Bug Summary

File:src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/lib/AST/DeclObjC.cpp
Warning:line 1687, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name DeclObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangAST/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangAST/obj/../include/clang/AST -I /usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangAST/../include -I /usr/src/gnu/usr.bin/clang/libclangAST/obj -I /usr/src/gnu/usr.bin/clang/libclangAST/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangAST/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/lib/AST/DeclObjC.cpp

/usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/lib/AST/DeclObjC.cpp

1//===- DeclObjC.cpp - ObjC Declaration AST Node Implementation ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Objective-C related Decl classes.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/DeclObjC.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTMutationListener.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/Stmt.h"
20#include "clang/AST/Type.h"
21#include "clang/AST/TypeLoc.h"
22#include "clang/Basic/IdentifierTable.h"
23#include "clang/Basic/LLVM.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/SourceLocation.h"
26#include "llvm/ADT/None.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/Support/Casting.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cassert>
34#include <cstdint>
35#include <cstring>
36#include <queue>
37#include <utility>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// ObjCListBase
43//===----------------------------------------------------------------------===//
44
45void ObjCListBase::set(void *const* InList, unsigned Elts, ASTContext &Ctx) {
46 List = nullptr;
47 if (Elts == 0) return; // Setting to an empty list is a noop.
48
49 List = new (Ctx) void*[Elts];
50 NumElts = Elts;
51 memcpy(List, InList, sizeof(void*)*Elts);
52}
53
54void ObjCProtocolList::set(ObjCProtocolDecl* const* InList, unsigned Elts,
55 const SourceLocation *Locs, ASTContext &Ctx) {
56 if (Elts == 0)
57 return;
58
59 Locations = new (Ctx) SourceLocation[Elts];
60 memcpy(Locations, Locs, sizeof(SourceLocation) * Elts);
61 set(InList, Elts, Ctx);
62}
63
64//===----------------------------------------------------------------------===//
65// ObjCInterfaceDecl
66//===----------------------------------------------------------------------===//
67
68ObjCContainerDecl::ObjCContainerDecl(Kind DK, DeclContext *DC,
69 IdentifierInfo *Id, SourceLocation nameLoc,
70 SourceLocation atStartLoc)
71 : NamedDecl(DK, DC, nameLoc, Id), DeclContext(DK) {
72 setAtStartLoc(atStartLoc);
73}
74
75void ObjCContainerDecl::anchor() {}
76
77/// getIvarDecl - This method looks up an ivar in this ContextDecl.
78///
79ObjCIvarDecl *
80ObjCContainerDecl::getIvarDecl(IdentifierInfo *Id) const {
81 lookup_result R = lookup(Id);
82 for (lookup_iterator Ivar = R.begin(), IvarEnd = R.end();
83 Ivar != IvarEnd; ++Ivar) {
84 if (auto *ivar = dyn_cast<ObjCIvarDecl>(*Ivar))
85 return ivar;
86 }
87 return nullptr;
88}
89
90// Get the local instance/class method declared in this interface.
91ObjCMethodDecl *
92ObjCContainerDecl::getMethod(Selector Sel, bool isInstance,
93 bool AllowHidden) const {
94 // If this context is a hidden protocol definition, don't find any
95 // methods there.
96 if (const auto *Proto = dyn_cast<ObjCProtocolDecl>(this)) {
97 if (const ObjCProtocolDecl *Def = Proto->getDefinition())
98 if (!Def->isUnconditionallyVisible() && !AllowHidden)
99 return nullptr;
100 }
101
102 // Since instance & class methods can have the same name, the loop below
103 // ensures we get the correct method.
104 //
105 // @interface Whatever
106 // - (int) class_method;
107 // + (float) class_method;
108 // @end
109 lookup_result R = lookup(Sel);
110 for (lookup_iterator Meth = R.begin(), MethEnd = R.end();
111 Meth != MethEnd; ++Meth) {
112 auto *MD = dyn_cast<ObjCMethodDecl>(*Meth);
113 if (MD && MD->isInstanceMethod() == isInstance)
114 return MD;
115 }
116 return nullptr;
117}
118
119/// This routine returns 'true' if a user declared setter method was
120/// found in the class, its protocols, its super classes or categories.
121/// It also returns 'true' if one of its categories has declared a 'readwrite'
122/// property. This is because, user must provide a setter method for the
123/// category's 'readwrite' property.
124bool ObjCContainerDecl::HasUserDeclaredSetterMethod(
125 const ObjCPropertyDecl *Property) const {
126 Selector Sel = Property->getSetterName();
127 lookup_result R = lookup(Sel);
128 for (lookup_iterator Meth = R.begin(), MethEnd = R.end();
129 Meth != MethEnd; ++Meth) {
130 auto *MD = dyn_cast<ObjCMethodDecl>(*Meth);
131 if (MD && MD->isInstanceMethod() && !MD->isImplicit())
132 return true;
133 }
134
135 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(this)) {
136 // Also look into categories, including class extensions, looking
137 // for a user declared instance method.
138 for (const auto *Cat : ID->visible_categories()) {
139 if (ObjCMethodDecl *MD = Cat->getInstanceMethod(Sel))
140 if (!MD->isImplicit())
141 return true;
142 if (Cat->IsClassExtension())
143 continue;
144 // Also search through the categories looking for a 'readwrite'
145 // declaration of this property. If one found, presumably a setter will
146 // be provided (properties declared in categories will not get
147 // auto-synthesized).
148 for (const auto *P : Cat->properties())
149 if (P->getIdentifier() == Property->getIdentifier()) {
150 if (P->getPropertyAttributes() &
151 ObjCPropertyAttribute::kind_readwrite)
152 return true;
153 break;
154 }
155 }
156
157 // Also look into protocols, for a user declared instance method.
158 for (const auto *Proto : ID->all_referenced_protocols())
159 if (Proto->HasUserDeclaredSetterMethod(Property))
160 return true;
161
162 // And in its super class.
163 ObjCInterfaceDecl *OSC = ID->getSuperClass();
164 while (OSC) {
165 if (OSC->HasUserDeclaredSetterMethod(Property))
166 return true;
167 OSC = OSC->getSuperClass();
168 }
169 }
170 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(this))
171 for (const auto *PI : PD->protocols())
172 if (PI->HasUserDeclaredSetterMethod(Property))
173 return true;
174 return false;
175}
176
177ObjCPropertyDecl *
178ObjCPropertyDecl::findPropertyDecl(const DeclContext *DC,
179 const IdentifierInfo *propertyID,
180 ObjCPropertyQueryKind queryKind) {
181 // If this context is a hidden protocol definition, don't find any
182 // property.
183 if (const auto *Proto = dyn_cast<ObjCProtocolDecl>(DC)) {
184 if (const ObjCProtocolDecl *Def = Proto->getDefinition())
185 if (!Def->isUnconditionallyVisible())
186 return nullptr;
187 }
188
189 // If context is class, then lookup property in its visible extensions.
190 // This comes before property is looked up in primary class.
191 if (auto *IDecl = dyn_cast<ObjCInterfaceDecl>(DC)) {
192 for (const auto *Ext : IDecl->visible_extensions())
193 if (ObjCPropertyDecl *PD = ObjCPropertyDecl::findPropertyDecl(Ext,
194 propertyID,
195 queryKind))
196 return PD;
197 }
198
199 DeclContext::lookup_result R = DC->lookup(propertyID);
200 ObjCPropertyDecl *classProp = nullptr;
201 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
202 ++I)
203 if (auto *PD = dyn_cast<ObjCPropertyDecl>(*I)) {
204 // If queryKind is unknown, we return the instance property if one
205 // exists; otherwise we return the class property.
206 if ((queryKind == ObjCPropertyQueryKind::OBJC_PR_query_unknown &&
207 !PD->isClassProperty()) ||
208 (queryKind == ObjCPropertyQueryKind::OBJC_PR_query_class &&
209 PD->isClassProperty()) ||
210 (queryKind == ObjCPropertyQueryKind::OBJC_PR_query_instance &&
211 !PD->isClassProperty()))
212 return PD;
213
214 if (PD->isClassProperty())
215 classProp = PD;
216 }
217
218 if (queryKind == ObjCPropertyQueryKind::OBJC_PR_query_unknown)
219 // We can't find the instance property, return the class property.
220 return classProp;
221
222 return nullptr;
223}
224
225IdentifierInfo *
226ObjCPropertyDecl::getDefaultSynthIvarName(ASTContext &Ctx) const {
227 SmallString<128> ivarName;
228 {
229 llvm::raw_svector_ostream os(ivarName);
230 os << '_' << getIdentifier()->getName();
231 }
232 return &Ctx.Idents.get(ivarName.str());
233}
234
235/// FindPropertyDeclaration - Finds declaration of the property given its name
236/// in 'PropertyId' and returns it. It returns 0, if not found.
237ObjCPropertyDecl *ObjCContainerDecl::FindPropertyDeclaration(
238 const IdentifierInfo *PropertyId,
239 ObjCPropertyQueryKind QueryKind) const {
240 // Don't find properties within hidden protocol definitions.
241 if (const auto *Proto = dyn_cast<ObjCProtocolDecl>(this)) {
242 if (const ObjCProtocolDecl *Def = Proto->getDefinition())
243 if (!Def->isUnconditionallyVisible())
244 return nullptr;
245 }
246
247 // Search the extensions of a class first; they override what's in
248 // the class itself.
249 if (const auto *ClassDecl = dyn_cast<ObjCInterfaceDecl>(this)) {
250 for (const auto *Ext : ClassDecl->visible_extensions()) {
251 if (auto *P = Ext->FindPropertyDeclaration(PropertyId, QueryKind))
252 return P;
253 }
254 }
255
256 if (ObjCPropertyDecl *PD =
257 ObjCPropertyDecl::findPropertyDecl(cast<DeclContext>(this), PropertyId,
258 QueryKind))
259 return PD;
260
261 switch (getKind()) {
262 default:
263 break;
264 case Decl::ObjCProtocol: {
265 const auto *PID = cast<ObjCProtocolDecl>(this);
266 for (const auto *I : PID->protocols())
267 if (ObjCPropertyDecl *P = I->FindPropertyDeclaration(PropertyId,
268 QueryKind))
269 return P;
270 break;
271 }
272 case Decl::ObjCInterface: {
273 const auto *OID = cast<ObjCInterfaceDecl>(this);
274 // Look through categories (but not extensions; they were handled above).
275 for (const auto *Cat : OID->visible_categories()) {
276 if (!Cat->IsClassExtension())
277 if (ObjCPropertyDecl *P = Cat->FindPropertyDeclaration(
278 PropertyId, QueryKind))
279 return P;
280 }
281
282 // Look through protocols.
283 for (const auto *I : OID->all_referenced_protocols())
284 if (ObjCPropertyDecl *P = I->FindPropertyDeclaration(PropertyId,
285 QueryKind))
286 return P;
287
288 // Finally, check the super class.
289 if (const ObjCInterfaceDecl *superClass = OID->getSuperClass())
290 return superClass->FindPropertyDeclaration(PropertyId, QueryKind);
291 break;
292 }
293 case Decl::ObjCCategory: {
294 const auto *OCD = cast<ObjCCategoryDecl>(this);
295 // Look through protocols.
296 if (!OCD->IsClassExtension())
297 for (const auto *I : OCD->protocols())
298 if (ObjCPropertyDecl *P = I->FindPropertyDeclaration(PropertyId,
299 QueryKind))
300 return P;
301 break;
302 }
303 }
304 return nullptr;
305}
306
307void ObjCInterfaceDecl::anchor() {}
308
309ObjCTypeParamList *ObjCInterfaceDecl::getTypeParamList() const {
310 // If this particular declaration has a type parameter list, return it.
311 if (ObjCTypeParamList *written = getTypeParamListAsWritten())
312 return written;
313
314 // If there is a definition, return its type parameter list.
315 if (const ObjCInterfaceDecl *def = getDefinition())
316 return def->getTypeParamListAsWritten();
317
318 // Otherwise, look at previous declarations to determine whether any
319 // of them has a type parameter list, skipping over those
320 // declarations that do not.
321 for (const ObjCInterfaceDecl *decl = getMostRecentDecl(); decl;
322 decl = decl->getPreviousDecl()) {
323 if (ObjCTypeParamList *written = decl->getTypeParamListAsWritten())
324 return written;
325 }
326
327 return nullptr;
328}
329
330void ObjCInterfaceDecl::setTypeParamList(ObjCTypeParamList *TPL) {
331 TypeParamList = TPL;
332 if (!TPL)
333 return;
334 // Set the declaration context of each of the type parameters.
335 for (auto *typeParam : *TypeParamList)
336 typeParam->setDeclContext(this);
337}
338
339ObjCInterfaceDecl *ObjCInterfaceDecl::getSuperClass() const {
340 // FIXME: Should make sure no callers ever do this.
341 if (!hasDefinition())
342 return nullptr;
343
344 if (data().ExternallyCompleted)
345 LoadExternalDefinition();
346
347 if (const ObjCObjectType *superType = getSuperClassType()) {
348 if (ObjCInterfaceDecl *superDecl = superType->getInterface()) {
349 if (ObjCInterfaceDecl *superDef = superDecl->getDefinition())
350 return superDef;
351
352 return superDecl;
353 }
354 }
355
356 return nullptr;
357}
358
359SourceLocation ObjCInterfaceDecl::getSuperClassLoc() const {
360 if (TypeSourceInfo *superTInfo = getSuperClassTInfo())
361 return superTInfo->getTypeLoc().getBeginLoc();
362
363 return SourceLocation();
364}
365
366/// FindPropertyVisibleInPrimaryClass - Finds declaration of the property
367/// with name 'PropertyId' in the primary class; including those in protocols
368/// (direct or indirect) used by the primary class.
369ObjCPropertyDecl *
370ObjCInterfaceDecl::FindPropertyVisibleInPrimaryClass(
371 IdentifierInfo *PropertyId,
372 ObjCPropertyQueryKind QueryKind) const {
373 // FIXME: Should make sure no callers ever do this.
374 if (!hasDefinition())
375 return nullptr;
376
377 if (data().ExternallyCompleted)
378 LoadExternalDefinition();
379
380 if (ObjCPropertyDecl *PD =
381 ObjCPropertyDecl::findPropertyDecl(cast<DeclContext>(this), PropertyId,
382 QueryKind))
383 return PD;
384
385 // Look through protocols.
386 for (const auto *I : all_referenced_protocols())
387 if (ObjCPropertyDecl *P = I->FindPropertyDeclaration(PropertyId,
388 QueryKind))
389 return P;
390
391 return nullptr;
392}
393
394void ObjCInterfaceDecl::collectPropertiesToImplement(PropertyMap &PM,
395 PropertyDeclOrder &PO) const {
396 for (auto *Prop : properties()) {
397 PM[std::make_pair(Prop->getIdentifier(), Prop->isClassProperty())] = Prop;
398 PO.push_back(Prop);
399 }
400 for (const auto *Ext : known_extensions()) {
401 const ObjCCategoryDecl *ClassExt = Ext;
402 for (auto *Prop : ClassExt->properties()) {
403 PM[std::make_pair(Prop->getIdentifier(), Prop->isClassProperty())] = Prop;
404 PO.push_back(Prop);
405 }
406 }
407 for (const auto *PI : all_referenced_protocols())
408 PI->collectPropertiesToImplement(PM, PO);
409 // Note, the properties declared only in class extensions are still copied
410 // into the main @interface's property list, and therefore we don't
411 // explicitly, have to search class extension properties.
412}
413
414bool ObjCInterfaceDecl::isArcWeakrefUnavailable() const {
415 const ObjCInterfaceDecl *Class = this;
416 while (Class) {
417 if (Class->hasAttr<ArcWeakrefUnavailableAttr>())
418 return true;
419 Class = Class->getSuperClass();
420 }
421 return false;
422}
423
424const ObjCInterfaceDecl *ObjCInterfaceDecl::isObjCRequiresPropertyDefs() const {
425 const ObjCInterfaceDecl *Class = this;
426 while (Class) {
427 if (Class->hasAttr<ObjCRequiresPropertyDefsAttr>())
428 return Class;
429 Class = Class->getSuperClass();
430 }
431 return nullptr;
432}
433
434void ObjCInterfaceDecl::mergeClassExtensionProtocolList(
435 ObjCProtocolDecl *const* ExtList, unsigned ExtNum,
436 ASTContext &C) {
437 if (data().ExternallyCompleted)
438 LoadExternalDefinition();
439
440 if (data().AllReferencedProtocols.empty() &&
441 data().ReferencedProtocols.empty()) {
442 data().AllReferencedProtocols.set(ExtList, ExtNum, C);
443 return;
444 }
445
446 // Check for duplicate protocol in class's protocol list.
447 // This is O(n*m). But it is extremely rare and number of protocols in
448 // class or its extension are very few.
449 SmallVector<ObjCProtocolDecl *, 8> ProtocolRefs;
450 for (unsigned i = 0; i < ExtNum; i++) {
451 bool protocolExists = false;
452 ObjCProtocolDecl *ProtoInExtension = ExtList[i];
453 for (auto *Proto : all_referenced_protocols()) {
454 if (C.ProtocolCompatibleWithProtocol(ProtoInExtension, Proto)) {
455 protocolExists = true;
456 break;
457 }
458 }
459 // Do we want to warn on a protocol in extension class which
460 // already exist in the class? Probably not.
461 if (!protocolExists)
462 ProtocolRefs.push_back(ProtoInExtension);
463 }
464
465 if (ProtocolRefs.empty())
466 return;
467
468 // Merge ProtocolRefs into class's protocol list;
469 ProtocolRefs.append(all_referenced_protocol_begin(),
470 all_referenced_protocol_end());
471
472 data().AllReferencedProtocols.set(ProtocolRefs.data(), ProtocolRefs.size(),C);
473}
474
475const ObjCInterfaceDecl *
476ObjCInterfaceDecl::findInterfaceWithDesignatedInitializers() const {
477 const ObjCInterfaceDecl *IFace = this;
478 while (IFace) {
479 if (IFace->hasDesignatedInitializers())
480 return IFace;
481 if (!IFace->inheritsDesignatedInitializers())
482 break;
483 IFace = IFace->getSuperClass();
484 }
485 return nullptr;
486}
487
488static bool isIntroducingInitializers(const ObjCInterfaceDecl *D) {
489 for (const auto *MD : D->instance_methods()) {
490 if (MD->getMethodFamily() == OMF_init && !MD->isOverriding())
491 return true;
492 }
493 for (const auto *Ext : D->visible_extensions()) {
494 for (const auto *MD : Ext->instance_methods()) {
495 if (MD->getMethodFamily() == OMF_init && !MD->isOverriding())
496 return true;
497 }
498 }
499 if (const auto *ImplD = D->getImplementation()) {
500 for (const auto *MD : ImplD->instance_methods()) {
501 if (MD->getMethodFamily() == OMF_init && !MD->isOverriding())
502 return true;
503 }
504 }
505 return false;
506}
507
508bool ObjCInterfaceDecl::inheritsDesignatedInitializers() const {
509 switch (data().InheritedDesignatedInitializers) {
510 case DefinitionData::IDI_Inherited:
511 return true;
512 case DefinitionData::IDI_NotInherited:
513 return false;
514 case DefinitionData::IDI_Unknown:
515 // If the class introduced initializers we conservatively assume that we
516 // don't know if any of them is a designated initializer to avoid possible
517 // misleading warnings.
518 if (isIntroducingInitializers(this)) {
519 data().InheritedDesignatedInitializers = DefinitionData::IDI_NotInherited;
520 } else {
521 if (auto SuperD = getSuperClass()) {
522 data().InheritedDesignatedInitializers =
523 SuperD->declaresOrInheritsDesignatedInitializers() ?
524 DefinitionData::IDI_Inherited :
525 DefinitionData::IDI_NotInherited;
526 } else {
527 data().InheritedDesignatedInitializers =
528 DefinitionData::IDI_NotInherited;
529 }
530 }
531 assert(data().InheritedDesignatedInitializers((void)0)
532 != DefinitionData::IDI_Unknown)((void)0);
533 return data().InheritedDesignatedInitializers ==
534 DefinitionData::IDI_Inherited;
535 }
536
537 llvm_unreachable("unexpected InheritedDesignatedInitializers value")__builtin_unreachable();
538}
539
540void ObjCInterfaceDecl::getDesignatedInitializers(
541 llvm::SmallVectorImpl<const ObjCMethodDecl *> &Methods) const {
542 // Check for a complete definition and recover if not so.
543 if (!isThisDeclarationADefinition())
544 return;
545 if (data().ExternallyCompleted)
546 LoadExternalDefinition();
547
548 const ObjCInterfaceDecl *IFace= findInterfaceWithDesignatedInitializers();
549 if (!IFace)
550 return;
551
552 for (const auto *MD : IFace->instance_methods())
553 if (MD->isThisDeclarationADesignatedInitializer())
554 Methods.push_back(MD);
555 for (const auto *Ext : IFace->visible_extensions()) {
556 for (const auto *MD : Ext->instance_methods())
557 if (MD->isThisDeclarationADesignatedInitializer())
558 Methods.push_back(MD);
559 }
560}
561
562bool ObjCInterfaceDecl::isDesignatedInitializer(Selector Sel,
563 const ObjCMethodDecl **InitMethod) const {
564 bool HasCompleteDef = isThisDeclarationADefinition();
565 // During deserialization the data record for the ObjCInterfaceDecl could
566 // be made invariant by reusing the canonical decl. Take this into account
567 // when checking for the complete definition.
568 if (!HasCompleteDef && getCanonicalDecl()->hasDefinition() &&
569 getCanonicalDecl()->getDefinition() == getDefinition())
570 HasCompleteDef = true;
571
572 // Check for a complete definition and recover if not so.
573 if (!HasCompleteDef)
574 return false;
575
576 if (data().ExternallyCompleted)
577 LoadExternalDefinition();
578
579 const ObjCInterfaceDecl *IFace= findInterfaceWithDesignatedInitializers();
580 if (!IFace)
581 return false;
582
583 if (const ObjCMethodDecl *MD = IFace->getInstanceMethod(Sel)) {
584 if (MD->isThisDeclarationADesignatedInitializer()) {
585 if (InitMethod)
586 *InitMethod = MD;
587 return true;
588 }
589 }
590 for (const auto *Ext : IFace->visible_extensions()) {
591 if (const ObjCMethodDecl *MD = Ext->getInstanceMethod(Sel)) {
592 if (MD->isThisDeclarationADesignatedInitializer()) {
593 if (InitMethod)
594 *InitMethod = MD;
595 return true;
596 }
597 }
598 }
599 return false;
600}
601
602void ObjCInterfaceDecl::allocateDefinitionData() {
603 assert(!hasDefinition() && "ObjC class already has a definition")((void)0);
604 Data.setPointer(new (getASTContext()) DefinitionData());
605 Data.getPointer()->Definition = this;
606
607 // Make the type point at the definition, now that we have one.
608 if (TypeForDecl)
609 cast<ObjCInterfaceType>(TypeForDecl)->Decl = this;
610}
611
612void ObjCInterfaceDecl::startDefinition() {
613 allocateDefinitionData();
614
615 // Update all of the declarations with a pointer to the definition.
616 for (auto *RD : redecls()) {
617 if (RD != this)
618 RD->Data = Data;
619 }
620}
621
622ObjCIvarDecl *ObjCInterfaceDecl::lookupInstanceVariable(IdentifierInfo *ID,
623 ObjCInterfaceDecl *&clsDeclared) {
624 // FIXME: Should make sure no callers ever do this.
625 if (!hasDefinition())
626 return nullptr;
627
628 if (data().ExternallyCompleted)
629 LoadExternalDefinition();
630
631 ObjCInterfaceDecl* ClassDecl = this;
632 while (ClassDecl != nullptr) {
633 if (ObjCIvarDecl *I = ClassDecl->getIvarDecl(ID)) {
634 clsDeclared = ClassDecl;
635 return I;
636 }
637
638 for (const auto *Ext : ClassDecl->visible_extensions()) {
639 if (ObjCIvarDecl *I = Ext->getIvarDecl(ID)) {
640 clsDeclared = ClassDecl;
641 return I;
642 }
643 }
644
645 ClassDecl = ClassDecl->getSuperClass();
646 }
647 return nullptr;
648}
649
650/// lookupInheritedClass - This method returns ObjCInterfaceDecl * of the super
651/// class whose name is passed as argument. If it is not one of the super classes
652/// the it returns NULL.
653ObjCInterfaceDecl *ObjCInterfaceDecl::lookupInheritedClass(
654 const IdentifierInfo*ICName) {
655 // FIXME: Should make sure no callers ever do this.
656 if (!hasDefinition())
657 return nullptr;
658
659 if (data().ExternallyCompleted)
660 LoadExternalDefinition();
661
662 ObjCInterfaceDecl* ClassDecl = this;
663 while (ClassDecl != nullptr) {
664 if (ClassDecl->getIdentifier() == ICName)
665 return ClassDecl;
666 ClassDecl = ClassDecl->getSuperClass();
667 }
668 return nullptr;
669}
670
671ObjCProtocolDecl *
672ObjCInterfaceDecl::lookupNestedProtocol(IdentifierInfo *Name) {
673 for (auto *P : all_referenced_protocols())
674 if (P->lookupProtocolNamed(Name))
675 return P;
676 ObjCInterfaceDecl *SuperClass = getSuperClass();
677 return SuperClass ? SuperClass->lookupNestedProtocol(Name) : nullptr;
678}
679
680/// lookupMethod - This method returns an instance/class method by looking in
681/// the class, its categories, and its super classes (using a linear search).
682/// When argument category "C" is specified, any implicit method found
683/// in this category is ignored.
684ObjCMethodDecl *ObjCInterfaceDecl::lookupMethod(Selector Sel,
685 bool isInstance,
686 bool shallowCategoryLookup,
687 bool followSuper,
688 const ObjCCategoryDecl *C) const
689{
690 // FIXME: Should make sure no callers ever do this.
691 if (!hasDefinition())
692 return nullptr;
693
694 const ObjCInterfaceDecl* ClassDecl = this;
695 ObjCMethodDecl *MethodDecl = nullptr;
696
697 if (data().ExternallyCompleted)
698 LoadExternalDefinition();
699
700 while (ClassDecl) {
701 // 1. Look through primary class.
702 if ((MethodDecl = ClassDecl->getMethod(Sel, isInstance)))
703 return MethodDecl;
704
705 // 2. Didn't find one yet - now look through categories.
706 for (const auto *Cat : ClassDecl->visible_categories())
707 if ((MethodDecl = Cat->getMethod(Sel, isInstance)))
708 if (C != Cat || !MethodDecl->isImplicit())
709 return MethodDecl;
710
711 // 3. Didn't find one yet - look through primary class's protocols.
712 for (const auto *I : ClassDecl->protocols())
713 if ((MethodDecl = I->lookupMethod(Sel, isInstance)))
714 return MethodDecl;
715
716 // 4. Didn't find one yet - now look through categories' protocols
717 if (!shallowCategoryLookup)
718 for (const auto *Cat : ClassDecl->visible_categories()) {
719 // Didn't find one yet - look through protocols.
720 const ObjCList<ObjCProtocolDecl> &Protocols =
721 Cat->getReferencedProtocols();
722 for (auto *Protocol : Protocols)
723 if ((MethodDecl = Protocol->lookupMethod(Sel, isInstance)))
724 if (C != Cat || !MethodDecl->isImplicit())
725 return MethodDecl;
726 }
727
728
729 if (!followSuper)
730 return nullptr;
731
732 // 5. Get to the super class (if any).
733 ClassDecl = ClassDecl->getSuperClass();
734 }
735 return nullptr;
736}
737
738// Will search "local" class/category implementations for a method decl.
739// If failed, then we search in class's root for an instance method.
740// Returns 0 if no method is found.
741ObjCMethodDecl *ObjCInterfaceDecl::lookupPrivateMethod(
742 const Selector &Sel,
743 bool Instance) const {
744 // FIXME: Should make sure no callers ever do this.
745 if (!hasDefinition())
746 return nullptr;
747
748 if (data().ExternallyCompleted)
749 LoadExternalDefinition();
750
751 ObjCMethodDecl *Method = nullptr;
752 if (ObjCImplementationDecl *ImpDecl = getImplementation())
753 Method = Instance ? ImpDecl->getInstanceMethod(Sel)
754 : ImpDecl->getClassMethod(Sel);
755
756 // Look through local category implementations associated with the class.
757 if (!Method)
758 Method = getCategoryMethod(Sel, Instance);
759
760 // Before we give up, check if the selector is an instance method.
761 // But only in the root. This matches gcc's behavior and what the
762 // runtime expects.
763 if (!Instance && !Method && !getSuperClass()) {
764 Method = lookupInstanceMethod(Sel);
765 // Look through local category implementations associated
766 // with the root class.
767 if (!Method)
768 Method = lookupPrivateMethod(Sel, true);
769 }
770
771 if (!Method && getSuperClass())
772 return getSuperClass()->lookupPrivateMethod(Sel, Instance);
773 return Method;
774}
775
776//===----------------------------------------------------------------------===//
777// ObjCMethodDecl
778//===----------------------------------------------------------------------===//
779
780ObjCMethodDecl::ObjCMethodDecl(
781 SourceLocation beginLoc, SourceLocation endLoc, Selector SelInfo,
782 QualType T, TypeSourceInfo *ReturnTInfo, DeclContext *contextDecl,
783 bool isInstance, bool isVariadic, bool isPropertyAccessor,
784 bool isSynthesizedAccessorStub, bool isImplicitlyDeclared, bool isDefined,
785 ImplementationControl impControl, bool HasRelatedResultType)
786 : NamedDecl(ObjCMethod, contextDecl, beginLoc, SelInfo),
787 DeclContext(ObjCMethod), MethodDeclType(T), ReturnTInfo(ReturnTInfo),
788 DeclEndLoc(endLoc) {
789
790 // Initialized the bits stored in DeclContext.
791 ObjCMethodDeclBits.Family =
792 static_cast<ObjCMethodFamily>(InvalidObjCMethodFamily);
793 setInstanceMethod(isInstance);
794 setVariadic(isVariadic);
795 setPropertyAccessor(isPropertyAccessor);
796 setSynthesizedAccessorStub(isSynthesizedAccessorStub);
797 setDefined(isDefined);
798 setIsRedeclaration(false);
799 setHasRedeclaration(false);
800 setDeclImplementation(impControl);
801 setObjCDeclQualifier(OBJC_TQ_None);
802 setRelatedResultType(HasRelatedResultType);
803 setSelLocsKind(SelLoc_StandardNoSpace);
804 setOverriding(false);
805 setHasSkippedBody(false);
806
807 setImplicit(isImplicitlyDeclared);
808}
809
810ObjCMethodDecl *ObjCMethodDecl::Create(
811 ASTContext &C, SourceLocation beginLoc, SourceLocation endLoc,
812 Selector SelInfo, QualType T, TypeSourceInfo *ReturnTInfo,
813 DeclContext *contextDecl, bool isInstance, bool isVariadic,
814 bool isPropertyAccessor, bool isSynthesizedAccessorStub,
815 bool isImplicitlyDeclared, bool isDefined, ImplementationControl impControl,
816 bool HasRelatedResultType) {
817 return new (C, contextDecl) ObjCMethodDecl(
818 beginLoc, endLoc, SelInfo, T, ReturnTInfo, contextDecl, isInstance,
819 isVariadic, isPropertyAccessor, isSynthesizedAccessorStub,
820 isImplicitlyDeclared, isDefined, impControl, HasRelatedResultType);
821}
822
823ObjCMethodDecl *ObjCMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
824 return new (C, ID) ObjCMethodDecl(SourceLocation(), SourceLocation(),
825 Selector(), QualType(), nullptr, nullptr);
826}
827
828bool ObjCMethodDecl::isDirectMethod() const {
829 return hasAttr<ObjCDirectAttr>() &&
830 !getASTContext().getLangOpts().ObjCDisableDirectMethodsForTesting;
831}
832
833bool ObjCMethodDecl::isThisDeclarationADesignatedInitializer() const {
834 return getMethodFamily() == OMF_init &&
835 hasAttr<ObjCDesignatedInitializerAttr>();
836}
837
838bool ObjCMethodDecl::definedInNSObject(const ASTContext &Ctx) const {
839 if (const auto *PD = dyn_cast<const ObjCProtocolDecl>(getDeclContext()))
840 return PD->getIdentifier() == Ctx.getNSObjectName();
841 if (const auto *ID = dyn_cast<const ObjCInterfaceDecl>(getDeclContext()))
842 return ID->getIdentifier() == Ctx.getNSObjectName();
843 return false;
844}
845
846bool ObjCMethodDecl::isDesignatedInitializerForTheInterface(
847 const ObjCMethodDecl **InitMethod) const {
848 if (getMethodFamily() != OMF_init)
849 return false;
850 const DeclContext *DC = getDeclContext();
851 if (isa<ObjCProtocolDecl>(DC))
852 return false;
853 if (const ObjCInterfaceDecl *ID = getClassInterface())
854 return ID->isDesignatedInitializer(getSelector(), InitMethod);
855 return false;
856}
857
858Stmt *ObjCMethodDecl::getBody() const {
859 return Body.get(getASTContext().getExternalSource());
860}
861
862void ObjCMethodDecl::setAsRedeclaration(const ObjCMethodDecl *PrevMethod) {
863 assert(PrevMethod)((void)0);
864 getASTContext().setObjCMethodRedeclaration(PrevMethod, this);
865 setIsRedeclaration(true);
866 PrevMethod->setHasRedeclaration(true);
867}
868
869void ObjCMethodDecl::setParamsAndSelLocs(ASTContext &C,
870 ArrayRef<ParmVarDecl*> Params,
871 ArrayRef<SourceLocation> SelLocs) {
872 ParamsAndSelLocs = nullptr;
873 NumParams = Params.size();
874 if (Params.empty() && SelLocs.empty())
875 return;
876
877 static_assert(alignof(ParmVarDecl *) >= alignof(SourceLocation),
878 "Alignment not sufficient for SourceLocation");
879
880 unsigned Size = sizeof(ParmVarDecl *) * NumParams +
881 sizeof(SourceLocation) * SelLocs.size();
882 ParamsAndSelLocs = C.Allocate(Size);
883 std::copy(Params.begin(), Params.end(), getParams());
884 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
885}
886
887void ObjCMethodDecl::getSelectorLocs(
888 SmallVectorImpl<SourceLocation> &SelLocs) const {
889 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
890 SelLocs.push_back(getSelectorLoc(i));
891}
892
893void ObjCMethodDecl::setMethodParams(ASTContext &C,
894 ArrayRef<ParmVarDecl*> Params,
895 ArrayRef<SourceLocation> SelLocs) {
896 assert((!SelLocs.empty() || isImplicit()) &&((void)0)
897 "No selector locs for non-implicit method")((void)0);
898 if (isImplicit())
899 return setParamsAndSelLocs(C, Params, llvm::None);
900
901 setSelLocsKind(hasStandardSelectorLocs(getSelector(), SelLocs, Params,
902 DeclEndLoc));
903 if (getSelLocsKind() != SelLoc_NonStandard)
904 return setParamsAndSelLocs(C, Params, llvm::None);
905
906 setParamsAndSelLocs(C, Params, SelLocs);
907}
908
909/// A definition will return its interface declaration.
910/// An interface declaration will return its definition.
911/// Otherwise it will return itself.
912ObjCMethodDecl *ObjCMethodDecl::getNextRedeclarationImpl() {
913 ASTContext &Ctx = getASTContext();
914 ObjCMethodDecl *Redecl = nullptr;
915 if (hasRedeclaration())
916 Redecl = const_cast<ObjCMethodDecl*>(Ctx.getObjCMethodRedeclaration(this));
917 if (Redecl)
918 return Redecl;
919
920 auto *CtxD = cast<Decl>(getDeclContext());
921
922 if (!CtxD->isInvalidDecl()) {
923 if (auto *IFD = dyn_cast<ObjCInterfaceDecl>(CtxD)) {
924 if (ObjCImplementationDecl *ImplD = Ctx.getObjCImplementation(IFD))
925 if (!ImplD->isInvalidDecl())
926 Redecl = ImplD->getMethod(getSelector(), isInstanceMethod());
927
928 } else if (auto *CD = dyn_cast<ObjCCategoryDecl>(CtxD)) {
929 if (ObjCCategoryImplDecl *ImplD = Ctx.getObjCImplementation(CD))
930 if (!ImplD->isInvalidDecl())
931 Redecl = ImplD->getMethod(getSelector(), isInstanceMethod());
932
933 } else if (auto *ImplD = dyn_cast<ObjCImplementationDecl>(CtxD)) {
934 if (ObjCInterfaceDecl *IFD = ImplD->getClassInterface())
935 if (!IFD->isInvalidDecl())
936 Redecl = IFD->getMethod(getSelector(), isInstanceMethod());
937
938 } else if (auto *CImplD = dyn_cast<ObjCCategoryImplDecl>(CtxD)) {
939 if (ObjCCategoryDecl *CatD = CImplD->getCategoryDecl())
940 if (!CatD->isInvalidDecl())
941 Redecl = CatD->getMethod(getSelector(), isInstanceMethod());
942 }
943 }
944
945 // Ensure that the discovered method redeclaration has a valid declaration
946 // context. Used to prevent infinite loops when iterating redeclarations in
947 // a partially invalid AST.
948 if (Redecl && cast<Decl>(Redecl->getDeclContext())->isInvalidDecl())
949 Redecl = nullptr;
950
951 if (!Redecl && isRedeclaration()) {
952 // This is the last redeclaration, go back to the first method.
953 return cast<ObjCContainerDecl>(CtxD)->getMethod(getSelector(),
954 isInstanceMethod(),
955 /*AllowHidden=*/true);
956 }
957
958 return Redecl ? Redecl : this;
959}
960
961ObjCMethodDecl *ObjCMethodDecl::getCanonicalDecl() {
962 auto *CtxD = cast<Decl>(getDeclContext());
963 const auto &Sel = getSelector();
964
965 if (auto *ImplD = dyn_cast<ObjCImplementationDecl>(CtxD)) {
966 if (ObjCInterfaceDecl *IFD = ImplD->getClassInterface()) {
967 // When the container is the ObjCImplementationDecl (the primary
968 // @implementation), then the canonical Decl is either in
969 // the class Interface, or in any of its extension.
970 //
971 // So when we don't find it in the ObjCInterfaceDecl,
972 // sift through extensions too.
973 if (ObjCMethodDecl *MD = IFD->getMethod(Sel, isInstanceMethod()))
974 return MD;
975 for (auto *Ext : IFD->known_extensions())
976 if (ObjCMethodDecl *MD = Ext->getMethod(Sel, isInstanceMethod()))
977 return MD;
978 }
979 } else if (auto *CImplD = dyn_cast<ObjCCategoryImplDecl>(CtxD)) {
980 if (ObjCCategoryDecl *CatD = CImplD->getCategoryDecl())
981 if (ObjCMethodDecl *MD = CatD->getMethod(Sel, isInstanceMethod()))
982 return MD;
983 }
984
985 if (isRedeclaration()) {
986 // It is possible that we have not done deserializing the ObjCMethod yet.
987 ObjCMethodDecl *MD =
988 cast<ObjCContainerDecl>(CtxD)->getMethod(Sel, isInstanceMethod(),
989 /*AllowHidden=*/true);
990 return MD ? MD : this;
991 }
992
993 return this;
994}
995
996SourceLocation ObjCMethodDecl::getEndLoc() const {
997 if (Stmt *Body = getBody())
998 return Body->getEndLoc();
999 return DeclEndLoc;
1000}
1001
1002ObjCMethodFamily ObjCMethodDecl::getMethodFamily() const {
1003 auto family = static_cast<ObjCMethodFamily>(ObjCMethodDeclBits.Family);
1004 if (family != static_cast<unsigned>(InvalidObjCMethodFamily))
1005 return family;
1006
1007 // Check for an explicit attribute.
1008 if (const ObjCMethodFamilyAttr *attr = getAttr<ObjCMethodFamilyAttr>()) {
1009 // The unfortunate necessity of mapping between enums here is due
1010 // to the attributes framework.
1011 switch (attr->getFamily()) {
1012 case ObjCMethodFamilyAttr::OMF_None: family = OMF_None; break;
1013 case ObjCMethodFamilyAttr::OMF_alloc: family = OMF_alloc; break;
1014 case ObjCMethodFamilyAttr::OMF_copy: family = OMF_copy; break;
1015 case ObjCMethodFamilyAttr::OMF_init: family = OMF_init; break;
1016 case ObjCMethodFamilyAttr::OMF_mutableCopy: family = OMF_mutableCopy; break;
1017 case ObjCMethodFamilyAttr::OMF_new: family = OMF_new; break;
1018 }
1019 ObjCMethodDeclBits.Family = family;
1020 return family;
1021 }
1022
1023 family = getSelector().getMethodFamily();
1024 switch (family) {
1025 case OMF_None: break;
1026
1027 // init only has a conventional meaning for an instance method, and
1028 // it has to return an object.
1029 case OMF_init:
1030 if (!isInstanceMethod() || !getReturnType()->isObjCObjectPointerType())
1031 family = OMF_None;
1032 break;
1033
1034 // alloc/copy/new have a conventional meaning for both class and
1035 // instance methods, but they require an object return.
1036 case OMF_alloc:
1037 case OMF_copy:
1038 case OMF_mutableCopy:
1039 case OMF_new:
1040 if (!getReturnType()->isObjCObjectPointerType())
1041 family = OMF_None;
1042 break;
1043
1044 // These selectors have a conventional meaning only for instance methods.
1045 case OMF_dealloc:
1046 case OMF_finalize:
1047 case OMF_retain:
1048 case OMF_release:
1049 case OMF_autorelease:
1050 case OMF_retainCount:
1051 case OMF_self:
1052 if (!isInstanceMethod())
1053 family = OMF_None;
1054 break;
1055
1056 case OMF_initialize:
1057 if (isInstanceMethod() || !getReturnType()->isVoidType())
1058 family = OMF_None;
1059 break;
1060
1061 case OMF_performSelector:
1062 if (!isInstanceMethod() || !getReturnType()->isObjCIdType())
1063 family = OMF_None;
1064 else {
1065 unsigned noParams = param_size();
1066 if (noParams < 1 || noParams > 3)
1067 family = OMF_None;
1068 else {
1069 ObjCMethodDecl::param_type_iterator it = param_type_begin();
1070 QualType ArgT = (*it);
1071 if (!ArgT->isObjCSelType()) {
1072 family = OMF_None;
1073 break;
1074 }
1075 while (--noParams) {
1076 it++;
1077 ArgT = (*it);
1078 if (!ArgT->isObjCIdType()) {
1079 family = OMF_None;
1080 break;
1081 }
1082 }
1083 }
1084 }
1085 break;
1086
1087 }
1088
1089 // Cache the result.
1090 ObjCMethodDeclBits.Family = family;
1091 return family;
1092}
1093
1094QualType ObjCMethodDecl::getSelfType(ASTContext &Context,
1095 const ObjCInterfaceDecl *OID,
1096 bool &selfIsPseudoStrong,
1097 bool &selfIsConsumed) const {
1098 QualType selfTy;
1099 selfIsPseudoStrong = false;
1100 selfIsConsumed = false;
1101 if (isInstanceMethod()) {
1102 // There may be no interface context due to error in declaration
1103 // of the interface (which has been reported). Recover gracefully.
1104 if (OID) {
1105 selfTy = Context.getObjCInterfaceType(OID);
1106 selfTy = Context.getObjCObjectPointerType(selfTy);
1107 } else {
1108 selfTy = Context.getObjCIdType();
1109 }
1110 } else // we have a factory method.
1111 selfTy = Context.getObjCClassType();
1112
1113 if (Context.getLangOpts().ObjCAutoRefCount) {
1114 if (isInstanceMethod()) {
1115 selfIsConsumed = hasAttr<NSConsumesSelfAttr>();
1116
1117 // 'self' is always __strong. It's actually pseudo-strong except
1118 // in init methods (or methods labeled ns_consumes_self), though.
