File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaExpr.cpp |
Warning: | line 7418, column 38 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for expressions. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "TreeTransform.h" |
14 | #include "UsedDeclVisitor.h" |
15 | #include "clang/AST/ASTConsumer.h" |
16 | #include "clang/AST/ASTContext.h" |
17 | #include "clang/AST/ASTLambda.h" |
18 | #include "clang/AST/ASTMutationListener.h" |
19 | #include "clang/AST/CXXInheritance.h" |
20 | #include "clang/AST/DeclObjC.h" |
21 | #include "clang/AST/DeclTemplate.h" |
22 | #include "clang/AST/EvaluatedExprVisitor.h" |
23 | #include "clang/AST/Expr.h" |
24 | #include "clang/AST/ExprCXX.h" |
25 | #include "clang/AST/ExprObjC.h" |
26 | #include "clang/AST/ExprOpenMP.h" |
27 | #include "clang/AST/OperationKinds.h" |
28 | #include "clang/AST/RecursiveASTVisitor.h" |
29 | #include "clang/AST/TypeLoc.h" |
30 | #include "clang/Basic/Builtins.h" |
31 | #include "clang/Basic/PartialDiagnostic.h" |
32 | #include "clang/Basic/SourceManager.h" |
33 | #include "clang/Basic/TargetInfo.h" |
34 | #include "clang/Lex/LiteralSupport.h" |
35 | #include "clang/Lex/Preprocessor.h" |
36 | #include "clang/Sema/AnalysisBasedWarnings.h" |
37 | #include "clang/Sema/DeclSpec.h" |
38 | #include "clang/Sema/DelayedDiagnostic.h" |
39 | #include "clang/Sema/Designator.h" |
40 | #include "clang/Sema/Initialization.h" |
41 | #include "clang/Sema/Lookup.h" |
42 | #include "clang/Sema/Overload.h" |
43 | #include "clang/Sema/ParsedTemplate.h" |
44 | #include "clang/Sema/Scope.h" |
45 | #include "clang/Sema/ScopeInfo.h" |
46 | #include "clang/Sema/SemaFixItUtils.h" |
47 | #include "clang/Sema/SemaInternal.h" |
48 | #include "clang/Sema/Template.h" |
49 | #include "llvm/ADT/STLExtras.h" |
50 | #include "llvm/ADT/StringExtras.h" |
51 | #include "llvm/Support/ConvertUTF.h" |
52 | #include "llvm/Support/SaveAndRestore.h" |
53 | |
54 | using namespace clang; |
55 | using namespace sema; |
56 | using llvm::RoundingMode; |
57 | |
58 | /// Determine whether the use of this declaration is valid, without |
59 | /// emitting diagnostics. |
60 | bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { |
61 | // See if this is an auto-typed variable whose initializer we are parsing. |
62 | if (ParsingInitForAutoVars.count(D)) |
63 | return false; |
64 | |
65 | // See if this is a deleted function. |
66 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
67 | if (FD->isDeleted()) |
68 | return false; |
69 | |
70 | // If the function has a deduced return type, and we can't deduce it, |
71 | // then we can't use it either. |
72 | if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && |
73 | DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) |
74 | return false; |
75 | |
76 | // See if this is an aligned allocation/deallocation function that is |
77 | // unavailable. |
78 | if (TreatUnavailableAsInvalid && |
79 | isUnavailableAlignedAllocationFunction(*FD)) |
80 | return false; |
81 | } |
82 | |
83 | // See if this function is unavailable. |
84 | if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && |
85 | cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) |
86 | return false; |
87 | |
88 | if (isa<UnresolvedUsingIfExistsDecl>(D)) |
89 | return false; |
90 | |
91 | return true; |
92 | } |
93 | |
94 | static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { |
95 | // Warn if this is used but marked unused. |
96 | if (const auto *A = D->getAttr<UnusedAttr>()) { |
97 | // [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) |
98 | // should diagnose them. |
99 | if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && |
100 | A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { |
101 | const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext()); |
102 | if (DC && !DC->hasAttr<UnusedAttr>()) |
103 | S.Diag(Loc, diag::warn_used_but_marked_unused) << D; |
104 | } |
105 | } |
106 | } |
107 | |
108 | /// Emit a note explaining that this function is deleted. |
109 | void Sema::NoteDeletedFunction(FunctionDecl *Decl) { |
110 | assert(Decl && Decl->isDeleted())((void)0); |
111 | |
112 | if (Decl->isDefaulted()) { |
113 | // If the method was explicitly defaulted, point at that declaration. |
114 | if (!Decl->isImplicit()) |
115 | Diag(Decl->getLocation(), diag::note_implicitly_deleted); |
116 | |
117 | // Try to diagnose why this special member function was implicitly |
118 | // deleted. This might fail, if that reason no longer applies. |
119 | DiagnoseDeletedDefaultedFunction(Decl); |
120 | return; |
121 | } |
122 | |
123 | auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl); |
124 | if (Ctor && Ctor->isInheritingConstructor()) |
125 | return NoteDeletedInheritingConstructor(Ctor); |
126 | |
127 | Diag(Decl->getLocation(), diag::note_availability_specified_here) |
128 | << Decl << 1; |
129 | } |
130 | |
131 | /// Determine whether a FunctionDecl was ever declared with an |
132 | /// explicit storage class. |
133 | static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { |
134 | for (auto I : D->redecls()) { |
135 | if (I->getStorageClass() != SC_None) |
136 | return true; |
137 | } |
138 | return false; |
139 | } |
140 | |
141 | /// Check whether we're in an extern inline function and referring to a |
142 | /// variable or function with internal linkage (C11 6.7.4p3). |
143 | /// |
144 | /// This is only a warning because we used to silently accept this code, but |
145 | /// in many cases it will not behave correctly. This is not enabled in C++ mode |
146 | /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) |
147 | /// and so while there may still be user mistakes, most of the time we can't |
148 | /// prove that there are errors. |
149 | static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, |
150 | const NamedDecl *D, |
151 | SourceLocation Loc) { |
152 | // This is disabled under C++; there are too many ways for this to fire in |
153 | // contexts where the warning is a false positive, or where it is technically |
154 | // correct but benign. |
155 | if (S.getLangOpts().CPlusPlus) |
156 | return; |
157 | |
158 | // Check if this is an inlined function or method. |
159 | FunctionDecl *Current = S.getCurFunctionDecl(); |
160 | if (!Current) |
161 | return; |
162 | if (!Current->isInlined()) |
163 | return; |
164 | if (!Current->isExternallyVisible()) |
165 | return; |
166 | |
167 | // Check if the decl has internal linkage. |
168 | if (D->getFormalLinkage() != InternalLinkage) |
169 | return; |
170 | |
171 | // Downgrade from ExtWarn to Extension if |
172 | // (1) the supposedly external inline function is in the main file, |
173 | // and probably won't be included anywhere else. |
174 | // (2) the thing we're referencing is a pure function. |
175 | // (3) the thing we're referencing is another inline function. |
176 | // This last can give us false negatives, but it's better than warning on |
177 | // wrappers for simple C library functions. |
178 | const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D); |
179 | bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); |
180 | if (!DowngradeWarning && UsedFn) |
181 | DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>(); |
182 | |
183 | S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet |
184 | : diag::ext_internal_in_extern_inline) |
185 | << /*IsVar=*/!UsedFn << D; |
186 | |
187 | S.MaybeSuggestAddingStaticToDecl(Current); |
188 | |
189 | S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) |
190 | << D; |
191 | } |
192 | |
193 | void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { |
194 | const FunctionDecl *First = Cur->getFirstDecl(); |
195 | |
196 | // Suggest "static" on the function, if possible. |
197 | if (!hasAnyExplicitStorageClass(First)) { |
198 | SourceLocation DeclBegin = First->getSourceRange().getBegin(); |
199 | Diag(DeclBegin, diag::note_convert_inline_to_static) |
200 | << Cur << FixItHint::CreateInsertion(DeclBegin, "static "); |
201 | } |
202 | } |
203 | |
204 | /// Determine whether the use of this declaration is valid, and |
205 | /// emit any corresponding diagnostics. |
206 | /// |
207 | /// This routine diagnoses various problems with referencing |
208 | /// declarations that can occur when using a declaration. For example, |
209 | /// it might warn if a deprecated or unavailable declaration is being |
210 | /// used, or produce an error (and return true) if a C++0x deleted |
211 | /// function is being used. |
212 | /// |
213 | /// \returns true if there was an error (this declaration cannot be |
214 | /// referenced), false otherwise. |
215 | /// |
216 | bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, |
217 | const ObjCInterfaceDecl *UnknownObjCClass, |
218 | bool ObjCPropertyAccess, |
219 | bool AvoidPartialAvailabilityChecks, |
220 | ObjCInterfaceDecl *ClassReceiver) { |
221 | SourceLocation Loc = Locs.front(); |
222 | if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) { |
223 | // If there were any diagnostics suppressed by template argument deduction, |
224 | // emit them now. |
225 | auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); |
226 | if (Pos != SuppressedDiagnostics.end()) { |
227 | for (const PartialDiagnosticAt &Suppressed : Pos->second) |
228 | Diag(Suppressed.first, Suppressed.second); |
229 | |
230 | // Clear out the list of suppressed diagnostics, so that we don't emit |
231 | // them again for this specialization. However, we don't obsolete this |
232 | // entry from the table, because we want to avoid ever emitting these |
233 | // diagnostics again. |
234 | Pos->second.clear(); |
235 | } |
236 | |
237 | // C++ [basic.start.main]p3: |
238 | // The function 'main' shall not be used within a program. |
239 | if (cast<FunctionDecl>(D)->isMain()) |
240 | Diag(Loc, diag::ext_main_used); |
241 | |
242 | diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc); |
243 | } |
244 | |
245 | // See if this is an auto-typed variable whose initializer we are parsing. |
246 | if (ParsingInitForAutoVars.count(D)) { |
247 | if (isa<BindingDecl>(D)) { |
248 | Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) |
249 | << D->getDeclName(); |
250 | } else { |
251 | Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) |
252 | << D->getDeclName() << cast<VarDecl>(D)->getType(); |
253 | } |
254 | return true; |
255 | } |
256 | |
257 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
258 | // See if this is a deleted function. |
259 | if (FD->isDeleted()) { |
260 | auto *Ctor = dyn_cast<CXXConstructorDecl>(FD); |
261 | if (Ctor && Ctor->isInheritingConstructor()) |
262 | Diag(Loc, diag::err_deleted_inherited_ctor_use) |
263 | << Ctor->getParent() |
264 | << Ctor->getInheritedConstructor().getConstructor()->getParent(); |
265 | else |
266 | Diag(Loc, diag::err_deleted_function_use); |
267 | NoteDeletedFunction(FD); |
268 | return true; |
269 | } |
270 | |
271 | // [expr.prim.id]p4 |
272 | // A program that refers explicitly or implicitly to a function with a |
273 | // trailing requires-clause whose constraint-expression is not satisfied, |
274 | // other than to declare it, is ill-formed. [...] |
275 | // |
276 | // See if this is a function with constraints that need to be satisfied. |
277 | // Check this before deducing the return type, as it might instantiate the |
278 | // definition. |
279 | if (FD->getTrailingRequiresClause()) { |
280 | ConstraintSatisfaction Satisfaction; |
281 | if (CheckFunctionConstraints(FD, Satisfaction, Loc)) |
282 | // A diagnostic will have already been generated (non-constant |
283 | // constraint expression, for example) |
284 | return true; |
285 | if (!Satisfaction.IsSatisfied) { |
286 | Diag(Loc, |
287 | diag::err_reference_to_function_with_unsatisfied_constraints) |
288 | << D; |
289 | DiagnoseUnsatisfiedConstraint(Satisfaction); |
290 | return true; |
291 | } |
292 | } |
293 | |
294 | // If the function has a deduced return type, and we can't deduce it, |
295 | // then we can't use it either. |
296 | if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && |
297 | DeduceReturnType(FD, Loc)) |
298 | return true; |
299 | |
300 | if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) |
301 | return true; |
302 | |
303 | if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD)) |
304 | return true; |
305 | } |
306 | |
307 | if (auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
308 | // Lambdas are only default-constructible or assignable in C++2a onwards. |
309 | if (MD->getParent()->isLambda() && |
310 | ((isa<CXXConstructorDecl>(MD) && |
311 | cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) || |
312 | MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) { |
313 | Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign) |
314 | << !isa<CXXConstructorDecl>(MD); |
315 | } |
316 | } |
317 | |
318 | auto getReferencedObjCProp = [](const NamedDecl *D) -> |
319 | const ObjCPropertyDecl * { |
320 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) |
321 | return MD->findPropertyDecl(); |
322 | return nullptr; |
323 | }; |
324 | if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { |
325 | if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) |
326 | return true; |
327 | } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { |
328 | return true; |
329 | } |
330 | |
331 | // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions |
332 | // Only the variables omp_in and omp_out are allowed in the combiner. |
333 | // Only the variables omp_priv and omp_orig are allowed in the |
334 | // initializer-clause. |
335 | auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext); |
336 | if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && |
337 | isa<VarDecl>(D)) { |
338 | Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) |
339 | << getCurFunction()->HasOMPDeclareReductionCombiner; |
340 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; |
341 | return true; |
342 | } |
343 | |
344 | // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions |
345 | // List-items in map clauses on this construct may only refer to the declared |
346 | // variable var and entities that could be referenced by a procedure defined |
347 | // at the same location |
348 | if (LangOpts.OpenMP && isa<VarDecl>(D) && |
349 | !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) { |
350 | Diag(Loc, diag::err_omp_declare_mapper_wrong_var) |
351 | << getOpenMPDeclareMapperVarName(); |
352 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; |
353 | return true; |
354 | } |
355 | |
356 | if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) { |
357 | Diag(Loc, diag::err_use_of_empty_using_if_exists); |
358 | Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here); |
359 | return true; |
360 | } |
361 | |
362 | DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, |
363 | AvoidPartialAvailabilityChecks, ClassReceiver); |
364 | |
365 | DiagnoseUnusedOfDecl(*this, D, Loc); |
366 | |
367 | diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); |
368 | |
369 | if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) { |
370 | if (auto *VD = dyn_cast<ValueDecl>(D)) |
371 | checkDeviceDecl(VD, Loc); |
372 | |
373 | if (!Context.getTargetInfo().isTLSSupported()) |
374 | if (const auto *VD = dyn_cast<VarDecl>(D)) |
375 | if (VD->getTLSKind() != VarDecl::TLS_None) |
376 | targetDiag(*Locs.begin(), diag::err_thread_unsupported); |
377 | } |
378 | |
379 | if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) && |
380 | !isUnevaluatedContext()) { |
381 | // C++ [expr.prim.req.nested] p3 |
382 | // A local parameter shall only appear as an unevaluated operand |
383 | // (Clause 8) within the constraint-expression. |
384 | Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context) |
385 | << D; |
386 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; |
387 | return true; |
388 | } |
389 | |
390 | return false; |
391 | } |
392 | |
393 | /// DiagnoseSentinelCalls - This routine checks whether a call or |
394 | /// message-send is to a declaration with the sentinel attribute, and |
395 | /// if so, it checks that the requirements of the sentinel are |
396 | /// satisfied. |
397 | void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, |
398 | ArrayRef<Expr *> Args) { |
399 | const SentinelAttr *attr = D->getAttr<SentinelAttr>(); |
400 | if (!attr) |
401 | return; |
402 | |
403 | // The number of formal parameters of the declaration. |
404 | unsigned numFormalParams; |
405 | |
406 | // The kind of declaration. This is also an index into a %select in |
407 | // the diagnostic. |
408 | enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; |
409 | |
410 | if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { |
411 | numFormalParams = MD->param_size(); |
412 | calleeType = CT_Method; |
413 | } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
414 | numFormalParams = FD->param_size(); |
415 | calleeType = CT_Function; |
416 | } else if (isa<VarDecl>(D)) { |
417 | QualType type = cast<ValueDecl>(D)->getType(); |
418 | const FunctionType *fn = nullptr; |
419 | if (const PointerType *ptr = type->getAs<PointerType>()) { |
420 | fn = ptr->getPointeeType()->getAs<FunctionType>(); |
421 | if (!fn) return; |
422 | calleeType = CT_Function; |
423 | } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) { |
424 | fn = ptr->getPointeeType()->castAs<FunctionType>(); |
425 | calleeType = CT_Block; |
426 | } else { |
427 | return; |
428 | } |
429 | |
430 | if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) { |
431 | numFormalParams = proto->getNumParams(); |
432 | } else { |
433 | numFormalParams = 0; |
434 | } |
435 | } else { |
436 | return; |
437 | } |
438 | |
439 | // "nullPos" is the number of formal parameters at the end which |
440 | // effectively count as part of the variadic arguments. This is |
441 | // useful if you would prefer to not have *any* formal parameters, |
442 | // but the language forces you to have at least one. |
443 | unsigned nullPos = attr->getNullPos(); |
444 | assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")((void)0); |
445 | numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); |
446 | |
447 | // The number of arguments which should follow the sentinel. |
448 | unsigned numArgsAfterSentinel = attr->getSentinel(); |
449 | |
450 | // If there aren't enough arguments for all the formal parameters, |
451 | // the sentinel, and the args after the sentinel, complain. |
452 | if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { |
453 | Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); |
454 | Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); |
455 | return; |
456 | } |
457 | |
458 | // Otherwise, find the sentinel expression. |
459 | Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; |
460 | if (!sentinelExpr) return; |
461 | if (sentinelExpr->isValueDependent()) return; |
462 | if (Context.isSentinelNullExpr(sentinelExpr)) return; |
463 | |
464 | // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', |
465 | // or 'NULL' if those are actually defined in the context. Only use |
466 | // 'nil' for ObjC methods, where it's much more likely that the |
467 | // variadic arguments form a list of object pointers. |
468 | SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc()); |
469 | std::string NullValue; |
470 | if (calleeType == CT_Method && PP.isMacroDefined("nil")) |
471 | NullValue = "nil"; |
472 | else if (getLangOpts().CPlusPlus11) |
473 | NullValue = "nullptr"; |
474 | else if (PP.isMacroDefined("NULL")) |
475 | NullValue = "NULL"; |
476 | else |
477 | NullValue = "(void*) 0"; |
478 | |
479 | if (MissingNilLoc.isInvalid()) |
480 | Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); |
481 | else |
482 | Diag(MissingNilLoc, diag::warn_missing_sentinel) |
483 | << int(calleeType) |
484 | << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); |
485 | Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); |
486 | } |
487 | |
488 | SourceRange Sema::getExprRange(Expr *E) const { |
489 | return E ? E->getSourceRange() : SourceRange(); |
490 | } |
491 | |
492 | //===----------------------------------------------------------------------===// |
493 | // Standard Promotions and Conversions |
494 | //===----------------------------------------------------------------------===// |
495 | |
496 | /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). |
497 | ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { |
498 | // Handle any placeholder expressions which made it here. |
499 | if (E->getType()->isPlaceholderType()) { |
500 | ExprResult result = CheckPlaceholderExpr(E); |
501 | if (result.isInvalid()) return ExprError(); |
502 | E = result.get(); |
503 | } |
504 | |
505 | QualType Ty = E->getType(); |
506 | assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")((void)0); |
507 | |
508 | if (Ty->isFunctionType()) { |
509 | if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts())) |
510 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) |
511 | if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) |
512 | return ExprError(); |
513 | |
514 | E = ImpCastExprToType(E, Context.getPointerType(Ty), |
515 | CK_FunctionToPointerDecay).get(); |
516 | } else if (Ty->isArrayType()) { |
517 | // In C90 mode, arrays only promote to pointers if the array expression is |
518 | // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has |
519 | // type 'array of type' is converted to an expression that has type 'pointer |
520 | // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression |
521 | // that has type 'array of type' ...". The relevant change is "an lvalue" |
522 | // (C90) to "an expression" (C99). |
523 | // |
524 | // C++ 4.2p1: |
525 | // An lvalue or rvalue of type "array of N T" or "array of unknown bound of |
526 | // T" can be converted to an rvalue of type "pointer to T". |
527 | // |
528 | if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) { |
529 | ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), |
530 | CK_ArrayToPointerDecay); |
531 | if (Res.isInvalid()) |
532 | return ExprError(); |
533 | E = Res.get(); |
534 | } |
535 | } |
536 | return E; |
537 | } |
538 | |
539 | static void CheckForNullPointerDereference(Sema &S, Expr *E) { |
540 | // Check to see if we are dereferencing a null pointer. If so, |
541 | // and if not volatile-qualified, this is undefined behavior that the |
542 | // optimizer will delete, so warn about it. People sometimes try to use this |
543 | // to get a deterministic trap and are surprised by clang's behavior. This |
544 | // only handles the pattern "*null", which is a very syntactic check. |
545 | const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()); |
546 | if (UO && UO->getOpcode() == UO_Deref && |
547 | UO->getSubExpr()->getType()->isPointerType()) { |
548 | const LangAS AS = |
549 | UO->getSubExpr()->getType()->getPointeeType().getAddressSpace(); |
550 | if ((!isTargetAddressSpace(AS) || |
551 | (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) && |
552 | UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant( |
553 | S.Context, Expr::NPC_ValueDependentIsNotNull) && |
554 | !UO->getType().isVolatileQualified()) { |
555 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
556 | S.PDiag(diag::warn_indirection_through_null) |
557 | << UO->getSubExpr()->getSourceRange()); |
558 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
559 | S.PDiag(diag::note_indirection_through_null)); |
560 | } |
561 | } |
562 | } |
563 | |
564 | static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, |
565 | SourceLocation AssignLoc, |
566 | const Expr* RHS) { |
567 | const ObjCIvarDecl *IV = OIRE->getDecl(); |
568 | if (!IV) |
569 | return; |
570 | |
571 | DeclarationName MemberName = IV->getDeclName(); |
572 | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
573 | if (!Member || !Member->isStr("isa")) |
574 | return; |
575 | |
576 | const Expr *Base = OIRE->getBase(); |
577 | QualType BaseType = Base->getType(); |
578 | if (OIRE->isArrow()) |
579 | BaseType = BaseType->getPointeeType(); |
580 | if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) |
581 | if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { |
582 | ObjCInterfaceDecl *ClassDeclared = nullptr; |
583 | ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); |
584 | if (!ClassDeclared->getSuperClass() |
585 | && (*ClassDeclared->ivar_begin()) == IV) { |
586 | if (RHS) { |
587 | NamedDecl *ObjectSetClass = |
588 | S.LookupSingleName(S.TUScope, |
589 | &S.Context.Idents.get("object_setClass"), |
590 | SourceLocation(), S.LookupOrdinaryName); |
591 | if (ObjectSetClass) { |
592 | SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc()); |
593 | S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) |
594 | << FixItHint::CreateInsertion(OIRE->getBeginLoc(), |
595 | "object_setClass(") |
596 | << FixItHint::CreateReplacement( |
597 | SourceRange(OIRE->getOpLoc(), AssignLoc), ",") |
598 | << FixItHint::CreateInsertion(RHSLocEnd, ")"); |
599 | } |
600 | else |
601 | S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); |
602 | } else { |
603 | NamedDecl *ObjectGetClass = |
