File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaType.cpp |
Warning: | line 960, column 13 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // This file implements type-related semantic analysis. | ||||
10 | // | ||||
11 | //===----------------------------------------------------------------------===// | ||||
12 | |||||
13 | #include "TypeLocBuilder.h" | ||||
14 | #include "clang/AST/ASTConsumer.h" | ||||
15 | #include "clang/AST/ASTContext.h" | ||||
16 | #include "clang/AST/ASTMutationListener.h" | ||||
17 | #include "clang/AST/ASTStructuralEquivalence.h" | ||||
18 | #include "clang/AST/CXXInheritance.h" | ||||
19 | #include "clang/AST/DeclObjC.h" | ||||
20 | #include "clang/AST/DeclTemplate.h" | ||||
21 | #include "clang/AST/Expr.h" | ||||
22 | #include "clang/AST/TypeLoc.h" | ||||
23 | #include "clang/AST/TypeLocVisitor.h" | ||||
24 | #include "clang/Basic/PartialDiagnostic.h" | ||||
25 | #include "clang/Basic/TargetInfo.h" | ||||
26 | #include "clang/Lex/Preprocessor.h" | ||||
27 | #include "clang/Sema/DeclSpec.h" | ||||
28 | #include "clang/Sema/DelayedDiagnostic.h" | ||||
29 | #include "clang/Sema/Lookup.h" | ||||
30 | #include "clang/Sema/ParsedTemplate.h" | ||||
31 | #include "clang/Sema/ScopeInfo.h" | ||||
32 | #include "clang/Sema/SemaInternal.h" | ||||
33 | #include "clang/Sema/Template.h" | ||||
34 | #include "clang/Sema/TemplateInstCallback.h" | ||||
35 | #include "llvm/ADT/SmallPtrSet.h" | ||||
36 | #include "llvm/ADT/SmallString.h" | ||||
37 | #include "llvm/ADT/StringSwitch.h" | ||||
38 | #include "llvm/IR/DerivedTypes.h" | ||||
39 | #include "llvm/Support/ErrorHandling.h" | ||||
40 | #include <bitset> | ||||
41 | |||||
42 | using namespace clang; | ||||
43 | |||||
44 | enum TypeDiagSelector { | ||||
45 | TDS_Function, | ||||
46 | TDS_Pointer, | ||||
47 | TDS_ObjCObjOrBlock | ||||
48 | }; | ||||
49 | |||||
50 | /// isOmittedBlockReturnType - Return true if this declarator is missing a | ||||
51 | /// return type because this is a omitted return type on a block literal. | ||||
52 | static bool isOmittedBlockReturnType(const Declarator &D) { | ||||
53 | if (D.getContext() != DeclaratorContext::BlockLiteral || | ||||
54 | D.getDeclSpec().hasTypeSpecifier()) | ||||
55 | return false; | ||||
56 | |||||
57 | if (D.getNumTypeObjects() == 0) | ||||
58 | return true; // ^{ ... } | ||||
59 | |||||
60 | if (D.getNumTypeObjects() == 1 && | ||||
61 | D.getTypeObject(0).Kind == DeclaratorChunk::Function) | ||||
62 | return true; // ^(int X, float Y) { ... } | ||||
63 | |||||
64 | return false; | ||||
65 | } | ||||
66 | |||||
67 | /// diagnoseBadTypeAttribute - Diagnoses a type attribute which | ||||
68 | /// doesn't apply to the given type. | ||||
69 | static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr, | ||||
70 | QualType type) { | ||||
71 | TypeDiagSelector WhichType; | ||||
72 | bool useExpansionLoc = true; | ||||
73 | switch (attr.getKind()) { | ||||
74 | case ParsedAttr::AT_ObjCGC: | ||||
75 | WhichType = TDS_Pointer; | ||||
76 | break; | ||||
77 | case ParsedAttr::AT_ObjCOwnership: | ||||
78 | WhichType = TDS_ObjCObjOrBlock; | ||||
79 | break; | ||||
80 | default: | ||||
81 | // Assume everything else was a function attribute. | ||||
82 | WhichType = TDS_Function; | ||||
83 | useExpansionLoc = false; | ||||
84 | break; | ||||
85 | } | ||||
86 | |||||
87 | SourceLocation loc = attr.getLoc(); | ||||
88 | StringRef name = attr.getAttrName()->getName(); | ||||
89 | |||||
90 | // The GC attributes are usually written with macros; special-case them. | ||||
91 | IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident | ||||
92 | : nullptr; | ||||
93 | if (useExpansionLoc && loc.isMacroID() && II) { | ||||
94 | if (II->isStr("strong")) { | ||||
95 | if (S.findMacroSpelling(loc, "__strong")) name = "__strong"; | ||||
96 | } else if (II->isStr("weak")) { | ||||
97 | if (S.findMacroSpelling(loc, "__weak")) name = "__weak"; | ||||
98 | } | ||||
99 | } | ||||
100 | |||||
101 | S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType | ||||
102 | << type; | ||||
103 | } | ||||
104 | |||||
105 | // objc_gc applies to Objective-C pointers or, otherwise, to the | ||||
106 | // smallest available pointer type (i.e. 'void*' in 'void**'). | ||||
107 | #define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \ | ||||
108 | case ParsedAttr::AT_ObjCGC: \ | ||||
109 | case ParsedAttr::AT_ObjCOwnership | ||||
110 | |||||
111 | // Calling convention attributes. | ||||
112 | #define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll \ | ||||
113 | case ParsedAttr::AT_CDecl: \ | ||||
114 | case ParsedAttr::AT_FastCall: \ | ||||
115 | case ParsedAttr::AT_StdCall: \ | ||||
116 | case ParsedAttr::AT_ThisCall: \ | ||||
117 | case ParsedAttr::AT_RegCall: \ | ||||
118 | case ParsedAttr::AT_Pascal: \ | ||||
119 | case ParsedAttr::AT_SwiftCall: \ | ||||
120 | case ParsedAttr::AT_SwiftAsyncCall: \ | ||||
121 | case ParsedAttr::AT_VectorCall: \ | ||||
122 | case ParsedAttr::AT_AArch64VectorPcs: \ | ||||
123 | case ParsedAttr::AT_MSABI: \ | ||||
124 | case ParsedAttr::AT_SysVABI: \ | ||||
125 | case ParsedAttr::AT_Pcs: \ | ||||
126 | case ParsedAttr::AT_IntelOclBicc: \ | ||||
127 | case ParsedAttr::AT_PreserveMost: \ | ||||
128 | case ParsedAttr::AT_PreserveAll | ||||
129 | |||||
130 | // Function type attributes. | ||||
131 | #define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll \ | ||||
132 | case ParsedAttr::AT_NSReturnsRetained: \ | ||||
133 | case ParsedAttr::AT_NoReturn: \ | ||||
134 | case ParsedAttr::AT_Regparm: \ | ||||
135 | case ParsedAttr::AT_CmseNSCall: \ | ||||
136 | case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \ | ||||
137 | case ParsedAttr::AT_AnyX86NoCfCheck: \ | ||||
138 | CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll | ||||
139 | |||||
140 | // Microsoft-specific type qualifiers. | ||||
141 | #define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr \ | ||||
142 | case ParsedAttr::AT_Ptr32: \ | ||||
143 | case ParsedAttr::AT_Ptr64: \ | ||||
144 | case ParsedAttr::AT_SPtr: \ | ||||
145 | case ParsedAttr::AT_UPtr | ||||
146 | |||||
147 | // Nullability qualifiers. | ||||
148 | #define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified \ | ||||
149 | case ParsedAttr::AT_TypeNonNull: \ | ||||
150 | case ParsedAttr::AT_TypeNullable: \ | ||||
151 | case ParsedAttr::AT_TypeNullableResult: \ | ||||
152 | case ParsedAttr::AT_TypeNullUnspecified | ||||
153 | |||||
154 | namespace { | ||||
155 | /// An object which stores processing state for the entire | ||||
156 | /// GetTypeForDeclarator process. | ||||
157 | class TypeProcessingState { | ||||
158 | Sema &sema; | ||||
159 | |||||
160 | /// The declarator being processed. | ||||
161 | Declarator &declarator; | ||||
162 | |||||
163 | /// The index of the declarator chunk we're currently processing. | ||||
164 | /// May be the total number of valid chunks, indicating the | ||||
165 | /// DeclSpec. | ||||
166 | unsigned chunkIndex; | ||||
167 | |||||
168 | /// Whether there are non-trivial modifications to the decl spec. | ||||
169 | bool trivial; | ||||
170 | |||||
171 | /// Whether we saved the attributes in the decl spec. | ||||
172 | bool hasSavedAttrs; | ||||
173 | |||||
174 | /// The original set of attributes on the DeclSpec. | ||||
175 | SmallVector<ParsedAttr *, 2> savedAttrs; | ||||
176 | |||||
177 | /// A list of attributes to diagnose the uselessness of when the | ||||
178 | /// processing is complete. | ||||
179 | SmallVector<ParsedAttr *, 2> ignoredTypeAttrs; | ||||
180 | |||||
181 | /// Attributes corresponding to AttributedTypeLocs that we have not yet | ||||
182 | /// populated. | ||||
183 | // FIXME: The two-phase mechanism by which we construct Types and fill | ||||
184 | // their TypeLocs makes it hard to correctly assign these. We keep the | ||||
185 | // attributes in creation order as an attempt to make them line up | ||||
186 | // properly. | ||||
187 | using TypeAttrPair = std::pair<const AttributedType*, const Attr*>; | ||||
188 | SmallVector<TypeAttrPair, 8> AttrsForTypes; | ||||
189 | bool AttrsForTypesSorted = true; | ||||
190 | |||||
191 | /// MacroQualifiedTypes mapping to macro expansion locations that will be | ||||
192 | /// stored in a MacroQualifiedTypeLoc. | ||||
193 | llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros; | ||||
194 | |||||
195 | /// Flag to indicate we parsed a noderef attribute. This is used for | ||||
196 | /// validating that noderef was used on a pointer or array. | ||||
197 | bool parsedNoDeref; | ||||
198 | |||||
199 | public: | ||||
200 | TypeProcessingState(Sema &sema, Declarator &declarator) | ||||
201 | : sema(sema), declarator(declarator), | ||||
202 | chunkIndex(declarator.getNumTypeObjects()), trivial(true), | ||||
203 | hasSavedAttrs(false), parsedNoDeref(false) {} | ||||
204 | |||||
205 | Sema &getSema() const { | ||||
206 | return sema; | ||||
207 | } | ||||
208 | |||||
209 | Declarator &getDeclarator() const { | ||||
210 | return declarator; | ||||
211 | } | ||||
212 | |||||
213 | bool isProcessingDeclSpec() const { | ||||
214 | return chunkIndex == declarator.getNumTypeObjects(); | ||||
215 | } | ||||
216 | |||||
217 | unsigned getCurrentChunkIndex() const { | ||||
218 | return chunkIndex; | ||||
219 | } | ||||
220 | |||||
221 | void setCurrentChunkIndex(unsigned idx) { | ||||
222 | assert(idx <= declarator.getNumTypeObjects())((void)0); | ||||
223 | chunkIndex = idx; | ||||
224 | } | ||||
225 | |||||
226 | ParsedAttributesView &getCurrentAttributes() const { | ||||
227 | if (isProcessingDeclSpec()) | ||||
228 | return getMutableDeclSpec().getAttributes(); | ||||
229 | return declarator.getTypeObject(chunkIndex).getAttrs(); | ||||
230 | } | ||||
231 | |||||
232 | /// Save the current set of attributes on the DeclSpec. | ||||
233 | void saveDeclSpecAttrs() { | ||||
234 | // Don't try to save them multiple times. | ||||
235 | if (hasSavedAttrs) return; | ||||
236 | |||||
237 | DeclSpec &spec = getMutableDeclSpec(); | ||||
238 | for (ParsedAttr &AL : spec.getAttributes()) | ||||
239 | savedAttrs.push_back(&AL); | ||||
240 | trivial &= savedAttrs.empty(); | ||||
241 | hasSavedAttrs = true; | ||||
242 | } | ||||
243 | |||||
244 | /// Record that we had nowhere to put the given type attribute. | ||||
245 | /// We will diagnose such attributes later. | ||||
246 | void addIgnoredTypeAttr(ParsedAttr &attr) { | ||||
247 | ignoredTypeAttrs.push_back(&attr); | ||||
248 | } | ||||
249 | |||||
250 | /// Diagnose all the ignored type attributes, given that the | ||||
251 | /// declarator worked out to the given type. | ||||
252 | void diagnoseIgnoredTypeAttrs(QualType type) const { | ||||
253 | for (auto *Attr : ignoredTypeAttrs) | ||||
254 | diagnoseBadTypeAttribute(getSema(), *Attr, type); | ||||
255 | } | ||||
256 | |||||
257 | /// Get an attributed type for the given attribute, and remember the Attr | ||||
258 | /// object so that we can attach it to the AttributedTypeLoc. | ||||
259 | QualType getAttributedType(Attr *A, QualType ModifiedType, | ||||
260 | QualType EquivType) { | ||||
261 | QualType T = | ||||
262 | sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType); | ||||
263 | AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A}); | ||||
264 | AttrsForTypesSorted = false; | ||||
265 | return T; | ||||
266 | } | ||||
267 | |||||
268 | /// Completely replace the \c auto in \p TypeWithAuto by | ||||
269 | /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if | ||||
270 | /// necessary. | ||||
271 | QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) { | ||||
272 | QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement); | ||||
273 | if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) { | ||||
274 | // Attributed type still should be an attributed type after replacement. | ||||
275 | auto *NewAttrTy = cast<AttributedType>(T.getTypePtr()); | ||||
276 | for (TypeAttrPair &A : AttrsForTypes) { | ||||
277 | if (A.first == AttrTy) | ||||
278 | A.first = NewAttrTy; | ||||
279 | } | ||||
280 | AttrsForTypesSorted = false; | ||||
281 | } | ||||
282 | return T; | ||||
283 | } | ||||
284 | |||||
285 | /// Extract and remove the Attr* for a given attributed type. | ||||
286 | const Attr *takeAttrForAttributedType(const AttributedType *AT) { | ||||
287 | if (!AttrsForTypesSorted) { | ||||
288 | llvm::stable_sort(AttrsForTypes, llvm::less_first()); | ||||
289 | AttrsForTypesSorted = true; | ||||
290 | } | ||||
291 | |||||
292 | // FIXME: This is quadratic if we have lots of reuses of the same | ||||
293 | // attributed type. | ||||
294 | for (auto It = std::partition_point( | ||||
295 | AttrsForTypes.begin(), AttrsForTypes.end(), | ||||
296 | [=](const TypeAttrPair &A) { return A.first < AT; }); | ||||
297 | It != AttrsForTypes.end() && It->first == AT; ++It) { | ||||
298 | if (It->second) { | ||||
299 | const Attr *Result = It->second; | ||||
300 | It->second = nullptr; | ||||
301 | return Result; | ||||
302 | } | ||||
303 | } | ||||
304 | |||||
305 | llvm_unreachable("no Attr* for AttributedType*")__builtin_unreachable(); | ||||
306 | } | ||||
307 | |||||
308 | SourceLocation | ||||
309 | getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const { | ||||
310 | auto FoundLoc = LocsForMacros.find(MQT); | ||||
311 | assert(FoundLoc != LocsForMacros.end() &&((void)0) | ||||
312 | "Unable to find macro expansion location for MacroQualifedType")((void)0); | ||||
313 | return FoundLoc->second; | ||||
314 | } | ||||
315 | |||||
316 | void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT, | ||||
317 | SourceLocation Loc) { | ||||
318 | LocsForMacros[MQT] = Loc; | ||||
319 | } | ||||
320 | |||||
321 | void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; } | ||||
322 | |||||
323 | bool didParseNoDeref() const { return parsedNoDeref; } | ||||
324 | |||||
325 | ~TypeProcessingState() { | ||||
326 | if (trivial) return; | ||||
327 | |||||
328 | restoreDeclSpecAttrs(); | ||||
329 | } | ||||
330 | |||||
331 | private: | ||||
332 | DeclSpec &getMutableDeclSpec() const { | ||||
333 | return const_cast<DeclSpec&>(declarator.getDeclSpec()); | ||||
334 | } | ||||
335 | |||||
336 | void restoreDeclSpecAttrs() { | ||||
337 | assert(hasSavedAttrs)((void)0); | ||||
338 | |||||
339 | getMutableDeclSpec().getAttributes().clearListOnly(); | ||||
340 | for (ParsedAttr *AL : savedAttrs) | ||||
341 | getMutableDeclSpec().getAttributes().addAtEnd(AL); | ||||
342 | } | ||||
343 | }; | ||||
344 | } // end anonymous namespace | ||||
345 | |||||
346 | static void moveAttrFromListToList(ParsedAttr &attr, | ||||
347 | ParsedAttributesView &fromList, | ||||
348 | ParsedAttributesView &toList) { | ||||
349 | fromList.remove(&attr); | ||||
350 | toList.addAtEnd(&attr); | ||||
351 | } | ||||
352 | |||||
353 | /// The location of a type attribute. | ||||
354 | enum TypeAttrLocation { | ||||
355 | /// The attribute is in the decl-specifier-seq. | ||||
356 | TAL_DeclSpec, | ||||
357 | /// The attribute is part of a DeclaratorChunk. | ||||
358 | TAL_DeclChunk, | ||||
359 | /// The attribute is immediately after the declaration's name. | ||||
360 | TAL_DeclName | ||||
361 | }; | ||||
362 | |||||
363 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, | ||||
364 | TypeAttrLocation TAL, ParsedAttributesView &attrs); | ||||
365 | |||||
366 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||
367 | QualType &type); | ||||
368 | |||||
369 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, | ||||
370 | ParsedAttr &attr, QualType &type); | ||||
371 | |||||
372 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||
373 | QualType &type); | ||||
374 | |||||
375 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, | ||||
376 | ParsedAttr &attr, QualType &type); | ||||
377 | |||||
378 | static bool handleObjCPointerTypeAttr(TypeProcessingState &state, | ||||
379 | ParsedAttr &attr, QualType &type) { | ||||
380 | if (attr.getKind() == ParsedAttr::AT_ObjCGC) | ||||
381 | return handleObjCGCTypeAttr(state, attr, type); | ||||
382 | assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((void)0); | ||||
383 | return handleObjCOwnershipTypeAttr(state, attr, type); | ||||
384 | } | ||||
385 | |||||
386 | /// Given the index of a declarator chunk, check whether that chunk | ||||
387 | /// directly specifies the return type of a function and, if so, find | ||||
388 | /// an appropriate place for it. | ||||
389 | /// | ||||
390 | /// \param i - a notional index which the search will start | ||||
391 | /// immediately inside | ||||
392 | /// | ||||
393 | /// \param onlyBlockPointers Whether we should only look into block | ||||
394 | /// pointer types (vs. all pointer types). | ||||
395 | static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator, | ||||
396 | unsigned i, | ||||
397 | bool onlyBlockPointers) { | ||||
398 | assert(i <= declarator.getNumTypeObjects())((void)0); | ||||
399 | |||||
400 | DeclaratorChunk *result = nullptr; | ||||
401 | |||||
402 | // First, look inwards past parens for a function declarator. | ||||
403 | for (; i != 0; --i) { | ||||
404 | DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1); | ||||
405 | switch (fnChunk.Kind) { | ||||
406 | case DeclaratorChunk::Paren: | ||||
407 | continue; | ||||
408 | |||||
409 | // If we find anything except a function, bail out. | ||||
410 | case DeclaratorChunk::Pointer: | ||||
411 | case DeclaratorChunk::BlockPointer: | ||||
412 | case DeclaratorChunk::Array: | ||||
413 | case DeclaratorChunk::Reference: | ||||
414 | case DeclaratorChunk::MemberPointer: | ||||
415 | case DeclaratorChunk::Pipe: | ||||
416 | return result; | ||||
417 | |||||
418 | // If we do find a function declarator, scan inwards from that, | ||||
419 | // looking for a (block-)pointer declarator. | ||||
420 | case DeclaratorChunk::Function: | ||||
421 | for (--i; i != 0; --i) { | ||||
422 | DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1); | ||||
423 | switch (ptrChunk.Kind) { | ||||
424 | case DeclaratorChunk::Paren: | ||||
425 | case DeclaratorChunk::Array: | ||||
426 | case DeclaratorChunk::Function: | ||||
427 | case DeclaratorChunk::Reference: | ||||
428 | case DeclaratorChunk::Pipe: | ||||
429 | continue; | ||||
430 | |||||
431 | case DeclaratorChunk::MemberPointer: | ||||
432 | case DeclaratorChunk::Pointer: | ||||
433 | if (onlyBlockPointers) | ||||
434 | continue; | ||||
435 | |||||
436 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
437 | |||||
438 | case DeclaratorChunk::BlockPointer: | ||||
439 | result = &ptrChunk; | ||||
440 | goto continue_outer; | ||||
441 | } | ||||
442 | llvm_unreachable("bad declarator chunk kind")__builtin_unreachable(); | ||||
443 | } | ||||
444 | |||||
445 | // If we run out of declarators doing that, we're done. | ||||
446 | return result; | ||||
447 | } | ||||
448 | llvm_unreachable("bad declarator chunk kind")__builtin_unreachable(); | ||||
449 | |||||
450 | // Okay, reconsider from our new point. | ||||
451 | continue_outer: ; | ||||
452 | } | ||||
453 | |||||
454 | // Ran out of chunks, bail out. | ||||
455 | return result; | ||||
456 | } | ||||
457 | |||||
458 | /// Given that an objc_gc attribute was written somewhere on a | ||||
459 | /// declaration *other* than on the declarator itself (for which, use | ||||
460 | /// distributeObjCPointerTypeAttrFromDeclarator), and given that it | ||||
461 | /// didn't apply in whatever position it was written in, try to move | ||||
462 | /// it to a more appropriate position. | ||||
463 | static void distributeObjCPointerTypeAttr(TypeProcessingState &state, | ||||
464 | ParsedAttr &attr, QualType type) { | ||||
465 | Declarator &declarator = state.getDeclarator(); | ||||
466 | |||||
467 | // Move it to the outermost normal or block pointer declarator. | ||||
468 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | ||||
469 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | ||||
470 | switch (chunk.Kind) { | ||||
471 | case DeclaratorChunk::Pointer: | ||||
472 | case DeclaratorChunk::BlockPointer: { | ||||
473 | // But don't move an ARC ownership attribute to the return type | ||||
474 | // of a block. | ||||
475 | DeclaratorChunk *destChunk = nullptr; | ||||
476 | if (state.isProcessingDeclSpec() && | ||||
477 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) | ||||
478 | destChunk = maybeMovePastReturnType(declarator, i - 1, | ||||
479 | /*onlyBlockPointers=*/true); | ||||
480 | if (!destChunk) destChunk = &chunk; | ||||
481 | |||||
482 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
483 | destChunk->getAttrs()); | ||||
484 | return; | ||||
485 | } | ||||
486 | |||||
487 | case DeclaratorChunk::Paren: | ||||
488 | case DeclaratorChunk::Array: | ||||
489 | continue; | ||||
490 | |||||
491 | // We may be starting at the return type of a block. | ||||
492 | case DeclaratorChunk::Function: | ||||
493 | if (state.isProcessingDeclSpec() && | ||||
494 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||
495 | if (DeclaratorChunk *dest = maybeMovePastReturnType( | ||||
496 | declarator, i, | ||||
497 | /*onlyBlockPointers=*/true)) { | ||||
498 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
499 | dest->getAttrs()); | ||||
500 | return; | ||||
501 | } | ||||
502 | } | ||||
503 | goto error; | ||||
504 | |||||
505 | // Don't walk through these. | ||||
506 | case DeclaratorChunk::Reference: | ||||
507 | case DeclaratorChunk::MemberPointer: | ||||
508 | case DeclaratorChunk::Pipe: | ||||
509 | goto error; | ||||
510 | } | ||||
511 | } | ||||
512 | error: | ||||
513 | |||||
514 | diagnoseBadTypeAttribute(state.getSema(), attr, type); | ||||
515 | } | ||||
516 | |||||
517 | /// Distribute an objc_gc type attribute that was written on the | ||||
518 | /// declarator. | ||||
519 | static void distributeObjCPointerTypeAttrFromDeclarator( | ||||
520 | TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) { | ||||
521 | Declarator &declarator = state.getDeclarator(); | ||||
522 | |||||
523 | // objc_gc goes on the innermost pointer to something that's not a | ||||
524 | // pointer. | ||||
525 | unsigned innermost = -1U; | ||||
526 | bool considerDeclSpec = true; | ||||
527 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||
528 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||
529 | switch (chunk.Kind) { | ||||
530 | case DeclaratorChunk::Pointer: | ||||
531 | case DeclaratorChunk::BlockPointer: | ||||
532 | innermost = i; | ||||
533 | continue; | ||||
534 | |||||
535 | case DeclaratorChunk::Reference: | ||||
536 | case DeclaratorChunk::MemberPointer: | ||||
537 | case DeclaratorChunk::Paren: | ||||
538 | case DeclaratorChunk::Array: | ||||
539 | case DeclaratorChunk::Pipe: | ||||
540 | continue; | ||||
541 | |||||
542 | case DeclaratorChunk::Function: | ||||
543 | considerDeclSpec = false; | ||||
544 | goto done; | ||||
545 | } | ||||
546 | } | ||||
547 | done: | ||||
548 | |||||
549 | // That might actually be the decl spec if we weren't blocked by | ||||
550 | // anything in the declarator. | ||||
551 | if (considerDeclSpec) { | ||||
552 | if (handleObjCPointerTypeAttr(state, attr, declSpecType)) { | ||||
553 | // Splice the attribute into the decl spec. Prevents the | ||||
554 | // attribute from being applied multiple times and gives | ||||
555 | // the source-location-filler something to work with. | ||||
556 | state.saveDeclSpecAttrs(); | ||||
557 | declarator.getMutableDeclSpec().getAttributes().takeOneFrom( | ||||
558 | declarator.getAttributes(), &attr); | ||||
559 | return; | ||||
560 | } | ||||
561 | } | ||||
562 | |||||
563 | // Otherwise, if we found an appropriate chunk, splice the attribute | ||||
564 | // into it. | ||||
565 | if (innermost != -1U) { | ||||
566 | moveAttrFromListToList(attr, declarator.getAttributes(), | ||||
567 | declarator.getTypeObject(innermost).getAttrs()); | ||||
568 | return; | ||||
569 | } | ||||
570 | |||||
571 | // Otherwise, diagnose when we're done building the type. | ||||
572 | declarator.getAttributes().remove(&attr); | ||||
573 | state.addIgnoredTypeAttr(attr); | ||||
574 | } | ||||
575 | |||||
576 | /// A function type attribute was written somewhere in a declaration | ||||
577 | /// *other* than on the declarator itself or in the decl spec. Given | ||||
578 | /// that it didn't apply in whatever position it was written in, try | ||||
579 | /// to move it to a more appropriate position. | ||||
580 | static void distributeFunctionTypeAttr(TypeProcessingState &state, | ||||
581 | ParsedAttr &attr, QualType type) { | ||||
582 | Declarator &declarator = state.getDeclarator(); | ||||
583 | |||||
584 | // Try to push the attribute from the return type of a function to | ||||
585 | // the function itself. | ||||
586 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | ||||
587 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | ||||
588 | switch (chunk.Kind) { | ||||
589 | case DeclaratorChunk::Function: | ||||
590 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
591 | chunk.getAttrs()); | ||||
592 | return; | ||||
593 | |||||
594 | case DeclaratorChunk::Paren: | ||||
595 | case DeclaratorChunk::Pointer: | ||||
596 | case DeclaratorChunk::BlockPointer: | ||||
597 | case DeclaratorChunk::Array: | ||||
598 | case DeclaratorChunk::Reference: | ||||
599 | case DeclaratorChunk::MemberPointer: | ||||
600 | case DeclaratorChunk::Pipe: | ||||
601 | continue; | ||||
602 | } | ||||
603 | } | ||||
604 | |||||
605 | diagnoseBadTypeAttribute(state.getSema(), attr, type); | ||||
606 | } | ||||
607 | |||||
608 | /// Try to distribute a function type attribute to the innermost | ||||
609 | /// function chunk or type. Returns true if the attribute was | ||||
610 | /// distributed, false if no location was found. | ||||
611 | static bool distributeFunctionTypeAttrToInnermost( | ||||
612 | TypeProcessingState &state, ParsedAttr &attr, | ||||
613 | ParsedAttributesView &attrList, QualType &declSpecType) { | ||||
614 | Declarator &declarator = state.getDeclarator(); | ||||
615 | |||||
616 | // Put it on the innermost function chunk, if there is one. | ||||
617 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||
618 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||
619 | if (chunk.Kind != DeclaratorChunk::Function) continue; | ||||
620 | |||||
621 | moveAttrFromListToList(attr, attrList, chunk.getAttrs()); | ||||
622 | return true; | ||||
623 | } | ||||
624 | |||||
625 | return handleFunctionTypeAttr(state, attr, declSpecType); | ||||
626 | } | ||||
627 | |||||
628 | /// A function type attribute was written in the decl spec. Try to | ||||
629 | /// apply it somewhere. | ||||
630 | static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, | ||||
631 | ParsedAttr &attr, | ||||
632 | QualType &declSpecType) { | ||||
633 | state.saveDeclSpecAttrs(); | ||||
634 | |||||
635 | // C++11 attributes before the decl specifiers actually appertain to | ||||
636 | // the declarators. Move them straight there. We don't support the | ||||
637 | // 'put them wherever you like' semantics we allow for GNU attributes. | ||||
638 | if (attr.isStandardAttributeSyntax()) { | ||||
639 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
640 | state.getDeclarator().getAttributes()); | ||||
641 | return; | ||||
642 | } | ||||
643 | |||||
644 | // Try to distribute to the innermost. | ||||
645 | if (distributeFunctionTypeAttrToInnermost( | ||||
646 | state, attr, state.getCurrentAttributes(), declSpecType)) | ||||
647 | return; | ||||
648 | |||||
649 | // If that failed, diagnose the bad attribute when the declarator is | ||||
650 | // fully built. | ||||
651 | state.addIgnoredTypeAttr(attr); | ||||
652 | } | ||||
653 | |||||
654 | /// A function type attribute was written on the declarator. Try to | ||||
655 | /// apply it somewhere. | ||||
656 | static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, | ||||
657 | ParsedAttr &attr, | ||||
658 | QualType &declSpecType) { | ||||
659 | Declarator &declarator = state.getDeclarator(); | ||||
660 | |||||
661 | // Try to distribute to the innermost. | ||||
662 | if (distributeFunctionTypeAttrToInnermost( | ||||
663 | state, attr, declarator.getAttributes(), declSpecType)) | ||||
664 | return; | ||||
665 | |||||
666 | // If that failed, diagnose the bad attribute when the declarator is | ||||
667 | // fully built. | ||||
668 | declarator.getAttributes().remove(&attr); | ||||
669 | state.addIgnoredTypeAttr(attr); | ||||
670 | } | ||||
671 | |||||
672 | /// Given that there are attributes written on the declarator | ||||
673 | /// itself, try to distribute any type attributes to the appropriate | ||||
674 | /// declarator chunk. | ||||
675 | /// | ||||
676 | /// These are attributes like the following: | ||||
677 | /// int f ATTR; | ||||
678 | /// int (f ATTR)(); | ||||
679 | /// but not necessarily this: | ||||
680 | /// int f() ATTR; | ||||
681 | static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, | ||||
682 | QualType &declSpecType) { | ||||
683 | // Collect all the type attributes from the declarator itself. | ||||
684 | assert(!state.getDeclarator().getAttributes().empty() &&((void)0) | ||||
685 | "declarator has no attrs!")((void)0); | ||||
686 | // The called functions in this loop actually remove things from the current | ||||
687 | // list, so iterating over the existing list isn't possible. Instead, make a | ||||
688 | // non-owning copy and iterate over that. | ||||
689 | ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()}; | ||||
690 | for (ParsedAttr &attr : AttrsCopy) { | ||||
691 | // Do not distribute [[]] attributes. They have strict rules for what | ||||
692 | // they appertain to. | ||||
693 | if (attr.isStandardAttributeSyntax()) | ||||
694 | continue; | ||||
695 | |||||
696 | switch (attr.getKind()) { | ||||
697 | OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership: | ||||
698 | distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType); | ||||
699 | break; | ||||
700 | |||||
701 | FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll: | ||||
702 | distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType); | ||||
703 | break; | ||||
704 | |||||
705 | MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr: | ||||
706 | // Microsoft type attributes cannot go after the declarator-id. | ||||
707 | continue; | ||||
708 | |||||
709 | NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified: | ||||
710 | // Nullability specifiers cannot go after the declarator-id. | ||||
711 | |||||
712 | // Objective-C __kindof does not get distributed. | ||||
713 | case ParsedAttr::AT_ObjCKindOf: | ||||
714 | continue; | ||||
715 | |||||
716 | default: | ||||
717 | break; | ||||
718 | } | ||||
719 | } | ||||
720 | } | ||||
721 | |||||
722 | /// Add a synthetic '()' to a block-literal declarator if it is | ||||
723 | /// required, given the return type. | ||||
724 | static void maybeSynthesizeBlockSignature(TypeProcessingState &state, | ||||
725 | QualType declSpecType) { | ||||
726 | Declarator &declarator = state.getDeclarator(); | ||||
727 | |||||
728 | // First, check whether the declarator would produce a function, | ||||
729 | // i.e. whether the innermost semantic chunk is a function. | ||||
730 | if (declarator.isFunctionDeclarator()) { | ||||
731 | // If so, make that declarator a prototyped declarator. | ||||
732 | declarator.getFunctionTypeInfo().hasPrototype = true; | ||||
733 | return; | ||||
734 | } | ||||
735 | |||||
736 | // If there are any type objects, the type as written won't name a | ||||
737 | // function, regardless of the decl spec type. This is because a | ||||
738 | // block signature declarator is always an abstract-declarator, and | ||||
739 | // abstract-declarators can't just be parentheses chunks. Therefore | ||||
740 | // we need to build a function chunk unless there are no type | ||||
741 | // objects and the decl spec type is a function. | ||||
742 | if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType()) | ||||
743 | return; | ||||
744 | |||||
745 | // Note that there *are* cases with invalid declarators where | ||||
746 | // declarators consist solely of parentheses. In general, these | ||||
747 | // occur only in failed efforts to make function declarators, so | ||||
748 | // faking up the function chunk is still the right thing to do. | ||||
749 | |||||
750 | // Otherwise, we need to fake up a function declarator. | ||||
751 | SourceLocation loc = declarator.getBeginLoc(); | ||||
752 | |||||
753 | // ...and *prepend* it to the declarator. | ||||
754 | SourceLocation NoLoc; | ||||
755 | declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction( | ||||
756 | /*HasProto=*/true, | ||||
757 | /*IsAmbiguous=*/false, | ||||
758 | /*LParenLoc=*/NoLoc, | ||||
759 | /*ArgInfo=*/nullptr, | ||||
760 | /*NumParams=*/0, | ||||
761 | /*EllipsisLoc=*/NoLoc, | ||||
762 | /*RParenLoc=*/NoLoc, | ||||
763 | /*RefQualifierIsLvalueRef=*/true, | ||||
764 | /*RefQualifierLoc=*/NoLoc, | ||||
765 | /*MutableLoc=*/NoLoc, EST_None, | ||||
766 | /*ESpecRange=*/SourceRange(), | ||||
767 | /*Exceptions=*/nullptr, | ||||
768 | /*ExceptionRanges=*/nullptr, | ||||
769 | /*NumExceptions=*/0, | ||||
770 | /*NoexceptExpr=*/nullptr, | ||||
771 | /*ExceptionSpecTokens=*/nullptr, | ||||
772 | /*DeclsInPrototype=*/None, loc, loc, declarator)); | ||||
773 | |||||
774 | // For consistency, make sure the state still has us as processing | ||||
775 | // the decl spec. | ||||
776 | assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((void)0); | ||||
777 | state.setCurrentChunkIndex(declarator.getNumTypeObjects()); | ||||
778 | } | ||||
779 | |||||
780 | static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, | ||||
781 | unsigned &TypeQuals, | ||||
782 | QualType TypeSoFar, | ||||
783 | unsigned RemoveTQs, | ||||
784 | unsigned DiagID) { | ||||
785 | // If this occurs outside a template instantiation, warn the user about | ||||
786 | // it; they probably didn't mean to specify a redundant qualifier. | ||||
787 | typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc; | ||||
788 | for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()), | ||||
789 | QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()), | ||||
790 | QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()), | ||||
791 | QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) { | ||||
792 | if (!(RemoveTQs & Qual.first)) | ||||
793 | continue; | ||||
794 | |||||
795 | if (!S.inTemplateInstantiation()) { | ||||
796 | if (TypeQuals & Qual.first) | ||||
797 | S.Diag(Qual.second, DiagID) | ||||
798 | << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar | ||||
799 | << FixItHint::CreateRemoval(Qual.second); | ||||
800 | } | ||||
801 | |||||
802 | TypeQuals &= ~Qual.first; | ||||
803 | } | ||||
804 | } | ||||
805 | |||||
806 | /// Return true if this is omitted block return type. Also check type | ||||
807 | /// attributes and type qualifiers when returning true. | ||||
808 | static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, | ||||
809 | QualType Result) { | ||||
810 | if (!isOmittedBlockReturnType(declarator)) | ||||
811 | return false; | ||||
812 | |||||
813 | // Warn if we see type attributes for omitted return type on a block literal. | ||||
814 | SmallVector<ParsedAttr *, 2> ToBeRemoved; | ||||
815 | for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) { | ||||
816 | if (AL.isInvalid() || !AL.isTypeAttr()) | ||||
817 | continue; | ||||
818 | S.Diag(AL.getLoc(), | ||||
819 | diag::warn_block_literal_attributes_on_omitted_return_type) | ||||
820 | << AL; | ||||
821 | ToBeRemoved.push_back(&AL); | ||||
822 | } | ||||
823 | // Remove bad attributes from the list. | ||||
824 | for (ParsedAttr *AL : ToBeRemoved) | ||||
825 | declarator.getMutableDeclSpec().getAttributes().remove(AL); | ||||
826 | |||||
827 | // Warn if we see type qualifiers for omitted return type on a block literal. | ||||
828 | const DeclSpec &DS = declarator.getDeclSpec(); | ||||
829 | unsigned TypeQuals = DS.getTypeQualifiers(); | ||||
830 | diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1, | ||||
831 | diag::warn_block_literal_qualifiers_on_omitted_return_type); | ||||
832 | declarator.getMutableDeclSpec().ClearTypeQualifiers(); | ||||
833 | |||||
834 | return true; | ||||
835 | } | ||||
836 | |||||
837 | /// Apply Objective-C type arguments to the given type. | ||||
838 | static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type, | ||||
839 | ArrayRef<TypeSourceInfo *> typeArgs, | ||||
840 | SourceRange typeArgsRange, | ||||
841 | bool failOnError = false) { | ||||
842 | // We can only apply type arguments to an Objective-C class type. | ||||
843 | const auto *objcObjectType = type->getAs<ObjCObjectType>(); | ||||
844 | if (!objcObjectType || !objcObjectType->getInterface()) { | ||||
845 | S.Diag(loc, diag::err_objc_type_args_non_class) | ||||
846 | << type | ||||
847 | << typeArgsRange; | ||||
848 | |||||
849 | if (failOnError) | ||||
850 | return QualType(); | ||||
851 | return type; | ||||
852 | } | ||||
853 | |||||
854 | // The class type must be parameterized. | ||||
855 | ObjCInterfaceDecl *objcClass = objcObjectType->getInterface(); | ||||
856 | ObjCTypeParamList *typeParams = objcClass->getTypeParamList(); | ||||
857 | if (!typeParams) { | ||||
858 | S.Diag(loc, diag::err_objc_type_args_non_parameterized_class) | ||||
859 | << objcClass->getDeclName() | ||||
860 | << FixItHint::CreateRemoval(typeArgsRange); | ||||
861 | |||||
862 | if (failOnError) | ||||
863 | return QualType(); | ||||
864 | |||||
865 | return type; | ||||
866 | } | ||||
867 | |||||
868 | // The type must not already be specialized. | ||||
869 | if (objcObjectType->isSpecialized()) { | ||||
870 | S.Diag(loc, diag::err_objc_type_args_specialized_class) | ||||
871 | << type | ||||
872 | << FixItHint::CreateRemoval(typeArgsRange); | ||||
873 | |||||
874 | if (failOnError) | ||||
875 | return QualType(); | ||||
876 | |||||
877 | return type; | ||||
878 | } | ||||
879 | |||||
880 | // Check the type arguments. | ||||
881 | SmallVector<QualType, 4> finalTypeArgs; | ||||
882 | unsigned numTypeParams = typeParams->size(); | ||||
883 | bool anyPackExpansions = false; | ||||
884 | for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) { | ||||
885 | TypeSourceInfo *typeArgInfo = typeArgs[i]; | ||||
886 | QualType typeArg = typeArgInfo->getType(); | ||||
887 | |||||
888 | // Type arguments cannot have explicit qualifiers or nullability. | ||||
889 | // We ignore indirect sources of these, e.g. behind typedefs or | ||||
890 | // template arguments. | ||||
891 | if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) { | ||||
892 | bool diagnosed = false; | ||||
893 | SourceRange rangeToRemove; | ||||
894 | if (auto attr = qual.getAs<AttributedTypeLoc>()) { | ||||
895 | rangeToRemove = attr.getLocalSourceRange(); | ||||
896 | if (attr.getTypePtr()->getImmediateNullability()) { | ||||
897 | typeArg = attr.getTypePtr()->getModifiedType(); | ||||
898 | S.Diag(attr.getBeginLoc(), | ||||
899 | diag::err_objc_type_arg_explicit_nullability) | ||||
900 | << typeArg << FixItHint::CreateRemoval(rangeToRemove); | ||||
901 | diagnosed = true; | ||||
902 | } | ||||
903 | } | ||||
904 | |||||
905 | if (!diagnosed) { | ||||
906 | S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified) | ||||
907 | << typeArg << typeArg.getQualifiers().getAsString() | ||||
908 | << FixItHint::CreateRemoval(rangeToRemove); | ||||
909 | } | ||||
910 | } | ||||
911 | |||||
912 | // Remove qualifiers even if they're non-local. | ||||
913 | typeArg = typeArg.getUnqualifiedType(); | ||||
914 | |||||
915 | finalTypeArgs.push_back(typeArg); | ||||
916 | |||||
917 | if (typeArg->getAs<PackExpansionType>()) | ||||
918 | anyPackExpansions = true; | ||||
919 | |||||
920 | // Find the corresponding type parameter, if there is one. | ||||
921 | ObjCTypeParamDecl *typeParam = nullptr; | ||||
922 | if (!anyPackExpansions
| ||||
923 | if (i < numTypeParams) { | ||||
924 | typeParam = typeParams->begin()[i]; | ||||
925 | } else { | ||||
926 | // Too many arguments. | ||||
927 | S.Diag(loc, diag::err_objc_type_args_wrong_arity) | ||||
928 | << false | ||||
929 | << objcClass->getDeclName() | ||||
930 | << (unsigned)typeArgs.size() | ||||
931 | << numTypeParams; | ||||
932 | S.Diag(objcClass->getLocation(), diag::note_previous_decl) | ||||
933 | << objcClass; | ||||
934 | |||||
935 | if (failOnError) | ||||
936 | return QualType(); | ||||
937 | |||||
938 | return type; | ||||
939 | } | ||||
940 | } | ||||
941 | |||||
942 | // Objective-C object pointer types must be substitutable for the bounds. | ||||
943 | if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) { | ||||
944 | // If we don't have a type parameter to match against, assume | ||||
945 | // everything is fine. There was a prior pack expansion that | ||||
946 | // means we won't be able to match anything. | ||||
947 | if (!typeParam) { | ||||
948 | assert(anyPackExpansions && "Too many arguments?")((void)0); | ||||
949 | continue; | ||||
950 | } | ||||
951 | |||||
952 | // Retrieve the bound. | ||||
953 | QualType bound = typeParam->getUnderlyingType(); | ||||
954 | const auto *boundObjC = bound->getAs<ObjCObjectPointerType>(); | ||||
955 | |||||
956 | // Determine whether the type argument is substitutable for the bound. | ||||
957 | if (typeArgObjC->isObjCIdType()) { | ||||
958 | // When the type argument is 'id', the only acceptable type | ||||
959 | // parameter bound is 'id'. | ||||
960 | if (boundObjC->isObjCIdType()) | ||||
| |||||
961 | continue; | ||||
962 | } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) { | ||||
963 | // Otherwise, we follow the assignability rules. | ||||
964 | continue; | ||||
965 | } | ||||
966 | |||||
967 | // Diagnose the mismatch. | ||||
968 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||
969 | diag::err_objc_type_arg_does_not_match_bound) | ||||
970 | << typeArg << bound << typeParam->getDeclName(); | ||||
971 | S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here) | ||||
972 | << typeParam->getDeclName(); | ||||
973 | |||||
974 | if (failOnError) | ||||
975 | return QualType(); | ||||
976 | |||||
977 | return type; | ||||
978 | } | ||||
979 | |||||
980 | // Block pointer types are permitted for unqualified 'id' bounds. | ||||
981 | if (typeArg->isBlockPointerType()) { | ||||
982 | // If we don't have a type parameter to match against, assume | ||||
983 | // everything is fine. There was a prior pack expansion that | ||||
984 | // means we won't be able to match anything. | ||||
985 | if (!typeParam) { | ||||
986 | assert(anyPackExpansions && "Too many arguments?")((void)0); | ||||
987 | continue; | ||||
988 | } | ||||
989 | |||||
990 | // Retrieve the bound. | ||||
991 | QualType bound = typeParam->getUnderlyingType(); | ||||
992 | if (bound->isBlockCompatibleObjCPointerType(S.Context)) | ||||
993 | continue; | ||||
994 | |||||
995 | // Diagnose the mismatch. | ||||
996 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||
997 | diag::err_objc_type_arg_does_not_match_bound) | ||||
998 | << typeArg << bound << typeParam->getDeclName(); | ||||
999 | S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here) | ||||
1000 | << typeParam->getDeclName(); | ||||
1001 | |||||
1002 | if (failOnError) | ||||
1003 | return QualType(); | ||||
1004 | |||||
1005 | return type; | ||||
1006 | } | ||||
1007 | |||||
1008 | // Dependent types will be checked at instantiation time. | ||||
1009 | if (typeArg->isDependentType()) { | ||||
1010 | continue; | ||||
1011 | } | ||||
1012 | |||||
1013 | // Diagnose non-id-compatible type arguments. | ||||
1014 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||
1015 | diag::err_objc_type_arg_not_id_compatible) | ||||
1016 | << typeArg << typeArgInfo->getTypeLoc().getSourceRange(); | ||||
1017 | |||||
1018 | if (failOnError) | ||||
1019 | return QualType(); | ||||
1020 | |||||
1021 | return type; | ||||
1022 | } | ||||
1023 | |||||
1024 | // Make sure we didn't have the wrong number of arguments. | ||||
1025 | if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) { | ||||
1026 | S.Diag(loc, diag::err_objc_type_args_wrong_arity) | ||||
1027 | << (typeArgs.size() < typeParams->size()) | ||||
1028 | << objcClass->getDeclName() | ||||
1029 | << (unsigned)finalTypeArgs.size() | ||||
1030 | << (unsigned)numTypeParams; | ||||
1031 | S.Diag(objcClass->getLocation(), diag::note_previous_decl) | ||||
1032 | << objcClass; | ||||
1033 | |||||
1034 | if (failOnError) | ||||
1035 | return QualType(); | ||||
1036 | |||||
1037 | return type; | ||||
1038 | } | ||||
1039 | |||||
1040 | // Success. Form the specialized type. | ||||
1041 | return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false); | ||||
1042 | } | ||||
1043 | |||||
1044 | QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, | ||||
1045 | SourceLocation ProtocolLAngleLoc, | ||||
1046 | ArrayRef<ObjCProtocolDecl *> Protocols, | ||||
1047 | ArrayRef<SourceLocation> ProtocolLocs, | ||||
1048 | SourceLocation ProtocolRAngleLoc, | ||||
1049 | bool FailOnError) { | ||||
1050 | QualType Result = QualType(Decl->getTypeForDecl(), 0); | ||||
1051 | if (!Protocols.empty()) { | ||||
1052 | bool HasError; | ||||
1053 | Result = Context.applyObjCProtocolQualifiers(Result, Protocols, | ||||
1054 | HasError); | ||||
1055 | if (HasError) { | ||||
1056 | Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers) | ||||
1057 | << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc); | ||||
1058 | if (FailOnError) Result = QualType(); | ||||
1059 | } | ||||
1060 | if (FailOnError && Result.isNull()) | ||||
1061 | return QualType(); | ||||
1062 | } | ||||
1063 | |||||
1064 | return Result; | ||||
1065 | } | ||||
1066 | |||||
1067 | QualType Sema::BuildObjCObjectType(QualType BaseType, | ||||
1068 | SourceLocation Loc, | ||||
1069 | SourceLocation TypeArgsLAngleLoc, | ||||
1070 | ArrayRef<TypeSourceInfo *> TypeArgs, | ||||
1071 | SourceLocation TypeArgsRAngleLoc, | ||||
1072 | SourceLocation ProtocolLAngleLoc, | ||||
1073 | ArrayRef<ObjCProtocolDecl *> Protocols, | ||||
1074 | ArrayRef<SourceLocation> ProtocolLocs, | ||||
1075 | SourceLocation ProtocolRAngleLoc, | ||||
1076 | bool FailOnError) { | ||||
1077 | QualType Result = BaseType; | ||||
1078 | if (!TypeArgs.empty()) { | ||||
1079 | Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs, | ||||
1080 | SourceRange(TypeArgsLAngleLoc, | ||||
1081 | TypeArgsRAngleLoc), | ||||
1082 | FailOnError); | ||||
1083 | if (FailOnError && Result.isNull()) | ||||
1084 | return QualType(); | ||||
1085 | } | ||||
1086 | |||||
1087 | if (!Protocols.empty()) { | ||||
1088 | bool HasError; | ||||
1089 | Result = Context.applyObjCProtocolQualifiers(Result, Protocols, | ||||
1090 | HasError); | ||||
1091 | if (HasError) { | ||||
1092 | Diag(Loc, diag::err_invalid_protocol_qualifiers) | ||||
1093 | << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc); | ||||
1094 | if (FailOnError) Result = QualType(); | ||||
1095 | } | ||||
1096 | if (FailOnError && Result.isNull()) | ||||
1097 | return QualType(); | ||||
1098 | } | ||||
1099 | |||||
1100 | return Result; | ||||
1101 | } | ||||
1102 | |||||
1103 | TypeResult Sema::actOnObjCProtocolQualifierType( | ||||
1104 | SourceLocation lAngleLoc, | ||||
1105 | ArrayRef<Decl *> protocols, | ||||
1106 | ArrayRef<SourceLocation> protocolLocs, | ||||
1107 | SourceLocation rAngleLoc) { | ||||
1108 | // Form id<protocol-list>. | ||||
1109 | QualType Result = Context.getObjCObjectType( | ||||
1110 | Context.ObjCBuiltinIdTy, { }, | ||||
1111 | llvm::makeArrayRef( | ||||
1112 | (ObjCProtocolDecl * const *)protocols.data(), | ||||
1113 | protocols.size()), | ||||
1114 | false); | ||||
1115 | Result = Context.getObjCObjectPointerType(Result); | ||||
1116 | |||||
1117 | TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result); | ||||
1118 | TypeLoc ResultTL = ResultTInfo->getTypeLoc(); | ||||
1119 | |||||
1120 | auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>(); | ||||
1121 | ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit | ||||
1122 | |||||
1123 | auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc() | ||||
1124 | .castAs<ObjCObjectTypeLoc>(); | ||||
1125 | ObjCObjectTL.setHasBaseTypeAsWritten(false); | ||||
1126 | ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation()); | ||||
1127 | |||||
1128 | // No type arguments. | ||||
1129 | ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation()); | ||||
1130 | ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation()); | ||||
1131 | |||||
1132 | // Fill in protocol qualifiers. | ||||
1133 | ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc); | ||||
1134 | ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc); | ||||
1135 | for (unsigned i = 0, n = protocols.size(); i != n; ++i) | ||||
1136 | ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]); | ||||
1137 | |||||
1138 | // We're done. Return the completed type to the parser. | ||||
1139 | return CreateParsedType(Result, ResultTInfo); | ||||
1140 | } | ||||
1141 | |||||
1142 | TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers( | ||||
1143 | Scope *S, | ||||
1144 | SourceLocation Loc, | ||||
1145 | ParsedType BaseType, | ||||
1146 | SourceLocation TypeArgsLAngleLoc, | ||||
1147 | ArrayRef<ParsedType> TypeArgs, | ||||
1148 | SourceLocation TypeArgsRAngleLoc, | ||||
1149 | SourceLocation ProtocolLAngleLoc, | ||||
1150 | ArrayRef<Decl *> Protocols, | ||||
1151 | ArrayRef<SourceLocation> ProtocolLocs, | ||||
1152 | SourceLocation ProtocolRAngleLoc) { | ||||
1153 | TypeSourceInfo *BaseTypeInfo = nullptr; | ||||
1154 | QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo); | ||||
1155 | if (T.isNull()) | ||||
| |||||
1156 | return true; | ||||
1157 | |||||
1158 | // Handle missing type-source info. | ||||
1159 | if (!BaseTypeInfo
| ||||
1160 | BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc); | ||||
1161 | |||||
1162 | // Extract type arguments. | ||||
1163 | SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos; | ||||
1164 | for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) { | ||||
1165 | TypeSourceInfo *TypeArgInfo = nullptr; | ||||
1166 | QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo); | ||||
1167 | if (TypeArg.isNull()) { | ||||
1168 | ActualTypeArgInfos.clear(); | ||||
1169 | break; | ||||
1170 | } | ||||
1171 | |||||
1172 | assert(TypeArgInfo && "No type source info?")((void)0); | ||||
1173 | ActualTypeArgInfos.push_back(TypeArgInfo); | ||||
1174 | } | ||||
1175 | |||||
1176 | // Build the object type. | ||||
1177 | QualType Result = BuildObjCObjectType( | ||||
1178 | T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(), | ||||
1179 | TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc, | ||||
1180 | ProtocolLAngleLoc, | ||||
1181 | llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(), | ||||
1182 | Protocols.size()), | ||||
1183 | ProtocolLocs, ProtocolRAngleLoc, | ||||
1184 | /*FailOnError=*/false); | ||||
1185 | |||||
1186 | if (Result == T) | ||||
1187 | return BaseType; | ||||
1188 | |||||
1189 | // Create source information for this type. | ||||
1190 | TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result); | ||||
1191 | TypeLoc ResultTL = ResultTInfo->getTypeLoc(); | ||||
1192 | |||||
1193 | // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an | ||||
1194 | // object pointer type. Fill in source information for it. | ||||
1195 | if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) { | ||||
1196 | // The '*' is implicit. | ||||
1197 | ObjCObjectPointerTL.setStarLoc(SourceLocation()); | ||||
1198 | ResultTL = ObjCObjectPointerTL.getPointeeLoc(); | ||||
1199 | } | ||||
1200 | |||||
1201 | if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) { | ||||
1202 | // Protocol qualifier information. | ||||
1203 | if (OTPTL.getNumProtocols() > 0) { | ||||
1204 | assert(OTPTL.getNumProtocols() == Protocols.size())((void)0); | ||||
1205 | OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc); | ||||
1206 | OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc); | ||||
1207 | for (unsigned i = 0, n = Protocols.size(); i != n; ++i) | ||||
1208 | OTPTL.setProtocolLoc(i, ProtocolLocs[i]); | ||||
1209 | } | ||||
1210 | |||||
1211 | // We're done. Return the completed type to the parser. | ||||
1212 | return CreateParsedType(Result, ResultTInfo); | ||||
1213 | } | ||||
1214 | |||||
1215 | auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>(); | ||||
1216 | |||||
1217 | // Type argument information. | ||||
1218 | if (ObjCObjectTL.getNumTypeArgs() > 0) { | ||||
1219 | assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((void)0); | ||||
1220 | ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc); | ||||
1221 | ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc); | ||||
1222 | for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i) | ||||
1223 | ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]); | ||||
1224 | } else { | ||||
1225 | ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation()); | ||||
1226 | ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation()); | ||||
1227 | } | ||||
1228 | |||||
1229 | // Protocol qualifier information. | ||||
1230 | if (ObjCObjectTL.getNumProtocols() > 0) { | ||||
1231 | assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((void)0); | ||||
1232 | ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc); | ||||
1233 | ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc); | ||||
1234 | for (unsigned i = 0, n = Protocols.size(); i != n; ++i) | ||||
1235 | ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]); | ||||
1236 | } else { | ||||
1237 | ObjCObjectTL.setProtocolLAngleLoc(SourceLocation()); | ||||
1238 | ObjCObjectTL.setProtocolRAngleLoc(SourceLocation()); | ||||
1239 | } | ||||
1240 | |||||
1241 | // Base type. | ||||
1242 | ObjCObjectTL.setHasBaseTypeAsWritten(true); | ||||
1243 | if (ObjCObjectTL.getType() == T) | ||||
1244 | ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc()); | ||||
1245 | else | ||||
1246 | ObjCObjectTL.getBaseLoc().initialize(Context, Loc); | ||||
1247 | |||||
1248 | // We're done. Return the completed type to the parser. | ||||
1249 | return CreateParsedType(Result, ResultTInfo); | ||||
1250 | } | ||||
1251 | |||||
1252 | static OpenCLAccessAttr::Spelling | ||||
1253 | getImageAccess(const ParsedAttributesView &Attrs) { | ||||
1254 | for (const ParsedAttr &AL : Attrs) | ||||
1255 | if (AL.getKind() == ParsedAttr::AT_OpenCLAccess) | ||||
1256 | return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling()); | ||||
1257 | return OpenCLAccessAttr::Keyword_read_only; | ||||
1258 | } | ||||
1259 | |||||
1260 | /// Convert the specified declspec to the appropriate type | ||||
1261 | /// object. | ||||
1262 | /// \param state Specifies the declarator containing the declaration specifier | ||||
1263 | /// to be converted, along with other associated processing state. | ||||
1264 | /// \returns The type described by the declaration specifiers. This function | ||||
1265 | /// never returns null. | ||||
1266 | static QualType ConvertDeclSpecToType(TypeProcessingState &state) { | ||||
1267 | // FIXME: Should move the logic from DeclSpec::Finish to here for validity | ||||
1268 | // checking. | ||||
1269 | |||||
1270 | Sema &S = state.getSema(); | ||||
1271 | Declarator &declarator = state.getDeclarator(); | ||||
1272 | DeclSpec &DS = declarator.getMutableDeclSpec(); | ||||
1273 | SourceLocation DeclLoc = declarator.getIdentifierLoc(); | ||||
1274 | if (DeclLoc.isInvalid()) | ||||
1275 | DeclLoc = DS.getBeginLoc(); | ||||
1276 | |||||
1277 | ASTContext &Context = S.Context; | ||||
1278 | |||||
1279 | QualType Result; | ||||
1280 | switch (DS.getTypeSpecType()) { | ||||
1281 | case DeclSpec::TST_void: | ||||
1282 | Result = Context.VoidTy; | ||||
1283 | break; | ||||
1284 | case DeclSpec::TST_char: | ||||
1285 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) | ||||
1286 | Result = Context.CharTy; | ||||
1287 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) | ||||
1288 | Result = Context.SignedCharTy; | ||||
1289 | else { | ||||
1290 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((void)0) | ||||
1291 | "Unknown TSS value")((void)0); | ||||
1292 | Result = Context.UnsignedCharTy; | ||||
1293 | } | ||||
1294 | break; | ||||
1295 | case DeclSpec::TST_wchar: | ||||
1296 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) | ||||
1297 | Result = Context.WCharTy; | ||||
1298 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) { | ||||
1299 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) | ||||
1300 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||
1301 | Context.getPrintingPolicy()); | ||||
1302 | Result = Context.getSignedWCharType(); | ||||
1303 | } else { | ||||
1304 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((void)0) | ||||
1305 | "Unknown TSS value")((void)0); | ||||
1306 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) | ||||
1307 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||
1308 | Context.getPrintingPolicy()); | ||||
1309 | Result = Context.getUnsignedWCharType(); | ||||
1310 | } | ||||
1311 | break; | ||||
1312 | case DeclSpec::TST_char8: | ||||
1313 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1314 | "Unknown TSS value")((void)0); | ||||
1315 | Result = Context.Char8Ty; | ||||
1316 | break; | ||||
1317 | case DeclSpec::TST_char16: | ||||
1318 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1319 | "Unknown TSS value")((void)0); | ||||
1320 | Result = Context.Char16Ty; | ||||
1321 | break; | ||||
1322 | case DeclSpec::TST_char32: | ||||
1323 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1324 | "Unknown TSS value")((void)0); | ||||
1325 | Result = Context.Char32Ty; | ||||
1326 | break; | ||||
1327 | case DeclSpec::TST_unspecified: | ||||
1328 | // If this is a missing declspec in a block literal return context, then it | ||||
1329 | // is inferred from the return statements inside the block. | ||||
1330 | // The declspec is always missing in a lambda expr context; it is either | ||||
1331 | // specified with a trailing return type or inferred. | ||||
1332 | if (S.getLangOpts().CPlusPlus14 && | ||||
1333 | declarator.getContext() == DeclaratorContext::LambdaExpr) { | ||||
1334 | // In C++1y, a lambda's implicit return type is 'auto'. | ||||
1335 | Result = Context.getAutoDeductType(); | ||||
1336 | break; | ||||
1337 | } else if (declarator.getContext() == DeclaratorContext::LambdaExpr || | ||||
1338 | checkOmittedBlockReturnType(S, declarator, | ||||
1339 | Context.DependentTy)) { | ||||
1340 | Result = Context.DependentTy; | ||||
1341 | break; | ||||
1342 | } | ||||
1343 | |||||
1344 | // Unspecified typespec defaults to int in C90. However, the C90 grammar | ||||
1345 | // [C90 6.5] only allows a decl-spec if there was *some* type-specifier, | ||||
1346 | // type-qualifier, or storage-class-specifier. If not, emit an extwarn. | ||||
1347 | // Note that the one exception to this is function definitions, which are | ||||
1348 | // allowed to be completely missing a declspec. This is handled in the | ||||
1349 | // parser already though by it pretending to have seen an 'int' in this | ||||
1350 | // case. | ||||
1351 | if (S.getLangOpts().ImplicitInt) { | ||||
1352 | // In C89 mode, we only warn if there is a completely missing declspec | ||||
1353 | // when one is not allowed. | ||||
1354 | if (DS.isEmpty()) { | ||||
1355 | S.Diag(DeclLoc, diag::ext_missing_declspec) | ||||
1356 | << DS.getSourceRange() | ||||
1357 | << FixItHint::CreateInsertion(DS.getBeginLoc(), "int"); | ||||
1358 | } | ||||
1359 | } else if (!DS.hasTypeSpecifier()) { | ||||
1360 | // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says: | ||||
1361 | // "At least one type specifier shall be given in the declaration | ||||
1362 | // specifiers in each declaration, and in the specifier-qualifier list in | ||||
1363 | // each struct declaration and type name." | ||||
1364 | if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) { | ||||
1365 | S.Diag(DeclLoc, diag::err_missing_type_specifier) | ||||
1366 | << DS.getSourceRange(); | ||||
1367 | |||||
1368 | // When this occurs in C++ code, often something is very broken with the | ||||
1369 | // value being declared, poison it as invalid so we don't get chains of | ||||
1370 | // errors. | ||||
1371 | declarator.setInvalidType(true); | ||||
1372 | } else if ((S.getLangOpts().OpenCLVersion >= 200 || | ||||
1373 | S.getLangOpts().OpenCLCPlusPlus) && | ||||
1374 | DS.isTypeSpecPipe()) { | ||||
1375 | S.Diag(DeclLoc, diag::err_missing_actual_pipe_type) | ||||
1376 | << DS.getSourceRange(); | ||||
1377 | declarator.setInvalidType(true); | ||||
1378 | } else { | ||||
1379 | S.Diag(DeclLoc, diag::ext_missing_type_specifier) | ||||
1380 | << DS.getSourceRange(); | ||||
1381 | } | ||||
1382 | } | ||||
1383 | |||||
1384 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
1385 | case DeclSpec::TST_int: { | ||||
1386 | if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) { | ||||
1387 | switch (DS.getTypeSpecWidth()) { | ||||
1388 | case TypeSpecifierWidth::Unspecified: | ||||
1389 | Result = Context.IntTy; | ||||
1390 | break; | ||||
1391 | case TypeSpecifierWidth::Short: | ||||
1392 | Result = Context.ShortTy; | ||||
1393 | break; | ||||
1394 | case TypeSpecifierWidth::Long: | ||||
1395 | Result = Context.LongTy; | ||||
1396 | break; | ||||
1397 | case TypeSpecifierWidth::LongLong: | ||||
1398 | Result = Context.LongLongTy; | ||||
1399 | |||||
1400 | // 'long long' is a C99 or C++11 feature. | ||||
1401 | if (!S.getLangOpts().C99) { | ||||
1402 | if (S.getLangOpts().CPlusPlus) | ||||
1403 | S.Diag(DS.getTypeSpecWidthLoc(), | ||||
1404 | S.getLangOpts().CPlusPlus11 ? | ||||
1405 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | ||||
1406 | else | ||||
1407 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); | ||||
1408 | } | ||||
1409 | break; | ||||
1410 | } | ||||
1411 | } else { | ||||
1412 | switch (DS.getTypeSpecWidth()) { | ||||
1413 | case TypeSpecifierWidth::Unspecified: | ||||
1414 | Result = Context.UnsignedIntTy; | ||||
1415 | break; | ||||
1416 | case TypeSpecifierWidth::Short: | ||||
1417 | Result = Context.UnsignedShortTy; | ||||
1418 | break; | ||||
1419 | case TypeSpecifierWidth::Long: | ||||
1420 | Result = Context.UnsignedLongTy; | ||||
1421 | break; | ||||
1422 | case TypeSpecifierWidth::LongLong: | ||||
1423 | Result = Context.UnsignedLongLongTy; | ||||
1424 | |||||
1425 | // 'long long' is a C99 or C++11 feature. | ||||
1426 | if (!S.getLangOpts().C99) { | ||||
1427 | if (S.getLangOpts().CPlusPlus) | ||||
1428 | S.Diag(DS.getTypeSpecWidthLoc(), | ||||
1429 | S.getLangOpts().CPlusPlus11 ? | ||||
1430 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | ||||
1431 | else | ||||
1432 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); | ||||
1433 | } | ||||
1434 | break; | ||||
1435 | } | ||||
1436 | } | ||||
1437 | break; | ||||
1438 | } | ||||
1439 | case DeclSpec::TST_extint: { | ||||
1440 | if (!S.Context.getTargetInfo().hasExtIntType()) | ||||
1441 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1442 | << "_ExtInt"; | ||||
1443 | Result = | ||||
1444 | S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned, | ||||
1445 | DS.getRepAsExpr(), DS.getBeginLoc()); | ||||
1446 | if (Result.isNull()) { | ||||
1447 | Result = Context.IntTy; | ||||
1448 | declarator.setInvalidType(true); | ||||
1449 | } | ||||
1450 | break; | ||||
1451 | } | ||||
1452 | case DeclSpec::TST_accum: { | ||||
1453 | switch (DS.getTypeSpecWidth()) { | ||||
1454 | case TypeSpecifierWidth::Short: | ||||
1455 | Result = Context.ShortAccumTy; | ||||
1456 | break; | ||||
1457 | case TypeSpecifierWidth::Unspecified: | ||||
1458 | Result = Context.AccumTy; | ||||
1459 | break; | ||||
1460 | case TypeSpecifierWidth::Long: | ||||
1461 | Result = Context.LongAccumTy; | ||||
1462 | break; | ||||
1463 | case TypeSpecifierWidth::LongLong: | ||||
1464 | llvm_unreachable("Unable to specify long long as _Accum width")__builtin_unreachable(); | ||||
1465 | } | ||||
1466 | |||||
1467 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||
1468 | Result = Context.getCorrespondingUnsignedType(Result); | ||||
1469 | |||||
1470 | if (DS.isTypeSpecSat()) | ||||
1471 | Result = Context.getCorrespondingSaturatedType(Result); | ||||
1472 | |||||
1473 | break; | ||||
1474 | } | ||||
1475 | case DeclSpec::TST_fract: { | ||||
1476 | switch (DS.getTypeSpecWidth()) { | ||||
1477 | case TypeSpecifierWidth::Short: | ||||
1478 | Result = Context.ShortFractTy; | ||||
1479 | break; | ||||
1480 | case TypeSpecifierWidth::Unspecified: | ||||
1481 | Result = Context.FractTy; | ||||
1482 | break; | ||||
1483 | case TypeSpecifierWidth::Long: | ||||
1484 | Result = Context.LongFractTy; | ||||
1485 | break; | ||||
1486 | case TypeSpecifierWidth::LongLong: | ||||
1487 | llvm_unreachable("Unable to specify long long as _Fract width")__builtin_unreachable(); | ||||
1488 | } | ||||
1489 | |||||
1490 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||
1491 | Result = Context.getCorrespondingUnsignedType(Result); | ||||
1492 | |||||
1493 | if (DS.isTypeSpecSat()) | ||||
1494 | Result = Context.getCorrespondingSaturatedType(Result); | ||||
1495 | |||||
1496 | break; | ||||
1497 | } | ||||
1498 | case DeclSpec::TST_int128: | ||||
1499 | if (!S.Context.getTargetInfo().hasInt128Type() && | ||||
1500 | !S.getLangOpts().SYCLIsDevice && | ||||
1501 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||
1502 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1503 | << "__int128"; | ||||
1504 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||
1505 | Result = Context.UnsignedInt128Ty; | ||||
1506 | else | ||||
1507 | Result = Context.Int128Ty; | ||||
1508 | break; | ||||
1509 | case DeclSpec::TST_float16: | ||||
1510 | // CUDA host and device may have different _Float16 support, therefore | ||||
1511 | // do not diagnose _Float16 usage to avoid false alarm. | ||||
1512 | // ToDo: more precise diagnostics for CUDA. | ||||
1513 | if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA && | ||||
1514 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||
1515 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1516 | << "_Float16"; | ||||
1517 | Result = Context.Float16Ty; | ||||
1518 | break; | ||||
1519 | case DeclSpec::TST_half: Result = Context.HalfTy; break; | ||||
1520 | case DeclSpec::TST_BFloat16: | ||||
1521 | if (!S.Context.getTargetInfo().hasBFloat16Type()) | ||||
1522 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1523 | << "__bf16"; | ||||
1524 | Result = Context.BFloat16Ty; | ||||
1525 | break; | ||||
1526 | case DeclSpec::TST_float: Result = Context.FloatTy; break; | ||||
1527 | case DeclSpec::TST_double: | ||||
1528 | if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long) | ||||
1529 | Result = Context.LongDoubleTy; | ||||
1530 | else | ||||
1531 | Result = Context.DoubleTy; | ||||
1532 | if (S.getLangOpts().OpenCL) { | ||||
1533 | if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts())) | ||||
1534 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||
1535 | << 0 << Result | ||||
1536 | << (S.getLangOpts().OpenCLVersion == 300 | ||||
1537 | ? "cl_khr_fp64 and __opencl_c_fp64" | ||||
1538 | : "cl_khr_fp64"); | ||||
1539 | else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts())) | ||||
1540 | S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma); | ||||
1541 | } | ||||
1542 | break; | ||||
1543 | case DeclSpec::TST_float128: | ||||
1544 | if (!S.Context.getTargetInfo().hasFloat128Type() && | ||||
1545 | !S.getLangOpts().SYCLIsDevice && | ||||
1546 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||
1547 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||
1548 | << "__float128"; | ||||
1549 | Result = Context.Float128Ty; | ||||
1550 | break; | ||||
1551 | case DeclSpec::TST_bool: | ||||
1552 | Result = Context.BoolTy; // _Bool or bool | ||||
1553 | break; | ||||
1554 | case DeclSpec::TST_decimal32: // _Decimal32 | ||||
1555 | case DeclSpec::TST_decimal64: // _Decimal64 | ||||
1556 | case DeclSpec::TST_decimal128: // _Decimal128 | ||||
1557 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported); | ||||
1558 | Result = Context.IntTy; | ||||
1559 | declarator.setInvalidType(true); | ||||
1560 | break; | ||||
1561 | case DeclSpec::TST_class: | ||||
1562 | case DeclSpec::TST_enum: | ||||
1563 | case DeclSpec::TST_union: | ||||
1564 | case DeclSpec::TST_struct: | ||||
1565 | case DeclSpec::TST_interface: { | ||||
1566 | TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()); | ||||
1567 | if (!D) { | ||||
1568 | // This can happen in C++ with ambiguous lookups. | ||||
1569 | Result = Context.IntTy; | ||||
1570 | declarator.setInvalidType(true); | ||||
1571 | break; | ||||
1572 | } | ||||
1573 | |||||
1574 | // If the type is deprecated or unavailable, diagnose it. | ||||
1575 | S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc()); | ||||
1576 | |||||
1577 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((void)0) | ||||
1578 | DS.getTypeSpecComplex() == 0 &&((void)0) | ||||
1579 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1580 | "No qualifiers on tag names!")((void)0); | ||||
1581 | |||||
1582 | // TypeQuals handled by caller. | ||||
1583 | Result = Context.getTypeDeclType(D); | ||||
1584 | |||||
1585 | // In both C and C++, make an ElaboratedType. | ||||
1586 | ElaboratedTypeKeyword Keyword | ||||
1587 | = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType()); | ||||
1588 | Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result, | ||||
1589 | DS.isTypeSpecOwned() ? D : nullptr); | ||||
1590 | break; | ||||
1591 | } | ||||
1592 | case DeclSpec::TST_typename: { | ||||
1593 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((void)0) | ||||
1594 | DS.getTypeSpecComplex() == 0 &&((void)0) | ||||
1595 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||
1596 | "Can't handle qualifiers on typedef names yet!")((void)0); | ||||
1597 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||
1598 | if (Result.isNull()) { | ||||
1599 | declarator.setInvalidType(true); | ||||
1600 | } | ||||
1601 | |||||
1602 | // TypeQuals handled by caller. | ||||
1603 | break; | ||||
1604 | } | ||||
1605 | case DeclSpec::TST_typeofType: | ||||
1606 | // FIXME: Preserve type source info. | ||||
1607 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||
1608 | assert(!Result.isNull() && "Didn't get a type for typeof?")((void)0); | ||||
1609 | if (!Result->isDependentType()) | ||||
1610 | if (const TagType *TT = Result->getAs<TagType>()) | ||||
1611 | S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc()); | ||||
1612 | // TypeQuals handled by caller. | ||||
1613 | Result = Context.getTypeOfType(Result); | ||||
1614 | break; | ||||
1615 | case DeclSpec::TST_typeofExpr: { | ||||
1616 | Expr *E = DS.getRepAsExpr(); | ||||
1617 | assert(E && "Didn't get an expression for typeof?")((void)0); | ||||
1618 | // TypeQuals handled by caller. | ||||
1619 | Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc()); | ||||
1620 | if (Result.isNull()) { | ||||
1621 | Result = Context.IntTy; | ||||
1622 | declarator.setInvalidType(true); | ||||
1623 | } | ||||
1624 | break; | ||||
1625 | } | ||||
1626 | case DeclSpec::TST_decltype: { | ||||
1627 | Expr *E = DS.getRepAsExpr(); | ||||
1628 | assert(E && "Didn't get an expression for decltype?")((void)0); | ||||
1629 | // TypeQuals handled by caller. | ||||
1630 | Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc()); | ||||
1631 | if (Result.isNull()) { | ||||
1632 | Result = Context.IntTy; | ||||
1633 | declarator.setInvalidType(true); | ||||
1634 | } | ||||
1635 | break; | ||||
1636 | } | ||||
1637 | case DeclSpec::TST_underlyingType: | ||||
1638 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||
1639 | assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((void)0); | ||||
1640 | Result = S.BuildUnaryTransformType(Result, | ||||
1641 | UnaryTransformType::EnumUnderlyingType, | ||||
1642 | DS.getTypeSpecTypeLoc()); | ||||
1643 | if (Result.isNull()) { | ||||
1644 | Result = Context.IntTy; | ||||
1645 | declarator.setInvalidType(true); | ||||
1646 | } | ||||
1647 | break; | ||||
1648 | |||||
1649 | case DeclSpec::TST_auto: | ||||
1650 | case DeclSpec::TST_decltype_auto: { | ||||
1651 | auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto | ||||
1652 | ? AutoTypeKeyword::DecltypeAuto | ||||
1653 | : AutoTypeKeyword::Auto; | ||||
1654 | |||||
1655 | ConceptDecl *TypeConstraintConcept = nullptr; | ||||
1656 | llvm::SmallVector<TemplateArgument, 8> TemplateArgs; | ||||
1657 | if (DS.isConstrainedAuto()) { | ||||
1658 | if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) { | ||||
1659 | TypeConstraintConcept = | ||||
1660 | cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()); | ||||
1661 | TemplateArgumentListInfo TemplateArgsInfo; | ||||
1662 | TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc); | ||||
1663 | TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc); | ||||
1664 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||
1665 | TemplateId->NumArgs); | ||||
1666 | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||
1667 | for (const auto &ArgLoc : TemplateArgsInfo.arguments()) | ||||
1668 | TemplateArgs.push_back(ArgLoc.getArgument()); | ||||
1669 | } else { | ||||
1670 | declarator.setInvalidType(true); | ||||
1671 | } | ||||
1672 | } | ||||
1673 | Result = S.Context.getAutoType(QualType(), AutoKW, | ||||
1674 | /*IsDependent*/ false, /*IsPack=*/false, | ||||
1675 | TypeConstraintConcept, TemplateArgs); | ||||
1676 | break; | ||||
1677 | } | ||||
1678 | |||||
1679 | case DeclSpec::TST_auto_type: | ||||
1680 | Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false); | ||||
1681 | break; | ||||
1682 | |||||
1683 | case DeclSpec::TST_unknown_anytype: | ||||
1684 | Result = Context.UnknownAnyTy; | ||||
1685 | break; | ||||
1686 | |||||
1687 | case DeclSpec::TST_atomic: | ||||
1688 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||
1689 | assert(!Result.isNull() && "Didn't get a type for _Atomic?")((void)0); | ||||
1690 | Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc()); | ||||
1691 | if (Result.isNull()) { | ||||
1692 | Result = Context.IntTy; | ||||
1693 | declarator.setInvalidType(true); | ||||
1694 | } | ||||
1695 | break; | ||||
1696 | |||||
1697 | #define GENERIC_IMAGE_TYPE(ImgType, Id) \ | ||||
1698 | case DeclSpec::TST_##ImgType##_t: \ | ||||
1699 | switch (getImageAccess(DS.getAttributes())) { \ | ||||
1700 | case OpenCLAccessAttr::Keyword_write_only: \ | ||||
1701 | Result = Context.Id##WOTy; \ | ||||
1702 | break; \ | ||||
1703 | case OpenCLAccessAttr::Keyword_read_write: \ | ||||
1704 | Result = Context.Id##RWTy; \ | ||||
1705 | break; \ | ||||
1706 | case OpenCLAccessAttr::Keyword_read_only: \ | ||||
1707 | Result = Context.Id##ROTy; \ | ||||
1708 | break; \ | ||||
1709 | case OpenCLAccessAttr::SpellingNotCalculated: \ | ||||
1710 | llvm_unreachable("Spelling not yet calculated")__builtin_unreachable(); \ | ||||
1711 | } \ | ||||
1712 | break; | ||||
1713 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
1714 | |||||
1715 | case DeclSpec::TST_error: | ||||
1716 | Result = Context.IntTy; | ||||
1717 | declarator.setInvalidType(true); | ||||
1718 | break; | ||||
1719 | } | ||||
1720 | |||||
1721 | // FIXME: we want resulting declarations to be marked invalid, but claiming | ||||
1722 | // the type is invalid is too strong - e.g. it causes ActOnTypeName to return | ||||
1723 | // a null type. | ||||
1724 | if (Result->containsErrors()) | ||||
1725 | declarator.setInvalidType(); | ||||
1726 | |||||
1727 | if (S.getLangOpts().OpenCL) { | ||||
1728 | const auto &OpenCLOptions = S.getOpenCLOptions(); | ||||
1729 | bool IsOpenCLC30 = (S.getLangOpts().OpenCLVersion == 300); | ||||
1730 | // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images | ||||
1731 | // support. | ||||
1732 | // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support | ||||
1733 | // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the | ||||
1734 | // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices | ||||
1735 | // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and | ||||
1736 | // only when the optional feature is supported | ||||
1737 | if ((Result->isImageType() || Result->isSamplerT()) && | ||||
1738 | (IsOpenCLC30 && | ||||
1739 | !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) { | ||||
1740 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||
1741 | << 0 << Result << "__opencl_c_images"; | ||||
1742 | declarator.setInvalidType(); | ||||
1743 | } else if (Result->isOCLImage3dWOType() && | ||||
1744 | !OpenCLOptions.isSupported("cl_khr_3d_image_writes", | ||||
1745 | S.getLangOpts())) { | ||||
1746 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||
1747 | << 0 << Result | ||||
1748 | << (IsOpenCLC30 | ||||
1749 | ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes" | ||||
1750 | : "cl_khr_3d_image_writes"); | ||||
1751 | declarator.setInvalidType(); | ||||
1752 | } | ||||
1753 | } | ||||
1754 | |||||
1755 | bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum || | ||||
1756 | DS.getTypeSpecType() == DeclSpec::TST_fract; | ||||
1757 | |||||
1758 | // Only fixed point types can be saturated | ||||
1759 | if (DS.isTypeSpecSat() && !IsFixedPointType) | ||||
1760 | S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec) | ||||
1761 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||
1762 | Context.getPrintingPolicy()); | ||||
1763 | |||||
1764 | // Handle complex types. | ||||
1765 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) { | ||||
1766 | if (S.getLangOpts().Freestanding) | ||||
1767 | S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex); | ||||
1768 | Result = Context.getComplexType(Result); | ||||
1769 | } else if (DS.isTypeAltiVecVector()) { | ||||
1770 | unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result)); | ||||
1771 | assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((void)0); | ||||
1772 | VectorType::VectorKind VecKind = VectorType::AltiVecVector; | ||||
1773 | if (DS.isTypeAltiVecPixel()) | ||||
1774 | VecKind = VectorType::AltiVecPixel; | ||||
1775 | else if (DS.isTypeAltiVecBool()) | ||||
1776 | VecKind = VectorType::AltiVecBool; | ||||
1777 | Result = Context.getVectorType(Result, 128/typeSize, VecKind); | ||||
1778 | } | ||||
1779 | |||||
1780 | // FIXME: Imaginary. | ||||
1781 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary) | ||||
1782 | S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported); | ||||
1783 | |||||
1784 | // Before we process any type attributes, synthesize a block literal | ||||
1785 | // function declarator if necessary. | ||||
1786 | if (declarator.getContext() == DeclaratorContext::BlockLiteral) | ||||
1787 | maybeSynthesizeBlockSignature(state, Result); | ||||
1788 | |||||
1789 | // Apply any type attributes from the decl spec. This may cause the | ||||
1790 | // list of type attributes to be temporarily saved while the type | ||||
1791 | // attributes are pushed around. | ||||
1792 | // pipe attributes will be handled later ( at GetFullTypeForDeclarator ) | ||||
1793 | if (!DS.isTypeSpecPipe()) | ||||
1794 | processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes()); | ||||
1795 | |||||
1796 | // Apply const/volatile/restrict qualifiers to T. | ||||
1797 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { | ||||
1798 | // Warn about CV qualifiers on function types. | ||||
1799 | // C99 6.7.3p8: | ||||
1800 | // If the specification of a function type includes any type qualifiers, | ||||
1801 | // the behavior is undefined. | ||||
1802 | // C++11 [dcl.fct]p7: | ||||
1803 | // The effect of a cv-qualifier-seq in a function declarator is not the | ||||
1804 | // same as adding cv-qualification on top of the function type. In the | ||||
1805 | // latter case, the cv-qualifiers are ignored. | ||||
1806 | if (Result->isFunctionType()) { | ||||
1807 | diagnoseAndRemoveTypeQualifiers( | ||||
1808 | S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile, | ||||
1809 | S.getLangOpts().CPlusPlus | ||||
1810 | ? diag::warn_typecheck_function_qualifiers_ignored | ||||
1811 | : diag::warn_typecheck_function_qualifiers_unspecified); | ||||
1812 | // No diagnostic for 'restrict' or '_Atomic' applied to a | ||||
1813 | // function type; we'll diagnose those later, in BuildQualifiedType. | ||||
1814 | } | ||||
1815 | |||||
1816 | // C++11 [dcl.ref]p1: | ||||
1817 | // Cv-qualified references are ill-formed except when the | ||||
1818 | // cv-qualifiers are introduced through the use of a typedef-name | ||||
1819 | // or decltype-specifier, in which case the cv-qualifiers are ignored. | ||||
1820 | // | ||||
1821 | // There don't appear to be any other contexts in which a cv-qualified | ||||
1822 | // reference type could be formed, so the 'ill-formed' clause here appears | ||||
1823 | // to never happen. | ||||
1824 | if (TypeQuals && Result->isReferenceType()) { | ||||
1825 | diagnoseAndRemoveTypeQualifiers( | ||||
1826 | S, DS, TypeQuals, Result, | ||||
1827 | DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic, | ||||
1828 | diag::warn_typecheck_reference_qualifiers); | ||||
1829 | } | ||||
1830 | |||||
1831 | // C90 6.5.3 constraints: "The same type qualifier shall not appear more | ||||
1832 | // than once in the same specifier-list or qualifier-list, either directly | ||||
1833 | // or via one or more typedefs." | ||||
1834 | if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus | ||||
1835 | && TypeQuals & Result.getCVRQualifiers()) { | ||||
1836 | if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) { | ||||
1837 | S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec) | ||||
1838 | << "const"; | ||||
1839 | } | ||||
1840 | |||||
1841 | if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) { | ||||
1842 | S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec) | ||||
1843 | << "volatile"; | ||||
1844 | } | ||||
1845 | |||||
1846 | // C90 doesn't have restrict nor _Atomic, so it doesn't force us to | ||||
1847 | // produce a warning in this case. | ||||
1848 | } | ||||
1849 | |||||
1850 | QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS); | ||||
1851 | |||||
1852 | // If adding qualifiers fails, just use the unqualified type. | ||||
1853 | if (Qualified.isNull()) | ||||
1854 | declarator.setInvalidType(true); | ||||
1855 | else | ||||
1856 | Result = Qualified; | ||||
1857 | } | ||||
1858 | |||||
1859 | assert(!Result.isNull() && "This function should not return a null type")((void)0); | ||||
1860 | return Result; | ||||
1861 | } | ||||
1862 | |||||
1863 | static std::string getPrintableNameForEntity(DeclarationName Entity) { | ||||
1864 | if (Entity) | ||||
1865 | return Entity.getAsString(); | ||||
1866 | |||||
1867 | return "type name"; | ||||
1868 | } | ||||
1869 | |||||
1870 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, | ||||
1871 | Qualifiers Qs, const DeclSpec *DS) { | ||||
1872 | if (T.isNull()) | ||||
1873 | return QualType(); | ||||
1874 | |||||
1875 | // Ignore any attempt to form a cv-qualified reference. | ||||
1876 | if (T->isReferenceType()) { | ||||
1877 | Qs.removeConst(); | ||||
1878 | Qs.removeVolatile(); | ||||
1879 | } | ||||
1880 | |||||
1881 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from | ||||
1882 | // object or incomplete types shall not be restrict-qualified." | ||||
1883 | if (Qs.hasRestrict()) { | ||||
1884 | unsigned DiagID = 0; | ||||
1885 | QualType ProblemTy; | ||||
1886 | |||||
1887 | if (T->isAnyPointerType() || T->isReferenceType() || | ||||
1888 | T->isMemberPointerType()) { | ||||
1889 | QualType EltTy; | ||||
1890 | if (T->isObjCObjectPointerType()) | ||||
1891 | EltTy = T; | ||||
1892 | else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>()) | ||||
1893 | EltTy = PTy->getPointeeType(); | ||||
1894 | else | ||||
1895 | EltTy = T->getPointeeType(); | ||||
1896 | |||||
1897 | // If we have a pointer or reference, the pointee must have an object | ||||
1898 | // incomplete type. | ||||
1899 | if (!EltTy->isIncompleteOrObjectType()) { | ||||
1900 | DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee; | ||||
1901 | ProblemTy = EltTy; | ||||
1902 | } | ||||
1903 | } else if (!T->isDependentType()) { | ||||
1904 | DiagID = diag::err_typecheck_invalid_restrict_not_pointer; | ||||
1905 | ProblemTy = T; | ||||
1906 | } | ||||
1907 | |||||
1908 | if (DiagID) { | ||||
1909 | Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy; | ||||
1910 | Qs.removeRestrict(); | ||||
1911 | } | ||||
1912 | } | ||||
1913 | |||||
1914 | return Context.getQualifiedType(T, Qs); | ||||
1915 | } | ||||
1916 | |||||
1917 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, | ||||
1918 | unsigned CVRAU, const DeclSpec *DS) { | ||||
1919 | if (T.isNull()) | ||||
1920 | return QualType(); | ||||
1921 | |||||
1922 | // Ignore any attempt to form a cv-qualified reference. | ||||
1923 | if (T->isReferenceType()) | ||||
1924 | CVRAU &= | ||||
1925 | ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic); | ||||
1926 | |||||
1927 | // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and | ||||
1928 | // TQ_unaligned; | ||||
1929 | unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned); | ||||
1930 | |||||
1931 | // C11 6.7.3/5: | ||||
1932 | // If the same qualifier appears more than once in the same | ||||
1933 | // specifier-qualifier-list, either directly or via one or more typedefs, | ||||
1934 | // the behavior is the same as if it appeared only once. | ||||
1935 | // | ||||
1936 | // It's not specified what happens when the _Atomic qualifier is applied to | ||||
1937 | // a type specified with the _Atomic specifier, but we assume that this | ||||
1938 | // should be treated as if the _Atomic qualifier appeared multiple times. | ||||
1939 | if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) { | ||||
1940 | // C11 6.7.3/5: | ||||
1941 | // If other qualifiers appear along with the _Atomic qualifier in a | ||||
1942 | // specifier-qualifier-list, the resulting type is the so-qualified | ||||
1943 | // atomic type. | ||||
1944 | // | ||||
1945 | // Don't need to worry about array types here, since _Atomic can't be | ||||
1946 | // applied to such types. | ||||
1947 | SplitQualType Split = T.getSplitUnqualifiedType(); | ||||
1948 | T = BuildAtomicType(QualType(Split.Ty, 0), | ||||
1949 | DS ? DS->getAtomicSpecLoc() : Loc); | ||||
1950 | if (T.isNull()) | ||||
1951 | return T; | ||||
1952 | Split.Quals.addCVRQualifiers(CVR); | ||||
1953 | return BuildQualifiedType(T, Loc, Split.Quals); | ||||
1954 | } | ||||
1955 | |||||
1956 | Qualifiers Q = Qualifiers::fromCVRMask(CVR); | ||||
1957 | Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned); | ||||
1958 | return BuildQualifiedType(T, Loc, Q, DS); | ||||
1959 | } | ||||
1960 | |||||
1961 | /// Build a paren type including \p T. | ||||
1962 | QualType Sema::BuildParenType(QualType T) { | ||||
1963 | return Context.getParenType(T); | ||||
1964 | } | ||||
1965 | |||||
1966 | /// Given that we're building a pointer or reference to the given | ||||
1967 | static QualType inferARCLifetimeForPointee(Sema &S, QualType type, | ||||
1968 | SourceLocation loc, | ||||
1969 | bool isReference) { | ||||
1970 | // Bail out if retention is unrequired or already specified. | ||||
1971 | if (!type->isObjCLifetimeType() || | ||||
1972 | type.getObjCLifetime() != Qualifiers::OCL_None) | ||||
1973 | return type; | ||||
1974 | |||||
1975 | Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None; | ||||
1976 | |||||
1977 | // If the object type is const-qualified, we can safely use | ||||
1978 | // __unsafe_unretained. This is safe (because there are no read | ||||
1979 | // barriers), and it'll be safe to coerce anything but __weak* to | ||||
1980 | // the resulting type. | ||||
1981 | if (type.isConstQualified()) { | ||||
1982 | implicitLifetime = Qualifiers::OCL_ExplicitNone; | ||||
1983 | |||||
1984 | // Otherwise, check whether the static type does not require | ||||
1985 | // retaining. This currently only triggers for Class (possibly | ||||
1986 | // protocol-qualifed, and arrays thereof). | ||||
1987 | } else if (type->isObjCARCImplicitlyUnretainedType()) { | ||||
1988 | implicitLifetime = Qualifiers::OCL_ExplicitNone; | ||||
1989 | |||||
1990 | // If we are in an unevaluated context, like sizeof, skip adding a | ||||
1991 | // qualification. | ||||
1992 | } else if (S.isUnevaluatedContext()) { | ||||
1993 | return type; | ||||
1994 | |||||
1995 | // If that failed, give an error and recover using __strong. __strong | ||||
1996 | // is the option most likely to prevent spurious second-order diagnostics, | ||||
1997 | // like when binding a reference to a field. | ||||
1998 | } else { | ||||
1999 | // These types can show up in private ivars in system headers, so | ||||
2000 | // we need this to not be an error in those cases. Instead we | ||||
2001 | // want to delay. | ||||
2002 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | ||||
2003 | S.DelayedDiagnostics.add( | ||||
2004 | sema::DelayedDiagnostic::makeForbiddenType(loc, | ||||
2005 | diag::err_arc_indirect_no_ownership, type, isReference)); | ||||
2006 | } else { | ||||
2007 | S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference; | ||||
2008 | } | ||||
2009 | implicitLifetime = Qualifiers::OCL_Strong; | ||||
2010 | } | ||||
2011 | assert(implicitLifetime && "didn't infer any lifetime!")((void)0); | ||||
2012 | |||||
2013 | Qualifiers qs; | ||||
2014 | qs.addObjCLifetime(implicitLifetime); | ||||
2015 | return S.Context.getQualifiedType(type, qs); | ||||
2016 | } | ||||
2017 | |||||
2018 | static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){ | ||||
2019 | std::string Quals = FnTy->getMethodQuals().getAsString(); | ||||
2020 | |||||
2021 | switch (FnTy->getRefQualifier()) { | ||||
2022 | case RQ_None: | ||||
2023 | break; | ||||
2024 | |||||
2025 | case RQ_LValue: | ||||
2026 | if (!Quals.empty()) | ||||
2027 | Quals += ' '; | ||||
2028 | Quals += '&'; | ||||
2029 | break; | ||||
2030 | |||||
2031 | case RQ_RValue: | ||||
2032 | if (!Quals.empty()) | ||||
2033 | Quals += ' '; | ||||
2034 | Quals += "&&"; | ||||
2035 | break; | ||||
2036 | } | ||||
2037 | |||||
2038 | return Quals; | ||||
2039 | } | ||||
2040 | |||||
2041 | namespace { | ||||
2042 | /// Kinds of declarator that cannot contain a qualified function type. | ||||
2043 | /// | ||||
2044 | /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: | ||||
2045 | /// a function type with a cv-qualifier or a ref-qualifier can only appear | ||||
2046 | /// at the topmost level of a type. | ||||
2047 | /// | ||||
2048 | /// Parens and member pointers are permitted. We don't diagnose array and | ||||
2049 | /// function declarators, because they don't allow function types at all. | ||||
2050 | /// | ||||
2051 | /// The values of this enum are used in diagnostics. | ||||
2052 | enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference }; | ||||
2053 | } // end anonymous namespace | ||||
2054 | |||||
2055 | /// Check whether the type T is a qualified function type, and if it is, | ||||
2056 | /// diagnose that it cannot be contained within the given kind of declarator. | ||||
2057 | static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, | ||||
2058 | QualifiedFunctionKind QFK) { | ||||
2059 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? | ||||
2060 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); | ||||
2061 | if (!FPT || | ||||
2062 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) | ||||
2063 | return false; | ||||
2064 | |||||
2065 | S.Diag(Loc, diag::err_compound_qualified_function_type) | ||||
2066 | << QFK << isa<FunctionType>(T.IgnoreParens()) << T | ||||
2067 | << getFunctionQualifiersAsString(FPT); | ||||
2068 | return true; | ||||
2069 | } | ||||
2070 | |||||
2071 | bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) { | ||||
2072 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); | ||||
2073 | if (!FPT || | ||||
2074 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) | ||||
2075 | return false; | ||||
2076 | |||||
2077 | Diag(Loc, diag::err_qualified_function_typeid) | ||||
2078 | << T << getFunctionQualifiersAsString(FPT); | ||||
2079 | return true; | ||||
2080 | } | ||||
2081 | |||||
2082 | // Helper to deduce addr space of a pointee type in OpenCL mode. | ||||
2083 | static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) { | ||||
2084 | if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() && | ||||
2085 | !PointeeType->isSamplerT() && | ||||
2086 | !PointeeType.hasAddressSpace()) | ||||
2087 | PointeeType = S.getASTContext().getAddrSpaceQualType( | ||||
2088 | PointeeType, S.getLangOpts().OpenCLGenericAddressSpace | ||||
2089 | ? LangAS::opencl_generic | ||||
2090 | : LangAS::opencl_private); | ||||
2091 | return PointeeType; | ||||
2092 | } | ||||
2093 | |||||
2094 | /// Build a pointer type. | ||||