1119 Qualifiers qs;
1120 qs.setObjCLifetime(Qualifiers::OCL_Strong);
1121 selfTy = Context.getQualifiedType(selfTy, qs);
1122
1123 // In addition, 'self' is const unless this is an init method.
1124 if (getMethodFamily() != OMF_init && !selfIsConsumed) {
1125 selfTy = selfTy.withConst();
1126 selfIsPseudoStrong = true;
1127 }
1128 }
1129 else {
1130 assert(isClassMethod())((void)0);
1131 // 'self' is always const in class methods.
1132 selfTy = selfTy.withConst();
1133 selfIsPseudoStrong = true;
1134 }
1135 }
1136 return selfTy;
1137}
1138
1139void ObjCMethodDecl::createImplicitParams(ASTContext &Context,
1140 const ObjCInterfaceDecl *OID) {
1141 bool selfIsPseudoStrong, selfIsConsumed;
1142 QualType selfTy =
1143 getSelfType(Context, OID, selfIsPseudoStrong, selfIsConsumed);
1144 auto *Self = ImplicitParamDecl::Create(Context, this, SourceLocation(),
1145 &Context.Idents.get("self"), selfTy,
1146 ImplicitParamDecl::ObjCSelf);
1147 setSelfDecl(Self);
1148
1149 if (selfIsConsumed)
1150 Self->addAttr(NSConsumedAttr::CreateImplicit(Context));
1151
1152 if (selfIsPseudoStrong)
1153 Self->setARCPseudoStrong(true);
1154
1155 setCmdDecl(ImplicitParamDecl::Create(
1156 Context, this, SourceLocation(), &Context.Idents.get("_cmd"),
1157 Context.getObjCSelType(), ImplicitParamDecl::ObjCCmd));
1158}
1159
1160ObjCInterfaceDecl *ObjCMethodDecl::getClassInterface() {
1161 if (auto *ID = dyn_cast<ObjCInterfaceDecl>(getDeclContext()))
1162 return ID;
1163 if (auto *CD = dyn_cast<ObjCCategoryDecl>(getDeclContext()))
1164 return CD->getClassInterface();
1165 if (auto *IMD = dyn_cast<ObjCImplDecl>(getDeclContext()))
1166 return IMD->getClassInterface();
1167 if (isa<ObjCProtocolDecl>(getDeclContext()))
1168 return nullptr;
1169 llvm_unreachable("unknown method context")__builtin_unreachable();
1170}
1171
1172ObjCCategoryDecl *ObjCMethodDecl::getCategory() {
1173 if (auto *CD = dyn_cast<ObjCCategoryDecl>(getDeclContext()))
1174 return CD;
1175 if (auto *IMD = dyn_cast<ObjCCategoryImplDecl>(getDeclContext()))
1176 return IMD->getCategoryDecl();
1177 return nullptr;
1178}
1179
1180SourceRange ObjCMethodDecl::getReturnTypeSourceRange() const {
1181 const auto *TSI = getReturnTypeSourceInfo();
1182 if (TSI)
1183 return TSI->getTypeLoc().getSourceRange();
1184 return SourceRange();
1185}
1186
1187QualType ObjCMethodDecl::getSendResultType() const {
1188 ASTContext &Ctx = getASTContext();
1189 return getReturnType().getNonLValueExprType(Ctx)
1190 .substObjCTypeArgs(Ctx, {}, ObjCSubstitutionContext::Result);
1191}
1192
1193QualType ObjCMethodDecl::getSendResultType(QualType receiverType) const {
1194 // FIXME: Handle related result types here.
1195
1196 return getReturnType().getNonLValueExprType(getASTContext())
1197 .substObjCMemberType(receiverType, getDeclContext(),
1198 ObjCSubstitutionContext::Result);
1199}
1200
1201static void CollectOverriddenMethodsRecurse(const ObjCContainerDecl *Container,
1202 const ObjCMethodDecl *Method,
1203 SmallVectorImpl<const ObjCMethodDecl *> &Methods,
1204 bool MovedToSuper) {
1205 if (!Container)
1206 return;
1207
1208 // In categories look for overridden methods from protocols. A method from
1209 // category is not "overridden" since it is considered as the "same" method
1210 // (same USR) as the one from the interface.
1211 if (const auto *Category = dyn_cast<ObjCCategoryDecl>(Container)) {
1212 // Check whether we have a matching method at this category but only if we
1213 // are at the super class level.
1214 if (MovedToSuper)
1215 if (ObjCMethodDecl *
1216 Overridden = Container->getMethod(Method->getSelector(),
1217 Method->isInstanceMethod(),
1218 /*AllowHidden=*/true))
1219 if (Method != Overridden) {
1220 // We found an override at this category; there is no need to look
1221 // into its protocols.
1222 Methods.push_back(Overridden);
1223 return;
1224 }
1225
1226 for (const auto *P : Category->protocols())
1227 CollectOverriddenMethodsRecurse(P, Method, Methods, MovedToSuper);
1228 return;
1229 }
1230
1231 // Check whether we have a matching method at this level.
1232 if (const ObjCMethodDecl *
1233 Overridden = Container->getMethod(Method->getSelector(),
1234 Method->isInstanceMethod(),
1235 /*AllowHidden=*/true))
1236 if (Method != Overridden) {
1237 // We found an override at this level; there is no need to look
1238 // into other protocols or categories.
1239 Methods.push_back(Overridden);
1240 return;
1241 }
1242
1243 if (const auto *Protocol = dyn_cast<ObjCProtocolDecl>(Container)){
1244 for (const auto *P : Protocol->protocols())
1245 CollectOverriddenMethodsRecurse(P, Method, Methods, MovedToSuper);
1246 }
1247
1248 if (const auto *Interface = dyn_cast<ObjCInterfaceDecl>(Container)) {
1249 for (const auto *P : Interface->protocols())
1250 CollectOverriddenMethodsRecurse(P, Method, Methods, MovedToSuper);
1251
1252 for (const auto *Cat : Interface->known_categories())
1253 CollectOverriddenMethodsRecurse(Cat, Method, Methods, MovedToSuper);
1254
1255 if (const ObjCInterfaceDecl *Super = Interface->getSuperClass())
1256 return CollectOverriddenMethodsRecurse(Super, Method, Methods,
1257 /*MovedToSuper=*/true);
1258 }
1259}
1260
1261static inline void CollectOverriddenMethods(const ObjCContainerDecl *Container,
1262 const ObjCMethodDecl *Method,
1263 SmallVectorImpl<const ObjCMethodDecl *> &Methods) {
1264 CollectOverriddenMethodsRecurse(Container, Method, Methods,
1265 /*MovedToSuper=*/false);
1266}
1267
1268static void collectOverriddenMethodsSlow(const ObjCMethodDecl *Method,
1269 SmallVectorImpl<const ObjCMethodDecl *> &overridden) {
1270 assert(Method->isOverriding())((void)0);
1271
1272 if (const auto *ProtD =
1273 dyn_cast<ObjCProtocolDecl>(Method->getDeclContext())) {
1274 CollectOverriddenMethods(ProtD, Method, overridden);
1275
1276 } else if (const auto *IMD =
1277 dyn_cast<ObjCImplDecl>(Method->getDeclContext())) {
1278 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
1279 if (!ID)
1280 return;
1281 // Start searching for overridden methods using the method from the
1282 // interface as starting point.
1283 if (const ObjCMethodDecl *IFaceMeth = ID->getMethod(Method->getSelector(),
1284 Method->isInstanceMethod(),
1285 /*AllowHidden=*/true))
1286 Method = IFaceMeth;
1287 CollectOverriddenMethods(ID, Method, overridden);
1288
1289 } else if (const auto *CatD =
1290 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) {
1291 const ObjCInterfaceDecl *ID = CatD->getClassInterface();
1292 if (!ID)
1293 return;
1294 // Start searching for overridden methods using the method from the
1295 // interface as starting point.
1296 if (const ObjCMethodDecl *IFaceMeth = ID->getMethod(Method->getSelector(),
1297 Method->isInstanceMethod(),
1298 /*AllowHidden=*/true))
1299 Method = IFaceMeth;
1300 CollectOverriddenMethods(ID, Method, overridden);
1301
1302 } else {
1303 CollectOverriddenMethods(
1304 dyn_cast_or_null<ObjCContainerDecl>(Method->getDeclContext()),
1305 Method, overridden);
1306 }
1307}
1308
1309void ObjCMethodDecl::getOverriddenMethods(
1310 SmallVectorImpl<const ObjCMethodDecl *> &Overridden) const {
1311 const ObjCMethodDecl *Method = this;
1312
1313 if (Method->isRedeclaration()) {
1314 Method = cast<ObjCContainerDecl>(Method->getDeclContext())
1315 ->getMethod(Method->getSelector(), Method->isInstanceMethod(),
1316 /*AllowHidden=*/true);
1317 }
1318
1319 if (Method->isOverriding()) {
1320 collectOverriddenMethodsSlow(Method, Overridden);
1321 assert(!Overridden.empty() &&((void)0)
1322 "ObjCMethodDecl's overriding bit is not as expected")((void)0);
1323 }
1324}
1325
1326const ObjCPropertyDecl *
1327ObjCMethodDecl::findPropertyDecl(bool CheckOverrides) const {
1328 Selector Sel = getSelector();
1329 unsigned NumArgs = Sel.getNumArgs();
1330 if (NumArgs > 1)
1331 return nullptr;
1332
1333 if (isPropertyAccessor()) {
1334 const auto *Container = cast<ObjCContainerDecl>(getParent());
1335 // For accessor stubs, go back to the interface.
1336 if (auto *ImplDecl = dyn_cast<ObjCImplDecl>(Container))
1337 if (isSynthesizedAccessorStub())
1338 Container = ImplDecl->getClassInterface();
1339
1340 bool IsGetter = (NumArgs == 0);
1341 bool IsInstance = isInstanceMethod();
1342
1343 /// Local function that attempts to find a matching property within the
1344 /// given Objective-C container.
1345 auto findMatchingProperty =
1346 [&](const ObjCContainerDecl *Container) -> const ObjCPropertyDecl * {
1347 if (IsInstance) {
1348 for (const auto *I : Container->instance_properties()) {
1349 Selector NextSel = IsGetter ? I->getGetterName()
1350 : I->getSetterName();
1351 if (NextSel == Sel)
1352 return I;
1353 }
1354 } else {
1355 for (const auto *I : Container->class_properties()) {
1356 Selector NextSel = IsGetter ? I->getGetterName()
1357 : I->getSetterName();
1358 if (NextSel == Sel)
1359 return I;
1360 }
1361 }
1362
1363 return nullptr;
1364 };
1365
1366 // Look in the container we were given.
1367 if (const auto *Found = findMatchingProperty(Container))
1368 return Found;
1369
1370 // If we're in a category or extension, look in the main class.
1371 const ObjCInterfaceDecl *ClassDecl = nullptr;
1372 if (const auto *Category = dyn_cast<ObjCCategoryDecl>(Container)) {
1373 ClassDecl = Category->getClassInterface();
1374 if (const auto *Found = findMatchingProperty(ClassDecl))
1375 return Found;
1376 } else {
1377 // Determine whether the container is a class.
1378 ClassDecl = cast<ObjCInterfaceDecl>(Container);
1379 }
1380 assert(ClassDecl && "Failed to find main class")((void)0);
1381
1382 // If we have a class, check its visible extensions.
1383 for (const auto *Ext : ClassDecl->visible_extensions()) {
1384 if (Ext == Container)
1385 continue;
1386 if (const auto *Found = findMatchingProperty(Ext))
1387 return Found;
1388 }
1389
1390 assert(isSynthesizedAccessorStub() && "expected an accessor stub")((void)0);
1391
1392 for (const auto *Cat : ClassDecl->known_categories()) {
1393 if (Cat == Container)
1394 continue;
1395 if (const auto *Found = findMatchingProperty(Cat))
1396 return Found;
1397 }
1398
1399 llvm_unreachable("Marked as a property accessor but no property found!")__builtin_unreachable();
1400 }
1401
1402 if (!CheckOverrides)
1403 return nullptr;
1404
1405 using OverridesTy = SmallVector<const ObjCMethodDecl *, 8>;
1406
1407 OverridesTy Overrides;
1408 getOverriddenMethods(Overrides);
1409 for (const auto *Override : Overrides)
1410 if (const ObjCPropertyDecl *Prop = Override->findPropertyDecl(false))
1411 return Prop;
1412
1413 return nullptr;
1414}
1415
1416//===----------------------------------------------------------------------===//
1417// ObjCTypeParamDecl
1418//===----------------------------------------------------------------------===//
1419
1420void ObjCTypeParamDecl::anchor() {}
1421
1422ObjCTypeParamDecl *ObjCTypeParamDecl::Create(ASTContext &ctx, DeclContext *dc,
1423 ObjCTypeParamVariance variance,
1424 SourceLocation varianceLoc,
1425 unsigned index,
1426 SourceLocation nameLoc,
1427 IdentifierInfo *name,
1428 SourceLocation colonLoc,
1429 TypeSourceInfo *boundInfo) {
1430 auto *TPDecl =
1431 new (ctx, dc) ObjCTypeParamDecl(ctx, dc, variance, varianceLoc, index,
1432 nameLoc, name, colonLoc, boundInfo);
1433 QualType TPType = ctx.getObjCTypeParamType(TPDecl, {});
1434 TPDecl->setTypeForDecl(TPType.getTypePtr());
1435 return TPDecl;
1436}
1437
1438ObjCTypeParamDecl *ObjCTypeParamDecl::CreateDeserialized(ASTContext &ctx,
1439 unsigned ID) {
1440 return new (ctx, ID) ObjCTypeParamDecl(ctx, nullptr,
1441 ObjCTypeParamVariance::Invariant,
1442 SourceLocation(), 0, SourceLocation(),
1443 nullptr, SourceLocation(), nullptr);
1444}
1445
1446SourceRange ObjCTypeParamDecl::getSourceRange() const {
1447 SourceLocation startLoc = VarianceLoc;
1448 if (startLoc.isInvalid())
1449 startLoc = getLocation();
1450
1451 if (hasExplicitBound()) {
1452 return SourceRange(startLoc,
1453 getTypeSourceInfo()->getTypeLoc().getEndLoc());
1454 }
1455
1456 return SourceRange(startLoc);
1457}
1458
1459//===----------------------------------------------------------------------===//
1460// ObjCTypeParamList
1461//===----------------------------------------------------------------------===//
1462ObjCTypeParamList::ObjCTypeParamList(SourceLocation lAngleLoc,
1463 ArrayRef<ObjCTypeParamDecl *> typeParams,
1464 SourceLocation rAngleLoc)
1465 : Brackets(lAngleLoc, rAngleLoc), NumParams(typeParams.size()) {
1466 std::copy(typeParams.begin(), typeParams.end(), begin());
1467}
1468
1469ObjCTypeParamList *ObjCTypeParamList::create(
1470 ASTContext &ctx,
1471 SourceLocation lAngleLoc,
1472 ArrayRef<ObjCTypeParamDecl *> typeParams,
1473 SourceLocation rAngleLoc) {
1474 void *mem =
1475 ctx.Allocate(totalSizeToAlloc<ObjCTypeParamDecl *>(typeParams.size()),
1476 alignof(ObjCTypeParamList));
1477 return new (mem) ObjCTypeParamList(lAngleLoc, typeParams, rAngleLoc);
1478}
1479
1480void ObjCTypeParamList::gatherDefaultTypeArgs(
1481 SmallVectorImpl<QualType> &typeArgs) const {
1482 typeArgs.reserve(size());
1483 for (auto typeParam : *this)
1484 typeArgs.push_back(typeParam->getUnderlyingType());
1485}
1486
1487//===----------------------------------------------------------------------===//
1488// ObjCInterfaceDecl
1489//===----------------------------------------------------------------------===//
1490
1491ObjCInterfaceDecl *ObjCInterfaceDecl::Create(const ASTContext &C,
1492 DeclContext *DC,
1493 SourceLocation atLoc,
1494 IdentifierInfo *Id,
1495 ObjCTypeParamList *typeParamList,
1496 ObjCInterfaceDecl *PrevDecl,
1497 SourceLocation ClassLoc,
1498 bool isInternal){
1499 auto *Result = new (C, DC)
1500 ObjCInterfaceDecl(C, DC, atLoc, Id, typeParamList, ClassLoc, PrevDecl,
1501 isInternal);
1502 Result->Data.setInt(!C.getLangOpts().Modules);
1503 C.getObjCInterfaceType(Result, PrevDecl);
1504 return Result;
1505}
1506
1507ObjCInterfaceDecl *ObjCInterfaceDecl::CreateDeserialized(const ASTContext &C,
1508 unsigned ID) {
1509 auto *Result = new (C, ID)
1510 ObjCInterfaceDecl(C, nullptr, SourceLocation(), nullptr, nullptr,
1511 SourceLocation(), nullptr, false);
1512 Result->Data.setInt(!C.getLangOpts().Modules);
1513 return Result;
1514}
1515
1516ObjCInterfaceDecl::ObjCInterfaceDecl(const ASTContext &C, DeclContext *DC,
1517 SourceLocation AtLoc, IdentifierInfo *Id,
1518 ObjCTypeParamList *typeParamList,
1519 SourceLocation CLoc,
1520 ObjCInterfaceDecl *PrevDecl,
1521 bool IsInternal)
1522 : ObjCContainerDecl(ObjCInterface, DC, Id, CLoc, AtLoc),
1523 redeclarable_base(C) {
1524 setPreviousDecl(PrevDecl);
1525
1526 // Copy the 'data' pointer over.
1527 if (PrevDecl)
1528 Data = PrevDecl->Data;
1529
1530 setImplicit(IsInternal);
1531
1532 setTypeParamList(typeParamList);
1533}
1534
1535void ObjCInterfaceDecl::LoadExternalDefinition() const {
1536 assert(data().ExternallyCompleted && "Class is not externally completed")((void)0);
1537 data().ExternallyCompleted = false;
1538 getASTContext().getExternalSource()->CompleteType(
1539 const_cast<ObjCInterfaceDecl *>(this));
1540}
1541
1542void ObjCInterfaceDecl::setExternallyCompleted() {
1543 assert(getASTContext().getExternalSource() &&((void)0)
1544 "Class can't be externally completed without an external source")((void)0);
1545 assert(hasDefinition() &&((void)0)
1546 "Forward declarations can't be externally completed")((void)0);
1547 data().ExternallyCompleted = true;
1548}
1549
1550void ObjCInterfaceDecl::setHasDesignatedInitializers() {
1551 // Check for a complete definition and recover if not so.
1552 if (!isThisDeclarationADefinition())
1553 return;
1554 data().HasDesignatedInitializers = true;
1555}
1556
1557bool ObjCInterfaceDecl::hasDesignatedInitializers() const {
1558 // Check for a complete definition and recover if not so.
1559 if (!isThisDeclarationADefinition())
1560 return false;
1561 if (data().ExternallyCompleted)
1562 LoadExternalDefinition();
1563
1564 return data().HasDesignatedInitializers;
1565}
1566
1567StringRef
1568ObjCInterfaceDecl::getObjCRuntimeNameAsString() const {
1569 if (const auto *ObjCRTName = getAttr<ObjCRuntimeNameAttr>())
1570 return ObjCRTName->getMetadataName();
1571
1572 return getName();
1573}
1574
1575StringRef
1576ObjCImplementationDecl::getObjCRuntimeNameAsString() const {
1577 if (ObjCInterfaceDecl *ID =
1578 const_cast<ObjCImplementationDecl*>(this)->getClassInterface())
1579 return ID->getObjCRuntimeNameAsString();
1580
1581 return getName();
1582}
1583
1584ObjCImplementationDecl *ObjCInterfaceDecl::getImplementation() const {
1585 if (const ObjCInterfaceDecl *Def = getDefinition()) {
14
Calling 'ObjCInterfaceDecl::getDefinition'
18
Returning from 'ObjCInterfaceDecl::getDefinition'
19
Assuming 'Def' is non-null
20
Taking true branch
1586 if (data().ExternallyCompleted)
21
Assuming field 'ExternallyCompleted' is 0
22
Taking false branch
1587 LoadExternalDefinition();
1588
1589 return getASTContext().getObjCImplementation(
23
Returning pointer, which participates in a condition later
1590 const_cast<ObjCInterfaceDecl*>(Def));
1591 }
1592
1593 // FIXME: Should make sure no callers ever do this.
1594 return nullptr;
1595}
1596
1597void ObjCInterfaceDecl::setImplementation(ObjCImplementationDecl *ImplD) {
1598 getASTContext().setObjCImplementation(getDefinition(), ImplD);
1599}
1600
1601namespace {
1602
1603struct SynthesizeIvarChunk {
1604 uint64_t Size;
1605 ObjCIvarDecl *Ivar;
1606
1607 SynthesizeIvarChunk(uint64_t size, ObjCIvarDecl *ivar)
1608 : Size(size), Ivar(ivar) {}
1609};
1610
1611bool operator<(const SynthesizeIvarChunk & LHS,
1612 const SynthesizeIvarChunk &RHS) {
1613 return LHS.Size < RHS.Size;
1614}
1615
1616} // namespace
1617
1618/// all_declared_ivar_begin - return first ivar declared in this class,
1619/// its extensions and its implementation. Lazily build the list on first
1620/// access.
1621///
1622/// Caveat: The list returned by this method reflects the current
1623/// state of the parser. The cache will be updated for every ivar
1624/// added by an extension or the implementation when they are
1625/// encountered.
1626/// See also ObjCIvarDecl::Create().
1627ObjCIvarDecl *ObjCInterfaceDecl::all_declared_ivar_begin() {
1628 // FIXME: Should make sure no callers ever do this.
1629 if (!hasDefinition())
1
Calling 'ObjCInterfaceDecl::hasDefinition'
5
Returning from 'ObjCInterfaceDecl::hasDefinition'
6
Assuming the condition is false
7
Taking false branch
1630 return nullptr;
1631
1632 ObjCIvarDecl *curIvar = nullptr;
8
'curIvar' initialized to a null pointer value
1633 if (!data().IvarList) {
9
Assuming field 'IvarList' is non-null
10
Taking false branch
1634 if (!ivar_empty()) {
1635 ObjCInterfaceDecl::ivar_iterator I = ivar_begin(), E = ivar_end();
1636 data().IvarList = *I; ++I;
1637 for (curIvar = data().IvarList; I != E; curIvar = *I, ++I)
1638 curIvar->setNextIvar(*I);
1639 }
1640
1641 for (const auto *Ext : known_extensions()) {
1642 if (!Ext->ivar_empty()) {
1643 ObjCCategoryDecl::ivar_iterator
1644 I = Ext->ivar_begin(),
1645 E = Ext->ivar_end();
1646 if (!data().IvarList) {
1647 data().IvarList = *I; ++I;
1648 curIvar = data().IvarList;
1649 }
1650 for ( ;I != E; curIvar = *I, ++I)
1651 curIvar->setNextIvar(*I);
1652 }
1653 }
1654 data().IvarListMissingImplementation = true;
1655 }
1656
1657 // cached and complete!
1658 if (!data().IvarListMissingImplementation)
11
Assuming field 'IvarListMissingImplementation' is not equal to 0
12
Taking false branch
1659 return data().IvarList;
1660
1661 if (ObjCImplementationDecl *ImplDecl = getImplementation()) {
13
Calling 'ObjCInterfaceDecl::getImplementation'
24
Returning from 'ObjCInterfaceDecl::getImplementation'
25
Assuming 'ImplDecl' is non-null
26
Taking true branch
1662 data().IvarListMissingImplementation = false;
1663 if (!ImplDecl->ivar_empty()) {
27
Calling 'ObjCImplementationDecl::ivar_empty'
36
Returning from 'ObjCImplementationDecl::ivar_empty'
37
Taking true branch
1664 SmallVector<SynthesizeIvarChunk, 16> layout;
1665 for (auto *IV : ImplDecl->ivars()) {
1666 if (IV->getSynthesize() && !IV->isInvalidDecl()) {
1667 layout.push_back(SynthesizeIvarChunk(
1668 IV->getASTContext().getTypeSize(IV->getType()), IV));
1669 continue;
1670 }
1671 if (!data().IvarList)
1672 data().IvarList = IV;
1673 else
1674 curIvar->setNextIvar(IV);
1675 curIvar = IV;
1676 }
1677
1678 if (!layout.empty()) {
38
Calling 'SmallVectorBase::empty'
41
Returning from 'SmallVectorBase::empty'
42
Taking true branch
1679 // Order synthesized ivars by their size.
1680 llvm::stable_sort(layout);
1681 unsigned Ix = 0, EIx = layout.size();
1682 if (!data().IvarList) {
43
Assuming field 'IvarList' is non-null
44
Taking false branch
1683 data().IvarList = layout[0].Ivar; Ix++;
1684 curIvar = data().IvarList;
1685 }
1686 for ( ; Ix != EIx; curIvar = layout[Ix].Ivar, Ix++)
45
Assuming 'Ix' is not equal to 'EIx'
46
Loop condition is true. Entering loop body
1687 curIvar->setNextIvar(layout[Ix].Ivar);
47
Called C++ object pointer is null
1688 }
1689 }
1690 }
1691 return data().IvarList;
1692}
1693
1694/// FindCategoryDeclaration - Finds category declaration in the list of
1695/// categories for this class and returns it. Name of the category is passed
1696/// in 'CategoryId'. If category not found, return 0;
1697///
1698ObjCCategoryDecl *
1699ObjCInterfaceDecl::FindCategoryDeclaration(IdentifierInfo *CategoryId) const {
1700 // FIXME: Should make sure no callers ever do this.
1701 if (!hasDefinition())
1702 return nullptr;
1703
1704 if (data().ExternallyCompleted)
1705 LoadExternalDefinition();
1706
1707 for (auto *Cat : visible_categories())
1708 if (Cat->getIdentifier() == CategoryId)
1709 return Cat;
1710
1711 return nullptr;
1712}
1713
1714ObjCMethodDecl *
1715ObjCInterfaceDecl::getCategoryInstanceMethod(Selector Sel) const {
1716 for (const auto *Cat : visible_categories()) {
1717 if (ObjCCategoryImplDecl *Impl = Cat->getImplementation())
1718 if (ObjCMethodDecl *MD = Impl->getInstanceMethod(Sel))
1719 return MD;
1720 }
1721
1722 return nullptr;
1723}
1724
1725ObjCMethodDecl *ObjCInterfaceDecl::getCategoryClassMethod(Selector Sel) const {
1726 for (const auto *Cat : visible_categories()) {
1727 if (ObjCCategoryImplDecl *Impl = Cat->getImplementation())
1728 if (ObjCMethodDecl *MD = Impl->getClassMethod(Sel))
1729 return MD;
1730 }
1731
1732 return nullptr;
1733}
1734
1735/// ClassImplementsProtocol - Checks that 'lProto' protocol
1736/// has been implemented in IDecl class, its super class or categories (if
1737/// lookupCategory is true).
1738bool ObjCInterfaceDecl::ClassImplementsProtocol(ObjCProtocolDecl *lProto,
1739 bool lookupCategory,
1740 bool RHSIsQualifiedID) {
1741 if (!hasDefinition())
1742 return false;
1743
1744 ObjCInterfaceDecl *IDecl = this;
1745 // 1st, look up the class.
1746 for (auto *PI : IDecl->protocols()){
1747 if (getASTContext().ProtocolCompatibleWithProtocol(lProto, PI))
1748 return true;
1749 // This is dubious and is added to be compatible with gcc. In gcc, it is
1750 // also allowed assigning a protocol-qualified 'id' type to a LHS object
1751 // when protocol in qualified LHS is in list of protocols in the rhs 'id'
1752 // object. This IMO, should be a bug.
1753 // FIXME: Treat this as an extension, and flag this as an error when GCC
1754 // extensions are not enabled.
1755 if (RHSIsQualifiedID &&
1756 getASTContext().ProtocolCompatibleWithProtocol(PI, lProto))
1757 return true;
1758 }
1759
1760 // 2nd, look up the category.
1761 if (lookupCategory)
1762 for (const auto *Cat : visible_categories()) {
1763 for (auto *PI : Cat->protocols())
1764 if (getASTContext().ProtocolCompatibleWithProtocol(lProto, PI))
1765 return true;
1766 }
1767
1768 // 3rd, look up the super class(s)
1769 if (IDecl->getSuperClass())
1770 return
1771 IDecl->getSuperClass()->ClassImplementsProtocol(lProto, lookupCategory,
1772 RHSIsQualifiedID);
1773
1774 return false;
1775}
1776
1777//===----------------------------------------------------------------------===//
1778// ObjCIvarDecl
1779//===----------------------------------------------------------------------===//
1780
1781void ObjCIvarDecl::anchor() {}
1782
1783ObjCIvarDecl *ObjCIvarDecl::Create(ASTContext &C, ObjCContainerDecl *DC,
1784 SourceLocation StartLoc,
1785 SourceLocation IdLoc, IdentifierInfo *Id,
1786 QualType T, TypeSourceInfo *TInfo,
1787 AccessControl ac, Expr *BW,
1788 bool synthesized) {
1789 if (DC) {
1790 // Ivar's can only appear in interfaces, implementations (via synthesized
1791 // properties), and class extensions (via direct declaration, or synthesized
1792 // properties).
1793 //
1794 // FIXME: This should really be asserting this:
1795 // (isa<ObjCCategoryDecl>(DC) &&
1796 // cast<ObjCCategoryDecl>(DC)->IsClassExtension()))
1797 // but unfortunately we sometimes place ivars into non-class extension
1798 // categories on error. This breaks an AST invariant, and should not be
1799 // fixed.
1800 assert((isa<ObjCInterfaceDecl>(DC) || isa<ObjCImplementationDecl>(DC) ||((void)0)
1801 isa<ObjCCategoryDecl>(DC)) &&((void)0)
1802 "Invalid ivar decl context!")((void)0);
1803 // Once a new ivar is created in any of class/class-extension/implementation
1804 // decl contexts, the previously built IvarList must be rebuilt.
1805 auto *ID = dyn_cast<ObjCInterfaceDecl>(DC);
1806 if (!ID) {
1807 if (auto *IM = dyn_cast<ObjCImplementationDecl>(DC))
1808 ID = IM->getClassInterface();
1809 else
1810 ID = cast<ObjCCategoryDecl>(DC)->getClassInterface();
1811 }
1812 ID->setIvarList(nullptr);
1813 }
1814
1815 return new (C, DC) ObjCIvarDecl(DC, StartLoc, IdLoc, Id, T, TInfo, ac, BW,
1816 synthesized);
1817}
1818
1819ObjCIvarDecl *ObjCIvarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1820 return new (C, ID) ObjCIvarDecl(nullptr, SourceLocation(), SourceLocation(),
1821 nullptr, QualType(), nullptr,
1822 ObjCIvarDecl::None, nullptr, false);
1823}
1824
1825const ObjCInterfaceDecl *ObjCIvarDecl::getContainingInterface() const {
1826 const auto *DC = cast<ObjCContainerDecl>(getDeclContext());
1827
1828 switch (DC->getKind()) {
1829 default:
1830 case ObjCCategoryImpl:
1831 case ObjCProtocol:
1832 llvm_unreachable("invalid ivar container!")__builtin_unreachable();
1833
1834 // Ivars can only appear in class extension categories.
1835 case ObjCCategory: {
1836 const auto *CD = cast<ObjCCategoryDecl>(DC);
1837 assert(CD->IsClassExtension() && "invalid container for ivar!")((void)0);
1838 return CD->getClassInterface();
1839 }
1840
1841 case ObjCImplementation:
1842 return cast<ObjCImplementationDecl>(DC)->getClassInterface();
1843
1844 case ObjCInterface:
1845 return cast<ObjCInterfaceDecl>(DC);
1846 }
1847}
1848
1849QualType ObjCIvarDecl::getUsageType(QualType objectType) const {
1850 return getType().substObjCMemberType(objectType, getDeclContext(),
1851 ObjCSubstitutionContext::Property);
1852}
1853
1854//===----------------------------------------------------------------------===//
1855// ObjCAtDefsFieldDecl
1856//===----------------------------------------------------------------------===//
1857
1858void ObjCAtDefsFieldDecl::anchor() {}
1859
1860ObjCAtDefsFieldDecl
1861*ObjCAtDefsFieldDecl::Create(ASTContext &C, DeclContext *DC,
1862 SourceLocation StartLoc, SourceLocation IdLoc,
1863 IdentifierInfo *Id, QualType T, Expr *BW) {
1864 return new (C, DC) ObjCAtDefsFieldDecl(DC, StartLoc, IdLoc, Id, T, BW);
1865}
1866
1867ObjCAtDefsFieldDecl *ObjCAtDefsFieldDecl::CreateDeserialized(ASTContext &C,
1868 unsigned ID) {
1869 return new (C, ID) ObjCAtDefsFieldDecl(nullptr, SourceLocation(),
1870 SourceLocation(), nullptr, QualType(),
1871 nullptr);
1872}
1873
1874//===----------------------------------------------------------------------===//
1875// ObjCProtocolDecl
1876//===----------------------------------------------------------------------===//
1877
1878void ObjCProtocolDecl::anchor() {}
1879
1880ObjCProtocolDecl::ObjCProtocolDecl(ASTContext &C, DeclContext *DC,
1881 IdentifierInfo *Id, SourceLocation nameLoc,
1882 SourceLocation atStartLoc,
1883 ObjCProtocolDecl *PrevDecl)
1884 : ObjCContainerDecl(ObjCProtocol, DC, Id, nameLoc, atStartLoc),
1885 redeclarable_base(C) {
1886 setPreviousDecl(PrevDecl);
1887 if (PrevDecl)
1888 Data = PrevDecl->Data;
1889}
1890
1891ObjCProtocolDecl *ObjCProtocolDecl::Create(ASTContext &C, DeclContext *DC,
1892 IdentifierInfo *Id,
1893 SourceLocation nameLoc,
1894 SourceLocation atStartLoc,
1895 ObjCProtocolDecl *PrevDecl) {
1896 auto *Result =
1897 new (C, DC) ObjCProtocolDecl(C, DC, Id, nameLoc, atStartLoc, PrevDecl);
1898 Result->Data.setInt(!C.getLangOpts().Modules);
1899 return Result;
1900}
1901
1902ObjCProtocolDecl *ObjCProtocolDecl::CreateDeserialized(ASTContext &C,
1903 unsigned ID) {
1904 ObjCProtocolDecl *Result =
1905 new (C, ID) ObjCProtocolDecl(C, nullptr, nullptr, SourceLocation(),
1906 SourceLocation(), nullptr);
1907 Result->Data.setInt(!C.getLangOpts().Modules);
1908 return Result;
1909}
1910
1911bool ObjCProtocolDecl::isNonRuntimeProtocol() const {
1912 return hasAttr<ObjCNonRuntimeProtocolAttr>();
1913}
1914
1915void ObjCProtocolDecl::getImpliedProtocols(
1916 llvm::DenseSet<const ObjCProtocolDecl *> &IPs) const {
1917 std::queue<const ObjCProtocolDecl *> WorkQueue;
1918 WorkQueue.push(this);
1919
1920 while (!WorkQueue.empty()) {
1921 const auto *PD = WorkQueue.front();
1922 WorkQueue.pop();
1923 for (const auto *Parent : PD->protocols()) {
1924 const auto *Can = Parent->getCanonicalDecl();
1925 auto Result = IPs.insert(Can);
1926 if (Result.second)
1927 WorkQueue.push(Parent);
1928 }
1929 }
1930}
1931
1932ObjCProtocolDecl *ObjCProtocolDecl::lookupProtocolNamed(IdentifierInfo *Name) {
1933 ObjCProtocolDecl *PDecl = this;
1934
1935 if (Name == getIdentifier())
1936 return PDecl;
1937
1938 for (auto *I : protocols())
1939 if ((PDecl = I->lookupProtocolNamed(Name)))
1940 return PDecl;
1941
1942 return nullptr;
1943}
1944
1945// lookupMethod - Lookup a instance/class method in the protocol and protocols
1946// it inherited.
1947ObjCMethodDecl *ObjCProtocolDecl::lookupMethod(Selector Sel,
1948 bool isInstance) const {
1949 ObjCMethodDecl *MethodDecl = nullptr;
1950
1951 // If there is no definition or the definition is hidden, we don't find
1952 // anything.
1953 const ObjCProtocolDecl *Def = getDefinition();
1954 if (!Def || !Def->isUnconditionallyVisible())
1955 return nullptr;
1956
1957 if ((MethodDecl = getMethod(Sel, isInstance)))
1958 return MethodDecl;
1959
1960 for (const auto *I : protocols())
1961 if ((MethodDecl = I->lookupMethod(Sel, isInstance)))
1962 return MethodDecl;
1963 return nullptr;
1964}
1965
1966void ObjCProtocolDecl::allocateDefinitionData() {
1967 assert(!Data.getPointer() && "Protocol already has a definition!")((void)0);
1968 Data.setPointer(new (getASTContext()) DefinitionData);
1969 Data.getPointer()->Definition = this;
1970}
1971
1972void ObjCProtocolDecl::startDefinition() {
1973 allocateDefinitionData();
1974
1975 // Update all of the declarations with a pointer to the definition.
1976 for (auto *RD : redecls())
1977 RD->Data = this->Data;
1978}
1979
1980void ObjCProtocolDecl::collectPropertiesToImplement(PropertyMap &PM,
1981 PropertyDeclOrder &PO) const {
1982 if (const ObjCProtocolDecl *PDecl = getDefinition()) {
1983 for (auto *Prop : PDecl->properties()) {
1984 // Insert into PM if not there already.
1985 PM.insert(std::make_pair(
1986 std::make_pair(Prop->getIdentifier(), Prop->isClassProperty()),
1987 Prop));
1988 PO.push_back(Prop);
1989 }
1990 // Scan through protocol's protocols.
1991 for (const auto *PI : PDecl->protocols())
1992 PI->collectPropertiesToImplement(PM, PO);
1993 }
1994}
1995
1996void ObjCProtocolDecl::collectInheritedProtocolProperties(
1997 const ObjCPropertyDecl *Property, ProtocolPropertySet &PS,
1998 PropertyDeclOrder &PO) const {
1999 if (const ObjCProtocolDecl *PDecl = getDefinition()) {
2000 if (!PS.insert(PDecl).second)
2001 return;
2002 for (auto *Prop : PDecl->properties()) {
2003 if (Prop == Property)
2004 continue;
2005 if (Prop->getIdentifier() == Property->getIdentifier()) {
2006 PO.push_back(Prop);
2007 return;
2008 }
2009 }
2010 // Scan through protocol's protocols which did not have a matching property.
2011 for (const auto *PI : PDecl->protocols())
2012 PI->collectInheritedProtocolProperties(Property, PS, PO);
2013 }
2014}
2015
2016StringRef
2017ObjCProtocolDecl::getObjCRuntimeNameAsString() const {
2018 if (const auto *ObjCRTName = getAttr<ObjCRuntimeNameAttr>())
2019 return ObjCRTName->getMetadataName();
2020
2021 return getName();
2022}
2023
2024//===----------------------------------------------------------------------===//
2025// ObjCCategoryDecl
2026//===----------------------------------------------------------------------===//
2027
2028void ObjCCategoryDecl::anchor() {}
2029
2030ObjCCategoryDecl::ObjCCategoryDecl(DeclContext *DC, SourceLocation AtLoc,
2031 SourceLocation ClassNameLoc,
2032 SourceLocation CategoryNameLoc,
2033 IdentifierInfo *Id, ObjCInterfaceDecl *IDecl,
2034 ObjCTypeParamList *typeParamList,
2035 SourceLocation IvarLBraceLoc,
2036 SourceLocation IvarRBraceLoc)
2037 : ObjCContainerDecl(ObjCCategory, DC, Id, ClassNameLoc, AtLoc),
2038 ClassInterface(IDecl), CategoryNameLoc(CategoryNameLoc),
2039 IvarLBraceLoc(IvarLBraceLoc), IvarRBraceLoc(IvarRBraceLoc) {
2040 setTypeParamList(typeParamList);
2041}
2042
2043ObjCCategoryDecl *ObjCCategoryDecl::Create(ASTContext &C, DeclContext *DC,
2044 SourceLocation AtLoc,
2045 SourceLocation ClassNameLoc,
2046 SourceLocation CategoryNameLoc,
2047 IdentifierInfo *Id,
2048 ObjCInterfaceDecl *IDecl,
2049 ObjCTypeParamList *typeParamList,
2050 SourceLocation IvarLBraceLoc,
2051 SourceLocation IvarRBraceLoc) {
2052 auto *CatDecl =
2053 new (C, DC) ObjCCategoryDecl(DC, AtLoc, ClassNameLoc, CategoryNameLoc, Id,
2054 IDecl, typeParamList, IvarLBraceLoc,
2055 IvarRBraceLoc);
2056 if (IDecl) {
2057 // Link this category into its class's category list.
2058 CatDecl->NextClassCategory = IDecl->getCategoryListRaw();
2059 if (IDecl->hasDefinition()) {
2060 IDecl->setCategoryListRaw(CatDecl);
2061 if (ASTMutationListener *L = C.getASTMutationListener())
2062 L->AddedObjCCategoryToInterface(CatDecl, IDecl);
2063 }
2064 }
2065
2066 return CatDecl;
2067}
2068
2069ObjCCategoryDecl *ObjCCategoryDecl::CreateDeserialized(ASTContext &C,
2070 unsigned ID) {
2071 return new (C, ID) ObjCCategoryDecl(nullptr, SourceLocation(),
2072 SourceLocation(), SourceLocation(),
2073 nullptr, nullptr, nullptr);
2074}
2075
2076ObjCCategoryImplDecl *ObjCCategoryDecl::getImplementation() const {
2077 return getASTContext().getObjCImplementation(
2078 const_cast<ObjCCategoryDecl*>(this));
2079}
2080
2081void ObjCCategoryDecl::setImplementation(ObjCCategoryImplDecl *ImplD) {
2082 getASTContext().setObjCImplementation(this, ImplD);
2083}
2084
2085void ObjCCategoryDecl::setTypeParamList(ObjCTypeParamList *TPL) {
2086 TypeParamList = TPL;
2087 if (!TPL)
2088 return;
2089 // Set the declaration context of each of the type parameters.
2090 for (auto *typeParam : *TypeParamList)
2091 typeParam->setDeclContext(this);
2092}
2093
2094//===----------------------------------------------------------------------===//
2095// ObjCCategoryImplDecl
2096//===----------------------------------------------------------------------===//
2097
2098void ObjCCategoryImplDecl::anchor() {}
2099
2100ObjCCategoryImplDecl *
2101ObjCCategoryImplDecl::Create(ASTContext &C, DeclContext *DC,
2102 IdentifierInfo *Id,
2103 ObjCInterfaceDecl *ClassInterface,
2104 SourceLocation nameLoc,
2105 SourceLocation atStartLoc,
2106 SourceLocation CategoryNameLoc) {
2107 if (ClassInterface && ClassInterface->hasDefinition())
2108 ClassInterface = ClassInterface->getDefinition();
2109 return new (C, DC) ObjCCategoryImplDecl(DC, Id, ClassInterface, nameLoc,
2110 atStartLoc, CategoryNameLoc);
2111}
2112
2113ObjCCategoryImplDecl *ObjCCategoryImplDecl::CreateDeserialized(ASTContext &C,
2114 unsigned ID) {
2115 return new (C, ID) ObjCCategoryImplDecl(nullptr, nullptr, nullptr,
2116 SourceLocation(), SourceLocation(),
2117 SourceLocation());
2118}
2119
2120ObjCCategoryDecl *ObjCCategoryImplDecl::getCategoryDecl() const {
2121 // The class interface might be NULL if we are working with invalid code.