604 | S.LookupSingleName(S.TUScope, |
605 | &S.Context.Idents.get("object_getClass"), |
606 | SourceLocation(), S.LookupOrdinaryName); |
607 | if (ObjectGetClass) |
608 | S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) |
609 | << FixItHint::CreateInsertion(OIRE->getBeginLoc(), |
610 | "object_getClass(") |
611 | << FixItHint::CreateReplacement( |
612 | SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")"); |
613 | else |
614 | S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); |
615 | } |
616 | S.Diag(IV->getLocation(), diag::note_ivar_decl); |
617 | } |
618 | } |
619 | } |
620 | |
621 | ExprResult Sema::DefaultLvalueConversion(Expr *E) { |
622 | // Handle any placeholder expressions which made it here. |
623 | if (E->getType()->isPlaceholderType()) { |
624 | ExprResult result = CheckPlaceholderExpr(E); |
625 | if (result.isInvalid()) return ExprError(); |
626 | E = result.get(); |
627 | } |
628 | |
629 | // C++ [conv.lval]p1: |
630 | // A glvalue of a non-function, non-array type T can be |
631 | // converted to a prvalue. |
632 | if (!E->isGLValue()) return E; |
633 | |
634 | QualType T = E->getType(); |
635 | assert(!T.isNull() && "r-value conversion on typeless expression?")((void)0); |
636 | |
637 | // lvalue-to-rvalue conversion cannot be applied to function or array types. |
638 | if (T->isFunctionType() || T->isArrayType()) |
639 | return E; |
640 | |
641 | // We don't want to throw lvalue-to-rvalue casts on top of |
642 | // expressions of certain types in C++. |
643 | if (getLangOpts().CPlusPlus && |
644 | (E->getType() == Context.OverloadTy || |
645 | T->isDependentType() || |
646 | T->isRecordType())) |
647 | return E; |
648 | |
649 | // The C standard is actually really unclear on this point, and |
650 | // DR106 tells us what the result should be but not why. It's |
651 | // generally best to say that void types just doesn't undergo |
652 | // lvalue-to-rvalue at all. Note that expressions of unqualified |
653 | // 'void' type are never l-values, but qualified void can be. |
654 | if (T->isVoidType()) |
655 | return E; |
656 | |
657 | // OpenCL usually rejects direct accesses to values of 'half' type. |
658 | if (getLangOpts().OpenCL && |
659 | !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && |
660 | T->isHalfType()) { |
661 | Diag(E->getExprLoc(), diag::err_opencl_half_load_store) |
662 | << 0 << T; |
663 | return ExprError(); |
664 | } |
665 | |
666 | CheckForNullPointerDereference(*this, E); |
667 | if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) { |
668 | NamedDecl *ObjectGetClass = LookupSingleName(TUScope, |
669 | &Context.Idents.get("object_getClass"), |
670 | SourceLocation(), LookupOrdinaryName); |
671 | if (ObjectGetClass) |
672 | Diag(E->getExprLoc(), diag::warn_objc_isa_use) |
673 | << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(") |
674 | << FixItHint::CreateReplacement( |
675 | SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); |
676 | else |
677 | Diag(E->getExprLoc(), diag::warn_objc_isa_use); |
678 | } |
679 | else if (const ObjCIvarRefExpr *OIRE = |
680 | dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts())) |
681 | DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); |
682 | |
683 | // C++ [conv.lval]p1: |
684 | // [...] If T is a non-class type, the type of the prvalue is the |
685 | // cv-unqualified version of T. Otherwise, the type of the |
686 | // rvalue is T. |
687 | // |
688 | // C99 6.3.2.1p2: |
689 | // If the lvalue has qualified type, the value has the unqualified |
690 | // version of the type of the lvalue; otherwise, the value has the |
691 | // type of the lvalue. |
692 | if (T.hasQualifiers()) |
693 | T = T.getUnqualifiedType(); |
694 | |
695 | // Under the MS ABI, lock down the inheritance model now. |
696 | if (T->isMemberPointerType() && |
697 | Context.getTargetInfo().getCXXABI().isMicrosoft()) |
698 | (void)isCompleteType(E->getExprLoc(), T); |
699 | |
700 | ExprResult Res = CheckLValueToRValueConversionOperand(E); |
701 | if (Res.isInvalid()) |
702 | return Res; |
703 | E = Res.get(); |
704 | |
705 | // Loading a __weak object implicitly retains the value, so we need a cleanup to |
706 | // balance that. |
707 | if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
708 | Cleanup.setExprNeedsCleanups(true); |
709 | |
710 | if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) |
711 | Cleanup.setExprNeedsCleanups(true); |
712 | |
713 | // C++ [conv.lval]p3: |
714 | // If T is cv std::nullptr_t, the result is a null pointer constant. |
715 | CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue; |
716 | Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue, |
717 | CurFPFeatureOverrides()); |
718 | |
719 | // C11 6.3.2.1p2: |
720 | // ... if the lvalue has atomic type, the value has the non-atomic version |
721 | // of the type of the lvalue ... |
722 | if (const AtomicType *Atomic = T->getAs<AtomicType>()) { |
723 | T = Atomic->getValueType().getUnqualifiedType(); |
724 | Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), |
725 | nullptr, VK_PRValue, FPOptionsOverride()); |
726 | } |
727 | |
728 | return Res; |
729 | } |
730 | |
731 | ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { |
732 | ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); |
733 | if (Res.isInvalid()) |
734 | return ExprError(); |
735 | Res = DefaultLvalueConversion(Res.get()); |
736 | if (Res.isInvalid()) |
737 | return ExprError(); |
738 | return Res; |
739 | } |
740 | |
741 | /// CallExprUnaryConversions - a special case of an unary conversion |
742 | /// performed on a function designator of a call expression. |
743 | ExprResult Sema::CallExprUnaryConversions(Expr *E) { |
744 | QualType Ty = E->getType(); |
745 | ExprResult Res = E; |
746 | // Only do implicit cast for a function type, but not for a pointer |
747 | // to function type. |
748 | if (Ty->isFunctionType()) { |
749 | Res = ImpCastExprToType(E, Context.getPointerType(Ty), |
750 | CK_FunctionToPointerDecay); |
751 | if (Res.isInvalid()) |
752 | return ExprError(); |
753 | } |
754 | Res = DefaultLvalueConversion(Res.get()); |
755 | if (Res.isInvalid()) |
756 | return ExprError(); |
757 | return Res.get(); |
758 | } |
759 | |
760 | /// UsualUnaryConversions - Performs various conversions that are common to most |
761 | /// operators (C99 6.3). The conversions of array and function types are |
762 | /// sometimes suppressed. For example, the array->pointer conversion doesn't |
763 | /// apply if the array is an argument to the sizeof or address (&) operators. |
764 | /// In these instances, this routine should *not* be called. |
765 | ExprResult Sema::UsualUnaryConversions(Expr *E) { |
766 | // First, convert to an r-value. |
767 | ExprResult Res = DefaultFunctionArrayLvalueConversion(E); |
768 | if (Res.isInvalid()) |
769 | return ExprError(); |
770 | E = Res.get(); |
771 | |
772 | QualType Ty = E->getType(); |
773 | assert(!Ty.isNull() && "UsualUnaryConversions - missing type")((void)0); |
774 | |
775 | // Half FP have to be promoted to float unless it is natively supported |
776 | if (Ty->isHalfType() && !getLangOpts().NativeHalfType) |
777 | return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); |
778 | |
779 | // Try to perform integral promotions if the object has a theoretically |
780 | // promotable type. |
781 | if (Ty->isIntegralOrUnscopedEnumerationType()) { |
782 | // C99 6.3.1.1p2: |
783 | // |
784 | // The following may be used in an expression wherever an int or |
785 | // unsigned int may be used: |
786 | // - an object or expression with an integer type whose integer |
787 | // conversion rank is less than or equal to the rank of int |
788 | // and unsigned int. |
789 | // - A bit-field of type _Bool, int, signed int, or unsigned int. |
790 | // |
791 | // If an int can represent all values of the original type, the |
792 | // value is converted to an int; otherwise, it is converted to an |
793 | // unsigned int. These are called the integer promotions. All |
794 | // other types are unchanged by the integer promotions. |
795 | |
796 | QualType PTy = Context.isPromotableBitField(E); |
797 | if (!PTy.isNull()) { |
798 | E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); |
799 | return E; |
800 | } |
801 | if (Ty->isPromotableIntegerType()) { |
802 | QualType PT = Context.getPromotedIntegerType(Ty); |
803 | E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); |
804 | return E; |
805 | } |
806 | } |
807 | return E; |
808 | } |
809 | |
810 | /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that |
811 | /// do not have a prototype. Arguments that have type float or __fp16 |
812 | /// are promoted to double. All other argument types are converted by |
813 | /// UsualUnaryConversions(). |
814 | ExprResult Sema::DefaultArgumentPromotion(Expr *E) { |
815 | QualType Ty = E->getType(); |
816 | assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")((void)0); |
817 | |
818 | ExprResult Res = UsualUnaryConversions(E); |
819 | if (Res.isInvalid()) |
820 | return ExprError(); |
821 | E = Res.get(); |
822 | |
823 | // If this is a 'float' or '__fp16' (CVR qualified or typedef) |
824 | // promote to double. |
825 | // Note that default argument promotion applies only to float (and |
826 | // half/fp16); it does not apply to _Float16. |
827 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); |
828 | if (BTy && (BTy->getKind() == BuiltinType::Half || |
829 | BTy->getKind() == BuiltinType::Float)) { |
830 | if (getLangOpts().OpenCL && |
831 | !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) { |
832 | if (BTy->getKind() == BuiltinType::Half) { |
833 | E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); |
834 | } |
835 | } else { |
836 | E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); |
837 | } |
838 | } |
839 | if (BTy && |
840 | getLangOpts().getExtendIntArgs() == |
841 | LangOptions::ExtendArgsKind::ExtendTo64 && |
842 | Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() && |
843 | Context.getTypeSizeInChars(BTy) < |
844 | Context.getTypeSizeInChars(Context.LongLongTy)) { |
845 | E = (Ty->isUnsignedIntegerType()) |
846 | ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast) |
847 | .get() |
848 | : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get(); |
849 | assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&((void)0) |
850 | "Unexpected typesize for LongLongTy")((void)0); |
851 | } |
852 | |
853 | // C++ performs lvalue-to-rvalue conversion as a default argument |
854 | // promotion, even on class types, but note: |
855 | // C++11 [conv.lval]p2: |
856 | // When an lvalue-to-rvalue conversion occurs in an unevaluated |
857 | // operand or a subexpression thereof the value contained in the |
858 | // referenced object is not accessed. Otherwise, if the glvalue |
859 | // has a class type, the conversion copy-initializes a temporary |
860 | // of type T from the glvalue and the result of the conversion |
861 | // is a prvalue for the temporary. |
862 | // FIXME: add some way to gate this entire thing for correctness in |
863 | // potentially potentially evaluated contexts. |
864 | if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { |
865 | ExprResult Temp = PerformCopyInitialization( |
866 | InitializedEntity::InitializeTemporary(E->getType()), |
867 | E->getExprLoc(), E); |
868 | if (Temp.isInvalid()) |
869 | return ExprError(); |
870 | E = Temp.get(); |
871 | } |
872 | |
873 | return E; |
874 | } |
875 | |
876 | /// Determine the degree of POD-ness for an expression. |
877 | /// Incomplete types are considered POD, since this check can be performed |
878 | /// when we're in an unevaluated context. |
879 | Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { |
880 | if (Ty->isIncompleteType()) { |
881 | // C++11 [expr.call]p7: |
882 | // After these conversions, if the argument does not have arithmetic, |
883 | // enumeration, pointer, pointer to member, or class type, the program |
884 | // is ill-formed. |
885 | // |
886 | // Since we've already performed array-to-pointer and function-to-pointer |
887 | // decay, the only such type in C++ is cv void. This also handles |
888 | // initializer lists as variadic arguments. |
889 | if (Ty->isVoidType()) |
890 | return VAK_Invalid; |
891 | |
892 | if (Ty->isObjCObjectType()) |
893 | return VAK_Invalid; |
894 | return VAK_Valid; |
895 | } |
896 | |
897 | if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) |
898 | return VAK_Invalid; |
899 | |
900 | if (Ty.isCXX98PODType(Context)) |
901 | return VAK_Valid; |
902 | |
903 | // C++11 [expr.call]p7: |
904 | // Passing a potentially-evaluated argument of class type (Clause 9) |
905 | // having a non-trivial copy constructor, a non-trivial move constructor, |
906 | // or a non-trivial destructor, with no corresponding parameter, |
907 | // is conditionally-supported with implementation-defined semantics. |
908 | if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) |
909 | if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) |
910 | if (!Record->hasNonTrivialCopyConstructor() && |
911 | !Record->hasNonTrivialMoveConstructor() && |
912 | !Record->hasNonTrivialDestructor()) |
913 | return VAK_ValidInCXX11; |
914 | |
915 | if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) |
916 | return VAK_Valid; |
917 | |
918 | if (Ty->isObjCObjectType()) |
919 | return VAK_Invalid; |
920 | |
921 | if (getLangOpts().MSVCCompat) |
922 | return VAK_MSVCUndefined; |
923 | |
924 | // FIXME: In C++11, these cases are conditionally-supported, meaning we're |
925 | // permitted to reject them. We should consider doing so. |
926 | return VAK_Undefined; |
927 | } |
928 | |
929 | void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { |
930 | // Don't allow one to pass an Objective-C interface to a vararg. |
931 | const QualType &Ty = E->getType(); |
932 | VarArgKind VAK = isValidVarArgType(Ty); |
933 | |
934 | // Complain about passing non-POD types through varargs. |
935 | switch (VAK) { |
936 | case VAK_ValidInCXX11: |
937 | DiagRuntimeBehavior( |
938 | E->getBeginLoc(), nullptr, |
939 | PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT); |
940 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
941 | case VAK_Valid: |
942 | if (Ty->isRecordType()) { |
943 | // This is unlikely to be what the user intended. If the class has a |
944 | // 'c_str' member function, the user probably meant to call that. |
945 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, |
946 | PDiag(diag::warn_pass_class_arg_to_vararg) |
947 | << Ty << CT << hasCStrMethod(E) << ".c_str()"); |
948 | } |
949 | break; |
950 | |
951 | case VAK_Undefined: |
952 | case VAK_MSVCUndefined: |
953 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, |
954 | PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) |
955 | << getLangOpts().CPlusPlus11 << Ty << CT); |
956 | break; |
957 | |
958 | case VAK_Invalid: |
959 | if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) |
960 | Diag(E->getBeginLoc(), |
961 | diag::err_cannot_pass_non_trivial_c_struct_to_vararg) |
962 | << Ty << CT; |
963 | else if (Ty->isObjCObjectType()) |
964 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, |
965 | PDiag(diag::err_cannot_pass_objc_interface_to_vararg) |
966 | << Ty << CT); |
967 | else |
968 | Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg) |
969 | << isa<InitListExpr>(E) << Ty << CT; |
970 | break; |
971 | } |
972 | } |
973 | |
974 | /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but |
975 | /// will create a trap if the resulting type is not a POD type. |
976 | ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, |
977 | FunctionDecl *FDecl) { |
978 | if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { |
979 | // Strip the unbridged-cast placeholder expression off, if applicable. |
980 | if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && |
981 | (CT == VariadicMethod || |
982 | (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) { |
983 | E = stripARCUnbridgedCast(E); |
984 | |
985 | // Otherwise, do normal placeholder checking. |
986 | } else { |
987 | ExprResult ExprRes = CheckPlaceholderExpr(E); |
988 | if (ExprRes.isInvalid()) |
989 | return ExprError(); |
990 | E = ExprRes.get(); |
991 | } |
992 | } |
993 | |
994 | ExprResult ExprRes = DefaultArgumentPromotion(E); |
995 | if (ExprRes.isInvalid()) |
996 | return ExprError(); |
997 | |
998 | // Copy blocks to the heap. |
999 | if (ExprRes.get()->getType()->isBlockPointerType()) |
1000 | maybeExtendBlockObject(ExprRes); |
1001 | |
1002 | E = ExprRes.get(); |
1003 | |
1004 | // Diagnostics regarding non-POD argument types are |
1005 | // emitted along with format string checking in Sema::CheckFunctionCall(). |
1006 | if (isValidVarArgType(E->getType()) == VAK_Undefined) { |
1007 | // Turn this into a trap. |
1008 | CXXScopeSpec SS; |
1009 | SourceLocation TemplateKWLoc; |
1010 | UnqualifiedId Name; |
1011 | Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), |
1012 | E->getBeginLoc()); |
1013 | ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name, |
1014 | /*HasTrailingLParen=*/true, |
1015 | /*IsAddressOfOperand=*/false); |
1016 | if (TrapFn.isInvalid()) |
1017 | return ExprError(); |
1018 | |
1019 | ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), |
1020 | None, E->getEndLoc()); |
1021 | if (Call.isInvalid()) |
1022 | return ExprError(); |
1023 | |
1024 | ExprResult Comma = |
1025 | ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E); |
1026 | if (Comma.isInvalid()) |
1027 | return ExprError(); |
1028 | return Comma.get(); |
1029 | } |
1030 | |
1031 | if (!getLangOpts().CPlusPlus && |
1032 | RequireCompleteType(E->getExprLoc(), E->getType(), |
1033 | diag::err_call_incomplete_argument)) |
1034 | return ExprError(); |
1035 | |
1036 | return E; |
1037 | } |
1038 | |
1039 | /// Converts an integer to complex float type. Helper function of |
1040 | /// UsualArithmeticConversions() |
1041 | /// |
1042 | /// \return false if the integer expression is an integer type and is |
1043 | /// successfully converted to the complex type. |
1044 | static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, |
1045 | ExprResult &ComplexExpr, |
1046 | QualType IntTy, |
1047 | QualType ComplexTy, |
1048 | bool SkipCast) { |
1049 | if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; |
1050 | if (SkipCast) return false; |
1051 | if (IntTy->isIntegerType()) { |
1052 | QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType(); |
1053 | IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); |
1054 | IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, |
1055 | CK_FloatingRealToComplex); |
1056 | } else { |
1057 | assert(IntTy->isComplexIntegerType())((void)0); |
1058 | IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, |
1059 | CK_IntegralComplexToFloatingComplex); |
1060 | } |
1061 | return false; |
1062 | } |
1063 | |
1064 | /// Handle arithmetic conversion with complex types. Helper function of |
1065 | /// UsualArithmeticConversions() |
1066 | static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS, |
1067 | ExprResult &RHS, QualType LHSType, |
1068 | QualType RHSType, |
1069 | bool IsCompAssign) { |
1070 | // if we have an integer operand, the result is the complex type. |
1071 | if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, |
1072 | /*skipCast*/false)) |
1073 | return LHSType; |
1074 | if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, |
1075 | /*skipCast*/IsCompAssign)) |
1076 | return RHSType; |
1077 | |
1078 | // This handles complex/complex, complex/float, or float/complex. |
1079 | // When both operands are complex, the shorter operand is converted to the |
1080 | // type of the longer, and that is the type of the result. This corresponds |
1081 | // to what is done when combining two real floating-point operands. |
1082 | // The fun begins when size promotion occur across type domains. |
1083 | // From H&S 6.3.4: When one operand is complex and the other is a real |
1084 | // floating-point type, the less precise type is converted, within it's |
1085 | // real or complex domain, to the precision of the other type. For example, |
1086 | // when combining a "long double" with a "double _Complex", the |
1087 | // "double _Complex" is promoted to "long double _Complex". |
1088 | |
1089 | // Compute the rank of the two types, regardless of whether they are complex. |
1090 | int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); |
1091 | |
1092 | auto *LHSComplexType = dyn_cast<ComplexType>(LHSType); |
1093 | auto *RHSComplexType = dyn_cast<ComplexType>(RHSType); |
1094 | QualType LHSElementType = |
1095 | LHSComplexType ? LHSComplexType->getElementType() : LHSType; |
1096 | QualType RHSElementType = |
1097 | RHSComplexType ? RHSComplexType->getElementType() : RHSType; |
1098 | |
1099 | QualType ResultType = S.Context.getComplexType(LHSElementType); |
1100 | if (Order < 0) { |
1101 | // Promote the precision of the LHS if not an assignment. |
1102 | ResultType = S.Context.getComplexType(RHSElementType); |
1103 | if (!IsCompAssign) { |
1104 | if (LHSComplexType) |
1105 | LHS = |
1106 | S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast); |
1107 | else |
1108 | LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast); |
1109 | } |
1110 | } else if (Order > 0) { |
1111 | // Promote the precision of the RHS. |
1112 | if (RHSComplexType) |
1113 | RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast); |
1114 | else |
1115 | RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast); |
1116 | } |
1117 | return ResultType; |
1118 | } |
1119 | |
1120 | /// Handle arithmetic conversion from integer to float. Helper function |
1121 | /// of UsualArithmeticConversions() |
1122 | static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, |
1123 | ExprResult &IntExpr, |
1124 | QualType FloatTy, QualType IntTy, |
1125 | bool ConvertFloat, bool ConvertInt) { |
1126 | if (IntTy->isIntegerType()) { |
1127 | if (ConvertInt) |
1128 | // Convert intExpr to the lhs floating point type. |
1129 | IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, |
1130 | CK_IntegralToFloating); |
1131 | return FloatTy; |
1132 | } |
1133 | |
1134 | // Convert both sides to the appropriate complex float. |
1135 | assert(IntTy->isComplexIntegerType())((void)0); |
1136 | QualType result = S.Context.getComplexType(FloatTy); |
1137 | |
1138 | // _Complex int -> _Complex float |
1139 | if (ConvertInt) |
1140 | IntExpr = S.ImpCastExprToType(IntExpr.get(), result, |
1141 | CK_IntegralComplexToFloatingComplex); |
1142 | |
1143 | // float -> _Complex float |
1144 | if (ConvertFloat) |
1145 | FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, |
1146 | CK_FloatingRealToComplex); |
1147 | |
1148 | return result; |
1149 | } |
1150 | |
1151 | /// Handle arithmethic conversion with floating point types. Helper |
1152 | /// function of UsualArithmeticConversions() |
1153 | static QualType handleFloatConversion(Sema &S, ExprResult &LHS, |
1154 | ExprResult &RHS, QualType LHSType, |
1155 | QualType RHSType, bool IsCompAssign) { |
1156 | bool LHSFloat = LHSType->isRealFloatingType(); |
1157 | bool RHSFloat = RHSType->isRealFloatingType(); |
1158 | |
1159 | // N1169 4.1.4: If one of the operands has a floating type and the other |
1160 | // operand has a fixed-point type, the fixed-point operand |
1161 | // is converted to the floating type [...] |
1162 | if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) { |
1163 | if (LHSFloat) |
1164 | RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating); |
1165 | else if (!IsCompAssign) |
1166 | LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating); |
1167 | return LHSFloat ? LHSType : RHSType; |
1168 | } |
1169 | |
1170 | // If we have two real floating types, convert the smaller operand |
1171 | // to the bigger result. |
1172 | if (LHSFloat && RHSFloat) { |
1173 | int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); |
1174 | if (order > 0) { |
1175 | RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); |
1176 | return LHSType; |
1177 | } |
1178 | |
1179 | assert(order < 0 && "illegal float comparison")((void)0); |
1180 | if (!IsCompAssign) |
1181 | LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); |
1182 | return RHSType; |
1183 | } |
1184 | |
1185 | if (LHSFloat) { |
1186 | // Half FP has to be promoted to float unless it is natively supported |
1187 | if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) |
1188 | LHSType = S.Context.FloatTy; |
1189 | |
1190 | return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, |
1191 | /*ConvertFloat=*/!IsCompAssign, |
1192 | /*ConvertInt=*/ true); |
1193 | } |
1194 | assert(RHSFloat)((void)0); |
1195 | return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, |
1196 | /*ConvertFloat=*/ true, |
1197 | /*ConvertInt=*/!IsCompAssign); |
1198 | } |
1199 | |
1200 | /// Diagnose attempts to convert between __float128 and long double if |
1201 | /// there is no support for such conversion. Helper function of |
1202 | /// UsualArithmeticConversions(). |
1203 | static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, |
1204 | QualType RHSType) { |