2095 | /// | ||||
2096 | /// \param T The type to which we'll be building a pointer. | ||||
2097 | /// | ||||
2098 | /// \param Loc The location of the entity whose type involves this | ||||
2099 | /// pointer type or, if there is no such entity, the location of the | ||||
2100 | /// type that will have pointer type. | ||||
2101 | /// | ||||
2102 | /// \param Entity The name of the entity that involves the pointer | ||||
2103 | /// type, if known. | ||||
2104 | /// | ||||
2105 | /// \returns A suitable pointer type, if there are no | ||||
2106 | /// errors. Otherwise, returns a NULL type. | ||||
2107 | QualType Sema::BuildPointerType(QualType T, | ||||
2108 | SourceLocation Loc, DeclarationName Entity) { | ||||
2109 | if (T->isReferenceType()) { | ||||
2110 | // C++ 8.3.2p4: There shall be no ... pointers to references ... | ||||
2111 | Diag(Loc, diag::err_illegal_decl_pointer_to_reference) | ||||
2112 | << getPrintableNameForEntity(Entity) << T; | ||||
2113 | return QualType(); | ||||
2114 | } | ||||
2115 | |||||
2116 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||
2117 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||
2118 | getLangOpts())) { | ||||
2119 | Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0; | ||||
2120 | return QualType(); | ||||
2121 | } | ||||
2122 | |||||
2123 | if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer)) | ||||
2124 | return QualType(); | ||||
2125 | |||||
2126 | assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((void)0); | ||||
2127 | |||||
2128 | // In ARC, it is forbidden to build pointers to unqualified pointers. | ||||
2129 | if (getLangOpts().ObjCAutoRefCount) | ||||
2130 | T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false); | ||||
2131 | |||||
2132 | if (getLangOpts().OpenCL) | ||||
2133 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||
2134 | |||||
2135 | // Build the pointer type. | ||||
2136 | return Context.getPointerType(T); | ||||
2137 | } | ||||
2138 | |||||
2139 | /// Build a reference type. | ||||
2140 | /// | ||||
2141 | /// \param T The type to which we'll be building a reference. | ||||
2142 | /// | ||||
2143 | /// \param Loc The location of the entity whose type involves this | ||||
2144 | /// reference type or, if there is no such entity, the location of the | ||||
2145 | /// type that will have reference type. | ||||
2146 | /// | ||||
2147 | /// \param Entity The name of the entity that involves the reference | ||||
2148 | /// type, if known. | ||||
2149 | /// | ||||
2150 | /// \returns A suitable reference type, if there are no | ||||
2151 | /// errors. Otherwise, returns a NULL type. | ||||
2152 | QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue, | ||||
2153 | SourceLocation Loc, | ||||
2154 | DeclarationName Entity) { | ||||
2155 | assert(Context.getCanonicalType(T) != Context.OverloadTy &&((void)0) | ||||
2156 | "Unresolved overloaded function type")((void)0); | ||||
2157 | |||||
2158 | // C++0x [dcl.ref]p6: | ||||
2159 | // If a typedef (7.1.3), a type template-parameter (14.3.1), or a | ||||
2160 | // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a | ||||
2161 | // type T, an attempt to create the type "lvalue reference to cv TR" creates | ||||
2162 | // the type "lvalue reference to T", while an attempt to create the type | ||||
2163 | // "rvalue reference to cv TR" creates the type TR. | ||||
2164 | bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>(); | ||||
2165 | |||||
2166 | // C++ [dcl.ref]p4: There shall be no references to references. | ||||
2167 | // | ||||
2168 | // According to C++ DR 106, references to references are only | ||||
2169 | // diagnosed when they are written directly (e.g., "int & &"), | ||||
2170 | // but not when they happen via a typedef: | ||||
2171 | // | ||||
2172 | // typedef int& intref; | ||||
2173 | // typedef intref& intref2; | ||||
2174 | // | ||||
2175 | // Parser::ParseDeclaratorInternal diagnoses the case where | ||||
2176 | // references are written directly; here, we handle the | ||||
2177 | // collapsing of references-to-references as described in C++0x. | ||||
2178 | // DR 106 and 540 introduce reference-collapsing into C++98/03. | ||||
2179 | |||||
2180 | // C++ [dcl.ref]p1: | ||||
2181 | // A declarator that specifies the type "reference to cv void" | ||||
2182 | // is ill-formed. | ||||
2183 | if (T->isVoidType()) { | ||||
2184 | Diag(Loc, diag::err_reference_to_void); | ||||
2185 | return QualType(); | ||||
2186 | } | ||||
2187 | |||||
2188 | if (checkQualifiedFunction(*this, T, Loc, QFK_Reference)) | ||||
2189 | return QualType(); | ||||
2190 | |||||
2191 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||
2192 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||
2193 | getLangOpts())) { | ||||
2194 | Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1; | ||||
2195 | return QualType(); | ||||
2196 | } | ||||
2197 | |||||
2198 | // In ARC, it is forbidden to build references to unqualified pointers. | ||||
2199 | if (getLangOpts().ObjCAutoRefCount) | ||||
2200 | T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true); | ||||
2201 | |||||
2202 | if (getLangOpts().OpenCL) | ||||
2203 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||
2204 | |||||
2205 | // Handle restrict on references. | ||||
2206 | if (LValueRef) | ||||
2207 | return Context.getLValueReferenceType(T, SpelledAsLValue); | ||||
2208 | return Context.getRValueReferenceType(T); | ||||
2209 | } | ||||
2210 | |||||
2211 | /// Build a Read-only Pipe type. | ||||
2212 | /// | ||||
2213 | /// \param T The type to which we'll be building a Pipe. | ||||
2214 | /// | ||||
2215 | /// \param Loc We do not use it for now. | ||||
2216 | /// | ||||
2217 | /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a | ||||
2218 | /// NULL type. | ||||
2219 | QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) { | ||||
2220 | return Context.getReadPipeType(T); | ||||
2221 | } | ||||
2222 | |||||
2223 | /// Build a Write-only Pipe type. | ||||
2224 | /// | ||||
2225 | /// \param T The type to which we'll be building a Pipe. | ||||
2226 | /// | ||||
2227 | /// \param Loc We do not use it for now. | ||||
2228 | /// | ||||
2229 | /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a | ||||
2230 | /// NULL type. | ||||
2231 | QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) { | ||||
2232 | return Context.getWritePipeType(T); | ||||
2233 | } | ||||
2234 | |||||
2235 | /// Build a extended int type. | ||||
2236 | /// | ||||
2237 | /// \param IsUnsigned Boolean representing the signedness of the type. | ||||
2238 | /// | ||||
2239 | /// \param BitWidth Size of this int type in bits, or an expression representing | ||||
2240 | /// that. | ||||
2241 | /// | ||||
2242 | /// \param Loc Location of the keyword. | ||||
2243 | QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth, | ||||
2244 | SourceLocation Loc) { | ||||
2245 | if (BitWidth->isInstantiationDependent()) | ||||
2246 | return Context.getDependentExtIntType(IsUnsigned, BitWidth); | ||||
2247 | |||||
2248 | llvm::APSInt Bits(32); | ||||
2249 | ExprResult ICE = | ||||
2250 | VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold); | ||||
2251 | |||||
2252 | if (ICE.isInvalid()) | ||||
2253 | return QualType(); | ||||
2254 | |||||
2255 | int64_t NumBits = Bits.getSExtValue(); | ||||
2256 | if (!IsUnsigned && NumBits < 2) { | ||||
2257 | Diag(Loc, diag::err_ext_int_bad_size) << 0; | ||||
2258 | return QualType(); | ||||
2259 | } | ||||
2260 | |||||
2261 | if (IsUnsigned && NumBits < 1) { | ||||
2262 | Diag(Loc, diag::err_ext_int_bad_size) << 1; | ||||
2263 | return QualType(); | ||||
2264 | } | ||||
2265 | |||||
2266 | if (NumBits > llvm::IntegerType::MAX_INT_BITS) { | ||||
2267 | Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned | ||||
2268 | << llvm::IntegerType::MAX_INT_BITS; | ||||
2269 | return QualType(); | ||||
2270 | } | ||||
2271 | |||||
2272 | return Context.getExtIntType(IsUnsigned, NumBits); | ||||
2273 | } | ||||
2274 | |||||
2275 | /// Check whether the specified array bound can be evaluated using the relevant | ||||
2276 | /// language rules. If so, returns the possibly-converted expression and sets | ||||
2277 | /// SizeVal to the size. If not, but the expression might be a VLA bound, | ||||
2278 | /// returns ExprResult(). Otherwise, produces a diagnostic and returns | ||||
2279 | /// ExprError(). | ||||
2280 | static ExprResult checkArraySize(Sema &S, Expr *&ArraySize, | ||||
2281 | llvm::APSInt &SizeVal, unsigned VLADiag, | ||||
2282 | bool VLAIsError) { | ||||
2283 | if (S.getLangOpts().CPlusPlus14 && | ||||
2284 | (VLAIsError || | ||||
2285 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) { | ||||
2286 | // C++14 [dcl.array]p1: | ||||
2287 | // The constant-expression shall be a converted constant expression of | ||||
2288 | // type std::size_t. | ||||
2289 | // | ||||
2290 | // Don't apply this rule if we might be forming a VLA: in that case, we | ||||
2291 | // allow non-constant expressions and constant-folding. We only need to use | ||||
2292 | // the converted constant expression rules (to properly convert the source) | ||||
2293 | // when the source expression is of class type. | ||||
2294 | return S.CheckConvertedConstantExpression( | ||||
2295 | ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound); | ||||
2296 | } | ||||
2297 | |||||
2298 | // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode | ||||
2299 | // (like gnu99, but not c99) accept any evaluatable value as an extension. | ||||
2300 | class VLADiagnoser : public Sema::VerifyICEDiagnoser { | ||||
2301 | public: | ||||
2302 | unsigned VLADiag; | ||||
2303 | bool VLAIsError; | ||||
2304 | bool IsVLA = false; | ||||
2305 | |||||
2306 | VLADiagnoser(unsigned VLADiag, bool VLAIsError) | ||||
2307 | : VLADiag(VLADiag), VLAIsError(VLAIsError) {} | ||||
2308 | |||||
2309 | Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, | ||||
2310 | QualType T) override { | ||||
2311 | return S.Diag(Loc, diag::err_array_size_non_int) << T; | ||||
2312 | } | ||||
2313 | |||||
2314 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, | ||||
2315 | SourceLocation Loc) override { | ||||
2316 | IsVLA = !VLAIsError; | ||||
2317 | return S.Diag(Loc, VLADiag); | ||||
2318 | } | ||||
2319 | |||||
2320 | Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S, | ||||
2321 | SourceLocation Loc) override { | ||||
2322 | return S.Diag(Loc, diag::ext_vla_folded_to_constant); | ||||
2323 | } | ||||
2324 | } Diagnoser(VLADiag, VLAIsError); | ||||
2325 | |||||
2326 | ExprResult R = | ||||
2327 | S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser); | ||||
2328 | if (Diagnoser.IsVLA) | ||||
2329 | return ExprResult(); | ||||
2330 | return R; | ||||
2331 | } | ||||
2332 | |||||
2333 | /// Build an array type. | ||||
2334 | /// | ||||
2335 | /// \param T The type of each element in the array. | ||||
2336 | /// | ||||
2337 | /// \param ASM C99 array size modifier (e.g., '*', 'static'). | ||||
2338 | /// | ||||
2339 | /// \param ArraySize Expression describing the size of the array. | ||||
2340 | /// | ||||
2341 | /// \param Brackets The range from the opening '[' to the closing ']'. | ||||
2342 | /// | ||||
2343 | /// \param Entity The name of the entity that involves the array | ||||
2344 | /// type, if known. | ||||
2345 | /// | ||||
2346 | /// \returns A suitable array type, if there are no errors. Otherwise, | ||||
2347 | /// returns a NULL type. | ||||
2348 | QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, | ||||
2349 | Expr *ArraySize, unsigned Quals, | ||||
2350 | SourceRange Brackets, DeclarationName Entity) { | ||||
2351 | |||||
2352 | SourceLocation Loc = Brackets.getBegin(); | ||||
2353 | if (getLangOpts().CPlusPlus) { | ||||
2354 | // C++ [dcl.array]p1: | ||||
2355 | // T is called the array element type; this type shall not be a reference | ||||
2356 | // type, the (possibly cv-qualified) type void, a function type or an | ||||
2357 | // abstract class type. | ||||
2358 | // | ||||
2359 | // C++ [dcl.array]p3: | ||||
2360 | // When several "array of" specifications are adjacent, [...] only the | ||||
2361 | // first of the constant expressions that specify the bounds of the arrays | ||||
2362 | // may be omitted. | ||||
2363 | // | ||||
2364 | // Note: function types are handled in the common path with C. | ||||
2365 | if (T->isReferenceType()) { | ||||
2366 | Diag(Loc, diag::err_illegal_decl_array_of_references) | ||||
2367 | << getPrintableNameForEntity(Entity) << T; | ||||
2368 | return QualType(); | ||||
2369 | } | ||||
2370 | |||||
2371 | if (T->isVoidType() || T->isIncompleteArrayType()) { | ||||
2372 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T; | ||||
2373 | return QualType(); | ||||
2374 | } | ||||
2375 | |||||
2376 | if (RequireNonAbstractType(Brackets.getBegin(), T, | ||||
2377 | diag::err_array_of_abstract_type)) | ||||
2378 | return QualType(); | ||||
2379 | |||||
2380 | // Mentioning a member pointer type for an array type causes us to lock in | ||||
2381 | // an inheritance model, even if it's inside an unused typedef. | ||||
2382 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | ||||
2383 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) | ||||
2384 | if (!MPTy->getClass()->isDependentType()) | ||||
2385 | (void)isCompleteType(Loc, T); | ||||
2386 | |||||
2387 | } else { | ||||
2388 | // C99 6.7.5.2p1: If the element type is an incomplete or function type, | ||||
2389 | // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]()) | ||||
2390 | if (RequireCompleteSizedType(Loc, T, | ||||
2391 | diag::err_array_incomplete_or_sizeless_type)) | ||||
2392 | return QualType(); | ||||
2393 | } | ||||
2394 | |||||
2395 | if (T->isSizelessType()) { | ||||
2396 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T; | ||||
2397 | return QualType(); | ||||
2398 | } | ||||
2399 | |||||
2400 | if (T->isFunctionType()) { | ||||
2401 | Diag(Loc, diag::err_illegal_decl_array_of_functions) | ||||
2402 | << getPrintableNameForEntity(Entity) << T; | ||||
2403 | return QualType(); | ||||
2404 | } | ||||
2405 | |||||
2406 | if (const RecordType *EltTy = T->getAs<RecordType>()) { | ||||
2407 | // If the element type is a struct or union that contains a variadic | ||||
2408 | // array, accept it as a GNU extension: C99 6.7.2.1p2. | ||||
2409 | if (EltTy->getDecl()->hasFlexibleArrayMember()) | ||||
2410 | Diag(Loc, diag::ext_flexible_array_in_array) << T; | ||||
2411 | } else if (T->isObjCObjectType()) { | ||||
2412 | Diag(Loc, diag::err_objc_array_of_interfaces) << T; | ||||
2413 | return QualType(); | ||||
2414 | } | ||||
2415 | |||||
2416 | // Do placeholder conversions on the array size expression. | ||||
2417 | if (ArraySize && ArraySize->hasPlaceholderType()) { | ||||
2418 | ExprResult Result = CheckPlaceholderExpr(ArraySize); | ||||
2419 | if (Result.isInvalid()) return QualType(); | ||||
2420 | ArraySize = Result.get(); | ||||
2421 | } | ||||
2422 | |||||
2423 | // Do lvalue-to-rvalue conversions on the array size expression. | ||||
2424 | if (ArraySize && !ArraySize->isPRValue()) { | ||||
2425 | ExprResult Result = DefaultLvalueConversion(ArraySize); | ||||
2426 | if (Result.isInvalid()) | ||||
2427 | return QualType(); | ||||
2428 | |||||
2429 | ArraySize = Result.get(); | ||||
2430 | } | ||||
2431 | |||||
2432 | // C99 6.7.5.2p1: The size expression shall have integer type. | ||||
2433 | // C++11 allows contextual conversions to such types. | ||||
2434 | if (!getLangOpts().CPlusPlus11 && | ||||
2435 | ArraySize && !ArraySize->isTypeDependent() && | ||||
2436 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) { | ||||
2437 | Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int) | ||||
2438 | << ArraySize->getType() << ArraySize->getSourceRange(); | ||||
2439 | return QualType(); | ||||
2440 | } | ||||
2441 | |||||
2442 | // VLAs always produce at least a -Wvla diagnostic, sometimes an error. | ||||
2443 | unsigned VLADiag; | ||||
2444 | bool VLAIsError; | ||||
2445 | if (getLangOpts().OpenCL) { | ||||
2446 | // OpenCL v1.2 s6.9.d: variable length arrays are not supported. | ||||
2447 | VLADiag = diag::err_opencl_vla; | ||||
2448 | VLAIsError = true; | ||||
2449 | } else if (getLangOpts().C99) { | ||||
2450 | VLADiag = diag::warn_vla_used; | ||||
2451 | VLAIsError = false; | ||||
2452 | } else if (isSFINAEContext()) { | ||||
2453 | VLADiag = diag::err_vla_in_sfinae; | ||||
2454 | VLAIsError = true; | ||||
2455 | } else { | ||||
2456 | VLADiag = diag::ext_vla; | ||||
2457 | VLAIsError = false; | ||||
2458 | } | ||||
2459 | |||||
2460 | llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType())); | ||||
2461 | if (!ArraySize) { | ||||
2462 | if (ASM == ArrayType::Star) { | ||||
2463 | Diag(Loc, VLADiag); | ||||
2464 | if (VLAIsError) | ||||
2465 | return QualType(); | ||||
2466 | |||||
2467 | T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets); | ||||
2468 | } else { | ||||
2469 | T = Context.getIncompleteArrayType(T, ASM, Quals); | ||||
2470 | } | ||||
2471 | } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) { | ||||
2472 | T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||
2473 | } else { | ||||
2474 | ExprResult R = | ||||
2475 | checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError); | ||||
2476 | if (R.isInvalid()) | ||||
2477 | return QualType(); | ||||
2478 | |||||
2479 | if (!R.isUsable()) { | ||||
2480 | // C99: an array with a non-ICE size is a VLA. We accept any expression | ||||
2481 | // that we can fold to a non-zero positive value as a non-VLA as an | ||||
2482 | // extension. | ||||
2483 | T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||
2484 | } else if (!T->isDependentType() && !T->isIncompleteType() && | ||||
2485 | !T->isConstantSizeType()) { | ||||
2486 | // C99: an array with an element type that has a non-constant-size is a | ||||
2487 | // VLA. | ||||
2488 | // FIXME: Add a note to explain why this isn't a VLA. | ||||
2489 | Diag(Loc, VLADiag); | ||||
2490 | if (VLAIsError) | ||||
2491 | return QualType(); | ||||
2492 | T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||
2493 | } else { | ||||
2494 | // C99 6.7.5.2p1: If the expression is a constant expression, it shall | ||||
2495 | // have a value greater than zero. | ||||
2496 | // In C++, this follows from narrowing conversions being disallowed. | ||||
2497 | if (ConstVal.isSigned() && ConstVal.isNegative()) { | ||||
2498 | if (Entity) | ||||
2499 | Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size) | ||||
2500 | << getPrintableNameForEntity(Entity) | ||||
2501 | << ArraySize->getSourceRange(); | ||||
2502 | else | ||||
2503 | Diag(ArraySize->getBeginLoc(), | ||||
2504 | diag::err_typecheck_negative_array_size) | ||||
2505 | << ArraySize->getSourceRange(); | ||||
2506 | return QualType(); | ||||
2507 | } | ||||
2508 | if (ConstVal == 0) { | ||||
2509 | // GCC accepts zero sized static arrays. We allow them when | ||||
2510 | // we're not in a SFINAE context. | ||||
2511 | Diag(ArraySize->getBeginLoc(), | ||||
2512 | isSFINAEContext() ? diag::err_typecheck_zero_array_size | ||||
2513 | : diag::ext_typecheck_zero_array_size) | ||||
2514 | << ArraySize->getSourceRange(); | ||||
2515 | } | ||||
2516 | |||||
2517 | // Is the array too large? | ||||
2518 | unsigned ActiveSizeBits = | ||||
2519 | (!T->isDependentType() && !T->isVariablyModifiedType() && | ||||
2520 | !T->isIncompleteType() && !T->isUndeducedType()) | ||||
2521 | ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal) | ||||
2522 | : ConstVal.getActiveBits(); | ||||
2523 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | ||||
2524 | Diag(ArraySize->getBeginLoc(), diag::err_array_too_large) | ||||
2525 | << toString(ConstVal, 10) << ArraySize->getSourceRange(); | ||||
2526 | return QualType(); | ||||
2527 | } | ||||
2528 | |||||
2529 | T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals); | ||||
2530 | } | ||||
2531 | } | ||||
2532 | |||||
2533 | if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) { | ||||
2534 | // CUDA device code and some other targets don't support VLAs. | ||||
2535 | targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) | ||||
2536 | ? diag::err_cuda_vla | ||||
2537 | : diag::err_vla_unsupported) | ||||
2538 | << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice) | ||||
2539 | ? CurrentCUDATarget() | ||||
2540 | : CFT_InvalidTarget); | ||||
2541 | } | ||||
2542 | |||||
2543 | // If this is not C99, diagnose array size modifiers on non-VLAs. | ||||
2544 | if (!getLangOpts().C99 && !T->isVariableArrayType() && | ||||
2545 | (ASM != ArrayType::Normal || Quals != 0)) { | ||||
2546 | Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx | ||||
2547 | : diag::ext_c99_array_usage) | ||||
2548 | << ASM; | ||||
2549 | } | ||||
2550 | |||||
2551 | // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported. | ||||
2552 | // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported. | ||||
2553 | // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported. | ||||
2554 | if (getLangOpts().OpenCL) { | ||||
2555 | const QualType ArrType = Context.getBaseElementType(T); | ||||
2556 | if (ArrType->isBlockPointerType() || ArrType->isPipeType() || | ||||
2557 | ArrType->isSamplerT() || ArrType->isImageType()) { | ||||
2558 | Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType; | ||||
2559 | return QualType(); | ||||
2560 | } | ||||
2561 | } | ||||
2562 | |||||
2563 | return T; | ||||
2564 | } | ||||
2565 | |||||
2566 | QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr, | ||||
2567 | SourceLocation AttrLoc) { | ||||
2568 | // The base type must be integer (not Boolean or enumeration) or float, and | ||||
2569 | // can't already be a vector. | ||||
2570 | if ((!CurType->isDependentType() && | ||||
2571 | (!CurType->isBuiltinType() || CurType->isBooleanType() || | ||||
2572 | (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) || | ||||
2573 | CurType->isArrayType()) { | ||||
2574 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType; | ||||
2575 | return QualType(); | ||||
2576 | } | ||||
2577 | |||||
2578 | if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent()) | ||||
2579 | return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc, | ||||
2580 | VectorType::GenericVector); | ||||
2581 | |||||
2582 | Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context); | ||||
2583 | if (!VecSize) { | ||||
2584 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2585 | << "vector_size" << AANT_ArgumentIntegerConstant | ||||
2586 | << SizeExpr->getSourceRange(); | ||||
2587 | return QualType(); | ||||
2588 | } | ||||
2589 | |||||
2590 | if (CurType->isDependentType()) | ||||
2591 | return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc, | ||||
2592 | VectorType::GenericVector); | ||||
2593 | |||||
2594 | // vecSize is specified in bytes - convert to bits. | ||||
2595 | if (!VecSize->isIntN(61)) { | ||||
2596 | // Bit size will overflow uint64. | ||||
2597 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2598 | << SizeExpr->getSourceRange() << "vector"; | ||||
2599 | return QualType(); | ||||
2600 | } | ||||
2601 | uint64_t VectorSizeBits = VecSize->getZExtValue() * 8; | ||||
2602 | unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType)); | ||||
2603 | |||||
2604 | if (VectorSizeBits == 0) { | ||||
2605 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||
2606 | << SizeExpr->getSourceRange() << "vector"; | ||||
2607 | return QualType(); | ||||
2608 | } | ||||
2609 | |||||
2610 | if (VectorSizeBits % TypeSize) { | ||||
2611 | Diag(AttrLoc, diag::err_attribute_invalid_size) | ||||
2612 | << SizeExpr->getSourceRange(); | ||||
2613 | return QualType(); | ||||
2614 | } | ||||
2615 | |||||
2616 | if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) { | ||||
2617 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2618 | << SizeExpr->getSourceRange() << "vector"; | ||||
2619 | return QualType(); | ||||
2620 | } | ||||
2621 | |||||
2622 | return Context.getVectorType(CurType, VectorSizeBits / TypeSize, | ||||
2623 | VectorType::GenericVector); | ||||
2624 | } | ||||
2625 | |||||
2626 | /// Build an ext-vector type. | ||||
2627 | /// | ||||
2628 | /// Run the required checks for the extended vector type. | ||||
2629 | QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize, | ||||
2630 | SourceLocation AttrLoc) { | ||||
2631 | // Unlike gcc's vector_size attribute, we do not allow vectors to be defined | ||||
2632 | // in conjunction with complex types (pointers, arrays, functions, etc.). | ||||
2633 | // | ||||
2634 | // Additionally, OpenCL prohibits vectors of booleans (they're considered a | ||||
2635 | // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects | ||||
2636 | // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors | ||||
2637 | // of bool aren't allowed. | ||||
2638 | if ((!T->isDependentType() && !T->isIntegerType() && | ||||
2639 | !T->isRealFloatingType()) || | ||||
2640 | T->isBooleanType()) { | ||||
2641 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T; | ||||
2642 | return QualType(); | ||||
2643 | } | ||||
2644 | |||||
2645 | if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) { | ||||
2646 | Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context); | ||||
2647 | if (!vecSize) { | ||||
2648 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2649 | << "ext_vector_type" << AANT_ArgumentIntegerConstant | ||||
2650 | << ArraySize->getSourceRange(); | ||||
2651 | return QualType(); | ||||
2652 | } | ||||
2653 | |||||
2654 | if (!vecSize->isIntN(32)) { | ||||
2655 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2656 | << ArraySize->getSourceRange() << "vector"; | ||||
2657 | return QualType(); | ||||
2658 | } | ||||
2659 | // Unlike gcc's vector_size attribute, the size is specified as the | ||||
2660 | // number of elements, not the number of bytes. | ||||
2661 | unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue()); | ||||
2662 | |||||
2663 | if (vectorSize == 0) { | ||||
2664 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||
2665 | << ArraySize->getSourceRange() << "vector"; | ||||
2666 | return QualType(); | ||||
2667 | } | ||||
2668 | |||||
2669 | return Context.getExtVectorType(T, vectorSize); | ||||
2670 | } | ||||
2671 | |||||
2672 | return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc); | ||||
2673 | } | ||||
2674 | |||||
2675 | QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols, | ||||
2676 | SourceLocation AttrLoc) { | ||||
2677 | assert(Context.getLangOpts().MatrixTypes &&((void)0) | ||||
2678 | "Should never build a matrix type when it is disabled")((void)0); | ||||
2679 | |||||
2680 | // Check element type, if it is not dependent. | ||||
2681 | if (!ElementTy->isDependentType() && | ||||
2682 | !MatrixType::isValidElementType(ElementTy)) { | ||||
2683 | Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy; | ||||
2684 | return QualType(); | ||||
2685 | } | ||||
2686 | |||||
2687 | if (NumRows->isTypeDependent() || NumCols->isTypeDependent() || | ||||
2688 | NumRows->isValueDependent() || NumCols->isValueDependent()) | ||||
2689 | return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols, | ||||
2690 | AttrLoc); | ||||
2691 | |||||
2692 | Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context); | ||||
2693 | Optional<llvm::APSInt> ValueColumns = | ||||
2694 | NumCols->getIntegerConstantExpr(Context); | ||||
2695 | |||||
2696 | auto const RowRange = NumRows->getSourceRange(); | ||||
2697 | auto const ColRange = NumCols->getSourceRange(); | ||||
2698 | |||||
2699 | // Both are row and column expressions are invalid. | ||||
2700 | if (!ValueRows && !ValueColumns) { | ||||
2701 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2702 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange | ||||
2703 | << ColRange; | ||||
2704 | return QualType(); | ||||
2705 | } | ||||
2706 | |||||
2707 | // Only the row expression is invalid. | ||||
2708 | if (!ValueRows) { | ||||
2709 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2710 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange; | ||||
2711 | return QualType(); | ||||
2712 | } | ||||
2713 | |||||
2714 | // Only the column expression is invalid. | ||||
2715 | if (!ValueColumns) { | ||||
2716 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
2717 | << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange; | ||||
2718 | return QualType(); | ||||
2719 | } | ||||
2720 | |||||
2721 | // Check the matrix dimensions. | ||||
2722 | unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue()); | ||||
2723 | unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue()); | ||||
2724 | if (MatrixRows == 0 && MatrixColumns == 0) { | ||||
2725 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||
2726 | << "matrix" << RowRange << ColRange; | ||||
2727 | return QualType(); | ||||
2728 | } | ||||
2729 | if (MatrixRows == 0) { | ||||
2730 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange; | ||||
2731 | return QualType(); | ||||
2732 | } | ||||
2733 | if (MatrixColumns == 0) { | ||||
2734 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange; | ||||
2735 | return QualType(); | ||||
2736 | } | ||||
2737 | if (!ConstantMatrixType::isDimensionValid(MatrixRows)) { | ||||
2738 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2739 | << RowRange << "matrix row"; | ||||
2740 | return QualType(); | ||||
2741 | } | ||||
2742 | if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) { | ||||
2743 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||
2744 | << ColRange << "matrix column"; | ||||
2745 | return QualType(); | ||||
2746 | } | ||||
2747 | return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns); | ||||
2748 | } | ||||
2749 | |||||
2750 | bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) { | ||||
2751 | if (T->isArrayType() || T->isFunctionType()) { | ||||
2752 | Diag(Loc, diag::err_func_returning_array_function) | ||||
2753 | << T->isFunctionType() << T; | ||||
2754 | return true; | ||||
2755 | } | ||||
2756 | |||||
2757 | // Functions cannot return half FP. | ||||
2758 | if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) { | ||||
2759 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 << | ||||
2760 | FixItHint::CreateInsertion(Loc, "*"); | ||||
2761 | return true; | ||||
2762 | } | ||||
2763 | |||||
2764 | // Methods cannot return interface types. All ObjC objects are | ||||
2765 | // passed by reference. | ||||
2766 | if (T->isObjCObjectType()) { | ||||
2767 | Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) | ||||
2768 | << 0 << T << FixItHint::CreateInsertion(Loc, "*"); | ||||
2769 | return true; | ||||
2770 | } | ||||
2771 | |||||
2772 | if (T.hasNonTrivialToPrimitiveDestructCUnion() || | ||||
2773 | T.hasNonTrivialToPrimitiveCopyCUnion()) | ||||
2774 | checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn, | ||||
2775 | NTCUK_Destruct|NTCUK_Copy); | ||||
2776 | |||||
2777 | // C++2a [dcl.fct]p12: | ||||
2778 | // A volatile-qualified return type is deprecated | ||||
2779 | if (T.isVolatileQualified() && getLangOpts().CPlusPlus20) | ||||
2780 | Diag(Loc, diag::warn_deprecated_volatile_return) << T; | ||||
2781 | |||||
2782 | return false; | ||||
2783 | } | ||||
2784 | |||||
2785 | /// Check the extended parameter information. Most of the necessary | ||||
2786 | /// checking should occur when applying the parameter attribute; the | ||||
2787 | /// only other checks required are positional restrictions. | ||||
2788 | static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes, | ||||
2789 | const FunctionProtoType::ExtProtoInfo &EPI, | ||||
2790 | llvm::function_ref<SourceLocation(unsigned)> getParamLoc) { | ||||
2791 | assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((void)0); | ||||
2792 | |||||
2793 | bool emittedError = false; | ||||
2794 | auto actualCC = EPI.ExtInfo.getCC(); | ||||
2795 | enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync }; | ||||
2796 | auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) { | ||||
2797 | bool isCompatible = | ||||
2798 | (required == RequiredCC::OnlySwift) | ||||
2799 | ? (actualCC == CC_Swift) | ||||
2800 | : (actualCC == CC_Swift || actualCC == CC_SwiftAsync); | ||||
2801 | if (isCompatible || emittedError) | ||||
2802 | return; | ||||
2803 | S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall) | ||||
2804 | << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI()) | ||||
2805 | << (required == RequiredCC::OnlySwift); | ||||
2806 | emittedError = true; | ||||
2807 | }; | ||||
2808 | for (size_t paramIndex = 0, numParams = paramTypes.size(); | ||||
2809 | paramIndex != numParams; ++paramIndex) { | ||||
2810 | switch (EPI.ExtParameterInfos[paramIndex].getABI()) { | ||||
2811 | // Nothing interesting to check for orindary-ABI parameters. | ||||
2812 | case ParameterABI::Ordinary: | ||||
2813 | continue; | ||||
2814 | |||||
2815 | // swift_indirect_result parameters must be a prefix of the function | ||||
2816 | // arguments. | ||||
2817 | case ParameterABI::SwiftIndirectResult: | ||||
2818 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); | ||||
2819 | if (paramIndex != 0 && | ||||
2820 | EPI.ExtParameterInfos[paramIndex - 1].getABI() | ||||
2821 | != ParameterABI::SwiftIndirectResult) { | ||||
2822 | S.Diag(getParamLoc(paramIndex), | ||||
2823 | diag::err_swift_indirect_result_not_first); | ||||
2824 | } | ||||
2825 | continue; | ||||
2826 | |||||
2827 | case ParameterABI::SwiftContext: | ||||
2828 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); | ||||
2829 | continue; | ||||
2830 | |||||
2831 | // SwiftAsyncContext is not limited to swiftasynccall functions. | ||||
2832 | case ParameterABI::SwiftAsyncContext: | ||||
2833 | continue; | ||||
2834 | |||||
2835 | // swift_error parameters must be preceded by a swift_context parameter. | ||||
2836 | case ParameterABI::SwiftErrorResult: | ||||
2837 | checkCompatible(paramIndex, RequiredCC::OnlySwift); | ||||
2838 | if (paramIndex == 0 || | ||||
2839 | EPI.ExtParameterInfos[paramIndex - 1].getABI() != | ||||
2840 | ParameterABI::SwiftContext) { | ||||
2841 | S.Diag(getParamLoc(paramIndex), | ||||
2842 | diag::err_swift_error_result_not_after_swift_context); | ||||
2843 | } | ||||
2844 | continue; | ||||
2845 | } | ||||
2846 | llvm_unreachable("bad ABI kind")__builtin_unreachable(); | ||||
2847 | } | ||||
2848 | } | ||||
2849 | |||||
2850 | QualType Sema::BuildFunctionType(QualType T, | ||||
2851 | MutableArrayRef<QualType> ParamTypes, | ||||
2852 | SourceLocation Loc, DeclarationName Entity, | ||||
2853 | const FunctionProtoType::ExtProtoInfo &EPI) { | ||||
2854 | bool Invalid = false; | ||||
2855 | |||||
2856 | Invalid |= CheckFunctionReturnType(T, Loc); | ||||
2857 | |||||
2858 | for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) { | ||||
2859 | // FIXME: Loc is too inprecise here, should use proper locations for args. | ||||
2860 | QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]); | ||||
2861 | if (ParamType->isVoidType()) { | ||||
2862 | Diag(Loc, diag::err_param_with_void_type); | ||||
2863 | Invalid = true; | ||||
2864 | } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) { | ||||
2865 | // Disallow half FP arguments. | ||||
2866 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 << | ||||
2867 | FixItHint::CreateInsertion(Loc, "*"); | ||||
2868 | Invalid = true; | ||||
2869 | } | ||||
2870 | |||||
2871 | // C++2a [dcl.fct]p4: | ||||
2872 | // A parameter with volatile-qualified type is deprecated | ||||
2873 | if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20) | ||||
2874 | Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType; | ||||
2875 | |||||
2876 | ParamTypes[Idx] = ParamType; | ||||
2877 | } | ||||
2878 | |||||
2879 | if (EPI.ExtParameterInfos) { | ||||
2880 | checkExtParameterInfos(*this, ParamTypes, EPI, | ||||
2881 | [=](unsigned i) { return Loc; }); | ||||
2882 | } | ||||
2883 | |||||
2884 | if (EPI.ExtInfo.getProducesResult()) { | ||||
2885 | // This is just a warning, so we can't fail to build if we see it. | ||||
2886 | checkNSReturnsRetainedReturnType(Loc, T); | ||||
2887 | } | ||||
2888 | |||||
2889 | if (Invalid) | ||||
2890 | return QualType(); | ||||
2891 | |||||
2892 | return Context.getFunctionType(T, ParamTypes, EPI); | ||||
2893 | } | ||||
2894 | |||||
2895 | /// Build a member pointer type \c T Class::*. | ||||
2896 | /// | ||||
2897 | /// \param T the type to which the member pointer refers. | ||||
2898 | /// \param Class the class type into which the member pointer points. | ||||
2899 | /// \param Loc the location where this type begins | ||||
2900 | /// \param Entity the name of the entity that will have this member pointer type | ||||
2901 | /// | ||||
2902 | /// \returns a member pointer type, if successful, or a NULL type if there was | ||||
2903 | /// an error. | ||||
2904 | QualType Sema::BuildMemberPointerType(QualType T, QualType Class, | ||||
2905 | SourceLocation Loc, | ||||
2906 | DeclarationName Entity) { | ||||
2907 | // Verify that we're not building a pointer to pointer to function with | ||||
2908 | // exception specification. | ||||
2909 | if (CheckDistantExceptionSpec(T)) { | ||||
2910 | Diag(Loc, diag::err_distant_exception_spec); | ||||
2911 | return QualType(); | ||||
2912 | } | ||||
2913 | |||||
2914 | // C++ 8.3.3p3: A pointer to member shall not point to ... a member | ||||
2915 | // with reference type, or "cv void." | ||||
2916 | if (T->isReferenceType()) { | ||||
2917 | Diag(Loc, diag::err_illegal_decl_mempointer_to_reference) | ||||
2918 | << getPrintableNameForEntity(Entity) << T; | ||||
2919 | return QualType(); | ||||
2920 | } | ||||
2921 | |||||
2922 | if (T->isVoidType()) { | ||||
2923 | Diag(Loc, diag::err_illegal_decl_mempointer_to_void) | ||||
2924 | << getPrintableNameForEntity(Entity); | ||||
2925 | return QualType(); | ||||
2926 | } | ||||
2927 | |||||
2928 | if (!Class->isDependentType() && !Class->isRecordType()) { | ||||
2929 | Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class; | ||||
2930 | return QualType(); | ||||
2931 | } | ||||
2932 | |||||
2933 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||
2934 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||
2935 | getLangOpts())) { | ||||
2936 | Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0; | ||||
2937 | return QualType(); | ||||
2938 | } | ||||
2939 | |||||
2940 | // Adjust the default free function calling convention to the default method | ||||
2941 | // calling convention. | ||||
2942 | bool IsCtorOrDtor = | ||||
2943 | (Entity.getNameKind() == DeclarationName::CXXConstructorName) || | ||||
2944 | (Entity.getNameKind() == DeclarationName::CXXDestructorName); | ||||
2945 | if (T->isFunctionType()) | ||||
2946 | adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc); | ||||
2947 | |||||
2948 | return Context.getMemberPointerType(T, Class.getTypePtr()); | ||||
2949 | } | ||||
2950 | |||||
2951 | /// Build a block pointer type. | ||||
2952 | /// | ||||
2953 | /// \param T The type to which we'll be building a block pointer. | ||||
2954 | /// | ||||
2955 | /// \param Loc The source location, used for diagnostics. | ||||
2956 | /// | ||||
2957 | /// \param Entity The name of the entity that involves the block pointer | ||||
2958 | /// type, if known. | ||||
2959 | /// | ||||
2960 | /// \returns A suitable block pointer type, if there are no | ||||
2961 | /// errors. Otherwise, returns a NULL type. | ||||
2962 | QualType Sema::BuildBlockPointerType(QualType T, | ||||
2963 | SourceLocation Loc, | ||||
2964 | DeclarationName Entity) { | ||||
2965 | if (!T->isFunctionType()) { | ||||
2966 | Diag(Loc, diag::err_nonfunction_block_type); | ||||
2967 | return QualType(); | ||||
2968 | } | ||||
2969 | |||||
2970 | if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer)) | ||||
2971 | return QualType(); | ||||
2972 | |||||
2973 | if (getLangOpts().OpenCL) | ||||
2974 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||
2975 | |||||
2976 | return Context.getBlockPointerType(T); | ||||
2977 | } | ||||
2978 | |||||
2979 | QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) { | ||||
2980 | QualType QT = Ty.get(); | ||||
2981 | if (QT.isNull()) { | ||||
2982 | if (TInfo) *TInfo = nullptr; | ||||
2983 | return QualType(); | ||||
2984 | } | ||||
2985 | |||||
2986 | TypeSourceInfo *DI = nullptr; | ||||
2987 | if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) { | ||||
2988 | QT = LIT->getType(); | ||||
2989 | DI = LIT->getTypeSourceInfo(); | ||||
2990 | } | ||||
2991 | |||||
2992 | if (TInfo) *TInfo = DI; | ||||
2993 | return QT; | ||||
2994 | } | ||||
2995 | |||||
2996 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, | ||||
2997 | Qualifiers::ObjCLifetime ownership, | ||||
2998 | unsigned chunkIndex); | ||||
2999 | |||||
3000 | /// Given that this is the declaration of a parameter under ARC, | ||||
3001 | /// attempt to infer attributes and such for pointer-to-whatever | ||||
3002 | /// types. | ||||
3003 | static void inferARCWriteback(TypeProcessingState &state, | ||||
3004 | QualType &declSpecType) { | ||||
3005 | Sema &S = state.getSema(); | ||||
3006 | Declarator &declarator = state.getDeclarator(); | ||||
3007 | |||||
3008 | // TODO: should we care about decl qualifiers? | ||||
3009 | |||||
3010 | // Check whether the declarator has the expected form. We walk | ||||
3011 | // from the inside out in order to make the block logic work. | ||||
3012 | unsigned outermostPointerIndex = 0; | ||||
3013 | bool isBlockPointer = false; | ||||
3014 | unsigned numPointers = 0; | ||||
3015 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||
3016 | unsigned chunkIndex = i; | ||||
3017 | DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex); | ||||
3018 | switch (chunk.Kind) { | ||||
3019 | case DeclaratorChunk::Paren: | ||||
3020 | // Ignore parens. | ||||
3021 | break; | ||||
3022 | |||||
3023 | case DeclaratorChunk::Reference: | ||||
3024 | case DeclaratorChunk::Pointer: | ||||
3025 | // Count the number of pointers. Treat references | ||||
3026 | // interchangeably as pointers; if they're mis-ordered, normal | ||||
3027 | // type building will discover that. | ||||
3028 | outermostPointerIndex = chunkIndex; | ||||
3029 | numPointers++; | ||||
3030 | break; | ||||
3031 | |||||
3032 | case DeclaratorChunk::BlockPointer: | ||||
3033 | // If we have a pointer to block pointer, that's an acceptable | ||||
3034 | // indirect reference; anything else is not an application of | ||||
3035 | // the rules. | ||||
3036 | if (numPointers != 1) return; | ||||
3037 | numPointers++; | ||||
3038 | outermostPointerIndex = chunkIndex; | ||||
3039 | isBlockPointer = true; | ||||
3040 | |||||
3041 | // We don't care about pointer structure in return values here. | ||||
3042 | goto done; | ||||
3043 | |||||
3044 | case DeclaratorChunk::Array: // suppress if written (id[])? | ||||
3045 | case DeclaratorChunk::Function: | ||||
3046 | case DeclaratorChunk::MemberPointer: | ||||
3047 | case DeclaratorChunk::Pipe: | ||||
3048 | return; | ||||
3049 | } | ||||
3050 | } | ||||
3051 | done: | ||||
3052 | |||||
3053 | // If we have *one* pointer, then we want to throw the qualifier on | ||||
3054 | // the declaration-specifiers, which means that it needs to be a | ||||
3055 | // retainable object type. | ||||
3056 | if (numPointers == 1) { | ||||
3057 | // If it's not a retainable object type, the rule doesn't apply. | ||||
3058 | if (!declSpecType->isObjCRetainableType()) return; | ||||
3059 | |||||
3060 | // If it already has lifetime, don't do anything. | ||||
3061 | if (declSpecType.getObjCLifetime()) return; | ||||
3062 | |||||
3063 | // Otherwise, modify the type in-place. | ||||
3064 | Qualifiers qs; | ||||
3065 | |||||
3066 | if (declSpecType->isObjCARCImplicitlyUnretainedType()) | ||||
3067 | qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone); | ||||
3068 | else | ||||
3069 | qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing); | ||||
3070 | declSpecType = S.Context.getQualifiedType(declSpecType, qs); | ||||
3071 | |||||
3072 | // If we have *two* pointers, then we want to throw the qualifier on | ||||
3073 | // the outermost pointer. | ||||
3074 | } else if (numPointers == 2) { | ||||
3075 | // If we don't have a block pointer, we need to check whether the | ||||
3076 | // declaration-specifiers gave us something that will turn into a | ||||
3077 | // retainable object pointer after we slap the first pointer on it. | ||||
3078 | if (!isBlockPointer && !declSpecType->isObjCObjectType()) | ||||
3079 | return; | ||||
3080 | |||||
3081 | // Look for an explicit lifetime attribute there. | ||||
3082 | DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex); | ||||
3083 | if (chunk.Kind != DeclaratorChunk::Pointer && | ||||
3084 | chunk.Kind != DeclaratorChunk::BlockPointer) | ||||
3085 | return; | ||||
3086 | for (const ParsedAttr &AL : chunk.getAttrs()) | ||||
3087 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) | ||||
3088 | return; | ||||
3089 | |||||
3090 | transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing, | ||||
3091 | outermostPointerIndex); | ||||
3092 | |||||
3093 | // Any other number of pointers/references does not trigger the rule. | ||||
3094 | } else return; | ||||
3095 | |||||
3096 | // TODO: mark whether we did this inference? | ||||
3097 | } | ||||
3098 | |||||
3099 | void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, | ||||
3100 | SourceLocation FallbackLoc, | ||||
3101 | SourceLocation ConstQualLoc, | ||||
3102 | SourceLocation VolatileQualLoc, | ||||
3103 | SourceLocation RestrictQualLoc, | ||||
3104 | SourceLocation AtomicQualLoc, | ||||
3105 | SourceLocation UnalignedQualLoc) { | ||||
3106 | if (!Quals) | ||||
3107 | return; | ||||
3108 | |||||
3109 | struct Qual { | ||||
3110 | const char *Name; | ||||
3111 | unsigned Mask; | ||||
3112 | SourceLocation Loc; | ||||
3113 | } const QualKinds[5] = { | ||||
3114 | { "const", DeclSpec::TQ_const, ConstQualLoc }, | ||||
3115 | { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc }, | ||||
3116 | { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc }, | ||||
3117 | { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc }, | ||||
3118 | { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc } | ||||
3119 | }; | ||||
3120 | |||||
3121 | SmallString<32> QualStr; | ||||
3122 | unsigned NumQuals = 0; | ||||
3123 | SourceLocation Loc; | ||||
3124 | FixItHint FixIts[5]; | ||||
3125 | |||||
3126 | // Build a string naming the redundant qualifiers. | ||||
3127 | for (auto &E : QualKinds) { | ||||
3128 | if (Quals & E.Mask) { | ||||
3129 | if (!QualStr.empty()) QualStr += ' '; | ||||
3130 | QualStr += E.Name; | ||||
3131 | |||||
3132 | // If we have a location for the qualifier, offer a fixit. | ||||
3133 | SourceLocation QualLoc = E.Loc; | ||||
3134 | if (QualLoc.isValid()) { | ||||
3135 | FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc); | ||||
3136 | if (Loc.isInvalid() || | ||||
3137 | getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc)) | ||||
3138 | Loc = QualLoc; | ||||
3139 | } | ||||
3140 | |||||
3141 | ++NumQuals; | ||||
3142 | } | ||||
3143 | } | ||||
3144 | |||||
3145 | Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID) | ||||
3146 | << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3]; | ||||
3147 | } | ||||
3148 | |||||
3149 | // Diagnose pointless type qualifiers on the return type of a function. | ||||
3150 | static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, | ||||
3151 | Declarator &D, | ||||
3152 | unsigned FunctionChunkIndex) { | ||||
3153 | const DeclaratorChunk::FunctionTypeInfo &FTI = | ||||
3154 | D.getTypeObject(FunctionChunkIndex).Fun; | ||||
3155 | if (FTI.hasTrailingReturnType()) { | ||||
3156 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||
3157 | RetTy.getLocalCVRQualifiers(), | ||||
3158 | FTI.getTrailingReturnTypeLoc()); | ||||
3159 | return; | ||||
3160 | } | ||||
3161 | |||||
3162 | for (unsigned OuterChunkIndex = FunctionChunkIndex + 1, | ||||
3163 | End = D.getNumTypeObjects(); | ||||
3164 | OuterChunkIndex != End; ++OuterChunkIndex) { | ||||
3165 | DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex); | ||||
3166 | switch (OuterChunk.Kind) { | ||||
3167 | case DeclaratorChunk::Paren: | ||||
3168 | continue; | ||||
3169 | |||||
3170 | case DeclaratorChunk::Pointer: { | ||||
3171 | DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr; | ||||
3172 | S.diagnoseIgnoredQualifiers( | ||||
3173 | diag::warn_qual_return_type, | ||||
3174 | PTI.TypeQuals, | ||||
3175 | SourceLocation(), | ||||
3176 | PTI.ConstQualLoc, | ||||
3177 | PTI.VolatileQualLoc, | ||||
3178 | PTI.RestrictQualLoc, | ||||
3179 | PTI.AtomicQualLoc, | ||||
3180 | PTI.UnalignedQualLoc); | ||||
3181 | return; | ||||
3182 | } | ||||
3183 | |||||
3184 | case DeclaratorChunk::Function: | ||||
3185 | case DeclaratorChunk::BlockPointer: | ||||
3186 | case DeclaratorChunk::Reference: | ||||
3187 | case DeclaratorChunk::Array: | ||||
3188 | case DeclaratorChunk::MemberPointer: | ||||
3189 | case DeclaratorChunk::Pipe: | ||||
3190 | // FIXME: We can't currently provide an accurate source location and a | ||||
3191 | // fix-it hint for these. | ||||
3192 | unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0; | ||||
3193 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||
3194 | RetTy.getCVRQualifiers() | AtomicQual, | ||||
3195 | D.getIdentifierLoc()); | ||||
3196 | return; | ||||
3197 | } | ||||
3198 | |||||
3199 | llvm_unreachable("unknown declarator chunk kind")__builtin_unreachable(); | ||||
3200 | } | ||||
3201 | |||||
3202 | // If the qualifiers come from a conversion function type, don't diagnose | ||||
3203 | // them -- they're not necessarily redundant, since such a conversion | ||||
3204 | // operator can be explicitly called as "x.operator const int()". | ||||
3205 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) | ||||
3206 | return; | ||||
3207 | |||||
3208 | // Just parens all the way out to the decl specifiers. Diagnose any qualifiers | ||||
3209 | // which are present there. | ||||
3210 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||
3211 | D.getDeclSpec().getTypeQualifiers(), | ||||
3212 | D.getIdentifierLoc(), | ||||
3213 | D.getDeclSpec().getConstSpecLoc(), | ||||
3214 | D.getDeclSpec().getVolatileSpecLoc(), | ||||
3215 | D.getDeclSpec().getRestrictSpecLoc(), | ||||
3216 | D.getDeclSpec().getAtomicSpecLoc(), | ||||
3217 | D.getDeclSpec().getUnalignedSpecLoc()); | ||||
3218 | } | ||||
3219 | |||||
3220 | static std::pair<QualType, TypeSourceInfo *> | ||||
3221 | InventTemplateParameter(TypeProcessingState &state, QualType T, | ||||
3222 | TypeSourceInfo *TrailingTSI, AutoType *Auto, | ||||
3223 | InventedTemplateParameterInfo &Info) { | ||||
3224 | Sema &S = state.getSema(); | ||||
3225 | Declarator &D = state.getDeclarator(); | ||||
3226 | |||||
3227 | const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth; | ||||
3228 | const unsigned AutoParameterPosition = Info.TemplateParams.size(); | ||||
3229 | const bool IsParameterPack = D.hasEllipsis(); | ||||
3230 | |||||
3231 | // If auto is mentioned in a lambda parameter or abbreviated function | ||||
3232 | // template context, convert it to a template parameter type. | ||||
3233 | |||||
3234 | // Create the TemplateTypeParmDecl here to retrieve the corresponding | ||||
3235 | // template parameter type. Template parameters are temporarily added | ||||
3236 | // to the TU until the associated TemplateDecl is created. | ||||
3237 | TemplateTypeParmDecl *InventedTemplateParam = | ||||
3238 | TemplateTypeParmDecl::Create( | ||||
3239 | S.Context, S.Context.getTranslationUnitDecl(), | ||||
3240 | /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
3241 | /*NameLoc=*/D.getIdentifierLoc(), | ||||
3242 | TemplateParameterDepth, AutoParameterPosition, | ||||
3243 | S.InventAbbreviatedTemplateParameterTypeName( | ||||
3244 | D.getIdentifier(), AutoParameterPosition), false, | ||||
3245 | IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained()); | ||||
3246 | InventedTemplateParam->setImplicit(); | ||||
3247 | Info.TemplateParams.push_back(InventedTemplateParam); | ||||
3248 | |||||
3249 | // Attach type constraints to the new parameter. | ||||
3250 | if (Auto->isConstrained()) { | ||||
3251 | if (TrailingTSI) { | ||||
3252 | // The 'auto' appears in a trailing return type we've already built; | ||||
3253 | // extract its type constraints to attach to the template parameter. | ||||
3254 | AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc(); | ||||
3255 | TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc()); | ||||
3256 | bool Invalid = false; | ||||
3257 | for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) { | ||||
3258 | if (D.getEllipsisLoc().isInvalid() && !Invalid && | ||||
3259 | S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx), | ||||
3260 | Sema::UPPC_TypeConstraint)) | ||||
3261 | Invalid = true; | ||||
3262 | TAL.addArgument(AutoLoc.getArgLoc(Idx)); | ||||
3263 | } | ||||
3264 | |||||
3265 | if (!Invalid) { | ||||
3266 | S.AttachTypeConstraint( | ||||
3267 | AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(), | ||||
3268 | AutoLoc.getNamedConcept(), | ||||
3269 | AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr, | ||||
3270 | InventedTemplateParam, D.getEllipsisLoc()); | ||||
3271 | } | ||||
3272 | } else { | ||||
3273 | // The 'auto' appears in the decl-specifiers; we've not finished forming | ||||
3274 | // TypeSourceInfo for it yet. | ||||
3275 | TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId(); | ||||
3276 | TemplateArgumentListInfo TemplateArgsInfo; | ||||
3277 | bool Invalid = false; | ||||
3278 | if (TemplateId->LAngleLoc.isValid()) { | ||||
3279 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||
3280 | TemplateId->NumArgs); | ||||
3281 | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||
3282 | |||||
3283 | if (D.getEllipsisLoc().isInvalid()) { | ||||
3284 | for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) { | ||||
3285 | if (S.DiagnoseUnexpandedParameterPack(Arg, | ||||
3286 | Sema::UPPC_TypeConstraint)) { | ||||
3287 | Invalid = true; | ||||
3288 | break; | ||||
3289 | } | ||||
3290 | } | ||||
3291 | } | ||||
3292 | } | ||||
3293 | if (!Invalid) { | ||||
3294 | S.AttachTypeConstraint( | ||||
3295 | D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context), | ||||
3296 | DeclarationNameInfo(DeclarationName(TemplateId->Name), | ||||
3297 | TemplateId->TemplateNameLoc), | ||||
3298 | cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()), | ||||
3299 | TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr, | ||||
3300 | InventedTemplateParam, D.getEllipsisLoc()); | ||||
3301 | } | ||||
3302 | } | ||||
3303 | } | ||||
3304 | |||||
3305 | // Replace the 'auto' in the function parameter with this invented | ||||
3306 | // template type parameter. | ||||
3307 | // FIXME: Retain some type sugar to indicate that this was written | ||||
3308 | // as 'auto'? | ||||
3309 | QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0); | ||||
3310 | QualType NewT = state.ReplaceAutoType(T, Replacement); | ||||
3311 | TypeSourceInfo *NewTSI = | ||||
3312 | TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement) | ||||
3313 | : nullptr; | ||||
3314 | return {NewT, NewTSI}; | ||||
3315 | } | ||||
3316 | |||||
3317 | static TypeSourceInfo * | ||||
3318 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, | ||||
3319 | QualType T, TypeSourceInfo *ReturnTypeInfo); | ||||
3320 | |||||
3321 | static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, | ||||
3322 | TypeSourceInfo *&ReturnTypeInfo) { | ||||
3323 | Sema &SemaRef = state.getSema(); | ||||
3324 | Declarator &D = state.getDeclarator(); | ||||
3325 | QualType T; | ||||
3326 | ReturnTypeInfo = nullptr; | ||||
3327 | |||||
3328 | // The TagDecl owned by the DeclSpec. | ||||
3329 | TagDecl *OwnedTagDecl = nullptr; | ||||
3330 | |||||
3331 | switch (D.getName().getKind()) { | ||||
3332 | case UnqualifiedIdKind::IK_ImplicitSelfParam: | ||||
3333 | case UnqualifiedIdKind::IK_OperatorFunctionId: | ||||
3334 | case UnqualifiedIdKind::IK_Identifier: | ||||
3335 | case UnqualifiedIdKind::IK_LiteralOperatorId: | ||||
3336 | case UnqualifiedIdKind::IK_TemplateId: | ||||
3337 | T = ConvertDeclSpecToType(state); | ||||
3338 | |||||
3339 | if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) { | ||||
3340 | OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | ||||
3341 | // Owned declaration is embedded in declarator. | ||||
3342 | OwnedTagDecl->setEmbeddedInDeclarator(true); | ||||
3343 | } | ||||
3344 | break; | ||||
3345 | |||||
3346 | case UnqualifiedIdKind::IK_ConstructorName: | ||||
3347 | case UnqualifiedIdKind::IK_ConstructorTemplateId: | ||||
3348 | case UnqualifiedIdKind::IK_DestructorName: | ||||
3349 | // Constructors and destructors don't have return types. Use | ||||
3350 | // "void" instead. | ||||
3351 | T = SemaRef.Context.VoidTy; | ||||
3352 | processTypeAttrs(state, T, TAL_DeclSpec, | ||||
3353 | D.getMutableDeclSpec().getAttributes()); | ||||
3354 | break; | ||||
3355 | |||||
3356 | case UnqualifiedIdKind::IK_DeductionGuideName: | ||||
3357 | // Deduction guides have a trailing return type and no type in their | ||||
3358 | // decl-specifier sequence. Use a placeholder return type for now. | ||||
3359 | T = SemaRef.Context.DependentTy; | ||||
3360 | break; | ||||
3361 | |||||
3362 | case UnqualifiedIdKind::IK_ConversionFunctionId: | ||||
3363 | // The result type of a conversion function is the type that it | ||||
3364 | // converts to. | ||||
3365 | T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId, | ||||
3366 | &ReturnTypeInfo); | ||||
3367 | break; | ||||
3368 | } | ||||
3369 | |||||
3370 | if (!D.getAttributes().empty()) | ||||
3371 | distributeTypeAttrsFromDeclarator(state, T); | ||||
3372 | |||||
3373 | // Find the deduced type in this type. Look in the trailing return type if we | ||||
3374 | // have one, otherwise in the DeclSpec type. | ||||
3375 | // FIXME: The standard wording doesn't currently describe this. | ||||
3376 | DeducedType *Deduced = T->getContainedDeducedType(); | ||||
3377 | bool DeducedIsTrailingReturnType = false; | ||||
3378 | if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) { | ||||
3379 | QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType()); | ||||
3380 | Deduced = T.isNull() ? nullptr : T->getContainedDeducedType(); | ||||
3381 | DeducedIsTrailingReturnType = true; | ||||
3382 | } | ||||
3383 | |||||
3384 | // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context. | ||||
3385 | if (Deduced) { | ||||
3386 | AutoType *Auto = dyn_cast<AutoType>(Deduced); | ||||
3387 | int Error = -1; | ||||
3388 | |||||
3389 | // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or | ||||
3390 | // class template argument deduction)? | ||||
3391 | bool IsCXXAutoType = | ||||
3392 | (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType); | ||||
3393 | bool IsDeducedReturnType = false; | ||||
3394 | |||||
3395 | switch (D.getContext()) { | ||||
3396 | case DeclaratorContext::LambdaExpr: | ||||
3397 | // Declared return type of a lambda-declarator is implicit and is always | ||||
3398 | // 'auto'. | ||||
3399 | break; | ||||
3400 | case DeclaratorContext::ObjCParameter: | ||||
3401 | case DeclaratorContext::ObjCResult: | ||||
3402 | Error = 0; | ||||
3403 | break; | ||||
3404 | case DeclaratorContext::RequiresExpr: | ||||
3405 | Error = 22; | ||||
3406 | break; | ||||
3407 | case DeclaratorContext::Prototype: | ||||
3408 | case DeclaratorContext::LambdaExprParameter: { | ||||
3409 | InventedTemplateParameterInfo *Info = nullptr; | ||||
3410 | if (D.getContext() == DeclaratorContext::Prototype) { | ||||
3411 | // With concepts we allow 'auto' in function parameters. | ||||
3412 | if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto || | ||||
3413 | Auto->getKeyword() != AutoTypeKeyword::Auto) { | ||||
3414 | Error = 0; | ||||
3415 | break; | ||||
3416 | } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) { | ||||
3417 | Error = 21; | ||||
3418 | break; | ||||
3419 | } | ||||
3420 | |||||
3421 | Info = &SemaRef.InventedParameterInfos.back(); | ||||
3422 | } else { | ||||
3423 | // In C++14, generic lambdas allow 'auto' in their parameters. | ||||
3424 | if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto || | ||||
3425 | Auto->getKeyword() != AutoTypeKeyword::Auto) { | ||||
3426 | Error = 16; | ||||
3427 | break; | ||||
3428 | } | ||||
3429 | Info = SemaRef.getCurLambda(); | ||||
3430 | assert(Info && "No LambdaScopeInfo on the stack!")((void)0); | ||||
3431 | } | ||||
3432 | |||||
3433 | // We'll deal with inventing template parameters for 'auto' in trailing | ||||
3434 | // return types when we pick up the trailing return type when processing | ||||
3435 | // the function chunk. | ||||
3436 | if (!DeducedIsTrailingReturnType) | ||||
3437 | T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first; | ||||
3438 | break; | ||||
3439 | } | ||||
3440 | case DeclaratorContext::Member: { | ||||
3441 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || | ||||
3442 | D.isFunctionDeclarator()) | ||||
3443 | break; | ||||
3444 | bool Cxx = SemaRef.getLangOpts().CPlusPlus; | ||||
3445 | if (isa<ObjCContainerDecl>(SemaRef.CurContext)) { | ||||
3446 | Error = 6; // Interface member. | ||||
3447 | } else { | ||||
3448 | switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) { | ||||
3449 | case TTK_Enum: llvm_unreachable("unhandled tag kind")__builtin_unreachable(); | ||||
3450 | case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break; | ||||
3451 | case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break; | ||||
3452 | case TTK_Class: Error = 5; /* Class member */ break; | ||||
3453 | case TTK_Interface: Error = 6; /* Interface member */ break; | ||||
3454 | } | ||||
3455 | } | ||||
3456 | if (D.getDeclSpec().isFriendSpecified()) | ||||
3457 | Error = 20; // Friend type | ||||
3458 | break; | ||||
3459 | } | ||||
3460 | case DeclaratorContext::CXXCatch: | ||||
3461 | case DeclaratorContext::ObjCCatch: | ||||
3462 | Error = 7; // Exception declaration | ||||
3463 | break; | ||||
3464 | case DeclaratorContext::TemplateParam: | ||||
3465 | if (isa<DeducedTemplateSpecializationType>(Deduced) && | ||||
3466 | !SemaRef.getLangOpts().CPlusPlus20) | ||||
3467 | Error = 19; // Template parameter (until C++20) | ||||
3468 | else if (!SemaRef.getLangOpts().CPlusPlus17) | ||||
3469 | Error = 8; // Template parameter (until C++17) | ||||
3470 | break; | ||||
3471 | case DeclaratorContext::BlockLiteral: | ||||
3472 | Error = 9; // Block literal | ||||
3473 | break; | ||||
3474 | case DeclaratorContext::TemplateArg: | ||||
3475 | // Within a template argument list, a deduced template specialization | ||||
3476 | // type will be reinterpreted as a template template argument. | ||||
3477 | if (isa<DeducedTemplateSpecializationType>(Deduced) && | ||||
3478 | !D.getNumTypeObjects() && | ||||
3479 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier) | ||||
3480 | break; | ||||
3481 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
3482 | case DeclaratorContext::TemplateTypeArg: | ||||
3483 | Error = 10; // Template type argument | ||||
3484 | break; | ||||
3485 | case DeclaratorContext::AliasDecl: | ||||
3486 | case DeclaratorContext::AliasTemplate: | ||||
3487 | Error = 12; // Type alias | ||||
3488 | break; | ||||
3489 | case DeclaratorContext::TrailingReturn: | ||||
3490 | case DeclaratorContext::TrailingReturnVar: | ||||
3491 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) | ||||
3492 | Error = 13; // Function return type | ||||
3493 | IsDeducedReturnType = true; | ||||
3494 | break; | ||||
3495 | case DeclaratorContext::ConversionId: | ||||
3496 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) | ||||
3497 | Error = 14; // conversion-type-id | ||||
3498 | IsDeducedReturnType = true; | ||||
3499 | break; | ||||
3500 | case DeclaratorContext::FunctionalCast: | ||||
3501 | if (isa<DeducedTemplateSpecializationType>(Deduced)) | ||||
3502 | break; | ||||
3503 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
3504 | case DeclaratorContext::TypeName: | ||||
3505 | Error = 15; // Generic | ||||
3506 | break; | ||||
3507 | case DeclaratorContext::File: | ||||
3508 | case DeclaratorContext::Block: | ||||
3509 | case DeclaratorContext::ForInit: | ||||
3510 | case DeclaratorContext::SelectionInit: | ||||
3511 | case DeclaratorContext::Condition: | ||||
3512 | // FIXME: P0091R3 (erroneously) does not permit class template argument | ||||
3513 | // deduction in conditions, for-init-statements, and other declarations | ||||
3514 | // that are not simple-declarations. | ||||
3515 | break; | ||||
3516 | case DeclaratorContext::CXXNew: | ||||
3517 | // FIXME: P0091R3 does not permit class template argument deduction here, | ||||
3518 | // but we follow GCC and allow it anyway. | ||||
3519 | if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced)) | ||||
3520 | Error = 17; // 'new' type | ||||
3521 | break; | ||||
3522 | case DeclaratorContext::KNRTypeList: | ||||
3523 | Error = 18; // K&R function parameter | ||||
3524 | break; | ||||
3525 | } | ||||
3526 | |||||
3527 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | ||||
3528 | Error = 11; | ||||
3529 | |||||
3530 | // In Objective-C it is an error to use 'auto' on a function declarator | ||||
3531 | // (and everywhere for '__auto_type'). | ||||
3532 | if (D.isFunctionDeclarator() && | ||||
3533 | (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType)) | ||||
3534 | Error = 13; | ||||
3535 | |||||
3536 | SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc(); | ||||
3537 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) | ||||
3538 | AutoRange = D.getName().getSourceRange(); | ||||
3539 | |||||
3540 | if (Error != -1) { | ||||
3541 | unsigned Kind; | ||||
3542 | if (Auto) { | ||||
3543 | switch (Auto->getKeyword()) { | ||||
3544 | case AutoTypeKeyword::Auto: Kind = 0; break; | ||||
3545 | case AutoTypeKeyword::DecltypeAuto: Kind = 1; break; | ||||
3546 | case AutoTypeKeyword::GNUAutoType: Kind = 2; break; | ||||
3547 | } | ||||
3548 | } else { | ||||
3549 | assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((void)0) | ||||
3550 | "unknown auto type")((void)0); | ||||
3551 | Kind = 3; | ||||
3552 | } | ||||
3553 | |||||
3554 | auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced); | ||||
3555 | TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName(); | ||||
3556 | |||||
3557 | SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed) | ||||
3558 | << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN) | ||||
3559 | << QualType(Deduced, 0) << AutoRange; | ||||
3560 | if (auto *TD = TN.getAsTemplateDecl()) | ||||
3561 | SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here); | ||||
3562 | |||||
3563 | T = SemaRef.Context.IntTy; | ||||
3564 | D.setInvalidType(true); | ||||
3565 | } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) { | ||||
3566 | // If there was a trailing return type, we already got | ||||
3567 | // warn_cxx98_compat_trailing_return_type in the parser. | ||||
3568 | SemaRef.Diag(AutoRange.getBegin(), | ||||
3569 | D.getContext() == DeclaratorContext::LambdaExprParameter | ||||
3570 | ? diag::warn_cxx11_compat_generic_lambda | ||||
3571 | : IsDeducedReturnType | ||||
3572 | ? diag::warn_cxx11_compat_deduced_return_type | ||||
3573 | : diag::warn_cxx98_compat_auto_type_specifier) | ||||
3574 | << AutoRange; | ||||
3575 | } | ||||
3576 | } | ||||
3577 | |||||
3578 | if (SemaRef.getLangOpts().CPlusPlus && | ||||
3579 | OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) { | ||||
3580 | // Check the contexts where C++ forbids the declaration of a new class | ||||
3581 | // or enumeration in a type-specifier-seq. | ||||
3582 | unsigned DiagID = 0; | ||||
3583 | switch (D.getContext()) { | ||||
3584 | case DeclaratorContext::TrailingReturn: | ||||
3585 | case DeclaratorContext::TrailingReturnVar: | ||||
3586 | // Class and enumeration definitions are syntactically not allowed in | ||||
3587 | // trailing return types. | ||||
3588 | llvm_unreachable("parser should not have allowed this")__builtin_unreachable(); | ||||
3589 | break; | ||||
3590 | case DeclaratorContext::File: | ||||
3591 | case DeclaratorContext::Member: | ||||
3592 | case DeclaratorContext::Block: | ||||
3593 | case DeclaratorContext::ForInit: | ||||
3594 | case DeclaratorContext::SelectionInit: | ||||
3595 | case DeclaratorContext::BlockLiteral: | ||||
3596 | case DeclaratorContext::LambdaExpr: | ||||
3597 | // C++11 [dcl.type]p3: | ||||
3598 | // A type-specifier-seq shall not define a class or enumeration unless | ||||
3599 | // it appears in the type-id of an alias-declaration (7.1.3) that is not | ||||
3600 | // the declaration of a template-declaration. | ||||
3601 | case DeclaratorContext::AliasDecl: | ||||
3602 | break; | ||||
3603 | case DeclaratorContext::AliasTemplate: | ||||
3604 | DiagID = diag::err_type_defined_in_alias_template; | ||||
3605 | break; | ||||
3606 | case DeclaratorContext::TypeName: | ||||
3607 | case DeclaratorContext::FunctionalCast: | ||||
3608 | case DeclaratorContext::ConversionId: | ||||
3609 | case DeclaratorContext::TemplateParam: | ||||
3610 | case DeclaratorContext::CXXNew: | ||||
3611 | case DeclaratorContext::CXXCatch: | ||||
3612 | case DeclaratorContext::ObjCCatch: | ||||
3613 | case DeclaratorContext::TemplateArg: | ||||
3614 | case DeclaratorContext::TemplateTypeArg: | ||||
3615 | DiagID = diag::err_type_defined_in_type_specifier; | ||||
3616 | break; | ||||
3617 | case DeclaratorContext::Prototype: | ||||
3618 | case DeclaratorContext::LambdaExprParameter: | ||||
3619 | case DeclaratorContext::ObjCParameter: | ||||
3620 | case DeclaratorContext::ObjCResult: | ||||
3621 | case DeclaratorContext::KNRTypeList: | ||||
3622 | case DeclaratorContext::RequiresExpr: | ||||
3623 | // C++ [dcl.fct]p6: | ||||
3624 | // Types shall not be defined in return or parameter types. | ||||
3625 | DiagID = diag::err_type_defined_in_param_type; | ||||
3626 | break; | ||||
3627 | case DeclaratorContext::Condition: | ||||
3628 | // C++ 6.4p2: | ||||
3629 | // The type-specifier-seq shall not contain typedef and shall not declare | ||||
3630 | // a new class or enumeration. | ||||
3631 | DiagID = diag::err_type_defined_in_condition; | ||||
3632 | break; | ||||
3633 | } | ||||
3634 | |||||
3635 | if (DiagID != 0) { | ||||
3636 | SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID) | ||||
3637 | << SemaRef.Context.getTypeDeclType(OwnedTagDecl); | ||||
3638 | D.setInvalidType(true); | ||||
3639 | } | ||||
3640 | } | ||||
3641 | |||||
3642 | assert(!T.isNull() && "This function should not return a null type")((void)0); | ||||
3643 | return T; | ||||
3644 | } | ||||
3645 | |||||
3646 | /// Produce an appropriate diagnostic for an ambiguity between a function | ||||
3647 | /// declarator and a C++ direct-initializer. | ||||
3648 | static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, | ||||
3649 | DeclaratorChunk &DeclType, QualType RT) { | ||||
3650 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||
3651 | assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((void)0); | ||||
3652 | |||||
3653 | // If the return type is void there is no ambiguity. | ||||
3654 | if (RT->isVoidType()) | ||||
3655 | return; | ||||
3656 | |||||
3657 | // An initializer for a non-class type can have at most one argument. | ||||
3658 | if (!RT->isRecordType() && FTI.NumParams > 1) | ||||
3659 | return; | ||||
3660 | |||||
3661 | // An initializer for a reference must have exactly one argument. | ||||
3662 | if (RT->isReferenceType() && FTI.NumParams != 1) | ||||
3663 | return; | ||||
3664 | |||||
3665 | // Only warn if this declarator is declaring a function at block scope, and | ||||
3666 | // doesn't have a storage class (such as 'extern') specified. | ||||
3667 | if (!D.isFunctionDeclarator() || | ||||
3668 | D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration || | ||||
3669 | !S.CurContext->isFunctionOrMethod() || | ||||
3670 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified) | ||||
3671 | return; | ||||
3672 | |||||
3673 | // Inside a condition, a direct initializer is not permitted. We allow one to | ||||
3674 | // be parsed in order to give better diagnostics in condition parsing. | ||||
3675 | if (D.getContext() == DeclaratorContext::Condition) | ||||
3676 | return; | ||||
3677 | |||||
3678 | SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc); | ||||
3679 | |||||
3680 | S.Diag(DeclType.Loc, | ||||
3681 | FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration | ||||
3682 | : diag::warn_empty_parens_are_function_decl) | ||||
3683 | << ParenRange; | ||||
3684 | |||||
3685 | // If the declaration looks like: | ||||
3686 | // T var1, | ||||
3687 | // f(); | ||||
3688 | // and name lookup finds a function named 'f', then the ',' was | ||||
3689 | // probably intended to be a ';'. | ||||
3690 | if (!D.isFirstDeclarator() && D.getIdentifier()) { | ||||
3691 | FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr); | ||||
3692 | FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr); | ||||
3693 | if (Comma.getFileID() != Name.getFileID() || | ||||
3694 | Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) { | ||||
3695 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), | ||||
3696 | Sema::LookupOrdinaryName); | ||||
3697 | if (S.LookupName(Result, S.getCurScope())) | ||||
3698 | S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call) | ||||
3699 | << FixItHint::CreateReplacement(D.getCommaLoc(), ";") | ||||
3700 | << D.getIdentifier(); | ||||
3701 | Result.suppressDiagnostics(); | ||||
3702 | } | ||||
3703 | } | ||||
3704 | |||||
3705 | if (FTI.NumParams > 0) { | ||||
3706 | // For a declaration with parameters, eg. "T var(T());", suggest adding | ||||
3707 | // parens around the first parameter to turn the declaration into a | ||||
3708 | // variable declaration. | ||||
3709 | SourceRange Range = FTI.Params[0].Param->getSourceRange(); | ||||
3710 | SourceLocation B = Range.getBegin(); | ||||
3711 | SourceLocation E = S.getLocForEndOfToken(Range.getEnd()); | ||||
3712 | // FIXME: Maybe we should suggest adding braces instead of parens | ||||
3713 | // in C++11 for classes that don't have an initializer_list constructor. | ||||
3714 | S.Diag(B, diag::note_additional_parens_for_variable_declaration) | ||||
3715 | << FixItHint::CreateInsertion(B, "(") | ||||
3716 | << FixItHint::CreateInsertion(E, ")"); | ||||
3717 | } else { | ||||
3718 | // For a declaration without parameters, eg. "T var();", suggest replacing | ||||
3719 | // the parens with an initializer to turn the declaration into a variable | ||||
3720 | // declaration. | ||||
3721 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | ||||
3722 | |||||
3723 | // Empty parens mean value-initialization, and no parens mean | ||||
3724 | // default initialization. These are equivalent if the default | ||||
3725 | // constructor is user-provided or if zero-initialization is a | ||||
3726 | // no-op. | ||||
3727 | if (RD && RD->hasDefinition() && | ||||
3728 | (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor())) | ||||
3729 | S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor) | ||||
3730 | << FixItHint::CreateRemoval(ParenRange); | ||||
3731 | else { | ||||
3732 | std::string Init = | ||||
3733 | S.getFixItZeroInitializerForType(RT, ParenRange.getBegin()); | ||||
3734 | if (Init.empty() && S.LangOpts.CPlusPlus11) | ||||
3735 | Init = "{}"; | ||||
3736 | if (!Init.empty()) | ||||
3737 | S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize) | ||||
3738 | << FixItHint::CreateReplacement(ParenRange, Init); | ||||
3739 | } | ||||
3740 | } | ||||
3741 | } | ||||
3742 | |||||
3743 | /// Produce an appropriate diagnostic for a declarator with top-level | ||||
3744 | /// parentheses. | ||||
3745 | static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) { | ||||
3746 | DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1); | ||||
3747 | assert(Paren.Kind == DeclaratorChunk::Paren &&((void)0) | ||||
3748 | "do not have redundant top-level parentheses")((void)0); | ||||
3749 | |||||
3750 | // This is a syntactic check; we're not interested in cases that arise | ||||
3751 | // during template instantiation. | ||||
3752 | if (S.inTemplateInstantiation()) | ||||
3753 | return; | ||||
3754 | |||||
3755 | // Check whether this could be intended to be a construction of a temporary | ||||
3756 | // object in C++ via a function-style cast. | ||||
3757 | bool CouldBeTemporaryObject = | ||||
3758 | S.getLangOpts().CPlusPlus && D.isExpressionContext() && | ||||
3759 | !D.isInvalidType() && D.getIdentifier() && | ||||
3760 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier && | ||||
3761 | (T->isRecordType() || T->isDependentType()) && | ||||
3762 | D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator(); | ||||
3763 | |||||
3764 | bool StartsWithDeclaratorId = true; | ||||
3765 | for (auto &C : D.type_objects()) { | ||||
3766 | switch (C.Kind) { | ||||
3767 | case DeclaratorChunk::Paren: | ||||
3768 | if (&C == &Paren) | ||||
3769 | continue; | ||||
3770 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
3771 | case DeclaratorChunk::Pointer: | ||||
3772 | StartsWithDeclaratorId = false; | ||||
3773 | continue; | ||||
3774 | |||||
3775 | case DeclaratorChunk::Array: | ||||
3776 | if (!C.Arr.NumElts) | ||||
3777 | CouldBeTemporaryObject = false; | ||||
3778 | continue; | ||||
3779 | |||||
3780 | case DeclaratorChunk::Reference: | ||||
3781 | // FIXME: Suppress the warning here if there is no initializer; we're | ||||
3782 | // going to give an error anyway. | ||||
3783 | // We assume that something like 'T (&x) = y;' is highly likely to not | ||||
3784 | // be intended to be a temporary object. | ||||
3785 | CouldBeTemporaryObject = false; | ||||
3786 | StartsWithDeclaratorId = false; | ||||
3787 | continue; | ||||
3788 | |||||
3789 | case DeclaratorChunk::Function: | ||||
3790 | // In a new-type-id, function chunks require parentheses. | ||||
3791 | if (D.getContext() == DeclaratorContext::CXXNew) | ||||
3792 | return; | ||||
3793 | // FIXME: "A(f())" deserves a vexing-parse warning, not just a | ||||
3794 | // redundant-parens warning, but we don't know whether the function | ||||
3795 | // chunk was syntactically valid as an expression here. | ||||
3796 | CouldBeTemporaryObject = false; | ||||
3797 | continue; | ||||
3798 | |||||
3799 | case DeclaratorChunk::BlockPointer: | ||||
3800 | case DeclaratorChunk::MemberPointer: | ||||
3801 | case DeclaratorChunk::Pipe: | ||||
3802 | // These cannot appear in expressions. | ||||
3803 | CouldBeTemporaryObject = false; | ||||
3804 | StartsWithDeclaratorId = false; | ||||
3805 | continue; | ||||
3806 | } | ||||
3807 | } | ||||
3808 | |||||
3809 | // FIXME: If there is an initializer, assume that this is not intended to be | ||||
3810 | // a construction of a temporary object. | ||||
3811 | |||||
3812 | // Check whether the name has already been declared; if not, this is not a | ||||
3813 | // function-style cast. | ||||
3814 | if (CouldBeTemporaryObject) { | ||||
3815 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), | ||||
3816 | Sema::LookupOrdinaryName); | ||||
3817 | if (!S.LookupName(Result, S.getCurScope())) | ||||
3818 | CouldBeTemporaryObject = false; | ||||
3819 | Result.suppressDiagnostics(); | ||||
3820 | } | ||||
3821 | |||||
3822 | SourceRange ParenRange(Paren.Loc, Paren.EndLoc); | ||||
3823 | |||||
3824 | if (!CouldBeTemporaryObject) { | ||||
3825 | // If we have A (::B), the parentheses affect the meaning of the program. | ||||
3826 | // Suppress the warning in that case. Don't bother looking at the DeclSpec | ||||
3827 | // here: even (e.g.) "int ::x" is visually ambiguous even though it's | ||||
3828 | // formally unambiguous. | ||||
3829 | if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) { | ||||
3830 | for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS; | ||||
3831 | NNS = NNS->getPrefix()) { | ||||
3832 | if (NNS->getKind() == NestedNameSpecifier::Global) | ||||
3833 | return; | ||||
3834 | } | ||||
3835 | } | ||||
3836 | |||||
3837 | S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator) | ||||
3838 | << ParenRange << FixItHint::CreateRemoval(Paren.Loc) | ||||
3839 | << FixItHint::CreateRemoval(Paren.EndLoc); | ||||
3840 | return; | ||||
3841 | } | ||||
3842 | |||||
3843 | S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration) | ||||
3844 | << ParenRange << D.getIdentifier(); | ||||
3845 | auto *RD = T->getAsCXXRecordDecl(); | ||||
3846 | if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor()) | ||||
3847 | S.Diag(Paren.Loc, diag::note_raii_guard_add_name) | ||||
3848 | << FixItHint::CreateInsertion(Paren.Loc, " varname") << T | ||||
3849 | << D.getIdentifier(); | ||||
3850 | // FIXME: A cast to void is probably a better suggestion in cases where it's | ||||
3851 | // valid (when there is no initializer and we're not in a condition). | ||||
3852 | S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses) | ||||
3853 | << FixItHint::CreateInsertion(D.getBeginLoc(), "(") | ||||
3854 | << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")"); | ||||
3855 | S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration) | ||||
3856 | << FixItHint::CreateRemoval(Paren.Loc) | ||||
3857 | << FixItHint::CreateRemoval(Paren.EndLoc); | ||||
3858 | } | ||||
3859 | |||||
3860 | /// Helper for figuring out the default CC for a function declarator type. If | ||||
3861 | /// this is the outermost chunk, then we can determine the CC from the | ||||
3862 | /// declarator context. If not, then this could be either a member function | ||||
3863 | /// type or normal function type. | ||||
3864 | static CallingConv getCCForDeclaratorChunk( | ||||
3865 | Sema &S, Declarator &D, const ParsedAttributesView &AttrList, | ||||
3866 | const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) { | ||||
3867 | assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((void)0); | ||||
3868 | |||||
3869 | // Check for an explicit CC attribute. | ||||
3870 | for (const ParsedAttr &AL : AttrList) { | ||||
3871 | switch (AL.getKind()) { | ||||
3872 | CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll : { | ||||
3873 | // Ignore attributes that don't validate or can't apply to the | ||||
3874 | // function type. We'll diagnose the failure to apply them in | ||||
3875 | // handleFunctionTypeAttr. | ||||
3876 | CallingConv CC; | ||||
3877 | if (!S.CheckCallingConvAttr(AL, CC) && | ||||
3878 | (!FTI.isVariadic || supportsVariadicCall(CC))) { | ||||
3879 | return CC; | ||||
3880 | } | ||||
3881 | break; | ||||
3882 | } | ||||
3883 | |||||
3884 | default: | ||||
3885 | break; | ||||
3886 | } | ||||
3887 | } | ||||
3888 | |||||
3889 | bool IsCXXInstanceMethod = false; | ||||
3890 | |||||
3891 | if (S.getLangOpts().CPlusPlus) { | ||||
3892 | // Look inwards through parentheses to see if this chunk will form a | ||||
3893 | // member pointer type or if we're the declarator. Any type attributes | ||||
3894 | // between here and there will override the CC we choose here. | ||||
3895 | unsigned I = ChunkIndex; | ||||
3896 | bool FoundNonParen = false; | ||||
3897 | while (I && !FoundNonParen) { | ||||
3898 | --I; | ||||
3899 | if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren) | ||||
3900 | FoundNonParen = true; | ||||
3901 | } | ||||
3902 | |||||
3903 | if (FoundNonParen) { | ||||
3904 | // If we're not the declarator, we're a regular function type unless we're | ||||
3905 | // in a member pointer. | ||||
3906 | IsCXXInstanceMethod = | ||||
3907 | D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer; | ||||
3908 | } else if (D.getContext() == DeclaratorContext::LambdaExpr) { | ||||
3909 | // This can only be a call operator for a lambda, which is an instance | ||||
3910 | // method. | ||||
3911 | IsCXXInstanceMethod = true; | ||||
3912 | } else { | ||||
3913 | // We're the innermost decl chunk, so must be a function declarator. | ||||
3914 | assert(D.isFunctionDeclarator())((void)0); | ||||
3915 | |||||
3916 | // If we're inside a record, we're declaring a method, but it could be | ||||
3917 | // explicitly or implicitly static. | ||||
3918 | IsCXXInstanceMethod = | ||||
3919 | D.isFirstDeclarationOfMember() && | ||||
3920 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | ||||
3921 | !D.isStaticMember(); | ||||
3922 | } | ||||
3923 | } | ||||
3924 | |||||
3925 | CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic, | ||||
3926 | IsCXXInstanceMethod); | ||||
3927 | |||||
3928 | // Attribute AT_OpenCLKernel affects the calling convention for SPIR | ||||
3929 | // and AMDGPU targets, hence it cannot be treated as a calling | ||||
3930 | // convention attribute. This is the simplest place to infer | ||||
3931 | // calling convention for OpenCL kernels. | ||||
3932 | if (S.getLangOpts().OpenCL) { | ||||
3933 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { | ||||
3934 | if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) { | ||||
3935 | CC = CC_OpenCLKernel; | ||||
3936 | break; | ||||
3937 | } | ||||
3938 | } | ||||
3939 | } | ||||
3940 | |||||
3941 | return CC; | ||||
3942 | } | ||||
3943 | |||||
3944 | namespace { | ||||
3945 | /// A simple notion of pointer kinds, which matches up with the various | ||||
3946 | /// pointer declarators. | ||||
3947 | enum class SimplePointerKind { | ||||
3948 | Pointer, | ||||
3949 | BlockPointer, | ||||
3950 | MemberPointer, | ||||
3951 | Array, | ||||
3952 | }; | ||||
3953 | } // end anonymous namespace | ||||
3954 | |||||
3955 | IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) { | ||||
3956 | switch (nullability) { | ||||
3957 | case NullabilityKind::NonNull: | ||||
3958 | if (!Ident__Nonnull) | ||||
3959 | Ident__Nonnull = PP.getIdentifierInfo("_Nonnull"); | ||||
3960 | return Ident__Nonnull; | ||||
3961 | |||||
3962 | case NullabilityKind::Nullable: | ||||
3963 | if (!Ident__Nullable) | ||||
3964 | Ident__Nullable = PP.getIdentifierInfo("_Nullable"); | ||||
3965 | return Ident__Nullable; | ||||
3966 | |||||
3967 | case NullabilityKind::NullableResult: | ||||
3968 | if (!Ident__Nullable_result) | ||||
3969 | Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result"); | ||||
3970 | return Ident__Nullable_result; | ||||
3971 | |||||
3972 | case NullabilityKind::Unspecified: | ||||
3973 | if (!Ident__Null_unspecified) | ||||
3974 | Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified"); | ||||
3975 | return Ident__Null_unspecified; | ||||
3976 | } | ||||
3977 | llvm_unreachable("Unknown nullability kind.")__builtin_unreachable(); | ||||
3978 | } | ||||
3979 | |||||
3980 | /// Retrieve the identifier "NSError". | ||||
3981 | IdentifierInfo *Sema::getNSErrorIdent() { | ||||
3982 | if (!Ident_NSError) | ||||
3983 | Ident_NSError = PP.getIdentifierInfo("NSError"); | ||||
3984 | |||||
3985 | return Ident_NSError; | ||||
3986 | } | ||||
3987 | |||||
3988 | /// Check whether there is a nullability attribute of any kind in the given | ||||
3989 | /// attribute list. | ||||
3990 | static bool hasNullabilityAttr(const ParsedAttributesView &attrs) { | ||||
3991 | for (const ParsedAttr &AL : attrs) { | ||||
3992 | if (AL.getKind() == ParsedAttr::AT_TypeNonNull || | ||||
3993 | AL.getKind() == ParsedAttr::AT_TypeNullable || | ||||
3994 | AL.getKind() == ParsedAttr::AT_TypeNullableResult || | ||||
3995 | AL.getKind() == ParsedAttr::AT_TypeNullUnspecified) | ||||
3996 | return true; | ||||
3997 | } | ||||
3998 | |||||
3999 | return false; | ||||
4000 | } | ||||
4001 | |||||
4002 | namespace { | ||||
4003 | /// Describes the kind of a pointer a declarator describes. | ||||
4004 | enum class PointerDeclaratorKind { | ||||
4005 | // Not a pointer. | ||||
4006 | NonPointer, | ||||
4007 | // Single-level pointer. | ||||
4008 | SingleLevelPointer, | ||||
4009 | // Multi-level pointer (of any pointer kind). | ||||
4010 | MultiLevelPointer, | ||||
4011 | // CFFooRef* | ||||
4012 | MaybePointerToCFRef, | ||||
4013 | // CFErrorRef* | ||||
4014 | CFErrorRefPointer, | ||||
4015 | // NSError** | ||||
4016 | NSErrorPointerPointer, | ||||
4017 | }; | ||||
4018 | |||||
4019 | /// Describes a declarator chunk wrapping a pointer that marks inference as | ||||
4020 | /// unexpected. | ||||
4021 | // These values must be kept in sync with diagnostics. | ||||
4022 | enum class PointerWrappingDeclaratorKind { | ||||
4023 | /// Pointer is top-level. | ||||
4024 | None = -1, | ||||
4025 | /// Pointer is an array element. | ||||
4026 | Array = 0, | ||||
4027 | /// Pointer is the referent type of a C++ reference. | ||||
4028 | Reference = 1 | ||||
4029 | }; | ||||
4030 | } // end anonymous namespace | ||||
4031 | |||||
4032 | /// Classify the given declarator, whose type-specified is \c type, based on | ||||
4033 | /// what kind of pointer it refers to. | ||||
4034 | /// | ||||
4035 | /// This is used to determine the default nullability. | ||||
4036 | static PointerDeclaratorKind | ||||
4037 | classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, | ||||
4038 | PointerWrappingDeclaratorKind &wrappingKind) { | ||||
4039 | unsigned numNormalPointers = 0; | ||||
4040 | |||||
4041 | // For any dependent type, we consider it a non-pointer. | ||||
4042 | if (type->isDependentType()) | ||||
4043 | return PointerDeclaratorKind::NonPointer; | ||||
4044 | |||||
4045 | // Look through the declarator chunks to identify pointers. | ||||
4046 | for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) { | ||||
4047 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||
4048 | switch (chunk.Kind) { | ||||
4049 | case DeclaratorChunk::Array: | ||||
4050 | if (numNormalPointers == 0) | ||||
4051 | wrappingKind = PointerWrappingDeclaratorKind::Array; | ||||
4052 | break; | ||||
4053 | |||||
4054 | case DeclaratorChunk::Function: | ||||
4055 | case DeclaratorChunk::Pipe: | ||||
4056 | break; | ||||
4057 | |||||
4058 | case DeclaratorChunk::BlockPointer: | ||||
4059 | case DeclaratorChunk::MemberPointer: | ||||
4060 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||
4061 | : PointerDeclaratorKind::SingleLevelPointer; | ||||
4062 | |||||
4063 | case DeclaratorChunk::Paren: | ||||
4064 | break; | ||||
4065 | |||||
4066 | case DeclaratorChunk::Reference: | ||||
4067 | if (numNormalPointers == 0) | ||||
4068 | wrappingKind = PointerWrappingDeclaratorKind::Reference; | ||||
4069 | break; | ||||
4070 | |||||
4071 | case DeclaratorChunk::Pointer: | ||||
4072 | ++numNormalPointers; | ||||
4073 | if (numNormalPointers > 2) | ||||
4074 | return PointerDeclaratorKind::MultiLevelPointer; | ||||
4075 | break; | ||||
4076 | } | ||||
4077 | } | ||||
4078 | |||||
4079 | // Then, dig into the type specifier itself. | ||||
4080 | unsigned numTypeSpecifierPointers = 0; | ||||
4081 | do { | ||||
4082 | // Decompose normal pointers. | ||||
4083 | if (auto ptrType = type->getAs<PointerType>()) { | ||||
4084 | ++numNormalPointers; | ||||
4085 | |||||
4086 | if (numNormalPointers > 2) | ||||
4087 | return PointerDeclaratorKind::MultiLevelPointer; | ||||
4088 | |||||
4089 | type = ptrType->getPointeeType(); | ||||
4090 | ++numTypeSpecifierPointers; | ||||
4091 | continue; | ||||
4092 | } | ||||
4093 | |||||
4094 | // Decompose block pointers. | ||||
4095 | if (type->getAs<BlockPointerType>()) { | ||||
4096 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||
4097 | : PointerDeclaratorKind::SingleLevelPointer; | ||||
4098 | } | ||||
4099 | |||||
4100 | // Decompose member pointers. | ||||
4101 | if (type->getAs<MemberPointerType>()) { | ||||
4102 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||
4103 | : PointerDeclaratorKind::SingleLevelPointer; | ||||
4104 | } | ||||
4105 | |||||
4106 | // Look at Objective-C object pointers. | ||||
4107 | if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) { | ||||
4108 | ++numNormalPointers; | ||||
4109 | ++numTypeSpecifierPointers; | ||||
4110 | |||||
4111 | // If this is NSError**, report that. | ||||
4112 | if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) { | ||||
4113 | if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() && | ||||
4114 | numNormalPointers == 2 && numTypeSpecifierPointers < 2) { | ||||
4115 | return PointerDeclaratorKind::NSErrorPointerPointer; | ||||
4116 | } | ||||
4117 | } | ||||
4118 | |||||
4119 | break; | ||||
4120 | } | ||||
4121 | |||||
4122 | // Look at Objective-C class types. | ||||
4123 | if (auto objcClass = type->getAs<ObjCInterfaceType>()) { | ||||
4124 | if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) { | ||||
4125 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2) | ||||
4126 | return PointerDeclaratorKind::NSErrorPointerPointer; | ||||
4127 | } | ||||
4128 | |||||
4129 | break; | ||||
4130 | } | ||||
4131 | |||||