2122 if (const ObjCInterfaceDecl *ID = getClassInterface())
2123 return ID->FindCategoryDeclaration(getIdentifier());
2124 return nullptr;
2125}
2126
2127void ObjCImplDecl::anchor() {}
2128
2129void ObjCImplDecl::addPropertyImplementation(ObjCPropertyImplDecl *property) {
2130 // FIXME: The context should be correct before we get here.
2131 property->setLexicalDeclContext(this);
2132 addDecl(property);
2133}
2134
2135void ObjCImplDecl::setClassInterface(ObjCInterfaceDecl *IFace) {
2136 ASTContext &Ctx = getASTContext();
2137
2138 if (auto *ImplD = dyn_cast_or_null<ObjCImplementationDecl>(this)) {
2139 if (IFace)
2140 Ctx.setObjCImplementation(IFace, ImplD);
2141
2142 } else if (auto *ImplD = dyn_cast_or_null<ObjCCategoryImplDecl>(this)) {
2143 if (ObjCCategoryDecl *CD = IFace->FindCategoryDeclaration(getIdentifier()))
2144 Ctx.setObjCImplementation(CD, ImplD);
2145 }
2146
2147 ClassInterface = IFace;
2148}
2149
2150/// FindPropertyImplIvarDecl - This method lookup the ivar in the list of
2151/// properties implemented in this \@implementation block and returns
2152/// the implemented property that uses it.
2153ObjCPropertyImplDecl *ObjCImplDecl::
2154FindPropertyImplIvarDecl(IdentifierInfo *ivarId) const {
2155 for (auto *PID : property_impls())
2156 if (PID->getPropertyIvarDecl() &&
2157 PID->getPropertyIvarDecl()->getIdentifier() == ivarId)
2158 return PID;
2159 return nullptr;
2160}
2161
2162/// FindPropertyImplDecl - This method looks up a previous ObjCPropertyImplDecl
2163/// added to the list of those properties \@synthesized/\@dynamic in this
2164/// category \@implementation block.
2165ObjCPropertyImplDecl *ObjCImplDecl::
2166FindPropertyImplDecl(IdentifierInfo *Id,
2167 ObjCPropertyQueryKind QueryKind) const {
2168 ObjCPropertyImplDecl *ClassPropImpl = nullptr;
2169 for (auto *PID : property_impls())
2170 // If queryKind is unknown, we return the instance property if one
2171 // exists; otherwise we return the class property.
2172 if (PID->getPropertyDecl()->getIdentifier() == Id) {
2173 if ((QueryKind == ObjCPropertyQueryKind::OBJC_PR_query_unknown &&
2174 !PID->getPropertyDecl()->isClassProperty()) ||
2175 (QueryKind == ObjCPropertyQueryKind::OBJC_PR_query_class &&
2176 PID->getPropertyDecl()->isClassProperty()) ||
2177 (QueryKind == ObjCPropertyQueryKind::OBJC_PR_query_instance &&
2178 !PID->getPropertyDecl()->isClassProperty()))
2179 return PID;
2180
2181 if (PID->getPropertyDecl()->isClassProperty())
2182 ClassPropImpl = PID;
2183 }
2184
2185 if (QueryKind == ObjCPropertyQueryKind::OBJC_PR_query_unknown)
2186 // We can't find the instance property, return the class property.
2187 return ClassPropImpl;
2188
2189 return nullptr;
2190}
2191
2192raw_ostream &clang::operator<<(raw_ostream &OS,
2193 const ObjCCategoryImplDecl &CID) {
2194 OS << CID.getName();
2195 return OS;
2196}
2197
2198//===----------------------------------------------------------------------===//
2199// ObjCImplementationDecl
2200//===----------------------------------------------------------------------===//
2201
2202void ObjCImplementationDecl::anchor() {}
2203
2204ObjCImplementationDecl *
2205ObjCImplementationDecl::Create(ASTContext &C, DeclContext *DC,
2206 ObjCInterfaceDecl *ClassInterface,
2207 ObjCInterfaceDecl *SuperDecl,
2208 SourceLocation nameLoc,
2209 SourceLocation atStartLoc,
2210 SourceLocation superLoc,
2211 SourceLocation IvarLBraceLoc,
2212 SourceLocation IvarRBraceLoc) {
2213 if (ClassInterface && ClassInterface->hasDefinition())
2214 ClassInterface = ClassInterface->getDefinition();
2215 return new (C, DC) ObjCImplementationDecl(DC, ClassInterface, SuperDecl,
2216 nameLoc, atStartLoc, superLoc,
2217 IvarLBraceLoc, IvarRBraceLoc);
2218}
2219
2220ObjCImplementationDecl *
2221ObjCImplementationDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2222 return new (C, ID) ObjCImplementationDecl(nullptr, nullptr, nullptr,
2223 SourceLocation(), SourceLocation());
2224}
2225
2226void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
2227 CXXCtorInitializer ** initializers,
2228 unsigned numInitializers) {
2229 if (numInitializers > 0) {
2230 NumIvarInitializers = numInitializers;
2231 auto **ivarInitializers = new (C) CXXCtorInitializer*[NumIvarInitializers];
2232 memcpy(ivarInitializers, initializers,
2233 numInitializers * sizeof(CXXCtorInitializer*));
2234 IvarInitializers = ivarInitializers;
2235 }
2236}
2237
2238ObjCImplementationDecl::init_const_iterator
2239ObjCImplementationDecl::init_begin() const {
2240 return IvarInitializers.get(getASTContext().getExternalSource());
2241}
2242
2243raw_ostream &clang::operator<<(raw_ostream &OS,
2244 const ObjCImplementationDecl &ID) {
2245 OS << ID.getName();
2246 return OS;
2247}
2248
2249//===----------------------------------------------------------------------===//
2250// ObjCCompatibleAliasDecl
2251//===----------------------------------------------------------------------===//
2252
2253void ObjCCompatibleAliasDecl::anchor() {}
2254
2255ObjCCompatibleAliasDecl *
2256ObjCCompatibleAliasDecl::Create(ASTContext &C, DeclContext *DC,
2257 SourceLocation L,
2258 IdentifierInfo *Id,
2259 ObjCInterfaceDecl* AliasedClass) {
2260 return new (C, DC) ObjCCompatibleAliasDecl(DC, L, Id, AliasedClass);
2261}
2262
2263ObjCCompatibleAliasDecl *
2264ObjCCompatibleAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2265 return new (C, ID) ObjCCompatibleAliasDecl(nullptr, SourceLocation(),
2266 nullptr, nullptr);
2267}
2268
2269//===----------------------------------------------------------------------===//
2270// ObjCPropertyDecl
2271//===----------------------------------------------------------------------===//
2272
2273void ObjCPropertyDecl::anchor() {}
2274
2275ObjCPropertyDecl *ObjCPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2276 SourceLocation L,
2277 IdentifierInfo *Id,
2278 SourceLocation AtLoc,
2279 SourceLocation LParenLoc,
2280 QualType T,
2281 TypeSourceInfo *TSI,
2282 PropertyControl propControl) {
2283 return new (C, DC) ObjCPropertyDecl(DC, L, Id, AtLoc, LParenLoc, T, TSI,
2284 propControl);
2285}
2286
2287ObjCPropertyDecl *ObjCPropertyDecl::CreateDeserialized(ASTContext &C,
2288 unsigned ID) {
2289 return new (C, ID) ObjCPropertyDecl(nullptr, SourceLocation(), nullptr,
2290 SourceLocation(), SourceLocation(),
2291 QualType(), nullptr, None);
2292}
2293
2294QualType ObjCPropertyDecl::getUsageType(QualType objectType) const {
2295 return DeclType.substObjCMemberType(objectType, getDeclContext(),
2296 ObjCSubstitutionContext::Property);
2297}
2298
2299bool ObjCPropertyDecl::isDirectProperty() const {
2300 return (PropertyAttributes & ObjCPropertyAttribute::kind_direct) &&
2301 !getASTContext().getLangOpts().ObjCDisableDirectMethodsForTesting;
2302}
2303
2304//===----------------------------------------------------------------------===//
2305// ObjCPropertyImplDecl
2306//===----------------------------------------------------------------------===//
2307
2308ObjCPropertyImplDecl *ObjCPropertyImplDecl::Create(ASTContext &C,
2309 DeclContext *DC,
2310 SourceLocation atLoc,
2311 SourceLocation L,
2312 ObjCPropertyDecl *property,
2313 Kind PK,
2314 ObjCIvarDecl *ivar,
2315 SourceLocation ivarLoc) {
2316 return new (C, DC) ObjCPropertyImplDecl(DC, atLoc, L, property, PK, ivar,
2317 ivarLoc);
2318}
2319
2320ObjCPropertyImplDecl *ObjCPropertyImplDecl::CreateDeserialized(ASTContext &C,
2321 unsigned ID) {
2322 return new (C, ID) ObjCPropertyImplDecl(nullptr, SourceLocation(),
2323 SourceLocation(), nullptr, Dynamic,
2324 nullptr, SourceLocation());
2325}
2326
2327SourceRange ObjCPropertyImplDecl::getSourceRange() const {
2328 SourceLocation EndLoc = getLocation();
2329 if (IvarLoc.isValid())
2330 EndLoc = IvarLoc;
2331
2332 return SourceRange(AtLoc, EndLoc);
2333}

/usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/include/clang/AST/DeclObjC.h

1//===- DeclObjC.h - Classes for representing declarations -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the DeclObjC interface and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECLOBJC_H
14#define LLVM_CLANG_AST_DECLOBJC_H
15
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclBase.h"
18#include "clang/AST/DeclObjCCommon.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/Redeclarable.h"
21#include "clang/AST/SelectorLocationsKind.h"
22#include "clang/AST/Type.h"
23#include "clang/Basic/IdentifierTable.h"
24#include "clang/Basic/LLVM.h"
25#include "clang/Basic/SourceLocation.h"
26#include "clang/Basic/Specifiers.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/None.h"
31#include "llvm/ADT/PointerIntPair.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/StringRef.h"
34#include "llvm/ADT/iterator_range.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/TrailingObjects.h"
37#include <cassert>
38#include <cstddef>
39#include <cstdint>
40#include <iterator>
41#include <string>
42#include <utility>
43
44namespace clang {
45
46class ASTContext;
47class CompoundStmt;
48class CXXCtorInitializer;
49class Expr;
50class ObjCCategoryDecl;
51class ObjCCategoryImplDecl;
52class ObjCImplementationDecl;
53class ObjCInterfaceDecl;
54class ObjCIvarDecl;
55class ObjCPropertyDecl;
56class ObjCPropertyImplDecl;
57class ObjCProtocolDecl;
58class Stmt;
59
60class ObjCListBase {
61protected:
62 /// List is an array of pointers to objects that are not owned by this object.
63 void **List = nullptr;
64 unsigned NumElts = 0;
65
66public:
67 ObjCListBase() = default;
68 ObjCListBase(const ObjCListBase &) = delete;
69 ObjCListBase &operator=(const ObjCListBase &) = delete;
70
71 unsigned size() const { return NumElts; }
72 bool empty() const { return NumElts == 0; }
73
74protected:
75 void set(void *const* InList, unsigned Elts, ASTContext &Ctx);
76};
77
78/// ObjCList - This is a simple template class used to hold various lists of
79/// decls etc, which is heavily used by the ObjC front-end. This only use case
80/// this supports is setting the list all at once and then reading elements out
81/// of it.
82template <typename T>
83class ObjCList : public ObjCListBase {
84public:
85 void set(T* const* InList, unsigned Elts, ASTContext &Ctx) {
86 ObjCListBase::set(reinterpret_cast<void*const*>(InList), Elts, Ctx);
87 }
88
89 using iterator = T* const *;
90
91 iterator begin() const { return (iterator)List; }
92 iterator end() const { return (iterator)List+NumElts; }
93
94 T* operator[](unsigned Idx) const {
95 assert(Idx < NumElts && "Invalid access")((void)0);
96 return (T*)List[Idx];
97 }
98};
99
100/// A list of Objective-C protocols, along with the source
101/// locations at which they were referenced.
102class ObjCProtocolList : public ObjCList<ObjCProtocolDecl> {
103 SourceLocation *Locations = nullptr;
104
105 using ObjCList<ObjCProtocolDecl>::set;
106
107public:
108 ObjCProtocolList() = default;
109
110 using loc_iterator = const SourceLocation *;
111
112 loc_iterator loc_begin() const { return Locations; }
113 loc_iterator loc_end() const { return Locations + size(); }
114
115 void set(ObjCProtocolDecl* const* InList, unsigned Elts,
116 const SourceLocation *Locs, ASTContext &Ctx);
117};
118
119/// ObjCMethodDecl - Represents an instance or class method declaration.
120/// ObjC methods can be declared within 4 contexts: class interfaces,
121/// categories, protocols, and class implementations. While C++ member
122/// functions leverage C syntax, Objective-C method syntax is modeled after
123/// Smalltalk (using colons to specify argument types/expressions).
124/// Here are some brief examples:
125///
126/// Setter/getter instance methods:
127/// - (void)setMenu:(NSMenu *)menu;
128/// - (NSMenu *)menu;
129///
130/// Instance method that takes 2 NSView arguments:
131/// - (void)replaceSubview:(NSView *)oldView with:(NSView *)newView;
132///
133/// Getter class method:
134/// + (NSMenu *)defaultMenu;
135///
136/// A selector represents a unique name for a method. The selector names for
137/// the above methods are setMenu:, menu, replaceSubview:with:, and defaultMenu.
138///
139class ObjCMethodDecl : public NamedDecl, public DeclContext {
140 // This class stores some data in DeclContext::ObjCMethodDeclBits
141 // to save some space. Use the provided accessors to access it.
142
143public:
144 enum ImplementationControl { None, Required, Optional };
145
146private:
147 /// Return type of this method.
148 QualType MethodDeclType;
149
150 /// Type source information for the return type.
151 TypeSourceInfo *ReturnTInfo;
152
153 /// Array of ParmVarDecls for the formal parameters of this method
154 /// and optionally followed by selector locations.
155 void *ParamsAndSelLocs = nullptr;
156 unsigned NumParams = 0;
157
158 /// List of attributes for this method declaration.
159 SourceLocation DeclEndLoc; // the location of the ';' or '{'.
160
161 /// The following are only used for method definitions, null otherwise.
162 LazyDeclStmtPtr Body;
163
164 /// SelfDecl - Decl for the implicit self parameter. This is lazily
165 /// constructed by createImplicitParams.
166 ImplicitParamDecl *SelfDecl = nullptr;
167
168 /// CmdDecl - Decl for the implicit _cmd parameter. This is lazily
169 /// constructed by createImplicitParams.
170 ImplicitParamDecl *CmdDecl = nullptr;
171
172 ObjCMethodDecl(SourceLocation beginLoc, SourceLocation endLoc,
173 Selector SelInfo, QualType T, TypeSourceInfo *ReturnTInfo,
174 DeclContext *contextDecl, bool isInstance = true,
175 bool isVariadic = false, bool isPropertyAccessor = false,
176 bool isSynthesizedAccessorStub = false,
177 bool isImplicitlyDeclared = false, bool isDefined = false,
178 ImplementationControl impControl = None,
179 bool HasRelatedResultType = false);
180
181 SelectorLocationsKind getSelLocsKind() const {
182 return static_cast<SelectorLocationsKind>(ObjCMethodDeclBits.SelLocsKind);
183 }
184
185 void setSelLocsKind(SelectorLocationsKind Kind) {
186 ObjCMethodDeclBits.SelLocsKind = Kind;
187 }
188
189 bool hasStandardSelLocs() const {
190 return getSelLocsKind() != SelLoc_NonStandard;
191 }
192
193 /// Get a pointer to the stored selector identifiers locations array.
194 /// No locations will be stored if HasStandardSelLocs is true.
195 SourceLocation *getStoredSelLocs() {
196 return reinterpret_cast<SourceLocation *>(getParams() + NumParams);
197 }
198 const SourceLocation *getStoredSelLocs() const {
199 return reinterpret_cast<const SourceLocation *>(getParams() + NumParams);
200 }
201
202 /// Get a pointer to the stored selector identifiers locations array.
203 /// No locations will be stored if HasStandardSelLocs is true.
204 ParmVarDecl **getParams() {
205 return reinterpret_cast<ParmVarDecl **>(ParamsAndSelLocs);
206 }
207 const ParmVarDecl *const *getParams() const {
208 return reinterpret_cast<const ParmVarDecl *const *>(ParamsAndSelLocs);
209 }
210
211 /// Get the number of stored selector identifiers locations.
212 /// No locations will be stored if HasStandardSelLocs is true.
213 unsigned getNumStoredSelLocs() const {
214 if (hasStandardSelLocs())
215 return 0;
216 return getNumSelectorLocs();
217 }
218
219 void setParamsAndSelLocs(ASTContext &C,
220 ArrayRef<ParmVarDecl*> Params,
221 ArrayRef<SourceLocation> SelLocs);
222
223 /// A definition will return its interface declaration.
224 /// An interface declaration will return its definition.
225 /// Otherwise it will return itself.
226 ObjCMethodDecl *getNextRedeclarationImpl() override;
227
228public:
229 friend class ASTDeclReader;
230 friend class ASTDeclWriter;
231
232 static ObjCMethodDecl *
233 Create(ASTContext &C, SourceLocation beginLoc, SourceLocation endLoc,
234 Selector SelInfo, QualType T, TypeSourceInfo *ReturnTInfo,
235 DeclContext *contextDecl, bool isInstance = true,
236 bool isVariadic = false, bool isPropertyAccessor = false,
237 bool isSynthesizedAccessorStub = false,
238 bool isImplicitlyDeclared = false, bool isDefined = false,
239 ImplementationControl impControl = None,
240 bool HasRelatedResultType = false);
241
242 static ObjCMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
243
244 ObjCMethodDecl *getCanonicalDecl() override;
245 const ObjCMethodDecl *getCanonicalDecl() const {
246 return const_cast<ObjCMethodDecl*>(this)->getCanonicalDecl();
247 }
248
249 ObjCDeclQualifier getObjCDeclQualifier() const {
250 return static_cast<ObjCDeclQualifier>(ObjCMethodDeclBits.objcDeclQualifier);
251 }
252
253 void setObjCDeclQualifier(ObjCDeclQualifier QV) {
254 ObjCMethodDeclBits.objcDeclQualifier = QV;
255 }
256
257 /// Determine whether this method has a result type that is related
258 /// to the message receiver's type.
259 bool hasRelatedResultType() const {
260 return ObjCMethodDeclBits.RelatedResultType;
261 }
262
263 /// Note whether this method has a related result type.
264 void setRelatedResultType(bool RRT = true) {
265 ObjCMethodDeclBits.RelatedResultType = RRT;
266 }
267
268 /// True if this is a method redeclaration in the same interface.
269 bool isRedeclaration() const { return ObjCMethodDeclBits.IsRedeclaration; }
270 void setIsRedeclaration(bool RD) { ObjCMethodDeclBits.IsRedeclaration = RD; }
271 void setAsRedeclaration(const ObjCMethodDecl *PrevMethod);
272
273 /// True if redeclared in the same interface.
274 bool hasRedeclaration() const { return ObjCMethodDeclBits.HasRedeclaration; }
275 void setHasRedeclaration(bool HRD) const {
276 ObjCMethodDeclBits.HasRedeclaration = HRD;
277 }
278
279 /// Returns the location where the declarator ends. It will be
280 /// the location of ';' for a method declaration and the location of '{'
281 /// for a method definition.
282 SourceLocation getDeclaratorEndLoc() const { return DeclEndLoc; }
283
284 // Location information, modeled after the Stmt API.
285 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return getLocation(); }
286 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
287 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
288 return SourceRange(getLocation(), getEndLoc());
289 }
290
291 SourceLocation getSelectorStartLoc() const {
292 if (isImplicit())
293 return getBeginLoc();
294 return getSelectorLoc(0);
295 }
296
297 SourceLocation getSelectorLoc(unsigned Index) const {
298 assert(Index < getNumSelectorLocs() && "Index out of range!")((void)0);
299 if (hasStandardSelLocs())
300 return getStandardSelectorLoc(Index, getSelector(),
301 getSelLocsKind() == SelLoc_StandardWithSpace,
302 parameters(),
303 DeclEndLoc);
304 return getStoredSelLocs()[Index];
305 }
306
307 void getSelectorLocs(SmallVectorImpl<SourceLocation> &SelLocs) const;
308
309 unsigned getNumSelectorLocs() const {
310 if (isImplicit())
311 return 0;
312 Selector Sel = getSelector();
313 if (Sel.isUnarySelector())
314 return 1;
315 return Sel.getNumArgs();
316 }
317
318 ObjCInterfaceDecl *getClassInterface();
319 const ObjCInterfaceDecl *getClassInterface() const {
320 return const_cast<ObjCMethodDecl*>(this)->getClassInterface();
321 }
322
323 /// If this method is declared or implemented in a category, return
324 /// that category.
325 ObjCCategoryDecl *getCategory();
326 const ObjCCategoryDecl *getCategory() const {
327 return const_cast<ObjCMethodDecl*>(this)->getCategory();
328 }
329
330 Selector getSelector() const { return getDeclName().getObjCSelector(); }
331
332 QualType getReturnType() const { return MethodDeclType; }
333 void setReturnType(QualType T) { MethodDeclType = T; }
334 SourceRange getReturnTypeSourceRange() const;
335
336 /// Determine the type of an expression that sends a message to this
337 /// function. This replaces the type parameters with the types they would
338 /// get if the receiver was parameterless (e.g. it may replace the type
339 /// parameter with 'id').
340 QualType getSendResultType() const;
341
342 /// Determine the type of an expression that sends a message to this
343 /// function with the given receiver type.
344 QualType getSendResultType(QualType receiverType) const;
345
346 TypeSourceInfo *getReturnTypeSourceInfo() const { return ReturnTInfo; }
347 void setReturnTypeSourceInfo(TypeSourceInfo *TInfo) { ReturnTInfo = TInfo; }
348
349 // Iterator access to formal parameters.
350 unsigned param_size() const { return NumParams; }
351
352 using param_const_iterator = const ParmVarDecl *const *;
353 using param_iterator = ParmVarDecl *const *;
354 using param_range = llvm::iterator_range<param_iterator>;
355 using param_const_range = llvm::iterator_range<param_const_iterator>;
356
357 param_const_iterator param_begin() const {
358 return param_const_iterator(getParams());
359 }
360
361 param_const_iterator param_end() const {
362 return param_const_iterator(getParams() + NumParams);
363 }
364
365 param_iterator param_begin() { return param_iterator(getParams()); }
366 param_iterator param_end() { return param_iterator(getParams() + NumParams); }
367
368 // This method returns and of the parameters which are part of the selector
369 // name mangling requirements.
370 param_const_iterator sel_param_end() const {
371 return param_begin() + getSelector().getNumArgs();
372 }
373
374 // ArrayRef access to formal parameters. This should eventually
375 // replace the iterator interface above.
376 ArrayRef<ParmVarDecl*> parameters() const {
377 return llvm::makeArrayRef(const_cast<ParmVarDecl**>(getParams()),
378 NumParams);
379 }
380
381 ParmVarDecl *getParamDecl(unsigned Idx) {
382 assert(Idx < NumParams && "Index out of bounds!")((void)0);
383 return getParams()[Idx];
384 }
385 const ParmVarDecl *getParamDecl(unsigned Idx) const {
386 return const_cast<ObjCMethodDecl *>(this)->getParamDecl(Idx);
387 }
388
389 /// Sets the method's parameters and selector source locations.
390 /// If the method is implicit (not coming from source) \p SelLocs is
391 /// ignored.
392 void setMethodParams(ASTContext &C,
393 ArrayRef<ParmVarDecl*> Params,
394 ArrayRef<SourceLocation> SelLocs = llvm::None);
395
396 // Iterator access to parameter types.
397 struct GetTypeFn {
398 QualType operator()(const ParmVarDecl *PD) const { return PD->getType(); }
399 };
400
401 using param_type_iterator =
402 llvm::mapped_iterator<param_const_iterator, GetTypeFn>;
403
404 param_type_iterator param_type_begin() const {
405 return llvm::map_iterator(param_begin(), GetTypeFn());
406 }
407
408 param_type_iterator param_type_end() const {
409 return llvm::map_iterator(param_end(), GetTypeFn());
410 }
411
412 /// createImplicitParams - Used to lazily create the self and cmd
413 /// implicit parameters. This must be called prior to using getSelfDecl()
414 /// or getCmdDecl(). The call is ignored if the implicit parameters
415 /// have already been created.
416 void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID);
417
418 /// \return the type for \c self and set \arg selfIsPseudoStrong and
419 /// \arg selfIsConsumed accordingly.
420 QualType getSelfType(ASTContext &Context, const ObjCInterfaceDecl *OID,
421 bool &selfIsPseudoStrong, bool &selfIsConsumed) const;
422
423 ImplicitParamDecl * getSelfDecl() const { return SelfDecl; }
424 void setSelfDecl(ImplicitParamDecl *SD) { SelfDecl = SD; }
425 ImplicitParamDecl * getCmdDecl() const { return CmdDecl; }
426 void setCmdDecl(ImplicitParamDecl *CD) { CmdDecl = CD; }
427
428 /// Determines the family of this method.
429 ObjCMethodFamily getMethodFamily() const;
430
431 bool isInstanceMethod() const { return ObjCMethodDeclBits.IsInstance; }
432 void setInstanceMethod(bool isInst) {
433 ObjCMethodDeclBits.IsInstance = isInst;
434 }
435
436 bool isVariadic() const { return ObjCMethodDeclBits.IsVariadic; }
437 void setVariadic(bool isVar) { ObjCMethodDeclBits.IsVariadic = isVar; }
438
439 bool isClassMethod() const { return !isInstanceMethod(); }
440
441 bool isPropertyAccessor() const {
442 return ObjCMethodDeclBits.IsPropertyAccessor;
443 }
444
445 void setPropertyAccessor(bool isAccessor) {
446 ObjCMethodDeclBits.IsPropertyAccessor = isAccessor;
447 }
448
449 bool isSynthesizedAccessorStub() const {
450 return ObjCMethodDeclBits.IsSynthesizedAccessorStub;
451 }
452
453 void setSynthesizedAccessorStub(bool isSynthesizedAccessorStub) {
454 ObjCMethodDeclBits.IsSynthesizedAccessorStub = isSynthesizedAccessorStub;
455 }
456
457 bool isDefined() const { return ObjCMethodDeclBits.IsDefined; }
458 void setDefined(bool isDefined) { ObjCMethodDeclBits.IsDefined = isDefined; }
459
460 /// Whether this method overrides any other in the class hierarchy.
461 ///
462 /// A method is said to override any method in the class's
463 /// base classes, its protocols, or its categories' protocols, that has
464 /// the same selector and is of the same kind (class or instance).
465 /// A method in an implementation is not considered as overriding the same
466 /// method in the interface or its categories.
467 bool isOverriding() const { return ObjCMethodDeclBits.IsOverriding; }
468 void setOverriding(bool IsOver) { ObjCMethodDeclBits.IsOverriding = IsOver; }
469
470 /// Return overridden methods for the given \p Method.
471 ///
472 /// An ObjC method is considered to override any method in the class's
473 /// base classes (and base's categories), its protocols, or its categories'
474 /// protocols, that has
475 /// the same selector and is of the same kind (class or instance).
476 /// A method in an implementation is not considered as overriding the same
477 /// method in the interface or its categories.
478 void getOverriddenMethods(
479 SmallVectorImpl<const ObjCMethodDecl *> &Overridden) const;
480
481 /// True if the method was a definition but its body was skipped.
482 bool hasSkippedBody() const { return ObjCMethodDeclBits.HasSkippedBody; }
483 void setHasSkippedBody(bool Skipped = true) {
484 ObjCMethodDeclBits.HasSkippedBody = Skipped;
485 }
486
487 /// True if the method is tagged as objc_direct
488 bool isDirectMethod() const;
489
490 /// Returns the property associated with this method's selector.
491 ///
492 /// Note that even if this particular method is not marked as a property
493 /// accessor, it is still possible for it to match a property declared in a
494 /// superclass. Pass \c false if you only want to check the current class.
495 const ObjCPropertyDecl *findPropertyDecl(bool CheckOverrides = true) const;
496
497 // Related to protocols declared in \@protocol
498 void setDeclImplementation(ImplementationControl ic) {
499 ObjCMethodDeclBits.DeclImplementation = ic;
500 }
501
502 ImplementationControl getImplementationControl() const {
503 return ImplementationControl(ObjCMethodDeclBits.DeclImplementation);
504 }
505
506 bool isOptional() const {
507 return getImplementationControl() == Optional;
508 }
509
510 /// Returns true if this specific method declaration is marked with the
511 /// designated initializer attribute.
512 bool isThisDeclarationADesignatedInitializer() const;
513
514 /// Returns true if the method selector resolves to a designated initializer
515 /// in the class's interface.
516 ///
517 /// \param InitMethod if non-null and the function returns true, it receives
518 /// the method declaration that was marked with the designated initializer
519 /// attribute.
520 bool isDesignatedInitializerForTheInterface(
521 const ObjCMethodDecl **InitMethod = nullptr) const;
522
523 /// Determine whether this method has a body.
524 bool hasBody() const override { return Body.isValid(); }
525
526 /// Retrieve the body of this method, if it has one.
527 Stmt *getBody() const override;
528
529 void setLazyBody(uint64_t Offset) { Body = Offset; }
530
531 CompoundStmt *getCompoundBody() { return (CompoundStmt*)getBody(); }
532 void setBody(Stmt *B) { Body = B; }
533
534 /// Returns whether this specific method is a definition.
535 bool isThisDeclarationADefinition() const { return hasBody(); }
536
537 /// Is this method defined in the NSObject base class?
538 bool definedInNSObject(const ASTContext &) const;
539
540 // Implement isa/cast/dyncast/etc.
541 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
542 static bool classofKind(Kind K) { return K == ObjCMethod; }
543
544 static DeclContext *castToDeclContext(const ObjCMethodDecl *D) {
545 return static_cast<DeclContext *>(const_cast<ObjCMethodDecl*>(D));
546 }
547
548 static ObjCMethodDecl *castFromDeclContext(const DeclContext *DC) {
549 return static_cast<ObjCMethodDecl *>(const_cast<DeclContext*>(DC));
550 }
551};
552
553/// Describes the variance of a given generic parameter.
554enum class ObjCTypeParamVariance : uint8_t {
555 /// The parameter is invariant: must match exactly.
556 Invariant,
557
558 /// The parameter is covariant, e.g., X<T> is a subtype of X<U> when
559 /// the type parameter is covariant and T is a subtype of U.
560 Covariant,
561
562 /// The parameter is contravariant, e.g., X<T> is a subtype of X<U>
563 /// when the type parameter is covariant and U is a subtype of T.
564 Contravariant,
565};
566
567/// Represents the declaration of an Objective-C type parameter.
568///
569/// \code
570/// @interface NSDictionary<Key : id<NSCopying>, Value>
571/// @end
572/// \endcode
573///
574/// In the example above, both \c Key and \c Value are represented by
575/// \c ObjCTypeParamDecl. \c Key has an explicit bound of \c id<NSCopying>,
576/// while \c Value gets an implicit bound of \c id.
577///
578/// Objective-C type parameters are typedef-names in the grammar,
579class ObjCTypeParamDecl : public TypedefNameDecl {
580 /// Index of this type parameter in the type parameter list.
581 unsigned Index : 14;
582
583 /// The variance of the type parameter.
584 unsigned Variance : 2;
585
586 /// The location of the variance, if any.
587 SourceLocation VarianceLoc;
588
589 /// The location of the ':', which will be valid when the bound was
590 /// explicitly specified.
591 SourceLocation ColonLoc;
592
593 ObjCTypeParamDecl(ASTContext &ctx, DeclContext *dc,
594 ObjCTypeParamVariance variance, SourceLocation varianceLoc,
595 unsigned index,
596 SourceLocation nameLoc, IdentifierInfo *name,
597 SourceLocation colonLoc, TypeSourceInfo *boundInfo)
598 : TypedefNameDecl(ObjCTypeParam, ctx, dc, nameLoc, nameLoc, name,
599 boundInfo),
600 Index(index), Variance(static_cast<unsigned>(variance)),
601 VarianceLoc(varianceLoc), ColonLoc(colonLoc) {}
602
603 void anchor() override;
604
605public:
606 friend class ASTDeclReader;
607 friend class ASTDeclWriter;
608
609 static ObjCTypeParamDecl *Create(ASTContext &ctx, DeclContext *dc,
610 ObjCTypeParamVariance variance,
611 SourceLocation varianceLoc,
612 unsigned index,
613 SourceLocation nameLoc,
614 IdentifierInfo *name,
615 SourceLocation colonLoc,
616 TypeSourceInfo *boundInfo);
617 static ObjCTypeParamDecl *CreateDeserialized(ASTContext &ctx, unsigned ID);
618
619 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
620
621 /// Determine the variance of this type parameter.
622 ObjCTypeParamVariance getVariance() const {
623 return static_cast<ObjCTypeParamVariance>(Variance);
624 }
625
626 /// Set the variance of this type parameter.
627 void setVariance(ObjCTypeParamVariance variance) {
628 Variance = static_cast<unsigned>(variance);
629 }
630
631 /// Retrieve the location of the variance keyword.
632 SourceLocation getVarianceLoc() const { return VarianceLoc; }
633
634 /// Retrieve the index into its type parameter list.
635 unsigned getIndex() const { return Index; }
636
637 /// Whether this type parameter has an explicitly-written type bound, e.g.,
638 /// "T : NSView".
639 bool hasExplicitBound() const { return ColonLoc.isValid(); }
640
641 /// Retrieve the location of the ':' separating the type parameter name
642 /// from the explicitly-specified bound.
643 SourceLocation getColonLoc() const { return ColonLoc; }
644
645 // Implement isa/cast/dyncast/etc.
646 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
647 static bool classofKind(Kind K) { return K == ObjCTypeParam; }
648};
649
650/// Stores a list of Objective-C type parameters for a parameterized class
651/// or a category/extension thereof.
652///
653/// \code
654/// @interface NSArray<T> // stores the <T>
655/// @end
656/// \endcode
657class ObjCTypeParamList final
658 : private llvm::TrailingObjects<ObjCTypeParamList, ObjCTypeParamDecl *> {
659 /// Location of the left and right angle brackets.
660 SourceRange Brackets;
661 /// The number of parameters in the list, which are tail-allocated.
662 unsigned NumParams;
663
664 ObjCTypeParamList(SourceLocation lAngleLoc,
665 ArrayRef<ObjCTypeParamDecl *> typeParams,
666 SourceLocation rAngleLoc);
667
668public:
669 friend TrailingObjects;
670
671 /// Create a new Objective-C type parameter list.
672 static ObjCTypeParamList *create(ASTContext &ctx,
673 SourceLocation lAngleLoc,
674 ArrayRef<ObjCTypeParamDecl *> typeParams,
675 SourceLocation rAngleLoc);
676
677 /// Iterate through the type parameters in the list.
678 using iterator = ObjCTypeParamDecl **;
679
680 iterator begin() { return getTrailingObjects<ObjCTypeParamDecl *>(); }
681
682 iterator end() { return begin() + size(); }
683
684 /// Determine the number of type parameters in this list.
685 unsigned size() const { return NumParams; }
686
687 // Iterate through the type parameters in the list.
688 using const_iterator = ObjCTypeParamDecl * const *;
689
690 const_iterator begin() const {
691 return getTrailingObjects<ObjCTypeParamDecl *>();
692 }
693
694 const_iterator end() const {
695 return begin() + size();
696 }
697
698 ObjCTypeParamDecl *front() const {
699 assert(size() > 0 && "empty Objective-C type parameter list")((void)0);
700 return *begin();
701 }
702
703 ObjCTypeParamDecl *back() const {
704 assert(size() > 0 && "empty Objective-C type parameter list")((void)0);
705 return *(end() - 1);
706 }
707
708 SourceLocation getLAngleLoc() const { return Brackets.getBegin(); }
709 SourceLocation getRAngleLoc() const { return Brackets.getEnd(); }
710 SourceRange getSourceRange() const { return Brackets; }
711
712 /// Gather the default set of type arguments to be substituted for
713 /// these type parameters when dealing with an unspecialized type.
714 void gatherDefaultTypeArgs(SmallVectorImpl<QualType> &typeArgs) const;
715};
716
717enum class ObjCPropertyQueryKind : uint8_t {
718 OBJC_PR_query_unknown = 0x00,
719 OBJC_PR_query_instance,
720 OBJC_PR_query_class
721};
722
723/// Represents one property declaration in an Objective-C interface.
724///
725/// For example:
726/// \code{.mm}
727/// \@property (assign, readwrite) int MyProperty;
728/// \endcode
729class ObjCPropertyDecl : public NamedDecl {
730 void anchor() override;
731
732public:
733 enum SetterKind { Assign, Retain, Copy, Weak };
734 enum PropertyControl { None, Required, Optional };
735
736private:
737 // location of \@property
738 SourceLocation AtLoc;
739
740 // location of '(' starting attribute list or null.
741 SourceLocation LParenLoc;
742
743 QualType DeclType;
744 TypeSourceInfo *DeclTypeSourceInfo;
745 unsigned PropertyAttributes : NumObjCPropertyAttrsBits;
746 unsigned PropertyAttributesAsWritten : NumObjCPropertyAttrsBits;
747
748 // \@required/\@optional
749 unsigned PropertyImplementation : 2;
750
751 // getter name of NULL if no getter
752 Selector GetterName;
753
754 // setter name of NULL if no setter
755 Selector SetterName;
756
757 // location of the getter attribute's value
758 SourceLocation GetterNameLoc;
759
760 // location of the setter attribute's value
761 SourceLocation SetterNameLoc;
762
763 // Declaration of getter instance method
764 ObjCMethodDecl *GetterMethodDecl = nullptr;
765
766 // Declaration of setter instance method
767 ObjCMethodDecl *SetterMethodDecl = nullptr;
768
769 // Synthesize ivar for this property
770 ObjCIvarDecl *PropertyIvarDecl = nullptr;
771
772 ObjCPropertyDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
773 SourceLocation AtLocation, SourceLocation LParenLocation,
774 QualType T, TypeSourceInfo *TSI, PropertyControl propControl)
775 : NamedDecl(ObjCProperty, DC, L, Id), AtLoc(AtLocation),
776 LParenLoc(LParenLocation), DeclType(T), DeclTypeSourceInfo(TSI),
777 PropertyAttributes(ObjCPropertyAttribute::kind_noattr),
778 PropertyAttributesAsWritten(ObjCPropertyAttribute::kind_noattr),
779 PropertyImplementation(propControl), GetterName(Selector()),
780 SetterName(Selector()) {}
781
782public:
783 static ObjCPropertyDecl *Create(ASTContext &C, DeclContext *DC,
784 SourceLocation L,
785 IdentifierInfo *Id, SourceLocation AtLocation,
786 SourceLocation LParenLocation,
787 QualType T,
788 TypeSourceInfo *TSI,
789 PropertyControl propControl = None);
790
791 static ObjCPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
792
793 SourceLocation getAtLoc() const { return AtLoc; }
794 void setAtLoc(SourceLocation L) { AtLoc = L; }
795
796 SourceLocation getLParenLoc() const { return LParenLoc; }
797 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
798
799 TypeSourceInfo *getTypeSourceInfo() const { return DeclTypeSourceInfo; }
800
801 QualType getType() const { return DeclType; }
802
803 void setType(QualType T, TypeSourceInfo *TSI) {
804 DeclType = T;
805 DeclTypeSourceInfo = TSI;
806 }
807
808 /// Retrieve the type when this property is used with a specific base object
809 /// type.
810 QualType getUsageType(QualType objectType) const;
811
812 ObjCPropertyAttribute::Kind getPropertyAttributes() const {
813 return ObjCPropertyAttribute::Kind(PropertyAttributes);
814 }
815
816 void setPropertyAttributes(ObjCPropertyAttribute::Kind PRVal) {
817 PropertyAttributes |= PRVal;
818 }
819
820 void overwritePropertyAttributes(unsigned PRVal) {
821 PropertyAttributes = PRVal;
822 }
823
824 ObjCPropertyAttribute::Kind getPropertyAttributesAsWritten() const {
825 return ObjCPropertyAttribute::Kind(PropertyAttributesAsWritten);
826 }
827
828 void setPropertyAttributesAsWritten(ObjCPropertyAttribute::Kind PRVal) {
829 PropertyAttributesAsWritten = PRVal;
830 }
831
832 // Helper methods for accessing attributes.
833
834 /// isReadOnly - Return true iff the property has a setter.
835 bool isReadOnly() const {
836 return (PropertyAttributes & ObjCPropertyAttribute::kind_readonly);
837 }
838
839 /// isAtomic - Return true if the property is atomic.
840 bool isAtomic() const {
841 return (PropertyAttributes & ObjCPropertyAttribute::kind_atomic);
842 }
843
844 /// isRetaining - Return true if the property retains its value.
845 bool isRetaining() const {
846 return (PropertyAttributes & (ObjCPropertyAttribute::kind_retain |
847 ObjCPropertyAttribute::kind_strong |
848 ObjCPropertyAttribute::kind_copy));
849 }
850
851 bool isInstanceProperty() const { return !isClassProperty(); }
852 bool isClassProperty() const {
853 return PropertyAttributes & ObjCPropertyAttribute::kind_class;
854 }
855 bool isDirectProperty() const;
856
857 ObjCPropertyQueryKind getQueryKind() const {
858 return isClassProperty() ? ObjCPropertyQueryKind::OBJC_PR_query_class :
859 ObjCPropertyQueryKind::OBJC_PR_query_instance;
860 }
861
862 static ObjCPropertyQueryKind getQueryKind(bool isClassProperty) {
863 return isClassProperty ? ObjCPropertyQueryKind::OBJC_PR_query_class :
864 ObjCPropertyQueryKind::OBJC_PR_query_instance;
865 }
866
867 /// getSetterKind - Return the method used for doing assignment in
868 /// the property setter. This is only valid if the property has been
869 /// defined to have a setter.
870 SetterKind getSetterKind() const {
871 if (PropertyAttributes & ObjCPropertyAttribute::kind_strong)
872 return getType()->isBlockPointerType() ? Copy : Retain;
873 if (PropertyAttributes & ObjCPropertyAttribute::kind_retain)
874 return Retain;
875 if (PropertyAttributes & ObjCPropertyAttribute::kind_copy)
876 return Copy;
877 if (PropertyAttributes & ObjCPropertyAttribute::kind_weak)
878 return Weak;
879 return Assign;
880 }
881
882 Selector getGetterName() const { return GetterName; }
883 SourceLocation getGetterNameLoc() const { return GetterNameLoc; }
884
885 void setGetterName(Selector Sel, SourceLocation Loc = SourceLocation()) {
886 GetterName = Sel;
887 GetterNameLoc = Loc;
888 }
889
890 Selector getSetterName() const { return SetterName; }
891 SourceLocation getSetterNameLoc() const { return SetterNameLoc; }
892
893 void setSetterName(Selector Sel, SourceLocation Loc = SourceLocation()) {
894 SetterName = Sel;
895 SetterNameLoc = Loc;
896 }
897
898 ObjCMethodDecl *getGetterMethodDecl() const { return GetterMethodDecl; }
899 void setGetterMethodDecl(ObjCMethodDecl *gDecl) { GetterMethodDecl = gDecl; }
900
901 ObjCMethodDecl *getSetterMethodDecl() const { return SetterMethodDecl; }
902 void setSetterMethodDecl(ObjCMethodDecl *gDecl) { SetterMethodDecl = gDecl; }
903
904 // Related to \@optional/\@required declared in \@protocol
905 void setPropertyImplementation(PropertyControl pc) {
906 PropertyImplementation = pc;
907 }
908
909 PropertyControl getPropertyImplementation() const {
910 return PropertyControl(PropertyImplementation);
911 }
912
913 bool isOptional() const {
914 return getPropertyImplementation() == PropertyControl::Optional;
915 }
916
917 void setPropertyIvarDecl(ObjCIvarDecl *Ivar) {
918 PropertyIvarDecl = Ivar;
919 }
920
921 ObjCIvarDecl *getPropertyIvarDecl() const {
922 return PropertyIvarDecl;
923 }
924
925 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
926 return SourceRange(AtLoc, getLocation());
927 }
928
929 /// Get the default name of the synthesized ivar.
