeType(); | ||||
1896 | |||||
1897 | // If we have a pointer or reference, the pointee must have an object | ||||
1898 | // incomplete type. | ||||
1899 | if (!EltTy->isIncompleteOrObjectType()) { | ||||
1900 | DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee; | ||||
1901 | ProblemTy = EltTy; | ||||
1902 | } | ||||
1903 | } else if (!T->isDependentType()) { | ||||
1904 | DiagID = diag::err_typecheck_invalid_restrict_not_pointer; | ||||
1905 | ProblemTy = T; | ||||
1906 | } | ||||
1907 | |||||
1908 | if (DiagID) { | ||||
1909 | Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy; | ||||
1910 | Qs.removeRestrict(); | ||||
1911 | } | ||||
1912 | } | ||||
1913 | |||||
1914 | return Context.getQualifiedType(T, Qs); | ||||
1915 | } | ||||
1916 | |||||
1917 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, | ||||
1918 | unsigned CVRAU, const DeclSpec *DS) { | ||||
1919 | if (T.isNull()) | ||||
1920 | return QualType(); | ||||
1921 | |||||
1922 | // Ignore any attempt to form a cv-qualified reference. | ||||
1923 | if (T->isReferenceType()) | ||||
1924 | CVRAU &= | ||||
1925 | ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic); | ||||
1926 | |||||
1927 | // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and | ||||
1928 | // TQ_unaligned; | ||||
1929 | unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned); | ||||
1930 | |||||
1931 | // C11 6.7.3/5: | ||||
1932 | // If the same qualifier appears more than once in the same | ||||
1933 | // specifier-qualifier-list, either directly or via one or more typedefs, | ||||
1934 | // the behavior is the same as if it appeared only once. | ||||
1935 | // | ||||
1936 | // It's not specified what happens when the _Atomic qualifier is applied to | ||||
1937 | // a type specified with the _Atomic specifier, but we assume that this | ||||
1938 | // should be treated as if the _Atomic qualifier appeared multiple times. | ||||
1939 | if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) { | ||||
1940 | // C11 6.7.3/5: | ||||
1941 | // If other qualifiers appear along with the _Atomic qualifier in a | ||||
1942 | // specifier-qualifier-list, the resulting type is the so-qualified | ||||
1943 | // atomic type. | ||||
1944 | // | ||||
1945 | // Don't need to worry about array types here, since _Atomic can't be | ||||
1946 | // applied to such types. | ||||
1947 | SplitQualType Split = T.getSplitUnqualifiedType(); | ||||
1948 | T = BuildAtomicType(QualType(Split.Ty, 0), | ||||
1949 | DS ? DS->getAtomicSpecLoc() : Loc); | ||||
1950 | if (T.isNull()) | ||||
1951 | return T; | ||||
1952 | Split.Quals.addCVRQualifiers(CVR); | ||||
1953 | return BuildQualifiedType(T, Loc, Split.Quals); | ||||
1954 | } | ||||
1955 | |||||
1956 | Qualifiers Q = Qualifiers::fromCVRMask(CVR); | ||||
1957 | Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned); | ||||
1958 | return BuildQualifiedType(T, Loc, Q, DS); | ||||
1959 | } | ||||
1960 | |||||
1961 | /// Build a paren type including \p T. | ||||
1962 | QualType Sema::BuildParenType(QualType T) { | ||||
1963 | return Context.getParenType(T); | ||||
1964 | } | ||||
1965 | |||||
1966 | /// Given that we're building a pointer or reference to the given | ||||
1967 | static QualType inferARCLifetimeForPointee(Sema &S, QualType type, | ||||
1968 | SourceLocation loc, | ||||
1969 | bool isReference) { | ||||
1970 | // Bail out if retention is unrequired or already specified. | ||||
1971 | if (!type->isObjCLifetimeType() || | ||||
1972 | type.getObjCLifetime() != Qualifiers::OCL_None) | ||||
1973 | return type; | ||||
1974 | |||||
1975 | Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None; | ||||
1976 | |||||
1977 | // If the object type is const-qualified, we can safely use | ||||
1978 | // __unsafe_unretained. This is safe (because there are no read | ||||
1979 | // barriers), and it'll be safe to coerce anything but __weak* to | ||||
1980 | // the resulting type. | ||||
1981 | if (type.isConstQualified()) { | ||||
1982 | implicitLifetime = Qualifiers::OCL_ExplicitNone; | ||||
1983 | |||||
1984 | // Otherwise, check whether the static type does not require | ||||
1985 | // retaining. This currently only triggers for Class (possibly | ||||
1986 | // protocol-qualifed, and arrays thereof). | ||||
1987 | } else if (type->isObjCARCImplicitlyUnretainedType()) { | ||||
1988 | implicitLifetime = Qualifiers::OCL_ExplicitNone; | ||||
1989 | |||||
1990 | // If we are in an unevaluated context, like sizeof, skip adding a | ||||
1991 | // qualification. | ||||
1992 | } else if (S.isUnevaluatedContext()) { | ||||
1993 | return type; | ||||
1994 | |||||
1995 | // If that failed, give an error and recover using __strong. __strong | ||||
1996 | // is the option most likely to prevent spurious second-order diagnostics, | ||||
1997 | // like when binding a reference to a field. | ||||
1998 | } else { | ||||
1999 | // These types can show up in private ivars in system headers, so | ||||
2000 | // we need this to not be an error in those cases. Instead we | ||||
2001 | // want to delay. | ||||
2002 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | ||||
2003 | S.DelayedDiagnostics.add( | ||||
2004 | sema::DelayedDiagnostic::makeForbiddenType(loc, | ||||
2005 | diag::err_arc_indirect_no_ownership, type, isReference)); | ||||
2006 | } else { | ||||
2007 | S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference; | ||||
2008 | } | ||||
2009 | implicitLifetime = Qualifiers::OCL_Strong; | ||||
2010 | } | ||||
2011 | assert(implicitLifetime && "didn't infer any lifetime!")((void)0); | ||||
2012 | |||||
2013 | Qualifiers qs; | ||||
2014 | qs.addObjCLifetime(implicitLifetime); | ||||
2015 | return S.Context.getQualifiedType(type, qs); | ||||
2016 | } | ||||
2017 | |||||
2018 | static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){ | ||||
2019 | std::string Quals = FnTy->getMethodQuals().getAsString(); | ||||
2020 | |||||
2021 | switch (FnTy->getRefQualifier()) { | ||||
2022 | case RQ_None: | ||||
2023 | break; | ||||
2024 | |||||
2025 | case RQ_LValue: | ||||
2026 | if (!Quals.empty()) | ||||
2027 | Quals += ' '; | ||||
2028 | Quals += '&'; | ||||
2029 | break; | ||||
2030 | |||||
2031 | case RQ_RValue: | ||||
2032 | if (!Quals.empty()) | ||||
2033 | Quals += ' '; | ||||
2034 | Quals += "&&"; | ||||
2035 | break; | ||||
2036 | } | ||||
2037 | |||||
2038 | return Quals; | ||||
2039 | } | ||||
2040 | |||||
2041 | namespace { | ||||
2042 | /// Kinds of declarator that cannot contain a qualified function type. | ||||
2043 | /// | ||||
2044 | /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: | ||||
2045 | /// a function type with a cv-qualifier or a ref-qualifier can only appear | ||||
2046 | /// at the topmost level of a type. | ||||
2047 | /// | ||||
2048 | /// Parens and member pointers are permitted. We don't diagnose array and | ||||
2049 | /// function declarators, because they don't allow function types at all. | ||||
2050 | /// | ||||
2051 | /// The values of this enum are used in diagnostics. | ||||
2052 | enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference }; | ||||
2053 | } // end anonymous namespace | ||||
2054 | |||||
2055 | /// Check whether the type T is a qualified function type, and if it is, | ||||
2056 | /// diagnose that it cannot be contained within the given kind of declarator. | ||||
2057 | static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, | ||||
2058 | QualifiedFunctionKind QFK) { | ||||
2059 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? | ||||
2060 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); | ||||
2061 | if (!FPT || | ||||
2062 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) | ||||
2063 | return false; | ||||
2064 | |||||
2065 | S.Diag(Loc, diag::err_compound_qualified_function_type) | ||||
2066 | << QFK << isa<FunctionType>(T.IgnoreParens()) << T | ||||
2067 | << getFunctionQualifiersAsString(FPT); | ||||
2068 | return true; | ||||
2069 | } | ||||
2070 | |||||
2071 | bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) { | ||||
2072 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); | ||||
2073 | if (!FPT || | ||||
2074 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) | ||||
2075 | return false; | ||||
2076 | |||||
2077 | Diag(Loc, diag::err_qualified_function_typeid) | ||||
2078 | << T << getFunctionQualifiersAsString(FPT); | ||||
2079 | return true; | ||||
2080 | } | ||||
2081 | |||||
2082 | // Helper to deduce addr space of a pointee type in OpenCL mode. | ||||
2083 | static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) { | ||||
2084 | if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() && | ||||
2085 | !PointeeType->isSamplerT() && | ||||
2086 | !PointeeType.hasAddressSpace()) | ||||
2087 | PointeeType = S.getASTContext().getAddrSpaceQualType( | ||||
2088 | PointeeType, S.getLangOpts().OpenCLGenericAddressSpace | ||||
2089 | ? LangAS::opencl_generic | ||||
2090 | : LangAS::opencl_private); | ||||
2091 | return PointeeType; | ||||
2092 | } | ||||
2093 | |||||
2094 | /// Build a pointer type. | ||||
2095 | /// | ||||
2096 | /// \param T The type to which we'll be building a pointer. | ||||
2097 | /// | ||||
2098 | /// \param Loc The location of the entity whose type involves this | ||||
2099 | /// pointer type or, if there is no such entity, the location of the | ||||
2100 | /// type that will have pointer type. | ||||
2101 | /// | ||||
2102 | /// \param Entity The name of the entity that involves the pointer | ||||
2103 | /// type, if known. | ||||
2104 | /// | ||||
2105 | /// \returns A suitable pointer type, if there are no | ||||
2106 | /// errors. Otherwise, returns a NULL type. | ||||
2107 | QualType Sema::BuildPointerType(QualType T, | ||||
2108 | SourceLocation Loc, DeclarationName Entity) { | ||||
2109 | if (T->isReferenceType()) { | ||||
2110 | // C++ 8.3.2p4: There shall be no ... pointers to references ... | ||||
2111 | Diag(Loc, diag::err_illegal_decl_pointer_to_reference) | ||||
2112 | << getPrintableNameForEntity(Entity) << T; | ||||
2113 | return QualType(); | ||||
2114 | } | ||||
2115 | |||||
2116 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||
2117 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||
2118 | getLangOpts())) { | ||||
2119 | Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0; | ||||
2120 | return QualType(); | ||||
2121 | } | ||||
2122 | |||||
2123 | if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer)) | ||||
2124 | return QualType(); | ||||
2125 | |||||
2126 | assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((void)0); | ||||
2127 | |||||
2128 | // In ARC, it is forbidden to build pointers to unqualified pointers. | ||||
2129 | if (getLangOpts().ObjCAutoRefCount) | ||||
2130 | T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false); | ||||
2131 | |||||
2132 | if (getLangOpts().OpenCL) | ||||
2133 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||
2134 | |||||
2135 | // Build the pointer type. | ||||
2136 | return Context.getPointerType(T); | ||||
2137 | } | ||||
2138 | |||||
2139 | /// Build a reference type. | ||||
2140 | /// | ||||
2141 | /// \param T The type to which we'll be building a reference. | ||||
2142 | /// | ||||
2143 | /// \param Loc The location of the entity whose type involves this | ||||
2144 | /// reference type or, if there is no such entity, the location of the | ||||
2145 | /// type that will have reference type. | ||||
2146 | /// | ||||
2147 | /// \param Entity The name of the entity that involves the reference | ||||
2148 | /// type, if known. | ||||
2149 | /// | ||||
2150 | /// \returns A suitable reference type, if there are no | ||||
2151 | /// errors. Otherwise, returns a NULL type. | ||||
2152 | QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue, | ||||
2153 | SourceLocation Loc, | ||||
2154 | DeclarationName Entity) { | ||||
2155 | assert(Context.getCanonicalType(T) != Context.OverloadTy &&((void)0) | ||||
2156 | "Unresolved overloaded function type")((void)0); | ||||
2157 | |||||
2158 | // C++0x [dcl.ref]p6: | ||||
2159 | // If a typedef (7.1.3), a type template-parameter (14.3.1), or a | ||||
2160 | // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a | ||||
2161 | // type T, an attempt to create the type "lvalue reference to cv TR" creates | ||||
2162 | // the type "lvalue reference to T", while an attempt to create the type | ||||
2163 | // "rvalue reference to cv TR" creates the type TR. | ||||
2164 | bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>(); | ||||
2165 | |||||
2166 | // C++ [dcl.ref]p4: There shall be no references to references. | ||||
2167 | // | ||||
2168 | // According to C++ DR 106, references to references are only | ||||
2169 | // diagnosed when they are written directly (e.g., "int & &"), | ||||
2170 | // but not when they happen via a typedef: | ||||
2171 | // | ||||
2172 | // typedef int& intref; | ||||
2173 | // typedef intref& intref2; | ||||
2174 | // | ||||
2175 | // Parser::ParseDeclaratorInternal diagnoses the case where | ||||
2176 | // references are written directly; here, we handle the | ||||
2177 | // collapsing of references-to-references as described in C++0x. | ||||
2178 | // DR 106 and 540 introduce reference-collapsing into C++98/03. | ||||
2179 | |||||
2180 | // C++ [dcl.ref]p1: | ||||
2181 | // A declarator that specifies the type "reference to cv void" | ||||
2182 | // is ill-formed. | ||||
2183 | if (T->isVoidType()) { | ||||
2184 | Diag(Loc, diag::err_reference_to_void); | ||||
2185 | return QualType(); | ||||
2186 | } | ||||
2187 | |||||
2188 | if (checkQualifiedFunction(*this, T, Loc, QFK_Reference)) | ||||
2189 | return QualType(); | ||||
2190 | |||||
2191 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||
2192 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||
2193 | getLangOpts())) { | ||||
2194 | Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1; | ||||
2195 | return QualType(); | ||||
2196 | } | ||||
2197 | |||||
2198 | // In ARC, it is forbidden to build references to unqualified pointers. | ||||
2199 | if (getLangOpts().ObjCAutoRefCount) | ||||
2200 | T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true); | ||||
2201 | |||||
2202 | if (getLangOpts().OpenCL) | ||||
2203 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||
2204 | |||||
2205 | // Handle restrict on references. | ||||
2206 | if (LValueRef) | ||||
2207 | return Context.getLValueReferenceType(T, SpelledAsLValue); | ||||
2208 | return Context.getRValueReferenceType(T); | ||||
2209 | } | ||||
2210 | |||||
2211 | /// Build a Read-only Pipe type. | ||||
2212 | /// | ||||
2213 | /// \param T The type to which we'll be building a Pipe. | ||||
2214 | /// | ||||
2215 | /// \param Loc We do not use it for now. | ||||
2216 | /// | ||||
2217 | /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a | ||||
2218 | /// NULL type. | ||||
2219 | QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) { | ||||
2220 | return Context.getReadPipeType(T); | ||||
2221 | } | ||||
2222 | |||||
2223 | /// Build a Write-only Pipe type. | ||||
2224 | /// | ||||
2225 | /// \param T The type to which we'll be building a Pipe. | ||||
2226 | /// | ||||
2227 | /// \param Loc We do not use it for now. | ||||
2228 | /// | ||||
2229 | /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a | ||||
2230 | /// NULL type. | ||||
2231 | QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) { | ||||
2232 | return Context.getWritePipeType(T); | ||||
2233 | } | ||||
2234 | |||||
2235 | /// Build a extended int type. | ||||
2236 | /// | ||||
2237 | /// \param IsUnsigned Boolean representing the signedness of the type. | ||||
2238 | /// | ||||
2239 | /// \param BitWidth Size of this int type in bits, or an expression representing | ||||
2240 | /// that. | ||||
2241 | /// | ||||
2242 | /// \param Loc Location of the keyword. | ||||
2243 | QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth, | ||||
2244 | SourceLocation Loc) { | ||||
2245 | if (BitWidth->isInstantiationDependent()) | ||||
2246 | return Context.getDependentExtIntType(IsUnsigned, BitWidth); | ||||
2247 | |||||
2248 | llvm::APSInt Bits(32); | ||||
2249 | ExprResult ICE = | ||||
2250 | VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold); | ||||
2251 | |||||
2252 | if (ICE.isInvalid()) | ||||
2253 | return QualType(); | ||||
2254 | |||||
2255 | int64_t NumBits = Bits.getSExtValue(); | ||||
2256 | if (!IsUnsigned && NumBits < 2) { | ||||
2257 | Diag(Loc, diag::err_ext_int_bad_size) << 0; | ||||
2258 | return QualType(); | ||||
2259 | } | ||||
2260 | |||||
2261 | if (IsUnsigned && NumBits < 1) { | ||||
2262 | Diag(Loc, diag::err_ext_int_bad_size) << 1; | ||||
2263 | return QualType(); | ||||
2264 | } | ||||
2265 | |||||
2266 | if (NumBits > llvm::IntegerType::MAX_INT_BITS) { | ||||
2267 | Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned | ||||
2268 | << llvm::IntegerType::MAX_INT_BITS; | ||||
2269 | return QualType(); | ||||
2270 | } | ||||
2271 | |||||
2272 | return Context.getExtIntType(IsUnsigned, NumBits); | ||||
2273 | } | ||||
2274 | |||||
2275 | /// Check whether the specified array bound can be evaluated using the relevant | ||||
2276 | /// language rules. If so, returns the possibly-converted expression and sets | ||||
2277 | /// SizeVal to the size. If not, but the expression might be a VLA bound, | ||||
2278 | /// returns ExprResult(). Otherwise, produces a diagnostic and returns | ||||
2279 | /// ExprError(). | ||||
2280 | static ExprResult checkArraySize(Sema &S, Expr *&ArraySize, | ||||
2281 | llvm::APSInt &SizeVal, unsigned VLADiag, | ||||
2282 | bool VLAIsError) { | ||||
2283 | if (S.getLangOpts().CPlusPlus14 && | ||||
2284 | (VLAIsError || | ||||
2285 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) { | ||||
2286 | // C++14 [dcl.array]p1: | ||||
2287 | // The constant-expression shall be a converted constant expression of | ||||
2288 | // type std::size_t. | ||||
2289 | // | ||||
2290 | // Don't apply this rule if we might be forming a VLA: in that case, we | ||||
2291 | // allow non-constant expressions and constant-folding. We only need to use | ||||
2292 | // the converted constant expression rules (to properly convert the source) | ||||
2293 | // when the source expression is of class type. | ||||
2294 | return S.CheckConvertedConstantExpression( | ||||
2295 | ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound); | ||||
2296 | } | ||||
2297 | |||||
2298 | // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode | ||||
2299 | // (like gnu99, but not c99) accept any evaluatable value as an extension. | ||||
2300 | class VLADiagnoser : public Sema::VerifyICEDiagnoser { | ||||
2301 | public: | ||||
2302 | unsigned VLADiag; | ||||
2303 | bool VLAIsError; | ||||
2304 | bool IsVLA = false; | ||||
2305 | |||||
2306 | VLADiagnoser(unsigned VLADiag, bool VLAIsError) | ||||
2307 | : VLADiag(VLADiag), VLAIsError(VLAIsError) {} | ||||
2308 | |||||
2309 | Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, | ||||
2310 | QualType T) override { | ||||
2311 | return S.Diag(Loc, diag::err_array_size_non_int) << T; | ||||
2312 | } | ||||
2313 | |||||
2314 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, | ||||
2315 | SourceLocation Loc) override { | ||||
2316 | IsVLA = !VLAIsError; | ||||
2317 | return S.Diag(Loc, VLADiag); | ||||
2318 | } | ||||
2319 | |||||
2320 | Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S, | ||||
2321 | SourceLocation Loc) override { | ||||
2322 | return S.Diag(Loc, diag::ext_vla_folded_to_constant); | ||||
2323 | } | ||||
2324 | } Diagnoser(VLADiag, VLAIsError); | ||||
2325 | |||||
2326 | ExprResult R = | ||||
2327 | S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser); | ||||
2328 | if (Diagnoser.IsVLA) | ||||
2329 | return ExprResult(); | ||||
2330 | return R; | ||||
2331 | } | ||||
2332 | |||||
2333 | /// Build an array type. | ||||
2334 | /// | ||||
2335 | /// \param T The type of each element in the array. | ||||
2336 | /// | ||||
2337 | /// \param ASM C99 array size modifier (e.g., '*', 'static'). | ||||
2338 | /// | ||||
2339 | /// \param ArraySize Expression describing the size of the array. | ||||
2340 | /// | ||||
2341 | /// \param Brackets The range from the opening '[' to the closing ']'. | ||||
2342 | /// | ||||
2343 | /// \param Entity The name of the entity that involves the array | ||||
2344 | /// type, if known. | ||||
2345 | /// | ||||
2346 | /// \returns A suitable array type, if there are no errors. Otherwise, | ||||
2347 | /// returns a NULL type. | ||||
2348 | QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, | ||||
2349 | Expr *ArraySize, unsigned Quals, | ||||
2350 | SourceRange Brackets, DeclarationName Entity) { | ||||
2351 | |||||
2352 | SourceLocation Loc = Brackets.getBegin(); | ||||
2353 | if (getLangOpts().CPlusPlus) { | ||||
2354 | // C++ [dcl.array]p1: | ||||
2355 | // T is called the array element type; this type shall not be a reference | ||||
2356 | // type, the (possibly cv-qualified) type void, a function type or an | ||||
2357 | // abstract class type. | ||||
2358 | // | ||||
2359 | // C++ [dcl.array]p3: | ||||
2360 | // When several "array of" specifications are adjacent, [...] only the | ||||
2361 | // first of the constant expressions that specify the bounds of the arrays | ||||
2362 | // may be omitted. | ||||
2363 | // | ||||
2364 | // Note: function types are handled in the common path with C. | ||||
2365 | if (T->isReferenceType()) { | ||||
2366 | Diag(Loc, diag::err_illegal_decl_array_of_references) | ||||
2367 | << getPrintableNameForEntity(Entity) << T; | ||||
2368 | return QualType(); | ||||
2369 | } | ||||
2370 | |||||
2371 | if (T->isVoidType() || T->isIncompleteArrayType()) { | ||||
2372 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T; | ||||
2373 | return QualType(); | ||||
2374 | } | ||||
2375 | |||||
2376 | if (RequireNonAbstractType(Brackets.getBegin(), T, | ||||
2377 | diag::err_array_of_abstract_type)) | ||||
2378 | return QualType(); | ||||
2379 | |||||
2380 | // Mentioning a member pointer type for an array type causes us to lock in | ||||
2381 | // an inheritance model, even if it's inside an unused typedef. | ||||
2382 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | ||||
2383 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) | ||||
2384 | if (!MPTy->getClass()->isDependentType()) | ||||
2385 | (void)isCompleteType(Loc, T); | ||||
2386 | |||||
2387 | } else { | ||||
2388 | // C99 6.7.5.2p1: If the element type is an incomplete or function type, | ||||
2389 | // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]()) | ||||
2390 | if (RequireCompleteSizedType(Loc, T, | ||||
2391 | diag::err_array_incomplete_or_sizeless_type)) | ||||
2392 | return QualType(); | ||||
2393 | } | ||||
2394 | |||||
2395 | if (T->isSizelessType()) { | ||||
2396 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T; | ||||
2397 | return QualType(); | ||||
2398 | } | ||||
2399 | |||||
2400 | if (T->isFunctionType()) { | ||||
2401 | Diag(Loc, diag::err_illegal_decl_array_of_functions) | ||||
2402 | << getPrintableNameForEntity(Entity) << T; | ||||
2403 | return QualType(); | ||||
2404 | } | ||||
2405 | |||||
2406 | if (const RecordType *EltTy = T->getAs<RecordType>()) { | ||||
2407 | // If the element type is a struct or union that contains a variadic | ||||
2408 | // array, accept it as a GNU extension: C99 6.7.2.1p2. | ||||
2409 | if (EltTy->getDecl()->hasFlexibleArrayMember()) | ||||
2410 | Diag(Loc, diag::ext_flexible_array_in_array) << T; | ||||
2411 | } else if (T->isObjCObjectType()) { | ||||
2412 | Diag(Loc, diag::err_objc_array_of_interfaces) << T; | ||||
2413 | return QualType(); | ||||
2414 | } | ||||
2415 | |||||
2416 | // Do placeholder conversions on the array size expression. | ||||
2417 | if (ArraySize && ArraySize->hasPlaceholderType()) { | ||||
2418 | ExprResult Result = CheckPlaceholderExpr(ArraySize); | ||||
2419 | if (Result.isInvalid()) return QualType(); | ||||
2420 | ArraySize = Result.get(); | ||||
2421 | } | ||||
2422 | |||||
2423 | // Do lvalue-to-rvalue conversions on the array size expression. | ||||
2424 | if (ArraySize && !ArraySize->isPRValue()) { | ||||