4132 | // If at this point we haven't seen a pointer, we won't see one. | ||||
4133 | if (numNormalPointers == 0) | ||||
4134 | return PointerDeclaratorKind::NonPointer; | ||||
4135 | |||||
4136 | if (auto recordType = type->getAs<RecordType>()) { | ||||
4137 | RecordDecl *recordDecl = recordType->getDecl(); | ||||
4138 | |||||
4139 | // If this is CFErrorRef*, report it as such. | ||||
4140 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 && | ||||
4141 | S.isCFError(recordDecl)) { | ||||
4142 | return PointerDeclaratorKind::CFErrorRefPointer; | ||||
4143 | } | ||||
4144 | break; | ||||
4145 | } | ||||
4146 | |||||
4147 | break; | ||||
4148 | } while (true); | ||||
4149 | |||||
4150 | switch (numNormalPointers) { | ||||
4151 | case 0: | ||||
4152 | return PointerDeclaratorKind::NonPointer; | ||||
4153 | |||||
4154 | case 1: | ||||
4155 | return PointerDeclaratorKind::SingleLevelPointer; | ||||
4156 | |||||
4157 | case 2: | ||||
4158 | return PointerDeclaratorKind::MaybePointerToCFRef; | ||||
4159 | |||||
4160 | default: | ||||
4161 | return PointerDeclaratorKind::MultiLevelPointer; | ||||
4162 | } | ||||
4163 | } | ||||
4164 | |||||
4165 | bool Sema::isCFError(RecordDecl *RD) { | ||||
4166 | // If we already know about CFError, test it directly. | ||||
4167 | if (CFError) | ||||
4168 | return CFError == RD; | ||||
4169 | |||||
4170 | // Check whether this is CFError, which we identify based on its bridge to | ||||
4171 | // NSError. CFErrorRef used to be declared with "objc_bridge" but is now | ||||
4172 | // declared with "objc_bridge_mutable", so look for either one of the two | ||||
4173 | // attributes. | ||||
4174 | if (RD->getTagKind() == TTK_Struct) { | ||||
4175 | IdentifierInfo *bridgedType = nullptr; | ||||
4176 | if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>()) | ||||
4177 | bridgedType = bridgeAttr->getBridgedType(); | ||||
4178 | else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>()) | ||||
4179 | bridgedType = bridgeAttr->getBridgedType(); | ||||
4180 | |||||
4181 | if (bridgedType == getNSErrorIdent()) { | ||||
4182 | CFError = RD; | ||||
4183 | return true; | ||||
4184 | } | ||||
4185 | } | ||||
4186 | |||||
4187 | return false; | ||||
4188 | } | ||||
4189 | |||||
4190 | static FileID getNullabilityCompletenessCheckFileID(Sema &S, | ||||
4191 | SourceLocation loc) { | ||||
4192 | // If we're anywhere in a function, method, or closure context, don't perform | ||||
4193 | // completeness checks. | ||||
4194 | for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) { | ||||
4195 | if (ctx->isFunctionOrMethod()) | ||||
4196 | return FileID(); | ||||
4197 | |||||
4198 | if (ctx->isFileContext()) | ||||
4199 | break; | ||||
4200 | } | ||||
4201 | |||||
4202 | // We only care about the expansion location. | ||||
4203 | loc = S.SourceMgr.getExpansionLoc(loc); | ||||
4204 | FileID file = S.SourceMgr.getFileID(loc); | ||||
4205 | if (file.isInvalid()) | ||||
4206 | return FileID(); | ||||
4207 | |||||
4208 | // Retrieve file information. | ||||
4209 | bool invalid = false; | ||||
4210 | const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid); | ||||
4211 | if (invalid || !sloc.isFile()) | ||||
4212 | return FileID(); | ||||
4213 | |||||
4214 | // We don't want to perform completeness checks on the main file or in | ||||
4215 | // system headers. | ||||
4216 | const SrcMgr::FileInfo &fileInfo = sloc.getFile(); | ||||
4217 | if (fileInfo.getIncludeLoc().isInvalid()) | ||||
4218 | return FileID(); | ||||
4219 | if (fileInfo.getFileCharacteristic() != SrcMgr::C_User && | ||||
4220 | S.Diags.getSuppressSystemWarnings()) { | ||||
4221 | return FileID(); | ||||
4222 | } | ||||
4223 | |||||
4224 | return file; | ||||
4225 | } | ||||
4226 | |||||
4227 | /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc, | ||||
4228 | /// taking into account whitespace before and after. | ||||
4229 | template <typename DiagBuilderT> | ||||
4230 | static void fixItNullability(Sema &S, DiagBuilderT &Diag, | ||||
4231 | SourceLocation PointerLoc, | ||||
4232 | NullabilityKind Nullability) { | ||||
4233 | assert(PointerLoc.isValid())((void)0); | ||||
4234 | if (PointerLoc.isMacroID()) | ||||
4235 | return; | ||||
4236 | |||||
4237 | SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc); | ||||
4238 | if (!FixItLoc.isValid() || FixItLoc == PointerLoc) | ||||
4239 | return; | ||||
4240 | |||||
4241 | const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc); | ||||
4242 | if (!NextChar) | ||||
4243 | return; | ||||
4244 | |||||
4245 | SmallString<32> InsertionTextBuf{" "}; | ||||
4246 | InsertionTextBuf += getNullabilitySpelling(Nullability); | ||||
4247 | InsertionTextBuf += " "; | ||||
4248 | StringRef InsertionText = InsertionTextBuf.str(); | ||||
4249 | |||||
4250 | if (isWhitespace(*NextChar)) { | ||||
4251 | InsertionText = InsertionText.drop_back(); | ||||
4252 | } else if (NextChar[-1] == '[') { | ||||
4253 | if (NextChar[0] == ']') | ||||
4254 | InsertionText = InsertionText.drop_back().drop_front(); | ||||
4255 | else | ||||
4256 | InsertionText = InsertionText.drop_front(); | ||||
4257 | } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) && | ||||
4258 | !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) { | ||||
4259 | InsertionText = InsertionText.drop_back().drop_front(); | ||||
4260 | } | ||||
4261 | |||||
4262 | Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText); | ||||
4263 | } | ||||
4264 | |||||
4265 | static void emitNullabilityConsistencyWarning(Sema &S, | ||||
4266 | SimplePointerKind PointerKind, | ||||
4267 | SourceLocation PointerLoc, | ||||
4268 | SourceLocation PointerEndLoc) { | ||||
4269 | assert(PointerLoc.isValid())((void)0); | ||||
4270 | |||||
4271 | if (PointerKind == SimplePointerKind::Array) { | ||||
4272 | S.Diag(PointerLoc, diag::warn_nullability_missing_array); | ||||
4273 | } else { | ||||
4274 | S.Diag(PointerLoc, diag::warn_nullability_missing) | ||||
4275 | << static_cast<unsigned>(PointerKind); | ||||
4276 | } | ||||
4277 | |||||
4278 | auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc; | ||||
4279 | if (FixItLoc.isMacroID()) | ||||
4280 | return; | ||||
4281 | |||||
4282 | auto addFixIt = [&](NullabilityKind Nullability) { | ||||
4283 | auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it); | ||||
4284 | Diag << static_cast<unsigned>(Nullability); | ||||
4285 | Diag << static_cast<unsigned>(PointerKind); | ||||
4286 | fixItNullability(S, Diag, FixItLoc, Nullability); | ||||
4287 | }; | ||||
4288 | addFixIt(NullabilityKind::Nullable); | ||||
4289 | addFixIt(NullabilityKind::NonNull); | ||||
4290 | } | ||||
4291 | |||||
4292 | /// Complains about missing nullability if the file containing \p pointerLoc | ||||
4293 | /// has other uses of nullability (either the keywords or the \c assume_nonnull | ||||
4294 | /// pragma). | ||||
4295 | /// | ||||
4296 | /// If the file has \e not seen other uses of nullability, this particular | ||||
4297 | /// pointer is saved for possible later diagnosis. See recordNullabilitySeen(). | ||||
4298 | static void | ||||
4299 | checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, | ||||
4300 | SourceLocation pointerLoc, | ||||
4301 | SourceLocation pointerEndLoc = SourceLocation()) { | ||||
4302 | // Determine which file we're performing consistency checking for. | ||||
4303 | FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc); | ||||
4304 | if (file.isInvalid()) | ||||
4305 | return; | ||||
4306 | |||||
4307 | // If we haven't seen any type nullability in this file, we won't warn now | ||||
4308 | // about anything. | ||||
4309 | FileNullability &fileNullability = S.NullabilityMap[file]; | ||||
4310 | if (!fileNullability.SawTypeNullability) { | ||||
4311 | // If this is the first pointer declarator in the file, and the appropriate | ||||
4312 | // warning is on, record it in case we need to diagnose it retroactively. | ||||
4313 | diag::kind diagKind; | ||||
4314 | if (pointerKind == SimplePointerKind::Array) | ||||
4315 | diagKind = diag::warn_nullability_missing_array; | ||||
4316 | else | ||||
4317 | diagKind = diag::warn_nullability_missing; | ||||
4318 | |||||
4319 | if (fileNullability.PointerLoc.isInvalid() && | ||||
4320 | !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) { | ||||
4321 | fileNullability.PointerLoc = pointerLoc; | ||||
4322 | fileNullability.PointerEndLoc = pointerEndLoc; | ||||
4323 | fileNullability.PointerKind = static_cast<unsigned>(pointerKind); | ||||
4324 | } | ||||
4325 | |||||
4326 | return; | ||||
4327 | } | ||||
4328 | |||||
4329 | // Complain about missing nullability. | ||||
4330 | emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc); | ||||
4331 | } | ||||
4332 | |||||
4333 | /// Marks that a nullability feature has been used in the file containing | ||||
4334 | /// \p loc. | ||||
4335 | /// | ||||
4336 | /// If this file already had pointer types in it that were missing nullability, | ||||
4337 | /// the first such instance is retroactively diagnosed. | ||||
4338 | /// | ||||
4339 | /// \sa checkNullabilityConsistency | ||||
4340 | static void recordNullabilitySeen(Sema &S, SourceLocation loc) { | ||||
4341 | FileID file = getNullabilityCompletenessCheckFileID(S, loc); | ||||
4342 | if (file.isInvalid()) | ||||
4343 | return; | ||||
4344 | |||||
4345 | FileNullability &fileNullability = S.NullabilityMap[file]; | ||||
4346 | if (fileNullability.SawTypeNullability) | ||||
4347 | return; | ||||
4348 | fileNullability.SawTypeNullability = true; | ||||
4349 | |||||
4350 | // If we haven't seen any type nullability before, now we have. Retroactively | ||||
4351 | // diagnose the first unannotated pointer, if there was one. | ||||
4352 | if (fileNullability.PointerLoc.isInvalid()) | ||||
4353 | return; | ||||
4354 | |||||
4355 | auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind); | ||||
4356 | emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc, | ||||
4357 | fileNullability.PointerEndLoc); | ||||
4358 | } | ||||
4359 | |||||
4360 | /// Returns true if any of the declarator chunks before \p endIndex include a | ||||
4361 | /// level of indirection: array, pointer, reference, or pointer-to-member. | ||||
4362 | /// | ||||
4363 | /// Because declarator chunks are stored in outer-to-inner order, testing | ||||
4364 | /// every chunk before \p endIndex is testing all chunks that embed the current | ||||
4365 | /// chunk as part of their type. | ||||
4366 | /// | ||||
4367 | /// It is legal to pass the result of Declarator::getNumTypeObjects() as the | ||||
4368 | /// end index, in which case all chunks are tested. | ||||
4369 | static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) { | ||||
4370 | unsigned i = endIndex; | ||||
4371 | while (i != 0) { | ||||
4372 | // Walk outwards along the declarator chunks. | ||||
4373 | --i; | ||||
4374 | const DeclaratorChunk &DC = D.getTypeObject(i); | ||||
4375 | switch (DC.Kind) { | ||||
4376 | case DeclaratorChunk::Paren: | ||||
4377 | break; | ||||
4378 | case DeclaratorChunk::Array: | ||||
4379 | case DeclaratorChunk::Pointer: | ||||
4380 | case DeclaratorChunk::Reference: | ||||
4381 | case DeclaratorChunk::MemberPointer: | ||||
4382 | return true; | ||||
4383 | case DeclaratorChunk::Function: | ||||
4384 | case DeclaratorChunk::BlockPointer: | ||||
4385 | case DeclaratorChunk::Pipe: | ||||
4386 | // These are invalid anyway, so just ignore. | ||||
4387 | break; | ||||
4388 | } | ||||
4389 | } | ||||
4390 | return false; | ||||
4391 | } | ||||
4392 | |||||
4393 | static bool IsNoDerefableChunk(DeclaratorChunk Chunk) { | ||||
4394 | return (Chunk.Kind == DeclaratorChunk::Pointer || | ||||
4395 | Chunk.Kind == DeclaratorChunk::Array); | ||||
4396 | } | ||||
4397 | |||||
4398 | template<typename AttrT> | ||||
4399 | static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) { | ||||
4400 | AL.setUsedAsTypeAttr(); | ||||
4401 | return ::new (Ctx) AttrT(Ctx, AL); | ||||
4402 | } | ||||
4403 | |||||
4404 | static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr, | ||||
4405 | NullabilityKind NK) { | ||||
4406 | switch (NK) { | ||||
4407 | case NullabilityKind::NonNull: | ||||
4408 | return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr); | ||||
4409 | |||||
4410 | case NullabilityKind::Nullable: | ||||
4411 | return createSimpleAttr<TypeNullableAttr>(Ctx, Attr); | ||||
4412 | |||||
4413 | case NullabilityKind::NullableResult: | ||||
4414 | return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr); | ||||
4415 | |||||
4416 | case NullabilityKind::Unspecified: | ||||
4417 | return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr); | ||||
4418 | } | ||||
4419 | llvm_unreachable("unknown NullabilityKind")__builtin_unreachable(); | ||||
4420 | } | ||||
4421 | |||||
4422 | // Diagnose whether this is a case with the multiple addr spaces. | ||||
4423 | // Returns true if this is an invalid case. | ||||
4424 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified | ||||
4425 | // by qualifiers for two or more different address spaces." | ||||
4426 | static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld, | ||||
4427 | LangAS ASNew, | ||||
4428 | SourceLocation AttrLoc) { | ||||
4429 | if (ASOld != LangAS::Default) { | ||||
4430 | if (ASOld != ASNew) { | ||||
4431 | S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); | ||||
4432 | return true; | ||||
4433 | } | ||||
4434 | // Emit a warning if they are identical; it's likely unintended. | ||||
4435 | S.Diag(AttrLoc, | ||||
4436 | diag::warn_attribute_address_multiple_identical_qualifiers); | ||||
4437 | } | ||||
4438 | return false; | ||||
4439 | } | ||||
4440 | |||||
4441 | static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state, | ||||
4442 | QualType declSpecType, | ||||
4443 | TypeSourceInfo *TInfo) { | ||||
4444 | // The TypeSourceInfo that this function returns will not be a null type. | ||||
4445 | // If there is an error, this function will fill in a dummy type as fallback. | ||||
4446 | QualType T = declSpecType; | ||||
4447 | Declarator &D = state.getDeclarator(); | ||||
4448 | Sema &S = state.getSema(); | ||||
4449 | ASTContext &Context = S.Context; | ||||
4450 | const LangOptions &LangOpts = S.getLangOpts(); | ||||
4451 | |||||
4452 | // The name we're declaring, if any. | ||||
4453 | DeclarationName Name; | ||||
4454 | if (D.getIdentifier()) | ||||
4455 | Name = D.getIdentifier(); | ||||
4456 | |||||
4457 | // Does this declaration declare a typedef-name? | ||||
4458 | bool IsTypedefName = | ||||
4459 | D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef || | ||||
4460 | D.getContext() == DeclaratorContext::AliasDecl || | ||||
4461 | D.getContext() == DeclaratorContext::AliasTemplate; | ||||
4462 | |||||
4463 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? | ||||
4464 | bool IsQualifiedFunction = T->isFunctionProtoType() && | ||||
4465 | (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() || | ||||
4466 | T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None); | ||||
4467 | |||||
4468 | // If T is 'decltype(auto)', the only declarators we can have are parens | ||||
4469 | // and at most one function declarator if this is a function declaration. | ||||
4470 | // If T is a deduced class template specialization type, we can have no | ||||
4471 | // declarator chunks at all. | ||||
4472 | if (auto *DT = T->getAs<DeducedType>()) { | ||||
4473 | const AutoType *AT = T->getAs<AutoType>(); | ||||
4474 | bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT); | ||||
4475 | if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) { | ||||
4476 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | ||||
4477 | unsigned Index = E - I - 1; | ||||
4478 | DeclaratorChunk &DeclChunk = D.getTypeObject(Index); | ||||
4479 | unsigned DiagId = IsClassTemplateDeduction | ||||
4480 | ? diag::err_deduced_class_template_compound_type | ||||
4481 | : diag::err_decltype_auto_compound_type; | ||||
4482 | unsigned DiagKind = 0; | ||||
4483 | switch (DeclChunk.Kind) { | ||||
4484 | case DeclaratorChunk::Paren: | ||||
4485 | // FIXME: Rejecting this is a little silly. | ||||
4486 | if (IsClassTemplateDeduction) { | ||||
4487 | DiagKind = 4; | ||||
4488 | break; | ||||
4489 | } | ||||
4490 | continue; | ||||
4491 | case DeclaratorChunk::Function: { | ||||
4492 | if (IsClassTemplateDeduction) { | ||||
4493 | DiagKind = 3; | ||||
4494 | break; | ||||
4495 | } | ||||
4496 | unsigned FnIndex; | ||||
4497 | if (D.isFunctionDeclarationContext() && | ||||
4498 | D.isFunctionDeclarator(FnIndex) && FnIndex == Index) | ||||
4499 | continue; | ||||
4500 | DiagId = diag::err_decltype_auto_function_declarator_not_declaration; | ||||
4501 | break; | ||||
4502 | } | ||||
4503 | case DeclaratorChunk::Pointer: | ||||
4504 | case DeclaratorChunk::BlockPointer: | ||||
4505 | case DeclaratorChunk::MemberPointer: | ||||
4506 | DiagKind = 0; | ||||
4507 | break; | ||||
4508 | case DeclaratorChunk::Reference: | ||||
4509 | DiagKind = 1; | ||||
4510 | break; | ||||
4511 | case DeclaratorChunk::Array: | ||||
4512 | DiagKind = 2; | ||||
4513 | break; | ||||
4514 | case DeclaratorChunk::Pipe: | ||||
4515 | break; | ||||
4516 | } | ||||
4517 | |||||
4518 | S.Diag(DeclChunk.Loc, DiagId) << DiagKind; | ||||
4519 | D.setInvalidType(true); | ||||
4520 | break; | ||||
4521 | } | ||||
4522 | } | ||||
4523 | } | ||||
4524 | |||||
4525 | // Determine whether we should infer _Nonnull on pointer types. | ||||
4526 | Optional<NullabilityKind> inferNullability; | ||||
4527 | bool inferNullabilityCS = false; | ||||
4528 | bool inferNullabilityInnerOnly = false; | ||||
4529 | bool inferNullabilityInnerOnlyComplete = false; | ||||
4530 | |||||
4531 | // Are we in an assume-nonnull region? | ||||
4532 | bool inAssumeNonNullRegion = false; | ||||
4533 | SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc(); | ||||
4534 | if (assumeNonNullLoc.isValid()) { | ||||
4535 | inAssumeNonNullRegion = true; | ||||
4536 | recordNullabilitySeen(S, assumeNonNullLoc); | ||||
4537 | } | ||||
4538 | |||||
4539 | // Whether to complain about missing nullability specifiers or not. | ||||
4540 | enum { | ||||
4541 | /// Never complain. | ||||
4542 | CAMN_No, | ||||
4543 | /// Complain on the inner pointers (but not the outermost | ||||
4544 | /// pointer). | ||||
4545 | CAMN_InnerPointers, | ||||
4546 | /// Complain about any pointers that don't have nullability | ||||
4547 | /// specified or inferred. | ||||
4548 | CAMN_Yes | ||||
4549 | } complainAboutMissingNullability = CAMN_No; | ||||
4550 | unsigned NumPointersRemaining = 0; | ||||
4551 | auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None; | ||||
4552 | |||||
4553 | if (IsTypedefName) { | ||||
4554 | // For typedefs, we do not infer any nullability (the default), | ||||
4555 | // and we only complain about missing nullability specifiers on | ||||
4556 | // inner pointers. | ||||
4557 | complainAboutMissingNullability = CAMN_InnerPointers; | ||||
4558 | |||||
4559 | if (T->canHaveNullability(/*ResultIfUnknown*/false) && | ||||
4560 | !T->getNullability(S.Context)) { | ||||
4561 | // Note that we allow but don't require nullability on dependent types. | ||||
4562 | ++NumPointersRemaining; | ||||
4563 | } | ||||
4564 | |||||
4565 | for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) { | ||||
4566 | DeclaratorChunk &chunk = D.getTypeObject(i); | ||||
4567 | switch (chunk.Kind) { | ||||
4568 | case DeclaratorChunk::Array: | ||||
4569 | case DeclaratorChunk::Function: | ||||
4570 | case DeclaratorChunk::Pipe: | ||||
4571 | break; | ||||
4572 | |||||
4573 | case DeclaratorChunk::BlockPointer: | ||||
4574 | case DeclaratorChunk::MemberPointer: | ||||
4575 | ++NumPointersRemaining; | ||||
4576 | break; | ||||
4577 | |||||
4578 | case DeclaratorChunk::Paren: | ||||
4579 | case DeclaratorChunk::Reference: | ||||
4580 | continue; | ||||
4581 | |||||
4582 | case DeclaratorChunk::Pointer: | ||||
4583 | ++NumPointersRemaining; | ||||
4584 | continue; | ||||
4585 | } | ||||
4586 | } | ||||
4587 | } else { | ||||
4588 | bool isFunctionOrMethod = false; | ||||
4589 | switch (auto context = state.getDeclarator().getContext()) { | ||||
4590 | case DeclaratorContext::ObjCParameter: | ||||
4591 | case DeclaratorContext::ObjCResult: | ||||
4592 | case DeclaratorContext::Prototype: | ||||
4593 | case DeclaratorContext::TrailingReturn: | ||||
4594 | case DeclaratorContext::TrailingReturnVar: | ||||
4595 | isFunctionOrMethod = true; | ||||
4596 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
4597 | |||||
4598 | case DeclaratorContext::Member: | ||||
4599 | if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) { | ||||
4600 | complainAboutMissingNullability = CAMN_No; | ||||
4601 | break; | ||||
4602 | } | ||||
4603 | |||||
4604 | // Weak properties are inferred to be nullable. | ||||
4605 | if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) { | ||||
4606 | inferNullability = NullabilityKind::Nullable; | ||||
4607 | break; | ||||
4608 | } | ||||
4609 | |||||
4610 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
4611 | |||||
4612 | case DeclaratorContext::File: | ||||
4613 | case DeclaratorContext::KNRTypeList: { | ||||
4614 | complainAboutMissingNullability = CAMN_Yes; | ||||
4615 | |||||
4616 | // Nullability inference depends on the type and declarator. | ||||
4617 | auto wrappingKind = PointerWrappingDeclaratorKind::None; | ||||
4618 | switch (classifyPointerDeclarator(S, T, D, wrappingKind)) { | ||||
4619 | case PointerDeclaratorKind::NonPointer: | ||||
4620 | case PointerDeclaratorKind::MultiLevelPointer: | ||||
4621 | // Cannot infer nullability. | ||||
4622 | break; | ||||
4623 | |||||
4624 | case PointerDeclaratorKind::SingleLevelPointer: | ||||
4625 | // Infer _Nonnull if we are in an assumes-nonnull region. | ||||
4626 | if (inAssumeNonNullRegion) { | ||||
4627 | complainAboutInferringWithinChunk = wrappingKind; | ||||
4628 | inferNullability = NullabilityKind::NonNull; | ||||
4629 | inferNullabilityCS = (context == DeclaratorContext::ObjCParameter || | ||||
4630 | context == DeclaratorContext::ObjCResult); | ||||
4631 | } | ||||
4632 | break; | ||||
4633 | |||||
4634 | case PointerDeclaratorKind::CFErrorRefPointer: | ||||
4635 | case PointerDeclaratorKind::NSErrorPointerPointer: | ||||
4636 | // Within a function or method signature, infer _Nullable at both | ||||
4637 | // levels. | ||||
4638 | if (isFunctionOrMethod && inAssumeNonNullRegion) | ||||
4639 | inferNullability = NullabilityKind::Nullable; | ||||
4640 | break; | ||||
4641 | |||||
4642 | case PointerDeclaratorKind::MaybePointerToCFRef: | ||||
4643 | if (isFunctionOrMethod) { | ||||
4644 | // On pointer-to-pointer parameters marked cf_returns_retained or | ||||
4645 | // cf_returns_not_retained, if the outer pointer is explicit then | ||||
4646 | // infer the inner pointer as _Nullable. | ||||
4647 | auto hasCFReturnsAttr = | ||||
4648 | [](const ParsedAttributesView &AttrList) -> bool { | ||||
4649 | return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) || | ||||
4650 | AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained); | ||||
4651 | }; | ||||
4652 | if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) { | ||||
4653 | if (hasCFReturnsAttr(D.getAttributes()) || | ||||
4654 | hasCFReturnsAttr(InnermostChunk->getAttrs()) || | ||||
4655 | hasCFReturnsAttr(D.getDeclSpec().getAttributes())) { | ||||
4656 | inferNullability = NullabilityKind::Nullable; | ||||
4657 | inferNullabilityInnerOnly = true; | ||||
4658 | } | ||||
4659 | } | ||||
4660 | } | ||||
4661 | break; | ||||
4662 | } | ||||
4663 | break; | ||||
4664 | } | ||||
4665 | |||||
4666 | case DeclaratorContext::ConversionId: | ||||
4667 | complainAboutMissingNullability = CAMN_Yes; | ||||
4668 | break; | ||||
4669 | |||||
4670 | case DeclaratorContext::AliasDecl: | ||||
4671 | case DeclaratorContext::AliasTemplate: | ||||
4672 | case DeclaratorContext::Block: | ||||
4673 | case DeclaratorContext::BlockLiteral: | ||||
4674 | case DeclaratorContext::Condition: | ||||
4675 | case DeclaratorContext::CXXCatch: | ||||
4676 | case DeclaratorContext::CXXNew: | ||||
4677 | case DeclaratorContext::ForInit: | ||||
4678 | case DeclaratorContext::SelectionInit: | ||||
4679 | case DeclaratorContext::LambdaExpr: | ||||
4680 | case DeclaratorContext::LambdaExprParameter: | ||||
4681 | case DeclaratorContext::ObjCCatch: | ||||
4682 | case DeclaratorContext::TemplateParam: | ||||
4683 | case DeclaratorContext::TemplateArg: | ||||
4684 | case DeclaratorContext::TemplateTypeArg: | ||||
4685 | case DeclaratorContext::TypeName: | ||||
4686 | case DeclaratorContext::FunctionalCast: | ||||
4687 | case DeclaratorContext::RequiresExpr: | ||||
4688 | // Don't infer in these contexts. | ||||
4689 | break; | ||||
4690 | } | ||||
4691 | } | ||||
4692 | |||||
4693 | // Local function that returns true if its argument looks like a va_list. | ||||
4694 | auto isVaList = [&S](QualType T) -> bool { | ||||
4695 | auto *typedefTy = T->getAs<TypedefType>(); | ||||
4696 | if (!typedefTy) | ||||
4697 | return false; | ||||
4698 | TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl(); | ||||
4699 | do { | ||||
4700 | if (typedefTy->getDecl() == vaListTypedef) | ||||
4701 | return true; | ||||
4702 | if (auto *name = typedefTy->getDecl()->getIdentifier()) | ||||
4703 | if (name->isStr("va_list")) | ||||
4704 | return true; | ||||
4705 | typedefTy = typedefTy->desugar()->getAs<TypedefType>(); | ||||
4706 | } while (typedefTy); | ||||
4707 | return false; | ||||
4708 | }; | ||||
4709 | |||||
4710 | // Local function that checks the nullability for a given pointer declarator. | ||||
4711 | // Returns true if _Nonnull was inferred. | ||||
4712 | auto inferPointerNullability = | ||||
4713 | [&](SimplePointerKind pointerKind, SourceLocation pointerLoc, | ||||
4714 | SourceLocation pointerEndLoc, | ||||
4715 | ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * { | ||||
4716 | // We've seen a pointer. | ||||
4717 | if (NumPointersRemaining > 0) | ||||
4718 | --NumPointersRemaining; | ||||
4719 | |||||
4720 | // If a nullability attribute is present, there's nothing to do. | ||||
4721 | if (hasNullabilityAttr(attrs)) | ||||
4722 | return nullptr; | ||||
4723 | |||||
4724 | // If we're supposed to infer nullability, do so now. | ||||
4725 | if (inferNullability && !inferNullabilityInnerOnlyComplete) { | ||||
4726 | ParsedAttr::Syntax syntax = inferNullabilityCS | ||||
4727 | ? ParsedAttr::AS_ContextSensitiveKeyword | ||||
4728 | : ParsedAttr::AS_Keyword; | ||||
4729 | ParsedAttr *nullabilityAttr = Pool.create( | ||||
4730 | S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc), | ||||
4731 | nullptr, SourceLocation(), nullptr, 0, syntax); | ||||
4732 | |||||
4733 | attrs.addAtEnd(nullabilityAttr); | ||||
4734 | |||||
4735 | if (inferNullabilityCS) { | ||||
4736 | state.getDeclarator().getMutableDeclSpec().getObjCQualifiers() | ||||
4737 | ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability); | ||||
4738 | } | ||||
4739 | |||||
4740 | if (pointerLoc.isValid() && | ||||
4741 | complainAboutInferringWithinChunk != | ||||
4742 | PointerWrappingDeclaratorKind::None) { | ||||
4743 | auto Diag = | ||||
4744 | S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type); | ||||
4745 | Diag << static_cast<int>(complainAboutInferringWithinChunk); | ||||
4746 | fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull); | ||||
4747 | } | ||||
4748 | |||||
4749 | if (inferNullabilityInnerOnly) | ||||
4750 | inferNullabilityInnerOnlyComplete = true; | ||||
4751 | return nullabilityAttr; | ||||
4752 | } | ||||
4753 | |||||
4754 | // If we're supposed to complain about missing nullability, do so | ||||
4755 | // now if it's truly missing. | ||||
4756 | switch (complainAboutMissingNullability) { | ||||
4757 | case CAMN_No: | ||||
4758 | break; | ||||
4759 | |||||
4760 | case CAMN_InnerPointers: | ||||
4761 | if (NumPointersRemaining == 0) | ||||
4762 | break; | ||||
4763 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
4764 | |||||
4765 | case CAMN_Yes: | ||||
4766 | checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc); | ||||
4767 | } | ||||
4768 | return nullptr; | ||||
4769 | }; | ||||
4770 | |||||
4771 | // If the type itself could have nullability but does not, infer pointer | ||||
4772 | // nullability and perform consistency checking. | ||||
4773 | if (S.CodeSynthesisContexts.empty()) { | ||||
4774 | if (T->canHaveNullability(/*ResultIfUnknown*/false) && | ||||
4775 | !T->getNullability(S.Context)) { | ||||
4776 | if (isVaList(T)) { | ||||
4777 | // Record that we've seen a pointer, but do nothing else. | ||||
4778 | if (NumPointersRemaining > 0) | ||||
4779 | --NumPointersRemaining; | ||||
4780 | } else { | ||||
4781 | SimplePointerKind pointerKind = SimplePointerKind::Pointer; | ||||
4782 | if (T->isBlockPointerType()) | ||||
4783 | pointerKind = SimplePointerKind::BlockPointer; | ||||
4784 | else if (T->isMemberPointerType()) | ||||
4785 | pointerKind = SimplePointerKind::MemberPointer; | ||||
4786 | |||||
4787 | if (auto *attr = inferPointerNullability( | ||||
4788 | pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
4789 | D.getDeclSpec().getEndLoc(), | ||||
4790 | D.getMutableDeclSpec().getAttributes(), | ||||
4791 | D.getMutableDeclSpec().getAttributePool())) { | ||||
4792 | T = state.getAttributedType( | ||||
4793 | createNullabilityAttr(Context, *attr, *inferNullability), T, T); | ||||
4794 | } | ||||
4795 | } | ||||
4796 | } | ||||
4797 | |||||
4798 | if (complainAboutMissingNullability == CAMN_Yes && | ||||
4799 | T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) && | ||||
4800 | D.isPrototypeContext() && | ||||
4801 | !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) { | ||||
4802 | checkNullabilityConsistency(S, SimplePointerKind::Array, | ||||
4803 | D.getDeclSpec().getTypeSpecTypeLoc()); | ||||
4804 | } | ||||
4805 | } | ||||
4806 | |||||
4807 | bool ExpectNoDerefChunk = | ||||
4808 | state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref); | ||||
4809 | |||||
4810 | // Walk the DeclTypeInfo, building the recursive type as we go. | ||||
4811 | // DeclTypeInfos are ordered from the identifier out, which is | ||||
4812 | // opposite of what we want :). | ||||
4813 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||
4814 | unsigned chunkIndex = e - i - 1; | ||||
4815 | state.setCurrentChunkIndex(chunkIndex); | ||||
4816 | DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex); | ||||
4817 | IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren; | ||||
4818 | switch (DeclType.Kind) { | ||||
4819 | case DeclaratorChunk::Paren: | ||||
4820 | if (i == 0) | ||||
4821 | warnAboutRedundantParens(S, D, T); | ||||
4822 | T = S.BuildParenType(T); | ||||
4823 | break; | ||||
4824 | case DeclaratorChunk::BlockPointer: | ||||
4825 | // If blocks are disabled, emit an error. | ||||
4826 | if (!LangOpts.Blocks) | ||||
4827 | S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL; | ||||
4828 | |||||
4829 | // Handle pointer nullability. | ||||
4830 | inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc, | ||||
4831 | DeclType.EndLoc, DeclType.getAttrs(), | ||||
4832 | state.getDeclarator().getAttributePool()); | ||||
4833 | |||||
4834 | T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name); | ||||
4835 | if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) { | ||||
4836 | // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly | ||||
4837 | // qualified with const. | ||||
4838 | if (LangOpts.OpenCL) | ||||
4839 | DeclType.Cls.TypeQuals |= DeclSpec::TQ_const; | ||||
4840 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals); | ||||
4841 | } | ||||
4842 | break; | ||||
4843 | case DeclaratorChunk::Pointer: | ||||
4844 | // Verify that we're not building a pointer to pointer to function with | ||||
4845 | // exception specification. | ||||
4846 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||
4847 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||
4848 | D.setInvalidType(true); | ||||
4849 | // Build the type anyway. | ||||
4850 | } | ||||
4851 | |||||
4852 | // Handle pointer nullability | ||||
4853 | inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc, | ||||
4854 | DeclType.EndLoc, DeclType.getAttrs(), | ||||
4855 | state.getDeclarator().getAttributePool()); | ||||
4856 | |||||
4857 | if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) { | ||||
4858 | T = Context.getObjCObjectPointerType(T); | ||||
4859 | if (DeclType.Ptr.TypeQuals) | ||||
4860 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals); | ||||
4861 | break; | ||||
4862 | } | ||||
4863 | |||||
4864 | // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used. | ||||
4865 | // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used. | ||||
4866 | // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed. | ||||
4867 | if (LangOpts.OpenCL) { | ||||
4868 | if (T->isImageType() || T->isSamplerT() || T->isPipeType() || | ||||
4869 | T->isBlockPointerType()) { | ||||
4870 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T; | ||||
4871 | D.setInvalidType(true); | ||||
4872 | } | ||||
4873 | } | ||||
4874 | |||||
4875 | T = S.BuildPointerType(T, DeclType.Loc, Name); | ||||
4876 | if (DeclType.Ptr.TypeQuals) | ||||
4877 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals); | ||||
4878 | break; | ||||
4879 | case DeclaratorChunk::Reference: { | ||||
4880 | // Verify that we're not building a reference to pointer to function with | ||||
4881 | // exception specification. | ||||
4882 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||
4883 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||
4884 | D.setInvalidType(true); | ||||
4885 | // Build the type anyway. | ||||
4886 | } | ||||
4887 | T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name); | ||||
4888 | |||||
4889 | if (DeclType.Ref.HasRestrict) | ||||
4890 | T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict); | ||||
4891 | break; | ||||
4892 | } | ||||
4893 | case DeclaratorChunk::Array: { | ||||
4894 | // Verify that we're not building an array of pointers to function with | ||||
4895 | // exception specification. | ||||
4896 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||
4897 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||
4898 | D.setInvalidType(true); | ||||
4899 | // Build the type anyway. | ||||
4900 | } | ||||
4901 | DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr; | ||||
4902 | Expr *ArraySize = static_cast<Expr*>(ATI.NumElts); | ||||
4903 | ArrayType::ArraySizeModifier ASM; | ||||
4904 | if (ATI.isStar) | ||||
4905 | ASM = ArrayType::Star; | ||||
4906 | else if (ATI.hasStatic) | ||||
4907 | ASM = ArrayType::Static; | ||||
4908 | else | ||||
4909 | ASM = ArrayType::Normal; | ||||
4910 | if (ASM == ArrayType::Star && !D.isPrototypeContext()) { | ||||
4911 | // FIXME: This check isn't quite right: it allows star in prototypes | ||||
4912 | // for function definitions, and disallows some edge cases detailed | ||||
4913 | // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html | ||||
4914 | S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype); | ||||
4915 | ASM = ArrayType::Normal; | ||||
4916 | D.setInvalidType(true); | ||||
4917 | } | ||||
4918 | |||||
4919 | // C99 6.7.5.2p1: The optional type qualifiers and the keyword static | ||||
4920 | // shall appear only in a declaration of a function parameter with an | ||||
4921 | // array type, ... | ||||
4922 | if (ASM == ArrayType::Static || ATI.TypeQuals) { | ||||
4923 | if (!(D.isPrototypeContext() || | ||||
4924 | D.getContext() == DeclaratorContext::KNRTypeList)) { | ||||
4925 | S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) << | ||||
4926 | (ASM == ArrayType::Static ? "'static'" : "type qualifier"); | ||||
4927 | // Remove the 'static' and the type qualifiers. | ||||
4928 | if (ASM == ArrayType::Static) | ||||
4929 | ASM = ArrayType::Normal; | ||||
4930 | ATI.TypeQuals = 0; | ||||
4931 | D.setInvalidType(true); | ||||
4932 | } | ||||
4933 | |||||
4934 | // C99 6.7.5.2p1: ... and then only in the outermost array type | ||||
4935 | // derivation. | ||||
4936 | if (hasOuterPointerLikeChunk(D, chunkIndex)) { | ||||
4937 | S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) << | ||||
4938 | (ASM == ArrayType::Static ? "'static'" : "type qualifier"); | ||||
4939 | if (ASM == ArrayType::Static) | ||||
4940 | ASM = ArrayType::Normal; | ||||
4941 | ATI.TypeQuals = 0; | ||||
4942 | D.setInvalidType(true); | ||||
4943 | } | ||||
4944 | } | ||||
4945 | const AutoType *AT = T->getContainedAutoType(); | ||||
4946 | // Allow arrays of auto if we are a generic lambda parameter. | ||||
4947 | // i.e. [](auto (&array)[5]) { return array[0]; }; OK | ||||
4948 | if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) { | ||||
4949 | // We've already diagnosed this for decltype(auto). | ||||
4950 | if (!AT->isDecltypeAuto()) | ||||
4951 | S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto) | ||||
4952 | << getPrintableNameForEntity(Name) << T; | ||||
4953 | T = QualType(); | ||||
4954 | break; | ||||
4955 | } | ||||
4956 | |||||
4957 | // Array parameters can be marked nullable as well, although it's not | ||||
4958 | // necessary if they're marked 'static'. | ||||
4959 | if (complainAboutMissingNullability == CAMN_Yes && | ||||
4960 | !hasNullabilityAttr(DeclType.getAttrs()) && | ||||
4961 | ASM != ArrayType::Static && | ||||
4962 | D.isPrototypeContext() && | ||||
4963 | !hasOuterPointerLikeChunk(D, chunkIndex)) { | ||||
4964 | checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc); | ||||
4965 | } | ||||
4966 | |||||
4967 | T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, | ||||
4968 | SourceRange(DeclType.Loc, DeclType.EndLoc), Name); | ||||
4969 | break; | ||||
4970 | } | ||||
4971 | case DeclaratorChunk::Function: { | ||||
4972 | // If the function declarator has a prototype (i.e. it is not () and | ||||
4973 | // does not have a K&R-style identifier list), then the arguments are part | ||||
4974 | // of the type, otherwise the argument list is (). | ||||
4975 | DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||
4976 | IsQualifiedFunction = | ||||
4977 | FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier(); | ||||
4978 | |||||
4979 | // Check for auto functions and trailing return type and adjust the | ||||
4980 | // return type accordingly. | ||||
4981 | if (!D.isInvalidType()) { | ||||
4982 | // trailing-return-type is only required if we're declaring a function, | ||||
4983 | // and not, for instance, a pointer to a function. | ||||
4984 | if (D.getDeclSpec().hasAutoTypeSpec() && | ||||
4985 | !FTI.hasTrailingReturnType() && chunkIndex == 0) { | ||||
4986 | if (!S.getLangOpts().CPlusPlus14) { | ||||
4987 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
4988 | D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto | ||||
4989 | ? diag::err_auto_missing_trailing_return | ||||
4990 | : diag::err_deduced_return_type); | ||||
4991 | T = Context.IntTy; | ||||
4992 | D.setInvalidType(true); | ||||
4993 | } else { | ||||
4994 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
4995 | diag::warn_cxx11_compat_deduced_return_type); | ||||
4996 | } | ||||
4997 | } else if (FTI.hasTrailingReturnType()) { | ||||
4998 | // T must be exactly 'auto' at this point. See CWG issue 681. | ||||
4999 | if (isa<ParenType>(T)) { | ||||
5000 | S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens) | ||||
5001 | << T << D.getSourceRange(); | ||||
5002 | D.setInvalidType(true); | ||||
5003 | } else if (D.getName().getKind() == | ||||
5004 | UnqualifiedIdKind::IK_DeductionGuideName) { | ||||
5005 | if (T != Context.DependentTy) { | ||||
5006 | S.Diag(D.getDeclSpec().getBeginLoc(), | ||||
5007 | diag::err_deduction_guide_with_complex_decl) | ||||
5008 | << D.getSourceRange(); | ||||
5009 | D.setInvalidType(true); | ||||
5010 | } | ||||
5011 | } else if (D.getContext() != DeclaratorContext::LambdaExpr && | ||||
5012 | (T.hasQualifiers() || !isa<AutoType>(T) || | ||||
5013 | cast<AutoType>(T)->getKeyword() != | ||||
5014 | AutoTypeKeyword::Auto || | ||||
5015 | cast<AutoType>(T)->isConstrained())) { | ||||
5016 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||
5017 | diag::err_trailing_return_without_auto) | ||||
5018 | << T << D.getDeclSpec().getSourceRange(); | ||||
5019 | D.setInvalidType(true); | ||||
5020 | } | ||||
5021 | T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo); | ||||
5022 | if (T.isNull()) { | ||||
5023 | // An error occurred parsing the trailing return type. | ||||
5024 | T = Context.IntTy; | ||||
5025 | D.setInvalidType(true); | ||||
5026 | } else if (AutoType *Auto = T->getContainedAutoType()) { | ||||
5027 | // If the trailing return type contains an `auto`, we may need to | ||||
5028 | // invent a template parameter for it, for cases like | ||||
5029 | // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`. | ||||
5030 | InventedTemplateParameterInfo *InventedParamInfo = nullptr; | ||||
5031 | if (D.getContext() == DeclaratorContext::Prototype) | ||||
5032 | InventedParamInfo = &S.InventedParameterInfos.back(); | ||||
5033 | else if (D.getContext() == DeclaratorContext::LambdaExprParameter) | ||||
5034 | InventedParamInfo = S.getCurLambda(); | ||||
5035 | if (InventedParamInfo) { | ||||
5036 | std::tie(T, TInfo) = InventTemplateParameter( | ||||
5037 | state, T, TInfo, Auto, *InventedParamInfo); | ||||
5038 | } | ||||
5039 | } | ||||
5040 | } else { | ||||
5041 | // This function type is not the type of the entity being declared, | ||||
5042 | // so checking the 'auto' is not the responsibility of this chunk. | ||||
5043 | } | ||||
5044 | } | ||||
5045 | |||||
5046 | // C99 6.7.5.3p1: The return type may not be a function or array type. | ||||
5047 | // For conversion functions, we'll diagnose this particular error later. | ||||
5048 | if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) && | ||||
5049 | (D.getName().getKind() != | ||||
5050 | UnqualifiedIdKind::IK_ConversionFunctionId)) { | ||||
5051 | unsigned diagID = diag::err_func_returning_array_function; | ||||
5052 | // Last processing chunk in block context means this function chunk | ||||
5053 | // represents the block. | ||||
5054 | if (chunkIndex == 0 && | ||||
5055 | D.getContext() == DeclaratorContext::BlockLiteral) | ||||
5056 | diagID = diag::err_block_returning_array_function; | ||||
5057 | S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T; | ||||
5058 | T = Context.IntTy; | ||||
5059 | D.setInvalidType(true); | ||||
5060 | } | ||||
5061 | |||||
5062 | // Do not allow returning half FP value. | ||||
5063 | // FIXME: This really should be in BuildFunctionType. | ||||
5064 | if (T->isHalfType()) { | ||||
5065 | if (S.getLangOpts().OpenCL) { | ||||
5066 | if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", | ||||
5067 | S.getLangOpts())) { | ||||
5068 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) | ||||
5069 | << T << 0 /*pointer hint*/; | ||||
5070 | D.setInvalidType(true); | ||||
5071 | } | ||||
5072 | } else if (!S.getLangOpts().HalfArgsAndReturns) { | ||||
5073 | S.Diag(D.getIdentifierLoc(), | ||||
5074 | diag::err_parameters_retval_cannot_have_fp16_type) << 1; | ||||
5075 | D.setInvalidType(true); | ||||
5076 | } | ||||
5077 | } | ||||
5078 | |||||
5079 | if (LangOpts.OpenCL) { | ||||
5080 | // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a | ||||
5081 | // function. | ||||
5082 | if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() || | ||||
5083 | T->isPipeType()) { | ||||
5084 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) | ||||
5085 | << T << 1 /*hint off*/; | ||||
5086 | D.setInvalidType(true); | ||||
5087 | } | ||||
5088 | // OpenCL doesn't support variadic functions and blocks | ||||
5089 | // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf. | ||||
5090 | // We also allow here any toolchain reserved identifiers. | ||||
5091 | if (FTI.isVariadic && | ||||
5092 | !S.getOpenCLOptions().isAvailableOption( | ||||
5093 | "__cl_clang_variadic_functions", S.getLangOpts()) && | ||||
5094 | !(D.getIdentifier() && | ||||
5095 | ((D.getIdentifier()->getName() == "printf" && | ||||
5096 | (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) || | ||||
5097 | D.getIdentifier()->getName().startswith("__")))) { | ||||
5098 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function); | ||||
5099 | D.setInvalidType(true); | ||||
5100 | } | ||||
5101 | } | ||||
5102 | |||||
5103 | // Methods cannot return interface types. All ObjC objects are | ||||
5104 | // passed by reference. | ||||
5105 | if (T->isObjCObjectType()) { | ||||
5106 | SourceLocation DiagLoc, FixitLoc; | ||||
5107 | if (TInfo) { | ||||
5108 | DiagLoc = TInfo->getTypeLoc().getBeginLoc(); | ||||
5109 | FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc()); | ||||
5110 | } else { | ||||
5111 | DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); | ||||
5112 | FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc()); | ||||
5113 | } | ||||
5114 | S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value) | ||||
5115 | << 0 << T | ||||
5116 | << FixItHint::CreateInsertion(FixitLoc, "*"); | ||||
5117 | |||||
5118 | T = Context.getObjCObjectPointerType(T); | ||||
5119 | if (TInfo) { | ||||
5120 | TypeLocBuilder TLB; | ||||
5121 | TLB.pushFullCopy(TInfo->getTypeLoc()); | ||||
5122 | ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T); | ||||
5123 | TLoc.setStarLoc(FixitLoc); | ||||
5124 | TInfo = TLB.getTypeSourceInfo(Context, T); | ||||
5125 | } | ||||
5126 | |||||
5127 | D.setInvalidType(true); | ||||
5128 | } | ||||
5129 | |||||
5130 | // cv-qualifiers on return types are pointless except when the type is a | ||||
5131 | // class type in C++. | ||||
5132 | if ((T.getCVRQualifiers() || T->isAtomicType()) && | ||||
5133 | !(S.getLangOpts().CPlusPlus && | ||||
5134 | (T->isDependentType() || T->isRecordType()))) { | ||||
5135 | if (T->isVoidType() && !S.getLangOpts().CPlusPlus && | ||||
5136 | D.getFunctionDefinitionKind() == | ||||
5137 | FunctionDefinitionKind::Definition) { | ||||
5138 | // [6.9.1/3] qualified void return is invalid on a C | ||||
5139 | // function definition. Apparently ok on declarations and | ||||
5140 | // in C++ though (!) | ||||
5141 | S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T; | ||||
5142 | } else | ||||
5143 | diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex); | ||||
5144 | |||||
5145 | // C++2a [dcl.fct]p12: | ||||
5146 | // A volatile-qualified return type is deprecated | ||||
5147 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20) | ||||
5148 | S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T; | ||||
5149 | } | ||||
5150 | |||||
5151 | // Objective-C ARC ownership qualifiers are ignored on the function | ||||
5152 | // return type (by type canonicalization). Complain if this attribute | ||||
5153 | // was written here. | ||||
5154 | if (T.getQualifiers().hasObjCLifetime()) { | ||||
5155 | SourceLocation AttrLoc; | ||||
5156 | if (chunkIndex + 1 < D.getNumTypeObjects()) { | ||||
5157 | DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1); | ||||
5158 | for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) { | ||||
5159 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||
5160 | AttrLoc = AL.getLoc(); | ||||
5161 | break; | ||||
5162 | } | ||||
5163 | } | ||||
5164 | } | ||||
5165 | if (AttrLoc.isInvalid()) { | ||||
5166 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { | ||||
5167 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||
5168 | AttrLoc = AL.getLoc(); | ||||
5169 | break; | ||||
5170 | } | ||||
5171 | } | ||||
5172 | } | ||||
5173 | |||||
5174 | if (AttrLoc.isValid()) { | ||||
5175 | // The ownership attributes are almost always written via | ||||
5176 | // the predefined | ||||
5177 | // __strong/__weak/__autoreleasing/__unsafe_unretained. | ||||
5178 | if (AttrLoc.isMacroID()) | ||||
5179 | AttrLoc = | ||||
5180 | S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin(); | ||||
5181 | |||||
5182 | S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type) | ||||
5183 | << T.getQualifiers().getObjCLifetime(); | ||||
5184 | } | ||||
5185 | } | ||||
5186 | |||||
5187 | if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) { | ||||
5188 | // C++ [dcl.fct]p6: | ||||
5189 | // Types shall not be defined in return or parameter types. | ||||
5190 | TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | ||||
5191 | S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type) | ||||
5192 | << Context.getTypeDeclType(Tag); | ||||
5193 | } | ||||
5194 | |||||
5195 | // Exception specs are not allowed in typedefs. Complain, but add it | ||||
5196 | // anyway. | ||||
5197 | if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17) | ||||
5198 | S.Diag(FTI.getExceptionSpecLocBeg(), | ||||
5199 | diag::err_exception_spec_in_typedef) | ||||
5200 | << (D.getContext() == DeclaratorContext::AliasDecl || | ||||
5201 | D.getContext() == DeclaratorContext::AliasTemplate); | ||||
5202 | |||||
5203 | // If we see "T var();" or "T var(T());" at block scope, it is probably | ||||
5204 | // an attempt to initialize a variable, not a function declaration. | ||||
5205 | if (FTI.isAmbiguous) | ||||
5206 | warnAboutAmbiguousFunction(S, D, DeclType, T); | ||||
5207 | |||||
5208 | FunctionType::ExtInfo EI( | ||||
5209 | getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex)); | ||||
5210 | |||||
5211 | if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus | ||||
5212 | && !LangOpts.OpenCL) { | ||||
5213 | // Simple void foo(), where the incoming T is the result type. | ||||
5214 | T = Context.getFunctionNoProtoType(T, EI); | ||||
5215 | } else { | ||||
5216 | // We allow a zero-parameter variadic function in C if the | ||||
5217 | // function is marked with the "overloadable" attribute. Scan | ||||
5218 | // for this attribute now. | ||||
5219 | if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) | ||||
5220 | if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable)) | ||||
5221 | S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param); | ||||
5222 | |||||
5223 | if (FTI.NumParams && FTI.Params[0].Param == nullptr) { | ||||
5224 | // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function | ||||
5225 | // definition. | ||||
5226 | S.Diag(FTI.Params[0].IdentLoc, | ||||
5227 | diag::err_ident_list_in_fn_declaration); | ||||
5228 | D.setInvalidType(true); | ||||
5229 | // Recover by creating a K&R-style function type. | ||||
5230 | T = Context.getFunctionNoProtoType(T, EI); | ||||
5231 | break; | ||||
5232 | } | ||||
5233 | |||||
5234 | FunctionProtoType::ExtProtoInfo EPI; | ||||
5235 | EPI.ExtInfo = EI; | ||||
5236 | EPI.Variadic = FTI.isVariadic; | ||||
5237 | EPI.EllipsisLoc = FTI.getEllipsisLoc(); | ||||
5238 | EPI.HasTrailingReturn = FTI.hasTrailingReturnType(); | ||||
5239 | EPI.TypeQuals.addCVRUQualifiers( | ||||
5240 | FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers() | ||||
5241 | : 0); | ||||
5242 | EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None | ||||
5243 | : FTI.RefQualifierIsLValueRef? RQ_LValue | ||||
5244 | : RQ_RValue; | ||||
5245 | |||||
5246 | // Otherwise, we have a function with a parameter list that is | ||||
5247 | // potentially variadic. | ||||
5248 | SmallVector<QualType, 16> ParamTys; | ||||
5249 | ParamTys.reserve(FTI.NumParams); | ||||
5250 | |||||
5251 | SmallVector<FunctionProtoType::ExtParameterInfo, 16> | ||||
5252 | ExtParameterInfos(FTI.NumParams); | ||||
5253 | bool HasAnyInterestingExtParameterInfos = false; | ||||
5254 | |||||
5255 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { | ||||
5256 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | ||||
5257 | QualType ParamTy = Param->getType(); | ||||
5258 | assert(!ParamTy.isNull() && "Couldn't parse type?")((void)0); | ||||
5259 | |||||
5260 | // Look for 'void'. void is allowed only as a single parameter to a | ||||
5261 | // function with no other parameters (C99 6.7.5.3p10). We record | ||||
5262 | // int(void) as a FunctionProtoType with an empty parameter list. | ||||
5263 | if (ParamTy->isVoidType()) { | ||||
5264 | // If this is something like 'float(int, void)', reject it. 'void' | ||||
5265 | // is an incomplete type (C99 6.2.5p19) and function decls cannot | ||||
5266 | // have parameters of incomplete type. | ||||
5267 | if (FTI.NumParams != 1 || FTI.isVariadic) { | ||||
5268 | S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param); | ||||
5269 | ParamTy = Context.IntTy; | ||||
5270 | Param->setType(ParamTy); | ||||
5271 | } else if (FTI.Params[i].Ident) { | ||||
5272 | // Reject, but continue to parse 'int(void abc)'. | ||||
5273 | S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type); | ||||
5274 | ParamTy = Context.IntTy; | ||||
5275 | Param->setType(ParamTy); | ||||
5276 | } else { | ||||
5277 | // Reject, but continue to parse 'float(const void)'. | ||||
5278 | if (ParamTy.hasQualifiers()) | ||||
5279 | S.Diag(DeclType.Loc, diag::err_void_param_qualified); | ||||
5280 | |||||
5281 | // Do not add 'void' to the list. | ||||
5282 | break; | ||||
5283 | } | ||||
5284 | } else if (ParamTy->isHalfType()) { | ||||
5285 | // Disallow half FP parameters. | ||||
5286 | // FIXME: This really should be in BuildFunctionType. | ||||
5287 | if (S.getLangOpts().OpenCL) { | ||||
5288 | if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", | ||||
5289 | S.getLangOpts())) { | ||||
5290 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) | ||||
5291 | << ParamTy << 0; | ||||
5292 | D.setInvalidType(); | ||||
5293 | Param->setInvalidDecl(); | ||||
5294 | } | ||||
5295 | } else if (!S.getLangOpts().HalfArgsAndReturns) { | ||||
5296 | S.Diag(Param->getLocation(), | ||||
5297 | diag::err_parameters_retval_cannot_have_fp16_type) << 0; | ||||
5298 | D.setInvalidType(); | ||||
5299 | } | ||||
5300 | } else if (!FTI.hasPrototype) { | ||||
5301 | if (ParamTy->isPromotableIntegerType()) { | ||||
5302 | ParamTy = Context.getPromotedIntegerType(ParamTy); | ||||
5303 | Param->setKNRPromoted(true); | ||||
5304 | } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) { | ||||
5305 | if (BTy->getKind() == BuiltinType::Float) { | ||||
5306 | ParamTy = Context.DoubleTy; | ||||
5307 | Param->setKNRPromoted(true); | ||||
5308 | } | ||||
5309 | } | ||||
5310 | } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) { | ||||
5311 | // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function. | ||||
5312 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) | ||||
5313 | << ParamTy << 1 /*hint off*/; | ||||
5314 | D.setInvalidType(); | ||||
5315 | } | ||||
5316 | |||||
5317 | if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) { | ||||
5318 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true); | ||||
5319 | HasAnyInterestingExtParameterInfos = true; | ||||
5320 | } | ||||
5321 | |||||
5322 | if (auto attr = Param->getAttr<ParameterABIAttr>()) { | ||||
5323 | ExtParameterInfos[i] = | ||||
5324 | ExtParameterInfos[i].withABI(attr->getABI()); | ||||
5325 | HasAnyInterestingExtParameterInfos = true; | ||||
5326 | } | ||||
5327 | |||||
5328 | if (Param->hasAttr<PassObjectSizeAttr>()) { | ||||
5329 | ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize(); | ||||
5330 | HasAnyInterestingExtParameterInfos = true; | ||||
5331 | } | ||||
5332 | |||||
5333 | if (Param->hasAttr<NoEscapeAttr>()) { | ||||
5334 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true); | ||||
5335 | HasAnyInterestingExtParameterInfos = true; | ||||
5336 | } | ||||
5337 | |||||
5338 | ParamTys.push_back(ParamTy); | ||||
5339 | } | ||||
5340 | |||||
5341 | if (HasAnyInterestingExtParameterInfos) { | ||||
5342 | EPI.ExtParameterInfos = ExtParameterInfos.data(); | ||||
5343 | checkExtParameterInfos(S, ParamTys, EPI, | ||||
5344 | [&](unsigned i) { return FTI.Params[i].Param->getLocation(); }); | ||||
5345 | } | ||||
5346 | |||||
5347 | SmallVector<QualType, 4> Exceptions; | ||||
5348 | SmallVector<ParsedType, 2> DynamicExceptions; | ||||
5349 | SmallVector<SourceRange, 2> DynamicExceptionRanges; | ||||
5350 | Expr *NoexceptExpr = nullptr; | ||||
5351 | |||||
5352 | if (FTI.getExceptionSpecType() == EST_Dynamic) { | ||||
5353 | // FIXME: It's rather inefficient to have to split into two vectors | ||||
5354 | // here. | ||||
5355 | unsigned N = FTI.getNumExceptions(); | ||||
5356 | DynamicExceptions.reserve(N); | ||||
5357 | DynamicExceptionRanges.reserve(N); | ||||
5358 | for (unsigned I = 0; I != N; ++I) { | ||||
5359 | DynamicExceptions.push_back(FTI.Exceptions[I].Ty); | ||||
5360 | DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range); | ||||
5361 | } | ||||
5362 | } else if (isComputedNoexcept(FTI.getExceptionSpecType())) { | ||||
5363 | NoexceptExpr = FTI.NoexceptExpr; | ||||
5364 | } | ||||
5365 | |||||
5366 | S.checkExceptionSpecification(D.isFunctionDeclarationContext(), | ||||
5367 | FTI.getExceptionSpecType(), | ||||
5368 | DynamicExceptions, | ||||
5369 | DynamicExceptionRanges, | ||||
5370 | NoexceptExpr, | ||||
5371 | Exceptions, | ||||
5372 | EPI.ExceptionSpec); | ||||
5373 | |||||
5374 | // FIXME: Set address space from attrs for C++ mode here. | ||||
5375 | // OpenCLCPlusPlus: A class member function has an address space. | ||||
5376 | auto IsClassMember = [&]() { | ||||
5377 | return (!state.getDeclarator().getCXXScopeSpec().isEmpty() && | ||||
5378 | state.getDeclarator() | ||||
5379 | .getCXXScopeSpec() | ||||
5380 | .getScopeRep() | ||||
5381 | ->getKind() == NestedNameSpecifier::TypeSpec) || | ||||
5382 | state.getDeclarator().getContext() == | ||||
5383 | DeclaratorContext::Member || | ||||
5384 | state.getDeclarator().getContext() == | ||||
5385 | DeclaratorContext::LambdaExpr; | ||||
5386 | }; | ||||
5387 | |||||
5388 | if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) { | ||||
5389 | LangAS ASIdx = LangAS::Default; | ||||
5390 | // Take address space attr if any and mark as invalid to avoid adding | ||||
5391 | // them later while creating QualType. | ||||
5392 | if (FTI.MethodQualifiers) | ||||
5393 | for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) { | ||||
5394 | LangAS ASIdxNew = attr.asOpenCLLangAS(); | ||||
5395 | if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew, | ||||
5396 | attr.getLoc())) | ||||
5397 | D.setInvalidType(true); | ||||
5398 | else | ||||
5399 | ASIdx = ASIdxNew; | ||||
5400 | } | ||||
5401 | // If a class member function's address space is not set, set it to | ||||
5402 | // __generic. | ||||
5403 | LangAS AS = | ||||
5404 | (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace() | ||||
5405 | : ASIdx); | ||||
5406 | EPI.TypeQuals.addAddressSpace(AS); | ||||
5407 | } | ||||
5408 | T = Context.getFunctionType(T, ParamTys, EPI); | ||||
5409 | } | ||||
5410 | break; | ||||
5411 | } | ||||
5412 | case DeclaratorChunk::MemberPointer: { | ||||
5413 | // The scope spec must refer to a class, or be dependent. | ||||
5414 | CXXScopeSpec &SS = DeclType.Mem.Scope(); | ||||
5415 | QualType ClsType; | ||||
5416 | |||||
5417 | // Handle pointer nullability. | ||||
5418 | inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc, | ||||
5419 | DeclType.EndLoc, DeclType.getAttrs(), | ||||
5420 | state.getDeclarator().getAttributePool()); | ||||
5421 | |||||
5422 | if (SS.isInvalid()) { | ||||
5423 | // Avoid emitting extra errors if we already errored on the scope. | ||||
5424 | D.setInvalidType(true); | ||||
5425 | } else if (S.isDependentScopeSpecifier(SS) || | ||||
5426 | dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) { | ||||
5427 | NestedNameSpecifier *NNS = SS.getScopeRep(); | ||||
5428 | NestedNameSpecifier *NNSPrefix = NNS->getPrefix(); | ||||
5429 | switch (NNS->getKind()) { | ||||
5430 | case NestedNameSpecifier::Identifier: | ||||
5431 | ClsType = Context.getDependentNameType(ETK_None, NNSPrefix, | ||||
5432 | NNS->getAsIdentifier()); | ||||
5433 | break; | ||||
5434 | |||||
5435 | case NestedNameSpecifier::Namespace: | ||||
5436 | case NestedNameSpecifier::NamespaceAlias: | ||||
5437 | case NestedNameSpecifier::Global: | ||||
5438 | case NestedNameSpecifier::Super: | ||||
5439 | llvm_unreachable("Nested-name-specifier must name a type")__builtin_unreachable(); | ||||
5440 | |||||
5441 | case NestedNameSpecifier::TypeSpec: | ||||
5442 | case NestedNameSpecifier::TypeSpecWithTemplate: | ||||
5443 | ClsType = QualType(NNS->getAsType(), 0); | ||||
5444 | // Note: if the NNS has a prefix and ClsType is a nondependent | ||||
5445 | // TemplateSpecializationType, then the NNS prefix is NOT included | ||||
5446 | // in ClsType; hence we wrap ClsType into an ElaboratedType. | ||||
5447 | // NOTE: in particular, no wrap occurs if ClsType already is an | ||||
5448 | // Elaborated, DependentName, or DependentTemplateSpecialization. | ||||
5449 | if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType())) | ||||
5450 | ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType); | ||||
5451 | break; | ||||
5452 | } | ||||
5453 | } else { | ||||
5454 | S.Diag(DeclType.Mem.Scope().getBeginLoc(), | ||||
5455 | diag::err_illegal_decl_mempointer_in_nonclass) | ||||
5456 | << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name") | ||||
5457 | << DeclType.Mem.Scope().getRange(); | ||||
5458 | D.setInvalidType(true); | ||||
5459 | } | ||||
5460 | |||||
5461 | if (!ClsType.isNull()) | ||||
5462 | T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, | ||||
5463 | D.getIdentifier()); | ||||
5464 | if (T.isNull()) { | ||||
5465 | T = Context.IntTy; | ||||
5466 | D.setInvalidType(true); | ||||
5467 | } else if (DeclType.Mem.TypeQuals) { | ||||
5468 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals); | ||||
5469 | } | ||||
5470 | break; | ||||
5471 | } | ||||
5472 | |||||
5473 | case DeclaratorChunk::Pipe: { | ||||
5474 | T = S.BuildReadPipeType(T, DeclType.Loc); | ||||
5475 | processTypeAttrs(state, T, TAL_DeclSpec, | ||||
5476 | D.getMutableDeclSpec().getAttributes()); | ||||
5477 | break; | ||||
5478 | } | ||||
5479 | } | ||||
5480 | |||||
5481 | if (T.isNull()) { | ||||
5482 | D.setInvalidType(true); | ||||
5483 | T = Context.IntTy; | ||||
5484 | } | ||||
5485 | |||||
5486 | // See if there are any attributes on this declarator chunk. | ||||
5487 | processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs()); | ||||
5488 | |||||
5489 | if (DeclType.Kind != DeclaratorChunk::Paren) { | ||||
5490 | if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType)) | ||||
5491 | S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array); | ||||
5492 | |||||
5493 | ExpectNoDerefChunk = state.didParseNoDeref(); | ||||
5494 | } | ||||
5495 | } | ||||
5496 | |||||
5497 | if (ExpectNoDerefChunk) | ||||
5498 | S.Diag(state.getDeclarator().getBeginLoc(), | ||||
5499 | diag::warn_noderef_on_non_pointer_or_array); | ||||
5500 | |||||
5501 | // GNU warning -Wstrict-prototypes | ||||
5502 | // Warn if a function declaration is without a prototype. | ||||
5503 | // This warning is issued for all kinds of unprototyped function | ||||
5504 | // declarations (i.e. function type typedef, function pointer etc.) | ||||
5505 | // C99 6.7.5.3p14: | ||||
5506 | // The empty list in a function declarator that is not part of a definition | ||||
5507 | // of that function specifies that no information about the number or types | ||||
5508 | // of the parameters is supplied. | ||||
5509 | if (!LangOpts.CPlusPlus && | ||||
5510 | D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) { | ||||
5511 | bool IsBlock = false; | ||||
5512 | for (const DeclaratorChunk &DeclType : D.type_objects()) { | ||||
5513 | switch (DeclType.Kind) { | ||||
5514 | case DeclaratorChunk::BlockPointer: | ||||
5515 | IsBlock = true; | ||||
5516 | break; | ||||
5517 | case DeclaratorChunk::Function: { | ||||
5518 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||
5519 | // We supress the warning when there's no LParen location, as this | ||||
5520 | // indicates the declaration was an implicit declaration, which gets | ||||
5521 | // warned about separately via -Wimplicit-function-declaration. | ||||
5522 | if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid()) | ||||
5523 | S.Diag(DeclType.Loc, diag::warn_strict_prototypes) | ||||
5524 | << IsBlock | ||||
5525 | << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void"); | ||||
5526 | IsBlock = false; | ||||
5527 | break; | ||||
5528 | } | ||||
5529 | default: | ||||
5530 | break; | ||||
5531 | } | ||||
5532 | } | ||||
5533 | } | ||||
5534 | |||||
5535 | assert(!T.isNull() && "T must not be null after this point")((void)0); | ||||
5536 | |||||
5537 | if (LangOpts.CPlusPlus && T->isFunctionType()) { | ||||
5538 | const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>(); | ||||
5539 | assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((void)0); | ||||
5540 | |||||
5541 | // C++ 8.3.5p4: | ||||
5542 | // A cv-qualifier-seq shall only be part of the function type | ||||
5543 | // for a nonstatic member function, the function type to which a pointer | ||||
5544 | // to member refers, or the top-level function type of a function typedef | ||||
5545 | // declaration. | ||||
5546 | // | ||||
5547 | // Core issue 547 also allows cv-qualifiers on function types that are | ||||
5548 | // top-level template type arguments. | ||||
5549 | enum { NonMember, Member, DeductionGuide } Kind = NonMember; | ||||
5550 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) | ||||
5551 | Kind = DeductionGuide; | ||||
5552 | else if (!D.getCXXScopeSpec().isSet()) { | ||||
5553 | if ((D.getContext() == DeclaratorContext::Member || | ||||
5554 | D.getContext() == DeclaratorContext::LambdaExpr) && | ||||
5555 | !D.getDeclSpec().isFriendSpecified()) | ||||
5556 | Kind = Member; | ||||
5557 | } else { | ||||
5558 | DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec()); | ||||
5559 | if (!DC || DC->isRecord()) | ||||
5560 | Kind = Member; | ||||
5561 | } | ||||
5562 | |||||
5563 | // C++11 [dcl.fct]p6 (w/DR1417): | ||||
5564 | // An attempt to specify a function type with a cv-qualifier-seq or a | ||||
5565 | // ref-qualifier (including by typedef-name) is ill-formed unless it is: | ||||
5566 | // - the function type for a non-static member function, | ||||
5567 | // - the function type to which a pointer to member refers, | ||||
5568 | // - the top-level function type of a function typedef declaration or | ||||
5569 | // alias-declaration, | ||||
5570 | // - the type-id in the default argument of a type-parameter, or | ||||
5571 | // - the type-id of a template-argument for a type-parameter | ||||
5572 | // | ||||
5573 | // FIXME: Checking this here is insufficient. We accept-invalid on: | ||||
5574 | // | ||||
5575 | // template<typename T> struct S { void f(T); }; | ||||
5576 | // S<int() const> s; | ||||
5577 | // | ||||
5578 | // ... for instance. | ||||
5579 | if (IsQualifiedFunction && | ||||
5580 | !(Kind == Member && | ||||
5581 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) && | ||||
5582 | !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg && | ||||
5583 | D.getContext() != DeclaratorContext::TemplateTypeArg) { | ||||
5584 | SourceLocation Loc = D.getBeginLoc(); | ||||
5585 | SourceRange RemovalRange; | ||||
5586 | unsigned I; | ||||
5587 | if (D.isFunctionDeclarator(I)) { | ||||
5588 | SmallVector<SourceLocation, 4> RemovalLocs; | ||||
5589 | const DeclaratorChunk &Chunk = D.getTypeObject(I); | ||||
5590 | assert(Chunk.Kind == DeclaratorChunk::Function)((void)0); | ||||
5591 | |||||
5592 | if (Chunk.Fun.hasRefQualifier()) | ||||
5593 | RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc()); | ||||
5594 | |||||
5595 | if (Chunk.Fun.hasMethodTypeQualifiers()) | ||||
5596 | Chunk.Fun.MethodQualifiers->forEachQualifier( | ||||
5597 | [&](DeclSpec::TQ TypeQual, StringRef QualName, | ||||
5598 | SourceLocation SL) { RemovalLocs.push_back(SL); }); | ||||
5599 | |||||
5600 | if (!RemovalLocs.empty()) { | ||||
5601 | llvm::sort(RemovalLocs, | ||||
5602 | BeforeThanCompare<SourceLocation>(S.getSourceManager())); | ||||
5603 | RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back()); | ||||
5604 | Loc = RemovalLocs.front(); | ||||
5605 | } | ||||
5606 | } | ||||
5607 | |||||
5608 | S.Diag(Loc, diag::err_invalid_qualified_function_type) | ||||
5609 | << Kind << D.isFunctionDeclarator() << T | ||||
5610 | << getFunctionQualifiersAsString(FnTy) | ||||
5611 | << FixItHint::CreateRemoval(RemovalRange); | ||||
5612 | |||||
5613 | // Strip the cv-qualifiers and ref-qualifiers from the type. | ||||
5614 | FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo(); | ||||
5615 | EPI.TypeQuals.removeCVRQualifiers(); | ||||
5616 | EPI.RefQualifier = RQ_None; | ||||
5617 | |||||
5618 | T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(), | ||||
5619 | EPI); | ||||
5620 | // Rebuild any parens around the identifier in the function type. | ||||
5621 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||
5622 | if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren) | ||||
5623 | break; | ||||
5624 | T = S.BuildParenType(T); | ||||
5625 | } | ||||
5626 | } | ||||
5627 | } | ||||
5628 | |||||
5629 | // Apply any undistributed attributes from the declarator. | ||||
5630 | processTypeAttrs(state, T, TAL_DeclName, D.getAttributes()); | ||||
5631 | |||||
5632 | // Diagnose any ignored type attributes. | ||||
5633 | state.diagnoseIgnoredTypeAttrs(T); | ||||
5634 | |||||
5635 | // C++0x [dcl.constexpr]p9: | ||||
5636 | // A constexpr specifier used in an object declaration declares the object | ||||
5637 | // as const. | ||||
5638 | if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr && | ||||
5639 | T->isObjectType()) | ||||
5640 | T.addConst(); | ||||
5641 | |||||
5642 | // C++2a [dcl.fct]p4: | ||||
5643 | // A parameter with volatile-qualified type is deprecated | ||||
5644 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 && | ||||
5645 | (D.getContext() == DeclaratorContext::Prototype || | ||||
5646 | D.getContext() == DeclaratorContext::LambdaExprParameter)) | ||||
5647 | S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T; | ||||
5648 | |||||
5649 | // If there was an ellipsis in the declarator, the declaration declares a | ||||
5650 | // parameter pack whose type may be a pack expansion type. | ||||
5651 | if (D.hasEllipsis()) { | ||||
5652 | // C++0x [dcl.fct]p13: | ||||
5653 | // A declarator-id or abstract-declarator containing an ellipsis shall | ||||
5654 | // only be used in a parameter-declaration. Such a parameter-declaration | ||||
5655 | // is a parameter pack (14.5.3). [...] | ||||
5656 | switch (D.getContext()) { | ||||
5657 | case DeclaratorContext::Prototype: | ||||
5658 | case DeclaratorContext::LambdaExprParameter: | ||||
5659 | case DeclaratorContext::RequiresExpr: | ||||
5660 | // C++0x [dcl.fct]p13: | ||||
5661 | // [...] When it is part of a parameter-declaration-clause, the | ||||
5662 | // parameter pack is a function parameter pack (14.5.3). The type T | ||||
5663 | // of the declarator-id of the function parameter pack shall contain | ||||
5664 | // a template parameter pack; each template parameter pack in T is | ||||
5665 | // expanded by the function parameter pack. | ||||
5666 | // | ||||
5667 | // We represent function parameter packs as function parameters whose | ||||
5668 | // type is a pack expansion. | ||||
5669 | if (!T->containsUnexpandedParameterPack() && | ||||
5670 | (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) { | ||||
5671 | S.Diag(D.getEllipsisLoc(), | ||||
5672 | diag::err_function_parameter_pack_without_parameter_packs) | ||||
5673 | << T << D.getSourceRange(); | ||||
5674 | D.setEllipsisLoc(SourceLocation()); | ||||
5675 | } else { | ||||
5676 | T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false); | ||||
5677 | } | ||||
5678 | break; | ||||
5679 | case DeclaratorContext::TemplateParam: | ||||
5680 | // C++0x [temp.param]p15: | ||||
5681 | // If a template-parameter is a [...] is a parameter-declaration that | ||||
5682 | // declares a parameter pack (8.3.5), then the template-parameter is a | ||||
5683 | // template parameter pack (14.5.3). | ||||
5684 | // | ||||
5685 | // Note: core issue 778 clarifies that, if there are any unexpanded | ||||
5686 | // parameter packs in the type of the non-type template parameter, then | ||||
5687 | // it expands those parameter packs. | ||||
5688 | if (T->containsUnexpandedParameterPack()) | ||||
5689 | T = Context.getPackExpansionType(T, None); | ||||
5690 | else | ||||
5691 | S.Diag(D.getEllipsisLoc(), | ||||
5692 | LangOpts.CPlusPlus11 | ||||
5693 | ? diag::warn_cxx98_compat_variadic_templates | ||||
5694 | : diag::ext_variadic_templates); | ||||
5695 | break; | ||||
5696 | |||||
5697 | case DeclaratorContext::File: | ||||
5698 | case DeclaratorContext::KNRTypeList: | ||||
5699 | case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here? | ||||
5700 | case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here? | ||||
5701 | case DeclaratorContext::TypeName: | ||||
5702 | case DeclaratorContext::FunctionalCast: | ||||
5703 | case DeclaratorContext::CXXNew: | ||||
5704 | case DeclaratorContext::AliasDecl: | ||||
5705 | case DeclaratorContext::AliasTemplate: | ||||
5706 | case DeclaratorContext::Member: | ||||
5707 | case DeclaratorContext::Block: | ||||
5708 | case DeclaratorContext::ForInit: | ||||
5709 | case DeclaratorContext::SelectionInit: | ||||
5710 | case DeclaratorContext::Condition: | ||||
5711 | case DeclaratorContext::CXXCatch: | ||||
5712 | case DeclaratorContext::ObjCCatch: | ||||
5713 | case DeclaratorContext::BlockLiteral: | ||||
5714 | case DeclaratorContext::LambdaExpr: | ||||
5715 | case DeclaratorContext::ConversionId: | ||||
5716 | case DeclaratorContext::TrailingReturn: | ||||
5717 | case DeclaratorContext::TrailingReturnVar: | ||||
5718 | case DeclaratorContext::TemplateArg: | ||||
5719 | case DeclaratorContext::TemplateTypeArg: | ||||
5720 | // FIXME: We may want to allow parameter packs in block-literal contexts | ||||
5721 | // in the future. | ||||
5722 | S.Diag(D.getEllipsisLoc(), | ||||
5723 | diag::err_ellipsis_in_declarator_not_parameter); | ||||
5724 | D.setEllipsisLoc(SourceLocation()); | ||||
5725 | break; | ||||
5726 | } | ||||
5727 | } | ||||
5728 | |||||
5729 | assert(!T.isNull() && "T must not be null at the end of this function")((void)0); | ||||
5730 | if (D.isInvalidType()) | ||||
5731 | return Context.getTrivialTypeSourceInfo(T); | ||||
5732 | |||||
5733 | return GetTypeSourceInfoForDeclarator(state, T, TInfo); | ||||
5734 | } | ||||
5735 | |||||
5736 | /// GetTypeForDeclarator - Convert the type for the specified | ||||
5737 | /// declarator to Type instances. | ||||
5738 | /// | ||||
5739 | /// The result of this call will never be null, but the associated | ||||
5740 | /// type may be a null type if there's an unrecoverable error. | ||||
5741 | TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) { | ||||
5742 | // Determine the type of the declarator. Not all forms of declarator | ||||
5743 | // have a type. | ||||
5744 | |||||
5745 | TypeProcessingState state(*this, D); | ||||
5746 | |||||
5747 | TypeSourceInfo *ReturnTypeInfo = nullptr; | ||||
5748 | QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); | ||||
5749 | if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount) | ||||
5750 | inferARCWriteback(state, T); | ||||
5751 | |||||
5752 | return GetFullTypeForDeclarator(state, T, ReturnTypeInfo); | ||||
5753 | } | ||||
5754 | |||||
5755 | static void transferARCOwnershipToDeclSpec(Sema &S, | ||||
5756 | QualType &declSpecTy, | ||||
5757 | Qualifiers::ObjCLifetime ownership) { | ||||
5758 | if (declSpecTy->isObjCRetainableType() && | ||||
5759 | declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) { | ||||
5760 | Qualifiers qs; | ||||
5761 | qs.addObjCLifetime(ownership); | ||||
5762 | declSpecTy = S.Context.getQualifiedType(declSpecTy, qs); | ||||
5763 | } | ||||
5764 | } | ||||
5765 | |||||
5766 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, | ||||
5767 | Qualifiers::ObjCLifetime ownership, | ||||
5768 | unsigned chunkIndex) { | ||||
5769 | Sema &S = state.getSema(); | ||||
5770 | Declarator &D = state.getDeclarator(); | ||||
5771 | |||||
5772 | // Look for an explicit lifetime attribute. | ||||
5773 | DeclaratorChunk &chunk = D.getTypeObject(chunkIndex); | ||||
5774 | if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership)) | ||||
5775 | return; | ||||
5776 | |||||
5777 | const char *attrStr = nullptr; | ||||
5778 | switch (ownership) { | ||||
5779 | case Qualifiers::OCL_None: llvm_unreachable("no ownership!")__builtin_unreachable(); | ||||
5780 | case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break; | ||||
5781 | case Qualifiers::OCL_Strong: attrStr = "strong"; break; | ||||
5782 | case Qualifiers::OCL_Weak: attrStr = "weak"; break; | ||||
5783 | case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break; | ||||
5784 | } | ||||
5785 | |||||
5786 | IdentifierLoc *Arg = new (S.Context) IdentifierLoc; | ||||
5787 | Arg->Ident = &S.Context.Idents.get(attrStr); | ||||
5788 | Arg->Loc = SourceLocation(); | ||||
5789 | |||||
5790 | ArgsUnion Args(Arg); | ||||
5791 | |||||
5792 | // If there wasn't one, add one (with an invalid source location | ||||
5793 | // so that we don't make an AttributedType for it). | ||||
5794 | ParsedAttr *attr = D.getAttributePool().create( | ||||
5795 | &S.Context.Idents.get("objc_ownership"), SourceLocation(), | ||||
5796 | /*scope*/ nullptr, SourceLocation(), | ||||
5797 | /*args*/ &Args, 1, ParsedAttr::AS_GNU); | ||||
5798 | chunk.getAttrs().addAtEnd(attr); | ||||
5799 | // TODO: mark whether we did this inference? | ||||
5800 | } | ||||
5801 | |||||
5802 | /// Used for transferring ownership in casts resulting in l-values. | ||||
5803 | static void transferARCOwnership(TypeProcessingState &state, | ||||
5804 | QualType &declSpecTy, | ||||
5805 | Qualifiers::ObjCLifetime ownership) { | ||||
5806 | Sema &S = state.getSema(); | ||||
5807 | Declarator &D = state.getDeclarator(); | ||||
5808 | |||||
5809 | int inner = -1; | ||||
5810 | bool hasIndirection = false; | ||||
5811 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||
5812 | DeclaratorChunk &chunk = D.getTypeObject(i); | ||||
5813 | switch (chunk.Kind) { | ||||
5814 | case DeclaratorChunk::Paren: | ||||
5815 | // Ignore parens. | ||||
5816 | break; | ||||
5817 | |||||
5818 | case DeclaratorChunk::Array: | ||||
5819 | case DeclaratorChunk::Reference: | ||||
5820 | case DeclaratorChunk::Pointer: | ||||
5821 | if (inner != -1) | ||||
5822 | hasIndirection = true; | ||||
5823 | inner = i; | ||||
5824 | break; | ||||
5825 | |||||
5826 | case DeclaratorChunk::BlockPointer: | ||||
5827 | if (inner != -1) | ||||
5828 | transferARCOwnershipToDeclaratorChunk(state, ownership, i); | ||||
5829 | return; | ||||
5830 | |||||
5831 | case DeclaratorChunk::Function: | ||||
5832 | case DeclaratorChunk::MemberPointer: | ||||
5833 | case DeclaratorChunk::Pipe: | ||||
5834 | return; | ||||
5835 | } | ||||
5836 | } | ||||
5837 | |||||
5838 | if (inner == -1) | ||||
5839 | return; | ||||
5840 | |||||
5841 | DeclaratorChunk &chunk = D.getTypeObject(inner); | ||||
5842 | if (chunk.Kind == DeclaratorChunk::Pointer) { | ||||
5843 | if (declSpecTy->isObjCRetainableType()) | ||||
5844 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); | ||||
5845 | if (declSpecTy->isObjCObjectType() && hasIndirection) | ||||
5846 | return transferARCOwnershipToDeclaratorChunk(state, ownership, inner); | ||||
5847 | } else { | ||||
5848 | assert(chunk.Kind == DeclaratorChunk::Array ||((void)0) | ||||
5849 | chunk.Kind == DeclaratorChunk::Reference)((void)0); | ||||
5850 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); | ||||
5851 | } | ||||
5852 | } | ||||
5853 | |||||
5854 | TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) { | ||||
5855 | TypeProcessingState state(*this, D); | ||||
5856 | |||||
5857 | TypeSourceInfo *ReturnTypeInfo = nullptr; | ||||
5858 | QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); | ||||
5859 | |||||
5860 | if (getLangOpts().ObjC) { | ||||
5861 | Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy); | ||||
5862 | if (ownership != Qualifiers::OCL_None) | ||||
5863 | transferARCOwnership(state, declSpecTy, ownership); | ||||
5864 | } | ||||
5865 | |||||
5866 | return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo); | ||||
5867 | } | ||||
5868 | |||||
5869 | static void fillAttributedTypeLoc(AttributedTypeLoc TL, | ||||
5870 | TypeProcessingState &State) { | ||||
5871 | TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr())); | ||||
5872 | } | ||||
5873 | |||||
5874 | namespace { | ||||
5875 | class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> { | ||||
5876 | Sema &SemaRef; | ||||
5877 | ASTContext &Context; | ||||
5878 | TypeProcessingState &State; | ||||
5879 | const DeclSpec &DS; | ||||
5880 | |||||
5881 | public: | ||||
5882 | TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State, | ||||
5883 | const DeclSpec &DS) | ||||
5884 | : SemaRef(S), Context(Context), State(State), DS(DS) {} | ||||
5885 | |||||
5886 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { | ||||
5887 | Visit(TL.getModifiedLoc()); | ||||
5888 | fillAttributedTypeLoc(TL, State); | ||||
5889 | } | ||||
5890 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { | ||||
5891 | Visit(TL.getInnerLoc()); | ||||
5892 | TL.setExpansionLoc( | ||||
5893 | State.getExpansionLocForMacroQualifiedType(TL.getTypePtr())); | ||||
5894 | } | ||||
5895 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { | ||||
5896 | Visit(TL.getUnqualifiedLoc()); | ||||
5897 | } | ||||
5898 | void VisitTypedefTypeLoc(TypedefTypeLoc TL) { | ||||
5899 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
5900 | } | ||||
5901 | void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { | ||||
5902 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
5903 | // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires | ||||
5904 | // addition field. What we have is good enough for dispay of location | ||||
5905 | // of 'fixit' on interface name. | ||||
5906 | TL.setNameEndLoc(DS.getEndLoc()); | ||||
5907 | } | ||||
5908 | void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { | ||||
5909 | TypeSourceInfo *RepTInfo = nullptr; | ||||
5910 | Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo); | ||||
5911 | TL.copy(RepTInfo->getTypeLoc()); | ||||
5912 | } | ||||
5913 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { | ||||
5914 | TypeSourceInfo *RepTInfo = nullptr; | ||||
5915 | Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo); | ||||
5916 | TL.copy(RepTInfo->getTypeLoc()); | ||||
5917 | } | ||||
5918 | void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) { | ||||
5919 | TypeSourceInfo *TInfo = nullptr; | ||||
5920 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
5921 | |||||
5922 | // If we got no declarator info from previous Sema routines, | ||||
5923 | // just fill with the typespec loc. | ||||
5924 | if (!TInfo) { | ||||
5925 | TL.initialize(Context, DS.getTypeSpecTypeNameLoc()); | ||||
5926 | return; | ||||
5927 | } | ||||
5928 | |||||
5929 | TypeLoc OldTL = TInfo->getTypeLoc(); | ||||
5930 | if (TInfo->getType()->getAs<ElaboratedType>()) { | ||||
5931 | ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>(); | ||||
5932 | TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc() | ||||
5933 | .castAs<TemplateSpecializationTypeLoc>(); | ||||
5934 | TL.copy(NamedTL); | ||||
5935 | } else { | ||||
5936 | TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>()); | ||||
5937 | assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((void)0); | ||||
5938 | } | ||||
5939 | |||||
5940 | } | ||||
5941 | void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { | ||||
5942 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((void)0); | ||||
5943 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); | ||||
5944 | TL.setParensRange(DS.getTypeofParensRange()); | ||||
5945 | } | ||||
5946 | void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { | ||||
5947 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((void)0); | ||||
5948 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); | ||||
5949 | TL.setParensRange(DS.getTypeofParensRange()); | ||||
5950 | assert(DS.getRepAsType())((void)0); | ||||
5951 | TypeSourceInfo *TInfo = nullptr; | ||||
5952 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
5953 | TL.setUnderlyingTInfo(TInfo); | ||||
5954 | } | ||||
5955 | void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { | ||||
5956 | // FIXME: This holds only because we only have one unary transform. | ||||
5957 | assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((void)0); | ||||
5958 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||
5959 | TL.setParensRange(DS.getTypeofParensRange()); | ||||
5960 | assert(DS.getRepAsType())((void)0); | ||||
5961 | TypeSourceInfo *TInfo = nullptr; | ||||
5962 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
5963 | TL.setUnderlyingTInfo(TInfo); | ||||
5964 | } | ||||
5965 | void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { | ||||
5966 | // By default, use the source location of the type specifier. | ||||
5967 | TL.setBuiltinLoc(DS.getTypeSpecTypeLoc()); | ||||
5968 | if (TL.needsExtraLocalData()) { | ||||
5969 | // Set info for the written builtin specifiers. | ||||
5970 | TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs(); | ||||
5971 | // Try to have a meaningful source location. | ||||
5972 | if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified) | ||||
5973 | TL.expandBuiltinRange(DS.getTypeSpecSignLoc()); | ||||
5974 | if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified) | ||||
5975 | TL.expandBuiltinRange(DS.getTypeSpecWidthRange()); | ||||
5976 | } | ||||
5977 | } | ||||
5978 | void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { | ||||
5979 | ElaboratedTypeKeyword Keyword | ||||
5980 | = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType()); | ||||
5981 | if (DS.getTypeSpecType() == TST_typename) { | ||||
5982 | TypeSourceInfo *TInfo = nullptr; | ||||
5983 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
5984 | if (TInfo) { | ||||
5985 | TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>()); | ||||
5986 | return; | ||||
5987 | } | ||||
5988 | } | ||||
5989 | TL.setElaboratedKeywordLoc(Keyword != ETK_None | ||||
5990 | ? DS.getTypeSpecTypeLoc() | ||||
5991 | : SourceLocation()); | ||||
5992 | const CXXScopeSpec& SS = DS.getTypeSpecScope(); | ||||
5993 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | ||||
5994 | Visit(TL.getNextTypeLoc().getUnqualifiedLoc()); | ||||
5995 | } | ||||
5996 | void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { | ||||
5997 | assert(DS.getTypeSpecType() == TST_typename)((void)0); | ||||
5998 | TypeSourceInfo *TInfo = nullptr; | ||||
5999 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
6000 | assert(TInfo)((void)0); | ||||
6001 | TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>()); | ||||
6002 | } | ||||
6003 | void VisitDependentTemplateSpecializationTypeLoc( | ||||
6004 | DependentTemplateSpecializationTypeLoc TL) { | ||||
6005 | assert(DS.getTypeSpecType() == TST_typename)((void)0); | ||||
6006 | TypeSourceInfo *TInfo = nullptr; | ||||
6007 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
6008 | assert(TInfo)((void)0); | ||||
6009 | TL.copy( | ||||
6010 | TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>()); | ||||
6011 | } | ||||
6012 | void VisitAutoTypeLoc(AutoTypeLoc TL) { | ||||
6013 | assert(DS.getTypeSpecType() == TST_auto ||((void)0) | ||||
6014 | DS.getTypeSpecType() == TST_decltype_auto ||((void)0) | ||||
6015 | DS.getTypeSpecType() == TST_auto_type ||((void)0) | ||||
6016 | DS.getTypeSpecType() == TST_unspecified)((void)0); | ||||
6017 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
6018 | if (!DS.isConstrainedAuto()) | ||||
6019 | return; | ||||
6020 | TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId(); | ||||
6021 | if (!TemplateId) | ||||
6022 | return; | ||||
6023 | if (DS.getTypeSpecScope().isNotEmpty()) | ||||
6024 | TL.setNestedNameSpecifierLoc( | ||||
6025 | DS.getTypeSpecScope().getWithLocInContext(Context)); | ||||
6026 | else | ||||
6027 | TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc()); | ||||
6028 | TL.setTemplateKWLoc(TemplateId->TemplateKWLoc); | ||||
6029 | TL.setConceptNameLoc(TemplateId->TemplateNameLoc); | ||||
6030 | TL.setFoundDecl(nullptr); | ||||
6031 | TL.setLAngleLoc(TemplateId->LAngleLoc); | ||||
6032 | TL.setRAngleLoc(TemplateId->RAngleLoc); | ||||
6033 | if (TemplateId->NumArgs == 0) | ||||
6034 | return; | ||||
6035 | TemplateArgumentListInfo TemplateArgsInfo; | ||||
6036 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||
6037 | TemplateId->NumArgs); | ||||
6038 | SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||
6039 | for (unsigned I = 0; I < TemplateId->NumArgs; ++I) | ||||
6040 | TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo()); | ||||
6041 | } | ||||
6042 | void VisitTagTypeLoc(TagTypeLoc TL) { | ||||
6043 | TL.setNameLoc(DS.getTypeSpecTypeNameLoc()); | ||||
6044 | } | ||||
6045 | void VisitAtomicTypeLoc(AtomicTypeLoc TL) { | ||||
6046 | // An AtomicTypeLoc can come from either an _Atomic(...) type specifier | ||||
6047 | // or an _Atomic qualifier. | ||||
6048 | if (DS.getTypeSpecType() == DeclSpec::TST_atomic) { | ||||
6049 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||
6050 | TL.setParensRange(DS.getTypeofParensRange()); | ||||
6051 | |||||
6052 | TypeSourceInfo *TInfo = nullptr; | ||||
6053 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
6054 | assert(TInfo)((void)0); | ||||
6055 | TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc()); | ||||
6056 | } else { | ||||
6057 | TL.setKWLoc(DS.getAtomicSpecLoc()); | ||||
6058 | // No parens, to indicate this was spelled as an _Atomic qualifier. | ||||
6059 | TL.setParensRange(SourceRange()); | ||||
6060 | Visit(TL.getValueLoc()); | ||||
6061 | } | ||||
6062 | } | ||||
6063 | |||||
6064 | void VisitPipeTypeLoc(PipeTypeLoc TL) { | ||||
6065 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||
6066 | |||||
6067 | TypeSourceInfo *TInfo = nullptr; | ||||
6068 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||
6069 | TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc()); | ||||
6070 | } | ||||
6071 | |||||
6072 | void VisitExtIntTypeLoc(ExtIntTypeLoc TL) { | ||||
6073 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
6074 | } | ||||
6075 | |||||
6076 | void VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL) { | ||||
6077 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||
6078 | } | ||||
6079 | |||||
6080 | void VisitTypeLoc(TypeLoc TL) { | ||||
6081 | // FIXME: add other typespec types and change this to an assert. | ||||
6082 | TL.initialize(Context, DS.getTypeSpecTypeLoc()); | ||||
6083 | } | ||||
6084 | }; | ||||
6085 | |||||
6086 | class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> { | ||||
6087 | ASTContext &Context; | ||||
6088 | TypeProcessingState &State; | ||||
6089 | const DeclaratorChunk &Chunk; | ||||
6090 | |||||
6091 | public: | ||||
6092 | DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State, | ||||
6093 | const DeclaratorChunk &Chunk) | ||||
6094 | : Context(Context), State(State), Chunk(Chunk) {} | ||||
6095 | |||||
6096 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { | ||||
6097 | llvm_unreachable("qualified type locs not expected here!")__builtin_unreachable(); | ||||
6098 | } | ||||
6099 | void VisitDecayedTypeLoc(DecayedTypeLoc TL) { | ||||
6100 | llvm_unreachable("decayed type locs not expected here!")__builtin_unreachable(); | ||||
6101 | } | ||||
6102 | |||||
6103 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { | ||||
6104 | fillAttributedTypeLoc(TL, State); | ||||
6105 | } | ||||
6106 | void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { | ||||
6107 | // nothing | ||||
6108 | } | ||||
6109 | void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { | ||||
6110 | assert(Chunk.Kind == DeclaratorChunk::BlockPointer)((void)0); | ||||
6111 | TL.setCaretLoc(Chunk.Loc); | ||||
6112 | } | ||||
6113 | void VisitPointerTypeLoc(PointerTypeLoc TL) { | ||||
6114 | assert(Chunk.Kind == DeclaratorChunk::Pointer)((void)0); | ||||
6115 | TL.setStarLoc(Chunk.Loc); | ||||
6116 | } | ||||
6117 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { | ||||
6118 | assert(Chunk.Kind == DeclaratorChunk::Pointer)((void)0); | ||||
6119 | TL.setStarLoc(Chunk.Loc); | ||||
6120 | } | ||||
6121 | void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { | ||||
6122 | assert(Chunk.Kind == DeclaratorChunk::MemberPointer)((void)0); | ||||
6123 | const CXXScopeSpec& SS = Chunk.Mem.Scope(); | ||||
6124 | NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context); | ||||
6125 | |||||
6126 | const Type* ClsTy = TL.getClass(); | ||||
6127 | QualType ClsQT = QualType(ClsTy, 0); | ||||