930 IdentifierInfo *getDefaultSynthIvarName(ASTContext &Ctx) const;
931
932 /// Lookup a property by name in the specified DeclContext.
933 static ObjCPropertyDecl *findPropertyDecl(const DeclContext *DC,
934 const IdentifierInfo *propertyID,
935 ObjCPropertyQueryKind queryKind);
936
937 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
938 static bool classofKind(Kind K) { return K == ObjCProperty; }
939};
940
941/// ObjCContainerDecl - Represents a container for method declarations.
942/// Current sub-classes are ObjCInterfaceDecl, ObjCCategoryDecl,
943/// ObjCProtocolDecl, and ObjCImplDecl.
944///
945class ObjCContainerDecl : public NamedDecl, public DeclContext {
946 // This class stores some data in DeclContext::ObjCContainerDeclBits
947 // to save some space. Use the provided accessors to access it.
948
949 // These two locations in the range mark the end of the method container.
950 // The first points to the '@' token, and the second to the 'end' token.
951 SourceRange AtEnd;
952
953 void anchor() override;
954
955public:
956 ObjCContainerDecl(Kind DK, DeclContext *DC, IdentifierInfo *Id,
957 SourceLocation nameLoc, SourceLocation atStartLoc);
958
959 // Iterator access to instance/class properties.
960 using prop_iterator = specific_decl_iterator<ObjCPropertyDecl>;
961 using prop_range =
962 llvm::iterator_range<specific_decl_iterator<ObjCPropertyDecl>>;
963
964 prop_range properties() const { return prop_range(prop_begin(), prop_end()); }
965
966 prop_iterator prop_begin() const {
967 return prop_iterator(decls_begin());
968 }
969
970 prop_iterator prop_end() const {
971 return prop_iterator(decls_end());
972 }
973
974 using instprop_iterator =
975 filtered_decl_iterator<ObjCPropertyDecl,
976 &ObjCPropertyDecl::isInstanceProperty>;
977 using instprop_range = llvm::iterator_range<instprop_iterator>;
978
979 instprop_range instance_properties() const {
980 return instprop_range(instprop_begin(), instprop_end());
981 }
982
983 instprop_iterator instprop_begin() const {
984 return instprop_iterator(decls_begin());
985 }
986
987 instprop_iterator instprop_end() const {
988 return instprop_iterator(decls_end());
989 }
990
991 using classprop_iterator =
992 filtered_decl_iterator<ObjCPropertyDecl,
993 &ObjCPropertyDecl::isClassProperty>;
994 using classprop_range = llvm::iterator_range<classprop_iterator>;
995
996 classprop_range class_properties() const {
997 return classprop_range(classprop_begin(), classprop_end());
998 }
999
1000 classprop_iterator classprop_begin() const {
1001 return classprop_iterator(decls_begin());
1002 }
1003
1004 classprop_iterator classprop_end() const {
1005 return classprop_iterator(decls_end());
1006 }
1007
1008 // Iterator access to instance/class methods.
1009 using method_iterator = specific_decl_iterator<ObjCMethodDecl>;
1010 using method_range =
1011 llvm::iterator_range<specific_decl_iterator<ObjCMethodDecl>>;
1012
1013 method_range methods() const {
1014 return method_range(meth_begin(), meth_end());
1015 }
1016
1017 method_iterator meth_begin() const {
1018 return method_iterator(decls_begin());
1019 }
1020
1021 method_iterator meth_end() const {
1022 return method_iterator(decls_end());
1023 }
1024
1025 using instmeth_iterator =
1026 filtered_decl_iterator<ObjCMethodDecl,
1027 &ObjCMethodDecl::isInstanceMethod>;
1028 using instmeth_range = llvm::iterator_range<instmeth_iterator>;
1029
1030 instmeth_range instance_methods() const {
1031 return instmeth_range(instmeth_begin(), instmeth_end());
1032 }
1033
1034 instmeth_iterator instmeth_begin() const {
1035 return instmeth_iterator(decls_begin());
1036 }
1037
1038 instmeth_iterator instmeth_end() const {
1039 return instmeth_iterator(decls_end());
1040 }
1041
1042 using classmeth_iterator =
1043 filtered_decl_iterator<ObjCMethodDecl,
1044 &ObjCMethodDecl::isClassMethod>;
1045 using classmeth_range = llvm::iterator_range<classmeth_iterator>;
1046
1047 classmeth_range class_methods() const {
1048 return classmeth_range(classmeth_begin(), classmeth_end());
1049 }
1050
1051 classmeth_iterator classmeth_begin() const {
1052 return classmeth_iterator(decls_begin());
1053 }
1054
1055 classmeth_iterator classmeth_end() const {
1056 return classmeth_iterator(decls_end());
1057 }
1058
1059 // Get the local instance/class method declared in this interface.
1060 ObjCMethodDecl *getMethod(Selector Sel, bool isInstance,
1061 bool AllowHidden = false) const;
1062
1063 ObjCMethodDecl *getInstanceMethod(Selector Sel,
1064 bool AllowHidden = false) const {
1065 return getMethod(Sel, true/*isInstance*/, AllowHidden);
1066 }
1067
1068 ObjCMethodDecl *getClassMethod(Selector Sel, bool AllowHidden = false) const {
1069 return getMethod(Sel, false/*isInstance*/, AllowHidden);
1070 }
1071
1072 bool HasUserDeclaredSetterMethod(const ObjCPropertyDecl *P) const;
1073 ObjCIvarDecl *getIvarDecl(IdentifierInfo *Id) const;
1074
1075 ObjCPropertyDecl *
1076 FindPropertyDeclaration(const IdentifierInfo *PropertyId,
1077 ObjCPropertyQueryKind QueryKind) const;
1078
1079 using PropertyMap =
1080 llvm::DenseMap<std::pair<IdentifierInfo *, unsigned/*isClassProperty*/>,
1081 ObjCPropertyDecl *>;
1082 using ProtocolPropertySet = llvm::SmallDenseSet<const ObjCProtocolDecl *, 8>;
1083 using PropertyDeclOrder = llvm::SmallVector<ObjCPropertyDecl *, 8>;
1084
1085 /// This routine collects list of properties to be implemented in the class.
1086 /// This includes, class's and its conforming protocols' properties.
1087 /// Note, the superclass's properties are not included in the list.
1088 virtual void collectPropertiesToImplement(PropertyMap &PM,
1089 PropertyDeclOrder &PO) const {}
1090
1091 SourceLocation getAtStartLoc() const { return ObjCContainerDeclBits.AtStart; }
1092
1093 void setAtStartLoc(SourceLocation Loc) {
1094 ObjCContainerDeclBits.AtStart = Loc;
1095 }
1096
1097 // Marks the end of the container.
1098 SourceRange getAtEndRange() const { return AtEnd; }
1099
1100 void setAtEndRange(SourceRange atEnd) { AtEnd = atEnd; }
1101
1102 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
1103 return SourceRange(getAtStartLoc(), getAtEndRange().getEnd());
1104 }
1105
1106 // Implement isa/cast/dyncast/etc.
1107 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1108
1109 static bool classofKind(Kind K) {
1110 return K >= firstObjCContainer &&
1111 K <= lastObjCContainer;
1112 }
1113
1114 static DeclContext *castToDeclContext(const ObjCContainerDecl *D) {
1115 return static_cast<DeclContext *>(const_cast<ObjCContainerDecl*>(D));
1116 }
1117
1118 static ObjCContainerDecl *castFromDeclContext(const DeclContext *DC) {
1119 return static_cast<ObjCContainerDecl *>(const_cast<DeclContext*>(DC));
1120 }
1121};
1122
1123/// Represents an ObjC class declaration.
1124///
1125/// For example:
1126///
1127/// \code
1128/// // MostPrimitive declares no super class (not particularly useful).
1129/// \@interface MostPrimitive
1130/// // no instance variables or methods.
1131/// \@end
1132///
1133/// // NSResponder inherits from NSObject & implements NSCoding (a protocol).
1134/// \@interface NSResponder : NSObject \<NSCoding>
1135/// { // instance variables are represented by ObjCIvarDecl.
1136/// id nextResponder; // nextResponder instance variable.
1137/// }
1138/// - (NSResponder *)nextResponder; // return a pointer to NSResponder.
1139/// - (void)mouseMoved:(NSEvent *)theEvent; // return void, takes a pointer
1140/// \@end // to an NSEvent.
1141/// \endcode
1142///
1143/// Unlike C/C++, forward class declarations are accomplished with \@class.
1144/// Unlike C/C++, \@class allows for a list of classes to be forward declared.
1145/// Unlike C++, ObjC is a single-rooted class model. In Cocoa, classes
1146/// typically inherit from NSObject (an exception is NSProxy).
1147///
1148class ObjCInterfaceDecl : public ObjCContainerDecl
1149 , public Redeclarable<ObjCInterfaceDecl> {
1150 friend class ASTContext;
1151
1152 /// TypeForDecl - This indicates the Type object that represents this
1153 /// TypeDecl. It is a cache maintained by ASTContext::getObjCInterfaceType
1154 mutable const Type *TypeForDecl = nullptr;
1155
1156 struct DefinitionData {
1157 /// The definition of this class, for quick access from any
1158 /// declaration.
1159 ObjCInterfaceDecl *Definition = nullptr;
1160
1161 /// When non-null, this is always an ObjCObjectType.
1162 TypeSourceInfo *SuperClassTInfo = nullptr;
1163
1164 /// Protocols referenced in the \@interface declaration
1165 ObjCProtocolList ReferencedProtocols;
1166
1167 /// Protocols reference in both the \@interface and class extensions.
1168 ObjCList<ObjCProtocolDecl> AllReferencedProtocols;
1169
1170 /// List of categories and class extensions defined for this class.
1171 ///
1172 /// Categories are stored as a linked list in the AST, since the categories
1173 /// and class extensions come long after the initial interface declaration,
1174 /// and we avoid dynamically-resized arrays in the AST wherever possible.
1175 ObjCCategoryDecl *CategoryList = nullptr;
1176
1177 /// IvarList - List of all ivars defined by this class; including class
1178 /// extensions and implementation. This list is built lazily.
1179 ObjCIvarDecl *IvarList = nullptr;
1180
1181 /// Indicates that the contents of this Objective-C class will be
1182 /// completed by the external AST source when required.
1183 mutable unsigned ExternallyCompleted : 1;
1184
1185 /// Indicates that the ivar cache does not yet include ivars
1186 /// declared in the implementation.
1187 mutable unsigned IvarListMissingImplementation : 1;
1188
1189 /// Indicates that this interface decl contains at least one initializer
1190 /// marked with the 'objc_designated_initializer' attribute.
1191 unsigned HasDesignatedInitializers : 1;
1192
1193 enum InheritedDesignatedInitializersState {
1194 /// We didn't calculate whether the designated initializers should be
1195 /// inherited or not.
1196 IDI_Unknown = 0,
1197
1198 /// Designated initializers are inherited for the super class.
1199 IDI_Inherited = 1,
1200
1201 /// The class does not inherit designated initializers.
1202 IDI_NotInherited = 2
1203 };
1204
1205 /// One of the \c InheritedDesignatedInitializersState enumeratos.
1206 mutable unsigned InheritedDesignatedInitializers : 2;
1207
1208 /// The location of the last location in this declaration, before
1209 /// the properties/methods. For example, this will be the '>', '}', or
1210 /// identifier,
1211 SourceLocation EndLoc;
1212
1213 DefinitionData()
1214 : ExternallyCompleted(false), IvarListMissingImplementation(true),
1215 HasDesignatedInitializers(false),
1216 InheritedDesignatedInitializers(IDI_Unknown) {}
1217 };
1218
1219 /// The type parameters associated with this class, if any.
1220 ObjCTypeParamList *TypeParamList = nullptr;
1221
1222 /// Contains a pointer to the data associated with this class,
1223 /// which will be NULL if this class has not yet been defined.
1224 ///
1225 /// The bit indicates when we don't need to check for out-of-date
1226 /// declarations. It will be set unless modules are enabled.
1227 llvm::PointerIntPair<DefinitionData *, 1, bool> Data;
1228
1229 ObjCInterfaceDecl(const ASTContext &C, DeclContext *DC, SourceLocation AtLoc,
1230 IdentifierInfo *Id, ObjCTypeParamList *typeParamList,
1231 SourceLocation CLoc, ObjCInterfaceDecl *PrevDecl,
1232 bool IsInternal);
1233
1234 void anchor() override;
1235
1236 void LoadExternalDefinition() const;
1237
1238 DefinitionData &data() const {
1239 assert(Data.getPointer() && "Declaration has no definition!")((void)0);
1240 return *Data.getPointer();
1241 }
1242
1243 /// Allocate the definition data for this class.
1244 void allocateDefinitionData();
1245
1246 using redeclarable_base = Redeclarable<ObjCInterfaceDecl>;
1247
1248 ObjCInterfaceDecl *getNextRedeclarationImpl() override {
1249 return getNextRedeclaration();
1250 }
1251
1252 ObjCInterfaceDecl *getPreviousDeclImpl() override {
1253 return getPreviousDecl();
1254 }
1255
1256 ObjCInterfaceDecl *getMostRecentDeclImpl() override {
1257 return getMostRecentDecl();
1258 }
1259
1260public:
1261 static ObjCInterfaceDecl *Create(const ASTContext &C, DeclContext *DC,
1262 SourceLocation atLoc,
1263 IdentifierInfo *Id,
1264 ObjCTypeParamList *typeParamList,
1265 ObjCInterfaceDecl *PrevDecl,
1266 SourceLocation ClassLoc = SourceLocation(),
1267 bool isInternal = false);
1268
1269 static ObjCInterfaceDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
1270
1271 /// Retrieve the type parameters of this class.
1272 ///
1273 /// This function looks for a type parameter list for the given
1274 /// class; if the class has been declared (with \c \@class) but not
1275 /// defined (with \c \@interface), it will search for a declaration that
1276 /// has type parameters, skipping any declarations that do not.
1277 ObjCTypeParamList *getTypeParamList() const;
1278
1279 /// Set the type parameters of this class.
1280 ///
1281 /// This function is used by the AST importer, which must import the type
1282 /// parameters after creating their DeclContext to avoid loops.
1283 void setTypeParamList(ObjCTypeParamList *TPL);
1284
1285 /// Retrieve the type parameters written on this particular declaration of
1286 /// the class.
1287 ObjCTypeParamList *getTypeParamListAsWritten() const {
1288 return TypeParamList;
1289 }
1290
1291 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
1292 if (isThisDeclarationADefinition())
1293 return ObjCContainerDecl::getSourceRange();
1294
1295 return SourceRange(getAtStartLoc(), getLocation());
1296 }
1297
1298 /// Indicate that this Objective-C class is complete, but that
1299 /// the external AST source will be responsible for filling in its contents
1300 /// when a complete class is required.
1301 void setExternallyCompleted();
1302
1303 /// Indicate that this interface decl contains at least one initializer
1304 /// marked with the 'objc_designated_initializer' attribute.
1305 void setHasDesignatedInitializers();
1306
1307 /// Returns true if this interface decl contains at least one initializer
1308 /// marked with the 'objc_designated_initializer' attribute.
1309 bool hasDesignatedInitializers() const;
1310
1311 /// Returns true if this interface decl declares a designated initializer
1312 /// or it inherites one from its super class.
1313 bool declaresOrInheritsDesignatedInitializers() const {
1314 return hasDesignatedInitializers() || inheritsDesignatedInitializers();
1315 }
1316
1317 const ObjCProtocolList &getReferencedProtocols() const {
1318 assert(hasDefinition() && "Caller did not check for forward reference!")((void)0);
1319 if (data().ExternallyCompleted)
1320 LoadExternalDefinition();
1321
1322 return data().ReferencedProtocols;
1323 }
1324
1325 ObjCImplementationDecl *getImplementation() const;
1326 void setImplementation(ObjCImplementationDecl *ImplD);
1327
1328 ObjCCategoryDecl *FindCategoryDeclaration(IdentifierInfo *CategoryId) const;
1329
1330 // Get the local instance/class method declared in a category.
1331 ObjCMethodDecl *getCategoryInstanceMethod(Selector Sel) const;
1332 ObjCMethodDecl *getCategoryClassMethod(Selector Sel) const;
1333
1334 ObjCMethodDecl *getCategoryMethod(Selector Sel, bool isInstance) const {
1335 return isInstance ? getCategoryInstanceMethod(Sel)
1336 : getCategoryClassMethod(Sel);
1337 }
1338
1339 using protocol_iterator = ObjCProtocolList::iterator;
1340 using protocol_range = llvm::iterator_range<protocol_iterator>;
1341
1342 protocol_range protocols() const {
1343 return protocol_range(protocol_begin(), protocol_end());
1344 }
1345
1346 protocol_iterator protocol_begin() const {
1347 // FIXME: Should make sure no callers ever do this.
1348 if (!hasDefinition())
1349 return protocol_iterator();
1350
1351 if (data().ExternallyCompleted)
1352 LoadExternalDefinition();
1353
1354 return data().ReferencedProtocols.begin();
1355 }
1356
1357 protocol_iterator protocol_end() const {
1358 // FIXME: Should make sure no callers ever do this.
1359 if (!hasDefinition())
1360 return protocol_iterator();
1361
1362 if (data().ExternallyCompleted)
1363 LoadExternalDefinition();
1364
1365 return data().ReferencedProtocols.end();
1366 }
1367
1368 using protocol_loc_iterator = ObjCProtocolList::loc_iterator;
1369 using protocol_loc_range = llvm::iterator_range<protocol_loc_iterator>;
1370
1371 protocol_loc_range protocol_locs() const {
1372 return protocol_loc_range(protocol_loc_begin(), protocol_loc_end());
1373 }
1374
1375 protocol_loc_iterator protocol_loc_begin() const {
1376 // FIXME: Should make sure no callers ever do this.
1377 if (!hasDefinition())
1378 return protocol_loc_iterator();
1379
1380 if (data().ExternallyCompleted)
1381 LoadExternalDefinition();
1382
1383 return data().ReferencedProtocols.loc_begin();
1384 }
1385
1386 protocol_loc_iterator protocol_loc_end() const {
1387 // FIXME: Should make sure no callers ever do this.
1388 if (!hasDefinition())
1389 return protocol_loc_iterator();
1390
1391 if (data().ExternallyCompleted)
1392 LoadExternalDefinition();
1393
1394 return data().ReferencedProtocols.loc_end();
1395 }
1396
1397 using all_protocol_iterator = ObjCList<ObjCProtocolDecl>::iterator;
1398 using all_protocol_range = llvm::iterator_range<all_protocol_iterator>;
1399
1400 all_protocol_range all_referenced_protocols() const {
1401 return all_protocol_range(all_referenced_protocol_begin(),
1402 all_referenced_protocol_end());
1403 }
1404
1405 all_protocol_iterator all_referenced_protocol_begin() const {
1406 // FIXME: Should make sure no callers ever do this.
1407 if (!hasDefinition())
1408 return all_protocol_iterator();
1409
1410 if (data().ExternallyCompleted)
1411 LoadExternalDefinition();
1412
1413 return data().AllReferencedProtocols.empty()
1414 ? protocol_begin()
1415 : data().AllReferencedProtocols.begin();
1416 }
1417
1418 all_protocol_iterator all_referenced_protocol_end() const {
1419 // FIXME: Should make sure no callers ever do this.
1420 if (!hasDefinition())
1421 return all_protocol_iterator();
1422
1423 if (data().ExternallyCompleted)
1424 LoadExternalDefinition();
1425
1426 return data().AllReferencedProtocols.empty()
1427 ? protocol_end()
1428 : data().AllReferencedProtocols.end();
1429 }
1430
1431 using ivar_iterator = specific_decl_iterator<ObjCIvarDecl>;
1432 using ivar_range = llvm::iterator_range<specific_decl_iterator<ObjCIvarDecl>>;
1433
1434 ivar_range ivars() const { return ivar_range(ivar_begin(), ivar_end()); }
1435
1436 ivar_iterator ivar_begin() const {
1437 if (const ObjCInterfaceDecl *Def = getDefinition())
1438 return ivar_iterator(Def->decls_begin());
1439
1440 // FIXME: Should make sure no callers ever do this.
1441 return ivar_iterator();
1442 }
1443
1444 ivar_iterator ivar_end() const {
1445 if (const ObjCInterfaceDecl *Def = getDefinition())
1446 return ivar_iterator(Def->decls_end());
1447
1448 // FIXME: Should make sure no callers ever do this.
1449 return ivar_iterator();
1450 }
1451
1452 unsigned ivar_size() const {
1453 return std::distance(ivar_begin(), ivar_end());
1454 }
1455
1456 bool ivar_empty() const { return ivar_begin() == ivar_end(); }
1457
1458 ObjCIvarDecl *all_declared_ivar_begin();
1459 const ObjCIvarDecl *all_declared_ivar_begin() const {
1460 // Even though this modifies IvarList, it's conceptually const:
1461 // the ivar chain is essentially a cached property of ObjCInterfaceDecl.
1462 return const_cast<ObjCInterfaceDecl *>(this)->all_declared_ivar_begin();
1463 }
1464 void setIvarList(ObjCIvarDecl *ivar) { data().IvarList = ivar; }
1465
1466 /// setProtocolList - Set the list of protocols that this interface
1467 /// implements.
1468 void setProtocolList(ObjCProtocolDecl *const* List, unsigned Num,
1469 const SourceLocation *Locs, ASTContext &C) {
1470 data().ReferencedProtocols.set(List, Num, Locs, C);
1471 }
1472
1473 /// mergeClassExtensionProtocolList - Merge class extension's protocol list
1474 /// into the protocol list for this class.
1475 void mergeClassExtensionProtocolList(ObjCProtocolDecl *const* List,
1476 unsigned Num,
1477 ASTContext &C);
1478
1479 /// Produce a name to be used for class's metadata. It comes either via
1480 /// objc_runtime_name attribute or class name.
1481 StringRef getObjCRuntimeNameAsString() const;
1482
1483 /// Returns the designated initializers for the interface.
1484 ///
1485 /// If this declaration does not have methods marked as designated
1486 /// initializers then the interface inherits the designated initializers of
1487 /// its super class.
1488 void getDesignatedInitializers(
1489 llvm::SmallVectorImpl<const ObjCMethodDecl *> &Methods) const;
1490
1491 /// Returns true if the given selector is a designated initializer for the
1492 /// interface.
1493 ///
1494 /// If this declaration does not have methods marked as designated
1495 /// initializers then the interface inherits the designated initializers of
1496 /// its super class.
1497 ///
1498 /// \param InitMethod if non-null and the function returns true, it receives
1499 /// the method that was marked as a designated initializer.
1500 bool
1501 isDesignatedInitializer(Selector Sel,
1502 const ObjCMethodDecl **InitMethod = nullptr) const;
1503
1504 /// Determine whether this particular declaration of this class is
1505 /// actually also a definition.
1506 bool isThisDeclarationADefinition() const {
1507 return getDefinition() == this;
1508 }
1509
1510 /// Determine whether this class has been defined.
1511 bool hasDefinition() const {
1512 // If the name of this class is out-of-date, bring it up-to-date, which
1513 // might bring in a definition.
1514 // Note: a null value indicates that we don't have a definition and that
1515 // modules are enabled.
1516 if (!Data.getOpaqueValue())
2
Assuming the condition is false
3
Taking false branch
1517 getMostRecentDecl();
1518
1519 return Data.getPointer();
4
Returning value, which participates in a condition later
1520 }
1521
1522 /// Retrieve the definition of this class, or NULL if this class
1523 /// has been forward-declared (with \@class) but not yet defined (with
1524 /// \@interface).
1525 ObjCInterfaceDecl *getDefinition() {
1526 return hasDefinition()? Data.getPointer()->Definition : nullptr;
1527 }
1528
1529 /// Retrieve the definition of this class, or NULL if this class
1530 /// has been forward-declared (with \@class) but not yet defined (with
1531 /// \@interface).
1532 const ObjCInterfaceDecl *getDefinition() const {
1533 return hasDefinition()? Data.getPointer()->Definition : nullptr;
15
Assuming the condition is true
16
'?' condition is true
17
Returning pointer, which participates in a condition later
1534 }
1535
1536 /// Starts the definition of this Objective-C class, taking it from
1537 /// a forward declaration (\@class) to a definition (\@interface).
1538 void startDefinition();
1539
1540 /// Retrieve the superclass type.
1541 const ObjCObjectType *getSuperClassType() const {
1542 if (TypeSourceInfo *TInfo = getSuperClassTInfo())
1543 return TInfo->getType()->castAs<ObjCObjectType>();
1544
1545 return nullptr;
1546 }
1547
1548 // Retrieve the type source information for the superclass.
1549 TypeSourceInfo *getSuperClassTInfo() const {
1550 // FIXME: Should make sure no callers ever do this.
1551 if (!hasDefinition())
1552 return nullptr;
1553
1554 if (data().ExternallyCompleted)
1555 LoadExternalDefinition();
1556
1557 return data().SuperClassTInfo;
1558 }
1559
1560 // Retrieve the declaration for the superclass of this class, which
1561 // does not include any type arguments that apply to the superclass.
1562 ObjCInterfaceDecl *getSuperClass() const;
1563
1564 void setSuperClass(TypeSourceInfo *superClass) {
1565 data().SuperClassTInfo = superClass;
1566 }
1567
1568 /// Iterator that walks over the list of categories, filtering out
1569 /// those that do not meet specific criteria.
1570 ///
1571 /// This class template is used for the various permutations of category
1572 /// and extension iterators.
1573 template<bool (*Filter)(ObjCCategoryDecl *)>
1574 class filtered_category_iterator {
1575 ObjCCategoryDecl *Current = nullptr;
1576
1577 void findAcceptableCategory();
1578
1579 public:
1580 using value_type = ObjCCategoryDecl *;
1581 using reference = value_type;
1582 using pointer = value_type;
1583 using difference_type = std::ptrdiff_t;
1584 using iterator_category = std::input_iterator_tag;
1585
1586 filtered_category_iterator() = default;
1587 explicit filtered_category_iterator(ObjCCategoryDecl *Current)
1588 : Current(Current) {
1589 findAcceptableCategory();
1590 }
1591
1592 reference operator*() const { return Current; }
1593 pointer operator->() const { return Current; }
1594
1595 filtered_category_iterator &operator++();
1596
1597 filtered_category_iterator operator++(int) {
1598 filtered_category_iterator Tmp = *this;
1599 ++(*this);
1600 return Tmp;
1601 }
1602
1603 friend bool operator==(filtered_category_iterator X,
1604 filtered_category_iterator Y) {
1605 return X.Current == Y.Current;
1606 }
1607
1608 friend bool operator!=(filtered_category_iterator X,
1609 filtered_category_iterator Y) {
1610 return X.Current != Y.Current;
1611 }
1612 };
1613
1614private:
1615 /// Test whether the given category is visible.
1616 ///
1617 /// Used in the \c visible_categories_iterator.
1618 static bool isVisibleCategory(ObjCCategoryDecl *Cat);
1619
1620public:
1621 /// Iterator that walks over the list of categories and extensions
1622 /// that are visible, i.e., not hidden in a non-imported submodule.
1623 using visible_categories_iterator =
1624 filtered_category_iterator<isVisibleCategory>;
1625
1626 using visible_categories_range =
1627 llvm::iterator_range<visible_categories_iterator>;
1628
1629 visible_categories_range visible_categories() const {
1630 return visible_categories_range(visible_categories_begin(),
1631 visible_categories_end());
1632 }
1633
1634 /// Retrieve an iterator to the beginning of the visible-categories
1635 /// list.
1636 visible_categories_iterator visible_categories_begin() const {
1637 return visible_categories_iterator(getCategoryListRaw());
1638 }
1639
1640 /// Retrieve an iterator to the end of the visible-categories list.
1641 visible_categories_iterator visible_categories_end() const {
1642 return visible_categories_iterator();
1643 }
1644
1645 /// Determine whether the visible-categories list is empty.
1646 bool visible_categories_empty() const {
1647 return visible_categories_begin() == visible_categories_end();
1648 }
1649
1650private:
1651 /// Test whether the given category... is a category.
1652 ///
1653 /// Used in the \c known_categories_iterator.
1654 static bool isKnownCategory(ObjCCategoryDecl *) { return true; }
1655
1656public:
1657 /// Iterator that walks over all of the known categories and
1658 /// extensions, including those that are hidden.
1659 using known_categories_iterator = filtered_category_iterator<isKnownCategory>;
1660 using known_categories_range =
1661 llvm::iterator_range<known_categories_iterator>;
1662
1663 known_categories_range known_categories() const {
1664 return known_categories_range(known_categories_begin(),
1665 known_categories_end());
1666 }
1667
1668 /// Retrieve an iterator to the beginning of the known-categories
1669 /// list.
1670 known_categories_iterator known_categories_begin() const {
1671 return known_categories_iterator(getCategoryListRaw());
1672 }
1673
1674 /// Retrieve an iterator to the end of the known-categories list.
1675 known_categories_iterator known_categories_end() const {
1676 return known_categories_iterator();
1677 }
1678
1679 /// Determine whether the known-categories list is empty.
1680 bool known_categories_empty() const {
1681 return known_categories_begin() == known_categories_end();
1682 }
1683
1684private:
1685 /// Test whether the given category is a visible extension.
1686 ///
1687 /// Used in the \c visible_extensions_iterator.
1688 static bool isVisibleExtension(ObjCCategoryDecl *Cat);
1689
1690public:
1691 /// Iterator that walks over all of the visible extensions, skipping
1692 /// any that are known but hidden.
1693 using visible_extensions_iterator =
1694 filtered_category_iterator<isVisibleExtension>;
1695
1696 using visible_extensions_range =
1697 llvm::iterator_range<visible_extensions_iterator>;
1698
1699 visible_extensions_range visible_extensions() const {
1700 return visible_extensions_range(visible_extensions_begin(),
1701 visible_extensions_end());
1702 }
1703
1704 /// Retrieve an iterator to the beginning of the visible-extensions
1705 /// list.
1706 visible_extensions_iterator visible_extensions_begin() const {
1707 return visible_extensions_iterator(getCategoryListRaw());
1708 }
1709
1710 /// Retrieve an iterator to the end of the visible-extensions list.
1711 visible_extensions_iterator visible_extensions_end() const {
1712 return visible_extensions_iterator();
1713 }
1714
1715 /// Determine whether the visible-extensions list is empty.
1716 bool visible_extensions_empty() const {
1717 return visible_extensions_begin() == visible_extensions_end();
1718 }
1719
1720private:
1721 /// Test whether the given category is an extension.
1722 ///
1723 /// Used in the \c known_extensions_iterator.
1724 static bool isKnownExtension(ObjCCategoryDecl *Cat);
1725
1726public:
1727 friend class ASTDeclReader;
1728 friend class ASTDeclWriter;
1729 friend class ASTReader;
1730
1731 /// Iterator that walks over all of the known extensions.
1732 using known_extensions_iterator =
1733 filtered_category_iterator<isKnownExtension>;
1734 using known_extensions_range =
1735 llvm::iterator_range<known_extensions_iterator>;
1736
1737 known_extensions_range known_extensions() const {
1738 return known_extensions_range(known_extensions_begin(),
1739 known_extensions_end());
1740 }
1741
1742 /// Retrieve an iterator to the beginning of the known-extensions
1743 /// list.
1744 known_extensions_iterator known_extensions_begin() const {
1745 return known_extensions_iterator(getCategoryListRaw());
1746 }
1747
1748 /// Retrieve an iterator to the end of the known-extensions list.
1749 known_extensions_iterator known_extensions_end() const {
1750 return known_extensions_iterator();
1751 }
1752
1753 /// Determine whether the known-extensions list is empty.
1754 bool known_extensions_empty() const {
1755 return known_extensions_begin() == known_extensions_end();
1756 }
1757
1758 /// Retrieve the raw pointer to the start of the category/extension
1759 /// list.
1760 ObjCCategoryDecl* getCategoryListRaw() const {
1761 // FIXME: Should make sure no callers ever do this.
1762 if (!hasDefinition())
1763 return nullptr;
1764
1765 if (data().ExternallyCompleted)
1766 LoadExternalDefinition();
1767
1768 return data().CategoryList;
1769 }
1770
1771 /// Set the raw pointer to the start of the category/extension
1772 /// list.
1773 void setCategoryListRaw(ObjCCategoryDecl *category) {
1774 data().CategoryList = category;
1775 }
1776
1777 ObjCPropertyDecl
1778 *FindPropertyVisibleInPrimaryClass(IdentifierInfo *PropertyId,
1779 ObjCPropertyQueryKind QueryKind) const;
1780
1781 void collectPropertiesToImplement(PropertyMap &PM,
1782 PropertyDeclOrder &PO) const override;
1783
1784 /// isSuperClassOf - Return true if this class is the specified class or is a
1785 /// super class of the specified interface class.
1786 bool isSuperClassOf(const ObjCInterfaceDecl *I) const {
1787 // If RHS is derived from LHS it is OK; else it is not OK.
1788 while (I != nullptr) {
1789 if (declaresSameEntity(this, I))
1790 return true;
1791
1792 I = I->getSuperClass();
1793 }
1794 return false;
1795 }
1796
1797 /// isArcWeakrefUnavailable - Checks for a class or one of its super classes
1798 /// to be incompatible with __weak references. Returns true if it is.
1799 bool isArcWeakrefUnavailable() const;
1800
1801 /// isObjCRequiresPropertyDefs - Checks that a class or one of its super
1802 /// classes must not be auto-synthesized. Returns class decl. if it must not
1803 /// be; 0, otherwise.
1804 const ObjCInterfaceDecl *isObjCRequiresPropertyDefs() const;
1805
1806 ObjCIvarDecl *lookupInstanceVariable(IdentifierInfo *IVarName,
1807 ObjCInterfaceDecl *&ClassDeclared);
1808 ObjCIvarDecl *lookupInstanceVariable(IdentifierInfo *IVarName) {
1809 ObjCInterfaceDecl *ClassDeclared;
1810 return lookupInstanceVariable(IVarName, ClassDeclared);
1811 }
1812
1813 ObjCProtocolDecl *lookupNestedProtocol(IdentifierInfo *Name);
1814
1815 // Lookup a method. First, we search locally. If a method isn't
1816 // found, we search referenced protocols and class categories.
1817 ObjCMethodDecl *lookupMethod(Selector Sel, bool isInstance,
1818 bool shallowCategoryLookup = false,
1819 bool followSuper = true,
1820 const ObjCCategoryDecl *C = nullptr) const;
1821
1822 /// Lookup an instance method for a given selector.
1823 ObjCMethodDecl *lookupInstanceMethod(Selector Sel) const {
1824 return lookupMethod(Sel, true/*isInstance*/);
1825 }
1826
1827 /// Lookup a class method for a given selector.
1828 ObjCMethodDecl *lookupClassMethod(Selector Sel) const {
1829 return lookupMethod(Sel, false/*isInstance*/);
1830 }
1831
1832 ObjCInterfaceDecl *lookupInheritedClass(const IdentifierInfo *ICName);
1833
1834 /// Lookup a method in the classes implementation hierarchy.
1835 ObjCMethodDecl *lookupPrivateMethod(const Selector &Sel,
1836 bool Instance=true) const;
1837
1838 ObjCMethodDecl *lookupPrivateClassMethod(const Selector &Sel) {
1839 return lookupPrivateMethod(Sel, false);
1840 }
1841
1842 /// Lookup a setter or getter in the class hierarchy,
1843 /// including in all categories except for category passed
1844 /// as argument.
1845 ObjCMethodDecl *lookupPropertyAccessor(const Selector Sel,
1846 const ObjCCategoryDecl *Cat,
1847 bool IsClassProperty) const {
1848 return lookupMethod(Sel, !IsClassProperty/*isInstance*/,
1849 false/*shallowCategoryLookup*/,
1850 true /* followsSuper */,
1851 Cat);
1852 }
1853
1854 SourceLocation getEndOfDefinitionLoc() const {
1855 if (!hasDefinition())
1856 return getLocation();
1857
1858 return data().EndLoc;
1859 }
1860
1861 void setEndOfDefinitionLoc(SourceLocation LE) { data().EndLoc = LE; }
1862
1863 /// Retrieve the starting location of the superclass.
1864 SourceLocation getSuperClassLoc() const;
1865
1866 /// isImplicitInterfaceDecl - check that this is an implicitly declared
1867 /// ObjCInterfaceDecl node. This is for legacy objective-c \@implementation
1868 /// declaration without an \@interface declaration.
1869 bool isImplicitInterfaceDecl() const {
1870 return hasDefinition() ? data().Definition->isImplicit() : isImplicit();
1871 }
1872
1873 /// ClassImplementsProtocol - Checks that 'lProto' protocol
1874 /// has been implemented in IDecl class, its super class or categories (if
1875 /// lookupCategory is true).
1876 bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
1877 bool lookupCategory,
1878 bool RHSIsQualifiedID = false);
1879
1880 using redecl_range = redeclarable_base::redecl_range;
1881 using redecl_iterator = redeclarable_base::redecl_iterator;
1882
1883 using redeclarable_base::redecls_begin;
1884 using redeclarable_base::redecls_end;
1885 using redeclarable_base::redecls;
1886 using redeclarable_base::getPreviousDecl;
1887 using redeclarable_base::getMostRecentDecl;
1888 using redeclarable_base::isFirstDecl;
1889
1890 /// Retrieves the canonical declaration of this Objective-C class.
1891 ObjCInterfaceDecl *getCanonicalDecl() override { return getFirstDecl(); }
1892 const ObjCInterfaceDecl *getCanonicalDecl() const { return getFirstDecl(); }
1893
1894 // Low-level accessor
1895 const Type *getTypeForDecl() const { return TypeForDecl; }
1896 void setTypeForDecl(const Type *TD) const { TypeForDecl = TD; }
1897
1898 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1899 static bool classofKind(Kind K) { return K == ObjCInterface; }
1900
1901private:
1902 const ObjCInterfaceDecl *findInterfaceWithDesignatedInitializers() const;
1903 bool inheritsDesignatedInitializers() const;
1904};
1905
1906/// ObjCIvarDecl - Represents an ObjC instance variable. In general, ObjC
1907/// instance variables are identical to C. The only exception is Objective-C
1908/// supports C++ style access control. For example:
1909///
1910/// \@interface IvarExample : NSObject
1911/// {
1912/// id defaultToProtected;
1913/// \@public:
1914/// id canBePublic; // same as C++.
1915/// \@protected:
1916/// id canBeProtected; // same as C++.
1917/// \@package:
1918/// id canBePackage; // framework visibility (not available in C++).
1919/// }
1920///
1921class ObjCIvarDecl : public FieldDecl {
1922 void anchor() override;
1923
1924public:
1925 enum AccessControl {
1926 None, Private, Protected, Public, Package
1927 };
1928
1929private:
1930 ObjCIvarDecl(ObjCContainerDecl *DC, SourceLocation StartLoc,
1931 SourceLocation IdLoc, IdentifierInfo *Id,
1932 QualType T, TypeSourceInfo *TInfo, AccessControl ac, Expr *BW,
1933 bool synthesized)
1934 : FieldDecl(ObjCIvar, DC, StartLoc, IdLoc, Id, T, TInfo, BW,
1935 /*Mutable=*/false, /*HasInit=*/ICIS_NoInit),
1936 DeclAccess(ac), Synthesized(synthesized) {}
1937
1938public:
1939 static ObjCIvarDecl *Create(ASTContext &C, ObjCContainerDecl *DC,
1940 SourceLocation StartLoc, SourceLocation IdLoc,
1941 IdentifierInfo *Id, QualType T,
1942 TypeSourceInfo *TInfo,
1943 AccessControl ac, Expr *BW = nullptr,
1944 bool synthesized=false);
1945
1946 static ObjCIvarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1947
1948 /// Return the class interface that this ivar is logically contained
1949 /// in; this is either the interface where the ivar was declared, or the
1950 /// interface the ivar is conceptually a part of in the case of synthesized
1951 /// ivars.
1952 const ObjCInterfaceDecl *getContainingInterface() const;
1953
1954 ObjCIvarDecl *getNextIvar() { return NextIvar; }
1955 const ObjCIvarDecl *getNextIvar() const { return NextIvar; }
1956 void setNextIvar(ObjCIvarDecl *ivar) { NextIvar = ivar; }
1957
1958 void setAccessControl(AccessControl ac) { DeclAccess = ac; }
1959
1960 AccessControl getAccessControl() const { return AccessControl(DeclAccess); }
1961
1962 AccessControl getCanonicalAccessControl() const {
1963 return DeclAccess == None ? Protected : AccessControl(DeclAccess);
1964 }
1965
1966 void setSynthesize(bool synth) { Synthesized = synth; }
1967 bool getSynthesize() const { return Synthesized; }
1968
1969 /// Retrieve the type of this instance variable when viewed as a member of a
1970 /// specific object type.
1971 QualType getUsageType(QualType objectType) const;
1972
1973 // Implement isa/cast/dyncast/etc.
1974 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1975 static bool classofKind(Kind K) { return K == ObjCIvar; }
1976
1977private:
1978 /// NextIvar - Next Ivar in the list of ivars declared in class; class's
1979 /// extensions and class's implementation
1980 ObjCIvarDecl *NextIvar = nullptr;
1981
1982 // NOTE: VC++ treats enums as signed, avoid using the AccessControl enum
1983 unsigned DeclAccess : 3;
1984 unsigned Synthesized : 1;
1985};
1986
1987/// Represents a field declaration created by an \@defs(...).
1988class ObjCAtDefsFieldDecl : public FieldDecl {
1989 ObjCAtDefsFieldDecl(DeclContext *DC, SourceLocation StartLoc,
1990 SourceLocation IdLoc, IdentifierInfo *Id,
1991 QualType T, Expr *BW)
1992 : FieldDecl(ObjCAtDefsField, DC, StartLoc, IdLoc, Id, T,
1993 /*TInfo=*/nullptr, // FIXME: Do ObjCAtDefs have declarators ?
1994 BW, /*Mutable=*/false, /*HasInit=*/ICIS_NoInit) {}
1995
1996 void anchor() override;
1997
1998public:
1999 static ObjCAtDefsFieldDecl *Create(ASTContext &C, DeclContext *DC,
2000 SourceLocation StartLoc,
2001 SourceLocation IdLoc, IdentifierInfo *Id,
2002 QualType T, Expr *BW);
2003
2004 static ObjCAtDefsFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2005
2006 // Implement isa/cast/dyncast/etc.
2007 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2008 static bool classofKind(Kind K) { return K == ObjCAtDefsField; }
2009};
2010
2011/// Represents an Objective-C protocol declaration.
2012///
2013/// Objective-C protocols declare a pure abstract type (i.e., no instance
2014/// variables are permitted). Protocols originally drew inspiration from
2015/// C++ pure virtual functions (a C++ feature with nice semantics and lousy
2016/// syntax:-). Here is an example:
2017///
2018/// \code
2019/// \@protocol NSDraggingInfo <refproto1, refproto2>
2020/// - (NSWindow *)draggingDestinationWindow;
2021/// - (NSImage *)draggedImage;
2022/// \@end
2023/// \endcode
2024///
2025/// This says that NSDraggingInfo requires two methods and requires everything
2026/// that the two "referenced protocols" 'refproto1' and 'refproto2' require as
2027/// well.