2425 | ExprResult Result = DefaultLvalueConversion(ArraySize); | ||||
2426 | if (Result.isInvalid()) | ||||
2427 | return QualType(); | ||||
2428 | |||||
2429 | ArraySize = Result.get(); | ||||
2430 | } | ||||
2431 | |||||
2432 | // C99 6.7.5.2p1: The size expression shall have integer type. | ||||
2433 | // C++11 allows contextual conversions to such types. | ||||
2434 | if (!getLangOpts().CPlusPlus11 && | ||||
2435 | ArraySize && !ArraySize->isTypeDependent() && | ||||
2436 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) { | ||||
2437 | Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int) | ||||
2438 | << ArraySize->getType() << ArraySize->getSourceRange(); | ||||
2439 | return QualType(); | ||||
2440 | } | ||||
2441 | |||||
2442 | // VLAs always produce at least a -Wvla diagnostic, sometimes an error. | ||||
2443 | unsigned VLADiag; | ||||
2444 | bool VLAIsError; | ||||
2445 | if (getLangOpts().OpenCL) { | ||||
2446 | // OpenCL v1.2 s6.9.d: variable length arrays are not supported. | ||||
2447 | VLADiag = diag::err_opencl_vla; | ||||
2448 | VLAIsError = true; | ||||
2449 | } else if (getLangOpts().C99) { | ||||
2450 | VLADiag = diag::warn_vla_used; | ||||
2451 | VLAIsError = false; | ||||
2452 | } else if (isSFINAEContext()) { | ||||
2453 | VLADiag = diag::err_vla_in_sfinae; | ||||
2454 | VLAIsError = true; | ||||
2455 | } else { | ||||
2456 | VLADiag = diag::ext_vla; | ||||
2457 | VLAIsError = false; | ||||
2458 | } | ||||
2459 | |||||
2460 | llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType())); | ||||
2461 | if (!ArraySize) { | ||||
2462 | if (ASM == ArrayType::Star) { | ||||
2463 | Diag(Loc, VLADiag); | ||||
2464 | if (VLAIsError) | ||||
2465 | return QualType(); | ||||
2466 | |||||
2467 | T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets); | ||||
2468 | } else { | ||||
2469 | T = Context.getIncompleteArrayType(T, ASM, Quals); | ||||
2470 | } | ||||
2471 | } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) { | ||||
2472 | T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||
2473 | } else { | ||||
2474 | ExprResult R = | ||||
2475 | checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError); | ||||
2476 | if (R.isInvalid()) | ||||
2477 | return QualType(); | ||||
2478 | |||||
2479 | if (!R.isUsable()) { | ||||
2480 | // C99: an array with a non-ICE size is a VLA. We accept any expression | ||||
2481 | // that we can fold to a non-zero positive value as a non-VLA as an | ||||
2482 | // extension. | ||||
2483 | T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||
2484 | } else if (!T->isDependentType() && !T->isIncompleteType() && | ||||
2485 | !T->isConstantSizeType()) { | ||||
2486 | // C99: an array with an element type that has a non-constant-size is a | ||||
2487 | // VLA. | ||||
2488 | // FIXME: Add a note to explain why this isn't a VLA. | ||||
2489 | Diag(Loc, VLADiag); | ||||
2490 | if (VLAIsError) | ||||
2491 | return QualType(); | ||||
2492 | T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||
2493 | } else { | ||||
2494 | // C99 6.7.5.2p1: If the expression is a constant expression, it shall | ||||
2495 | // have a value greater than zero. | ||||
2496 | // In C++, this follows from narrowing conversions being disallowed. | ||||
2497 | if (ConstVal.isSigned() && ConstVal.isNegative()) { | ||||
2498 | if (Entity) | ||||
2499 | Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size) | ||||
2500 | << getPrintableNameForEntity(Entity) | ||||
2501 | << ArraySize->getSourceRange(); | ||||
2502 | else | ||||
2503 | Diag(ArraySize->getBeginLoc(), | ||||
2504 | diag::err_typecheck_negative_array_size) | ||||
2505 | << ArraySize->getSourceRange(); | ||||
2506 | return QualType(); | ||||
2507 | } | ||||
2508 | if (ConstVal == 0) { | ||||
2509 | // GCC accepts zero sized static arrays. We allow them when | ||||
2510 | // we're not in a SFINAE context. | ||||
2511 | Diag(ArraySize->getBeginLoc(), | ||||
2512 | isSFINAEContext() ? diag::err_typecheck_zero_array_size | ||||
2513 | : diag::ext_typecheck_zero_array_size) | ||||
2514 | << ArraySize->getSourceRange(); | ||||
2515 | } | ||||
2516 | |||||
2517 | // Is the array too large? | ||||
2518 | unsigned ActiveSizeBits = | ||||
2519 | (!T->isDependentType() && !T->isVariablyModifiedType() && | ||||
2520 | !T->isIncompleteType() && !T->isUndeducedType()) | ||||
2521 | ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal) | ||||
2522 | : ConstVal.getActiveBits(); | ||||
2523 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | ||||
2524 | Diag(ArraySize->getBeginLoc(), diag::err_array_too_large) | ||||
2525 | << toString(ConstVal, 10) << ArraySize->getSourceRange(); | ||||
2526 | return QualType(); | ||||
2527 | } | ||||
2528 | |||||
2529 | T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals); | ||||
2530 | } | ||||
2531 | } | ||||
2532 | |||||
2533 | if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) { | ||||
2534 | // CUDA device code and some other targets don't support VLAs. | ||||
2535 | targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) | ||||
2536 | ? diag::err_cuda_vla | ||||
2537 | : diag::err_vla_unsupported) | ||||
2538 | << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice) | ||||
2539 | ? CurrentCUDATarget() | ||||
2540 | : CFT_InvalidTarget); | ||||
2541 | } | ||||
2542 | |||||
2543 | // If this is not C99, diagnose array size modifiers on non-VLAs. | ||||
2544 | if (!getLangOpts().C99 && !T->isVariableArrayType() && | ||||
2545 | (ASM != ArrayType::Normal || Quals != 0)) { | ||||
2546 | Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx | ||||
2547 | : diag::ext_c99_array_usage) | ||||
2548 | << ASM; | ||||
2549 | } | ||||
2550 | |||||
2551 | // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported. | ||||
2552 | // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported. | ||||
2553 | // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported. | ||||
2554 | if (getLangOpts().OpenCL) { | ||||
2555 | const QualType ArrType = Context.getBaseElementType(T); | ||||
2556 | if (ArrType->isBlockPointerType() || ArrType->isPipeType() || | ||||
2557 | ArrType->isSamplerT() || ArrType->isImageType()) { | ||||
2558 | Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType; | ||||
2559 | return QualType(); | ||||
2560 | } | ||||
2561 | } | ||||
2562 | |||||
2563 | return T; | ||||
2564 | } | ||||
2565 | |||||
2566 | QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr, | ||||
2567 | SourceLocation AttrLoc) { | ||||
2568 | // The base type must be integer (not Boolean or enumeration) or float, and | ||||
2569 | // can't already be a vector. | ||||
2570 | if ((!CurType->isDependentType() && | ||||
2571 | (!CurType->isBuiltinType() || CurType->isBooleanType() || | ||||
2572 | (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) || | ||||
2573 | CurType->isArrayType()) { | ||||
2574 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType; | ||||
2575 | return QualType(); | ||||
2576 | } | ||||
2577 | |||||
2578 | if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent()) | ||||
2579 | return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc, | ||||
2580 | VectorType::GenericVector); | ||||
2581 | |||||
2582 | Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context); | ||||
2583 | if (!VecSize) { | ||||
2584 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2585 | << "vector_size" << AANT_ArgumentIntegerConstant | ||||
2586 | << SizeExpr->getSourceRange(); | ||||
2587 | return QualType(); | ||||
2588 | } | ||||
2589 | |||||
2590 | if (CurType->isDependentType()) | ||||
2591 | return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc, | ||||
2592 | VectorType::GenericVector); | ||||
2593 | |||||
2594 | // vecSize is specified in bytes - convert to bits. | ||||
2595 | if (!VecSize->isIntN(61)) { | ||||
2596 | // Bit size will overflow uint64. | ||||
2597 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2598 | << SizeExpr->getSourceRange() << "vector"; | ||||
2599 | return QualType(); | ||||
2600 | } | ||||
2601 | uint64_t VectorSizeBits = VecSize->getZExtValue() * 8; | ||||
2602 | unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType)); | ||||
2603 | |||||
2604 | if (VectorSizeBits == 0) { | ||||
2605 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||
2606 | << SizeExpr->getSourceRange() << "vector"; | ||||
2607 | return QualType(); | ||||
2608 | } | ||||
2609 | |||||
2610 | if (VectorSizeBits % TypeSize) { | ||||
2611 | Diag(AttrLoc, diag::err_attribute_invalid_size) | ||||
2612 | << SizeExpr->getSourceRange(); | ||||
2613 | return QualType(); | ||||
2614 | } | ||||
2615 | |||||
2616 | if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) { | ||||
2617 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2618 | << SizeExpr->getSourceRange() << "vector"; | ||||
2619 | return QualType(); | ||||
2620 | } | ||||
2621 | |||||
2622 | return Context.getVectorType(CurType, VectorSizeBits / TypeSize, | ||||
2623 | VectorType::GenericVector); | ||||
2624 | } | ||||
2625 | |||||
2626 | /// Build an ext-vector type. | ||||
2627 | /// | ||||
2628 | /// Run the required checks for the extended vector type. | ||||
2629 | QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize, | ||||
2630 | SourceLocation AttrLoc) { | ||||
2631 | // Unlike gcc's vector_size attribute, we do not allow vectors to be defined | ||||
2632 | // in conjunction with complex types (pointers, arrays, functions, etc.). | ||||
2633 | // | ||||
2634 | // Additionally, OpenCL prohibits vectors of booleans (they're considered a | ||||
2635 | // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects | ||||
2636 | // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors | ||||
2637 | // of bool aren't allowed. | ||||
2638 | if ((!T->isDependentType() && !T->isIntegerType() && | ||||
2639 | !T->isRealFloatingType()) || | ||||
2640 | T->isBooleanType()) { | ||||
2641 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T; | ||||
2642 | return QualType(); | ||||
2643 | } | ||||
2644 | |||||
2645 | if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) { | ||||
2646 | Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context); | ||||
2647 | if (!vecSize) { | ||||
2648 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2649 | << "ext_vector_type" << AANT_ArgumentIntegerConstant | ||||
2650 | << ArraySize->getSourceRange(); | ||||
2651 | return QualType(); | ||||
2652 | } | ||||
2653 | |||||
2654 | if (!vecSize->isIntN(32)) { | ||||
2655 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2656 | << ArraySize->getSourceRange() << "vector"; | ||||
2657 | return QualType(); | ||||
2658 | } | ||||
2659 | // Unlike gcc's vector_size attribute, the size is specified as the | ||||
2660 | // number of elements, not the number of bytes. | ||||
2661 | unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue()); | ||||
2662 | |||||
2663 | if (vectorSize == 0) { | ||||
2664 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||
2665 | << ArraySize->getSourceRange() << "vector"; | ||||
2666 | return QualType(); | ||||
2667 | } | ||||
2668 | |||||
2669 | return Context.getExtVectorType(T, vectorSize); | ||||
2670 | } | ||||
2671 | |||||
2672 | return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc); | ||||
2673 | } | ||||
2674 | |||||
2675 | QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols, | ||||
2676 | SourceLocation AttrLoc) { | ||||
2677 | assert(Context.getLangOpts().MatrixTypes &&((void)0) | ||||
2678 | "Should never build a matrix type when it is disabled")((void)0); | ||||
2679 | |||||
2680 | // Check element type, if it is not dependent. | ||||
2681 | if (!ElementTy->isDependentType() && | ||||
2682 | !MatrixType::isValidElementType(ElementTy)) { | ||||
2683 | Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy; | ||||
2684 | return QualType(); | ||||
2685 | } | ||||
2686 | |||||
2687 | if (NumRows->isTypeDependent() || NumCols->isTypeDependent() || | ||||
2688 | NumRows->isValueDependent() || NumCols->isValueDependent()) | ||||
2689 | return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols, | ||||
2690 | AttrLoc); | ||||
2691 | |||||
2692 | Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context); | ||||
2693 | Optional<llvm::APSInt> ValueColumns = | ||||
2694 | NumCols->getIntegerConstantExpr(Context); | ||||
2695 | |||||
2696 | auto const RowRange = NumRows->getSourceRange(); | ||||
2697 | auto const ColRange = NumCols->getSourceRange(); | ||||
2698 | |||||
2699 | // Both are row and column expressions are invalid. | ||||
2700 | if (!ValueRows && !ValueColumns) { | ||||
2701 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2702 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange | ||||
2703 | << ColRange; | ||||
2704 | return QualType(); | ||||
2705 | } | ||||
2706 | |||||
2707 | // Only the row expression is invalid. | ||||
2708 | if (!ValueRows) { | ||||
2709 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2710 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange; | ||||
2711 | return QualType(); | ||||
2712 | } | ||||
2713 | |||||
2714 | // Only the column expression is invalid. | ||||
2715 | if (!ValueColumns) { | ||||
2716 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2717 | << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange; | ||||
2718 | return QualType(); | ||||
2719 | } | ||||
2720 | |||||
2721 | // Check the matrix dimensions. | ||||
2722 | unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue()); | ||||
2723 | unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue()); | ||||
2724 | if (MatrixRows == 0 && MatrixColumns == 0) { | ||||
2725 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||
2726 | << "matrix" << RowRange << ColRange; | ||||
2727 | return QualType(); | ||||
2728 | } | ||||
2729 | if (MatrixRows == 0) { | ||||
2730 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange; | ||||
2731 | return QualType(); | ||||
2732 | } | ||||
2733 | if (MatrixColumns == 0) { | ||||
2734 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange; | ||||
2735 | return QualType(); | ||||
2736 | } | ||||
2737 | if (!ConstantMatrixType::isDimensionValid(MatrixRows)) { | ||||
2738 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2739 | << RowRange << "matrix row"; | ||||
2740 | return QualType(); | ||||
2741 | } | ||||
2742 | if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) { | ||||
2743 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2744 | << ColRange << "matrix column"; | ||||
2745 | return QualType(); | ||||
2746 | } | ||||
2747 | return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns); | ||||
2748 | } | ||||
2749 | |||||
2750 | bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) { | ||||
2751 | if (T->isArrayType() || T->isFunctionType()) { | ||||
2752 | Diag(Loc, diag::err_func_returning_array_function) | ||||
2753 | << T->isFunctionType() << T; | ||||
2754 | return true; | ||||
2755 | } | ||||
2756 | |||||
2757 | // Functions cannot return half FP. | ||||
2758 | if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) { | ||||
2759 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 << | ||||
2760 | FixItHint::CreateInsertion(Loc, "*"); | ||||
2761 | return true; | ||||
2762 | } | ||||
2763 | |||||
2764 | // Methods cannot return interface types. All ObjC objects are | ||||
2765 | // passed by reference. | ||||
2766 | if (T->isObjCObjectType()) { | ||||
2767 | Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) | ||||
2768 | << 0 << T << FixItHint::CreateInsertion(Loc, "*"); | ||||
2769 | return true; | ||||
2770 | } | ||||
2771 | |||||
2772 | if (T.hasNonTrivialToPrimitiveDestructCUnion() || | ||||
2773 | T.hasNonTrivialToPrimitiveCopyCUnion()) | ||||
2774 | checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn, | ||||
2775 | NTCUK_Destruct|NTCUK_Copy); | ||||
2776 | |||||
2777 | // C++2a [dcl.fct]p12: | ||||
2778 | // A volatile-qualified return type is deprecated | ||||
2779 | if (T.isVolatileQualified() && getLangOpts().CPlusPlus20) | ||||
2780 | Diag(Loc, diag::warn_deprecated_volatile_return) << T; | ||||
2781 | |||||
2782 | return false; | ||||
2783 | } | ||||
2784 | |||||
2785 | /// Check the extended parameter information. Most of the necessary | ||||
2786 | /// checking should occur when applying the parameter attribute; the | ||||
2787 | /// only other checks required are positional restrictions. | ||||
2788 | static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes, | ||||
2789 | const FunctionProtoType::ExtProtoInfo &EPI, | ||||
2790 | llvm::function_ref<SourceLocation(unsigned)> getParamLoc) { | ||||
2791 | assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((void)0); | ||||
2792 | |||||
2793 | bool emittedError = false; | ||||
2794 | auto actualCC = EPI.ExtInfo.getCC(); | ||||
2795 | enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync }; | ||||
2796 | auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) { | ||||
2797 | bool isCompatible = | ||||
2798 | (required == RequiredCC::OnlySwift) | ||||
2799 | ? (actualCC == CC_Swift) | ||||
2800 | : (actualCC == CC_Swift || actualCC == CC_SwiftAsync); | ||||
2801 | if (isCompatible || emittedError) | ||||
2802 | return; | ||||
2803 | S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall) | ||||
2804 | << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI()) | ||||
2805 | << (required == RequiredCC::OnlySwift); | ||||
2806 | emittedError = true; | ||||
2807 | }; | ||||
2808 | for (size_t paramIndex = 0, numParams = paramTypes.size(); | ||||
2809 | paramIndex != numParams; ++paramIndex) { | ||||
2810 | switch (EPI.ExtParameterInfos[paramIndex].getABI()) { | ||||
2811 | // Nothing interesting to check for orindary-ABI parameters. | ||||
2812 | case ParameterABI::Ordinary: | ||||
2813 | continue; | ||||
2814 | |||||
2815 | // swift_indirect_result parameters must be a prefix of the function | ||||
2816 | // arguments. | ||||
2817 | case ParameterABI::SwiftIndirectResult: | ||||
2818 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); | ||||
2819 | if (paramIndex != 0 && | ||||
2820 | EPI.ExtParameterInfos[paramIndex - 1].getABI() | ||||
2821 | != ParameterABI::SwiftIndirectResult) { | ||||
2822 | S.Diag(getParamLoc(paramIndex), | ||||
2823 | diag::err_swift_indirect_result_not_first); | ||||
2824 | } | ||||
2825 | continue; | ||||
2826 | |||||
2827 | case ParameterABI::SwiftContext: | ||||
2828 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); | ||||
2829 | continue; | ||||
2830 | |||||
2831 | // SwiftAsyncContext is not limited to swiftasynccall functions. | ||||
2832 | case ParameterABI::SwiftAsyncContext: | ||||
2833 | continue; | ||||
2834 | |||||
2835 | // swift_error parameters must be preceded by a swift_context parameter. | ||||
2836 | case ParameterABI::SwiftErrorResult: | ||||
2837 | checkCompatible(paramIndex, RequiredCC::OnlySwift); | ||||
2838 | if (paramIndex == 0 || | ||||
2839 | EPI.ExtParameterInfos[paramIndex - 1].getABI() != | ||||
2840 | ParameterABI::SwiftContext) { | ||||
2841 | S.Diag(getParamLoc(paramIndex), | ||||
2842 | diag::err_swift_error_result_not_after_swift_context); | ||||
2843 | } | ||||
2844 | continue; | ||||
2845 | } | ||||
2846 | llvm_unreachable("bad ABI kind")__builtin_unreachable(); | ||||
2847 | } | ||||
2848 | } | ||||
2849 | |||||
2850 | QualType Sema::BuildFunctionType(QualType T, | ||||
2851 | MutableArrayRef<QualType> ParamTypes, | ||||
2852 | SourceLocation Loc, DeclarationName Entity, | ||||
2853 | const FunctionProtoType::ExtProtoInfo &EPI) { | ||||
2854 | bool Invalid = false; | ||||
2855 | |||||
2856 | Invalid |= CheckFunctionReturnType(T, Loc); | ||||
2857 | |||||
2858 | for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) { | ||||
2859 | // FIXME: Loc is too inprecise here, should use proper locations for args. | ||||
2860 | QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]); | ||||
2861 | if (ParamType->isVoidType()) { | ||||
2862 | Diag(Loc, diag::err_param_with_void_type); | ||||
2863 | Invalid = true; | ||||
2864 | } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) { | ||||
2865 | // Disallow half FP arguments. | ||||
2866 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 << | ||||
2867 | FixItHint::CreateInsertion(Loc, "*"); | ||||
2868 | Invalid = true; | ||||
2869 | } | ||||
2870 | |||||
2871 | // C++2a [dcl.fct]p4: | ||||
2872 | // A parameter with volatile-qualified type is deprecated | ||||
2873 | if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20) | ||||
2874 | Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType; | ||||
2875 | |||||
2876 | ParamTypes[Idx] = ParamType; | ||||
2877 | } | ||||
2878 | |||||
2879 | if (EPI.ExtParameterInfos) { | ||||
2880 | checkExtParameterInfos(*this, ParamTypes, EPI, | ||||
2881 | [=](unsigned i) { return Loc; }); | ||||
2882 | } | ||||
2883 | |||||
2884 | if (EPI.ExtInfo.getProducesResult()) { | ||||
2885 | // This is just a warning, so we can't fail to build if we see it. | ||||
2886 | checkNSReturnsRetainedReturnType(Loc, T); | ||||
2887 | } | ||||
2888 | |||||
2889 | if (Invalid) | ||||
2890 | return QualType(); | ||||
2891 | |||||
2892 | return Context.getFunctionType(T, ParamTypes, EPI); | ||||
2893 | } | ||||
2894 | |||||
2895 | /// Build a member pointer type \c T Class::*. | ||||
2896 | /// | ||||
2897 | /// \param T the type to which the member pointer refers. | ||||
2898 | /// \param Class the class type into which the member pointer points. | ||||
2899 | /// \param Loc the location where this type begins | ||||
2900 | /// \param Entity the name of the entity that will have this member pointer type | ||||
2901 | /// | ||||
2902 | /// \returns a member pointer type, if successful, or a NULL type if there was | ||||
2903 | /// an error. | ||||
2904 | QualType Sema::BuildMemberPointerType(QualType T, QualType Class, | ||||
2905 | SourceLocation Loc, | ||||
2906 | DeclarationName Entity) { | ||||
2907 | // Verify that we're not building a pointer to pointer to function with | ||||
2908 | // exception specification. | ||||
2909 | if (CheckDistantExceptionSpec(T)) { | ||||
2910 | Diag(Loc, diag::err_distant_exception_spec); | ||||
2911 | return QualType(); | ||||
2912 | } | ||||
2913 | |||||
2914 | // C++ 8.3.3p3: A pointer to member shall not point to ... a member | ||||
2915 | // with reference type, or "cv void." | ||||
2916 | if (T->isReferenceType()) { | ||||
2917 | Diag(Loc, diag::err_illegal_decl_mempointer_to_reference) | ||||
2918 | << getPrintableNameForEntity(Entity) << T; | ||||
2919 | return QualType(); | ||||
2920 | } | ||||
2921 | |||||
2922 | if (T->isVoidType()) { | ||||
2923 | Diag(Loc, diag::err_illegal_decl_mempointer_to_void) | ||||
2924 | << getPrintableNameForEntity(Entity); | ||||
2925 | return QualType(); | ||||
2926 | } | ||||
2927 | |||||
2928 | if (!Class->isDependentType() && !Class->isRecordType()) { | ||||
2929 | Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class; | ||||
2930 | return QualType(); | ||||
2931 | } | ||||
2932 | |||||
2933 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||
2934 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||
2935 | getLangOpts())) { | ||||
2936 | Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0; | ||||
2937 | return QualType(); | ||||
2938 | } | ||||
2939 | |||||
2940 | // Adjust the default free function calling convention to the default method | ||||
2941 | // calling convention. | ||||
2942 | bool IsCtorOrDtor = | ||||
2943 | (Entity.getNameKind() == DeclarationName::CXXConstructorName) || | ||||
2944 | (Entity.getNameKind() == DeclarationName::CXXDestructorName); | ||||
2945 | if (T->isFunctionType()) | ||||
2946 | adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc); | ||||
2947 | |||||
2948 | return Context.getMemberPointerType(T, Class.getTypePtr()); | ||||
2949 | } | ||||
2950 | |||||
2951 | /// Build a block pointer type. | ||||
2952 | /// | ||||
2953 | /// \param T The type to which we'll be building a block pointer. | ||||
2954 | /// | ||||
2955 | /// \param Loc The source location, used for diagnostics. | ||||
2956 | /// | ||||
2957 | /// \param Entity The name of the entity that involves the block pointer | ||||