6128 | TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0); | ||||
6129 | // Now copy source location info into the type loc component. | ||||
6130 | TypeLoc ClsTL = ClsTInfo->getTypeLoc(); | ||||
6131 | switch (NNSLoc.getNestedNameSpecifier()->getKind()) { | ||||
6132 | case NestedNameSpecifier::Identifier: | ||||
6133 | assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")((void)0); | ||||
6134 | { | ||||
6135 | DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>(); | ||||
6136 | DNTLoc.setElaboratedKeywordLoc(SourceLocation()); | ||||
6137 | DNTLoc.setQualifierLoc(NNSLoc.getPrefix()); | ||||
6138 | DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc()); | ||||
6139 | } | ||||
6140 | break; | ||||
6141 | |||||
6142 | case NestedNameSpecifier::TypeSpec: | ||||
6143 | case NestedNameSpecifier::TypeSpecWithTemplate: | ||||
6144 | if (isa<ElaboratedType>(ClsTy)) { | ||||
6145 | ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>(); | ||||
6146 | ETLoc.setElaboratedKeywordLoc(SourceLocation()); | ||||
6147 | ETLoc.setQualifierLoc(NNSLoc.getPrefix()); | ||||
6148 | TypeLoc NamedTL = ETLoc.getNamedTypeLoc(); | ||||
6149 | NamedTL.initializeFullCopy(NNSLoc.getTypeLoc()); | ||||
6150 | } else { | ||||
6151 | ClsTL.initializeFullCopy(NNSLoc.getTypeLoc()); | ||||
6152 | } | ||||
6153 | break; | ||||
6154 | |||||
6155 | case NestedNameSpecifier::Namespace: | ||||
6156 | case NestedNameSpecifier::NamespaceAlias: | ||||
6157 | case NestedNameSpecifier::Global: | ||||
6158 | case NestedNameSpecifier::Super: | ||||
6159 | llvm_unreachable("Nested-name-specifier must name a type")__builtin_unreachable(); | ||||
6160 | } | ||||
6161 | |||||
6162 | // Finally fill in MemberPointerLocInfo fields. | ||||
6163 | TL.setStarLoc(Chunk.Mem.StarLoc); | ||||
6164 | TL.setClassTInfo(ClsTInfo); | ||||
6165 | } | ||||
6166 | void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { | ||||
6167 | assert(Chunk.Kind == DeclaratorChunk::Reference)((void)0); | ||||
6168 | // 'Amp' is misleading: this might have been originally | ||||
6169 | /// spelled with AmpAmp. | ||||
6170 | TL.setAmpLoc(Chunk.Loc); | ||||
6171 | } | ||||
6172 | void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { | ||||
6173 | assert(Chunk.Kind == DeclaratorChunk::Reference)((void)0); | ||||
6174 | assert(!Chunk.Ref.LValueRef)((void)0); | ||||
6175 | TL.setAmpAmpLoc(Chunk.Loc); | ||||
6176 | } | ||||
6177 | void VisitArrayTypeLoc(ArrayTypeLoc TL) { | ||||
6178 | assert(Chunk.Kind == DeclaratorChunk::Array)((void)0); | ||||
6179 | TL.setLBracketLoc(Chunk.Loc); | ||||
6180 | TL.setRBracketLoc(Chunk.EndLoc); | ||||
6181 | TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts)); | ||||
6182 | } | ||||
6183 | void VisitFunctionTypeLoc(FunctionTypeLoc TL) { | ||||
6184 | assert(Chunk.Kind == DeclaratorChunk::Function)((void)0); | ||||
6185 | TL.setLocalRangeBegin(Chunk.Loc); | ||||
6186 | TL.setLocalRangeEnd(Chunk.EndLoc); | ||||
6187 | |||||
6188 | const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun; | ||||
6189 | TL.setLParenLoc(FTI.getLParenLoc()); | ||||
6190 | TL.setRParenLoc(FTI.getRParenLoc()); | ||||
6191 | for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) { | ||||
6192 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | ||||
6193 | TL.setParam(tpi++, Param); | ||||
6194 | } | ||||
6195 | TL.setExceptionSpecRange(FTI.getExceptionSpecRange()); | ||||
6196 | } | ||||
6197 | void VisitParenTypeLoc(ParenTypeLoc TL) { | ||||
6198 | assert(Chunk.Kind == DeclaratorChunk::Paren)((void)0); | ||||
6199 | TL.setLParenLoc(Chunk.Loc); | ||||
6200 | TL.setRParenLoc(Chunk.EndLoc); | ||||
6201 | } | ||||
6202 | void VisitPipeTypeLoc(PipeTypeLoc TL) { | ||||
6203 | assert(Chunk.Kind == DeclaratorChunk::Pipe)((void)0); | ||||
6204 | TL.setKWLoc(Chunk.Loc); | ||||
6205 | } | ||||
6206 | void VisitExtIntTypeLoc(ExtIntTypeLoc TL) { | ||||
6207 | TL.setNameLoc(Chunk.Loc); | ||||
6208 | } | ||||
6209 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { | ||||
6210 | TL.setExpansionLoc(Chunk.Loc); | ||||
6211 | } | ||||
6212 | void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); } | ||||
6213 | void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) { | ||||
6214 | TL.setNameLoc(Chunk.Loc); | ||||
6215 | } | ||||
6216 | void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { | ||||
6217 | TL.setNameLoc(Chunk.Loc); | ||||
6218 | } | ||||
6219 | void | ||||
6220 | VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) { | ||||
6221 | TL.setNameLoc(Chunk.Loc); | ||||
6222 | } | ||||
6223 | |||||
6224 | void VisitTypeLoc(TypeLoc TL) { | ||||
6225 | llvm_unreachable("unsupported TypeLoc kind in declarator!")__builtin_unreachable(); | ||||
6226 | } | ||||
6227 | }; | ||||
6228 | } // end anonymous namespace | ||||
6229 | |||||
6230 | static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) { | ||||
6231 | SourceLocation Loc; | ||||
6232 | switch (Chunk.Kind) { | ||||
6233 | case DeclaratorChunk::Function: | ||||
6234 | case DeclaratorChunk::Array: | ||||
6235 | case DeclaratorChunk::Paren: | ||||
6236 | case DeclaratorChunk::Pipe: | ||||
6237 | llvm_unreachable("cannot be _Atomic qualified")__builtin_unreachable(); | ||||
6238 | |||||
6239 | case DeclaratorChunk::Pointer: | ||||
6240 | Loc = Chunk.Ptr.AtomicQualLoc; | ||||
6241 | break; | ||||
6242 | |||||
6243 | case DeclaratorChunk::BlockPointer: | ||||
6244 | case DeclaratorChunk::Reference: | ||||
6245 | case DeclaratorChunk::MemberPointer: | ||||
6246 | // FIXME: Provide a source location for the _Atomic keyword. | ||||
6247 | break; | ||||
6248 | } | ||||
6249 | |||||
6250 | ATL.setKWLoc(Loc); | ||||
6251 | ATL.setParensRange(SourceRange()); | ||||
6252 | } | ||||
6253 | |||||
6254 | static void | ||||
6255 | fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL, | ||||
6256 | const ParsedAttributesView &Attrs) { | ||||
6257 | for (const ParsedAttr &AL : Attrs) { | ||||
6258 | if (AL.getKind() == ParsedAttr::AT_AddressSpace) { | ||||
6259 | DASTL.setAttrNameLoc(AL.getLoc()); | ||||
6260 | DASTL.setAttrExprOperand(AL.getArgAsExpr(0)); | ||||
6261 | DASTL.setAttrOperandParensRange(SourceRange()); | ||||
6262 | return; | ||||
6263 | } | ||||
6264 | } | ||||
6265 | |||||
6266 | llvm_unreachable(__builtin_unreachable() | ||||
6267 | "no address_space attribute found at the expected location!")__builtin_unreachable(); | ||||
6268 | } | ||||
6269 | |||||
6270 | static void fillMatrixTypeLoc(MatrixTypeLoc MTL, | ||||
6271 | const ParsedAttributesView &Attrs) { | ||||
6272 | for (const ParsedAttr &AL : Attrs) { | ||||
6273 | if (AL.getKind() == ParsedAttr::AT_MatrixType) { | ||||
6274 | MTL.setAttrNameLoc(AL.getLoc()); | ||||
6275 | MTL.setAttrRowOperand(AL.getArgAsExpr(0)); | ||||
6276 | MTL.setAttrColumnOperand(AL.getArgAsExpr(1)); | ||||
6277 | MTL.setAttrOperandParensRange(SourceRange()); | ||||
6278 | return; | ||||
6279 | } | ||||
6280 | } | ||||
6281 | |||||
6282 | llvm_unreachable("no matrix_type attribute found at the expected location!")__builtin_unreachable(); | ||||
6283 | } | ||||
6284 | |||||
6285 | /// Create and instantiate a TypeSourceInfo with type source information. | ||||
6286 | /// | ||||
6287 | /// \param T QualType referring to the type as written in source code. | ||||
6288 | /// | ||||
6289 | /// \param ReturnTypeInfo For declarators whose return type does not show | ||||
6290 | /// up in the normal place in the declaration specifiers (such as a C++ | ||||
6291 | /// conversion function), this pointer will refer to a type source information | ||||
6292 | /// for that return type. | ||||
6293 | static TypeSourceInfo * | ||||
6294 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, | ||||
6295 | QualType T, TypeSourceInfo *ReturnTypeInfo) { | ||||
6296 | Sema &S = State.getSema(); | ||||
6297 | Declarator &D = State.getDeclarator(); | ||||
6298 | |||||
6299 | TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T); | ||||
6300 | UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc(); | ||||
6301 | |||||
6302 | // Handle parameter packs whose type is a pack expansion. | ||||
6303 | if (isa<PackExpansionType>(T)) { | ||||
6304 | CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc()); | ||||
6305 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); | ||||
6306 | } | ||||
6307 | |||||
6308 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||
6309 | // An AtomicTypeLoc might be produced by an atomic qualifier in this | ||||
6310 | // declarator chunk. | ||||
6311 | if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) { | ||||
6312 | fillAtomicQualLoc(ATL, D.getTypeObject(i)); | ||||
6313 | CurrTL = ATL.getValueLoc().getUnqualifiedLoc(); | ||||
6314 | } | ||||
6315 | |||||
6316 | while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) { | ||||
6317 | TL.setExpansionLoc( | ||||
6318 | State.getExpansionLocForMacroQualifiedType(TL.getTypePtr())); | ||||
6319 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | ||||
6320 | } | ||||
6321 | |||||
6322 | while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) { | ||||
6323 | fillAttributedTypeLoc(TL, State); | ||||
6324 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | ||||
6325 | } | ||||
6326 | |||||
6327 | while (DependentAddressSpaceTypeLoc TL = | ||||
6328 | CurrTL.getAs<DependentAddressSpaceTypeLoc>()) { | ||||
6329 | fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs()); | ||||
6330 | CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc(); | ||||
6331 | } | ||||
6332 | |||||
6333 | if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>()) | ||||
6334 | fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs()); | ||||
6335 | |||||
6336 | // FIXME: Ordering here? | ||||
6337 | while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>()) | ||||
6338 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | ||||
6339 | |||||
6340 | DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL); | ||||
6341 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); | ||||
6342 | } | ||||
6343 | |||||
6344 | // If we have different source information for the return type, use | ||||
6345 | // that. This really only applies to C++ conversion functions. | ||||
6346 | if (ReturnTypeInfo) { | ||||
6347 | TypeLoc TL = ReturnTypeInfo->getTypeLoc(); | ||||
6348 | assert(TL.getFullDataSize() == CurrTL.getFullDataSize())((void)0); | ||||
6349 | memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize()); | ||||
6350 | } else { | ||||
6351 | TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL); | ||||
6352 | } | ||||
6353 | |||||
6354 | return TInfo; | ||||
6355 | } | ||||
6356 | |||||
6357 | /// Create a LocInfoType to hold the given QualType and TypeSourceInfo. | ||||
6358 | ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) { | ||||
6359 | // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser | ||||
6360 | // and Sema during declaration parsing. Try deallocating/caching them when | ||||
6361 | // it's appropriate, instead of allocating them and keeping them around. | ||||
6362 | LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), | ||||
6363 | TypeAlignment); | ||||
6364 | new (LocT) LocInfoType(T, TInfo); | ||||
6365 | assert(LocT->getTypeClass() != T->getTypeClass() &&((void)0) | ||||
6366 | "LocInfoType's TypeClass conflicts with an existing Type class")((void)0); | ||||
6367 | return ParsedType::make(QualType(LocT, 0)); | ||||
6368 | } | ||||
6369 | |||||
6370 | void LocInfoType::getAsStringInternal(std::string &Str, | ||||
6371 | const PrintingPolicy &Policy) const { | ||||
6372 | llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"__builtin_unreachable() | ||||
6373 | " was used directly instead of getting the QualType through"__builtin_unreachable() | ||||
6374 | " GetTypeFromParser")__builtin_unreachable(); | ||||
6375 | } | ||||
6376 | |||||
6377 | TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) { | ||||
6378 | // C99 6.7.6: Type names have no identifier. This is already validated by | ||||
6379 | // the parser. | ||||
6380 | assert(D.getIdentifier() == nullptr &&((void)0) | ||||
6381 | "Type name should have no identifier!")((void)0); | ||||
6382 | |||||
6383 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | ||||
6384 | QualType T = TInfo->getType(); | ||||
6385 | if (D.isInvalidType()) | ||||
6386 | return true; | ||||
6387 | |||||
6388 | // Make sure there are no unused decl attributes on the declarator. | ||||
6389 | // We don't want to do this for ObjC parameters because we're going | ||||
6390 | // to apply them to the actual parameter declaration. | ||||
6391 | // Likewise, we don't want to do this for alias declarations, because | ||||
6392 | // we are actually going to build a declaration from this eventually. | ||||
6393 | if (D.getContext() != DeclaratorContext::ObjCParameter && | ||||
6394 | D.getContext() != DeclaratorContext::AliasDecl && | ||||
6395 | D.getContext() != DeclaratorContext::AliasTemplate) | ||||
6396 | checkUnusedDeclAttributes(D); | ||||
6397 | |||||
6398 | if (getLangOpts().CPlusPlus) { | ||||
6399 | // Check that there are no default arguments (C++ only). | ||||
6400 | CheckExtraCXXDefaultArguments(D); | ||||
6401 | } | ||||
6402 | |||||
6403 | return CreateParsedType(T, TInfo); | ||||
6404 | } | ||||
6405 | |||||
6406 | ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) { | ||||
6407 | QualType T = Context.getObjCInstanceType(); | ||||
6408 | TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | ||||
6409 | return CreateParsedType(T, TInfo); | ||||
6410 | } | ||||
6411 | |||||
6412 | //===----------------------------------------------------------------------===// | ||||
6413 | // Type Attribute Processing | ||||
6414 | //===----------------------------------------------------------------------===// | ||||
6415 | |||||
6416 | /// Build an AddressSpace index from a constant expression and diagnose any | ||||
6417 | /// errors related to invalid address_spaces. Returns true on successfully | ||||
6418 | /// building an AddressSpace index. | ||||
6419 | static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx, | ||||
6420 | const Expr *AddrSpace, | ||||
6421 | SourceLocation AttrLoc) { | ||||
6422 | if (!AddrSpace->isValueDependent()) { | ||||
6423 | Optional<llvm::APSInt> OptAddrSpace = | ||||
6424 | AddrSpace->getIntegerConstantExpr(S.Context); | ||||
6425 | if (!OptAddrSpace) { | ||||
6426 | S.Diag(AttrLoc, diag::err_attribute_argument_type) | ||||
6427 | << "'address_space'" << AANT_ArgumentIntegerConstant | ||||
6428 | << AddrSpace->getSourceRange(); | ||||
6429 | return false; | ||||
6430 | } | ||||
6431 | llvm::APSInt &addrSpace = *OptAddrSpace; | ||||
6432 | |||||
6433 | // Bounds checking. | ||||
6434 | if (addrSpace.isSigned()) { | ||||
6435 | if (addrSpace.isNegative()) { | ||||
6436 | S.Diag(AttrLoc, diag::err_attribute_address_space_negative) | ||||
6437 | << AddrSpace->getSourceRange(); | ||||
6438 | return false; | ||||
6439 | } | ||||
6440 | addrSpace.setIsSigned(false); | ||||
6441 | } | ||||
6442 | |||||
6443 | llvm::APSInt max(addrSpace.getBitWidth()); | ||||
6444 | max = | ||||
6445 | Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace; | ||||
6446 | |||||
6447 | if (addrSpace > max) { | ||||
6448 | S.Diag(AttrLoc, diag::err_attribute_address_space_too_high) | ||||
6449 | << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange(); | ||||
6450 | return false; | ||||
6451 | } | ||||
6452 | |||||
6453 | ASIdx = | ||||
6454 | getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue())); | ||||
6455 | return true; | ||||
6456 | } | ||||
6457 | |||||
6458 | // Default value for DependentAddressSpaceTypes | ||||
6459 | ASIdx = LangAS::Default; | ||||
6460 | return true; | ||||
6461 | } | ||||
6462 | |||||
6463 | /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression | ||||
6464 | /// is uninstantiated. If instantiated it will apply the appropriate address | ||||
6465 | /// space to the type. This function allows dependent template variables to be | ||||
6466 | /// used in conjunction with the address_space attribute | ||||
6467 | QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, | ||||
6468 | SourceLocation AttrLoc) { | ||||
6469 | if (!AddrSpace->isValueDependent()) { | ||||
6470 | if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx, | ||||
6471 | AttrLoc)) | ||||
6472 | return QualType(); | ||||
6473 | |||||
6474 | return Context.getAddrSpaceQualType(T, ASIdx); | ||||
6475 | } | ||||
6476 | |||||
6477 | // A check with similar intentions as checking if a type already has an | ||||
6478 | // address space except for on a dependent types, basically if the | ||||
6479 | // current type is already a DependentAddressSpaceType then its already | ||||
6480 | // lined up to have another address space on it and we can't have | ||||
6481 | // multiple address spaces on the one pointer indirection | ||||
6482 | if (T->getAs<DependentAddressSpaceType>()) { | ||||
6483 | Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); | ||||
6484 | return QualType(); | ||||
6485 | } | ||||
6486 | |||||
6487 | return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc); | ||||
6488 | } | ||||
6489 | |||||
6490 | QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, | ||||
6491 | SourceLocation AttrLoc) { | ||||
6492 | LangAS ASIdx; | ||||
6493 | if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc)) | ||||
6494 | return QualType(); | ||||
6495 | return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc); | ||||
6496 | } | ||||
6497 | |||||
6498 | /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the | ||||
6499 | /// specified type. The attribute contains 1 argument, the id of the address | ||||
6500 | /// space for the type. | ||||
6501 | static void HandleAddressSpaceTypeAttribute(QualType &Type, | ||||
6502 | const ParsedAttr &Attr, | ||||
6503 | TypeProcessingState &State) { | ||||
6504 | Sema &S = State.getSema(); | ||||
6505 | |||||
6506 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be | ||||
6507 | // qualified by an address-space qualifier." | ||||
6508 | if (Type->isFunctionType()) { | ||||
6509 | S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type); | ||||
6510 | Attr.setInvalid(); | ||||
6511 | return; | ||||
6512 | } | ||||
6513 | |||||
6514 | LangAS ASIdx; | ||||
6515 | if (Attr.getKind() == ParsedAttr::AT_AddressSpace) { | ||||
6516 | |||||
6517 | // Check the attribute arguments. | ||||
6518 | if (Attr.getNumArgs() != 1) { | ||||
6519 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | ||||
6520 | << 1; | ||||
6521 | Attr.setInvalid(); | ||||
6522 | return; | ||||
6523 | } | ||||
6524 | |||||
6525 | Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0)); | ||||
6526 | LangAS ASIdx; | ||||
6527 | if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) { | ||||
6528 | Attr.setInvalid(); | ||||
6529 | return; | ||||
6530 | } | ||||
6531 | |||||
6532 | ASTContext &Ctx = S.Context; | ||||
6533 | auto *ASAttr = | ||||
6534 | ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx)); | ||||
6535 | |||||
6536 | // If the expression is not value dependent (not templated), then we can | ||||
6537 | // apply the address space qualifiers just to the equivalent type. | ||||
6538 | // Otherwise, we make an AttributedType with the modified and equivalent | ||||
6539 | // type the same, and wrap it in a DependentAddressSpaceType. When this | ||||
6540 | // dependent type is resolved, the qualifier is added to the equivalent type | ||||
6541 | // later. | ||||
6542 | QualType T; | ||||
6543 | if (!ASArgExpr->isValueDependent()) { | ||||
6544 | QualType EquivType = | ||||
6545 | S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc()); | ||||
6546 | if (EquivType.isNull()) { | ||||
6547 | Attr.setInvalid(); | ||||
6548 | return; | ||||
6549 | } | ||||
6550 | T = State.getAttributedType(ASAttr, Type, EquivType); | ||||
6551 | } else { | ||||
6552 | T = State.getAttributedType(ASAttr, Type, Type); | ||||
6553 | T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc()); | ||||
6554 | } | ||||
6555 | |||||
6556 | if (!T.isNull()) | ||||
6557 | Type = T; | ||||
6558 | else | ||||
6559 | Attr.setInvalid(); | ||||
6560 | } else { | ||||
6561 | // The keyword-based type attributes imply which address space to use. | ||||
6562 | ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS() | ||||
6563 | : Attr.asOpenCLLangAS(); | ||||
6564 | |||||
6565 | if (ASIdx == LangAS::Default) | ||||
6566 | llvm_unreachable("Invalid address space")__builtin_unreachable(); | ||||
6567 | |||||
6568 | if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx, | ||||
6569 | Attr.getLoc())) { | ||||
6570 | Attr.setInvalid(); | ||||
6571 | return; | ||||
6572 | } | ||||
6573 | |||||
6574 | Type = S.Context.getAddrSpaceQualType(Type, ASIdx); | ||||
6575 | } | ||||
6576 | } | ||||
6577 | |||||
6578 | /// handleObjCOwnershipTypeAttr - Process an objc_ownership | ||||
6579 | /// attribute on the specified type. | ||||
6580 | /// | ||||
6581 | /// Returns 'true' if the attribute was handled. | ||||
6582 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, | ||||
6583 | ParsedAttr &attr, QualType &type) { | ||||
6584 | bool NonObjCPointer = false; | ||||
6585 | |||||
6586 | if (!type->isDependentType() && !type->isUndeducedType()) { | ||||
6587 | if (const PointerType *ptr = type->getAs<PointerType>()) { | ||||
6588 | QualType pointee = ptr->getPointeeType(); | ||||
6589 | if (pointee->isObjCRetainableType() || pointee->isPointerType()) | ||||
6590 | return false; | ||||
6591 | // It is important not to lose the source info that there was an attribute | ||||
6592 | // applied to non-objc pointer. We will create an attributed type but | ||||
6593 | // its type will be the same as the original type. | ||||
6594 | NonObjCPointer = true; | ||||
6595 | } else if (!type->isObjCRetainableType()) { | ||||
6596 | return false; | ||||
6597 | } | ||||
6598 | |||||
6599 | // Don't accept an ownership attribute in the declspec if it would | ||||
6600 | // just be the return type of a block pointer. | ||||
6601 | if (state.isProcessingDeclSpec()) { | ||||
6602 | Declarator &D = state.getDeclarator(); | ||||
6603 | if (maybeMovePastReturnType(D, D.getNumTypeObjects(), | ||||
6604 | /*onlyBlockPointers=*/true)) | ||||
6605 | return false; | ||||
6606 | } | ||||
6607 | } | ||||
6608 | |||||
6609 | Sema &S = state.getSema(); | ||||
6610 | SourceLocation AttrLoc = attr.getLoc(); | ||||
6611 | if (AttrLoc.isMacroID()) | ||||
6612 | AttrLoc = | ||||
6613 | S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin(); | ||||
6614 | |||||
6615 | if (!attr.isArgIdent(0)) { | ||||
6616 | S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr | ||||
6617 | << AANT_ArgumentString; | ||||
6618 | attr.setInvalid(); | ||||
6619 | return true; | ||||
6620 | } | ||||
6621 | |||||
6622 | IdentifierInfo *II = attr.getArgAsIdent(0)->Ident; | ||||
6623 | Qualifiers::ObjCLifetime lifetime; | ||||
6624 | if (II->isStr("none")) | ||||
6625 | lifetime = Qualifiers::OCL_ExplicitNone; | ||||
6626 | else if (II->isStr("strong")) | ||||
6627 | lifetime = Qualifiers::OCL_Strong; | ||||
6628 | else if (II->isStr("weak")) | ||||
6629 | lifetime = Qualifiers::OCL_Weak; | ||||
6630 | else if (II->isStr("autoreleasing")) | ||||
6631 | lifetime = Qualifiers::OCL_Autoreleasing; | ||||
6632 | else { | ||||
6633 | S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II; | ||||
6634 | attr.setInvalid(); | ||||
6635 | return true; | ||||
6636 | } | ||||
6637 | |||||
6638 | // Just ignore lifetime attributes other than __weak and __unsafe_unretained | ||||
6639 | // outside of ARC mode. | ||||
6640 | if (!S.getLangOpts().ObjCAutoRefCount && | ||||
6641 | lifetime != Qualifiers::OCL_Weak && | ||||
6642 | lifetime != Qualifiers::OCL_ExplicitNone) { | ||||
6643 | return true; | ||||
6644 | } | ||||
6645 | |||||
6646 | SplitQualType underlyingType = type.split(); | ||||
6647 | |||||
6648 | // Check for redundant/conflicting ownership qualifiers. | ||||
6649 | if (Qualifiers::ObjCLifetime previousLifetime | ||||
6650 | = type.getQualifiers().getObjCLifetime()) { | ||||
6651 | // If it's written directly, that's an error. | ||||
6652 | if (S.Context.hasDirectOwnershipQualifier(type)) { | ||||
6653 | S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant) | ||||
6654 | << type; | ||||
6655 | return true; | ||||
6656 | } | ||||
6657 | |||||
6658 | // Otherwise, if the qualifiers actually conflict, pull sugar off | ||||
6659 | // and remove the ObjCLifetime qualifiers. | ||||
6660 | if (previousLifetime != lifetime) { | ||||
6661 | // It's possible to have multiple local ObjCLifetime qualifiers. We | ||||
6662 | // can't stop after we reach a type that is directly qualified. | ||||
6663 | const Type *prevTy = nullptr; | ||||
6664 | while (!prevTy || prevTy != underlyingType.Ty) { | ||||
6665 | prevTy = underlyingType.Ty; | ||||
6666 | underlyingType = underlyingType.getSingleStepDesugaredType(); | ||||
6667 | } | ||||
6668 | underlyingType.Quals.removeObjCLifetime(); | ||||
6669 | } | ||||
6670 | } | ||||
6671 | |||||
6672 | underlyingType.Quals.addObjCLifetime(lifetime); | ||||
6673 | |||||
6674 | if (NonObjCPointer) { | ||||
6675 | StringRef name = attr.getAttrName()->getName(); | ||||
6676 | switch (lifetime) { | ||||
6677 | case Qualifiers::OCL_None: | ||||
6678 | case Qualifiers::OCL_ExplicitNone: | ||||
6679 | break; | ||||
6680 | case Qualifiers::OCL_Strong: name = "__strong"; break; | ||||
6681 | case Qualifiers::OCL_Weak: name = "__weak"; break; | ||||
6682 | case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break; | ||||
6683 | } | ||||
6684 | S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name | ||||
6685 | << TDS_ObjCObjOrBlock << type; | ||||
6686 | } | ||||
6687 | |||||
6688 | // Don't actually add the __unsafe_unretained qualifier in non-ARC files, | ||||
6689 | // because having both 'T' and '__unsafe_unretained T' exist in the type | ||||
6690 | // system causes unfortunate widespread consistency problems. (For example, | ||||
6691 | // they're not considered compatible types, and we mangle them identicially | ||||
6692 | // as template arguments.) These problems are all individually fixable, | ||||
6693 | // but it's easier to just not add the qualifier and instead sniff it out | ||||
6694 | // in specific places using isObjCInertUnsafeUnretainedType(). | ||||
6695 | // | ||||
6696 | // Doing this does means we miss some trivial consistency checks that | ||||
6697 | // would've triggered in ARC, but that's better than trying to solve all | ||||
6698 | // the coexistence problems with __unsafe_unretained. | ||||
6699 | if (!S.getLangOpts().ObjCAutoRefCount && | ||||
6700 | lifetime == Qualifiers::OCL_ExplicitNone) { | ||||
6701 | type = state.getAttributedType( | ||||
6702 | createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr), | ||||
6703 | type, type); | ||||
6704 | return true; | ||||
6705 | } | ||||
6706 | |||||
6707 | QualType origType = type; | ||||
6708 | if (!NonObjCPointer) | ||||
6709 | type = S.Context.getQualifiedType(underlyingType); | ||||
6710 | |||||
6711 | // If we have a valid source location for the attribute, use an | ||||
6712 | // AttributedType instead. | ||||
6713 | if (AttrLoc.isValid()) { | ||||
6714 | type = state.getAttributedType(::new (S.Context) | ||||
6715 | ObjCOwnershipAttr(S.Context, attr, II), | ||||
6716 | origType, type); | ||||
6717 | } | ||||
6718 | |||||
6719 | auto diagnoseOrDelay = [](Sema &S, SourceLocation loc, | ||||
6720 | unsigned diagnostic, QualType type) { | ||||
6721 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | ||||
6722 | S.DelayedDiagnostics.add( | ||||
6723 | sema::DelayedDiagnostic::makeForbiddenType( | ||||
6724 | S.getSourceManager().getExpansionLoc(loc), | ||||
6725 | diagnostic, type, /*ignored*/ 0)); | ||||
6726 | } else { | ||||
6727 | S.Diag(loc, diagnostic); | ||||
6728 | } | ||||
6729 | }; | ||||
6730 | |||||
6731 | // Sometimes, __weak isn't allowed. | ||||
6732 | if (lifetime == Qualifiers::OCL_Weak && | ||||
6733 | !S.getLangOpts().ObjCWeak && !NonObjCPointer) { | ||||
6734 | |||||
6735 | // Use a specialized diagnostic if the runtime just doesn't support them. | ||||
6736 | unsigned diagnostic = | ||||
6737 | (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled | ||||
6738 | : diag::err_arc_weak_no_runtime); | ||||
6739 | |||||
6740 | // In any case, delay the diagnostic until we know what we're parsing. | ||||
6741 | diagnoseOrDelay(S, AttrLoc, diagnostic, type); | ||||
6742 | |||||
6743 | attr.setInvalid(); | ||||
6744 | return true; | ||||
6745 | } | ||||
6746 | |||||
6747 | // Forbid __weak for class objects marked as | ||||
6748 | // objc_arc_weak_reference_unavailable | ||||
6749 | if (lifetime == Qualifiers::OCL_Weak) { | ||||
6750 | if (const ObjCObjectPointerType *ObjT = | ||||
6751 | type->getAs<ObjCObjectPointerType>()) { | ||||
6752 | if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) { | ||||
6753 | if (Class->isArcWeakrefUnavailable()) { | ||||
6754 | S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class); | ||||
6755 | S.Diag(ObjT->getInterfaceDecl()->getLocation(), | ||||
6756 | diag::note_class_declared); | ||||
6757 | } | ||||
6758 | } | ||||
6759 | } | ||||
6760 | } | ||||
6761 | |||||
6762 | return true; | ||||
6763 | } | ||||
6764 | |||||
6765 | /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type | ||||
6766 | /// attribute on the specified type. Returns true to indicate that | ||||
6767 | /// the attribute was handled, false to indicate that the type does | ||||
6768 | /// not permit the attribute. | ||||
6769 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||
6770 | QualType &type) { | ||||
6771 | Sema &S = state.getSema(); | ||||
6772 | |||||
6773 | // Delay if this isn't some kind of pointer. | ||||
6774 | if (!type->isPointerType() && | ||||
6775 | !type->isObjCObjectPointerType() && | ||||
6776 | !type->isBlockPointerType()) | ||||
6777 | return false; | ||||
6778 | |||||
6779 | if (type.getObjCGCAttr() != Qualifiers::GCNone) { | ||||
6780 | S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc); | ||||
6781 | attr.setInvalid(); | ||||
6782 | return true; | ||||
6783 | } | ||||
6784 | |||||
6785 | // Check the attribute arguments. | ||||
6786 | if (!attr.isArgIdent(0)) { | ||||
6787 | S.Diag(attr.getLoc(), diag::err_attribute_argument_type) | ||||
6788 | << attr << AANT_ArgumentString; | ||||
6789 | attr.setInvalid(); | ||||
6790 | return true; | ||||
6791 | } | ||||
6792 | Qualifiers::GC GCAttr; | ||||
6793 | if (attr.getNumArgs() > 1) { | ||||
6794 | S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr | ||||
6795 | << 1; | ||||
6796 | attr.setInvalid(); | ||||
6797 | return true; | ||||
6798 | } | ||||
6799 | |||||
6800 | IdentifierInfo *II = attr.getArgAsIdent(0)->Ident; | ||||
6801 | if (II->isStr("weak")) | ||||
6802 | GCAttr = Qualifiers::Weak; | ||||
6803 | else if (II->isStr("strong")) | ||||
6804 | GCAttr = Qualifiers::Strong; | ||||
6805 | else { | ||||
6806 | S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported) | ||||
6807 | << attr << II; | ||||
6808 | attr.setInvalid(); | ||||
6809 | return true; | ||||
6810 | } | ||||
6811 | |||||
6812 | QualType origType = type; | ||||
6813 | type = S.Context.getObjCGCQualType(origType, GCAttr); | ||||
6814 | |||||
6815 | // Make an attributed type to preserve the source information. | ||||
6816 | if (attr.getLoc().isValid()) | ||||
6817 | type = state.getAttributedType( | ||||
6818 | ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type); | ||||
6819 | |||||
6820 | return true; | ||||
6821 | } | ||||
6822 | |||||
6823 | namespace { | ||||
6824 | /// A helper class to unwrap a type down to a function for the | ||||
6825 | /// purposes of applying attributes there. | ||||
6826 | /// | ||||
6827 | /// Use: | ||||
6828 | /// FunctionTypeUnwrapper unwrapped(SemaRef, T); | ||||
6829 | /// if (unwrapped.isFunctionType()) { | ||||
6830 | /// const FunctionType *fn = unwrapped.get(); | ||||
6831 | /// // change fn somehow | ||||
6832 | /// T = unwrapped.wrap(fn); | ||||
6833 | /// } | ||||
6834 | struct FunctionTypeUnwrapper { | ||||
6835 | enum WrapKind { | ||||
6836 | Desugar, | ||||
6837 | Attributed, | ||||
6838 | Parens, | ||||
6839 | Array, | ||||
6840 | Pointer, | ||||
6841 | BlockPointer, | ||||
6842 | Reference, | ||||
6843 | MemberPointer, | ||||
6844 | MacroQualified, | ||||
6845 | }; | ||||
6846 | |||||
6847 | QualType Original; | ||||
6848 | const FunctionType *Fn; | ||||
6849 | SmallVector<unsigned char /*WrapKind*/, 8> Stack; | ||||
6850 | |||||
6851 | FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) { | ||||
6852 | while (true) { | ||||
6853 | const Type *Ty = T.getTypePtr(); | ||||
6854 | if (isa<FunctionType>(Ty)) { | ||||
6855 | Fn = cast<FunctionType>(Ty); | ||||
6856 | return; | ||||
6857 | } else if (isa<ParenType>(Ty)) { | ||||
6858 | T = cast<ParenType>(Ty)->getInnerType(); | ||||
6859 | Stack.push_back(Parens); | ||||
6860 | } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) || | ||||
6861 | isa<IncompleteArrayType>(Ty)) { | ||||
6862 | T = cast<ArrayType>(Ty)->getElementType(); | ||||
6863 | Stack.push_back(Array); | ||||
6864 | } else if (isa<PointerType>(Ty)) { | ||||
6865 | T = cast<PointerType>(Ty)->getPointeeType(); | ||||
6866 | Stack.push_back(Pointer); | ||||
6867 | } else if (isa<BlockPointerType>(Ty)) { | ||||
6868 | T = cast<BlockPointerType>(Ty)->getPointeeType(); | ||||
6869 | Stack.push_back(BlockPointer); | ||||
6870 | } else if (isa<MemberPointerType>(Ty)) { | ||||
6871 | T = cast<MemberPointerType>(Ty)->getPointeeType(); | ||||
6872 | Stack.push_back(MemberPointer); | ||||
6873 | } else if (isa<ReferenceType>(Ty)) { | ||||
6874 | T = cast<ReferenceType>(Ty)->getPointeeType(); | ||||
6875 | Stack.push_back(Reference); | ||||
6876 | } else if (isa<AttributedType>(Ty)) { | ||||
6877 | T = cast<AttributedType>(Ty)->getEquivalentType(); | ||||
6878 | Stack.push_back(Attributed); | ||||
6879 | } else if (isa<MacroQualifiedType>(Ty)) { | ||||
6880 | T = cast<MacroQualifiedType>(Ty)->getUnderlyingType(); | ||||
6881 | Stack.push_back(MacroQualified); | ||||
6882 | } else { | ||||
6883 | const Type *DTy = Ty->getUnqualifiedDesugaredType(); | ||||
6884 | if (Ty == DTy) { | ||||
6885 | Fn = nullptr; | ||||
6886 | return; | ||||
6887 | } | ||||
6888 | |||||
6889 | T = QualType(DTy, 0); | ||||
6890 | Stack.push_back(Desugar); | ||||
6891 | } | ||||
6892 | } | ||||
6893 | } | ||||
6894 | |||||
6895 | bool isFunctionType() const { return (Fn != nullptr); } | ||||
6896 | const FunctionType *get() const { return Fn; } | ||||
6897 | |||||
6898 | QualType wrap(Sema &S, const FunctionType *New) { | ||||
6899 | // If T wasn't modified from the unwrapped type, do nothing. | ||||
6900 | if (New == get()) return Original; | ||||
6901 | |||||
6902 | Fn = New; | ||||
6903 | return wrap(S.Context, Original, 0); | ||||
6904 | } | ||||
6905 | |||||
6906 | private: | ||||
6907 | QualType wrap(ASTContext &C, QualType Old, unsigned I) { | ||||
6908 | if (I == Stack.size()) | ||||
6909 | return C.getQualifiedType(Fn, Old.getQualifiers()); | ||||
6910 | |||||
6911 | // Build up the inner type, applying the qualifiers from the old | ||||
6912 | // type to the new type. | ||||
6913 | SplitQualType SplitOld = Old.split(); | ||||
6914 | |||||
6915 | // As a special case, tail-recurse if there are no qualifiers. | ||||
6916 | if (SplitOld.Quals.empty()) | ||||
6917 | return wrap(C, SplitOld.Ty, I); | ||||
6918 | return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals); | ||||
6919 | } | ||||
6920 | |||||
6921 | QualType wrap(ASTContext &C, const Type *Old, unsigned I) { | ||||
6922 | if (I == Stack.size()) return QualType(Fn, 0); | ||||
6923 | |||||
6924 | switch (static_cast<WrapKind>(Stack[I++])) { | ||||
6925 | case Desugar: | ||||
6926 | // This is the point at which we potentially lose source | ||||
6927 | // information. | ||||
6928 | return wrap(C, Old->getUnqualifiedDesugaredType(), I); | ||||
6929 | |||||
6930 | case Attributed: | ||||
6931 | return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I); | ||||
6932 | |||||
6933 | case Parens: { | ||||
6934 | QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I); | ||||
6935 | return C.getParenType(New); | ||||
6936 | } | ||||
6937 | |||||
6938 | case MacroQualified: | ||||
6939 | return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I); | ||||
6940 | |||||
6941 | case Array: { | ||||
6942 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) { | ||||
6943 | QualType New = wrap(C, CAT->getElementType(), I); | ||||
6944 | return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(), | ||||
6945 | CAT->getSizeModifier(), | ||||
6946 | CAT->getIndexTypeCVRQualifiers()); | ||||
6947 | } | ||||
6948 | |||||
6949 | if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) { | ||||
6950 | QualType New = wrap(C, VAT->getElementType(), I); | ||||
6951 | return C.getVariableArrayType( | ||||
6952 | New, VAT->getSizeExpr(), VAT->getSizeModifier(), | ||||
6953 | VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange()); | ||||
6954 | } | ||||
6955 | |||||
6956 | const auto *IAT = cast<IncompleteArrayType>(Old); | ||||
6957 | QualType New = wrap(C, IAT->getElementType(), I); | ||||
6958 | return C.getIncompleteArrayType(New, IAT->getSizeModifier(), | ||||
6959 | IAT->getIndexTypeCVRQualifiers()); | ||||
6960 | } | ||||
6961 | |||||
6962 | case Pointer: { | ||||
6963 | QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I); | ||||
6964 | return C.getPointerType(New); | ||||
6965 | } | ||||
6966 | |||||
6967 | case BlockPointer: { | ||||
6968 | QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I); | ||||
6969 | return C.getBlockPointerType(New); | ||||
6970 | } | ||||
6971 | |||||
6972 | case MemberPointer: { | ||||
6973 | const MemberPointerType *OldMPT = cast<MemberPointerType>(Old); | ||||
6974 | QualType New = wrap(C, OldMPT->getPointeeType(), I); | ||||
6975 | return C.getMemberPointerType(New, OldMPT->getClass()); | ||||
6976 | } | ||||
6977 | |||||
6978 | case Reference: { | ||||
6979 | const ReferenceType *OldRef = cast<ReferenceType>(Old); | ||||
6980 | QualType New = wrap(C, OldRef->getPointeeType(), I); | ||||
6981 | if (isa<LValueReferenceType>(OldRef)) | ||||
6982 | return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue()); | ||||
6983 | else | ||||
6984 | return C.getRValueReferenceType(New); | ||||
6985 | } | ||||
6986 | } | ||||
6987 | |||||
6988 | llvm_unreachable("unknown wrapping kind")__builtin_unreachable(); | ||||
6989 | } | ||||
6990 | }; | ||||
6991 | } // end anonymous namespace | ||||
6992 | |||||
6993 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State, | ||||
6994 | ParsedAttr &PAttr, QualType &Type) { | ||||
6995 | Sema &S = State.getSema(); | ||||
6996 | |||||
6997 | Attr *A; | ||||
6998 | switch (PAttr.getKind()) { | ||||
6999 | default: llvm_unreachable("Unknown attribute kind")__builtin_unreachable(); | ||||
7000 | case ParsedAttr::AT_Ptr32: | ||||
7001 | A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr); | ||||
7002 | break; | ||||
7003 | case ParsedAttr::AT_Ptr64: | ||||
7004 | A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr); | ||||
7005 | break; | ||||
7006 | case ParsedAttr::AT_SPtr: | ||||
7007 | A = createSimpleAttr<SPtrAttr>(S.Context, PAttr); | ||||
7008 | break; | ||||
7009 | case ParsedAttr::AT_UPtr: | ||||
7010 | A = createSimpleAttr<UPtrAttr>(S.Context, PAttr); | ||||
7011 | break; | ||||
7012 | } | ||||
7013 | |||||
7014 | std::bitset<attr::LastAttr> Attrs; | ||||
7015 | attr::Kind NewAttrKind = A->getKind(); | ||||
7016 | QualType Desugared = Type; | ||||
7017 | const AttributedType *AT = dyn_cast<AttributedType>(Type); | ||||
7018 | while (AT) { | ||||
7019 | Attrs[AT->getAttrKind()] = true; | ||||
7020 | Desugared = AT->getModifiedType(); | ||||
7021 | AT = dyn_cast<AttributedType>(Desugared); | ||||
7022 | } | ||||
7023 | |||||
7024 | // You cannot specify duplicate type attributes, so if the attribute has | ||||
7025 | // already been applied, flag it. | ||||
7026 | if (Attrs[NewAttrKind]) { | ||||
7027 | S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr; | ||||
7028 | return true; | ||||
7029 | } | ||||
7030 | Attrs[NewAttrKind] = true; | ||||
7031 | |||||
7032 | // You cannot have both __sptr and __uptr on the same type, nor can you | ||||
7033 | // have __ptr32 and __ptr64. | ||||
7034 | if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) { | ||||
7035 | S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible) | ||||
7036 | << "'__ptr32'" | ||||
7037 | << "'__ptr64'"; | ||||
7038 | return true; | ||||
7039 | } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) { | ||||
7040 | S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible) | ||||
7041 | << "'__sptr'" | ||||
7042 | << "'__uptr'"; | ||||
7043 | return true; | ||||
7044 | } | ||||
7045 | |||||
7046 | // Pointer type qualifiers can only operate on pointer types, but not | ||||
7047 | // pointer-to-member types. | ||||
7048 | // | ||||
7049 | // FIXME: Should we really be disallowing this attribute if there is any | ||||
7050 | // type sugar between it and the pointer (other than attributes)? Eg, this | ||||
7051 | // disallows the attribute on a parenthesized pointer. | ||||
7052 | // And if so, should we really allow *any* type attribute? | ||||
7053 | if (!isa<PointerType>(Desugared)) { | ||||
7054 | if (Type->isMemberPointerType()) | ||||
7055 | S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr; | ||||
7056 | else | ||||
7057 | S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0; | ||||
7058 | return true; | ||||
7059 | } | ||||
7060 | |||||
7061 | // Add address space to type based on its attributes. | ||||
7062 | LangAS ASIdx = LangAS::Default; | ||||
7063 | uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0); | ||||
7064 | if (PtrWidth == 32) { | ||||
7065 | if (Attrs[attr::Ptr64]) | ||||
7066 | ASIdx = LangAS::ptr64; | ||||
7067 | else if (Attrs[attr::UPtr]) | ||||
7068 | ASIdx = LangAS::ptr32_uptr; | ||||
7069 | } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) { | ||||
7070 | if (Attrs[attr::UPtr]) | ||||
7071 | ASIdx = LangAS::ptr32_uptr; | ||||
7072 | else | ||||
7073 | ASIdx = LangAS::ptr32_sptr; | ||||
7074 | } | ||||
7075 | |||||
7076 | QualType Pointee = Type->getPointeeType(); | ||||
7077 | if (ASIdx != LangAS::Default) | ||||
7078 | Pointee = S.Context.getAddrSpaceQualType( | ||||
7079 | S.Context.removeAddrSpaceQualType(Pointee), ASIdx); | ||||
7080 | Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee)); | ||||
7081 | return false; | ||||
7082 | } | ||||
7083 | |||||
7084 | /// Map a nullability attribute kind to a nullability kind. | ||||
7085 | static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) { | ||||
7086 | switch (kind) { | ||||
7087 | case ParsedAttr::AT_TypeNonNull: | ||||
7088 | return NullabilityKind::NonNull; | ||||
7089 | |||||
7090 | case ParsedAttr::AT_TypeNullable: | ||||
7091 | return NullabilityKind::Nullable; | ||||
7092 | |||||
7093 | case ParsedAttr::AT_TypeNullableResult: | ||||
7094 | return NullabilityKind::NullableResult; | ||||
7095 | |||||
7096 | case ParsedAttr::AT_TypeNullUnspecified: | ||||
7097 | return NullabilityKind::Unspecified; | ||||
7098 | |||||
7099 | default: | ||||
7100 | llvm_unreachable("not a nullability attribute kind")__builtin_unreachable(); | ||||
7101 | } | ||||
7102 | } | ||||
7103 | |||||
7104 | /// Applies a nullability type specifier to the given type, if possible. | ||||
7105 | /// | ||||
7106 | /// \param state The type processing state. | ||||
7107 | /// | ||||
7108 | /// \param type The type to which the nullability specifier will be | ||||
7109 | /// added. On success, this type will be updated appropriately. | ||||
7110 | /// | ||||
7111 | /// \param attr The attribute as written on the type. | ||||
7112 | /// | ||||
7113 | /// \param allowOnArrayType Whether to accept nullability specifiers on an | ||||
7114 | /// array type (e.g., because it will decay to a pointer). | ||||
7115 | /// | ||||
7116 | /// \returns true if a problem has been diagnosed, false on success. | ||||
7117 | static bool checkNullabilityTypeSpecifier(TypeProcessingState &state, | ||||
7118 | QualType &type, | ||||
7119 | ParsedAttr &attr, | ||||
7120 | bool allowOnArrayType) { | ||||
7121 | Sema &S = state.getSema(); | ||||
7122 | |||||
7123 | NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind()); | ||||
7124 | SourceLocation nullabilityLoc = attr.getLoc(); | ||||
7125 | bool isContextSensitive = attr.isContextSensitiveKeywordAttribute(); | ||||
7126 | |||||
7127 | recordNullabilitySeen(S, nullabilityLoc); | ||||
7128 | |||||
7129 | // Check for existing nullability attributes on the type. | ||||
7130 | QualType desugared = type; | ||||
7131 | while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) { | ||||
7132 | // Check whether there is already a null | ||||
7133 | if (auto existingNullability = attributed->getImmediateNullability()) { | ||||
7134 | // Duplicated nullability. | ||||
7135 | if (nullability == *existingNullability) { | ||||
7136 | S.Diag(nullabilityLoc, diag::warn_nullability_duplicate) | ||||
7137 | << DiagNullabilityKind(nullability, isContextSensitive) | ||||
7138 | << FixItHint::CreateRemoval(nullabilityLoc); | ||||
7139 | |||||
7140 | break; | ||||
7141 | } | ||||
7142 | |||||
7143 | // Conflicting nullability. | ||||
7144 | S.Diag(nullabilityLoc, diag::err_nullability_conflicting) | ||||
7145 | << DiagNullabilityKind(nullability, isContextSensitive) | ||||
7146 | << DiagNullabilityKind(*existingNullability, false); | ||||
7147 | return true; | ||||
7148 | } | ||||
7149 | |||||
7150 | desugared = attributed->getModifiedType(); | ||||
7151 | } | ||||
7152 | |||||
7153 | // If there is already a different nullability specifier, complain. | ||||
7154 | // This (unlike the code above) looks through typedefs that might | ||||
7155 | // have nullability specifiers on them, which means we cannot | ||||
7156 | // provide a useful Fix-It. | ||||
7157 | if (auto existingNullability = desugared->getNullability(S.Context)) { | ||||
7158 | if (nullability != *existingNullability) { | ||||
7159 | S.Diag(nullabilityLoc, diag::err_nullability_conflicting) | ||||
7160 | << DiagNullabilityKind(nullability, isContextSensitive) | ||||
7161 | << DiagNullabilityKind(*existingNullability, false); | ||||
7162 | |||||
7163 | // Try to find the typedef with the existing nullability specifier. | ||||
7164 | if (auto typedefType = desugared->getAs<TypedefType>()) { | ||||
7165 | TypedefNameDecl *typedefDecl = typedefType->getDecl(); | ||||
7166 | QualType underlyingType = typedefDecl->getUnderlyingType(); | ||||
7167 | if (auto typedefNullability | ||||
7168 | = AttributedType::stripOuterNullability(underlyingType)) { | ||||
7169 | if (*typedefNullability == *existingNullability) { | ||||
7170 | S.Diag(typedefDecl->getLocation(), diag::note_nullability_here) | ||||
7171 | << DiagNullabilityKind(*existingNullability, false); | ||||
7172 | } | ||||
7173 | } | ||||
7174 | } | ||||
7175 | |||||
7176 | return true; | ||||
7177 | } | ||||
7178 | } | ||||
7179 | |||||
7180 | // If this definitely isn't a pointer type, reject the specifier. | ||||
7181 | if (!desugared->canHaveNullability() && | ||||
7182 | !(allowOnArrayType && desugared->isArrayType())) { | ||||
7183 | S.Diag(nullabilityLoc, diag::err_nullability_nonpointer) | ||||
7184 | << DiagNullabilityKind(nullability, isContextSensitive) << type; | ||||
7185 | return true; | ||||
7186 | } | ||||
7187 | |||||
7188 | // For the context-sensitive keywords/Objective-C property | ||||
7189 | // attributes, require that the type be a single-level pointer. | ||||
7190 | if (isContextSensitive) { | ||||
7191 | // Make sure that the pointee isn't itself a pointer type. | ||||
7192 | const Type *pointeeType = nullptr; | ||||
7193 | if (desugared->isArrayType()) | ||||
7194 | pointeeType = desugared->getArrayElementTypeNoTypeQual(); | ||||
7195 | else if (desugared->isAnyPointerType()) | ||||
7196 | pointeeType = desugared->getPointeeType().getTypePtr(); | ||||
7197 | |||||
7198 | if (pointeeType && (pointeeType->isAnyPointerType() || | ||||
7199 | pointeeType->isObjCObjectPointerType() || | ||||
7200 | pointeeType->isMemberPointerType())) { | ||||
7201 | S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel) | ||||
7202 | << DiagNullabilityKind(nullability, true) | ||||
7203 | << type; | ||||
7204 | S.Diag(nullabilityLoc, diag::note_nullability_type_specifier) | ||||
7205 | << DiagNullabilityKind(nullability, false) | ||||
7206 | << type | ||||
7207 | << FixItHint::CreateReplacement(nullabilityLoc, | ||||
7208 | getNullabilitySpelling(nullability)); | ||||
7209 | return true; | ||||
7210 | } | ||||
7211 | } | ||||
7212 | |||||
7213 | // Form the attributed type. | ||||
7214 | type = state.getAttributedType( | ||||
7215 | createNullabilityAttr(S.Context, attr, nullability), type, type); | ||||
7216 | return false; | ||||
7217 | } | ||||
7218 | |||||
7219 | /// Check the application of the Objective-C '__kindof' qualifier to | ||||
7220 | /// the given type. | ||||
7221 | static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type, | ||||
7222 | ParsedAttr &attr) { | ||||
7223 | Sema &S = state.getSema(); | ||||
7224 | |||||
7225 | if (isa<ObjCTypeParamType>(type)) { | ||||
7226 | // Build the attributed type to record where __kindof occurred. | ||||
7227 | type = state.getAttributedType( | ||||
7228 | createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type); | ||||
7229 | return false; | ||||
7230 | } | ||||
7231 | |||||
7232 | // Find out if it's an Objective-C object or object pointer type; | ||||
7233 | const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>(); | ||||
7234 | const ObjCObjectType *objType = ptrType ? ptrType->getObjectType() | ||||
7235 | : type->getAs<ObjCObjectType>(); | ||||
7236 | |||||
7237 | // If not, we can't apply __kindof. | ||||
7238 | if (!objType) { | ||||
7239 | // FIXME: Handle dependent types that aren't yet object types. | ||||
7240 | S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject) | ||||
7241 | << type; | ||||
7242 | return true; | ||||
7243 | } | ||||
7244 | |||||
7245 | // Rebuild the "equivalent" type, which pushes __kindof down into | ||||
7246 | // the object type. | ||||
7247 | // There is no need to apply kindof on an unqualified id type. | ||||
7248 | QualType equivType = S.Context.getObjCObjectType( | ||||
7249 | objType->getBaseType(), objType->getTypeArgsAsWritten(), | ||||
7250 | objType->getProtocols(), | ||||
7251 | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); | ||||
7252 | |||||
7253 | // If we started with an object pointer type, rebuild it. | ||||
7254 | if (ptrType) { | ||||
7255 | equivType = S.Context.getObjCObjectPointerType(equivType); | ||||
7256 | if (auto nullability = type->getNullability(S.Context)) { | ||||
7257 | // We create a nullability attribute from the __kindof attribute. | ||||
7258 | // Make sure that will make sense. | ||||
7259 | assert(attr.getAttributeSpellingListIndex() == 0 &&((void)0) | ||||
7260 | "multiple spellings for __kindof?")((void)0); | ||||
7261 | Attr *A = createNullabilityAttr(S.Context, attr, *nullability); | ||||
7262 | A->setImplicit(true); | ||||
7263 | equivType = state.getAttributedType(A, equivType, equivType); | ||||
7264 | } | ||||
7265 | } | ||||
7266 | |||||
7267 | // Build the attributed type to record where __kindof occurred. | ||||
7268 | type = state.getAttributedType( | ||||
7269 | createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType); | ||||
7270 | return false; | ||||
7271 | } | ||||
7272 | |||||
7273 | /// Distribute a nullability type attribute that cannot be applied to | ||||
7274 | /// the type specifier to a pointer, block pointer, or member pointer | ||||
7275 | /// declarator, complaining if necessary. | ||||
7276 | /// | ||||
7277 | /// \returns true if the nullability annotation was distributed, false | ||||
7278 | /// otherwise. | ||||
7279 | static bool distributeNullabilityTypeAttr(TypeProcessingState &state, | ||||
7280 | QualType type, ParsedAttr &attr) { | ||||
7281 | Declarator &declarator = state.getDeclarator(); | ||||
7282 | |||||
7283 | /// Attempt to move the attribute to the specified chunk. | ||||
7284 | auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool { | ||||
7285 | // If there is already a nullability attribute there, don't add | ||||
7286 | // one. | ||||
7287 | if (hasNullabilityAttr(chunk.getAttrs())) | ||||
7288 | return false; | ||||
7289 | |||||
7290 | // Complain about the nullability qualifier being in the wrong | ||||
7291 | // place. | ||||
7292 | enum { | ||||
7293 | PK_Pointer, | ||||
7294 | PK_BlockPointer, | ||||
7295 | PK_MemberPointer, | ||||
7296 | PK_FunctionPointer, | ||||
7297 | PK_MemberFunctionPointer, | ||||
7298 | } pointerKind | ||||
7299 | = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer | ||||
7300 | : PK_Pointer) | ||||
7301 | : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer | ||||
7302 | : inFunction? PK_MemberFunctionPointer : PK_MemberPointer; | ||||
7303 | |||||
7304 | auto diag = state.getSema().Diag(attr.getLoc(), | ||||
7305 | diag::warn_nullability_declspec) | ||||
7306 | << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()), | ||||
7307 | attr.isContextSensitiveKeywordAttribute()) | ||||
7308 | << type | ||||
7309 | << static_cast<unsigned>(pointerKind); | ||||
7310 | |||||
7311 | // FIXME: MemberPointer chunks don't carry the location of the *. | ||||
7312 | if (chunk.Kind != DeclaratorChunk::MemberPointer) { | ||||
7313 | diag << FixItHint::CreateRemoval(attr.getLoc()) | ||||
7314 | << FixItHint::CreateInsertion( | ||||
7315 | state.getSema().getPreprocessor().getLocForEndOfToken( | ||||
7316 | chunk.Loc), | ||||
7317 | " " + attr.getAttrName()->getName().str() + " "); | ||||
7318 | } | ||||
7319 | |||||
7320 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||
7321 | chunk.getAttrs()); | ||||
7322 | return true; | ||||
7323 | }; | ||||
7324 | |||||
7325 | // Move it to the outermost pointer, member pointer, or block | ||||
7326 | // pointer declarator. | ||||
7327 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | ||||
7328 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | ||||
7329 | switch (chunk.Kind) { | ||||
7330 | case DeclaratorChunk::Pointer: | ||||
7331 | case DeclaratorChunk::BlockPointer: | ||||
7332 | case DeclaratorChunk::MemberPointer: | ||||
7333 | return moveToChunk(chunk, false); | ||||
7334 | |||||
7335 | case DeclaratorChunk::Paren: | ||||
7336 | case DeclaratorChunk::Array: | ||||
7337 | continue; | ||||
7338 | |||||
7339 | case DeclaratorChunk::Function: | ||||
7340 | // Try to move past the return type to a function/block/member | ||||
7341 | // function pointer. | ||||
7342 | if (DeclaratorChunk *dest = maybeMovePastReturnType( | ||||
7343 | declarator, i, | ||||
7344 | /*onlyBlockPointers=*/false)) { | ||||
7345 | return moveToChunk(*dest, true); | ||||
7346 | } | ||||
7347 | |||||
7348 | return false; | ||||
7349 | |||||
7350 | // Don't walk through these. | ||||
7351 | case DeclaratorChunk::Reference: | ||||
7352 | case DeclaratorChunk::Pipe: | ||||
7353 | return false; | ||||
7354 | } | ||||
7355 | } | ||||
7356 | |||||
7357 | return false; | ||||
7358 | } | ||||
7359 | |||||
7360 | static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) { | ||||
7361 | assert(!Attr.isInvalid())((void)0); | ||||
7362 | switch (Attr.getKind()) { | ||||
7363 | default: | ||||
7364 | llvm_unreachable("not a calling convention attribute")__builtin_unreachable(); | ||||
7365 | case ParsedAttr::AT_CDecl: | ||||
7366 | return createSimpleAttr<CDeclAttr>(Ctx, Attr); | ||||
7367 | case ParsedAttr::AT_FastCall: | ||||
7368 | return createSimpleAttr<FastCallAttr>(Ctx, Attr); | ||||
7369 | case ParsedAttr::AT_StdCall: | ||||
7370 | return createSimpleAttr<StdCallAttr>(Ctx, Attr); | ||||
7371 | case ParsedAttr::AT_ThisCall: | ||||
7372 | return createSimpleAttr<ThisCallAttr>(Ctx, Attr); | ||||
7373 | case ParsedAttr::AT_RegCall: | ||||
7374 | return createSimpleAttr<RegCallAttr>(Ctx, Attr); | ||||
7375 | case ParsedAttr::AT_Pascal: | ||||
7376 | return createSimpleAttr<PascalAttr>(Ctx, Attr); | ||||
7377 | case ParsedAttr::AT_SwiftCall: | ||||
7378 | return createSimpleAttr<SwiftCallAttr>(Ctx, Attr); | ||||
7379 | case ParsedAttr::AT_SwiftAsyncCall: | ||||
7380 | return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr); | ||||
7381 | case ParsedAttr::AT_VectorCall: | ||||
7382 | return createSimpleAttr<VectorCallAttr>(Ctx, Attr); | ||||
7383 | case ParsedAttr::AT_AArch64VectorPcs: | ||||
7384 | return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr); | ||||
7385 | case ParsedAttr::AT_Pcs: { | ||||
7386 | // The attribute may have had a fixit applied where we treated an | ||||
7387 | // identifier as a string literal. The contents of the string are valid, | ||||
7388 | // but the form may not be. | ||||
7389 | StringRef Str; | ||||
7390 | if (Attr.isArgExpr(0)) | ||||
7391 | Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString(); | ||||
7392 | else | ||||
7393 | Str = Attr.getArgAsIdent(0)->Ident->getName(); | ||||
7394 | PcsAttr::PCSType Type; | ||||
7395 | if (!PcsAttr::ConvertStrToPCSType(Str, Type)) | ||||
7396 | llvm_unreachable("already validated the attribute")__builtin_unreachable(); | ||||
7397 | return ::new (Ctx) PcsAttr(Ctx, Attr, Type); | ||||
7398 | } | ||||
7399 | case ParsedAttr::AT_IntelOclBicc: | ||||
7400 | return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr); | ||||
7401 | case ParsedAttr::AT_MSABI: | ||||
7402 | return createSimpleAttr<MSABIAttr>(Ctx, Attr); | ||||
7403 | case ParsedAttr::AT_SysVABI: | ||||
7404 | return createSimpleAttr<SysVABIAttr>(Ctx, Attr); | ||||
7405 | case ParsedAttr::AT_PreserveMost: | ||||
7406 | return createSimpleAttr<PreserveMostAttr>(Ctx, Attr); | ||||
7407 | case ParsedAttr::AT_PreserveAll: | ||||
7408 | return createSimpleAttr<PreserveAllAttr>(Ctx, Attr); | ||||
7409 | } | ||||
7410 | llvm_unreachable("unexpected attribute kind!")__builtin_unreachable(); | ||||
7411 | } | ||||
7412 | |||||
7413 | /// Process an individual function attribute. Returns true to | ||||
7414 | /// indicate that the attribute was handled, false if it wasn't. | ||||
7415 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||
7416 | QualType &type) { | ||||
7417 | Sema &S = state.getSema(); | ||||
7418 | |||||
7419 | FunctionTypeUnwrapper unwrapped(S, type); | ||||
7420 | |||||
7421 | if (attr.getKind() == ParsedAttr::AT_NoReturn) { | ||||
7422 | if (S.CheckAttrNoArgs(attr)) | ||||
7423 | return true; | ||||
7424 | |||||
7425 | // Delay if this is not a function type. | ||||
7426 | if (!unwrapped.isFunctionType()) | ||||
7427 | return false; | ||||
7428 | |||||
7429 | // Otherwise we can process right away. | ||||
7430 | FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true); | ||||
7431 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||
7432 | return true; | ||||
7433 | } | ||||
7434 | |||||
7435 | if (attr.getKind() == ParsedAttr::AT_CmseNSCall) { | ||||
7436 | // Delay if this is not a function type. | ||||
7437 | if (!unwrapped.isFunctionType()) | ||||
7438 | return false; | ||||
7439 | |||||
7440 | // Ignore if we don't have CMSE enabled. | ||||
7441 | if (!S.getLangOpts().Cmse) { | ||||
7442 | S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr; | ||||
7443 | attr.setInvalid(); | ||||
7444 | return true; | ||||
7445 | } | ||||
7446 | |||||
7447 | // Otherwise we can process right away. | ||||
7448 | FunctionType::ExtInfo EI = | ||||
7449 | unwrapped.get()->getExtInfo().withCmseNSCall(true); | ||||
7450 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||
7451 | return true; | ||||
7452 | } | ||||
7453 | |||||
7454 | // ns_returns_retained is not always a type attribute, but if we got | ||||
7455 | // here, we're treating it as one right now. | ||||
7456 | if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) { | ||||
7457 | if (attr.getNumArgs()) return true; | ||||
7458 | |||||
7459 | // Delay if this is not a function type. | ||||
7460 | if (!unwrapped.isFunctionType()) | ||||
7461 | return false; | ||||
7462 | |||||
7463 | // Check whether the return type is reasonable. | ||||
7464 | if (S.checkNSReturnsRetainedReturnType(attr.getLoc(), | ||||
7465 | unwrapped.get()->getReturnType())) | ||||
7466 | return true; | ||||
7467 | |||||
7468 | // Only actually change the underlying type in ARC builds. | ||||
7469 | QualType origType = type; | ||||
7470 | if (state.getSema().getLangOpts().ObjCAutoRefCount) { | ||||
7471 | FunctionType::ExtInfo EI | ||||
7472 | = unwrapped.get()->getExtInfo().withProducesResult(true); | ||||
7473 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||
7474 | } | ||||
7475 | type = state.getAttributedType( | ||||
7476 | createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr), | ||||
7477 | origType, type); | ||||
7478 | return true; | ||||
7479 | } | ||||
7480 | |||||
7481 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) { | ||||
7482 | if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr)) | ||||
7483 | return true; | ||||
7484 | |||||
7485 | // Delay if this is not a function type. | ||||
7486 | if (!unwrapped.isFunctionType()) | ||||
7487 | return false; | ||||
7488 | |||||
7489 | FunctionType::ExtInfo EI = | ||||
7490 | unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true); | ||||
7491 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||
7492 | return true; | ||||
7493 | } | ||||
7494 | |||||
7495 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) { | ||||
7496 | if (!S.getLangOpts().CFProtectionBranch) { | ||||
7497 | S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored); | ||||
7498 | attr.setInvalid(); | ||||
7499 | return true; | ||||
7500 | } | ||||
7501 | |||||
7502 | if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr)) | ||||
7503 | return true; | ||||
7504 | |||||
7505 | // If this is not a function type, warning will be asserted by subject | ||||
7506 | // check. | ||||
7507 | if (!unwrapped.isFunctionType()) | ||||
7508 | return true; | ||||
7509 | |||||
7510 | FunctionType::ExtInfo EI = | ||||
7511 | unwrapped.get()->getExtInfo().withNoCfCheck(true); | ||||
7512 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||
7513 | return true; | ||||
7514 | } | ||||
7515 | |||||
7516 | if (attr.getKind() == ParsedAttr::AT_Regparm) { | ||||
7517 | unsigned value; | ||||
7518 | if (S.CheckRegparmAttr(attr, value)) | ||||
7519 | return true; | ||||
7520 | |||||
7521 | // Delay if this is not a function type. | ||||
7522 | if (!unwrapped.isFunctionType()) | ||||
7523 | return false; | ||||
7524 | |||||
7525 | // Diagnose regparm with fastcall. | ||||
7526 | const FunctionType *fn = unwrapped.get(); | ||||
7527 | CallingConv CC = fn->getCallConv(); | ||||
7528 | if (CC == CC_X86FastCall) { | ||||
7529 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | ||||
7530 | << FunctionType::getNameForCallConv(CC) | ||||
7531 | << "regparm"; | ||||
7532 | attr.setInvalid(); | ||||
7533 | return true; | ||||
7534 | } | ||||
7535 | |||||
7536 | FunctionType::ExtInfo EI = | ||||
7537 | unwrapped.get()->getExtInfo().withRegParm(value); | ||||
7538 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||
7539 | return true; | ||||
7540 | } | ||||
7541 | |||||
7542 | if (attr.getKind() == ParsedAttr::AT_NoThrow) { | ||||
7543 | // Delay if this is not a function type. | ||||
7544 | if (!unwrapped.isFunctionType()) | ||||
7545 | return false; | ||||
7546 | |||||
7547 | if (S.CheckAttrNoArgs(attr)) { | ||||
7548 | attr.setInvalid(); | ||||
7549 | return true; | ||||
7550 | } | ||||
7551 | |||||
7552 | // Otherwise we can process right away. | ||||
7553 | auto *Proto = unwrapped.get()->castAs<FunctionProtoType>(); | ||||
7554 | |||||
7555 | // MSVC ignores nothrow if it is in conflict with an explicit exception | ||||
7556 | // specification. | ||||
7557 | if (Proto->hasExceptionSpec()) { | ||||
7558 | switch (Proto->getExceptionSpecType()) { | ||||
7559 | case EST_None: | ||||
7560 | llvm_unreachable("This doesn't have an exception spec!")__builtin_unreachable(); | ||||
7561 | |||||
7562 | case EST_DynamicNone: | ||||
7563 | case EST_BasicNoexcept: | ||||
7564 | case EST_NoexceptTrue: | ||||
7565 | case EST_NoThrow: | ||||
7566 | // Exception spec doesn't conflict with nothrow, so don't warn. | ||||
7567 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
7568 | case EST_Unparsed: | ||||
7569 | case EST_Uninstantiated: | ||||
7570 | case EST_DependentNoexcept: | ||||
7571 | case EST_Unevaluated: | ||||
7572 | // We don't have enough information to properly determine if there is a | ||||
7573 | // conflict, so suppress the warning. | ||||
7574 | break; | ||||
7575 | case EST_Dynamic: | ||||
7576 | case EST_MSAny: | ||||
7577 | case EST_NoexceptFalse: | ||||
7578 | S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored); | ||||
7579 | break; | ||||
7580 | } | ||||
7581 | return true; | ||||
7582 | } | ||||
7583 | |||||
7584 | type = unwrapped.wrap( | ||||
7585 | S, S.Context | ||||
7586 | .getFunctionTypeWithExceptionSpec( | ||||
7587 | QualType{Proto, 0}, | ||||
7588 | FunctionProtoType::ExceptionSpecInfo{EST_NoThrow}) | ||||
7589 | ->getAs<FunctionType>()); | ||||
7590 | return true; | ||||
7591 | } | ||||
7592 | |||||
7593 | // Delay if the type didn't work out to a function. | ||||
7594 | if (!unwrapped.isFunctionType()) return false; | ||||
7595 | |||||
7596 | // Otherwise, a calling convention. | ||||
7597 | CallingConv CC; | ||||
7598 | if (S.CheckCallingConvAttr(attr, CC)) | ||||
7599 | return true; | ||||
7600 | |||||
7601 | const FunctionType *fn = unwrapped.get(); | ||||
7602 | CallingConv CCOld = fn->getCallConv(); | ||||
7603 | Attr *CCAttr = getCCTypeAttr(S.Context, attr); | ||||
7604 | |||||
7605 | if (CCOld != CC) { | ||||
7606 | // Error out on when there's already an attribute on the type | ||||
7607 | // and the CCs don't match. | ||||
7608 | if (S.getCallingConvAttributedType(type)) { | ||||
7609 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | ||||
7610 | << FunctionType::getNameForCallConv(CC) | ||||
7611 | << FunctionType::getNameForCallConv(CCOld); | ||||
7612 | attr.setInvalid(); | ||||
7613 | return true; | ||||
7614 | } | ||||
7615 | } | ||||
7616 | |||||
7617 | // Diagnose use of variadic functions with calling conventions that | ||||
7618 | // don't support them (e.g. because they're callee-cleanup). | ||||
7619 | // We delay warning about this on unprototyped function declarations | ||||
7620 | // until after redeclaration checking, just in case we pick up a | ||||
7621 | // prototype that way. And apparently we also "delay" warning about | ||||
7622 | // unprototyped function types in general, despite not necessarily having | ||||
7623 | // much ability to diagnose it later. | ||||
7624 | if (!supportsVariadicCall(CC)) { | ||||
7625 | const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn); | ||||
7626 | if (FnP && FnP->isVariadic()) { | ||||
7627 | // stdcall and fastcall are ignored with a warning for GCC and MS | ||||
7628 | // compatibility. | ||||
7629 | if (CC == CC_X86StdCall || CC == CC_X86FastCall) | ||||
7630 | return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported) | ||||
7631 | << FunctionType::getNameForCallConv(CC) | ||||
7632 | << (int)Sema::CallingConventionIgnoredReason::VariadicFunction; | ||||
7633 | |||||
7634 | attr.setInvalid(); | ||||
7635 | return S.Diag(attr.getLoc(), diag::err_cconv_varargs) | ||||
7636 | << FunctionType::getNameForCallConv(CC); | ||||
7637 | } | ||||
7638 | } | ||||
7639 | |||||
7640 | // Also diagnose fastcall with regparm. | ||||
7641 | if (CC == CC_X86FastCall && fn->getHasRegParm()) { | ||||
7642 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | ||||
7643 | << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall); | ||||
7644 | attr.setInvalid(); | ||||
7645 | return true; | ||||
7646 | } | ||||
7647 | |||||
7648 | // Modify the CC from the wrapped function type, wrap it all back, and then | ||||
7649 | // wrap the whole thing in an AttributedType as written. The modified type | ||||
7650 | // might have a different CC if we ignored the attribute. | ||||
7651 | QualType Equivalent; | ||||
7652 | if (CCOld == CC) { | ||||
7653 | Equivalent = type; | ||||
7654 | } else { | ||||
7655 | auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC); | ||||
7656 | Equivalent = | ||||
7657 | unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||
7658 | } | ||||
7659 | type = state.getAttributedType(CCAttr, type, Equivalent); | ||||
7660 | return true; | ||||
7661 | } | ||||
7662 | |||||
7663 | bool Sema::hasExplicitCallingConv(QualType T) { | ||||
7664 | const AttributedType *AT; | ||||
7665 | |||||
7666 | // Stop if we'd be stripping off a typedef sugar node to reach the | ||||
7667 | // AttributedType. | ||||
7668 | while ((AT = T->getAs<AttributedType>()) && | ||||
7669 | AT->getAs<TypedefType>() == T->getAs<TypedefType>()) { | ||||
7670 | if (AT->isCallingConv()) | ||||
7671 | return true; | ||||
7672 | T = AT->getModifiedType(); | ||||
7673 | } | ||||
7674 | return false; | ||||
7675 | } | ||||
7676 | |||||
7677 | void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, | ||||
7678 | SourceLocation Loc) { | ||||
7679 | FunctionTypeUnwrapper Unwrapped(*this, T); | ||||
7680 | const FunctionType *FT = Unwrapped.get(); | ||||
7681 | bool IsVariadic = (isa<FunctionProtoType>(FT) && | ||||
7682 | cast<FunctionProtoType>(FT)->isVariadic()); | ||||
7683 | CallingConv CurCC = FT->getCallConv(); | ||||
7684 | CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic); | ||||
7685 | |||||
7686 | if (CurCC == ToCC) | ||||
7687 | return; | ||||
7688 | |||||
7689 | // MS compiler ignores explicit calling convention attributes on structors. We | ||||
7690 | // should do the same. | ||||
7691 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) { | ||||
7692 | // Issue a warning on ignored calling convention -- except of __stdcall. | ||||
7693 | // Again, this is what MS compiler does. | ||||
7694 | if (CurCC != CC_X86StdCall) | ||||
7695 | Diag(Loc, diag::warn_cconv_unsupported) | ||||
7696 | << FunctionType::getNameForCallConv(CurCC) | ||||
7697 | << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor; | ||||
7698 | // Default adjustment. | ||||
7699 | } else { | ||||
7700 | // Only adjust types with the default convention. For example, on Windows | ||||
7701 | // we should adjust a __cdecl type to __thiscall for instance methods, and a | ||||
7702 | // __thiscall type to __cdecl for static methods. | ||||
7703 | CallingConv DefaultCC = | ||||
7704 | Context.getDefaultCallingConvention(IsVariadic, IsStatic); | ||||
7705 | |||||
7706 | if (CurCC != DefaultCC || DefaultCC == ToCC) | ||||
7707 | return; | ||||
7708 | |||||
7709 | if (hasExplicitCallingConv(T)) | ||||
7710 | return; | ||||
7711 | } | ||||
7712 | |||||
7713 | FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC)); | ||||
7714 | QualType Wrapped = Unwrapped.wrap(*this, FT); | ||||
7715 | T = Context.getAdjustedType(T, Wrapped); | ||||
7716 | } | ||||
7717 | |||||
7718 | /// HandleVectorSizeAttribute - this attribute is only applicable to integral | ||||
7719 | /// and float scalars, although arrays, pointers, and function return values are | ||||
7720 | /// allowed in conjunction with this construct. Aggregates with this attribute | ||||
7721 | /// are invalid, even if they are of the same size as a corresponding scalar. | ||||
7722 | /// The raw attribute should contain precisely 1 argument, the vector size for | ||||
7723 | /// the variable, measured in bytes. If curType and rawAttr are well formed, | ||||
7724 | /// this routine will return a new vector type. | ||||
7725 | static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr, | ||||
7726 | Sema &S) { | ||||
7727 | // Check the attribute arguments. | ||||
7728 | if (Attr.getNumArgs() != 1) { | ||||
7729 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | ||||
7730 | << 1; | ||||
7731 | Attr.setInvalid(); | ||||
7732 | return; | ||||
7733 | } | ||||
7734 | |||||
7735 | Expr *SizeExpr = Attr.getArgAsExpr(0); | ||||
7736 | QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc()); | ||||
7737 | if (!T.isNull()) | ||||
7738 | CurType = T; | ||||
7739 | else | ||||
7740 | Attr.setInvalid(); | ||||
7741 | } | ||||
7742 | |||||
7743 | /// Process the OpenCL-like ext_vector_type attribute when it occurs on | ||||
7744 | /// a type. | ||||
7745 | static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, | ||||
7746 | Sema &S) { | ||||
7747 | // check the attribute arguments. | ||||
7748 | if (Attr.getNumArgs() != 1) { | ||||
7749 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | ||||
7750 | << 1; | ||||
7751 | return; | ||||
7752 | } | ||||
7753 | |||||
7754 | Expr *SizeExpr = Attr.getArgAsExpr(0); | ||||
7755 | QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc()); | ||||
7756 | if (!T.isNull()) | ||||
7757 | CurType = T; | ||||
7758 | } | ||||
7759 | |||||
7760 | static bool isPermittedNeonBaseType(QualType &Ty, | ||||
7761 | VectorType::VectorKind VecKind, Sema &S) { | ||||
7762 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | ||||
7763 | if (!BTy) | ||||
7764 | return false; | ||||
7765 | |||||
7766 | llvm::Triple Triple = S.Context.getTargetInfo().getTriple(); | ||||
7767 | |||||
7768 | // Signed poly is mathematically wrong, but has been baked into some ABIs by | ||||
7769 | // now. | ||||
7770 | bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 || | ||||
7771 | Triple.getArch() == llvm::Triple::aarch64_32 || | ||||
7772 | Triple.getArch() == llvm::Triple::aarch64_be; | ||||
7773 | if (VecKind == VectorType::NeonPolyVector) { | ||||
7774 | if (IsPolyUnsigned) { | ||||
7775 | // AArch64 polynomial vectors are unsigned. | ||||
7776 | return BTy->getKind() == BuiltinType::UChar || | ||||
7777 | BTy->getKind() == BuiltinType::UShort || | ||||
7778 | BTy->getKind() == BuiltinType::ULong || | ||||
7779 | BTy->getKind() == BuiltinType::ULongLong; | ||||
7780 | } else { | ||||
7781 | // AArch32 polynomial vectors are signed. | ||||
7782 | return BTy->getKind() == BuiltinType::SChar || | ||||
7783 | BTy->getKind() == BuiltinType::Short || | ||||
7784 | BTy->getKind() == BuiltinType::LongLong; | ||||
7785 | } | ||||
7786 | } | ||||
7787 | |||||
7788 | // Non-polynomial vector types: the usual suspects are allowed, as well as | ||||
7789 | // float64_t on AArch64. | ||||
7790 | if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) && | ||||
7791 | BTy->getKind() == BuiltinType::Double) | ||||
7792 | return true; | ||||
7793 | |||||
7794 | return BTy->getKind() == BuiltinType::SChar || | ||||
7795 | BTy->getKind() == BuiltinType::UChar || | ||||
7796 | BTy->getKind() == BuiltinType::Short || | ||||
7797 | BTy->getKind() == BuiltinType::UShort || | ||||
7798 | BTy->getKind() == BuiltinType::Int || | ||||
7799 | BTy->getKind() == BuiltinType::UInt || | ||||
7800 | BTy->getKind() == BuiltinType::Long || | ||||
7801 | BTy->getKind() == BuiltinType::ULong || | ||||
7802 | BTy->getKind() == BuiltinType::LongLong || | ||||
7803 | BTy->getKind() == BuiltinType::ULongLong || | ||||
7804 | BTy->getKind() == BuiltinType::Float || | ||||
7805 | BTy->getKind() == BuiltinType::Half || | ||||
7806 | BTy->getKind() == BuiltinType::BFloat16; | ||||
7807 | } | ||||
7808 | |||||
7809 | static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr, | ||||
7810 | llvm::APSInt &Result) { | ||||
7811 | const auto *AttrExpr = Attr.getArgAsExpr(0); | ||||
7812 | if (!AttrExpr->isTypeDependent() && !AttrExpr->isValueDependent()) { | ||||
7813 | if (Optional<llvm::APSInt> Res = | ||||
7814 | AttrExpr->getIntegerConstantExpr(S.Context)) { | ||||
7815 | Result = *Res; | ||||
7816 | return true; | ||||
7817 | } | ||||
7818 | } | ||||
7819 | S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) | ||||
7820 | << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange(); | ||||
7821 | Attr.setInvalid(); | ||||
7822 | return false; | ||||
7823 | } | ||||
7824 | |||||
7825 | /// HandleNeonVectorTypeAttr - The "neon_vector_type" and | ||||
7826 | /// "neon_polyvector_type" attributes are used to create vector types that | ||||
7827 | /// are mangled according to ARM's ABI. Otherwise, these types are identical | ||||
7828 | /// to those created with the "vector_size" attribute. Unlike "vector_size" | ||||
7829 | /// the argument to these Neon attributes is the number of vector elements, | ||||
7830 | /// not the vector size in bytes. The vector width and element type must | ||||
7831 | /// match one of the standard Neon vector types. | ||||
7832 | static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, | ||||
7833 | Sema &S, VectorType::VectorKind VecKind) { | ||||
7834 | // Target must have NEON (or MVE, whose vectors are similar enough | ||||
7835 | // not to need a separate attribute) | ||||
7836 | if (!S.Context.getTargetInfo().hasFeature("neon") && | ||||
7837 | !S.Context.getTargetInfo().hasFeature("mve")) { | ||||
7838 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) | ||||
7839 | << Attr << "'neon' or 'mve'"; | ||||
7840 | Attr.setInvalid(); | ||||
7841 | return; | ||||
7842 | } | ||||
7843 | // Check the attribute arguments. | ||||
7844 | if (Attr.getNumArgs() != 1) { | ||||
7845 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | ||||
7846 | << 1; | ||||
7847 | Attr.setInvalid(); | ||||
7848 | return; | ||||
7849 | } | ||||
7850 | // The number of elements must be an ICE. | ||||
7851 | llvm::APSInt numEltsInt(32); | ||||
7852 | if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt)) | ||||
7853 | return; | ||||
7854 | |||||
7855 | // Only certain element types are supported for Neon vectors. | ||||
7856 | if (!isPermittedNeonBaseType(CurType, VecKind, S)) { | ||||
7857 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType; | ||||
7858 | Attr.setInvalid(); | ||||
7859 | return; | ||||
7860 | } | ||||
7861 | |||||
7862 | // The total size of the vector must be 64 or 128 bits. | ||||
7863 | unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType)); | ||||
7864 | unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue()); | ||||
7865 | unsigned vecSize = typeSize * numElts; | ||||
7866 | if (vecSize != 64 && vecSize != 128) { | ||||
7867 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType; | ||||
7868 | Attr.setInvalid(); | ||||
7869 | return; | ||||
7870 | } | ||||
7871 | |||||
7872 | CurType = S.Context.getVectorType(CurType, numElts, VecKind); | ||||
7873 | } | ||||
7874 | |||||
7875 | /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is | ||||
7876 | /// used to create fixed-length versions of sizeless SVE types defined by | ||||
7877 | /// the ACLE, such as svint32_t and svbool_t. | ||||
7878 | static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr, | ||||
7879 | Sema &S) { | ||||
7880 | // Target must have SVE. | ||||
7881 | if (!S.Context.getTargetInfo().hasFeature("sve")) { | ||||
7882 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'"; | ||||
7883 | Attr.setInvalid(); | ||||
7884 | return; | ||||
7885 | } | ||||
7886 | |||||
7887 | // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified. | ||||
7888 | if (!S.getLangOpts().ArmSveVectorBits) { | ||||
7889 | S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported) | ||||
7890 | << Attr; | ||||
7891 | Attr.setInvalid(); | ||||
7892 | return; | ||||
7893 | } | ||||
7894 | |||||
7895 | // Check the attribute arguments. | ||||
7896 | if (Attr.getNumArgs() != 1) { | ||||
7897 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | ||||
7898 | << Attr << 1; | ||||
7899 | Attr.setInvalid(); | ||||
7900 | return; | ||||
7901 | } | ||||
7902 | |||||
7903 | // The vector size must be an integer constant expression. | ||||
7904 | llvm::APSInt SveVectorSizeInBits(32); | ||||
7905 | if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits)) | ||||
7906 | return; | ||||
7907 | |||||
7908 | unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue()); | ||||
7909 | |||||
7910 | // The attribute vector size must match -msve-vector-bits. | ||||
7911 | if (VecSize != S.getLangOpts().ArmSveVectorBits) { | ||||
7912 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size) | ||||
7913 | << VecSize << S.getLangOpts().ArmSveVectorBits; | ||||
7914 | Attr.setInvalid(); | ||||
7915 | return; | ||||
7916 | } | ||||
7917 | |||||
7918 | // Attribute can only be attached to a single SVE vector or predicate type. | ||||
7919 | if (!CurType->isVLSTBuiltinType()) { | ||||
7920 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type) | ||||
7921 | << Attr << CurType; | ||||
7922 | Attr.setInvalid(); | ||||
7923 | return; | ||||
7924 | } | ||||
7925 | |||||
7926 | const auto *BT = CurType->castAs<BuiltinType>(); | ||||
7927 | |||||
7928 | QualType EltType = CurType->getSveEltType(S.Context); | ||||
7929 | unsigned TypeSize = S.Context.getTypeSize(EltType); | ||||
7930 | VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector; | ||||
7931 | if (BT->getKind() == BuiltinType::SveBool) { | ||||
7932 | // Predicates are represented as i8. | ||||
7933 | VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth(); | ||||
7934 | VecKind = VectorType::SveFixedLengthPredicateVector; | ||||
7935 | } else | ||||
7936 | VecSize /= TypeSize; | ||||
7937 | CurType = S.Context.getVectorType(EltType, VecSize, VecKind); | ||||
7938 | } | ||||
7939 | |||||
7940 | static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State, | ||||
7941 | QualType &CurType, | ||||
7942 | ParsedAttr &Attr) { | ||||
7943 | const VectorType *VT = dyn_cast<VectorType>(CurType); | ||||
7944 | if (!VT || VT->getVectorKind() != VectorType::NeonVector) { | ||||
7945 | State.getSema().Diag(Attr.getLoc(), | ||||
7946 | diag::err_attribute_arm_mve_polymorphism); | ||||
7947 | Attr.setInvalid(); | ||||
7948 | return; | ||||
7949 | } | ||||
7950 | |||||
7951 | CurType = | ||||
7952 | State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>( | ||||
7953 | State.getSema().Context, Attr), | ||||
7954 | CurType, CurType); | ||||
7955 | } | ||||
7956 | |||||
7957 | /// Handle OpenCL Access Qualifier Attribute. | ||||
7958 | static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr, | ||||
7959 | Sema &S) { | ||||
7960 | // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type. | ||||
7961 | if (!(CurType->isImageType() || CurType->isPipeType())) { | ||||
7962 | S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier); | ||||
7963 | Attr.setInvalid(); | ||||
7964 | return; | ||||
7965 | } | ||||
7966 | |||||
7967 | if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) { | ||||
7968 | QualType BaseTy = TypedefTy->desugar(); | ||||
7969 | |||||
7970 | std::string PrevAccessQual; | ||||
7971 | if (BaseTy->isPipeType()) { | ||||
7972 | if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) { | ||||
7973 | OpenCLAccessAttr *Attr = | ||||
7974 | TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>(); | ||||
7975 | PrevAccessQual = Attr->getSpelling(); | ||||
7976 | } else { | ||||
7977 | PrevAccessQual = "read_only"; | ||||
7978 | } | ||||
7979 | } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) { | ||||
7980 | |||||
7981 | switch (ImgType->getKind()) { | ||||
7982 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | ||||
7983 | case BuiltinType::Id: \ | ||||
7984 | PrevAccessQual = #Access; \ | ||||
7985 | break; | ||||
7986 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
7987 | default: | ||||
7988 | llvm_unreachable("Unable to find corresponding image type.")__builtin_unreachable(); | ||||
7989 | } | ||||
7990 | } else { | ||||
7991 | llvm_unreachable("unexpected type")__builtin_unreachable(); | ||||
7992 | } | ||||
7993 | StringRef AttrName = Attr.getAttrName()->getName(); | ||||
7994 | if (PrevAccessQual == AttrName.ltrim("_")) { | ||||
7995 | // Duplicated qualifiers | ||||
7996 | S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec) | ||||
7997 | << AttrName << Attr.getRange(); | ||||
7998 | } else { | ||||
7999 | // Contradicting qualifiers | ||||
8000 | S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers); | ||||
8001 | } | ||||
8002 | |||||
8003 | S.Diag(TypedefTy->getDecl()->getBeginLoc(), | ||||
8004 | diag::note_opencl_typedef_access_qualifier) << PrevAccessQual; | ||||
8005 | } else if (CurType->isPipeType()) { | ||||
8006 | if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) { | ||||
8007 | QualType ElemType = CurType->castAs<PipeType>()->getElementType(); | ||||
8008 | CurType = S.Context.getWritePipeType(ElemType); | ||||
8009 | } | ||||
8010 | } | ||||
8011 | } | ||||
8012 | |||||
8013 | /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type | ||||
8014 | static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr, | ||||
8015 | Sema &S) { | ||||
8016 | if (!S.getLangOpts().MatrixTypes) { | ||||
8017 | S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled); | ||||
8018 | return; | ||||
8019 | } | ||||
8020 | |||||
8021 | if (Attr.getNumArgs() != 2) { | ||||
8022 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | ||||
8023 | << Attr << 2; | ||||
8024 | return; | ||||
8025 | } | ||||
8026 | |||||
8027 | Expr *RowsExpr = Attr.getArgAsExpr(0); | ||||
8028 | Expr *ColsExpr = Attr.getArgAsExpr(1); | ||||
8029 | QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc()); | ||||
8030 | if (!T.isNull()) | ||||
8031 | CurType = T; | ||||
8032 | } | ||||
8033 | |||||
8034 | static void HandleLifetimeBoundAttr(TypeProcessingState &State, | ||||
8035 | QualType &CurType, | ||||
8036 | ParsedAttr &Attr) { | ||||
8037 | if (State.getDeclarator().isDeclarationOfFunction()) { | ||||
8038 | CurType = State.getAttributedType( | ||||
8039 | createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr), | ||||
8040 | CurType, CurType); | ||||
8041 | } | ||||
8042 | } | ||||
8043 | |||||
8044 | static bool isAddressSpaceKind(const ParsedAttr &attr) { | ||||
8045 | auto attrKind = attr.getKind(); | ||||
8046 | |||||
8047 | return attrKind == ParsedAttr::AT_AddressSpace || | ||||
8048 | attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace || | ||||
8049 | attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace || | ||||
8050 | attrKind == ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace || | ||||
8051 | attrKind == ParsedAttr::AT_OpenCLGlobalHostAddressSpace || | ||||
8052 | attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace || | ||||
8053 | attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace || | ||||
8054 | attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace; | ||||
8055 | } | ||||
8056 | |||||
8057 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, | ||||
8058 | TypeAttrLocation TAL, | ||||
8059 | ParsedAttributesView &attrs) { | ||||
8060 | // Scan through and apply attributes to this type where it makes sense. Some | ||||
8061 | // attributes (such as __address_space__, __vector_size__, etc) apply to the | ||||
8062 | // type, but others can be present in the type specifiers even though they | ||||
8063 | // apply to the decl. Here we apply type attributes and ignore the rest. | ||||
8064 | |||||
8065 | // This loop modifies the list pretty frequently, but we still need to make | ||||
8066 | // sure we visit every element once. Copy the attributes list, and iterate | ||||
8067 | // over that. | ||||
8068 | ParsedAttributesView AttrsCopy{attrs}; | ||||
8069 | |||||
8070 | state.setParsedNoDeref(false); | ||||
8071 | |||||
8072 | for (ParsedAttr &attr : AttrsCopy) { | ||||
8073 | |||||
8074 | // Skip attributes that were marked to be invalid. | ||||
8075 | if (attr.isInvalid()) | ||||
8076 | continue; | ||||
8077 | |||||
8078 | if (attr.isStandardAttributeSyntax()) { | ||||
8079 | // [[gnu::...]] attributes are treated as declaration attributes, so may | ||||
8080 | // not appertain to a DeclaratorChunk. If we handle them as type | ||||
8081 | // attributes, accept them in that position and diagnose the GCC | ||||
8082 | // incompatibility. | ||||
8083 | if (attr.isGNUScope()) { | ||||
8084 | bool IsTypeAttr = attr.isTypeAttr(); | ||||
8085 | if (TAL == TAL_DeclChunk) { | ||||
8086 | state.getSema().Diag(attr.getLoc(), | ||||
8087 | IsTypeAttr | ||||
8088 | ? diag::warn_gcc_ignores_type_attr | ||||
8089 | : diag::warn_cxx11_gnu_attribute_on_type) | ||||
8090 | << attr; | ||||
8091 | if (!IsTypeAttr) | ||||
8092 | continue; | ||||
8093 | } | ||||
8094 | } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) { | ||||
8095 | // Otherwise, only consider type processing for a C++11 attribute if | ||||
8096 | // it's actually been applied to a type. | ||||
8097 | // We also allow C++11 address_space and | ||||
8098 | // OpenCL language address space attributes to pass through. | ||||
8099 | continue; | ||||
8100 | } | ||||
8101 | } | ||||
8102 | |||||
8103 | // If this is an attribute we can handle, do so now, | ||||
8104 | // otherwise, add it to the FnAttrs list for rechaining. | ||||
8105 | switch (attr.getKind()) { | ||||
8106 | default: | ||||
8107 | // A [[]] attribute on a declarator chunk must appertain to a type. | ||||
8108 | if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) { | ||||
8109 | state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr) | ||||
8110 | << attr; | ||||
8111 | attr.setUsedAsTypeAttr(); | ||||
8112 | } | ||||
8113 | break; | ||||
8114 | |||||
8115 | case ParsedAttr::UnknownAttribute: | ||||
8116 | if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) | ||||
8117 | state.getSema().Diag(attr.getLoc(), | ||||
8118 | diag::warn_unknown_attribute_ignored) | ||||
8119 | << attr << attr.getRange(); | ||||
8120 | break; | ||||
8121 | |||||
8122 | case ParsedAttr::IgnoredAttribute: | ||||
8123 | break; | ||||
8124 | |||||
8125 | case ParsedAttr::AT_MayAlias: | ||||
8126 | // FIXME: This attribute needs to actually be handled, but if we ignore | ||||
8127 | // it it breaks large amounts of Linux software. | ||||
8128 | attr.setUsedAsTypeAttr(); | ||||
8129 | break; | ||||
8130 | case ParsedAttr::AT_OpenCLPrivateAddressSpace: | ||||
8131 | case ParsedAttr::AT_OpenCLGlobalAddressSpace: | ||||
8132 | case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace: | ||||
8133 | case ParsedAttr::AT_OpenCLGlobalHostAddressSpace: | ||||
8134 | case ParsedAttr::AT_OpenCLLocalAddressSpace: | ||||
8135 | case ParsedAttr::AT_OpenCLConstantAddressSpace: | ||||
8136 | case ParsedAttr::AT_OpenCLGenericAddressSpace: | ||||
8137 | case ParsedAttr::AT_AddressSpace: | ||||
8138 | HandleAddressSpaceTypeAttribute(type, attr, state); | ||||
8139 | attr.setUsedAsTypeAttr(); | ||||
8140 | break; | ||||
8141 | OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership: | ||||
8142 | if (!handleObjCPointerTypeAttr(state, attr, type)) | ||||
8143 | distributeObjCPointerTypeAttr(state, attr, type); | ||||
8144 | attr.setUsedAsTypeAttr(); | ||||
8145 | break; | ||||
8146 | case ParsedAttr::AT_VectorSize: | ||||
8147 | HandleVectorSizeAttr(type, attr, state.getSema()); | ||||
8148 | attr.setUsedAsTypeAttr(); | ||||
8149 | break; | ||||
8150 | case ParsedAttr::AT_ExtVectorType: | ||||
8151 | HandleExtVectorTypeAttr(type, attr, state.getSema()); | ||||
8152 | attr.setUsedAsTypeAttr(); | ||||
8153 | break; | ||||
8154 | case ParsedAttr::AT_NeonVectorType: | ||||
8155 | HandleNeonVectorTypeAttr(type, attr, state.getSema(), | ||||
8156 | VectorType::NeonVector); | ||||
8157 | attr.setUsedAsTypeAttr(); | ||||
8158 | break; | ||||
8159 | case ParsedAttr::AT_NeonPolyVectorType: | ||||
8160 | HandleNeonVectorTypeAttr(type, attr, state.getSema(), | ||||
8161 | VectorType::NeonPolyVector); | ||||
8162 | attr.setUsedAsTypeAttr(); | ||||
8163 | break; | ||||
8164 | case ParsedAttr::AT_ArmSveVectorBits: | ||||
8165 | HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema()); | ||||
8166 | attr.setUsedAsTypeAttr(); | ||||
8167 | break; | ||||
8168 | case ParsedAttr::AT_ArmMveStrictPolymorphism: { | ||||
8169 | HandleArmMveStrictPolymorphismAttr(state, type, attr); | ||||
8170 | attr.setUsedAsTypeAttr(); | ||||
8171 | break; | ||||
8172 | } | ||||
8173 | case ParsedAttr::AT_OpenCLAccess: | ||||
8174 | HandleOpenCLAccessAttr(type, attr, state.getSema()); | ||||
8175 | attr.setUsedAsTypeAttr(); | ||||
8176 | break; | ||||
8177 | case ParsedAttr::AT_LifetimeBound: | ||||
8178 | if (TAL == TAL_DeclChunk) | ||||
8179 | HandleLifetimeBoundAttr(state, type, attr); | ||||
8180 | break; | ||||
8181 | |||||
8182 | case ParsedAttr::AT_NoDeref: { | ||||
8183 | ASTContext &Ctx = state.getSema().Context; | ||||
8184 | type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr), | ||||
8185 | type, type); | ||||
8186 | attr.setUsedAsTypeAttr(); | ||||
8187 | state.setParsedNoDeref(true); | ||||
8188 | break; | ||||
8189 | } | ||||
8190 | |||||