2028///
2029/// \code
2030/// \@interface ImplementsNSDraggingInfo : NSObject \<NSDraggingInfo>
2031/// \@end
2032/// \endcode
2033///
2034/// ObjC protocols inspired Java interfaces. Unlike Java, ObjC classes and
2035/// protocols are in distinct namespaces. For example, Cocoa defines both
2036/// an NSObject protocol and class (which isn't allowed in Java). As a result,
2037/// protocols are referenced using angle brackets as follows:
2038///
2039/// id \<NSDraggingInfo> anyObjectThatImplementsNSDraggingInfo;
2040class ObjCProtocolDecl : public ObjCContainerDecl,
2041 public Redeclarable<ObjCProtocolDecl> {
2042 struct DefinitionData {
2043 // The declaration that defines this protocol.
2044 ObjCProtocolDecl *Definition;
2045
2046 /// Referenced protocols
2047 ObjCProtocolList ReferencedProtocols;
2048 };
2049
2050 /// Contains a pointer to the data associated with this class,
2051 /// which will be NULL if this class has not yet been defined.
2052 ///
2053 /// The bit indicates when we don't need to check for out-of-date
2054 /// declarations. It will be set unless modules are enabled.
2055 llvm::PointerIntPair<DefinitionData *, 1, bool> Data;
2056
2057 ObjCProtocolDecl(ASTContext &C, DeclContext *DC, IdentifierInfo *Id,
2058 SourceLocation nameLoc, SourceLocation atStartLoc,
2059 ObjCProtocolDecl *PrevDecl);
2060
2061 void anchor() override;
2062
2063 DefinitionData &data() const {
2064 assert(Data.getPointer() && "Objective-C protocol has no definition!")((void)0);
2065 return *Data.getPointer();
2066 }
2067
2068 void allocateDefinitionData();
2069
2070 using redeclarable_base = Redeclarable<ObjCProtocolDecl>;
2071
2072 ObjCProtocolDecl *getNextRedeclarationImpl() override {
2073 return getNextRedeclaration();
2074 }
2075
2076 ObjCProtocolDecl *getPreviousDeclImpl() override {
2077 return getPreviousDecl();
2078 }
2079
2080 ObjCProtocolDecl *getMostRecentDeclImpl() override {
2081 return getMostRecentDecl();
2082 }
2083
2084public:
2085 friend class ASTDeclReader;
2086 friend class ASTDeclWriter;
2087 friend class ASTReader;
2088
2089 static ObjCProtocolDecl *Create(ASTContext &C, DeclContext *DC,
2090 IdentifierInfo *Id,
2091 SourceLocation nameLoc,
2092 SourceLocation atStartLoc,
2093 ObjCProtocolDecl *PrevDecl);
2094
2095 static ObjCProtocolDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2096
2097 const ObjCProtocolList &getReferencedProtocols() const {
2098 assert(hasDefinition() && "No definition available!")((void)0);
2099 return data().ReferencedProtocols;
2100 }
2101
2102 using protocol_iterator = ObjCProtocolList::iterator;
2103 using protocol_range = llvm::iterator_range<protocol_iterator>;
2104
2105 protocol_range protocols() const {
2106 return protocol_range(protocol_begin(), protocol_end());
2107 }
2108
2109 protocol_iterator protocol_begin() const {
2110 if (!hasDefinition())
2111 return protocol_iterator();
2112
2113 return data().ReferencedProtocols.begin();
2114 }
2115
2116 protocol_iterator protocol_end() const {
2117 if (!hasDefinition())
2118 return protocol_iterator();
2119
2120 return data().ReferencedProtocols.end();
2121 }
2122
2123 using protocol_loc_iterator = ObjCProtocolList::loc_iterator;
2124 using protocol_loc_range = llvm::iterator_range<protocol_loc_iterator>;
2125
2126 protocol_loc_range protocol_locs() const {
2127 return protocol_loc_range(protocol_loc_begin(), protocol_loc_end());
2128 }
2129
2130 protocol_loc_iterator protocol_loc_begin() const {
2131 if (!hasDefinition())
2132 return protocol_loc_iterator();
2133
2134 return data().ReferencedProtocols.loc_begin();
2135 }
2136
2137 protocol_loc_iterator protocol_loc_end() const {
2138 if (!hasDefinition())
2139 return protocol_loc_iterator();
2140
2141 return data().ReferencedProtocols.loc_end();
2142 }
2143
2144 unsigned protocol_size() const {
2145 if (!hasDefinition())
2146 return 0;
2147
2148 return data().ReferencedProtocols.size();
2149 }
2150
2151 /// setProtocolList - Set the list of protocols that this interface
2152 /// implements.
2153 void setProtocolList(ObjCProtocolDecl *const*List, unsigned Num,
2154 const SourceLocation *Locs, ASTContext &C) {
2155 assert(hasDefinition() && "Protocol is not defined")((void)0);
2156 data().ReferencedProtocols.set(List, Num, Locs, C);
2157 }
2158
2159 /// This is true iff the protocol is tagged with the
2160 /// `objc_non_runtime_protocol` attribute.
2161 bool isNonRuntimeProtocol() const;
2162
2163 /// Get the set of all protocols implied by this protocols inheritance
2164 /// hierarchy.
2165 void getImpliedProtocols(llvm::DenseSet<const ObjCProtocolDecl *> &IPs) const;
2166
2167 ObjCProtocolDecl *lookupProtocolNamed(IdentifierInfo *PName);
2168
2169 // Lookup a method. First, we search locally. If a method isn't
2170 // found, we search referenced protocols and class categories.
2171 ObjCMethodDecl *lookupMethod(Selector Sel, bool isInstance) const;
2172
2173 ObjCMethodDecl *lookupInstanceMethod(Selector Sel) const {
2174 return lookupMethod(Sel, true/*isInstance*/);
2175 }
2176
2177 ObjCMethodDecl *lookupClassMethod(Selector Sel) const {
2178 return lookupMethod(Sel, false/*isInstance*/);
2179 }
2180
2181 /// Determine whether this protocol has a definition.
2182 bool hasDefinition() const {
2183 // If the name of this protocol is out-of-date, bring it up-to-date, which
2184 // might bring in a definition.
2185 // Note: a null value indicates that we don't have a definition and that
2186 // modules are enabled.
2187 if (!Data.getOpaqueValue())
2188 getMostRecentDecl();
2189
2190 return Data.getPointer();
2191 }
2192
2193 /// Retrieve the definition of this protocol, if any.
2194 ObjCProtocolDecl *getDefinition() {
2195 return hasDefinition()? Data.getPointer()->Definition : nullptr;
2196 }
2197
2198 /// Retrieve the definition of this protocol, if any.
2199 const ObjCProtocolDecl *getDefinition() const {
2200 return hasDefinition()? Data.getPointer()->Definition : nullptr;
2201 }
2202
2203 /// Determine whether this particular declaration is also the
2204 /// definition.
2205 bool isThisDeclarationADefinition() const {
2206 return getDefinition() == this;
2207 }
2208
2209 /// Starts the definition of this Objective-C protocol.
2210 void startDefinition();
2211
2212 /// Produce a name to be used for protocol's metadata. It comes either via
2213 /// objc_runtime_name attribute or protocol name.
2214 StringRef getObjCRuntimeNameAsString() const;
2215
2216 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
2217 if (isThisDeclarationADefinition())
2218 return ObjCContainerDecl::getSourceRange();
2219
2220 return SourceRange(getAtStartLoc(), getLocation());
2221 }
2222
2223 using redecl_range = redeclarable_base::redecl_range;
2224 using redecl_iterator = redeclarable_base::redecl_iterator;
2225
2226 using redeclarable_base::redecls_begin;
2227 using redeclarable_base::redecls_end;
2228 using redeclarable_base::redecls;
2229 using redeclarable_base::getPreviousDecl;
2230 using redeclarable_base::getMostRecentDecl;
2231 using redeclarable_base::isFirstDecl;
2232
2233 /// Retrieves the canonical declaration of this Objective-C protocol.
2234 ObjCProtocolDecl *getCanonicalDecl() override { return getFirstDecl(); }
2235 const ObjCProtocolDecl *getCanonicalDecl() const { return getFirstDecl(); }
2236
2237 void collectPropertiesToImplement(PropertyMap &PM,
2238 PropertyDeclOrder &PO) const override;
2239
2240 void collectInheritedProtocolProperties(const ObjCPropertyDecl *Property,
2241 ProtocolPropertySet &PS,
2242 PropertyDeclOrder &PO) const;
2243
2244 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2245 static bool classofKind(Kind K) { return K == ObjCProtocol; }
2246};
2247
2248/// ObjCCategoryDecl - Represents a category declaration. A category allows
2249/// you to add methods to an existing class (without subclassing or modifying
2250/// the original class interface or implementation:-). Categories don't allow
2251/// you to add instance data. The following example adds "myMethod" to all
2252/// NSView's within a process:
2253///
2254/// \@interface NSView (MyViewMethods)
2255/// - myMethod;
2256/// \@end
2257///
2258/// Categories also allow you to split the implementation of a class across
2259/// several files (a feature more naturally supported in C++).
2260///
2261/// Categories were originally inspired by dynamic languages such as Common
2262/// Lisp and Smalltalk. More traditional class-based languages (C++, Java)
2263/// don't support this level of dynamism, which is both powerful and dangerous.
2264class ObjCCategoryDecl : public ObjCContainerDecl {
2265 /// Interface belonging to this category
2266 ObjCInterfaceDecl *ClassInterface;
2267
2268 /// The type parameters associated with this category, if any.
2269 ObjCTypeParamList *TypeParamList = nullptr;
2270
2271 /// referenced protocols in this category.
2272 ObjCProtocolList ReferencedProtocols;
2273
2274 /// Next category belonging to this class.
2275 /// FIXME: this should not be a singly-linked list. Move storage elsewhere.
2276 ObjCCategoryDecl *NextClassCategory = nullptr;
2277
2278 /// The location of the category name in this declaration.
2279 SourceLocation CategoryNameLoc;
2280
2281 /// class extension may have private ivars.
2282 SourceLocation IvarLBraceLoc;
2283 SourceLocation IvarRBraceLoc;
2284
2285 ObjCCategoryDecl(DeclContext *DC, SourceLocation AtLoc,
2286 SourceLocation ClassNameLoc, SourceLocation CategoryNameLoc,
2287 IdentifierInfo *Id, ObjCInterfaceDecl *IDecl,
2288 ObjCTypeParamList *typeParamList,
2289 SourceLocation IvarLBraceLoc = SourceLocation(),
2290 SourceLocation IvarRBraceLoc = SourceLocation());
2291
2292 void anchor() override;
2293
2294public:
2295 friend class ASTDeclReader;
2296 friend class ASTDeclWriter;
2297
2298 static ObjCCategoryDecl *Create(ASTContext &C, DeclContext *DC,
2299 SourceLocation AtLoc,
2300 SourceLocation ClassNameLoc,
2301 SourceLocation CategoryNameLoc,
2302 IdentifierInfo *Id,
2303 ObjCInterfaceDecl *IDecl,
2304 ObjCTypeParamList *typeParamList,
2305 SourceLocation IvarLBraceLoc=SourceLocation(),
2306 SourceLocation IvarRBraceLoc=SourceLocation());
2307 static ObjCCategoryDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2308
2309 ObjCInterfaceDecl *getClassInterface() { return ClassInterface; }
2310 const ObjCInterfaceDecl *getClassInterface() const { return ClassInterface; }
2311
2312 /// Retrieve the type parameter list associated with this category or
2313 /// extension.
2314 ObjCTypeParamList *getTypeParamList() const { return TypeParamList; }
2315
2316 /// Set the type parameters of this category.
2317 ///
2318 /// This function is used by the AST importer, which must import the type
2319 /// parameters after creating their DeclContext to avoid loops.
2320 void setTypeParamList(ObjCTypeParamList *TPL);
2321
2322
2323 ObjCCategoryImplDecl *getImplementation() const;
2324 void setImplementation(ObjCCategoryImplDecl *ImplD);
2325
2326 /// setProtocolList - Set the list of protocols that this interface
2327 /// implements.
2328 void setProtocolList(ObjCProtocolDecl *const*List, unsigned Num,
2329 const SourceLocation *Locs, ASTContext &C) {
2330 ReferencedProtocols.set(List, Num, Locs, C);
2331 }
2332
2333 const ObjCProtocolList &getReferencedProtocols() const {
2334 return ReferencedProtocols;
2335 }
2336
2337 using protocol_iterator = ObjCProtocolList::iterator;
2338 using protocol_range = llvm::iterator_range<protocol_iterator>;
2339
2340 protocol_range protocols() const {
2341 return protocol_range(protocol_begin(), protocol_end());
2342 }
2343
2344 protocol_iterator protocol_begin() const {
2345 return ReferencedProtocols.begin();
2346 }
2347
2348 protocol_iterator protocol_end() const { return ReferencedProtocols.end(); }
2349 unsigned protocol_size() const { return ReferencedProtocols.size(); }
2350
2351 using protocol_loc_iterator = ObjCProtocolList::loc_iterator;
2352 using protocol_loc_range = llvm::iterator_range<protocol_loc_iterator>;
2353
2354 protocol_loc_range protocol_locs() const {
2355 return protocol_loc_range(protocol_loc_begin(), protocol_loc_end());
2356 }
2357
2358 protocol_loc_iterator protocol_loc_begin() const {
2359 return ReferencedProtocols.loc_begin();
2360 }
2361
2362 protocol_loc_iterator protocol_loc_end() const {
2363 return ReferencedProtocols.loc_end();
2364 }
2365
2366 ObjCCategoryDecl *getNextClassCategory() const { return NextClassCategory; }
2367
2368 /// Retrieve the pointer to the next stored category (or extension),
2369 /// which may be hidden.
2370 ObjCCategoryDecl *getNextClassCategoryRaw() const {
2371 return NextClassCategory;
2372 }
2373
2374 bool IsClassExtension() const { return getIdentifier() == nullptr; }
2375
2376 using ivar_iterator = specific_decl_iterator<ObjCIvarDecl>;
2377 using ivar_range = llvm::iterator_range<specific_decl_iterator<ObjCIvarDecl>>;
2378
2379 ivar_range ivars() const { return ivar_range(ivar_begin(), ivar_end()); }
2380
2381 ivar_iterator ivar_begin() const {
2382 return ivar_iterator(decls_begin());
2383 }
2384
2385 ivar_iterator ivar_end() const {
2386 return ivar_iterator(decls_end());
2387 }
2388
2389 unsigned ivar_size() const {
2390 return std::distance(ivar_begin(), ivar_end());
2391 }
2392
2393 bool ivar_empty() const {
2394 return ivar_begin() == ivar_end();
2395 }
2396
2397 SourceLocation getCategoryNameLoc() const { return CategoryNameLoc; }
2398 void setCategoryNameLoc(SourceLocation Loc) { CategoryNameLoc = Loc; }
2399
2400 void setIvarLBraceLoc(SourceLocation Loc) { IvarLBraceLoc = Loc; }
2401 SourceLocation getIvarLBraceLoc() const { return IvarLBraceLoc; }
2402 void setIvarRBraceLoc(SourceLocation Loc) { IvarRBraceLoc = Loc; }
2403 SourceLocation getIvarRBraceLoc() const { return IvarRBraceLoc; }
2404
2405 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2406 static bool classofKind(Kind K) { return K == ObjCCategory; }
2407};
2408
2409class ObjCImplDecl : public ObjCContainerDecl {
2410 /// Class interface for this class/category implementation
2411 ObjCInterfaceDecl *ClassInterface;
2412
2413 void anchor() override;
2414
2415protected:
2416 ObjCImplDecl(Kind DK, DeclContext *DC,
2417 ObjCInterfaceDecl *classInterface,
2418 IdentifierInfo *Id,
2419 SourceLocation nameLoc, SourceLocation atStartLoc)
2420 : ObjCContainerDecl(DK, DC, Id, nameLoc, atStartLoc),
2421 ClassInterface(classInterface) {}
2422
2423public:
2424 const ObjCInterfaceDecl *getClassInterface() const { return ClassInterface; }
2425 ObjCInterfaceDecl *getClassInterface() { return ClassInterface; }
2426 void setClassInterface(ObjCInterfaceDecl *IFace);
2427
2428 void addInstanceMethod(ObjCMethodDecl *method) {
2429 // FIXME: Context should be set correctly before we get here.
2430 method->setLexicalDeclContext(this);
2431 addDecl(method);
2432 }
2433
2434 void addClassMethod(ObjCMethodDecl *method) {
2435 // FIXME: Context should be set correctly before we get here.
2436 method->setLexicalDeclContext(this);
2437 addDecl(method);
2438 }
2439
2440 void addPropertyImplementation(ObjCPropertyImplDecl *property);
2441
2442 ObjCPropertyImplDecl *FindPropertyImplDecl(IdentifierInfo *propertyId,
2443 ObjCPropertyQueryKind queryKind) const;
2444 ObjCPropertyImplDecl *FindPropertyImplIvarDecl(IdentifierInfo *ivarId) const;
2445
2446 // Iterator access to properties.
2447 using propimpl_iterator = specific_decl_iterator<ObjCPropertyImplDecl>;
2448 using propimpl_range =
2449 llvm::iterator_range<specific_decl_iterator<ObjCPropertyImplDecl>>;
2450
2451 propimpl_range property_impls() const {
2452 return propimpl_range(propimpl_begin(), propimpl_end());
2453 }
2454
2455 propimpl_iterator propimpl_begin() const {
2456 return propimpl_iterator(decls_begin());
2457 }
2458
2459 propimpl_iterator propimpl_end() const {
2460 return propimpl_iterator(decls_end());
2461 }
2462
2463 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2464
2465 static bool classofKind(Kind K) {
2466 return K >= firstObjCImpl && K <= lastObjCImpl;
2467 }
2468};
2469
2470/// ObjCCategoryImplDecl - An object of this class encapsulates a category
2471/// \@implementation declaration. If a category class has declaration of a
2472/// property, its implementation must be specified in the category's
2473/// \@implementation declaration. Example:
2474/// \@interface I \@end
2475/// \@interface I(CATEGORY)
2476/// \@property int p1, d1;
2477/// \@end
2478/// \@implementation I(CATEGORY)
2479/// \@dynamic p1,d1;
2480/// \@end
2481///
2482/// ObjCCategoryImplDecl
2483class ObjCCategoryImplDecl : public ObjCImplDecl {
2484 // Category name location
2485 SourceLocation CategoryNameLoc;
2486
2487 ObjCCategoryImplDecl(DeclContext *DC, IdentifierInfo *Id,
2488 ObjCInterfaceDecl *classInterface,
2489 SourceLocation nameLoc, SourceLocation atStartLoc,
2490 SourceLocation CategoryNameLoc)
2491 : ObjCImplDecl(ObjCCategoryImpl, DC, classInterface, Id,
2492 nameLoc, atStartLoc),
2493 CategoryNameLoc(CategoryNameLoc) {}
2494
2495 void anchor() override;
2496
2497public:
2498 friend class ASTDeclReader;
2499 friend class ASTDeclWriter;
2500
2501 static ObjCCategoryImplDecl *Create(ASTContext &C, DeclContext *DC,
2502 IdentifierInfo *Id,
2503 ObjCInterfaceDecl *classInterface,
2504 SourceLocation nameLoc,
2505 SourceLocation atStartLoc,
2506 SourceLocation CategoryNameLoc);
2507 static ObjCCategoryImplDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2508
2509 ObjCCategoryDecl *getCategoryDecl() const;
2510
2511 SourceLocation getCategoryNameLoc() const { return CategoryNameLoc; }
2512
2513 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2514 static bool classofKind(Kind K) { return K == ObjCCategoryImpl;}
2515};
2516
2517raw_ostream &operator<<(raw_ostream &OS, const ObjCCategoryImplDecl &CID);
2518
2519/// ObjCImplementationDecl - Represents a class definition - this is where
2520/// method definitions are specified. For example:
2521///
2522/// @code
2523/// \@implementation MyClass
2524/// - (void)myMethod { /* do something */ }
2525/// \@end
2526/// @endcode
2527///
2528/// In a non-fragile runtime, instance variables can appear in the class
2529/// interface, class extensions (nameless categories), and in the implementation
2530/// itself, as well as being synthesized as backing storage for properties.
2531///
2532/// In a fragile runtime, instance variables are specified in the class
2533/// interface, \em not in the implementation. Nevertheless (for legacy reasons),
2534/// we allow instance variables to be specified in the implementation. When
2535/// specified, they need to be \em identical to the interface.
2536class ObjCImplementationDecl : public ObjCImplDecl {
2537 /// Implementation Class's super class.
2538 ObjCInterfaceDecl *SuperClass;
2539 SourceLocation SuperLoc;
2540
2541 /// \@implementation may have private ivars.
2542 SourceLocation IvarLBraceLoc;
2543 SourceLocation IvarRBraceLoc;
2544
2545 /// Support for ivar initialization.
2546 /// The arguments used to initialize the ivars
2547 LazyCXXCtorInitializersPtr IvarInitializers;
2548 unsigned NumIvarInitializers = 0;
2549
2550 /// Do the ivars of this class require initialization other than
2551 /// zero-initialization?
2552 bool HasNonZeroConstructors : 1;
2553
2554 /// Do the ivars of this class require non-trivial destruction?
2555 bool HasDestructors : 1;
2556
2557 ObjCImplementationDecl(DeclContext *DC,
2558 ObjCInterfaceDecl *classInterface,
2559 ObjCInterfaceDecl *superDecl,
2560 SourceLocation nameLoc, SourceLocation atStartLoc,
2561 SourceLocation superLoc = SourceLocation(),
2562 SourceLocation IvarLBraceLoc=SourceLocation(),
2563 SourceLocation IvarRBraceLoc=SourceLocation())
2564 : ObjCImplDecl(ObjCImplementation, DC, classInterface,
2565 classInterface ? classInterface->getIdentifier()
2566 : nullptr,
2567 nameLoc, atStartLoc),
2568 SuperClass(superDecl), SuperLoc(superLoc),
2569 IvarLBraceLoc(IvarLBraceLoc), IvarRBraceLoc(IvarRBraceLoc),
2570 HasNonZeroConstructors(false), HasDestructors(false) {}
2571
2572 void anchor() override;
2573
2574public:
2575 friend class ASTDeclReader;
2576 friend class ASTDeclWriter;
2577
2578 static ObjCImplementationDecl *Create(ASTContext &C, DeclContext *DC,
2579 ObjCInterfaceDecl *classInterface,
2580 ObjCInterfaceDecl *superDecl,
2581 SourceLocation nameLoc,
2582 SourceLocation atStartLoc,
2583 SourceLocation superLoc = SourceLocation(),
2584 SourceLocation IvarLBraceLoc=SourceLocation(),
2585 SourceLocation IvarRBraceLoc=SourceLocation());
2586
2587 static ObjCImplementationDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2588
2589 /// init_iterator - Iterates through the ivar initializer list.
2590 using init_iterator = CXXCtorInitializer **;
2591
2592 /// init_const_iterator - Iterates through the ivar initializer list.
2593 using init_const_iterator = CXXCtorInitializer * const *;
2594
2595 using init_range = llvm::iterator_range<init_iterator>;
2596 using init_const_range = llvm::iterator_range<init_const_iterator>;
2597
2598 init_range inits() { return init_range(init_begin(), init_end()); }
2599
2600 init_const_range inits() const {
2601 return init_const_range(init_begin(), init_end());
2602 }
2603
2604 /// init_begin() - Retrieve an iterator to the first initializer.
2605 init_iterator init_begin() {
2606 const auto *ConstThis = this;
2607 return const_cast<init_iterator>(ConstThis->init_begin());
2608 }
2609
2610 /// begin() - Retrieve an iterator to the first initializer.
2611 init_const_iterator init_begin() const;
2612
2613 /// init_end() - Retrieve an iterator past the last initializer.
2614 init_iterator init_end() {
2615 return init_begin() + NumIvarInitializers;
2616 }
2617
2618 /// end() - Retrieve an iterator past the last initializer.
2619 init_const_iterator init_end() const {
2620 return init_begin() + NumIvarInitializers;
2621 }
2622
2623 /// getNumArgs - Number of ivars which must be initialized.
2624 unsigned getNumIvarInitializers() const {
2625 return NumIvarInitializers;
2626 }
2627
2628 void setNumIvarInitializers(unsigned numNumIvarInitializers) {
2629 NumIvarInitializers = numNumIvarInitializers;
2630 }
2631
2632 void setIvarInitializers(ASTContext &C,
2633 CXXCtorInitializer ** initializers,
2634 unsigned numInitializers);
2635
2636 /// Do any of the ivars of this class (not counting its base classes)
2637 /// require construction other than zero-initialization?
2638 bool hasNonZeroConstructors() const { return HasNonZeroConstructors; }
2639 void setHasNonZeroConstructors(bool val) { HasNonZeroConstructors = val; }
2640
2641 /// Do any of the ivars of this class (not counting its base classes)
2642 /// require non-trivial destruction?
2643 bool hasDestructors() const { return HasDestructors; }
2644 void setHasDestructors(bool val) { HasDestructors = val; }
2645
2646 /// getIdentifier - Get the identifier that names the class
2647 /// interface associated with this implementation.
2648 IdentifierInfo *getIdentifier() const {
2649 return getClassInterface()->getIdentifier();
2650 }
2651
2652 /// getName - Get the name of identifier for the class interface associated
2653 /// with this implementation as a StringRef.
2654 //
2655 // FIXME: This is a bad API, we are hiding NamedDecl::getName with a different
2656 // meaning.
2657 StringRef getName() const {
2658 assert(getIdentifier() && "Name is not a simple identifier")((void)0);
2659 return getIdentifier()->getName();
2660 }
2661
2662 /// Get the name of the class associated with this interface.
2663 //
2664 // FIXME: Move to StringRef API.
2665 std::string getNameAsString() const { return std::string(getName()); }
2666
2667 /// Produce a name to be used for class's metadata. It comes either via
2668 /// class's objc_runtime_name attribute or class name.
2669 StringRef getObjCRuntimeNameAsString() const;
2670
2671 const ObjCInterfaceDecl *getSuperClass() const { return SuperClass; }
2672 ObjCInterfaceDecl *getSuperClass() { return SuperClass; }
2673 SourceLocation getSuperClassLoc() const { return SuperLoc; }
2674
2675 void setSuperClass(ObjCInterfaceDecl * superCls) { SuperClass = superCls; }
2676
2677 void setIvarLBraceLoc(SourceLocation Loc) { IvarLBraceLoc = Loc; }
2678 SourceLocation getIvarLBraceLoc() const { return IvarLBraceLoc; }
2679 void setIvarRBraceLoc(SourceLocation Loc) { IvarRBraceLoc = Loc; }
2680 SourceLocation getIvarRBraceLoc() const { return IvarRBraceLoc; }
2681
2682 using ivar_iterator = specific_decl_iterator<ObjCIvarDecl>;
2683 using ivar_range = llvm::iterator_range<specific_decl_iterator<ObjCIvarDecl>>;
2684
2685 ivar_range ivars() const { return ivar_range(ivar_begin(), ivar_end()); }
2686
2687 ivar_iterator ivar_begin() const {
2688 return ivar_iterator(decls_begin());
2689 }
2690
2691 ivar_iterator ivar_end() const {
2692 return ivar_iterator(decls_end());
2693 }
2694
2695 unsigned ivar_size() const {
2696 return std::distance(ivar_begin(), ivar_end());
2697 }
2698
2699 bool ivar_empty() const {
2700 return ivar_begin() == ivar_end();
28
Calling 'operator=='
34
Returning from 'operator=='
35
Returning zero, which participates in a condition later
2701 }
2702
2703 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2704 static bool classofKind(Kind K) { return K == ObjCImplementation; }
2705};
2706
2707raw_ostream &operator<<(raw_ostream &OS, const ObjCImplementationDecl &ID);
2708
2709/// ObjCCompatibleAliasDecl - Represents alias of a class. This alias is
2710/// declared as \@compatibility_alias alias class.
2711class ObjCCompatibleAliasDecl : public NamedDecl {
2712 /// Class that this is an alias of.
2713 ObjCInterfaceDecl *AliasedClass;
2714
2715 ObjCCompatibleAliasDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
2716 ObjCInterfaceDecl* aliasedClass)
2717 : NamedDecl(ObjCCompatibleAlias, DC, L, Id), AliasedClass(aliasedClass) {}
2718
2719 void anchor() override;
2720
2721public:
2722 static ObjCCompatibleAliasDecl *Create(ASTContext &C, DeclContext *DC,
2723 SourceLocation L, IdentifierInfo *Id,
2724 ObjCInterfaceDecl* aliasedClass);
2725
2726 static ObjCCompatibleAliasDecl *CreateDeserialized(ASTContext &C,
2727 unsigned ID);
2728
2729 const ObjCInterfaceDecl *getClassInterface() const { return AliasedClass; }
2730 ObjCInterfaceDecl *getClassInterface() { return AliasedClass; }
2731 void setClassInterface(ObjCInterfaceDecl *D) { AliasedClass = D; }
2732
2733 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2734 static bool classofKind(Kind K) { return K == ObjCCompatibleAlias; }
2735};
2736
2737/// ObjCPropertyImplDecl - Represents implementation declaration of a property
2738/// in a class or category implementation block. For example:
2739/// \@synthesize prop1 = ivar1;
2740///
2741class ObjCPropertyImplDecl : public Decl {
2742public:
2743 enum Kind {
2744 Synthesize,
2745 Dynamic
2746 };
2747
2748private:
2749 SourceLocation AtLoc; // location of \@synthesize or \@dynamic
2750
2751 /// For \@synthesize, the location of the ivar, if it was written in
2752 /// the source code.
2753 ///
2754 /// \code
2755 /// \@synthesize int a = b
2756 /// \endcode
2757 SourceLocation IvarLoc;
2758
2759 /// Property declaration being implemented
2760 ObjCPropertyDecl *PropertyDecl;
2761
2762 /// Null for \@dynamic. Required for \@synthesize.
2763 ObjCIvarDecl *PropertyIvarDecl;
2764
2765 /// The getter's definition, which has an empty body if synthesized.
2766 ObjCMethodDecl *GetterMethodDecl = nullptr;
2767 /// The getter's definition, which has an empty body if synthesized.
2768 ObjCMethodDecl *SetterMethodDecl = nullptr;
2769
2770 /// Null for \@dynamic. Non-null if property must be copy-constructed in
2771 /// getter.
2772 Expr *GetterCXXConstructor = nullptr;
2773
2774 /// Null for \@dynamic. Non-null if property has assignment operator to call
2775 /// in Setter synthesis.
2776 Expr *SetterCXXAssignment = nullptr;
2777
2778 ObjCPropertyImplDecl(DeclContext *DC, SourceLocation atLoc, SourceLocation L,
2779 ObjCPropertyDecl *property,
2780 Kind PK,
2781 ObjCIvarDecl *ivarDecl,
2782 SourceLocation ivarLoc)
2783 : Decl(ObjCPropertyImpl, DC, L), AtLoc(atLoc),
2784 IvarLoc(ivarLoc), PropertyDecl(property), PropertyIvarDecl(ivarDecl) {
2785 assert(PK == Dynamic || PropertyIvarDecl)((void)0);
2786 }
2787
2788public:
2789 friend class ASTDeclReader;
2790
2791 static ObjCPropertyImplDecl *Create(ASTContext &C, DeclContext *DC,
2792 SourceLocation atLoc, SourceLocation L,
2793 ObjCPropertyDecl *property,
2794 Kind PK,
2795 ObjCIvarDecl *ivarDecl,
2796 SourceLocation ivarLoc);
2797
2798 static ObjCPropertyImplDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2799
2800 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2801
2802 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return AtLoc; }
2803 void setAtLoc(SourceLocation Loc) { AtLoc = Loc; }
2804
2805 ObjCPropertyDecl *getPropertyDecl() const {
2806 return PropertyDecl;
2807 }
2808 void setPropertyDecl(ObjCPropertyDecl *Prop) { PropertyDecl = Prop; }
2809
2810 Kind getPropertyImplementation() const {
2811 return PropertyIvarDecl ? Synthesize : Dynamic;
2812 }
2813
2814 ObjCIvarDecl *getPropertyIvarDecl() const {
2815 return PropertyIvarDecl;
2816 }
2817 SourceLocation getPropertyIvarDeclLoc() const { return IvarLoc; }
2818
2819 void setPropertyIvarDecl(ObjCIvarDecl *Ivar,
2820 SourceLocation IvarLoc) {
2821 PropertyIvarDecl = Ivar;
2822 this->IvarLoc = IvarLoc;
2823 }
2824
2825 /// For \@synthesize, returns true if an ivar name was explicitly
2826 /// specified.
2827 ///
2828 /// \code
2829 /// \@synthesize int a = b; // true
2830 /// \@synthesize int a; // false
2831 /// \endcode
2832 bool isIvarNameSpecified() const {
2833 return IvarLoc.isValid() && IvarLoc != getLocation();
2834 }
2835
2836 ObjCMethodDecl *getGetterMethodDecl() const { return GetterMethodDecl; }
2837 void setGetterMethodDecl(ObjCMethodDecl *MD) { GetterMethodDecl = MD; }
2838
2839 ObjCMethodDecl *getSetterMethodDecl() const { return SetterMethodDecl; }
2840 void setSetterMethodDecl(ObjCMethodDecl *MD) { SetterMethodDecl = MD; }
2841
2842 Expr *getGetterCXXConstructor() const {
2843 return GetterCXXConstructor;
2844 }
2845
2846 void setGetterCXXConstructor(Expr *getterCXXConstructor) {
2847 GetterCXXConstructor = getterCXXConstructor;
2848 }
2849
2850 Expr *getSetterCXXAssignment() const {
2851 return SetterCXXAssignment;
2852 }
2853
2854 void setSetterCXXAssignment(Expr *setterCXXAssignment) {
2855 SetterCXXAssignment = setterCXXAssignment;
2856 }
2857
2858 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2859 static bool classofKind(Decl::Kind K) { return K == ObjCPropertyImpl; }
2860};
2861
2862template<bool (*Filter)(ObjCCategoryDecl *)>
2863void
2864ObjCInterfaceDecl::filtered_category_iterator<Filter>::
2865findAcceptableCategory() {
2866 while (Current && !Filter(Current))
2867 Current = Current->getNextClassCategoryRaw();
2868}
2869
2870template<bool (*Filter)(ObjCCategoryDecl *)>
2871inline ObjCInterfaceDecl::filtered_category_iterator<Filter> &
2872ObjCInterfaceDecl::filtered_category_iterator<Filter>::operator++() {
2873 Current = Current->getNextClassCategoryRaw();
2874 findAcceptableCategory();
2875 return *this;
2876}
2877
2878inline bool ObjCInterfaceDecl::isVisibleCategory(ObjCCategoryDecl *Cat) {
2879 return Cat->isUnconditionallyVisible();
2880}
2881
2882inline bool ObjCInterfaceDecl::isVisibleExtension(ObjCCategoryDecl *Cat) {
2883 return Cat->IsClassExtension() && Cat->isUnconditionallyVisible();
2884}
2885
2886inline bool ObjCInterfaceDecl::isKnownExtension(ObjCCategoryDecl *Cat) {
2887 return Cat->IsClassExtension();
2888}
2889
2890} // namespace clang
2891
2892#endif // LLVM_CLANG_AST_DECLOBJC_H

/usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/include/clang/AST/DeclBase.h

1//===- DeclBase.h - Base Classes for representing declarations --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl and DeclContext interfaces.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECLBASE_H
14#define LLVM_CLANG_AST_DECLBASE_H
15
16#include "clang/AST/ASTDumperUtils.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/DeclarationName.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/SourceLocation.h"
22#include "clang/Basic/Specifiers.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/PrettyStackTrace.h"
31#include "llvm/Support/VersionTuple.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <iterator>
36#include <string>
37#include <type_traits>
38#include <utility>
39
40namespace clang {
41
42class ASTContext;
43class ASTMutationListener;
44class Attr;
45class BlockDecl;
46class DeclContext;
47class ExternalSourceSymbolAttr;
48class FunctionDecl;
49class FunctionType;
50class IdentifierInfo;
51enum Linkage : unsigned char;
52class LinkageSpecDecl;
53class Module;
54class NamedDecl;
55class ObjCCategoryDecl;
56class ObjCCategoryImplDecl;
57class ObjCContainerDecl;
58class ObjCImplDecl;
59class ObjCImplementationDecl;
60class ObjCInterfaceDecl;
61class ObjCMethodDecl;
62class ObjCProtocolDecl;
63struct PrintingPolicy;
64class RecordDecl;
65class SourceManager;
66class Stmt;
67class StoredDeclsMap;
68class TemplateDecl;
69class TemplateParameterList;
70class TranslationUnitDecl;
71class UsingDirectiveDecl;
72
73/// Captures the result of checking the availability of a
74/// declaration.
75enum AvailabilityResult {
76 AR_Available = 0,
77 AR_NotYetIntroduced,
78 AR_Deprecated,
79 AR_Unavailable
80};
81
82/// Decl - This represents one declaration (or definition), e.g. a variable,
83/// typedef, function, struct, etc.
84///
85/// Note: There are objects tacked on before the *beginning* of Decl
86/// (and its subclasses) in its Decl::operator new(). Proper alignment
87/// of all subclasses (not requiring more than the alignment of Decl) is
88/// asserted in DeclBase.cpp.
89class alignas(8) Decl {
90public:
91 /// Lists the kind of concrete classes of Decl.
92 enum Kind {
93#define DECL(DERIVED, BASE) DERIVED,
94#define ABSTRACT_DECL(DECL)
95#define DECL_RANGE(BASE, START, END) \
96 first##BASE = START, last##BASE = END,
97#define LAST_DECL_RANGE(BASE, START, END) \
98 first##BASE = START, last##BASE = END
99#include "clang/AST/DeclNodes.inc"
100 };
101
102 /// A placeholder type used to construct an empty shell of a
103 /// decl-derived type that will be filled in later (e.g., by some
104 /// deserialization method).
105 struct EmptyShell {};
106
107 /// IdentifierNamespace - The different namespaces in which
108 /// declarations may appear. According to C99 6.2.3, there are
109 /// four namespaces, labels, tags, members and ordinary
110 /// identifiers. C++ describes lookup completely differently:
111 /// certain lookups merely "ignore" certain kinds of declarations,
112 /// usually based on whether the declaration is of a type, etc.
113 ///
114 /// These are meant as bitmasks, so that searches in
115 /// C++ can look into the "tag" namespace during ordinary lookup.
116 ///
117 /// Decl currently provides 15 bits of IDNS bits.
118 enum IdentifierNamespace {
119 /// Labels, declared with 'x:' and referenced with 'goto x'.
120 IDNS_Label = 0x0001,
121
122 /// Tags, declared with 'struct foo;' and referenced with
123 /// 'struct foo'. All tags are also types. This is what
124 /// elaborated-type-specifiers look for in C.
125 /// This also contains names that conflict with tags in the
126 /// same scope but that are otherwise ordinary names (non-type
127 /// template parameters and indirect field declarations).
128 IDNS_Tag = 0x0002,
129
130 /// Types, declared with 'struct foo', typedefs, etc.
131 /// This is what elaborated-type-specifiers look for in C++,
132 /// but note that it's ill-formed to find a non-tag.
133 IDNS_Type = 0x0004,
134
135 /// Members, declared with object declarations within tag
136 /// definitions. In C, these can only be found by "qualified"
137 /// lookup in member expressions. In C++, they're found by
138 /// normal lookup.
139 IDNS_Member = 0x0008,
140
141 /// Namespaces, declared with 'namespace foo {}'.
142 /// Lookup for nested-name-specifiers find these.
143 IDNS_Namespace = 0x0010,
144
145 /// Ordinary names. In C, everything that's not a label, tag,
146 /// member, or function-local extern ends up here.
147 IDNS_Ordinary = 0x0020,
148
149 /// Objective C \@protocol.
150 IDNS_ObjCProtocol = 0x0040,
151
152 /// This declaration is a friend function. A friend function
153 /// declaration is always in this namespace but may also be in
154 /// IDNS_Ordinary if it was previously declared.
155 IDNS_OrdinaryFriend = 0x0080,
156
157 /// This declaration is a friend class. A friend class
158 /// declaration is always in this namespace but may also be in
159 /// IDNS_Tag|IDNS_Type if it was previously declared.
160 IDNS_TagFriend = 0x0100,
161
162 /// This declaration is a using declaration. A using declaration
163 /// *introduces* a number of other declarations into the current
164 /// scope, and those declarations use the IDNS of their targets,
165 /// but the actual using declarations go in this namespace.
166 IDNS_Using = 0x0200,
167
168 /// This declaration is a C++ operator declared in a non-class
169 /// context. All such operators are also in IDNS_Ordinary.
170 /// C++ lexical operator lookup looks for these.
171 IDNS_NonMemberOperator = 0x0400,
172
173 /// This declaration is a function-local extern declaration of a
174 /// variable or function. This may also be IDNS_Ordinary if it
175 /// has been declared outside any function. These act mostly like
176 /// invisible friend declarations, but are also visible to unqualified
177 /// lookup within the scope of the declaring function.
178 IDNS_LocalExtern = 0x0800,
179
180 /// This declaration is an OpenMP user defined reduction construction.
181 IDNS_OMPReduction = 0x1000,
182
183 /// This declaration is an OpenMP user defined mapper.
184 IDNS_OMPMapper = 0x2000,
185 };
186
187 /// ObjCDeclQualifier - 'Qualifiers' written next to the return and
188 /// parameter types in method declarations. Other than remembering
189 /// them and mangling them into the method's signature string, these
190 /// are ignored by the compiler; they are consumed by certain
191 /// remote-messaging frameworks.
192 ///
193 /// in, inout, and out are mutually exclusive and apply only to
194 /// method parameters. bycopy and byref are mutually exclusive and
195 /// apply only to method parameters (?). oneway applies only to
196 /// results. All of these expect their corresponding parameter to
197 /// have a particular type. None of this is currently enforced by
198 /// clang.
199 ///
200 /// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier.
201 enum ObjCDeclQualifier {
202 OBJC_TQ_None = 0x0,
203 OBJC_TQ_In = 0x1,
204 OBJC_TQ_Inout = 0x2,
205 OBJC_TQ_Out = 0x4,
206 OBJC_TQ_Bycopy = 0x8,
207 OBJC_TQ_Byref = 0x10,
208 OBJC_TQ_Oneway = 0x20,
209
210 /// The nullability qualifier is set when the nullability of the
211 /// result or parameter was expressed via a context-sensitive
212 /// keyword.
213 OBJC_TQ_CSNullability = 0x40
214 };
215
216 /// The kind of ownership a declaration has, for visibility purposes.
217 /// This enumeration is designed such that higher values represent higher
218 /// levels of name hiding.
219 enum class ModuleOwnershipKind : unsigned {
220 /// This declaration is not owned by a module.
221 Unowned,
222
223 /// This declaration has an owning module, but is globally visible
224 /// (typically because its owning module is visible and we know that
225 /// modules cannot later become hidden in this compilation).
226 /// After serialization and deserialization, this will be converted
227 /// to VisibleWhenImported.
228 Visible,
229
230 /// This declaration has an owning module, and is visible when that
231 /// module is imported.
232 VisibleWhenImported,
233
234 /// This declaration has an owning module, but is only visible to
235 /// lookups that occur within that module.
236 ModulePrivate
237 };
238
239protected:
240 /// The next declaration within the same lexical
241 /// DeclContext. These pointers form the linked list that is
242 /// traversed via DeclContext's decls_begin()/decls_end().
243 ///
244 /// The extra two bits are used for the ModuleOwnershipKind.
245 llvm::PointerIntPair<Decl *, 2, ModuleOwnershipKind> NextInContextAndBits;
246
247private:
248 friend class DeclContext;
249
250 struct MultipleDC {
251 DeclContext *SemanticDC;
252 DeclContext *LexicalDC;
253 };
254
255 /// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
256 /// For declarations that don't contain C++ scope specifiers, it contains
257 /// the DeclContext where the Decl was declared.
258 /// For declarations with C++ scope specifiers, it contains a MultipleDC*
259 /// with the context where it semantically belongs (SemanticDC) and the
260 /// context where it was lexically declared (LexicalDC).