2958 | /// type, if known. | ||||
2959 | /// | ||||
2960 | /// \returns A suitable block pointer type, if there are no | ||||
2961 | /// errors. Otherwise, returns a NULL type. | ||||
2962 | QualType Sema::BuildBlockPointerType(QualType T, | ||||
2963 | SourceLocation Loc, | ||||
2964 | DeclarationName Entity) { | ||||
2965 | if (!T->isFunctionType()) { | ||||
2966 | Diag(Loc, diag::err_nonfunction_block_type); | ||||
2967 | return QualType(); | ||||
2968 | } | ||||
2969 | |||||
2970 | if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer)) | ||||
2971 | return QualType(); | ||||
2972 | |||||
2973 | if (getLangOpts().OpenCL) | ||||
2974 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||
2975 | |||||
2976 | return Context.getBlockPointerType(T); | ||||
2977 | } | ||||
2978 | |||||
2979 | QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) { | ||||
2980 | QualType QT = Ty.get(); | ||||
2981 | if (QT.isNull()) { | ||||
2982 | if (TInfo) *TInfo = nullptr; | ||||
2983 | return QualType(); | ||||
2984 | } | ||||
2985 | |||||
2986 | TypeSourceInfo *DI = nullptr; | ||||
2987 | if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) { | ||||
2988 | QT = LIT->getType(); | ||||
2989 | DI = LIT->getTypeSourceInfo(); | ||||
2990 | } | ||||
2991 | |||||
2992 | if (TInfo) *TInfo = DI; | ||||
2993 | return QT; | ||||
2994 | } | ||||
2995 | |||||
2996 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, | ||||
2997 | Qualifiers::ObjCLifetime ownership, | ||||
2998 | unsigned chunkIndex); | ||||
2999 | |||||
3000 | /// Given that this is the declaration of a parameter under ARC, | ||||
3001 | /// attempt to infer attributes and such for pointer-to-whatever | ||||
3002 | /// types. | ||||
3003 | static void inferARCWriteback(TypeProcessingState &state, | ||||
3004 | QualType &declSpecType) { | ||||
3005 | Sema &S = state.getSema(); | ||||
3006 | Declarator &declarator = state.getDeclarator(); | ||||
3007 | |||||
3008 | // TODO: should we care about decl qualifiers? | ||||
3009 | |||||
3010 | // Check whether the declarator has the expected form. We walk | ||||
3011 | // from the inside out in order to make the block logic work. | ||||
3012 | unsigned outermostPointerIndex = 0; | ||||
3013 | bool isBlockPointer = false; | ||||
3014 | unsigned numPointers = 0; | ||||
3015 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||
3016 | unsigned chunkIndex = i; | ||||
3017 | DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex); | ||||
3018 | switch (chunk.Kind) { | ||||
3019 | case DeclaratorChunk::Paren: | ||||
3020 | // Ignore parens. | ||||
3021 | break; | ||||
3022 | |||||
3023 | case DeclaratorChunk::Reference: | ||||
3024 | case DeclaratorChunk::Pointer: | ||||
3025 | // Count the number of pointers. Treat references | ||||
3026 | // interchangeably as pointers; if they're mis-ordered, normal | ||||
3027 | // type building will discover that. | ||||
3028 | outermostPointerIndex = chunkIndex; | ||||
3029 | numPointers++; | ||||
3030 | break; | ||||
3031 | |||||
3032 | case DeclaratorChunk::BlockPointer: | ||||
3033 | // If we have a pointer to block pointer, that's an acceptable | ||||
3034 | // indirect reference; anything else is not an application of | ||||
3035 | // the rules. | ||||
3036 | if (numPointers != 1) return; | ||||
3037 | numPointers++; | ||||
3038 | outermostPointerIndex = chunkIndex; | ||||
3039 | isBlockPointer = true; | ||||
3040 | |||||
3041 | // We don't care about pointer structure in return values here. | ||||
3042 | goto done; | ||||
3043 | |||||
3044 | case DeclaratorChunk::Array: // suppress if written (id[])? | ||||
3045 | case DeclaratorChunk::Function: | ||||
3046 | case DeclaratorChunk::MemberPointer: | ||||
3047 | case DeclaratorChunk::Pipe: | ||||
3048 | return; | ||||
3049 | } | ||||
3050 | } | ||||
3051 | done: | ||||
3052 | |||||
3053 | // If we have *one* pointer, then we want to throw the qualifier on | ||||
3054 | // the declaration-specifiers, which means that it needs to be a | ||||
3055 | // retainable object type. | ||||
3056 | if (numPointers == 1) { | ||||
3057 | // If it's not a retainable object type, the rule doesn't apply. | ||||
3058 | if (!declSpecType->isObjCRetainableType()) return; | ||||
3059 | |||||
3060 | // If it already has lifetime, don't do anything. | ||||
3061 | if (declSpecType.getObjCLifetime()) return; | ||||
3062 | |||||
3063 | // Otherwise, modify the type in-place. | ||||
3064 | Qualifiers qs; | ||||
3065 | |||||
3066 | if (declSpecType->isObjCARCImplicitlyUnretainedType()) | ||||
3067 | qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone); | ||||
3068 | else | ||||
3069 | qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing); | ||||
3070 | declSpecType = S.Context.getQualifiedType(declSpecType, qs); | ||||
3071 | |||||
3072 | // If we have *two* pointers, then we want to throw the qualifier on | ||||
3073 | // the outermost pointer. | ||||
3074 | } else if (numPointers == 2) { | ||||
3075 | // If we don't have a block pointer, we need to check whether the | ||||
3076 | // declaration-specifiers gave us something that will turn into a | ||||
3077 | // retainable object pointer after we slap the first pointer on it. | ||||
3078 | if (!isBlockPointer && !declSpecType->isObjCObjectType()) | ||||
3079 | return; | ||||
3080 | |||||
3081 | // Look for an explicit lifetime attribute there. | ||||
3082 | DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex); | ||||
3083 | if (chunk.Kind != DeclaratorChunk::Pointer && | ||||
3084 | chunk.Kind != DeclaratorChunk::BlockPointer) | ||||
3085 | return; | ||||
3086 | for (const ParsedAttr &AL : chunk.getAttrs()) | ||||
3087 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) | ||||
3088 | return; | ||||
3089 | |||||
3090 | transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing, | ||||
3091 | outermostPointerIndex); | ||||
3092 | |||||
3093 | // Any other number of pointers/references does not trigger the rule. | ||||
3094 | } else return; | ||||
3095 | |||||
3096 | // TODO: mark whether we did this inference? | ||||
3097 | } | ||||
3098 | |||||
3099 | void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, | ||||
3100 | SourceLocation FallbackLoc, | ||||
3101 | SourceLocation ConstQualLoc, | ||||
3102 | SourceLocation VolatileQualLoc, | ||||
3103 | SourceLocation RestrictQualLoc, | ||||
3104 | SourceLocation AtomicQualLoc, | ||||
3105 | SourceLocation UnalignedQualLoc) { | ||||
3106 | if (!Quals) | ||||
3107 | return; | ||||
3108 | |||||
3109 | struct Qual { | ||||
3110 | const char *Name; | ||||
3111 | unsigned Mask; | ||||
3112 | SourceLocation Loc; | ||||
3113 | } const QualKinds[5] = { | ||||
3114 | { "const", DeclSpec::TQ_const, ConstQualLoc }, | ||||
3115 | { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc }, | ||||
3116 | { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc }, | ||||
3117 | { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc }, | ||||
3118 | { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc } | ||||
3119 | }; | ||||
3120 | |||||
3121 | SmallString<32> QualStr; | ||||
3122 | unsigned NumQuals = 0; | ||||
3123 | SourceLocation Loc; | ||||
3124 | FixItHint FixIts[5]; | ||||
3125 | |||||
3126 | // Build a string naming the redundant qualifiers. | ||||
3127 | for (auto &E : QualKinds) { | ||||
3128 | if (Quals & E.Mask) { | ||||
3129 | if (!QualStr.empty()) QualStr += ' '; | ||||
3130 | QualStr += E.Name; | ||||
3131 | |||||
3132 | // If we have a location for the qualifier, offer a fixit. | ||||
3133 | SourceLocation QualLoc = E.Loc; | ||||
3134 | if (QualLoc.isValid()) { | ||||
3135 | FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc); | ||||
3136 | if (Loc.isInvalid() || | ||||
3137 | getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc)) | ||||
3138 | Loc = QualLoc; | ||||
3139 | } | ||||
3140 | |||||
3141 | ++NumQuals; | ||||
3142 | } | ||||
3143 | } | ||||
3144 | |||||
3145 | Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID) | ||||
3146 | << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3]; | ||||
3147 | } | ||||
3148 | |||||
3149 | // Diagnose pointless type qualifiers on the return type of a function. | ||||
3150 | static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, | ||||
3151 | Declarator &D, | ||||
3152 | unsigned FunctionChunkIndex) { | ||||
3153 | const DeclaratorChunk::FunctionTypeInfo &FTI = | ||||
3154 | D.getTypeObject(FunctionChunkIndex).Fun; | ||||
3155 | if (FTI.hasTrailingReturnType()) { | ||||
3156 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||
3157 | RetTy.getLocalCVRQualifiers(), | ||||
3158 | FTI.getTrailingReturnTypeLoc()); | ||||
3159 | return; | ||||
3160 | } | ||||
3161 | |||||
3162 | for (unsigned OuterChunkIndex = FunctionChunkIndex + 1, | ||||
3163 | End = D.getNumTypeObjects(); | ||||
3164 | OuterChunkIndex != End; ++OuterChunkIndex) { | ||||
3165 | DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex); | ||||
3166 | switch (OuterChunk.Kind) { | ||||
3167 | case DeclaratorChunk::Paren: | ||||
3168 | continue; | ||||
3169 | |||||
3170 | case DeclaratorChunk::Pointer: { | ||||
3171 | DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr; | ||||
3172 | S.diagnoseIgnoredQualifiers( | ||||
3173 | diag::warn_qual_return_type, | ||||
3174 | PTI.TypeQuals, | ||||
3175 | SourceLocation(), | ||||
3176 | PTI.ConstQualLoc, | ||||
3177 | PTI.VolatileQualLoc, | ||||
3178 | PTI.RestrictQualLoc, | ||||
3179 | PTI.AtomicQualLoc, | ||||
3180 | PTI.UnalignedQualLoc); | ||||
3181 | return; | ||||
3182 | } | ||||
3183 | |||||
3184 | case DeclaratorChunk::Function: | ||||
3185 | case DeclaratorChunk::BlockPointer: | ||||
3186 | case DeclaratorChunk::Reference: | ||||
3187 | case DeclaratorChunk::Array: | ||||
3188 | case DeclaratorChunk::MemberPointer: | ||||
3189 | case DeclaratorChunk::Pipe: | ||||
3190 | // FIXME: We can't currently provide an accurate source location and a | ||||
3191 | // fix-it hint for these. | ||||
3192 | unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0; | ||||
3193 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||
3194 | RetTy.getCVRQualifiers() | AtomicQual, | ||||
3195 | D.getIdentifierLoc()); | ||||
3196 | return; | ||||
3197 | } | ||||
3198 | |||||
3199 | llvm_unreachable("unknown declarator chunk kind")__builtin_unreachable(); | ||||
3200 | } | ||||
3201 | |||||
3202 | // If the qualifiers come from a conversion function type, don't diagnose | ||||
3203 | // them -- they're not necessarily redundant, since such a conversion | ||||
3204 | // operator can be explicitly called as "x.operator const int()". | ||||
3205 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) | ||||
3206 | return; | ||||
3207 | |||||
3208 | // Just parens all the way out to the decl specifiers. Diagnose any qualifiers | ||||
3209 | // which are present there. | ||||
3210 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||
3211 | D.getDeclSpec().getTypeQualifiers(), | ||||
3212 | D.getIdentifierLoc(), | ||||
3213 | D.getDeclSpec().getConstSpecLoc(), | ||||
3214 | D.getDeclSpec().getVolatileSpecLoc(), | ||||
3215 | D.getDeclSpec().getRestrictSpecLoc(), | ||||
3216 | D.getDeclSpec().getAtomicSpecLoc(), | ||||
3217 | D.getDeclSpec().getUnalignedSpecLoc()); | ||||
3218 | } | ||||
3219 | |||||
3220 | static std::pair<QualType, TypeSourceInfo *> | ||||
3221 | InventTemplateParameter(TypeProcessingState &state, QualType T, | ||||
3222 | TypeSourceInfo *TrailingTSI, AutoType *Auto, | ||||
3223 | InventedTemplateParameterInfo &Info) { | ||||
3224 | Sema &S = state.getSema(); | ||||
3225 | Declarator &D = state.getDeclarator(); | ||||
3226 | |||||
3227 | const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth; | ||||
3228 | const unsigned AutoParameterPosition = Info.TemplateParams.size(); | ||||
3229 | const bool IsParameterPack = D.hasEllipsis(); | ||||
3230 | |||||
3231 | // If auto is mentioned in a lambda parameter or abbreviated function | ||||
3232 | // template context, convert it to a template parameter type. | ||||
3233 | |||||
3234 | // Create the TemplateTypeParmDecl here to retrieve the corresponding | ||||
3235 | // template parameter type. Template parameters are temporarily added | ||||
3236 | // to the TU until the associated TemplateDecl is created. | ||||
3237 | TemplateTypeParmDecl *InventedTemplateParam = | ||||
3238 | TemplateTypeParmDecl::Create( | ||||
3239 | S.Context, S.Context.getTranslationUnitDecl(), | ||||
3240 | /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
3241 | /*NameLoc=*/D.getIdentifierLoc(), | ||||
3242 | TemplateParameterDepth, AutoParameterPosition, | ||||
3243 | S.InventAbbreviatedTemplateParameterTypeName( | ||||
3244 | D.getIdentifier(), AutoParameterPosition), false, | ||||
3245 | IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained()); | ||||
3246 | InventedTemplateParam->setImplicit(); | ||||
3247 | Info.TemplateParams.push_back(InventedTemplateParam); | ||||
3248 | |||||
3249 | // Attach type constraints to the new parameter. | ||||
3250 | if (Auto->isConstrained()) { | ||||
3251 | if (TrailingTSI) { | ||||
3252 | // The 'auto' appears in a trailing return type we've already built; | ||||
3253 | // extract its type constraints to attach to the template parameter. | ||||
3254 | AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc(); | ||||
3255 | TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc()); | ||||
3256 | bool Invalid = false; | ||||
3257 | for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) { | ||||
3258 | if (D.getEllipsisLoc().isInvalid() && !Invalid && | ||||
3259 | S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx), | ||||
3260 | Sema::UPPC_TypeConstraint)) | ||||
3261 | Invalid = true; | ||||
3262 | TAL.addArgument(AutoLoc.getArgLoc(Idx)); | ||||
3263 | } | ||||
3264 | |||||
3265 | if (!Invalid) { | ||||
3266 | S.AttachTypeConstraint( | ||||
3267 | AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(), | ||||
3268 | AutoLoc.getNamedConcept(), | ||||
3269 | AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr, | ||||
3270 | InventedTemplateParam, D.getEllipsisLoc()); | ||||
3271 | } | ||||
3272 | } else { | ||||
3273 | // The 'auto' appears in the decl-specifiers; we've not finished forming | ||||
3274 | // TypeSourceInfo for it yet. | ||||
3275 | TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId(); | ||||
3276 | TemplateArgumentListInfo TemplateArgsInfo; | ||||
3277 | bool Invalid = false; | ||||
3278 | if (TemplateId->LAngleLoc.isValid()) { | ||||
3279 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||
3280 | TemplateId->NumArgs); | ||||
3281 | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||
3282 | |||||
3283 | if (D.getEllipsisLoc().isInvalid()) { | ||||
3284 | for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) { | ||||
3285 | if (S.DiagnoseUnexpandedParameterPack(Arg, | ||||
3286 | Sema::UPPC_TypeConstraint)) { | ||||
3287 | Invalid = true; | ||||
3288 | break; | ||||
3289 | } | ||||
3290 | } | ||||
3291 | } | ||||
3292 | } | ||||
3293 | if (!Invalid) { | ||||
3294 | S.AttachTypeConstraint( | ||||
3295 | D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context), | ||||
3296 | DeclarationNameInfo(DeclarationName(TemplateId->Name), | ||||
3297 | TemplateId->TemplateNameLoc), | ||||
3298 | cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()), | ||||
3299 | TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr, | ||||
3300 | InventedTemplateParam, D.getEllipsisLoc()); | ||||
3301 | } | ||||
3302 | } | ||||
3303 | } | ||||
3304 | |||||
3305 | // Replace the 'auto' in the function parameter with this invented | ||||
3306 | // template type parameter. | ||||
3307 | // FIXME: Retain some type sugar to indicate that this was written | ||||
3308 | // as 'auto'? | ||||
3309 | QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0); | ||||
3310 | QualType NewT = state.ReplaceAutoType(T, Replacement); | ||||
3311 | TypeSourceInfo *NewTSI = | ||||
3312 | TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement) | ||||
3313 | : nullptr; | ||||
3314 | return {NewT, NewTSI}; | ||||
3315 | } | ||||
3316 | |||||
3317 | static TypeSourceInfo * | ||||
3318 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, | ||||
3319 | QualType T, TypeSourceInfo *ReturnTypeInfo); | ||||
3320 | |||||
3321 | static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, | ||||
3322 | TypeSourceInfo *&ReturnTypeInfo) { | ||||
3323 | Sema &SemaRef = state.getSema(); | ||||
3324 | Declarator &D = state.getDeclarator(); | ||||
3325 | QualType T; | ||||
3326 | ReturnTypeInfo = nullptr; | ||||
3327 | |||||
3328 | // The TagDecl owned by the DeclSpec. | ||||
3329 | TagDecl *OwnedTagDecl = nullptr; | ||||
3330 | |||||
3331 | switch (D.getName().getKind()) { | ||||
3332 | case UnqualifiedIdKind::IK_ImplicitSelfParam: | ||||
3333 | case UnqualifiedIdKind::IK_OperatorFunctionId: | ||||
3334 | case UnqualifiedIdKind::IK_Identifier: | ||||
3335 | case UnqualifiedIdKind::IK_LiteralOperatorId: | ||||
3336 | case UnqualifiedIdKind::IK_TemplateId: | ||||
3337 | T = ConvertDeclSpecToType(state); | ||||
3338 | |||||
3339 | if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) { | ||||
3340 | OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | ||||
3341 | // Owned declaration is embedded in declarator. | ||||
3342 | OwnedTagDecl->setEmbeddedInDeclarator(true); | ||||
3343 | } | ||||
3344 | break; | ||||
3345 | |||||
3346 | case UnqualifiedIdKind::IK_ConstructorName: | ||||
3347 | case UnqualifiedIdKind::IK_ConstructorTemplateId: | ||||
3348 | case UnqualifiedIdKind::IK_DestructorName: | ||||
3349 | // Constructors and destructors don't have return types. Use | ||||
3350 | // "void" instead. | ||||
3351 | T = SemaRef.Context.VoidTy; | ||||
3352 | processTypeAttrs(state, T, TAL_DeclSpec, | ||||
3353 | D.getMutableDeclSpec().getAttributes()); | ||||
3354 | break; | ||||
3355 | |||||
3356 | case UnqualifiedIdKind::IK_DeductionGuideName: | ||||
3357 | // Deduction guides have a trailing return type and no type in their | ||||
3358 | // decl-specifier sequence. Use a placeholder return type for now. | ||||
3359 | T = SemaRef.Context.DependentTy; | ||||
3360 | break; | ||||
3361 | |||||
3362 | case UnqualifiedIdKind::IK_ConversionFunctionId: | ||||
3363 | // The result type of a conversion function is the type that it | ||||
3364 | // converts to. | ||||
3365 | T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId, | ||||
3366 | &ReturnTypeInfo); | ||||
3367 | break; | ||||
3368 | } | ||||
3369 | |||||
3370 | if (!D.getAttributes().empty()) | ||||
3371 | distributeTypeAttrsFromDeclarator(state, T); | ||||
3372 | |||||
3373 | // Find the deduced type in this type. Look in the trailing return type if we | ||||
3374 | // have one, otherwise in the DeclSpec type. | ||||
3375 | // FIXME: The standard wording doesn't currently describe this. | ||||
3376 | DeducedType *Deduced = T->getContainedDeducedType(); | ||||
3377 | bool DeducedIsTrailingReturnType = false; | ||||
3378 | if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) { | ||||
3379 | QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType()); | ||||
3380 | Deduced = T.isNull() ? nullptr : T->getContainedDeducedType(); | ||||
3381 | DeducedIsTrailingReturnType = true; | ||||
3382 | } | ||||
3383 | |||||
3384 | // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context. | ||||
3385 | if (Deduced) { | ||||
3386 | AutoType *Auto = dyn_cast<AutoType>(Deduced); | ||||
3387 | int Error = -1; | ||||
3388 | |||||
3389 | // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or | ||||
3390 | // class template argument deduction)? | ||||
3391 | bool IsCXXAutoType = | ||||
3392 | (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType); | ||||
3393 | bool IsDeducedReturnType = false; | ||||
3394 | |||||
3395 | switch (D.getContext()) { | ||||
3396 | case DeclaratorContext::LambdaExpr: | ||||
3397 | // Declared return type of a lambda-declarator is implicit and is always | ||||
3398 | // 'auto'. | ||||
3399 | break; | ||||
3400 | case DeclaratorContext::ObjCParameter: | ||||
3401 | case DeclaratorContext::ObjCResult: | ||||
3402 | Error = 0; | ||||
3403 | break; | ||||
3404 | case DeclaratorContext::RequiresExpr: | ||||
3405 | Error = 22; | ||||
3406 | break; | ||||
3407 | case DeclaratorContext::Prototype: | ||||
3408 | case DeclaratorContext::LambdaExprParameter: { | ||||
3409 | InventedTemplateParameterInfo *Info = nullptr; | ||||
3410 | if (D.getContext() == DeclaratorContext::Prototype) { | ||||
3411 | // With concepts we allow 'auto' in function parameters. | ||||
3412 | if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto || | ||||
3413 | Auto->getKeyword() != AutoTypeKeyword::Auto) { | ||||
3414 | Error = 0; | ||||
3415 | break; | ||||
3416 | } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) { | ||||
3417 | Error = 21; | ||||
3418 | break; | ||||
3419 | } | ||||
3420 | |||||
3421 | Info = &SemaRef.InventedParameterInfos.back(); | ||||
3422 | } else { | ||||
3423 | // In C++14, generic lambdas allow 'auto' in their parameters. | ||||
3424 | if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto || | ||||
3425 | Auto->getKeyword() != AutoTypeKeyword::Auto) { | ||||
3426 | Error = 16; | ||||
3427 | break; | ||||
3428 | } | ||||
3429 | Info = SemaRef.getCurLambda(); | ||||
3430 | assert(Info && "No LambdaScopeInfo on the stack!")((void)0); | ||||
3431 | } | ||||
3432 | |||||
3433 | // We'll deal with inventing template parameters for 'auto' in trailing | ||||
3434 | // return types when we pick up the trailing return type when processing | ||||
3435 | // the function chunk. | ||||
3436 | if (!DeducedIsTrailingReturnType) | ||||
3437 | T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first; | ||||
3438 | break; | ||||
3439 | } | ||||
3440 | case DeclaratorContext::Member: { | ||||
3441 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || | ||||
3442 | D.isFunctionDeclarator()) | ||||
3443 | break; | ||||
3444 | bool Cxx = SemaRef.getLangOpts().CPlusPlus; | ||||
3445 | if (isa<ObjCContainerDecl>(SemaRef.CurContext)) { | ||||
3446 | Error = 6; // Interface member. | ||||
3447 | } else { | ||||
3448 | switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) { | ||||
3449 | case TTK_Enum: llvm_unreachable("unhandled tag kind")__builtin_unreachable(); | ||||
3450 | case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break; | ||||
3451 | case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break; | ||||
3452 | case TTK_Class: Error = 5; /* Class member */ break; | ||||
3453 | case TTK_Interface: Error = 6; /* Interface member */ break; | ||||
3454 | } | ||||
3455 | } | ||||
3456 | if (D.getDeclSpec().isFriendSpecified()) | ||||
3457 | Error = 20; // Friend type | ||||
3458 | break; | ||||
3459 | } | ||||
3460 | case DeclaratorContext::CXXCatch: | ||||
3461 | case DeclaratorContext::ObjCCatch: | ||||
3462 | Error = 7; // Exception declaration | ||||
3463 | break; | ||||
3464 | case DeclaratorContext::TemplateParam: | ||||
3465 | if (isa<DeducedTemplateSpecializationType>(Deduced) && | ||||
3466 | !SemaRef.getLangOpts().CPlusPlus20) | ||||
3467 | Error = 19; // Template parameter (until C++20) | ||||
3468 | else if (!SemaRef.getLangOpts().CPlusPlus17) | ||||
3469 | Error = 8; // Template parameter (until C++17) | ||||
3470 | break; | ||||
3471 | case DeclaratorContext::BlockLiteral: | ||||
3472 | Error = 9; // Block literal | ||||
3473 | break; | ||||
3474 | case DeclaratorContext::TemplateArg: | ||||
3475 | // Within a template argument list, a deduced template specialization | ||||
3476 | // type will be reinterpreted as a template template argument. | ||||
3477 | if (isa<DeducedTemplateSpecializationType>(Deduced) && | ||||
3478 | !D.getNumTypeObjects() && | ||||
3479 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier) | ||||
3480 | break; | ||||
3481 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
3482 | case DeclaratorContext::TemplateTypeArg: | ||||
3483 | Error = 10; // Template type argument | ||||
3484 | break; | ||||
3485 | case DeclaratorContext::AliasDecl: | ||||
3486 | case DeclaratorContext::AliasTemplate: | ||||