1205 | /* No issue converting if at least one of the types is not a floating point |
1206 | type or the two types have the same rank. |
1207 | */ |
1208 | if (!LHSType->isFloatingType() || !RHSType->isFloatingType() || |
1209 | S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0) |
1210 | return false; |
1211 | |
1212 | assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&((void)0) |
1213 | "The remaining types must be floating point types.")((void)0); |
1214 | |
1215 | auto *LHSComplex = LHSType->getAs<ComplexType>(); |
1216 | auto *RHSComplex = RHSType->getAs<ComplexType>(); |
1217 | |
1218 | QualType LHSElemType = LHSComplex ? |
1219 | LHSComplex->getElementType() : LHSType; |
1220 | QualType RHSElemType = RHSComplex ? |
1221 | RHSComplex->getElementType() : RHSType; |
1222 | |
1223 | // No issue if the two types have the same representation |
1224 | if (&S.Context.getFloatTypeSemantics(LHSElemType) == |
1225 | &S.Context.getFloatTypeSemantics(RHSElemType)) |
1226 | return false; |
1227 | |
1228 | bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty && |
1229 | RHSElemType == S.Context.LongDoubleTy); |
1230 | Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy && |
1231 | RHSElemType == S.Context.Float128Ty); |
1232 | |
1233 | // We've handled the situation where __float128 and long double have the same |
1234 | // representation. We allow all conversions for all possible long double types |
1235 | // except PPC's double double. |
1236 | return Float128AndLongDouble && |
1237 | (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == |
1238 | &llvm::APFloat::PPCDoubleDouble()); |
1239 | } |
1240 | |
1241 | typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); |
1242 | |
1243 | namespace { |
1244 | /// These helper callbacks are placed in an anonymous namespace to |
1245 | /// permit their use as function template parameters. |
1246 | ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { |
1247 | return S.ImpCastExprToType(op, toType, CK_IntegralCast); |
1248 | } |
1249 | |
1250 | ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { |
1251 | return S.ImpCastExprToType(op, S.Context.getComplexType(toType), |
1252 | CK_IntegralComplexCast); |
1253 | } |
1254 | } |
1255 | |
1256 | /// Handle integer arithmetic conversions. Helper function of |
1257 | /// UsualArithmeticConversions() |
1258 | template <PerformCastFn doLHSCast, PerformCastFn doRHSCast> |
1259 | static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, |
1260 | ExprResult &RHS, QualType LHSType, |
1261 | QualType RHSType, bool IsCompAssign) { |
1262 | // The rules for this case are in C99 6.3.1.8 |
1263 | int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); |
1264 | bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); |
1265 | bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); |
1266 | if (LHSSigned == RHSSigned) { |
1267 | // Same signedness; use the higher-ranked type |
1268 | if (order >= 0) { |
1269 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
1270 | return LHSType; |
1271 | } else if (!IsCompAssign) |
1272 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
1273 | return RHSType; |
1274 | } else if (order != (LHSSigned ? 1 : -1)) { |
1275 | // The unsigned type has greater than or equal rank to the |
1276 | // signed type, so use the unsigned type |
1277 | if (RHSSigned) { |
1278 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
1279 | return LHSType; |
1280 | } else if (!IsCompAssign) |
1281 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
1282 | return RHSType; |
1283 | } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { |
1284 | // The two types are different widths; if we are here, that |
1285 | // means the signed type is larger than the unsigned type, so |
1286 | // use the signed type. |
1287 | if (LHSSigned) { |
1288 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
1289 | return LHSType; |
1290 | } else if (!IsCompAssign) |
1291 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
1292 | return RHSType; |
1293 | } else { |
1294 | // The signed type is higher-ranked than the unsigned type, |
1295 | // but isn't actually any bigger (like unsigned int and long |
1296 | // on most 32-bit systems). Use the unsigned type corresponding |
1297 | // to the signed type. |
1298 | QualType result = |
1299 | S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); |
1300 | RHS = (*doRHSCast)(S, RHS.get(), result); |
1301 | if (!IsCompAssign) |
1302 | LHS = (*doLHSCast)(S, LHS.get(), result); |
1303 | return result; |
1304 | } |
1305 | } |
1306 | |
1307 | /// Handle conversions with GCC complex int extension. Helper function |
1308 | /// of UsualArithmeticConversions() |
1309 | static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, |
1310 | ExprResult &RHS, QualType LHSType, |
1311 | QualType RHSType, |
1312 | bool IsCompAssign) { |
1313 | const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); |
1314 | const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); |
1315 | |
1316 | if (LHSComplexInt && RHSComplexInt) { |
1317 | QualType LHSEltType = LHSComplexInt->getElementType(); |
1318 | QualType RHSEltType = RHSComplexInt->getElementType(); |
1319 | QualType ScalarType = |
1320 | handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast> |
1321 | (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); |
1322 | |
1323 | return S.Context.getComplexType(ScalarType); |
1324 | } |
1325 | |
1326 | if (LHSComplexInt) { |
1327 | QualType LHSEltType = LHSComplexInt->getElementType(); |
1328 | QualType ScalarType = |
1329 | handleIntegerConversion<doComplexIntegralCast, doIntegralCast> |
1330 | (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); |
1331 | QualType ComplexType = S.Context.getComplexType(ScalarType); |
1332 | RHS = S.ImpCastExprToType(RHS.get(), ComplexType, |
1333 | CK_IntegralRealToComplex); |
1334 | |
1335 | return ComplexType; |
1336 | } |
1337 | |
1338 | assert(RHSComplexInt)((void)0); |
1339 | |
1340 | QualType RHSEltType = RHSComplexInt->getElementType(); |
1341 | QualType ScalarType = |
1342 | handleIntegerConversion<doIntegralCast, doComplexIntegralCast> |
1343 | (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); |
1344 | QualType ComplexType = S.Context.getComplexType(ScalarType); |
1345 | |
1346 | if (!IsCompAssign) |
1347 | LHS = S.ImpCastExprToType(LHS.get(), ComplexType, |
1348 | CK_IntegralRealToComplex); |
1349 | return ComplexType; |
1350 | } |
1351 | |
1352 | /// Return the rank of a given fixed point or integer type. The value itself |
1353 | /// doesn't matter, but the values must be increasing with proper increasing |
1354 | /// rank as described in N1169 4.1.1. |
1355 | static unsigned GetFixedPointRank(QualType Ty) { |
1356 | const auto *BTy = Ty->getAs<BuiltinType>(); |
1357 | assert(BTy && "Expected a builtin type.")((void)0); |
1358 | |
1359 | switch (BTy->getKind()) { |
1360 | case BuiltinType::ShortFract: |
1361 | case BuiltinType::UShortFract: |
1362 | case BuiltinType::SatShortFract: |
1363 | case BuiltinType::SatUShortFract: |
1364 | return 1; |
1365 | case BuiltinType::Fract: |
1366 | case BuiltinType::UFract: |
1367 | case BuiltinType::SatFract: |
1368 | case BuiltinType::SatUFract: |
1369 | return 2; |
1370 | case BuiltinType::LongFract: |
1371 | case BuiltinType::ULongFract: |
1372 | case BuiltinType::SatLongFract: |
1373 | case BuiltinType::SatULongFract: |
1374 | return 3; |
1375 | case BuiltinType::ShortAccum: |
1376 | case BuiltinType::UShortAccum: |
1377 | case BuiltinType::SatShortAccum: |
1378 | case BuiltinType::SatUShortAccum: |
1379 | return 4; |
1380 | case BuiltinType::Accum: |
1381 | case BuiltinType::UAccum: |
1382 | case BuiltinType::SatAccum: |
1383 | case BuiltinType::SatUAccum: |
1384 | return 5; |
1385 | case BuiltinType::LongAccum: |
1386 | case BuiltinType::ULongAccum: |
1387 | case BuiltinType::SatLongAccum: |
1388 | case BuiltinType::SatULongAccum: |
1389 | return 6; |
1390 | default: |
1391 | if (BTy->isInteger()) |
1392 | return 0; |
1393 | llvm_unreachable("Unexpected fixed point or integer type")__builtin_unreachable(); |
1394 | } |
1395 | } |
1396 | |
1397 | /// handleFixedPointConversion - Fixed point operations between fixed |
1398 | /// point types and integers or other fixed point types do not fall under |
1399 | /// usual arithmetic conversion since these conversions could result in loss |
1400 | /// of precsision (N1169 4.1.4). These operations should be calculated with |
1401 | /// the full precision of their result type (N1169 4.1.6.2.1). |
1402 | static QualType handleFixedPointConversion(Sema &S, QualType LHSTy, |
1403 | QualType RHSTy) { |
1404 | assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&((void)0) |
1405 | "Expected at least one of the operands to be a fixed point type")((void)0); |
1406 | assert((LHSTy->isFixedPointOrIntegerType() ||((void)0) |
1407 | RHSTy->isFixedPointOrIntegerType()) &&((void)0) |
1408 | "Special fixed point arithmetic operation conversions are only "((void)0) |
1409 | "applied to ints or other fixed point types")((void)0); |
1410 | |
1411 | // If one operand has signed fixed-point type and the other operand has |
1412 | // unsigned fixed-point type, then the unsigned fixed-point operand is |
1413 | // converted to its corresponding signed fixed-point type and the resulting |
1414 | // type is the type of the converted operand. |
1415 | if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType()) |
1416 | LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy); |
1417 | else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType()) |
1418 | RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy); |
1419 | |
1420 | // The result type is the type with the highest rank, whereby a fixed-point |
1421 | // conversion rank is always greater than an integer conversion rank; if the |
1422 | // type of either of the operands is a saturating fixedpoint type, the result |
1423 | // type shall be the saturating fixed-point type corresponding to the type |
1424 | // with the highest rank; the resulting value is converted (taking into |
1425 | // account rounding and overflow) to the precision of the resulting type. |
1426 | // Same ranks between signed and unsigned types are resolved earlier, so both |
1427 | // types are either signed or both unsigned at this point. |
1428 | unsigned LHSTyRank = GetFixedPointRank(LHSTy); |
1429 | unsigned RHSTyRank = GetFixedPointRank(RHSTy); |
1430 | |
1431 | QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy; |
1432 | |
1433 | if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType()) |
1434 | ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy); |
1435 | |
1436 | return ResultTy; |
1437 | } |
1438 | |
1439 | /// Check that the usual arithmetic conversions can be performed on this pair of |
1440 | /// expressions that might be of enumeration type. |
1441 | static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS, |
1442 | SourceLocation Loc, |
1443 | Sema::ArithConvKind ACK) { |
1444 | // C++2a [expr.arith.conv]p1: |
1445 | // If one operand is of enumeration type and the other operand is of a |
1446 | // different enumeration type or a floating-point type, this behavior is |
1447 | // deprecated ([depr.arith.conv.enum]). |
1448 | // |
1449 | // Warn on this in all language modes. Produce a deprecation warning in C++20. |
1450 | // Eventually we will presumably reject these cases (in C++23 onwards?). |
1451 | QualType L = LHS->getType(), R = RHS->getType(); |
1452 | bool LEnum = L->isUnscopedEnumerationType(), |
1453 | REnum = R->isUnscopedEnumerationType(); |
1454 | bool IsCompAssign = ACK == Sema::ACK_CompAssign; |
1455 | if ((!IsCompAssign && LEnum && R->isFloatingType()) || |
1456 | (REnum && L->isFloatingType())) { |
1457 | S.Diag(Loc, S.getLangOpts().CPlusPlus20 |
1458 | ? diag::warn_arith_conv_enum_float_cxx20 |
1459 | : diag::warn_arith_conv_enum_float) |
1460 | << LHS->getSourceRange() << RHS->getSourceRange() |
1461 | << (int)ACK << LEnum << L << R; |
1462 | } else if (!IsCompAssign && LEnum && REnum && |
1463 | !S.Context.hasSameUnqualifiedType(L, R)) { |
1464 | unsigned DiagID; |
1465 | if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() || |
1466 | !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) { |
1467 | // If either enumeration type is unnamed, it's less likely that the |
1468 | // user cares about this, but this situation is still deprecated in |
1469 | // C++2a. Use a different warning group. |
1470 | DiagID = S.getLangOpts().CPlusPlus20 |
1471 | ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20 |
1472 | : diag::warn_arith_conv_mixed_anon_enum_types; |
1473 | } else if (ACK == Sema::ACK_Conditional) { |
1474 | // Conditional expressions are separated out because they have |
1475 | // historically had a different warning flag. |
1476 | DiagID = S.getLangOpts().CPlusPlus20 |
1477 | ? diag::warn_conditional_mixed_enum_types_cxx20 |
1478 | : diag::warn_conditional_mixed_enum_types; |
1479 | } else if (ACK == Sema::ACK_Comparison) { |
1480 | // Comparison expressions are separated out because they have |
1481 | // historically had a different warning flag. |
1482 | DiagID = S.getLangOpts().CPlusPlus20 |
1483 | ? diag::warn_comparison_mixed_enum_types_cxx20 |
1484 | : diag::warn_comparison_mixed_enum_types; |
1485 | } else { |
1486 | DiagID = S.getLangOpts().CPlusPlus20 |
1487 | ? diag::warn_arith_conv_mixed_enum_types_cxx20 |
1488 | : diag::warn_arith_conv_mixed_enum_types; |
1489 | } |
1490 | S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange() |
1491 | << (int)ACK << L << R; |
1492 | } |
1493 | } |
1494 | |
1495 | /// UsualArithmeticConversions - Performs various conversions that are common to |
1496 | /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this |
1497 | /// routine returns the first non-arithmetic type found. The client is |
1498 | /// responsible for emitting appropriate error diagnostics. |
1499 | QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, |
1500 | SourceLocation Loc, |
1501 | ArithConvKind ACK) { |
1502 | checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK); |
1503 | |
1504 | if (ACK != ACK_CompAssign) { |
1505 | LHS = UsualUnaryConversions(LHS.get()); |
1506 | if (LHS.isInvalid()) |
1507 | return QualType(); |
1508 | } |
1509 | |
1510 | RHS = UsualUnaryConversions(RHS.get()); |
1511 | if (RHS.isInvalid()) |
1512 | return QualType(); |
1513 | |
1514 | // For conversion purposes, we ignore any qualifiers. |
1515 | // For example, "const float" and "float" are equivalent. |
1516 | QualType LHSType = |
1517 | Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); |
1518 | QualType RHSType = |
1519 | Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); |
1520 | |
1521 | // For conversion purposes, we ignore any atomic qualifier on the LHS. |
1522 | if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>()) |
1523 | LHSType = AtomicLHS->getValueType(); |
1524 | |
1525 | // If both types are identical, no conversion is needed. |
1526 | if (LHSType == RHSType) |
1527 | return LHSType; |
1528 | |
1529 | // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
1530 | // The caller can deal with this (e.g. pointer + int). |
1531 | if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) |
1532 | return QualType(); |
1533 | |
1534 | // Apply unary and bitfield promotions to the LHS's type. |
1535 | QualType LHSUnpromotedType = LHSType; |
1536 | if (LHSType->isPromotableIntegerType()) |
1537 | LHSType = Context.getPromotedIntegerType(LHSType); |
1538 | QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); |
1539 | if (!LHSBitfieldPromoteTy.isNull()) |
1540 | LHSType = LHSBitfieldPromoteTy; |
1541 | if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign) |
1542 | LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); |
1543 | |
1544 | // If both types are identical, no conversion is needed. |
1545 | if (LHSType == RHSType) |
1546 | return LHSType; |
1547 | |
1548 | // At this point, we have two different arithmetic types. |
1549 | |
1550 | // Diagnose attempts to convert between __float128 and long double where |
1551 | // such conversions currently can't be handled. |
1552 | if (unsupportedTypeConversion(*this, LHSType, RHSType)) |
1553 | return QualType(); |
1554 | |
1555 | // Handle complex types first (C99 6.3.1.8p1). |
1556 | if (LHSType->isComplexType() || RHSType->isComplexType()) |
1557 | return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType, |
1558 | ACK == ACK_CompAssign); |
1559 | |
1560 | // Now handle "real" floating types (i.e. float, double, long double). |
1561 | if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) |
1562 | return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, |
1563 | ACK == ACK_CompAssign); |
1564 | |
1565 | // Handle GCC complex int extension. |
1566 | if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) |
1567 | return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, |
1568 | ACK == ACK_CompAssign); |
1569 | |
1570 | if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) |
1571 | return handleFixedPointConversion(*this, LHSType, RHSType); |
1572 | |
1573 | // Finally, we have two differing integer types. |
1574 | return handleIntegerConversion<doIntegralCast, doIntegralCast> |
1575 | (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); |
1576 | } |
1577 | |
1578 | //===----------------------------------------------------------------------===// |
1579 | // Semantic Analysis for various Expression Types |
1580 | //===----------------------------------------------------------------------===// |
1581 | |
1582 | |
1583 | ExprResult |
1584 | Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, |
1585 | SourceLocation DefaultLoc, |
1586 | SourceLocation RParenLoc, |
1587 | Expr *ControllingExpr, |
1588 | ArrayRef<ParsedType> ArgTypes, |
1589 | ArrayRef<Expr *> ArgExprs) { |
1590 | unsigned NumAssocs = ArgTypes.size(); |
1591 | assert(NumAssocs == ArgExprs.size())((void)0); |
1592 | |
1593 | TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; |
1594 | for (unsigned i = 0; i < NumAssocs; ++i) { |
1595 | if (ArgTypes[i]) |
1596 | (void) GetTypeFromParser(ArgTypes[i], &Types[i]); |
1597 | else |
1598 | Types[i] = nullptr; |
1599 | } |
1600 | |
1601 | ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
1602 | ControllingExpr, |
1603 | llvm::makeArrayRef(Types, NumAssocs), |
1604 | ArgExprs); |
1605 | delete [] Types; |
1606 | return ER; |
1607 | } |
1608 | |
1609 | ExprResult |
1610 | Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, |
1611 | SourceLocation DefaultLoc, |
1612 | SourceLocation RParenLoc, |
1613 | Expr *ControllingExpr, |
1614 | ArrayRef<TypeSourceInfo *> Types, |
1615 | ArrayRef<Expr *> Exprs) { |
1616 | unsigned NumAssocs = Types.size(); |
1617 | assert(NumAssocs == Exprs.size())((void)0); |
1618 | |
1619 | // Decay and strip qualifiers for the controlling expression type, and handle |
1620 | // placeholder type replacement. See committee discussion from WG14 DR423. |
1621 | { |
1622 | EnterExpressionEvaluationContext Unevaluated( |
1623 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
1624 | ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr); |
1625 | if (R.isInvalid()) |
1626 | return ExprError(); |
1627 | ControllingExpr = R.get(); |
1628 | } |
1629 | |
1630 | // The controlling expression is an unevaluated operand, so side effects are |
1631 | // likely unintended. |
1632 | if (!inTemplateInstantiation() && |
1633 | ControllingExpr->HasSideEffects(Context, false)) |
1634 | Diag(ControllingExpr->getExprLoc(), |
1635 | diag::warn_side_effects_unevaluated_context); |
1636 | |
1637 | bool TypeErrorFound = false, |
1638 | IsResultDependent = ControllingExpr->isTypeDependent(), |
1639 | ContainsUnexpandedParameterPack |
1640 | = ControllingExpr->containsUnexpandedParameterPack(); |
1641 | |
1642 | for (unsigned i = 0; i < NumAssocs; ++i) { |
1643 | if (Exprs[i]->containsUnexpandedParameterPack()) |
1644 | ContainsUnexpandedParameterPack = true; |
1645 | |
1646 | if (Types[i]) { |
1647 | if (Types[i]->getType()->containsUnexpandedParameterPack()) |
1648 | ContainsUnexpandedParameterPack = true; |
1649 | |
1650 | if (Types[i]->getType()->isDependentType()) { |
1651 | IsResultDependent = true; |
1652 | } else { |
1653 | // C11 6.5.1.1p2 "The type name in a generic association shall specify a |
1654 | // complete object type other than a variably modified type." |
1655 | unsigned D = 0; |
1656 | if (Types[i]->getType()->isIncompleteType()) |
1657 | D = diag::err_assoc_type_incomplete; |
1658 | else if (!Types[i]->getType()->isObjectType()) |
1659 | D = diag::err_assoc_type_nonobject; |
1660 | else if (Types[i]->getType()->isVariablyModifiedType()) |
1661 | D = diag::err_assoc_type_variably_modified; |
1662 | |
1663 | if (D != 0) { |
1664 | Diag(Types[i]->getTypeLoc().getBeginLoc(), D) |
1665 | << Types[i]->getTypeLoc().getSourceRange() |
1666 | << Types[i]->getType(); |
1667 | TypeErrorFound = true; |
1668 | } |
1669 | |
1670 | // C11 6.5.1.1p2 "No two generic associations in the same generic |
1671 | // selection shall specify compatible types." |
1672 | for (unsigned j = i+1; j < NumAssocs; ++j) |
1673 | if (Types[j] && !Types[j]->getType()->isDependentType() && |
1674 | Context.typesAreCompatible(Types[i]->getType(), |
1675 | Types[j]->getType())) { |
1676 | Diag(Types[j]->getTypeLoc().getBeginLoc(), |
1677 | diag::err_assoc_compatible_types) |
1678 | << Types[j]->getTypeLoc().getSourceRange() |
1679 | << Types[j]->getType() |
1680 | << Types[i]->getType(); |
1681 | Diag(Types[i]->getTypeLoc().getBeginLoc(), |
1682 | diag::note_compat_assoc) |
1683 | << Types[i]->getTypeLoc().getSourceRange() |
1684 | << Types[i]->getType(); |
1685 | TypeErrorFound = true; |
1686 | } |
1687 | } |
1688 | } |
1689 | } |
1690 | if (TypeErrorFound) |
1691 | return ExprError(); |
1692 | |
1693 | // If we determined that the generic selection is result-dependent, don't |
1694 | // try to compute the result expression. |
1695 | if (IsResultDependent) |
1696 | return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types, |
1697 | Exprs, DefaultLoc, RParenLoc, |
1698 | ContainsUnexpandedParameterPack); |
1699 | |
1700 | SmallVector<unsigned, 1> CompatIndices; |
1701 | unsigned DefaultIndex = -1U; |
1702 | for (unsigned i = 0; i < NumAssocs; ++i) { |
1703 | if (!Types[i]) |
1704 | DefaultIndex = i; |
1705 | else if (Context.typesAreCompatible(ControllingExpr->getType(), |
1706 | Types[i]->getType())) |
1707 | CompatIndices.push_back(i); |
1708 | } |
1709 | |
1710 | // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have |
1711 | // type compatible with at most one of the types named in its generic |
1712 | // association list." |
1713 | if (CompatIndices.size() > 1) { |
1714 | // We strip parens here because the controlling expression is typically |
1715 | // parenthesized in macro definitions. |
1716 | ControllingExpr = ControllingExpr->IgnoreParens(); |
1717 | Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match) |
1718 | << ControllingExpr->getSourceRange() << ControllingExpr->getType() |
1719 | << (unsigned)CompatIndices.size(); |
1720 | for (unsigned I : CompatIndices) { |
1721 | Diag(Types[I]->getTypeLoc().getBeginLoc(), |
1722 | diag::note_compat_assoc) |
1723 | << Types[I]->getTypeLoc().getSourceRange() |
1724 | << Types[I]->getType(); |
1725 | } |
1726 | return ExprError(); |
1727 | } |
1728 | |
1729 | // C11 6.5.1.1p2 "If a generic selection has no default generic association, |
1730 | // its controlling expression shall have type compatible with exactly one of |
1731 | // the types named in its generic association list." |
1732 | if (DefaultIndex == -1U && CompatIndices.size() == 0) { |
1733 | // We strip parens here because the controlling expression is typically |
1734 | // parenthesized in macro definitions. |
1735 | ControllingExpr = ControllingExpr->IgnoreParens(); |
1736 | Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match) |
1737 | << ControllingExpr->getSourceRange() << ControllingExpr->getType(); |
1738 | return ExprError(); |
1739 | } |
1740 | |
1741 | // C11 6.5.1.1p3 "If a generic selection has a generic association with a |
1742 | // type name that is compatible with the type of the controlling expression, |
1743 | // then the result expression of the generic selection is the expression |
1744 | // in that generic association. Otherwise, the result expression of the |
1745 | // generic selection is the expression in the default generic association." |
1746 | unsigned ResultIndex = |
1747 | CompatIndices.size() ? CompatIndices[0] : DefaultIndex; |
1748 | |
1749 | return GenericSelectionExpr::Create( |
1750 | Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, |
1751 | ContainsUnexpandedParameterPack, ResultIndex); |
1752 | } |
1753 | |
1754 | /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the |
1755 | /// location of the token and the offset of the ud-suffix within it. |
1756 | static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, |
1757 | unsigned Offset) { |
1758 | return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), |
1759 | S.getLangOpts()); |