261 /// e.g.:
262 ///
263 /// namespace A {
264 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
265 /// }
266 /// void A::f(); // SemanticDC == namespace 'A'
267 /// // LexicalDC == global namespace
268 llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
269
270 bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
271 bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
272
273 MultipleDC *getMultipleDC() const {
274 return DeclCtx.get<MultipleDC*>();
275 }
276
277 DeclContext *getSemanticDC() const {
278 return DeclCtx.get<DeclContext*>();
279 }
280
281 /// Loc - The location of this decl.
282 SourceLocation Loc;
283
284 /// DeclKind - This indicates which class this is.
285 unsigned DeclKind : 7;
286
287 /// InvalidDecl - This indicates a semantic error occurred.
288 unsigned InvalidDecl : 1;
289
290 /// HasAttrs - This indicates whether the decl has attributes or not.
291 unsigned HasAttrs : 1;
292
293 /// Implicit - Whether this declaration was implicitly generated by
294 /// the implementation rather than explicitly written by the user.
295 unsigned Implicit : 1;
296
297 /// Whether this declaration was "used", meaning that a definition is
298 /// required.
299 unsigned Used : 1;
300
301 /// Whether this declaration was "referenced".
302 /// The difference with 'Used' is whether the reference appears in a
303 /// evaluated context or not, e.g. functions used in uninstantiated templates
304 /// are regarded as "referenced" but not "used".
305 unsigned Referenced : 1;
306
307 /// Whether this declaration is a top-level declaration (function,
308 /// global variable, etc.) that is lexically inside an objc container
309 /// definition.
310 unsigned TopLevelDeclInObjCContainer : 1;
311
312 /// Whether statistic collection is enabled.
313 static bool StatisticsEnabled;
314
315protected:
316 friend class ASTDeclReader;
317 friend class ASTDeclWriter;
318 friend class ASTNodeImporter;
319 friend class ASTReader;
320 friend class CXXClassMemberWrapper;
321 friend class LinkageComputer;
322 template<typename decl_type> friend class Redeclarable;
323
324 /// Access - Used by C++ decls for the access specifier.
325 // NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
326 unsigned Access : 2;
327
328 /// Whether this declaration was loaded from an AST file.
329 unsigned FromASTFile : 1;
330
331 /// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
332 unsigned IdentifierNamespace : 14;
333
334 /// If 0, we have not computed the linkage of this declaration.
335 /// Otherwise, it is the linkage + 1.
336 mutable unsigned CacheValidAndLinkage : 3;
337
338 /// Allocate memory for a deserialized declaration.
339 ///
340 /// This routine must be used to allocate memory for any declaration that is
341 /// deserialized from a module file.
342 ///
343 /// \param Size The size of the allocated object.
344 /// \param Ctx The context in which we will allocate memory.
345 /// \param ID The global ID of the deserialized declaration.
346 /// \param Extra The amount of extra space to allocate after the object.
347 void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID,
348 std::size_t Extra = 0);
349
350 /// Allocate memory for a non-deserialized declaration.
351 void *operator new(std::size_t Size, const ASTContext &Ctx,
352 DeclContext *Parent, std::size_t Extra = 0);
353
354private:
355 bool AccessDeclContextSanity() const;
356
357 /// Get the module ownership kind to use for a local lexical child of \p DC,
358 /// which may be either a local or (rarely) an imported declaration.
359 static ModuleOwnershipKind getModuleOwnershipKindForChildOf(DeclContext *DC) {
360 if (DC) {
361 auto *D = cast<Decl>(DC);
362 auto MOK = D->getModuleOwnershipKind();
363 if (MOK != ModuleOwnershipKind::Unowned &&
364 (!D->isFromASTFile() || D->hasLocalOwningModuleStorage()))
365 return MOK;
366 // If D is not local and we have no local module storage, then we don't
367 // need to track module ownership at all.
368 }
369 return ModuleOwnershipKind::Unowned;
370 }
371
372public:
373 Decl() = delete;
374 Decl(const Decl&) = delete;
375 Decl(Decl &&) = delete;
376 Decl &operator=(const Decl&) = delete;
377 Decl &operator=(Decl&&) = delete;
378
379protected:
380 Decl(Kind DK, DeclContext *DC, SourceLocation L)
381 : NextInContextAndBits(nullptr, getModuleOwnershipKindForChildOf(DC)),
382 DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(false), HasAttrs(false),
383 Implicit(false), Used(false), Referenced(false),
384 TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0),
385 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
386 CacheValidAndLinkage(0) {
387 if (StatisticsEnabled) add(DK);
388 }
389
390 Decl(Kind DK, EmptyShell Empty)
391 : DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false),
392 Used(false), Referenced(false), TopLevelDeclInObjCContainer(false),
393 Access(AS_none), FromASTFile(0),
394 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
395 CacheValidAndLinkage(0) {
396 if (StatisticsEnabled) add(DK);
397 }
398
399 virtual ~Decl();
400
401 /// Update a potentially out-of-date declaration.
402 void updateOutOfDate(IdentifierInfo &II) const;
403
404 Linkage getCachedLinkage() const {
405 return Linkage(CacheValidAndLinkage - 1);
406 }
407
408 void setCachedLinkage(Linkage L) const {
409 CacheValidAndLinkage = L + 1;
410 }
411
412 bool hasCachedLinkage() const {
413 return CacheValidAndLinkage;
414 }
415
416public:
417 /// Source range that this declaration covers.
418 virtual SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
419 return SourceRange(getLocation(), getLocation());
420 }
421
422 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
423 return getSourceRange().getBegin();
424 }
425
426 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
427 return getSourceRange().getEnd();
428 }
429
430 SourceLocation getLocation() const { return Loc; }
431 void setLocation(SourceLocation L) { Loc = L; }
432
433 Kind getKind() const { return static_cast<Kind>(DeclKind); }
434 const char *getDeclKindName() const;
435
436 Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); }
437 const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();}
438
439 DeclContext *getDeclContext() {
440 if (isInSemaDC())
441 return getSemanticDC();
442 return getMultipleDC()->SemanticDC;
443 }
444 const DeclContext *getDeclContext() const {
445 return const_cast<Decl*>(this)->getDeclContext();
446 }
447
448 /// Find the innermost non-closure ancestor of this declaration,
449 /// walking up through blocks, lambdas, etc. If that ancestor is
450 /// not a code context (!isFunctionOrMethod()), returns null.
451 ///
452 /// A declaration may be its own non-closure context.
453 Decl *getNonClosureContext();
454 const Decl *getNonClosureContext() const {
455 return const_cast<Decl*>(this)->getNonClosureContext();
456 }
457
458 TranslationUnitDecl *getTranslationUnitDecl();
459 const TranslationUnitDecl *getTranslationUnitDecl() const {
460 return const_cast<Decl*>(this)->getTranslationUnitDecl();
461 }
462
463 bool isInAnonymousNamespace() const;
464
465 bool isInStdNamespace() const;
466
467 ASTContext &getASTContext() const LLVM_READONLY__attribute__((__pure__));
468
469 /// Helper to get the language options from the ASTContext.
470 /// Defined out of line to avoid depending on ASTContext.h.
471 const LangOptions &getLangOpts() const LLVM_READONLY__attribute__((__pure__));
472
473 void setAccess(AccessSpecifier AS) {
474 Access = AS;
475 assert(AccessDeclContextSanity())((void)0);
476 }
477
478 AccessSpecifier getAccess() const {
479 assert(AccessDeclContextSanity())((void)0);
480 return AccessSpecifier(Access);
481 }
482
483 /// Retrieve the access specifier for this declaration, even though
484 /// it may not yet have been properly set.
485 AccessSpecifier getAccessUnsafe() const {
486 return AccessSpecifier(Access);
487 }
488
489 bool hasAttrs() const { return HasAttrs; }
490
491 void setAttrs(const AttrVec& Attrs) {
492 return setAttrsImpl(Attrs, getASTContext());
493 }
494
495 AttrVec &getAttrs() {
496 return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs());
497 }
498
499 const AttrVec &getAttrs() const;
500 void dropAttrs();
501 void addAttr(Attr *A);
502
503 using attr_iterator = AttrVec::const_iterator;
504 using attr_range = llvm::iterator_range<attr_iterator>;
505
506 attr_range attrs() const {
507 return attr_range(attr_begin(), attr_end());
508 }
509
510 attr_iterator attr_begin() const {
511 return hasAttrs() ? getAttrs().begin() : nullptr;
512 }
513 attr_iterator attr_end() const {
514 return hasAttrs() ? getAttrs().end() : nullptr;
515 }
516
517 template <typename T>
518 void dropAttr() {
519 if (!HasAttrs) return;
520
521 AttrVec &Vec = getAttrs();
522 llvm::erase_if(Vec, [](Attr *A) { return isa<T>(A); });
523
524 if (Vec.empty())
525 HasAttrs = false;
526 }
527
528 template <typename T>
529 llvm::iterator_range<specific_attr_iterator<T>> specific_attrs() const {
530 return llvm::make_range(specific_attr_begin<T>(), specific_attr_end<T>());
531 }
532
533 template <typename T>
534 specific_attr_iterator<T> specific_attr_begin() const {
535 return specific_attr_iterator<T>(attr_begin());
536 }
537
538 template <typename T>
539 specific_attr_iterator<T> specific_attr_end() const {
540 return specific_attr_iterator<T>(attr_end());
541 }
542
543 template<typename T> T *getAttr() const {
544 return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : nullptr;
545 }
546
547 template<typename T> bool hasAttr() const {
548 return hasAttrs() && hasSpecificAttr<T>(getAttrs());
549 }
550
551 /// getMaxAlignment - return the maximum alignment specified by attributes
552 /// on this decl, 0 if there are none.
553 unsigned getMaxAlignment() const;
554
555 /// setInvalidDecl - Indicates the Decl had a semantic error. This
556 /// allows for graceful error recovery.
557 void setInvalidDecl(bool Invalid = true);
558 bool isInvalidDecl() const { return (bool) InvalidDecl; }
559
560 /// isImplicit - Indicates whether the declaration was implicitly
561 /// generated by the implementation. If false, this declaration
562 /// was written explicitly in the source code.
563 bool isImplicit() const { return Implicit; }
564 void setImplicit(bool I = true) { Implicit = I; }
565
566 /// Whether *any* (re-)declaration of the entity was used, meaning that
567 /// a definition is required.
568 ///
569 /// \param CheckUsedAttr When true, also consider the "used" attribute
570 /// (in addition to the "used" bit set by \c setUsed()) when determining
571 /// whether the function is used.
572 bool isUsed(bool CheckUsedAttr = true) const;
573
574 /// Set whether the declaration is used, in the sense of odr-use.
575 ///
576 /// This should only be used immediately after creating a declaration.
577 /// It intentionally doesn't notify any listeners.
578 void setIsUsed() { getCanonicalDecl()->Used = true; }
579
580 /// Mark the declaration used, in the sense of odr-use.
581 ///
582 /// This notifies any mutation listeners in addition to setting a bit
583 /// indicating the declaration is used.
584 void markUsed(ASTContext &C);
585
586 /// Whether any declaration of this entity was referenced.
587 bool isReferenced() const;
588
589 /// Whether this declaration was referenced. This should not be relied
590 /// upon for anything other than debugging.
591 bool isThisDeclarationReferenced() const { return Referenced; }
592
593 void setReferenced(bool R = true) { Referenced = R; }
594
595 /// Whether this declaration is a top-level declaration (function,
596 /// global variable, etc.) that is lexically inside an objc container
597 /// definition.
598 bool isTopLevelDeclInObjCContainer() const {
599 return TopLevelDeclInObjCContainer;
600 }
601
602 void setTopLevelDeclInObjCContainer(bool V = true) {
603 TopLevelDeclInObjCContainer = V;
604 }
605
606 /// Looks on this and related declarations for an applicable
607 /// external source symbol attribute.
608 ExternalSourceSymbolAttr *getExternalSourceSymbolAttr() const;
609
610 /// Whether this declaration was marked as being private to the
611 /// module in which it was defined.
612 bool isModulePrivate() const {
613 return getModuleOwnershipKind() == ModuleOwnershipKind::ModulePrivate;
614 }
615
616 /// Return true if this declaration has an attribute which acts as
617 /// definition of the entity, such as 'alias' or 'ifunc'.
618 bool hasDefiningAttr() const;
619
620 /// Return this declaration's defining attribute if it has one.
621 const Attr *getDefiningAttr() const;
622
623protected:
624 /// Specify that this declaration was marked as being private
625 /// to the module in which it was defined.
626 void setModulePrivate() {
627 // The module-private specifier has no effect on unowned declarations.
628 // FIXME: We should track this in some way for source fidelity.
629 if (getModuleOwnershipKind() == ModuleOwnershipKind::Unowned)
630 return;
631 setModuleOwnershipKind(ModuleOwnershipKind::ModulePrivate);
632 }
633
634public:
635 /// Set the FromASTFile flag. This indicates that this declaration
636 /// was deserialized and not parsed from source code and enables
637 /// features such as module ownership information.
638 void setFromASTFile() {
639 FromASTFile = true;
640 }
641
642 /// Set the owning module ID. This may only be called for
643 /// deserialized Decls.
644 void setOwningModuleID(unsigned ID) {
645 assert(isFromASTFile() && "Only works on a deserialized declaration")((void)0);
646 *((unsigned*)this - 2) = ID;
647 }
648
649public:
650 /// Determine the availability of the given declaration.
651 ///
652 /// This routine will determine the most restrictive availability of
653 /// the given declaration (e.g., preferring 'unavailable' to
654 /// 'deprecated').
655 ///
656 /// \param Message If non-NULL and the result is not \c
657 /// AR_Available, will be set to a (possibly empty) message
658 /// describing why the declaration has not been introduced, is
659 /// deprecated, or is unavailable.
660 ///
661 /// \param EnclosingVersion The version to compare with. If empty, assume the
662 /// deployment target version.
663 ///
664 /// \param RealizedPlatform If non-NULL and the availability result is found
665 /// in an available attribute it will set to the platform which is written in
666 /// the available attribute.
667 AvailabilityResult
668 getAvailability(std::string *Message = nullptr,
669 VersionTuple EnclosingVersion = VersionTuple(),
670 StringRef *RealizedPlatform = nullptr) const;
671
672 /// Retrieve the version of the target platform in which this
673 /// declaration was introduced.
674 ///
675 /// \returns An empty version tuple if this declaration has no 'introduced'
676 /// availability attributes, or the version tuple that's specified in the
677 /// attribute otherwise.
678 VersionTuple getVersionIntroduced() const;
679
680 /// Determine whether this declaration is marked 'deprecated'.
681 ///
682 /// \param Message If non-NULL and the declaration is deprecated,
683 /// this will be set to the message describing why the declaration
684 /// was deprecated (which may be empty).
685 bool isDeprecated(std::string *Message = nullptr) const {
686 return getAvailability(Message) == AR_Deprecated;
687 }
688
689 /// Determine whether this declaration is marked 'unavailable'.
690 ///
691 /// \param Message If non-NULL and the declaration is unavailable,
692 /// this will be set to the message describing why the declaration
693 /// was made unavailable (which may be empty).
694 bool isUnavailable(std::string *Message = nullptr) const {
695 return getAvailability(Message) == AR_Unavailable;
696 }
697
698 /// Determine whether this is a weak-imported symbol.
699 ///
700 /// Weak-imported symbols are typically marked with the
701 /// 'weak_import' attribute, but may also be marked with an
702 /// 'availability' attribute where we're targing a platform prior to
703 /// the introduction of this feature.
704 bool isWeakImported() const;
705
706 /// Determines whether this symbol can be weak-imported,
707 /// e.g., whether it would be well-formed to add the weak_import
708 /// attribute.
709 ///
710 /// \param IsDefinition Set to \c true to indicate that this
711 /// declaration cannot be weak-imported because it has a definition.
712 bool canBeWeakImported(bool &IsDefinition) const;
713
714 /// Determine whether this declaration came from an AST file (such as
715 /// a precompiled header or module) rather than having been parsed.
716 bool isFromASTFile() const { return FromASTFile; }
717
718 /// Retrieve the global declaration ID associated with this
719 /// declaration, which specifies where this Decl was loaded from.
720 unsigned getGlobalID() const {
721 if (isFromASTFile())
722 return *((const unsigned*)this - 1);
723 return 0;
724 }
725
726 /// Retrieve the global ID of the module that owns this particular
727 /// declaration.
728 unsigned getOwningModuleID() const {
729 if (isFromASTFile())
730 return *((const unsigned*)this - 2);
731 return 0;
732 }
733
734private:
735 Module *getOwningModuleSlow() const;
736
737protected:
738 bool hasLocalOwningModuleStorage() const;
739
740public:
741 /// Get the imported owning module, if this decl is from an imported
742 /// (non-local) module.
743 Module *getImportedOwningModule() const {
744 if (!isFromASTFile() || !hasOwningModule())
745 return nullptr;
746
747 return getOwningModuleSlow();
748 }
749
750 /// Get the local owning module, if known. Returns nullptr if owner is
751 /// not yet known or declaration is not from a module.
752 Module *getLocalOwningModule() const {
753 if (isFromASTFile() || !hasOwningModule())
754 return nullptr;
755
756 assert(hasLocalOwningModuleStorage() &&((void)0)
757 "owned local decl but no local module storage")((void)0);
758 return reinterpret_cast<Module *const *>(this)[-1];
759 }
760 void setLocalOwningModule(Module *M) {
761 assert(!isFromASTFile() && hasOwningModule() &&((void)0)
762 hasLocalOwningModuleStorage() &&((void)0)
763 "should not have a cached owning module")((void)0);
764 reinterpret_cast<Module **>(this)[-1] = M;
765 }
766
767 /// Is this declaration owned by some module?
768 bool hasOwningModule() const {
769 return getModuleOwnershipKind() != ModuleOwnershipKind::Unowned;
770 }
771
772 /// Get the module that owns this declaration (for visibility purposes).
773 Module *getOwningModule() const {
774 return isFromASTFile() ? getImportedOwningModule() : getLocalOwningModule();
775 }
776
777 /// Get the module that owns this declaration for linkage purposes.
778 /// There only ever is such a module under the C++ Modules TS.
779 ///
780 /// \param IgnoreLinkage Ignore the linkage of the entity; assume that
781 /// all declarations in a global module fragment are unowned.
782 Module *getOwningModuleForLinkage(bool IgnoreLinkage = false) const;
783
784 /// Determine whether this declaration is definitely visible to name lookup,
785 /// independent of whether the owning module is visible.
786 /// Note: The declaration may be visible even if this returns \c false if the
787 /// owning module is visible within the query context. This is a low-level
788 /// helper function; most code should be calling Sema::isVisible() instead.
789 bool isUnconditionallyVisible() const {
790 return (int)getModuleOwnershipKind() <= (int)ModuleOwnershipKind::Visible;
791 }
792
793 /// Set that this declaration is globally visible, even if it came from a
794 /// module that is not visible.
795 void setVisibleDespiteOwningModule() {
796 if (!isUnconditionallyVisible())
797 setModuleOwnershipKind(ModuleOwnershipKind::Visible);
798 }
799
800 /// Get the kind of module ownership for this declaration.
801 ModuleOwnershipKind getModuleOwnershipKind() const {
802 return NextInContextAndBits.getInt();
803 }
804
805 /// Set whether this declaration is hidden from name lookup.
806 void setModuleOwnershipKind(ModuleOwnershipKind MOK) {
807 assert(!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&((void)0)
808 MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() &&((void)0)
809 !hasLocalOwningModuleStorage()) &&((void)0)
810 "no storage available for owning module for this declaration")((void)0);
811 NextInContextAndBits.setInt(MOK);
812 }
813
814 unsigned getIdentifierNamespace() const {
815 return IdentifierNamespace;
816 }
817
818 bool isInIdentifierNamespace(unsigned NS) const {
819 return getIdentifierNamespace() & NS;
820 }
821
822 static unsigned getIdentifierNamespaceForKind(Kind DK);
823
824 bool hasTagIdentifierNamespace() const {
825 return isTagIdentifierNamespace(getIdentifierNamespace());
826 }
827
828 static bool isTagIdentifierNamespace(unsigned NS) {
829 // TagDecls have Tag and Type set and may also have TagFriend.
830 return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type);
831 }
832
833 /// getLexicalDeclContext - The declaration context where this Decl was
834 /// lexically declared (LexicalDC). May be different from
835 /// getDeclContext() (SemanticDC).
836 /// e.g.:
837 ///
838 /// namespace A {
839 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
840 /// }
841 /// void A::f(); // SemanticDC == namespace 'A'
842 /// // LexicalDC == global namespace
843 DeclContext *getLexicalDeclContext() {
844 if (isInSemaDC())
845 return getSemanticDC();
846 return getMultipleDC()->LexicalDC;
847 }
848 const DeclContext *getLexicalDeclContext() const {
849 return const_cast<Decl*>(this)->getLexicalDeclContext();
850 }
851
852 /// Determine whether this declaration is declared out of line (outside its
853 /// semantic context).
854 virtual bool isOutOfLine() const;
855
856 /// setDeclContext - Set both the semantic and lexical DeclContext
857 /// to DC.
858 void setDeclContext(DeclContext *DC);
859
860 void setLexicalDeclContext(DeclContext *DC);
861
862 /// Determine whether this declaration is a templated entity (whether it is
863 // within the scope of a template parameter).
864 bool isTemplated() const;
865
866 /// Determine the number of levels of template parameter surrounding this
867 /// declaration.
868 unsigned getTemplateDepth() const;
869
870 /// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
871 /// scoped decl is defined outside the current function or method. This is
872 /// roughly global variables and functions, but also handles enums (which
873 /// could be defined inside or outside a function etc).
874 bool isDefinedOutsideFunctionOrMethod() const {
875 return getParentFunctionOrMethod() == nullptr;
876 }
877
878 /// Determine whether a substitution into this declaration would occur as
879 /// part of a substitution into a dependent local scope. Such a substitution
880 /// transitively substitutes into all constructs nested within this
881 /// declaration.
882 ///
883 /// This recognizes non-defining declarations as well as members of local
884 /// classes and lambdas:
885 /// \code
886 /// template<typename T> void foo() { void bar(); }
887 /// template<typename T> void foo2() { class ABC { void bar(); }; }
888 /// template<typename T> inline int x = [](){ return 0; }();
889 /// \endcode
890 bool isInLocalScopeForInstantiation() const;
891
892 /// If this decl is defined inside a function/method/block it returns
893 /// the corresponding DeclContext, otherwise it returns null.
894 const DeclContext *getParentFunctionOrMethod() const;
895 DeclContext *getParentFunctionOrMethod() {
896 return const_cast<DeclContext*>(
897 const_cast<const Decl*>(this)->getParentFunctionOrMethod());
898 }
899
900 /// Retrieves the "canonical" declaration of the given declaration.
901 virtual Decl *getCanonicalDecl() { return this; }
902 const Decl *getCanonicalDecl() const {
903 return const_cast<Decl*>(this)->getCanonicalDecl();
904 }
905
906 /// Whether this particular Decl is a canonical one.
907 bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
908
909protected:
910 /// Returns the next redeclaration or itself if this is the only decl.
911 ///
912 /// Decl subclasses that can be redeclared should override this method so that
913 /// Decl::redecl_iterator can iterate over them.
914 virtual Decl *getNextRedeclarationImpl() { return this; }
915
916 /// Implementation of getPreviousDecl(), to be overridden by any
917 /// subclass that has a redeclaration chain.
918 virtual Decl *getPreviousDeclImpl() { return nullptr; }
919
920 /// Implementation of getMostRecentDecl(), to be overridden by any
921 /// subclass that has a redeclaration chain.
922 virtual Decl *getMostRecentDeclImpl() { return this; }
923
924public:
925 /// Iterates through all the redeclarations of the same decl.
926 class redecl_iterator {
927 /// Current - The current declaration.
928 Decl *Current = nullptr;
929 Decl *Starter;
930
931 public:
932 using value_type = Decl *;
933 using reference = const value_type &;
934 using pointer = const value_type *;
935 using iterator_category = std::forward_iterator_tag;
936 using difference_type = std::ptrdiff_t;
937
938 redecl_iterator() = default;
939 explicit redecl_iterator(Decl *C) : Current(C), Starter(C) {}
940
941 reference operator*() const { return Current; }
942 value_type operator->() const { return Current; }
943
944 redecl_iterator& operator++() {
945 assert(Current && "Advancing while iterator has reached end")((void)0);
946 // Get either previous decl or latest decl.
947 Decl *Next = Current->getNextRedeclarationImpl();
948 assert(Next && "Should return next redeclaration or itself, never null!")((void)0);
949 Current = (Next != Starter) ? Next : nullptr;
950 return *this;
951 }
952
953 redecl_iterator operator++(int) {
954 redecl_iterator tmp(*this);
955 ++(*this);
956 return tmp;
957 }
958
959 friend bool operator==(redecl_iterator x, redecl_iterator y) {
960 return x.Current == y.Current;
961 }
962
963 friend bool operator!=(redecl_iterator x, redecl_iterator y) {
964 return x.Current != y.Current;
965 }
966 };
967
968 using redecl_range = llvm::iterator_range<redecl_iterator>;
969
970 /// Returns an iterator range for all the redeclarations of the same
971 /// decl. It will iterate at least once (when this decl is the only one).
972 redecl_range redecls() const {
973 return redecl_range(redecls_begin(), redecls_end());
974 }
975
976 redecl_iterator redecls_begin() const {
977 return redecl_iterator(const_cast<Decl *>(this));
978 }
979
980 redecl_iterator redecls_end() const { return redecl_iterator(); }
981
982 /// Retrieve the previous declaration that declares the same entity
983 /// as this declaration, or NULL if there is no previous declaration.
984 Decl *getPreviousDecl() { return getPreviousDeclImpl(); }
985
986 /// Retrieve the previous declaration that declares the same entity
987 /// as this declaration, or NULL if there is no previous declaration.
988 const Decl *getPreviousDecl() const {
989 return const_cast<Decl *>(this)->getPreviousDeclImpl();
990 }
991
992 /// True if this is the first declaration in its redeclaration chain.
993 bool isFirstDecl() const {
994 return getPreviousDecl() == nullptr;
995 }
996
997 /// Retrieve the most recent declaration that declares the same entity
998 /// as this declaration (which may be this declaration).
999 Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); }
1000
1001 /// Retrieve the most recent declaration that declares the same entity
1002 /// as this declaration (which may be this declaration).
1003 const Decl *getMostRecentDecl() const {
1004 return const_cast<Decl *>(this)->getMostRecentDeclImpl();
1005 }
1006
1007 /// getBody - If this Decl represents a declaration for a body of code,
1008 /// such as a function or method definition, this method returns the
1009 /// top-level Stmt* of that body. Otherwise this method returns null.
1010 virtual Stmt* getBody() const { return nullptr; }
1011
1012 /// Returns true if this \c Decl represents a declaration for a body of
1013 /// code, such as a function or method definition.
1014 /// Note that \c hasBody can also return true if any redeclaration of this
1015 /// \c Decl represents a declaration for a body of code.
1016 virtual bool hasBody() const { return getBody() != nullptr; }
1017
1018 /// getBodyRBrace - Gets the right brace of the body, if a body exists.
1019 /// This works whether the body is a CompoundStmt or a CXXTryStmt.
1020 SourceLocation getBodyRBrace() const;
1021
1022 // global temp stats (until we have a per-module visitor)
1023 static void add(Kind k);
1024 static void EnableStatistics();
1025 static void PrintStats();
1026
1027 /// isTemplateParameter - Determines whether this declaration is a
1028 /// template parameter.
1029 bool isTemplateParameter() const;
1030
1031 /// isTemplateParameter - Determines whether this declaration is a
1032 /// template parameter pack.
1033 bool isTemplateParameterPack() const;
1034
1035 /// Whether this declaration is a parameter pack.
1036 bool isParameterPack() const;
1037
1038 /// returns true if this declaration is a template
1039 bool isTemplateDecl() const;
1040
1041 /// Whether this declaration is a function or function template.
1042 bool isFunctionOrFunctionTemplate() const {
1043 return (DeclKind >= Decl::firstFunction &&
1044 DeclKind <= Decl::lastFunction) ||
1045 DeclKind == FunctionTemplate;
1046 }
1047
1048 /// If this is a declaration that describes some template, this
1049 /// method returns that template declaration.
1050 ///
1051 /// Note that this returns nullptr for partial specializations, because they
1052 /// are not modeled as TemplateDecls. Use getDescribedTemplateParams to handle
1053 /// those cases.
1054 TemplateDecl *getDescribedTemplate() const;
1055
1056 /// If this is a declaration that describes some template or partial
1057 /// specialization, this returns the corresponding template parameter list.
1058 const TemplateParameterList *getDescribedTemplateParams() const;
1059
1060 /// Returns the function itself, or the templated function if this is a
1061 /// function template.
1062 FunctionDecl *getAsFunction() LLVM_READONLY__attribute__((__pure__));
1063
1064 const FunctionDecl *getAsFunction() const {
1065 return const_cast<Decl *>(this)->getAsFunction();
1066 }
1067
1068 /// Changes the namespace of this declaration to reflect that it's
1069 /// a function-local extern declaration.
1070 ///
1071 /// These declarations appear in the lexical context of the extern
1072 /// declaration, but in the semantic context of the enclosing namespace
1073 /// scope.
1074 void setLocalExternDecl() {
1075 Decl *Prev = getPreviousDecl();
1076 IdentifierNamespace &= ~IDNS_Ordinary;
1077
1078 // It's OK for the declaration to still have the "invisible friend" flag or
1079 // the "conflicts with tag declarations in this scope" flag for the outer
1080 // scope.
1081 assert((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 &&((void)0)
1082 "namespace is not ordinary")((void)0);
1083
1084 IdentifierNamespace |= IDNS_LocalExtern;
1085 if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)
1086 IdentifierNamespace |= IDNS_Ordinary;
1087 }
1088
1089 /// Determine whether this is a block-scope declaration with linkage.
1090 /// This will either be a local variable declaration declared 'extern', or a
1091 /// local function declaration.
1092 bool isLocalExternDecl() {
1093 return IdentifierNamespace & IDNS_LocalExtern;
1094 }
1095
1096 /// Changes the namespace of this declaration to reflect that it's
1097 /// the object of a friend declaration.
1098 ///
1099 /// These declarations appear in the lexical context of the friending
1100 /// class, but in the semantic context of the actual entity. This property
1101 /// applies only to a specific decl object; other redeclarations of the
1102 /// same entity may not (and probably don't) share this property.
1103 void setObjectOfFriendDecl(bool PerformFriendInjection = false) {
1104 unsigned OldNS = IdentifierNamespace;
1105 assert((OldNS & (IDNS_Tag | IDNS_Ordinary |((void)0)
1106 IDNS_TagFriend | IDNS_OrdinaryFriend |((void)0)
1107 IDNS_LocalExtern | IDNS_NonMemberOperator)) &&((void)0)
1108 "namespace includes neither ordinary nor tag")((void)0);
1109 assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type |((void)0)
1110 IDNS_TagFriend | IDNS_OrdinaryFriend |((void)0)
1111 IDNS_LocalExtern | IDNS_NonMemberOperator)) &&((void)0)
1112 "namespace includes other than ordinary or tag")((void)0);
1113
1114 Decl *Prev = getPreviousDecl();
1115 IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type);
1116
1117 if (OldNS & (IDNS_Tag | IDNS_TagFriend)) {
1118 IdentifierNamespace |= IDNS_TagFriend;
1119 if (PerformFriendInjection ||
1120 (Prev && Prev->getIdentifierNamespace() & IDNS_Tag))
1121 IdentifierNamespace |= IDNS_Tag | IDNS_Type;
1122 }
1123
1124 if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend |
1125 IDNS_LocalExtern | IDNS_NonMemberOperator)) {
1126 IdentifierNamespace |= IDNS_OrdinaryFriend;
1127 if (PerformFriendInjection ||
1128 (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary))
1129 IdentifierNamespace |= IDNS_Ordinary;
1130 }
1131 }
1132
1133 enum FriendObjectKind {
1134 FOK_None, ///< Not a friend object.
1135 FOK_Declared, ///< A friend of a previously-declared entity.
1136 FOK_Undeclared ///< A friend of a previously-undeclared entity.
1137 };
1138
1139 /// Determines whether this declaration is the object of a
1140 /// friend declaration and, if so, what kind.
1141 ///
1142 /// There is currently no direct way to find the associated FriendDecl.
1143 FriendObjectKind getFriendObjectKind() const {
1144 unsigned mask =
1145 (IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend));
1146 if (!mask) return FOK_None;
1147 return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared
1148 : FOK_Undeclared);
1149 }
1150
1151 /// Specifies that this declaration is a C++ overloaded non-member.
1152 void setNonMemberOperator() {
1153 assert(getKind() == Function || getKind() == FunctionTemplate)((void)0);
1154 assert((IdentifierNamespace & IDNS_Ordinary) &&((void)0)
1155 "visible non-member operators should be in ordinary namespace")((void)0);
1156 IdentifierNamespace |= IDNS_NonMemberOperator;
1157 }
1158
1159 static bool classofKind(Kind K) { return true; }
1160 static DeclContext *castToDeclContext(const Decl *);
1161 static Decl *castFromDeclContext(const DeclContext *);
1162
1163 void print(raw_ostream &Out, unsigned Indentation = 0,
1164 bool PrintInstantiation = false) const;
1165 void print(raw_ostream &Out, const PrintingPolicy &Policy,
1166 unsigned Indentation = 0, bool PrintInstantiation = false) const;
1167 static void printGroup(Decl** Begin, unsigned NumDecls,
1168 raw_ostream &Out, const PrintingPolicy &Policy,
1169 unsigned Indentation = 0);
1170
1171 // Debuggers don't usually respect default arguments.
1172 void dump() const;
1173
1174 // Same as dump(), but forces color printing.
1175 void dumpColor() const;
1176
1177 void dump(raw_ostream &Out, bool Deserialize = false,
1178 ASTDumpOutputFormat OutputFormat = ADOF_Default) const;
1179
1180 /// \return Unique reproducible object identifier
1181 int64_t getID() const;
1182
1183 /// Looks through the Decl's underlying type to extract a FunctionType
1184 /// when possible. Will return null if the type underlying the Decl does not
1185 /// have a FunctionType.
1186 const FunctionType *getFunctionType(bool BlocksToo = true) const;
1187
1188private:
1189 void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx);
1190 void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
1191 ASTContext &Ctx);
1192
1193protected:
1194 ASTMutationListener *getASTMutationListener() const;
1195};
1196
1197/// Determine whether two declarations declare the same entity.
1198inline bool declaresSameEntity(const Decl *D1, const Decl *D2) {
1199 if (!D1 || !D2)
1200 return false;
1201
1202 if (D1 == D2)
1203 return true;
1204
1205 return D1->getCanonicalDecl() == D2->getCanonicalDecl();
1206}
1207
1208/// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when
1209/// doing something to a specific decl.
1210class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry {
1211 const Decl *TheDecl;
1212 SourceLocation Loc;
1213 SourceManager &SM;
1214 const char *Message;
1215
1216public:
1217 PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L,
1218 SourceManager &sm, const char *Msg)
1219 : TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {}
1220
1221 void print(raw_ostream &OS) const override;
1222};
1223} // namespace clang
1224
1225// Required to determine the layout of the PointerUnion<NamedDecl*> before
1226// seeing the NamedDecl definition being first used in DeclListNode::operator*.
1227namespace llvm {
1228 template <> struct PointerLikeTypeTraits<::clang::NamedDecl *> {
1229 static inline void *getAsVoidPointer(::clang::NamedDecl *P) { return P; }
1230 static inline ::clang::NamedDecl *getFromVoidPointer(void *P) {
1231 return static_cast<::clang::NamedDecl *>(P);
1232 }
1233 static constexpr int NumLowBitsAvailable = 3;
1234 };
1235}
1236
1237namespace clang {
1238/// A list storing NamedDecls in the lookup tables.
1239class DeclListNode {
1240 friend class ASTContext; // allocate, deallocate nodes.
1241 friend class StoredDeclsList;
1242public:
1243 using Decls = llvm::PointerUnion<NamedDecl*, DeclListNode*>;
1244 class iterator {
1245 friend class DeclContextLookupResult;
1246 friend class StoredDeclsList;
1247
1248 Decls Ptr;
1249 iterator(Decls Node) : Ptr(Node) { }
1250 public:
1251 using difference_type = ptrdiff_t;
1252 using value_type = NamedDecl*;
1253 using pointer = void;
1254 using reference = value_type;
1255 using iterator_category = std::forward_iterator_tag;
1256
1257 iterator() = default;
1258
1259 reference operator*() const {
1260 assert(Ptr && "dereferencing end() iterator")((void)0);
1261 if (DeclListNode *CurNode = Ptr.dyn_cast<DeclListNode*>())
1262 return CurNode->D;
1263 return Ptr.get<NamedDecl*>();
1264 }
1265 void operator->() const { } // Unsupported.
1266 bool operator==(const iterator &X) const { return Ptr == X.Ptr; }
1267 bool operator!=(const iterator &X) const { return Ptr != X.Ptr; }
1268 inline iterator &operator++() { // ++It
1269 assert(!Ptr.isNull() && "Advancing empty iterator")((void)0);
1270
1271 if (DeclListNode *CurNode = Ptr.dyn_cast<DeclListNode*>())
1272 Ptr = CurNode->Rest;
1273 else
1274 Ptr = nullptr;
1275 return *this;
1276 }
1277 iterator operator++(int) { // It++
1278 iterator temp = *this;
1279 ++(*this);
1280 return temp;
1281 }
1282 // Enables the pattern for (iterator I =..., E = I.end(); I != E; ++I)
1283 iterator end() { return iterator(); }
1284 };
1285private:
1286 NamedDecl *D = nullptr;
1287 Decls Rest = nullptr;
1288 DeclListNode(NamedDecl *ND) : D(ND) {}
1289};
1290
1291/// The results of name lookup within a DeclContext.
1292class DeclContextLookupResult {
1293 using Decls = DeclListNode::Decls;
1294
1295 /// When in collection form, this is what the Data pointer points to.
1296 Decls Result;
1297
1298public:
1299 DeclContextLookupResult() = default;
1300 DeclContextLookupResult(Decls Result) : Result(Result) {}
1301
1302 using iterator = DeclListNode::iterator;
1303 using const_iterator = iterator;
1304 using reference = iterator::reference;
1305
1306 iterator begin() { return iterator(Result); }
1307 iterator end() { return iterator(); }
1308 const_iterator begin() const {
1309 return const_cast<DeclContextLookupResult*>(this)->begin();
1310 }
1311 const_iterator end() const { return iterator(); }
1312
1313 bool empty() const { return Result.isNull(); }
1314 bool isSingleResult() const { return Result.dyn_cast<NamedDecl*>(); }
1315 reference front() const { return *begin(); }
1316
1317 // Find the first declaration of the given type in the list. Note that this
1318 // is not in general the earliest-declared declaration, and should only be
1319 // used when it's not possible for there to be more than one match or where
1320 // it doesn't matter which one is found.
1321 template<class T> T *find_first() const {
1322 for (auto *D : *this)
1323 if (T *Decl = dyn_cast<T>(D))
1324 return Decl;
1325
1326 return nullptr;
1327 }
1328};
1329
1330/// DeclContext - This is used only as base class of specific decl types that
1331/// can act as declaration contexts. These decls are (only the top classes
1332/// that directly derive from DeclContext are mentioned, not their subclasses):
1333///
1334/// TranslationUnitDecl
1335/// ExternCContext
1336/// NamespaceDecl
1337/// TagDecl
1338/// OMPDeclareReductionDecl
1339/// OMPDeclareMapperDecl
1340/// FunctionDecl
1341/// ObjCMethodDecl
1342/// ObjCContainerDecl
1343/// LinkageSpecDecl
1344/// ExportDecl
1345/// BlockDecl
1346/// CapturedDecl
1347class DeclContext {
1348 /// For makeDeclVisibleInContextImpl
1349 friend class ASTDeclReader;
1350 /// For reconcileExternalVisibleStorage, CreateStoredDeclsMap,
1351 /// hasNeedToReconcileExternalVisibleStorage
1352 friend class ExternalASTSource;
1353 /// For CreateStoredDeclsMap
1354 friend class DependentDiagnostic;
1355 /// For hasNeedToReconcileExternalVisibleStorage,
1356 /// hasLazyLocalLexicalLookups, hasLazyExternalLexicalLookups
1357 friend class ASTWriter;
1358
1359 // We use uint64_t in the bit-fields below since some bit-fields
1360 // cross the unsigned boundary and this breaks the packing.
1361
1362 /// Stores the bits used by DeclContext.
1363 /// If modified NumDeclContextBit, the ctor of DeclContext and the accessor
1364 /// methods in DeclContext should be updated appropriately.
1365 class DeclContextBitfields {
1366 friend class DeclContext;
1367 /// DeclKind - This indicates which class this is.
1368 uint64_t DeclKind : 7;
1369
1370 /// Whether this declaration context also has some external
1371 /// storage that contains additional declarations that are lexically
1372 /// part of this context.
1373 mutable uint64_t ExternalLexicalStorage : 1;
1374
1375 /// Whether this declaration context also has some external
1376 /// storage that contains additional declarations that are visible
1377 /// in this context.
1378 mutable uint64_t ExternalVisibleStorage : 1;
1379
1380 /// Whether this declaration context has had externally visible
1381 /// storage added since the last lookup. In this case, \c LookupPtr's
1382 /// invariant may not hold and needs to be fixed before we perform
1383 /// another lookup.
1384 mutable uint64_t NeedToReconcileExternalVisibleStorage : 1;
1385
1386 /// If \c true, this context may have local lexical declarations
1387 /// that are missing from the lookup table.
1388 mutable uint64_t HasLazyLocalLexicalLookups : 1;
1389
1390 /// If \c true, the external source may have lexical declarations
1391 /// that are missing from the lookup table.
1392 mutable uint64_t HasLazyExternalLexicalLookups : 1;
1393
1394 /// If \c true, lookups should only return identifier from
1395 /// DeclContext scope (for example TranslationUnit). Used in
1396 /// LookupQualifiedName()
1397 mutable uint64_t UseQualifiedLookup : 1;
1398 };
1399
1400 /// Number of bits in DeclContextBitfields.
1401 enum { NumDeclContextBits = 13 };
1402
1403 /// Stores the bits used by TagDecl.
1404 /// If modified NumTagDeclBits and the accessor
1405 /// methods in TagDecl should be updated appropriately.
1406 class TagDeclBitfields {
1407 friend class TagDecl;
1408 /// For the bits in DeclContextBitfields
1409 uint64_t : NumDeclContextBits;
1410
1411 /// The TagKind enum.
1412 uint64_t TagDeclKind : 3;
1413
1414 /// True if this is a definition ("struct foo {};"), false if it is a
1415 /// declaration ("struct foo;"). It is not considered a definition
1416 /// until the definition has been fully processed.
1417 uint64_t IsCompleteDefinition : 1;
1418
1419 /// True if this is currently being defined.
1420 uint64_t IsBeingDefined : 1;
1421
1422 /// True if this tag declaration is "embedded" (i.e., defined or declared
1423 /// for the very first time) in the syntax of a declarator.
1424 uint64_t IsEmbeddedInDeclarator : 1;
1425
1426 /// True if this tag is free standing, e.g. "struct foo;".
1427 uint64_t IsFreeStanding : 1;
1428
1429 /// Indicates whether it is possible for declarations of this kind
1430 /// to have an out-of-date definition.
1431 ///
1432 /// This option is only enabled when modules are enabled.
1433 uint64_t MayHaveOutOfDateDef : 1;
1434
1435 /// Has the full definition of this type been required by a use somewhere in
1436 /// the TU.
1437 uint64_t IsCompleteDefinitionRequired : 1;
1438 };
1439
1440 /// Number of non-inherited bits in TagDeclBitfields.