3487 | Error = 12; // Type alias | ||||
3488 | break; | ||||
3489 | case DeclaratorContext::TrailingReturn: | ||||
3490 | case DeclaratorContext::TrailingReturnVar: | ||||
3491 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) | ||||
3492 | Error = 13; // Function return type | ||||
3493 | IsDeducedReturnType = true; | ||||
3494 | break; | ||||
3495 | case DeclaratorContext::ConversionId: | ||||
3496 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) | ||||
3497 | Error = 14; // conversion-type-id | ||||
3498 | IsDeducedReturnType = true; | ||||
3499 | break; | ||||
3500 | case DeclaratorContext::FunctionalCast: | ||||
3501 | if (isa<DeducedTemplateSpecializationType>(Deduced)) | ||||
3502 | break; | ||||
3503 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
3504 | case DeclaratorContext::TypeName: | ||||
3505 | Error = 15; // Generic | ||||
3506 | break; | ||||
3507 | case DeclaratorContext::File: | ||||
3508 | case DeclaratorContext::Block: | ||||
3509 | case DeclaratorContext::ForInit: | ||||
3510 | case DeclaratorContext::SelectionInit: | ||||
3511 | case DeclaratorContext::Condition: | ||||
3512 | // FIXME: P0091R3 (erroneously) does not permit class template argument | ||||
3513 | // deduction in conditions, for-init-statements, and other declarations | ||||
3514 | // that are not simple-declarations. | ||||
3515 | break; | ||||
3516 | case DeclaratorContext::CXXNew: | ||||
3517 | // FIXME: P0091R3 does not permit class template argument deduction here, | ||||
3518 | // but we follow GCC and allow it anyway. | ||||
3519 | if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced)) | ||||
3520 | Error = 17; // 'new' type | ||||
3521 | break; | ||||
3522 | case DeclaratorContext::KNRTypeList: | ||||
3523 | Error = 18; // K&R function parameter | ||||
3524 | break; | ||||
3525 | } | ||||
3526 | |||||
3527 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | ||||
3528 | Error = 11; | ||||
3529 | |||||
3530 | // In Objective-C it is an error to use 'auto' on a function declarator | ||||
3531 | // (and everywhere for '__auto_type'). | ||||
3532 | if (D.isFunctionDeclarator() && | ||||
3533 | (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType)) | ||||
3534 | Error = 13; | ||||
3535 | |||||
3536 | SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc(); | ||||
3537 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) | ||||
3538 | AutoRange = D.getName().getSourceRange(); | ||||
3539 | |||||
3540 | if (Error != -1) { | ||||
3541 | unsigned Kind; | ||||
3542 | if (Auto) { | ||||
3543 | switch (Auto->getKeyword()) { | ||||
3544 | case AutoTypeKeyword::Auto: Kind = 0; break; | ||||
3545 | case AutoTypeKeyword::DecltypeAuto: Kind = 1; break; | ||||
3546 | case AutoTypeKeyword::GNUAutoType: Kind = 2; break; | ||||
3547 | } | ||||
3548 | } else { | ||||
3549 | assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((void)0) | ||||
3550 | "unknown auto type")((void)0); | ||||
3551 | Kind = 3; | ||||
3552 | } | ||||
3553 | |||||
3554 | auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced); | ||||
3555 | TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName(); | ||||
3556 | |||||
3557 | SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed) | ||||
3558 | << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN) | ||||
3559 | << QualType(Deduced, 0) << AutoRange; | ||||
3560 | if (auto *TD = TN.getAsTemplateDecl()) | ||||
3561 | SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here); | ||||
3562 | |||||
3563 | T = SemaRef.Context.IntTy; | ||||
3564 | D.setInvalidType(true); | ||||
3565 | } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) { | ||||
3566 | // If there was a trailing return type, we already got | ||||
3567 | // warn_cxx98_compat_trailing_return_type in the parser. | ||||
3568 | SemaRef.Diag(AutoRange.getBegin(), | ||||
3569 | D.getContext() == DeclaratorContext::LambdaExprParameter | ||||
3570 | ? diag::warn_cxx11_compat_generic_lambda | ||||
3571 | : IsDeducedReturnType | ||||
3572 | ? diag::warn_cxx11_compat_deduced_return_type | ||||
3573 | : diag::warn_cxx98_compat_auto_type_specifier) | ||||
3574 | << AutoRange; | ||||
3575 | } | ||||
3576 | } | ||||
3577 | |||||
3578 | if (SemaRef.getLangOpts().CPlusPlus && | ||||
3579 | OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) { | ||||
3580 | // Check the contexts where C++ forbids the declaration of a new class | ||||
3581 | // or enumeration in a type-specifier-seq. | ||||
3582 | unsigned DiagID = 0; | ||||
3583 | switch (D.getContext()) { | ||||
3584 | case DeclaratorContext::TrailingReturn: | ||||
3585 | case DeclaratorContext::TrailingReturnVar: | ||||
3586 | // Class and enumeration definitions are syntactically not allowed in | ||||
3587 | // trailing return types. | ||||
3588 | llvm_unreachable("parser should not have allowed this")__builtin_unreachable(); | ||||
3589 | break; | ||||
3590 | case DeclaratorContext::File: | ||||
3591 | case DeclaratorContext::Member: | ||||
3592 | case DeclaratorContext::Block: | ||||
3593 | case DeclaratorContext::ForInit: | ||||
3594 | case DeclaratorContext::SelectionInit: | ||||
3595 | case DeclaratorContext::BlockLiteral: | ||||
3596 | case DeclaratorContext::LambdaExpr: | ||||
3597 | // C++11 [dcl.type]p3: | ||||
3598 | // A type-specifier-seq shall not define a class or enumeration unless | ||||
3599 | // it appears in the type-id of an alias-declaration (7.1.3) that is not | ||||
3600 | // the declaration of a template-declaration. | ||||
3601 | case DeclaratorContext::AliasDecl: | ||||
3602 | break; | ||||
3603 | case DeclaratorContext::AliasTemplate: | ||||
3604 | DiagID = diag::err_type_defined_in_alias_template; | ||||
3605 | break; | ||||
3606 | case DeclaratorContext::TypeName: | ||||
3607 | case DeclaratorContext::FunctionalCast: | ||||
3608 | case DeclaratorContext::ConversionId: | ||||
3609 | case DeclaratorContext::TemplateParam: | ||||
3610 | case DeclaratorContext::CXXNew: | ||||
3611 | case DeclaratorContext::CXXCatch: | ||||
3612 | case DeclaratorContext::ObjCCatch: | ||||
3613 | case DeclaratorContext::TemplateArg: | ||||
3614 | case DeclaratorContext::TemplateTypeArg: | ||||
3615 | DiagID = diag::err_type_defined_in_type_specifier; | ||||
3616 | break; | ||||
3617 | case DeclaratorContext::Prototype: | ||||
3618 | case DeclaratorContext::LambdaExprParameter: | ||||
3619 | case DeclaratorContext::ObjCParameter: | ||||
3620 | case DeclaratorContext::ObjCResult: | ||||
3621 | case DeclaratorContext::KNRTypeList: | ||||
3622 | case DeclaratorContext::RequiresExpr: | ||||
3623 | // C++ [dcl.fct]p6: | ||||
3624 | // Types shall not be defined in return or parameter types. | ||||
3625 | DiagID = diag::err_type_defined_in_param_type; | ||||
3626 | break; | ||||
3627 | case DeclaratorContext::Condition: | ||||
3628 | // C++ 6.4p2: | ||||
3629 | // The type-specifier-seq shall not contain typedef and shall not declare | ||||
3630 | // a new class or enumeration. | ||||
3631 | DiagID = diag::err_type_defined_in_condition; | ||||
3632 | break; | ||||
3633 | } | ||||
3634 | |||||
3635 | if (DiagID != 0) { | ||||
3636 | SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID) | ||||
3637 | << SemaRef.Context.getTypeDeclType(OwnedTagDecl); | ||||
3638 | D.setInvalidType(true); | ||||
3639 | } | ||||
3640 | } | ||||
3641 | |||||
3642 | assert(!T.isNull() && "This function should not return a null type")((void)0); | ||||
3643 | return T; | ||||
3644 | } | ||||
3645 | |||||
3646 | /// Produce an appropriate diagnostic for an ambiguity between a function | ||||
3647 | /// declarator and a C++ direct-initializer. | ||||
3648 | static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, | ||||
3649 | DeclaratorChunk &DeclType, QualType RT) { | ||||
3650 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||
3651 | assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((void)0); | ||||
3652 | |||||
3653 | // If the return type is void there is no ambiguity. | ||||
3654 | if (RT->isVoidType()) | ||||
3655 | return; | ||||
3656 | |||||
3657 | // An initializer for a non-class type can have at most one argument. | ||||
3658 | if (!RT->isRecordType() && FTI.NumParams > 1) | ||||
3659 | return; | ||||
3660 | |||||
3661 | // An initializer for a reference must have exactly one argument. | ||||
3662 | if (RT->isReferenceType() && FTI.NumParams != 1) | ||||
3663 | return; | ||||
3664 | |||||
3665 | // Only warn if this declarator is declaring a function at block scope, and | ||||
3666 | // doesn't have a storage class (such as 'extern') specified. | ||||
3667 | if (!D.isFunctionDeclarator() || | ||||
3668 | D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration || | ||||
3669 | !S.CurContext->isFunctionOrMethod() || | ||||
3670 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified) | ||||
3671 | return; | ||||
3672 | |||||
3673 | // Inside a condition, a direct initializer is not permitted. We allow one to | ||||
3674 | // be parsed in order to give better diagnostics in condition parsing. | ||||
3675 | if (D.getContext() == DeclaratorContext::Condition) | ||||
3676 | return; | ||||
3677 | |||||
3678 | SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc); | ||||
3679 | |||||
3680 | S.Diag(DeclType.Loc, | ||||
3681 | FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration | ||||
3682 | : diag::warn_empty_parens_are_function_decl) | ||||
3683 | << ParenRange; | ||||
3684 | |||||
3685 | // If the declaration looks like: | ||||
3686 | // T var1, | ||||
3687 | // f(); | ||||
3688 | // and name lookup finds a function named 'f', then the ',' was | ||||
3689 | // probably intended to be a ';'. | ||||
3690 | if (!D.isFirstDeclarator() && D.getIdentifier()) { | ||||
3691 | FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr); | ||||
3692 | FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr); | ||||
3693 | if (Comma.getFileID() != Name.getFileID() || | ||||
3694 | Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) { | ||||
3695 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), | ||||
3696 | Sema::LookupOrdinaryName); | ||||
3697 | if (S.LookupName(Result, S.getCurScope())) | ||||
3698 | S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call) | ||||
3699 | << FixItHint::CreateReplacement(D.getCommaLoc(), ";") | ||||
3700 | << D.getIdentifier(); | ||||
3701 | Result.suppressDiagnostics(); | ||||
3702 | } | ||||
3703 | } | ||||
3704 | |||||
3705 | if (FTI.NumParams > 0) { | ||||
3706 | // For a declaration with parameters, eg. "T var(T());", suggest adding | ||||
3707 | // parens around the first parameter to turn the declaration into a | ||||
3708 | // variable declaration. | ||||
3709 | SourceRange Range = FTI.Params[0].Param->getSourceRange(); | ||||
3710 | SourceLocation B = Range.getBegin(); | ||||
3711 | SourceLocation E = S.getLocForEndOfToken(Range.getEnd()); | ||||
3712 | // FIXME: Maybe we should suggest adding braces instead of parens | ||||
3713 | // in C++11 for classes that don't have an initializer_list constructor. | ||||
3714 | S.Diag(B, diag::note_additional_parens_for_variable_declaration) | ||||
3715 | << FixItHint::CreateInsertion(B, "(") | ||||
3716 | << FixItHint::CreateInsertion(E, ")"); | ||||
3717 | } else { | ||||
3718 | // For a declaration without parameters, eg. "T var();", suggest replacing | ||||
3719 | // the parens with an initializer to turn the declaration into a variable | ||||
3720 | // declaration. | ||||
3721 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | ||||
3722 | |||||
3723 | // Empty parens mean value-initialization, and no parens mean | ||||
3724 | // default initialization. These are equivalent if the default | ||||
3725 | // constructor is user-provided or if zero-initialization is a | ||||
3726 | // no-op. | ||||
3727 | if (RD && RD->hasDefinition() && | ||||
3728 | (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor())) | ||||
3729 | S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor) | ||||
3730 | << FixItHint::CreateRemoval(ParenRange); | ||||
3731 | else { | ||||
3732 | std::string Init = | ||||
3733 | S.getFixItZeroInitializerForType(RT, ParenRange.getBegin()); | ||||
3734 | if (Init.empty() && S.LangOpts.CPlusPlus11) | ||||
3735 | Init = "{}"; | ||||
3736 | if (!Init.empty()) | ||||
3737 | S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize) | ||||
3738 | << FixItHint::CreateReplacement(ParenRange, Init); | ||||
3739 | } | ||||
3740 | } | ||||
3741 | } | ||||
3742 | |||||
3743 | /// Produce an appropriate diagnostic for a declarator with top-level | ||||
3744 | /// parentheses. | ||||
3745 | static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) { | ||||
3746 | DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1); | ||||
3747 | assert(Paren.Kind == DeclaratorChunk::Paren &&((void)0) | ||||
3748 | "do not have redundant top-level parentheses")((void)0); | ||||
3749 | |||||
3750 | // This is a syntactic check; we're not interested in cases that arise | ||||
3751 | // during template instantiation. | ||||
3752 | if (S.inTemplateInstantiation()) | ||||
3753 | return; | ||||
3754 | |||||
3755 | // Check whether this could be intended to be a construction of a temporary | ||||
3756 | // object in C++ via a function-style cast. | ||||
3757 | bool CouldBeTemporaryObject = | ||||
3758 | S.getLangOpts().CPlusPlus && D.isExpressionContext() && | ||||
3759 | !D.isInvalidType() && D.getIdentifier() && | ||||
3760 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier && | ||||
3761 | (T->isRecordType() || T->isDependentType()) && | ||||
3762 | D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator(); | ||||
3763 | |||||
3764 | bool StartsWithDeclaratorId = true; | ||||
3765 | for (auto &C : D.type_objects()) { | ||||
3766 | switch (C.Kind) { | ||||
3767 | case DeclaratorChunk::Paren: | ||||
3768 | if (&C == &Paren) | ||||
3769 | continue; | ||||
3770 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
3771 | case DeclaratorChunk::Pointer: | ||||
3772 | StartsWithDeclaratorId = false; | ||||
3773 | continue; | ||||
3774 | |||||
3775 | case DeclaratorChunk::Array: | ||||
3776 | if (!C.Arr.NumElts) | ||||
3777 | CouldBeTemporaryObject = false; | ||||
3778 | continue; | ||||
3779 | |||||
3780 | case DeclaratorChunk::Reference: | ||||
3781 | // FIXME: Suppress the warning here if there is no initializer; we're | ||||
3782 | // going to give an error anyway. | ||||
3783 | // We assume that something like 'T (&x) = y;' is highly likely to not | ||||
3784 | // be intended to be a temporary object. | ||||
3785 | CouldBeTemporaryObject = false; | ||||
3786 | StartsWithDeclaratorId = false; | ||||
3787 | continue; | ||||
3788 | |||||
3789 | case DeclaratorChunk::Function: | ||||
3790 | // In a new-type-id, function chunks require parentheses. | ||||
3791 | if (D.getContext() == DeclaratorContext::CXXNew) | ||||
3792 | return; | ||||
3793 | // FIXME: "A(f())" deserves a vexing-parse warning, not just a | ||||
3794 | // redundant-parens warning, but we don't know whether the function | ||||
3795 | // chunk was syntactically valid as an expression here. | ||||
3796 | CouldBeTemporaryObject = false; | ||||
3797 | continue; | ||||
3798 | |||||
3799 | case DeclaratorChunk::BlockPointer: | ||||
3800 | case DeclaratorChunk::MemberPointer: | ||||
3801 | case DeclaratorChunk::Pipe: | ||||
3802 | // These cannot appear in expressions. | ||||
3803 | CouldBeTemporaryObject = false; | ||||
3804 | StartsWithDeclaratorId = false; | ||||
3805 | continue; | ||||
3806 | } | ||||
3807 | } | ||||
3808 | |||||
3809 | // FIXME: If there is an initializer, assume that this is not intended to be | ||||
3810 | // a construction of a temporary object. | ||||
3811 | |||||
3812 | // Check whether the name has already been declared; if not, this is not a | ||||
3813 | // function-style cast. | ||||
3814 | if (CouldBeTemporaryObject) { | ||||
3815 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), | ||||
3816 | Sema::LookupOrdinaryName); | ||||
3817 | if (!S.LookupName(Result, S.getCurScope())) | ||||
3818 | CouldBeTemporaryObject = false; | ||||
3819 | Result.suppressDiagnostics(); | ||||
3820 | } | ||||
3821 | |||||
3822 | SourceRange ParenRange(Paren.Loc, Paren.EndLoc); | ||||
3823 | |||||
3824 | if (!CouldBeTemporaryObject) { | ||||
3825 | // If we have A (::B), the parentheses affect the meaning of the program. | ||||
3826 | // Suppress the warning in that case. Don't bother looking at the DeclSpec | ||||
3827 | // here: even (e.g.) "int ::x" is visually ambiguous even though it's | ||||
3828 | // formally unambiguous. | ||||
3829 | if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) { | ||||
3830 | for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS; | ||||
3831 | NNS = NNS->getPrefix()) { | ||||
3832 | if (NNS->getKind() == NestedNameSpecifier::Global) | ||||
3833 | return; | ||||
3834 | } | ||||
3835 | } | ||||
3836 | |||||
3837 | S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator) | ||||
3838 | << ParenRange << FixItHint::CreateRemoval(Paren.Loc) | ||||
3839 | << FixItHint::CreateRemoval(Paren.EndLoc); | ||||
3840 | return; | ||||
3841 | } | ||||
3842 | |||||
3843 | S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration) | ||||
3844 | << ParenRange << D.getIdentifier(); | ||||
3845 | auto *RD = T->getAsCXXRecordDecl(); | ||||
3846 | if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor()) | ||||
3847 | S.Diag(Paren.Loc, diag::note_raii_guard_add_name) | ||||
3848 | << FixItHint::CreateInsertion(Paren.Loc, " varname") << T | ||||
3849 | << D.getIdentifier(); | ||||
3850 | // FIXME: A cast to void is probably a better suggestion in cases where it's | ||||
3851 | // valid (when there is no initializer and we're not in a condition). | ||||
3852 | S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses) | ||||
3853 | << FixItHint::CreateInsertion(D.getBeginLoc(), "(") | ||||
3854 | << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")"); | ||||
3855 | S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration) | ||||
3856 | << FixItHint::CreateRemoval(Paren.Loc) | ||||
3857 | << FixItHint::CreateRemoval(Paren.EndLoc); | ||||
3858 | } | ||||
3859 | |||||
3860 | /// Helper for figuring out the default CC for a function declarator type. If | ||||
3861 | /// this is the outermost chunk, then we can determine the CC from the | ||||
3862 | /// declarator context. If not, then this could be either a member function | ||||
3863 | /// type or normal function type. | ||||
3864 | static CallingConv getCCForDeclaratorChunk( | ||||
3865 | Sema &S, Declarator &D, const ParsedAttributesView &AttrList, | ||||
3866 | const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) { | ||||
3867 | assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((void)0); | ||||
3868 | |||||
3869 | // Check for an explicit CC attribute. | ||||
3870 | for (const ParsedAttr &AL : AttrList) { | ||||
3871 | switch (AL.getKind()) { | ||||
3872 | CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll : { | ||||
3873 | // Ignore attributes that don't validate or can't apply to the | ||||
3874 | // function type. We'll diagnose the failure to apply them in | ||||
3875 | // handleFunctionTypeAttr. | ||||
3876 | CallingConv CC; | ||||
3877 | if (!S.CheckCallingConvAttr(AL, CC) && | ||||
3878 | (!FTI.isVariadic || supportsVariadicCall(CC))) { | ||||
3879 | return CC; | ||||
3880 | } | ||||
3881 | break; | ||||
3882 | } | ||||
3883 | |||||
3884 | default: | ||||
3885 | break; | ||||
3886 | } | ||||
3887 | } | ||||
3888 | |||||
3889 | bool IsCXXInstanceMethod = false; | ||||
3890 | |||||
3891 | if (S.getLangOpts().CPlusPlus) { | ||||
3892 | // Look inwards through parentheses to see if this chunk will form a | ||||
3893 | // member pointer type or if we're the declarator. Any type attributes | ||||
3894 | // between here and there will override the CC we choose here. | ||||
3895 | unsigned I = ChunkIndex; | ||||
3896 | bool FoundNonParen = false; | ||||
3897 | while (I && !FoundNonParen) { | ||||
3898 | --I; | ||||
3899 | if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren) | ||||
3900 | FoundNonParen = true; | ||||
3901 | } | ||||
3902 | |||||
3903 | if (FoundNonParen) { | ||||
3904 | // If we're not the declarator, we're a regular function type unless we're | ||||
3905 | // in a member pointer. | ||||
3906 | IsCXXInstanceMethod = | ||||
3907 | D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer; | ||||
3908 | } else if (D.getContext() == DeclaratorContext::LambdaExpr) { | ||||
3909 | // This can only be a call operator for a lambda, which is an instance | ||||
3910 | // method. | ||||
3911 | IsCXXInstanceMethod = true; | ||||
3912 | } else { | ||||
3913 | // We're the innermost decl chunk, so must be a function declarator. | ||||
3914 | assert(D.isFunctionDeclarator())((void)0); | ||||
3915 | |||||
3916 | // If we're inside a record, we're declaring a method, but it could be | ||||
3917 | // explicitly or implicitly static. | ||||
3918 | IsCXXInstanceMethod = | ||||
3919 | D.isFirstDeclarationOfMember() && | ||||
3920 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | ||||
3921 | !D.isStaticMember(); | ||||
3922 | } | ||||
3923 | } | ||||
3924 | |||||
3925 | CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic, | ||||
3926 | IsCXXInstanceMethod); | ||||
3927 | |||||
3928 | // Attribute AT_OpenCLKernel affects the calling convention for SPIR | ||||
3929 | // and AMDGPU targets, hence it cannot be treated as a calling | ||||
3930 | // convention attribute. This is the simplest place to infer | ||||
3931 | // calling convention for OpenCL kernels. | ||||
3932 | if (S.getLangOpts().OpenCL) { | ||||
3933 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { | ||||
3934 | if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) { | ||||
3935 | CC = CC_OpenCLKernel; | ||||
3936 | break; | ||||
3937 | } | ||||
3938 | } | ||||
3939 | } | ||||
3940 | |||||
3941 | return CC; | ||||
3942 | } | ||||
3943 | |||||
3944 | namespace { | ||||
3945 | /// A simple notion of pointer kinds, which matches up with the various | ||||
3946 | /// pointer declarators. | ||||
3947 | enum class SimplePointerKind { | ||||
3948 | Pointer, | ||||
3949 | BlockPointer, | ||||
3950 | MemberPointer, | ||||
3951 | Array, | ||||
3952 | }; | ||||
3953 | } // end anonymous namespace | ||||
3954 | |||||
3955 | IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) { | ||||
3956 | switch (nullability) { | ||||
3957 | case NullabilityKind::NonNull: | ||||
3958 | if (!Ident__Nonnull) | ||||
3959 | Ident__Nonnull = PP.getIdentifierInfo("_Nonnull"); | ||||
3960 | return Ident__Nonnull; | ||||
3961 | |||||
3962 | case NullabilityKind::Nullable: | ||||
3963 | if (!Ident__Nullable) | ||||
3964 | Ident__Nullable = PP.getIdentifierInfo("_Nullable"); | ||||
3965 | return Ident__Nullable; | ||||
3966 | |||||
3967 | case NullabilityKind::NullableResult: | ||||
3968 | if (!Ident__Nullable_result) | ||||
3969 | Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result"); | ||||
3970 | return Ident__Nullable_result; | ||||
3971 | |||||
3972 | case NullabilityKind::Unspecified: | ||||
3973 | if (!Ident__Null_unspecified) | ||||
3974 | Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified"); | ||||
3975 | return Ident__Null_unspecified; | ||||
3976 | } | ||||
3977 | llvm_unreachable("Unknown nullability kind.")__builtin_unreachable(); | ||||
3978 | } | ||||
3979 | |||||
3980 | /// Retrieve the identifier "NSError". | ||||
3981 | IdentifierInfo *Sema::getNSErrorIdent() { | ||||
3982 | if (!Ident_NSError) | ||||
3983 | Ident_NSError = PP.getIdentifierInfo("NSError"); | ||||
3984 | |||||
3985 | return Ident_NSError; | ||||
3986 | } | ||||
3987 | |||||
3988 | /// Check whether there is a nullability attribute of any kind in the given | ||||
3989 | /// attribute list. | ||||
3990 | static bool hasNullabilityAttr(const ParsedAttributesView &attrs) { | ||||
3991 | for (const ParsedAttr &AL : attrs) { | ||||
3992 | if (AL.getKind() == ParsedAttr::AT_TypeNonNull || | ||||
3993 | AL.getKind() == ParsedAttr::AT_TypeNullable || | ||||