1760 | } |
1761 | |
1762 | /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up |
1763 | /// the corresponding cooked (non-raw) literal operator, and build a call to it. |
1764 | static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, |
1765 | IdentifierInfo *UDSuffix, |
1766 | SourceLocation UDSuffixLoc, |
1767 | ArrayRef<Expr*> Args, |
1768 | SourceLocation LitEndLoc) { |
1769 | assert(Args.size() <= 2 && "too many arguments for literal operator")((void)0); |
1770 | |
1771 | QualType ArgTy[2]; |
1772 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { |
1773 | ArgTy[ArgIdx] = Args[ArgIdx]->getType(); |
1774 | if (ArgTy[ArgIdx]->isArrayType()) |
1775 | ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); |
1776 | } |
1777 | |
1778 | DeclarationName OpName = |
1779 | S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
1780 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
1781 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
1782 | |
1783 | LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); |
1784 | if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()), |
1785 | /*AllowRaw*/ false, /*AllowTemplate*/ false, |
1786 | /*AllowStringTemplatePack*/ false, |
1787 | /*DiagnoseMissing*/ true) == Sema::LOLR_Error) |
1788 | return ExprError(); |
1789 | |
1790 | return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); |
1791 | } |
1792 | |
1793 | /// ActOnStringLiteral - The specified tokens were lexed as pasted string |
1794 | /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string |
1795 | /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from |
1796 | /// multiple tokens. However, the common case is that StringToks points to one |
1797 | /// string. |
1798 | /// |
1799 | ExprResult |
1800 | Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) { |
1801 | assert(!StringToks.empty() && "Must have at least one string!")((void)0); |
1802 | |
1803 | StringLiteralParser Literal(StringToks, PP); |
1804 | if (Literal.hadError) |
1805 | return ExprError(); |
1806 | |
1807 | SmallVector<SourceLocation, 4> StringTokLocs; |
1808 | for (const Token &Tok : StringToks) |
1809 | StringTokLocs.push_back(Tok.getLocation()); |
1810 | |
1811 | QualType CharTy = Context.CharTy; |
1812 | StringLiteral::StringKind Kind = StringLiteral::Ascii; |
1813 | if (Literal.isWide()) { |
1814 | CharTy = Context.getWideCharType(); |
1815 | Kind = StringLiteral::Wide; |
1816 | } else if (Literal.isUTF8()) { |
1817 | if (getLangOpts().Char8) |
1818 | CharTy = Context.Char8Ty; |
1819 | Kind = StringLiteral::UTF8; |
1820 | } else if (Literal.isUTF16()) { |
1821 | CharTy = Context.Char16Ty; |
1822 | Kind = StringLiteral::UTF16; |
1823 | } else if (Literal.isUTF32()) { |
1824 | CharTy = Context.Char32Ty; |
1825 | Kind = StringLiteral::UTF32; |
1826 | } else if (Literal.isPascal()) { |
1827 | CharTy = Context.UnsignedCharTy; |
1828 | } |
1829 | |
1830 | // Warn on initializing an array of char from a u8 string literal; this |
1831 | // becomes ill-formed in C++2a. |
1832 | if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 && |
1833 | !getLangOpts().Char8 && Kind == StringLiteral::UTF8) { |
1834 | Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string); |
1835 | |
1836 | // Create removals for all 'u8' prefixes in the string literal(s). This |
1837 | // ensures C++2a compatibility (but may change the program behavior when |
1838 | // built by non-Clang compilers for which the execution character set is |
1839 | // not always UTF-8). |
1840 | auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8); |
1841 | SourceLocation RemovalDiagLoc; |
1842 | for (const Token &Tok : StringToks) { |
1843 | if (Tok.getKind() == tok::utf8_string_literal) { |
1844 | if (RemovalDiagLoc.isInvalid()) |
1845 | RemovalDiagLoc = Tok.getLocation(); |
1846 | RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange( |
1847 | Tok.getLocation(), |
1848 | Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2, |
1849 | getSourceManager(), getLangOpts()))); |
1850 | } |
1851 | } |
1852 | Diag(RemovalDiagLoc, RemovalDiag); |
1853 | } |
1854 | |
1855 | QualType StrTy = |
1856 | Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars()); |
1857 | |
1858 | // Pass &StringTokLocs[0], StringTokLocs.size() to factory! |
1859 | StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), |
1860 | Kind, Literal.Pascal, StrTy, |
1861 | &StringTokLocs[0], |
1862 | StringTokLocs.size()); |
1863 | if (Literal.getUDSuffix().empty()) |
1864 | return Lit; |
1865 | |
1866 | // We're building a user-defined literal. |
1867 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
1868 | SourceLocation UDSuffixLoc = |
1869 | getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], |
1870 | Literal.getUDSuffixOffset()); |
1871 | |
1872 | // Make sure we're allowed user-defined literals here. |
1873 | if (!UDLScope) |
1874 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); |
1875 | |
1876 | // C++11 [lex.ext]p5: The literal L is treated as a call of the form |
1877 | // operator "" X (str, len) |
1878 | QualType SizeType = Context.getSizeType(); |
1879 | |
1880 | DeclarationName OpName = |
1881 | Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
1882 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
1883 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
1884 | |
1885 | QualType ArgTy[] = { |
1886 | Context.getArrayDecayedType(StrTy), SizeType |
1887 | }; |
1888 | |
1889 | LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); |
1890 | switch (LookupLiteralOperator(UDLScope, R, ArgTy, |
1891 | /*AllowRaw*/ false, /*AllowTemplate*/ true, |
1892 | /*AllowStringTemplatePack*/ true, |
1893 | /*DiagnoseMissing*/ true, Lit)) { |
1894 | |
1895 | case LOLR_Cooked: { |
1896 | llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); |
1897 | IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, |
1898 | StringTokLocs[0]); |
1899 | Expr *Args[] = { Lit, LenArg }; |
1900 | |
1901 | return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); |
1902 | } |
1903 | |
1904 | case LOLR_Template: { |
1905 | TemplateArgumentListInfo ExplicitArgs; |
1906 | TemplateArgument Arg(Lit); |
1907 | TemplateArgumentLocInfo ArgInfo(Lit); |
1908 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); |
1909 | return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), |
1910 | &ExplicitArgs); |
1911 | } |
1912 | |
1913 | case LOLR_StringTemplatePack: { |
1914 | TemplateArgumentListInfo ExplicitArgs; |
1915 | |
1916 | unsigned CharBits = Context.getIntWidth(CharTy); |
1917 | bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); |
1918 | llvm::APSInt Value(CharBits, CharIsUnsigned); |
1919 | |
1920 | TemplateArgument TypeArg(CharTy); |
1921 | TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); |
1922 | ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); |
1923 | |
1924 | for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { |
1925 | Value = Lit->getCodeUnit(I); |
1926 | TemplateArgument Arg(Context, Value, CharTy); |
1927 | TemplateArgumentLocInfo ArgInfo; |
1928 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); |
1929 | } |
1930 | return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), |
1931 | &ExplicitArgs); |
1932 | } |
1933 | case LOLR_Raw: |
1934 | case LOLR_ErrorNoDiagnostic: |
1935 | llvm_unreachable("unexpected literal operator lookup result")__builtin_unreachable(); |
1936 | case LOLR_Error: |
1937 | return ExprError(); |
1938 | } |
1939 | llvm_unreachable("unexpected literal operator lookup result")__builtin_unreachable(); |
1940 | } |
1941 | |
1942 | DeclRefExpr * |
1943 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
1944 | SourceLocation Loc, |
1945 | const CXXScopeSpec *SS) { |
1946 | DeclarationNameInfo NameInfo(D->getDeclName(), Loc); |
1947 | return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); |
1948 | } |
1949 | |
1950 | DeclRefExpr * |
1951 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
1952 | const DeclarationNameInfo &NameInfo, |
1953 | const CXXScopeSpec *SS, NamedDecl *FoundD, |
1954 | SourceLocation TemplateKWLoc, |
1955 | const TemplateArgumentListInfo *TemplateArgs) { |
1956 | NestedNameSpecifierLoc NNS = |
1957 | SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); |
1958 | return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc, |
1959 | TemplateArgs); |
1960 | } |
1961 | |
1962 | // CUDA/HIP: Check whether a captured reference variable is referencing a |
1963 | // host variable in a device or host device lambda. |
1964 | static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S, |
1965 | VarDecl *VD) { |
1966 | if (!S.getLangOpts().CUDA || !VD->hasInit()) |
1967 | return false; |
1968 | assert(VD->getType()->isReferenceType())((void)0); |
1969 | |
1970 | // Check whether the reference variable is referencing a host variable. |
1971 | auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit()); |
1972 | if (!DRE) |
1973 | return false; |
1974 | auto *Referee = dyn_cast<VarDecl>(DRE->getDecl()); |
1975 | if (!Referee || !Referee->hasGlobalStorage() || |
1976 | Referee->hasAttr<CUDADeviceAttr>()) |
1977 | return false; |
1978 | |
1979 | // Check whether the current function is a device or host device lambda. |
1980 | // Check whether the reference variable is a capture by getDeclContext() |
1981 | // since refersToEnclosingVariableOrCapture() is not ready at this point. |
1982 | auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext); |
1983 | if (MD && MD->getParent()->isLambda() && |
1984 | MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() && |
1985 | VD->getDeclContext() != MD) |
1986 | return true; |
1987 | |
1988 | return false; |
1989 | } |
1990 | |
1991 | NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) { |
1992 | // A declaration named in an unevaluated operand never constitutes an odr-use. |
1993 | if (isUnevaluatedContext()) |
1994 | return NOUR_Unevaluated; |
1995 | |
1996 | // C++2a [basic.def.odr]p4: |
1997 | // A variable x whose name appears as a potentially-evaluated expression e |
1998 | // is odr-used by e unless [...] x is a reference that is usable in |
1999 | // constant expressions. |
2000 | // CUDA/HIP: |
2001 | // If a reference variable referencing a host variable is captured in a |
2002 | // device or host device lambda, the value of the referee must be copied |
2003 | // to the capture and the reference variable must be treated as odr-use |
2004 | // since the value of the referee is not known at compile time and must |
2005 | // be loaded from the captured. |
2006 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) { |
2007 | if (VD->getType()->isReferenceType() && |
2008 | !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) && |
2009 | !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) && |
2010 | VD->isUsableInConstantExpressions(Context)) |
2011 | return NOUR_Constant; |
2012 | } |
2013 | |
2014 | // All remaining non-variable cases constitute an odr-use. For variables, we |
2015 | // need to wait and see how the expression is used. |
2016 | return NOUR_None; |
2017 | } |
2018 | |
2019 | /// BuildDeclRefExpr - Build an expression that references a |
2020 | /// declaration that does not require a closure capture. |
2021 | DeclRefExpr * |
2022 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
2023 | const DeclarationNameInfo &NameInfo, |
2024 | NestedNameSpecifierLoc NNS, NamedDecl *FoundD, |
2025 | SourceLocation TemplateKWLoc, |
2026 | const TemplateArgumentListInfo *TemplateArgs) { |
2027 | bool RefersToCapturedVariable = |
2028 | isa<VarDecl>(D) && |
2029 | NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc()); |
2030 | |
2031 | DeclRefExpr *E = DeclRefExpr::Create( |
2032 | Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty, |
2033 | VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D)); |
2034 | MarkDeclRefReferenced(E); |
2035 | |
2036 | // C++ [except.spec]p17: |
2037 | // An exception-specification is considered to be needed when: |
2038 | // - in an expression, the function is the unique lookup result or |
2039 | // the selected member of a set of overloaded functions. |
2040 | // |
2041 | // We delay doing this until after we've built the function reference and |
2042 | // marked it as used so that: |
2043 | // a) if the function is defaulted, we get errors from defining it before / |
2044 | // instead of errors from computing its exception specification, and |
2045 | // b) if the function is a defaulted comparison, we can use the body we |
2046 | // build when defining it as input to the exception specification |
2047 | // computation rather than computing a new body. |
2048 | if (auto *FPT = Ty->getAs<FunctionProtoType>()) { |
2049 | if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { |
2050 | if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT)) |
2051 | E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); |
2052 | } |
2053 | } |
2054 | |
2055 | if (getLangOpts().ObjCWeak && isa<VarDecl>(D) && |
2056 | Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && |
2057 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc())) |
2058 | getCurFunction()->recordUseOfWeak(E); |
2059 | |
2060 | FieldDecl *FD = dyn_cast<FieldDecl>(D); |
2061 | if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) |
2062 | FD = IFD->getAnonField(); |
2063 | if (FD) { |
2064 | UnusedPrivateFields.remove(FD); |
2065 | // Just in case we're building an illegal pointer-to-member. |
2066 | if (FD->isBitField()) |
2067 | E->setObjectKind(OK_BitField); |
2068 | } |
2069 | |
2070 | // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier |
2071 | // designates a bit-field. |
2072 | if (auto *BD = dyn_cast<BindingDecl>(D)) |
2073 | if (auto *BE = BD->getBinding()) |
2074 | E->setObjectKind(BE->getObjectKind()); |
2075 | |
2076 | return E; |
2077 | } |
2078 | |
2079 | /// Decomposes the given name into a DeclarationNameInfo, its location, and |
2080 | /// possibly a list of template arguments. |
2081 | /// |
2082 | /// If this produces template arguments, it is permitted to call |
2083 | /// DecomposeTemplateName. |
2084 | /// |
2085 | /// This actually loses a lot of source location information for |
2086 | /// non-standard name kinds; we should consider preserving that in |
2087 | /// some way. |
2088 | void |
2089 | Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, |
2090 | TemplateArgumentListInfo &Buffer, |
2091 | DeclarationNameInfo &NameInfo, |
2092 | const TemplateArgumentListInfo *&TemplateArgs) { |
2093 | if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { |
2094 | Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); |
2095 | Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); |
2096 | |
2097 | ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), |
2098 | Id.TemplateId->NumArgs); |
2099 | translateTemplateArguments(TemplateArgsPtr, Buffer); |
2100 | |
2101 | TemplateName TName = Id.TemplateId->Template.get(); |
2102 | SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; |
2103 | NameInfo = Context.getNameForTemplate(TName, TNameLoc); |
2104 | TemplateArgs = &Buffer; |
2105 | } else { |
2106 | NameInfo = GetNameFromUnqualifiedId(Id); |
2107 | TemplateArgs = nullptr; |
2108 | } |
2109 | } |
2110 | |
2111 | static void emitEmptyLookupTypoDiagnostic( |
2112 | const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, |
2113 | DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args, |
2114 | unsigned DiagnosticID, unsigned DiagnosticSuggestID) { |
2115 | DeclContext *Ctx = |
2116 | SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); |
2117 | if (!TC) { |
2118 | // Emit a special diagnostic for failed member lookups. |
2119 | // FIXME: computing the declaration context might fail here (?) |
2120 | if (Ctx) |
2121 | SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx |
2122 | << SS.getRange(); |
2123 | else |
2124 | SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; |
2125 | return; |
2126 | } |
2127 | |
2128 | std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); |
2129 | bool DroppedSpecifier = |
2130 | TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; |
2131 | unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>() |
2132 | ? diag::note_implicit_param_decl |
2133 | : diag::note_previous_decl; |
2134 | if (!Ctx) |
2135 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, |
2136 | SemaRef.PDiag(NoteID)); |
2137 | else |
2138 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) |
2139 | << Typo << Ctx << DroppedSpecifier |
2140 | << SS.getRange(), |
2141 | SemaRef.PDiag(NoteID)); |
2142 | } |
2143 | |
2144 | /// Diagnose a lookup that found results in an enclosing class during error |
2145 | /// recovery. This usually indicates that the results were found in a dependent |
2146 | /// base class that could not be searched as part of a template definition. |
2147 | /// Always issues a diagnostic (though this may be only a warning in MS |
2148 | /// compatibility mode). |
2149 | /// |
2150 | /// Return \c true if the error is unrecoverable, or \c false if the caller |
2151 | /// should attempt to recover using these lookup results. |
2152 | bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) { |
2153 | // During a default argument instantiation the CurContext points |
2154 | // to a CXXMethodDecl; but we can't apply a this-> fixit inside a |
2155 | // function parameter list, hence add an explicit check. |
2156 | bool isDefaultArgument = |
2157 | !CodeSynthesisContexts.empty() && |
2158 | CodeSynthesisContexts.back().Kind == |
2159 | CodeSynthesisContext::DefaultFunctionArgumentInstantiation; |
2160 | CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); |
2161 | bool isInstance = CurMethod && CurMethod->isInstance() && |
2162 | R.getNamingClass() == CurMethod->getParent() && |
2163 | !isDefaultArgument; |
2164 | |
2165 | // There are two ways we can find a class-scope declaration during template |
2166 | // instantiation that we did not find in the template definition: if it is a |
2167 | // member of a dependent base class, or if it is declared after the point of |
2168 | // use in the same class. Distinguish these by comparing the class in which |
2169 | // the member was found to the naming class of the lookup. |
2170 | unsigned DiagID = diag::err_found_in_dependent_base; |
2171 | unsigned NoteID = diag::note_member_declared_at; |
2172 | if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) { |
2173 | DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class |
2174 | : diag::err_found_later_in_class; |
2175 | } else if (getLangOpts().MSVCCompat) { |
2176 | DiagID = diag::ext_found_in_dependent_base; |
2177 | NoteID = diag::note_dependent_member_use; |
2178 | } |
2179 | |
2180 | if (isInstance) { |
2181 | // Give a code modification hint to insert 'this->'. |
2182 | Diag(R.getNameLoc(), DiagID) |
2183 | << R.getLookupName() |
2184 | << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); |
2185 | CheckCXXThisCapture(R.getNameLoc()); |
2186 | } else { |
2187 | // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming |
2188 | // they're not shadowed). |
2189 | Diag(R.getNameLoc(), DiagID) << R.getLookupName(); |
2190 | } |
2191 | |
2192 | for (NamedDecl *D : R) |
2193 | Diag(D->getLocation(), NoteID); |
2194 | |
2195 | // Return true if we are inside a default argument instantiation |
2196 | // and the found name refers to an instance member function, otherwise |
2197 | // the caller will try to create an implicit member call and this is wrong |
2198 | // for default arguments. |
2199 | // |
2200 | // FIXME: Is this special case necessary? We could allow the caller to |
2201 | // diagnose this. |
2202 | if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { |
2203 | Diag(R.getNameLoc(), diag::err_member_call_without_object); |
2204 | return true; |
2205 | } |
2206 | |
2207 | // Tell the callee to try to recover. |
2208 | return false; |
2209 | } |
2210 | |
2211 | /// Diagnose an empty lookup. |
2212 | /// |
2213 | /// \return false if new lookup candidates were found |
2214 | bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, |
2215 | CorrectionCandidateCallback &CCC, |
2216 | TemplateArgumentListInfo *ExplicitTemplateArgs, |
2217 | ArrayRef<Expr *> Args, TypoExpr **Out) { |
2218 | DeclarationName Name = R.getLookupName(); |
2219 | |
2220 | unsigned diagnostic = diag::err_undeclared_var_use; |
2221 | unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; |
2222 | if (Name.getNameKind() == DeclarationName::CXXOperatorName || |
2223 | Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || |
2224 | Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
2225 | diagnostic = diag::err_undeclared_use; |
2226 | diagnostic_suggest = diag::err_undeclared_use_suggest; |
2227 | } |
2228 | |
2229 | // If the original lookup was an unqualified lookup, fake an |
2230 | // unqualified lookup. This is useful when (for example) the |
2231 | // original lookup would not have found something because it was a |
2232 | // dependent name. |
2233 | DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; |
2234 | while (DC) { |
2235 | if (isa<CXXRecordDecl>(DC)) { |
2236 | LookupQualifiedName(R, DC); |
2237 | |
2238 | if (!R.empty()) { |
2239 | // Don't give errors about ambiguities in this lookup. |
2240 | R.suppressDiagnostics(); |
2241 | |
2242 | // If there's a best viable function among the results, only mention |
2243 | // that one in the notes. |
2244 | OverloadCandidateSet Candidates(R.getNameLoc(), |
2245 | OverloadCandidateSet::CSK_Normal); |
2246 | AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates); |
2247 | OverloadCandidateSet::iterator Best; |
2248 | if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) == |
2249 | OR_Success) { |
2250 | R.clear(); |
2251 | R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); |
2252 | R.resolveKind(); |
2253 | } |
2254 | |
2255 | return DiagnoseDependentMemberLookup(R); |
2256 | } |
2257 | |
2258 | R.clear(); |
2259 | } |
2260 | |
2261 | DC = DC->getLookupParent(); |
2262 | } |
2263 | |
2264 | // We didn't find anything, so try to correct for a typo. |
2265 | TypoCorrection Corrected; |
2266 | if (S && Out) { |
2267 | SourceLocation TypoLoc = R.getNameLoc(); |
2268 | assert(!ExplicitTemplateArgs &&((void)0) |
2269 | "Diagnosing an empty lookup with explicit template args!")((void)0); |
2270 | *Out = CorrectTypoDelayed( |
2271 | R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, |
2272 | [=](const TypoCorrection &TC) { |
2273 | emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, |
2274 | diagnostic, diagnostic_suggest); |
2275 | }, |
2276 | nullptr, CTK_ErrorRecovery); |
2277 | if (*Out) |
2278 | return true; |
2279 | } else if (S && |
2280 | (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), |
2281 | S, &SS, CCC, CTK_ErrorRecovery))) { |
2282 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
2283 | bool DroppedSpecifier = |
2284 | Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; |
2285 | R.setLookupName(Corrected.getCorrection()); |
2286 | |
2287 | bool AcceptableWithRecovery = false; |
2288 | bool AcceptableWithoutRecovery = false; |
2289 | NamedDecl *ND = Corrected.getFoundDecl(); |
2290 | if (ND) { |
2291 | if (Corrected.isOverloaded()) { |
2292 | OverloadCandidateSet OCS(R.getNameLoc(), |
2293 | OverloadCandidateSet::CSK_Normal); |
2294 | OverloadCandidateSet::iterator Best; |
2295 | for (NamedDecl *CD : Corrected) { |
2296 | if (FunctionTemplateDecl *FTD = |
2297 | dyn_cast<FunctionTemplateDecl>(CD)) |
2298 | AddTemplateOverloadCandidate( |
2299 | FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, |
2300 | Args, OCS); |
2301 | else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) |
2302 | if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) |
2303 | AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), |
2304 | Args, OCS); |
2305 | } |
2306 | switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { |
2307 | case OR_Success: |
2308 | ND = Best->FoundDecl; |
2309 | Corrected.setCorrectionDecl(ND); |
2310 | break; |
2311 | default: |
2312 | // FIXME: Arbitrarily pick the first declaration for the note. |
2313 | Corrected.setCorrectionDecl(ND); |
2314 | break; |
2315 | } |
2316 | } |
2317 | R.addDecl(ND); |
2318 | if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { |
2319 | CXXRecordDecl *Record = nullptr; |
2320 | if (Corrected.getCorrectionSpecifier()) { |
2321 | const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); |
2322 | Record = Ty->getAsCXXRecordDecl(); |
2323 | } |
2324 | if (!Record) |
2325 | Record = cast<CXXRecordDecl>( |
2326 | ND->getDeclContext()->getRedeclContext()); |
2327 | R.setNamingClass(Record); |
2328 | } |
2329 | |
2330 | auto *UnderlyingND = ND->getUnderlyingDecl(); |
2331 | AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) || |
2332 | isa<FunctionTemplateDecl>(UnderlyingND); |
2333 | // FIXME: If we ended up with a typo for a type name or |
2334 | // Objective-C class name, we're in trouble because the parser |
2335 | // is in the wrong place to recover. Suggest the typo |
2336 | // correction, but don't make it a fix-it since we're not going |