1441 enum { NumTagDeclBits = 9 };
1442
1443 /// Stores the bits used by EnumDecl.
1444 /// If modified NumEnumDeclBit and the accessor
1445 /// methods in EnumDecl should be updated appropriately.
1446 class EnumDeclBitfields {
1447 friend class EnumDecl;
1448 /// For the bits in DeclContextBitfields.
1449 uint64_t : NumDeclContextBits;
1450 /// For the bits in TagDeclBitfields.
1451 uint64_t : NumTagDeclBits;
1452
1453 /// Width in bits required to store all the non-negative
1454 /// enumerators of this enum.
1455 uint64_t NumPositiveBits : 8;
1456
1457 /// Width in bits required to store all the negative
1458 /// enumerators of this enum.
1459 uint64_t NumNegativeBits : 8;
1460
1461 /// True if this tag declaration is a scoped enumeration. Only
1462 /// possible in C++11 mode.
1463 uint64_t IsScoped : 1;
1464
1465 /// If this tag declaration is a scoped enum,
1466 /// then this is true if the scoped enum was declared using the class
1467 /// tag, false if it was declared with the struct tag. No meaning is
1468 /// associated if this tag declaration is not a scoped enum.
1469 uint64_t IsScopedUsingClassTag : 1;
1470
1471 /// True if this is an enumeration with fixed underlying type. Only
1472 /// possible in C++11, Microsoft extensions, or Objective C mode.
1473 uint64_t IsFixed : 1;
1474
1475 /// True if a valid hash is stored in ODRHash.
1476 uint64_t HasODRHash : 1;
1477 };
1478
1479 /// Number of non-inherited bits in EnumDeclBitfields.
1480 enum { NumEnumDeclBits = 20 };
1481
1482 /// Stores the bits used by RecordDecl.
1483 /// If modified NumRecordDeclBits and the accessor
1484 /// methods in RecordDecl should be updated appropriately.
1485 class RecordDeclBitfields {
1486 friend class RecordDecl;
1487 /// For the bits in DeclContextBitfields.
1488 uint64_t : NumDeclContextBits;
1489 /// For the bits in TagDeclBitfields.
1490 uint64_t : NumTagDeclBits;
1491
1492 /// This is true if this struct ends with a flexible
1493 /// array member (e.g. int X[]) or if this union contains a struct that does.
1494 /// If so, this cannot be contained in arrays or other structs as a member.
1495 uint64_t HasFlexibleArrayMember : 1;
1496
1497 /// Whether this is the type of an anonymous struct or union.
1498 uint64_t AnonymousStructOrUnion : 1;
1499
1500 /// This is true if this struct has at least one member
1501 /// containing an Objective-C object pointer type.
1502 uint64_t HasObjectMember : 1;
1503
1504 /// This is true if struct has at least one member of
1505 /// 'volatile' type.
1506 uint64_t HasVolatileMember : 1;
1507
1508 /// Whether the field declarations of this record have been loaded
1509 /// from external storage. To avoid unnecessary deserialization of
1510 /// methods/nested types we allow deserialization of just the fields
1511 /// when needed.
1512 mutable uint64_t LoadedFieldsFromExternalStorage : 1;
1513
1514 /// Basic properties of non-trivial C structs.
1515 uint64_t NonTrivialToPrimitiveDefaultInitialize : 1;
1516 uint64_t NonTrivialToPrimitiveCopy : 1;
1517 uint64_t NonTrivialToPrimitiveDestroy : 1;
1518
1519 /// The following bits indicate whether this is or contains a C union that
1520 /// is non-trivial to default-initialize, destruct, or copy. These bits
1521 /// imply the associated basic non-triviality predicates declared above.
1522 uint64_t HasNonTrivialToPrimitiveDefaultInitializeCUnion : 1;
1523 uint64_t HasNonTrivialToPrimitiveDestructCUnion : 1;
1524 uint64_t HasNonTrivialToPrimitiveCopyCUnion : 1;
1525
1526 /// Indicates whether this struct is destroyed in the callee.
1527 uint64_t ParamDestroyedInCallee : 1;
1528
1529 /// Represents the way this type is passed to a function.
1530 uint64_t ArgPassingRestrictions : 2;
1531 };
1532
1533 /// Number of non-inherited bits in RecordDeclBitfields.
1534 enum { NumRecordDeclBits = 14 };
1535
1536 /// Stores the bits used by OMPDeclareReductionDecl.
1537 /// If modified NumOMPDeclareReductionDeclBits and the accessor
1538 /// methods in OMPDeclareReductionDecl should be updated appropriately.
1539 class OMPDeclareReductionDeclBitfields {
1540 friend class OMPDeclareReductionDecl;
1541 /// For the bits in DeclContextBitfields
1542 uint64_t : NumDeclContextBits;
1543
1544 /// Kind of initializer,
1545 /// function call or omp_priv<init_expr> initializtion.
1546 uint64_t InitializerKind : 2;
1547 };
1548
1549 /// Number of non-inherited bits in OMPDeclareReductionDeclBitfields.
1550 enum { NumOMPDeclareReductionDeclBits = 2 };
1551
1552 /// Stores the bits used by FunctionDecl.
1553 /// If modified NumFunctionDeclBits and the accessor
1554 /// methods in FunctionDecl and CXXDeductionGuideDecl
1555 /// (for IsCopyDeductionCandidate) should be updated appropriately.
1556 class FunctionDeclBitfields {
1557 friend class FunctionDecl;
1558 /// For IsCopyDeductionCandidate
1559 friend class CXXDeductionGuideDecl;
1560 /// For the bits in DeclContextBitfields.
1561 uint64_t : NumDeclContextBits;
1562
1563 uint64_t SClass : 3;
1564 uint64_t IsInline : 1;
1565 uint64_t IsInlineSpecified : 1;
1566
1567 uint64_t IsVirtualAsWritten : 1;
1568 uint64_t IsPure : 1;
1569 uint64_t HasInheritedPrototype : 1;
1570 uint64_t HasWrittenPrototype : 1;
1571 uint64_t IsDeleted : 1;
1572 /// Used by CXXMethodDecl
1573 uint64_t IsTrivial : 1;
1574
1575 /// This flag indicates whether this function is trivial for the purpose of
1576 /// calls. This is meaningful only when this function is a copy/move
1577 /// constructor or a destructor.
1578 uint64_t IsTrivialForCall : 1;
1579
1580 uint64_t IsDefaulted : 1;
1581 uint64_t IsExplicitlyDefaulted : 1;
1582 uint64_t HasDefaultedFunctionInfo : 1;
1583 uint64_t HasImplicitReturnZero : 1;
1584 uint64_t IsLateTemplateParsed : 1;
1585
1586 /// Kind of contexpr specifier as defined by ConstexprSpecKind.
1587 uint64_t ConstexprKind : 2;
1588 uint64_t InstantiationIsPending : 1;
1589
1590 /// Indicates if the function uses __try.
1591 uint64_t UsesSEHTry : 1;
1592
1593 /// Indicates if the function was a definition
1594 /// but its body was skipped.
1595 uint64_t HasSkippedBody : 1;
1596
1597 /// Indicates if the function declaration will
1598 /// have a body, once we're done parsing it.
1599 uint64_t WillHaveBody : 1;
1600
1601 /// Indicates that this function is a multiversioned
1602 /// function using attribute 'target'.
1603 uint64_t IsMultiVersion : 1;
1604
1605 /// [C++17] Only used by CXXDeductionGuideDecl. Indicates that
1606 /// the Deduction Guide is the implicitly generated 'copy
1607 /// deduction candidate' (is used during overload resolution).
1608 uint64_t IsCopyDeductionCandidate : 1;
1609
1610 /// Store the ODRHash after first calculation.
1611 uint64_t HasODRHash : 1;
1612
1613 /// Indicates if the function uses Floating Point Constrained Intrinsics
1614 uint64_t UsesFPIntrin : 1;
1615 };
1616
1617 /// Number of non-inherited bits in FunctionDeclBitfields.
1618 enum { NumFunctionDeclBits = 27 };
1619
1620 /// Stores the bits used by CXXConstructorDecl. If modified
1621 /// NumCXXConstructorDeclBits and the accessor
1622 /// methods in CXXConstructorDecl should be updated appropriately.
1623 class CXXConstructorDeclBitfields {
1624 friend class CXXConstructorDecl;
1625 /// For the bits in DeclContextBitfields.
1626 uint64_t : NumDeclContextBits;
1627 /// For the bits in FunctionDeclBitfields.
1628 uint64_t : NumFunctionDeclBits;
1629
1630 /// 24 bits to fit in the remaining available space.
1631 /// Note that this makes CXXConstructorDeclBitfields take
1632 /// exactly 64 bits and thus the width of NumCtorInitializers
1633 /// will need to be shrunk if some bit is added to NumDeclContextBitfields,
1634 /// NumFunctionDeclBitfields or CXXConstructorDeclBitfields.
1635 uint64_t NumCtorInitializers : 21;
1636 uint64_t IsInheritingConstructor : 1;
1637
1638 /// Whether this constructor has a trail-allocated explicit specifier.
1639 uint64_t HasTrailingExplicitSpecifier : 1;
1640 /// If this constructor does't have a trail-allocated explicit specifier.
1641 /// Whether this constructor is explicit specified.
1642 uint64_t IsSimpleExplicit : 1;
1643 };
1644
1645 /// Number of non-inherited bits in CXXConstructorDeclBitfields.
1646 enum {
1647 NumCXXConstructorDeclBits = 64 - NumDeclContextBits - NumFunctionDeclBits
1648 };
1649
1650 /// Stores the bits used by ObjCMethodDecl.
1651 /// If modified NumObjCMethodDeclBits and the accessor
1652 /// methods in ObjCMethodDecl should be updated appropriately.
1653 class ObjCMethodDeclBitfields {
1654 friend class ObjCMethodDecl;
1655
1656 /// For the bits in DeclContextBitfields.
1657 uint64_t : NumDeclContextBits;
1658
1659 /// The conventional meaning of this method; an ObjCMethodFamily.
1660 /// This is not serialized; instead, it is computed on demand and
1661 /// cached.
1662 mutable uint64_t Family : ObjCMethodFamilyBitWidth;
1663
1664 /// instance (true) or class (false) method.
1665 uint64_t IsInstance : 1;
1666 uint64_t IsVariadic : 1;
1667
1668 /// True if this method is the getter or setter for an explicit property.
1669 uint64_t IsPropertyAccessor : 1;
1670
1671 /// True if this method is a synthesized property accessor stub.
1672 uint64_t IsSynthesizedAccessorStub : 1;
1673
1674 /// Method has a definition.
1675 uint64_t IsDefined : 1;
1676
1677 /// Method redeclaration in the same interface.
1678 uint64_t IsRedeclaration : 1;
1679
1680 /// Is redeclared in the same interface.
1681 mutable uint64_t HasRedeclaration : 1;
1682
1683 /// \@required/\@optional
1684 uint64_t DeclImplementation : 2;
1685
1686 /// in, inout, etc.
1687 uint64_t objcDeclQualifier : 7;
1688
1689 /// Indicates whether this method has a related result type.
1690 uint64_t RelatedResultType : 1;
1691
1692 /// Whether the locations of the selector identifiers are in a
1693 /// "standard" position, a enum SelectorLocationsKind.
1694 uint64_t SelLocsKind : 2;
1695
1696 /// Whether this method overrides any other in the class hierarchy.
1697 ///
1698 /// A method is said to override any method in the class's
1699 /// base classes, its protocols, or its categories' protocols, that has
1700 /// the same selector and is of the same kind (class or instance).
1701 /// A method in an implementation is not considered as overriding the same
1702 /// method in the interface or its categories.
1703 uint64_t IsOverriding : 1;
1704
1705 /// Indicates if the method was a definition but its body was skipped.
1706 uint64_t HasSkippedBody : 1;
1707 };
1708
1709 /// Number of non-inherited bits in ObjCMethodDeclBitfields.
1710 enum { NumObjCMethodDeclBits = 24 };
1711
1712 /// Stores the bits used by ObjCContainerDecl.
1713 /// If modified NumObjCContainerDeclBits and the accessor
1714 /// methods in ObjCContainerDecl should be updated appropriately.
1715 class ObjCContainerDeclBitfields {
1716 friend class ObjCContainerDecl;
1717 /// For the bits in DeclContextBitfields
1718 uint32_t : NumDeclContextBits;
1719
1720 // Not a bitfield but this saves space.
1721 // Note that ObjCContainerDeclBitfields is full.
1722 SourceLocation AtStart;
1723 };
1724
1725 /// Number of non-inherited bits in ObjCContainerDeclBitfields.
1726 /// Note that here we rely on the fact that SourceLocation is 32 bits
1727 /// wide. We check this with the static_assert in the ctor of DeclContext.
1728 enum { NumObjCContainerDeclBits = 64 - NumDeclContextBits };
1729
1730 /// Stores the bits used by LinkageSpecDecl.
1731 /// If modified NumLinkageSpecDeclBits and the accessor
1732 /// methods in LinkageSpecDecl should be updated appropriately.
1733 class LinkageSpecDeclBitfields {
1734 friend class LinkageSpecDecl;
1735 /// For the bits in DeclContextBitfields.
1736 uint64_t : NumDeclContextBits;
1737
1738 /// The language for this linkage specification with values
1739 /// in the enum LinkageSpecDecl::LanguageIDs.
1740 uint64_t Language : 3;
1741
1742 /// True if this linkage spec has braces.
1743 /// This is needed so that hasBraces() returns the correct result while the
1744 /// linkage spec body is being parsed. Once RBraceLoc has been set this is
1745 /// not used, so it doesn't need to be serialized.
1746 uint64_t HasBraces : 1;
1747 };
1748
1749 /// Number of non-inherited bits in LinkageSpecDeclBitfields.
1750 enum { NumLinkageSpecDeclBits = 4 };
1751
1752 /// Stores the bits used by BlockDecl.
1753 /// If modified NumBlockDeclBits and the accessor
1754 /// methods in BlockDecl should be updated appropriately.
1755 class BlockDeclBitfields {
1756 friend class BlockDecl;
1757 /// For the bits in DeclContextBitfields.
1758 uint64_t : NumDeclContextBits;
1759
1760 uint64_t IsVariadic : 1;
1761 uint64_t CapturesCXXThis : 1;
1762 uint64_t BlockMissingReturnType : 1;
1763 uint64_t IsConversionFromLambda : 1;
1764
1765 /// A bit that indicates this block is passed directly to a function as a
1766 /// non-escaping parameter.
1767 uint64_t DoesNotEscape : 1;
1768
1769 /// A bit that indicates whether it's possible to avoid coying this block to
1770 /// the heap when it initializes or is assigned to a local variable with
1771 /// automatic storage.
1772 uint64_t CanAvoidCopyToHeap : 1;
1773 };
1774
1775 /// Number of non-inherited bits in BlockDeclBitfields.
1776 enum { NumBlockDeclBits = 5 };
1777
1778 /// Pointer to the data structure used to lookup declarations
1779 /// within this context (or a DependentStoredDeclsMap if this is a
1780 /// dependent context). We maintain the invariant that, if the map
1781 /// contains an entry for a DeclarationName (and we haven't lazily
1782 /// omitted anything), then it contains all relevant entries for that
1783 /// name (modulo the hasExternalDecls() flag).
1784 mutable StoredDeclsMap *LookupPtr = nullptr;
1785
1786protected:
1787 /// This anonymous union stores the bits belonging to DeclContext and classes
1788 /// deriving from it. The goal is to use otherwise wasted
1789 /// space in DeclContext to store data belonging to derived classes.
1790 /// The space saved is especially significient when pointers are aligned
1791 /// to 8 bytes. In this case due to alignment requirements we have a
1792 /// little less than 8 bytes free in DeclContext which we can use.
1793 /// We check that none of the classes in this union is larger than
1794 /// 8 bytes with static_asserts in the ctor of DeclContext.
1795 union {
1796 DeclContextBitfields DeclContextBits;
1797 TagDeclBitfields TagDeclBits;
1798 EnumDeclBitfields EnumDeclBits;
1799 RecordDeclBitfields RecordDeclBits;
1800 OMPDeclareReductionDeclBitfields OMPDeclareReductionDeclBits;
1801 FunctionDeclBitfields FunctionDeclBits;
1802 CXXConstructorDeclBitfields CXXConstructorDeclBits;
1803 ObjCMethodDeclBitfields ObjCMethodDeclBits;
1804 ObjCContainerDeclBitfields ObjCContainerDeclBits;
1805 LinkageSpecDeclBitfields LinkageSpecDeclBits;
1806 BlockDeclBitfields BlockDeclBits;
1807
1808 static_assert(sizeof(DeclContextBitfields) <= 8,
1809 "DeclContextBitfields is larger than 8 bytes!");
1810 static_assert(sizeof(TagDeclBitfields) <= 8,
1811 "TagDeclBitfields is larger than 8 bytes!");
1812 static_assert(sizeof(EnumDeclBitfields) <= 8,
1813 "EnumDeclBitfields is larger than 8 bytes!");
1814 static_assert(sizeof(RecordDeclBitfields) <= 8,
1815 "RecordDeclBitfields is larger than 8 bytes!");
1816 static_assert(sizeof(OMPDeclareReductionDeclBitfields) <= 8,
1817 "OMPDeclareReductionDeclBitfields is larger than 8 bytes!");
1818 static_assert(sizeof(FunctionDeclBitfields) <= 8,
1819 "FunctionDeclBitfields is larger than 8 bytes!");
1820 static_assert(sizeof(CXXConstructorDeclBitfields) <= 8,
1821 "CXXConstructorDeclBitfields is larger than 8 bytes!");
1822 static_assert(sizeof(ObjCMethodDeclBitfields) <= 8,
1823 "ObjCMethodDeclBitfields is larger than 8 bytes!");
1824 static_assert(sizeof(ObjCContainerDeclBitfields) <= 8,
1825 "ObjCContainerDeclBitfields is larger than 8 bytes!");
1826 static_assert(sizeof(LinkageSpecDeclBitfields) <= 8,
1827 "LinkageSpecDeclBitfields is larger than 8 bytes!");
1828 static_assert(sizeof(BlockDeclBitfields) <= 8,
1829 "BlockDeclBitfields is larger than 8 bytes!");
1830 };
1831
1832 /// FirstDecl - The first declaration stored within this declaration
1833 /// context.
1834 mutable Decl *FirstDecl = nullptr;
1835
1836 /// LastDecl - The last declaration stored within this declaration
1837 /// context. FIXME: We could probably cache this value somewhere
1838 /// outside of the DeclContext, to reduce the size of DeclContext by
1839 /// another pointer.
1840 mutable Decl *LastDecl = nullptr;
1841
1842 /// Build up a chain of declarations.
1843 ///
1844 /// \returns the first/last pair of declarations.
1845 static std::pair<Decl *, Decl *>
1846 BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded);
1847
1848 DeclContext(Decl::Kind K);
1849
1850public:
1851 ~DeclContext();
1852
1853 Decl::Kind getDeclKind() const {
1854 return static_cast<Decl::Kind>(DeclContextBits.DeclKind);
1855 }
1856
1857 const char *getDeclKindName() const;
1858
1859 /// getParent - Returns the containing DeclContext.
1860 DeclContext *getParent() {
1861 return cast<Decl>(this)->getDeclContext();
1862 }
1863 const DeclContext *getParent() const {
1864 return const_cast<DeclContext*>(this)->getParent();
1865 }
1866
1867 /// getLexicalParent - Returns the containing lexical DeclContext. May be
1868 /// different from getParent, e.g.:
1869 ///
1870 /// namespace A {
1871 /// struct S;
1872 /// }
1873 /// struct A::S {}; // getParent() == namespace 'A'
1874 /// // getLexicalParent() == translation unit
1875 ///
1876 DeclContext *getLexicalParent() {
1877 return cast<Decl>(this)->getLexicalDeclContext();
1878 }
1879 const DeclContext *getLexicalParent() const {
1880 return const_cast<DeclContext*>(this)->getLexicalParent();
1881 }
1882
1883 DeclContext *getLookupParent();
1884
1885 const DeclContext *getLookupParent() const {
1886 return const_cast<DeclContext*>(this)->getLookupParent();
1887 }
1888
1889 ASTContext &getParentASTContext() const {
1890 return cast<Decl>(this)->getASTContext();
1891 }
1892
1893 bool isClosure() const { return getDeclKind() == Decl::Block; }
1894
1895 /// Return this DeclContext if it is a BlockDecl. Otherwise, return the
1896 /// innermost enclosing BlockDecl or null if there are no enclosing blocks.
1897 const BlockDecl *getInnermostBlockDecl() const;
1898
1899 bool isObjCContainer() const {
1900 switch (getDeclKind()) {
1901 case Decl::ObjCCategory:
1902 case Decl::ObjCCategoryImpl:
1903 case Decl::ObjCImplementation:
1904 case Decl::ObjCInterface:
1905 case Decl::ObjCProtocol:
1906 return true;
1907 default:
1908 return false;
1909 }
1910 }
1911
1912 bool isFunctionOrMethod() const {
1913 switch (getDeclKind()) {
1914 case Decl::Block:
1915 case Decl::Captured:
1916 case Decl::ObjCMethod:
1917 return true;
1918 default:
1919 return getDeclKind() >= Decl::firstFunction &&
1920 getDeclKind() <= Decl::lastFunction;
1921 }
1922 }
1923
1924 /// Test whether the context supports looking up names.
1925 bool isLookupContext() const {
1926 return !isFunctionOrMethod() && getDeclKind() != Decl::LinkageSpec &&
1927 getDeclKind() != Decl::Export;
1928 }
1929
1930 bool isFileContext() const {
1931 return getDeclKind() == Decl::TranslationUnit ||
1932 getDeclKind() == Decl::Namespace;
1933 }
1934
1935 bool isTranslationUnit() const {
1936 return getDeclKind() == Decl::TranslationUnit;
1937 }
1938
1939 bool isRecord() const {
1940 return getDeclKind() >= Decl::firstRecord &&
1941 getDeclKind() <= Decl::lastRecord;
1942 }
1943
1944 bool isNamespace() const { return getDeclKind() == Decl::Namespace; }
1945
1946 bool isStdNamespace() const;
1947
1948 bool isInlineNamespace() const;
1949
1950 /// Determines whether this context is dependent on a
1951 /// template parameter.
1952 bool isDependentContext() const;
1953
1954 /// isTransparentContext - Determines whether this context is a
1955 /// "transparent" context, meaning that the members declared in this
1956 /// context are semantically declared in the nearest enclosing
1957 /// non-transparent (opaque) context but are lexically declared in
1958 /// this context. For example, consider the enumerators of an
1959 /// enumeration type:
1960 /// @code
1961 /// enum E {
1962 /// Val1
1963 /// };
1964 /// @endcode
1965 /// Here, E is a transparent context, so its enumerator (Val1) will
1966 /// appear (semantically) that it is in the same context of E.
1967 /// Examples of transparent contexts include: enumerations (except for
1968 /// C++0x scoped enums), and C++ linkage specifications.
1969 bool isTransparentContext() const;
1970
1971 /// Determines whether this context or some of its ancestors is a
1972 /// linkage specification context that specifies C linkage.
1973 bool isExternCContext() const;
1974
1975 /// Retrieve the nearest enclosing C linkage specification context.
1976 const LinkageSpecDecl *getExternCContext() const;
1977
1978 /// Determines whether this context or some of its ancestors is a
1979 /// linkage specification context that specifies C++ linkage.
1980 bool isExternCXXContext() const;
1981
1982 /// Determine whether this declaration context is equivalent
1983 /// to the declaration context DC.
1984 bool Equals(const DeclContext *DC) const {
1985 return DC && this->getPrimaryContext() == DC->getPrimaryContext();
1986 }
1987
1988 /// Determine whether this declaration context encloses the
1989 /// declaration context DC.
1990 bool Encloses(const DeclContext *DC) const;
1991
1992 /// Find the nearest non-closure ancestor of this context,
1993 /// i.e. the innermost semantic parent of this context which is not
1994 /// a closure. A context may be its own non-closure ancestor.
1995 Decl *getNonClosureAncestor();
1996 const Decl *getNonClosureAncestor() const {
1997 return const_cast<DeclContext*>(this)->getNonClosureAncestor();
1998 }
1999
2000 /// getPrimaryContext - There may be many different
2001 /// declarations of the same entity (including forward declarations
2002 /// of classes, multiple definitions of namespaces, etc.), each with
2003 /// a different set of declarations. This routine returns the
2004 /// "primary" DeclContext structure, which will contain the
2005 /// information needed to perform name lookup into this context.
2006 DeclContext *getPrimaryContext();
2007 const DeclContext *getPrimaryContext() const {
2008 return const_cast<DeclContext*>(this)->getPrimaryContext();
2009 }
2010
2011 /// getRedeclContext - Retrieve the context in which an entity conflicts with
2012 /// other entities of the same name, or where it is a redeclaration if the
2013 /// two entities are compatible. This skips through transparent contexts.
2014 DeclContext *getRedeclContext();
2015 const DeclContext *getRedeclContext() const {
2016 return const_cast<DeclContext *>(this)->getRedeclContext();
2017 }
2018
2019 /// Retrieve the nearest enclosing namespace context.
2020 DeclContext *getEnclosingNamespaceContext();
2021 const DeclContext *getEnclosingNamespaceContext() const {
2022 return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext();
2023 }
2024
2025 /// Retrieve the outermost lexically enclosing record context.
2026 RecordDecl *getOuterLexicalRecordContext();
2027 const RecordDecl *getOuterLexicalRecordContext() const {
2028 return const_cast<DeclContext *>(this)->getOuterLexicalRecordContext();
2029 }
2030
2031 /// Test if this context is part of the enclosing namespace set of
2032 /// the context NS, as defined in C++0x [namespace.def]p9. If either context
2033 /// isn't a namespace, this is equivalent to Equals().
2034 ///
2035 /// The enclosing namespace set of a namespace is the namespace and, if it is
2036 /// inline, its enclosing namespace, recursively.
2037 bool InEnclosingNamespaceSetOf(const DeclContext *NS) const;
2038
2039 /// Collects all of the declaration contexts that are semantically
2040 /// connected to this declaration context.
2041 ///
2042 /// For declaration contexts that have multiple semantically connected but
2043 /// syntactically distinct contexts, such as C++ namespaces, this routine
2044 /// retrieves the complete set of such declaration contexts in source order.
2045 /// For example, given:
2046 ///
2047 /// \code
2048 /// namespace N {
2049 /// int x;
2050 /// }
2051 /// namespace N {
2052 /// int y;
2053 /// }
2054 /// \endcode
2055 ///
2056 /// The \c Contexts parameter will contain both definitions of N.
2057 ///
2058 /// \param Contexts Will be cleared and set to the set of declaration
2059 /// contexts that are semanticaly connected to this declaration context,
2060 /// in source order, including this context (which may be the only result,
2061 /// for non-namespace contexts).
2062 void collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts);
2063
2064 /// decl_iterator - Iterates through the declarations stored
2065 /// within this context.
2066 class decl_iterator {
2067 /// Current - The current declaration.
2068 Decl *Current = nullptr;
2069
2070 public:
2071 using value_type = Decl *;
2072 using reference = const value_type &;
2073 using pointer = const value_type *;
2074 using iterator_category = std::forward_iterator_tag;
2075 using difference_type = std::ptrdiff_t;
2076
2077 decl_iterator() = default;
2078 explicit decl_iterator(Decl *C) : Current(C) {}
2079
2080 reference operator*() const { return Current; }
2081
2082 // This doesn't meet the iterator requirements, but it's convenient
2083 value_type operator->() const { return Current; }
2084
2085 decl_iterator& operator++() {
2086 Current = Current->getNextDeclInContext();
2087 return *this;
2088 }
2089
2090 decl_iterator operator++(int) {
2091 decl_iterator tmp(*this);
2092 ++(*this);
2093 return tmp;
2094 }
2095
2096 friend bool operator==(decl_iterator x, decl_iterator y) {
2097 return x.Current == y.Current;
30
Assuming 'x.Current' is not equal to 'y.Current'
31
Returning zero, which participates in a condition later
2098 }
2099
2100 friend bool operator!=(decl_iterator x, decl_iterator y) {
2101 return x.Current != y.Current;
2102 }
2103 };
2104
2105 using decl_range = llvm::iterator_range<decl_iterator>;
2106
2107 /// decls_begin/decls_end - Iterate over the declarations stored in
2108 /// this context.
2109 decl_range decls() const { return decl_range(decls_begin(), decls_end()); }
2110 decl_iterator decls_begin() const;
2111 decl_iterator decls_end() const { return decl_iterator(); }
2112 bool decls_empty() const;
2113
2114 /// noload_decls_begin/end - Iterate over the declarations stored in this
2115 /// context that are currently loaded; don't attempt to retrieve anything
2116 /// from an external source.
2117 decl_range noload_decls() const {
2118 return decl_range(noload_decls_begin(), noload_decls_end());
2119 }
2120 decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); }
2121 decl_iterator noload_decls_end() const { return decl_iterator(); }
2122
2123 /// specific_decl_iterator - Iterates over a subrange of
2124 /// declarations stored in a DeclContext, providing only those that
2125 /// are of type SpecificDecl (or a class derived from it). This
2126 /// iterator is used, for example, to provide iteration over just
2127 /// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
2128 template<typename SpecificDecl>
2129 class specific_decl_iterator {
2130 /// Current - The current, underlying declaration iterator, which
2131 /// will either be NULL or will point to a declaration of
2132 /// type SpecificDecl.
2133 DeclContext::decl_iterator Current;
2134
2135 /// SkipToNextDecl - Advances the current position up to the next
2136 /// declaration of type SpecificDecl that also meets the criteria
2137 /// required by Acceptable.
2138 void SkipToNextDecl() {
2139 while (*Current && !isa<SpecificDecl>(*Current))
2140 ++Current;
2141 }
2142
2143 public:
2144 using value_type = SpecificDecl *;
2145 // TODO: Add reference and pointer types (with some appropriate proxy type)
2146 // if we ever have a need for them.
2147 using reference = void;
2148 using pointer = void;
2149 using difference_type =
2150 std::iterator_traits<DeclContext::decl_iterator>::difference_type;
2151 using iterator_category = std::forward_iterator_tag;
2152
2153 specific_decl_iterator() = default;
2154
2155 /// specific_decl_iterator - Construct a new iterator over a
2156 /// subset of the declarations the range [C,
2157 /// end-of-declarations). If A is non-NULL, it is a pointer to a
2158 /// member function of SpecificDecl that should return true for
2159 /// all of the SpecificDecl instances that will be in the subset
2160 /// of iterators. For example, if you want Objective-C instance
2161 /// methods, SpecificDecl will be ObjCMethodDecl and A will be
2162 /// &ObjCMethodDecl::isInstanceMethod.
2163 explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
2164 SkipToNextDecl();
2165 }
2166
2167 value_type operator*() const { return cast<SpecificDecl>(*Current); }
2168
2169 // This doesn't meet the iterator requirements, but it's convenient
2170 value_type operator->() const { return **this; }
2171
2172 specific_decl_iterator& operator++() {
2173 ++Current;
2174 SkipToNextDecl();
2175 return *this;
2176 }
2177
2178 specific_decl_iterator operator++(int) {
2179 specific_decl_iterator tmp(*this);
2180 ++(*this);
2181 return tmp;
2182 }
2183
2184 friend bool operator==(const specific_decl_iterator& x,
2185 const specific_decl_iterator& y) {
2186 return x.Current == y.Current;
29
Calling 'operator=='
32
Returning from 'operator=='
33
Returning zero, which participates in a condition later
2187 }
2188
2189 friend bool operator!=(const specific_decl_iterator& x,
2190 const specific_decl_iterator& y) {
2191 return x.Current != y.Current;
2192 }
2193 };
2194
2195 /// Iterates over a filtered subrange of declarations stored
2196 /// in a DeclContext.
2197 ///
2198 /// This iterator visits only those declarations that are of type
2199 /// SpecificDecl (or a class derived from it) and that meet some
2200 /// additional run-time criteria. This iterator is used, for
2201 /// example, to provide access to the instance methods within an
2202 /// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
2203 /// Acceptable = ObjCMethodDecl::isInstanceMethod).
2204 template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
2205 class filtered_decl_iterator {
2206 /// Current - The current, underlying declaration iterator, which
2207 /// will either be NULL or will point to a declaration of
2208 /// type SpecificDecl.
2209 DeclContext::decl_iterator Current;
2210
2211 /// SkipToNextDecl - Advances the current position up to the next
2212 /// declaration of type SpecificDecl that also meets the criteria
2213 /// required by Acceptable.
2214 void SkipToNextDecl() {
2215 while (*Current &&
2216 (!isa<SpecificDecl>(*Current) ||
2217 (Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
2218 ++Current;
2219 }
2220
2221 public:
2222 using value_type = SpecificDecl *;
2223 // TODO: Add reference and pointer types (with some appropriate proxy type)
2224 // if we ever have a need for them.
2225 using reference = void;
2226 using pointer = void;
2227 using difference_type =
2228 std::iterator_traits<DeclContext::decl_iterator>::difference_type;
2229 using iterator_category = std::forward_iterator_tag;
2230
2231 filtered_decl_iterator() = default;
2232
2233 /// filtered_decl_iterator - Construct a new iterator over a
2234 /// subset of the declarations the range [C,
2235 /// end-of-declarations). If A is non-NULL, it is a pointer to a
2236 /// member function of SpecificDecl that should return true for
2237 /// all of the SpecificDecl instances that will be in the subset
2238 /// of iterators. For example, if you want Objective-C instance
2239 /// methods, SpecificDecl will be ObjCMethodDecl and A will be
2240 /// &ObjCMethodDecl::isInstanceMethod.
2241 explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
2242 SkipToNextDecl();
2243 }
2244
2245 value_type operator*() const { return cast<SpecificDecl>(*Current); }
2246 value_type operator->() const { return cast<SpecificDecl>(*Current); }
2247
2248 filtered_decl_iterator& operator++() {
2249 ++Current;
2250 SkipToNextDecl();
2251 return *this;
2252 }
2253
2254 filtered_decl_iterator operator++(int) {
2255 filtered_decl_iterator tmp(*this);
2256 ++(*this);
2257 return tmp;
2258 }
2259
2260 friend bool operator==(const filtered_decl_iterator& x,
2261 const filtered_decl_iterator& y) {
2262 return x.Current == y.Current;
2263 }
2264
2265 friend bool operator!=(const filtered_decl_iterator& x,
2266 const filtered_decl_iterator& y) {
2267 return x.Current != y.Current;
2268 }
2269 };
2270
2271 /// Add the declaration D into this context.
2272 ///
2273 /// This routine should be invoked when the declaration D has first
2274 /// been declared, to place D into the context where it was
2275 /// (lexically) defined. Every declaration must be added to one
2276 /// (and only one!) context, where it can be visited via
2277 /// [decls_begin(), decls_end()). Once a declaration has been added
2278 /// to its lexical context, the corresponding DeclContext owns the
2279 /// declaration.
2280 ///
2281 /// If D is also a NamedDecl, it will be made visible within its
2282 /// semantic context via makeDeclVisibleInContext.
2283 void addDecl(Decl *D);
2284
2285 /// Add the declaration D into this context, but suppress
2286 /// searches for external declarations with the same name.
2287 ///
2288 /// Although analogous in function to addDecl, this removes an
2289 /// important check. This is only useful if the Decl is being
2290 /// added in response to an external search; in all other cases,
2291 /// addDecl() is the right function to use.
2292 /// See the ASTImporter for use cases.
2293 void addDeclInternal(Decl *D);
2294
2295 /// Add the declaration D to this context without modifying
2296 /// any lookup tables.
2297 ///
2298 /// This is useful for some operations in dependent contexts where
2299 /// the semantic context might not be dependent; this basically
2300 /// only happens with friends.
2301 void addHiddenDecl(Decl *D);
2302
2303 /// Removes a declaration from this context.
2304 void removeDecl(Decl *D);
2305
2306 /// Checks whether a declaration is in this context.
2307 bool containsDecl(Decl *D) const;
2308
2309 /// Checks whether a declaration is in this context.
2310 /// This also loads the Decls from the external source before the check.
2311 bool containsDeclAndLoad(Decl *D) const;
2312
2313 using lookup_result = DeclContextLookupResult;
2314 using lookup_iterator = lookup_result::iterator;
2315
2316 /// lookup - Find the declarations (if any) with the given Name in
2317 /// this context. Returns a range of iterators that contains all of
2318 /// the declarations with this name, with object, function, member,
2319 /// and enumerator names preceding any tag name. Note that this
2320 /// routine will not look into parent contexts.
2321 lookup_result lookup(DeclarationName Name) const;
2322
2323 /// Find the declarations with the given name that are visible
2324 /// within this context; don't attempt to retrieve anything from an
2325 /// external source.
2326 lookup_result noload_lookup(DeclarationName Name);
2327
2328 /// A simplistic name lookup mechanism that performs name lookup
2329 /// into this declaration context without consulting the external source.
2330 ///
2331 /// This function should almost never be used, because it subverts the
2332 /// usual relationship between a DeclContext and the external source.
2333 /// See the ASTImporter for the (few, but important) use cases.
2334 ///
2335 /// FIXME: This is very inefficient; replace uses of it with uses of
2336 /// noload_lookup.
2337 void localUncachedLookup(DeclarationName Name,
2338 SmallVectorImpl<NamedDecl *> &Results);
2339
2340 /// Makes a declaration visible within this context.
2341 ///
2342 /// This routine makes the declaration D visible to name lookup
2343 /// within this context and, if this is a transparent context,
2344 /// within its parent contexts up to the first enclosing
2345 /// non-transparent context. Making a declaration visible within a
2346 /// context does not transfer ownership of a declaration, and a
2347 /// declaration can be visible in many contexts that aren't its
2348 /// lexical context.
2349 ///
2350 /// If D is a redeclaration of an existing declaration that is
2351 /// visible from this context, as determined by
2352 /// NamedDecl::declarationReplaces, the previous declaration will be
2353 /// replaced with D.
2354 void makeDeclVisibleInContext(NamedDecl *D);
2355
2356 /// all_lookups_iterator - An iterator that provides a view over the results
2357 /// of looking up every possible name.
2358 class all_lookups_iterator;
2359
2360 using lookups_range = llvm::iterator_range<all_lookups_iterator>;
2361
2362 lookups_range lookups() const;
2363 // Like lookups(), but avoids loading external declarations.
2364 // If PreserveInternalState, avoids building lookup data structures too.
2365 lookups_range noload_lookups(bool PreserveInternalState) const;
2366
2367 /// Iterators over all possible lookups within this context.
2368 all_lookups_iterator lookups_begin() const;
2369 all_lookups_iterator lookups_end() const;
2370
2371 /// Iterators over all possible lookups within this context that are
2372 /// currently loaded; don't attempt to retrieve anything from an external
2373 /// source.
2374 all_lookups_iterator noload_lookups_begin() const;
2375 all_lookups_iterator noload_lookups_end() const;
2376
2377 struct udir_iterator;
2378
2379 using udir_iterator_base =
2380 llvm::iterator_adaptor_base<udir_iterator, lookup_iterator,
2381 typename lookup_iterator::iterator_category,
2382 UsingDirectiveDecl *>;
2383
2384 struct udir_iterator : udir_iterator_base {
2385 udir_iterator(lookup_iterator I) : udir_iterator_base(I) {}
2386
2387 UsingDirectiveDecl *operator*() const;
2388 };
2389
2390 using udir_range = llvm::iterator_range<udir_iterator>;
2391
2392 udir_range using_directives() const;
2393
2394 // These are all defined in DependentDiagnostic.h.
2395 class ddiag_iterator;
2396
2397 using ddiag_range = llvm::iterator_range<DeclContext::ddiag_iterator>;
2398
2399 inline ddiag_range ddiags() const;
2400
2401 // Low-level accessors
2402
2403 /// Mark that there are external lexical declarations that we need
2404 /// to include in our lookup table (and that are not available as external
2405 /// visible lookups). These extra lookup results will be found by walking
2406 /// the lexical declarations of this context. This should be used only if
2407 /// setHasExternalLexicalStorage() has been called on any decl context for
2408 /// which this is the primary context.
2409 void setMustBuildLookupTable() {
2410 assert(this == getPrimaryContext() &&((void)0)
2411 "should only be called on primary context")((void)0);
2412 DeclContextBits.HasLazyExternalLexicalLookups = true;
2413 }
2414
2415 /// Retrieve the internal representation of the lookup structure.
2416 /// This may omit some names if we are lazily building the structure.
2417 StoredDeclsMap *getLookupPtr() const { return LookupPtr; }
2418
2419 /// Ensure the lookup structure is fully-built and return it.
2420 StoredDeclsMap *buildLookup();
2421
2422 /// Whether this DeclContext has external storage containing
2423 /// additional declarations that are lexically in this context.
2424 bool hasExternalLexicalStorage() const {
2425 return DeclContextBits.ExternalLexicalStorage;
2426 }
2427
2428 /// State whether this DeclContext has external storage for
2429 /// declarations lexically in this context.
2430 void setHasExternalLexicalStorage(bool ES = true) const {
2431 DeclContextBits.ExternalLexicalStorage = ES;
2432 }
2433
2434 /// Whether this DeclContext has external storage containing
2435 /// additional declarations that are visible in this context.
2436 bool hasExternalVisibleStorage() const {
2437 return DeclContextBits.ExternalVisibleStorage;
2438 }
2439
2440 /// State whether this DeclContext has external storage for
2441 /// declarations visible in this context.
2442 void setHasExternalVisibleStorage(bool ES = true) const {
2443 DeclContextBits.ExternalVisibleStorage = ES;
2444 if (ES && LookupPtr)
2445 DeclContextBits.NeedToReconcileExternalVisibleStorage = true;
2446 }
2447
2448 /// Determine whether the given declaration is stored in the list of
2449 /// declarations lexically within this context.
2450 bool isDeclInLexicalTraversal(const Decl *D) const {
2451 return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl ||
2452 D == LastDecl);
2453 }
2454
2455 bool setUseQualifiedLookup(bool use = true) const {
2456 bool old_value = DeclContextBits.UseQualifiedLookup;
2457 DeclContextBits.UseQualifiedLookup = use;
2458 return old_value;
2459 }
2460
2461 bool shouldUseQualifiedLookup() const {
2462 return DeclContextBits.UseQualifiedLookup;
2463 }
2464
2465 static bool classof(const Decl *D);
2466 static bool classof(const DeclContext *D) { return true; }
2467
2468 void dumpDeclContext() const;
2469 void dumpLookups() const;
2470 void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false,
2471 bool Deserialize = false) const;
2472
2473private:
2474 /// Whether this declaration context has had externally visible
2475 /// storage added since the last lookup. In this case, \c LookupPtr's
2476 /// invariant may not hold and needs to be fixed before we perform
2477 /// another lookup.
2478 bool hasNeedToReconcileExternalVisibleStorage() const {
2479 return DeclContextBits.NeedToReconcileExternalVisibleStorage;
2480 }
2481
2482 /// State that this declaration context has had externally visible
2483 /// storage added since the last lookup. In this case, \c LookupPtr's
2484 /// invariant may not hold and needs to be fixed before we perform
2485 /// another lookup.
2486 void setNeedToReconcileExternalVisibleStorage(bool Need = true) const {
2487 DeclContextBits.NeedToReconcileExternalVisibleStorage = Need;
2488 }
2489
2490 /// If \c true, this context may have local lexical declarations
2491 /// that are missing from the lookup table.
2492 bool hasLazyLocalLexicalLookups() const {
2493 return DeclContextBits.HasLazyLocalLexicalLookups;
2494 }
2495
2496 /// If \c true, this context may have local lexical declarations
2497 /// that are missing from the lookup table.
2498 void setHasLazyLocalLexicalLookups(bool HasLLLL = true) const {
2499 DeclContextBits.HasLazyLocalLexicalLookups = HasLLLL;
2500 }
2501
2502 /// If \c true, the external source may have lexical declarations
2503 /// that are missing from the lookup table.