3994 | AL.getKind() == ParsedAttr::AT_TypeNullableResult || | ||||
3995 | AL.getKind() == ParsedAttr::AT_TypeNullUnspecified) | ||||
3996 | return true; | ||||
3997 | } | ||||
3998 | |||||
3999 | return false; | ||||
4000 | } | ||||
4001 | |||||
4002 | namespace { | ||||
4003 | /// Describes the kind of a pointer a declarator describes. | ||||
4004 | enum class PointerDeclaratorKind { | ||||
4005 | // Not a pointer. | ||||
4006 | NonPointer, | ||||
4007 | // Single-level pointer. | ||||
4008 | SingleLevelPointer, | ||||
4009 | // Multi-level pointer (of any pointer kind). | ||||
4010 | MultiLevelPointer, | ||||
4011 | // CFFooRef* | ||||
4012 | MaybePointerToCFRef, | ||||
4013 | // CFErrorRef* | ||||
4014 | CFErrorRefPointer, | ||||
4015 | // NSError** | ||||
4016 | NSErrorPointerPointer, | ||||
4017 | }; | ||||
4018 | |||||
4019 | /// Describes a declarator chunk wrapping a pointer that marks inference as | ||||
4020 | /// unexpected. | ||||
4021 | // These values must be kept in sync with diagnostics. | ||||
4022 | enum class PointerWrappingDeclaratorKind { | ||||
4023 | /// Pointer is top-level. | ||||
4024 | None = -1, | ||||
4025 | /// Pointer is an array element. | ||||
4026 | Array = 0, | ||||
4027 | /// Pointer is the referent type of a C++ reference. | ||||
4028 | Reference = 1 | ||||
4029 | }; | ||||
4030 | } // end anonymous namespace | ||||
4031 | |||||
4032 | /// Classify the given declarator, whose type-specified is \c type, based on | ||||
4033 | /// what kind of pointer it refers to. | ||||
4034 | /// | ||||
4035 | /// This is used to determine the default nullability. | ||||
4036 | static PointerDeclaratorKind | ||||
4037 | classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, | ||||
4038 | PointerWrappingDeclaratorKind &wrappingKind) { | ||||
4039 | unsigned numNormalPointers = 0; | ||||
4040 | |||||
4041 | // For any dependent type, we consider it a non-pointer. | ||||
4042 | if (type->isDependentType()) | ||||
4043 | return PointerDeclaratorKind::NonPointer; | ||||
4044 | |||||
4045 | // Look through the declarator chunks to identify pointers. | ||||
4046 | for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) { | ||||
4047 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||
4048 | switch (chunk.Kind) { | ||||
4049 | case DeclaratorChunk::Array: | ||||
4050 | if (numNormalPointers == 0) | ||||
4051 | wrappingKind = PointerWrappingDeclaratorKind::Array; | ||||
4052 | break; | ||||
4053 | |||||
4054 | case DeclaratorChunk::Function: | ||||
4055 | case DeclaratorChunk::Pipe: | ||||
4056 | break; | ||||
4057 | |||||
4058 | case DeclaratorChunk::BlockPointer: | ||||
4059 | case DeclaratorChunk::MemberPointer: | ||||
4060 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||
4061 | : PointerDeclaratorKind::SingleLevelPointer; | ||||
4062 | |||||
4063 | case DeclaratorChunk::Paren: | ||||
4064 | break; | ||||
4065 | |||||
4066 | case DeclaratorChunk::Reference: | ||||
4067 | if (numNormalPointers == 0) | ||||
4068 | wrappingKind = PointerWrappingDeclaratorKind::Reference; | ||||
4069 | break; | ||||
4070 | |||||
4071 | case DeclaratorChunk::Pointer: | ||||
4072 | ++numNormalPointers; | ||||
4073 | if (numNormalPointers > 2) | ||||
4074 | return PointerDeclaratorKind::MultiLevelPointer; | ||||
4075 | break; | ||||
4076 | } | ||||
4077 | } | ||||
4078 | |||||
4079 | // Then, dig into the type specifier itself. | ||||
4080 | unsigned numTypeSpecifierPointers = 0; | ||||
4081 | do { | ||||
4082 | // Decompose normal pointers. | ||||
4083 | if (auto ptrType = type->getAs<PointerType>()) { | ||||
4084 | ++numNormalPointers; | ||||
4085 | |||||
4086 | if (numNormalPointers > 2) | ||||
4087 | return PointerDeclaratorKind::MultiLevelPointer; | ||||
4088 | |||||
4089 | type = ptrType->getPointeeType(); | ||||
4090 | ++numTypeSpecifierPointers; | ||||
4091 | continue; | ||||
4092 | } | ||||
4093 | |||||
4094 | // Decompose block pointers. | ||||
4095 | if (type->getAs<BlockPointerType>()) { | ||||
4096 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||
4097 | : PointerDeclaratorKind::SingleLevelPointer; | ||||
4098 | } | ||||
4099 | |||||
4100 | // Decompose member pointers. | ||||
4101 | if (type->getAs<MemberPointerType>()) { | ||||
4102 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||
4103 | : PointerDeclaratorKind::SingleLevelPointer; | ||||
4104 | } | ||||
4105 | |||||
4106 | // Look at Objective-C object pointers. | ||||
4107 | if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) { | ||||
4108 | ++numNormalPointers; | ||||
4109 | ++numTypeSpecifierPointers; | ||||
4110 | |||||
4111 | // If this is NSError**, report that. | ||||
4112 | if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) { | ||||
4113 | if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() && | ||||
4114 | numNormalPointers == 2 && numTypeSpecifierPointers < 2) { | ||||
4115 | return PointerDeclaratorKind::NSErrorPointerPointer; | ||||
4116 | } | ||||
4117 | } | ||||
4118 | |||||
4119 | break; | ||||
4120 | } | ||||
4121 | |||||
4122 | // Look at Objective-C class types. | ||||
4123 | if (auto objcClass = type->getAs<ObjCInterfaceType>()) { | ||||
4124 | if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) { | ||||
4125 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2) | ||||
4126 | return PointerDeclaratorKind::NSErrorPointerPointer; | ||||
4127 | } | ||||
4128 | |||||
4129 | break; | ||||
4130 | } | ||||
4131 | |||||
4132 | // If at this point we haven't seen a pointer, we won't see one. | ||||
4133 | if (numNormalPointers == 0) | ||||
4134 | return PointerDeclaratorKind::NonPointer; | ||||
4135 | |||||
4136 | if (auto recordType = type->getAs<RecordType>()) { | ||||
4137 | RecordDecl *recordDecl = recordType->getDecl(); | ||||
4138 | |||||
4139 | // If this is CFErrorRef*, report it as such. | ||||
4140 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 && | ||||
4141 | S.isCFError(recordDecl)) { | ||||
4142 | return PointerDeclaratorKind::CFErrorRefPointer; | ||||
4143 | } | ||||
4144 | break; | ||||
4145 | } | ||||
4146 | |||||
4147 | break; | ||||
4148 | } while (true); | ||||
4149 | |||||
4150 | switch (numNormalPointers) { | ||||
4151 | case 0: | ||||
4152 | return PointerDeclaratorKind::NonPointer; | ||||
4153 | |||||
4154 | case 1: | ||||
4155 | return PointerDeclaratorKind::SingleLevelPointer; | ||||
4156 | |||||
4157 | case 2: | ||||
4158 | return PointerDeclaratorKind::MaybePointerToCFRef; | ||||
4159 | |||||
4160 | default: | ||||
4161 | return PointerDeclaratorKind::MultiLevelPointer; | ||||
4162 | } | ||||
4163 | } | ||||
4164 | |||||
4165 | bool Sema::isCFError(RecordDecl *RD) { | ||||
4166 | // If we already know about CFError, test it directly. | ||||
4167 | if (CFError) | ||||
4168 | return CFError == RD; | ||||
4169 | |||||
4170 | // Check whether this is CFError, which we identify based on its bridge to | ||||
4171 | // NSError. CFErrorRef used to be declared with "objc_bridge" but is now | ||||
4172 | // declared with "objc_bridge_mutable", so look for either one of the two | ||||
4173 | // attributes. | ||||
4174 | if (RD->getTagKind() == TTK_Struct) { | ||||
4175 | IdentifierInfo *bridgedType = nullptr; | ||||
4176 | if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>()) | ||||
4177 | bridgedType = bridgeAttr->getBridgedType(); | ||||
4178 | else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>()) | ||||
4179 | bridgedType = bridgeAttr->getBridgedType(); | ||||
4180 | |||||
4181 | if (bridgedType == getNSErrorIdent()) { | ||||
4182 | CFError = RD; | ||||
4183 | return true; | ||||
4184 | } | ||||
4185 | } | ||||
4186 | |||||
4187 | return false; | ||||
4188 | } | ||||
4189 | |||||
4190 | static FileID getNullabilityCompletenessCheckFileID(Sema &S, | ||||
4191 | SourceLocation loc) { | ||||
4192 | // If we're anywhere in a function, method, or closure context, don't perform | ||||
4193 | // completeness checks. | ||||
4194 | for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) { | ||||
4195 | if (ctx->isFunctionOrMethod()) | ||||
4196 | return FileID(); | ||||
4197 | |||||
4198 | if (ctx->isFileContext()) | ||||
4199 | break; | ||||
4200 | } | ||||
4201 | |||||
4202 | // We only care about the expansion location. | ||||
4203 | loc = S.SourceMgr.getExpansionLoc(loc); | ||||
4204 | FileID file = S.SourceMgr.getFileID(loc); | ||||
4205 | if (file.isInvalid()) | ||||
4206 | return FileID(); | ||||
4207 | |||||
4208 | // Retrieve file information. | ||||
4209 | bool invalid = false; | ||||
4210 | const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid); | ||||
4211 | if (invalid || !sloc.isFile()) | ||||
4212 | return FileID(); | ||||
4213 | |||||
4214 | // We don't want to perform completeness checks on the main file or in | ||||
4215 | // system headers. | ||||
4216 | const SrcMgr::FileInfo &fileInfo = sloc.getFile(); | ||||
4217 | if (fileInfo.getIncludeLoc().isInvalid()) | ||||
4218 | return FileID(); | ||||
4219 | if (fileInfo.getFileCharacteristic() != SrcMgr::C_User && | ||||
4220 | S.Diags.getSuppressSystemWarnings()) { | ||||
4221 | return FileID(); | ||||
4222 | } | ||||
4223 | |||||
4224 | return file; | ||||
4225 | } | ||||
4226 | |||||
4227 | /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc, | ||||
4228 | /// taking into account whitespace before and after. | ||||
4229 | template <typename DiagBuilderT> | ||||
4230 | static void fixItNullability(Sema &S, DiagBuilderT &Diag, | ||||
4231 | SourceLocation PointerLoc, | ||||
4232 | NullabilityKind Nullability) { | ||||
4233 | assert(PointerLoc.isValid())((void)0); | ||||
4234 | if (PointerLoc.isMacroID()) | ||||
4235 | return; | ||||
4236 | |||||
4237 | SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc); | ||||
4238 | if (!FixItLoc.isValid() || FixItLoc == PointerLoc) | ||||
4239 | return; | ||||
4240 | |||||
4241 | const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc); | ||||
4242 | if (!NextChar) | ||||
4243 | return; | ||||
4244 | |||||
4245 | SmallString<32> InsertionTextBuf{" "}; | ||||
4246 | InsertionTextBuf += getNullabilitySpelling(Nullability); | ||||
4247 | InsertionTextBuf += " "; | ||||
4248 | StringRef InsertionText = InsertionTextBuf.str(); | ||||
4249 | |||||
4250 | if (isWhitespace(*NextChar)) { | ||||
4251 | InsertionText = InsertionText.drop_back(); | ||||
4252 | } else if (NextChar[-1] == '[') { | ||||
4253 | if (NextChar[0] == ']') | ||||
4254 | InsertionText = InsertionText.drop_back().drop_front(); | ||||
4255 | else | ||||
4256 | InsertionText = InsertionText.drop_front(); | ||||
4257 | } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) && | ||||
4258 | !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) { | ||||
4259 | InsertionText = InsertionText.drop_back().drop_front(); | ||||
4260 | } | ||||
4261 | |||||
4262 | Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText); | ||||
4263 | } | ||||
4264 | |||||
4265 | static void emitNullabilityConsistencyWarning(Sema &S, | ||||
4266 | SimplePointerKind PointerKind, | ||||
4267 | SourceLocation PointerLoc, | ||||
4268 | SourceLocation PointerEndLoc) { | ||||
4269 | assert(PointerLoc.isValid())((void)0); | ||||
4270 | |||||
4271 | if (PointerKind == SimplePointerKind::Array) { | ||||
4272 | S.Diag(PointerLoc, diag::warn_nullability_missing_array); | ||||
4273 | } else { | ||||
4274 | S.Diag(PointerLoc, diag::warn_nullability_missing) | ||||
4275 | << static_cast<unsigned>(PointerKind); | ||||
4276 | } | ||||
4277 | |||||
4278 | auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc; | ||||
4279 | if (FixItLoc.isMacroID()) | ||||
4280 | return; | ||||
4281 | |||||
4282 | auto addFixIt = [&](NullabilityKind Nullability) { | ||||
4283 | auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it); | ||||
4284 | Diag << static_cast<unsigned>(Nullability); | ||||
4285 | Diag << static_cast<unsigned>(PointerKind); | ||||
4286 | fixItNullability(S, Diag, FixItLoc, Nullability); | ||||
4287 | }; | ||||
4288 | addFixIt(NullabilityKind::Nullable); | ||||
4289 | addFixIt(NullabilityKind::NonNull); | ||||
4290 | } | ||||
4291 | |||||
4292 | /// Complains about missing nullability if the file containing \p pointerLoc | ||||
4293 | /// has other uses of nullability (either the keywords or the \c assume_nonnull | ||||
4294 | /// pragma). | ||||
4295 | /// | ||||
4296 | /// If the file has \e not seen other uses of nullability, this particular | ||||
4297 | /// pointer is saved for possible later diagnosis. See recordNullabilitySeen(). | ||||
4298 | static void | ||||
4299 | checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, | ||||
4300 | SourceLocation pointerLoc, | ||||
4301 | SourceLocation pointerEndLoc = SourceLocation()) { | ||||
4302 | // Determine which file we're performing consistency checking for. | ||||
4303 | FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc); | ||||
4304 | if (file.isInvalid()) | ||||
4305 | return; | ||||
4306 | |||||
4307 | // If we haven't seen any type nullability in this file, we won't warn now | ||||
4308 | // about anything. | ||||
4309 | FileNullability &fileNullability = S.NullabilityMap[file]; | ||||
4310 | if (!fileNullability.SawTypeNullability) { | ||||
4311 | // If this is the first pointer declarator in the file, and the appropriate | ||||
4312 | // warning is on, record it in case we need to diagnose it retroactively. | ||||
4313 | diag::kind diagKind; | ||||
4314 | if (pointerKind == SimplePointerKind::Array) | ||||
4315 | diagKind = diag::warn_nullability_missing_array; | ||||
4316 | else | ||||
4317 | diagKind = diag::warn_nullability_missing; | ||||
4318 | |||||
4319 | if (fileNullability.PointerLoc.isInvalid() && | ||||
4320 | !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) { | ||||
4321 | fileNullability.PointerLoc = pointerLoc; | ||||
4322 | fileNullability.PointerEndLoc = pointerEndLoc; | ||||
4323 | fileNullability.PointerKind = static_cast<unsigned>(pointerKind); | ||||
4324 | } | ||||
4325 | |||||
4326 | return; | ||||
4327 | } | ||||
4328 | |||||
4329 | // Complain about missing nullability. | ||||
4330 | emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc); | ||||
4331 | } | ||||
4332 | |||||
4333 | /// Marks that a nullability feature has been used in the file containing | ||||
4334 | /// \p loc. | ||||
4335 | /// | ||||
4336 | /// If this file already had pointer types in it that were missing nullability, | ||||
4337 | /// the first such instance is retroactively diagnosed. | ||||
4338 | /// | ||||
4339 | /// \sa checkNullabilityConsistency | ||||
4340 | static void recordNullabilitySeen(Sema &S, SourceLocation loc) { | ||||
4341 | FileID file = getNullabilityCompletenessCheckFileID(S, loc); | ||||
4342 | if (file.isInvalid()) | ||||
4343 | return; | ||||
4344 | |||||
4345 | FileNullability &fileNullability = S.NullabilityMap[file]; | ||||
4346 | if (fileNullability.SawTypeNullability) | ||||
4347 | return; | ||||
4348 | fileNullability.SawTypeNullability = true; | ||||
4349 | |||||
4350 | // If we haven't seen any type nullability before, now we have. Retroactively | ||||
4351 | // diagnose the first unannotated pointer, if there was one. | ||||
4352 | if (fileNullability.PointerLoc.isInvalid()) | ||||
4353 | return; | ||||
4354 | |||||
4355 | auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind); | ||||
4356 | emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc, | ||||
4357 | fileNullability.PointerEndLoc); | ||||
4358 | } | ||||
4359 | |||||
4360 | /// Returns true if any of the declarator chunks before \p endIndex include a | ||||
4361 | /// level of indirection: array, pointer, reference, or pointer-to-member. | ||||
4362 | /// | ||||
4363 | /// Because declarator chunks are stored in outer-to-inner order, testing | ||||
4364 | /// every chunk before \p endIndex is testing all chunks that embed the current | ||||
4365 | /// chunk as part of their type. | ||||
4366 | /// | ||||
4367 | /// It is legal to pass the result of Declarator::getNumTypeObjects() as the | ||||
4368 | /// end index, in which case all chunks are tested. | ||||
4369 | static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) { | ||||
4370 | unsigned i = endIndex; | ||||
4371 | while (i != 0) { | ||||
4372 | // Walk outwards along the declarator chunks. | ||||
4373 | --i; | ||||
4374 | const DeclaratorChunk &DC = D.getTypeObject(i); | ||||
4375 | switch (DC.Kind) { | ||||
4376 | case DeclaratorChunk::Paren: | ||||
4377 | break; | ||||
4378 | case DeclaratorChunk::Array: | ||||
4379 | case DeclaratorChunk::Pointer: | ||||
4380 | case DeclaratorChunk::Reference: | ||||
4381 | case DeclaratorChunk::MemberPointer: | ||||
4382 | return true; | ||||
4383 | case DeclaratorChunk::Function: | ||||
4384 | case DeclaratorChunk::BlockPointer: | ||||
4385 | case DeclaratorChunk::Pipe: | ||||
4386 | // These are invalid anyway, so just ignore. | ||||
4387 | break; | ||||
4388 | } | ||||
4389 | } | ||||
4390 | return false; | ||||
4391 | } | ||||
4392 | |||||
4393 | static bool IsNoDerefableChunk(DeclaratorChunk Chunk) { | ||||
4394 | return (Chunk.Kind == DeclaratorChunk::Pointer || | ||||
4395 | Chunk.Kind == DeclaratorChunk::Array); | ||||
4396 | } | ||||
4397 | |||||
4398 | template<typename AttrT> | ||||
4399 | static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) { | ||||
4400 | AL.setUsedAsTypeAttr(); | ||||
4401 | return ::new (Ctx) AttrT(Ctx, AL); | ||||
4402 | } | ||||
4403 | |||||
4404 | static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr, | ||||
4405 | NullabilityKind NK) { | ||||
4406 | switch (NK) { | ||||
4407 | case NullabilityKind::NonNull: | ||||
4408 | return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr); | ||||
4409 | |||||
4410 | case NullabilityKind::Nullable: | ||||
4411 | return createSimpleAttr<TypeNullableAttr>(Ctx, Attr); | ||||
4412 | |||||
4413 | case NullabilityKind::NullableResult: | ||||
4414 | return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr); | ||||
4415 | |||||
4416 | case NullabilityKind::Unspecified: | ||||
4417 | return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr); | ||||
4418 | } | ||||
4419 | llvm_unreachable("unknown NullabilityKind")__builtin_unreachable(); | ||||
4420 | } | ||||
4421 | |||||
4422 | // Diagnose whether this is a case with the multiple addr spaces. | ||||
4423 | // Returns true if this is an invalid case. | ||||
4424 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified | ||||
4425 | // by qualifiers for two or more different address spaces." | ||||
4426 | static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld, | ||||
4427 | LangAS ASNew, | ||||
4428 | SourceLocation AttrLoc) { | ||||
4429 | if (ASOld != LangAS::Default) { | ||||
4430 | if (ASOld != ASNew) { | ||||
4431 | S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); | ||||
4432 | return true; | ||||
4433 | } | ||||
4434 | // Emit a warning if they are identical; it's likely unintended. | ||||
4435 | S.Diag(AttrLoc, | ||||
4436 | diag::warn_attribute_address_multiple_identical_qualifiers); | ||||
4437 | } | ||||
4438 | return false; | ||||
4439 | } | ||||
4440 | |||||
4441 | static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state, | ||||
4442 | QualType declSpecType, | ||||
4443 | TypeSourceInfo *TInfo) { | ||||
4444 | // The TypeSourceInfo that this function returns will not be a null type. | ||||
4445 | // If there is an error, this function will fill in a dummy type as fallback. | ||||
4446 | QualType T = declSpecType; | ||||
4447 | Declarator &D = state.getDeclarator(); | ||||
4448 | Sema &S = state.getSema(); | ||||
4449 | ASTContext &Context = S.Context; | ||||
4450 | const LangOptions &LangOpts = S.getLangOpts(); | ||||
4451 | |||||
4452 | // The name we're declaring, if any. | ||||
4453 | DeclarationName Name; | ||||
4454 | if (D.getIdentifier()) | ||||
4455 | Name = D.getIdentifier(); | ||||
4456 | |||||
4457 | // Does this declaration declare a typedef-name? | ||||
4458 | bool IsTypedefName = | ||||
4459 | D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef || | ||||
4460 | D.getContext() == DeclaratorContext::AliasDecl || | ||||
4461 | D.getContext() == DeclaratorContext::AliasTemplate; | ||||
4462 | |||||
4463 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? | ||||
4464 | bool IsQualifiedFunction = T->isFunctionProtoType() && | ||||
4465 | (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() || | ||||
4466 | T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None); | ||||
4467 | |||||
4468 | // If T is 'decltype(auto)', the only declarators we can have are parens | ||||
4469 | // and at most one function declarator if this is a function declaration. | ||||
4470 | // If T is a deduced class template specialization type, we can have no | ||||
4471 | // declarator chunks at all. | ||||
4472 | if (auto *DT = T->getAs<DeducedType>()) { | ||||
4473 | const AutoType *AT = T->getAs<AutoType>(); | ||||
4474 | bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT); | ||||
4475 | if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) { | ||||
4476 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | ||||
4477 | unsigned Index = E - I - 1; | ||||
4478 | DeclaratorChunk &DeclChunk = D.getTypeObject(Index); | ||||
4479 | unsigned DiagId = IsClassTemplateDeduction | ||||
4480 | ? diag::err_deduced_class_template_compound_type | ||||
4481 | : diag::err_decltype_auto_compound_type; | ||||
4482 | unsigned DiagKind = 0; | ||||
4483 | switch (DeclChunk.Kind) { | ||||
4484 | case DeclaratorChunk::Paren: | ||||
4485 | // FIXME: Rejecting this is a little silly. | ||||
4486 | if (IsClassTemplateDeduction) { | ||||
4487 | DiagKind = 4; | ||||
4488 | break; | ||||
4489 | } | ||||
4490 | continue; | ||||
4491 | case DeclaratorChunk::Function: { | ||||
4492 | if (IsClassTemplateDeduction) { | ||||
4493 | DiagKind = 3; | ||||
4494 | break; | ||||
4495 | } | ||||
4496 | unsigned FnIndex; | ||||
4497 | if (D.isFunctionDeclarationContext() && | ||||
4498 | D.isFunctionDeclarator(FnIndex) && FnIndex == Index) | ||||
4499 | continue; | ||||
4500 | DiagId = diag::err_decltype_auto_function_declarator_not_declaration; | ||||
4501 | break; | ||||
4502 | } | ||||
4503 | case DeclaratorChunk::Pointer: | ||||
4504 | case DeclaratorChunk::BlockPointer: | ||||
4505 | case DeclaratorChunk::MemberPointer: | ||||
4506 | DiagKind = 0; | ||||
4507 | break; | ||||
4508 | case DeclaratorChunk::Reference: | ||||
4509 | DiagKind = 1; | ||||
4510 | break; | ||||
4511 | case DeclaratorChunk::Array: | ||||
4512 | DiagKind = 2; | ||||
4513 | break; | ||||
4514 | case DeclaratorChunk::Pipe: | ||||
4515 | break; | ||||
4516 | } | ||||
4517 | |||||
4518 | S.Diag(DeclChunk.Loc, DiagId) << DiagKind; | ||||
4519 | D.setInvalidType(true); | ||||
4520 | break; | ||||
4521 | } | ||||
4522 | } | ||||
4523 | } | ||||
4524 | |||||
4525 | // Determine whether we should infer _Nonnull on pointer types. | ||||
4526 | Optional<NullabilityKind> inferNullability; | ||||
4527 | bool inferNullabilityCS = false; | ||||
4528 | bool inferNullabilityInnerOnly = false; | ||||
4529 | bool inferNullabilityInnerOnlyComplete = false; | ||||
4530 | |||||
4531 | // Are we in an assume-nonnull region? | ||||
4532 | bool inAssumeNonNullRegion = false; | ||||
4533 | SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc(); | ||||
4534 | if (assumeNonNullLoc.isValid()) { | ||||
4535 | inAssumeNonNullRegion = true; | ||||
4536 | recordNullabilitySeen(S, assumeNonNullLoc); | ||||
4537 | } | ||||
4538 | |||||
4539 | // Whether to complain about missing nullability specifiers or not. | ||||
4540 | enum { | ||||
4541 | /// Never complain. | ||||
4542 | CAMN_No, | ||||
4543 | /// Complain on the inner pointers (but not the outermost | ||||
4544 | /// pointer). | ||||
4545 | CAMN_InnerPointers, | ||||
4546 | /// Complain about any pointers that don't have nullability | ||||
4547 | /// specified or inferred. | ||||
4548 | CAMN_Yes | ||||
4549 | } complainAboutMissingNullability = CAMN_No; | ||||
4550 | unsigned NumPointersRemaining = 0; | ||||
4551 | auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None; | ||||
4552 | |||||
4553 | if (IsTypedefName) { | ||||
4554 | // For typedefs, we do not infer any nullability (the default), | ||||