8191 | case ParsedAttr::AT_MatrixType: | ||||
8192 | HandleMatrixTypeAttr(type, attr, state.getSema()); | ||||
8193 | attr.setUsedAsTypeAttr(); | ||||
8194 | break; | ||||
8195 | |||||
8196 | MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr: | ||||
8197 | if (!handleMSPointerTypeQualifierAttr(state, attr, type)) | ||||
8198 | attr.setUsedAsTypeAttr(); | ||||
8199 | break; | ||||
8200 | |||||
8201 | |||||
8202 | NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified: | ||||
8203 | // Either add nullability here or try to distribute it. We | ||||
8204 | // don't want to distribute the nullability specifier past any | ||||
8205 | // dependent type, because that complicates the user model. | ||||
8206 | if (type->canHaveNullability() || type->isDependentType() || | ||||
8207 | type->isArrayType() || | ||||
8208 | !distributeNullabilityTypeAttr(state, type, attr)) { | ||||
8209 | unsigned endIndex; | ||||
8210 | if (TAL == TAL_DeclChunk) | ||||
8211 | endIndex = state.getCurrentChunkIndex(); | ||||
8212 | else | ||||
8213 | endIndex = state.getDeclarator().getNumTypeObjects(); | ||||
8214 | bool allowOnArrayType = | ||||
8215 | state.getDeclarator().isPrototypeContext() && | ||||
8216 | !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex); | ||||
8217 | if (checkNullabilityTypeSpecifier( | ||||
8218 | state, | ||||
8219 | type, | ||||
8220 | attr, | ||||
8221 | allowOnArrayType)) { | ||||
8222 | attr.setInvalid(); | ||||
8223 | } | ||||
8224 | |||||
8225 | attr.setUsedAsTypeAttr(); | ||||
8226 | } | ||||
8227 | break; | ||||
8228 | |||||
8229 | case ParsedAttr::AT_ObjCKindOf: | ||||
8230 | // '__kindof' must be part of the decl-specifiers. | ||||
8231 | switch (TAL) { | ||||
8232 | case TAL_DeclSpec: | ||||
8233 | break; | ||||
8234 | |||||
8235 | case TAL_DeclChunk: | ||||
8236 | case TAL_DeclName: | ||||
8237 | state.getSema().Diag(attr.getLoc(), | ||||
8238 | diag::err_objc_kindof_wrong_position) | ||||
8239 | << FixItHint::CreateRemoval(attr.getLoc()) | ||||
8240 | << FixItHint::CreateInsertion( | ||||
8241 | state.getDeclarator().getDeclSpec().getBeginLoc(), | ||||
8242 | "__kindof "); | ||||
8243 | break; | ||||
8244 | } | ||||
8245 | |||||
8246 | // Apply it regardless. | ||||
8247 | if (checkObjCKindOfType(state, type, attr)) | ||||
8248 | attr.setInvalid(); | ||||
8249 | break; | ||||
8250 | |||||
8251 | case ParsedAttr::AT_NoThrow: | ||||
8252 | // Exception Specifications aren't generally supported in C mode throughout | ||||
8253 | // clang, so revert to attribute-based handling for C. | ||||
8254 | if (!state.getSema().getLangOpts().CPlusPlus) | ||||
8255 | break; | ||||
8256 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
8257 | FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll: | ||||
8258 | attr.setUsedAsTypeAttr(); | ||||
8259 | |||||
8260 | // Never process function type attributes as part of the | ||||
8261 | // declaration-specifiers. | ||||
8262 | if (TAL == TAL_DeclSpec) | ||||
8263 | distributeFunctionTypeAttrFromDeclSpec(state, attr, type); | ||||
8264 | |||||
8265 | // Otherwise, handle the possible delays. | ||||
8266 | else if (!handleFunctionTypeAttr(state, attr, type)) | ||||
8267 | distributeFunctionTypeAttr(state, attr, type); | ||||
8268 | break; | ||||
8269 | case ParsedAttr::AT_AcquireHandle: { | ||||
8270 | if (!type->isFunctionType()) | ||||
8271 | return; | ||||
8272 | |||||
8273 | if (attr.getNumArgs() != 1) { | ||||
8274 | state.getSema().Diag(attr.getLoc(), | ||||
8275 | diag::err_attribute_wrong_number_arguments) | ||||
8276 | << attr << 1; | ||||
8277 | attr.setInvalid(); | ||||
8278 | return; | ||||
8279 | } | ||||
8280 | |||||
8281 | StringRef HandleType; | ||||
8282 | if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType)) | ||||
8283 | return; | ||||
8284 | type = state.getAttributedType( | ||||
8285 | AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr), | ||||
8286 | type, type); | ||||
8287 | attr.setUsedAsTypeAttr(); | ||||
8288 | break; | ||||
8289 | } | ||||
8290 | } | ||||
8291 | |||||
8292 | // Handle attributes that are defined in a macro. We do not want this to be | ||||
8293 | // applied to ObjC builtin attributes. | ||||
8294 | if (isa<AttributedType>(type) && attr.hasMacroIdentifier() && | ||||
8295 | !type.getQualifiers().hasObjCLifetime() && | ||||
8296 | !type.getQualifiers().hasObjCGCAttr() && | ||||
8297 | attr.getKind() != ParsedAttr::AT_ObjCGC && | ||||
8298 | attr.getKind() != ParsedAttr::AT_ObjCOwnership) { | ||||
8299 | const IdentifierInfo *MacroII = attr.getMacroIdentifier(); | ||||
8300 | type = state.getSema().Context.getMacroQualifiedType(type, MacroII); | ||||
8301 | state.setExpansionLocForMacroQualifiedType( | ||||
8302 | cast<MacroQualifiedType>(type.getTypePtr()), | ||||
8303 | attr.getMacroExpansionLoc()); | ||||
8304 | } | ||||
8305 | } | ||||
8306 | |||||
8307 | if (!state.getSema().getLangOpts().OpenCL || | ||||
8308 | type.getAddressSpace() != LangAS::Default) | ||||
8309 | return; | ||||
8310 | } | ||||
8311 | |||||
8312 | void Sema::completeExprArrayBound(Expr *E) { | ||||
8313 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { | ||||
8314 | if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { | ||||
8315 | if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) { | ||||
8316 | auto *Def = Var->getDefinition(); | ||||
8317 | if (!Def) { | ||||
8318 | SourceLocation PointOfInstantiation = E->getExprLoc(); | ||||
8319 | runWithSufficientStackSpace(PointOfInstantiation, [&] { | ||||
8320 | InstantiateVariableDefinition(PointOfInstantiation, Var); | ||||
8321 | }); | ||||
8322 | Def = Var->getDefinition(); | ||||
8323 | |||||
8324 | // If we don't already have a point of instantiation, and we managed | ||||
8325 | // to instantiate a definition, this is the point of instantiation. | ||||
8326 | // Otherwise, we don't request an end-of-TU instantiation, so this is | ||||
8327 | // not a point of instantiation. | ||||
8328 | // FIXME: Is this really the right behavior? | ||||
8329 | if (Var->getPointOfInstantiation().isInvalid() && Def) { | ||||
8330 | assert(Var->getTemplateSpecializationKind() ==((void)0) | ||||
8331 | TSK_ImplicitInstantiation &&((void)0) | ||||
8332 | "explicit instantiation with no point of instantiation")((void)0); | ||||
8333 | Var->setTemplateSpecializationKind( | ||||
8334 | Var->getTemplateSpecializationKind(), PointOfInstantiation); | ||||
8335 | } | ||||
8336 | } | ||||
8337 | |||||
8338 | // Update the type to the definition's type both here and within the | ||||
8339 | // expression. | ||||
8340 | if (Def) { | ||||
8341 | DRE->setDecl(Def); | ||||
8342 | QualType T = Def->getType(); | ||||
8343 | DRE->setType(T); | ||||
8344 | // FIXME: Update the type on all intervening expressions. | ||||
8345 | E->setType(T); | ||||
8346 | } | ||||
8347 | |||||
8348 | // We still go on to try to complete the type independently, as it | ||||
8349 | // may also require instantiations or diagnostics if it remains | ||||
8350 | // incomplete. | ||||
8351 | } | ||||
8352 | } | ||||
8353 | } | ||||
8354 | } | ||||
8355 | |||||
8356 | QualType Sema::getCompletedType(Expr *E) { | ||||
8357 | // Incomplete array types may be completed by the initializer attached to | ||||
8358 | // their definitions. For static data members of class templates and for | ||||
8359 | // variable templates, we need to instantiate the definition to get this | ||||
8360 | // initializer and complete the type. | ||||
8361 | if (E->getType()->isIncompleteArrayType()) | ||||
8362 | completeExprArrayBound(E); | ||||
8363 | |||||
8364 | // FIXME: Are there other cases which require instantiating something other | ||||
8365 | // than the type to complete the type of an expression? | ||||
8366 | |||||
8367 | return E->getType(); | ||||
8368 | } | ||||
8369 | |||||
8370 | /// Ensure that the type of the given expression is complete. | ||||
8371 | /// | ||||
8372 | /// This routine checks whether the expression \p E has a complete type. If the | ||||
8373 | /// expression refers to an instantiable construct, that instantiation is | ||||
8374 | /// performed as needed to complete its type. Furthermore | ||||
8375 | /// Sema::RequireCompleteType is called for the expression's type (or in the | ||||
8376 | /// case of a reference type, the referred-to type). | ||||
8377 | /// | ||||
8378 | /// \param E The expression whose type is required to be complete. | ||||
8379 | /// \param Kind Selects which completeness rules should be applied. | ||||
8380 | /// \param Diagnoser The object that will emit a diagnostic if the type is | ||||
8381 | /// incomplete. | ||||
8382 | /// | ||||
8383 | /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false | ||||
8384 | /// otherwise. | ||||
8385 | bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind, | ||||
8386 | TypeDiagnoser &Diagnoser) { | ||||
8387 | return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind, | ||||
8388 | Diagnoser); | ||||
8389 | } | ||||
8390 | |||||
8391 | bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) { | ||||
8392 | BoundTypeDiagnoser<> Diagnoser(DiagID); | ||||
8393 | return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser); | ||||
8394 | } | ||||
8395 | |||||
8396 | /// Ensure that the type T is a complete type. | ||||
8397 | /// | ||||
8398 | /// This routine checks whether the type @p T is complete in any | ||||
8399 | /// context where a complete type is required. If @p T is a complete | ||||
8400 | /// type, returns false. If @p T is a class template specialization, | ||||
8401 | /// this routine then attempts to perform class template | ||||
8402 | /// instantiation. If instantiation fails, or if @p T is incomplete | ||||
8403 | /// and cannot be completed, issues the diagnostic @p diag (giving it | ||||
8404 | /// the type @p T) and returns true. | ||||
8405 | /// | ||||
8406 | /// @param Loc The location in the source that the incomplete type | ||||
8407 | /// diagnostic should refer to. | ||||
8408 | /// | ||||
8409 | /// @param T The type that this routine is examining for completeness. | ||||
8410 | /// | ||||
8411 | /// @param Kind Selects which completeness rules should be applied. | ||||
8412 | /// | ||||
8413 | /// @returns @c true if @p T is incomplete and a diagnostic was emitted, | ||||
8414 | /// @c false otherwise. | ||||
8415 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, | ||||
8416 | CompleteTypeKind Kind, | ||||
8417 | TypeDiagnoser &Diagnoser) { | ||||
8418 | if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser)) | ||||
8419 | return true; | ||||
8420 | if (const TagType *Tag = T->getAs<TagType>()) { | ||||
8421 | if (!Tag->getDecl()->isCompleteDefinitionRequired()) { | ||||
8422 | Tag->getDecl()->setCompleteDefinitionRequired(); | ||||
8423 | Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl()); | ||||
8424 | } | ||||
8425 | } | ||||
8426 | return false; | ||||
8427 | } | ||||
8428 | |||||
8429 | bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) { | ||||
8430 | llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls; | ||||
8431 | if (!Suggested) | ||||
8432 | return false; | ||||
8433 | |||||
8434 | // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext | ||||
8435 | // and isolate from other C++ specific checks. | ||||
8436 | StructuralEquivalenceContext Ctx( | ||||
8437 | D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls, | ||||
8438 | StructuralEquivalenceKind::Default, | ||||
8439 | false /*StrictTypeSpelling*/, true /*Complain*/, | ||||
8440 | true /*ErrorOnTagTypeMismatch*/); | ||||
8441 | return Ctx.IsEquivalent(D, Suggested); | ||||
8442 | } | ||||
8443 | |||||
8444 | /// Determine whether there is any declaration of \p D that was ever a | ||||
8445 | /// definition (perhaps before module merging) and is currently visible. | ||||
8446 | /// \param D The definition of the entity. | ||||
8447 | /// \param Suggested Filled in with the declaration that should be made visible | ||||
8448 | /// in order to provide a definition of this entity. | ||||
8449 | /// \param OnlyNeedComplete If \c true, we only need the type to be complete, | ||||
8450 | /// not defined. This only matters for enums with a fixed underlying | ||||
8451 | /// type, since in all other cases, a type is complete if and only if it | ||||
8452 | /// is defined. | ||||
8453 | bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, | ||||
8454 | bool OnlyNeedComplete) { | ||||
8455 | // Easy case: if we don't have modules, all declarations are visible. | ||||
8456 | if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility) | ||||
8457 | return true; | ||||
8458 | |||||
8459 | // If this definition was instantiated from a template, map back to the | ||||
8460 | // pattern from which it was instantiated. | ||||
8461 | if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) { | ||||
8462 | // We're in the middle of defining it; this definition should be treated | ||||
8463 | // as visible. | ||||
8464 | return true; | ||||
8465 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { | ||||
8466 | if (auto *Pattern = RD->getTemplateInstantiationPattern()) | ||||
8467 | RD = Pattern; | ||||
8468 | D = RD->getDefinition(); | ||||
8469 | } else if (auto *ED = dyn_cast<EnumDecl>(D)) { | ||||
8470 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) | ||||
8471 | ED = Pattern; | ||||
8472 | if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) { | ||||
8473 | // If the enum has a fixed underlying type, it may have been forward | ||||
8474 | // declared. In -fms-compatibility, `enum Foo;` will also forward declare | ||||
8475 | // the enum and assign it the underlying type of `int`. Since we're only | ||||
8476 | // looking for a complete type (not a definition), any visible declaration | ||||
8477 | // of it will do. | ||||
8478 | *Suggested = nullptr; | ||||
8479 | for (auto *Redecl : ED->redecls()) { | ||||
8480 | if (isVisible(Redecl)) | ||||
8481 | return true; | ||||
8482 | if (Redecl->isThisDeclarationADefinition() || | ||||
8483 | (Redecl->isCanonicalDecl() && !*Suggested)) | ||||
8484 | *Suggested = Redecl; | ||||
8485 | } | ||||
8486 | return false; | ||||
8487 | } | ||||
8488 | D = ED->getDefinition(); | ||||
8489 | } else if (auto *FD = dyn_cast<FunctionDecl>(D)) { | ||||
8490 | if (auto *Pattern = FD->getTemplateInstantiationPattern()) | ||||
8491 | FD = Pattern; | ||||
8492 | D = FD->getDefinition(); | ||||
8493 | } else if (auto *VD = dyn_cast<VarDecl>(D)) { | ||||
8494 | if (auto *Pattern = VD->getTemplateInstantiationPattern()) | ||||
8495 | VD = Pattern; | ||||
8496 | D = VD->getDefinition(); | ||||
8497 | } | ||||
8498 | assert(D && "missing definition for pattern of instantiated definition")((void)0); | ||||
8499 | |||||
8500 | *Suggested = D; | ||||
8501 | |||||
8502 | auto DefinitionIsVisible = [&] { | ||||
8503 | // The (primary) definition might be in a visible module. | ||||
8504 | if (isVisible(D)) | ||||
8505 | return true; | ||||
8506 | |||||
8507 | // A visible module might have a merged definition instead. | ||||
8508 | if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D) | ||||
8509 | : hasVisibleMergedDefinition(D)) { | ||||
8510 | if (CodeSynthesisContexts.empty() && | ||||
8511 | !getLangOpts().ModulesLocalVisibility) { | ||||
8512 | // Cache the fact that this definition is implicitly visible because | ||||
8513 | // there is a visible merged definition. | ||||
8514 | D->setVisibleDespiteOwningModule(); | ||||
8515 | } | ||||
8516 | return true; | ||||
8517 | } | ||||
8518 | |||||
8519 | return false; | ||||
8520 | }; | ||||
8521 | |||||
8522 | if (DefinitionIsVisible()) | ||||
8523 | return true; | ||||
8524 | |||||
8525 | // The external source may have additional definitions of this entity that are | ||||
8526 | // visible, so complete the redeclaration chain now and ask again. | ||||
8527 | if (auto *Source = Context.getExternalSource()) { | ||||
8528 | Source->CompleteRedeclChain(D); | ||||
8529 | return DefinitionIsVisible(); | ||||
8530 | } | ||||
8531 | |||||
8532 | return false; | ||||
8533 | } | ||||
8534 | |||||
8535 | /// Locks in the inheritance model for the given class and all of its bases. | ||||
8536 | static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) { | ||||
8537 | RD = RD->getMostRecentNonInjectedDecl(); | ||||
8538 | if (!RD->hasAttr<MSInheritanceAttr>()) { | ||||
8539 | MSInheritanceModel IM; | ||||
8540 | bool BestCase = false; | ||||
8541 | switch (S.MSPointerToMemberRepresentationMethod) { | ||||
8542 | case LangOptions::PPTMK_BestCase: | ||||
8543 | BestCase = true; | ||||
8544 | IM = RD->calculateInheritanceModel(); | ||||
8545 | break; | ||||
8546 | case LangOptions::PPTMK_FullGeneralitySingleInheritance: | ||||
8547 | IM = MSInheritanceModel::Single; | ||||
8548 | break; | ||||
8549 | case LangOptions::PPTMK_FullGeneralityMultipleInheritance: | ||||
8550 | IM = MSInheritanceModel::Multiple; | ||||
8551 | break; | ||||
8552 | case LangOptions::PPTMK_FullGeneralityVirtualInheritance: | ||||
8553 | IM = MSInheritanceModel::Unspecified; | ||||
8554 | break; | ||||
8555 | } | ||||
8556 | |||||
8557 | SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid() | ||||
8558 | ? S.ImplicitMSInheritanceAttrLoc | ||||
8559 | : RD->getSourceRange(); | ||||
8560 | RD->addAttr(MSInheritanceAttr::CreateImplicit( | ||||
8561 | S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft, | ||||
8562 | MSInheritanceAttr::Spelling(IM))); | ||||
8563 | S.Consumer.AssignInheritanceModel(RD); | ||||
8564 | } | ||||
8565 | } | ||||
8566 | |||||
8567 | /// The implementation of RequireCompleteType | ||||
8568 | bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T, | ||||
8569 | CompleteTypeKind Kind, | ||||
8570 | TypeDiagnoser *Diagnoser) { | ||||
8571 | // FIXME: Add this assertion to make sure we always get instantiation points. | ||||
8572 | // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType"); | ||||
8573 | // FIXME: Add this assertion to help us flush out problems with | ||||
8574 | // checking for dependent types and type-dependent expressions. | ||||
8575 | // | ||||
8576 | // assert(!T->isDependentType() && | ||||
8577 | // "Can't ask whether a dependent type is complete"); | ||||
8578 | |||||
8579 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) { | ||||
8580 | if (!MPTy->getClass()->isDependentType()) { | ||||
8581 | if (getLangOpts().CompleteMemberPointers && | ||||
8582 | !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() && | ||||
8583 | RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind, | ||||
8584 | diag::err_memptr_incomplete)) | ||||
8585 | return true; | ||||
8586 | |||||
8587 | // We lock in the inheritance model once somebody has asked us to ensure | ||||
8588 | // that a pointer-to-member type is complete. | ||||
8589 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | ||||
8590 | (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0)); | ||||
8591 | assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl()); | ||||
8592 | } | ||||
8593 | } | ||||
8594 | } | ||||
8595 | |||||
8596 | NamedDecl *Def = nullptr; | ||||
8597 | bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless); | ||||
8598 | bool Incomplete = (T->isIncompleteType(&Def) || | ||||
8599 | (!AcceptSizeless && T->isSizelessBuiltinType())); | ||||
8600 | |||||
8601 | // Check that any necessary explicit specializations are visible. For an | ||||
8602 | // enum, we just need the declaration, so don't check this. | ||||
8603 | if (Def && !isa<EnumDecl>(Def)) | ||||
8604 | checkSpecializationVisibility(Loc, Def); | ||||
8605 | |||||
8606 | // If we have a complete type, we're done. | ||||
8607 | if (!Incomplete) { | ||||
8608 | // If we know about the definition but it is not visible, complain. | ||||
8609 | NamedDecl *SuggestedDef = nullptr; | ||||
8610 | if (Def && | ||||
8611 | !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) { | ||||
8612 | // If the user is going to see an error here, recover by making the | ||||
8613 | // definition visible. | ||||
8614 | bool TreatAsComplete = Diagnoser && !isSFINAEContext(); | ||||
8615 | if (Diagnoser && SuggestedDef) | ||||
8616 | diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition, | ||||
8617 | /*Recover*/TreatAsComplete); | ||||
8618 | return !TreatAsComplete; | ||||
8619 | } else if (Def && !TemplateInstCallbacks.empty()) { | ||||
8620 | CodeSynthesisContext TempInst; | ||||
8621 | TempInst.Kind = CodeSynthesisContext::Memoization; | ||||
8622 | TempInst.Template = Def; | ||||
8623 | TempInst.Entity = Def; | ||||
8624 | TempInst.PointOfInstantiation = Loc; | ||||
8625 | atTemplateBegin(TemplateInstCallbacks, *this, TempInst); | ||||
8626 | atTemplateEnd(TemplateInstCallbacks, *this, TempInst); | ||||
8627 | } | ||||
8628 | |||||
8629 | return false; | ||||
8630 | } | ||||
8631 | |||||
8632 | TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def); | ||||
8633 | ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def); | ||||
8634 | |||||
8635 | // Give the external source a chance to provide a definition of the type. | ||||
8636 | // This is kept separate from completing the redeclaration chain so that | ||||
8637 | // external sources such as LLDB can avoid synthesizing a type definition | ||||
8638 | // unless it's actually needed. | ||||
8639 | if (Tag || IFace) { | ||||
8640 | // Avoid diagnosing invalid decls as incomplete. | ||||
8641 | if (Def->isInvalidDecl()) | ||||
8642 | return true; | ||||
8643 | |||||
8644 | // Give the external AST source a chance to complete the type. | ||||
8645 | if (auto *Source = Context.getExternalSource()) { | ||||
8646 | if (Tag && Tag->hasExternalLexicalStorage()) | ||||
8647 | Source->CompleteType(Tag); | ||||
8648 | if (IFace && IFace->hasExternalLexicalStorage()) | ||||
8649 | Source->CompleteType(IFace); | ||||
8650 | // If the external source completed the type, go through the motions | ||||
8651 | // again to ensure we're allowed to use the completed type. | ||||
8652 | if (!T->isIncompleteType()) | ||||
8653 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); | ||||
8654 | } | ||||
8655 | } | ||||
8656 | |||||
8657 | // If we have a class template specialization or a class member of a | ||||
8658 | // class template specialization, or an array with known size of such, | ||||
8659 | // try to instantiate it. | ||||
8660 | if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) { | ||||
8661 | bool Instantiated = false; | ||||
8662 | bool Diagnosed = false; | ||||
8663 | if (RD->isDependentContext()) { | ||||
8664 | // Don't try to instantiate a dependent class (eg, a member template of | ||||
8665 | // an instantiated class template specialization). | ||||
8666 | // FIXME: Can this ever happen? | ||||
8667 | } else if (auto *ClassTemplateSpec = | ||||
8668 | dyn_cast<ClassTemplateSpecializationDecl>(RD)) { | ||||
8669 | if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) { | ||||
8670 | runWithSufficientStackSpace(Loc, [&] { | ||||
8671 | Diagnosed = InstantiateClassTemplateSpecialization( | ||||
8672 | Loc, ClassTemplateSpec, TSK_ImplicitInstantiation, | ||||
8673 | /*Complain=*/Diagnoser); | ||||
8674 | }); | ||||
8675 | Instantiated = true; | ||||
8676 | } | ||||
8677 | } else { | ||||
8678 | CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass(); | ||||
8679 | if (!RD->isBeingDefined() && Pattern) { | ||||
8680 | MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo(); | ||||
8681 | assert(MSI && "Missing member specialization information?")((void)0); | ||||
8682 | // This record was instantiated from a class within a template. | ||||
8683 | if (MSI->getTemplateSpecializationKind() != | ||||
8684 | TSK_ExplicitSpecialization) { | ||||
8685 | runWithSufficientStackSpace(Loc, [&] { | ||||
8686 | Diagnosed = InstantiateClass(Loc, RD, Pattern, | ||||
8687 | getTemplateInstantiationArgs(RD), | ||||
8688 | TSK_ImplicitInstantiation, | ||||
8689 | /*Complain=*/Diagnoser); | ||||
8690 | }); | ||||
8691 | Instantiated = true; | ||||
8692 | } | ||||
8693 | } | ||||
8694 | } | ||||
8695 | |||||
8696 | if (Instantiated) { | ||||
8697 | // Instantiate* might have already complained that the template is not | ||||
8698 | // defined, if we asked it to. | ||||
8699 | if (Diagnoser && Diagnosed) | ||||
8700 | return true; | ||||
8701 | // If we instantiated a definition, check that it's usable, even if | ||||
8702 | // instantiation produced an error, so that repeated calls to this | ||||
8703 | // function give consistent answers. | ||||
8704 | if (!T->isIncompleteType()) | ||||
8705 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); | ||||
8706 | } | ||||
8707 | } | ||||
8708 | |||||
8709 | // FIXME: If we didn't instantiate a definition because of an explicit | ||||
8710 | // specialization declaration, check that it's visible. | ||||
8711 | |||||
8712 | if (!Diagnoser) | ||||
8713 | return true; | ||||
8714 | |||||
8715 | Diagnoser->diagnose(*this, Loc, T); | ||||
8716 | |||||
8717 | // If the type was a forward declaration of a class/struct/union | ||||
8718 | // type, produce a note. | ||||
8719 | if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid()) | ||||
8720 | Diag(Tag->getLocation(), | ||||
8721 | Tag->isBeingDefined() ? diag::note_type_being_defined | ||||
8722 | : diag::note_forward_declaration) | ||||
8723 | << Context.getTagDeclType(Tag); | ||||
8724 | |||||
8725 | // If the Objective-C class was a forward declaration, produce a note. | ||||
8726 | if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid()) | ||||
8727 | Diag(IFace->getLocation(), diag::note_forward_class); | ||||
8728 | |||||
8729 | // If we have external information that we can use to suggest a fix, | ||||
8730 | // produce a note. | ||||
8731 | if (ExternalSource) | ||||
8732 | ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T); | ||||
8733 | |||||
8734 | return true; | ||||
8735 | } | ||||
8736 | |||||
8737 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, | ||||
8738 | CompleteTypeKind Kind, unsigned DiagID) { | ||||
8739 | BoundTypeDiagnoser<> Diagnoser(DiagID); | ||||
8740 | return RequireCompleteType(Loc, T, Kind, Diagnoser); | ||||
8741 | } | ||||
8742 | |||||
8743 | /// Get diagnostic %select index for tag kind for | ||||
8744 | /// literal type diagnostic message. | ||||
8745 | /// WARNING: Indexes apply to particular diagnostics only! | ||||
8746 | /// | ||||
8747 | /// \returns diagnostic %select index. | ||||
8748 | static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) { | ||||
8749 | switch (Tag) { | ||||
8750 | case TTK_Struct: return 0; | ||||
8751 | case TTK_Interface: return 1; | ||||
8752 | case TTK_Class: return 2; | ||||
8753 | default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")__builtin_unreachable(); | ||||
8754 | } | ||||
8755 | } | ||||
8756 | |||||
8757 | /// Ensure that the type T is a literal type. | ||||
8758 | /// | ||||
8759 | /// This routine checks whether the type @p T is a literal type. If @p T is an | ||||
8760 | /// incomplete type, an attempt is made to complete it. If @p T is a literal | ||||
8761 | /// type, or @p AllowIncompleteType is true and @p T is an incomplete type, | ||||
8762 | /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving | ||||
8763 | /// it the type @p T), along with notes explaining why the type is not a | ||||
8764 | /// literal type, and returns true. | ||||
8765 | /// | ||||
8766 | /// @param Loc The location in the source that the non-literal type | ||||
8767 | /// diagnostic should refer to. | ||||
8768 | /// | ||||
8769 | /// @param T The type that this routine is examining for literalness. | ||||
8770 | /// | ||||
8771 | /// @param Diagnoser Emits a diagnostic if T is not a literal type. | ||||
8772 | /// | ||||
8773 | /// @returns @c true if @p T is not a literal type and a diagnostic was emitted, | ||||
8774 | /// @c false otherwise. | ||||
8775 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, | ||||
8776 | TypeDiagnoser &Diagnoser) { | ||||
8777 | assert(!T->isDependentType() && "type should not be dependent")((void)0); | ||||
8778 | |||||
8779 | QualType ElemType = Context.getBaseElementType(T); | ||||
8780 | if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) && | ||||
8781 | T->isLiteralType(Context)) | ||||
8782 | return false; | ||||
8783 | |||||
8784 | Diagnoser.diagnose(*this, Loc, T); | ||||
8785 | |||||
8786 | if (T->isVariableArrayType()) | ||||
8787 | return true; | ||||
8788 | |||||
8789 | const RecordType *RT = ElemType->getAs<RecordType>(); | ||||
8790 | if (!RT) | ||||
8791 | return true; | ||||
8792 | |||||
8793 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | ||||
8794 | |||||
8795 | // A partially-defined class type can't be a literal type, because a literal | ||||
8796 | // class type must have a trivial destructor (which can't be checked until | ||||
8797 | // the class definition is complete). | ||||
8798 | if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T)) | ||||
8799 | return true; | ||||
8800 | |||||
8801 | // [expr.prim.lambda]p3: | ||||
8802 | // This class type is [not] a literal type. | ||||
8803 | if (RD->isLambda() && !getLangOpts().CPlusPlus17) { | ||||
8804 | Diag(RD->getLocation(), diag::note_non_literal_lambda); | ||||
8805 | return true; | ||||
8806 | } | ||||
8807 | |||||
8808 | // If the class has virtual base classes, then it's not an aggregate, and | ||||
8809 | // cannot have any constexpr constructors or a trivial default constructor, | ||||
8810 | // so is non-literal. This is better to diagnose than the resulting absence | ||||
8811 | // of constexpr constructors. | ||||
8812 | if (RD->getNumVBases()) { | ||||
8813 | Diag(RD->getLocation(), diag::note_non_literal_virtual_base) | ||||
8814 | << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); | ||||
8815 | for (const auto &I : RD->vbases()) | ||||
8816 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) | ||||
8817 | << I.getSourceRange(); | ||||
8818 | } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() && | ||||
8819 | !RD->hasTrivialDefaultConstructor()) { | ||||
8820 | Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD; | ||||
8821 | } else if (RD->hasNonLiteralTypeFieldsOrBases()) { | ||||
8822 | for (const auto &I : RD->bases()) { | ||||
8823 | if (!I.getType()->isLiteralType(Context)) { | ||||
8824 | Diag(I.getBeginLoc(), diag::note_non_literal_base_class) | ||||
8825 | << RD << I.getType() << I.getSourceRange(); | ||||
8826 | return true; | ||||
8827 | } | ||||
8828 | } | ||||
8829 | for (const auto *I : RD->fields()) { | ||||
8830 | if (!I->getType()->isLiteralType(Context) || | ||||
8831 | I->getType().isVolatileQualified()) { | ||||
8832 | Diag(I->getLocation(), diag::note_non_literal_field) | ||||
8833 | << RD << I << I->getType() | ||||
8834 | << I->getType().isVolatileQualified(); | ||||
8835 | return true; | ||||
8836 | } | ||||
8837 | } | ||||
8838 | } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor() | ||||
8839 | : !RD->hasTrivialDestructor()) { | ||||
8840 | // All fields and bases are of literal types, so have trivial or constexpr | ||||
8841 | // destructors. If this class's destructor is non-trivial / non-constexpr, | ||||
8842 | // it must be user-declared. | ||||
8843 | CXXDestructorDecl *Dtor = RD->getDestructor(); | ||||
8844 | assert(Dtor && "class has literal fields and bases but no dtor?")((void)0); | ||||
8845 | if (!Dtor) | ||||
8846 | return true; | ||||
8847 | |||||
8848 | if (getLangOpts().CPlusPlus20) { | ||||
8849 | Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor) | ||||
8850 | << RD; | ||||
8851 | } else { | ||||
8852 | Diag(Dtor->getLocation(), Dtor->isUserProvided() | ||||
8853 | ? diag::note_non_literal_user_provided_dtor | ||||
8854 | : diag::note_non_literal_nontrivial_dtor) | ||||
8855 | << RD; | ||||
8856 | if (!Dtor->isUserProvided()) | ||||
8857 | SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI, | ||||
8858 | /*Diagnose*/ true); | ||||
8859 | } | ||||
8860 | } | ||||
8861 | |||||
8862 | return true; | ||||
8863 | } | ||||
8864 | |||||
8865 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) { | ||||
8866 | BoundTypeDiagnoser<> Diagnoser(DiagID); | ||||
8867 | return RequireLiteralType(Loc, T, Diagnoser); | ||||
8868 | } | ||||
8869 | |||||
8870 | /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified | ||||
8871 | /// by the nested-name-specifier contained in SS, and that is (re)declared by | ||||
8872 | /// OwnedTagDecl, which is nullptr if this is not a (re)declaration. | ||||
8873 | QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword, | ||||
8874 | const CXXScopeSpec &SS, QualType T, | ||||
8875 | TagDecl *OwnedTagDecl) { | ||||
8876 | if (T.isNull()) | ||||
8877 | return T; | ||||
8878 | NestedNameSpecifier *NNS; | ||||
8879 | if (SS.isValid()) | ||||
8880 | NNS = SS.getScopeRep(); | ||||
8881 | else { | ||||
8882 | if (Keyword == ETK_None) | ||||
8883 | return T; | ||||
8884 | NNS = nullptr; | ||||
8885 | } | ||||
8886 | return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl); | ||||
8887 | } | ||||
8888 | |||||
8889 | QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) { | ||||
8890 | assert(!E->hasPlaceholderType() && "unexpected placeholder")((void)0); | ||||
8891 | |||||
8892 | if (!getLangOpts().CPlusPlus && E->refersToBitField()) | ||||
8893 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2; | ||||
8894 | |||||
8895 | if (!E->isTypeDependent()) { | ||||
8896 | QualType T = E->getType(); | ||||
8897 | if (const TagType *TT = T->getAs<TagType>()) | ||||
8898 | DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc()); | ||||
8899 | } | ||||
8900 | return Context.getTypeOfExprType(E); | ||||
8901 | } | ||||
8902 | |||||
8903 | /// getDecltypeForParenthesizedExpr - Given an expr, will return the type for | ||||
8904 | /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions | ||||
8905 | /// and class member access into account. | ||||
8906 | QualType Sema::getDecltypeForParenthesizedExpr(Expr *E) { | ||||
8907 | // C++11 [dcl.type.simple]p4: | ||||
8908 | // [...] | ||||
8909 | QualType T = E->getType(); | ||||
8910 | switch (E->getValueKind()) { | ||||
8911 | // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the | ||||
8912 | // type of e; | ||||
8913 | case VK_XValue: | ||||
8914 | return Context.getRValueReferenceType(T); | ||||
8915 | // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the | ||||
8916 | // type of e; | ||||
8917 | case VK_LValue: | ||||
8918 | return Context.getLValueReferenceType(T); | ||||
8919 | // - otherwise, decltype(e) is the type of e. | ||||
8920 | case VK_PRValue: | ||||
8921 | return T; | ||||
8922 | } | ||||
8923 | llvm_unreachable("Unknown value kind")__builtin_unreachable(); | ||||
8924 | } | ||||
8925 | |||||
8926 | /// getDecltypeForExpr - Given an expr, will return the decltype for | ||||
8927 | /// that expression, according to the rules in C++11 | ||||
8928 | /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18. | ||||
8929 | static QualType getDecltypeForExpr(Sema &S, Expr *E) { | ||||
8930 | if (E->isTypeDependent()) | ||||
8931 | return S.Context.DependentTy; | ||||
8932 | |||||
8933 | Expr *IDExpr = E; | ||||
8934 | if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E)) | ||||
8935 | IDExpr = ImplCastExpr->getSubExpr(); | ||||
8936 | |||||
8937 | // C++11 [dcl.type.simple]p4: | ||||
8938 | // The type denoted by decltype(e) is defined as follows: | ||||
8939 | |||||
8940 | // C++20: | ||||
8941 | // - if E is an unparenthesized id-expression naming a non-type | ||||
8942 | // template-parameter (13.2), decltype(E) is the type of the | ||||
8943 | // template-parameter after performing any necessary type deduction | ||||
8944 | // Note that this does not pick up the implicit 'const' for a template | ||||
8945 | // parameter object. This rule makes no difference before C++20 so we apply | ||||
8946 | // it unconditionally. | ||||
8947 | if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr)) | ||||
8948 | return SNTTPE->getParameterType(S.Context); | ||||
8949 | |||||
8950 | // - if e is an unparenthesized id-expression or an unparenthesized class | ||||
8951 | // member access (5.2.5), decltype(e) is the type of the entity named | ||||
8952 | // by e. If there is no such entity, or if e names a set of overloaded | ||||
8953 | // functions, the program is ill-formed; | ||||
8954 | // | ||||
8955 | // We apply the same rules for Objective-C ivar and property references. | ||||
8956 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(IDExpr)) { | ||||
8957 | const ValueDecl *VD = DRE->getDecl(); | ||||
8958 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(VD)) | ||||
8959 | return TPO->getType().getUnqualifiedType(); | ||||
8960 | return VD->getType(); | ||||
8961 | } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(IDExpr)) { | ||||
8962 | if (const ValueDecl *VD = ME->getMemberDecl()) | ||||
8963 | if (isa<FieldDecl>(VD) || isa<VarDecl>(VD)) | ||||
8964 | return VD->getType(); | ||||
8965 | } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) { | ||||
8966 | return IR->getDecl()->getType(); | ||||
8967 | } else if (const ObjCPropertyRefExpr *PR = | ||||
8968 | dyn_cast<ObjCPropertyRefExpr>(IDExpr)) { | ||||
8969 | if (PR->isExplicitProperty()) | ||||
8970 | return PR->getExplicitProperty()->getType(); | ||||
8971 | } else if (auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) { | ||||
8972 | return PE->getType(); | ||||
8973 | } | ||||
8974 | |||||
8975 | // C++11 [expr.lambda.prim]p18: | ||||
8976 | // Every occurrence of decltype((x)) where x is a possibly | ||||
8977 | // parenthesized id-expression that names an entity of automatic | ||||
8978 | // storage duration is treated as if x were transformed into an | ||||
8979 | // access to a corresponding data member of the closure type that | ||||
8980 | // would have been declared if x were an odr-use of the denoted | ||||
8981 | // entity. | ||||
8982 | using namespace sema; | ||||
8983 | if (S.getCurLambda()) { | ||||
8984 | if (isa<ParenExpr>(IDExpr)) { | ||||
8985 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) { | ||||
8986 | if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { | ||||
8987 | QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation()); | ||||
8988 | if (!T.isNull()) | ||||
8989 | return S.Context.getLValueReferenceType(T); | ||||
8990 | } | ||||
8991 | } | ||||
8992 | } | ||||
8993 | } | ||||
8994 | |||||
8995 | return S.getDecltypeForParenthesizedExpr(E); | ||||
8996 | } | ||||
8997 | |||||
8998 | QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc, | ||||
8999 | bool AsUnevaluated) { | ||||
9000 | assert(!E->hasPlaceholderType() && "unexpected placeholder")((void)0); | ||||
9001 | |||||
9002 | if (AsUnevaluated && CodeSynthesisContexts.empty() && | ||||
9003 | !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) { | ||||
9004 | // The expression operand for decltype is in an unevaluated expression | ||||
9005 | // context, so side effects could result in unintended consequences. | ||||
9006 | // Exclude instantiation-dependent expressions, because 'decltype' is often | ||||
9007 | // used to build SFINAE gadgets. | ||||
9008 | Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); | ||||
9009 | } | ||||
9010 | |||||
9011 | return Context.getDecltypeType(E, getDecltypeForExpr(*this, E)); | ||||
9012 | } | ||||
9013 | |||||
9014 | QualType Sema::BuildUnaryTransformType(QualType BaseType, | ||||
9015 | UnaryTransformType::UTTKind UKind, | ||||
9016 | SourceLocation Loc) { | ||||
9017 | switch (UKind) { | ||||
9018 | case UnaryTransformType::EnumUnderlyingType: | ||||
9019 | if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) { | ||||
9020 | Diag(Loc, diag::err_only_enums_have_underlying_types); | ||||
9021 | return QualType(); | ||||
9022 | } else { | ||||
9023 | QualType Underlying = BaseType; | ||||
9024 | if (!BaseType->isDependentType()) { | ||||
9025 | // The enum could be incomplete if we're parsing its definition or | ||||
9026 | // recovering from an error. | ||||
9027 | NamedDecl *FwdDecl = nullptr; | ||||
9028 | if (BaseType->isIncompleteType(&FwdDecl)) { | ||||
9029 | Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType; | ||||
9030 | Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl; | ||||
9031 | return QualType(); | ||||
9032 | } | ||||
9033 | |||||
9034 | EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl(); | ||||
9035 | assert(ED && "EnumType has no EnumDecl")((void)0); | ||||
9036 | |||||
9037 | DiagnoseUseOfDecl(ED, Loc); | ||||
9038 | |||||
9039 | Underlying = ED->getIntegerType(); | ||||
9040 | assert(!Underlying.isNull())((void)0); | ||||
9041 | } | ||||
9042 | return Context.getUnaryTransformType(BaseType, Underlying, | ||||
9043 | UnaryTransformType::EnumUnderlyingType); | ||||
9044 | } | ||||
9045 | } | ||||
9046 | llvm_unreachable("unknown unary transform type")__builtin_unreachable(); | ||||
9047 | } | ||||
9048 | |||||
9049 | QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) { | ||||
9050 | if (!T->isDependentType()) { | ||||
9051 | // FIXME: It isn't entirely clear whether incomplete atomic types | ||||
9052 | // are allowed or not; for simplicity, ban them for the moment. | ||||
9053 | if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0)) | ||||
9054 | return QualType(); | ||||
9055 | |||||
9056 | int DisallowedKind = -1; | ||||
9057 | if (T->isArrayType()) | ||||
9058 | DisallowedKind = 1; | ||||
9059 | else if (T->isFunctionType()) | ||||
9060 | DisallowedKind = 2; | ||||
9061 | else if (T->isReferenceType()) | ||||
9062 | DisallowedKind = 3; | ||||
9063 | else if (T->isAtomicType()) | ||||
9064 | DisallowedKind = 4; | ||||
9065 | else if (T.hasQualifiers()) | ||||
9066 | DisallowedKind = 5; | ||||
9067 | else if (T->isSizelessType()) | ||||
9068 | DisallowedKind = 6; | ||||
9069 | else if (!T.isTriviallyCopyableType(Context)) | ||||
9070 | // Some other non-trivially-copyable type (probably a C++ class) | ||||
9071 | DisallowedKind = 7; | ||||
9072 | else if (T->isExtIntType()) { | ||||
9073 | DisallowedKind = 8; | ||||
9074 | } | ||||
9075 | |||||
9076 | if (DisallowedKind != -1) { | ||||
9077 | Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T; | ||||
9078 | return QualType(); | ||||
9079 | } | ||||
9080 | |||||
9081 | // FIXME: Do we need any handling for ARC here? | ||||
9082 | } | ||||
9083 | |||||
9084 | // Build the pointer type. | ||||
9085 | return Context.getAtomicType(T); | ||||
9086 | } |
1 | //===- Type.h - C Language Family Type Representation -----------*- C++ -*-===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | /// \file | ||||
10 | /// C Language Family Type Representation | ||||
11 | /// | ||||
12 | /// This file defines the clang::Type interface and subclasses, used to | ||||
13 | /// represent types for languages in the C family. | ||||
14 | // | ||||
15 | //===----------------------------------------------------------------------===// | ||||
16 | |||||
17 | #ifndef LLVM_CLANG_AST_TYPE_H | ||||
18 | #define LLVM_CLANG_AST_TYPE_H | ||||
19 | |||||
20 | #include "clang/AST/DependenceFlags.h" | ||||
21 | #include "clang/AST/NestedNameSpecifier.h" | ||||
22 | #include "clang/AST/TemplateName.h" | ||||
23 | #include "clang/Basic/AddressSpaces.h" | ||||
24 | #include "clang/Basic/AttrKinds.h" | ||||
25 | #include "clang/Basic/Diagnostic.h" | ||||
26 | #include "clang/Basic/ExceptionSpecificationType.h" | ||||
27 | #include "clang/Basic/LLVM.h" | ||||
28 | #include "clang/Basic/Linkage.h" | ||||
29 | #include "clang/Basic/PartialDiagnostic.h" | ||||
30 | #include "clang/Basic/SourceLocation.h" | ||||
31 | #include "clang/Basic/Specifiers.h" | ||||
32 | #include "clang/Basic/Visibility.h" | ||||
33 | #include "llvm/ADT/APInt.h" | ||||
34 | #include "llvm/ADT/APSInt.h" | ||||
35 | #include "llvm/ADT/ArrayRef.h" | ||||
36 | #include "llvm/ADT/FoldingSet.h" | ||||
37 | #include "llvm/ADT/None.h" | ||||
38 | #include "llvm/ADT/Optional.h" | ||||
39 | #include "llvm/ADT/PointerIntPair.h" | ||||
40 | #include "llvm/ADT/PointerUnion.h" | ||||
41 | #include "llvm/ADT/StringRef.h" | ||||
42 | #include "llvm/ADT/Twine.h" | ||||
43 | #include "llvm/ADT/iterator_range.h" | ||||
44 | #include "llvm/Support/Casting.h" | ||||
45 | #include "llvm/Support/Compiler.h" | ||||
46 | #include "llvm/Support/ErrorHandling.h" | ||||
47 | #include "llvm/Support/PointerLikeTypeTraits.h" | ||||
48 | #include "llvm/Support/TrailingObjects.h" | ||||
49 | #include "llvm/Support/type_traits.h" | ||||
50 | #include <cassert> | ||||
51 | #include <cstddef> | ||||
52 | #include <cstdint> | ||||
53 | #include <cstring> | ||||
54 | #include <string> | ||||
55 | #include <type_traits> | ||||
56 | #include <utility> | ||||
57 | |||||
58 | namespace clang { | ||||
59 | |||||
60 | class ExtQuals; | ||||
61 | class QualType; | ||||
62 | class ConceptDecl; | ||||
63 | class TagDecl; | ||||
64 | class TemplateParameterList; | ||||
65 | class Type; | ||||
66 | |||||
67 | enum { | ||||
68 | TypeAlignmentInBits = 4, | ||||
69 | TypeAlignment = 1 << TypeAlignmentInBits | ||||
70 | }; | ||||
71 | |||||
72 | namespace serialization { | ||||
73 | template <class T> class AbstractTypeReader; | ||||
74 | template <class T> class AbstractTypeWriter; | ||||
75 | } | ||||
76 | |||||
77 | } // namespace clang | ||||
78 | |||||
79 | namespace llvm { | ||||
80 | |||||
81 | template <typename T> | ||||
82 | struct PointerLikeTypeTraits; | ||||
83 | template<> | ||||
84 | struct PointerLikeTypeTraits< ::clang::Type*> { | ||||
85 | static inline void *getAsVoidPointer(::clang::Type *P) { return P; } | ||||
86 | |||||
87 | static inline ::clang::Type *getFromVoidPointer(void *P) { | ||||
88 | return static_cast< ::clang::Type*>(P); | ||||
89 | } | ||||
90 | |||||
91 | static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits; | ||||
92 | }; | ||||
93 | |||||
94 | template<> | ||||
95 | struct PointerLikeTypeTraits< ::clang::ExtQuals*> { | ||||
96 | static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; } | ||||
97 | |||||
98 | static inline ::clang::ExtQuals *getFromVoidPointer(void *P) { | ||||
99 | return static_cast< ::clang::ExtQuals*>(P); | ||||
100 | } | ||||
101 | |||||
102 | static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits; | ||||
103 | }; | ||||
104 | |||||
105 | } // namespace llvm | ||||
106 | |||||
107 | namespace clang { | ||||
108 | |||||
109 | class ASTContext; | ||||
110 | template <typename> class CanQual; | ||||
111 | class CXXRecordDecl; | ||||
112 | class DeclContext; | ||||
113 | class EnumDecl; | ||||
114 | class Expr; | ||||
115 | class ExtQualsTypeCommonBase; | ||||
116 | class FunctionDecl; | ||||
117 | class IdentifierInfo; | ||||
118 | class NamedDecl; | ||||
119 | class ObjCInterfaceDecl; | ||||
120 | class ObjCProtocolDecl; | ||||
121 | class ObjCTypeParamDecl; | ||||
122 | struct PrintingPolicy; | ||||
123 | class RecordDecl; | ||||
124 | class Stmt; | ||||
125 | class TagDecl; | ||||
126 | class TemplateArgument; | ||||
127 | class TemplateArgumentListInfo; | ||||
128 | class TemplateArgumentLoc; | ||||
129 | class TemplateTypeParmDecl; | ||||
130 | class TypedefNameDecl; | ||||
131 | class UnresolvedUsingTypenameDecl; | ||||
132 | |||||
133 | using CanQualType = CanQual<Type>; | ||||
134 | |||||
135 | // Provide forward declarations for all of the *Type classes. | ||||
136 | #define TYPE(Class, Base) class Class##Type; | ||||
137 | #include "clang/AST/TypeNodes.inc" | ||||
138 | |||||
139 | /// The collection of all-type qualifiers we support. | ||||
140 | /// Clang supports five independent qualifiers: | ||||
141 | /// * C99: const, volatile, and restrict | ||||
142 | /// * MS: __unaligned | ||||
143 | /// * Embedded C (TR18037): address spaces | ||||
144 | /// * Objective C: the GC attributes (none, weak, or strong) | ||||
145 | class Qualifiers { | ||||
146 | public: | ||||
147 | enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ. | ||||
148 | Const = 0x1, | ||||
149 | Restrict = 0x2, | ||||
150 | Volatile = 0x4, | ||||
151 | CVRMask = Const | Volatile | Restrict | ||||
152 | }; | ||||
153 | |||||
154 | enum GC { | ||||
155 | GCNone = 0, | ||||
156 | Weak, | ||||
157 | Strong | ||||
158 | }; | ||||
159 | |||||
160 | enum ObjCLifetime { | ||||
161 | /// There is no lifetime qualification on this type. | ||||
162 | OCL_None, | ||||
163 | |||||
164 | /// This object can be modified without requiring retains or | ||||
165 | /// releases. | ||||
166 | OCL_ExplicitNone, | ||||
167 | |||||
168 | /// Assigning into this object requires the old value to be | ||||
169 | /// released and the new value to be retained. The timing of the | ||||
170 | /// release of the old value is inexact: it may be moved to | ||||
171 | /// immediately after the last known point where the value is | ||||
172 | /// live. | ||||
173 | OCL_Strong, | ||||
174 | |||||
175 | /// Reading or writing from this object requires a barrier call. | ||||
176 | OCL_Weak, | ||||
177 | |||||
178 | /// Assigning into this object requires a lifetime extension. | ||||
179 | OCL_Autoreleasing | ||||
180 | }; | ||||
181 | |||||
182 | enum { | ||||
183 | /// The maximum supported address space number. | ||||
184 | /// 23 bits should be enough for anyone. | ||||
185 | MaxAddressSpace = 0x7fffffu, | ||||
186 | |||||
187 | /// The width of the "fast" qualifier mask. | ||||
188 | FastWidth = 3, | ||||
189 | |||||
190 | /// The fast qualifier mask. | ||||
191 | FastMask = (1 << FastWidth) - 1 | ||||
192 | }; | ||||
193 | |||||
194 | /// Returns the common set of qualifiers while removing them from | ||||
195 | /// the given sets. | ||||
196 | static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) { | ||||
197 | // If both are only CVR-qualified, bit operations are sufficient. | ||||
198 | if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) { | ||||
199 | Qualifiers Q; | ||||
200 | Q.Mask = L.Mask & R.Mask; | ||||
201 | L.Mask &= ~Q.Mask; | ||||
202 | R.Mask &= ~Q.Mask; | ||||
203 | return Q; | ||||
204 | } | ||||
205 | |||||
206 | Qualifiers Q; | ||||
207 | unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers(); | ||||
208 | Q.addCVRQualifiers(CommonCRV); | ||||
209 | L.removeCVRQualifiers(CommonCRV); | ||||
210 | R.removeCVRQualifiers(CommonCRV); | ||||
211 | |||||
212 | if (L.getObjCGCAttr() == R.getObjCGCAttr()) { | ||||
213 | Q.setObjCGCAttr(L.getObjCGCAttr()); | ||||
214 | L.removeObjCGCAttr(); | ||||
215 | R.removeObjCGCAttr(); | ||||
216 | } | ||||
217 | |||||
218 | if (L.getObjCLifetime() == R.getObjCLifetime()) { | ||||
219 | Q.setObjCLifetime(L.getObjCLifetime()); | ||||
220 | L.removeObjCLifetime(); | ||||
221 | R.removeObjCLifetime(); | ||||
222 | } | ||||
223 | |||||
224 | if (L.getAddressSpace() == R.getAddressSpace()) { | ||||
225 | Q.setAddressSpace(L.getAddressSpace()); | ||||
226 | L.removeAddressSpace(); | ||||
227 | R.removeAddressSpace(); | ||||
228 | } | ||||
229 | return Q; | ||||
230 | } | ||||
231 | |||||
232 | static Qualifiers fromFastMask(unsigned Mask) { | ||||
233 | Qualifiers Qs; | ||||
234 | Qs.addFastQualifiers(Mask); | ||||
235 | return Qs; | ||||
236 | } | ||||
237 | |||||
238 | static Qualifiers fromCVRMask(unsigned CVR) { | ||||
239 | Qualifiers Qs; | ||||
240 | Qs.addCVRQualifiers(CVR); | ||||
241 | return Qs; | ||||
242 | } | ||||
243 | |||||
244 | static Qualifiers fromCVRUMask(unsigned CVRU) { | ||||
245 | Qualifiers Qs; | ||||
246 | Qs.addCVRUQualifiers(CVRU); | ||||
247 | return Qs; | ||||
248 | } | ||||
249 | |||||
250 | // Deserialize qualifiers from an opaque representation. | ||||
251 | static Qualifiers fromOpaqueValue(unsigned opaque) { | ||||
252 | Qualifiers Qs; | ||||
253 | Qs.Mask = opaque; | ||||
254 | return Qs; | ||||
255 | } | ||||
256 | |||||
257 | // Serialize these qualifiers into an opaque representation. | ||||
258 | unsigned getAsOpaqueValue() const { | ||||
259 | return Mask; | ||||
260 | } | ||||
261 | |||||
262 | bool hasConst() const { return Mask & Const; } | ||||
263 | bool hasOnlyConst() const { return Mask == Const; } | ||||
264 | void removeConst() { Mask &= ~Const; } | ||||
265 | void addConst() { Mask |= Const; } | ||||
266 | |||||
267 | bool hasVolatile() const { return Mask & Volatile; } | ||||
268 | bool hasOnlyVolatile() const { return Mask == Volatile; } | ||||
269 | void removeVolatile() { Mask &= ~Volatile; } | ||||
270 | void addVolatile() { Mask |= Volatile; } | ||||
271 | |||||
272 | bool hasRestrict() const { return Mask & Restrict; } | ||||
273 | bool hasOnlyRestrict() const { return Mask == Restrict; } | ||||
274 | void removeRestrict() { Mask &= ~Restrict; } | ||||
275 | void addRestrict() { Mask |= Restrict; } | ||||
276 | |||||
277 | bool hasCVRQualifiers() const { return getCVRQualifiers(); } | ||||
278 | unsigned getCVRQualifiers() const { return Mask & CVRMask; } | ||||
279 | unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); } | ||||
280 | |||||
281 | void setCVRQualifiers(unsigned mask) { | ||||
282 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); | ||||
283 | Mask = (Mask & ~CVRMask) | mask; | ||||
284 | } | ||||
285 | void removeCVRQualifiers(unsigned mask) { | ||||
286 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); | ||||
287 | Mask &= ~mask; | ||||
288 | } | ||||
289 | void removeCVRQualifiers() { | ||||
290 | removeCVRQualifiers(CVRMask); | ||||
291 | } | ||||
292 | void addCVRQualifiers(unsigned mask) { | ||||
293 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); | ||||
294 | Mask |= mask; | ||||
295 | } | ||||
296 | void addCVRUQualifiers(unsigned mask) { | ||||
297 | assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((void)0); | ||||
298 | Mask |= mask; | ||||
299 | } | ||||
300 | |||||
301 | bool hasUnaligned() const { return Mask & UMask; } | ||||
302 | void setUnaligned(bool flag) { | ||||
303 | Mask = (Mask & ~UMask) | (flag ? UMask : 0); | ||||
304 | } | ||||
305 | void removeUnaligned() { Mask &= ~UMask; } | ||||
306 | void addUnaligned() { Mask |= UMask; } | ||||
307 | |||||
308 | bool hasObjCGCAttr() const { return Mask & GCAttrMask; } | ||||
309 | GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); } | ||||
310 | void setObjCGCAttr(GC type) { | ||||
311 | Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift); | ||||
312 | } | ||||
313 | void removeObjCGCAttr() { setObjCGCAttr(GCNone); } | ||||
314 | void addObjCGCAttr(GC type) { | ||||
315 | assert(type)((void)0); | ||||
316 | setObjCGCAttr(type); | ||||
317 | } | ||||
318 | Qualifiers withoutObjCGCAttr() const { | ||||
319 | Qualifiers qs = *this; | ||||
320 | qs.removeObjCGCAttr(); | ||||
321 | return qs; | ||||
322 | } | ||||
323 | Qualifiers withoutObjCLifetime() const { | ||||
324 | Qualifiers qs = *this; | ||||
325 | qs.removeObjCLifetime(); | ||||
326 | return qs; | ||||
327 | } | ||||
328 | Qualifiers withoutAddressSpace() const { | ||||
329 | Qualifiers qs = *this; | ||||
330 | qs.removeAddressSpace(); | ||||
331 | return qs; | ||||
332 | } | ||||
333 | |||||
334 | bool hasObjCLifetime() const { return Mask & LifetimeMask; } | ||||
335 | ObjCLifetime getObjCLifetime() const { | ||||
336 | return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift); | ||||
337 | } | ||||
338 | void setObjCLifetime(ObjCLifetime type) { | ||||
339 | Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift); | ||||
340 | } | ||||
341 | void removeObjCLifetime() { setObjCLifetime(OCL_None); } | ||||
342 | void addObjCLifetime(ObjCLifetime type) { | ||||
343 | assert(type)((void)0); | ||||
344 | assert(!hasObjCLifetime())((void)0); | ||||
345 | Mask |= (type << LifetimeShift); | ||||
346 | } | ||||
347 | |||||
348 | /// True if the lifetime is neither None or ExplicitNone. | ||||
349 | bool hasNonTrivialObjCLifetime() const { | ||||
350 | ObjCLifetime lifetime = getObjCLifetime(); | ||||
351 | return (lifetime > OCL_ExplicitNone); | ||||
352 | } | ||||
353 | |||||
354 | /// True if the lifetime is either strong or weak. | ||||
355 | bool hasStrongOrWeakObjCLifetime() const { | ||||
356 | ObjCLifetime lifetime = getObjCLifetime(); | ||||
357 | return (lifetime == OCL_Strong || lifetime == OCL_Weak); | ||||
358 | } | ||||
359 | |||||
360 | bool hasAddressSpace() const { return Mask & AddressSpaceMask; } | ||||
361 | LangAS getAddressSpace() const { | ||||
362 | return static_cast<LangAS>(Mask >> AddressSpaceShift); | ||||
363 | } | ||||
364 | bool hasTargetSpecificAddressSpace() const { | ||||
365 | return isTargetAddressSpace(getAddressSpace()); | ||||
366 | } | ||||
367 | /// Get the address space attribute value to be printed by diagnostics. | ||||
368 | unsigned getAddressSpaceAttributePrintValue() const { | ||||
369 | auto Addr = getAddressSpace(); | ||||
370 | // This function is not supposed to be used with language specific | ||||
371 | // address spaces. If that happens, the diagnostic message should consider | ||||
372 | // printing the QualType instead of the address space value. | ||||
373 | assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((void)0); | ||||
374 | if (Addr != LangAS::Default) | ||||
375 | return toTargetAddressSpace(Addr); | ||||
376 | // TODO: The diagnostic messages where Addr may be 0 should be fixed | ||||
377 | // since it cannot differentiate the situation where 0 denotes the default | ||||
378 | // address space or user specified __attribute__((address_space(0))). | ||||
379 | return 0; | ||||
380 | } | ||||
381 | void setAddressSpace(LangAS space) { | ||||
382 | assert((unsigned)space <= MaxAddressSpace)((void)0); | ||||
383 | Mask = (Mask & ~AddressSpaceMask) | ||||
384 | | (((uint32_t) space) << AddressSpaceShift); | ||||
385 | } | ||||
386 | void removeAddressSpace() { setAddressSpace(LangAS::Default); } | ||||
387 | void addAddressSpace(LangAS space) { | ||||
388 | assert(space != LangAS::Default)((void)0); | ||||
389 | setAddressSpace(space); | ||||
390 | } | ||||
391 | |||||
392 | // Fast qualifiers are those that can be allocated directly | ||||
393 | // on a QualType object. | ||||
394 | bool hasFastQualifiers() const { return getFastQualifiers(); } | ||||
395 | unsigned getFastQualifiers() const { return Mask & FastMask; } | ||||
396 | void setFastQualifiers(unsigned mask) { | ||||
397 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); | ||||
398 | Mask = (Mask & ~FastMask) | mask; | ||||
399 | } | ||||
400 | void removeFastQualifiers(unsigned mask) { | ||||
401 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); | ||||
402 | Mask &= ~mask; | ||||
403 | } | ||||
404 | void removeFastQualifiers() { | ||||
405 | removeFastQualifiers(FastMask); | ||||
406 | } | ||||
407 | void addFastQualifiers(unsigned mask) { | ||||
408 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); | ||||
409 | Mask |= mask; | ||||
410 | } | ||||
411 | |||||
412 | /// Return true if the set contains any qualifiers which require an ExtQuals | ||||
413 | /// node to be allocated. | ||||
414 | bool hasNonFastQualifiers() const { return Mask & ~FastMask; } | ||||
415 | Qualifiers getNonFastQualifiers() const { | ||||
416 | Qualifiers Quals = *this; | ||||
417 | Quals.setFastQualifiers(0); | ||||
418 | return Quals; | ||||
419 | } | ||||
420 | |||||
421 | /// Return true if the set contains any qualifiers. | ||||
422 | bool hasQualifiers() const { return Mask; } | ||||
423 | bool empty() const { return !Mask; } | ||||
424 | |||||
425 | /// Add the qualifiers from the given set to this set. | ||||
426 | void addQualifiers(Qualifiers Q) { | ||||
427 | // If the other set doesn't have any non-boolean qualifiers, just | ||||
428 | // bit-or it in. | ||||
429 | if (!(Q.Mask & ~CVRMask)) | ||||
430 | Mask |= Q.Mask; | ||||
431 | else { | ||||
432 | Mask |= (Q.Mask & CVRMask); | ||||
433 | if (Q.hasAddressSpace()) | ||||
434 | addAddressSpace(Q.getAddressSpace()); | ||||
435 | if (Q.hasObjCGCAttr()) | ||||
436 | addObjCGCAttr(Q.getObjCGCAttr()); | ||||
437 | if (Q.hasObjCLifetime()) | ||||
438 | addObjCLifetime(Q.getObjCLifetime()); | ||||
439 | } | ||||
440 | } | ||||
441 | |||||
442 | /// Remove the qualifiers from the given set from this set. | ||||
443 | void removeQualifiers(Qualifiers Q) { | ||||
444 | // If the other set doesn't have any non-boolean qualifiers, just | ||||
445 | // bit-and the inverse in. | ||||
446 | if (!(Q.Mask & ~CVRMask)) | ||||
447 | Mask &= ~Q.Mask; | ||||
448 | else { | ||||
449 | Mask &= ~(Q.Mask & CVRMask); | ||||
450 | if (getObjCGCAttr() == Q.getObjCGCAttr()) | ||||
451 | removeObjCGCAttr(); | ||||
452 | if (getObjCLifetime() == Q.getObjCLifetime()) | ||||
453 | removeObjCLifetime(); | ||||
454 | if (getAddressSpace() == Q.getAddressSpace()) | ||||
455 | removeAddressSpace(); | ||||
456 | } | ||||
457 | } | ||||
458 | |||||
459 | /// Add the qualifiers from the given set to this set, given that | ||||
460 | /// they don't conflict. | ||||
461 | void addConsistentQualifiers(Qualifiers qs) { | ||||
462 | assert(getAddressSpace() == qs.getAddressSpace() ||((void)0) | ||||
463 | !hasAddressSpace() || !qs.hasAddressSpace())((void)0); | ||||
464 | assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((void)0) | ||||
465 | !hasObjCGCAttr() || !qs.hasObjCGCAttr())((void)0); | ||||
466 | assert(getObjCLifetime() == qs.getObjCLifetime() ||((void)0) | ||||
467 | !hasObjCLifetime() || !qs.hasObjCLifetime())((void)0); | ||||
468 | Mask |= qs.Mask; | ||||
469 | } | ||||
470 | |||||
471 | /// Returns true if address space A is equal to or a superset of B. | ||||
472 | /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of | ||||
473 | /// overlapping address spaces. | ||||
474 | /// CL1.1 or CL1.2: | ||||
475 | /// every address space is a superset of itself. | ||||
476 | /// CL2.0 adds: | ||||
477 | /// __generic is a superset of any address space except for __constant. | ||||
478 | static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) { | ||||
479 | // Address spaces must match exactly. | ||||
480 | return A == B || | ||||
481 | // Otherwise in OpenCLC v2.0 s6.5.5: every address space except | ||||
482 | // for __constant can be used as __generic. | ||||
483 | (A == LangAS::opencl_generic && B != LangAS::opencl_constant) || | ||||
484 | // We also define global_device and global_host address spaces, | ||||
485 | // to distinguish global pointers allocated on host from pointers | ||||
486 | // allocated on device, which are a subset of __global. | ||||
487 | (A == LangAS::opencl_global && (B == LangAS::opencl_global_device || | ||||
488 | B == LangAS::opencl_global_host)) || | ||||
489 | (A == LangAS::sycl_global && (B == LangAS::sycl_global_device || | ||||
490 | B == LangAS::sycl_global_host)) || | ||||
491 | // Consider pointer size address spaces to be equivalent to default. | ||||
492 | ((isPtrSizeAddressSpace(A) || A == LangAS::Default) && | ||||
493 | (isPtrSizeAddressSpace(B) || B == LangAS::Default)) || | ||||
494 | // Default is a superset of SYCL address spaces. | ||||
495 | (A == LangAS::Default && | ||||
496 | (B == LangAS::sycl_private || B == LangAS::sycl_local || | ||||
497 | B == LangAS::sycl_global || B == LangAS::sycl_global_device || | ||||
498 | B == LangAS::sycl_global_host)); | ||||
499 | } | ||||
500 | |||||
501 | /// Returns true if the address space in these qualifiers is equal to or | ||||
502 | /// a superset of the address space in the argument qualifiers. | ||||
503 | bool isAddressSpaceSupersetOf(Qualifiers other) const { | ||||
504 | return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace()); | ||||
505 | } | ||||
506 | |||||
507 | /// Determines if these qualifiers compatibly include another set. | ||||
508 | /// Generally this answers the question of whether an object with the other | ||||
509 | /// qualifiers can be safely used as an object with these qualifiers. | ||||
510 | bool compatiblyIncludes(Qualifiers other) const { | ||||
511 | return isAddressSpaceSupersetOf(other) && | ||||
512 | // ObjC GC qualifiers can match, be added, or be removed, but can't | ||||
513 | // be changed. | ||||
514 | (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() || | ||||
515 | !other.hasObjCGCAttr()) && | ||||
516 | // ObjC lifetime qualifiers must match exactly. | ||||
517 | getObjCLifetime() == other.getObjCLifetime() && | ||||
518 | // CVR qualifiers may subset. | ||||
519 | (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) && | ||||
520 | // U qualifier may superset. | ||||
521 | (!other.hasUnaligned() || hasUnaligned()); | ||||
522 | } | ||||
523 | |||||
524 | /// Determines if these qualifiers compatibly include another set of | ||||
525 | /// qualifiers from the narrow perspective of Objective-C ARC lifetime. | ||||
526 | /// | ||||
527 | /// One set of Objective-C lifetime qualifiers compatibly includes the other | ||||
528 | /// if the lifetime qualifiers match, or if both are non-__weak and the | ||||
529 | /// including set also contains the 'const' qualifier, or both are non-__weak | ||||
530 | /// and one is None (which can only happen in non-ARC modes). | ||||
531 | bool compatiblyIncludesObjCLifetime(Qualifiers other) const { | ||||
532 | if (getObjCLifetime() == other.getObjCLifetime()) | ||||
533 | return true; | ||||
534 | |||||
535 | if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak) | ||||
536 | return false; | ||||
537 | |||||
538 | if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None) | ||||
539 | return true; | ||||
540 | |||||
541 | return hasConst(); | ||||
542 | } | ||||
543 | |||||
544 | /// Determine whether this set of qualifiers is a strict superset of | ||||
545 | /// another set of qualifiers, not considering qualifier compatibility. | ||||
546 | bool isStrictSupersetOf(Qualifiers Other) const; | ||||
547 | |||||
548 | bool operator==(Qualifiers Other) const { return Mask == Other.Mask; } | ||||
549 | bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; } | ||||
550 | |||||
551 | explicit operator bool() const { return hasQualifiers(); } | ||||
552 | |||||
553 | Qualifiers &operator+=(Qualifiers R) { | ||||
554 | addQualifiers(R); | ||||
555 | return *this; | ||||
556 | } | ||||
557 | |||||
558 | // Union two qualifier sets. If an enumerated qualifier appears | ||||
559 | // in both sets, use the one from the right. | ||||
560 | friend Qualifiers operator+(Qualifiers L, Qualifiers R) { | ||||
561 | L += R; | ||||
562 | return L; | ||||
563 | } | ||||
564 | |||||
565 | Qualifiers &operator-=(Qualifiers R) { | ||||
566 | removeQualifiers(R); | ||||
567 | return *this; | ||||
568 | } | ||||
569 | |||||
570 | /// Compute the difference between two qualifier sets. | ||||
571 | friend Qualifiers operator-(Qualifiers L, Qualifiers R) { | ||||
572 | L -= R; | ||||
573 | return L; | ||||
574 | } | ||||
575 | |||||
576 | std::string getAsString() const; | ||||
577 | std::string getAsString(const PrintingPolicy &Policy) const; | ||||
578 | |||||
579 | static std::string getAddrSpaceAsString(LangAS AS); | ||||
580 | |||||
581 | bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const; | ||||
582 | void print(raw_ostream &OS, const PrintingPolicy &Policy, | ||||
583 | bool appendSpaceIfNonEmpty = false) const; | ||||
584 | |||||
585 | void Profile(llvm::FoldingSetNodeID &ID) const { | ||||
586 | ID.AddInteger(Mask); | ||||
587 | } | ||||
588 | |||||
589 | private: | ||||
590 | // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31| | ||||
591 | // |C R V|U|GCAttr|Lifetime|AddressSpace| | ||||
592 | uint32_t Mask = 0; | ||||
593 | |||||
594 | static const uint32_t UMask = 0x8; | ||||
595 | static const uint32_t UShift = 3; | ||||
596 | static const uint32_t GCAttrMask = 0x30; | ||||
597 | static const uint32_t GCAttrShift = 4; | ||||
598 | static const uint32_t LifetimeMask = 0x1C0; | ||||
599 | static const uint32_t LifetimeShift = 6; | ||||
600 | static const uint32_t AddressSpaceMask = | ||||
601 | ~(CVRMask | UMask | GCAttrMask | LifetimeMask); | ||||
602 | static const uint32_t AddressSpaceShift = 9; | ||||
603 | }; | ||||
604 | |||||
605 | /// A std::pair-like structure for storing a qualified type split | ||||
606 | /// into its local qualifiers and its locally-unqualified type. | ||||
607 | struct SplitQualType { | ||||
608 | /// The locally-unqualified type. | ||||
609 | const Type *Ty = nullptr; | ||||
610 | |||||
611 | /// The local qualifiers. | ||||
612 | Qualifiers Quals; | ||||
613 | |||||
614 | SplitQualType() = default; | ||||
615 | SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {} | ||||
616 | |||||
617 | SplitQualType getSingleStepDesugaredType() const; // end of this file | ||||
618 | |||||
619 | // Make std::tie work. | ||||
620 | std::pair<const Type *,Qualifiers> asPair() const { | ||||
621 | return std::pair<const Type *, Qualifiers>(Ty, Quals); | ||||
622 | } | ||||
623 | |||||
624 | friend bool operator==(SplitQualType a, SplitQualType b) { | ||||
625 | return a.Ty == b.Ty && a.Quals == b.Quals; | ||||
626 | } | ||||
627 | friend bool operator!=(SplitQualType a, SplitQualType b) { | ||||
628 | return a.Ty != b.Ty || a.Quals != b.Quals; | ||||
629 | } | ||||
630 | }; | ||||
631 | |||||
632 | /// The kind of type we are substituting Objective-C type arguments into. | ||||
633 | /// | ||||
634 | /// The kind of substitution affects the replacement of type parameters when | ||||
635 | /// no concrete type information is provided, e.g., when dealing with an | ||||
636 | /// unspecialized type. | ||||
637 | enum class ObjCSubstitutionContext { | ||||
638 | /// An ordinary type. | ||||
639 | Ordinary, | ||||
640 | |||||
641 | /// The result type of a method or function. | ||||
642 | Result, | ||||
643 | |||||
644 | /// The parameter type of a method or function. | ||||
645 | Parameter, | ||||
646 | |||||
647 | /// The type of a property. | ||||
648 | Property, | ||||
649 | |||||
650 | /// The superclass of a type. | ||||
651 | Superclass, | ||||
652 | }; | ||||
653 | |||||
654 | /// A (possibly-)qualified type. | ||||
655 | /// | ||||
656 | /// For efficiency, we don't store CV-qualified types as nodes on their | ||||
657 | /// own: instead each reference to a type stores the qualifiers. This | ||||
658 | /// greatly reduces the number of nodes we need to allocate for types (for | ||||
659 | /// example we only need one for 'int', 'const int', 'volatile int', | ||||
660 | /// 'const volatile int', etc). | ||||
661 | /// | ||||
662 | /// As an added efficiency bonus, instead of making this a pair, we | ||||
663 | /// just store the two bits we care about in the low bits of the | ||||
664 | /// pointer. To handle the packing/unpacking, we make QualType be a | ||||
665 | /// simple wrapper class that acts like a smart pointer. A third bit | ||||
666 | /// indicates whether there are extended qualifiers present, in which | ||||
667 | /// case the pointer points to a special structure. | ||||
668 | class QualType { | ||||
669 | friend class QualifierCollector; | ||||
670 | |||||
671 | // Thankfully, these are efficiently composable. | ||||
672 | llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>, | ||||
673 | Qualifiers::FastWidth> Value; | ||||
674 | |||||
675 | const ExtQuals *getExtQualsUnsafe() const { | ||||
676 | return Value.getPointer().get<const ExtQuals*>(); | ||||
677 | } | ||||
678 | |||||
679 | const Type *getTypePtrUnsafe() const { | ||||
680 | return Value.getPointer().get<const Type*>(); | ||||
681 | } | ||||
682 | |||||
683 | const ExtQualsTypeCommonBase *getCommonPtr() const { | ||||
684 | assert(!isNull() && "Cannot retrieve a NULL type pointer")((void)0); | ||||
685 | auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue()); | ||||
686 | CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1); | ||||
687 | return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal); | ||||
688 | } | ||||
689 | |||||
690 | public: | ||||
691 | QualType() = default; | ||||
692 | QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {} | ||||
693 | QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {} | ||||
694 | |||||
695 | unsigned getLocalFastQualifiers() const { return Value.getInt(); } | ||||
696 | void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); } | ||||
697 | |||||
698 | /// Retrieves a pointer to the underlying (unqualified) type. | ||||
699 | /// | ||||
700 | /// This function requires that the type not be NULL. If the type might be | ||||
701 | /// NULL, use the (slightly less efficient) \c getTypePtrOrNull(). | ||||
702 | const Type *getTypePtr() const; | ||||
703 | |||||
704 | const Type *getTypePtrOrNull() const; | ||||
705 | |||||
706 | /// Retrieves a pointer to the name of the base type. | ||||
707 | const IdentifierInfo *getBaseTypeIdentifier() const; | ||||
708 | |||||
709 | /// Divides a QualType into its unqualified type and a set of local | ||||
710 | /// qualifiers. | ||||
711 | SplitQualType split() const; | ||||
712 | |||||
713 | void *getAsOpaquePtr() const { return Value.getOpaqueValue(); } | ||||
714 | |||||
715 | static QualType getFromOpaquePtr(const void *Ptr) { | ||||
716 | QualType T; | ||||
717 | T.Value.setFromOpaqueValue(const_cast<void*>(Ptr)); | ||||
718 | return T; | ||||
719 | } | ||||
720 | |||||
721 | const Type &operator*() const { | ||||
722 | return *getTypePtr(); | ||||
723 | } | ||||
724 | |||||
725 | const Type *operator->() const { | ||||
726 | return getTypePtr(); | ||||
727 | } | ||||
728 | |||||
729 | bool isCanonical() const; | ||||
730 | bool isCanonicalAsParam() const; | ||||
731 | |||||
732 | /// Return true if this QualType doesn't point to a type yet. | ||||
733 | bool isNull() const { | ||||
734 | return Value.getPointer().isNull(); | ||||
735 | } | ||||
736 | |||||
737 | /// Determine whether this particular QualType instance has the | ||||
738 | /// "const" qualifier set, without looking through typedefs that may have | ||||
739 | /// added "const" at a different level. | ||||
740 | bool isLocalConstQualified() const { | ||||
741 | return (getLocalFastQualifiers() & Qualifiers::Const); | ||||
742 | } | ||||
743 | |||||
744 | /// Determine whether this type is const-qualified. | ||||
745 | bool isConstQualified() const; | ||||
746 | |||||
747 | /// Determine whether this particular QualType instance has the | ||||
748 | /// "restrict" qualifier set, without looking through typedefs that may have | ||||
749 | /// added "restrict" at a different level. | ||||
750 | bool isLocalRestrictQualified() const { | ||||
751 | return (getLocalFastQualifiers() & Qualifiers::Restrict); | ||||
752 | } | ||||
753 | |||||
754 | /// Determine whether this type is restrict-qualified. | ||||
755 | bool isRestrictQualified() const; | ||||
756 | |||||
757 | /// Determine whether this particular QualType instance has the | ||||
758 | /// "volatile" qualifier set, without looking through typedefs that may have | ||||
759 | /// added "volatile" at a different level. | ||||
760 | bool isLocalVolatileQualified() const { | ||||
761 | return (getLocalFastQualifiers() & Qualifiers::Volatile); | ||||
762 | } | ||||
763 | |||||
764 | /// Determine whether this type is volatile-qualified. | ||||
765 | bool isVolatileQualified() const; | ||||
766 | |||||
767 | /// Determine whether this particular QualType instance has any | ||||
768 | /// qualifiers, without looking through any typedefs that might add | ||||
769 | /// qualifiers at a different level. | ||||
770 | bool hasLocalQualifiers() const { | ||||
771 | return getLocalFastQualifiers() || hasLocalNonFastQualifiers(); | ||||
772 | } | ||||
773 | |||||
774 | /// Determine whether this type has any qualifiers. | ||||
775 | bool hasQualifiers() const; | ||||
776 | |||||
777 | /// Determine whether this particular QualType instance has any | ||||
778 | /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType | ||||
779 | /// instance. | ||||
780 | bool hasLocalNonFastQualifiers() const { | ||||
781 | return Value.getPointer().is<const ExtQuals*>(); | ||||
782 | } | ||||
783 | |||||
784 | /// Retrieve the set of qualifiers local to this particular QualType | ||||
785 | /// instance, not including any qualifiers acquired through typedefs or | ||||
786 | /// other sugar. | ||||
787 | Qualifiers getLocalQualifiers() const; | ||||
788 | |||||
789 | /// Retrieve the set of qualifiers applied to this type. | ||||
790 | Qualifiers getQualifiers() const; | ||||
791 | |||||
792 | /// Retrieve the set of CVR (const-volatile-restrict) qualifiers | ||||
793 | /// local to this particular QualType instance, not including any qualifiers | ||||
794 | /// acquired through typedefs or other sugar. | ||||
795 | unsigned getLocalCVRQualifiers() const { | ||||
796 | return getLocalFastQualifiers(); | ||||
797 | } | ||||
798 | |||||
799 | /// Retrieve the set of CVR (const-volatile-restrict) qualifiers | ||||
800 | /// applied to this type. | ||||
801 | unsigned getCVRQualifiers() const; | ||||
802 | |||||
803 | bool isConstant(const ASTContext& Ctx) const { | ||||
804 | return QualType::isConstant(*this, Ctx); | ||||
805 | } | ||||
806 | |||||
807 | /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10). | ||||
808 | bool isPODType(const ASTContext &Context) const; | ||||
809 | |||||
810 | /// Return true if this is a POD type according to the rules of the C++98 | ||||
811 | /// standard, regardless of the current compilation's language. | ||||
812 | bool isCXX98PODType(const ASTContext &Context) const; | ||||
813 | |||||
814 | /// Return true if this is a POD type according to the more relaxed rules | ||||
815 | /// of the C++11 standard, regardless of the current compilation's language. | ||||
816 | /// (C++0x [basic.types]p9). Note that, unlike | ||||
817 | /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account. | ||||
818 | bool isCXX11PODType(const ASTContext &Context) const; | ||||
819 | |||||
820 | /// Return true if this is a trivial type per (C++0x [basic.types]p9) | ||||
821 | bool isTrivialType(const ASTContext &Context) const; | ||||
822 | |||||
823 | /// Return true if this is a trivially copyable type (C++0x [basic.types]p9) | ||||
824 | bool isTriviallyCopyableType(const ASTContext &Context) const; | ||||
825 | |||||
826 | |||||
827 | /// Returns true if it is a class and it might be dynamic. | ||||
828 | bool mayBeDynamicClass() const; | ||||
829 | |||||
830 | /// Returns true if it is not a class or if the class might not be dynamic. | ||||
831 | bool mayBeNotDynamicClass() const; | ||||
832 | |||||
833 | // Don't promise in the API that anything besides 'const' can be | ||||
834 | // easily added. | ||||
835 | |||||
836 | /// Add the `const` type qualifier to this QualType. | ||||
837 | void addConst() { | ||||
838 | addFastQualifiers(Qualifiers::Const); | ||||
839 | } | ||||
840 | QualType withConst() const { | ||||
841 | return withFastQualifiers(Qualifiers::Const); | ||||
842 | } | ||||
843 | |||||
844 | /// Add the `volatile` type qualifier to this QualType. | ||||
845 | void addVolatile() { | ||||
846 | addFastQualifiers(Qualifiers::Volatile); | ||||
847 | } | ||||
848 | QualType withVolatile() const { | ||||
849 | return withFastQualifiers(Qualifiers::Volatile); | ||||
850 | } | ||||
851 | |||||
852 | /// Add the `restrict` qualifier to this QualType. | ||||
853 | void addRestrict() { | ||||
854 | addFastQualifiers(Qualifiers::Restrict); | ||||
855 | } | ||||
856 | QualType withRestrict() const { | ||||
857 | return withFastQualifiers(Qualifiers::Restrict); | ||||
858 | } | ||||
859 | |||||
860 | QualType withCVRQualifiers(unsigned CVR) const { | ||||
861 | return withFastQualifiers(CVR); | ||||
862 | } | ||||
863 | |||||
864 | void addFastQualifiers(unsigned TQs) { | ||||
865 | assert(!(TQs & ~Qualifiers::FastMask)((void)0) | ||||
866 | && "non-fast qualifier bits set in mask!")((void)0); | ||||
867 | Value.setInt(Value.getInt() | TQs); | ||||
868 | } | ||||
869 | |||||
870 | void removeLocalConst(); | ||||
871 | void removeLocalVolatile(); | ||||
872 | void removeLocalRestrict(); | ||||
873 | void removeLocalCVRQualifiers(unsigned Mask); | ||||
874 | |||||
875 | void removeLocalFastQualifiers() { Value.setInt(0); } | ||||
876 | void removeLocalFastQualifiers(unsigned Mask) { | ||||
877 | assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((void)0); | ||||
878 | Value.setInt(Value.getInt() & ~Mask); | ||||
879 | } | ||||
880 | |||||
881 | // Creates a type with the given qualifiers in addition to any | ||||
882 | // qualifiers already on this type. | ||||
883 | QualType withFastQualifiers(unsigned TQs) const { | ||||
884 | QualType T = *this; | ||||
885 | T.addFastQualifiers(TQs); | ||||
886 | return T; | ||||
887 | } | ||||
888 | |||||
889 | // Creates a type with exactly the given fast qualifiers, removing | ||||
890 | // any existing fast qualifiers. | ||||
891 | QualType withExactLocalFastQualifiers(unsigned TQs) const { | ||||
892 | return withoutLocalFastQualifiers().withFastQualifiers(TQs); | ||||
893 | } | ||||
894 | |||||
895 | // Removes fast qualifiers, but leaves any extended qualifiers in place. | ||||
896 | QualType withoutLocalFastQualifiers() const { | ||||
897 | QualType T = *this; | ||||
898 | T.removeLocalFastQualifiers(); | ||||
899 | return T; | ||||
900 | } | ||||
901 | |||||
902 | QualType getCanonicalType() const; | ||||
903 | |||||
904 | /// Return this type with all of the instance-specific qualifiers | ||||
905 | /// removed, but without removing any qualifiers that may have been applied | ||||
906 | /// through typedefs. | ||||
907 | QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); } | ||||
908 | |||||
909 | /// Retrieve the unqualified variant of the given type, | ||||
910 | /// removing as little sugar as possible. | ||||
911 | /// | ||||
912 | /// This routine looks through various kinds of sugar to find the | ||||
913 | /// least-desugared type that is unqualified. For example, given: | ||||
914 | /// | ||||
915 | /// \code | ||||
916 | /// typedef int Integer; | ||||
917 | /// typedef const Integer CInteger; | ||||
918 | /// typedef CInteger DifferenceType; | ||||
919 | /// \endcode | ||||
920 | /// | ||||
921 | /// Executing \c getUnqualifiedType() on the type \c DifferenceType will | ||||
922 | /// desugar until we hit the type \c Integer, which has no qualifiers on it. | ||||
923 | /// | ||||
924 | /// The resulting type might still be qualified if it's sugar for an array | ||||
925 | /// type. To strip qualifiers even from within a sugared array type, use | ||||
926 | /// ASTContext::getUnqualifiedArrayType. | ||||
927 | inline QualType getUnqualifiedType() const; | ||||
928 | |||||
929 | /// Retrieve the unqualified variant of the given type, removing as little | ||||
930 | /// sugar as possible. | ||||
931 | /// | ||||
932 | /// Like getUnqualifiedType(), but also returns the set of | ||||
933 | /// qualifiers that were built up. | ||||
934 | /// | ||||
935 | /// The resulting type might still be qualified if it's sugar for an array | ||||
936 | /// type. To strip qualifiers even from within a sugared array type, use | ||||
937 | /// ASTContext::getUnqualifiedArrayType. | ||||
938 | inline SplitQualType getSplitUnqualifiedType() const; | ||||
939 | |||||
940 | /// Determine whether this type is more qualified than the other | ||||
941 | /// given type, requiring exact equality for non-CVR qualifiers. | ||||
942 | bool isMoreQualifiedThan(QualType Other) const; | ||||
943 | |||||
944 | /// Determine whether this type is at least as qualified as the other | ||||
945 | /// given type, requiring exact equality for non-CVR qualifiers. | ||||
946 | bool isAtLeastAsQualifiedAs(QualType Other) const; | ||||
947 | |||||
948 | QualType getNonReferenceType() const; | ||||
949 | |||||
950 | /// Determine the type of a (typically non-lvalue) expression with the | ||||
951 | /// specified result type. | ||||
952 | /// | ||||
953 | /// This routine should be used for expressions for which the return type is | ||||
954 | /// explicitly specified (e.g., in a cast or call) and isn't necessarily | ||||
955 | /// an lvalue. It removes a top-level reference (since there are no | ||||
956 | /// expressions of reference type) and deletes top-level cvr-qualifiers | ||||
957 | /// from non-class types (in C++) or all types (in C). | ||||
958 | QualType getNonLValueExprType(const ASTContext &Context) const; | ||||
959 | |||||
960 | /// Remove an outer pack expansion type (if any) from this type. Used as part | ||||
961 | /// of converting the type of a declaration to the type of an expression that | ||||
962 | /// references that expression. It's meaningless for an expression to have a | ||||
963 | /// pack expansion type. | ||||
964 | QualType getNonPackExpansionType() const; | ||||
965 | |||||
966 | /// Return the specified type with any "sugar" removed from | ||||
967 | /// the type. This takes off typedefs, typeof's etc. If the outer level of | ||||
968 | /// the type is already concrete, it returns it unmodified. This is similar | ||||
969 | /// to getting the canonical type, but it doesn't remove *all* typedefs. For | ||||
970 | /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is | ||||
971 | /// concrete. | ||||
972 | /// | ||||
973 | /// Qualifiers are left in place. | ||||
974 | QualType getDesugaredType(const ASTContext &Context) const { | ||||
975 | return getDesugaredType(*this, Context); | ||||
976 | } | ||||
977 | |||||
978 | SplitQualType getSplitDesugaredType() const { | ||||
979 | return getSplitDesugaredType(*this); | ||||
980 | } | ||||
981 | |||||
982 | /// Return the specified type with one level of "sugar" removed from | ||||
983 | /// the type. | ||||
984 | /// | ||||
985 | /// This routine takes off the first typedef, typeof, etc. If the outer level | ||||
986 | /// of the type is already concrete, it returns it unmodified. | ||||
987 | QualType getSingleStepDesugaredType(const ASTContext &Context) const { | ||||
988 | return getSingleStepDesugaredTypeImpl(*this, Context); | ||||
989 | } | ||||
990 | |||||
991 | /// Returns the specified type after dropping any | ||||
992 | /// outer-level parentheses. | ||||
993 | QualType IgnoreParens() const { | ||||
994 | if (isa<ParenType>(*this)) | ||||
995 | return QualType::IgnoreParens(*this); | ||||
996 | return *this; | ||||
997 | } | ||||
998 | |||||
999 | /// Indicate whether the specified types and qualifiers are identical. | ||||
1000 | friend bool operator==(const QualType &LHS, const QualType &RHS) { | ||||
1001 | return LHS.Value == RHS.Value; | ||||
1002 | } | ||||
1003 | friend bool operator!=(const QualType &LHS, const QualType &RHS) { | ||||
1004 | return LHS.Value != RHS.Value; | ||||
1005 | } | ||||
1006 | friend bool operator<(const QualType &LHS, const QualType &RHS) { | ||||
1007 | return LHS.Value < RHS.Value; | ||||
1008 | } | ||||
1009 | |||||
1010 | static std::string getAsString(SplitQualType split, | ||||
1011 | const PrintingPolicy &Policy) { | ||||
1012 | return getAsString(split.Ty, split.Quals, Policy); | ||||
1013 | } | ||||
1014 | static std::string getAsString(const Type *ty, Qualifiers qs, | ||||
1015 | const PrintingPolicy &Policy); | ||||
1016 | |||||
1017 | std::string getAsString() const; | ||||
1018 | std::string getAsString(const PrintingPolicy &Policy) const; | ||||
1019 | |||||
1020 | void print(raw_ostream &OS, const PrintingPolicy &Policy, | ||||
1021 | const Twine &PlaceHolder = Twine(), | ||||
1022 | unsigned Indentation = 0) const; | ||||
1023 | |||||
1024 | static void print(SplitQualType split, raw_ostream &OS, | ||||
1025 | const PrintingPolicy &policy, const Twine &PlaceHolder, | ||||
1026 | unsigned Indentation = 0) { | ||||
1027 | return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation); | ||||
1028 | } | ||||
1029 | |||||
1030 | static void print(const Type *ty, Qualifiers qs, | ||||
1031 | raw_ostream &OS, const PrintingPolicy &policy, | ||||
1032 | const Twine &PlaceHolder, | ||||
1033 | unsigned Indentation = 0); | ||||
1034 | |||||
1035 | void getAsStringInternal(std::string &Str, | ||||
1036 | const PrintingPolicy &Policy) const; | ||||
1037 | |||||
1038 | static void getAsStringInternal(SplitQualType split, std::string &out, | ||||
1039 | const PrintingPolicy &policy) { | ||||
1040 | return getAsStringInternal(split.Ty, split.Quals, out, policy); | ||||
1041 | } | ||||
1042 | |||||
1043 | static void getAsStringInternal(const Type *ty, Qualifiers qs, | ||||
1044 | std::string &out, | ||||
1045 | const PrintingPolicy &policy); | ||||
1046 | |||||
1047 | class StreamedQualTypeHelper { | ||||
1048 | const QualType &T; | ||||
1049 | const PrintingPolicy &Policy; | ||||
1050 | const Twine &PlaceHolder; | ||||
1051 | unsigned Indentation; | ||||
1052 | |||||
1053 | public: | ||||
1054 | StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy, | ||||
1055 | const Twine &PlaceHolder, unsigned Indentation) | ||||
1056 | : T(T), Policy(Policy), PlaceHolder(PlaceHolder), | ||||
1057 | Indentation(Indentation) {} | ||||
1058 | |||||
1059 | friend raw_ostream &operator<<(raw_ostream &OS, | ||||
1060 | const StreamedQualTypeHelper &SQT) { | ||||
1061 | SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation); | ||||
1062 | return OS; | ||||
1063 | } | ||||
1064 | }; | ||||
1065 | |||||
1066 | StreamedQualTypeHelper stream(const PrintingPolicy &Policy, | ||||
1067 | const Twine &PlaceHolder = Twine(), | ||||
1068 | unsigned Indentation = 0) const { | ||||
1069 | return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation); | ||||
1070 | } | ||||
1071 | |||||
1072 | void dump(const char *s) const; | ||||
1073 | void dump() const; | ||||
1074 | void dump(llvm::raw_ostream &OS, const ASTContext &Context) const; | ||||
1075 | |||||
1076 | void Profile(llvm::FoldingSetNodeID &ID) const { | ||||
1077 | ID.AddPointer(getAsOpaquePtr()); | ||||
1078 | } | ||||
1079 | |||||
1080 | /// Check if this type has any address space qualifier. | ||||
1081 | inline bool hasAddressSpace() const; | ||||
1082 | |||||
1083 | /// Return the address space of this type. | ||||
1084 | inline LangAS getAddressSpace() const; | ||||
1085 | |||||
1086 | /// Returns true if address space qualifiers overlap with T address space | ||||
1087 | /// qualifiers. | ||||
1088 | /// OpenCL C defines conversion rules for pointers to different address spaces | ||||
1089 | /// and notion of overlapping address spaces. | ||||
1090 | /// CL1.1 or CL1.2: | ||||
1091 | /// address spaces overlap iff they are they same. | ||||
1092 | /// OpenCL C v2.0 s6.5.5 adds: | ||||
1093 | /// __generic overlaps with any address space except for __constant. | ||||
1094 | bool isAddressSpaceOverlapping(QualType T) const { | ||||
1095 | Qualifiers Q = getQualifiers(); | ||||
1096 | Qualifiers TQ = T.getQualifiers(); | ||||
1097 | // Address spaces overlap if at least one of them is a superset of another | ||||
1098 | return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q); | ||||
1099 | } | ||||
1100 | |||||
1101 | /// Returns gc attribute of this type. | ||||
1102 | inline Qualifiers::GC getObjCGCAttr() const; | ||||
1103 | |||||
1104 | /// true when Type is objc's weak. | ||||
1105 | bool isObjCGCWeak() const { | ||||
1106 | return getObjCGCAttr() == Qualifiers::Weak; | ||||
1107 | } | ||||
1108 | |||||
1109 | /// true when Type is objc's strong. | ||||
1110 | bool isObjCGCStrong() const { | ||||
1111 | return getObjCGCAttr() == Qualifiers::Strong; | ||||
1112 | } | ||||
1113 | |||||
1114 | /// Returns lifetime attribute of this type. | ||||
1115 | Qualifiers::ObjCLifetime getObjCLifetime() const { | ||||
1116 | return getQualifiers().getObjCLifetime(); | ||||
1117 | } | ||||
1118 | |||||
1119 | bool hasNonTrivialObjCLifetime() const { | ||||
1120 | return getQualifiers().hasNonTrivialObjCLifetime(); | ||||
1121 | } | ||||
1122 | |||||
1123 | bool hasStrongOrWeakObjCLifetime() const { | ||||
1124 | return getQualifiers().hasStrongOrWeakObjCLifetime(); | ||||
1125 | } | ||||
1126 | |||||
1127 | // true when Type is objc's weak and weak is enabled but ARC isn't. | ||||
1128 | bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const; | ||||
1129 | |||||
1130 | enum PrimitiveDefaultInitializeKind { | ||||
1131 | /// The type does not fall into any of the following categories. Note that | ||||
1132 | /// this case is zero-valued so that values of this enum can be used as a | ||||
1133 | /// boolean condition for non-triviality. | ||||
1134 | PDIK_Trivial, | ||||
1135 | |||||
1136 | /// The type is an Objective-C retainable pointer type that is qualified | ||||
1137 | /// with the ARC __strong qualifier. | ||||
1138 | PDIK_ARCStrong, | ||||
1139 | |||||
1140 | /// The type is an Objective-C retainable pointer type that is qualified | ||||
1141 | /// with the ARC __weak qualifier. | ||||
1142 | PDIK_ARCWeak, | ||||
1143 | |||||
1144 | /// The type is a struct containing a field whose type is not PCK_Trivial. | ||||
1145 | PDIK_Struct | ||||
1146 | }; | ||||
1147 | |||||
1148 | /// Functions to query basic properties of non-trivial C struct types. | ||||
1149 | |||||
1150 | /// Check if this is a non-trivial type that would cause a C struct | ||||