2504 bool hasLazyExternalLexicalLookups() const {
2505 return DeclContextBits.HasLazyExternalLexicalLookups;
2506 }
2507
2508 /// If \c true, the external source may have lexical declarations
2509 /// that are missing from the lookup table.
2510 void setHasLazyExternalLexicalLookups(bool HasLELL = true) const {
2511 DeclContextBits.HasLazyExternalLexicalLookups = HasLELL;
2512 }
2513
2514 void reconcileExternalVisibleStorage() const;
2515 bool LoadLexicalDeclsFromExternalStorage() const;
2516
2517 /// Makes a declaration visible within this context, but
2518 /// suppresses searches for external declarations with the same
2519 /// name.
2520 ///
2521 /// Analogous to makeDeclVisibleInContext, but for the exclusive
2522 /// use of addDeclInternal().
2523 void makeDeclVisibleInContextInternal(NamedDecl *D);
2524
2525 StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const;
2526
2527 void loadLazyLocalLexicalLookups();
2528 void buildLookupImpl(DeclContext *DCtx, bool Internal);
2529 void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
2530 bool Rediscoverable);
2531 void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal);
2532};
2533
2534inline bool Decl::isTemplateParameter() const {
2535 return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm ||
2536 getKind() == TemplateTemplateParm;
2537}
2538
2539// Specialization selected when ToTy is not a known subclass of DeclContext.
2540template <class ToTy,
2541 bool IsKnownSubtype = ::std::is_base_of<DeclContext, ToTy>::value>
2542struct cast_convert_decl_context {
2543 static const ToTy *doit(const DeclContext *Val) {
2544 return static_cast<const ToTy*>(Decl::castFromDeclContext(Val));
2545 }
2546
2547 static ToTy *doit(DeclContext *Val) {
2548 return static_cast<ToTy*>(Decl::castFromDeclContext(Val));
2549 }
2550};
2551
2552// Specialization selected when ToTy is a known subclass of DeclContext.
2553template <class ToTy>
2554struct cast_convert_decl_context<ToTy, true> {
2555 static const ToTy *doit(const DeclContext *Val) {
2556 return static_cast<const ToTy*>(Val);
2557 }
2558
2559 static ToTy *doit(DeclContext *Val) {
2560 return static_cast<ToTy*>(Val);
2561 }
2562};
2563
2564} // namespace clang
2565
2566namespace llvm {
2567
2568/// isa<T>(DeclContext*)
2569template <typename To>
2570struct isa_impl<To, ::clang::DeclContext> {
2571 static bool doit(const ::clang::DeclContext &Val) {
2572 return To::classofKind(Val.getDeclKind());
2573 }
2574};
2575
2576/// cast<T>(DeclContext*)
2577template<class ToTy>
2578struct cast_convert_val<ToTy,
2579 const ::clang::DeclContext,const ::clang::DeclContext> {
2580 static const ToTy &doit(const ::clang::DeclContext &Val) {
2581 return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
2582 }
2583};
2584
2585template<class ToTy>
2586struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> {
2587 static ToTy &doit(::clang::DeclContext &Val) {
2588 return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
2589 }
2590};
2591
2592template<class ToTy>
2593struct cast_convert_val<ToTy,
2594 const ::clang::DeclContext*, const ::clang::DeclContext*> {
2595 static const ToTy *doit(const ::clang::DeclContext *Val) {
2596 return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
2597 }
2598};
2599
2600template<class ToTy>
2601struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> {
2602 static ToTy *doit(::clang::DeclContext *Val) {
2603 return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
2604 }
2605};
2606
2607/// Implement cast_convert_val for Decl -> DeclContext conversions.
2608template<class FromTy>
2609struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
2610 static ::clang::DeclContext &doit(const FromTy &Val) {
2611 return *FromTy::castToDeclContext(&Val);
2612 }
2613};
2614
2615template<class FromTy>
2616struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
2617 static ::clang::DeclContext *doit(const FromTy *Val) {
2618 return FromTy::castToDeclContext(Val);
2619 }
2620};
2621
2622template<class FromTy>
2623struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
2624 static const ::clang::DeclContext &doit(const FromTy &Val) {
2625 return *FromTy::castToDeclContext(&Val);
2626 }
2627};
2628
2629template<class FromTy>
2630struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
2631 static const ::clang::DeclContext *doit(const FromTy *Val) {
2632 return FromTy::castToDeclContext(Val);
2633 }
2634};
2635
2636} // namespace llvm
2637
2638#endif // LLVM_CLANG_AST_DECLBASE_H

/usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/llvm/include/llvm/ADT/SmallVector.h

1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SmallVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLVECTOR_H
14#define LLVM_ADT_SMALLVECTOR_H
15
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MemAlloc.h"
20#include "llvm/Support/type_traits.h"
21#include <algorithm>
22#include <cassert>
23#include <cstddef>
24#include <cstdlib>
25#include <cstring>
26#include <functional>
27#include <initializer_list>
28#include <iterator>
29#include <limits>
30#include <memory>
31#include <new>
32#include <type_traits>
33#include <utility>
34
35namespace llvm {
36
37/// This is all the stuff common to all SmallVectors.
38///
39/// The template parameter specifies the type which should be used to hold the
40/// Size and Capacity of the SmallVector, so it can be adjusted.
41/// Using 32 bit size is desirable to shrink the size of the SmallVector.
42/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
43/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
44/// buffering bitcode output - which can exceed 4GB.
45template <class Size_T> class SmallVectorBase {
46protected:
47 void *BeginX;
48 Size_T Size = 0, Capacity;
49
50 /// The maximum value of the Size_T used.
51 static constexpr size_t SizeTypeMax() {
52 return std::numeric_limits<Size_T>::max();
53 }
54
55 SmallVectorBase() = delete;
56 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
57 : BeginX(FirstEl), Capacity(TotalCapacity) {}
58
59 /// This is a helper for \a grow() that's out of line to reduce code
60 /// duplication. This function will report a fatal error if it can't grow at
61 /// least to \p MinSize.
62 void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity);
63
64 /// This is an implementation of the grow() method which only works
65 /// on POD-like data types and is out of line to reduce code duplication.
66 /// This function will report a fatal error if it cannot increase capacity.
67 void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
68
69public:
70 size_t size() const { return Size; }
71 size_t capacity() const { return Capacity; }
72
73 LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; }
39
Assuming field 'Size' is not equal to 0, which participates in a condition later
40
Returning zero, which participates in a condition later
74
75 /// Set the array size to \p N, which the current array must have enough
76 /// capacity for.
77 ///
78 /// This does not construct or destroy any elements in the vector.
79 ///
80 /// Clients can use this in conjunction with capacity() to write past the end
81 /// of the buffer when they know that more elements are available, and only
82 /// update the size later. This avoids the cost of value initializing elements
83 /// which will only be overwritten.
84 void set_size(size_t N) {
85 assert(N <= capacity())((void)0);
86 Size = N;
87 }
88};
89
90template <class T>
91using SmallVectorSizeType =
92 typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
93 uint32_t>::type;
94
95/// Figure out the offset of the first element.
96template <class T, typename = void> struct SmallVectorAlignmentAndSize {
97 alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
98 SmallVectorBase<SmallVectorSizeType<T>>)];
99 alignas(T) char FirstEl[sizeof(T)];
100};
101
102/// This is the part of SmallVectorTemplateBase which does not depend on whether
103/// the type T is a POD. The extra dummy template argument is used by ArrayRef
104/// to avoid unnecessarily requiring T to be complete.
105template <typename T, typename = void>
106class SmallVectorTemplateCommon
107 : public SmallVectorBase<SmallVectorSizeType<T>> {
108 using Base = SmallVectorBase<SmallVectorSizeType<T>>;
109
110 /// Find the address of the first element. For this pointer math to be valid
111 /// with small-size of 0 for T with lots of alignment, it's important that
112 /// SmallVectorStorage is properly-aligned even for small-size of 0.
113 void *getFirstEl() const {
114 return const_cast<void *>(reinterpret_cast<const void *>(
115 reinterpret_cast<const char *>(this) +
116 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl
)
));
117 }
118 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
119
120protected:
121 SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
122
123 void grow_pod(size_t MinSize, size_t TSize) {
124 Base::grow_pod(getFirstEl(), MinSize, TSize);
125 }
126
127 /// Return true if this is a smallvector which has not had dynamic
128 /// memory allocated for it.
129 bool isSmall() const { return this->BeginX == getFirstEl(); }
130
131 /// Put this vector in a state of being small.
132 void resetToSmall() {
133 this->BeginX = getFirstEl();
134 this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
135 }
136
137 /// Return true if V is an internal reference to the given range.
138 bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
139 // Use std::less to avoid UB.
140 std::less<> LessThan;
141 return !LessThan(V, First) && LessThan(V, Last);
142 }
143
144 /// Return true if V is an internal reference to this vector.
145 bool isReferenceToStorage(const void *V) const {
146 return isReferenceToRange(V, this->begin(), this->end());
147 }
148
149 /// Return true if First and Last form a valid (possibly empty) range in this
150 /// vector's storage.
151 bool isRangeInStorage(const void *First, const void *Last) const {
152 // Use std::less to avoid UB.
153 std::less<> LessThan;
154 return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
155 !LessThan(this->end(), Last);
156 }
157
158 /// Return true unless Elt will be invalidated by resizing the vector to
159 /// NewSize.
160 bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
161 // Past the end.
162 if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true))
163 return true;
164
165 // Return false if Elt will be destroyed by shrinking.
166 if (NewSize <= this->size())
167 return Elt < this->begin() + NewSize;
168
169 // Return false if we need to grow.
170 return NewSize <= this->capacity();
171 }
172
173 /// Check whether Elt will be invalidated by resizing the vector to NewSize.
174 void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
175 assert(isSafeToReferenceAfterResize(Elt, NewSize) &&((void)0)
176 "Attempting to reference an element of the vector in an operation "((void)0)
177 "that invalidates it")((void)0);
178 }
179
180 /// Check whether Elt will be invalidated by increasing the size of the
181 /// vector by N.
182 void assertSafeToAdd(const void *Elt, size_t N = 1) {
183 this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
184 }
185
186 /// Check whether any part of the range will be invalidated by clearing.
187 void assertSafeToReferenceAfterClear(const T *From, const T *To) {
188 if (From == To)
189 return;
190 this->assertSafeToReferenceAfterResize(From, 0);
191 this->assertSafeToReferenceAfterResize(To - 1, 0);
192 }
193 template <
194 class ItTy,
195 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
196 bool> = false>
197 void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
198
199 /// Check whether any part of the range will be invalidated by growing.
200 void assertSafeToAddRange(const T *From, const T *To) {
201 if (From == To)
202 return;
203 this->assertSafeToAdd(From, To - From);
204 this->assertSafeToAdd(To - 1, To - From);
205 }
206 template <
207 class ItTy,
208 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
209 bool> = false>
210 void assertSafeToAddRange(ItTy, ItTy) {}
211
212 /// Reserve enough space to add one element, and return the updated element
213 /// pointer in case it was a reference to the storage.
214 template <class U>
215 static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
216 size_t N) {
217 size_t NewSize = This->size() + N;
218 if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true
)
)
219 return &Elt;
220
221 bool ReferencesStorage = false;
222 int64_t Index = -1;
223 if (!U::TakesParamByValue) {
224 if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt
)), false)
) {
225 ReferencesStorage = true;
226 Index = &Elt - This->begin();
227 }
228 }
229 This->grow(NewSize);
230 return ReferencesStorage ? This->begin() + Index : &Elt;
231 }
232
233public:
234 using size_type = size_t;
235 using difference_type = ptrdiff_t;
236 using value_type = T;
237 using iterator = T *;
238 using const_iterator = const T *;
239
240 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
241 using reverse_iterator = std::reverse_iterator<iterator>;
242
243 using reference = T &;
244 using const_reference = const T &;
245 using pointer = T *;
246 using const_pointer = const T *;
247
248 using Base::capacity;
249 using Base::empty;
250 using Base::size;
251
252 // forward iterator creation methods.
253 iterator begin() { return (iterator)this->BeginX; }
254 const_iterator begin() const { return (const_iterator)this->BeginX; }
255 iterator end() { return begin() + size(); }
256 const_iterator end() const { return begin() + size(); }
257
258 // reverse iterator creation methods.
259 reverse_iterator rbegin() { return reverse_iterator(end()); }
260 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
261 reverse_iterator rend() { return reverse_iterator(begin()); }
262 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
263
264 size_type size_in_bytes() const { return size() * sizeof(T); }
265 size_type max_size() const {
266 return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
267 }
268
269 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
270
271 /// Return a pointer to the vector's buffer, even if empty().
272 pointer data() { return pointer(begin()); }
273 /// Return a pointer to the vector's buffer, even if empty().
274 const_pointer data() const { return const_pointer(begin()); }
275
276 reference operator[](size_type idx) {
277 assert(idx < size())((void)0);
278 return begin()[idx];
279 }
280 const_reference operator[](size_type idx) const {
281 assert(idx < size())((void)0);
282 return begin()[idx];
283 }
284
285 reference front() {
286 assert(!empty())((void)0);
287 return begin()[0];
288 }
289 const_reference front() const {
290 assert(!empty())((void)0);
291 return begin()[0];
292 }
293
294 reference back() {
295 assert(!empty())((void)0);
296 return end()[-1];
297 }
298 const_reference back() const {
299 assert(!empty())((void)0);
300 return end()[-1];
301 }
302};
303
304/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
305/// method implementations that are designed to work with non-trivial T's.
306///
307/// We approximate is_trivially_copyable with trivial move/copy construction and
308/// trivial destruction. While the standard doesn't specify that you're allowed
309/// copy these types with memcpy, there is no way for the type to observe this.
310/// This catches the important case of std::pair<POD, POD>, which is not
311/// trivially assignable.
312template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
313 (is_trivially_move_constructible<T>::value) &&
314 std::is_trivially_destructible<T>::value>
315class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
316 friend class SmallVectorTemplateCommon<T>;
317
318protected:
319 static constexpr bool TakesParamByValue = false;
320 using ValueParamT = const T &;
321
322 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
323
324 static void destroy_range(T *S, T *E) {
325 while (S != E) {
326 --E;
327 E->~T();
328 }
329 }
330
331 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
332 /// constructing elements as needed.
333 template<typename It1, typename It2>
334 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
335 std::uninitialized_copy(std::make_move_iterator(I),
336 std::make_move_iterator(E), Dest);
337 }
338
339 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
340 /// constructing elements as needed.
341 template<typename It1, typename It2>
342 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
343 std::uninitialized_copy(I, E, Dest);
344 }
345
346 /// Grow the allocated memory (without initializing new elements), doubling
347 /// the size of the allocated memory. Guarantees space for at least one more
348 /// element, or MinSize more elements if specified.
349 void grow(size_t MinSize = 0);
350
351 /// Create a new allocation big enough for \p MinSize and pass back its size
352 /// in \p NewCapacity. This is the first section of \a grow().
353 T *mallocForGrow(size_t MinSize, size_t &NewCapacity) {
354 return static_cast<T *>(
355 SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
356 MinSize, sizeof(T), NewCapacity));
357 }
358
359 /// Move existing elements over to the new allocation \p NewElts, the middle
360 /// section of \a grow().
361 void moveElementsForGrow(T *NewElts);
362
363 /// Transfer ownership of the allocation, finishing up \a grow().
364 void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
365
366 /// Reserve enough space to add one element, and return the updated element
367 /// pointer in case it was a reference to the storage.
368 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
369 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
370 }
371
372 /// Reserve enough space to add one element, and return the updated element
373 /// pointer in case it was a reference to the storage.
374 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
375 return const_cast<T *>(
376 this->reserveForParamAndGetAddressImpl(this, Elt, N));
377 }
378
379 static T &&forward_value_param(T &&V) { return std::move(V); }
380 static const T &forward_value_param(const T &V) { return V; }
381
382 void growAndAssign(size_t NumElts, const T &Elt) {
383 // Grow manually in case Elt is an internal reference.
384 size_t NewCapacity;
385 T *NewElts = mallocForGrow(NumElts, NewCapacity);
386 std::uninitialized_fill_n(NewElts, NumElts, Elt);
387 this->destroy_range(this->begin(), this->end());
388 takeAllocationForGrow(NewElts, NewCapacity);
389 this->set_size(NumElts);
390 }
391
392 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
393 // Grow manually in case one of Args is an internal reference.
394 size_t NewCapacity;
395 T *NewElts = mallocForGrow(0, NewCapacity);
396 ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
397 moveElementsForGrow(NewElts);
398 takeAllocationForGrow(NewElts, NewCapacity);
399 this->set_size(this->size() + 1);
400 return this->back();
401 }
402
403public:
404 void push_back(const T &Elt) {
405 const T *EltPtr = reserveForParamAndGetAddress(Elt);
406 ::new ((void *)this->end()) T(*EltPtr);
407 this->set_size(this->size() + 1);
408 }
409
410 void push_back(T &&Elt) {
411 T *EltPtr = reserveForParamAndGetAddress(Elt);
412 ::new ((void *)this->end()) T(::std::move(*EltPtr));
413 this->set_size(this->size() + 1);
414 }
415
416 void pop_back() {
417 this->set_size(this->size() - 1);
418 this->end()->~T();
419 }
420};
421
422// Define this out-of-line to dissuade the C++ compiler from inlining it.
423template <typename T, bool TriviallyCopyable>
424void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
425 size_t NewCapacity;
426 T *NewElts = mallocForGrow(MinSize, NewCapacity);
427 moveElementsForGrow(NewElts);
428 takeAllocationForGrow(NewElts, NewCapacity);
429}
430
431// Define this out-of-line to dissuade the C++ compiler from inlining it.
432template <typename T, bool TriviallyCopyable>
433void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
434 T *NewElts) {
435 // Move the elements over.
436 this->uninitialized_move(this->begin(), this->end(), NewElts);
437
438 // Destroy the original elements.
439 destroy_range(this->begin(), this->end());
440}
441
442// Define this out-of-line to dissuade the C++ compiler from inlining it.
443template <typename T, bool TriviallyCopyable>
444void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
445 T *NewElts, size_t NewCapacity) {
446 // If this wasn't grown from the inline copy, deallocate the old space.
447 if (!this->isSmall())
448 free(this->begin());
449
450 this->BeginX = NewElts;
451 this->Capacity = NewCapacity;
452}
453
454/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
455/// method implementations that are designed to work with trivially copyable
456/// T's. This allows using memcpy in place of copy/move construction and
457/// skipping destruction.
458template <typename T>
459class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
460 friend class SmallVectorTemplateCommon<T>;
461
462protected:
463 /// True if it's cheap enough to take parameters by value. Doing so avoids
464 /// overhead related to mitigations for reference invalidation.
465 static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
466
467 /// Either const T& or T, depending on whether it's cheap enough to take
468 /// parameters by value.
469 using ValueParamT =
470 typename std::conditional<TakesParamByValue, T, const T &>::type;
471
472 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
473
474 // No need to do a destroy loop for POD's.
475 static void destroy_range(T *, T *) {}
476
477 /// Move the range [I, E) onto the uninitialized memory
478 /// starting with "Dest", constructing elements into it as needed.
479 template<typename It1, typename It2>
480 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
481 // Just do a copy.
482 uninitialized_copy(I, E, Dest);
483 }
484
485 /// Copy the range [I, E) onto the uninitialized memory
486 /// starting with "Dest", constructing elements into it as needed.
487 template<typename It1, typename It2>
488 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
489 // Arbitrary iterator types; just use the basic implementation.
490 std::uninitialized_copy(I, E, Dest);
491 }
492
493 /// Copy the range [I, E) onto the uninitialized memory
494 /// starting with "Dest", constructing elements into it as needed.
495 template <typename T1, typename T2>
496 static void uninitialized_copy(
497 T1 *I, T1 *E, T2 *Dest,
498 std::enable_if_t<std::is_same<typename std::remove_const<T1>::type,
499 T2>::value> * = nullptr) {
500 // Use memcpy for PODs iterated by pointers (which includes SmallVector
501 // iterators): std::uninitialized_copy optimizes to memmove, but we can
502 // use memcpy here. Note that I and E are iterators and thus might be
503 // invalid for memcpy if they are equal.
504 if (I != E)
505 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
506 }
507
508 /// Double the size of the allocated memory, guaranteeing space for at
509 /// least one more element or MinSize if specified.
510 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
511
512 /// Reserve enough space to add one element, and return the updated element
513 /// pointer in case it was a reference to the storage.
514 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
515 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
516 }
517
518 /// Reserve enough space to add one element, and return the updated element
519 /// pointer in case it was a reference to the storage.
520 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
521 return const_cast<T *>(
522 this->reserveForParamAndGetAddressImpl(this, Elt, N));
523 }
524
525 /// Copy \p V or return a reference, depending on \a ValueParamT.
526 static ValueParamT forward_value_param(ValueParamT V) { return V; }
527
528 void growAndAssign(size_t NumElts, T Elt) {
529 // Elt has been copied in case it's an internal reference, side-stepping
530 // reference invalidation problems without losing the realloc optimization.
531 this->set_size(0);
532 this->grow(NumElts);
533 std::uninitialized_fill_n(this->begin(), NumElts, Elt);
534 this->set_size(NumElts);
535 }
536
537 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
538 // Use push_back with a copy in case Args has an internal reference,
539 // side-stepping reference invalidation problems without losing the realloc
540 // optimization.
541 push_back(T(std::forward<ArgTypes>(Args)...));
542 return this->back();
543 }
544
545public:
546 void push_back(ValueParamT Elt) {
547 const T *EltPtr = reserveForParamAndGetAddress(Elt);
548 memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
549 this->set_size(this->size() + 1);
550 }
551
552 void pop_back() { this->set_size(this->size() - 1); }
553};
554
555/// This class consists of common code factored out of the SmallVector class to
556/// reduce code duplication based on the SmallVector 'N' template parameter.
557template <typename T>
558class SmallVectorImpl : public SmallVectorTemplateBase<T> {
559 using SuperClass = SmallVectorTemplateBase<T>;
560
561public:
562 using iterator = typename SuperClass::iterator;
563 using const_iterator = typename SuperClass::const_iterator;
564 using reference = typename SuperClass::reference;
565 using size_type = typename SuperClass::size_type;
566
567protected:
568 using SmallVectorTemplateBase<T>::TakesParamByValue;
569 using ValueParamT = typename SuperClass::ValueParamT;
570
571 // Default ctor - Initialize to empty.
572 explicit SmallVectorImpl(unsigned N)
573 : SmallVectorTemplateBase<T>(N) {}
574
575public:
576 SmallVectorImpl(const SmallVectorImpl &) = delete;
577
578 ~SmallVectorImpl() {
579 // Subclass has already destructed this vector's elements.
580 // If this wasn't grown from the inline copy, deallocate the old space.
581 if (!this->isSmall())
582 free(this->begin());
583 }
584
585 void clear() {
586 this->destroy_range(this->begin(), this->end());
587 this->Size = 0;
588 }
589
590private:
591 template <bool ForOverwrite> void resizeImpl(size_type N) {
592 if (N < this->size()) {
593 this->pop_back_n(this->size() - N);
594 } else if (N > this->size()) {
595 this->reserve(N);
596 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
597 if (ForOverwrite)
598 new (&*I) T;
599 else
600 new (&*I) T();
601 this->set_size(N);
602 }
603 }
604
605public:
606 void resize(size_type N) { resizeImpl<false>(N); }
607
608 /// Like resize, but \ref T is POD, the new values won't be initialized.
609 void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
610
611 void resize(size_type N, ValueParamT NV) {
612 if (N == this->size())
613 return;
614
615 if (N < this->size()) {
616 this->pop_back_n(this->size() - N);
617 return;
618 }
619
620 // N > this->size(). Defer to append.
621 this->append(N - this->size(), NV);
622 }
623
624 void reserve(size_type N) {
625 if (this->capacity() < N)
626 this->grow(N);
627 }
628
629 void pop_back_n(size_type NumItems) {
630 assert(this->size() >= NumItems)((void)0);
631 this->destroy_range(this->end() - NumItems, this->end());
632 this->set_size(this->size() - NumItems);
633 }
634
635 LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() {
636 T Result = ::std::move(this->back());
637 this->pop_back();
638 return Result;
639 }
640
641 void swap(SmallVectorImpl &RHS);
642
643 /// Add the specified range to the end of the SmallVector.
644 template <typename in_iter,
645 typename = std::enable_if_t<std::is_convertible<
646 typename std::iterator_traits<in_iter>::iterator_category,
647 std::input_iterator_tag>::value>>
648 void append(in_iter in_start, in_iter in_end) {
649 this->assertSafeToAddRange(in_start, in_end);
650 size_type NumInputs = std::distance(in_start, in_end);
651 this->reserve(this->size() + NumInputs);
652 this->uninitialized_copy(in_start, in_end, this->end());
653 this->set_size(this->size() + NumInputs);
654 }
655
656 /// Append \p NumInputs copies of \p Elt to the end.
657 void append(size_type NumInputs, ValueParamT Elt) {
658 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
659 std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
660 this->set_size(this->size() + NumInputs);
661 }
662
663 void append(std::initializer_list<T> IL) {
664 append(IL.begin(), IL.end());
665 }
666
667 void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
668
669 void assign(size_type NumElts, ValueParamT Elt) {
670 // Note that Elt could be an internal reference.
671 if (NumElts > this->capacity()) {
672 this->growAndAssign(NumElts, Elt);
673 return;
674 }
675
676 // Assign over existing elements.
677 std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
678 if (NumElts > this->size())
679 std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
680 else if (NumElts < this->size())
681 this->destroy_range(this->begin() + NumElts, this->end());
682 this->set_size(NumElts);
683 }
684
685 // FIXME: Consider assigning over existing elements, rather than clearing &
686 // re-initializing them - for all assign(...) variants.
687
688 template <typename in_iter,
689 typename = std::enable_if_t<std::is_convertible<
690 typename std::iterator_traits<in_iter>::iterator_category,
691 std::input_iterator_tag>::value>>
692 void assign(in_iter in_start, in_iter in_end) {
693 this->assertSafeToReferenceAfterClear(in_start, in_end);
694 clear();
695 append(in_start, in_end);
696 }
697
698 void assign(std::initializer_list<T> IL) {
699 clear();
700 append(IL);
701 }
702
703 void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
704
705 iterator erase(const_iterator CI) {
706 // Just cast away constness because this is a non-const member function.
707 iterator I = const_cast<iterator>(CI);
708
709 assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")((void)0);
710
711 iterator N = I;
712 // Shift all elts down one.
713 std::move(I+1, this->end(), I);
714 // Drop the last elt.
715 this->pop_back();
716 return(N);
717 }
718
719 iterator erase(const_iterator CS, const_iterator CE) {
720 // Just cast away constness because this is a non-const member function.
721 iterator S = const_cast<iterator>(CS);
722 iterator E = const_cast<iterator>(CE);
723
724 assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")((void)0);
725
726 iterator N = S;
727 // Shift all elts down.
728 iterator I = std::move(E, this->end(), S);
729 // Drop the last elts.
730 this->destroy_range(I, this->end());
731 this->set_size(I - this->begin());
732 return(N);
733 }
734
735private:
736 template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
737 // Callers ensure that ArgType is derived from T.
738 static_assert(
739 std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
740 T>::value,
741 "ArgType must be derived from T!");
742
743 if (I == this->end()) { // Important special case for empty vector.
744 this->push_back(::std::forward<ArgType>(Elt));
745 return this->end()-1;
746 }
747
748 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0);
749
750 // Grow if necessary.
751 size_t Index = I - this->begin();
752 std::remove_reference_t<ArgType> *EltPtr =
753 this->reserveForParamAndGetAddress(Elt);
754 I = this->begin() + Index;
755
756 ::new ((void*) this->end()) T(::std::move(this->back()));
757 // Push everything else over.
758 std::move_backward(I, this->end()-1, this->end());
759 this->set_size(this->size() + 1);
760
761 // If we just moved the element we're inserting, be sure to update
762 // the reference (never happens if TakesParamByValue).
763 static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
764 "ArgType must be 'T' when taking by value!");
765 if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
766 ++EltPtr;
767
768 *I = ::std::forward<ArgType>(*EltPtr);
769 return I;
770 }
771
772public:
773 iterator insert(iterator I, T &&Elt) {
774 return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
775 }
776
777 iterator insert(iterator I, const T &Elt) {
778 return insert_one_impl(I, this->forward_value_param(Elt));
779 }
780
781 iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
782 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
783 size_t InsertElt = I - this->begin();
784
785 if (I == this->end()) { // Important special case for empty vector.
786 append(NumToInsert, Elt);
787 return this->begin()+InsertElt;
788 }
789
790 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0);
791
792 // Ensure there is enough space, and get the (maybe updated) address of
793 // Elt.
794 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
795
796 // Uninvalidate the iterator.
797 I = this->begin()+InsertElt;
798
799 // If there are more elements between the insertion point and the end of the
800 // range than there are being inserted, we can use a simple approach to
801 // insertion. Since we already reserved space, we know that this won't
802 // reallocate the vector.
803 if (size_t(this->end()-I) >= NumToInsert) {
804 T *OldEnd = this->end();
805 append(std::move_iterator<iterator>(this->end() - NumToInsert),
806 std::move_iterator<iterator>(this->end()));
807
808 // Copy the existing elements that get replaced.
809 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
810
811 // If we just moved the element we're inserting, be sure to update
812 // the reference (never happens if TakesParamByValue).
813 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
814 EltPtr += NumToInsert;
815
816 std::fill_n(I, NumToInsert, *EltPtr);
817 return I;
818 }
819
820 // Otherwise, we're inserting more elements than exist already, and we're
821 // not inserting at the end.
822
823 // Move over the elements that we're about to overwrite.
824 T *OldEnd = this->end();
825 this->set_size(this->size() + NumToInsert);
826 size_t NumOverwritten = OldEnd-I;
827 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
828
829 // If we just moved the element we're inserting, be sure to update
830 // the reference (never happens if TakesParamByValue).
831 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
832 EltPtr += NumToInsert;
833
834 // Replace the overwritten part.
835 std::fill_n(I, NumOverwritten, *EltPtr);
836
837 // Insert the non-overwritten middle part.
838 std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
839 return I;
840 }
841
842 template <typename ItTy,
843 typename = std::enable_if_t<std::is_convertible<
844 typename std::iterator_traits<ItTy>::iterator_category,
845 std::input_iterator_tag>::value>>
846 iterator insert(iterator I, ItTy From, ItTy To) {
847 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
848 size_t InsertElt = I - this->begin();
849
850 if (I == this->end()) { // Important special case for empty vector.
851 append(From, To);
852 return this->begin()+InsertElt;
853 }
854
855 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0);
856
857 // Check that the reserve that follows doesn't invalidate the iterators.
858 this->assertSafeToAddRange(From, To);
859
860 size_t NumToInsert = std::distance(From, To);
861
862 // Ensure there is enough space.
863 reserve(this->size() + NumToInsert);
864
865 // Uninvalidate the iterator.
866 I = this->begin()+InsertElt;
867
868 // If there are more elements between the insertion point and the end of the
869 // range than there are being inserted, we can use a simple approach to
870 // insertion. Since we already reserved space, we know that this won't
871 // reallocate the vector.
872 if (size_t(this->end()-I) >= NumToInsert) {
873 T *OldEnd = this->end();
874 append(std::move_iterator<iterator>(this->end() - NumToInsert),
875 std::move_iterator<iterator>(this->end()));
876
877 // Copy the existing elements that get replaced.
878 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
879
880 std::copy(From, To, I);
881 return I;
882 }
883
884 // Otherwise, we're inserting more elements than exist already, and we're
885 // not inserting at the end.
886
887 // Move over the elements that we're about to overwrite.
888 T *OldEnd = this->end();
889 this->set_size(this->size() + NumToInsert);
890 size_t NumOverwritten = OldEnd-I;
891 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
892
893 // Replace the overwritten part.
894 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
895 *J = *From;
896 ++J; ++From;
897 }
898
899 // Insert the non-overwritten middle part.
900 this->uninitialized_copy(From, To, OldEnd);
901 return I;
902 }
903
904 void insert(iterator I, std::initializer_list<T> IL) {
905 insert(I, IL.begin(), IL.end());
906 }
907
908 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
909 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
910 return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
911
912 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
913 this->set_size(this->size() + 1);
914 return this->back();
915 }
916
917 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
918
919 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
920
921 bool operator==(const SmallVectorImpl &RHS) const {
922 if (this->size() != RHS.size()) return false;
923 return std::equal(this->begin(), this->end(), RHS.begin());
924 }
925 bool operator!=(const SmallVectorImpl &RHS) const {
926 return !(*this == RHS);
927 }
928
929 bool operator<(const SmallVectorImpl &RHS) const {
930 return std::lexicographical_compare(this->begin(), this->end(),
931 RHS.begin(), RHS.end());
932 }
933};
934
935template <typename T>
936void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
937 if (this == &RHS) return;
938
939 // We can only avoid copying elements if neither vector is small.
940 if (!this->isSmall() && !RHS.isSmall()) {
941 std::swap(this->BeginX, RHS.BeginX);
942 std::swap(this->Size, RHS.Size);
943 std::swap(this->Capacity, RHS.Capacity);
944 return;
945 }
946 this->reserve(RHS.size());
947 RHS.reserve(this->size());
948
949 // Swap the shared elements.
950 size_t NumShared = this->size();
951 if (NumShared > RHS.size()) NumShared = RHS.size();
952 for (size_type i = 0; i != NumShared; ++i)
953 std::swap((*this)[i], RHS[i]);
954
955 // Copy over the extra elts.
956 if (this->size() > RHS.size()) {
957 size_t EltDiff = this->size() - RHS.size();
958 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
959 RHS.set_size(RHS.size() + EltDiff);
960 this->destroy_range(this->begin()+NumShared, this->end());
961 this->set_size(NumShared);
962 } else if (RHS.size() > this->size()) {
963 size_t EltDiff = RHS.size() - this->size();
964 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
965 this->set_size(this->size() + EltDiff);
966 this->destroy_range(RHS.begin()+NumShared, RHS.end());
967 RHS.set_size(NumShared);
968 }
969}
970
971template <typename T>
972SmallVectorImpl<T> &SmallVectorImpl<T>::
973 operator=(const SmallVectorImpl<T> &RHS) {
974 // Avoid self-assignment.
975 if (this == &RHS) return *this;
976
977 // If we already have sufficient space, assign the common elements, then
978 // destroy any excess.
979 size_t RHSSize = RHS.size();
980 size_t CurSize = this->size();
981 if (CurSize >= RHSSize) {
982 // Assign common elements.
983 iterator NewEnd;
984 if (RHSSize)
985 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
986 else
987 NewEnd = this->begin();
988
989 // Destroy excess elements.
990 this->destroy_range(NewEnd, this->end());
991
992 // Trim.
993 this->set_size(RHSSize);
994 return *this;
995 }
996
997 // If we have to grow to have enough elements, destroy the current elements.
998 // This allows us to avoid copying them during the grow.
999 // FIXME: don't do this if they're efficiently moveable.
1000 if (this->capacity() < RHSSize) {
1001 // Destroy current elements.
1002 this->clear();
1003 CurSize = 0;
1004 this->grow(RHSSize);
1005 } else if (CurSize) {
1006 // Otherwise, use assignment for the already-constructed elements.
1007 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1008 }
1009
1010 // Copy construct the new elements in place.
1011 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1012 this->begin()+CurSize);
1013
1014 // Set end.
1015 this->set_size(RHSSize);
1016 return *this;
1017}
1018
1019template <typename T>
1020SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1021 // Avoid self-assignment.
1022 if (this == &RHS) return *this;
1023
1024 // If the RHS isn't small, clear this vector and then steal its buffer.
1025 if (!RHS.isSmall()) {
1026 this->destroy_range(this->begin(), this->end());
1027 if (!this->isSmall()) free(this->begin());
1028 this->BeginX = RHS.BeginX;
1029 this->Size = RHS.Size;
1030 this->Capacity = RHS.Capacity;
1031 RHS.resetToSmall();
1032 return *this;
1033 }
1034
1035 // If we already have sufficient space, assign the common elements, then
1036 // destroy any excess.
1037 size_t RHSSize = RHS.size();
1038 size_t CurSize = this->size();
1039 if (CurSize >= RHSSize) {
1040 // Assign common elements.
1041 iterator NewEnd = this->begin();
1042 if (RHSSize)
1043 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1044
1045 // Destroy excess elements and trim the bounds.
1046 this->destroy_range(NewEnd, this->end());
1047 this->set_size(RHSSize);
1048
1049 // Clear the RHS.
1050 RHS.clear();
1051
1052 return *this;
1053 }
1054
1055 // If we have to grow to have enough elements, destroy the current elements.
1056 // This allows us to avoid copying them during the grow.
1057 // FIXME: this may not actually make any sense if we can efficiently move
1058 // elements.
1059 if (this->capacity() < RHSSize) {
1060 // Destroy current elements.
1061 this->clear();
1062 CurSize = 0;
1063 this->grow(RHSSize);
1064 } else if (CurSize) {
1065 // Otherwise, use assignment for the already-constructed elements.
1066 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1067 }
1068
1069 // Move-construct the new elements in place.
1070 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1071 this->begin()+CurSize);
1072
1073 // Set end.
1074 this->set_size(RHSSize);
1075
1076 RHS.clear();
1077 return *this;
1078}
1079
1080/// Storage for the SmallVector elements. This is specialized for the N=0 case
1081/// to avoid allocating unnecessary storage.
1082template <typename T, unsigned N>
1083struct SmallVectorStorage {
1084 alignas(T) char InlineElts[N * sizeof(T)];
1085};
1086
1087/// We need the storage to be properly aligned even for small-size of 0 so that
1088/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1089/// well-defined.
1090template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1091
1092/// Forward declaration of SmallVector so that
1093/// calculateSmallVectorDefaultInlinedElements can reference
1094/// `sizeof(SmallVector<T, 0>)`.
1095template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector;
1096
1097/// Helper class for calculating the default number of inline elements for
1098/// `SmallVector<T>`.
1099///
1100/// This should be migrated to a constexpr function when our minimum
1101/// compiler support is enough for multi-statement constexpr functions.
1102template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1103 // Parameter controlling the default number of inlined elements
1104 // for `SmallVector<T>`.
1105 //
1106 // The default number of inlined elements ensures that
1107 // 1. There is at least one inlined element.
1108 // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1109 // it contradicts 1.
1110 static constexpr size_t kPreferredSmallVectorSizeof = 64;
1111
1112 // static_assert that sizeof(T) is not "too big".
1113 //
1114 // Because our policy guarantees at least one inlined element, it is possible
1115 // for an arbitrarily large inlined element to allocate an arbitrarily large
1116 // amount of inline storage. We generally consider it an antipattern for a
1117 // SmallVector to allocate an excessive amount of inline storage, so we want
1118 // to call attention to these cases and make sure that users are making an
1119 // intentional decision if they request a lot of inline storage.
1120 //
1121 // We want this assertion to trigger in pathological cases, but otherwise
1122 // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1123 // larger than kPreferredSmallVectorSizeof (otherwise,
1124 // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1125 // pattern seems useful in practice).
1126 //
1127 // One wrinkle is that this assertion is in theory non-portable, since
1128 // sizeof(T) is in general platform-dependent. However, we don't expect this
1129 // to be much of an issue, because most LLVM development happens on 64-bit
1130 // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1131 // 32-bit hosts, dodging the issue. The reverse situation, where development
1132 // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1133 // 64-bit host, is expected to be very rare.
1134 static_assert(
1135 sizeof(T) <= 256,
1136 "You are trying to use a default number of inlined elements for "
1137 "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1138 "explicit number of inlined elements with `SmallVector<T, N>` to make "
1139 "sure you really want that much inline storage.");
1140
1141 // Discount the size of the header itself when calculating the maximum inline
1142 // bytes.
1143 static constexpr size_t PreferredInlineBytes =
1144 kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1145 static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1146 static constexpr size_t value =
1147 NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1148};
1149
1150/// This is a 'vector' (really, a variable-sized array), optimized
1151/// for the case when the array is small. It contains some number of elements
1152/// in-place, which allows it to avoid heap allocation when the actual number of
1153/// elements is below that threshold. This allows normal "small" cases to be
1154/// fast without losing generality for large inputs.
1155///
1156/// \note
1157/// In the absence of a well-motivated choice for the number of inlined
1158/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1159/// omitting the \p N). This will choose a default number of inlined elements
1160/// reasonable for allocation on the stack (for example, trying to keep \c
1161/// sizeof(SmallVector<T>) around 64 bytes).
1162///
1163/// \warning This does not attempt to be exception safe.
1164///
1165/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1166template <typename T,
1167 unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1168class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>,
1169 SmallVectorStorage<T, N> {
1170public:
1171 SmallVector() : SmallVectorImpl<T>(N) {}
1172
1173 ~SmallVector() {
1174 // Destroy the constructed elements in the vector.
1175 this->destroy_range(this->begin(), this->end());
1176 }
1177
1178 explicit SmallVector(size_t Size, const T &Value = T())
1179 : SmallVectorImpl<T>(N) {
1180 this->assign(Size, Value);
1181 }
1182
1183 template <typename ItTy,
1184 typename = std::enable_if_t<std::is_convertible<
1185 typename std::iterator_traits<ItTy>::iterator_category,
1186 std::input_iterator_tag>::value>>
1187 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1188 this->append(S, E);
1189 }
1190
1191 template <typename RangeTy>
1192 explicit SmallVector(const iterator_range<RangeTy> &R)
1193 : SmallVectorImpl<T>(N) {
1194 this->append(R.begin(), R.end());
1195 }
1196
1197 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1198 this->assign(IL);
1199 }
1200
1201 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1202 if (!RHS.empty())
1203 SmallVectorImpl<T>::operator=(RHS);
1204 }
1205
1206 SmallVector &operator=(const SmallVector &RHS) {
1207 SmallVectorImpl<T>::operator=(RHS);
1208 return *this;
1209 }
1210
1211 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1212 if (!RHS.empty())
1213 SmallVectorImpl<T>::operator=(::std::move(RHS));
1214 }
1215
1216 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1217 if (!RHS.empty())
1218 SmallVectorImpl<T>::operator=(::std::move(RHS));
1219 }
1220
1221 SmallVector &operator=(SmallVector &&RHS) {
1222 SmallVectorImpl<T>::operator=(::std::move(RHS));
1223 return *this;
1224 }
1225
1226 SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1227 SmallVectorImpl<T>::operator=(::std::move(RHS));
1228 return *this;
1229 }
1230
1231 SmallVector &operator=(std::initializer_list<T> IL) {
1232 this->assign(IL);
1233 return *this;
1234 }
1235};
1236
1237template <typename T, unsigned N>
1238inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1239 return X.capacity_in_bytes();
1240}
1241
1242/// Given a range of type R, iterate the entire range and return a
1243/// SmallVector with elements of the vector. This is useful, for example,
1244/// when you want to iterate a range and then sort the results.
1245template <unsigned Size, typename R>
1246SmallVector<typename std::remove_const<typename std::remove_reference<
1247 decltype(*std::begin(std::declval<R &>()))>::type>::type,
1248 Size>
1249to_vector(R &&Range) {
1250 return {std::begin(Range), std::end(Range)};
1251}
1252
1253} // end namespace llvm
1254
1255namespace std {
1256
1257 /// Implement std::swap in terms of SmallVector swap.
1258 template<typename T>
1259 inline void
1260 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1261 LHS.swap(RHS);
1262 }
1263
1264 /// Implement std::swap in terms of SmallVector swap.
1265 template<typename T, unsigned N>
1266 inline void
1267 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1268 LHS.swap(RHS);
1269 }
1270
1271} // end namespace std
1272
1273#endif // LLVM_ADT_SMALLVECTOR_H