4555 | // and we only complain about missing nullability specifiers on | ||||
4556 | // inner pointers. | ||||
4557 | complainAboutMissingNullability = CAMN_InnerPointers; | ||||
4558 | |||||
4559 | if (T->canHaveNullability(/*ResultIfUnknown*/false) && | ||||
4560 | !T->getNullability(S.Context)) { | ||||
4561 | // Note that we allow but don't require nullability on dependent types. | ||||
4562 | ++NumPointersRemaining; | ||||
4563 | } | ||||
4564 | |||||
4565 | for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) { | ||||
4566 | DeclaratorChunk &chunk = D.getTypeObject(i); | ||||
4567 | switch (chunk.Kind) { | ||||
4568 | case DeclaratorChunk::Array: | ||||
4569 | case DeclaratorChunk::Function: | ||||
4570 | case DeclaratorChunk::Pipe: | ||||
4571 | break; | ||||
4572 | |||||
4573 | case DeclaratorChunk::BlockPointer: | ||||
4574 | case DeclaratorChunk::MemberPointer: | ||||
4575 | ++NumPointersRemaining; | ||||
4576 | break; | ||||
4577 | |||||
4578 | case DeclaratorChunk::Paren: | ||||
4579 | case DeclaratorChunk::Reference: | ||||
4580 | continue; | ||||
4581 | |||||
4582 | case DeclaratorChunk::Pointer: | ||||
4583 | ++NumPointersRemaining; | ||||
4584 | continue; | ||||
4585 | } | ||||
4586 | } | ||||
4587 | } else { | ||||
4588 | bool isFunctionOrMethod = false; | ||||
4589 | switch (auto context = state.getDeclarator().getContext()) { | ||||
4590 | case DeclaratorContext::ObjCParameter: | ||||
4591 | case DeclaratorContext::ObjCResult: | ||||
4592 | case DeclaratorContext::Prototype: | ||||
4593 | case DeclaratorContext::TrailingReturn: | ||||
4594 | case DeclaratorContext::TrailingReturnVar: | ||||
4595 | isFunctionOrMethod = true; | ||||
4596 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
4597 | |||||
4598 | case DeclaratorContext::Member: | ||||
4599 | if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) { | ||||
4600 | complainAboutMissingNullability = CAMN_No; | ||||
4601 | break; | ||||
4602 | } | ||||
4603 | |||||
4604 | // Weak properties are inferred to be nullable. | ||||
4605 | if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) { | ||||
4606 | inferNullability = NullabilityKind::Nullable; | ||||
4607 | break; | ||||
4608 | } | ||||
4609 | |||||
4610 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
4611 | |||||
4612 | case DeclaratorContext::File: | ||||
4613 | case DeclaratorContext::KNRTypeList: { | ||||
4614 | complainAboutMissingNullability = CAMN_Yes; | ||||
4615 | |||||
4616 | // Nullability inference depends on the type and declarator. | ||||
4617 | auto wrappingKind = PointerWrappingDeclaratorKind::None; | ||||
4618 | switch (classifyPointerDeclarator(S, T, D, wrappingKind)) { | ||||
4619 | case PointerDeclaratorKind::NonPointer: | ||||
4620 | case PointerDeclaratorKind::MultiLevelPointer: | ||||
4621 | // Cannot infer nullability. | ||||
4622 | break; | ||||
4623 | |||||
4624 | case PointerDeclaratorKind::SingleLevelPointer: | ||||
4625 | // Infer _Nonnull if we are in an assumes-nonnull region. | ||||
4626 | if (inAssumeNonNullRegion) { | ||||
4627 | complainAboutInferringWithinChunk = wrappingKind; | ||||
4628 | inferNullability = NullabilityKind::NonNull; | ||||
4629 | inferNullabilityCS = (context == DeclaratorContext::ObjCParameter || | ||||
4630 | context == DeclaratorContext::ObjCResult); | ||||
4631 | } | ||||
4632 | break; | ||||
4633 | |||||
4634 | case PointerDeclaratorKind::CFErrorRefPointer: | ||||
4635 | case PointerDeclaratorKind::NSErrorPointerPointer: | ||||
4636 | // Within a function or method signature, infer _Nullable at both | ||||
4637 | // levels. | ||||
4638 | if (isFunctionOrMethod && inAssumeNonNullRegion) | ||||
4639 | inferNullability = NullabilityKind::Nullable; | ||||
4640 | break; | ||||
4641 | |||||
4642 | case PointerDeclaratorKind::MaybePointerToCFRef: | ||||
4643 | if (isFunctionOrMethod) { | ||||
4644 | // On pointer-to-pointer parameters marked cf_returns_retained or | ||||
4645 | // cf_returns_not_retained, if the outer pointer is explicit then | ||||
4646 | // infer the inner pointer as _Nullable. | ||||
4647 | auto hasCFReturnsAttr = | ||||
4648 | [](const ParsedAttributesView &AttrList) -> bool { | ||||
4649 | return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) || | ||||
4650 | AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained); | ||||
4651 | }; | ||||
4652 | if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) { | ||||
4653 | if (hasCFReturnsAttr(D.getAttributes()) || | ||||
4654 | hasCFReturnsAttr(InnermostChunk->getAttrs()) || | ||||
4655 | hasCFReturnsAttr(D.getDeclSpec().getAttributes())) { | ||||
4656 | inferNullability = NullabilityKind::Nullable; | ||||
4657 | inferNullabilityInnerOnly = true; | ||||
4658 | } | ||||
4659 | } | ||||
4660 | } | ||||
4661 | break; | ||||
4662 | } | ||||
4663 | break; | ||||
4664 | } | ||||
4665 | |||||
4666 | case DeclaratorContext::ConversionId: | ||||
4667 | complainAboutMissingNullability = CAMN_Yes; | ||||
4668 | break; | ||||
4669 | |||||
4670 | case DeclaratorContext::AliasDecl: | ||||
4671 | case DeclaratorContext::AliasTemplate: | ||||
4672 | case DeclaratorContext::Block: | ||||
4673 | case DeclaratorContext::BlockLiteral: | ||||
4674 | case DeclaratorContext::Condition: | ||||
4675 | case DeclaratorContext::CXXCatch: | ||||
4676 | case DeclaratorContext::CXXNew: | ||||
4677 | case DeclaratorContext::ForInit: | ||||
4678 | case DeclaratorContext::SelectionInit: | ||||
4679 | case DeclaratorContext::LambdaExpr: | ||||
4680 | case DeclaratorContext::LambdaExprParameter: | ||||
4681 | case DeclaratorContext::ObjCCatch: | ||||
4682 | case DeclaratorContext::TemplateParam: | ||||
4683 | case DeclaratorContext::TemplateArg: | ||||
4684 | case DeclaratorContext::TemplateTypeArg: | ||||
4685 | case DeclaratorContext::TypeName: | ||||
4686 | case DeclaratorContext::FunctionalCast: | ||||
4687 | case DeclaratorContext::RequiresExpr: | ||||
4688 | // Don't infer in these contexts. | ||||
4689 | break; | ||||
4690 | } | ||||
4691 | } | ||||
4692 | |||||
4693 | // Local function that returns true if its argument looks like a va_list. | ||||
4694 | auto isVaList = [&S](QualType T) -> bool { | ||||
4695 | auto *typedefTy = T->getAs<TypedefType>(); | ||||
4696 | if (!typedefTy) | ||||
4697 | return false; | ||||
4698 | TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl(); | ||||
4699 | do { | ||||
4700 | if (typedefTy->getDecl() == vaListTypedef) | ||||
4701 | return true; | ||||
4702 | if (auto *name = typedefTy->getDecl()->getIdentifier()) | ||||
4703 | if (name->isStr("va_list")) | ||||
4704 | return true; | ||||
4705 | typedefTy = typedefTy->desugar()->getAs<TypedefType>(); | ||||
4706 | } while (typedefTy); | ||||
4707 | return false; | ||||
4708 | }; | ||||
4709 | |||||
4710 | // Local function that checks the nullability for a given pointer declarator. | ||||
4711 | // Returns true if _Nonnull was inferred. | ||||
4712 | auto inferPointerNullability = | ||||
4713 | [&](SimplePointerKind pointerKind, SourceLocation pointerLoc, | ||||
4714 | SourceLocation pointerEndLoc, | ||||
4715 | ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * { | ||||
4716 | // We've seen a pointer. | ||||
4717 | if (NumPointersRemaining > 0) | ||||
4718 | --NumPointersRemaining; | ||||
4719 | |||||
4720 | // If a nullability attribute is present, there's nothing to do. | ||||
4721 | if (hasNullabilityAttr(attrs)) | ||||
4722 | return nullptr; | ||||
4723 | |||||
4724 | // If we're supposed to infer nullability, do so now. | ||||
4725 | if (inferNullability && !inferNullabilityInnerOnlyComplete) { | ||||
4726 | ParsedAttr::Syntax syntax = inferNullabilityCS | ||||
4727 | ? ParsedAttr::AS_ContextSensitiveKeyword | ||||
4728 | : ParsedAttr::AS_Keyword; | ||||
4729 | ParsedAttr *nullabilityAttr = Pool.create( | ||||
4730 | S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc), | ||||
4731 | nullptr, SourceLocation(), nullptr, 0, syntax); | ||||
4732 | |||||
4733 | attrs.addAtEnd(nullabilityAttr); | ||||
4734 | |||||
4735 | if (inferNullabilityCS) { | ||||
4736 | state.getDeclarator().getMutableDeclSpec().getObjCQualifiers() | ||||
4737 | ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability); | ||||
4738 | } | ||||
4739 | |||||
4740 | if (pointerLoc.isValid() && | ||||
4741 | complainAboutInferringWithinChunk != | ||||
4742 | PointerWrappingDeclaratorKind::None) { | ||||
4743 | auto Diag = | ||||
4744 | S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type); | ||||
4745 | Diag << static_cast<int>(complainAboutInferringWithinChunk); | ||||
4746 | fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull); | ||||
4747 | } | ||||
4748 | |||||
4749 | if (inferNullabilityInnerOnly) | ||||
4750 | inferNullabilityInnerOnlyComplete = true; | ||||
4751 | return nullabilityAttr; | ||||
4752 | } | ||||
4753 | |||||
4754 | // If we're supposed to complain about missing nullability, do so | ||||
4755 | // now if it's truly missing. | ||||
4756 | switch (complainAboutMissingNullability) { | ||||
4757 | case CAMN_No: | ||||
4758 | break; | ||||
4759 | |||||
4760 | case CAMN_InnerPointers: | ||||
4761 | if (NumPointersRemaining == 0) | ||||
4762 | break; | ||||
4763 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
4764 | |||||
4765 | case CAMN_Yes: | ||||
4766 | checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc); | ||||
4767 | } | ||||
4768 | return nullptr; | ||||
4769 | }; | ||||
4770 | |||||
4771 | // If the type itself could have nullability but does not, infer pointer | ||||
4772 | // nullability and perform consistency checking. | ||||
4773 | if (S.CodeSynthesisContexts.empty()) { | ||||
4774 | if (T->canHaveNullability(/*ResultIfUnknown*/false) && | ||||
4775 | !T->getNullability(S.Context)) { | ||||
4776 | if (isVaList(T)) { | ||||
4777 | // Record that we've seen a pointer, but do nothing else. | ||||
4778 | if (NumPointersRemaining > 0) | ||||
4779 | --NumPointersRemaining; | ||||
4780 | } else { | ||||
4781 | SimplePointerKind pointerKind = SimplePointerKind::Pointer; | ||||
4782 | if (T->isBlockPointerType()) | ||||
4783 | pointerKind = SimplePointerKind::BlockPointer; | ||||
4784 | else if (T->isMemberPointerType()) | ||||
4785 | pointerKind = SimplePointerKind::MemberPointer; | ||||
4786 | |||||
4787 | if (auto *attr = inferPointerNullability( | ||||
4788 | pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
4789 | D.getDeclSpec().getEndLoc(), | ||||
4790 | D.getMutableDeclSpec().getAttributes(), | ||||
4791 | D.getMutableDeclSpec().getAttributePool())) { | ||||
4792 | T = state.getAttributedType( | ||||
4793 | createNullabilityAttr(Context, *attr, *inferNullability), T, T); | ||||
4794 | } | ||||
4795 | } | ||||
4796 | } | ||||
4797 | |||||
4798 | if (complainAboutMissingNullability == CAMN_Yes && | ||||
4799 | T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) && | ||||
4800 | D.isPrototypeContext() && | ||||
4801 | !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) { | ||||
4802 | checkNullabilityConsistency(S, SimplePointerKind::Array, | ||||
4803 | D.getDeclSpec().getTypeSpecTypeLoc()); | ||||
4804 | } | ||||
4805 | } | ||||
4806 | |||||
4807 | bool ExpectNoDerefChunk = | ||||
4808 | state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref); | ||||
4809 | |||||
4810 | // Walk the DeclTypeInfo, building the recursive type as we go. | ||||
4811 | // DeclTypeInfos are ordered from the identifier out, which is | ||||
4812 | // opposite of what we want :). | ||||
4813 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||
4814 | unsigned chunkIndex = e - i - 1; | ||||
4815 | state.setCurrentChunkIndex(chunkIndex); | ||||
4816 | DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex); | ||||
4817 | IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren; | ||||
4818 | switch (DeclType.Kind) { | ||||
4819 | case DeclaratorChunk::Paren: | ||||
4820 | if (i == 0) | ||||
4821 | warnAboutRedundantParens(S, D, T); | ||||
4822 | T = S.BuildParenType(T); | ||||
4823 | break; | ||||
4824 | case DeclaratorChunk::BlockPointer: | ||||
4825 | // If blocks are disabled, emit an error. | ||||
4826 | if (!LangOpts.Blocks) | ||||
4827 | S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL; | ||||
4828 | |||||
4829 | // Handle pointer nullability. | ||||
4830 | inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc, | ||||
4831 | DeclType.EndLoc, DeclType.getAttrs(), | ||||
4832 | state.getDeclarator().getAttributePool()); | ||||
4833 | |||||
4834 | T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name); | ||||
4835 | if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) { | ||||
4836 | // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly | ||||
4837 | // qualified with const. | ||||
4838 | if (LangOpts.OpenCL) | ||||
4839 | DeclType.Cls.TypeQuals |= DeclSpec::TQ_const; | ||||
4840 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals); | ||||
4841 | } | ||||
4842 | break; | ||||
4843 | case DeclaratorChunk::Pointer: | ||||
4844 | // Verify that we're not building a pointer to pointer to function with | ||||
4845 | // exception specification. | ||||
4846 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||
4847 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||
4848 | D.setInvalidType(true); | ||||
4849 | // Build the type anyway. | ||||
4850 | } | ||||
4851 | |||||
4852 | // Handle pointer nullability | ||||
4853 | inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc, | ||||
4854 | DeclType.EndLoc, DeclType.getAttrs(), | ||||
4855 | state.getDeclarator().getAttributePool()); | ||||
4856 | |||||
4857 | if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) { | ||||
4858 | T = Context.getObjCObjectPointerType(T); | ||||
4859 | if (DeclType.Ptr.TypeQuals) | ||||
4860 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals); | ||||
4861 | break; | ||||
4862 | } | ||||
4863 | |||||
4864 | // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used. | ||||
4865 | // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used. | ||||
4866 | // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed. | ||||
4867 | if (LangOpts.OpenCL) { | ||||
4868 | if (T->isImageType() || T->isSamplerT() || T->isPipeType() || | ||||
4869 | T->isBlockPointerType()) { | ||||
4870 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T; | ||||
4871 | D.setInvalidType(true); | ||||
4872 | } | ||||
4873 | } | ||||
4874 | |||||
4875 | T = S.BuildPointerType(T, DeclType.Loc, Name); | ||||
4876 | if (DeclType.Ptr.TypeQuals) | ||||
4877 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals); | ||||
4878 | break; | ||||
4879 | case DeclaratorChunk::Reference: { | ||||
4880 | // Verify that we're not building a reference to pointer to function with | ||||
4881 | // exception specification. | ||||
4882 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||
4883 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||
4884 | D.setInvalidType(true); | ||||
4885 | // Build the type anyway. | ||||
4886 | } | ||||
4887 | T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name); | ||||
4888 | |||||
4889 | if (DeclType.Ref.HasRestrict) | ||||
4890 | T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict); | ||||
4891 | break; | ||||
4892 | } | ||||
4893 | case DeclaratorChunk::Array: { | ||||
4894 | // Verify that we're not building an array of pointers to function with | ||||
4895 | // exception specification. | ||||
4896 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||
4897 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||
4898 | D.setInvalidType(true); | ||||
4899 | // Build the type anyway. | ||||
4900 | } | ||||
4901 | DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr; | ||||
4902 | Expr *ArraySize = static_cast<Expr*>(ATI.NumElts); | ||||
4903 | ArrayType::ArraySizeModifier ASM; | ||||
4904 | if (ATI.isStar) | ||||
4905 | ASM = ArrayType::Star; | ||||
4906 | else if (ATI.hasStatic) | ||||
4907 | ASM = ArrayType::Static; | ||||
4908 | else | ||||
4909 | ASM = ArrayType::Normal; | ||||
4910 | if (ASM == ArrayType::Star && !D.isPrototypeContext()) { | ||||
4911 | // FIXME: This check isn't quite right: it allows star in prototypes | ||||
4912 | // for function definitions, and disallows some edge cases detailed | ||||
4913 | // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html | ||||
4914 | S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype); | ||||
4915 | ASM = ArrayType::Normal; | ||||
4916 | D.setInvalidType(true); | ||||
4917 | } | ||||
4918 | |||||
4919 | // C99 6.7.5.2p1: The optional type qualifiers and the keyword static | ||||
4920 | // shall appear only in a declaration of a function parameter with an | ||||
4921 | // array type, ... | ||||
4922 | if (ASM == ArrayType::Static || ATI.TypeQuals) { | ||||
4923 | if (!(D.isPrototypeContext() || | ||||
4924 | D.getContext() == DeclaratorContext::KNRTypeList)) { | ||||
4925 | S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) << | ||||
4926 | (ASM == ArrayType::Static ? "'static'" : "type qualifier"); | ||||
4927 | // Remove the 'static' and the type qualifiers. | ||||
4928 | if (ASM == ArrayType::Static) | ||||
4929 | ASM = ArrayType::Normal; | ||||
4930 | ATI.TypeQuals = 0; | ||||
4931 | D.setInvalidType(true); | ||||
4932 | } | ||||
4933 | |||||
4934 | // C99 6.7.5.2p1: ... and then only in the outermost array type | ||||
4935 | // derivation. | ||||
4936 | if (hasOuterPointerLikeChunk(D, chunkIndex)) { | ||||
4937 | S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) << | ||||
4938 | (ASM == ArrayType::Static ? "'static'" : "type qualifier"); | ||||
4939 | if (ASM == ArrayType::Static) | ||||
4940 | ASM = ArrayType::Normal; | ||||
4941 | ATI.TypeQuals = 0; | ||||
4942 | D.setInvalidType(true); | ||||
4943 | } | ||||
4944 | } | ||||
4945 | const AutoType *AT = T->getContainedAutoType(); | ||||
4946 | // Allow arrays of auto if we are a generic lambda parameter. | ||||
4947 | // i.e. [](auto (&array)[5]) { return array[0]; }; OK | ||||
4948 | if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) { | ||||
4949 | // We've already diagnosed this for decltype(auto). | ||||
4950 | if (!AT->isDecltypeAuto()) | ||||
4951 | S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto) | ||||
4952 | << getPrintableNameForEntity(Name) << T; | ||||
4953 | T = QualType(); | ||||
4954 | break; | ||||
4955 | } | ||||
4956 | |||||
4957 | // Array parameters can be marked nullable as well, although it's not | ||||
4958 | // necessary if they're marked 'static'. | ||||
4959 | if (complainAboutMissingNullability == CAMN_Yes && | ||||
4960 | !hasNullabilityAttr(DeclType.getAttrs()) && | ||||
4961 | ASM != ArrayType::Static && | ||||
4962 | D.isPrototypeContext() && | ||||
4963 | !hasOuterPointerLikeChunk(D, chunkIndex)) { | ||||
4964 | checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc); | ||||
4965 | } | ||||
4966 | |||||
4967 | T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, | ||||
4968 | SourceRange(DeclType.Loc, DeclType.EndLoc), Name); | ||||
4969 | break; | ||||
4970 | } | ||||
4971 | case DeclaratorChunk::Function: { | ||||
4972 | // If the function declarator has a prototype (i.e. it is not () and | ||||
4973 | // does not have a K&R-style identifier list), then the arguments are part | ||||
4974 | // of the type, otherwise the argument list is (). | ||||
4975 | DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||
4976 | IsQualifiedFunction = | ||||
4977 | FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier(); | ||||
4978 | |||||
4979 | // Check for auto functions and trailing return type and adjust the | ||||
4980 | // return type accordingly. | ||||
4981 | if (!D.isInvalidType()) { | ||||
4982 | // trailing-return-type is only required if we're declaring a function, | ||||
4983 | // and not, for instance, a pointer to a function. | ||||
4984 | if (D.getDeclSpec().hasAutoTypeSpec() && | ||||
4985 | !FTI.hasTrailingReturnType() && chunkIndex == 0) { | ||||
4986 | if (!S.getLangOpts().CPlusPlus14) { | ||||
4987 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
4988 | D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto | ||||
4989 | ? diag::err_auto_missing_trailing_return | ||||
4990 | : diag::err_deduced_return_type); | ||||
4991 | T = Context.IntTy; | ||||
4992 | D.setInvalidType(true); | ||||
4993 | } else { | ||||
4994 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
4995 | diag::warn_cxx11_compat_deduced_return_type); | ||||
4996 | } | ||||
4997 | } else if (FTI.hasTrailingReturnType()) { | ||||
4998 | // T must be exactly 'auto' at this point. See CWG issue 681. | ||||
4999 | if (isa<ParenType>(T)) { | ||||
5000 | S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens) | ||||
5001 | << T << D.getSourceRange(); | ||||
5002 | D.setInvalidType(true); | ||||
5003 | } else if (D.getName().getKind() == | ||||
5004 | UnqualifiedIdKind::IK_DeductionGuideName) { | ||||
5005 | if (T != Context.DependentTy) { | ||||
5006 | S.Diag(D.getDeclSpec().getBeginLoc(), | ||||
5007 | diag::err_deduction_guide_with_complex_decl) | ||||
5008 | << D.getSourceRange(); | ||||
5009 | D.setInvalidType(true); | ||||
5010 | } | ||||
5011 | } else if (D.getContext() != DeclaratorContext::LambdaExpr && | ||||
5012 | (T.hasQualifiers() || !isa<AutoType>(T) || | ||||
5013 | cast<AutoType>(T)->getKeyword() != | ||||
5014 | AutoTypeKeyword::Auto || | ||||
5015 | cast<AutoType>(T)->isConstrained())) { | ||||
5016 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
5017 | diag::err_trailing_return_without_auto) | ||||
5018 | << T << D.getDeclSpec().getSourceRange(); | ||||
5019 | D.setInvalidType(true); | ||||
5020 | } | ||||
5021 | T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo); | ||||
5022 | if (T.isNull()) { | ||||
5023 | // An error occurred parsing the trailing return type. | ||||
5024 | T = Context.IntTy; | ||||
5025 | D.setInvalidType(true); | ||||
5026 | } else if (AutoType *Auto = T->getContainedAutoType()) { | ||||
5027 | // If the trailing return type contains an `auto`, we may need to | ||||
5028 | // invent a template parameter for it, for cases like | ||||
5029 | // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`. | ||||
5030 | InventedTemplateParameterInfo *InventedParamInfo = nullptr; | ||||
5031 | if (D.getContext() == DeclaratorContext::Prototype) | ||||
5032 | InventedParamInfo = &S.InventedParameterInfos.back(); | ||||
5033 | else if (D.getContext() == DeclaratorContext::LambdaExprParameter) | ||||
5034 | InventedParamInfo = S.getCurLambda(); | ||||
5035 | if (InventedParamInfo) { | ||||
5036 | std::tie(T, TInfo) = InventTemplateParameter( | ||||
5037 | state, T, TInfo, Auto, *InventedParamInfo); | ||||
5038 | } | ||||
5039 | } | ||||
5040 | } else { | ||||
5041 | // This function type is not the type of the entity being declared, | ||||
5042 | // so checking the 'auto' is not the responsibility of this chunk. | ||||
5043 | } | ||||
5044 | } | ||||
5045 | |||||
5046 | // C99 6.7.5.3p1: The return type may not be a function or array type. | ||||
5047 | // For conversion functions, we'll diagnose this particular error later. | ||||
5048 | if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) && | ||||
5049 | (D.getName().getKind() != | ||||
5050 | UnqualifiedIdKind::IK_ConversionFunctionId)) { | ||||
5051 | unsigned diagID = diag::err_func_returning_array_function; | ||||
5052 | // Last processing chunk in block context means this function chunk | ||||
5053 | // represents the block. | ||||
5054 | if (chunkIndex == 0 && | ||||
5055 | D.getContext() == DeclaratorContext::BlockLiteral) | ||||
5056 | diagID = diag::err_block_returning_array_function; | ||||
5057 | S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T; | ||||
5058 | T = Context.IntTy; | ||||
5059 | D.setInvalidType(true); | ||||
5060 | } | ||||
5061 | |||||
5062 | // Do not allow returning half FP value. | ||||
5063 | // FIXME: This really should be in BuildFunctionType. | ||||
5064 | if (T->isHalfType()) { | ||||
5065 | if (S.getLangOpts().OpenCL) { | ||||
5066 | if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", | ||||
5067 | S.getLangOpts())) { | ||||