1151 | /// transitively containing this type to be non-trivial to default initialize | ||||
1152 | /// and return the kind. | ||||
1153 | PrimitiveDefaultInitializeKind | ||||
1154 | isNonTrivialToPrimitiveDefaultInitialize() const; | ||||
1155 | |||||
1156 | enum PrimitiveCopyKind { | ||||
1157 | /// The type does not fall into any of the following categories. Note that | ||||
1158 | /// this case is zero-valued so that values of this enum can be used as a | ||||
1159 | /// boolean condition for non-triviality. | ||||
1160 | PCK_Trivial, | ||||
1161 | |||||
1162 | /// The type would be trivial except that it is volatile-qualified. Types | ||||
1163 | /// that fall into one of the other non-trivial cases may additionally be | ||||
1164 | /// volatile-qualified. | ||||
1165 | PCK_VolatileTrivial, | ||||
1166 | |||||
1167 | /// The type is an Objective-C retainable pointer type that is qualified | ||||
1168 | /// with the ARC __strong qualifier. | ||||
1169 | PCK_ARCStrong, | ||||
1170 | |||||
1171 | /// The type is an Objective-C retainable pointer type that is qualified | ||||
1172 | /// with the ARC __weak qualifier. | ||||
1173 | PCK_ARCWeak, | ||||
1174 | |||||
1175 | /// The type is a struct containing a field whose type is neither | ||||
1176 | /// PCK_Trivial nor PCK_VolatileTrivial. | ||||
1177 | /// Note that a C++ struct type does not necessarily match this; C++ copying | ||||
1178 | /// semantics are too complex to express here, in part because they depend | ||||
1179 | /// on the exact constructor or assignment operator that is chosen by | ||||
1180 | /// overload resolution to do the copy. | ||||
1181 | PCK_Struct | ||||
1182 | }; | ||||
1183 | |||||
1184 | /// Check if this is a non-trivial type that would cause a C struct | ||||
1185 | /// transitively containing this type to be non-trivial to copy and return the | ||||
1186 | /// kind. | ||||
1187 | PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const; | ||||
1188 | |||||
1189 | /// Check if this is a non-trivial type that would cause a C struct | ||||
1190 | /// transitively containing this type to be non-trivial to destructively | ||||
1191 | /// move and return the kind. Destructive move in this context is a C++-style | ||||
1192 | /// move in which the source object is placed in a valid but unspecified state | ||||
1193 | /// after it is moved, as opposed to a truly destructive move in which the | ||||
1194 | /// source object is placed in an uninitialized state. | ||||
1195 | PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const; | ||||
1196 | |||||
1197 | enum DestructionKind { | ||||
1198 | DK_none, | ||||
1199 | DK_cxx_destructor, | ||||
1200 | DK_objc_strong_lifetime, | ||||
1201 | DK_objc_weak_lifetime, | ||||
1202 | DK_nontrivial_c_struct | ||||
1203 | }; | ||||
1204 | |||||
1205 | /// Returns a nonzero value if objects of this type require | ||||
1206 | /// non-trivial work to clean up after. Non-zero because it's | ||||
1207 | /// conceivable that qualifiers (objc_gc(weak)?) could make | ||||
1208 | /// something require destruction. | ||||
1209 | DestructionKind isDestructedType() const { | ||||
1210 | return isDestructedTypeImpl(*this); | ||||
1211 | } | ||||
1212 | |||||
1213 | /// Check if this is or contains a C union that is non-trivial to | ||||
1214 | /// default-initialize, which is a union that has a member that is non-trivial | ||||
1215 | /// to default-initialize. If this returns true, | ||||
1216 | /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct. | ||||
1217 | bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const; | ||||
1218 | |||||
1219 | /// Check if this is or contains a C union that is non-trivial to destruct, | ||||
1220 | /// which is a union that has a member that is non-trivial to destruct. If | ||||
1221 | /// this returns true, isDestructedType returns DK_nontrivial_c_struct. | ||||
1222 | bool hasNonTrivialToPrimitiveDestructCUnion() const; | ||||
1223 | |||||
1224 | /// Check if this is or contains a C union that is non-trivial to copy, which | ||||
1225 | /// is a union that has a member that is non-trivial to copy. If this returns | ||||
1226 | /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct. | ||||
1227 | bool hasNonTrivialToPrimitiveCopyCUnion() const; | ||||
1228 | |||||
1229 | /// Determine whether expressions of the given type are forbidden | ||||
1230 | /// from being lvalues in C. | ||||
1231 | /// | ||||
1232 | /// The expression types that are forbidden to be lvalues are: | ||||
1233 | /// - 'void', but not qualified void | ||||
1234 | /// - function types | ||||
1235 | /// | ||||
1236 | /// The exact rule here is C99 6.3.2.1: | ||||
1237 | /// An lvalue is an expression with an object type or an incomplete | ||||
1238 | /// type other than void. | ||||
1239 | bool isCForbiddenLValueType() const; | ||||
1240 | |||||
1241 | /// Substitute type arguments for the Objective-C type parameters used in the | ||||
1242 | /// subject type. | ||||
1243 | /// | ||||
1244 | /// \param ctx ASTContext in which the type exists. | ||||
1245 | /// | ||||
1246 | /// \param typeArgs The type arguments that will be substituted for the | ||||
1247 | /// Objective-C type parameters in the subject type, which are generally | ||||
1248 | /// computed via \c Type::getObjCSubstitutions. If empty, the type | ||||
1249 | /// parameters will be replaced with their bounds or id/Class, as appropriate | ||||
1250 | /// for the context. | ||||
1251 | /// | ||||
1252 | /// \param context The context in which the subject type was written. | ||||
1253 | /// | ||||
1254 | /// \returns the resulting type. | ||||
1255 | QualType substObjCTypeArgs(ASTContext &ctx, | ||||
1256 | ArrayRef<QualType> typeArgs, | ||||
1257 | ObjCSubstitutionContext context) const; | ||||
1258 | |||||
1259 | /// Substitute type arguments from an object type for the Objective-C type | ||||
1260 | /// parameters used in the subject type. | ||||
1261 | /// | ||||
1262 | /// This operation combines the computation of type arguments for | ||||
1263 | /// substitution (\c Type::getObjCSubstitutions) with the actual process of | ||||
1264 | /// substitution (\c QualType::substObjCTypeArgs) for the convenience of | ||||
1265 | /// callers that need to perform a single substitution in isolation. | ||||
1266 | /// | ||||
1267 | /// \param objectType The type of the object whose member type we're | ||||
1268 | /// substituting into. For example, this might be the receiver of a message | ||||
1269 | /// or the base of a property access. | ||||
1270 | /// | ||||
1271 | /// \param dc The declaration context from which the subject type was | ||||
1272 | /// retrieved, which indicates (for example) which type parameters should | ||||
1273 | /// be substituted. | ||||
1274 | /// | ||||
1275 | /// \param context The context in which the subject type was written. | ||||
1276 | /// | ||||
1277 | /// \returns the subject type after replacing all of the Objective-C type | ||||
1278 | /// parameters with their corresponding arguments. | ||||
1279 | QualType substObjCMemberType(QualType objectType, | ||||
1280 | const DeclContext *dc, | ||||
1281 | ObjCSubstitutionContext context) const; | ||||
1282 | |||||
1283 | /// Strip Objective-C "__kindof" types from the given type. | ||||
1284 | QualType stripObjCKindOfType(const ASTContext &ctx) const; | ||||
1285 | |||||
1286 | /// Remove all qualifiers including _Atomic. | ||||
1287 | QualType getAtomicUnqualifiedType() const; | ||||
1288 | |||||
1289 | private: | ||||
1290 | // These methods are implemented in a separate translation unit; | ||||
1291 | // "static"-ize them to avoid creating temporary QualTypes in the | ||||
1292 | // caller. | ||||
1293 | static bool isConstant(QualType T, const ASTContext& Ctx); | ||||
1294 | static QualType getDesugaredType(QualType T, const ASTContext &Context); | ||||
1295 | static SplitQualType getSplitDesugaredType(QualType T); | ||||
1296 | static SplitQualType getSplitUnqualifiedTypeImpl(QualType type); | ||||
1297 | static QualType getSingleStepDesugaredTypeImpl(QualType type, | ||||
1298 | const ASTContext &C); | ||||
1299 | static QualType IgnoreParens(QualType T); | ||||
1300 | static DestructionKind isDestructedTypeImpl(QualType type); | ||||
1301 | |||||
1302 | /// Check if \param RD is or contains a non-trivial C union. | ||||
1303 | static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD); | ||||
1304 | static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD); | ||||
1305 | static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD); | ||||
1306 | }; | ||||
1307 | |||||
1308 | } // namespace clang | ||||
1309 | |||||
1310 | namespace llvm { | ||||
1311 | |||||
1312 | /// Implement simplify_type for QualType, so that we can dyn_cast from QualType | ||||
1313 | /// to a specific Type class. | ||||
1314 | template<> struct simplify_type< ::clang::QualType> { | ||||
1315 | using SimpleType = const ::clang::Type *; | ||||
1316 | |||||
1317 | static SimpleType getSimplifiedValue(::clang::QualType Val) { | ||||
1318 | return Val.getTypePtr(); | ||||
1319 | } | ||||
1320 | }; | ||||
1321 | |||||
1322 | // Teach SmallPtrSet that QualType is "basically a pointer". | ||||
1323 | template<> | ||||
1324 | struct PointerLikeTypeTraits<clang::QualType> { | ||||
1325 | static inline void *getAsVoidPointer(clang::QualType P) { | ||||
1326 | return P.getAsOpaquePtr(); | ||||
1327 | } | ||||
1328 | |||||
1329 | static inline clang::QualType getFromVoidPointer(void *P) { | ||||
1330 | return clang::QualType::getFromOpaquePtr(P); | ||||
1331 | } | ||||
1332 | |||||
1333 | // Various qualifiers go in low bits. | ||||
1334 | static constexpr int NumLowBitsAvailable = 0; | ||||
1335 | }; | ||||
1336 | |||||
1337 | } // namespace llvm | ||||
1338 | |||||
1339 | namespace clang { | ||||
1340 | |||||
1341 | /// Base class that is common to both the \c ExtQuals and \c Type | ||||
1342 | /// classes, which allows \c QualType to access the common fields between the | ||||
1343 | /// two. | ||||
1344 | class ExtQualsTypeCommonBase { | ||||
1345 | friend class ExtQuals; | ||||
1346 | friend class QualType; | ||||
1347 | friend class Type; | ||||
1348 | |||||
1349 | /// The "base" type of an extended qualifiers type (\c ExtQuals) or | ||||
1350 | /// a self-referential pointer (for \c Type). | ||||
1351 | /// | ||||
1352 | /// This pointer allows an efficient mapping from a QualType to its | ||||
1353 | /// underlying type pointer. | ||||
1354 | const Type *const BaseType; | ||||
1355 | |||||
1356 | /// The canonical type of this type. A QualType. | ||||
1357 | QualType CanonicalType; | ||||
1358 | |||||
1359 | ExtQualsTypeCommonBase(const Type *baseType, QualType canon) | ||||
1360 | : BaseType(baseType), CanonicalType(canon) {} | ||||
1361 | }; | ||||
1362 | |||||
1363 | /// We can encode up to four bits in the low bits of a | ||||
1364 | /// type pointer, but there are many more type qualifiers that we want | ||||
1365 | /// to be able to apply to an arbitrary type. Therefore we have this | ||||
1366 | /// struct, intended to be heap-allocated and used by QualType to | ||||
1367 | /// store qualifiers. | ||||
1368 | /// | ||||
1369 | /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers | ||||
1370 | /// in three low bits on the QualType pointer; a fourth bit records whether | ||||
1371 | /// the pointer is an ExtQuals node. The extended qualifiers (address spaces, | ||||
1372 | /// Objective-C GC attributes) are much more rare. | ||||
1373 | class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode { | ||||
1374 | // NOTE: changing the fast qualifiers should be straightforward as | ||||
1375 | // long as you don't make 'const' non-fast. | ||||
1376 | // 1. Qualifiers: | ||||
1377 | // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ). | ||||
1378 | // Fast qualifiers must occupy the low-order bits. | ||||
1379 | // b) Update Qualifiers::FastWidth and FastMask. | ||||
1380 | // 2. QualType: | ||||
1381 | // a) Update is{Volatile,Restrict}Qualified(), defined inline. | ||||
1382 | // b) Update remove{Volatile,Restrict}, defined near the end of | ||||
1383 | // this header. | ||||
1384 | // 3. ASTContext: | ||||
1385 | // a) Update get{Volatile,Restrict}Type. | ||||
1386 | |||||
1387 | /// The immutable set of qualifiers applied by this node. Always contains | ||||
1388 | /// extended qualifiers. | ||||
1389 | Qualifiers Quals; | ||||
1390 | |||||
1391 | ExtQuals *this_() { return this; } | ||||
1392 | |||||
1393 | public: | ||||
1394 | ExtQuals(const Type *baseType, QualType canon, Qualifiers quals) | ||||
1395 | : ExtQualsTypeCommonBase(baseType, | ||||
1396 | canon.isNull() ? QualType(this_(), 0) : canon), | ||||
1397 | Quals(quals) { | ||||
1398 | assert(Quals.hasNonFastQualifiers()((void)0) | ||||
1399 | && "ExtQuals created with no fast qualifiers")((void)0); | ||||
1400 | assert(!Quals.hasFastQualifiers()((void)0) | ||||
1401 | && "ExtQuals created with fast qualifiers")((void)0); | ||||
1402 | } | ||||
1403 | |||||
1404 | Qualifiers getQualifiers() const { return Quals; } | ||||
1405 | |||||
1406 | bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); } | ||||
1407 | Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); } | ||||
1408 | |||||
1409 | bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); } | ||||
1410 | Qualifiers::ObjCLifetime getObjCLifetime() const { | ||||
1411 | return Quals.getObjCLifetime(); | ||||
1412 | } | ||||
1413 | |||||
1414 | bool hasAddressSpace() const { return Quals.hasAddressSpace(); } | ||||
1415 | LangAS getAddressSpace() const { return Quals.getAddressSpace(); } | ||||
1416 | |||||
1417 | const Type *getBaseType() const { return BaseType; } | ||||
1418 | |||||
1419 | public: | ||||
1420 | void Profile(llvm::FoldingSetNodeID &ID) const { | ||||
1421 | Profile(ID, getBaseType(), Quals); | ||||
1422 | } | ||||
1423 | |||||
1424 | static void Profile(llvm::FoldingSetNodeID &ID, | ||||
1425 | const Type *BaseType, | ||||
1426 | Qualifiers Quals) { | ||||
1427 | assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((void)0); | ||||
1428 | ID.AddPointer(BaseType); | ||||
1429 | Quals.Profile(ID); | ||||
1430 | } | ||||
1431 | }; | ||||
1432 | |||||
1433 | /// The kind of C++11 ref-qualifier associated with a function type. | ||||
1434 | /// This determines whether a member function's "this" object can be an | ||||
1435 | /// lvalue, rvalue, or neither. | ||||
1436 | enum RefQualifierKind { | ||||
1437 | /// No ref-qualifier was provided. | ||||
1438 | RQ_None = 0, | ||||
1439 | |||||
1440 | /// An lvalue ref-qualifier was provided (\c &). | ||||
1441 | RQ_LValue, | ||||
1442 | |||||
1443 | /// An rvalue ref-qualifier was provided (\c &&). | ||||
1444 | RQ_RValue | ||||
1445 | }; | ||||
1446 | |||||
1447 | /// Which keyword(s) were used to create an AutoType. | ||||
1448 | enum class AutoTypeKeyword { | ||||
1449 | /// auto | ||||
1450 | Auto, | ||||
1451 | |||||
1452 | /// decltype(auto) | ||||
1453 | DecltypeAuto, | ||||
1454 | |||||
1455 | /// __auto_type (GNU extension) | ||||
1456 | GNUAutoType | ||||
1457 | }; | ||||
1458 | |||||
1459 | /// The base class of the type hierarchy. | ||||
1460 | /// | ||||
1461 | /// A central concept with types is that each type always has a canonical | ||||
1462 | /// type. A canonical type is the type with any typedef names stripped out | ||||
1463 | /// of it or the types it references. For example, consider: | ||||
1464 | /// | ||||
1465 | /// typedef int foo; | ||||
1466 | /// typedef foo* bar; | ||||
1467 | /// 'int *' 'foo *' 'bar' | ||||
1468 | /// | ||||
1469 | /// There will be a Type object created for 'int'. Since int is canonical, its | ||||
1470 | /// CanonicalType pointer points to itself. There is also a Type for 'foo' (a | ||||
1471 | /// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next | ||||
1472 | /// there is a PointerType that represents 'int*', which, like 'int', is | ||||
1473 | /// canonical. Finally, there is a PointerType type for 'foo*' whose canonical | ||||
1474 | /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type | ||||
1475 | /// is also 'int*'. | ||||
1476 | /// | ||||
1477 | /// Non-canonical types are useful for emitting diagnostics, without losing | ||||
1478 | /// information about typedefs being used. Canonical types are useful for type | ||||
1479 | /// comparisons (they allow by-pointer equality tests) and useful for reasoning | ||||
1480 | /// about whether something has a particular form (e.g. is a function type), | ||||
1481 | /// because they implicitly, recursively, strip all typedefs out of a type. | ||||
1482 | /// | ||||
1483 | /// Types, once created, are immutable. | ||||
1484 | /// | ||||
1485 | class alignas(8) Type : public ExtQualsTypeCommonBase { | ||||
1486 | public: | ||||
1487 | enum TypeClass { | ||||
1488 | #define TYPE(Class, Base) Class, | ||||
1489 | #define LAST_TYPE(Class) TypeLast = Class | ||||
1490 | #define ABSTRACT_TYPE(Class, Base) | ||||
1491 | #include "clang/AST/TypeNodes.inc" | ||||
1492 | }; | ||||
1493 | |||||
1494 | private: | ||||
1495 | /// Bitfields required by the Type class. | ||||
1496 | class TypeBitfields { | ||||
1497 | friend class Type; | ||||
1498 | template <class T> friend class TypePropertyCache; | ||||
1499 | |||||
1500 | /// TypeClass bitfield - Enum that specifies what subclass this belongs to. | ||||
1501 | unsigned TC : 8; | ||||
1502 | |||||
1503 | /// Store information on the type dependency. | ||||
1504 | unsigned Dependence : llvm::BitWidth<TypeDependence>; | ||||
1505 | |||||
1506 | /// True if the cache (i.e. the bitfields here starting with | ||||
1507 | /// 'Cache') is valid. | ||||
1508 | mutable unsigned CacheValid : 1; | ||||
1509 | |||||
1510 | /// Linkage of this type. | ||||
1511 | mutable unsigned CachedLinkage : 3; | ||||
1512 | |||||
1513 | /// Whether this type involves and local or unnamed types. | ||||
1514 | mutable unsigned CachedLocalOrUnnamed : 1; | ||||
1515 | |||||
1516 | /// Whether this type comes from an AST file. | ||||
1517 | mutable unsigned FromAST : 1; | ||||
1518 | |||||
1519 | bool isCacheValid() const { | ||||
1520 | return CacheValid; | ||||
1521 | } | ||||
1522 | |||||
1523 | Linkage getLinkage() const { | ||||
1524 | assert(isCacheValid() && "getting linkage from invalid cache")((void)0); | ||||
1525 | return static_cast<Linkage>(CachedLinkage); | ||||
1526 | } | ||||
1527 | |||||
1528 | bool hasLocalOrUnnamedType() const { | ||||
1529 | assert(isCacheValid() && "getting linkage from invalid cache")((void)0); | ||||
1530 | return CachedLocalOrUnnamed; | ||||
1531 | } | ||||
1532 | }; | ||||
1533 | enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 }; | ||||
1534 | |||||
1535 | protected: | ||||
1536 | // These classes allow subclasses to somewhat cleanly pack bitfields | ||||
1537 | // into Type. | ||||
1538 | |||||
1539 | class ArrayTypeBitfields { | ||||
1540 | friend class ArrayType; | ||||
1541 | |||||
1542 | unsigned : NumTypeBits; | ||||
1543 | |||||
1544 | /// CVR qualifiers from declarations like | ||||
1545 | /// 'int X[static restrict 4]'. For function parameters only. | ||||
1546 | unsigned IndexTypeQuals : 3; | ||||
1547 | |||||
1548 | /// Storage class qualifiers from declarations like | ||||
1549 | /// 'int X[static restrict 4]'. For function parameters only. | ||||
1550 | /// Actually an ArrayType::ArraySizeModifier. | ||||
1551 | unsigned SizeModifier : 3; | ||||
1552 | }; | ||||
1553 | |||||
1554 | class ConstantArrayTypeBitfields { | ||||
1555 | friend class ConstantArrayType; | ||||
1556 | |||||
1557 | unsigned : NumTypeBits + 3 + 3; | ||||
1558 | |||||
1559 | /// Whether we have a stored size expression. | ||||
1560 | unsigned HasStoredSizeExpr : 1; | ||||
1561 | }; | ||||
1562 | |||||
1563 | class BuiltinTypeBitfields { | ||||
1564 | friend class BuiltinType; | ||||
1565 | |||||
1566 | unsigned : NumTypeBits; | ||||
1567 | |||||
1568 | /// The kind (BuiltinType::Kind) of builtin type this is. | ||||
1569 | unsigned Kind : 8; | ||||
1570 | }; | ||||
1571 | |||||
1572 | /// FunctionTypeBitfields store various bits belonging to FunctionProtoType. | ||||
1573 | /// Only common bits are stored here. Additional uncommon bits are stored | ||||
1574 | /// in a trailing object after FunctionProtoType. | ||||
1575 | class FunctionTypeBitfields { | ||||
1576 | friend class FunctionProtoType; | ||||
1577 | friend class FunctionType; | ||||
1578 | |||||
1579 | unsigned : NumTypeBits; | ||||
1580 | |||||
1581 | /// Extra information which affects how the function is called, like | ||||
1582 | /// regparm and the calling convention. | ||||
1583 | unsigned ExtInfo : 13; | ||||
1584 | |||||
1585 | /// The ref-qualifier associated with a \c FunctionProtoType. | ||||
1586 | /// | ||||
1587 | /// This is a value of type \c RefQualifierKind. | ||||
1588 | unsigned RefQualifier : 2; | ||||
1589 | |||||
1590 | /// Used only by FunctionProtoType, put here to pack with the | ||||
1591 | /// other bitfields. | ||||
1592 | /// The qualifiers are part of FunctionProtoType because... | ||||
1593 | /// | ||||
1594 | /// C++ 8.3.5p4: The return type, the parameter type list and the | ||||
1595 | /// cv-qualifier-seq, [...], are part of the function type. | ||||
1596 | unsigned FastTypeQuals : Qualifiers::FastWidth; | ||||
1597 | /// Whether this function has extended Qualifiers. | ||||
1598 | unsigned HasExtQuals : 1; | ||||
1599 | |||||
1600 | /// The number of parameters this function has, not counting '...'. | ||||
1601 | /// According to [implimits] 8 bits should be enough here but this is | ||||
1602 | /// somewhat easy to exceed with metaprogramming and so we would like to | ||||
1603 | /// keep NumParams as wide as reasonably possible. | ||||
1604 | unsigned NumParams : 16; | ||||
1605 | |||||
1606 | /// The type of exception specification this function has. | ||||
1607 | unsigned ExceptionSpecType : 4; | ||||
1608 | |||||
1609 | /// Whether this function has extended parameter information. | ||||
1610 | unsigned HasExtParameterInfos : 1; | ||||
1611 | |||||
1612 | /// Whether the function is variadic. | ||||
1613 | unsigned Variadic : 1; | ||||
1614 | |||||
1615 | /// Whether this function has a trailing return type. | ||||
1616 | unsigned HasTrailingReturn : 1; | ||||
1617 | }; | ||||
1618 | |||||
1619 | class ObjCObjectTypeBitfields { | ||||
1620 | friend class ObjCObjectType; | ||||
1621 | |||||
1622 | unsigned : NumTypeBits; | ||||
1623 | |||||
1624 | /// The number of type arguments stored directly on this object type. | ||||
1625 | unsigned NumTypeArgs : 7; | ||||
1626 | |||||
1627 | /// The number of protocols stored directly on this object type. | ||||
1628 | unsigned NumProtocols : 6; | ||||
1629 | |||||
1630 | /// Whether this is a "kindof" type. | ||||
1631 | unsigned IsKindOf : 1; | ||||
1632 | }; | ||||
1633 | |||||
1634 | class ReferenceTypeBitfields { | ||||
1635 | friend class ReferenceType; | ||||
1636 | |||||
1637 | unsigned : NumTypeBits; | ||||
1638 | |||||
1639 | /// True if the type was originally spelled with an lvalue sigil. | ||||
1640 | /// This is never true of rvalue references but can also be false | ||||
1641 | /// on lvalue references because of C++0x [dcl.typedef]p9, | ||||
1642 | /// as follows: | ||||
1643 | /// | ||||
1644 | /// typedef int &ref; // lvalue, spelled lvalue | ||||
1645 | /// typedef int &&rvref; // rvalue | ||||
1646 | /// ref &a; // lvalue, inner ref, spelled lvalue | ||||
1647 | /// ref &&a; // lvalue, inner ref | ||||
1648 | /// rvref &a; // lvalue, inner ref, spelled lvalue | ||||
1649 | /// rvref &&a; // rvalue, inner ref | ||||
1650 | unsigned SpelledAsLValue : 1; | ||||
1651 | |||||
1652 | /// True if the inner type is a reference type. This only happens | ||||
1653 | /// in non-canonical forms. | ||||
1654 | unsigned InnerRef : 1; | ||||
1655 | }; | ||||
1656 | |||||
1657 | class TypeWithKeywordBitfields { | ||||
1658 | friend class TypeWithKeyword; | ||||
1659 | |||||
1660 | unsigned : NumTypeBits; | ||||
1661 | |||||
1662 | /// An ElaboratedTypeKeyword. 8 bits for efficient access. | ||||
1663 | unsigned Keyword : 8; | ||||
1664 | }; | ||||
1665 | |||||
1666 | enum { NumTypeWithKeywordBits = 8 }; | ||||
1667 | |||||
1668 | class ElaboratedTypeBitfields { | ||||
1669 | friend class ElaboratedType; | ||||
1670 | |||||
1671 | unsigned : NumTypeBits; | ||||
1672 | unsigned : NumTypeWithKeywordBits; | ||||
1673 | |||||
1674 | /// Whether the ElaboratedType has a trailing OwnedTagDecl. | ||||
1675 | unsigned HasOwnedTagDecl : 1; | ||||
1676 | }; | ||||
1677 | |||||
1678 | class VectorTypeBitfields { | ||||
1679 | friend class VectorType; | ||||
1680 | friend class DependentVectorType; | ||||
1681 | |||||
1682 | unsigned : NumTypeBits; | ||||
1683 | |||||
1684 | /// The kind of vector, either a generic vector type or some | ||||
1685 | /// target-specific vector type such as for AltiVec or Neon. | ||||
1686 | unsigned VecKind : 3; | ||||
1687 | /// The number of elements in the vector. | ||||
1688 | uint32_t NumElements; | ||||
1689 | }; | ||||
1690 | |||||
1691 | class AttributedTypeBitfields { | ||||
1692 | friend class AttributedType; | ||||
1693 | |||||
1694 | unsigned : NumTypeBits; | ||||
1695 | |||||
1696 | /// An AttributedType::Kind | ||||
1697 | unsigned AttrKind : 32 - NumTypeBits; | ||||
1698 | }; | ||||
1699 | |||||
1700 | class AutoTypeBitfields { | ||||
1701 | friend class AutoType; | ||||
1702 | |||||
1703 | unsigned : NumTypeBits; | ||||
1704 | |||||
1705 | /// Was this placeholder type spelled as 'auto', 'decltype(auto)', | ||||
1706 | /// or '__auto_type'? AutoTypeKeyword value. | ||||
1707 | unsigned Keyword : 2; | ||||
1708 | |||||
1709 | /// The number of template arguments in the type-constraints, which is | ||||
1710 | /// expected to be able to hold at least 1024 according to [implimits]. | ||||
1711 | /// However as this limit is somewhat easy to hit with template | ||||
1712 | /// metaprogramming we'd prefer to keep it as large as possible. | ||||
1713 | /// At the moment it has been left as a non-bitfield since this type | ||||
1714 | /// safely fits in 64 bits as an unsigned, so there is no reason to | ||||
1715 | /// introduce the performance impact of a bitfield. | ||||
1716 | unsigned NumArgs; | ||||
1717 | }; | ||||
1718 | |||||
1719 | class SubstTemplateTypeParmPackTypeBitfields { | ||||
1720 | friend class SubstTemplateTypeParmPackType; | ||||
1721 | |||||
1722 | unsigned : NumTypeBits; | ||||
1723 | |||||
1724 | /// The number of template arguments in \c Arguments, which is | ||||
1725 | /// expected to be able to hold at least 1024 according to [implimits]. | ||||
1726 | /// However as this limit is somewhat easy to hit with template | ||||
1727 | /// metaprogramming we'd prefer to keep it as large as possible. | ||||
1728 | /// At the moment it has been left as a non-bitfield since this type | ||||
1729 | /// safely fits in 64 bits as an unsigned, so there is no reason to | ||||
1730 | /// introduce the performance impact of a bitfield. | ||||
1731 | unsigned NumArgs; | ||||
1732 | }; | ||||
1733 | |||||
1734 | class TemplateSpecializationTypeBitfields { | ||||
1735 | friend class TemplateSpecializationType; | ||||
1736 | |||||
1737 | unsigned : NumTypeBits; | ||||
1738 | |||||
1739 | /// Whether this template specialization type is a substituted type alias. | ||||
1740 | unsigned TypeAlias : 1; | ||||
1741 | |||||
1742 | /// The number of template arguments named in this class template | ||||
1743 | /// specialization, which is expected to be able to hold at least 1024 | ||||
1744 | /// according to [implimits]. However, as this limit is somewhat easy to | ||||
1745 | /// hit with template metaprogramming we'd prefer to keep it as large | ||||
1746 | /// as possible. At the moment it has been left as a non-bitfield since | ||||
1747 | /// this type safely fits in 64 bits as an unsigned, so there is no reason | ||||
1748 | /// to introduce the performance impact of a bitfield. | ||||
1749 | unsigned NumArgs; | ||||
1750 | }; | ||||
1751 | |||||
1752 | class DependentTemplateSpecializationTypeBitfields { | ||||
1753 | friend class DependentTemplateSpecializationType; | ||||
1754 | |||||
1755 | unsigned : NumTypeBits; | ||||
1756 | unsigned : NumTypeWithKeywordBits; | ||||
1757 | |||||
1758 | /// The number of template arguments named in this class template | ||||
1759 | /// specialization, which is expected to be able to hold at least 1024 | ||||
1760 | /// according to [implimits]. However, as this limit is somewhat easy to | ||||
1761 | /// hit with template metaprogramming we'd prefer to keep it as large | ||||
1762 | /// as possible. At the moment it has been left as a non-bitfield since | ||||
1763 | /// this type safely fits in 64 bits as an unsigned, so there is no reason | ||||
1764 | /// to introduce the performance impact of a bitfield. | ||||
1765 | unsigned NumArgs; | ||||
1766 | }; | ||||
1767 | |||||
1768 | class PackExpansionTypeBitfields { | ||||
1769 | friend class PackExpansionType; | ||||
1770 | |||||
1771 | unsigned : NumTypeBits; | ||||
1772 | |||||
1773 | /// The number of expansions that this pack expansion will | ||||
1774 | /// generate when substituted (+1), which is expected to be able to | ||||
1775 | /// hold at least 1024 according to [implimits]. However, as this limit | ||||
1776 | /// is somewhat easy to hit with template metaprogramming we'd prefer to | ||||
1777 | /// keep it as large as possible. At the moment it has been left as a | ||||
1778 | /// non-bitfield since this type safely fits in 64 bits as an unsigned, so | ||||
1779 | /// there is no reason to introduce the performance impact of a bitfield. | ||||
1780 | /// | ||||
1781 | /// This field will only have a non-zero value when some of the parameter | ||||
1782 | /// packs that occur within the pattern have been substituted but others | ||||
1783 | /// have not. | ||||
1784 | unsigned NumExpansions; | ||||
1785 | }; | ||||
1786 | |||||
1787 | union { | ||||
1788 | TypeBitfields TypeBits; | ||||
1789 | ArrayTypeBitfields ArrayTypeBits; | ||||
1790 | ConstantArrayTypeBitfields ConstantArrayTypeBits; | ||||
1791 | AttributedTypeBitfields AttributedTypeBits; | ||||
1792 | AutoTypeBitfields AutoTypeBits; | ||||
1793 | BuiltinTypeBitfields BuiltinTypeBits; | ||||
1794 | FunctionTypeBitfields FunctionTypeBits; | ||||
1795 | ObjCObjectTypeBitfields ObjCObjectTypeBits; | ||||
1796 | ReferenceTypeBitfields ReferenceTypeBits; | ||||
1797 | TypeWithKeywordBitfields TypeWithKeywordBits; | ||||
1798 | ElaboratedTypeBitfields ElaboratedTypeBits; | ||||
1799 | VectorTypeBitfields VectorTypeBits; | ||||
1800 | SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits; | ||||
1801 | TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits; | ||||
1802 | DependentTemplateSpecializationTypeBitfields | ||||
1803 | DependentTemplateSpecializationTypeBits; | ||||
1804 | PackExpansionTypeBitfields PackExpansionTypeBits; | ||||
1805 | }; | ||||
1806 | |||||
1807 | private: | ||||
1808 | template <class T> friend class TypePropertyCache; | ||||
1809 | |||||
1810 | /// Set whether this type comes from an AST file. | ||||
1811 | void setFromAST(bool V = true) const { | ||||
1812 | TypeBits.FromAST = V; | ||||
1813 | } | ||||
1814 | |||||
1815 | protected: | ||||
1816 | friend class ASTContext; | ||||
1817 | |||||
1818 | Type(TypeClass tc, QualType canon, TypeDependence Dependence) | ||||
1819 | : ExtQualsTypeCommonBase(this, | ||||
1820 | canon.isNull() ? QualType(this_(), 0) : canon) { | ||||
1821 | static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase), | ||||
1822 | "changing bitfields changed sizeof(Type)!"); | ||||
1823 | static_assert(alignof(decltype(*this)) % sizeof(void *) == 0, | ||||
1824 | "Insufficient alignment!"); | ||||
1825 | TypeBits.TC = tc; | ||||
1826 | TypeBits.Dependence = static_cast<unsigned>(Dependence); | ||||
1827 | TypeBits.CacheValid = false; | ||||
1828 | TypeBits.CachedLocalOrUnnamed = false; | ||||
1829 | TypeBits.CachedLinkage = NoLinkage; | ||||
1830 | TypeBits.FromAST = false; | ||||
1831 | } | ||||
1832 | |||||
1833 | // silence VC++ warning C4355: 'this' : used in base member initializer list | ||||
1834 | Type *this_() { return this; } | ||||
1835 | |||||
1836 | void setDependence(TypeDependence D) { | ||||
1837 | TypeBits.Dependence = static_cast<unsigned>(D); | ||||
1838 | } | ||||
1839 | |||||
1840 | void addDependence(TypeDependence D) { setDependence(getDependence() | D); } | ||||
1841 | |||||
1842 | public: | ||||
1843 | friend class ASTReader; | ||||
1844 | friend class ASTWriter; | ||||
1845 | template <class T> friend class serialization::AbstractTypeReader; | ||||
1846 | template <class T> friend class serialization::AbstractTypeWriter; | ||||
1847 | |||||
1848 | Type(const Type &) = delete; | ||||
1849 | Type(Type &&) = delete; | ||||
1850 | Type &operator=(const Type &) = delete; | ||||
1851 | Type &operator=(Type &&) = delete; | ||||
1852 | |||||
1853 | TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); } | ||||
1854 | |||||
1855 | /// Whether this type comes from an AST file. | ||||
1856 | bool isFromAST() const { return TypeBits.FromAST; } | ||||
1857 | |||||
1858 | /// Whether this type is or contains an unexpanded parameter | ||||
1859 | /// pack, used to support C++0x variadic templates. | ||||
1860 | /// | ||||
1861 | /// A type that contains a parameter pack shall be expanded by the | ||||
1862 | /// ellipsis operator at some point. For example, the typedef in the | ||||
1863 | /// following example contains an unexpanded parameter pack 'T': | ||||
1864 | /// | ||||
1865 | /// \code | ||||
1866 | /// template<typename ...T> | ||||
1867 | /// struct X { | ||||
1868 | /// typedef T* pointer_types; // ill-formed; T is a parameter pack. | ||||
1869 | /// }; | ||||
1870 | /// \endcode | ||||
1871 | /// | ||||
1872 | /// Note that this routine does not specify which | ||||
1873 | bool containsUnexpandedParameterPack() const { | ||||
1874 | return getDependence() & TypeDependence::UnexpandedPack; | ||||
1875 | } | ||||
1876 | |||||
1877 | /// Determines if this type would be canonical if it had no further | ||||
1878 | /// qualification. | ||||
1879 | bool isCanonicalUnqualified() const { | ||||
1880 | return CanonicalType == QualType(this, 0); | ||||
1881 | } | ||||
1882 | |||||
1883 | /// Pull a single level of sugar off of this locally-unqualified type. | ||||
1884 | /// Users should generally prefer SplitQualType::getSingleStepDesugaredType() | ||||
1885 | /// or QualType::getSingleStepDesugaredType(const ASTContext&). | ||||
1886 | QualType getLocallyUnqualifiedSingleStepDesugaredType() const; | ||||
1887 | |||||
1888 | /// As an extension, we classify types as one of "sized" or "sizeless"; | ||||
1889 | /// every type is one or the other. Standard types are all sized; | ||||
1890 | /// sizeless types are purely an extension. | ||||
1891 | /// | ||||
1892 | /// Sizeless types contain data with no specified size, alignment, | ||||
1893 | /// or layout. | ||||
1894 | bool isSizelessType() const; | ||||
1895 | bool isSizelessBuiltinType() const; | ||||
1896 | |||||
1897 | /// Determines if this is a sizeless type supported by the | ||||
1898 | /// 'arm_sve_vector_bits' type attribute, which can be applied to a single | ||||
1899 | /// SVE vector or predicate, excluding tuple types such as svint32x4_t. | ||||
1900 | bool isVLSTBuiltinType() const; | ||||
1901 | |||||
1902 | /// Returns the representative type for the element of an SVE builtin type. | ||||
1903 | /// This is used to represent fixed-length SVE vectors created with the | ||||
1904 | /// 'arm_sve_vector_bits' type attribute as VectorType. | ||||
1905 | QualType getSveEltType(const ASTContext &Ctx) const; | ||||
1906 | |||||
1907 | /// Types are partitioned into 3 broad categories (C99 6.2.5p1): | ||||
1908 | /// object types, function types, and incomplete types. | ||||
1909 | |||||
1910 | /// Return true if this is an incomplete type. | ||||
1911 | /// A type that can describe objects, but which lacks information needed to | ||||
1912 | /// determine its size (e.g. void, or a fwd declared struct). Clients of this | ||||
1913 | /// routine will need to determine if the size is actually required. | ||||
1914 | /// | ||||
1915 | /// Def If non-null, and the type refers to some kind of declaration | ||||
1916 | /// that can be completed (such as a C struct, C++ class, or Objective-C | ||||
1917 | /// class), will be set to the declaration. | ||||
1918 | bool isIncompleteType(NamedDecl **Def = nullptr) const; | ||||
1919 | |||||
1920 | /// Return true if this is an incomplete or object | ||||
1921 | /// type, in other words, not a function type. | ||||
1922 | bool isIncompleteOrObjectType() const { | ||||
1923 | return !isFunctionType(); | ||||
1924 | } | ||||
1925 | |||||
1926 | /// Determine whether this type is an object type. | ||||
1927 | bool isObjectType() const { | ||||
1928 | // C++ [basic.types]p8: | ||||
1929 | // An object type is a (possibly cv-qualified) type that is not a | ||||
1930 | // function type, not a reference type, and not a void type. | ||||
1931 | return !isReferenceType() && !isFunctionType() && !isVoidType(); | ||||
1932 | } | ||||
1933 | |||||
1934 | /// Return true if this is a literal type | ||||
1935 | /// (C++11 [basic.types]p10) | ||||
1936 | bool isLiteralType(const ASTContext &Ctx) const; | ||||
1937 | |||||
1938 | /// Determine if this type is a structural type, per C++20 [temp.param]p7. | ||||
1939 | bool isStructuralType() const; | ||||
1940 | |||||
1941 | /// Test if this type is a standard-layout type. | ||||
1942 | /// (C++0x [basic.type]p9) | ||||
1943 | bool isStandardLayoutType() const; | ||||
1944 | |||||
1945 | /// Helper methods to distinguish type categories. All type predicates | ||||
1946 | /// operate on the canonical type, ignoring typedefs and qualifiers. | ||||
1947 | |||||
1948 | /// Returns true if the type is a builtin type. | ||||
1949 | bool isBuiltinType() const; | ||||
1950 | |||||
1951 | /// Test for a particular builtin type. | ||||
1952 | bool isSpecificBuiltinType(unsigned K) const; | ||||
1953 | |||||
1954 | /// Test for a type which does not represent an actual type-system type but | ||||
1955 | /// is instead used as a placeholder for various convenient purposes within | ||||
1956 | /// Clang. All such types are BuiltinTypes. | ||||
1957 | bool isPlaceholderType() const; | ||||
1958 | const BuiltinType *getAsPlaceholderType() const; | ||||
1959 | |||||
1960 | /// Test for a specific placeholder type. | ||||
1961 | bool isSpecificPlaceholderType(unsigned K) const; | ||||
1962 | |||||
1963 | /// Test for a placeholder type other than Overload; see | ||||
1964 | /// BuiltinType::isNonOverloadPlaceholderType. | ||||
1965 | bool isNonOverloadPlaceholderType() const; | ||||
1966 | |||||
1967 | /// isIntegerType() does *not* include complex integers (a GCC extension). | ||||
1968 | /// isComplexIntegerType() can be used to test for complex integers. | ||||
1969 | bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum) | ||||
1970 | bool isEnumeralType() const; | ||||
1971 | |||||
1972 | /// Determine whether this type is a scoped enumeration type. | ||||
1973 | bool isScopedEnumeralType() const; | ||||
1974 | bool isBooleanType() const; | ||||
1975 | bool isCharType() const; | ||||
1976 | bool isWideCharType() const; | ||||
1977 | bool isChar8Type() const; | ||||
1978 | bool isChar16Type() const; | ||||
1979 | bool isChar32Type() const; | ||||
1980 | bool isAnyCharacterType() const; | ||||
1981 | bool isIntegralType(const ASTContext &Ctx) const; | ||||
1982 | |||||
1983 | /// Determine whether this type is an integral or enumeration type. | ||||
1984 | bool isIntegralOrEnumerationType() const; | ||||
1985 | |||||
1986 | /// Determine whether this type is an integral or unscoped enumeration type. | ||||
1987 | bool isIntegralOrUnscopedEnumerationType() const; | ||||
1988 | bool isUnscopedEnumerationType() const; | ||||
1989 | |||||
1990 | /// Floating point categories. | ||||
1991 | bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double) | ||||
1992 | /// isComplexType() does *not* include complex integers (a GCC extension). | ||||
1993 | /// isComplexIntegerType() can be used to test for complex integers. | ||||
1994 | bool isComplexType() const; // C99 6.2.5p11 (complex) | ||||
1995 | bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int. | ||||
1996 | bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex) | ||||
1997 | bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half) | ||||
1998 | bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661 | ||||
1999 | bool isBFloat16Type() const; | ||||
2000 | bool isFloat128Type() const; | ||||
2001 | bool isRealType() const; // C99 6.2.5p17 (real floating + integer) | ||||
2002 | bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating) | ||||
2003 | bool isVoidType() const; // C99 6.2.5p19 | ||||
2004 | bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers) | ||||
2005 | bool isAggregateType() const; | ||||
2006 | bool isFundamentalType() const; | ||||
2007 | bool isCompoundType() const; | ||||
2008 | |||||
2009 | // Type Predicates: Check to see if this type is structurally the specified | ||||
2010 | // type, ignoring typedefs and qualifiers. | ||||
2011 | bool isFunctionType() const; | ||||
2012 | bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); } | ||||
2013 | bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); } | ||||
2014 | bool isPointerType() const; | ||||
2015 | bool isAnyPointerType() const; // Any C pointer or ObjC object pointer | ||||
2016 | bool isBlockPointerType() const; | ||||
2017 | bool isVoidPointerType() const; | ||||
2018 | bool isReferenceType() const; | ||||
2019 | bool isLValueReferenceType() const; | ||||
2020 | bool isRValueReferenceType() const; | ||||
2021 | bool isObjectPointerType() const; | ||||
2022 | bool isFunctionPointerType() const; | ||||
2023 | bool isFunctionReferenceType() const; | ||||
2024 | bool isMemberPointerType() const; | ||||
2025 | bool isMemberFunctionPointerType() const; | ||||
2026 | bool isMemberDataPointerType() const; | ||||
2027 | bool isArrayType() const; | ||||
2028 | bool isConstantArrayType() const; | ||||
2029 | bool isIncompleteArrayType() const; | ||||
2030 | bool isVariableArrayType() const; | ||||
2031 | bool isDependentSizedArrayType() const; | ||||
2032 | bool isRecordType() const; | ||||
2033 | bool isClassType() const; | ||||
2034 | bool isStructureType() const; | ||||
2035 | bool isObjCBoxableRecordType() const; | ||||
2036 | bool isInterfaceType() const; | ||||
2037 | bool isStructureOrClassType() const; | ||||
2038 | bool isUnionType() const; | ||||
2039 | bool isComplexIntegerType() const; // GCC _Complex integer type. | ||||
2040 | bool isVectorType() const; // GCC vector type. | ||||
2041 | bool isExtVectorType() const; // Extended vector type. | ||||
2042 | bool isMatrixType() const; // Matrix type. | ||||
2043 | bool isConstantMatrixType() const; // Constant matrix type. | ||||
2044 | bool isDependentAddressSpaceType() const; // value-dependent address space qualifier | ||||
2045 | bool isObjCObjectPointerType() const; // pointer to ObjC object | ||||
2046 | bool isObjCRetainableType() const; // ObjC object or block pointer | ||||
2047 | bool isObjCLifetimeType() const; // (array of)* retainable type | ||||
2048 | bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type | ||||
2049 | bool isObjCNSObjectType() const; // __attribute__((NSObject)) | ||||
2050 | bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class)) | ||||
2051 | // FIXME: change this to 'raw' interface type, so we can used 'interface' type | ||||
2052 | // for the common case. | ||||
2053 | bool isObjCObjectType() const; // NSString or typeof(*(id)0) | ||||
2054 | bool isObjCQualifiedInterfaceType() const; // NSString<foo> | ||||
2055 | bool isObjCQualifiedIdType() const; // id<foo> | ||||
2056 | bool isObjCQualifiedClassType() const; // Class<foo> | ||||
2057 | bool isObjCObjectOrInterfaceType() const; | ||||
2058 | bool isObjCIdType() const; // id | ||||
2059 | bool isDecltypeType() const; | ||||
2060 | /// Was this type written with the special inert-in-ARC __unsafe_unretained | ||||
2061 | /// qualifier? | ||||
2062 | /// | ||||
2063 | /// This approximates the answer to the following question: if this | ||||
2064 | /// translation unit were compiled in ARC, would this type be qualified | ||||
2065 | /// with __unsafe_unretained? | ||||
2066 | bool isObjCInertUnsafeUnretainedType() const { | ||||
2067 | return hasAttr(attr::ObjCInertUnsafeUnretained); | ||||
2068 | } | ||||
2069 | |||||
2070 | /// Whether the type is Objective-C 'id' or a __kindof type of an | ||||
2071 | /// object type, e.g., __kindof NSView * or __kindof id | ||||
2072 | /// <NSCopying>. | ||||
2073 | /// | ||||
2074 | /// \param bound Will be set to the bound on non-id subtype types, | ||||
2075 | /// which will be (possibly specialized) Objective-C class type, or | ||||
2076 | /// null for 'id. | ||||
2077 | bool isObjCIdOrObjectKindOfType(const ASTContext &ctx, | ||||
2078 | const ObjCObjectType *&bound) const; | ||||
2079 | |||||
2080 | bool isObjCClassType() const; // Class | ||||
2081 | |||||
2082 | /// Whether the type is Objective-C 'Class' or a __kindof type of an | ||||
2083 | /// Class type, e.g., __kindof Class <NSCopying>. | ||||
2084 | /// | ||||
2085 | /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound | ||||
2086 | /// here because Objective-C's type system cannot express "a class | ||||
2087 | /// object for a subclass of NSFoo". | ||||
2088 | bool isObjCClassOrClassKindOfType() const; | ||||
2089 | |||||
2090 | bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const; | ||||
2091 | bool isObjCSelType() const; // Class | ||||
2092 | bool isObjCBuiltinType() const; // 'id' or 'Class' | ||||
2093 | bool isObjCARCBridgableType() const; | ||||
2094 | bool isCARCBridgableType() const; | ||||
2095 | bool isTemplateTypeParmType() const; // C++ template type parameter | ||||
2096 | bool isNullPtrType() const; // C++11 std::nullptr_t | ||||
2097 | bool isNothrowT() const; // C++ std::nothrow_t | ||||
2098 | bool isAlignValT() const; // C++17 std::align_val_t | ||||
2099 | bool isStdByteType() const; // C++17 std::byte | ||||
2100 | bool isAtomicType() const; // C11 _Atomic() | ||||
2101 | bool isUndeducedAutoType() const; // C++11 auto or | ||||
2102 | // C++14 decltype(auto) | ||||
2103 | bool isTypedefNameType() const; // typedef or alias template | ||||
2104 | |||||
2105 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | ||||
2106 | bool is##Id##Type() const; | ||||
2107 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
2108 | |||||
2109 | bool isImageType() const; // Any OpenCL image type | ||||
2110 | |||||
2111 | bool isSamplerT() const; // OpenCL sampler_t | ||||
2112 | bool isEventT() const; // OpenCL event_t | ||||
2113 | bool isClkEventT() const; // OpenCL clk_event_t | ||||
2114 | bool isQueueT() const; // OpenCL queue_t | ||||
2115 | bool isReserveIDT() const; // OpenCL reserve_id_t | ||||
2116 | |||||
2117 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | ||||
2118 | bool is##Id##Type() const; | ||||
2119 | #include "clang/Basic/OpenCLExtensionTypes.def" | ||||
2120 | // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension | ||||
2121 | bool isOCLIntelSubgroupAVCType() const; | ||||
2122 | bool isOCLExtOpaqueType() const; // Any OpenCL extension type | ||||
2123 | |||||
2124 | bool isPipeType() const; // OpenCL pipe type | ||||
2125 | bool isExtIntType() const; // Extended Int Type | ||||
2126 | bool isOpenCLSpecificType() const; // Any OpenCL specific type | ||||
2127 | |||||
2128 | /// Determines if this type, which must satisfy | ||||
2129 | /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather | ||||
2130 | /// than implicitly __strong. | ||||
2131 | bool isObjCARCImplicitlyUnretainedType() const; | ||||
2132 | |||||
2133 | /// Check if the type is the CUDA device builtin surface type. | ||||
2134 | bool isCUDADeviceBuiltinSurfaceType() const; | ||||
2135 | /// Check if the type is the CUDA device builtin texture type. | ||||
2136 | bool isCUDADeviceBuiltinTextureType() const; | ||||
2137 | |||||
2138 | /// Return the implicit lifetime for this type, which must not be dependent. | ||||
2139 | Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const; | ||||
2140 | |||||
2141 | enum ScalarTypeKind { | ||||
2142 | STK_CPointer, | ||||
2143 | STK_BlockPointer, | ||||
2144 | STK_ObjCObjectPointer, | ||||
2145 | STK_MemberPointer, | ||||
2146 | STK_Bool, | ||||
2147 | STK_Integral, | ||||
2148 | STK_Floating, | ||||
2149 | STK_IntegralComplex, | ||||
2150 | STK_FloatingComplex, | ||||
2151 | STK_FixedPoint | ||||
2152 | }; | ||||
2153 | |||||
2154 | /// Given that this is a scalar type, classify it. | ||||
2155 | ScalarTypeKind getScalarTypeKind() const; | ||||
2156 | |||||
2157 | TypeDependence getDependence() const { | ||||
2158 | return static_cast<TypeDependence>(TypeBits.Dependence); | ||||
2159 | } | ||||
2160 | |||||
2161 | /// Whether this type is an error type. | ||||
2162 | bool containsErrors() const { | ||||
2163 | return getDependence() & TypeDependence::Error; | ||||
2164 | } | ||||
2165 | |||||
2166 | /// Whether this type is a dependent type, meaning that its definition | ||||
2167 | /// somehow depends on a template parameter (C++ [temp.dep.type]). | ||||
2168 | bool isDependentType() const { | ||||
2169 | return getDependence() & TypeDependence::Dependent; | ||||
2170 | } | ||||
2171 | |||||
2172 | /// Determine whether this type is an instantiation-dependent type, | ||||
2173 | /// meaning that the type involves a template parameter (even if the | ||||
2174 | /// definition does not actually depend on the type substituted for that | ||||
2175 | /// template parameter). | ||||
2176 | bool isInstantiationDependentType() const { | ||||
2177 | return getDependence() & TypeDependence::Instantiation; | ||||
2178 | } | ||||
2179 | |||||
2180 | /// Determine whether this type is an undeduced type, meaning that | ||||
2181 | /// it somehow involves a C++11 'auto' type or similar which has not yet been | ||||
2182 | /// deduced. | ||||
2183 | bool isUndeducedType() const; | ||||
2184 | |||||
2185 | /// Whether this type is a variably-modified type (C99 6.7.5). | ||||
2186 | bool isVariablyModifiedType() const { | ||||
2187 | return getDependence() & TypeDependence::VariablyModified; | ||||
2188 | } | ||||
2189 | |||||
2190 | /// Whether this type involves a variable-length array type | ||||
2191 | /// with a definite size. | ||||
2192 | bool hasSizedVLAType() const; | ||||
2193 | |||||
2194 | /// Whether this type is or contains a local or unnamed type. | ||||
2195 | bool hasUnnamedOrLocalType() const; | ||||
2196 | |||||
2197 | bool isOverloadableType() const; | ||||
2198 | |||||
2199 | /// Determine wither this type is a C++ elaborated-type-specifier. | ||||
2200 | bool isElaboratedTypeSpecifier() const; | ||||
2201 | |||||
2202 | bool canDecayToPointerType() const; | ||||
2203 | |||||
2204 | /// Whether this type is represented natively as a pointer. This includes | ||||
2205 | /// pointers, references, block pointers, and Objective-C interface, | ||||
2206 | /// qualified id, and qualified interface types, as well as nullptr_t. | ||||
2207 | bool hasPointerRepresentation() const; | ||||
2208 | |||||
2209 | /// Whether this type can represent an objective pointer type for the | ||||
2210 | /// purpose of GC'ability | ||||
2211 | bool hasObjCPointerRepresentation() const; | ||||
2212 | |||||
2213 | /// Determine whether this type has an integer representation | ||||
2214 | /// of some sort, e.g., it is an integer type or a vector. | ||||
2215 | bool hasIntegerRepresentation() const; | ||||
2216 | |||||
2217 | /// Determine whether this type has an signed integer representation | ||||
2218 | /// of some sort, e.g., it is an signed integer type or a vector. | ||||
2219 | bool hasSignedIntegerRepresentation() const; | ||||
2220 | |||||
2221 | /// Determine whether this type has an unsigned integer representation | ||||
2222 | /// of some sort, e.g., it is an unsigned integer type or a vector. | ||||
2223 | bool hasUnsignedIntegerRepresentation() const; | ||||
2224 | |||||
2225 | /// Determine whether this type has a floating-point representation | ||||
2226 | /// of some sort, e.g., it is a floating-point type or a vector thereof. | ||||
2227 | bool hasFloatingRepresentation() const; | ||||
2228 | |||||
2229 | // Type Checking Functions: Check to see if this type is structurally the | ||||
2230 | // specified type, ignoring typedefs and qualifiers, and return a pointer to | ||||
2231 | // the best type we can. | ||||
2232 | const RecordType *getAsStructureType() const; | ||||
2233 | /// NOTE: getAs*ArrayType are methods on ASTContext. | ||||
2234 | const RecordType *getAsUnionType() const; | ||||
2235 | const ComplexType *getAsComplexIntegerType() const; // GCC complex int type. | ||||
2236 | const ObjCObjectType *getAsObjCInterfaceType() const; | ||||
2237 | |||||
2238 | // The following is a convenience method that returns an ObjCObjectPointerType | ||||
2239 | // for object declared using an interface. | ||||
2240 | const ObjCObjectPointerType *getAsObjCInterfacePointerType() const; | ||||
2241 | const ObjCObjectPointerType *getAsObjCQualifiedIdType() const; | ||||
2242 | const ObjCObjectPointerType *getAsObjCQualifiedClassType() const; | ||||
2243 | const ObjCObjectType *getAsObjCQualifiedInterfaceType() const; | ||||
2244 | |||||
2245 | /// Retrieves the CXXRecordDecl that this type refers to, either | ||||
2246 | /// because the type is a RecordType or because it is the injected-class-name | ||||
2247 | /// type of a class template or class template partial specialization. | ||||
2248 | CXXRecordDecl *getAsCXXRecordDecl() const; | ||||
2249 | |||||
2250 | /// Retrieves the RecordDecl this type refers to. | ||||
2251 | RecordDecl *getAsRecordDecl() const; | ||||
2252 | |||||
2253 | /// Retrieves the TagDecl that this type refers to, either | ||||
2254 | /// because the type is a TagType or because it is the injected-class-name | ||||
2255 | /// type of a class template or class template partial specialization. | ||||
2256 | TagDecl *getAsTagDecl() const; | ||||
2257 | |||||
2258 | /// If this is a pointer or reference to a RecordType, return the | ||||
2259 | /// CXXRecordDecl that the type refers to. | ||||
2260 | /// | ||||
2261 | /// If this is not a pointer or reference, or the type being pointed to does | ||||
2262 | /// not refer to a CXXRecordDecl, returns NULL. | ||||
2263 | const CXXRecordDecl *getPointeeCXXRecordDecl() const; | ||||
2264 | |||||
2265 | /// Get the DeducedType whose type will be deduced for a variable with | ||||
2266 | /// an initializer of this type. This looks through declarators like pointer | ||||
2267 | /// types, but not through decltype or typedefs. | ||||
2268 | DeducedType *getContainedDeducedType() const; | ||||
2269 | |||||
2270 | /// Get the AutoType whose type will be deduced for a variable with | ||||
2271 | /// an initializer of this type. This looks through declarators like pointer | ||||
2272 | /// types, but not through decltype or typedefs. | ||||
2273 | AutoType *getContainedAutoType() const { | ||||
2274 | return dyn_cast_or_null<AutoType>(getContainedDeducedType()); | ||||
2275 | } | ||||
2276 | |||||
2277 | /// Determine whether this type was written with a leading 'auto' | ||||
2278 | /// corresponding to a trailing return type (possibly for a nested | ||||
2279 | /// function type within a pointer to function type or similar). | ||||
2280 | bool hasAutoForTrailingReturnType() const; | ||||
2281 | |||||
2282 | /// Member-template getAs<specific type>'. Look through sugar for | ||||
2283 | /// an instance of \<specific type>. This scheme will eventually | ||||
2284 | /// replace the specific getAsXXXX methods above. | ||||
2285 | /// | ||||
2286 | /// There are some specializations of this member template listed | ||||
2287 | /// immediately following this class. | ||||
2288 | template <typename T> const T *getAs() const; | ||||
2289 | |||||
2290 | /// Member-template getAsAdjusted<specific type>. Look through specific kinds | ||||
2291 | /// of sugar (parens, attributes, etc) for an instance of \<specific type>. | ||||
2292 | /// This is used when you need to walk over sugar nodes that represent some | ||||
2293 | /// kind of type adjustment from a type that was written as a \<specific type> | ||||
2294 | /// to another type that is still canonically a \<specific type>. | ||||
2295 | template <typename T> const T *getAsAdjusted() const; | ||||
2296 | |||||
2297 | /// A variant of getAs<> for array types which silently discards | ||||
2298 | /// qualifiers from the outermost type. | ||||
2299 | const ArrayType *getAsArrayTypeUnsafe() const; | ||||
2300 | |||||
2301 | /// Member-template castAs<specific type>. Look through sugar for | ||||
2302 | /// the underlying instance of \<specific type>. | ||||
2303 | /// | ||||
2304 | /// This method has the same relationship to getAs<T> as cast<T> has | ||||
2305 | /// to dyn_cast<T>; which is to say, the underlying type *must* | ||||
2306 | /// have the intended type, and this method will never return null. | ||||
2307 | template <typename T> const T *castAs() const; | ||||
2308 | |||||
2309 | /// A variant of castAs<> for array type which silently discards | ||||
2310 | /// qualifiers from the outermost type. | ||||
2311 | const ArrayType *castAsArrayTypeUnsafe() const; | ||||
2312 | |||||
2313 | /// Determine whether this type had the specified attribute applied to it | ||||
2314 | /// (looking through top-level type sugar). | ||||
2315 | bool hasAttr(attr::Kind AK) const; | ||||
2316 | |||||
2317 | /// Get the base element type of this type, potentially discarding type | ||||
2318 | /// qualifiers. This should never be used when type qualifiers | ||||
2319 | /// are meaningful. | ||||
2320 | const Type *getBaseElementTypeUnsafe() const; | ||||
2321 | |||||
2322 | /// If this is an array type, return the element type of the array, | ||||
2323 | /// potentially with type qualifiers missing. | ||||
2324 | /// This should never be used when type qualifiers are meaningful. | ||||
2325 | const Type *getArrayElementTypeNoTypeQual() const; | ||||
2326 | |||||
2327 | /// If this is a pointer type, return the pointee type. | ||||
2328 | /// If this is an array type, return the array element type. | ||||
2329 | /// This should never be used when type qualifiers are meaningful. | ||||
2330 | const Type *getPointeeOrArrayElementType() const; | ||||
2331 | |||||
2332 | /// If this is a pointer, ObjC object pointer, or block | ||||
2333 | /// pointer, this returns the respective pointee. | ||||
2334 | QualType getPointeeType() const; | ||||
2335 | |||||
2336 | /// Return the specified type with any "sugar" removed from the type, | ||||
2337 | /// removing any typedefs, typeofs, etc., as well as any qualifiers. | ||||
2338 | const Type *getUnqualifiedDesugaredType() const; | ||||
2339 | |||||
2340 | /// More type predicates useful for type checking/promotion | ||||
2341 | bool isPromotableIntegerType() const; // C99 6.3.1.1p2 | ||||
2342 | |||||
2343 | /// Return true if this is an integer type that is | ||||
2344 | /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], | ||||
2345 | /// or an enum decl which has a signed representation. | ||||
2346 | bool isSignedIntegerType() const; | ||||
2347 | |||||
2348 | /// Return true if this is an integer type that is | ||||
2349 | /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], | ||||
2350 | /// or an enum decl which has an unsigned representation. | ||||
2351 | bool isUnsignedIntegerType() const; | ||||
2352 | |||||
2353 | /// Determines whether this is an integer type that is signed or an | ||||
2354 | /// enumeration types whose underlying type is a signed integer type. | ||||
2355 | bool isSignedIntegerOrEnumerationType() const; | ||||
2356 | |||||
2357 | /// Determines whether this is an integer type that is unsigned or an | ||||
2358 | /// enumeration types whose underlying type is a unsigned integer type. | ||||
2359 | bool isUnsignedIntegerOrEnumerationType() const; | ||||
2360 | |||||
2361 | /// Return true if this is a fixed point type according to | ||||
2362 | /// ISO/IEC JTC1 SC22 WG14 N1169. | ||||
2363 | bool isFixedPointType() const; | ||||
2364 | |||||
2365 | /// Return true if this is a fixed point or integer type. | ||||
2366 | bool isFixedPointOrIntegerType() const; | ||||
2367 | |||||
2368 | /// Return true if this is a saturated fixed point type according to | ||||
2369 | /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned. | ||||
2370 | bool isSaturatedFixedPointType() const; | ||||
2371 | |||||
2372 | /// Return true if this is a saturated fixed point type according to | ||||
2373 | /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned. | ||||
2374 | bool isUnsaturatedFixedPointType() const; | ||||
2375 | |||||
2376 | /// Return true if this is a fixed point type that is signed according | ||||
2377 | /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated. | ||||
2378 | bool isSignedFixedPointType() const; | ||||
2379 | |||||
2380 | /// Return true if this is a fixed point type that is unsigned according | ||||
2381 | /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated. | ||||
2382 | bool isUnsignedFixedPointType() const; | ||||
2383 | |||||
2384 | /// Return true if this is not a variable sized type, | ||||
2385 | /// according to the rules of C99 6.7.5p3. It is not legal to call this on | ||||
2386 | /// incomplete types. | ||||
2387 | bool isConstantSizeType() const; | ||||
2388 | |||||
2389 | /// Returns true if this type can be represented by some | ||||
2390 | /// set of type specifiers. | ||||
2391 | bool isSpecifierType() const; | ||||
2392 | |||||
2393 | /// Determine the linkage of this type. | ||||
2394 | Linkage getLinkage() const; | ||||
2395 | |||||
2396 | /// Determine the visibility of this type. | ||||
2397 | Visibility getVisibility() const { | ||||
2398 | return getLinkageAndVisibility().getVisibility(); | ||||
2399 | } | ||||
2400 | |||||
2401 | /// Return true if the visibility was explicitly set is the code. | ||||
2402 | bool isVisibilityExplicit() const { | ||||
2403 | return getLinkageAndVisibility().isVisibilityExplicit(); | ||||
2404 | } | ||||
2405 | |||||
2406 | /// Determine the linkage and visibility of this type. | ||||
2407 | LinkageInfo getLinkageAndVisibility() const; | ||||
2408 | |||||
2409 | /// True if the computed linkage is valid. Used for consistency | ||||
2410 | /// checking. Should always return true. | ||||
2411 | bool isLinkageValid() const; | ||||
2412 | |||||
2413 | /// Determine the nullability of the given type. | ||||
2414 | /// | ||||
2415 | /// Note that nullability is only captured as sugar within the type | ||||
2416 | /// system, not as part of the canonical type, so nullability will | ||||
2417 | /// be lost by canonicalization and desugaring. | ||||
2418 | Optional<NullabilityKind> getNullability(const ASTContext &context) const; | ||||
2419 | |||||
2420 | /// Determine whether the given type can have a nullability | ||||
2421 | /// specifier applied to it, i.e., if it is any kind of pointer type. | ||||
2422 | /// | ||||
2423 | /// \param ResultIfUnknown The value to return if we don't yet know whether | ||||
2424 | /// this type can have nullability because it is dependent. | ||||
2425 | bool canHaveNullability(bool ResultIfUnknown = true) const; | ||||
2426 | |||||
2427 | /// Retrieve the set of substitutions required when accessing a member | ||||
2428 | /// of the Objective-C receiver type that is declared in the given context. | ||||
2429 | /// | ||||
2430 | /// \c *this is the type of the object we're operating on, e.g., the | ||||
2431 | /// receiver for a message send or the base of a property access, and is | ||||
2432 | /// expected to be of some object or object pointer type. | ||||
2433 | /// | ||||
2434 | /// \param dc The declaration context for which we are building up a | ||||
2435 | /// substitution mapping, which should be an Objective-C class, extension, | ||||
2436 | /// category, or method within. | ||||
2437 | /// | ||||
2438 | /// \returns an array of type arguments that can be substituted for | ||||
2439 | /// the type parameters of the given declaration context in any type described | ||||
2440 | /// within that context, or an empty optional to indicate that no | ||||
2441 | /// substitution is required. | ||||
2442 | Optional<ArrayRef<QualType>> | ||||
2443 | getObjCSubstitutions(const DeclContext *dc) const; | ||||
2444 | |||||
2445 | /// Determines if this is an ObjC interface type that may accept type | ||||
2446 | /// parameters. | ||||
2447 | bool acceptsObjCTypeParams() const; | ||||
2448 | |||||
2449 | const char *getTypeClassName() const; | ||||
2450 | |||||
2451 | QualType getCanonicalTypeInternal() const { | ||||
2452 | return CanonicalType; | ||||
2453 | } | ||||
2454 | |||||
2455 | CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h | ||||
2456 | void dump() const; | ||||
2457 | void dump(llvm::raw_ostream &OS, const ASTContext &Context) const; | ||||
2458 | }; | ||||
2459 | |||||
2460 | /// This will check for a TypedefType by removing any existing sugar | ||||
2461 | /// until it reaches a TypedefType or a non-sugared type. | ||||
2462 | template <> const TypedefType *Type::getAs() const; | ||||
2463 | |||||
2464 | /// This will check for a TemplateSpecializationType by removing any | ||||
2465 | /// existing sugar until it reaches a TemplateSpecializationType or a | ||||
2466 | /// non-sugared type. | ||||
2467 | template <> const TemplateSpecializationType *Type::getAs() const; | ||||
2468 | |||||
2469 | /// This will check for an AttributedType by removing any existing sugar | ||||
2470 | /// until it reaches an AttributedType or a non-sugared type. | ||||
2471 | template <> const AttributedType *Type::getAs() const; | ||||
2472 | |||||
2473 | // We can do canonical leaf types faster, because we don't have to | ||||
2474 | // worry about preserving child type decoration. | ||||
2475 | #define TYPE(Class, Base) | ||||
2476 | #define LEAF_TYPE(Class) \ | ||||
2477 | template <> inline const Class##Type *Type::getAs() const { \ | ||||
2478 | return dyn_cast<Class##Type>(CanonicalType); \ | ||||
2479 | } \ | ||||
2480 | template <> inline const Class##Type *Type::castAs() const { \ | ||||
2481 | return cast<Class##Type>(CanonicalType); \ | ||||
2482 | } | ||||
2483 | #include "clang/AST/TypeNodes.inc" | ||||
2484 | |||||
2485 | /// This class is used for builtin types like 'int'. Builtin | ||||
2486 | /// types are always canonical and have a literal name field. | ||||
2487 | class BuiltinType : public Type { | ||||
2488 | public: | ||||
2489 | enum Kind { | ||||
2490 | // OpenCL image types | ||||
2491 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id, | ||||
2492 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
2493 | // OpenCL extension types | ||||
2494 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id, | ||||
2495 | #include "clang/Basic/OpenCLExtensionTypes.def" | ||||
2496 | // SVE Types | ||||
2497 | #define SVE_TYPE(Name, Id, SingletonId) Id, | ||||
2498 | #include "clang/Basic/AArch64SVEACLETypes.def" | ||||
2499 | // PPC MMA Types | ||||
2500 | #define PPC_VECTOR_TYPE(Name, Id, Size) Id, | ||||
2501 | #include "clang/Basic/PPCTypes.def" | ||||
2502 | // RVV Types | ||||
2503 | #define RVV_TYPE(Name, Id, SingletonId) Id, | ||||
2504 | #include "clang/Basic/RISCVVTypes.def" | ||||
2505 | // All other builtin types | ||||
2506 | #define BUILTIN_TYPE(Id, SingletonId) Id, | ||||
2507 | #define LAST_BUILTIN_TYPE(Id) LastKind = Id | ||||
2508 | #include "clang/AST/BuiltinTypes.def" | ||||
2509 | }; | ||||
2510 | |||||
2511 | private: | ||||
2512 | friend class ASTContext; // ASTContext creates these. | ||||
2513 | |||||
2514 | BuiltinType(Kind K) | ||||
2515 | : Type(Builtin, QualType(), | ||||
2516 | K == Dependent ? TypeDependence::DependentInstantiation | ||||
2517 | : TypeDependence::None) { | ||||
2518 | BuiltinTypeBits.Kind = K; | ||||
2519 | } | ||||
2520 | |||||
2521 | public: | ||||
2522 | Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); } | ||||
2523 | StringRef getName(const PrintingPolicy &Policy) const; | ||||
2524 | |||||
2525 | const char *getNameAsCString(const PrintingPolicy &Policy) const { | ||||
2526 | // The StringRef is null-terminated. | ||||
2527 | StringRef str = getName(Policy); | ||||
2528 | assert(!str.empty() && str.data()[str.size()] == '\0')((void)0); | ||||
2529 | return str.data(); | ||||
2530 | } | ||||
2531 | |||||
2532 | bool isSugared() const { return false; } | ||||
2533 | QualType desugar() const { return QualType(this, 0); } | ||||
2534 | |||||
2535 | bool isInteger() const { | ||||
2536 | return getKind() >= Bool && getKind() <= Int128; | ||||
2537 | } | ||||
2538 | |||||
2539 | bool isSignedInteger() const { | ||||
2540 | return getKind() >= Char_S && getKind() <= Int128; | ||||
2541 | } | ||||
2542 | |||||
2543 | bool isUnsignedInteger() const { | ||||
2544 | return getKind() >= Bool && getKind() <= UInt128; | ||||
2545 | } | ||||
2546 | |||||
2547 | bool isFloatingPoint() const { | ||||
2548 | return getKind() >= Half && getKind() <= Float128; | ||||
2549 | } | ||||
2550 | |||||
2551 | /// Determines whether the given kind corresponds to a placeholder type. | ||||
2552 | static bool isPlaceholderTypeKind(Kind K) { | ||||
2553 | return K >= Overload; | ||||
2554 | } | ||||
2555 | |||||
2556 | /// Determines whether this type is a placeholder type, i.e. a type | ||||
2557 | /// which cannot appear in arbitrary positions in a fully-formed | ||||
2558 | /// expression. | ||||
2559 | bool isPlaceholderType() const { | ||||
2560 | return isPlaceholderTypeKind(getKind()); | ||||
2561 | } | ||||
2562 | |||||
2563 | /// Determines whether this type is a placeholder type other than | ||||
2564 | /// Overload. Most placeholder types require only syntactic | ||||
2565 | /// information about their context in order to be resolved (e.g. | ||||
2566 | /// whether it is a call expression), which means they can (and | ||||
2567 | /// should) be resolved in an earlier "phase" of analysis. | ||||
2568 | /// Overload expressions sometimes pick up further information | ||||
2569 | /// from their context, like whether the context expects a | ||||
2570 | /// specific function-pointer type, and so frequently need | ||||
2571 | /// special treatment. | ||||
2572 | bool isNonOverloadPlaceholderType() const { | ||||
2573 | return getKind() > Overload; | ||||
2574 | } | ||||
2575 | |||||
2576 | static bool classof(const Type *T) { return T->getTypeClass() == Builtin; } | ||||
2577 | }; | ||||
2578 | |||||
2579 | /// Complex values, per C99 6.2.5p11. This supports the C99 complex | ||||
2580 | /// types (_Complex float etc) as well as the GCC integer complex extensions. | ||||
2581 | class ComplexType : public Type, public llvm::FoldingSetNode { | ||||
2582 | friend class ASTContext; // ASTContext creates these. | ||||
2583 | |||||
2584 | QualType ElementType; | ||||
2585 | |||||
2586 | ComplexType(QualType Element, QualType CanonicalPtr) | ||||
2587 | : Type(Complex, CanonicalPtr, Element->getDependence()), | ||||
2588 | ElementType(Element) {} | ||||
2589 | |||||
2590 | public: | ||||
2591 | QualType getElementType() const { return ElementType; } | ||||
2592 | |||||
2593 | bool isSugared() const { return false; } | ||||
2594 | QualType desugar() const { return QualType(this, 0); } | ||||
2595 | |||||
2596 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
2597 | Profile(ID, getElementType()); | ||||
2598 | } | ||||
2599 | |||||
2600 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) { | ||||
2601 | ID.AddPointer(Element.getAsOpaquePtr()); | ||||
2602 | } | ||||
2603 | |||||
2604 | static bool classof(const Type *T) { return T->getTypeClass() == Complex; } | ||||
2605 | }; | ||||
2606 | |||||
2607 | /// Sugar for parentheses used when specifying types. | ||||
2608 | class ParenType : public Type, public llvm::FoldingSetNode { | ||||
2609 | friend class ASTContext; // ASTContext creates these. | ||||
2610 | |||||
2611 | QualType Inner; | ||||
2612 | |||||
2613 | ParenType(QualType InnerType, QualType CanonType) | ||||
2614 | : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {} | ||||
2615 | |||||
2616 | public: | ||||
2617 | QualType getInnerType() const { return Inner; } | ||||
2618 | |||||
2619 | bool isSugared() const { return true; } | ||||
2620 | QualType desugar() const { return getInnerType(); } | ||||
2621 | |||||
2622 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
2623 | Profile(ID, getInnerType()); | ||||
2624 | } | ||||
2625 | |||||
2626 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) { | ||||
2627 | Inner.Profile(ID); | ||||
2628 | } | ||||
2629 | |||||
2630 | static bool classof(const Type *T) { return T->getTypeClass() == Paren; } | ||||
2631 | }; | ||||
2632 | |||||
2633 | /// PointerType - C99 6.7.5.1 - Pointer Declarators. | ||||
2634 | class PointerType : public Type, public llvm::FoldingSetNode { | ||||
2635 | friend class ASTContext; // ASTContext creates these. | ||||
2636 | |||||
2637 | QualType PointeeType; | ||||
2638 | |||||
2639 | PointerType(QualType Pointee, QualType CanonicalPtr) | ||||
2640 | : Type(Pointer, CanonicalPtr, Pointee->getDependence()), | ||||
2641 | PointeeType(Pointee) {} | ||||
2642 | |||||
2643 | public: | ||||
2644 | QualType getPointeeType() const { return PointeeType; } | ||||
2645 | |||||
2646 | bool isSugared() const { return false; } | ||||
2647 | QualType desugar() const { return QualType(this, 0); } | ||||
2648 | |||||
2649 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
2650 | Profile(ID, getPointeeType()); | ||||
2651 | } | ||||
2652 | |||||
2653 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) { | ||||
2654 | ID.AddPointer(Pointee.getAsOpaquePtr()); | ||||
2655 | } | ||||
2656 | |||||
2657 | static bool classof(const Type *T) { return T->getTypeClass() == Pointer; } | ||||
2658 | }; | ||||
2659 | |||||
2660 | /// Represents a type which was implicitly adjusted by the semantic | ||||
2661 | /// engine for arbitrary reasons. For example, array and function types can | ||||
2662 | /// decay, and function types can have their calling conventions adjusted. | ||||
2663 | class AdjustedType : public Type, public llvm::FoldingSetNode { | ||||
2664 | QualType OriginalTy; | ||||
2665 | QualType AdjustedTy; | ||||
2666 | |||||
2667 | protected: | ||||
2668 | friend class ASTContext; // ASTContext creates these. | ||||
2669 | |||||
2670 | AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy, | ||||
2671 | QualType CanonicalPtr) | ||||
2672 | : Type(TC, CanonicalPtr, OriginalTy->getDependence()), | ||||
2673 | OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {} | ||||
2674 | |||||
2675 | public: | ||||
2676 | QualType getOriginalType() const { return OriginalTy; } | ||||
2677 | QualType getAdjustedType() const { return AdjustedTy; } | ||||
2678 | |||||
2679 | bool isSugared() const { return true; } | ||||
2680 | QualType desugar() const { return AdjustedTy; } | ||||
2681 | |||||
2682 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
2683 | Profile(ID, OriginalTy, AdjustedTy); | ||||
2684 | } | ||||
2685 | |||||
2686 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) { | ||||
2687 | ID.AddPointer(Orig.getAsOpaquePtr()); | ||||
2688 | ID.AddPointer(New.getAsOpaquePtr()); | ||||
2689 | } | ||||
2690 | |||||
2691 | static bool classof(const Type *T) { | ||||
2692 | return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed; | ||||
2693 | } | ||||
2694 | }; | ||||
2695 | |||||
2696 | /// Represents a pointer type decayed from an array or function type. | ||||
2697 | class DecayedType : public AdjustedType { | ||||
2698 | friend class ASTContext; // ASTContext creates these. | ||||
2699 | |||||
2700 | inline | ||||
2701 | DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical); | ||||
2702 | |||||
2703 | public: | ||||
2704 | QualType getDecayedType() const { return getAdjustedType(); } | ||||
2705 | |||||
2706 | inline QualType getPointeeType() const; | ||||
2707 | |||||
2708 | static bool classof(const Type *T) { return T->getTypeClass() == Decayed; } | ||||
2709 | }; | ||||
2710 | |||||
2711 | /// Pointer to a block type. | ||||
2712 | /// This type is to represent types syntactically represented as | ||||
2713 | /// "void (^)(int)", etc. Pointee is required to always be a function type. | ||||
2714 | class BlockPointerType : public Type, public llvm::FoldingSetNode { | ||||
2715 | friend class ASTContext; // ASTContext creates these. | ||||
2716 | |||||
2717 | // Block is some kind of pointer type | ||||
2718 | QualType PointeeType; | ||||
2719 | |||||
2720 | BlockPointerType(QualType Pointee, QualType CanonicalCls) | ||||
2721 | : Type(BlockPointer, CanonicalCls, Pointee->getDependence()), | ||||
2722 | PointeeType(Pointee) {} | ||||
2723 | |||||
2724 | public: | ||||
2725 | // Get the pointee type. Pointee is required to always be a function type. | ||||
2726 | QualType getPointeeType() const { return PointeeType; } | ||||
2727 | |||||
2728 | bool isSugared() const { return false; } | ||||
2729 | QualType desugar() const { return QualType(this, 0); } | ||||
2730 | |||||
2731 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
2732 | Profile(ID, getPointeeType()); | ||||
2733 | } | ||||
2734 | |||||
2735 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) { | ||||
2736 | ID.AddPointer(Pointee.getAsOpaquePtr()); | ||||
2737 | } | ||||
2738 | |||||
2739 | static bool classof(const Type *T) { | ||||
2740 | return T->getTypeClass() == BlockPointer; | ||||
2741 | } | ||||
2742 | }; | ||||
2743 | |||||
2744 | /// Base for LValueReferenceType and RValueReferenceType | ||||
2745 | class ReferenceType : public Type, public llvm::FoldingSetNode { | ||||
2746 | QualType PointeeType; | ||||
2747 | |||||
2748 | protected: | ||||
2749 | ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef, | ||||
2750 | bool SpelledAsLValue) | ||||
2751 | : Type(tc, CanonicalRef, Referencee->getDependence()), | ||||
2752 | PointeeType(Referencee) { | ||||
2753 | ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue; | ||||
2754 | ReferenceTypeBits.InnerRef = Referencee->isReferenceType(); | ||||
2755 | } | ||||
2756 | |||||
2757 | public: | ||||
2758 | bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; } | ||||
2759 | bool isInnerRef() const { return ReferenceTypeBits.InnerRef; } | ||||
2760 | |||||
2761 | QualType getPointeeTypeAsWritten() const { return PointeeType; } | ||||
2762 | |||||
2763 | QualType getPointeeType() const { | ||||
2764 | // FIXME: this might strip inner qualifiers; okay? | ||||
2765 | const ReferenceType *T = this; | ||||
2766 | while (T->isInnerRef()) | ||||
2767 | T = T->PointeeType->castAs<ReferenceType>(); | ||||
2768 | return T->PointeeType; | ||||
2769 | } | ||||
2770 | |||||
2771 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
2772 | Profile(ID, PointeeType, isSpelledAsLValue()); | ||||
2773 | } | ||||
2774 | |||||
2775 | static void Profile(llvm::FoldingSetNodeID &ID, | ||||
2776 | QualType Referencee, | ||||
2777 | bool SpelledAsLValue) { | ||||
2778 | ID.AddPointer(Referencee.getAsOpaquePtr()); | ||||
2779 | ID.AddBoolean(SpelledAsLValue); | ||||
2780 | } | ||||
2781 | |||||
2782 | static bool classof(const Type *T) { | ||||
2783 | return T->getTypeClass() == LValueReference || | ||||
2784 | T->getTypeClass() == RValueReference; | ||||
2785 | } | ||||
2786 | }; | ||||
2787 | |||||
2788 | /// An lvalue reference type, per C++11 [dcl.ref]. | ||||
2789 | class LValueReferenceType : public ReferenceType { | ||||
2790 | friend class ASTContext; // ASTContext creates these | ||||
2791 | |||||
2792 | LValueReferenceType(QualType Referencee, QualType CanonicalRef, | ||||
2793 | bool SpelledAsLValue) | ||||
2794 | : ReferenceType(LValueReference, Referencee, CanonicalRef, | ||||
2795 | SpelledAsLValue) {} | ||||
2796 | |||||
2797 | public: | ||||
2798 | bool isSugared() const { return false; } | ||||
2799 | QualType desugar() const { return QualType(this, 0); } | ||||
2800 | |||||
2801 | static bool classof(const Type *T) { | ||||
2802 | return T->getTypeClass() == LValueReference; | ||||
2803 | } | ||||
2804 | }; | ||||
2805 | |||||
2806 | /// An rvalue reference type, per C++11 [dcl.ref]. | ||||
2807 | class RValueReferenceType : public ReferenceType { | ||||
2808 | friend class ASTContext; // ASTContext creates these | ||||
2809 | |||||
2810 | RValueReferenceType(QualType Referencee, QualType CanonicalRef) | ||||
2811 | : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {} | ||||
2812 | |||||
2813 | public: | ||||
2814 | bool isSugared() const { return false; } | ||||
2815 | QualType desugar() const { return QualType(this, 0); } | ||||
2816 | |||||
2817 | static bool classof(const Type *T) { | ||||
2818 | return T->getTypeClass() == RValueReference; | ||||
2819 | } | ||||
2820 | }; | ||||
2821 | |||||
2822 | /// A pointer to member type per C++ 8.3.3 - Pointers to members. | ||||
2823 | /// | ||||
2824 | /// This includes both pointers to data members and pointer to member functions. | ||||
2825 | class MemberPointerType : public Type, public llvm::FoldingSetNode { | ||||
2826 | friend class ASTContext; // ASTContext creates these. | ||||
2827 | |||||
2828 | QualType PointeeType; | ||||
2829 | |||||
2830 | /// The class of which the pointee is a member. Must ultimately be a | ||||
2831 | /// RecordType, but could be a typedef or a template parameter too. | ||||
2832 | const Type *Class; | ||||
2833 | |||||
2834 | MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) | ||||
2835 | : Type(MemberPointer, CanonicalPtr, | ||||
2836 | (Cls->getDependence() & ~TypeDependence::VariablyModified) | | ||||
2837 | Pointee->getDependence()), | ||||
2838 | PointeeType(Pointee), Class(Cls) {} | ||||
2839 | |||||
2840 | public: | ||||
2841 | QualType getPointeeType() const { return PointeeType; } | ||||
2842 | |||||
2843 | /// Returns true if the member type (i.e. the pointee type) is a | ||||
2844 | /// function type rather than a data-member type. | ||||
2845 | bool isMemberFunctionPointer() const { | ||||
2846 | return PointeeType->isFunctionProtoType(); | ||||
2847 | } | ||||
2848 | |||||
2849 | /// Returns true if the member type (i.e. the pointee type) is a | ||||
2850 | /// data type rather than a function type. | ||||
2851 | bool isMemberDataPointer() const { | ||||
2852 | return !PointeeType->isFunctionProtoType(); | ||||
2853 | } | ||||
2854 | |||||
2855 | const Type *getClass() const { return Class; } | ||||
2856 | CXXRecordDecl *getMostRecentCXXRecordDecl() const; | ||||
2857 | |||||
2858 | bool isSugared() const { return false; } | ||||
2859 | QualType desugar() const { return QualType(this, 0); } | ||||
2860 | |||||
2861 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
2862 | Profile(ID, getPointeeType(), getClass()); | ||||
2863 | } | ||||
2864 | |||||
2865 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee, | ||||
2866 | const Type *Class) { | ||||
2867 | ID.AddPointer(Pointee.getAsOpaquePtr()); | ||||
2868 | ID.AddPointer(Class); | ||||
2869 | } | ||||
2870 | |||||
2871 | static bool classof(const Type *T) { | ||||
2872 | return T->getTypeClass() == MemberPointer; | ||||
2873 | } | ||||
2874 | }; | ||||
2875 | |||||
2876 | /// Represents an array type, per C99 6.7.5.2 - Array Declarators. | ||||
2877 | class ArrayType : public Type, public llvm::FoldingSetNode { | ||||
2878 | public: | ||||
2879 | /// Capture whether this is a normal array (e.g. int X[4]) | ||||
2880 | /// an array with a static size (e.g. int X[static 4]), or an array | ||||
2881 | /// with a star size (e.g. int X[*]). | ||||
2882 | /// 'static' is only allowed on function parameters. | ||||
2883 | enum ArraySizeModifier { | ||||
2884 | Normal, Static, Star | ||||
2885 | }; | ||||
2886 | |||||
2887 | private: | ||||
2888 | /// The element type of the array. | ||||
2889 | QualType ElementType; | ||||
2890 | |||||
2891 | protected: | ||||
2892 | friend class ASTContext; // ASTContext creates these. | ||||
2893 | |||||
2894 | ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm, | ||||
2895 | unsigned tq, const Expr *sz = nullptr); | ||||
2896 | |||||
2897 | public: | ||||
2898 | QualType getElementType() const { return ElementType; } | ||||
2899 | |||||
2900 | ArraySizeModifier getSizeModifier() const { | ||||
2901 | return ArraySizeModifier(ArrayTypeBits.SizeModifier); | ||||
2902 | } | ||||
2903 | |||||
2904 | Qualifiers getIndexTypeQualifiers() const { | ||||
2905 | return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers()); | ||||
2906 | } | ||||
2907 | |||||
2908 | unsigned getIndexTypeCVRQualifiers() const { | ||||
2909 | return ArrayTypeBits.IndexTypeQuals; | ||||
2910 | } | ||||
2911 | |||||
2912 | static bool classof(const Type *T) { | ||||
2913 | return T->getTypeClass() == ConstantArray || | ||||
2914 | T->getTypeClass() == VariableArray || | ||||
2915 | T->getTypeClass() == IncompleteArray || | ||||
2916 | T->getTypeClass() == DependentSizedArray; | ||||
2917 | } | ||||
2918 | }; | ||||
2919 | |||||
2920 | /// Represents the canonical version of C arrays with a specified constant size. | ||||
2921 | /// For example, the canonical type for 'int A[4 + 4*100]' is a | ||||
2922 | /// ConstantArrayType where the element type is 'int' and the size is 404. | ||||
2923 | class ConstantArrayType final | ||||
2924 | : public ArrayType, | ||||
2925 | private llvm::TrailingObjects<ConstantArrayType, const Expr *> { | ||||
2926 | friend class ASTContext; // ASTContext creates these. | ||||
2927 | friend TrailingObjects; | ||||
2928 | |||||
2929 | llvm::APInt Size; // Allows us to unique the type. | ||||
2930 | |||||
2931 | ConstantArrayType(QualType et, QualType can, const llvm::APInt &size, | ||||
2932 | const Expr *sz, ArraySizeModifier sm, unsigned tq) | ||||
2933 | : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) { | ||||
2934 | ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr; | ||||
2935 | if (ConstantArrayTypeBits.HasStoredSizeExpr) { | ||||
2936 | assert(!can.isNull() && "canonical constant array should not have size")((void)0); | ||||
2937 | *getTrailingObjects<const Expr*>() = sz; | ||||
2938 | } | ||||
2939 | } | ||||
2940 | |||||
2941 | unsigned numTrailingObjects(OverloadToken<const Expr*>) const { | ||||
2942 | return ConstantArrayTypeBits.HasStoredSizeExpr; | ||||
2943 | } | ||||
2944 | |||||
2945 | public: | ||||
2946 | const llvm::APInt &getSize() const { return Size; } | ||||
2947 | const Expr *getSizeExpr() const { | ||||
2948 | return ConstantArrayTypeBits.HasStoredSizeExpr | ||||
2949 | ? *getTrailingObjects<const Expr *>() | ||||
2950 | : nullptr; | ||||
2951 | } | ||||
2952 | bool isSugared() const { return false; } | ||||
2953 | QualType desugar() const { return QualType(this, 0); } | ||||
2954 | |||||
2955 | /// Determine the number of bits required to address a member of | ||||
2956 | // an array with the given element type and number of elements. | ||||
2957 | static unsigned getNumAddressingBits(const ASTContext &Context, | ||||
2958 | QualType ElementType, | ||||
2959 | const llvm::APInt &NumElements); | ||||
2960 | |||||
2961 | /// Determine the maximum number of active bits that an array's size | ||||
2962 | /// can require, which limits the maximum size of the array. | ||||
2963 | static unsigned getMaxSizeBits(const ASTContext &Context); | ||||
2964 | |||||
2965 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) { | ||||
2966 | Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(), | ||||
2967 | getSizeModifier(), getIndexTypeCVRQualifiers()); | ||||
2968 | } | ||||
2969 | |||||
2970 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx, | ||||
2971 | QualType ET, const llvm::APInt &ArraySize, | ||||
2972 | const Expr *SizeExpr, ArraySizeModifier SizeMod, | ||||
2973 | unsigned TypeQuals); | ||||
2974 | |||||
2975 | static bool classof(const Type *T) { | ||||
2976 | return T->getTypeClass() == ConstantArray; | ||||
2977 | } | ||||
2978 | }; | ||||
2979 | |||||
2980 | /// Represents a C array with an unspecified size. For example 'int A[]' has | ||||
2981 | /// an IncompleteArrayType where the element type is 'int' and the size is | ||||
2982 | /// unspecified. | ||||
2983 | class IncompleteArrayType : public ArrayType { | ||||
2984 | friend class ASTContext; // ASTContext creates these. | ||||
2985 | |||||
2986 | IncompleteArrayType(QualType et, QualType can, | ||||
2987 | ArraySizeModifier sm, unsigned tq) | ||||
2988 | : ArrayType(IncompleteArray, et, can, sm, tq) {} | ||||
2989 | |||||
2990 | public: | ||||
2991 | friend class StmtIteratorBase; | ||||
2992 | |||||
2993 | bool isSugared() const { return false; } | ||||
2994 | QualType desugar() const { return QualType(this, 0); } | ||||
2995 | |||||
2996 | static bool classof(const Type *T) { | ||||
2997 | return T->getTypeClass() == IncompleteArray; | ||||
2998 | } | ||||
2999 | |||||
3000 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3001 | Profile(ID, getElementType(), getSizeModifier(), | ||||
3002 | getIndexTypeCVRQualifiers()); | ||||
3003 | } | ||||
3004 | |||||
3005 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ET, | ||||
3006 | ArraySizeModifier SizeMod, unsigned TypeQuals) { | ||||
3007 | ID.AddPointer(ET.getAsOpaquePtr()); | ||||
3008 | ID.AddInteger(SizeMod); | ||||
3009 | ID.AddInteger(TypeQuals); | ||||
3010 | } | ||||
3011 | }; | ||||
3012 | |||||
3013 | /// Represents a C array with a specified size that is not an | ||||
3014 | /// integer-constant-expression. For example, 'int s[x+foo()]'. | ||||
3015 | /// Since the size expression is an arbitrary expression, we store it as such. | ||||
3016 | /// | ||||
3017 | /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and | ||||
3018 | /// should not be: two lexically equivalent variable array types could mean | ||||
3019 | /// different things, for example, these variables do not have the same type | ||||
3020 | /// dynamically: | ||||
3021 | /// | ||||
3022 | /// void foo(int x) { | ||||
3023 | /// int Y[x]; | ||||
3024 | /// ++x; | ||||
3025 | /// int Z[x]; | ||||
3026 | /// } | ||||
3027 | class VariableArrayType : public ArrayType { | ||||
3028 | friend class ASTContext; // ASTContext creates these. | ||||
3029 | |||||
3030 | /// An assignment-expression. VLA's are only permitted within | ||||
3031 | /// a function block. | ||||
3032 | Stmt *SizeExpr; | ||||
3033 | |||||
3034 | /// The range spanned by the left and right array brackets. | ||||
3035 | SourceRange Brackets; | ||||
3036 | |||||
3037 | VariableArrayType(QualType et, QualType can, Expr *e, | ||||
3038 | ArraySizeModifier sm, unsigned tq, | ||||
3039 | SourceRange brackets) | ||||
3040 | : ArrayType(VariableArray, et, can, sm, tq, e), | ||||
3041 | SizeExpr((Stmt*) e), Brackets(brackets) {} | ||||
3042 | |||||
3043 | public: | ||||
3044 | friend class StmtIteratorBase; | ||||
3045 | |||||
3046 | Expr *getSizeExpr() const { | ||||
3047 | // We use C-style casts instead of cast<> here because we do not wish | ||||
3048 | // to have a dependency of Type.h on Stmt.h/Expr.h. | ||||
3049 | return (Expr*) SizeExpr; | ||||
3050 | } | ||||
3051 | |||||
3052 | SourceRange getBracketsRange() const { return Brackets; } | ||||
3053 | SourceLocation getLBracketLoc() const { return Brackets.getBegin(); } | ||||
3054 | SourceLocation getRBracketLoc() const { return Brackets.getEnd(); } | ||||
3055 | |||||
3056 | bool isSugared() const { return false; } | ||||
3057 | QualType desugar() const { return QualType(this, 0); } | ||||
3058 | |||||
3059 | static bool classof(const Type *T) { | ||||
3060 | return T->getTypeClass() == VariableArray; | ||||
3061 | } | ||||
3062 | |||||
3063 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3064 | llvm_unreachable("Cannot unique VariableArrayTypes.")__builtin_unreachable(); | ||||
3065 | } | ||||
3066 | }; | ||||
3067 | |||||
3068 | /// Represents an array type in C++ whose size is a value-dependent expression. | ||||
3069 | /// | ||||
3070 | /// For example: | ||||
3071 | /// \code | ||||
3072 | /// template<typename T, int Size> | ||||
3073 | /// class array { | ||||
3074 | /// T data[Size]; | ||||
3075 | /// }; | ||||
3076 | /// \endcode | ||||
3077 | /// | ||||
3078 | /// For these types, we won't actually know what the array bound is | ||||
3079 | /// until template instantiation occurs, at which point this will | ||||
3080 | /// become either a ConstantArrayType or a VariableArrayType. | ||||