2337 | // to recover well anyway. |
2338 | AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) || |
2339 | getAsTypeTemplateDecl(UnderlyingND) || |
2340 | isa<ObjCInterfaceDecl>(UnderlyingND); |
2341 | } else { |
2342 | // FIXME: We found a keyword. Suggest it, but don't provide a fix-it |
2343 | // because we aren't able to recover. |
2344 | AcceptableWithoutRecovery = true; |
2345 | } |
2346 | |
2347 | if (AcceptableWithRecovery || AcceptableWithoutRecovery) { |
2348 | unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>() |
2349 | ? diag::note_implicit_param_decl |
2350 | : diag::note_previous_decl; |
2351 | if (SS.isEmpty()) |
2352 | diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, |
2353 | PDiag(NoteID), AcceptableWithRecovery); |
2354 | else |
2355 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) |
2356 | << Name << computeDeclContext(SS, false) |
2357 | << DroppedSpecifier << SS.getRange(), |
2358 | PDiag(NoteID), AcceptableWithRecovery); |
2359 | |
2360 | // Tell the callee whether to try to recover. |
2361 | return !AcceptableWithRecovery; |
2362 | } |
2363 | } |
2364 | R.clear(); |
2365 | |
2366 | // Emit a special diagnostic for failed member lookups. |
2367 | // FIXME: computing the declaration context might fail here (?) |
2368 | if (!SS.isEmpty()) { |
2369 | Diag(R.getNameLoc(), diag::err_no_member) |
2370 | << Name << computeDeclContext(SS, false) |
2371 | << SS.getRange(); |
2372 | return true; |
2373 | } |
2374 | |
2375 | // Give up, we can't recover. |
2376 | Diag(R.getNameLoc(), diagnostic) << Name; |
2377 | return true; |
2378 | } |
2379 | |
2380 | /// In Microsoft mode, if we are inside a template class whose parent class has |
2381 | /// dependent base classes, and we can't resolve an unqualified identifier, then |
2382 | /// assume the identifier is a member of a dependent base class. We can only |
2383 | /// recover successfully in static methods, instance methods, and other contexts |
2384 | /// where 'this' is available. This doesn't precisely match MSVC's |
2385 | /// instantiation model, but it's close enough. |
2386 | static Expr * |
2387 | recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, |
2388 | DeclarationNameInfo &NameInfo, |
2389 | SourceLocation TemplateKWLoc, |
2390 | const TemplateArgumentListInfo *TemplateArgs) { |
2391 | // Only try to recover from lookup into dependent bases in static methods or |
2392 | // contexts where 'this' is available. |
2393 | QualType ThisType = S.getCurrentThisType(); |
2394 | const CXXRecordDecl *RD = nullptr; |
2395 | if (!ThisType.isNull()) |
2396 | RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); |
2397 | else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext)) |
2398 | RD = MD->getParent(); |
2399 | if (!RD || !RD->hasAnyDependentBases()) |
2400 | return nullptr; |
2401 | |
2402 | // Diagnose this as unqualified lookup into a dependent base class. If 'this' |
2403 | // is available, suggest inserting 'this->' as a fixit. |
2404 | SourceLocation Loc = NameInfo.getLoc(); |
2405 | auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); |
2406 | DB << NameInfo.getName() << RD; |
2407 | |
2408 | if (!ThisType.isNull()) { |
2409 | DB << FixItHint::CreateInsertion(Loc, "this->"); |
2410 | return CXXDependentScopeMemberExpr::Create( |
2411 | Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, |
2412 | /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, |
2413 | /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); |
2414 | } |
2415 | |
2416 | // Synthesize a fake NNS that points to the derived class. This will |
2417 | // perform name lookup during template instantiation. |
2418 | CXXScopeSpec SS; |
2419 | auto *NNS = |
2420 | NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); |
2421 | SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); |
2422 | return DependentScopeDeclRefExpr::Create( |
2423 | Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
2424 | TemplateArgs); |
2425 | } |
2426 | |
2427 | ExprResult |
2428 | Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, |
2429 | SourceLocation TemplateKWLoc, UnqualifiedId &Id, |
2430 | bool HasTrailingLParen, bool IsAddressOfOperand, |
2431 | CorrectionCandidateCallback *CCC, |
2432 | bool IsInlineAsmIdentifier, Token *KeywordReplacement) { |
2433 | assert(!(IsAddressOfOperand && HasTrailingLParen) &&((void)0) |
2434 | "cannot be direct & operand and have a trailing lparen")((void)0); |
2435 | if (SS.isInvalid()) |
2436 | return ExprError(); |
2437 | |
2438 | TemplateArgumentListInfo TemplateArgsBuffer; |
2439 | |
2440 | // Decompose the UnqualifiedId into the following data. |
2441 | DeclarationNameInfo NameInfo; |
2442 | const TemplateArgumentListInfo *TemplateArgs; |
2443 | DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); |
2444 | |
2445 | DeclarationName Name = NameInfo.getName(); |
2446 | IdentifierInfo *II = Name.getAsIdentifierInfo(); |
2447 | SourceLocation NameLoc = NameInfo.getLoc(); |
2448 | |
2449 | if (II && II->isEditorPlaceholder()) { |
2450 | // FIXME: When typed placeholders are supported we can create a typed |
2451 | // placeholder expression node. |
2452 | return ExprError(); |
2453 | } |
2454 | |
2455 | // C++ [temp.dep.expr]p3: |
2456 | // An id-expression is type-dependent if it contains: |
2457 | // -- an identifier that was declared with a dependent type, |
2458 | // (note: handled after lookup) |
2459 | // -- a template-id that is dependent, |
2460 | // (note: handled in BuildTemplateIdExpr) |
2461 | // -- a conversion-function-id that specifies a dependent type, |
2462 | // -- a nested-name-specifier that contains a class-name that |
2463 | // names a dependent type. |
2464 | // Determine whether this is a member of an unknown specialization; |
2465 | // we need to handle these differently. |
2466 | bool DependentID = false; |
2467 | if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
2468 | Name.getCXXNameType()->isDependentType()) { |
2469 | DependentID = true; |
2470 | } else if (SS.isSet()) { |
2471 | if (DeclContext *DC = computeDeclContext(SS, false)) { |
2472 | if (RequireCompleteDeclContext(SS, DC)) |
2473 | return ExprError(); |
2474 | } else { |
2475 | DependentID = true; |
2476 | } |
2477 | } |
2478 | |
2479 | if (DependentID) |
2480 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
2481 | IsAddressOfOperand, TemplateArgs); |
2482 | |
2483 | // Perform the required lookup. |
2484 | LookupResult R(*this, NameInfo, |
2485 | (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) |
2486 | ? LookupObjCImplicitSelfParam |
2487 | : LookupOrdinaryName); |
2488 | if (TemplateKWLoc.isValid() || TemplateArgs) { |
2489 | // Lookup the template name again to correctly establish the context in |
2490 | // which it was found. This is really unfortunate as we already did the |
2491 | // lookup to determine that it was a template name in the first place. If |
2492 | // this becomes a performance hit, we can work harder to preserve those |
2493 | // results until we get here but it's likely not worth it. |
2494 | bool MemberOfUnknownSpecialization; |
2495 | AssumedTemplateKind AssumedTemplate; |
2496 | if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, |
2497 | MemberOfUnknownSpecialization, TemplateKWLoc, |
2498 | &AssumedTemplate)) |
2499 | return ExprError(); |
2500 | |
2501 | if (MemberOfUnknownSpecialization || |
2502 | (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) |
2503 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
2504 | IsAddressOfOperand, TemplateArgs); |
2505 | } else { |
2506 | bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); |
2507 | LookupParsedName(R, S, &SS, !IvarLookupFollowUp); |
2508 | |
2509 | // If the result might be in a dependent base class, this is a dependent |
2510 | // id-expression. |
2511 | if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) |
2512 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
2513 | IsAddressOfOperand, TemplateArgs); |
2514 | |
2515 | // If this reference is in an Objective-C method, then we need to do |
2516 | // some special Objective-C lookup, too. |
2517 | if (IvarLookupFollowUp) { |
2518 | ExprResult E(LookupInObjCMethod(R, S, II, true)); |
2519 | if (E.isInvalid()) |
2520 | return ExprError(); |
2521 | |
2522 | if (Expr *Ex = E.getAs<Expr>()) |
2523 | return Ex; |
2524 | } |
2525 | } |
2526 | |
2527 | if (R.isAmbiguous()) |
2528 | return ExprError(); |
2529 | |
2530 | // This could be an implicitly declared function reference (legal in C90, |
2531 | // extension in C99, forbidden in C++). |
2532 | if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) { |
2533 | NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); |
2534 | if (D) R.addDecl(D); |
2535 | } |
2536 | |
2537 | // Determine whether this name might be a candidate for |
2538 | // argument-dependent lookup. |
2539 | bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); |
2540 | |
2541 | if (R.empty() && !ADL) { |
2542 | if (SS.isEmpty() && getLangOpts().MSVCCompat) { |
2543 | if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, |
2544 | TemplateKWLoc, TemplateArgs)) |
2545 | return E; |
2546 | } |
2547 | |
2548 | // Don't diagnose an empty lookup for inline assembly. |
2549 | if (IsInlineAsmIdentifier) |
2550 | return ExprError(); |
2551 | |
2552 | // If this name wasn't predeclared and if this is not a function |
2553 | // call, diagnose the problem. |
2554 | TypoExpr *TE = nullptr; |
2555 | DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep() |
2556 | : nullptr); |
2557 | DefaultValidator.IsAddressOfOperand = IsAddressOfOperand; |
2558 | assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&((void)0) |
2559 | "Typo correction callback misconfigured")((void)0); |
2560 | if (CCC) { |
2561 | // Make sure the callback knows what the typo being diagnosed is. |
2562 | CCC->setTypoName(II); |
2563 | if (SS.isValid()) |
2564 | CCC->setTypoNNS(SS.getScopeRep()); |
2565 | } |
2566 | // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for |
2567 | // a template name, but we happen to have always already looked up the name |
2568 | // before we get here if it must be a template name. |
2569 | if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr, |
2570 | None, &TE)) { |
2571 | if (TE && KeywordReplacement) { |
2572 | auto &State = getTypoExprState(TE); |
2573 | auto BestTC = State.Consumer->getNextCorrection(); |
2574 | if (BestTC.isKeyword()) { |
2575 | auto *II = BestTC.getCorrectionAsIdentifierInfo(); |
2576 | if (State.DiagHandler) |
2577 | State.DiagHandler(BestTC); |
2578 | KeywordReplacement->startToken(); |
2579 | KeywordReplacement->setKind(II->getTokenID()); |
2580 | KeywordReplacement->setIdentifierInfo(II); |
2581 | KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); |
2582 | // Clean up the state associated with the TypoExpr, since it has |
2583 | // now been diagnosed (without a call to CorrectDelayedTyposInExpr). |
2584 | clearDelayedTypo(TE); |
2585 | // Signal that a correction to a keyword was performed by returning a |
2586 | // valid-but-null ExprResult. |
2587 | return (Expr*)nullptr; |
2588 | } |
2589 | State.Consumer->resetCorrectionStream(); |
2590 | } |
2591 | return TE ? TE : ExprError(); |
2592 | } |
2593 | |
2594 | assert(!R.empty() &&((void)0) |
2595 | "DiagnoseEmptyLookup returned false but added no results")((void)0); |
2596 | |
2597 | // If we found an Objective-C instance variable, let |
2598 | // LookupInObjCMethod build the appropriate expression to |
2599 | // reference the ivar. |
2600 | if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { |
2601 | R.clear(); |
2602 | ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); |
2603 | // In a hopelessly buggy code, Objective-C instance variable |
2604 | // lookup fails and no expression will be built to reference it. |
2605 | if (!E.isInvalid() && !E.get()) |
2606 | return ExprError(); |
2607 | return E; |
2608 | } |
2609 | } |
2610 | |
2611 | // This is guaranteed from this point on. |
2612 | assert(!R.empty() || ADL)((void)0); |
2613 | |
2614 | // Check whether this might be a C++ implicit instance member access. |
2615 | // C++ [class.mfct.non-static]p3: |
2616 | // When an id-expression that is not part of a class member access |
2617 | // syntax and not used to form a pointer to member is used in the |
2618 | // body of a non-static member function of class X, if name lookup |
2619 | // resolves the name in the id-expression to a non-static non-type |
2620 | // member of some class C, the id-expression is transformed into a |
2621 | // class member access expression using (*this) as the |
2622 | // postfix-expression to the left of the . operator. |
2623 | // |
2624 | // But we don't actually need to do this for '&' operands if R |
2625 | // resolved to a function or overloaded function set, because the |
2626 | // expression is ill-formed if it actually works out to be a |
2627 | // non-static member function: |
2628 | // |
2629 | // C++ [expr.ref]p4: |
2630 | // Otherwise, if E1.E2 refers to a non-static member function. . . |
2631 | // [t]he expression can be used only as the left-hand operand of a |
2632 | // member function call. |
2633 | // |
2634 | // There are other safeguards against such uses, but it's important |
2635 | // to get this right here so that we don't end up making a |
2636 | // spuriously dependent expression if we're inside a dependent |
2637 | // instance method. |
2638 | if (!R.empty() && (*R.begin())->isCXXClassMember()) { |
2639 | bool MightBeImplicitMember; |
2640 | if (!IsAddressOfOperand) |
2641 | MightBeImplicitMember = true; |
2642 | else if (!SS.isEmpty()) |
2643 | MightBeImplicitMember = false; |
2644 | else if (R.isOverloadedResult()) |
2645 | MightBeImplicitMember = false; |
2646 | else if (R.isUnresolvableResult()) |
2647 | MightBeImplicitMember = true; |
2648 | else |
2649 | MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || |
2650 | isa<IndirectFieldDecl>(R.getFoundDecl()) || |
2651 | isa<MSPropertyDecl>(R.getFoundDecl()); |
2652 | |
2653 | if (MightBeImplicitMember) |
2654 | return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, |
2655 | R, TemplateArgs, S); |
2656 | } |
2657 | |
2658 | if (TemplateArgs || TemplateKWLoc.isValid()) { |
2659 | |
2660 | // In C++1y, if this is a variable template id, then check it |
2661 | // in BuildTemplateIdExpr(). |
2662 | // The single lookup result must be a variable template declaration. |
2663 | if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && |
2664 | Id.TemplateId->Kind == TNK_Var_template) { |
2665 | assert(R.getAsSingle<VarTemplateDecl>() &&((void)0) |
2666 | "There should only be one declaration found.")((void)0); |
2667 | } |
2668 | |
2669 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); |
2670 | } |
2671 | |
2672 | return BuildDeclarationNameExpr(SS, R, ADL); |
2673 | } |
2674 | |
2675 | /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified |
2676 | /// declaration name, generally during template instantiation. |
2677 | /// There's a large number of things which don't need to be done along |
2678 | /// this path. |
2679 | ExprResult Sema::BuildQualifiedDeclarationNameExpr( |
2680 | CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, |
2681 | bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { |
2682 | DeclContext *DC = computeDeclContext(SS, false); |
2683 | if (!DC) |
2684 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), |
2685 | NameInfo, /*TemplateArgs=*/nullptr); |
2686 | |
2687 | if (RequireCompleteDeclContext(SS, DC)) |
2688 | return ExprError(); |
2689 | |
2690 | LookupResult R(*this, NameInfo, LookupOrdinaryName); |
2691 | LookupQualifiedName(R, DC); |
2692 | |
2693 | if (R.isAmbiguous()) |
2694 | return ExprError(); |
2695 | |
2696 | if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) |
2697 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), |
2698 | NameInfo, /*TemplateArgs=*/nullptr); |
2699 | |
2700 | if (R.empty()) { |
2701 | // Don't diagnose problems with invalid record decl, the secondary no_member |
2702 | // diagnostic during template instantiation is likely bogus, e.g. if a class |
2703 | // is invalid because it's derived from an invalid base class, then missing |
2704 | // members were likely supposed to be inherited. |
2705 | if (const auto *CD = dyn_cast<CXXRecordDecl>(DC)) |
2706 | if (CD->isInvalidDecl()) |
2707 | return ExprError(); |
2708 | Diag(NameInfo.getLoc(), diag::err_no_member) |
2709 | << NameInfo.getName() << DC << SS.getRange(); |
2710 | return ExprError(); |
2711 | } |
2712 | |
2713 | if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) { |
2714 | // Diagnose a missing typename if this resolved unambiguously to a type in |
2715 | // a dependent context. If we can recover with a type, downgrade this to |
2716 | // a warning in Microsoft compatibility mode. |
2717 | unsigned DiagID = diag::err_typename_missing; |
2718 | if (RecoveryTSI && getLangOpts().MSVCCompat) |
2719 | DiagID = diag::ext_typename_missing; |
2720 | SourceLocation Loc = SS.getBeginLoc(); |
2721 | auto D = Diag(Loc, DiagID); |
2722 | D << SS.getScopeRep() << NameInfo.getName().getAsString() |
2723 | << SourceRange(Loc, NameInfo.getEndLoc()); |
2724 | |
2725 | // Don't recover if the caller isn't expecting us to or if we're in a SFINAE |
2726 | // context. |
2727 | if (!RecoveryTSI) |
2728 | return ExprError(); |
2729 | |
2730 | // Only issue the fixit if we're prepared to recover. |
2731 | D << FixItHint::CreateInsertion(Loc, "typename "); |
2732 | |
2733 | // Recover by pretending this was an elaborated type. |
2734 | QualType Ty = Context.getTypeDeclType(TD); |
2735 | TypeLocBuilder TLB; |
2736 | TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); |
2737 | |
2738 | QualType ET = getElaboratedType(ETK_None, SS, Ty); |
2739 | ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET); |
2740 | QTL.setElaboratedKeywordLoc(SourceLocation()); |
2741 | QTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
2742 | |
2743 | *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); |
2744 | |
2745 | return ExprEmpty(); |
2746 | } |
2747 | |
2748 | // Defend against this resolving to an implicit member access. We usually |
2749 | // won't get here if this might be a legitimate a class member (we end up in |
2750 | // BuildMemberReferenceExpr instead), but this can be valid if we're forming |
2751 | // a pointer-to-member or in an unevaluated context in C++11. |
2752 | if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) |
2753 | return BuildPossibleImplicitMemberExpr(SS, |
2754 | /*TemplateKWLoc=*/SourceLocation(), |
2755 | R, /*TemplateArgs=*/nullptr, S); |
2756 | |
2757 | return BuildDeclarationNameExpr(SS, R, /* ADL */ false); |
2758 | } |
2759 | |
2760 | /// The parser has read a name in, and Sema has detected that we're currently |
2761 | /// inside an ObjC method. Perform some additional checks and determine if we |
2762 | /// should form a reference to an ivar. |
2763 | /// |
2764 | /// Ideally, most of this would be done by lookup, but there's |
2765 | /// actually quite a lot of extra work involved. |
2766 | DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, |
2767 | IdentifierInfo *II) { |
2768 | SourceLocation Loc = Lookup.getNameLoc(); |
2769 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
2770 | |
2771 | // Check for error condition which is already reported. |
2772 | if (!CurMethod) |
2773 | return DeclResult(true); |
2774 | |
2775 | // There are two cases to handle here. 1) scoped lookup could have failed, |
2776 | // in which case we should look for an ivar. 2) scoped lookup could have |
2777 | // found a decl, but that decl is outside the current instance method (i.e. |
2778 | // a global variable). In these two cases, we do a lookup for an ivar with |
2779 | // this name, if the lookup sucedes, we replace it our current decl. |
2780 | |
2781 | // If we're in a class method, we don't normally want to look for |
2782 | // ivars. But if we don't find anything else, and there's an |
2783 | // ivar, that's an error. |
2784 | bool IsClassMethod = CurMethod->isClassMethod(); |
2785 | |
2786 | bool LookForIvars; |
2787 | if (Lookup.empty()) |
2788 | LookForIvars = true; |
2789 | else if (IsClassMethod) |
2790 | LookForIvars = false; |
2791 | else |
2792 | LookForIvars = (Lookup.isSingleResult() && |
2793 | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); |
2794 | ObjCInterfaceDecl *IFace = nullptr; |
2795 | if (LookForIvars) { |
2796 | IFace = CurMethod->getClassInterface(); |
2797 | ObjCInterfaceDecl *ClassDeclared; |
2798 | ObjCIvarDecl *IV = nullptr; |
2799 | if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { |
2800 | // Diagnose using an ivar in a class method. |
2801 | if (IsClassMethod) { |
2802 | Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); |
2803 | return DeclResult(true); |
2804 | } |
2805 | |
2806 | // Diagnose the use of an ivar outside of the declaring class. |
2807 | if (IV->getAccessControl() == ObjCIvarDecl::Private && |
2808 | !declaresSameEntity(ClassDeclared, IFace) && |
2809 | !getLangOpts().DebuggerSupport) |
2810 | Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); |
2811 | |
2812 | // Success. |
2813 | return IV; |
2814 | } |
2815 | } else if (CurMethod->isInstanceMethod()) { |
2816 | // We should warn if a local variable hides an ivar. |
2817 | if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { |
2818 | ObjCInterfaceDecl *ClassDeclared; |
2819 | if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { |
2820 | if (IV->getAccessControl() != ObjCIvarDecl::Private || |
2821 | declaresSameEntity(IFace, ClassDeclared)) |
2822 | Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); |
2823 | } |
2824 | } |
2825 | } else if (Lookup.isSingleResult() && |
2826 | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { |
2827 | // If accessing a stand-alone ivar in a class method, this is an error. |
2828 | if (const ObjCIvarDecl *IV = |
2829 | dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) { |
2830 | Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); |
2831 | return DeclResult(true); |
2832 | } |
2833 | } |
2834 | |
2835 | // Didn't encounter an error, didn't find an ivar. |
2836 | return DeclResult(false); |
2837 | } |
2838 | |
2839 | ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc, |
2840 | ObjCIvarDecl *IV) { |
2841 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
2842 | assert(CurMethod && CurMethod->isInstanceMethod() &&((void)0) |
2843 | "should not reference ivar from this context")((void)0); |
2844 | |
2845 | ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); |
2846 | assert(IFace && "should not reference ivar from this context")((void)0); |
2847 | |
2848 | // If we're referencing an invalid decl, just return this as a silent |
2849 | // error node. The error diagnostic was already emitted on the decl. |
2850 | if (IV->isInvalidDecl()) |
2851 | return ExprError(); |
2852 | |
2853 | // Check if referencing a field with __attribute__((deprecated)). |
2854 | if (DiagnoseUseOfDecl(IV, Loc)) |
2855 | return ExprError(); |
2856 | |
2857 | // FIXME: This should use a new expr for a direct reference, don't |
2858 | // turn this into Self->ivar, just return a BareIVarExpr or something. |
2859 | IdentifierInfo &II = Context.Idents.get("self"); |
2860 | UnqualifiedId SelfName; |
2861 | SelfName.setImplicitSelfParam(&II); |
2862 | CXXScopeSpec SelfScopeSpec; |
2863 | SourceLocation TemplateKWLoc; |
2864 | ExprResult SelfExpr = |
2865 | ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName, |
2866 | /*HasTrailingLParen=*/false, |
2867 | /*IsAddressOfOperand=*/false); |
2868 | if (SelfExpr.isInvalid()) |
2869 | return ExprError(); |
2870 | |
2871 | SelfExpr = DefaultLvalueConversion(SelfExpr.get()); |
2872 | if (SelfExpr.isInvalid()) |
2873 | return ExprError(); |
2874 | |
2875 | MarkAnyDeclReferenced(Loc, IV, true); |
2876 | |
2877 | ObjCMethodFamily MF = CurMethod->getMethodFamily(); |
2878 | if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && |
2879 | !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) |
2880 | Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); |
2881 | |
2882 | ObjCIvarRefExpr *Result = new (Context) |
2883 | ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, |
2884 | IV->getLocation(), SelfExpr.get(), true, true); |
2885 | |
2886 | if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
2887 | if (!isUnevaluatedContext() && |
2888 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) |
2889 | getCurFunction()->recordUseOfWeak(Result); |
2890 | } |
2891 | if (getLangOpts().ObjCAutoRefCount) |
2892 | if (const BlockDecl *BD = CurContext->getInnermostBlockDecl()) |
2893 | ImplicitlyRetainedSelfLocs.push_back({Loc, BD}); |
2894 | |
2895 | return Result; |
2896 | } |
2897 | |
2898 | /// The parser has read a name in, and Sema has detected that we're currently |
2899 | /// inside an ObjC method. Perform some additional checks and determine if we |
2900 | /// should form a reference to an ivar. If so, build an expression referencing |
2901 | /// that ivar. |
2902 | ExprResult |