5068 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) | ||||
5069 | << T << 0 /*pointer hint*/; | ||||
5070 | D.setInvalidType(true); | ||||
5071 | } | ||||
5072 | } else if (!S.getLangOpts().HalfArgsAndReturns) { | ||||
5073 | S.Diag(D.getIdentifierLoc(), | ||||
5074 | diag::err_parameters_retval_cannot_have_fp16_type) << 1; | ||||
5075 | D.setInvalidType(true); | ||||
5076 | } | ||||
5077 | } | ||||
5078 | |||||
5079 | if (LangOpts.OpenCL) { | ||||
5080 | // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a | ||||
5081 | // function. | ||||
5082 | if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() || | ||||
5083 | T->isPipeType()) { | ||||
5084 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) | ||||
5085 | << T << 1 /*hint off*/; | ||||
5086 | D.setInvalidType(true); | ||||
5087 | } | ||||
5088 | // OpenCL doesn't support variadic functions and blocks | ||||
5089 | // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf. | ||||
5090 | // We also allow here any toolchain reserved identifiers. | ||||
5091 | if (FTI.isVariadic && | ||||
5092 | !S.getOpenCLOptions().isAvailableOption( | ||||
5093 | "__cl_clang_variadic_functions", S.getLangOpts()) && | ||||
5094 | !(D.getIdentifier() && | ||||
5095 | ((D.getIdentifier()->getName() == "printf" && | ||||
5096 | (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) || | ||||
5097 | D.getIdentifier()->getName().startswith("__")))) { | ||||
5098 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function); | ||||
5099 | D.setInvalidType(true); | ||||
5100 | } | ||||
5101 | } | ||||
5102 | |||||
5103 | // Methods cannot return interface types. All ObjC objects are | ||||
5104 | // passed by reference. | ||||
5105 | if (T->isObjCObjectType()) { | ||||
5106 | SourceLocation DiagLoc, FixitLoc; | ||||
5107 | if (TInfo) { | ||||
5108 | DiagLoc = TInfo->getTypeLoc().getBeginLoc(); | ||||
5109 | FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc()); | ||||
5110 | } else { | ||||
5111 | DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); | ||||
5112 | FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc()); | ||||
5113 | } | ||||
5114 | S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value) | ||||
5115 | << 0 << T | ||||
5116 | << FixItHint::CreateInsertion(FixitLoc, "*"); | ||||
5117 | |||||
5118 | T = Context.getObjCObjectPointerType(T); | ||||
5119 | if (TInfo) { | ||||
5120 | TypeLocBuilder TLB; | ||||
5121 | TLB.pushFullCopy(TInfo->getTypeLoc()); | ||||
5122 | ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T); | ||||
5123 | TLoc.setStarLoc(FixitLoc); | ||||
5124 | TInfo = TLB.getTypeSourceInfo(Context, T); | ||||
5125 | } | ||||
5126 | |||||
5127 | D.setInvalidType(true); | ||||
5128 | } | ||||
5129 | |||||
5130 | // cv-qualifiers on return types are pointless except when the type is a | ||||
5131 | // class type in C++. | ||||
5132 | if ((T.getCVRQualifiers() || T->isAtomicType()) && | ||||
5133 | !(S.getLangOpts().CPlusPlus && | ||||
5134 | (T->isDependentType() || T->isRecordType()))) { | ||||
5135 | if (T->isVoidType() && !S.getLangOpts().CPlusPlus && | ||||
5136 | D.getFunctionDefinitionKind() == | ||||
5137 | FunctionDefinitionKind::Definition) { | ||||
5138 | // [6.9.1/3] qualified void return is invalid on a C | ||||
5139 | // function definition. Apparently ok on declarations and | ||||
5140 | // in C++ though (!) | ||||
5141 | S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T; | ||||
5142 | } else | ||||
5143 | diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex); | ||||
5144 | |||||
5145 | // C++2a [dcl.fct]p12: | ||||
5146 | // A volatile-qualified return type is deprecated | ||||
5147 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20) | ||||
5148 | S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T; | ||||
5149 | } | ||||
5150 | |||||
5151 | // Objective-C ARC ownership qualifiers are ignored on the function | ||||
5152 | // return type (by type canonicalization). Complain if this attribute | ||||
5153 | // was written here. | ||||
5154 | if (T.getQualifiers().hasObjCLifetime()) { | ||||
5155 | SourceLocation AttrLoc; | ||||
5156 | if (chunkIndex + 1 < D.getNumTypeObjects()) { | ||||
5157 | DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1); | ||||
5158 | for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) { | ||||
5159 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||
5160 | AttrLoc = AL.getLoc(); | ||||
5161 | break; | ||||
5162 | } | ||||
5163 | } | ||||
5164 | } | ||||
5165 | if (AttrLoc.isInvalid()) { | ||||
5166 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { | ||||
5167 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||
5168 | AttrLoc = AL.getLoc(); | ||||
5169 | break; | ||||
5170 | } | ||||
5171 | } | ||||
5172 | } | ||||
5173 | |||||
5174 | if (AttrLoc.isValid()) { | ||||
5175 | // The ownership attributes are almost always written via | ||||
5176 | // the predefined | ||||
5177 | // __strong/__weak/__autoreleasing/__unsafe_unretained. | ||||
5178 | if (AttrLoc.isMacroID()) | ||||
5179 | AttrLoc = | ||||
5180 | S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin(); | ||||
5181 | |||||
5182 | S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type) | ||||
5183 | << T.getQualifiers().getObjCLifetime(); | ||||
5184 | } | ||||
5185 | } | ||||
5186 | |||||
5187 | if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) { | ||||
5188 | // C++ [dcl.fct]p6: | ||||
5189 | // Types shall not be defined in return or parameter types. | ||||
5190 | TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | ||||
5191 | S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type) | ||||
5192 | << Context.getTypeDeclType(Tag); | ||||
5193 | } | ||||
5194 | |||||
5195 | // Exception specs are not allowed in typedefs. Complain, but add it | ||||
5196 | // anyway. | ||||
5197 | if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17) | ||||
5198 | S.Diag(FTI.getExceptionSpecLocBeg(), | ||||
5199 | diag::err_exception_spec_in_typedef) | ||||
5200 | << (D.getContext() == DeclaratorContext::AliasDecl || | ||||
5201 | D.getContext() == DeclaratorContext::AliasTemplate); | ||||
5202 | |||||
5203 | // If we see "T var();" or "T var(T());" at block scope, it is probably | ||||
5204 | // an attempt to initialize a variable, not a function declaration. | ||||
5205 | if (FTI.isAmbiguous) | ||||
5206 | warnAboutAmbiguousFunction(S, D, DeclType, T); | ||||
5207 | |||||
5208 | FunctionType::ExtInfo EI( | ||||
5209 | getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex)); | ||||
5210 | |||||
5211 | if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus | ||||
5212 | && !LangOpts.OpenCL) { | ||||
5213 | // Simple void foo(), where the incoming T is the result type. | ||||
5214 | T = Context.getFunctionNoProtoType(T, EI); | ||||
5215 | } else { | ||||
5216 | // We allow a zero-parameter variadic function in C if the | ||||
5217 | // function is marked with the "overloadable" attribute. Scan | ||||
5218 | // for this attribute now. | ||||
5219 | if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) | ||||
5220 | if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable)) | ||||
5221 | S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param); | ||||
5222 | |||||
5223 | if (FTI.NumParams && FTI.Params[0].Param == nullptr) { | ||||
5224 | // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function | ||||
5225 | // definition. | ||||
5226 | S.Diag(FTI.Params[0].IdentLoc, | ||||
5227 | diag::err_ident_list_in_fn_declaration); | ||||
5228 | D.setInvalidType(true); | ||||
5229 | // Recover by creating a K&R-style function type. | ||||
5230 | T = Context.getFunctionNoProtoType(T, EI); | ||||
5231 | break; | ||||
5232 | } | ||||
5233 | |||||
5234 | FunctionProtoType::ExtProtoInfo EPI; | ||||
5235 | EPI.ExtInfo = EI; | ||||
5236 | EPI.Variadic = FTI.isVariadic; | ||||
5237 | EPI.EllipsisLoc = FTI.getEllipsisLoc(); | ||||
5238 | EPI.HasTrailingReturn = FTI.hasTrailingReturnType(); | ||||
5239 | EPI.TypeQuals.addCVRUQualifiers( | ||||
5240 | FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers() | ||||
5241 | : 0); | ||||
5242 | EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None | ||||
5243 | : FTI.RefQualifierIsLValueRef? RQ_LValue | ||||
5244 | : RQ_RValue; | ||||
5245 | |||||
5246 | // Otherwise, we have a function with a parameter list that is | ||||
5247 | // potentially variadic. | ||||
5248 | SmallVector<QualType, 16> ParamTys; | ||||
5249 | ParamTys.reserve(FTI.NumParams); | ||||
5250 | |||||
5251 | SmallVector<FunctionProtoType::ExtParameterInfo, 16> | ||||
5252 | ExtParameterInfos(FTI.NumParams); | ||||
5253 | bool HasAnyInterestingExtParameterInfos = false; | ||||
5254 | |||||
5255 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { | ||||
5256 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | ||||
5257 | QualType ParamTy = Param->getType(); | ||||
5258 | assert(!ParamTy.isNull() && "Couldn't parse type?")((void)0); | ||||
5259 | |||||
5260 | // Look for 'void'. void is allowed only as a single parameter to a | ||||
5261 | // function with no other parameters (C99 6.7.5.3p10). We record | ||||
5262 | // int(void) as a FunctionProtoType with an empty parameter list. | ||||
5263 | if (ParamTy->isVoidType()) { | ||||
5264 | // If this is something like 'float(int, void)', reject it. 'void' | ||||
5265 | // is an incomplete type (C99 6.2.5p19) and function decls cannot | ||||
5266 | // have parameters of incomplete type. | ||||
5267 | if (FTI.NumParams != 1 || FTI.isVariadic) { | ||||
5268 | S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param); | ||||
5269 | ParamTy = Context.IntTy; | ||||
5270 | Param->setType(ParamTy); | ||||
5271 | } else if (FTI.Params[i].Ident) { | ||||
5272 | // Reject, but continue to parse 'int(void abc)'. | ||||
5273 | S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type); | ||||
5274 | ParamTy = Context.IntTy; | ||||
5275 | Param->setType(ParamTy); | ||||
5276 | } else { | ||||
5277 | // Reject, but continue to parse 'float(const void)'. | ||||
5278 | if (ParamTy.hasQualifiers()) | ||||
5279 | S.Diag(DeclType.Loc, diag::err_void_param_qualified); | ||||
5280 | |||||
5281 | // Do not add 'void' to the list. | ||||
5282 | break; | ||||
5283 | } | ||||
5284 | } else if (ParamTy->isHalfType()) { | ||||
5285 | // Disallow half FP parameters. | ||||
5286 | // FIXME: This really should be in BuildFunctionType. | ||||
5287 | if (S.getLangOpts().OpenCL) { | ||||
5288 | if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", | ||||
5289 | S.getLangOpts())) { | ||||
5290 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) | ||||
5291 | << ParamTy << 0; | ||||
5292 | D.setInvalidType(); | ||||
5293 | Param->setInvalidDecl(); | ||||
5294 | } | ||||
5295 | } else if (!S.getLangOpts().HalfArgsAndReturns) { | ||||
5296 | S.Diag(Param->getLocation(), | ||||
5297 | diag::err_parameters_retval_cannot_have_fp16_type) << 0; | ||||
5298 | D.setInvalidType(); | ||||
5299 | } | ||||
5300 | } else if (!FTI.hasPrototype) { | ||||
5301 | if (ParamTy->isPromotableIntegerType()) { | ||||
5302 | ParamTy = Context.getPromotedIntegerType(ParamTy); | ||||
5303 | Param->setKNRPromoted(true); | ||||
5304 | } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) { | ||||
5305 | if (BTy->getKind() == BuiltinType::Float) { | ||||
5306 | ParamTy = Context.DoubleTy; | ||||
5307 | Param->setKNRPromoted(true); | ||||
5308 | } | ||||
5309 | } | ||||
5310 | } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) { | ||||
5311 | // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function. | ||||
5312 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) | ||||
5313 | << ParamTy << 1 /*hint off*/; | ||||
5314 | D.setInvalidType(); | ||||
5315 | } | ||||
5316 | |||||
5317 | if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) { | ||||
5318 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true); | ||||
5319 | HasAnyInterestingExtParameterInfos = true; | ||||
5320 | } | ||||
5321 | |||||
5322 | if (auto attr = Param->getAttr<ParameterABIAttr>()) { | ||||
5323 | ExtParameterInfos[i] = | ||||
5324 | ExtParameterInfos[i].withABI(attr->getABI()); | ||||
5325 | HasAnyInterestingExtParameterInfos = true; | ||||
5326 | } | ||||
5327 | |||||
5328 | if (Param->hasAttr<PassObjectSizeAttr>()) { | ||||
5329 | ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize(); | ||||
5330 | HasAnyInterestingExtParameterInfos = true; | ||||
5331 | } | ||||
5332 | |||||
5333 | if (Param->hasAttr<NoEscapeAttr>()) { | ||||
5334 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true); | ||||
5335 | HasAnyInterestingExtParameterInfos = true; | ||||
5336 | } | ||||
5337 | |||||
5338 | ParamTys.push_back(ParamTy); | ||||
5339 | } | ||||
5340 | |||||
5341 | if (HasAnyInterestingExtParameterInfos) { | ||||
5342 | EPI.ExtParameterInfos = ExtParameterInfos.data(); | ||||
5343 | checkExtParameterInfos(S, ParamTys, EPI, | ||||
5344 | [&](unsigned i) { return FTI.Params[i].Param->getLocation(); }); | ||||
5345 | } | ||||
5346 | |||||
5347 | SmallVector<QualType, 4> Exceptions; | ||||
5348 | SmallVector<ParsedType, 2> DynamicExceptions; | ||||
5349 | SmallVector<SourceRange, 2> DynamicExceptionRanges; | ||||
5350 | Expr *NoexceptExpr = nullptr; | ||||
5351 | |||||
5352 | if (FTI.getExceptionSpecType() == EST_Dynamic) { | ||||
5353 | // FIXME: It's rather inefficient to have to split into two vectors | ||||
5354 | // here. | ||||
5355 | unsigned N = FTI.getNumExceptions(); | ||||
5356 | DynamicExceptions.reserve(N); | ||||
5357 | DynamicExceptionRanges.reserve(N); | ||||
5358 | for (unsigned I = 0; I != N; ++I) { | ||||
5359 | DynamicExceptions.push_back(FTI.Exceptions[I].Ty); | ||||
5360 | DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range); | ||||
5361 | } | ||||
5362 | } else if (isComputedNoexcept(FTI.getExceptionSpecType())) { | ||||
5363 | NoexceptExpr = FTI.NoexceptExpr; | ||||
5364 | } | ||||
5365 | |||||
5366 | S.checkExceptionSpecification(D.isFunctionDeclarationContext(), | ||||
5367 | FTI.getExceptionSpecType(), | ||||
5368 | DynamicExceptions, | ||||
5369 | DynamicExceptionRanges, | ||||
5370 | NoexceptExpr, | ||||
5371 | Exceptions, | ||||
5372 | EPI.ExceptionSpec); | ||||
5373 | |||||
5374 | // FIXME: Set address space from attrs for C++ mode here. | ||||
5375 | // OpenCLCPlusPlus: A class member function has an address space. | ||||
5376 | auto IsClassMember = [&]() { | ||||
5377 | return (!state.getDeclarator().getCXXScopeSpec().isEmpty() && | ||||
5378 | state.getDeclarator() | ||||
5379 | .getCXXScopeSpec() | ||||
5380 | .getScopeRep() | ||||
5381 | ->getKind() == NestedNameSpecifier::TypeSpec) || | ||||
5382 | state.getDeclarator().getContext() == | ||||
5383 | DeclaratorContext::Member || | ||||
5384 | state.getDeclarator().getContext() == | ||||
5385 | DeclaratorContext::LambdaExpr; | ||||
5386 | }; | ||||
5387 | |||||
5388 | if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) { | ||||
5389 | LangAS ASIdx = LangAS::Default; | ||||
5390 | // Take address space attr if any and mark as invalid to avoid adding | ||||
5391 | // them later while creating QualType. | ||||
5392 | if (FTI.MethodQualifiers) | ||||
5393 | for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) { | ||||
5394 | LangAS ASIdxNew = attr.asOpenCLLangAS(); | ||||
5395 | if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew, | ||||
5396 | attr.getLoc())) | ||||
5397 | D.setInvalidType(true); | ||||
5398 | else | ||||
5399 | ASIdx = ASIdxNew; | ||||
5400 | } | ||||
5401 | // If a class member function's address space is not set, set it to | ||||
5402 | // __generic. | ||||
5403 | LangAS AS = | ||||
5404 | (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace() | ||||
5405 | : ASIdx); | ||||
5406 | EPI.TypeQuals.addAddressSpace(AS); | ||||
5407 | } | ||||
5408 | T = Context.getFunctionType(T, ParamTys, EPI); | ||||
5409 | } | ||||
5410 | break; | ||||
5411 | } | ||||
5412 | case DeclaratorChunk::MemberPointer: { | ||||
5413 | // The scope spec must refer to a class, or be dependent. | ||||
5414 | CXXScopeSpec &SS = DeclType.Mem.Scope(); | ||||
5415 | QualType ClsType; | ||||
5416 | |||||
5417 | // Handle pointer nullability. | ||||
5418 | inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc, | ||||
5419 | DeclType.EndLoc, DeclType.getAttrs(), | ||||
5420 | state.getDeclarator().getAttributePool()); | ||||
5421 | |||||
5422 | if (SS.isInvalid()) { | ||||
5423 | // Avoid emitting extra errors if we already errored on the scope. | ||||
5424 | D.setInvalidType(true); | ||||
5425 | } else if (S.isDependentScopeSpecifier(SS) || | ||||
5426 | dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) { | ||||
5427 | NestedNameSpecifier *NNS = SS.getScopeRep(); | ||||
5428 | NestedNameSpecifier *NNSPrefix = NNS->getPrefix(); | ||||
5429 | switch (NNS->getKind()) { | ||||
5430 | case NestedNameSpecifier::Identifier: | ||||
5431 | ClsType = Context.getDependentNameType(ETK_None, NNSPrefix, | ||||
5432 | NNS->getAsIdentifier()); | ||||
5433 | break; | ||||
5434 | |||||
5435 | case NestedNameSpecifier::Namespace: | ||||
5436 | case NestedNameSpecifier::NamespaceAlias: | ||||
5437 | case NestedNameSpecifier::Global: | ||||
5438 | case NestedNameSpecifier::Super: | ||||
5439 | llvm_unreachable("Nested-name-specifier must name a type")__builtin_unreachable(); | ||||
5440 | |||||
5441 | case NestedNameSpecifier::TypeSpec: | ||||
5442 | case NestedNameSpecifier::TypeSpecWithTemplate: | ||||
5443 | ClsType = QualType(NNS->getAsType(), 0); | ||||
5444 | // Note: if the NNS has a prefix and ClsType is a nondependent | ||||
5445 | // TemplateSpecializationType, then the NNS prefix is NOT included | ||||
5446 | // in ClsType; hence we wrap ClsType into an ElaboratedType. | ||||
5447 | // NOTE: in particular, no wrap occurs if ClsType already is an | ||||
5448 | // Elaborated, DependentName, or DependentTemplateSpecialization. | ||||
5449 | if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType())) | ||||
5450 | ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType); | ||||
5451 | break; | ||||
5452 | } | ||||
5453 | } else { | ||||
5454 | S.Diag(DeclType.Mem.Scope().getBeginLoc(), | ||||
5455 | diag::err_illegal_decl_mempointer_in_nonclass) | ||||
5456 | << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name") | ||||
5457 | << DeclType.Mem.Scope().getRange(); | ||||
5458 | D.setInvalidType(true); | ||||
5459 | } | ||||
5460 | |||||
5461 | if (!ClsType.isNull()) | ||||
5462 | T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, | ||||
5463 | D.getIdentifier()); | ||||
5464 | if (T.isNull()) { | ||||
5465 | T = Context.IntTy; | ||||
5466 | D.setInvalidType(true); | ||||
5467 | } else if (DeclType.Mem.TypeQuals) { | ||||
5468 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals); | ||||
5469 | } | ||||
5470 | break; | ||||
5471 | } | ||||
5472 | |||||
5473 | case DeclaratorChunk::Pipe: { | ||||
5474 | T = S.BuildReadPipeType(T, DeclType.Loc); | ||||
5475 | processTypeAttrs(state, T, TAL_DeclSpec, | ||||
5476 | D.getMutableDeclSpec().getAttributes()); | ||||
5477 | break; | ||||
5478 | } | ||||
5479 | } | ||||
5480 | |||||
5481 | if (T.isNull()) { | ||||
5482 | D.setInvalidType(true); | ||||
5483 | T = Context.IntTy; | ||||
5484 | } | ||||
5485 | |||||
5486 | // See if there are any attributes on this declarator chunk. | ||||
5487 | processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs()); | ||||
5488 | |||||
5489 | if (DeclType.Kind != DeclaratorChunk::Paren) { | ||||
5490 | if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType)) | ||||
5491 | S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array); | ||||
5492 | |||||
5493 | ExpectNoDerefChunk = state.didParseNoDeref(); | ||||
5494 | } | ||||
5495 | } | ||||
5496 | |||||
5497 | if (ExpectNoDerefChunk) | ||||
5498 | S.Diag(state.getDeclarator().getBeginLoc(), | ||||
5499 | diag::warn_noderef_on_non_pointer_or_array); | ||||
5500 | |||||
5501 | // GNU warning -Wstrict-prototypes | ||||
5502 | // Warn if a function declaration is without a prototype. | ||||
5503 | // This warning is issued for all kinds of unprototyped function | ||||
5504 | // declarations (i.e. function type typedef, function pointer etc.) | ||||
5505 | // C99 6.7.5.3p14: | ||||
5506 | // The empty list in a function declarator that is not part of a definition | ||||
5507 | // of that function specifies that no information about the number or types | ||||
5508 | // of the parameters is supplied. | ||||
5509 | if (!LangOpts.CPlusPlus && | ||||
5510 | D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) { | ||||
5511 | bool IsBlock = false; | ||||
5512 | for (const DeclaratorChunk &DeclType : D.type_objects()) { | ||||
5513 | switch (DeclType.Kind) { | ||||
5514 | case DeclaratorChunk::BlockPointer: | ||||
5515 | IsBlock = true; | ||||
5516 | break; | ||||
5517 | case DeclaratorChunk::Function: { | ||||
5518 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||
5519 | // We supress the warning when there's no LParen location, as this | ||||
5520 | // indicates the declaration was an implicit declaration, which gets | ||||
5521 | // warned about separately via -Wimplicit-function-declaration. | ||||
5522 | if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid()) | ||||
5523 | S.Diag(DeclType.Loc, diag::warn_strict_prototypes) | ||||
5524 | << IsBlock | ||||
5525 | << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void"); | ||||
5526 | IsBlock = false; | ||||
5527 | break; | ||||
5528 | } | ||||
5529 | default: | ||||
5530 | break; | ||||
5531 | } | ||||
5532 | } | ||||
5533 | } | ||||
5534 | |||||
5535 | assert(!T.isNull() && "T must not be null after this point")((void)0); | ||||
5536 | |||||
5537 | if (LangOpts.CPlusPlus && T->isFunctionType()) { | ||||
5538 | const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>(); | ||||
5539 | assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((void)0); | ||||
5540 | |||||
5541 | // C++ 8.3.5p4: | ||||
5542 | // A cv-qualifier-seq shall only be part of the function type | ||||
5543 | // for a nonstatic member function, the function type to which a pointer | ||||
5544 | // to member refers, or the top-level function type of a function typedef | ||||
5545 | // declaration. | ||||
5546 | // | ||||
5547 | // Core issue 547 also allows cv-qualifiers on function types that are | ||||
5548 | // top-level template type arguments. | ||||
5549 | enum { NonMember, Member, DeductionGuide } Kind = NonMember; | ||||
5550 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) | ||||
5551 | Kind = DeductionGuide; | ||||
5552 | else if (!D.getCXXScopeSpec().isSet()) { | ||||
5553 | if ((D.getContext() == DeclaratorContext::Member || | ||||
5554 | D.getContext() == DeclaratorContext::LambdaExpr) && | ||||
5555 | !D.getDeclSpec().isFriendSpecified()) | ||||
5556 | Kind = Member; | ||||
5557 | } else { | ||||
5558 | DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec()); | ||||
5559 | if (!DC || DC->isRecord()) | ||||
5560 | Kind = Member; | ||||
5561 | } | ||||
5562 | |||||
5563 | // C++11 [dcl.fct]p6 (w/DR1417): | ||||
5564 | // An attempt to specify a function type with a cv-qualifier-seq or a | ||||
5565 | // ref-qualifier (including by typedef-name) is ill-formed unless it is: | ||||
5566 | // - the function type for a non-static member function, | ||||
5567 | // - the function type to which a pointer to member refers, | ||||
5568 | // - the top-level function type of a function typedef declaration or | ||||
5569 | // alias-declaration, | ||||
5570 | // - the type-id in the default argument of a type-parameter, or | ||||
5571 | // - the type-id of a template-argument for a type-parameter | ||||
5572 | // | ||||
5573 | // FIXME: Checking this here is insufficient. We accept-invalid on: | ||||
5574 | // | ||||
5575 | // template<typename T> struct S { void f(T); }; | ||||
5576 | // S<int() const> s; | ||||
5577 | // | ||||
5578 | // ... for instance. | ||||
5579 | if (IsQualifiedFunction && | ||||
5580 | !(Kind == Member && | ||||
5581 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) && | ||||
5582 | !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg && | ||||