3081 | class DependentSizedArrayType : public ArrayType { | ||||
3082 | friend class ASTContext; // ASTContext creates these. | ||||
3083 | |||||
3084 | const ASTContext &Context; | ||||
3085 | |||||
3086 | /// An assignment expression that will instantiate to the | ||||
3087 | /// size of the array. | ||||
3088 | /// | ||||
3089 | /// The expression itself might be null, in which case the array | ||||
3090 | /// type will have its size deduced from an initializer. | ||||
3091 | Stmt *SizeExpr; | ||||
3092 | |||||
3093 | /// The range spanned by the left and right array brackets. | ||||
3094 | SourceRange Brackets; | ||||
3095 | |||||
3096 | DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can, | ||||
3097 | Expr *e, ArraySizeModifier sm, unsigned tq, | ||||
3098 | SourceRange brackets); | ||||
3099 | |||||
3100 | public: | ||||
3101 | friend class StmtIteratorBase; | ||||
3102 | |||||
3103 | Expr *getSizeExpr() const { | ||||
3104 | // We use C-style casts instead of cast<> here because we do not wish | ||||
3105 | // to have a dependency of Type.h on Stmt.h/Expr.h. | ||||
3106 | return (Expr*) SizeExpr; | ||||
3107 | } | ||||
3108 | |||||
3109 | SourceRange getBracketsRange() const { return Brackets; } | ||||
3110 | SourceLocation getLBracketLoc() const { return Brackets.getBegin(); } | ||||
3111 | SourceLocation getRBracketLoc() const { return Brackets.getEnd(); } | ||||
3112 | |||||
3113 | bool isSugared() const { return false; } | ||||
3114 | QualType desugar() const { return QualType(this, 0); } | ||||
3115 | |||||
3116 | static bool classof(const Type *T) { | ||||
3117 | return T->getTypeClass() == DependentSizedArray; | ||||
3118 | } | ||||
3119 | |||||
3120 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3121 | Profile(ID, Context, getElementType(), | ||||
3122 | getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr()); | ||||
3123 | } | ||||
3124 | |||||
3125 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
3126 | QualType ET, ArraySizeModifier SizeMod, | ||||
3127 | unsigned TypeQuals, Expr *E); | ||||
3128 | }; | ||||
3129 | |||||
3130 | /// Represents an extended address space qualifier where the input address space | ||||
3131 | /// value is dependent. Non-dependent address spaces are not represented with a | ||||
3132 | /// special Type subclass; they are stored on an ExtQuals node as part of a QualType. | ||||
3133 | /// | ||||
3134 | /// For example: | ||||
3135 | /// \code | ||||
3136 | /// template<typename T, int AddrSpace> | ||||
3137 | /// class AddressSpace { | ||||
3138 | /// typedef T __attribute__((address_space(AddrSpace))) type; | ||||
3139 | /// } | ||||
3140 | /// \endcode | ||||
3141 | class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode { | ||||
3142 | friend class ASTContext; | ||||
3143 | |||||
3144 | const ASTContext &Context; | ||||
3145 | Expr *AddrSpaceExpr; | ||||
3146 | QualType PointeeType; | ||||
3147 | SourceLocation loc; | ||||
3148 | |||||
3149 | DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType, | ||||
3150 | QualType can, Expr *AddrSpaceExpr, | ||||
3151 | SourceLocation loc); | ||||
3152 | |||||
3153 | public: | ||||
3154 | Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; } | ||||
3155 | QualType getPointeeType() const { return PointeeType; } | ||||
3156 | SourceLocation getAttributeLoc() const { return loc; } | ||||
3157 | |||||
3158 | bool isSugared() const { return false; } | ||||
3159 | QualType desugar() const { return QualType(this, 0); } | ||||
3160 | |||||
3161 | static bool classof(const Type *T) { | ||||
3162 | return T->getTypeClass() == DependentAddressSpace; | ||||
3163 | } | ||||
3164 | |||||
3165 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3166 | Profile(ID, Context, getPointeeType(), getAddrSpaceExpr()); | ||||
3167 | } | ||||
3168 | |||||
3169 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
3170 | QualType PointeeType, Expr *AddrSpaceExpr); | ||||
3171 | }; | ||||
3172 | |||||
3173 | /// Represents an extended vector type where either the type or size is | ||||
3174 | /// dependent. | ||||
3175 | /// | ||||
3176 | /// For example: | ||||
3177 | /// \code | ||||
3178 | /// template<typename T, int Size> | ||||
3179 | /// class vector { | ||||
3180 | /// typedef T __attribute__((ext_vector_type(Size))) type; | ||||
3181 | /// } | ||||
3182 | /// \endcode | ||||
3183 | class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode { | ||||
3184 | friend class ASTContext; | ||||
3185 | |||||
3186 | const ASTContext &Context; | ||||
3187 | Expr *SizeExpr; | ||||
3188 | |||||
3189 | /// The element type of the array. | ||||
3190 | QualType ElementType; | ||||
3191 | |||||
3192 | SourceLocation loc; | ||||
3193 | |||||
3194 | DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType, | ||||
3195 | QualType can, Expr *SizeExpr, SourceLocation loc); | ||||
3196 | |||||
3197 | public: | ||||
3198 | Expr *getSizeExpr() const { return SizeExpr; } | ||||
3199 | QualType getElementType() const { return ElementType; } | ||||
3200 | SourceLocation getAttributeLoc() const { return loc; } | ||||
3201 | |||||
3202 | bool isSugared() const { return false; } | ||||
3203 | QualType desugar() const { return QualType(this, 0); } | ||||
3204 | |||||
3205 | static bool classof(const Type *T) { | ||||
3206 | return T->getTypeClass() == DependentSizedExtVector; | ||||
3207 | } | ||||
3208 | |||||
3209 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3210 | Profile(ID, Context, getElementType(), getSizeExpr()); | ||||
3211 | } | ||||
3212 | |||||
3213 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
3214 | QualType ElementType, Expr *SizeExpr); | ||||
3215 | }; | ||||
3216 | |||||
3217 | |||||
3218 | /// Represents a GCC generic vector type. This type is created using | ||||
3219 | /// __attribute__((vector_size(n)), where "n" specifies the vector size in | ||||
3220 | /// bytes; or from an Altivec __vector or vector declaration. | ||||
3221 | /// Since the constructor takes the number of vector elements, the | ||||
3222 | /// client is responsible for converting the size into the number of elements. | ||||
3223 | class VectorType : public Type, public llvm::FoldingSetNode { | ||||
3224 | public: | ||||
3225 | enum VectorKind { | ||||
3226 | /// not a target-specific vector type | ||||
3227 | GenericVector, | ||||
3228 | |||||
3229 | /// is AltiVec vector | ||||
3230 | AltiVecVector, | ||||
3231 | |||||
3232 | /// is AltiVec 'vector Pixel' | ||||
3233 | AltiVecPixel, | ||||
3234 | |||||
3235 | /// is AltiVec 'vector bool ...' | ||||
3236 | AltiVecBool, | ||||
3237 | |||||
3238 | /// is ARM Neon vector | ||||
3239 | NeonVector, | ||||
3240 | |||||
3241 | /// is ARM Neon polynomial vector | ||||
3242 | NeonPolyVector, | ||||
3243 | |||||
3244 | /// is AArch64 SVE fixed-length data vector | ||||
3245 | SveFixedLengthDataVector, | ||||
3246 | |||||
3247 | /// is AArch64 SVE fixed-length predicate vector | ||||
3248 | SveFixedLengthPredicateVector | ||||
3249 | }; | ||||
3250 | |||||
3251 | protected: | ||||
3252 | friend class ASTContext; // ASTContext creates these. | ||||
3253 | |||||
3254 | /// The element type of the vector. | ||||
3255 | QualType ElementType; | ||||
3256 | |||||
3257 | VectorType(QualType vecType, unsigned nElements, QualType canonType, | ||||
3258 | VectorKind vecKind); | ||||
3259 | |||||
3260 | VectorType(TypeClass tc, QualType vecType, unsigned nElements, | ||||
3261 | QualType canonType, VectorKind vecKind); | ||||
3262 | |||||
3263 | public: | ||||
3264 | QualType getElementType() const { return ElementType; } | ||||
3265 | unsigned getNumElements() const { return VectorTypeBits.NumElements; } | ||||
3266 | |||||
3267 | bool isSugared() const { return false; } | ||||
3268 | QualType desugar() const { return QualType(this, 0); } | ||||
3269 | |||||
3270 | VectorKind getVectorKind() const { | ||||
3271 | return VectorKind(VectorTypeBits.VecKind); | ||||
3272 | } | ||||
3273 | |||||
3274 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3275 | Profile(ID, getElementType(), getNumElements(), | ||||
3276 | getTypeClass(), getVectorKind()); | ||||
3277 | } | ||||
3278 | |||||
3279 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType, | ||||
3280 | unsigned NumElements, TypeClass TypeClass, | ||||
3281 | VectorKind VecKind) { | ||||
3282 | ID.AddPointer(ElementType.getAsOpaquePtr()); | ||||
3283 | ID.AddInteger(NumElements); | ||||
3284 | ID.AddInteger(TypeClass); | ||||
3285 | ID.AddInteger(VecKind); | ||||
3286 | } | ||||
3287 | |||||
3288 | static bool classof(const Type *T) { | ||||
3289 | return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector; | ||||
3290 | } | ||||
3291 | }; | ||||
3292 | |||||
3293 | /// Represents a vector type where either the type or size is dependent. | ||||
3294 | //// | ||||
3295 | /// For example: | ||||
3296 | /// \code | ||||
3297 | /// template<typename T, int Size> | ||||
3298 | /// class vector { | ||||
3299 | /// typedef T __attribute__((vector_size(Size))) type; | ||||
3300 | /// } | ||||
3301 | /// \endcode | ||||
3302 | class DependentVectorType : public Type, public llvm::FoldingSetNode { | ||||
3303 | friend class ASTContext; | ||||
3304 | |||||
3305 | const ASTContext &Context; | ||||
3306 | QualType ElementType; | ||||
3307 | Expr *SizeExpr; | ||||
3308 | SourceLocation Loc; | ||||
3309 | |||||
3310 | DependentVectorType(const ASTContext &Context, QualType ElementType, | ||||
3311 | QualType CanonType, Expr *SizeExpr, | ||||
3312 | SourceLocation Loc, VectorType::VectorKind vecKind); | ||||
3313 | |||||
3314 | public: | ||||
3315 | Expr *getSizeExpr() const { return SizeExpr; } | ||||
3316 | QualType getElementType() const { return ElementType; } | ||||
3317 | SourceLocation getAttributeLoc() const { return Loc; } | ||||
3318 | VectorType::VectorKind getVectorKind() const { | ||||
3319 | return VectorType::VectorKind(VectorTypeBits.VecKind); | ||||
3320 | } | ||||
3321 | |||||
3322 | bool isSugared() const { return false; } | ||||
3323 | QualType desugar() const { return QualType(this, 0); } | ||||
3324 | |||||
3325 | static bool classof(const Type *T) { | ||||
3326 | return T->getTypeClass() == DependentVector; | ||||
3327 | } | ||||
3328 | |||||
3329 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3330 | Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind()); | ||||
3331 | } | ||||
3332 | |||||
3333 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
3334 | QualType ElementType, const Expr *SizeExpr, | ||||
3335 | VectorType::VectorKind VecKind); | ||||
3336 | }; | ||||
3337 | |||||
3338 | /// ExtVectorType - Extended vector type. This type is created using | ||||
3339 | /// __attribute__((ext_vector_type(n)), where "n" is the number of elements. | ||||
3340 | /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This | ||||
3341 | /// class enables syntactic extensions, like Vector Components for accessing | ||||
3342 | /// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL | ||||
3343 | /// Shading Language). | ||||
3344 | class ExtVectorType : public VectorType { | ||||
3345 | friend class ASTContext; // ASTContext creates these. | ||||
3346 | |||||
3347 | ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) | ||||
3348 | : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {} | ||||
3349 | |||||
3350 | public: | ||||
3351 | static int getPointAccessorIdx(char c) { | ||||
3352 | switch (c) { | ||||
3353 | default: return -1; | ||||
3354 | case 'x': case 'r': return 0; | ||||
3355 | case 'y': case 'g': return 1; | ||||
3356 | case 'z': case 'b': return 2; | ||||
3357 | case 'w': case 'a': return 3; | ||||
3358 | } | ||||
3359 | } | ||||
3360 | |||||
3361 | static int getNumericAccessorIdx(char c) { | ||||
3362 | switch (c) { | ||||
3363 | default: return -1; | ||||
3364 | case '0': return 0; | ||||
3365 | case '1': return 1; | ||||
3366 | case '2': return 2; | ||||
3367 | case '3': return 3; | ||||
3368 | case '4': return 4; | ||||
3369 | case '5': return 5; | ||||
3370 | case '6': return 6; | ||||
3371 | case '7': return 7; | ||||
3372 | case '8': return 8; | ||||
3373 | case '9': return 9; | ||||
3374 | case 'A': | ||||
3375 | case 'a': return 10; | ||||
3376 | case 'B': | ||||
3377 | case 'b': return 11; | ||||
3378 | case 'C': | ||||
3379 | case 'c': return 12; | ||||
3380 | case 'D': | ||||
3381 | case 'd': return 13; | ||||
3382 | case 'E': | ||||
3383 | case 'e': return 14; | ||||
3384 | case 'F': | ||||
3385 | case 'f': return 15; | ||||
3386 | } | ||||
3387 | } | ||||
3388 | |||||
3389 | static int getAccessorIdx(char c, bool isNumericAccessor) { | ||||
3390 | if (isNumericAccessor) | ||||
3391 | return getNumericAccessorIdx(c); | ||||
3392 | else | ||||
3393 | return getPointAccessorIdx(c); | ||||
3394 | } | ||||
3395 | |||||
3396 | bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const { | ||||
3397 | if (int idx = getAccessorIdx(c, isNumericAccessor)+1) | ||||
3398 | return unsigned(idx-1) < getNumElements(); | ||||
3399 | return false; | ||||
3400 | } | ||||
3401 | |||||
3402 | bool isSugared() const { return false; } | ||||
3403 | QualType desugar() const { return QualType(this, 0); } | ||||
3404 | |||||
3405 | static bool classof(const Type *T) { | ||||
3406 | return T->getTypeClass() == ExtVector; | ||||
3407 | } | ||||
3408 | }; | ||||
3409 | |||||
3410 | /// Represents a matrix type, as defined in the Matrix Types clang extensions. | ||||
3411 | /// __attribute__((matrix_type(rows, columns))), where "rows" specifies | ||||
3412 | /// number of rows and "columns" specifies the number of columns. | ||||
3413 | class MatrixType : public Type, public llvm::FoldingSetNode { | ||||
3414 | protected: | ||||
3415 | friend class ASTContext; | ||||
3416 | |||||
3417 | /// The element type of the matrix. | ||||
3418 | QualType ElementType; | ||||
3419 | |||||
3420 | MatrixType(QualType ElementTy, QualType CanonElementTy); | ||||
3421 | |||||
3422 | MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy, | ||||
3423 | const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr); | ||||
3424 | |||||
3425 | public: | ||||
3426 | /// Returns type of the elements being stored in the matrix | ||||
3427 | QualType getElementType() const { return ElementType; } | ||||
3428 | |||||
3429 | /// Valid elements types are the following: | ||||
3430 | /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types | ||||
3431 | /// and _Bool | ||||
3432 | /// * the standard floating types float or double | ||||
3433 | /// * a half-precision floating point type, if one is supported on the target | ||||
3434 | static bool isValidElementType(QualType T) { | ||||
3435 | return T->isDependentType() || | ||||
3436 | (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType()); | ||||
3437 | } | ||||
3438 | |||||
3439 | bool isSugared() const { return false; } | ||||
3440 | QualType desugar() const { return QualType(this, 0); } | ||||
3441 | |||||
3442 | static bool classof(const Type *T) { | ||||
3443 | return T->getTypeClass() == ConstantMatrix || | ||||
3444 | T->getTypeClass() == DependentSizedMatrix; | ||||
3445 | } | ||||
3446 | }; | ||||
3447 | |||||
3448 | /// Represents a concrete matrix type with constant number of rows and columns | ||||
3449 | class ConstantMatrixType final : public MatrixType { | ||||
3450 | protected: | ||||
3451 | friend class ASTContext; | ||||
3452 | |||||
3453 | /// The element type of the matrix. | ||||
3454 | // FIXME: Appears to be unused? There is also MatrixType::ElementType... | ||||
3455 | QualType ElementType; | ||||
3456 | |||||
3457 | /// Number of rows and columns. | ||||
3458 | unsigned NumRows; | ||||
3459 | unsigned NumColumns; | ||||
3460 | |||||
3461 | static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1; | ||||
3462 | |||||
3463 | ConstantMatrixType(QualType MatrixElementType, unsigned NRows, | ||||
3464 | unsigned NColumns, QualType CanonElementType); | ||||
3465 | |||||
3466 | ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows, | ||||
3467 | unsigned NColumns, QualType CanonElementType); | ||||
3468 | |||||
3469 | public: | ||||
3470 | /// Returns the number of rows in the matrix. | ||||
3471 | unsigned getNumRows() const { return NumRows; } | ||||
3472 | |||||
3473 | /// Returns the number of columns in the matrix. | ||||
3474 | unsigned getNumColumns() const { return NumColumns; } | ||||
3475 | |||||
3476 | /// Returns the number of elements required to embed the matrix into a vector. | ||||
3477 | unsigned getNumElementsFlattened() const { | ||||
3478 | return getNumRows() * getNumColumns(); | ||||
3479 | } | ||||
3480 | |||||
3481 | /// Returns true if \p NumElements is a valid matrix dimension. | ||||
3482 | static constexpr bool isDimensionValid(size_t NumElements) { | ||||
3483 | return NumElements > 0 && NumElements <= MaxElementsPerDimension; | ||||
3484 | } | ||||
3485 | |||||
3486 | /// Returns the maximum number of elements per dimension. | ||||
3487 | static constexpr unsigned getMaxElementsPerDimension() { | ||||
3488 | return MaxElementsPerDimension; | ||||
3489 | } | ||||
3490 | |||||
3491 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3492 | Profile(ID, getElementType(), getNumRows(), getNumColumns(), | ||||
3493 | getTypeClass()); | ||||
3494 | } | ||||
3495 | |||||
3496 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType, | ||||
3497 | unsigned NumRows, unsigned NumColumns, | ||||
3498 | TypeClass TypeClass) { | ||||
3499 | ID.AddPointer(ElementType.getAsOpaquePtr()); | ||||
3500 | ID.AddInteger(NumRows); | ||||
3501 | ID.AddInteger(NumColumns); | ||||
3502 | ID.AddInteger(TypeClass); | ||||
3503 | } | ||||
3504 | |||||
3505 | static bool classof(const Type *T) { | ||||
3506 | return T->getTypeClass() == ConstantMatrix; | ||||
3507 | } | ||||
3508 | }; | ||||
3509 | |||||
3510 | /// Represents a matrix type where the type and the number of rows and columns | ||||
3511 | /// is dependent on a template. | ||||
3512 | class DependentSizedMatrixType final : public MatrixType { | ||||
3513 | friend class ASTContext; | ||||
3514 | |||||
3515 | const ASTContext &Context; | ||||
3516 | Expr *RowExpr; | ||||
3517 | Expr *ColumnExpr; | ||||
3518 | |||||
3519 | SourceLocation loc; | ||||
3520 | |||||
3521 | DependentSizedMatrixType(const ASTContext &Context, QualType ElementType, | ||||
3522 | QualType CanonicalType, Expr *RowExpr, | ||||
3523 | Expr *ColumnExpr, SourceLocation loc); | ||||
3524 | |||||
3525 | public: | ||||
3526 | QualType getElementType() const { return ElementType; } | ||||
3527 | Expr *getRowExpr() const { return RowExpr; } | ||||
3528 | Expr *getColumnExpr() const { return ColumnExpr; } | ||||
3529 | SourceLocation getAttributeLoc() const { return loc; } | ||||
3530 | |||||
3531 | bool isSugared() const { return false; } | ||||
3532 | QualType desugar() const { return QualType(this, 0); } | ||||
3533 | |||||
3534 | static bool classof(const Type *T) { | ||||
3535 | return T->getTypeClass() == DependentSizedMatrix; | ||||
3536 | } | ||||
3537 | |||||
3538 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3539 | Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr()); | ||||
3540 | } | ||||
3541 | |||||
3542 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
3543 | QualType ElementType, Expr *RowExpr, Expr *ColumnExpr); | ||||
3544 | }; | ||||
3545 | |||||
3546 | /// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base | ||||
3547 | /// class of FunctionNoProtoType and FunctionProtoType. | ||||
3548 | class FunctionType : public Type { | ||||
3549 | // The type returned by the function. | ||||
3550 | QualType ResultType; | ||||
3551 | |||||
3552 | public: | ||||
3553 | /// Interesting information about a specific parameter that can't simply | ||||
3554 | /// be reflected in parameter's type. This is only used by FunctionProtoType | ||||
3555 | /// but is in FunctionType to make this class available during the | ||||
3556 | /// specification of the bases of FunctionProtoType. | ||||
3557 | /// | ||||
3558 | /// It makes sense to model language features this way when there's some | ||||
3559 | /// sort of parameter-specific override (such as an attribute) that | ||||
3560 | /// affects how the function is called. For example, the ARC ns_consumed | ||||
3561 | /// attribute changes whether a parameter is passed at +0 (the default) | ||||
3562 | /// or +1 (ns_consumed). This must be reflected in the function type, | ||||
3563 | /// but isn't really a change to the parameter type. | ||||
3564 | /// | ||||
3565 | /// One serious disadvantage of modelling language features this way is | ||||
3566 | /// that they generally do not work with language features that attempt | ||||
3567 | /// to destructure types. For example, template argument deduction will | ||||
3568 | /// not be able to match a parameter declared as | ||||
3569 | /// T (*)(U) | ||||
3570 | /// against an argument of type | ||||
3571 | /// void (*)(__attribute__((ns_consumed)) id) | ||||
3572 | /// because the substitution of T=void, U=id into the former will | ||||
3573 | /// not produce the latter. | ||||
3574 | class ExtParameterInfo { | ||||
3575 | enum { | ||||
3576 | ABIMask = 0x0F, | ||||
3577 | IsConsumed = 0x10, | ||||
3578 | HasPassObjSize = 0x20, | ||||
3579 | IsNoEscape = 0x40, | ||||
3580 | }; | ||||
3581 | unsigned char Data = 0; | ||||
3582 | |||||
3583 | public: | ||||
3584 | ExtParameterInfo() = default; | ||||
3585 | |||||
3586 | /// Return the ABI treatment of this parameter. | ||||
3587 | ParameterABI getABI() const { return ParameterABI(Data & ABIMask); } | ||||
3588 | ExtParameterInfo withABI(ParameterABI kind) const { | ||||
3589 | ExtParameterInfo copy = *this; | ||||
3590 | copy.Data = (copy.Data & ~ABIMask) | unsigned(kind); | ||||
3591 | return copy; | ||||
3592 | } | ||||
3593 | |||||
3594 | /// Is this parameter considered "consumed" by Objective-C ARC? | ||||
3595 | /// Consumed parameters must have retainable object type. | ||||
3596 | bool isConsumed() const { return (Data & IsConsumed); } | ||||
3597 | ExtParameterInfo withIsConsumed(bool consumed) const { | ||||
3598 | ExtParameterInfo copy = *this; | ||||
3599 | if (consumed) | ||||
3600 | copy.Data |= IsConsumed; | ||||
3601 | else | ||||
3602 | copy.Data &= ~IsConsumed; | ||||
3603 | return copy; | ||||
3604 | } | ||||
3605 | |||||
3606 | bool hasPassObjectSize() const { return Data & HasPassObjSize; } | ||||
3607 | ExtParameterInfo withHasPassObjectSize() const { | ||||
3608 | ExtParameterInfo Copy = *this; | ||||
3609 | Copy.Data |= HasPassObjSize; | ||||
3610 | return Copy; | ||||
3611 | } | ||||
3612 | |||||
3613 | bool isNoEscape() const { return Data & IsNoEscape; } | ||||
3614 | ExtParameterInfo withIsNoEscape(bool NoEscape) const { | ||||
3615 | ExtParameterInfo Copy = *this; | ||||
3616 | if (NoEscape) | ||||
3617 | Copy.Data |= IsNoEscape; | ||||
3618 | else | ||||
3619 | Copy.Data &= ~IsNoEscape; | ||||
3620 | return Copy; | ||||
3621 | } | ||||
3622 | |||||
3623 | unsigned char getOpaqueValue() const { return Data; } | ||||
3624 | static ExtParameterInfo getFromOpaqueValue(unsigned char data) { | ||||
3625 | ExtParameterInfo result; | ||||
3626 | result.Data = data; | ||||
3627 | return result; | ||||
3628 | } | ||||
3629 | |||||
3630 | friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) { | ||||
3631 | return lhs.Data == rhs.Data; | ||||
3632 | } | ||||
3633 | |||||
3634 | friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) { | ||||
3635 | return lhs.Data != rhs.Data; | ||||
3636 | } | ||||
3637 | }; | ||||
3638 | |||||
3639 | /// A class which abstracts out some details necessary for | ||||
3640 | /// making a call. | ||||
3641 | /// | ||||
3642 | /// It is not actually used directly for storing this information in | ||||
3643 | /// a FunctionType, although FunctionType does currently use the | ||||
3644 | /// same bit-pattern. | ||||
3645 | /// | ||||
3646 | // If you add a field (say Foo), other than the obvious places (both, | ||||
3647 | // constructors, compile failures), what you need to update is | ||||
3648 | // * Operator== | ||||
3649 | // * getFoo | ||||
3650 | // * withFoo | ||||
3651 | // * functionType. Add Foo, getFoo. | ||||
3652 | // * ASTContext::getFooType | ||||
3653 | // * ASTContext::mergeFunctionTypes | ||||
3654 | // * FunctionNoProtoType::Profile | ||||
3655 | // * FunctionProtoType::Profile | ||||
3656 | // * TypePrinter::PrintFunctionProto | ||||
3657 | // * AST read and write | ||||
3658 | // * Codegen | ||||
3659 | class ExtInfo { | ||||
3660 | friend class FunctionType; | ||||
3661 | |||||
3662 | // Feel free to rearrange or add bits, but if you go over 16, you'll need to | ||||
3663 | // adjust the Bits field below, and if you add bits, you'll need to adjust | ||||
3664 | // Type::FunctionTypeBitfields::ExtInfo as well. | ||||
3665 | |||||
3666 | // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall| | ||||
3667 | // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 | | ||||
3668 | // | ||||
3669 | // regparm is either 0 (no regparm attribute) or the regparm value+1. | ||||
3670 | enum { CallConvMask = 0x1F }; | ||||
3671 | enum { NoReturnMask = 0x20 }; | ||||
3672 | enum { ProducesResultMask = 0x40 }; | ||||
3673 | enum { NoCallerSavedRegsMask = 0x80 }; | ||||
3674 | enum { | ||||
3675 | RegParmMask = 0x700, | ||||
3676 | RegParmOffset = 8 | ||||
3677 | }; | ||||
3678 | enum { NoCfCheckMask = 0x800 }; | ||||
3679 | enum { CmseNSCallMask = 0x1000 }; | ||||
3680 | uint16_t Bits = CC_C; | ||||
3681 | |||||
3682 | ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {} | ||||
3683 | |||||
3684 | public: | ||||
3685 | // Constructor with no defaults. Use this when you know that you | ||||
3686 | // have all the elements (when reading an AST file for example). | ||||
3687 | ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc, | ||||
3688 | bool producesResult, bool noCallerSavedRegs, bool NoCfCheck, | ||||
3689 | bool cmseNSCall) { | ||||
3690 | assert((!hasRegParm || regParm < 7) && "Invalid regparm value")((void)0); | ||||
3691 | Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) | | ||||
3692 | (producesResult ? ProducesResultMask : 0) | | ||||
3693 | (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) | | ||||
3694 | (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) | | ||||
3695 | (NoCfCheck ? NoCfCheckMask : 0) | | ||||
3696 | (cmseNSCall ? CmseNSCallMask : 0); | ||||
3697 | } | ||||
3698 | |||||
3699 | // Constructor with all defaults. Use when for example creating a | ||||
3700 | // function known to use defaults. | ||||
3701 | ExtInfo() = default; | ||||
3702 | |||||
3703 | // Constructor with just the calling convention, which is an important part | ||||
3704 | // of the canonical type. | ||||
3705 | ExtInfo(CallingConv CC) : Bits(CC) {} | ||||
3706 | |||||
3707 | bool getNoReturn() const { return Bits & NoReturnMask; } | ||||
3708 | bool getProducesResult() const { return Bits & ProducesResultMask; } | ||||
3709 | bool getCmseNSCall() const { return Bits & CmseNSCallMask; } | ||||
3710 | bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; } | ||||
3711 | bool getNoCfCheck() const { return Bits & NoCfCheckMask; } | ||||
3712 | bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; } | ||||
3713 | |||||
3714 | unsigned getRegParm() const { | ||||
3715 | unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset; | ||||
3716 | if (RegParm > 0) | ||||
3717 | --RegParm; | ||||
3718 | return RegParm; | ||||
3719 | } | ||||
3720 | |||||
3721 | CallingConv getCC() const { return CallingConv(Bits & CallConvMask); } | ||||
3722 | |||||
3723 | bool operator==(ExtInfo Other) const { | ||||
3724 | return Bits == Other.Bits; | ||||
3725 | } | ||||
3726 | bool operator!=(ExtInfo Other) const { | ||||
3727 | return Bits != Other.Bits; | ||||
3728 | } | ||||
3729 | |||||
3730 | // Note that we don't have setters. That is by design, use | ||||
3731 | // the following with methods instead of mutating these objects. | ||||
3732 | |||||
3733 | ExtInfo withNoReturn(bool noReturn) const { | ||||
3734 | if (noReturn) | ||||
3735 | return ExtInfo(Bits | NoReturnMask); | ||||
3736 | else | ||||
3737 | return ExtInfo(Bits & ~NoReturnMask); | ||||
3738 | } | ||||
3739 | |||||
3740 | ExtInfo withProducesResult(bool producesResult) const { | ||||
3741 | if (producesResult) | ||||
3742 | return ExtInfo(Bits | ProducesResultMask); | ||||
3743 | else | ||||
3744 | return ExtInfo(Bits & ~ProducesResultMask); | ||||
3745 | } | ||||
3746 | |||||
3747 | ExtInfo withCmseNSCall(bool cmseNSCall) const { | ||||
3748 | if (cmseNSCall) | ||||
3749 | return ExtInfo(Bits | CmseNSCallMask); | ||||
3750 | else | ||||
3751 | return ExtInfo(Bits & ~CmseNSCallMask); | ||||
3752 | } | ||||
3753 | |||||
3754 | ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const { | ||||
3755 | if (noCallerSavedRegs) | ||||
3756 | return ExtInfo(Bits | NoCallerSavedRegsMask); | ||||
3757 | else | ||||
3758 | return ExtInfo(Bits & ~NoCallerSavedRegsMask); | ||||
3759 | } | ||||
3760 | |||||
3761 | ExtInfo withNoCfCheck(bool noCfCheck) const { | ||||
3762 | if (noCfCheck) | ||||
3763 | return ExtInfo(Bits | NoCfCheckMask); | ||||
3764 | else | ||||
3765 | return ExtInfo(Bits & ~NoCfCheckMask); | ||||
3766 | } | ||||
3767 | |||||
3768 | ExtInfo withRegParm(unsigned RegParm) const { | ||||
3769 | assert(RegParm < 7 && "Invalid regparm value")((void)0); | ||||
3770 | return ExtInfo((Bits & ~RegParmMask) | | ||||
3771 | ((RegParm + 1) << RegParmOffset)); | ||||
3772 | } | ||||
3773 | |||||
3774 | ExtInfo withCallingConv(CallingConv cc) const { | ||||
3775 | return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc); | ||||
3776 | } | ||||
3777 | |||||
3778 | void Profile(llvm::FoldingSetNodeID &ID) const { | ||||
3779 | ID.AddInteger(Bits); | ||||
3780 | } | ||||
3781 | }; | ||||
3782 | |||||
3783 | /// A simple holder for a QualType representing a type in an | ||||
3784 | /// exception specification. Unfortunately needed by FunctionProtoType | ||||
3785 | /// because TrailingObjects cannot handle repeated types. | ||||
3786 | struct ExceptionType { QualType Type; }; | ||||
3787 | |||||
3788 | /// A simple holder for various uncommon bits which do not fit in | ||||
3789 | /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the | ||||
3790 | /// alignment of subsequent objects in TrailingObjects. You must update | ||||
3791 | /// hasExtraBitfields in FunctionProtoType after adding extra data here. | ||||
3792 | struct alignas(void *) FunctionTypeExtraBitfields { | ||||
3793 | /// The number of types in the exception specification. | ||||
3794 | /// A whole unsigned is not needed here and according to | ||||
3795 | /// [implimits] 8 bits would be enough here. | ||||
3796 | unsigned NumExceptionType; | ||||
3797 | }; | ||||
3798 | |||||
3799 | protected: | ||||
3800 | FunctionType(TypeClass tc, QualType res, QualType Canonical, | ||||
3801 | TypeDependence Dependence, ExtInfo Info) | ||||
3802 | : Type(tc, Canonical, Dependence), ResultType(res) { | ||||
3803 | FunctionTypeBits.ExtInfo = Info.Bits; | ||||
3804 | } | ||||
3805 | |||||
3806 | Qualifiers getFastTypeQuals() const { | ||||
3807 | return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals); | ||||
3808 | } | ||||
3809 | |||||
3810 | public: | ||||
3811 | QualType getReturnType() const { return ResultType; } | ||||
3812 | |||||
3813 | bool getHasRegParm() const { return getExtInfo().getHasRegParm(); } | ||||
3814 | unsigned getRegParmType() const { return getExtInfo().getRegParm(); } | ||||
3815 | |||||
3816 | /// Determine whether this function type includes the GNU noreturn | ||||
3817 | /// attribute. The C++11 [[noreturn]] attribute does not affect the function | ||||
3818 | /// type. | ||||
3819 | bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); } | ||||
3820 | |||||
3821 | bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); } | ||||
3822 | CallingConv getCallConv() const { return getExtInfo().getCC(); } | ||||
3823 | ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); } | ||||
3824 | |||||
3825 | static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0, | ||||
3826 | "Const, volatile and restrict are assumed to be a subset of " | ||||
3827 | "the fast qualifiers."); | ||||
3828 | |||||
3829 | bool isConst() const { return getFastTypeQuals().hasConst(); } | ||||
3830 | bool isVolatile() const { return getFastTypeQuals().hasVolatile(); } | ||||
3831 | bool isRestrict() const { return getFastTypeQuals().hasRestrict(); } | ||||
3832 | |||||
3833 | /// Determine the type of an expression that calls a function of | ||||
3834 | /// this type. | ||||
3835 | QualType getCallResultType(const ASTContext &Context) const { | ||||
3836 | return getReturnType().getNonLValueExprType(Context); | ||||
3837 | } | ||||
3838 | |||||
3839 | static StringRef getNameForCallConv(CallingConv CC); | ||||
3840 | |||||
3841 | static bool classof(const Type *T) { | ||||
3842 | return T->getTypeClass() == FunctionNoProto || | ||||
3843 | T->getTypeClass() == FunctionProto; | ||||
3844 | } | ||||
3845 | }; | ||||
3846 | |||||
3847 | /// Represents a K&R-style 'int foo()' function, which has | ||||
3848 | /// no information available about its arguments. | ||||
3849 | class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode { | ||||
3850 | friend class ASTContext; // ASTContext creates these. | ||||
3851 | |||||
3852 | FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info) | ||||
3853 | : FunctionType(FunctionNoProto, Result, Canonical, | ||||
3854 | Result->getDependence() & | ||||
3855 | ~(TypeDependence::DependentInstantiation | | ||||
3856 | TypeDependence::UnexpandedPack), | ||||
3857 | Info) {} | ||||
3858 | |||||
3859 | public: | ||||
3860 | // No additional state past what FunctionType provides. | ||||
3861 | |||||
3862 | bool isSugared() const { return false; } | ||||
3863 | QualType desugar() const { return QualType(this, 0); } | ||||
3864 | |||||
3865 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
3866 | Profile(ID, getReturnType(), getExtInfo()); | ||||
3867 | } | ||||
3868 | |||||
3869 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType, | ||||
3870 | ExtInfo Info) { | ||||
3871 | Info.Profile(ID); | ||||
3872 | ID.AddPointer(ResultType.getAsOpaquePtr()); | ||||
3873 | } | ||||
3874 | |||||
3875 | static bool classof(const Type *T) { | ||||
3876 | return T->getTypeClass() == FunctionNoProto; | ||||
3877 | } | ||||
3878 | }; | ||||
3879 | |||||
3880 | /// Represents a prototype with parameter type info, e.g. | ||||
3881 | /// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no | ||||
3882 | /// parameters, not as having a single void parameter. Such a type can have | ||||
3883 | /// an exception specification, but this specification is not part of the | ||||
3884 | /// canonical type. FunctionProtoType has several trailing objects, some of | ||||
3885 | /// which optional. For more information about the trailing objects see | ||||
3886 | /// the first comment inside FunctionProtoType. | ||||
3887 | class FunctionProtoType final | ||||
3888 | : public FunctionType, | ||||
3889 | public llvm::FoldingSetNode, | ||||
3890 | private llvm::TrailingObjects< | ||||
3891 | FunctionProtoType, QualType, SourceLocation, | ||||
3892 | FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType, | ||||
3893 | Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> { | ||||
3894 | friend class ASTContext; // ASTContext creates these. | ||||
3895 | friend TrailingObjects; | ||||
3896 | |||||
3897 | // FunctionProtoType is followed by several trailing objects, some of | ||||
3898 | // which optional. They are in order: | ||||
3899 | // | ||||
3900 | // * An array of getNumParams() QualType holding the parameter types. | ||||
3901 | // Always present. Note that for the vast majority of FunctionProtoType, | ||||
3902 | // these will be the only trailing objects. | ||||
3903 | // | ||||
3904 | // * Optionally if the function is variadic, the SourceLocation of the | ||||
3905 | // ellipsis. | ||||
3906 | // | ||||
3907 | // * Optionally if some extra data is stored in FunctionTypeExtraBitfields | ||||
3908 | // (see FunctionTypeExtraBitfields and FunctionTypeBitfields): | ||||
3909 | // a single FunctionTypeExtraBitfields. Present if and only if | ||||
3910 | // hasExtraBitfields() is true. | ||||
3911 | // | ||||
3912 | // * Optionally exactly one of: | ||||
3913 | // * an array of getNumExceptions() ExceptionType, | ||||
3914 | // * a single Expr *, | ||||
3915 | // * a pair of FunctionDecl *, | ||||
3916 | // * a single FunctionDecl * | ||||
3917 | // used to store information about the various types of exception | ||||
3918 | // specification. See getExceptionSpecSize for the details. | ||||
3919 | // | ||||
3920 | // * Optionally an array of getNumParams() ExtParameterInfo holding | ||||
3921 | // an ExtParameterInfo for each of the parameters. Present if and | ||||
3922 | // only if hasExtParameterInfos() is true. | ||||
3923 | // | ||||
3924 | // * Optionally a Qualifiers object to represent extra qualifiers that can't | ||||
3925 | // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only | ||||
3926 | // if hasExtQualifiers() is true. | ||||
3927 | // | ||||
3928 | // The optional FunctionTypeExtraBitfields has to be before the data | ||||
3929 | // related to the exception specification since it contains the number | ||||
3930 | // of exception types. | ||||
3931 | // | ||||
3932 | // We put the ExtParameterInfos last. If all were equal, it would make | ||||
3933 | // more sense to put these before the exception specification, because | ||||
3934 | // it's much easier to skip past them compared to the elaborate switch | ||||
3935 | // required to skip the exception specification. However, all is not | ||||
3936 | // equal; ExtParameterInfos are used to model very uncommon features, | ||||
3937 | // and it's better not to burden the more common paths. | ||||
3938 | |||||
3939 | public: | ||||
3940 | /// Holds information about the various types of exception specification. | ||||
3941 | /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is | ||||
3942 | /// used to group together the various bits of information about the | ||||
3943 | /// exception specification. | ||||
3944 | struct ExceptionSpecInfo { | ||||
3945 | /// The kind of exception specification this is. | ||||
3946 | ExceptionSpecificationType Type = EST_None; | ||||
3947 | |||||
3948 | /// Explicitly-specified list of exception types. | ||||
3949 | ArrayRef<QualType> Exceptions; | ||||
3950 | |||||
3951 | /// Noexcept expression, if this is a computed noexcept specification. | ||||
3952 | Expr *NoexceptExpr = nullptr; | ||||
3953 | |||||
3954 | /// The function whose exception specification this is, for | ||||
3955 | /// EST_Unevaluated and EST_Uninstantiated. | ||||
3956 | FunctionDecl *SourceDecl = nullptr; | ||||
3957 | |||||
3958 | /// The function template whose exception specification this is instantiated | ||||
3959 | /// from, for EST_Uninstantiated. | ||||
3960 | FunctionDecl *SourceTemplate = nullptr; | ||||
3961 | |||||
3962 | ExceptionSpecInfo() = default; | ||||
3963 | |||||
3964 | ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {} | ||||
3965 | }; | ||||
3966 | |||||
3967 | /// Extra information about a function prototype. ExtProtoInfo is not | ||||
3968 | /// stored as such in FunctionProtoType but is used to group together | ||||
3969 | /// the various bits of extra information about a function prototype. | ||||
3970 | struct ExtProtoInfo { | ||||
3971 | FunctionType::ExtInfo ExtInfo; | ||||
3972 | bool Variadic : 1; | ||||
3973 | bool HasTrailingReturn : 1; | ||||
3974 | Qualifiers TypeQuals; | ||||
3975 | RefQualifierKind RefQualifier = RQ_None; | ||||
3976 | ExceptionSpecInfo ExceptionSpec; | ||||
3977 | const ExtParameterInfo *ExtParameterInfos = nullptr; | ||||
3978 | SourceLocation EllipsisLoc; | ||||
3979 | |||||
3980 | ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {} | ||||
3981 | |||||
3982 | ExtProtoInfo(CallingConv CC) | ||||
3983 | : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {} | ||||
3984 | |||||
3985 | ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) { | ||||
3986 | ExtProtoInfo Result(*this); | ||||
3987 | Result.ExceptionSpec = ESI; | ||||
3988 | return Result; | ||||
3989 | } | ||||
3990 | }; | ||||
3991 | |||||
3992 | private: | ||||
3993 | unsigned numTrailingObjects(OverloadToken<QualType>) const { | ||||
3994 | return getNumParams(); | ||||
3995 | } | ||||
3996 | |||||
3997 | unsigned numTrailingObjects(OverloadToken<SourceLocation>) const { | ||||
3998 | return isVariadic(); | ||||
3999 | } | ||||
4000 | |||||
4001 | unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const { | ||||
4002 | return hasExtraBitfields(); | ||||
4003 | } | ||||
4004 | |||||
4005 | unsigned numTrailingObjects(OverloadToken<ExceptionType>) const { | ||||
4006 | return getExceptionSpecSize().NumExceptionType; | ||||
4007 | } | ||||
4008 | |||||
4009 | unsigned numTrailingObjects(OverloadToken<Expr *>) const { | ||||
4010 | return getExceptionSpecSize().NumExprPtr; | ||||
4011 | } | ||||
4012 | |||||
4013 | unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const { | ||||
4014 | return getExceptionSpecSize().NumFunctionDeclPtr; | ||||
4015 | } | ||||
4016 | |||||
4017 | unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const { | ||||
4018 | return hasExtParameterInfos() ? getNumParams() : 0; | ||||
4019 | } | ||||
4020 | |||||
4021 | /// Determine whether there are any argument types that | ||||
4022 | /// contain an unexpanded parameter pack. | ||||
4023 | static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray, | ||||
4024 | unsigned numArgs) { | ||||
4025 | for (unsigned Idx = 0; Idx < numArgs; ++Idx) | ||||
4026 | if (ArgArray[Idx]->containsUnexpandedParameterPack()) | ||||
4027 | return true; | ||||
4028 | |||||
4029 | return false; | ||||
4030 | } | ||||
4031 | |||||
4032 | FunctionProtoType(QualType result, ArrayRef<QualType> params, | ||||
4033 | QualType canonical, const ExtProtoInfo &epi); | ||||
4034 | |||||
4035 | /// This struct is returned by getExceptionSpecSize and is used to | ||||
4036 | /// translate an ExceptionSpecificationType to the number and kind | ||||
4037 | /// of trailing objects related to the exception specification. | ||||
4038 | struct ExceptionSpecSizeHolder { | ||||
4039 | unsigned NumExceptionType; | ||||
4040 | unsigned NumExprPtr; | ||||
4041 | unsigned NumFunctionDeclPtr; | ||||
4042 | }; | ||||
4043 | |||||
4044 | /// Return the number and kind of trailing objects | ||||
4045 | /// related to the exception specification. | ||||
4046 | static ExceptionSpecSizeHolder | ||||
4047 | getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) { | ||||
4048 | switch (EST) { | ||||
4049 | case EST_None: | ||||
4050 | case EST_DynamicNone: | ||||
4051 | case EST_MSAny: | ||||
4052 | case EST_BasicNoexcept: | ||||
4053 | case EST_Unparsed: | ||||
4054 | case EST_NoThrow: | ||||
4055 | return {0, 0, 0}; | ||||
4056 | |||||
4057 | case EST_Dynamic: | ||||
4058 | return {NumExceptions, 0, 0}; | ||||
4059 | |||||
4060 | case EST_DependentNoexcept: | ||||
4061 | case EST_NoexceptFalse: | ||||
4062 | case EST_NoexceptTrue: | ||||
4063 | return {0, 1, 0}; | ||||
4064 | |||||
4065 | case EST_Uninstantiated: | ||||
4066 | return {0, 0, 2}; | ||||
4067 | |||||
4068 | case EST_Unevaluated: | ||||
4069 | return {0, 0, 1}; | ||||
4070 | } | ||||
4071 | llvm_unreachable("bad exception specification kind")__builtin_unreachable(); | ||||
4072 | } | ||||
4073 | |||||
4074 | /// Return the number and kind of trailing objects | ||||
4075 | /// related to the exception specification. | ||||
4076 | ExceptionSpecSizeHolder getExceptionSpecSize() const { | ||||
4077 | return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions()); | ||||
4078 | } | ||||
4079 | |||||
4080 | /// Whether the trailing FunctionTypeExtraBitfields is present. | ||||
4081 | static bool hasExtraBitfields(ExceptionSpecificationType EST) { | ||||
4082 | // If the exception spec type is EST_Dynamic then we have > 0 exception | ||||
4083 | // types and the exact number is stored in FunctionTypeExtraBitfields. | ||||
4084 | return EST == EST_Dynamic; | ||||
4085 | } | ||||
4086 | |||||
4087 | /// Whether the trailing FunctionTypeExtraBitfields is present. | ||||
4088 | bool hasExtraBitfields() const { | ||||
4089 | return hasExtraBitfields(getExceptionSpecType()); | ||||
4090 | } | ||||
4091 | |||||
4092 | bool hasExtQualifiers() const { | ||||
4093 | return FunctionTypeBits.HasExtQuals; | ||||
4094 | } | ||||
4095 | |||||
4096 | public: | ||||
4097 | unsigned getNumParams() const { return FunctionTypeBits.NumParams; } | ||||
4098 | |||||
4099 | QualType getParamType(unsigned i) const { | ||||
4100 | assert(i < getNumParams() && "invalid parameter index")((void)0); | ||||
4101 | return param_type_begin()[i]; | ||||
4102 | } | ||||
4103 | |||||
4104 | ArrayRef<QualType> getParamTypes() const { | ||||
4105 | return llvm::makeArrayRef(param_type_begin(), param_type_end()); | ||||
4106 | } | ||||
4107 | |||||
4108 | ExtProtoInfo getExtProtoInfo() const { | ||||
4109 | ExtProtoInfo EPI; | ||||
4110 | EPI.ExtInfo = getExtInfo(); | ||||
4111 | EPI.Variadic = isVariadic(); | ||||
4112 | EPI.EllipsisLoc = getEllipsisLoc(); | ||||
4113 | EPI.HasTrailingReturn = hasTrailingReturn(); | ||||
4114 | EPI.ExceptionSpec = getExceptionSpecInfo(); | ||||
4115 | EPI.TypeQuals = getMethodQuals(); | ||||
4116 | EPI.RefQualifier = getRefQualifier(); | ||||
4117 | EPI.ExtParameterInfos = getExtParameterInfosOrNull(); | ||||
4118 | return EPI; | ||||
4119 | } | ||||
4120 | |||||
4121 | /// Get the kind of exception specification on this function. | ||||
4122 | ExceptionSpecificationType getExceptionSpecType() const { | ||||
4123 | return static_cast<ExceptionSpecificationType>( | ||||
4124 | FunctionTypeBits.ExceptionSpecType); | ||||
4125 | } | ||||
4126 | |||||
4127 | /// Return whether this function has any kind of exception spec. | ||||
4128 | bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; } | ||||
4129 | |||||
4130 | /// Return whether this function has a dynamic (throw) exception spec. | ||||
4131 | bool hasDynamicExceptionSpec() const { | ||||
4132 | return isDynamicExceptionSpec(getExceptionSpecType()); | ||||
4133 | } | ||||
4134 | |||||
4135 | /// Return whether this function has a noexcept exception spec. | ||||
4136 | bool hasNoexceptExceptionSpec() const { | ||||
4137 | return isNoexceptExceptionSpec(getExceptionSpecType()); | ||||
4138 | } | ||||
4139 | |||||
4140 | /// Return whether this function has a dependent exception spec. | ||||
4141 | bool hasDependentExceptionSpec() const; | ||||
4142 | |||||
4143 | /// Return whether this function has an instantiation-dependent exception | ||||
4144 | /// spec. | ||||
4145 | bool hasInstantiationDependentExceptionSpec() const; | ||||
4146 | |||||
4147 | /// Return all the available information about this type's exception spec. | ||||
4148 | ExceptionSpecInfo getExceptionSpecInfo() const { | ||||
4149 | ExceptionSpecInfo Result; | ||||
4150 | Result.Type = getExceptionSpecType(); | ||||
4151 | if (Result.Type == EST_Dynamic) { | ||||
4152 | Result.Exceptions = exceptions(); | ||||
4153 | } else if (isComputedNoexcept(Result.Type)) { | ||||
4154 | Result.NoexceptExpr = getNoexceptExpr(); | ||||
4155 | } else if (Result.Type == EST_Uninstantiated) { | ||||
4156 | Result.SourceDecl = getExceptionSpecDecl(); | ||||
4157 | Result.SourceTemplate = getExceptionSpecTemplate(); | ||||
4158 | } else if (Result.Type == EST_Unevaluated) { | ||||
4159 | Result.SourceDecl = getExceptionSpecDecl(); | ||||
4160 | } | ||||
4161 | return Result; | ||||
4162 | } | ||||
4163 | |||||
4164 | /// Return the number of types in the exception specification. | ||||
4165 | unsigned getNumExceptions() const { | ||||
4166 | return getExceptionSpecType() == EST_Dynamic | ||||
4167 | ? getTrailingObjects<FunctionTypeExtraBitfields>() | ||||
4168 | ->NumExceptionType | ||||
4169 | : 0; | ||||
4170 | } | ||||
4171 | |||||
4172 | /// Return the ith exception type, where 0 <= i < getNumExceptions(). | ||||
4173 | QualType getExceptionType(unsigned i) const { | ||||
4174 | assert(i < getNumExceptions() && "Invalid exception number!")((void)0); | ||||
4175 | return exception_begin()[i]; | ||||
4176 | } | ||||
4177 | |||||
4178 | /// Return the expression inside noexcept(expression), or a null pointer | ||||
4179 | /// if there is none (because the exception spec is not of this form). | ||||
4180 | Expr *getNoexceptExpr() const { | ||||
4181 | if (!isComputedNoexcept(getExceptionSpecType())) | ||||
4182 | return nullptr; | ||||
4183 | return *getTrailingObjects<Expr *>(); | ||||
4184 | } | ||||
4185 | |||||
4186 | /// If this function type has an exception specification which hasn't | ||||
4187 | /// been determined yet (either because it has not been evaluated or because | ||||
4188 | /// it has not been instantiated), this is the function whose exception | ||||
4189 | /// specification is represented by this type. | ||||
4190 | FunctionDecl *getExceptionSpecDecl() const { | ||||
4191 | if (getExceptionSpecType() != EST_Uninstantiated && | ||||
4192 | getExceptionSpecType() != EST_Unevaluated) | ||||
4193 | return nullptr; | ||||
4194 | return getTrailingObjects<FunctionDecl *>()[0]; | ||||
4195 | } | ||||
4196 | |||||
4197 | /// If this function type has an uninstantiated exception | ||||
4198 | /// specification, this is the function whose exception specification | ||||
4199 | /// should be instantiated to find the exception specification for | ||||
4200 | /// this type. | ||||
4201 | FunctionDecl *getExceptionSpecTemplate() const { | ||||
4202 | if (getExceptionSpecType() != EST_Uninstantiated) | ||||
4203 | return nullptr; | ||||
4204 | return getTrailingObjects<FunctionDecl *>()[1]; | ||||
4205 | } | ||||
4206 | |||||
4207 | /// Determine whether this function type has a non-throwing exception | ||||
4208 | /// specification. | ||||
4209 | CanThrowResult canThrow() const; | ||||
4210 | |||||
4211 | /// Determine whether this function type has a non-throwing exception | ||||
4212 | /// specification. If this depends on template arguments, returns | ||||
4213 | /// \c ResultIfDependent. | ||||
4214 | bool isNothrow(bool ResultIfDependent = false) const { | ||||
4215 | return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot; | ||||
4216 | } | ||||
4217 | |||||
4218 | /// Whether this function prototype is variadic. | ||||
4219 | bool isVariadic() const { return FunctionTypeBits.Variadic; } | ||||
4220 | |||||
4221 | SourceLocation getEllipsisLoc() const { | ||||
4222 | return isVariadic() ? *getTrailingObjects<SourceLocation>() | ||||
4223 | : SourceLocation(); | ||||
4224 | } | ||||
4225 | |||||
4226 | /// Determines whether this function prototype contains a | ||||
4227 | /// parameter pack at the end. | ||||
4228 | /// | ||||
4229 | /// A function template whose last parameter is a parameter pack can be | ||||
4230 | /// called with an arbitrary number of arguments, much like a variadic | ||||
4231 | /// function. | ||||
4232 | bool isTemplateVariadic() const; | ||||
4233 | |||||
4234 | /// Whether this function prototype has a trailing return type. | ||||
4235 | bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; } | ||||
4236 | |||||
4237 | Qualifiers getMethodQuals() const { | ||||
4238 | if (hasExtQualifiers()) | ||||
4239 | return *getTrailingObjects<Qualifiers>(); | ||||
4240 | else | ||||
4241 | return getFastTypeQuals(); | ||||
4242 | } | ||||
4243 | |||||
4244 | /// Retrieve the ref-qualifier associated with this function type. | ||||
4245 | RefQualifierKind getRefQualifier() const { | ||||
4246 | return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier); | ||||
4247 | } | ||||
4248 | |||||
4249 | using param_type_iterator = const QualType *; | ||||
4250 | using param_type_range = llvm::iterator_range<param_type_iterator>; | ||||
4251 | |||||
4252 | param_type_range param_types() const { | ||||
4253 | return param_type_range(param_type_begin(), param_type_end()); | ||||
4254 | } | ||||
4255 | |||||
4256 | param_type_iterator param_type_begin() const { | ||||
4257 | return getTrailingObjects<QualType>(); | ||||
4258 | } | ||||
4259 | |||||
4260 | param_type_iterator param_type_end() const { | ||||
4261 | return param_type_begin() + getNumParams(); | ||||
4262 | } | ||||
4263 | |||||
4264 | using exception_iterator = const QualType *; | ||||
4265 | |||||
4266 | ArrayRef<QualType> exceptions() const { | ||||
4267 | return llvm::makeArrayRef(exception_begin(), exception_end()); | ||||
4268 | } | ||||
4269 | |||||
4270 | exception_iterator exception_begin() const { | ||||
4271 | return reinterpret_cast<exception_iterator>( | ||||
4272 | getTrailingObjects<ExceptionType>()); | ||||
4273 | } | ||||
4274 | |||||
4275 | exception_iterator exception_end() const { | ||||
4276 | return exception_begin() + getNumExceptions(); | ||||
4277 | } | ||||
4278 | |||||
4279 | /// Is there any interesting extra information for any of the parameters | ||||
4280 | /// of this function type? | ||||
4281 | bool hasExtParameterInfos() const { | ||||
4282 | return FunctionTypeBits.HasExtParameterInfos; | ||||
4283 | } | ||||
4284 | |||||
4285 | ArrayRef<ExtParameterInfo> getExtParameterInfos() const { | ||||
4286 | assert(hasExtParameterInfos())((void)0); | ||||
4287 | return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(), | ||||
4288 | getNumParams()); | ||||
4289 | } | ||||
4290 | |||||
4291 | /// Return a pointer to the beginning of the array of extra parameter | ||||
4292 | /// information, if present, or else null if none of the parameters | ||||
4293 | /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos. | ||||
4294 | const ExtParameterInfo *getExtParameterInfosOrNull() const { | ||||
4295 | if (!hasExtParameterInfos()) | ||||
4296 | return nullptr; | ||||
4297 | return getTrailingObjects<ExtParameterInfo>(); | ||||
4298 | } | ||||
4299 | |||||
4300 | ExtParameterInfo getExtParameterInfo(unsigned I) const { | ||||
4301 | assert(I < getNumParams() && "parameter index out of range")((void)0); | ||||
4302 | if (hasExtParameterInfos()) | ||||
4303 | return getTrailingObjects<ExtParameterInfo>()[I]; | ||||
4304 | return ExtParameterInfo(); | ||||
4305 | } | ||||
4306 | |||||
4307 | ParameterABI getParameterABI(unsigned I) const { | ||||
4308 | assert(I < getNumParams() && "parameter index out of range")((void)0); | ||||
4309 | if (hasExtParameterInfos()) | ||||
4310 | return getTrailingObjects<ExtParameterInfo>()[I].getABI(); | ||||
4311 | return ParameterABI::Ordinary; | ||||
4312 | } | ||||
4313 | |||||
4314 | bool isParamConsumed(unsigned I) const { | ||||
4315 | assert(I < getNumParams() && "parameter index out of range")((void)0); | ||||
4316 | if (hasExtParameterInfos()) | ||||
4317 | return getTrailingObjects<ExtParameterInfo>()[I].isConsumed(); | ||||
4318 | return false; | ||||
4319 | } | ||||
4320 | |||||
4321 | bool isSugared() const { return false; } | ||||
4322 | QualType desugar() const { return QualType(this, 0); } | ||||
4323 | |||||
4324 | void printExceptionSpecification(raw_ostream &OS, | ||||
4325 | const PrintingPolicy &Policy) const; | ||||
4326 | |||||
4327 | static bool classof(const Type *T) { | ||||
4328 | return T->getTypeClass() == FunctionProto; | ||||
4329 | } | ||||
4330 | |||||
4331 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx); | ||||
4332 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Result, | ||||
4333 | param_type_iterator ArgTys, unsigned NumArgs, | ||||
4334 | const ExtProtoInfo &EPI, const ASTContext &Context, | ||||
4335 | bool Canonical); | ||||
4336 | }; | ||||
4337 | |||||
4338 | /// Represents the dependent type named by a dependently-scoped | ||||
4339 | /// typename using declaration, e.g. | ||||
4340 | /// using typename Base<T>::foo; | ||||
4341 | /// | ||||
4342 | /// Template instantiation turns these into the underlying type. | ||||
4343 | class UnresolvedUsingType : public Type { | ||||
4344 | friend class ASTContext; // ASTContext creates these. | ||||
4345 | |||||
4346 | UnresolvedUsingTypenameDecl *Decl; | ||||
4347 | |||||
4348 | UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D) | ||||
4349 | : Type(UnresolvedUsing, QualType(), | ||||
4350 | TypeDependence::DependentInstantiation), | ||||
4351 | Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {} | ||||
4352 | |||||
4353 | public: | ||||
4354 | UnresolvedUsingTypenameDecl *getDecl() const { return Decl; } | ||||
4355 | |||||
4356 | bool isSugared() const { return false; } | ||||
4357 | QualType desugar() const { return QualType(this, 0); } | ||||
4358 | |||||
4359 | static bool classof(const Type *T) { | ||||
4360 | return T->getTypeClass() == UnresolvedUsing; | ||||
4361 | } | ||||
4362 | |||||
4363 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
4364 | return Profile(ID, Decl); | ||||
4365 | } | ||||
4366 | |||||
4367 | static void Profile(llvm::FoldingSetNodeID &ID, | ||||
4368 | UnresolvedUsingTypenameDecl *D) { | ||||
4369 | ID.AddPointer(D); | ||||
4370 | } | ||||
4371 | }; | ||||
4372 | |||||
4373 | class TypedefType : public Type { | ||||
4374 | TypedefNameDecl *Decl; | ||||
4375 | |||||
4376 | private: | ||||
4377 | friend class ASTContext; // ASTContext creates these. | ||||
4378 | |||||
4379 | TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying, | ||||
4380 | QualType can); | ||||
4381 | |||||
4382 | public: | ||||
4383 | TypedefNameDecl *getDecl() const { return Decl; } | ||||
4384 | |||||
4385 | bool isSugared() const { return true; } | ||||
4386 | QualType desugar() const; | ||||
4387 | |||||
4388 | static bool classof(const Type *T) { return T->getTypeClass() == Typedef; } | ||||
4389 | }; | ||||
4390 | |||||
4391 | /// Sugar type that represents a type that was qualified by a qualifier written | ||||
4392 | /// as a macro invocation. | ||||
4393 | class MacroQualifiedType : public Type { | ||||
4394 | friend class ASTContext; // ASTContext creates these. | ||||
4395 | |||||
4396 | QualType UnderlyingTy; | ||||
4397 | const IdentifierInfo *MacroII; | ||||
4398 | |||||
4399 | MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy, | ||||
4400 | const IdentifierInfo *MacroII) | ||||
4401 | : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()), | ||||
4402 | UnderlyingTy(UnderlyingTy), MacroII(MacroII) { | ||||
4403 | assert(isa<AttributedType>(UnderlyingTy) &&((void)0) | ||||
4404 | "Expected a macro qualified type to only wrap attributed types.")((void)0); | ||||
4405 | } | ||||
4406 | |||||
4407 | public: | ||||
4408 | const IdentifierInfo *getMacroIdentifier() const { return MacroII; } | ||||
4409 | QualType getUnderlyingType() const { return UnderlyingTy; } | ||||
4410 | |||||
4411 | /// Return this attributed type's modified type with no qualifiers attached to | ||||
4412 | /// it. | ||||
4413 | QualType getModifiedType() const; | ||||
4414 | |||||
4415 | bool isSugared() const { return true; } | ||||
4416 | QualType desugar() const; | ||||
4417 | |||||
4418 | static bool classof(const Type *T) { | ||||
4419 | return T->getTypeClass() == MacroQualified; | ||||
4420 | } | ||||
4421 | }; | ||||
4422 | |||||
4423 | /// Represents a `typeof` (or __typeof__) expression (a GCC extension). | ||||
4424 | class TypeOfExprType : public Type { | ||||
4425 | Expr *TOExpr; | ||||
4426 | |||||
4427 | protected: | ||||
4428 | friend class ASTContext; // ASTContext creates these. | ||||
4429 | |||||
4430 | TypeOfExprType(Expr *E, QualType can = QualType()); | ||||
4431 | |||||
4432 | public: | ||||
4433 | Expr *getUnderlyingExpr() const { return TOExpr; } | ||||
4434 | |||||
4435 | /// Remove a single level of sugar. | ||||
4436 | QualType desugar() const; | ||||
4437 | |||||
4438 | /// Returns whether this type directly provides sugar. | ||||
4439 | bool isSugared() const; | ||||
4440 | |||||
4441 | static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; } | ||||
4442 | }; | ||||
4443 | |||||
4444 | /// Internal representation of canonical, dependent | ||||
4445 | /// `typeof(expr)` types. | ||||
4446 | /// | ||||
4447 | /// This class is used internally by the ASTContext to manage | ||||
4448 | /// canonical, dependent types, only. Clients will only see instances | ||||
4449 | /// of this class via TypeOfExprType nodes. | ||||
4450 | class DependentTypeOfExprType | ||||
4451 | : public TypeOfExprType, public llvm::FoldingSetNode { | ||||
4452 | const ASTContext &Context; | ||||
4453 | |||||
4454 | public: | ||||
4455 | DependentTypeOfExprType(const ASTContext &Context, Expr *E) | ||||
4456 | : TypeOfExprType(E), Context(Context) {} | ||||
4457 | |||||
4458 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
4459 | Profile(ID, Context, getUnderlyingExpr()); | ||||
4460 | } | ||||
4461 | |||||
4462 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
4463 | Expr *E); | ||||
4464 | }; | ||||
4465 | |||||
4466 | /// Represents `typeof(type)`, a GCC extension. | ||||
4467 | class TypeOfType : public Type { | ||||
4468 | friend class ASTContext; // ASTContext creates these. | ||||
4469 | |||||
4470 | QualType TOType; | ||||
4471 | |||||
4472 | TypeOfType(QualType T, QualType can) | ||||
4473 | : Type(TypeOf, can, T->getDependence()), TOType(T) { | ||||
4474 | assert(!isa<TypedefType>(can) && "Invalid canonical type")((void)0); | ||||
4475 | } | ||||
4476 | |||||
4477 | public: | ||||
4478 | QualType getUnderlyingType() const { return TOType; } | ||||
4479 | |||||
4480 | /// Remove a single level of sugar. | ||||
4481 | QualType desugar() const { return getUnderlyingType(); } | ||||
4482 | |||||
4483 | /// Returns whether this type directly provides sugar. | ||||
4484 | bool isSugared() const { return true; } | ||||
4485 | |||||
4486 | static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; } | ||||
4487 | }; | ||||
4488 | |||||
4489 | /// Represents the type `decltype(expr)` (C++11). | ||||
4490 | class DecltypeType : public Type { | ||||
4491 | Expr *E; | ||||
4492 | QualType UnderlyingType; | ||||
4493 | |||||
4494 | protected: | ||||
4495 | friend class ASTContext; // ASTContext creates these. | ||||
4496 | |||||
4497 | DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType()); | ||||
4498 | |||||
4499 | public: | ||||
4500 | Expr *getUnderlyingExpr() const { return E; } | ||||
4501 | QualType getUnderlyingType() const { return UnderlyingType; } | ||||
4502 | |||||
4503 | /// Remove a single level of sugar. | ||||
4504 | QualType desugar() const; | ||||
4505 | |||||
4506 | /// Returns whether this type directly provides sugar. | ||||
4507 | bool isSugared() const; | ||||
4508 | |||||
4509 | static bool classof(const Type *T) { return T->getTypeClass() == Decltype; } | ||||
4510 | }; | ||||
4511 | |||||
4512 | /// Internal representation of canonical, dependent | ||||
4513 | /// decltype(expr) types. | ||||
4514 | /// | ||||
4515 | /// This class is used internally by the ASTContext to manage | ||||
4516 | /// canonical, dependent types, only. Clients will only see instances | ||||
4517 | /// of this class via DecltypeType nodes. | ||||
4518 | class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode { | ||||
4519 | const ASTContext &Context; | ||||
4520 | |||||
4521 | public: | ||||
4522 | DependentDecltypeType(const ASTContext &Context, Expr *E); | ||||
4523 | |||||
4524 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
4525 | Profile(ID, Context, getUnderlyingExpr()); | ||||
4526 | } | ||||
4527 | |||||
4528 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
4529 | Expr *E); | ||||
4530 | }; | ||||
4531 | |||||
4532 | /// A unary type transform, which is a type constructed from another. | ||||
4533 | class UnaryTransformType : public Type { | ||||
4534 | public: | ||||
4535 | enum UTTKind { | ||||
4536 | EnumUnderlyingType | ||||
4537 | }; | ||||
4538 | |||||
4539 | private: | ||||
4540 | /// The untransformed type. | ||||
4541 | QualType BaseType; | ||||
4542 | |||||
4543 | /// The transformed type if not dependent, otherwise the same as BaseType. | ||||
4544 | QualType UnderlyingType; | ||||
4545 | |||||
4546 | UTTKind UKind; | ||||
4547 | |||||
4548 | protected: | ||||
4549 | friend class ASTContext; | ||||
4550 | |||||
4551 | UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind, | ||||
4552 | QualType CanonicalTy); | ||||
4553 | |||||
4554 | public: | ||||
4555 | bool isSugared() const { return !isDependentType(); } | ||||
4556 | QualType desugar() const { return UnderlyingType; } | ||||
4557 | |||||
4558 | QualType getUnderlyingType() const { return UnderlyingType; } | ||||
4559 | QualType getBaseType() const { return BaseType; } | ||||
4560 | |||||
4561 | UTTKind getUTTKind() const { return UKind; } | ||||
4562 | |||||
4563 | static bool classof(const Type *T) { | ||||
4564 | return T->getTypeClass() == UnaryTransform; | ||||
4565 | } | ||||
4566 | }; | ||||
4567 | |||||
4568 | /// Internal representation of canonical, dependent | ||||
4569 | /// __underlying_type(type) types. | ||||
4570 | /// | ||||
4571 | /// This class is used internally by the ASTContext to manage | ||||
4572 | /// canonical, dependent types, only. Clients will only see instances | ||||
4573 | /// of this class via UnaryTransformType nodes. | ||||
4574 | class DependentUnaryTransformType : public UnaryTransformType, | ||||
4575 | public llvm::FoldingSetNode { | ||||
4576 | public: | ||||
4577 | DependentUnaryTransformType(const ASTContext &C, QualType BaseType, | ||||
4578 | UTTKind UKind); | ||||
4579 | |||||
4580 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
4581 | Profile(ID, getBaseType(), getUTTKind()); | ||||
4582 | } | ||||
4583 | |||||
4584 | static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType, | ||||
4585 | UTTKind UKind) { | ||||
4586 | ID.AddPointer(BaseType.getAsOpaquePtr()); | ||||
4587 | ID.AddInteger((unsigned)UKind); | ||||
4588 | } | ||||
4589 | }; | ||||
4590 | |||||
4591 | class TagType : public Type { | ||||
4592 | friend class ASTReader; | ||||
4593 | template <class T> friend class serialization::AbstractTypeReader; | ||||
4594 | |||||
4595 | /// Stores the TagDecl associated with this type. The decl may point to any | ||||
4596 | /// TagDecl that declares the entity. | ||||
4597 | TagDecl *decl; | ||||
4598 | |||||
4599 | protected: | ||||
4600 | TagType(TypeClass TC, const TagDecl *D, QualType can); | ||||
4601 | |||||
4602 | public: | ||||
4603 | TagDecl *getDecl() const; | ||||
4604 | |||||
4605 | /// Determines whether this type is in the process of being defined. | ||||
4606 | bool isBeingDefined() const; | ||||
4607 | |||||
4608 | static bool classof(const Type *T) { | ||||
4609 | return T->getTypeClass() == Enum || T->getTypeClass() == Record; | ||||
4610 | } | ||||
4611 | }; | ||||
4612 | |||||
4613 | /// A helper class that allows the use of isa/cast/dyncast | ||||
4614 | /// to detect TagType objects of structs/unions/classes. | ||||
4615 | class RecordType : public TagType { | ||||
4616 | protected: | ||||
4617 | friend class ASTContext; // ASTContext creates these. | ||||
4618 | |||||
4619 | explicit RecordType(const RecordDecl *D) | ||||
4620 | : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {} | ||||
4621 | explicit RecordType(TypeClass TC, RecordDecl *D) | ||||
4622 | : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {} | ||||
4623 | |||||
4624 | public: | ||||
4625 | RecordDecl *getDecl() const { | ||||
4626 | return reinterpret_cast<RecordDecl*>(TagType::getDecl()); | ||||
4627 | } | ||||
4628 | |||||
4629 | /// Recursively check all fields in the record for const-ness. If any field | ||||
4630 | /// is declared const, return true. Otherwise, return false. | ||||
4631 | bool hasConstFields() const; | ||||
4632 | |||||
4633 | bool isSugared() const { return false; } | ||||
4634 | QualType desugar() const { return QualType(this, 0); } | ||||
4635 | |||||
4636 | static bool classof(const Type *T) { return T->getTypeClass() == Record; } | ||||
4637 | }; | ||||
4638 | |||||
4639 | /// A helper class that allows the use of isa/cast/dyncast | ||||
4640 | /// to detect TagType objects of enums. | ||||
4641 | class EnumType : public TagType { | ||||
4642 | friend class ASTContext; // ASTContext creates these. | ||||
4643 | |||||
4644 | explicit EnumType(const EnumDecl *D) | ||||
4645 | : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {} | ||||
4646 | |||||
4647 | public: | ||||
4648 | EnumDecl *getDecl() const { | ||||
4649 | return reinterpret_cast<EnumDecl*>(TagType::getDecl()); | ||||
4650 | } | ||||
4651 | |||||
4652 | bool isSugared() const { return false; } | ||||
4653 | QualType desugar() const { return QualType(this, 0); } | ||||
4654 | |||||
4655 | static bool classof(const Type *T) { return T->getTypeClass() == Enum; } | ||||
4656 | }; | ||||
4657 | |||||
4658 | /// An attributed type is a type to which a type attribute has been applied. | ||||
4659 | /// | ||||
4660 | /// The "modified type" is the fully-sugared type to which the attributed | ||||
4661 | /// type was applied; generally it is not canonically equivalent to the | ||||
4662 | /// attributed type. The "equivalent type" is the minimally-desugared type | ||||
4663 | /// which the type is canonically equivalent to. | ||||
4664 | /// | ||||
4665 | /// For example, in the following attributed type: | ||||
4666 | /// int32_t __attribute__((vector_size(16))) | ||||
4667 | /// - the modified type is the TypedefType for int32_t | ||||
4668 | /// - the equivalent type is VectorType(16, int32_t) | ||||
4669 | /// - the canonical type is VectorType(16, int) | ||||
4670 | class AttributedType : public Type, public llvm::FoldingSetNode { | ||||
4671 | public: | ||||
4672 | using Kind = attr::Kind; | ||||
4673 | |||||
4674 | private: | ||||
4675 | friend class ASTContext; // ASTContext creates these | ||||
4676 | |||||
4677 | QualType ModifiedType; | ||||
4678 | QualType EquivalentType; | ||||
4679 | |||||
4680 | AttributedType(QualType canon, attr::Kind attrKind, QualType modified, | ||||
4681 | QualType equivalent) | ||||
4682 | : Type(Attributed, canon, equivalent->getDependence()), | ||||
4683 | ModifiedType(modified), EquivalentType(equivalent) { | ||||
4684 | AttributedTypeBits.AttrKind = attrKind; | ||||
4685 | } | ||||
4686 | |||||
4687 | public: | ||||
4688 | Kind getAttrKind() const { | ||||
4689 | return static_cast<Kind>(AttributedTypeBits.AttrKind); | ||||
4690 | } | ||||
4691 | |||||
4692 | QualType getModifiedType() const { return ModifiedType; } | ||||
4693 | QualType getEquivalentType() const { return EquivalentType; } | ||||
4694 | |||||
4695 | bool isSugared() const { return true; } | ||||
4696 | QualType desugar() const { return getEquivalentType(); } | ||||
4697 | |||||
4698 | /// Does this attribute behave like a type qualifier? | ||||
4699 | /// | ||||
4700 | /// A type qualifier adjusts a type to provide specialized rules for | ||||
4701 | /// a specific object, like the standard const and volatile qualifiers. | ||||
4702 | /// This includes attributes controlling things like nullability, | ||||
4703 | /// address spaces, and ARC ownership. The value of the object is still | ||||
4704 | /// largely described by the modified type. | ||||
4705 | /// | ||||
4706 | /// In contrast, many type attributes "rewrite" their modified type to | ||||
4707 | /// produce a fundamentally different type, not necessarily related in any | ||||
4708 | /// formalizable way to the original type. For example, calling convention | ||||
4709 | /// and vector attributes are not simple type qualifiers. | ||||
4710 | /// | ||||
4711 | /// Type qualifiers are often, but not always, reflected in the canonical | ||||
4712 | /// type. | ||||
4713 | bool isQualifier() const; | ||||
4714 | |||||
4715 | bool isMSTypeSpec() const; | ||||
4716 | |||||
4717 | bool isCallingConv() const; | ||||
4718 | |||||
4719 | llvm::Optional<NullabilityKind> getImmediateNullability() const; | ||||
4720 | |||||
4721 | /// Retrieve the attribute kind corresponding to the given | ||||
4722 | /// nullability kind. | ||||
4723 | static Kind getNullabilityAttrKind(NullabilityKind kind) { | ||||
4724 | switch (kind) { | ||||
4725 | case NullabilityKind::NonNull: | ||||
4726 | return attr::TypeNonNull; | ||||
4727 | |||||
4728 | case NullabilityKind::Nullable: | ||||
4729 | return attr::TypeNullable; | ||||
4730 | |||||
4731 | case NullabilityKind::NullableResult: | ||||
4732 | return attr::TypeNullableResult; | ||||
4733 | |||||
4734 | case NullabilityKind::Unspecified: | ||||
4735 | return attr::TypeNullUnspecified; | ||||
4736 | } | ||||
4737 | llvm_unreachable("Unknown nullability kind.")__builtin_unreachable(); | ||||
4738 | } | ||||
4739 | |||||
4740 | /// Strip off the top-level nullability annotation on the given | ||||
4741 | /// type, if it's there. | ||||
4742 | /// | ||||
4743 | /// \param T The type to strip. If the type is exactly an | ||||
4744 | /// AttributedType specifying nullability (without looking through | ||||
4745 | /// type sugar), the nullability is returned and this type changed | ||||
4746 | /// to the underlying modified type. | ||||
4747 | /// | ||||
4748 | /// \returns the top-level nullability, if present. | ||||
4749 | static Optional<NullabilityKind> stripOuterNullability(QualType &T); | ||||
4750 | |||||
4751 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
4752 | Profile(ID, getAttrKind(), ModifiedType, EquivalentType); | ||||
4753 | } | ||||
4754 | |||||
4755 | static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind, | ||||
4756 | QualType modified, QualType equivalent) { | ||||
4757 | ID.AddInteger(attrKind); | ||||
4758 | ID.AddPointer(modified.getAsOpaquePtr()); | ||||
4759 | ID.AddPointer(equivalent.getAsOpaquePtr()); | ||||
4760 | } | ||||
4761 | |||||
4762 | static bool classof(const Type *T) { | ||||
4763 | return T->getTypeClass() == Attributed; | ||||
4764 | } | ||||
4765 | }; | ||||
4766 | |||||
4767 | class TemplateTypeParmType : public Type, public llvm::FoldingSetNode { | ||||
4768 | friend class ASTContext; // ASTContext creates these | ||||
4769 | |||||
4770 | // Helper data collector for canonical types. | ||||
4771 | struct CanonicalTTPTInfo { | ||||
4772 | unsigned Depth : 15; | ||||
4773 | unsigned ParameterPack : 1; | ||||
4774 | unsigned Index : 16; | ||||
4775 | }; | ||||
4776 | |||||
4777 | union { | ||||
4778 | // Info for the canonical type. | ||||
4779 | CanonicalTTPTInfo CanTTPTInfo; | ||||
4780 | |||||
4781 | // Info for the non-canonical type. | ||||
4782 | TemplateTypeParmDecl *TTPDecl; | ||||
4783 | }; | ||||
4784 | |||||
4785 | /// Build a non-canonical type. | ||||
4786 | TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon) | ||||
4787 | : Type(TemplateTypeParm, Canon, | ||||
4788 | TypeDependence::DependentInstantiation | | ||||
4789 | (Canon->getDependence() & TypeDependence::UnexpandedPack)), | ||||
4790 | TTPDecl(TTPDecl) {} | ||||
4791 | |||||
4792 | /// Build the canonical type. | ||||
4793 | TemplateTypeParmType(unsigned D, unsigned I, bool PP) | ||||
4794 | : Type(TemplateTypeParm, QualType(this, 0), | ||||
4795 | TypeDependence::DependentInstantiation | | ||||
4796 | (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) { | ||||
4797 | CanTTPTInfo.Depth = D; | ||||
4798 | CanTTPTInfo.Index = I; | ||||
4799 | CanTTPTInfo.ParameterPack = PP; | ||||
4800 | } | ||||
4801 | |||||
4802 | const CanonicalTTPTInfo& getCanTTPTInfo() const { | ||||
4803 | QualType Can = getCanonicalTypeInternal(); | ||||
4804 | return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo; | ||||
4805 | } | ||||
4806 | |||||
4807 | public: | ||||
4808 | unsigned getDepth() const { return getCanTTPTInfo().Depth; } | ||||
4809 | unsigned getIndex() const { return getCanTTPTInfo().Index; } | ||||
4810 | bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; } | ||||
4811 | |||||
4812 | TemplateTypeParmDecl *getDecl() const { | ||||
4813 | return isCanonicalUnqualified() ? nullptr : TTPDecl; | ||||
4814 | } | ||||
4815 | |||||
4816 | IdentifierInfo *getIdentifier() const; | ||||
4817 | |||||
4818 | bool isSugared() const { return false; } | ||||
4819 | QualType desugar() const { return QualType(this, 0); } | ||||
4820 | |||||
4821 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
4822 | Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl()); | ||||
4823 | } | ||||
4824 | |||||
4825 | static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth, | ||||
4826 | unsigned Index, bool ParameterPack, | ||||
4827 | TemplateTypeParmDecl *TTPDecl) { | ||||
4828 | ID.AddInteger(Depth); | ||||
4829 | ID.AddInteger(Index); | ||||
4830 | ID.AddBoolean(ParameterPack); | ||||
4831 | ID.AddPointer(TTPDecl); | ||||
4832 | } | ||||
4833 | |||||
4834 | static bool classof(const Type *T) { | ||||
4835 | return T->getTypeClass() == TemplateTypeParm; | ||||
4836 | } | ||||
4837 | }; | ||||
4838 | |||||
4839 | /// Represents the result of substituting a type for a template | ||||
4840 | /// type parameter. | ||||
4841 | /// | ||||
4842 | /// Within an instantiated template, all template type parameters have | ||||
4843 | /// been replaced with these. They are used solely to record that a | ||||
4844 | /// type was originally written as a template type parameter; | ||||
4845 | /// therefore they are never canonical. | ||||
4846 | class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode { | ||||
4847 | friend class ASTContext; | ||||
4848 | |||||
4849 | // The original type parameter. | ||||
4850 | const TemplateTypeParmType *Replaced; | ||||
4851 | |||||
4852 | SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon) | ||||
4853 | : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()), | ||||
4854 | Replaced(Param) {} | ||||
4855 | |||||
4856 | public: | ||||
4857 | /// Gets the template parameter that was substituted for. | ||||
4858 | const TemplateTypeParmType *getReplacedParameter() const { | ||||
4859 | return Replaced; | ||||
4860 | } | ||||
4861 | |||||
4862 | /// Gets the type that was substituted for the template | ||||
4863 | /// parameter. | ||||
4864 | QualType getReplacementType() const { | ||||
4865 | return getCanonicalTypeInternal(); | ||||
4866 | } | ||||
4867 | |||||
4868 | bool isSugared() const { return true; } | ||||
4869 | QualType desugar() const { return getReplacementType(); } | ||||
4870 | |||||
4871 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
4872 | Profile(ID, getReplacedParameter(), getReplacementType()); | ||||
4873 | } | ||||
4874 | |||||
4875 | static void Profile(llvm::FoldingSetNodeID &ID, | ||||
4876 | const TemplateTypeParmType *Replaced, | ||||
4877 | QualType Replacement) { | ||||
4878 | ID.AddPointer(Replaced); | ||||
4879 | ID.AddPointer(Replacement.getAsOpaquePtr()); | ||||
4880 | } | ||||
4881 | |||||
4882 | static bool classof(const Type *T) { | ||||
4883 | return T->getTypeClass() == SubstTemplateTypeParm; | ||||
4884 | } | ||||
4885 | }; | ||||
4886 | |||||
4887 | /// Represents the result of substituting a set of types for a template | ||||
4888 | /// type parameter pack. | ||||
4889 | /// | ||||
4890 | /// When a pack expansion in the source code contains multiple parameter packs | ||||
4891 | /// and those parameter packs correspond to different levels of template | ||||
4892 | /// parameter lists, this type node is used to represent a template type | ||||
4893 | /// parameter pack from an outer level, which has already had its argument pack | ||||
4894 | /// substituted but that still lives within a pack expansion that itself | ||||
4895 | /// could not be instantiated. When actually performing a substitution into | ||||
4896 | /// that pack expansion (e.g., when all template parameters have corresponding | ||||
4897 | /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType | ||||
4898 | /// at the current pack substitution index. | ||||
4899 | class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode { | ||||
4900 | friend class ASTContext; | ||||
4901 | |||||
4902 | /// The original type parameter. | ||||
4903 | const TemplateTypeParmType *Replaced; | ||||
4904 | |||||
4905 | /// A pointer to the set of template arguments that this | ||||
4906 | /// parameter pack is instantiated with. | ||||
4907 | const TemplateArgument *Arguments; | ||||
4908 | |||||
4909 | SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param, | ||||
4910 | QualType Canon, | ||||
4911 | const TemplateArgument &ArgPack); | ||||
4912 | |||||
4913 | public: | ||||
4914 | IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); } | ||||
4915 | |||||
4916 | /// Gets the template parameter that was substituted for. | ||||
4917 | const TemplateTypeParmType *getReplacedParameter() const { | ||||
4918 | return Replaced; | ||||
4919 | } | ||||
4920 | |||||
4921 | unsigned getNumArgs() const { | ||||
4922 | return SubstTemplateTypeParmPackTypeBits.NumArgs; | ||||
4923 | } | ||||
4924 | |||||
4925 | bool isSugared() const { return false; } | ||||
4926 | QualType desugar() const { return QualType(this, 0); } | ||||
4927 | |||||
4928 | TemplateArgument getArgumentPack() const; | ||||
4929 | |||||
4930 | void Profile(llvm::FoldingSetNodeID &ID); | ||||
4931 | static void Profile(llvm::FoldingSetNodeID &ID, | ||||
4932 | const TemplateTypeParmType *Replaced, | ||||
4933 | const TemplateArgument &ArgPack); | ||||
4934 | |||||
4935 | static bool classof(const Type *T) { | ||||
4936 | return T->getTypeClass() == SubstTemplateTypeParmPack; | ||||
4937 | } | ||||
4938 | }; | ||||
4939 | |||||
4940 | /// Common base class for placeholders for types that get replaced by | ||||
4941 | /// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced | ||||
4942 | /// class template types, and constrained type names. | ||||
4943 | /// | ||||
4944 | /// These types are usually a placeholder for a deduced type. However, before | ||||
4945 | /// the initializer is attached, or (usually) if the initializer is | ||||
4946 | /// type-dependent, there is no deduced type and the type is canonical. In | ||||
4947 | /// the latter case, it is also a dependent type. | ||||
4948 | class DeducedType : public Type { | ||||
4949 | protected: | ||||
4950 | DeducedType(TypeClass TC, QualType DeducedAsType, | ||||
4951 | TypeDependence ExtraDependence) | ||||
4952 | : Type(TC, | ||||
4953 | // FIXME: Retain the sugared deduced type? | ||||
4954 | DeducedAsType.isNull() ? QualType(this, 0) | ||||
4955 | : DeducedAsType.getCanonicalType(), | ||||
4956 | ExtraDependence | (DeducedAsType.isNull() | ||||
4957 | ? TypeDependence::None | ||||
4958 | : DeducedAsType->getDependence() & | ||||
4959 | ~TypeDependence::VariablyModified)) {} | ||||
4960 | |||||
4961 | public: | ||||
4962 | bool isSugared() const { return !isCanonicalUnqualified(); } | ||||
4963 | QualType desugar() const { return getCanonicalTypeInternal(); } | ||||
4964 | |||||
4965 | /// Get the type deduced for this placeholder type, or null if it's | ||||
4966 | /// either not been deduced or was deduced to a dependent type. | ||||
4967 | QualType getDeducedType() const { | ||||
4968 | return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType(); | ||||
4969 | } | ||||
4970 | bool isDeduced() const { | ||||
4971 | return !isCanonicalUnqualified() || isDependentType(); | ||||
4972 | } | ||||
4973 | |||||
4974 | static bool classof(const Type *T) { | ||||
4975 | return T->getTypeClass() == Auto || | ||||
4976 | T->getTypeClass() == DeducedTemplateSpecialization; | ||||
4977 | } | ||||
4978 | }; | ||||
4979 | |||||
4980 | /// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained | ||||
4981 | /// by a type-constraint. | ||||
4982 | class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode { | ||||
4983 | friend class ASTContext; // ASTContext creates these | ||||
4984 | |||||
4985 | ConceptDecl *TypeConstraintConcept; | ||||
4986 | |||||
4987 | AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword, | ||||
4988 | TypeDependence ExtraDependence, ConceptDecl *CD, | ||||
4989 | ArrayRef<TemplateArgument> TypeConstraintArgs); | ||||
4990 | |||||
4991 | const TemplateArgument *getArgBuffer() const { | ||||
4992 | return reinterpret_cast<const TemplateArgument*>(this+1); | ||||
4993 | } | ||||
4994 | |||||
4995 | TemplateArgument *getArgBuffer() { | ||||
4996 | return reinterpret_cast<TemplateArgument*>(this+1); | ||||
4997 | } | ||||
4998 | |||||
4999 | public: | ||||
5000 | /// Retrieve the template arguments. | ||||
5001 | const TemplateArgument *getArgs() const { | ||||
5002 | return getArgBuffer(); | ||||
5003 | } | ||||
5004 | |||||
5005 | /// Retrieve the number of template arguments. | ||||
5006 | unsigned getNumArgs() const { | ||||
5007 | return AutoTypeBits.NumArgs; | ||||
5008 | } | ||||
5009 | |||||
5010 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h | ||||
5011 | |||||
5012 | ArrayRef<TemplateArgument> getTypeConstraintArguments() const { | ||||
5013 | return {getArgs(), getNumArgs()}; | ||||
5014 | } | ||||
5015 | |||||
5016 | ConceptDecl *getTypeConstraintConcept() const { | ||||
5017 | return TypeConstraintConcept; | ||||
5018 | } | ||||
5019 | |||||
5020 | bool isConstrained() const { | ||||
5021 | return TypeConstraintConcept != nullptr; | ||||
5022 | } | ||||
5023 | |||||
5024 | bool isDecltypeAuto() const { | ||||
5025 | return getKeyword() == AutoTypeKeyword::DecltypeAuto; | ||||
5026 | } | ||||
5027 | |||||
5028 | AutoTypeKeyword getKeyword() const { | ||||
5029 | return (AutoTypeKeyword)AutoTypeBits.Keyword; | ||||
5030 | } | ||||
5031 | |||||
5032 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { | ||||
5033 | Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(), | ||||
5034 | getTypeConstraintConcept(), getTypeConstraintArguments()); | ||||
5035 | } | ||||
5036 | |||||
5037 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
5038 | QualType Deduced, AutoTypeKeyword Keyword, | ||||
5039 | bool IsDependent, ConceptDecl *CD, | ||||
5040 | ArrayRef<TemplateArgument> Arguments); | ||||
5041 | |||||
5042 | static bool classof(const Type *T) { | ||||
5043 | return T->getTypeClass() == Auto; | ||||
5044 | } | ||||
5045 | }; | ||||
5046 | |||||
5047 | /// Represents a C++17 deduced template specialization type. | ||||
5048 | class DeducedTemplateSpecializationType : public DeducedType, | ||||
5049 | public llvm::FoldingSetNode { | ||||
5050 | friend class ASTContext; // ASTContext creates these | ||||
5051 | |||||
5052 | /// The name of the template whose arguments will be deduced. | ||||
5053 | TemplateName Template; | ||||
5054 | |||||
5055 | DeducedTemplateSpecializationType(TemplateName Template, | ||||
5056 | QualType DeducedAsType, | ||||
5057 | bool IsDeducedAsDependent) | ||||
5058 | : DeducedType(DeducedTemplateSpecialization, DeducedAsType, | ||||
5059 | toTypeDependence(Template.getDependence()) | | ||||
5060 | (IsDeducedAsDependent | ||||
5061 | ? TypeDependence::DependentInstantiation | ||||
5062 | : TypeDependence::None)), | ||||
5063 | Template(Template) {} | ||||
5064 | |||||
5065 | public: | ||||
5066 | /// Retrieve the name of the template that we are deducing. | ||||
5067 | TemplateName getTemplateName() const { return Template;} | ||||
5068 | |||||
5069 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
5070 | Profile(ID, getTemplateName(), getDeducedType(), isDependentType()); | ||||
5071 | } | ||||
5072 | |||||
5073 | static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template, | ||||
5074 | QualType Deduced, bool IsDependent) { | ||||
5075 | Template.Profile(ID); | ||||
5076 | ID.AddPointer(Deduced.getAsOpaquePtr()); | ||||
5077 | ID.AddBoolean(IsDependent); | ||||
5078 | } | ||||
5079 | |||||
5080 | static bool classof(const Type *T) { | ||||
5081 | return T->getTypeClass() == DeducedTemplateSpecialization; | ||||
5082 | } | ||||
5083 | }; | ||||
5084 | |||||
5085 | /// Represents a type template specialization; the template | ||||
5086 | /// must be a class template, a type alias template, or a template | ||||
5087 | /// template parameter. A template which cannot be resolved to one of | ||||
5088 | /// these, e.g. because it is written with a dependent scope | ||||
5089 | /// specifier, is instead represented as a | ||||
5090 | /// @c DependentTemplateSpecializationType. | ||||
5091 | /// | ||||
5092 | /// A non-dependent template specialization type is always "sugar", | ||||
5093 | /// typically for a \c RecordType. For example, a class template | ||||
5094 | /// specialization type of \c vector<int> will refer to a tag type for | ||||
5095 | /// the instantiation \c std::vector<int, std::allocator<int>> | ||||
5096 | /// | ||||
5097 | /// Template specializations are dependent if either the template or | ||||
5098 | /// any of the template arguments are dependent, in which case the | ||||
5099 | /// type may also be canonical. | ||||
5100 | /// | ||||
5101 | /// Instances of this type are allocated with a trailing array of | ||||
5102 | /// TemplateArguments, followed by a QualType representing the | ||||
5103 | /// non-canonical aliased type when the template is a type alias | ||||
5104 | /// template. | ||||
5105 | class alignas(8) TemplateSpecializationType | ||||
5106 | : public Type, | ||||
5107 | public llvm::FoldingSetNode { | ||||
5108 | friend class ASTContext; // ASTContext creates these | ||||
5109 | |||||
5110 | /// The name of the template being specialized. This is | ||||
5111 | /// either a TemplateName::Template (in which case it is a | ||||
5112 | /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a | ||||
5113 | /// TypeAliasTemplateDecl*), a | ||||
5114 | /// TemplateName::SubstTemplateTemplateParmPack, or a | ||||
5115 | /// TemplateName::SubstTemplateTemplateParm (in which case the | ||||
5116 | /// replacement must, recursively, be one of these). | ||||
5117 | TemplateName Template; | ||||
5118 | |||||
5119 | TemplateSpecializationType(TemplateName T, | ||||
5120 | ArrayRef<TemplateArgument> Args, | ||||
5121 | QualType Canon, | ||||
5122 | QualType Aliased); | ||||
5123 | |||||
5124 | public: | ||||
5125 | /// Determine whether any of the given template arguments are dependent. | ||||
5126 | /// | ||||
5127 | /// The converted arguments should be supplied when known; whether an | ||||
5128 | /// argument is dependent can depend on the conversions performed on it | ||||
5129 | /// (for example, a 'const int' passed as a template argument might be | ||||
5130 | /// dependent if the parameter is a reference but non-dependent if the | ||||
5131 | /// parameter is an int). | ||||
5132 | /// | ||||
5133 | /// Note that the \p Args parameter is unused: this is intentional, to remind | ||||
5134 | /// the caller that they need to pass in the converted arguments, not the | ||||
5135 | /// specified arguments. | ||||
5136 | static bool | ||||
5137 | anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args, | ||||
5138 | ArrayRef<TemplateArgument> Converted); | ||||
5139 | static bool | ||||
5140 | anyDependentTemplateArguments(const TemplateArgumentListInfo &, | ||||
5141 | ArrayRef<TemplateArgument> Converted); | ||||
5142 | static bool anyInstantiationDependentTemplateArguments( | ||||
5143 | ArrayRef<TemplateArgumentLoc> Args); | ||||
5144 | |||||
5145 | /// True if this template specialization type matches a current | ||||
5146 | /// instantiation in the context in which it is found. | ||||
5147 | bool isCurrentInstantiation() const { | ||||
5148 | return isa<InjectedClassNameType>(getCanonicalTypeInternal()); | ||||
5149 | } | ||||
5150 | |||||
5151 | /// Determine if this template specialization type is for a type alias | ||||
5152 | /// template that has been substituted. | ||||
5153 | /// | ||||
5154 | /// Nearly every template specialization type whose template is an alias | ||||
5155 | /// template will be substituted. However, this is not the case when | ||||
5156 | /// the specialization contains a pack expansion but the template alias | ||||
5157 | /// does not have a corresponding parameter pack, e.g., | ||||
5158 | /// | ||||
5159 | /// \code | ||||
5160 | /// template<typename T, typename U, typename V> struct S; | ||||
5161 | /// template<typename T, typename U> using A = S<T, int, U>; | ||||
5162 | /// template<typename... Ts> struct X { | ||||
5163 | /// typedef A<Ts...> type; // not a type alias | ||||
5164 | /// }; | ||||
5165 | /// \endcode | ||||
5166 | bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; } | ||||
5167 | |||||
5168 | /// Get the aliased type, if this is a specialization of a type alias | ||||
5169 | /// template. | ||||
5170 | QualType getAliasedType() const { | ||||
5171 | assert(isTypeAlias() && "not a type alias template specialization")((void)0); | ||||
5172 | return *reinterpret_cast<const QualType*>(end()); | ||||
5173 | } | ||||
5174 | |||||
5175 | using iterator = const TemplateArgument *; | ||||
5176 | |||||
5177 | iterator begin() const { return getArgs(); } | ||||