2903 | Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, |
2904 | IdentifierInfo *II, bool AllowBuiltinCreation) { |
2905 | // FIXME: Integrate this lookup step into LookupParsedName. |
2906 | DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II); |
2907 | if (Ivar.isInvalid()) |
2908 | return ExprError(); |
2909 | if (Ivar.isUsable()) |
2910 | return BuildIvarRefExpr(S, Lookup.getNameLoc(), |
2911 | cast<ObjCIvarDecl>(Ivar.get())); |
2912 | |
2913 | if (Lookup.empty() && II && AllowBuiltinCreation) |
2914 | LookupBuiltin(Lookup); |
2915 | |
2916 | // Sentinel value saying that we didn't do anything special. |
2917 | return ExprResult(false); |
2918 | } |
2919 | |
2920 | /// Cast a base object to a member's actual type. |
2921 | /// |
2922 | /// There are two relevant checks: |
2923 | /// |
2924 | /// C++ [class.access.base]p7: |
2925 | /// |
2926 | /// If a class member access operator [...] is used to access a non-static |
2927 | /// data member or non-static member function, the reference is ill-formed if |
2928 | /// the left operand [...] cannot be implicitly converted to a pointer to the |
2929 | /// naming class of the right operand. |
2930 | /// |
2931 | /// C++ [expr.ref]p7: |
2932 | /// |
2933 | /// If E2 is a non-static data member or a non-static member function, the |
2934 | /// program is ill-formed if the class of which E2 is directly a member is an |
2935 | /// ambiguous base (11.8) of the naming class (11.9.3) of E2. |
2936 | /// |
2937 | /// Note that the latter check does not consider access; the access of the |
2938 | /// "real" base class is checked as appropriate when checking the access of the |
2939 | /// member name. |
2940 | ExprResult |
2941 | Sema::PerformObjectMemberConversion(Expr *From, |
2942 | NestedNameSpecifier *Qualifier, |
2943 | NamedDecl *FoundDecl, |
2944 | NamedDecl *Member) { |
2945 | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); |
2946 | if (!RD) |
2947 | return From; |
2948 | |
2949 | QualType DestRecordType; |
2950 | QualType DestType; |
2951 | QualType FromRecordType; |
2952 | QualType FromType = From->getType(); |
2953 | bool PointerConversions = false; |
2954 | if (isa<FieldDecl>(Member)) { |
2955 | DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); |
2956 | auto FromPtrType = FromType->getAs<PointerType>(); |
2957 | DestRecordType = Context.getAddrSpaceQualType( |
2958 | DestRecordType, FromPtrType |
2959 | ? FromType->getPointeeType().getAddressSpace() |
2960 | : FromType.getAddressSpace()); |
2961 | |
2962 | if (FromPtrType) { |
2963 | DestType = Context.getPointerType(DestRecordType); |
2964 | FromRecordType = FromPtrType->getPointeeType(); |
2965 | PointerConversions = true; |
2966 | } else { |
2967 | DestType = DestRecordType; |
2968 | FromRecordType = FromType; |
2969 | } |
2970 | } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { |
2971 | if (Method->isStatic()) |
2972 | return From; |
2973 | |
2974 | DestType = Method->getThisType(); |
2975 | DestRecordType = DestType->getPointeeType(); |
2976 | |
2977 | if (FromType->getAs<PointerType>()) { |
2978 | FromRecordType = FromType->getPointeeType(); |
2979 | PointerConversions = true; |
2980 | } else { |
2981 | FromRecordType = FromType; |
2982 | DestType = DestRecordType; |
2983 | } |
2984 | |
2985 | LangAS FromAS = FromRecordType.getAddressSpace(); |
2986 | LangAS DestAS = DestRecordType.getAddressSpace(); |
2987 | if (FromAS != DestAS) { |
2988 | QualType FromRecordTypeWithoutAS = |
2989 | Context.removeAddrSpaceQualType(FromRecordType); |
2990 | QualType FromTypeWithDestAS = |
2991 | Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS); |
2992 | if (PointerConversions) |
2993 | FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS); |
2994 | From = ImpCastExprToType(From, FromTypeWithDestAS, |
2995 | CK_AddressSpaceConversion, From->getValueKind()) |
2996 | .get(); |
2997 | } |
2998 | } else { |
2999 | // No conversion necessary. |
3000 | return From; |
3001 | } |
3002 | |
3003 | if (DestType->isDependentType() || FromType->isDependentType()) |
3004 | return From; |
3005 | |
3006 | // If the unqualified types are the same, no conversion is necessary. |
3007 | if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
3008 | return From; |
3009 | |
3010 | SourceRange FromRange = From->getSourceRange(); |
3011 | SourceLocation FromLoc = FromRange.getBegin(); |
3012 | |
3013 | ExprValueKind VK = From->getValueKind(); |
3014 | |
3015 | // C++ [class.member.lookup]p8: |
3016 | // [...] Ambiguities can often be resolved by qualifying a name with its |
3017 | // class name. |
3018 | // |
3019 | // If the member was a qualified name and the qualified referred to a |
3020 | // specific base subobject type, we'll cast to that intermediate type |
3021 | // first and then to the object in which the member is declared. That allows |
3022 | // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: |
3023 | // |
3024 | // class Base { public: int x; }; |
3025 | // class Derived1 : public Base { }; |
3026 | // class Derived2 : public Base { }; |
3027 | // class VeryDerived : public Derived1, public Derived2 { void f(); }; |
3028 | // |
3029 | // void VeryDerived::f() { |
3030 | // x = 17; // error: ambiguous base subobjects |
3031 | // Derived1::x = 17; // okay, pick the Base subobject of Derived1 |
3032 | // } |
3033 | if (Qualifier && Qualifier->getAsType()) { |
3034 | QualType QType = QualType(Qualifier->getAsType(), 0); |
3035 | assert(QType->isRecordType() && "lookup done with non-record type")((void)0); |
3036 | |
3037 | QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); |
3038 | |
3039 | // In C++98, the qualifier type doesn't actually have to be a base |
3040 | // type of the object type, in which case we just ignore it. |
3041 | // Otherwise build the appropriate casts. |
3042 | if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { |
3043 | CXXCastPath BasePath; |
3044 | if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, |
3045 | FromLoc, FromRange, &BasePath)) |
3046 | return ExprError(); |
3047 | |
3048 | if (PointerConversions) |
3049 | QType = Context.getPointerType(QType); |
3050 | From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, |
3051 | VK, &BasePath).get(); |
3052 | |
3053 | FromType = QType; |
3054 | FromRecordType = QRecordType; |
3055 | |
3056 | // If the qualifier type was the same as the destination type, |
3057 | // we're done. |
3058 | if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
3059 | return From; |
3060 | } |
3061 | } |
3062 | |
3063 | CXXCastPath BasePath; |
3064 | if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, |
3065 | FromLoc, FromRange, &BasePath, |
3066 | /*IgnoreAccess=*/true)) |
3067 | return ExprError(); |
3068 | |
3069 | return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, |
3070 | VK, &BasePath); |
3071 | } |
3072 | |
3073 | bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, |
3074 | const LookupResult &R, |
3075 | bool HasTrailingLParen) { |
3076 | // Only when used directly as the postfix-expression of a call. |
3077 | if (!HasTrailingLParen) |
3078 | return false; |
3079 | |
3080 | // Never if a scope specifier was provided. |
3081 | if (SS.isSet()) |
3082 | return false; |
3083 | |
3084 | // Only in C++ or ObjC++. |
3085 | if (!getLangOpts().CPlusPlus) |
3086 | return false; |
3087 | |
3088 | // Turn off ADL when we find certain kinds of declarations during |
3089 | // normal lookup: |
3090 | for (NamedDecl *D : R) { |
3091 | // C++0x [basic.lookup.argdep]p3: |
3092 | // -- a declaration of a class member |
3093 | // Since using decls preserve this property, we check this on the |
3094 | // original decl. |
3095 | if (D->isCXXClassMember()) |
3096 | return false; |
3097 | |
3098 | // C++0x [basic.lookup.argdep]p3: |
3099 | // -- a block-scope function declaration that is not a |
3100 | // using-declaration |
3101 | // NOTE: we also trigger this for function templates (in fact, we |
3102 | // don't check the decl type at all, since all other decl types |
3103 | // turn off ADL anyway). |
3104 | if (isa<UsingShadowDecl>(D)) |
3105 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
3106 | else if (D->getLexicalDeclContext()->isFunctionOrMethod()) |
3107 | return false; |
3108 | |
3109 | // C++0x [basic.lookup.argdep]p3: |
3110 | // -- a declaration that is neither a function or a function |
3111 | // template |
3112 | // And also for builtin functions. |
3113 | if (isa<FunctionDecl>(D)) { |
3114 | FunctionDecl *FDecl = cast<FunctionDecl>(D); |
3115 | |
3116 | // But also builtin functions. |
3117 | if (FDecl->getBuiltinID() && FDecl->isImplicit()) |
3118 | return false; |
3119 | } else if (!isa<FunctionTemplateDecl>(D)) |
3120 | return false; |
3121 | } |
3122 | |
3123 | return true; |
3124 | } |
3125 | |
3126 | |
3127 | /// Diagnoses obvious problems with the use of the given declaration |
3128 | /// as an expression. This is only actually called for lookups that |
3129 | /// were not overloaded, and it doesn't promise that the declaration |
3130 | /// will in fact be used. |
3131 | static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { |
3132 | if (D->isInvalidDecl()) |
3133 | return true; |
3134 | |
3135 | if (isa<TypedefNameDecl>(D)) { |
3136 | S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); |
3137 | return true; |
3138 | } |
3139 | |
3140 | if (isa<ObjCInterfaceDecl>(D)) { |
3141 | S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); |
3142 | return true; |
3143 | } |
3144 | |
3145 | if (isa<NamespaceDecl>(D)) { |
3146 | S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); |
3147 | return true; |
3148 | } |
3149 | |
3150 | return false; |
3151 | } |
3152 | |
3153 | // Certain multiversion types should be treated as overloaded even when there is |
3154 | // only one result. |
3155 | static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { |
3156 | assert(R.isSingleResult() && "Expected only a single result")((void)0); |
3157 | const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); |
3158 | return FD && |
3159 | (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); |
3160 | } |
3161 | |
3162 | ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, |
3163 | LookupResult &R, bool NeedsADL, |
3164 | bool AcceptInvalidDecl) { |
3165 | // If this is a single, fully-resolved result and we don't need ADL, |
3166 | // just build an ordinary singleton decl ref. |
3167 | if (!NeedsADL && R.isSingleResult() && |
3168 | !R.getAsSingle<FunctionTemplateDecl>() && |
3169 | !ShouldLookupResultBeMultiVersionOverload(R)) |
3170 | return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), |
3171 | R.getRepresentativeDecl(), nullptr, |
3172 | AcceptInvalidDecl); |
3173 | |
3174 | // We only need to check the declaration if there's exactly one |
3175 | // result, because in the overloaded case the results can only be |
3176 | // functions and function templates. |
3177 | if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && |
3178 | CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) |
3179 | return ExprError(); |
3180 | |
3181 | // Otherwise, just build an unresolved lookup expression. Suppress |
3182 | // any lookup-related diagnostics; we'll hash these out later, when |
3183 | // we've picked a target. |
3184 | R.suppressDiagnostics(); |
3185 | |
3186 | UnresolvedLookupExpr *ULE |
3187 | = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), |
3188 | SS.getWithLocInContext(Context), |
3189 | R.getLookupNameInfo(), |
3190 | NeedsADL, R.isOverloadedResult(), |
3191 | R.begin(), R.end()); |
3192 | |
3193 | return ULE; |
3194 | } |
3195 | |
3196 | static void |
3197 | diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, |
3198 | ValueDecl *var, DeclContext *DC); |
3199 | |
3200 | /// Complete semantic analysis for a reference to the given declaration. |
3201 | ExprResult Sema::BuildDeclarationNameExpr( |
3202 | const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, |
3203 | NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, |
3204 | bool AcceptInvalidDecl) { |
3205 | assert(D && "Cannot refer to a NULL declaration")((void)0); |
3206 | assert(!isa<FunctionTemplateDecl>(D) &&((void)0) |
3207 | "Cannot refer unambiguously to a function template")((void)0); |
3208 | |
3209 | SourceLocation Loc = NameInfo.getLoc(); |
3210 | if (CheckDeclInExpr(*this, Loc, D)) |
3211 | return ExprError(); |
3212 | |
3213 | if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { |
3214 | // Specifically diagnose references to class templates that are missing |
3215 | // a template argument list. |
3216 | diagnoseMissingTemplateArguments(TemplateName(Template), Loc); |
3217 | return ExprError(); |
3218 | } |
3219 | |
3220 | // Make sure that we're referring to a value. |
3221 | if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) { |
3222 | Diag(Loc, diag::err_ref_non_value) |
3223 | << D << SS.getRange(); |
3224 | Diag(D->getLocation(), diag::note_declared_at); |
3225 | return ExprError(); |
3226 | } |
3227 | |
3228 | // Check whether this declaration can be used. Note that we suppress |
3229 | // this check when we're going to perform argument-dependent lookup |
3230 | // on this function name, because this might not be the function |
3231 | // that overload resolution actually selects. |
3232 | if (DiagnoseUseOfDecl(D, Loc)) |
3233 | return ExprError(); |
3234 | |
3235 | auto *VD = cast<ValueDecl>(D); |
3236 | |
3237 | // Only create DeclRefExpr's for valid Decl's. |
3238 | if (VD->isInvalidDecl() && !AcceptInvalidDecl) |
3239 | return ExprError(); |
3240 | |
3241 | // Handle members of anonymous structs and unions. If we got here, |
3242 | // and the reference is to a class member indirect field, then this |
3243 | // must be the subject of a pointer-to-member expression. |
3244 | if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) |
3245 | if (!indirectField->isCXXClassMember()) |
3246 | return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), |
3247 | indirectField); |
3248 | |
3249 | { |
3250 | QualType type = VD->getType(); |
3251 | if (type.isNull()) |
3252 | return ExprError(); |
3253 | ExprValueKind valueKind = VK_PRValue; |
3254 | |
3255 | // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of |
3256 | // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value, |
3257 | // is expanded by some outer '...' in the context of the use. |
3258 | type = type.getNonPackExpansionType(); |
3259 | |
3260 | switch (D->getKind()) { |
3261 | // Ignore all the non-ValueDecl kinds. |
3262 | #define ABSTRACT_DECL(kind) |
3263 | #define VALUE(type, base) |
3264 | #define DECL(type, base) \ |
3265 | case Decl::type: |
3266 | #include "clang/AST/DeclNodes.inc" |
3267 | llvm_unreachable("invalid value decl kind")__builtin_unreachable(); |
3268 | |
3269 | // These shouldn't make it here. |
3270 | case Decl::ObjCAtDefsField: |
3271 | llvm_unreachable("forming non-member reference to ivar?")__builtin_unreachable(); |
3272 | |
3273 | // Enum constants are always r-values and never references. |
3274 | // Unresolved using declarations are dependent. |
3275 | case Decl::EnumConstant: |
3276 | case Decl::UnresolvedUsingValue: |
3277 | case Decl::OMPDeclareReduction: |
3278 | case Decl::OMPDeclareMapper: |
3279 | valueKind = VK_PRValue; |
3280 | break; |
3281 | |
3282 | // Fields and indirect fields that got here must be for |
3283 | // pointer-to-member expressions; we just call them l-values for |
3284 | // internal consistency, because this subexpression doesn't really |
3285 | // exist in the high-level semantics. |
3286 | case Decl::Field: |
3287 | case Decl::IndirectField: |
3288 | case Decl::ObjCIvar: |
3289 | assert(getLangOpts().CPlusPlus &&((void)0) |
3290 | "building reference to field in C?")((void)0); |
3291 | |
3292 | // These can't have reference type in well-formed programs, but |
3293 | // for internal consistency we do this anyway. |
3294 | type = type.getNonReferenceType(); |
3295 | valueKind = VK_LValue; |
3296 | break; |
3297 | |
3298 | // Non-type template parameters are either l-values or r-values |
3299 | // depending on the type. |
3300 | case Decl::NonTypeTemplateParm: { |
3301 | if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { |
3302 | type = reftype->getPointeeType(); |
3303 | valueKind = VK_LValue; // even if the parameter is an r-value reference |
3304 | break; |
3305 | } |
3306 | |
3307 | // [expr.prim.id.unqual]p2: |
3308 | // If the entity is a template parameter object for a template |
3309 | // parameter of type T, the type of the expression is const T. |
3310 | // [...] The expression is an lvalue if the entity is a [...] template |
3311 | // parameter object. |
3312 | if (type->isRecordType()) { |
3313 | type = type.getUnqualifiedType().withConst(); |
3314 | valueKind = VK_LValue; |
3315 | break; |
3316 | } |
3317 | |
3318 | // For non-references, we need to strip qualifiers just in case |
3319 | // the template parameter was declared as 'const int' or whatever. |
3320 | valueKind = VK_PRValue; |
3321 | type = type.getUnqualifiedType(); |
3322 | break; |
3323 | } |
3324 | |
3325 | case Decl::Var: |
3326 | case Decl::VarTemplateSpecialization: |
3327 | case Decl::VarTemplatePartialSpecialization: |
3328 | case Decl::Decomposition: |
3329 | case Decl::OMPCapturedExpr: |
3330 | // In C, "extern void blah;" is valid and is an r-value. |
3331 | if (!getLangOpts().CPlusPlus && |
3332 | !type.hasQualifiers() && |
3333 | type->isVoidType()) { |
3334 | valueKind = VK_PRValue; |
3335 | break; |
3336 | } |
3337 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
3338 | |
3339 | case Decl::ImplicitParam: |
3340 | case Decl::ParmVar: { |
3341 | // These are always l-values. |
3342 | valueKind = VK_LValue; |
3343 | type = type.getNonReferenceType(); |
3344 | |
3345 | // FIXME: Does the addition of const really only apply in |
3346 | // potentially-evaluated contexts? Since the variable isn't actually |
3347 | // captured in an unevaluated context, it seems that the answer is no. |
3348 | if (!isUnevaluatedContext()) { |
3349 | QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc); |
3350 | if (!CapturedType.isNull()) |
3351 | type = CapturedType; |
3352 | } |
3353 | |
3354 | break; |
3355 | } |
3356 | |
3357 | case Decl::Binding: { |
3358 | // These are always lvalues. |
3359 | valueKind = VK_LValue; |
3360 | type = type.getNonReferenceType(); |
3361 | // FIXME: Support lambda-capture of BindingDecls, once CWG actually |
3362 | // decides how that's supposed to work. |
3363 | auto *BD = cast<BindingDecl>(VD); |
3364 | if (BD->getDeclContext() != CurContext) { |
3365 | auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl()); |
3366 | if (DD && DD->hasLocalStorage()) |
3367 | diagnoseUncapturableValueReference(*this, Loc, BD, CurContext); |
3368 | } |
3369 | break; |
3370 | } |
3371 | |
3372 | case Decl::Function: { |
3373 | if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) { |
3374 | if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) { |
3375 | type = Context.BuiltinFnTy; |
3376 | valueKind = VK_PRValue; |
3377 | break; |
3378 | } |
3379 | } |
3380 | |
3381 | const FunctionType *fty = type->castAs<FunctionType>(); |
3382 | |
3383 | // If we're referring to a function with an __unknown_anytype |
3384 | // result type, make the entire expression __unknown_anytype. |
3385 | if (fty->getReturnType() == Context.UnknownAnyTy) { |
3386 | type = Context.UnknownAnyTy; |
3387 | valueKind = VK_PRValue; |
3388 | break; |
3389 | } |
3390 | |
3391 | // Functions are l-values in C++. |
3392 | if (getLangOpts().CPlusPlus) { |
3393 | valueKind = VK_LValue; |
3394 | break; |
3395 | } |
3396 | |
3397 | // C99 DR 316 says that, if a function type comes from a |
3398 | // function definition (without a prototype), that type is only |
3399 | // used for checking compatibility. Therefore, when referencing |
3400 | // the function, we pretend that we don't have the full function |
3401 | // type. |
3402 | if (!cast<FunctionDecl>(VD)->hasPrototype() && |
3403 | isa<FunctionProtoType>(fty)) |
3404 | type = Context.getFunctionNoProtoType(fty->getReturnType(), |
3405 | fty->getExtInfo()); |
3406 | |
3407 | // Functions are r-values in C. |
3408 | valueKind = VK_PRValue; |
3409 | break; |
3410 | } |
3411 | |
3412 | case Decl::CXXDeductionGuide: |
3413 | llvm_unreachable("building reference to deduction guide")__builtin_unreachable(); |
3414 | |
3415 | case Decl::MSProperty: |
3416 | case Decl::MSGuid: |
3417 | case Decl::TemplateParamObject: |
3418 | // FIXME: Should MSGuidDecl and template parameter objects be subject to |
3419 | // capture in OpenMP, or duplicated between host and device? |
3420 | valueKind = VK_LValue; |
3421 | break; |
3422 | |
3423 | case Decl::CXXMethod: |
3424 | // If we're referring to a method with an __unknown_anytype |
3425 | // result type, make the entire expression __unknown_anytype. |
3426 | // This should only be possible with a type written directly. |
3427 | if (const FunctionProtoType *proto |
3428 | = dyn_cast<FunctionProtoType>(VD->getType())) |
3429 | if (proto->getReturnType() == Context.UnknownAnyTy) { |
3430 | type = Context.UnknownAnyTy; |
3431 | valueKind = VK_PRValue; |
3432 | break; |
3433 | } |
3434 | |
3435 | // C++ methods are l-values if static, r-values if non-static. |
3436 | if (cast<CXXMethodDecl>(VD)->isStatic()) { |
3437 | valueKind = VK_LValue; |
3438 | break; |
3439 | } |
3440 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
3441 | |
3442 | case Decl::CXXConversion: |
3443 | case Decl::CXXDestructor: |
3444 | case Decl::CXXConstructor: |
3445 | valueKind = VK_PRValue; |
3446 | break; |
3447 | } |
3448 | |
3449 | return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, |
3450 | /*FIXME: TemplateKWLoc*/ SourceLocation(), |
3451 | TemplateArgs); |
3452 | } |
3453 | } |
3454 | |
3455 | static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, |
3456 | SmallString<32> &Target) { |
3457 | Target.resize(CharByteWidth * (Source.size() + 1)); |
3458 | char *ResultPtr = &Target[0]; |
3459 | const llvm::UTF8 *ErrorPtr; |
3460 | bool success = |
3461 | llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); |
3462 | (void)success; |
3463 | assert(success)((void)0); |
3464 | Target.resize(ResultPtr - &Target[0]); |
3465 | } |
3466 | |
3467 | ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, |
3468 | PredefinedExpr::IdentKind IK) { |
3469 | // Pick the current block, lambda, captured statement or function. |
3470 | Decl *currentDecl = nullptr; |
3471 | if (const BlockScopeInfo *BSI = getCurBlock()) |
3472 | currentDecl = BSI->TheDecl; |
3473 | else if (const LambdaScopeInfo *LSI = getCurLambda()) |
3474 | currentDecl = LSI->CallOperator; |
3475 | else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) |
3476 | currentDecl = CSI->TheCapturedDecl; |
3477 | else |
3478 | currentDecl = getCurFunctionOrMethodDecl(); |
3479 | |
3480 | if (!currentDecl) { |
3481 | Diag(Loc, diag::ext_predef_outside_function); |
3482 | currentDecl = Context.getTranslationUnitDecl(); |
3483 | } |
3484 | |
3485 | QualType ResTy; |
3486 | StringLiteral *SL = nullptr; |
3487 | if (cast<DeclContext>(currentDecl)->isDependentContext()) |
3488 | ResTy = Context.DependentTy; |
3489 | else { |
3490 | // Pre-defined identifiers are of type char[x], where x is the length of |
3491 | // the string. |
3492 | auto Str = PredefinedExpr::ComputeName(IK, currentDecl); |
3493 | unsigned Length = Str.length(); |
3494 | |
3495 | llvm::APInt LengthI(32, Length + 1); |
3496 | if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) { |
3497 | ResTy = |
3498 | Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); |
3499 | SmallString<32> RawChars; |
3500 | ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), |
3501 | Str, RawChars); |
3502 | ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, |
3503 | ArrayType::Normal, |
3504 | /*IndexTypeQuals*/ 0); |
3505 | SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, |
3506 | /*Pascal*/ false, ResTy, Loc); |
3507 | } else { |
3508 | ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); |
3509 | ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, |
3510 | ArrayType::Normal, |
3511 | /*IndexTypeQuals*/ 0); |
3512 | SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii, |
3513 | /*Pascal*/ false, ResTy, Loc); |
3514 | } |
3515 | } |
3516 | |
3517 | return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL); |
3518 | } |
3519 | |
3520 | ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, |
3521 | SourceLocation LParen, |
3522 | SourceLocation RParen, |
3523 | TypeSourceInfo *TSI) { |
3524 | return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI); |
3525 | } |
3526 | |
3527 | ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc, |
3528 | SourceLocation LParen, |
3529 | SourceLocation RParen, |
3530 | ParsedType ParsedTy) { |
3531 | TypeSourceInfo *TSI = nullptr; |
3532 | QualType Ty = GetTypeFromParser(ParsedTy, &TSI); |
3533 | |
3534 | if (Ty.isNull()) |
3535 | return ExprError(); |
3536 | if (!TSI) |
3537 | TSI = Context.getTrivialTypeSourceInfo(Ty, LParen); |
3538 | |
3539 | return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI); |