5583 | D.getContext() != DeclaratorContext::TemplateTypeArg) { | ||||
5584 | SourceLocation Loc = D.getBeginLoc(); | ||||
5585 | SourceRange RemovalRange; | ||||
5586 | unsigned I; | ||||
5587 | if (D.isFunctionDeclarator(I)) { | ||||
5588 | SmallVector<SourceLocation, 4> RemovalLocs; | ||||
5589 | const DeclaratorChunk &Chunk = D.getTypeObject(I); | ||||
5590 | assert(Chunk.Kind == DeclaratorChunk::Function)((void)0); | ||||
5591 | |||||
5592 | if (Chunk.Fun.hasRefQualifier()) | ||||
5593 | RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc()); | ||||
5594 | |||||
5595 | if (Chunk.Fun.hasMethodTypeQualifiers()) | ||||
5596 | Chunk.Fun.MethodQualifiers->forEachQualifier( | ||||
5597 | [&](DeclSpec::TQ TypeQual, StringRef QualName, | ||||
5598 | SourceLocation SL) { RemovalLocs.push_back(SL); }); | ||||
5599 | |||||
5600 | if (!RemovalLocs.empty()) { | ||||
5601 | llvm::sort(RemovalLocs, | ||||
5602 | BeforeThanCompare<SourceLocation>(S.getSourceManager())); | ||||
5603 | RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back()); | ||||
5604 | Loc = RemovalLocs.front(); | ||||
5605 | } | ||||
5606 | } | ||||
5607 | |||||
5608 | S.Diag(Loc, diag::err_invalid_qualified_function_type) | ||||
5609 | << Kind << D.isFunctionDeclarator() << T | ||||
5610 | << getFunctionQualifiersAsString(FnTy) | ||||
5611 | << FixItHint::CreateRemoval(RemovalRange); | ||||
5612 | |||||
5613 | // Strip the cv-qualifiers and ref-qualifiers from the type. | ||||
5614 | FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo(); | ||||
5615 | EPI.TypeQuals.removeCVRQualifiers(); | ||||
5616 | EPI.RefQualifier = RQ_None; | ||||
5617 | |||||
5618 | T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(), | ||||
5619 | EPI); | ||||
5620 | // Rebuild any parens around the identifier in the function type. | ||||
5621 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||
5622 | if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren) | ||||
5623 | break; | ||||
5624 | T = S.BuildParenType(T); | ||||
5625 | } | ||||
5626 | } | ||||
5627 | } | ||||
5628 | |||||
5629 | // Apply any undistributed attributes from the declarator. | ||||
5630 | processTypeAttrs(state, T, TAL_DeclName, D.getAttributes()); | ||||
5631 | |||||
5632 | // Diagnose any ignored type attributes. | ||||
5633 | state.diagnoseIgnoredTypeAttrs(T); | ||||
5634 | |||||
5635 | // C++0x [dcl.constexpr]p9: | ||||
5636 | // A constexpr specifier used in an object declaration declares the object | ||||
5637 | // as const. | ||||
5638 | if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr && | ||||
5639 | T->isObjectType()) | ||||
5640 | T.addConst(); | ||||
5641 | |||||
5642 | // C++2a [dcl.fct]p4: | ||||
5643 | // A parameter with volatile-qualified type is deprecated | ||||
5644 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 && | ||||
5645 | (D.getContext() == DeclaratorContext::Prototype || | ||||
5646 | D.getContext() == DeclaratorContext::LambdaExprParameter)) | ||||
5647 | S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T; | ||||
5648 | |||||
5649 | // If there was an ellipsis in the declarator, the declaration declares a | ||||
5650 | // parameter pack whose type may be a pack expansion type. | ||||
5651 | if (D.hasEllipsis()) { | ||||
5652 | // C++0x [dcl.fct]p13: | ||||
5653 | // A declarator-id or abstract-declarator containing an ellipsis shall | ||||
5654 | // only be used in a parameter-declaration. Such a parameter-declaration | ||||
5655 | // is a parameter pack (14.5.3). [...] | ||||
5656 | switch (D.getContext()) { | ||||
5657 | case DeclaratorContext::Prototype: | ||||
5658 | case DeclaratorContext::LambdaExprParameter: | ||||
5659 | case DeclaratorContext::RequiresExpr: | ||||
5660 | // C++0x [dcl.fct]p13: | ||||
5661 | // [...] When it is part of a parameter-declaration-clause, the | ||||
5662 | // parameter pack is a function parameter pack (14.5.3). The type T | ||||
5663 | // of the declarator-id of the function parameter pack shall contain | ||||
5664 | // a template parameter pack; each template parameter pack in T is | ||||
5665 | // expanded by the function parameter pack. | ||||
5666 | // | ||||
5667 | // We represent function parameter packs as function parameters whose | ||||
5668 | // type is a pack expansion. | ||||
5669 | if (!T->containsUnexpandedParameterPack() && | ||||
5670 | (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) { | ||||
5671 | S.Diag(D.getEllipsisLoc(), | ||||
5672 | diag::err_function_parameter_pack_without_parameter_packs) | ||||
5673 | << T << D.getSourceRange(); | ||||
5674 | D.setEllipsisLoc(SourceLocation()); | ||||
5675 | } else { | ||||
5676 | T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false); | ||||
5677 | } | ||||
5678 | break; | ||||
5679 | case DeclaratorContext::TemplateParam: | ||||
5680 | // C++0x [temp.param]p15: | ||||
5681 | // If a template-parameter is a [...] is a parameter-declaration that | ||||
5682 | // declares a parameter pack (8.3.5), then the template-parameter is a | ||||
5683 | // template parameter pack (14.5.3). | ||||
5684 | // | ||||
5685 | // Note: core issue 778 clarifies that, if there are any unexpanded | ||||
5686 | // parameter packs in the type of the non-type template parameter, then | ||||
5687 | // it expands those parameter packs. | ||||
5688 | if (T->containsUnexpandedParameterPack()) | ||||
5689 | T = Context.getPackExpansionType(T, None); | ||||
5690 | else | ||||
5691 | S.Diag(D.getEllipsisLoc(), | ||||
5692 | LangOpts.CPlusPlus11 | ||||
5693 | ? diag::warn_cxx98_compat_variadic_templates | ||||
5694 | : diag::ext_variadic_templates); | ||||
5695 | break; | ||||
5696 | |||||
5697 | case DeclaratorContext::File: | ||||
5698 | case DeclaratorContext::KNRTypeList: | ||||
5699 | case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here? | ||||
5700 | case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here? | ||||
5701 | case DeclaratorContext::TypeName: | ||||
5702 | case DeclaratorContext::FunctionalCast: | ||||
5703 | case DeclaratorContext::CXXNew: | ||||
5704 | case DeclaratorContext::AliasDecl: | ||||
5705 | case DeclaratorContext::AliasTemplate: | ||||
5706 | case DeclaratorContext::Member: | ||||
5707 | case DeclaratorContext::Block: | ||||
5708 | case DeclaratorContext::ForInit: | ||||
5709 | case DeclaratorContext::SelectionInit: | ||||
5710 | case DeclaratorContext::Condition: | ||||
5711 | case DeclaratorContext::CXXCatch: | ||||
5712 | case DeclaratorContext::ObjCCatch: | ||||
5713 | case DeclaratorContext::BlockLiteral: | ||||
5714 | case DeclaratorContext::LambdaExpr: | ||||
5715 | case DeclaratorContext::ConversionId: | ||||
5716 | case DeclaratorContext::TrailingReturn: | ||||
5717 | case DeclaratorContext::TrailingReturnVar: | ||||
5718 | case DeclaratorContext::TemplateArg: | ||||
5719 | case DeclaratorContext::TemplateTypeArg: | ||||
5720 | // FIXME: We may want to allow parameter packs in block-literal contexts | ||||
5721 | // in the future. | ||||
5722 | S.Diag(D.getEllipsisLoc(), | ||||
5723 | diag::err_ellipsis_in_declarator_not_parameter); | ||||
5724 | D.setEllipsisLoc(SourceLocation()); | ||||
5725 | break; | ||||
5726 | } | ||||
5727 | } | ||||
5728 | |||||
5729 | assert(!T.isNull() && "T must not be null at the end of this function")((void)0); | ||||
5730 | if (D.isInvalidType()) | ||||
5731 | return Context.getTrivialTypeSourceInfo(T); | ||||
5732 | |||||
5733 | return GetTypeSourceInfoForDeclarator(state, T, TInfo); | ||||
5734 | } | ||||
5735 | |||||
5736 | /// GetTypeForDeclarator - Convert the type for the specified | ||||
5737 | /// declarator to Type instances. | ||||
5738 | /// | ||||
5739 | /// The result of this call will never be null, but the associated | ||||
5740 | /// type may be a null type if there's an unrecoverable error. | ||||
5741 | TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) { | ||||
5742 | // Determine the type of the declarator. Not all forms of declarator | ||||
5743 | // have a type. | ||||
5744 | |||||
5745 | TypeProcessingState state(*this, D); | ||||
5746 | |||||
5747 | TypeSourceInfo *ReturnTypeInfo = nullptr; | ||||
5748 | QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); | ||||
5749 | if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount) | ||||
5750 | inferARCWriteback(state, T); | ||||
5751 | |||||
5752 | return GetFullTypeForDeclarator(state, T, ReturnTypeInfo); | ||||
5753 | } | ||||
5754 | |||||
5755 | static void transferARCOwnershipToDeclSpec(Sema &S, | ||||
5756 | QualType &declSpecTy, | ||||
5757 | Qualifiers::ObjCLifetime ownership) { | ||||
5758 | if (declSpecTy->isObjCRetainableType() && | ||||
5759 | declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) { | ||||
5760 | Qualifiers qs; | ||||
5761 | qs.addObjCLifetime(ownership); | ||||
5762 | declSpecTy = S.Context.getQualifiedType(declSpecTy, qs); | ||||
5763 | } | ||||
5764 | } | ||||
5765 | |||||
5766 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, | ||||
5767 | Qualifiers::ObjCLifetime ownership, | ||||
5768 | unsigned chunkIndex) { | ||||
5769 | Sema &S = state.getSema(); | ||||
5770 | Declarator &D = state.getDeclarator(); | ||||
5771 | |||||
5772 | // Look for an explicit lifetime attribute. | ||||
5773 | DeclaratorChunk &chunk = D.getTypeObject(chunkIndex); | ||||
5774 | if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership)) | ||||
5775 | return; | ||||
5776 | |||||
5777 | const char *attrStr = nullptr; | ||||
5778 | switch (ownership) { | ||||
5779 | case Qualifiers::OCL_None: llvm_unreachable("no ownership!")__builtin_unreachable(); | ||||
5780 | case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break; | ||||
5781 | case Qualifiers::OCL_Strong: attrStr = "strong"; break; | ||||
5782 | case Qualifiers::OCL_Weak: attrStr = "weak"; break; | ||||
5783 | case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break; | ||||
5784 | } | ||||
5785 | |||||
5786 | IdentifierLoc *Arg = new (S.Context) IdentifierLoc; | ||||
5787 | Arg->Ident = &S.Context.Idents.get(attrStr); | ||||
5788 | Arg->Loc = SourceLocation(); | ||||
5789 | |||||
5790 | ArgsUnion Args(Arg); | ||||
5791 | |||||
5792 | // If there wasn't one, add one (with an invalid source location | ||||
5793 | // so that we don't make an AttributedType for it). | ||||
5794 | ParsedAttr *attr = D.getAttributePool().create( | ||||
5795 | &S.Context.Idents.get("objc_ownership"), SourceLocation(), | ||||
5796 | /*scope*/ nullptr, SourceLocation(), | ||||
5797 | /*args*/ &Args, 1, ParsedAttr::AS_GNU); | ||||
5798 | chunk.getAttrs().addAtEnd(attr); | ||||
5799 | // TODO: mark whether we did this inference? | ||||
5800 | } | ||||
5801 | |||||
5802 | /// Used for transferring ownership in casts resulting in l-values. | ||||
5803 | static void transferARCOwnership(TypeProcessingState &state, | ||||
5804 | QualType &declSpecTy, | ||||
5805 | Qualifiers::ObjCLifetime ownership) { | ||||
5806 | Sema &S = state.getSema(); | ||||
5807 | Declarator &D = state.getDeclarator(); | ||||
5808 | |||||
5809 | int inner = -1; | ||||
5810 | bool hasIndirection = false; | ||||
5811 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||
5812 | DeclaratorChunk &chunk = D.getTypeObject(i); | ||||
5813 | switch (chunk.Kind) { | ||||
5814 | case DeclaratorChunk::Paren: | ||||
5815 | // Ignore parens. | ||||
5816 | break; | ||||
5817 | |||||
5818 | case DeclaratorChunk::Array: | ||||
5819 | case DeclaratorChunk::Reference: | ||||
5820 | case DeclaratorChunk::Pointer: | ||||
5821 | if (inner != -1) | ||||
5822 | hasIndirection = true; | ||||
5823 | inner = i; | ||||
5824 | break; | ||||
5825 | |||||
5826 | case DeclaratorChunk::BlockPointer: | ||||
5827 | if (inner != -1) | ||||
5828 | transferARCOwnershipToDeclaratorChunk(state, ownership, i); | ||||
5829 | return; | ||||
5830 | |||||
5831 | case DeclaratorChunk::Function: | ||||
5832 | case DeclaratorChunk::MemberPointer: | ||||
5833 | case DeclaratorChunk::Pipe: | ||||
5834 | return; | ||||
5835 | } | ||||
5836 | } | ||||
5837 | |||||
5838 | if (inner == -1) | ||||
5839 | return; | ||||
5840 | |||||
5841 | DeclaratorChunk &chunk = D.getTypeObject(inner); | ||||
5842 | if (chunk.Kind == DeclaratorChunk::Pointer) { | ||||
5843 | if (declSpecTy->isObjCRetainableType()) | ||||
5844 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); | ||||
5845 | if (declSpecTy->isObjCObjectType() && hasIndirection) | ||||
5846 | return transferARCOwnershipToDeclaratorChunk(state, ownership, inner); | ||||
5847 | } else { | ||||
5848 | assert(chunk.Kind == DeclaratorChunk::Array ||((void)0) | ||||
5849 | chunk.Kind == DeclaratorChunk::Reference)((void)0); | ||||
5850 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); | ||||
5851 | } | ||||
5852 | } | ||||
5853 | |||||
5854 | TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) { | ||||
5855 | TypeProcessingState state(*this, D); | ||||
5856 | |||||
5857 | TypeSourceInfo *ReturnTypeInfo = nullptr; | ||||
5858 | QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); | ||||
5859 | |||||
5860 | if (getLangOpts().ObjC) { | ||||
5861 | Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy); | ||||
5862 | if (ownership != Qualifiers::OCL_None) | ||||
5863 | transferARCOwnership(state, declSpecTy, ownership); | ||||
5864 | } | ||||
5865 | |||||
5866 | return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo); | ||||
5867 | } | ||||
5868 | |||||
5869 | static void fillAttributedTypeLoc(AttributedTypeLoc TL, | ||||
5870 | TypeProcessingState &State) { | ||||
5871 | TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr())); | ||||
5872 | } | ||||
5873 | |||||
5874 | namespace { | ||||
5875 | class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> { | ||||
5876 | Sema &SemaRef; | ||||
5877 | ASTContext &Context; | ||||
5878 | TypeProcessingState &State; | ||||
5879 | const DeclSpec &DS; | ||||
5880 | |||||
5881 | public: | ||||
5882 | TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State, | ||||
5883 | const DeclSpec &DS) | ||||
5884 | : SemaRef(S), Context(Context), State(State), DS(DS) {} | ||||
5885 | |||||
5886 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { | ||||
5887 | Visit(TL.getModifiedLoc()); | ||||
5888 | fillAttributedTypeLoc(TL, State); | ||||
5889 | } | ||||
5890 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { | ||||
5891 | Visit(TL.getInnerLoc()); | ||||
5892 | TL.setExpansionLoc( | ||||
5893 | State.getExpansionLocForMacroQualifiedType(TL.getTypePtr())); | ||||
5894 | } | ||||
5895 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { | ||||
5896 | Visit(TL.getUnqualifiedLoc()); | ||||
5897 | } | ||||
5898 | void VisitTypedefTypeLoc(TypedefTypeLoc TL) { | ||||
5899 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
5900 | } | ||||
5901 | void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { | ||||
5902 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
5903 | // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires | ||||
5904 | // addition field. What we have is good enough for dispay of location | ||||
5905 | // of 'fixit' on interface name. | ||||
5906 | TL.setNameEndLoc(DS.getEndLoc()); | ||||
5907 | } | ||||
5908 | void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { | ||||
5909 | TypeSourceInfo *RepTInfo = nullptr; | ||||
5910 | Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo); | ||||
5911 | TL.copy(RepTInfo->getTypeLoc()); | ||||
5912 | } | ||||
5913 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { | ||||
5914 | TypeSourceInfo *RepTInfo = nullptr; | ||||
5915 | Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo); | ||||
5916 | TL.copy(RepTInfo->getTypeLoc()); | ||||
5917 | } | ||||
5918 | void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) { | ||||
5919 | TypeSourceInfo *TInfo = nullptr; | ||||
5920 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
5921 | |||||
5922 | // If we got no declarator info from previous Sema routines, | ||||
5923 | // just fill with the typespec loc. | ||||
5924 | if (!TInfo) { | ||||
5925 | TL.initialize(Context, DS.getTypeSpecTypeNameLoc()); | ||||
5926 | return; | ||||
5927 | } | ||||
5928 | |||||
5929 | TypeLoc OldTL = TInfo->getTypeLoc(); | ||||
5930 | if (TInfo->getType()->getAs<ElaboratedType>()) { | ||||
5931 | ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>(); | ||||
5932 | TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc() | ||||
5933 | .castAs<TemplateSpecializationTypeLoc>(); | ||||
5934 | TL.copy(NamedTL); | ||||
5935 | } else { | ||||
5936 | TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>()); | ||||
5937 | assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((void)0); | ||||
5938 | } | ||||
5939 | |||||
5940 | } | ||||
5941 | void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { | ||||
5942 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((void)0); | ||||
5943 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); | ||||
5944 | TL.setParensRange(DS.getTypeofParensRange()); | ||||
5945 | } | ||||
5946 | void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { | ||||
5947 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((void)0); | ||||
5948 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); | ||||
5949 | TL.setParensRange(DS.getTypeofParensRange()); | ||||
5950 | assert(DS.getRepAsType())((void)0); | ||||
5951 | TypeSourceInfo *TInfo = nullptr; | ||||
5952 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
5953 | TL.setUnderlyingTInfo(TInfo); | ||||
5954 | } | ||||
5955 | void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { | ||||
5956 | // FIXME: This holds only because we only have one unary transform. | ||||
5957 | assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((void)0); | ||||
5958 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||
5959 | TL.setParensRange(DS.getTypeofParensRange()); | ||||
5960 | assert(DS.getRepAsType())((void)0); | ||||
5961 | TypeSourceInfo *TInfo = nullptr; | ||||
5962 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
5963 | TL.setUnderlyingTInfo(TInfo); | ||||
5964 | } | ||||
5965 | void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { | ||||
5966 | // By default, use the source location of the type specifier. | ||||
5967 | TL.setBuiltinLoc(DS.getTypeSpecTypeLoc()); | ||||
5968 | if (TL.needsExtraLocalData()) { | ||||
5969 | // Set info for the written builtin specifiers. | ||||
5970 | TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs(); | ||||
5971 | // Try to have a meaningful source location. | ||||
5972 | if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified) | ||||
5973 | TL.expandBuiltinRange(DS.getTypeSpecSignLoc()); | ||||
5974 | if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified) | ||||
5975 | TL.expandBuiltinRange(DS.getTypeSpecWidthRange()); | ||||
5976 | } | ||||
5977 | } | ||||
5978 | void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { | ||||
5979 | ElaboratedTypeKeyword Keyword | ||||
5980 | = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType()); | ||||
5981 | if (DS.getTypeSpecType() == TST_typename) { | ||||
5982 | TypeSourceInfo *TInfo = nullptr; | ||||
5983 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
5984 | if (TInfo) { | ||||
5985 | TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>()); | ||||
5986 | return; | ||||
5987 | } | ||||
5988 | } | ||||
5989 | TL.setElaboratedKeywordLoc(Keyword != ETK_None | ||||
5990 | ? DS.getTypeSpecTypeLoc() | ||||
5991 | : SourceLocation()); | ||||
5992 | const CXXScopeSpec& SS = DS.getTypeSpecScope(); | ||||
5993 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | ||||
5994 | Visit(TL.getNextTypeLoc().getUnqualifiedLoc()); | ||||
5995 | } | ||||
5996 | void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { | ||||
5997 | assert(DS.getTypeSpecType() == TST_typename)((void)0); | ||||
5998 | TypeSourceInfo *TInfo = nullptr; | ||||
5999 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
6000 | assert(TInfo)((void)0); | ||||
6001 | TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>()); | ||||
6002 | } | ||||
6003 | void VisitDependentTemplateSpecializationTypeLoc( | ||||
6004 | DependentTemplateSpecializationTypeLoc TL) { | ||||
6005 | assert(DS.getTypeSpecType() == TST_typename)((void)0); | ||||
6006 | TypeSourceInfo *TInfo = nullptr; | ||||
6007 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
6008 | assert(TInfo)((void)0); | ||||
6009 | TL.copy( | ||||
6010 | TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>()); | ||||
6011 | } | ||||
6012 | void VisitAutoTypeLoc(AutoTypeLoc TL) { | ||||
6013 | assert(DS.getTypeSpecType() == TST_auto ||((void)0) | ||||
6014 | DS.getTypeSpecType() == TST_decltype_auto ||((void)0) | ||||
6015 | DS.getTypeSpecType() == TST_auto_type ||((void)0) | ||||
6016 | DS.getTypeSpecType() == TST_unspecified)((void)0); | ||||
6017 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
6018 | if (!DS.isConstrainedAuto()) | ||||
6019 | return; | ||||
6020 | TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId(); | ||||
6021 | if (!TemplateId) | ||||
6022 | return; | ||||
6023 | if (DS.getTypeSpecScope().isNotEmpty()) | ||||
6024 | TL.setNestedNameSpecifierLoc( | ||||
6025 | DS.getTypeSpecScope().getWithLocInContext(Context)); | ||||
6026 | else | ||||
6027 | TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc()); | ||||
6028 | TL.setTemplateKWLoc(TemplateId->TemplateKWLoc); | ||||
6029 | TL.setConceptNameLoc(TemplateId->TemplateNameLoc); | ||||
6030 | TL.setFoundDecl(nullptr); | ||||
6031 | TL.setLAngleLoc(TemplateId->LAngleLoc); | ||||
6032 | TL.setRAngleLoc(TemplateId->RAngleLoc); | ||||
6033 | if (TemplateId->NumArgs == 0) | ||||
6034 | return; | ||||
6035 | TemplateArgumentListInfo TemplateArgsInfo; | ||||
6036 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||
6037 | TemplateId->NumArgs); | ||||
6038 | SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||
6039 | for (unsigned I = 0; I < TemplateId->NumArgs; ++I) | ||||
6040 | TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo()); | ||||
6041 | } | ||||
6042 | void VisitTagTypeLoc(TagTypeLoc TL) { | ||||
6043 | TL.setNameLoc(DS.getTypeSpecTypeNameLoc()); | ||||
6044 | } | ||||
6045 | void VisitAtomicTypeLoc(AtomicTypeLoc TL) { | ||||
6046 | // An AtomicTypeLoc can come from either an _Atomic(...) type specifier | ||||
6047 | // or an _Atomic qualifier. | ||||
6048 | if (DS.getTypeSpecType() == DeclSpec::TST_atomic) { | ||||
6049 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||
6050 | TL.setParensRange(DS.getTypeofParensRange()); | ||||
6051 | |||||
6052 | TypeSourceInfo *TInfo = nullptr; | ||||
6053 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
6054 | assert(TInfo)((void)0); | ||||
6055 | TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc()); | ||||
6056 | } else { | ||||
6057 | TL.setKWLoc(DS.getAtomicSpecLoc()); | ||||
6058 | // No parens, to indicate this was spelled as an _Atomic qualifier. | ||||
6059 | TL.setParensRange(SourceRange()); | ||||
6060 | Visit(TL.getValueLoc()); | ||||
6061 | } | ||||
6062 | } | ||||
6063 | |||||
6064 | void VisitPipeTypeLoc(PipeTypeLoc TL) { | ||||
6065 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||
6066 | |||||
6067 | TypeSourceInfo *TInfo = nullptr; | ||||
6068 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
6069 | TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc()); | ||||
6070 | } | ||||
6071 | |||||
6072 | void VisitExtIntTypeLoc(ExtIntTypeLoc TL) { | ||||
6073 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
6074 | } | ||||
6075 | |||||
6076 | void VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL) { | ||||
6077 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
6078 | } | ||||
6079 | |||||
6080 | void VisitTypeLoc(TypeLoc TL) { | ||||
6081 | // FIXME: add other typespec types and change this to an assert. | ||||
6082 | TL.initialize(Context, DS.getTypeSpecTypeLoc()); | ||||
6083 | } | ||||
6084 | }; | ||||
6085 | |||||
6086 | class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> { | ||||
6087 | ASTContext &Context; | ||||
6088 | TypeProcessingState &State; | ||||
6089 | const DeclaratorChunk &Chunk; | ||||
6090 | |||||