5178 | iterator end() const; // defined inline in TemplateBase.h | ||||
5179 | |||||
5180 | /// Retrieve the name of the template that we are specializing. | ||||
5181 | TemplateName getTemplateName() const { return Template; } | ||||
5182 | |||||
5183 | /// Retrieve the template arguments. | ||||
5184 | const TemplateArgument *getArgs() const { | ||||
5185 | return reinterpret_cast<const TemplateArgument *>(this + 1); | ||||
5186 | } | ||||
5187 | |||||
5188 | /// Retrieve the number of template arguments. | ||||
5189 | unsigned getNumArgs() const { | ||||
5190 | return TemplateSpecializationTypeBits.NumArgs; | ||||
5191 | } | ||||
5192 | |||||
5193 | /// Retrieve a specific template argument as a type. | ||||
5194 | /// \pre \c isArgType(Arg) | ||||
5195 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h | ||||
5196 | |||||
5197 | ArrayRef<TemplateArgument> template_arguments() const { | ||||
5198 | return {getArgs(), getNumArgs()}; | ||||
5199 | } | ||||
5200 | |||||
5201 | bool isSugared() const { | ||||
5202 | return !isDependentType() || isCurrentInstantiation() || isTypeAlias(); | ||||
5203 | } | ||||
5204 | |||||
5205 | QualType desugar() const { | ||||
5206 | return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal(); | ||||
5207 | } | ||||
5208 | |||||
5209 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) { | ||||
5210 | Profile(ID, Template, template_arguments(), Ctx); | ||||
5211 | if (isTypeAlias()) | ||||
5212 | getAliasedType().Profile(ID); | ||||
5213 | } | ||||
5214 | |||||
5215 | static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T, | ||||
5216 | ArrayRef<TemplateArgument> Args, | ||||
5217 | const ASTContext &Context); | ||||
5218 | |||||
5219 | static bool classof(const Type *T) { | ||||
5220 | return T->getTypeClass() == TemplateSpecialization; | ||||
5221 | } | ||||
5222 | }; | ||||
5223 | |||||
5224 | /// Print a template argument list, including the '<' and '>' | ||||
5225 | /// enclosing the template arguments. | ||||
5226 | void printTemplateArgumentList(raw_ostream &OS, | ||||
5227 | ArrayRef<TemplateArgument> Args, | ||||
5228 | const PrintingPolicy &Policy, | ||||
5229 | const TemplateParameterList *TPL = nullptr); | ||||
5230 | |||||
5231 | void printTemplateArgumentList(raw_ostream &OS, | ||||
5232 | ArrayRef<TemplateArgumentLoc> Args, | ||||
5233 | const PrintingPolicy &Policy, | ||||
5234 | const TemplateParameterList *TPL = nullptr); | ||||
5235 | |||||
5236 | void printTemplateArgumentList(raw_ostream &OS, | ||||
5237 | const TemplateArgumentListInfo &Args, | ||||
5238 | const PrintingPolicy &Policy, | ||||
5239 | const TemplateParameterList *TPL = nullptr); | ||||
5240 | |||||
5241 | /// The injected class name of a C++ class template or class | ||||
5242 | /// template partial specialization. Used to record that a type was | ||||
5243 | /// spelled with a bare identifier rather than as a template-id; the | ||||
5244 | /// equivalent for non-templated classes is just RecordType. | ||||
5245 | /// | ||||
5246 | /// Injected class name types are always dependent. Template | ||||
5247 | /// instantiation turns these into RecordTypes. | ||||
5248 | /// | ||||
5249 | /// Injected class name types are always canonical. This works | ||||
5250 | /// because it is impossible to compare an injected class name type | ||||
5251 | /// with the corresponding non-injected template type, for the same | ||||
5252 | /// reason that it is impossible to directly compare template | ||||
5253 | /// parameters from different dependent contexts: injected class name | ||||
5254 | /// types can only occur within the scope of a particular templated | ||||
5255 | /// declaration, and within that scope every template specialization | ||||
5256 | /// will canonicalize to the injected class name (when appropriate | ||||
5257 | /// according to the rules of the language). | ||||
5258 | class InjectedClassNameType : public Type { | ||||
5259 | friend class ASTContext; // ASTContext creates these. | ||||
5260 | friend class ASTNodeImporter; | ||||
5261 | friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not | ||||
5262 | // currently suitable for AST reading, too much | ||||
5263 | // interdependencies. | ||||
5264 | template <class T> friend class serialization::AbstractTypeReader; | ||||
5265 | |||||
5266 | CXXRecordDecl *Decl; | ||||
5267 | |||||
5268 | /// The template specialization which this type represents. | ||||
5269 | /// For example, in | ||||
5270 | /// template <class T> class A { ... }; | ||||
5271 | /// this is A<T>, whereas in | ||||
5272 | /// template <class X, class Y> class A<B<X,Y> > { ... }; | ||||
5273 | /// this is A<B<X,Y> >. | ||||
5274 | /// | ||||
5275 | /// It is always unqualified, always a template specialization type, | ||||
5276 | /// and always dependent. | ||||
5277 | QualType InjectedType; | ||||
5278 | |||||
5279 | InjectedClassNameType(CXXRecordDecl *D, QualType TST) | ||||
5280 | : Type(InjectedClassName, QualType(), | ||||
5281 | TypeDependence::DependentInstantiation), | ||||
5282 | Decl(D), InjectedType(TST) { | ||||
5283 | assert(isa<TemplateSpecializationType>(TST))((void)0); | ||||
5284 | assert(!TST.hasQualifiers())((void)0); | ||||
5285 | assert(TST->isDependentType())((void)0); | ||||
5286 | } | ||||
5287 | |||||
5288 | public: | ||||
5289 | QualType getInjectedSpecializationType() const { return InjectedType; } | ||||
5290 | |||||
5291 | const TemplateSpecializationType *getInjectedTST() const { | ||||
5292 | return cast<TemplateSpecializationType>(InjectedType.getTypePtr()); | ||||
5293 | } | ||||
5294 | |||||
5295 | TemplateName getTemplateName() const { | ||||
5296 | return getInjectedTST()->getTemplateName(); | ||||
5297 | } | ||||
5298 | |||||
5299 | CXXRecordDecl *getDecl() const; | ||||
5300 | |||||
5301 | bool isSugared() const { return false; } | ||||
5302 | QualType desugar() const { return QualType(this, 0); } | ||||
5303 | |||||
5304 | static bool classof(const Type *T) { | ||||
5305 | return T->getTypeClass() == InjectedClassName; | ||||
5306 | } | ||||
5307 | }; | ||||
5308 | |||||
5309 | /// The kind of a tag type. | ||||
5310 | enum TagTypeKind { | ||||
5311 | /// The "struct" keyword. | ||||
5312 | TTK_Struct, | ||||
5313 | |||||
5314 | /// The "__interface" keyword. | ||||
5315 | TTK_Interface, | ||||
5316 | |||||
5317 | /// The "union" keyword. | ||||
5318 | TTK_Union, | ||||
5319 | |||||
5320 | /// The "class" keyword. | ||||
5321 | TTK_Class, | ||||
5322 | |||||
5323 | /// The "enum" keyword. | ||||
5324 | TTK_Enum | ||||
5325 | }; | ||||
5326 | |||||
5327 | /// The elaboration keyword that precedes a qualified type name or | ||||
5328 | /// introduces an elaborated-type-specifier. | ||||
5329 | enum ElaboratedTypeKeyword { | ||||
5330 | /// The "struct" keyword introduces the elaborated-type-specifier. | ||||
5331 | ETK_Struct, | ||||
5332 | |||||
5333 | /// The "__interface" keyword introduces the elaborated-type-specifier. | ||||
5334 | ETK_Interface, | ||||
5335 | |||||
5336 | /// The "union" keyword introduces the elaborated-type-specifier. | ||||
5337 | ETK_Union, | ||||
5338 | |||||
5339 | /// The "class" keyword introduces the elaborated-type-specifier. | ||||
5340 | ETK_Class, | ||||
5341 | |||||
5342 | /// The "enum" keyword introduces the elaborated-type-specifier. | ||||
5343 | ETK_Enum, | ||||
5344 | |||||
5345 | /// The "typename" keyword precedes the qualified type name, e.g., | ||||
5346 | /// \c typename T::type. | ||||
5347 | ETK_Typename, | ||||
5348 | |||||
5349 | /// No keyword precedes the qualified type name. | ||||
5350 | ETK_None | ||||
5351 | }; | ||||
5352 | |||||
5353 | /// A helper class for Type nodes having an ElaboratedTypeKeyword. | ||||
5354 | /// The keyword in stored in the free bits of the base class. | ||||
5355 | /// Also provides a few static helpers for converting and printing | ||||
5356 | /// elaborated type keyword and tag type kind enumerations. | ||||
5357 | class TypeWithKeyword : public Type { | ||||
5358 | protected: | ||||
5359 | TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc, | ||||
5360 | QualType Canonical, TypeDependence Dependence) | ||||
5361 | : Type(tc, Canonical, Dependence) { | ||||
5362 | TypeWithKeywordBits.Keyword = Keyword; | ||||
5363 | } | ||||
5364 | |||||
5365 | public: | ||||
5366 | ElaboratedTypeKeyword getKeyword() const { | ||||
5367 | return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword); | ||||
5368 | } | ||||
5369 | |||||
5370 | /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword. | ||||
5371 | static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec); | ||||
5372 | |||||
5373 | /// Converts a type specifier (DeclSpec::TST) into a tag type kind. | ||||
5374 | /// It is an error to provide a type specifier which *isn't* a tag kind here. | ||||
5375 | static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec); | ||||
5376 | |||||
5377 | /// Converts a TagTypeKind into an elaborated type keyword. | ||||
5378 | static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag); | ||||
5379 | |||||
5380 | /// Converts an elaborated type keyword into a TagTypeKind. | ||||
5381 | /// It is an error to provide an elaborated type keyword | ||||
5382 | /// which *isn't* a tag kind here. | ||||
5383 | static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword); | ||||
5384 | |||||
5385 | static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword); | ||||
5386 | |||||
5387 | static StringRef getKeywordName(ElaboratedTypeKeyword Keyword); | ||||
5388 | |||||
5389 | static StringRef getTagTypeKindName(TagTypeKind Kind) { | ||||
5390 | return getKeywordName(getKeywordForTagTypeKind(Kind)); | ||||
5391 | } | ||||
5392 | |||||
5393 | class CannotCastToThisType {}; | ||||
5394 | static CannotCastToThisType classof(const Type *); | ||||
5395 | }; | ||||
5396 | |||||
5397 | /// Represents a type that was referred to using an elaborated type | ||||
5398 | /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type, | ||||
5399 | /// or both. | ||||
5400 | /// | ||||
5401 | /// This type is used to keep track of a type name as written in the | ||||
5402 | /// source code, including tag keywords and any nested-name-specifiers. | ||||
5403 | /// The type itself is always "sugar", used to express what was written | ||||
5404 | /// in the source code but containing no additional semantic information. | ||||
5405 | class ElaboratedType final | ||||
5406 | : public TypeWithKeyword, | ||||
5407 | public llvm::FoldingSetNode, | ||||
5408 | private llvm::TrailingObjects<ElaboratedType, TagDecl *> { | ||||
5409 | friend class ASTContext; // ASTContext creates these | ||||
5410 | friend TrailingObjects; | ||||
5411 | |||||
5412 | /// The nested name specifier containing the qualifier. | ||||
5413 | NestedNameSpecifier *NNS; | ||||
5414 | |||||
5415 | /// The type that this qualified name refers to. | ||||
5416 | QualType NamedType; | ||||
5417 | |||||
5418 | /// The (re)declaration of this tag type owned by this occurrence is stored | ||||
5419 | /// as a trailing object if there is one. Use getOwnedTagDecl to obtain | ||||
5420 | /// it, or obtain a null pointer if there is none. | ||||
5421 | |||||
5422 | ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, | ||||
5423 | QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl) | ||||
5424 | : TypeWithKeyword(Keyword, Elaborated, CanonType, | ||||
5425 | // Any semantic dependence on the qualifier will have | ||||
5426 | // been incorporated into NamedType. We still need to | ||||
5427 | // track syntactic (instantiation / error / pack) | ||||
5428 | // dependence on the qualifier. | ||||
5429 | NamedType->getDependence() | | ||||
5430 | (NNS ? toSyntacticDependence( | ||||
5431 | toTypeDependence(NNS->getDependence())) | ||||
5432 | : TypeDependence::None)), | ||||
5433 | NNS(NNS), NamedType(NamedType) { | ||||
5434 | ElaboratedTypeBits.HasOwnedTagDecl = false; | ||||
5435 | if (OwnedTagDecl) { | ||||
5436 | ElaboratedTypeBits.HasOwnedTagDecl = true; | ||||
5437 | *getTrailingObjects<TagDecl *>() = OwnedTagDecl; | ||||
5438 | } | ||||
5439 | assert(!(Keyword == ETK_None && NNS == nullptr) &&((void)0) | ||||
5440 | "ElaboratedType cannot have elaborated type keyword "((void)0) | ||||
5441 | "and name qualifier both null.")((void)0); | ||||
5442 | } | ||||
5443 | |||||
5444 | public: | ||||
5445 | /// Retrieve the qualification on this type. | ||||
5446 | NestedNameSpecifier *getQualifier() const { return NNS; } | ||||
5447 | |||||
5448 | /// Retrieve the type named by the qualified-id. | ||||
5449 | QualType getNamedType() const { return NamedType; } | ||||
5450 | |||||
5451 | /// Remove a single level of sugar. | ||||
5452 | QualType desugar() const { return getNamedType(); } | ||||
5453 | |||||
5454 | /// Returns whether this type directly provides sugar. | ||||
5455 | bool isSugared() const { return true; } | ||||
5456 | |||||
5457 | /// Return the (re)declaration of this type owned by this occurrence of this | ||||
5458 | /// type, or nullptr if there is none. | ||||
5459 | TagDecl *getOwnedTagDecl() const { | ||||
5460 | return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>() | ||||
5461 | : nullptr; | ||||
5462 | } | ||||
5463 | |||||
5464 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
5465 | Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl()); | ||||
5466 | } | ||||
5467 | |||||
5468 | static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword, | ||||
5469 | NestedNameSpecifier *NNS, QualType NamedType, | ||||
5470 | TagDecl *OwnedTagDecl) { | ||||
5471 | ID.AddInteger(Keyword); | ||||
5472 | ID.AddPointer(NNS); | ||||
5473 | NamedType.Profile(ID); | ||||
5474 | ID.AddPointer(OwnedTagDecl); | ||||
5475 | } | ||||
5476 | |||||
5477 | static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; } | ||||
5478 | }; | ||||
5479 | |||||
5480 | /// Represents a qualified type name for which the type name is | ||||
5481 | /// dependent. | ||||
5482 | /// | ||||
5483 | /// DependentNameType represents a class of dependent types that involve a | ||||
5484 | /// possibly dependent nested-name-specifier (e.g., "T::") followed by a | ||||
5485 | /// name of a type. The DependentNameType may start with a "typename" (for a | ||||
5486 | /// typename-specifier), "class", "struct", "union", or "enum" (for a | ||||
5487 | /// dependent elaborated-type-specifier), or nothing (in contexts where we | ||||
5488 | /// know that we must be referring to a type, e.g., in a base class specifier). | ||||
5489 | /// Typically the nested-name-specifier is dependent, but in MSVC compatibility | ||||
5490 | /// mode, this type is used with non-dependent names to delay name lookup until | ||||
5491 | /// instantiation. | ||||
5492 | class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode { | ||||
5493 | friend class ASTContext; // ASTContext creates these | ||||
5494 | |||||
5495 | /// The nested name specifier containing the qualifier. | ||||
5496 | NestedNameSpecifier *NNS; | ||||
5497 | |||||
5498 | /// The type that this typename specifier refers to. | ||||
5499 | const IdentifierInfo *Name; | ||||
5500 | |||||
5501 | DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, | ||||
5502 | const IdentifierInfo *Name, QualType CanonType) | ||||
5503 | : TypeWithKeyword(Keyword, DependentName, CanonType, | ||||
5504 | TypeDependence::DependentInstantiation | | ||||
5505 | toTypeDependence(NNS->getDependence())), | ||||
5506 | NNS(NNS), Name(Name) {} | ||||
5507 | |||||
5508 | public: | ||||
5509 | /// Retrieve the qualification on this type. | ||||
5510 | NestedNameSpecifier *getQualifier() const { return NNS; } | ||||
5511 | |||||
5512 | /// Retrieve the type named by the typename specifier as an identifier. | ||||
5513 | /// | ||||
5514 | /// This routine will return a non-NULL identifier pointer when the | ||||
5515 | /// form of the original typename was terminated by an identifier, | ||||
5516 | /// e.g., "typename T::type". | ||||
5517 | const IdentifierInfo *getIdentifier() const { | ||||
5518 | return Name; | ||||
5519 | } | ||||
5520 | |||||
5521 | bool isSugared() const { return false; } | ||||
5522 | QualType desugar() const { return QualType(this, 0); } | ||||
5523 | |||||
5524 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
5525 | Profile(ID, getKeyword(), NNS, Name); | ||||
5526 | } | ||||
5527 | |||||
5528 | static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword, | ||||
5529 | NestedNameSpecifier *NNS, const IdentifierInfo *Name) { | ||||
5530 | ID.AddInteger(Keyword); | ||||
5531 | ID.AddPointer(NNS); | ||||
5532 | ID.AddPointer(Name); | ||||
5533 | } | ||||
5534 | |||||
5535 | static bool classof(const Type *T) { | ||||
5536 | return T->getTypeClass() == DependentName; | ||||
5537 | } | ||||
5538 | }; | ||||
5539 | |||||
5540 | /// Represents a template specialization type whose template cannot be | ||||
5541 | /// resolved, e.g. | ||||
5542 | /// A<T>::template B<T> | ||||
5543 | class alignas(8) DependentTemplateSpecializationType | ||||
5544 | : public TypeWithKeyword, | ||||
5545 | public llvm::FoldingSetNode { | ||||
5546 | friend class ASTContext; // ASTContext creates these | ||||
5547 | |||||
5548 | /// The nested name specifier containing the qualifier. | ||||
5549 | NestedNameSpecifier *NNS; | ||||
5550 | |||||
5551 | /// The identifier of the template. | ||||
5552 | const IdentifierInfo *Name; | ||||
5553 | |||||
5554 | DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword, | ||||
5555 | NestedNameSpecifier *NNS, | ||||
5556 | const IdentifierInfo *Name, | ||||
5557 | ArrayRef<TemplateArgument> Args, | ||||
5558 | QualType Canon); | ||||
5559 | |||||
5560 | const TemplateArgument *getArgBuffer() const { | ||||
5561 | return reinterpret_cast<const TemplateArgument*>(this+1); | ||||
5562 | } | ||||
5563 | |||||
5564 | TemplateArgument *getArgBuffer() { | ||||
5565 | return reinterpret_cast<TemplateArgument*>(this+1); | ||||
5566 | } | ||||
5567 | |||||
5568 | public: | ||||
5569 | NestedNameSpecifier *getQualifier() const { return NNS; } | ||||
5570 | const IdentifierInfo *getIdentifier() const { return Name; } | ||||
5571 | |||||
5572 | /// Retrieve the template arguments. | ||||
5573 | const TemplateArgument *getArgs() const { | ||||
5574 | return getArgBuffer(); | ||||
5575 | } | ||||
5576 | |||||
5577 | /// Retrieve the number of template arguments. | ||||
5578 | unsigned getNumArgs() const { | ||||
5579 | return DependentTemplateSpecializationTypeBits.NumArgs; | ||||
5580 | } | ||||
5581 | |||||
5582 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h | ||||
5583 | |||||
5584 | ArrayRef<TemplateArgument> template_arguments() const { | ||||
5585 | return {getArgs(), getNumArgs()}; | ||||
5586 | } | ||||
5587 | |||||
5588 | using iterator = const TemplateArgument *; | ||||
5589 | |||||
5590 | iterator begin() const { return getArgs(); } | ||||
5591 | iterator end() const; // inline in TemplateBase.h | ||||
5592 | |||||
5593 | bool isSugared() const { return false; } | ||||
5594 | QualType desugar() const { return QualType(this, 0); } | ||||
5595 | |||||
5596 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { | ||||
5597 | Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()}); | ||||
5598 | } | ||||
5599 | |||||
5600 | static void Profile(llvm::FoldingSetNodeID &ID, | ||||
5601 | const ASTContext &Context, | ||||
5602 | ElaboratedTypeKeyword Keyword, | ||||
5603 | NestedNameSpecifier *Qualifier, | ||||
5604 | const IdentifierInfo *Name, | ||||
5605 | ArrayRef<TemplateArgument> Args); | ||||
5606 | |||||
5607 | static bool classof(const Type *T) { | ||||
5608 | return T->getTypeClass() == DependentTemplateSpecialization; | ||||
5609 | } | ||||
5610 | }; | ||||
5611 | |||||
5612 | /// Represents a pack expansion of types. | ||||
5613 | /// | ||||
5614 | /// Pack expansions are part of C++11 variadic templates. A pack | ||||
5615 | /// expansion contains a pattern, which itself contains one or more | ||||
5616 | /// "unexpanded" parameter packs. When instantiated, a pack expansion | ||||
5617 | /// produces a series of types, each instantiated from the pattern of | ||||
5618 | /// the expansion, where the Ith instantiation of the pattern uses the | ||||
5619 | /// Ith arguments bound to each of the unexpanded parameter packs. The | ||||
5620 | /// pack expansion is considered to "expand" these unexpanded | ||||
5621 | /// parameter packs. | ||||
5622 | /// | ||||
5623 | /// \code | ||||
5624 | /// template<typename ...Types> struct tuple; | ||||
5625 | /// | ||||
5626 | /// template<typename ...Types> | ||||
5627 | /// struct tuple_of_references { | ||||
5628 | /// typedef tuple<Types&...> type; | ||||
5629 | /// }; | ||||
5630 | /// \endcode | ||||
5631 | /// | ||||
5632 | /// Here, the pack expansion \c Types&... is represented via a | ||||
5633 | /// PackExpansionType whose pattern is Types&. | ||||
5634 | class PackExpansionType : public Type, public llvm::FoldingSetNode { | ||||
5635 | friend class ASTContext; // ASTContext creates these | ||||
5636 | |||||
5637 | /// The pattern of the pack expansion. | ||||
5638 | QualType Pattern; | ||||
5639 | |||||
5640 | PackExpansionType(QualType Pattern, QualType Canon, | ||||
5641 | Optional<unsigned> NumExpansions) | ||||
5642 | : Type(PackExpansion, Canon, | ||||
5643 | (Pattern->getDependence() | TypeDependence::Dependent | | ||||
5644 | TypeDependence::Instantiation) & | ||||
5645 | ~TypeDependence::UnexpandedPack), | ||||
5646 | Pattern(Pattern) { | ||||
5647 | PackExpansionTypeBits.NumExpansions = | ||||
5648 | NumExpansions ? *NumExpansions + 1 : 0; | ||||
5649 | } | ||||
5650 | |||||
5651 | public: | ||||
5652 | /// Retrieve the pattern of this pack expansion, which is the | ||||
5653 | /// type that will be repeatedly instantiated when instantiating the | ||||
5654 | /// pack expansion itself. | ||||
5655 | QualType getPattern() const { return Pattern; } | ||||
5656 | |||||
5657 | /// Retrieve the number of expansions that this pack expansion will | ||||
5658 | /// generate, if known. | ||||
5659 | Optional<unsigned> getNumExpansions() const { | ||||
5660 | if (PackExpansionTypeBits.NumExpansions) | ||||
5661 | return PackExpansionTypeBits.NumExpansions - 1; | ||||
5662 | return None; | ||||
5663 | } | ||||
5664 | |||||
5665 | bool isSugared() const { return false; } | ||||
5666 | QualType desugar() const { return QualType(this, 0); } | ||||
5667 | |||||
5668 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
5669 | Profile(ID, getPattern(), getNumExpansions()); | ||||
5670 | } | ||||
5671 | |||||
5672 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern, | ||||
5673 | Optional<unsigned> NumExpansions) { | ||||
5674 | ID.AddPointer(Pattern.getAsOpaquePtr()); | ||||
5675 | ID.AddBoolean(NumExpansions.hasValue()); | ||||
5676 | if (NumExpansions) | ||||
5677 | ID.AddInteger(*NumExpansions); | ||||
5678 | } | ||||
5679 | |||||
5680 | static bool classof(const Type *T) { | ||||
5681 | return T->getTypeClass() == PackExpansion; | ||||
5682 | } | ||||
5683 | }; | ||||
5684 | |||||
5685 | /// This class wraps the list of protocol qualifiers. For types that can | ||||
5686 | /// take ObjC protocol qualifers, they can subclass this class. | ||||
5687 | template <class T> | ||||
5688 | class ObjCProtocolQualifiers { | ||||
5689 | protected: | ||||
5690 | ObjCProtocolQualifiers() = default; | ||||
5691 | |||||
5692 | ObjCProtocolDecl * const *getProtocolStorage() const { | ||||
5693 | return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage(); | ||||
5694 | } | ||||
5695 | |||||
5696 | ObjCProtocolDecl **getProtocolStorage() { | ||||
5697 | return static_cast<T*>(this)->getProtocolStorageImpl(); | ||||
5698 | } | ||||
5699 | |||||
5700 | void setNumProtocols(unsigned N) { | ||||
5701 | static_cast<T*>(this)->setNumProtocolsImpl(N); | ||||
5702 | } | ||||
5703 | |||||
5704 | void initialize(ArrayRef<ObjCProtocolDecl *> protocols) { | ||||
5705 | setNumProtocols(protocols.size()); | ||||
5706 | assert(getNumProtocols() == protocols.size() &&((void)0) | ||||
5707 | "bitfield overflow in protocol count")((void)0); | ||||
5708 | if (!protocols.empty()) | ||||
5709 | memcpy(getProtocolStorage(), protocols.data(), | ||||
5710 | protocols.size() * sizeof(ObjCProtocolDecl*)); | ||||
5711 | } | ||||
5712 | |||||
5713 | public: | ||||
5714 | using qual_iterator = ObjCProtocolDecl * const *; | ||||
5715 | using qual_range = llvm::iterator_range<qual_iterator>; | ||||
5716 | |||||
5717 | qual_range quals() const { return qual_range(qual_begin(), qual_end()); } | ||||
5718 | qual_iterator qual_begin() const { return getProtocolStorage(); } | ||||
5719 | qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); } | ||||
5720 | |||||
5721 | bool qual_empty() const { return getNumProtocols() == 0; } | ||||
5722 | |||||
5723 | /// Return the number of qualifying protocols in this type, or 0 if | ||||
5724 | /// there are none. | ||||
5725 | unsigned getNumProtocols() const { | ||||
5726 | return static_cast<const T*>(this)->getNumProtocolsImpl(); | ||||
5727 | } | ||||
5728 | |||||
5729 | /// Fetch a protocol by index. | ||||
5730 | ObjCProtocolDecl *getProtocol(unsigned I) const { | ||||
5731 | assert(I < getNumProtocols() && "Out-of-range protocol access")((void)0); | ||||
5732 | return qual_begin()[I]; | ||||
5733 | } | ||||
5734 | |||||
5735 | /// Retrieve all of the protocol qualifiers. | ||||
5736 | ArrayRef<ObjCProtocolDecl *> getProtocols() const { | ||||
5737 | return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols()); | ||||
5738 | } | ||||
5739 | }; | ||||
5740 | |||||
5741 | /// Represents a type parameter type in Objective C. It can take | ||||
5742 | /// a list of protocols. | ||||
5743 | class ObjCTypeParamType : public Type, | ||||
5744 | public ObjCProtocolQualifiers<ObjCTypeParamType>, | ||||
5745 | public llvm::FoldingSetNode { | ||||
5746 | friend class ASTContext; | ||||
5747 | friend class ObjCProtocolQualifiers<ObjCTypeParamType>; | ||||
5748 | |||||
5749 | /// The number of protocols stored on this type. | ||||
5750 | unsigned NumProtocols : 6; | ||||
5751 | |||||
5752 | ObjCTypeParamDecl *OTPDecl; | ||||
5753 | |||||
5754 | /// The protocols are stored after the ObjCTypeParamType node. In the | ||||
5755 | /// canonical type, the list of protocols are sorted alphabetically | ||||
5756 | /// and uniqued. | ||||
5757 | ObjCProtocolDecl **getProtocolStorageImpl(); | ||||
5758 | |||||
5759 | /// Return the number of qualifying protocols in this interface type, | ||||
5760 | /// or 0 if there are none. | ||||
5761 | unsigned getNumProtocolsImpl() const { | ||||
5762 | return NumProtocols; | ||||
5763 | } | ||||
5764 | |||||
5765 | void setNumProtocolsImpl(unsigned N) { | ||||
5766 | NumProtocols = N; | ||||
5767 | } | ||||
5768 | |||||
5769 | ObjCTypeParamType(const ObjCTypeParamDecl *D, | ||||
5770 | QualType can, | ||||
5771 | ArrayRef<ObjCProtocolDecl *> protocols); | ||||
5772 | |||||
5773 | public: | ||||
5774 | bool isSugared() const { return true; } | ||||
5775 | QualType desugar() const { return getCanonicalTypeInternal(); } | ||||
5776 | |||||
5777 | static bool classof(const Type *T) { | ||||
5778 | return T->getTypeClass() == ObjCTypeParam; | ||||
5779 | } | ||||
5780 | |||||
5781 | void Profile(llvm::FoldingSetNodeID &ID); | ||||
5782 | static void Profile(llvm::FoldingSetNodeID &ID, | ||||
5783 | const ObjCTypeParamDecl *OTPDecl, | ||||
5784 | QualType CanonicalType, | ||||
5785 | ArrayRef<ObjCProtocolDecl *> protocols); | ||||
5786 | |||||
5787 | ObjCTypeParamDecl *getDecl() const { return OTPDecl; } | ||||
5788 | }; | ||||
5789 | |||||
5790 | /// Represents a class type in Objective C. | ||||
5791 | /// | ||||
5792 | /// Every Objective C type is a combination of a base type, a set of | ||||
5793 | /// type arguments (optional, for parameterized classes) and a list of | ||||
5794 | /// protocols. | ||||
5795 | /// | ||||
5796 | /// Given the following declarations: | ||||
5797 | /// \code | ||||
5798 | /// \@class C<T>; | ||||
5799 | /// \@protocol P; | ||||
5800 | /// \endcode | ||||
5801 | /// | ||||
5802 | /// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType | ||||
5803 | /// with base C and no protocols. | ||||
5804 | /// | ||||
5805 | /// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P]. | ||||
5806 | /// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no | ||||
5807 | /// protocol list. | ||||
5808 | /// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*', | ||||
5809 | /// and protocol list [P]. | ||||
5810 | /// | ||||
5811 | /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose | ||||
5812 | /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType | ||||
5813 | /// and no protocols. | ||||
5814 | /// | ||||
5815 | /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType | ||||
5816 | /// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually | ||||
5817 | /// this should get its own sugar class to better represent the source. | ||||
5818 | class ObjCObjectType : public Type, | ||||
5819 | public ObjCProtocolQualifiers<ObjCObjectType> { | ||||
5820 | friend class ObjCProtocolQualifiers<ObjCObjectType>; | ||||
5821 | |||||
5822 | // ObjCObjectType.NumTypeArgs - the number of type arguments stored | ||||
5823 | // after the ObjCObjectPointerType node. | ||||
5824 | // ObjCObjectType.NumProtocols - the number of protocols stored | ||||
5825 | // after the type arguments of ObjCObjectPointerType node. | ||||
5826 | // | ||||
5827 | // These protocols are those written directly on the type. If | ||||
5828 | // protocol qualifiers ever become additive, the iterators will need | ||||
5829 | // to get kindof complicated. | ||||
5830 | // | ||||
5831 | // In the canonical object type, these are sorted alphabetically | ||||
5832 | // and uniqued. | ||||
5833 | |||||
5834 | /// Either a BuiltinType or an InterfaceType or sugar for either. | ||||
5835 | QualType BaseType; | ||||
5836 | |||||
5837 | /// Cached superclass type. | ||||
5838 | mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool> | ||||
5839 | CachedSuperClassType; | ||||
5840 | |||||
5841 | QualType *getTypeArgStorage(); | ||||
5842 | const QualType *getTypeArgStorage() const { | ||||
5843 | return const_cast<ObjCObjectType *>(this)->getTypeArgStorage(); | ||||
5844 | } | ||||
5845 | |||||
5846 | ObjCProtocolDecl **getProtocolStorageImpl(); | ||||
5847 | /// Return the number of qualifying protocols in this interface type, | ||||
5848 | /// or 0 if there are none. | ||||
5849 | unsigned getNumProtocolsImpl() const { | ||||
5850 | return ObjCObjectTypeBits.NumProtocols; | ||||
5851 | } | ||||
5852 | void setNumProtocolsImpl(unsigned N) { | ||||
5853 | ObjCObjectTypeBits.NumProtocols = N; | ||||
5854 | } | ||||
5855 | |||||
5856 | protected: | ||||
5857 | enum Nonce_ObjCInterface { Nonce_ObjCInterface }; | ||||
5858 | |||||
5859 | ObjCObjectType(QualType Canonical, QualType Base, | ||||
5860 | ArrayRef<QualType> typeArgs, | ||||
5861 | ArrayRef<ObjCProtocolDecl *> protocols, | ||||
5862 | bool isKindOf); | ||||
5863 | |||||
5864 | ObjCObjectType(enum Nonce_ObjCInterface) | ||||
5865 | : Type(ObjCInterface, QualType(), TypeDependence::None), | ||||
5866 | BaseType(QualType(this_(), 0)) { | ||||
5867 | ObjCObjectTypeBits.NumProtocols = 0; | ||||
5868 | ObjCObjectTypeBits.NumTypeArgs = 0; | ||||
5869 | ObjCObjectTypeBits.IsKindOf = 0; | ||||
5870 | } | ||||
5871 | |||||
5872 | void computeSuperClassTypeSlow() const; | ||||
5873 | |||||
5874 | public: | ||||
5875 | /// Gets the base type of this object type. This is always (possibly | ||||
5876 | /// sugar for) one of: | ||||
5877 | /// - the 'id' builtin type (as opposed to the 'id' type visible to the | ||||
5878 | /// user, which is a typedef for an ObjCObjectPointerType) | ||||
5879 | /// - the 'Class' builtin type (same caveat) | ||||
5880 | /// - an ObjCObjectType (currently always an ObjCInterfaceType) | ||||
5881 | QualType getBaseType() const { return BaseType; } | ||||
5882 | |||||
5883 | bool isObjCId() const { | ||||
5884 | return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId); | ||||
5885 | } | ||||
5886 | |||||
5887 | bool isObjCClass() const { | ||||
5888 | return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass); | ||||
5889 | } | ||||
5890 | |||||
5891 | bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); } | ||||
5892 | bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); } | ||||
5893 | bool isObjCUnqualifiedIdOrClass() const { | ||||
5894 | if (!qual_empty()) return false; | ||||
5895 | if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>()) | ||||
5896 | return T->getKind() == BuiltinType::ObjCId || | ||||
5897 | T->getKind() == BuiltinType::ObjCClass; | ||||
5898 | return false; | ||||
5899 | } | ||||
5900 | bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); } | ||||
5901 | bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); } | ||||
5902 | |||||
5903 | /// Gets the interface declaration for this object type, if the base type | ||||
5904 | /// really is an interface. | ||||
5905 | ObjCInterfaceDecl *getInterface() const; | ||||
5906 | |||||
5907 | /// Determine whether this object type is "specialized", meaning | ||||
5908 | /// that it has type arguments. | ||||
5909 | bool isSpecialized() const; | ||||
5910 | |||||
5911 | /// Determine whether this object type was written with type arguments. | ||||
5912 | bool isSpecializedAsWritten() const { | ||||
5913 | return ObjCObjectTypeBits.NumTypeArgs > 0; | ||||
5914 | } | ||||
5915 | |||||
5916 | /// Determine whether this object type is "unspecialized", meaning | ||||
5917 | /// that it has no type arguments. | ||||
5918 | bool isUnspecialized() const { return !isSpecialized(); } | ||||
5919 | |||||
5920 | /// Determine whether this object type is "unspecialized" as | ||||
5921 | /// written, meaning that it has no type arguments. | ||||
5922 | bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); } | ||||
5923 | |||||
5924 | /// Retrieve the type arguments of this object type (semantically). | ||||
5925 | ArrayRef<QualType> getTypeArgs() const; | ||||
5926 | |||||
5927 | /// Retrieve the type arguments of this object type as they were | ||||
5928 | /// written. | ||||
5929 | ArrayRef<QualType> getTypeArgsAsWritten() const { | ||||
5930 | return llvm::makeArrayRef(getTypeArgStorage(), | ||||
5931 | ObjCObjectTypeBits.NumTypeArgs); | ||||
5932 | } | ||||
5933 | |||||
5934 | /// Whether this is a "__kindof" type as written. | ||||
5935 | bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; } | ||||
5936 | |||||
5937 | /// Whether this ia a "__kindof" type (semantically). | ||||
5938 | bool isKindOfType() const; | ||||
5939 | |||||
5940 | /// Retrieve the type of the superclass of this object type. | ||||
5941 | /// | ||||
5942 | /// This operation substitutes any type arguments into the | ||||
5943 | /// superclass of the current class type, potentially producing a | ||||
5944 | /// specialization of the superclass type. Produces a null type if | ||||
5945 | /// there is no superclass. | ||||
5946 | QualType getSuperClassType() const { | ||||
5947 | if (!CachedSuperClassType.getInt()) | ||||
5948 | computeSuperClassTypeSlow(); | ||||
5949 | |||||
5950 | assert(CachedSuperClassType.getInt() && "Superclass not set?")((void)0); | ||||
5951 | return QualType(CachedSuperClassType.getPointer(), 0); | ||||
5952 | } | ||||
5953 | |||||
5954 | /// Strip off the Objective-C "kindof" type and (with it) any | ||||
5955 | /// protocol qualifiers. | ||||
5956 | QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const; | ||||
5957 | |||||
5958 | bool isSugared() const { return false; } | ||||
5959 | QualType desugar() const { return QualType(this, 0); } | ||||
5960 | |||||
5961 | static bool classof(const Type *T) { | ||||
5962 | return T->getTypeClass() == ObjCObject || | ||||
5963 | T->getTypeClass() == ObjCInterface; | ||||
5964 | } | ||||
5965 | }; | ||||
5966 | |||||
5967 | /// A class providing a concrete implementation | ||||
5968 | /// of ObjCObjectType, so as to not increase the footprint of | ||||
5969 | /// ObjCInterfaceType. Code outside of ASTContext and the core type | ||||
5970 | /// system should not reference this type. | ||||
5971 | class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode { | ||||
5972 | friend class ASTContext; | ||||
5973 | |||||
5974 | // If anyone adds fields here, ObjCObjectType::getProtocolStorage() | ||||
5975 | // will need to be modified. | ||||
5976 | |||||
5977 | ObjCObjectTypeImpl(QualType Canonical, QualType Base, | ||||
5978 | ArrayRef<QualType> typeArgs, | ||||
5979 | ArrayRef<ObjCProtocolDecl *> protocols, | ||||
5980 | bool isKindOf) | ||||
5981 | : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {} | ||||
5982 | |||||
5983 | public: | ||||
5984 | void Profile(llvm::FoldingSetNodeID &ID); | ||||
5985 | static void Profile(llvm::FoldingSetNodeID &ID, | ||||
5986 | QualType Base, | ||||
5987 | ArrayRef<QualType> typeArgs, | ||||
5988 | ArrayRef<ObjCProtocolDecl *> protocols, | ||||
5989 | bool isKindOf); | ||||
5990 | }; | ||||
5991 | |||||
5992 | inline QualType *ObjCObjectType::getTypeArgStorage() { | ||||
5993 | return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1); | ||||
5994 | } | ||||
5995 | |||||
5996 | inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() { | ||||
5997 | return reinterpret_cast<ObjCProtocolDecl**>( | ||||
5998 | getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs); | ||||
5999 | } | ||||
6000 | |||||
6001 | inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() { | ||||
6002 | return reinterpret_cast<ObjCProtocolDecl**>( | ||||
6003 | static_cast<ObjCTypeParamType*>(this)+1); | ||||
6004 | } | ||||
6005 | |||||
6006 | /// Interfaces are the core concept in Objective-C for object oriented design. | ||||
6007 | /// They basically correspond to C++ classes. There are two kinds of interface | ||||
6008 | /// types: normal interfaces like `NSString`, and qualified interfaces, which | ||||
6009 | /// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`. | ||||
6010 | /// | ||||
6011 | /// ObjCInterfaceType guarantees the following properties when considered | ||||
6012 | /// as a subtype of its superclass, ObjCObjectType: | ||||
6013 | /// - There are no protocol qualifiers. To reinforce this, code which | ||||
6014 | /// tries to invoke the protocol methods via an ObjCInterfaceType will | ||||
6015 | /// fail to compile. | ||||
6016 | /// - It is its own base type. That is, if T is an ObjCInterfaceType*, | ||||
6017 | /// T->getBaseType() == QualType(T, 0). | ||||
6018 | class ObjCInterfaceType : public ObjCObjectType { | ||||
6019 | friend class ASTContext; // ASTContext creates these. | ||||
6020 | friend class ASTReader; | ||||
6021 | friend class ObjCInterfaceDecl; | ||||
6022 | template <class T> friend class serialization::AbstractTypeReader; | ||||
6023 | |||||
6024 | mutable ObjCInterfaceDecl *Decl; | ||||
6025 | |||||
6026 | ObjCInterfaceType(const ObjCInterfaceDecl *D) | ||||
6027 | : ObjCObjectType(Nonce_ObjCInterface), | ||||
6028 | Decl(const_cast<ObjCInterfaceDecl*>(D)) {} | ||||
6029 | |||||
6030 | public: | ||||
6031 | /// Get the declaration of this interface. | ||||
6032 | ObjCInterfaceDecl *getDecl() const { return Decl; } | ||||
6033 | |||||
6034 | bool isSugared() const { return false; } | ||||
6035 | QualType desugar() const { return QualType(this, 0); } | ||||
6036 | |||||
6037 | static bool classof(const Type *T) { | ||||
6038 | return T->getTypeClass() == ObjCInterface; | ||||
6039 | } | ||||
6040 | |||||
6041 | // Nonsense to "hide" certain members of ObjCObjectType within this | ||||
6042 | // class. People asking for protocols on an ObjCInterfaceType are | ||||
6043 | // not going to get what they want: ObjCInterfaceTypes are | ||||
6044 | // guaranteed to have no protocols. | ||||
6045 | enum { | ||||
6046 | qual_iterator, | ||||
6047 | qual_begin, | ||||
6048 | qual_end, | ||||
6049 | getNumProtocols, | ||||
6050 | getProtocol | ||||
6051 | }; | ||||
6052 | }; | ||||
6053 | |||||
6054 | inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const { | ||||
6055 | QualType baseType = getBaseType(); | ||||
6056 | while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) { | ||||
6057 | if (const auto *T
| ||||
6058 | return T->getDecl(); | ||||
6059 | |||||
6060 | baseType = ObjT->getBaseType(); | ||||
6061 | } | ||||
6062 | |||||
6063 | return nullptr; | ||||
6064 | } | ||||
6065 | |||||
6066 | /// Represents a pointer to an Objective C object. | ||||
6067 | /// | ||||
6068 | /// These are constructed from pointer declarators when the pointee type is | ||||
6069 | /// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class' | ||||
6070 | /// types are typedefs for these, and the protocol-qualified types 'id<P>' | ||||
6071 | /// and 'Class<P>' are translated into these. | ||||
6072 | /// | ||||
6073 | /// Pointers to pointers to Objective C objects are still PointerTypes; | ||||
6074 | /// only the first level of pointer gets it own type implementation. | ||||
6075 | class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode { | ||||
6076 | friend class ASTContext; // ASTContext creates these. | ||||
6077 | |||||
6078 | QualType PointeeType; | ||||
6079 | |||||
6080 | ObjCObjectPointerType(QualType Canonical, QualType Pointee) | ||||
6081 | : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()), | ||||
6082 | PointeeType(Pointee) {} | ||||
6083 | |||||
6084 | public: | ||||
6085 | /// Gets the type pointed to by this ObjC pointer. | ||||
6086 | /// The result will always be an ObjCObjectType or sugar thereof. | ||||
6087 | QualType getPointeeType() const { return PointeeType; } | ||||
6088 | |||||
6089 | /// Gets the type pointed to by this ObjC pointer. Always returns non-null. | ||||
6090 | /// | ||||
6091 | /// This method is equivalent to getPointeeType() except that | ||||
6092 | /// it discards any typedefs (or other sugar) between this | ||||
6093 | /// type and the "outermost" object type. So for: | ||||
6094 | /// \code | ||||
6095 | /// \@class A; \@protocol P; \@protocol Q; | ||||
6096 | /// typedef A<P> AP; | ||||
6097 | /// typedef A A1; | ||||
6098 | /// typedef A1<P> A1P; | ||||
6099 | /// typedef A1P<Q> A1PQ; | ||||
6100 | /// \endcode | ||||
6101 | /// For 'A*', getObjectType() will return 'A'. | ||||
6102 | /// For 'A<P>*', getObjectType() will return 'A<P>'. | ||||
6103 | /// For 'AP*', getObjectType() will return 'A<P>'. | ||||
6104 | /// For 'A1*', getObjectType() will return 'A'. | ||||
6105 | /// For 'A1<P>*', getObjectType() will return 'A1<P>'. | ||||
6106 | /// For 'A1P*', getObjectType() will return 'A1<P>'. | ||||
6107 | /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because | ||||
6108 | /// adding protocols to a protocol-qualified base discards the | ||||
6109 | /// old qualifiers (for now). But if it didn't, getObjectType() | ||||
6110 | /// would return 'A1P<Q>' (and we'd have to make iterating over | ||||
6111 | /// qualifiers more complicated). | ||||
6112 | const ObjCObjectType *getObjectType() const { | ||||
6113 | return PointeeType->castAs<ObjCObjectType>(); | ||||
6114 | } | ||||
6115 | |||||
6116 | /// If this pointer points to an Objective C | ||||
6117 | /// \@interface type, gets the type for that interface. Any protocol | ||||
6118 | /// qualifiers on the interface are ignored. | ||||
6119 | /// | ||||
6120 | /// \return null if the base type for this pointer is 'id' or 'Class' | ||||
6121 | const ObjCInterfaceType *getInterfaceType() const; | ||||
6122 | |||||
6123 | /// If this pointer points to an Objective \@interface | ||||
6124 | /// type, gets the declaration for that interface. | ||||
6125 | /// | ||||
6126 | /// \return null if the base type for this pointer is 'id' or 'Class' | ||||
6127 | ObjCInterfaceDecl *getInterfaceDecl() const { | ||||
6128 | return getObjectType()->getInterface(); | ||||
6129 | } | ||||
6130 | |||||
6131 | /// True if this is equivalent to the 'id' type, i.e. if | ||||
6132 | /// its object type is the primitive 'id' type with no protocols. | ||||
6133 | bool isObjCIdType() const { | ||||
6134 | return getObjectType()->isObjCUnqualifiedId(); | ||||
6135 | } | ||||
6136 | |||||
6137 | /// True if this is equivalent to the 'Class' type, | ||||
6138 | /// i.e. if its object tive is the primitive 'Class' type with no protocols. | ||||
6139 | bool isObjCClassType() const { | ||||
6140 | return getObjectType()->isObjCUnqualifiedClass(); | ||||
6141 | } | ||||
6142 | |||||
6143 | /// True if this is equivalent to the 'id' or 'Class' type, | ||||
6144 | bool isObjCIdOrClassType() const { | ||||
6145 | return getObjectType()->isObjCUnqualifiedIdOrClass(); | ||||
6146 | } | ||||
6147 | |||||
6148 | /// True if this is equivalent to 'id<P>' for some non-empty set of | ||||
6149 | /// protocols. | ||||
6150 | bool isObjCQualifiedIdType() const { | ||||
6151 | return getObjectType()->isObjCQualifiedId(); | ||||
6152 | } | ||||
6153 | |||||
6154 | /// True if this is equivalent to 'Class<P>' for some non-empty set of | ||||
6155 | /// protocols. | ||||
6156 | bool isObjCQualifiedClassType() const { | ||||
6157 | return getObjectType()->isObjCQualifiedClass(); | ||||
6158 | } | ||||
6159 | |||||
6160 | /// Whether this is a "__kindof" type. | ||||
6161 | bool isKindOfType() const { return getObjectType()->isKindOfType(); } | ||||
6162 | |||||
6163 | /// Whether this type is specialized, meaning that it has type arguments. | ||||
6164 | bool isSpecialized() const { return getObjectType()->isSpecialized(); } | ||||
6165 | |||||
6166 | /// Whether this type is specialized, meaning that it has type arguments. | ||||
6167 | bool isSpecializedAsWritten() const { | ||||
6168 | return getObjectType()->isSpecializedAsWritten(); | ||||
6169 | } | ||||
6170 | |||||
6171 | /// Whether this type is unspecialized, meaning that is has no type arguments. | ||||
6172 | bool isUnspecialized() const { return getObjectType()->isUnspecialized(); } | ||||
6173 | |||||
6174 | /// Determine whether this object type is "unspecialized" as | ||||
6175 | /// written, meaning that it has no type arguments. | ||||
6176 | bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); } | ||||
6177 | |||||
6178 | /// Retrieve the type arguments for this type. | ||||
6179 | ArrayRef<QualType> getTypeArgs() const { | ||||
6180 | return getObjectType()->getTypeArgs(); | ||||
6181 | } | ||||
6182 | |||||
6183 | /// Retrieve the type arguments for this type. | ||||
6184 | ArrayRef<QualType> getTypeArgsAsWritten() const { | ||||
6185 | return getObjectType()->getTypeArgsAsWritten(); | ||||
6186 | } | ||||
6187 | |||||
6188 | /// An iterator over the qualifiers on the object type. Provided | ||||
6189 | /// for convenience. This will always iterate over the full set of | ||||
6190 | /// protocols on a type, not just those provided directly. | ||||
6191 | using qual_iterator = ObjCObjectType::qual_iterator; | ||||
6192 | using qual_range = llvm::iterator_range<qual_iterator>; | ||||
6193 | |||||
6194 | qual_range quals() const { return qual_range(qual_begin(), qual_end()); } | ||||
6195 | |||||
6196 | qual_iterator qual_begin() const { | ||||
6197 | return getObjectType()->qual_begin(); | ||||
6198 | } | ||||
6199 | |||||
6200 | qual_iterator qual_end() const { | ||||
6201 | return getObjectType()->qual_end(); | ||||
6202 | } | ||||
6203 | |||||
6204 | bool qual_empty() const { return getObjectType()->qual_empty(); } | ||||
6205 | |||||
6206 | /// Return the number of qualifying protocols on the object type. | ||||
6207 | unsigned getNumProtocols() const { | ||||
6208 | return getObjectType()->getNumProtocols(); | ||||
6209 | } | ||||
6210 | |||||
6211 | /// Retrieve a qualifying protocol by index on the object type. | ||||
6212 | ObjCProtocolDecl *getProtocol(unsigned I) const { | ||||
6213 | return getObjectType()->getProtocol(I); | ||||
6214 | } | ||||
6215 | |||||
6216 | bool isSugared() const { return false; } | ||||
6217 | QualType desugar() const { return QualType(this, 0); } | ||||
6218 | |||||
6219 | /// Retrieve the type of the superclass of this object pointer type. | ||||
6220 | /// | ||||
6221 | /// This operation substitutes any type arguments into the | ||||
6222 | /// superclass of the current class type, potentially producing a | ||||
6223 | /// pointer to a specialization of the superclass type. Produces a | ||||
6224 | /// null type if there is no superclass. | ||||
6225 | QualType getSuperClassType() const; | ||||
6226 | |||||
6227 | /// Strip off the Objective-C "kindof" type and (with it) any | ||||
6228 | /// protocol qualifiers. | ||||
6229 | const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals( | ||||
6230 | const ASTContext &ctx) const; | ||||
6231 | |||||
6232 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
6233 | Profile(ID, getPointeeType()); | ||||
6234 | } | ||||
6235 | |||||
6236 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T) { | ||||
6237 | ID.AddPointer(T.getAsOpaquePtr()); | ||||
6238 | } | ||||
6239 | |||||
6240 | static bool classof(const Type *T) { | ||||
6241 | return T->getTypeClass() == ObjCObjectPointer; | ||||
6242 | } | ||||
6243 | }; | ||||
6244 | |||||
6245 | class AtomicType : public Type, public llvm::FoldingSetNode { | ||||
6246 | friend class ASTContext; // ASTContext creates these. | ||||
6247 | |||||
6248 | QualType ValueType; | ||||
6249 | |||||
6250 | AtomicType(QualType ValTy, QualType Canonical) | ||||
6251 | : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {} | ||||
6252 | |||||
6253 | public: | ||||
6254 | /// Gets the type contained by this atomic type, i.e. | ||||
6255 | /// the type returned by performing an atomic load of this atomic type. | ||||
6256 | QualType getValueType() const { return ValueType; } | ||||
6257 | |||||
6258 | bool isSugared() const { return false; } | ||||
6259 | QualType desugar() const { return QualType(this, 0); } | ||||
6260 | |||||
6261 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
6262 | Profile(ID, getValueType()); | ||||
6263 | } | ||||
6264 | |||||
6265 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T) { | ||||
6266 | ID.AddPointer(T.getAsOpaquePtr()); | ||||
6267 | } | ||||
6268 | |||||
6269 | static bool classof(const Type *T) { | ||||
6270 | return T->getTypeClass() == Atomic; | ||||
6271 | } | ||||
6272 | }; | ||||
6273 | |||||
6274 | /// PipeType - OpenCL20. | ||||
6275 | class PipeType : public Type, public llvm::FoldingSetNode { | ||||
6276 | friend class ASTContext; // ASTContext creates these. | ||||
6277 | |||||
6278 | QualType ElementType; | ||||
6279 | bool isRead; | ||||
6280 | |||||
6281 | PipeType(QualType elemType, QualType CanonicalPtr, bool isRead) | ||||
6282 | : Type(Pipe, CanonicalPtr, elemType->getDependence()), | ||||
6283 | ElementType(elemType), isRead(isRead) {} | ||||
6284 | |||||
6285 | public: | ||||
6286 | QualType getElementType() const { return ElementType; } | ||||
6287 | |||||
6288 | bool isSugared() const { return false; } | ||||
6289 | |||||
6290 | QualType desugar() const { return QualType(this, 0); } | ||||
6291 | |||||
6292 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
6293 | Profile(ID, getElementType(), isReadOnly()); | ||||
6294 | } | ||||
6295 | |||||
6296 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) { | ||||
6297 | ID.AddPointer(T.getAsOpaquePtr()); | ||||
6298 | ID.AddBoolean(isRead); | ||||
6299 | } | ||||
6300 | |||||
6301 | static bool classof(const Type *T) { | ||||
6302 | return T->getTypeClass() == Pipe; | ||||
6303 | } | ||||
6304 | |||||
6305 | bool isReadOnly() const { return isRead; } | ||||
6306 | }; | ||||
6307 | |||||
6308 | /// A fixed int type of a specified bitwidth. | ||||
6309 | class ExtIntType final : public Type, public llvm::FoldingSetNode { | ||||
6310 | friend class ASTContext; | ||||
6311 | unsigned IsUnsigned : 1; | ||||
6312 | unsigned NumBits : 24; | ||||
6313 | |||||
6314 | protected: | ||||
6315 | ExtIntType(bool isUnsigned, unsigned NumBits); | ||||
6316 | |||||
6317 | public: | ||||
6318 | bool isUnsigned() const { return IsUnsigned; } | ||||
6319 | bool isSigned() const { return !IsUnsigned; } | ||||
6320 | unsigned getNumBits() const { return NumBits; } | ||||
6321 | |||||
6322 | bool isSugared() const { return false; } | ||||
6323 | QualType desugar() const { return QualType(this, 0); } | ||||
6324 | |||||
6325 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
6326 | Profile(ID, isUnsigned(), getNumBits()); | ||||
6327 | } | ||||
6328 | |||||
6329 | static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned, | ||||
6330 | unsigned NumBits) { | ||||
6331 | ID.AddBoolean(IsUnsigned); | ||||
6332 | ID.AddInteger(NumBits); | ||||
6333 | } | ||||
6334 | |||||
6335 | static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; } | ||||
6336 | }; | ||||
6337 | |||||
6338 | class DependentExtIntType final : public Type, public llvm::FoldingSetNode { | ||||
6339 | friend class ASTContext; | ||||
6340 | const ASTContext &Context; | ||||
6341 | llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned; | ||||
6342 | |||||
6343 | protected: | ||||
6344 | DependentExtIntType(const ASTContext &Context, bool IsUnsigned, | ||||
6345 | Expr *NumBits); | ||||
6346 | |||||
6347 | public: | ||||
6348 | bool isUnsigned() const; | ||||
6349 | bool isSigned() const { return !isUnsigned(); } | ||||
6350 | Expr *getNumBitsExpr() const; | ||||
6351 | |||||
6352 | bool isSugared() const { return false; } | ||||
6353 | QualType desugar() const { return QualType(this, 0); } | ||||
6354 | |||||
6355 | void Profile(llvm::FoldingSetNodeID &ID) { | ||||
6356 | Profile(ID, Context, isUnsigned(), getNumBitsExpr()); | ||||
6357 | } | ||||
6358 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | ||||
6359 | bool IsUnsigned, Expr *NumBitsExpr); | ||||
6360 | |||||
6361 | static bool classof(const Type *T) { | ||||
6362 | return T->getTypeClass() == DependentExtInt; | ||||
6363 | } | ||||
6364 | }; | ||||
6365 | |||||
6366 | /// A qualifier set is used to build a set of qualifiers. | ||||
6367 | class QualifierCollector : public Qualifiers { | ||||
6368 | public: | ||||
6369 | QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {} | ||||
6370 | |||||
6371 | /// Collect any qualifiers on the given type and return an | ||||
6372 | /// unqualified type. The qualifiers are assumed to be consistent | ||||
6373 | /// with those already in the type. | ||||
6374 | const Type *strip(QualType type) { | ||||
6375 | addFastQualifiers(type.getLocalFastQualifiers()); | ||||
6376 | if (!type.hasLocalNonFastQualifiers()) | ||||
6377 | return type.getTypePtrUnsafe(); | ||||
6378 | |||||
6379 | const ExtQuals *extQuals = type.getExtQualsUnsafe(); | ||||
6380 | addConsistentQualifiers(extQuals->getQualifiers()); | ||||
6381 | return extQuals->getBaseType(); | ||||
6382 | } | ||||
6383 | |||||
6384 | /// Apply the collected qualifiers to the given type. | ||||
6385 | QualType apply(const ASTContext &Context, QualType QT) const; | ||||
6386 | |||||
6387 | /// Apply the collected qualifiers to the given type. | ||||
6388 | QualType apply(const ASTContext &Context, const Type* T) const; | ||||
6389 | }; | ||||
6390 | |||||
6391 | /// A container of type source information. | ||||
6392 | /// | ||||
6393 | /// A client can read the relevant info using TypeLoc wrappers, e.g: | ||||
6394 | /// @code | ||||
6395 | /// TypeLoc TL = TypeSourceInfo->getTypeLoc(); | ||||
6396 | /// TL.getBeginLoc().print(OS, SrcMgr); | ||||
6397 | /// @endcode | ||||
6398 | class alignas(8) TypeSourceInfo { | ||||
6399 | // Contains a memory block after the class, used for type source information, | ||||
6400 | // allocated by ASTContext. | ||||
6401 | friend class ASTContext; | ||||
6402 | |||||
6403 | QualType Ty; | ||||
6404 | |||||
6405 | TypeSourceInfo(QualType ty) : Ty(ty) {} | ||||
6406 | |||||
6407 | public: | ||||
6408 | /// Return the type wrapped by this type source info. | ||||
6409 | QualType getType() const { return Ty; } | ||||
6410 | |||||
6411 | /// Return the TypeLoc wrapper for the type source info. | ||||
6412 | TypeLoc getTypeLoc() const; // implemented in TypeLoc.h | ||||
6413 | |||||
6414 | /// Override the type stored in this TypeSourceInfo. Use with caution! | ||||
6415 | void overrideType(QualType T) { Ty = T; } | ||||
6416 | }; | ||||
6417 | |||||
6418 | // Inline function definitions. | ||||
6419 | |||||
6420 | inline SplitQualType SplitQualType::getSingleStepDesugaredType() const { | ||||
6421 | SplitQualType desugar = | ||||
6422 | Ty->getLocallyUnqualifiedSingleStepDesugaredType().split(); | ||||
6423 | desugar.Quals.addConsistentQualifiers(Quals); | ||||
6424 | return desugar; | ||||
6425 | } | ||||
6426 | |||||
6427 | inline const Type *QualType::getTypePtr() const { | ||||
6428 | return getCommonPtr()->BaseType; | ||||
6429 | } | ||||
6430 | |||||
6431 | inline const Type *QualType::getTypePtrOrNull() const { | ||||
6432 | return (isNull() ? nullptr : getCommonPtr()->BaseType); | ||||
6433 | } | ||||
6434 | |||||
6435 | inline SplitQualType QualType::split() const { | ||||
6436 | if (!hasLocalNonFastQualifiers()) | ||||
6437 | return SplitQualType(getTypePtrUnsafe(), | ||||
6438 | Qualifiers::fromFastMask(getLocalFastQualifiers())); | ||||
6439 | |||||
6440 | const ExtQuals *eq = getExtQualsUnsafe(); | ||||
6441 | Qualifiers qs = eq->getQualifiers(); | ||||
6442 | qs.addFastQualifiers(getLocalFastQualifiers()); | ||||
6443 | return SplitQualType(eq->getBaseType(), qs); | ||||
6444 | } | ||||
6445 | |||||
6446 | inline Qualifiers QualType::getLocalQualifiers() const { | ||||
6447 | Qualifiers Quals; | ||||
6448 | if (hasLocalNonFastQualifiers()) | ||||
6449 | Quals = getExtQualsUnsafe()->getQualifiers(); | ||||
6450 | Quals.addFastQualifiers(getLocalFastQualifiers()); | ||||
6451 | return Quals; | ||||
6452 | } | ||||
6453 | |||||
6454 | inline Qualifiers QualType::getQualifiers() const { | ||||
6455 | Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers(); | ||||
6456 | quals.addFastQualifiers(getLocalFastQualifiers()); | ||||
6457 | return quals; | ||||
6458 | } | ||||
6459 | |||||
6460 | inline unsigned QualType::getCVRQualifiers() const { | ||||
6461 | unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers(); | ||||
6462 | cvr |= getLocalCVRQualifiers(); | ||||
6463 | return cvr; | ||||
6464 | } | ||||
6465 | |||||
6466 | inline QualType QualType::getCanonicalType() const { | ||||
6467 | QualType canon = getCommonPtr()->CanonicalType; | ||||
6468 | return canon.withFastQualifiers(getLocalFastQualifiers()); | ||||
6469 | } | ||||
6470 | |||||
6471 | inline bool QualType::isCanonical() const { | ||||
6472 | return getTypePtr()->isCanonicalUnqualified(); | ||||
6473 | } | ||||
6474 | |||||
6475 | inline bool QualType::isCanonicalAsParam() const { | ||||
6476 | if (!isCanonical()) return false; | ||||
6477 | if (hasLocalQualifiers()) return false; | ||||
6478 | |||||
6479 | const Type *T = getTypePtr(); | ||||
6480 | if (T->isVariablyModifiedType() && T->hasSizedVLAType()) | ||||
6481 | return false; | ||||
6482 | |||||
6483 | return !isa<FunctionType>(T) && !isa<ArrayType>(T); | ||||
6484 | } | ||||
6485 | |||||
6486 | inline bool QualType::isConstQualified() const { | ||||
6487 | return isLocalConstQualified() || | ||||
6488 | getCommonPtr()->CanonicalType.isLocalConstQualified(); | ||||
6489 | } | ||||
6490 | |||||
6491 | inline bool QualType::isRestrictQualified() const { | ||||
6492 | return isLocalRestrictQualified() || | ||||
6493 | getCommonPtr()->CanonicalType.isLocalRestrictQualified(); | ||||
6494 | } | ||||
6495 | |||||
6496 | |||||
6497 | inline bool QualType::isVolatileQualified() const { | ||||
6498 | return isLocalVolatileQualified() || | ||||
6499 | getCommonPtr()->CanonicalType.isLocalVolatileQualified(); | ||||
6500 | } | ||||
6501 | |||||
6502 | inline bool QualType::hasQualifiers() const { | ||||
6503 | return hasLocalQualifiers() || | ||||
6504 | getCommonPtr()->CanonicalType.hasLocalQualifiers(); | ||||
6505 | } | ||||
6506 | |||||
6507 | inline QualType QualType::getUnqualifiedType() const { | ||||
6508 | if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers()) | ||||
6509 | return QualType(getTypePtr(), 0); | ||||
6510 | |||||
6511 | return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0); | ||||
6512 | } | ||||
6513 | |||||
6514 | inline SplitQualType QualType::getSplitUnqualifiedType() const { | ||||
6515 | if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers()) | ||||
6516 | return split(); | ||||
6517 | |||||
6518 | return getSplitUnqualifiedTypeImpl(*this); | ||||
6519 | } | ||||
6520 | |||||
6521 | inline void QualType::removeLocalConst() { | ||||
6522 | removeLocalFastQualifiers(Qualifiers::Const); | ||||
6523 | } | ||||
6524 | |||||
6525 | inline void QualType::removeLocalRestrict() { | ||||
6526 | removeLocalFastQualifiers(Qualifiers::Restrict); | ||||
6527 | } | ||||
6528 | |||||
6529 | inline void QualType::removeLocalVolatile() { | ||||
6530 | removeLocalFastQualifiers(Qualifiers::Volatile); | ||||
6531 | } | ||||
6532 | |||||
6533 | inline void QualType::removeLocalCVRQualifiers(unsigned Mask) { | ||||
6534 | assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((void)0); | ||||
6535 | static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask, | ||||
6536 | "Fast bits differ from CVR bits!"); | ||||
6537 | |||||
6538 | // Fast path: we don't need to touch the slow qualifiers. | ||||
6539 | removeLocalFastQualifiers(Mask); | ||||
6540 | } | ||||
6541 | |||||
6542 | /// Check if this type has any address space qualifier. | ||||
6543 | inline bool QualType::hasAddressSpace() const { | ||||
6544 | return getQualifiers().hasAddressSpace(); | ||||
6545 | } | ||||
6546 | |||||
6547 | /// Return the address space of this type. | ||||
6548 | inline LangAS QualType::getAddressSpace() const { | ||||
6549 | return getQualifiers().getAddressSpace(); | ||||
6550 | } | ||||
6551 | |||||
6552 | /// Return the gc attribute of this type. | ||||
6553 | inline Qualifiers::GC QualType::getObjCGCAttr() const { | ||||
6554 | return getQualifiers().getObjCGCAttr(); | ||||
6555 | } | ||||
6556 | |||||
6557 | inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const { | ||||
6558 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) | ||||
6559 | return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD); | ||||
6560 | return false; | ||||
6561 | } | ||||
6562 | |||||
6563 | inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const { | ||||
6564 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) | ||||
6565 | return hasNonTrivialToPrimitiveDestructCUnion(RD); | ||||
6566 | return false; | ||||
6567 | } | ||||
6568 | |||||
6569 | inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const { | ||||
6570 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) | ||||
6571 | return hasNonTrivialToPrimitiveCopyCUnion(RD); | ||||
6572 | return false; | ||||
6573 | } | ||||
6574 | |||||
6575 | inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) { | ||||
6576 | if (const auto *PT = t.getAs<PointerType>()) { | ||||
6577 | if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>()) | ||||
6578 | return FT->getExtInfo(); | ||||
6579 | } else if (const auto *FT = t.getAs<FunctionType>()) | ||||
6580 | return FT->getExtInfo(); | ||||
6581 | |||||
6582 | return FunctionType::ExtInfo(); | ||||
6583 | } | ||||
6584 | |||||
6585 | inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) { | ||||
6586 | return getFunctionExtInfo(*t); | ||||
6587 | } | ||||
6588 | |||||
6589 | /// Determine whether this type is more | ||||
6590 | /// qualified than the Other type. For example, "const volatile int" | ||||
6591 | /// is more qualified than "const int", "volatile int", and | ||||
6592 | /// "int". However, it is not more qualified than "const volatile | ||||
6593 | /// int". | ||||
6594 | inline bool QualType::isMoreQualifiedThan(QualType other) const { | ||||
6595 | Qualifiers MyQuals = getQualifiers(); | ||||
6596 | Qualifiers OtherQuals = other.getQualifiers(); | ||||
6597 | return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals)); | ||||
6598 | } | ||||
6599 | |||||
6600 | /// Determine whether this type is at last | ||||
6601 | /// as qualified as the Other type. For example, "const volatile | ||||
6602 | /// int" is at least as qualified as "const int", "volatile int", | ||||
6603 | /// "int", and "const volatile int". | ||||
6604 | inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const { | ||||
6605 | Qualifiers OtherQuals = other.getQualifiers(); | ||||
6606 | |||||
6607 | // Ignore __unaligned qualifier if this type is a void. | ||||
6608 | if (getUnqualifiedType()->isVoidType()) | ||||
6609 | OtherQuals.removeUnaligned(); | ||||
6610 | |||||
6611 | return getQualifiers().compatiblyIncludes(OtherQuals); | ||||
6612 | } | ||||
6613 | |||||
6614 | /// If Type is a reference type (e.g., const | ||||
6615 | /// int&), returns the type that the reference refers to ("const | ||||
6616 | /// int"). Otherwise, returns the type itself. This routine is used | ||||
6617 | /// throughout Sema to implement C++ 5p6: | ||||
6618 | /// | ||||
6619 | /// If an expression initially has the type "reference to T" (8.3.2, | ||||
6620 | /// 8.5.3), the type is adjusted to "T" prior to any further | ||||
6621 | /// analysis, the expression designates the object or function | ||||
6622 | /// denoted by the reference, and the expression is an lvalue. | ||||
6623 | inline QualType QualType::getNonReferenceType() const { | ||||
6624 | if (const auto *RefType = (*this)->getAs<ReferenceType>()) | ||||
6625 | return RefType->getPointeeType(); | ||||
6626 | else | ||||
6627 | return *this; | ||||
6628 | } | ||||
6629 | |||||
6630 | inline bool QualType::isCForbiddenLValueType() const { | ||||
6631 | return ((getTypePtr()->isVoidType() && !hasQualifiers()) || | ||||
6632 | getTypePtr()->isFunctionType()); | ||||
6633 | } | ||||
6634 | |||||
6635 | /// Tests whether the type is categorized as a fundamental type. | ||||
6636 | /// | ||||
6637 | /// \returns True for types specified in C++0x [basic.fundamental]. | ||||
6638 | inline bool Type::isFundamentalType() const { | ||||
6639 | return isVoidType() || | ||||
6640 | isNullPtrType() || | ||||
6641 | // FIXME: It's really annoying that we don't have an | ||||
6642 | // 'isArithmeticType()' which agrees with the standard definition. | ||||
6643 | (isArithmeticType() && !isEnumeralType()); | ||||
6644 | } | ||||
6645 | |||||
6646 | /// Tests whether the type is categorized as a compound type. | ||||
6647 | /// | ||||
6648 | /// \returns True for types specified in C++0x [basic.compound]. | ||||
6649 | inline bool Type::isCompoundType() const { | ||||
6650 | // C++0x [basic.compound]p1: | ||||
6651 | // Compound types can be constructed in the following ways: | ||||
6652 | // -- arrays of objects of a given type [...]; | ||||
6653 | return isArrayType() || | ||||
6654 | // -- functions, which have parameters of given types [...]; | ||||
6655 | isFunctionType() || | ||||
6656 | // -- pointers to void or objects or functions [...]; | ||||
6657 | isPointerType() || | ||||
6658 | // -- references to objects or functions of a given type. [...] | ||||
6659 | isReferenceType() || | ||||
6660 | // -- classes containing a sequence of objects of various types, [...]; | ||||
6661 | isRecordType() || | ||||
6662 | // -- unions, which are classes capable of containing objects of different | ||||
6663 | // types at different times; | ||||
6664 | isUnionType() || | ||||
6665 | // -- enumerations, which comprise a set of named constant values. [...]; | ||||
6666 | isEnumeralType() || | ||||
6667 | // -- pointers to non-static class members, [...]. | ||||
6668 | isMemberPointerType(); | ||||
6669 | } | ||||
6670 | |||||
6671 | inline bool Type::isFunctionType() const { | ||||
6672 | return isa<FunctionType>(CanonicalType); | ||||
6673 | } | ||||
6674 | |||||
6675 | inline bool Type::isPointerType() const { | ||||
6676 | return isa<PointerType>(CanonicalType); | ||||
6677 | } | ||||
6678 | |||||
6679 | inline bool Type::isAnyPointerType() const { | ||||
6680 | return isPointerType() || isObjCObjectPointerType(); | ||||
6681 | } | ||||
6682 | |||||
6683 | inline bool Type::isBlockPointerType() const { | ||||
6684 | return isa<BlockPointerType>(CanonicalType); | ||||
6685 | } | ||||
6686 | |||||
6687 | inline bool Type::isReferenceType() const { | ||||
6688 | return isa<ReferenceType>(CanonicalType); | ||||
6689 | } | ||||
6690 | |||||
6691 | inline bool Type::isLValueReferenceType() const { | ||||
6692 | return isa<LValueReferenceType>(CanonicalType); | ||||
6693 | } | ||||
6694 | |||||
6695 | inline bool Type::isRValueReferenceType() const { | ||||
6696 | return isa<RValueReferenceType>(CanonicalType); | ||||
6697 | } | ||||
6698 | |||||
6699 | inline bool Type::isObjectPointerType() const { | ||||
6700 | // Note: an "object pointer type" is not the same thing as a pointer to an | ||||
6701 | // object type; rather, it is a pointer to an object type or a pointer to cv | ||||
6702 | // void. | ||||
6703 | if (const auto *T = getAs<PointerType>()) | ||||
6704 | return !T->getPointeeType()->isFunctionType(); | ||||
6705 | else | ||||
6706 | return false; | ||||
6707 | } | ||||
6708 | |||||
6709 | inline bool Type::isFunctionPointerType() const { | ||||
6710 | if (const auto *T = getAs<PointerType>()) | ||||
6711 | return T->getPointeeType()->isFunctionType(); | ||||
6712 | else | ||||
6713 | return false; | ||||
6714 | } | ||||
6715 | |||||
6716 | inline bool Type::isFunctionReferenceType() const { | ||||
6717 | if (const auto *T = getAs<ReferenceType>()) | ||||
6718 | return T->getPointeeType()->isFunctionType(); | ||||
6719 | else | ||||
6720 | return false; | ||||
6721 | } | ||||
6722 | |||||
6723 | inline bool Type::isMemberPointerType() const { | ||||
6724 | return isa<MemberPointerType>(CanonicalType); | ||||
6725 | } | ||||
6726 | |||||
6727 | inline bool Type::isMemberFunctionPointerType() const { | ||||
6728 | if (const auto *T = getAs<MemberPointerType>()) | ||||
6729 | return T->isMemberFunctionPointer(); | ||||
6730 | else | ||||
6731 | return false; | ||||
6732 | } | ||||
6733 | |||||
6734 | inline bool Type::isMemberDataPointerType() const { | ||||
6735 | if (const auto *T = getAs<MemberPointerType>()) | ||||
6736 | return T->isMemberDataPointer(); | ||||
6737 | else | ||||
6738 | return false; | ||||
6739 | } | ||||
6740 | |||||
6741 | inline bool Type::isArrayType() const { | ||||
6742 | return isa<ArrayType>(CanonicalType); | ||||
6743 | } | ||||
6744 | |||||
6745 | inline bool Type::isConstantArrayType() const { | ||||
6746 | return isa<ConstantArrayType>(CanonicalType); | ||||
6747 | } | ||||
6748 | |||||
6749 | inline bool Type::isIncompleteArrayType() const { | ||||
6750 | return isa<IncompleteArrayType>(CanonicalType); | ||||
6751 | } | ||||
6752 | |||||
6753 | inline bool Type::isVariableArrayType() const { | ||||
6754 | return isa<VariableArrayType>(CanonicalType); | ||||
6755 | } | ||||
6756 | |||||
6757 | inline bool Type::isDependentSizedArrayType() const { | ||||
6758 | return isa<DependentSizedArrayType>(CanonicalType); | ||||
6759 | } | ||||
6760 | |||||
6761 | inline bool Type::isBuiltinType() const { | ||||
6762 | return isa<BuiltinType>(CanonicalType); | ||||
6763 | } | ||||
6764 | |||||
6765 | inline bool Type::isRecordType() const { | ||||
6766 | return isa<RecordType>(CanonicalType); | ||||
6767 | } | ||||
6768 | |||||
6769 | inline bool Type::isEnumeralType() const { | ||||
6770 | return isa<EnumType>(CanonicalType); | ||||
6771 | } | ||||
6772 | |||||
6773 | inline bool Type::isAnyComplexType() const { | ||||
6774 | return isa<ComplexType>(CanonicalType); | ||||
6775 | } | ||||
6776 | |||||
6777 | inline bool Type::isVectorType() const { | ||||
6778 | return isa<VectorType>(CanonicalType); | ||||
6779 | } | ||||
6780 | |||||
6781 | inline bool Type::isExtVectorType() const { | ||||
6782 | return isa<ExtVectorType>(CanonicalType); | ||||
6783 | } | ||||
6784 | |||||
6785 | inline bool Type::isMatrixType() const { | ||||
6786 | return isa<MatrixType>(CanonicalType); | ||||
6787 | } | ||||
6788 | |||||
6789 | inline bool Type::isConstantMatrixType() const { | ||||
6790 | return isa<ConstantMatrixType>(CanonicalType); | ||||
6791 | } | ||||
6792 | |||||
6793 | inline bool Type::isDependentAddressSpaceType() const { | ||||
6794 | return isa<DependentAddressSpaceType>(CanonicalType); | ||||
6795 | } | ||||
6796 | |||||
6797 | inline bool Type::isObjCObjectPointerType() const { | ||||
6798 | return isa<ObjCObjectPointerType>(CanonicalType); | ||||
6799 | } | ||||
6800 | |||||
6801 | inline bool Type::isObjCObjectType() const { | ||||
6802 | return isa<ObjCObjectType>(CanonicalType); | ||||
6803 | } | ||||
6804 | |||||
6805 | inline bool Type::isObjCObjectOrInterfaceType() const { | ||||
6806 | return isa<ObjCInterfaceType>(CanonicalType) || | ||||
6807 | isa<ObjCObjectType>(CanonicalType); | ||||
6808 | } | ||||
6809 | |||||
6810 | inline bool Type::isAtomicType() const { | ||||
6811 | return isa<AtomicType>(CanonicalType); | ||||
6812 | } | ||||
6813 | |||||
6814 | inline bool Type::isUndeducedAutoType() const { | ||||
6815 | return isa<AutoType>(CanonicalType); | ||||
6816 | } | ||||
6817 | |||||
6818 | inline bool Type::isObjCQualifiedIdType() const { | ||||
6819 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) | ||||
6820 | return OPT->isObjCQualifiedIdType(); | ||||
6821 | return false; | ||||
6822 | } | ||||
6823 | |||||
6824 | inline bool Type::isObjCQualifiedClassType() const { | ||||
6825 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) | ||||
6826 | return OPT->isObjCQualifiedClassType(); | ||||
6827 | return false; | ||||
6828 | } | ||||
6829 | |||||
6830 | inline bool Type::isObjCIdType() const { | ||||
6831 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) | ||||
6832 | return OPT->isObjCIdType(); | ||||
6833 | return false; | ||||
6834 | } | ||||
6835 | |||||
6836 | inline bool Type::isObjCClassType() const { | ||||
6837 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) | ||||
6838 | return OPT->isObjCClassType(); | ||||
6839 | return false; | ||||
6840 | } | ||||
6841 | |||||
6842 | inline bool Type::isObjCSelType() const { | ||||
6843 | if (const auto *OPT = getAs<PointerType>()) | ||||
6844 | return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel); | ||||
6845 | return false; | ||||
6846 | } | ||||
6847 | |||||
6848 | inline bool Type::isObjCBuiltinType() const { | ||||
6849 | return isObjCIdType() || isObjCClassType() || isObjCSelType(); | ||||
6850 | } | ||||
6851 | |||||
6852 | inline bool Type::isDecltypeType() const { | ||||
6853 | return isa<DecltypeType>(this); | ||||
6854 | } | ||||
6855 | |||||
6856 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | ||||
6857 | inline bool Type::is##Id##Type() const { \ | ||||
6858 | return isSpecificBuiltinType(BuiltinType::Id); \ | ||||
6859 | } | ||||
6860 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
6861 | |||||
6862 | inline bool Type::isSamplerT() const { | ||||
6863 | return isSpecificBuiltinType(BuiltinType::OCLSampler); | ||||
6864 | } | ||||
6865 | |||||
6866 | inline bool Type::isEventT() const { | ||||
6867 | return isSpecificBuiltinType(BuiltinType::OCLEvent); | ||||
6868 | } | ||||
6869 | |||||
6870 | inline bool Type::isClkEventT() const { | ||||
6871 | return isSpecificBuiltinType(BuiltinType::OCLClkEvent); | ||||
6872 | } | ||||
6873 | |||||
6874 | inline bool Type::isQueueT() const { | ||||
6875 | return isSpecificBuiltinType(BuiltinType::OCLQueue); | ||||
6876 | } | ||||
6877 | |||||
6878 | inline bool Type::isReserveIDT() const { | ||||
6879 | return isSpecificBuiltinType(BuiltinType::OCLReserveID); | ||||
6880 | } | ||||
6881 | |||||
6882 | inline bool Type::isImageType() const { | ||||
6883 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() || | ||||
6884 | return | ||||
6885 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
6886 | false; // end boolean or operation | ||||
6887 | } | ||||
6888 | |||||
6889 | inline bool Type::isPipeType() const { | ||||
6890 | return isa<PipeType>(CanonicalType); | ||||
6891 | } | ||||
6892 | |||||
6893 | inline bool Type::isExtIntType() const { | ||||
6894 | return isa<ExtIntType>(CanonicalType); | ||||
6895 | } | ||||
6896 | |||||
6897 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | ||||
6898 | inline bool Type::is##Id##Type() const { \ | ||||
6899 | return isSpecificBuiltinType(BuiltinType::Id); \ | ||||
6900 | } | ||||
6901 | #include "clang/Basic/OpenCLExtensionTypes.def" | ||||
6902 | |||||
6903 | inline bool Type::isOCLIntelSubgroupAVCType() const { | ||||
6904 | #define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \ | ||||
6905 | isOCLIntelSubgroupAVC##Id##Type() || | ||||
6906 | return | ||||
6907 | #include "clang/Basic/OpenCLExtensionTypes.def" | ||||
6908 | false; // end of boolean or operation | ||||
6909 | } | ||||
6910 | |||||
6911 | inline bool Type::isOCLExtOpaqueType() const { | ||||
6912 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() || | ||||
6913 | return | ||||
6914 | #include "clang/Basic/OpenCLExtensionTypes.def" | ||||
6915 | false; // end of boolean or operation | ||||
6916 | } | ||||
6917 | |||||
6918 | inline bool Type::isOpenCLSpecificType() const { | ||||
6919 | return isSamplerT() || isEventT() || isImageType() || isClkEventT() || | ||||
6920 | isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType(); | ||||
6921 | } | ||||
6922 | |||||
6923 | inline bool Type::isTemplateTypeParmType() const { | ||||
6924 | return isa<TemplateTypeParmType>(CanonicalType); | ||||
6925 | } | ||||
6926 | |||||
6927 | inline bool Type::isSpecificBuiltinType(unsigned K) const { | ||||
6928 | if (const BuiltinType *BT = getAs<BuiltinType>()) { | ||||
6929 | return BT->getKind() == static_cast<BuiltinType::Kind>(K); | ||||
6930 | } | ||||
6931 | return false; | ||||
6932 | } | ||||
6933 | |||||
6934 | inline bool Type::isPlaceholderType() const { | ||||
6935 | if (const auto *BT = dyn_cast<BuiltinType>(this)) | ||||
6936 | return BT->isPlaceholderType(); | ||||
6937 | return false; | ||||
6938 | } | ||||
6939 | |||||
6940 | inline const BuiltinType *Type::getAsPlaceholderType() const { | ||||
6941 | if (const auto *BT = dyn_cast<BuiltinType>(this)) | ||||
6942 | if (BT->isPlaceholderType()) | ||||
6943 | return BT; | ||||
6944 | return nullptr; | ||||
6945 | } | ||||
6946 | |||||
6947 | inline bool Type::isSpecificPlaceholderType(unsigned K) const { | ||||
6948 | assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((void)0); | ||||
6949 | return isSpecificBuiltinType(K); | ||||
6950 | } | ||||
6951 | |||||
6952 | inline bool Type::isNonOverloadPlaceholderType() const { | ||||
6953 | if (const auto *BT = dyn_cast<BuiltinType>(this)) | ||||
6954 | return BT->isNonOverloadPlaceholderType(); | ||||
6955 | return false; | ||||
6956 | } | ||||
6957 | |||||
6958 | inline bool Type::isVoidType() const { | ||||
6959 | return isSpecificBuiltinType(BuiltinType::Void); | ||||
6960 | } | ||||
6961 | |||||
6962 | inline bool Type::isHalfType() const { | ||||
6963 | // FIXME: Should we allow complex __fp16? Probably not. | ||||
6964 | return isSpecificBuiltinType(BuiltinType::Half); | ||||
6965 | } | ||||
6966 | |||||
6967 | inline bool Type::isFloat16Type() const { | ||||
6968 | return isSpecificBuiltinType(BuiltinType::Float16); | ||||
6969 | } | ||||
6970 | |||||
6971 | inline bool Type::isBFloat16Type() const { | ||||
6972 | return isSpecificBuiltinType(BuiltinType::BFloat16); | ||||
6973 | } | ||||
6974 | |||||
6975 | inline bool Type::isFloat128Type() const { | ||||
6976 | return isSpecificBuiltinType(BuiltinType::Float128); | ||||
6977 | } | ||||
6978 | |||||
6979 | inline bool Type::isNullPtrType() const { | ||||
6980 | return isSpecificBuiltinType(BuiltinType::NullPtr); | ||||
6981 | } | ||||
6982 | |||||
6983 | bool IsEnumDeclComplete(EnumDecl *); | ||||
6984 | bool IsEnumDeclScoped(EnumDecl *); | ||||
6985 | |||||
6986 | inline bool Type::isIntegerType() const { | ||||
6987 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | ||||
6988 | return BT->getKind() >= BuiltinType::Bool && | ||||
6989 | BT->getKind() <= BuiltinType::Int128; | ||||
6990 | if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { | ||||
6991 | // Incomplete enum types are not treated as integer types. | ||||
6992 | // FIXME: In C++, enum types are never integer types. | ||||
6993 | return IsEnumDeclComplete(ET->getDecl()) && | ||||
6994 | !IsEnumDeclScoped(ET->getDecl()); | ||||
6995 | } | ||||
6996 | return isExtIntType(); | ||||
6997 | } | ||||
6998 | |||||
6999 | inline bool Type::isFixedPointType() const { | ||||
7000 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { | ||||
7001 | return BT->getKind() >= BuiltinType::ShortAccum && | ||||
7002 | BT->getKind() <= BuiltinType::SatULongFract; | ||||
7003 | } | ||||
7004 | return false; | ||||
7005 | } | ||||
7006 | |||||
7007 | inline bool Type::isFixedPointOrIntegerType() const { | ||||
7008 | return isFixedPointType() || isIntegerType(); | ||||
7009 | } | ||||
7010 | |||||
7011 | inline bool Type::isSaturatedFixedPointType() const { | ||||
7012 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { | ||||
7013 | return BT->getKind() >= BuiltinType::SatShortAccum && | ||||
7014 | BT->getKind() <= BuiltinType::SatULongFract; | ||||
7015 | } | ||||
7016 | return false; | ||||
7017 | } | ||||
7018 | |||||
7019 | inline bool Type::isUnsaturatedFixedPointType() const { | ||||
7020 | return isFixedPointType() && !isSaturatedFixedPointType(); | ||||
7021 | } | ||||
7022 | |||||
7023 | inline bool Type::isSignedFixedPointType() const { | ||||
7024 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { | ||||
7025 | return ((BT->getKind() >= BuiltinType::ShortAccum && | ||||
7026 | BT->getKind() <= BuiltinType::LongAccum) || | ||||
7027 | (BT->getKind() >= BuiltinType::ShortFract && | ||||
7028 | BT->getKind() <= BuiltinType::LongFract) || | ||||
7029 | (BT->getKind() >= BuiltinType::SatShortAccum && | ||||
7030 | BT->getKind() <= BuiltinType::SatLongAccum) || | ||||
7031 | (BT->getKind() >= BuiltinType::SatShortFract && | ||||
7032 | BT->getKind() <= BuiltinType::SatLongFract)); | ||||
7033 | } | ||||
7034 | return false; | ||||
7035 | } | ||||
7036 | |||||
7037 | inline bool Type::isUnsignedFixedPointType() const { | ||||
7038 | return isFixedPointType() && !isSignedFixedPointType(); | ||||
7039 | } | ||||
7040 | |||||
7041 | inline bool Type::isScalarType() const { | ||||
7042 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | ||||
7043 | return BT->getKind() > BuiltinType::Void && | ||||
7044 | BT->getKind() <= BuiltinType::NullPtr; | ||||
7045 | if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) | ||||
7046 | // Enums are scalar types, but only if they are defined. Incomplete enums | ||||
7047 | // are not treated as scalar types. | ||||
7048 | return IsEnumDeclComplete(ET->getDecl()); | ||||
7049 | return isa<PointerType>(CanonicalType) || | ||||
7050 | isa<BlockPointerType>(CanonicalType) || | ||||
7051 | isa<MemberPointerType>(CanonicalType) || | ||||
7052 | isa<ComplexType>(CanonicalType) || | ||||
7053 | isa<ObjCObjectPointerType>(CanonicalType) || | ||||
7054 | isExtIntType(); | ||||
7055 | } | ||||
7056 | |||||
7057 | inline bool Type::isIntegralOrEnumerationType() const { | ||||
7058 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | ||||
7059 | return BT->getKind() >= BuiltinType::Bool && | ||||
7060 | BT->getKind() <= BuiltinType::Int128; | ||||
7061 | |||||
7062 | // Check for a complete enum type; incomplete enum types are not properly an | ||||
7063 | // enumeration type in the sense required here. | ||||
7064 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) | ||||
7065 | return IsEnumDeclComplete(ET->getDecl()); | ||||
7066 | |||||
7067 | return isExtIntType(); | ||||
7068 | } | ||||
7069 | |||||
7070 | inline bool Type::isBooleanType() const { | ||||
7071 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | ||||
7072 | return BT->getKind() == BuiltinType::Bool; | ||||
7073 | return false; | ||||
7074 | } | ||||
7075 | |||||
7076 | inline bool Type::isUndeducedType() const { | ||||
7077 | auto *DT = getContainedDeducedType(); | ||||
7078 | return DT && !DT->isDeduced(); | ||||
7079 | } | ||||
7080 | |||||
7081 | /// Determines whether this is a type for which one can define | ||||
7082 | /// an overloaded operator. | ||||
7083 | inline bool Type::isOverloadableType() const { | ||||
7084 | return isDependentType() || isRecordType() || isEnumeralType(); | ||||
7085 | } | ||||
7086 | |||||
7087 | /// Determines whether this type is written as a typedef-name. | ||||
7088 | inline bool Type::isTypedefNameType() const { | ||||
7089 | if (getAs<TypedefType>()) | ||||
7090 | return true; | ||||
7091 | if (auto *TST = getAs<TemplateSpecializationType>()) | ||||
7092 | return TST->isTypeAlias(); | ||||
7093 | return false; | ||||
7094 | } | ||||
7095 | |||||
7096 | /// Determines whether this type can decay to a pointer type. | ||||
7097 | inline bool Type::canDecayToPointerType() const { | ||||
7098 | return isFunctionType() || isArrayType(); | ||||
7099 | } | ||||
7100 | |||||
7101 | inline bool Type::hasPointerRepresentation() const { | ||||
7102 | return (isPointerType() || isReferenceType() || isBlockPointerType() || | ||||
7103 | isObjCObjectPointerType() || isNullPtrType()); | ||||
7104 | } | ||||
7105 | |||||
7106 | inline bool Type::hasObjCPointerRepresentation() const { | ||||
7107 | return isObjCObjectPointerType(); | ||||
7108 | } | ||||
7109 | |||||
7110 | inline const Type *Type::getBaseElementTypeUnsafe() const { | ||||
7111 | const Type *type = this; | ||||
7112 | while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe()) | ||||
7113 | type = arrayType->getElementType().getTypePtr(); | ||||
7114 | return type; | ||||
7115 | } | ||||
7116 | |||||
7117 | inline const Type *Type::getPointeeOrArrayElementType() const { | ||||
7118 | const Type *type = this; | ||||
7119 | if (type->isAnyPointerType()) | ||||
7120 | return type->getPointeeType().getTypePtr(); | ||||
7121 | else if (type->isArrayType()) | ||||
7122 | return type->getBaseElementTypeUnsafe(); | ||||
7123 | return type; | ||||
7124 | } | ||||
7125 | /// Insertion operator for partial diagnostics. This allows sending adress | ||||
7126 | /// spaces into a diagnostic with <<. | ||||
7127 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, | ||||
7128 | LangAS AS) { | ||||
7129 | PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS), | ||||
7130 | DiagnosticsEngine::ArgumentKind::ak_addrspace); | ||||
7131 | return PD; | ||||
7132 | } | ||||
7133 | |||||
7134 | /// Insertion operator for partial diagnostics. This allows sending Qualifiers | ||||
7135 | /// into a diagnostic with <<. | ||||
7136 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, | ||||
7137 | Qualifiers Q) { | ||||
7138 | PD.AddTaggedVal(Q.getAsOpaqueValue(), | ||||
7139 | DiagnosticsEngine::ArgumentKind::ak_qual); | ||||
7140 | return PD; | ||||
7141 | } | ||||
7142 | |||||
7143 | /// Insertion operator for partial diagnostics. This allows sending QualType's | ||||
7144 | /// into a diagnostic with <<. | ||||
7145 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, | ||||
7146 | QualType T) { | ||||
7147 | PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()), | ||||
7148 | DiagnosticsEngine::ak_qualtype); | ||||
7149 | return PD; | ||||
7150 | } | ||||
7151 | |||||
7152 | // Helper class template that is used by Type::getAs to ensure that one does | ||||
7153 | // not try to look through a qualified type to get to an array type. | ||||
7154 | template <typename T> | ||||
7155 | using TypeIsArrayType = | ||||
7156 | std::integral_constant<bool, std::is_same<T, ArrayType>::value || | ||||
7157 | std::is_base_of<ArrayType, T>::value>; | ||||
7158 | |||||
7159 | // Member-template getAs<specific type>'. | ||||
7160 | template <typename T> const T *Type::getAs() const { | ||||
7161 | static_assert(!TypeIsArrayType<T>::value, | ||||
7162 | "ArrayType cannot be used with getAs!"); | ||||
7163 | |||||
7164 | // If this is directly a T type, return it. | ||||
7165 | if (const auto *Ty = dyn_cast<T>(this)) | ||||
7166 | return Ty; | ||||
7167 | |||||
7168 | // If the canonical form of this type isn't the right kind, reject it. | ||||
7169 | if (!isa<T>(CanonicalType)) | ||||
7170 | return nullptr; | ||||
7171 | |||||
7172 | // If this is a typedef for the type, strip the typedef off without | ||||
7173 | // losing all typedef information. | ||||
7174 | return cast<T>(getUnqualifiedDesugaredType()); | ||||
7175 | } | ||||
7176 | |||||
7177 | template <typename T> const T *Type::getAsAdjusted() const { | ||||
7178 | static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!"); | ||||
7179 | |||||
7180 | // If this is directly a T type, return it. | ||||
7181 | if (const auto *Ty = dyn_cast<T>(this)) | ||||
7182 | return Ty; | ||||
7183 | |||||
7184 | // If the canonical form of this type isn't the right kind, reject it. | ||||
7185 | if (!isa<T>(CanonicalType)) | ||||
7186 | return nullptr; | ||||
7187 | |||||
7188 | // Strip off type adjustments that do not modify the underlying nature of the | ||||
7189 | // type. | ||||
7190 | const Type *Ty = this; | ||||
7191 | while (Ty) { | ||||
7192 | if (const auto *A = dyn_cast<AttributedType>(Ty)) | ||||
7193 | Ty = A->getModifiedType().getTypePtr(); | ||||
7194 | else if (const auto *E = dyn_cast<ElaboratedType>(Ty)) | ||||
7195 | Ty = E->desugar().getTypePtr(); | ||||
7196 | else if (const auto *P = dyn_cast<ParenType>(Ty)) | ||||
7197 | Ty = P->desugar().getTypePtr(); | ||||
7198 | else if (const auto *A = dyn_cast<AdjustedType>(Ty)) | ||||
7199 | Ty = A->desugar().getTypePtr(); | ||||
7200 | else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty)) | ||||
7201 | Ty = M->desugar().getTypePtr(); | ||||
7202 | else | ||||
7203 | break; | ||||
7204 | } | ||||
7205 | |||||
7206 | // Just because the canonical type is correct does not mean we can use cast<>, | ||||
7207 | // since we may not have stripped off all the sugar down to the base type. | ||||
7208 | return dyn_cast<T>(Ty); | ||||
7209 | } | ||||
7210 | |||||
7211 | inline const ArrayType *Type::getAsArrayTypeUnsafe() const { | ||||
7212 | // If this is directly an array type, return it. | ||||
7213 | if (const auto *arr = dyn_cast<ArrayType>(this)) | ||||
7214 | return arr; | ||||
7215 | |||||
7216 | // If the canonical form of this type isn't the right kind, reject it. | ||||
7217 | if (!isa<ArrayType>(CanonicalType)) | ||||
7218 | return nullptr; | ||||
7219 | |||||
7220 | // If this is a typedef for the type, strip the typedef off without | ||||
7221 | // losing all typedef information. | ||||
7222 | return cast<ArrayType>(getUnqualifiedDesugaredType()); | ||||
7223 | } | ||||
7224 | |||||
7225 | template <typename T> const T *Type::castAs() const { | ||||
7226 | static_assert(!TypeIsArrayType<T>::value, | ||||
7227 | "ArrayType cannot be used with castAs!"); | ||||
7228 | |||||
7229 | if (const auto *ty = dyn_cast<T>(this)) return ty; | ||||
7230 | assert(isa<T>(CanonicalType))((void)0); | ||||
7231 | return cast<T>(getUnqualifiedDesugaredType()); | ||||
7232 | } | ||||
7233 | |||||
7234 | inline const ArrayType *Type::castAsArrayTypeUnsafe() const { | ||||
7235 | assert(isa<ArrayType>(CanonicalType))((void)0); | ||||
7236 | if (const auto *arr = dyn_cast<ArrayType>(this)) return arr; | ||||
7237 | return cast<ArrayType>(getUnqualifiedDesugaredType()); | ||||
7238 | } | ||||
7239 | |||||
7240 | DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr, | ||||
7241 | QualType CanonicalPtr) | ||||
7242 | : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) { | ||||
7243 | #ifndef NDEBUG1 | ||||
7244 | QualType Adjusted = getAdjustedType(); | ||||
7245 | (void)AttributedType::stripOuterNullability(Adjusted); | ||||
7246 | assert(isa<PointerType>(Adjusted))((void)0); | ||||
7247 | #endif | ||||
7248 | } | ||||
7249 | |||||
7250 | QualType DecayedType::getPointeeType() const { | ||||
7251 | QualType Decayed = getDecayedType(); | ||||
7252 | (void)AttributedType::stripOuterNullability(Decayed); | ||||
7253 | return cast<PointerType>(Decayed)->getPointeeType(); | ||||
7254 | } | ||||
7255 | |||||
7256 | // Get the decimal string representation of a fixed point type, represented | ||||
7257 | // as a scaled integer. | ||||
7258 | // TODO: At some point, we should change the arguments to instead just accept an | ||||
7259 | // APFixedPoint instead of APSInt and scale. | ||||
7260 | void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val, | ||||
7261 | unsigned Scale); | ||||
7262 | |||||
7263 | } // namespace clang | ||||
7264 | |||||
7265 | #endif // LLVM_CLANG_AST_TYPE_H |