3540 | } |
3541 | |
3542 | ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { |
3543 | PredefinedExpr::IdentKind IK; |
3544 | |
3545 | switch (Kind) { |
3546 | default: llvm_unreachable("Unknown simple primary expr!")__builtin_unreachable(); |
3547 | case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2] |
3548 | case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break; |
3549 | case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS] |
3550 | case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS] |
3551 | case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS] |
3552 | case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS] |
3553 | case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break; |
3554 | } |
3555 | |
3556 | return BuildPredefinedExpr(Loc, IK); |
3557 | } |
3558 | |
3559 | ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { |
3560 | SmallString<16> CharBuffer; |
3561 | bool Invalid = false; |
3562 | StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); |
3563 | if (Invalid) |
3564 | return ExprError(); |
3565 | |
3566 | CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), |
3567 | PP, Tok.getKind()); |
3568 | if (Literal.hadError()) |
3569 | return ExprError(); |
3570 | |
3571 | QualType Ty; |
3572 | if (Literal.isWide()) |
3573 | Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. |
3574 | else if (Literal.isUTF8() && getLangOpts().Char8) |
3575 | Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. |
3576 | else if (Literal.isUTF16()) |
3577 | Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. |
3578 | else if (Literal.isUTF32()) |
3579 | Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. |
3580 | else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) |
3581 | Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. |
3582 | else |
3583 | Ty = Context.CharTy; // 'x' -> char in C++ |
3584 | |
3585 | CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; |
3586 | if (Literal.isWide()) |
3587 | Kind = CharacterLiteral::Wide; |
3588 | else if (Literal.isUTF16()) |
3589 | Kind = CharacterLiteral::UTF16; |
3590 | else if (Literal.isUTF32()) |
3591 | Kind = CharacterLiteral::UTF32; |
3592 | else if (Literal.isUTF8()) |
3593 | Kind = CharacterLiteral::UTF8; |
3594 | |
3595 | Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, |
3596 | Tok.getLocation()); |
3597 | |
3598 | if (Literal.getUDSuffix().empty()) |
3599 | return Lit; |
3600 | |
3601 | // We're building a user-defined literal. |
3602 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
3603 | SourceLocation UDSuffixLoc = |
3604 | getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); |
3605 | |
3606 | // Make sure we're allowed user-defined literals here. |
3607 | if (!UDLScope) |
3608 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); |
3609 | |
3610 | // C++11 [lex.ext]p6: The literal L is treated as a call of the form |
3611 | // operator "" X (ch) |
3612 | return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, |
3613 | Lit, Tok.getLocation()); |
3614 | } |
3615 | |
3616 | ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { |
3617 | unsigned IntSize = Context.getTargetInfo().getIntWidth(); |
3618 | return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), |
3619 | Context.IntTy, Loc); |
3620 | } |
3621 | |
3622 | static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, |
3623 | QualType Ty, SourceLocation Loc) { |
3624 | const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); |
3625 | |
3626 | using llvm::APFloat; |
3627 | APFloat Val(Format); |
3628 | |
3629 | APFloat::opStatus result = Literal.GetFloatValue(Val); |
3630 | |
3631 | // Overflow is always an error, but underflow is only an error if |
3632 | // we underflowed to zero (APFloat reports denormals as underflow). |
3633 | if ((result & APFloat::opOverflow) || |
3634 | ((result & APFloat::opUnderflow) && Val.isZero())) { |
3635 | unsigned diagnostic; |
3636 | SmallString<20> buffer; |
3637 | if (result & APFloat::opOverflow) { |
3638 | diagnostic = diag::warn_float_overflow; |
3639 | APFloat::getLargest(Format).toString(buffer); |
3640 | } else { |
3641 | diagnostic = diag::warn_float_underflow; |
3642 | APFloat::getSmallest(Format).toString(buffer); |
3643 | } |
3644 | |
3645 | S.Diag(Loc, diagnostic) |
3646 | << Ty |
3647 | << StringRef(buffer.data(), buffer.size()); |
3648 | } |
3649 | |
3650 | bool isExact = (result == APFloat::opOK); |
3651 | return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); |
3652 | } |
3653 | |
3654 | bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { |
3655 | assert(E && "Invalid expression")((void)0); |
3656 | |
3657 | if (E->isValueDependent()) |
3658 | return false; |
3659 | |
3660 | QualType QT = E->getType(); |
3661 | if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { |
3662 | Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; |
3663 | return true; |
3664 | } |
3665 | |
3666 | llvm::APSInt ValueAPS; |
3667 | ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); |
3668 | |
3669 | if (R.isInvalid()) |
3670 | return true; |
3671 | |
3672 | bool ValueIsPositive = ValueAPS.isStrictlyPositive(); |
3673 | if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { |
3674 | Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) |
3675 | << toString(ValueAPS, 10) << ValueIsPositive; |
3676 | return true; |
3677 | } |
3678 | |
3679 | return false; |
3680 | } |
3681 | |
3682 | ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { |
3683 | // Fast path for a single digit (which is quite common). A single digit |
3684 | // cannot have a trigraph, escaped newline, radix prefix, or suffix. |
3685 | if (Tok.getLength() == 1) { |
3686 | const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); |
3687 | return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); |
3688 | } |
3689 | |
3690 | SmallString<128> SpellingBuffer; |
3691 | // NumericLiteralParser wants to overread by one character. Add padding to |
3692 | // the buffer in case the token is copied to the buffer. If getSpelling() |
3693 | // returns a StringRef to the memory buffer, it should have a null char at |
3694 | // the EOF, so it is also safe. |
3695 | SpellingBuffer.resize(Tok.getLength() + 1); |
3696 | |
3697 | // Get the spelling of the token, which eliminates trigraphs, etc. |
3698 | bool Invalid = false; |
3699 | StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); |
3700 | if (Invalid) |
3701 | return ExprError(); |
3702 | |
3703 | NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), |
3704 | PP.getSourceManager(), PP.getLangOpts(), |
3705 | PP.getTargetInfo(), PP.getDiagnostics()); |
3706 | if (Literal.hadError) |
3707 | return ExprError(); |
3708 | |
3709 | if (Literal.hasUDSuffix()) { |
3710 | // We're building a user-defined literal. |
3711 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
3712 | SourceLocation UDSuffixLoc = |
3713 | getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); |
3714 | |
3715 | // Make sure we're allowed user-defined literals here. |
3716 | if (!UDLScope) |
3717 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); |
3718 | |
3719 | QualType CookedTy; |
3720 | if (Literal.isFloatingLiteral()) { |
3721 | // C++11 [lex.ext]p4: If S contains a literal operator with parameter type |
3722 | // long double, the literal is treated as a call of the form |
3723 | // operator "" X (f L) |
3724 | CookedTy = Context.LongDoubleTy; |
3725 | } else { |
3726 | // C++11 [lex.ext]p3: If S contains a literal operator with parameter type |
3727 | // unsigned long long, the literal is treated as a call of the form |
3728 | // operator "" X (n ULL) |
3729 | CookedTy = Context.UnsignedLongLongTy; |
3730 | } |
3731 | |
3732 | DeclarationName OpName = |
3733 | Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
3734 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
3735 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
3736 | |
3737 | SourceLocation TokLoc = Tok.getLocation(); |
3738 | |
3739 | // Perform literal operator lookup to determine if we're building a raw |
3740 | // literal or a cooked one. |
3741 | LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); |
3742 | switch (LookupLiteralOperator(UDLScope, R, CookedTy, |
3743 | /*AllowRaw*/ true, /*AllowTemplate*/ true, |
3744 | /*AllowStringTemplatePack*/ false, |
3745 | /*DiagnoseMissing*/ !Literal.isImaginary)) { |
3746 | case LOLR_ErrorNoDiagnostic: |
3747 | // Lookup failure for imaginary constants isn't fatal, there's still the |
3748 | // GNU extension producing _Complex types. |
3749 | break; |
3750 | case LOLR_Error: |
3751 | return ExprError(); |
3752 | case LOLR_Cooked: { |
3753 | Expr *Lit; |
3754 | if (Literal.isFloatingLiteral()) { |
3755 | Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); |
3756 | } else { |
3757 | llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); |
3758 | if (Literal.GetIntegerValue(ResultVal)) |
3759 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) |
3760 | << /* Unsigned */ 1; |
3761 | Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, |
3762 | Tok.getLocation()); |
3763 | } |
3764 | return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); |
3765 | } |
3766 | |
3767 | case LOLR_Raw: { |
3768 | // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the |
3769 | // literal is treated as a call of the form |
3770 | // operator "" X ("n") |
3771 | unsigned Length = Literal.getUDSuffixOffset(); |
3772 | QualType StrTy = Context.getConstantArrayType( |
3773 | Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), |
3774 | llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0); |
3775 | Expr *Lit = StringLiteral::Create( |
3776 | Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii, |
3777 | /*Pascal*/false, StrTy, &TokLoc, 1); |
3778 | return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); |
3779 | } |
3780 | |
3781 | case LOLR_Template: { |
3782 | // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator |
3783 | // template), L is treated as a call fo the form |
3784 | // operator "" X <'c1', 'c2', ... 'ck'>() |
3785 | // where n is the source character sequence c1 c2 ... ck. |
3786 | TemplateArgumentListInfo ExplicitArgs; |
3787 | unsigned CharBits = Context.getIntWidth(Context.CharTy); |
3788 | bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); |
3789 | llvm::APSInt Value(CharBits, CharIsUnsigned); |
3790 | for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { |
3791 | Value = TokSpelling[I]; |
3792 | TemplateArgument Arg(Context, Value, Context.CharTy); |
3793 | TemplateArgumentLocInfo ArgInfo; |
3794 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); |
3795 | } |
3796 | return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc, |
3797 | &ExplicitArgs); |
3798 | } |
3799 | case LOLR_StringTemplatePack: |
3800 | llvm_unreachable("unexpected literal operator lookup result")__builtin_unreachable(); |
3801 | } |
3802 | } |
3803 | |
3804 | Expr *Res; |
3805 | |
3806 | if (Literal.isFixedPointLiteral()) { |
3807 | QualType Ty; |
3808 | |
3809 | if (Literal.isAccum) { |
3810 | if (Literal.isHalf) { |
3811 | Ty = Context.ShortAccumTy; |
3812 | } else if (Literal.isLong) { |
3813 | Ty = Context.LongAccumTy; |
3814 | } else { |
3815 | Ty = Context.AccumTy; |
3816 | } |
3817 | } else if (Literal.isFract) { |
3818 | if (Literal.isHalf) { |
3819 | Ty = Context.ShortFractTy; |
3820 | } else if (Literal.isLong) { |
3821 | Ty = Context.LongFractTy; |
3822 | } else { |
3823 | Ty = Context.FractTy; |
3824 | } |
3825 | } |
3826 | |
3827 | if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); |
3828 | |
3829 | bool isSigned = !Literal.isUnsigned; |
3830 | unsigned scale = Context.getFixedPointScale(Ty); |
3831 | unsigned bit_width = Context.getTypeInfo(Ty).Width; |
3832 | |
3833 | llvm::APInt Val(bit_width, 0, isSigned); |
3834 | bool Overflowed = Literal.GetFixedPointValue(Val, scale); |
3835 | bool ValIsZero = Val.isNullValue() && !Overflowed; |
3836 | |
3837 | auto MaxVal = Context.getFixedPointMax(Ty).getValue(); |
3838 | if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero) |
3839 | // Clause 6.4.4 - The value of a constant shall be in the range of |
3840 | // representable values for its type, with exception for constants of a |
3841 | // fract type with a value of exactly 1; such a constant shall denote |
3842 | // the maximal value for the type. |
3843 | --Val; |
3844 | else if (Val.ugt(MaxVal) || Overflowed) |
3845 | Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); |
3846 | |
3847 | Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, |
3848 | Tok.getLocation(), scale); |
3849 | } else if (Literal.isFloatingLiteral()) { |
3850 | QualType Ty; |
3851 | if (Literal.isHalf){ |
3852 | if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts())) |
3853 | Ty = Context.HalfTy; |
3854 | else { |
3855 | Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); |
3856 | return ExprError(); |
3857 | } |
3858 | } else if (Literal.isFloat) |
3859 | Ty = Context.FloatTy; |
3860 | else if (Literal.isLong) |
3861 | Ty = Context.LongDoubleTy; |
3862 | else if (Literal.isFloat16) |
3863 | Ty = Context.Float16Ty; |
3864 | else if (Literal.isFloat128) |
3865 | Ty = Context.Float128Ty; |
3866 | else |
3867 | Ty = Context.DoubleTy; |
3868 | |
3869 | Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); |
3870 | |
3871 | if (Ty == Context.DoubleTy) { |
3872 | if (getLangOpts().SinglePrecisionConstants) { |
3873 | if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) { |
3874 | Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); |
3875 | } |
3876 | } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption( |
3877 | "cl_khr_fp64", getLangOpts())) { |
3878 | // Impose single-precision float type when cl_khr_fp64 is not enabled. |
3879 | Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64) |
3880 | << (getLangOpts().OpenCLVersion >= 300); |
3881 | Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); |
3882 | } |
3883 | } |
3884 | } else if (!Literal.isIntegerLiteral()) { |
3885 | return ExprError(); |
3886 | } else { |
3887 | QualType Ty; |
3888 | |
3889 | // 'long long' is a C99 or C++11 feature. |
3890 | if (!getLangOpts().C99 && Literal.isLongLong) { |
3891 | if (getLangOpts().CPlusPlus) |
3892 | Diag(Tok.getLocation(), |
3893 | getLangOpts().CPlusPlus11 ? |
3894 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); |
3895 | else |
3896 | Diag(Tok.getLocation(), diag::ext_c99_longlong); |
3897 | } |
3898 | |
3899 | // 'z/uz' literals are a C++2b feature. |
3900 | if (Literal.isSizeT) |
3901 | Diag(Tok.getLocation(), getLangOpts().CPlusPlus |
3902 | ? getLangOpts().CPlusPlus2b |
3903 | ? diag::warn_cxx20_compat_size_t_suffix |
3904 | : diag::ext_cxx2b_size_t_suffix |
3905 | : diag::err_cxx2b_size_t_suffix); |
3906 | |
3907 | // Get the value in the widest-possible width. |
3908 | unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth(); |
3909 | llvm::APInt ResultVal(MaxWidth, 0); |
3910 | |
3911 | if (Literal.GetIntegerValue(ResultVal)) { |
3912 | // If this value didn't fit into uintmax_t, error and force to ull. |
3913 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) |
3914 | << /* Unsigned */ 1; |
3915 | Ty = Context.UnsignedLongLongTy; |
3916 | assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&((void)0) |
3917 | "long long is not intmax_t?")((void)0); |
3918 | } else { |
3919 | // If this value fits into a ULL, try to figure out what else it fits into |
3920 | // according to the rules of C99 6.4.4.1p5. |
3921 | |
3922 | // Octal, Hexadecimal, and integers with a U suffix are allowed to |
3923 | // be an unsigned int. |
3924 | bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; |
3925 | |
3926 | // Check from smallest to largest, picking the smallest type we can. |
3927 | unsigned Width = 0; |
3928 | |
3929 | // Microsoft specific integer suffixes are explicitly sized. |
3930 | if (Literal.MicrosoftInteger) { |
3931 | if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { |
3932 | Width = 8; |
3933 | Ty = Context.CharTy; |
3934 | } else { |
3935 | Width = Literal.MicrosoftInteger; |
3936 | Ty = Context.getIntTypeForBitwidth(Width, |
3937 | /*Signed=*/!Literal.isUnsigned); |
3938 | } |
3939 | } |
3940 | |
3941 | // Check C++2b size_t literals. |
3942 | if (Literal.isSizeT) { |
3943 | assert(!Literal.MicrosoftInteger &&((void)0) |
3944 | "size_t literals can't be Microsoft literals")((void)0); |
3945 | unsigned SizeTSize = Context.getTargetInfo().getTypeWidth( |
3946 | Context.getTargetInfo().getSizeType()); |
3947 | |
3948 | // Does it fit in size_t? |
3949 | if (ResultVal.isIntN(SizeTSize)) { |
3950 | // Does it fit in ssize_t? |
3951 | if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0) |
3952 | Ty = Context.getSignedSizeType(); |
3953 | else if (AllowUnsigned) |
3954 | Ty = Context.getSizeType(); |
3955 | Width = SizeTSize; |
3956 | } |
3957 | } |
3958 | |
3959 | if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong && |
3960 | !Literal.isSizeT) { |
3961 | // Are int/unsigned possibilities? |
3962 | unsigned IntSize = Context.getTargetInfo().getIntWidth(); |
3963 | |
3964 | // Does it fit in a unsigned int? |
3965 | if (ResultVal.isIntN(IntSize)) { |
3966 | // Does it fit in a signed int? |
3967 | if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) |
3968 | Ty = Context.IntTy; |
3969 | else if (AllowUnsigned) |
3970 | Ty = Context.UnsignedIntTy; |
3971 | Width = IntSize; |
3972 | } |
3973 | } |
3974 | |
3975 | // Are long/unsigned long possibilities? |
3976 | if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) { |
3977 | unsigned LongSize = Context.getTargetInfo().getLongWidth(); |
3978 | |
3979 | // Does it fit in a unsigned long? |
3980 | if (ResultVal.isIntN(LongSize)) { |
3981 | // Does it fit in a signed long? |
3982 | if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) |
3983 | Ty = Context.LongTy; |
3984 | else if (AllowUnsigned) |
3985 | Ty = Context.UnsignedLongTy; |
3986 | // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 |
3987 | // is compatible. |
3988 | else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { |
3989 | const unsigned LongLongSize = |
3990 | Context.getTargetInfo().getLongLongWidth(); |
3991 | Diag(Tok.getLocation(), |
3992 | getLangOpts().CPlusPlus |
3993 | ? Literal.isLong |
3994 | ? diag::warn_old_implicitly_unsigned_long_cxx |
3995 | : /*C++98 UB*/ diag:: |
3996 | ext_old_implicitly_unsigned_long_cxx |
3997 | : diag::warn_old_implicitly_unsigned_long) |
3998 | << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 |
3999 | : /*will be ill-formed*/ 1); |
4000 | Ty = Context.UnsignedLongTy; |
4001 | } |
4002 | Width = LongSize; |
4003 | } |
4004 | } |
4005 | |
4006 | // Check long long if needed. |
4007 | if (Ty.isNull() && !Literal.isSizeT) { |
4008 | unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); |
4009 | |
4010 | // Does it fit in a unsigned long long? |
4011 | if (ResultVal.isIntN(LongLongSize)) { |
4012 | // Does it fit in a signed long long? |
4013 | // To be compatible with MSVC, hex integer literals ending with the |
4014 | // LL or i64 suffix are always signed in Microsoft mode. |
4015 | if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || |
4016 | (getLangOpts().MSVCCompat && Literal.isLongLong))) |
4017 | Ty = Context.LongLongTy; |
4018 | else if (AllowUnsigned) |
4019 | Ty = Context.UnsignedLongLongTy; |
4020 | Width = LongLongSize; |
4021 | } |
4022 | } |
4023 | |
4024 | // If we still couldn't decide a type, we either have 'size_t' literal |
4025 | // that is out of range, or a decimal literal that does not fit in a |
4026 | // signed long long and has no U suffix. |
4027 | if (Ty.isNull()) { |
4028 | if (Literal.isSizeT) |
4029 | Diag(Tok.getLocation(), diag::err_size_t_literal_too_large) |
4030 | << Literal.isUnsigned; |
4031 | else |
4032 | Diag(Tok.getLocation(), |
4033 | diag::ext_integer_literal_too_large_for_signed); |
4034 | Ty = Context.UnsignedLongLongTy; |
4035 | Width = Context.getTargetInfo().getLongLongWidth(); |
4036 | } |
4037 | |
4038 | if (ResultVal.getBitWidth() != Width) |
4039 | ResultVal = ResultVal.trunc(Width); |
4040 | } |
4041 | Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); |
4042 | } |
4043 | |
4044 | // If this is an imaginary literal, create the ImaginaryLiteral wrapper. |
4045 | if (Literal.isImaginary) { |
4046 | Res = new (Context) ImaginaryLiteral(Res, |
4047 | Context.getComplexType(Res->getType())); |
4048 | |
4049 | Diag(Tok.getLocation(), diag::ext_imaginary_constant); |
4050 | } |
4051 | return Res; |
4052 | } |
4053 | |
4054 | ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { |
4055 | assert(E && "ActOnParenExpr() missing expr")((void)0); |
4056 | QualType ExprTy = E->getType(); |
4057 | if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() && |
4058 | !E->isLValue() && ExprTy->hasFloatingRepresentation()) |
4059 | return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E); |
4060 | return new (Context) ParenExpr(L, R, E); |
4061 | } |
4062 | |
4063 | static bool CheckVecStepTraitOperandType(Sema &S, QualType T, |
4064 | SourceLocation Loc, |
4065 | SourceRange ArgRange) { |
4066 | // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in |
4067 | // scalar or vector data type argument..." |
4068 | // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic |
4069 | // type (C99 6.2.5p18) or void. |
4070 | if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { |
4071 | S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) |
4072 | << T << ArgRange; |
4073 | return true; |
4074 | } |
4075 | |
4076 | assert((T->isVoidType() || !T->isIncompleteType()) &&((void)0) |
4077 | "Scalar types should always be complete")((void)0); |
4078 | return false; |
4079 | } |
4080 | |
4081 | static bool CheckExtensionTraitOperandType(Sema &S, QualType T, |
4082 | SourceLocation Loc, |
4083 | SourceRange ArgRange, |
4084 | UnaryExprOrTypeTrait TraitKind) { |
4085 | // Invalid types must be hard errors for SFINAE in C++. |
4086 | if (S.LangOpts.CPlusPlus) |
4087 | return true; |
4088 | |
4089 | // C99 6.5.3.4p1: |
4090 | if (T->isFunctionType() && |
4091 | (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf || |
4092 | TraitKind == UETT_PreferredAlignOf)) { |
4093 | // sizeof(function)/alignof(function) is allowed as an extension. |
4094 | S.Diag(Loc, diag::ext_sizeof_alignof_function_type) |
4095 | << getTraitSpelling(TraitKind) << ArgRange; |
4096 | return false; |
4097 | } |
4098 | |
4099 | // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where |
4100 | // this is an error (OpenCL v1.1 s6.3.k) |
4101 | if (T->isVoidType()) { |
4102 | unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type |
4103 | : diag::ext_sizeof_alignof_void_type; |
4104 | S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange; |
4105 | return false; |
4106 | } |
4107 | |
4108 | return true; |
4109 | } |
4110 | |
4111 | static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, |
4112 | SourceLocation Loc, |
4113 | SourceRange ArgRange, |
4114 | UnaryExprOrTypeTrait TraitKind) { |
4115 | // Reject sizeof(interface) and sizeof(interface<proto>) if the |
4116 | // runtime doesn't allow it. |
4117 | if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { |
4118 | S.Diag(Loc, diag::err_sizeof_nonfragile_interface) |
4119 | << T << (TraitKind == UETT_SizeOf) |
4120 | << ArgRange; |
4121 | return true; |
4122 | } |
4123 | |
4124 | return false; |
4125 | } |
4126 | |
4127 | /// Check whether E is a pointer from a decayed array type (the decayed |
4128 | /// pointer type is equal to T) and emit a warning if it is. |
4129 | static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, |
4130 | Expr *E) { |
4131 | // Don't warn if the operation changed the type. |
4132 | if (T != E->getType()) |
4133 | return; |
4134 | |
4135 | // Now look for array decays. |
4136 | ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E); |
4137 | if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) |
4138 | return; |
4139 | |
4140 | S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() |
4141 | << ICE->getType() |
4142 | << ICE->getSubExpr()->getType(); |
4143 | } |
4144 | |
4145 | /// Check the constraints on expression operands to unary type expression |
4146 | /// and type traits. |
4147 | /// |
4148 | /// Completes any types necessary and validates the constraints on the operand |
4149 | /// expression. The logic mostly mirrors the type-based overload, but may modify |
4150 | /// the expression as it completes the type for that expression through template |
4151 | /// instantiation, etc. |
4152 | bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, |
4153 | UnaryExprOrTypeTrait ExprKind) { |
4154 | QualType ExprTy = E->getType(); |
4155 | assert(!ExprTy->isReferenceType())((void)0); |
4156 | |
4157 | bool IsUnevaluatedOperand = |
4158 | (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf || |
4159 | ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep); |
4160 | if (IsUnevaluatedOperand) { |
4161 | ExprResult Result = CheckUnevaluatedOperand(E); |
4162 | if (Result.isInvalid()) |
4163 | return true; |
4164 | E = Result.get(); |
4165 | } |
4166 | |
4167 | // The operand for sizeof and alignof is in an unevaluated expression context, |
4168 | // so side effects could result in unintended consequences. |
4169 | // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes |
4170 | // used to build SFINAE gadgets. |
4171 | // FIXME: Should we consider instantiation-dependent operands to 'alignof'? |
4172 | if (IsUnevaluatedOperand && !inTemplateInstantiation() && |
4173 | !E->isInstantiationDependent() && |
4174 | E->HasSideEffects(Context, false)) |
4175 | Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); |
4176 | |
4177 | if (ExprKind == UETT_VecStep) |
4178 | return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), |
4179 | E->getSourceRange()); |
4180 | |
4181 | // Explicitly list some types as extensions. |
4182 | if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), |
4183 | E->getSourceRange(), ExprKind)) |
4184 | return false; |
4185 | |
4186 | // 'alignof' applied to an expression only requires the base element type of |
4187 | // the expression to be complete. 'sizeof' requires the expression's type to |
4188 | // be complete (and will attempt to complete it if it's an array of unknown |
4189 | // bound). |
4190 | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { |
4191 | if (RequireCompleteSizedType( |
4192 | E->getExprLoc(), Context.getBaseElementType(E->getType()), |
4193 | diag::err_sizeof_alignof_incomplete_or_sizeless_type, |
4194 | getTraitSpelling(ExprKind), E->getSourceRange())) |
4195 | return true; |
4196 | } else { |
4197 | if (RequireCompleteSizedExprType( |
4198 | E, diag::err_sizeof_alignof_incomplete_or_sizeless_type, |
4199 | getTraitSpelling(ExprKind), E->getSourceRange())) |
4200 | return true; |
4201 | } |
4202 | |
4203 | // Completing the expression's type may have changed it. |
4204 | ExprTy = E->getType(); |
4205 | assert(!ExprTy->isReferenceType())((void)0); |
4206 | |
4207 | if (ExprTy->isFunctionType()) { |
4208 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) |
4209 | << getTraitSpelling(ExprKind) << E->getSourceRange(); |
4210 | return true; |
4211 | } |
4212 | |
4213 | if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), |
4214 | E->getSourceRange(), ExprKind)) |
4215 | return true; |
4216 | |
4217 | if (ExprKind == UETT_SizeOf) { |
4218 | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { |
4219 | if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { |
4220 | QualType OType = PVD->getOriginalType(); |
4221 | QualType Type = PVD->getType(); |
4222 | if (Type->isPointerType() && OType->isArrayType()) { |
4223 | Diag(E->getExprLoc(), diag::warn_sizeof_array_param) |
4224 | << Type << OType; |
4225 | Diag(PVD->getLocation(), diag::note_declared_at); |
4226 | } |
4227 | } |
4228 | } |
4229 | |
4230 | // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array |
4231 | // decays into a pointer and returns an unintended result. This is most |
4232 | // likely a typo for "sizeof(array) op x". |
4233 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) { |
4234 | warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), |
4235 | BO->getLHS()); |
4236 | warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), |
4237 | BO->getRHS()); |
4238 | } |
4239 | } |
4240 | |
4241 | return false; |
4242 | } |
4243 | |
4244 | /// Check the constraints on operands to unary expression and type |
4245 | /// traits. |
4246 | /// |
4247 | /// This will complete any types necessary, and validate the various constraints |
4248 | /// on those operands. |
4249 | /// |
4250 | /// The UsualUnaryConversions() function is *not* called by this routine. |
4251 | /// C99 6.3.2.1p[2-4] all state: |
4252 | /// Except when it is the operand of the sizeof operator ... |
4253 | /// |
4254 | /// C++ [expr.sizeof]p4 |
4255 | /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer |
4256 | /// standard conversions are not applied to the operand of sizeof. |
4257 | /// |
4258 | /// This policy is followed for all of the unary trait expressions. |
4259 | bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, |
4260 | SourceLocation OpLoc, |
4261 | SourceRange ExprRange, |
4262 | UnaryExprOrTypeTrait ExprKind) { |
4263 | if (ExprType->isDependentType()) |
4264 | return false; |
4265 | |
4266 | // C++ [expr.sizeof]p2: |
4267 | // When applied to a reference or a reference type, the result |
4268 | // is the size of the referenced type. |
4269 | // C++11 [expr.alignof]p3: |
4270 | // When alignof is applied to a reference type, the result |
4271 | // shall be the alignment of the referenced type. |
4272 | if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>()) |
4273 | ExprType = Ref->getPointeeType(); |
4274 | |
4275 | // C11 6.5.3.4/3, C++11 [expr.alignof]p3: |
4276 | // When alignof or _Alignof is applied to an array type, the result |
4277 | // is the alignment of the element type. |
4278 | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || |
4279 | ExprKind == UETT_OpenMPRequiredSimdAlign) |
4280 | ExprType = Context.getBaseElementType(ExprType); |
4281 | |
4282 | if (ExprKind == UETT_VecStep) |
4283 | return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); |
4284 | |
4285 | // Explicitly list some types as extensions. |
4286 | if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, |
4287 | ExprKind)) |
4288 | return false; |
4289 | |
4290 | if (RequireCompleteSizedType( |
4291 | OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type, |
4292 | getTraitSpelling(ExprKind), ExprRange)) |
4293 | return true; |
4294 | |
4295 | if (ExprType->isFunctionType()) { |
4296 | Diag(OpLoc, diag::err_sizeof_alignof_function_type) |
4297 | << getTraitSpelling(ExprKind) << ExprRange; |
4298 | return true; |
4299 | } |
4300 | |
4301 | if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, |
4302 | ExprKind)) |
4303 | return true; |
4304 | |
4305 | return false; |
4306 | } |
4307 | |
4308 | static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) { |
4309 | // Cannot know anything else if the expression is dependent. |
4310 | if (E->isTypeDependent()) |
4311 | return false; |
4312 | |
4313 | if (E->getObjectKind() == OK_BitField) { |
4314 | S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) |
4315 | << 1 << E->getSourceRange(); |
4316 | return true; |
4317 | } |
4318 | |
4319 | ValueDecl *D = nullptr; |
4320 | Expr *Inner = E->IgnoreParens(); |
4321 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) { |
4322 | D = DRE->getDecl(); |
4323 | } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) { |
4324 | D = ME->getMemberDecl(); |
4325 | } |
4326 | |
4327 | // If it's a field, require the containing struct to have a |
4328 | // complete definition so that we can compute the layout. |
4329 | // |
4330 | // This can happen in C++11 onwards, either by naming the member |
4331 | // in a way that is not transformed into a member access expression |
4332 | // (in an unevaluated operand, for instance), or by naming the member |
4333 | // in a trailing-return-type. |
4334 | // |
4335 | // For the record, since __alignof__ on expressions is a GCC |
4336 | // extension, GCC seems to permit this but always gives the |
4337 | // nonsensical answer 0. |
4338 | // |
4339 | // We don't really need the layout here --- we could instead just |
4340 | // directly check for all the appropriate alignment-lowing |
4341 | // attributes --- but that would require duplicating a lot of |
4342 | // logic that just isn't worth duplicating for such a marginal |
4343 | // use-case. |
4344 | if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) { |
4345 | // Fast path this check, since we at least know the record has a |
4346 | // definition if we can find a member of it. |
4347 | if (!FD->getParent()->isCompleteDefinition()) { |
4348 | S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) |
4349 | << E->getSourceRange(); |
4350 | return true; |
4351 | } |
4352 | |
4353 | // Otherwise, if it's a field, and the field doesn't have |
4354 | // reference type, then it must have a complete type (or be a |
4355 | // flexible array member, which we explicitly want to |
4356 | // white-list anyway), which makes the following checks trivial. |
4357 | if (!FD->getType()->isReferenceType()) |
4358 | return false; |
4359 | } |
4360 | |
4361 | return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind); |
4362 | } |
4363 | |
4364 | bool Sema::CheckVecStepExpr(Expr *E) { |
4365 | E = E->IgnoreParens(); |
4366 | |
4367 | // Cannot know anything else if the expression is dependent. |
4368 | if (E->isTypeDependent()) |
4369 | return false; |
4370 | |
4371 | return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); |
4372 | } |
4373 | |
4374 | static void captureVariablyModifiedType(ASTContext &Context, QualType T, |
4375 | CapturingScopeInfo *CSI) { |
4376 | assert(T->isVariablyModifiedType())((void)0); |
4377 | assert(CSI != nullptr)((void)0); |
4378 | |
4379 | // We're going to walk down into the type and look for VLA expressions. |
4380 | do { |
4381 | const Type *Ty = T.getTypePtr(); |
4382 | switch (Ty->getTypeClass()) { |
4383 | #define TYPE(Class, Base) |
4384 | #define ABSTRACT_TYPE(Class, Base) |
4385 | #define NON_CANONICAL_TYPE(Class, Base) |
4386 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
4387 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) |
4388 | #include "clang/AST/TypeNodes.inc" |
4389 | T = QualType(); |
4390 | break; |
4391 | // These types are never variably-modified. |
4392 | case Type::Builtin: |
4393 | case Type::Complex: |
4394 | case Type::Vector: |
4395 | case Type::ExtVector: |
4396 | case Type::ConstantMatrix: |
4397 | case Type::Record: |
4398 | case Type::Enum: |
4399 | case Type::Elaborated: |
4400 | case Type::TemplateSpecialization: |
4401 | case Type::ObjCObject: |
4402 | case Type::ObjCInterface: |
4403 | case Type::ObjCObjectPointer: |
4404 | case Type::ObjCTypeParam: |
4405 | case Type::Pipe: |
4406 | case Type::ExtInt: |
4407 | llvm_unreachable("type class is never variably-modified!")__builtin_unreachable(); |
4408 | case Type::Adjusted: |
4409 | T = cast<AdjustedType>(Ty)->getOriginalType(); |
4410 | break; |
4411 | case Type::Decayed: |
4412 | T = cast<DecayedType>(Ty)->getPointeeType(); |
4413 | break; |
4414 | case Type::Pointer: |
4415 | T = cast<PointerType>(Ty)->getPointeeType(); |
4416 | break; |
4417 | case Type::BlockPointer: |
4418 | T = cast<BlockPointerType>(Ty)->getPointeeType(); |
4419 | break; |
4420 | case Type::LValueReference: |
4421 | case Type::RValueReference: |
4422 | T = cast<ReferenceType>(Ty)->getPointeeType(); |
4423 | break; |
4424 | case Type::MemberPointer: |
4425 | T = cast<MemberPointerType>(Ty)->getPointeeType(); |
4426 | break; |
4427 | case Type::ConstantArray: |
4428 | case Type::IncompleteArray: |
4429 | // Losing element qualification here is fine. |
4430 | T = cast<ArrayType>(Ty)->getElementType(); |
4431 | break; |
4432 | case Type::VariableArray: { |
4433 | // Losing element qualification here is fine. |
4434 | const VariableArrayType *VAT = cast<VariableArrayType>(Ty); |
4435 | |
4436 | // Unknown size indication requires no size computation. |
4437 | // Otherwise, evaluate and record it. |
4438 | auto Size = VAT->getSizeExpr(); |
4439 | if (Size && !CSI->isVLATypeCaptured(VAT) && |
4440 | (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI))) |
4441 | CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType()); |
4442 | |
4443 | T = VAT->getElementType(); |
4444 | break; |
4445 | } |
4446 | case Type::FunctionProto: |
4447 | case Type::FunctionNoProto: |
4448 | T = cast<FunctionType>(Ty)->getReturnType(); |
4449 | break; |
4450 | case Type::Paren: |
4451 | case Type::TypeOf: |
4452 | case Type::UnaryTransform: |
4453 | case Type::Attributed: |
4454 | case Type::SubstTemplateTypeParm: |
4455 | case Type::MacroQualified: |
4456 | // Keep walking after single level desugaring. |
4457 | T = T.getSingleStepDesugaredType(Context); |
4458 | break; |
4459 | case Type::Typedef: |
4460 | T = cast<TypedefType>(Ty)->desugar(); |
4461 | break; |
4462 | case Type::Decltype: |
4463 | T = cast<DecltypeType>(Ty)->desugar(); |
4464 | break; |
4465 | case Type::Auto: |
4466 | case Type::DeducedTemplateSpecialization: |
4467 | T = cast<DeducedType>(Ty)->getDeducedType(); |
4468 | break; |
4469 | case Type::TypeOfExpr: |
4470 | T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType(); |
4471 | break; |
4472 | case Type::Atomic: |
4473 | T = cast<AtomicType>(Ty)->getValueType(); |
4474 | break; |
4475 | } |
4476 | } while (!T.isNull() && T->isVariablyModifiedType()); |
4477 | } |
4478 | |
4479 | /// Build a sizeof or alignof expression given a type operand. |
4480 | ExprResult |
4481 | Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, |
4482 | SourceLocation OpLoc, |
4483 | UnaryExprOrTypeTrait ExprKind, |
4484 | SourceRange R) { |
4485 | if (!TInfo) |
4486 | return ExprError(); |
4487 | |
4488 | QualType T = TInfo->getType(); |
4489 | |
4490 | if (!T->isDependentType() && |
4491 | CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) |
4492 | return ExprError(); |
4493 | |
4494 | if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) { |
4495 | if (auto *TT = T->getAs<TypedefType>()) { |
4496 | for (auto I = FunctionScopes.rbegin(), |
4497 | E = std::prev(FunctionScopes.rend()); |
4498 | I != E; ++I) { |
4499 | auto *CSI = dyn_cast<CapturingScopeInfo>(*I); |
4500 | if (CSI == nullptr) |
4501 | break; |
4502 | DeclContext *DC = nullptr; |
4503 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) |
4504 | DC = LSI->CallOperator; |
4505 | else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) |
4506 | DC = CRSI->TheCapturedDecl; |
4507 | else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) |
4508 | DC = BSI->TheDecl; |
4509 | if (DC) { |
4510 | if (DC->containsDecl(TT->getDecl())) |
4511 | break; |
4512 | captureVariablyModifiedType(Context, T, CSI); |
4513 | } |
4514 | } |
4515 | } |
4516 | } |
4517 | |
4518 | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
4519 | return new (Context) UnaryExprOrTypeTraitExpr( |
4520 | ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); |
4521 | } |
4522 | |
4523 | /// Build a sizeof or alignof expression given an expression |
4524 | /// operand. |
4525 | ExprResult |
4526 | Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, |
4527 | UnaryExprOrTypeTrait ExprKind) { |
4528 | ExprResult PE = CheckPlaceholderExpr(E); |
4529 | if (PE.isInvalid()) |
4530 | return ExprError(); |
4531 | |
4532 | E = PE.get(); |
4533 | |
4534 | // Verify that the operand is valid. |
4535 | bool isInvalid = false; |
4536 | if (E->isTypeDependent()) { |
4537 | // Delay type-checking for type-dependent expressions. |
4538 | } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { |
4539 | isInvalid = CheckAlignOfExpr(*this, E, ExprKind); |
4540 | } else if (ExprKind == UETT_VecStep) { |
4541 | isInvalid = CheckVecStepExpr(E); |
4542 | } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { |
4543 | Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); |
4544 | isInvalid = true; |
4545 | } else if (E->refersToBitField()) { // C99 6.5.3.4p1. |
4546 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; |
4547 | isInvalid = true; |
4548 | } else { |
4549 | isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); |
4550 | } |
4551 | |
4552 | if (isInvalid) |
4553 | return ExprError(); |
4554 | |
4555 | if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { |
4556 | PE = TransformToPotentiallyEvaluated(E); |
4557 | if (PE.isInvalid()) return ExprError(); |
4558 | E = PE.get(); |
4559 | } |
4560 | |
4561 | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
4562 | return new (Context) UnaryExprOrTypeTraitExpr( |
4563 | ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); |
4564 | } |
4565 | |
4566 | /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c |
4567 | /// expr and the same for @c alignof and @c __alignof |
4568 | /// Note that the ArgRange is invalid if isType is false. |
4569 | ExprResult |
4570 | Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, |
4571 | UnaryExprOrTypeTrait ExprKind, bool IsType, |
4572 | void *TyOrEx, SourceRange ArgRange) { |
4573 | // If error parsing type, ignore. |
4574 | if (!TyOrEx) return ExprError(); |
4575 | |
4576 | if (IsType) { |
4577 | TypeSourceInfo *TInfo; |
4578 | (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); |
4579 | return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); |
4580 | } |
4581 | |
4582 | Expr *ArgEx = (Expr *)TyOrEx; |
4583 | ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); |
4584 | return Result; |
4585 | } |
4586 | |
4587 | static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, |
4588 | bool IsReal) { |
4589 | if (V.get()->isTypeDependent()) |
4590 | return S.Context.DependentTy; |
4591 | |
4592 | // _Real and _Imag are only l-values for normal l-values. |
4593 | if (V.get()->getObjectKind() != OK_Ordinary) { |
4594 | V = S.DefaultLvalueConversion(V.get()); |
4595 | if (V.isInvalid()) |
4596 | return QualType(); |
4597 | } |
4598 | |
4599 | // These operators return the element type of a complex type. |
4600 | if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) |
4601 | return CT->getElementType(); |
4602 | |
4603 | // Otherwise they pass through real integer and floating point types here. |
4604 | if (V.get()->getType()->isArithmeticType()) |
4605 | return V.get()->getType(); |
4606 | |
4607 | // Test for placeholders. |
4608 | ExprResult PR = S.CheckPlaceholderExpr(V.get()); |
4609 | if (PR.isInvalid()) return QualType(); |
4610 | if (PR.get() != V.get()) { |
4611 | V = PR; |
4612 | return CheckRealImagOperand(S, V, Loc, IsReal); |
4613 | } |
4614 | |
4615 | // Reject anything else. |
4616 | S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() |
4617 | << (IsReal ? "__real" : "__imag"); |
4618 | return QualType(); |
4619 | } |
4620 | |
4621 | |
4622 | |
4623 | ExprResult |
4624 | Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, |
4625 | tok::TokenKind Kind, Expr *Input) { |
4626 | UnaryOperatorKind Opc; |
4627 | switch (Kind) { |
4628 | default: llvm_unreachable("Unknown unary op!")__builtin_unreachable(); |
4629 | case tok::plusplus: Opc = UO_PostInc; break; |
4630 | case tok::minusminus: Opc = UO_PostDec; break; |
4631 | } |
4632 | |
4633 | // Since this might is a postfix expression, get rid of ParenListExprs. |
4634 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); |
4635 | if (Result.isInvalid()) return ExprError(); |
4636 | Input = Result.get(); |
4637 | |
4638 | return BuildUnaryOp(S, OpLoc, Opc, Input); |
4639 | } |
4640 | |
4641 | /// Diagnose if arithmetic on the given ObjC pointer is illegal. |
4642 | /// |
4643 | /// \return true on error |
4644 | static bool checkArithmeticOnObjCPointer(Sema &S, |
4645 | SourceLocation opLoc, |
4646 | Expr *op) { |
4647 | assert(op->getType()->isObjCObjectPointerType())((void)0); |
4648 | if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && |
4649 | !S.LangOpts.ObjCSubscriptingLegacyRuntime) |
4650 | return false; |
4651 | |
4652 | S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) |
4653 | << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType() |
4654 | << op->getSourceRange(); |
4655 | return true; |
4656 | } |
4657 | |
4658 | static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { |
4659 | auto *BaseNoParens = Base->IgnoreParens(); |
4660 | if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens)) |
4661 | return MSProp->getPropertyDecl()->getType()->isArrayType(); |
4662 | return isa<MSPropertySubscriptExpr>(BaseNoParens); |
4663 | } |
4664 | |
4665 | ExprResult |
4666 | Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc, |
4667 | Expr *idx, SourceLocation rbLoc) { |
4668 | if (base && !base->getType().isNull() && |
4669 | base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection)) |
4670 | return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(), |
4671 | SourceLocation(), /*Length*/ nullptr, |
4672 | /*Stride=*/nullptr, rbLoc); |
4673 | |
4674 | // Since this might be a postfix expression, get rid of ParenListExprs. |
4675 | if (isa<ParenListExpr>(base)) { |
4676 | ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); |
4677 | if (result.isInvalid()) return ExprError(); |
4678 | base = result.get(); |
4679 | } |
4680 | |
4681 | // Check if base and idx form a MatrixSubscriptExpr. |
4682 | // |
4683 | // Helper to check for comma expressions, which are not allowed as indices for |
4684 | // matrix subscript expressions. |
4685 | auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) { |
4686 | if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) { |
4687 | Diag(E->getExprLoc(), diag::err_matrix_subscript_comma) |
4688 | << SourceRange(base->getBeginLoc(), rbLoc); |
4689 | return true; |
4690 | } |
4691 | return false; |
4692 | }; |
4693 | // The matrix subscript operator ([][])is considered a single operator. |
4694 | // Separating the index expressions by parenthesis is not allowed. |
4695 | if (base->getType()->isSpecificPlaceholderType( |
4696 | BuiltinType::IncompleteMatrixIdx) && |
4697 | !isa<MatrixSubscriptExpr>(base)) { |
4698 | Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index) |
4699 | << SourceRange(base->getBeginLoc(), rbLoc); |
4700 | return ExprError(); |
4701 | } |
4702 | // If the base is a MatrixSubscriptExpr, try to create a new |
4703 | // MatrixSubscriptExpr. |
4704 | auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base); |
4705 | if (matSubscriptE) { |
4706 | if (CheckAndReportCommaError(idx)) |
4707 | return ExprError(); |
4708 | |
4709 | assert(matSubscriptE->isIncomplete() &&((void)0) |
4710 | "base has to be an incomplete matrix subscript")((void)0); |
4711 | return CreateBuiltinMatrixSubscriptExpr( |
4712 | matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc); |
4713 | } |
4714 | |
4715 | // Handle any non-overload placeholder types in the base and index |
4716 | // expressions. We can't handle overloads here because the other |
4717 | // operand might be an overloadable type, in which case the overload |
4718 | // resolution for the operator overload should get the first crack |
4719 | // at the overload. |
4720 | bool IsMSPropertySubscript = false; |
4721 | if (base->getType()->isNonOverloadPlaceholderType()) { |
4722 | IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); |
4723 | if (!IsMSPropertySubscript) { |
4724 | ExprResult result = CheckPlaceholderExpr(base); |
4725 | if (result.isInvalid()) |
4726 | return ExprError(); |
4727 | base = result.get(); |
4728 | } |
4729 | } |
4730 | |
4731 | // If the base is a matrix type, try to create a new MatrixSubscriptExpr. |
4732 | if (base->getType()->isMatrixType()) { |
4733 | if (CheckAndReportCommaError(idx)) |
4734 | return ExprError(); |
4735 | |
4736 | return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc); |
4737 | } |
4738 | |
4739 | // A comma-expression as the index is deprecated in C++2a onwards. |
4740 | if (getLangOpts().CPlusPlus20 && |
4741 | ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) || |
4742 | (isa<CXXOperatorCallExpr>(idx) && |
4743 | cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) { |
4744 | Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript) |
4745 | << SourceRange(base->getBeginLoc(), rbLoc); |
4746 | } |
4747 | |
4748 | if (idx->getType()->isNonOverloadPlaceholderType()) { |
4749 | ExprResult result = CheckPlaceholderExpr(idx); |
4750 | if (result.isInvalid()) return ExprError(); |
4751 | idx = result.get(); |
4752 | } |
4753 | |
4754 | // Build an unanalyzed expression if either operand is type-dependent. |
4755 | if (getLangOpts().CPlusPlus && |
4756 | (base->isTypeDependent() || idx->isTypeDependent())) { |
4757 | return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy, |
4758 | VK_LValue, OK_Ordinary, rbLoc); |
4759 | } |
4760 | |
4761 | // MSDN, property (C++) |
4762 | // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx |
4763 | // This attribute can also be used in the declaration of an empty array in a |
4764 | // class or structure definition. For example: |
4765 | // __declspec(property(get=GetX, put=PutX)) int x[]; |
4766 | // The above statement indicates that x[] can be used with one or more array |
4767 | // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), |
4768 | // and p->x[a][b] = i will be turned into p->PutX(a, b, i); |
4769 | if (IsMSPropertySubscript) { |
4770 | // Build MS property subscript expression if base is MS property reference |
4771 | // or MS property subscript. |
4772 | return new (Context) MSPropertySubscriptExpr( |
4773 | base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc); |
4774 | } |
4775 | |
4776 | // Use C++ overloaded-operator rules if either operand has record |
4777 | // type. The spec says to do this if either type is *overloadable*, |
4778 | // but enum types can't declare subscript operators or conversion |
4779 | // operators, so there's nothing interesting for overload resolution |
4780 | // to do if there aren't any record types involved. |
4781 | // |
4782 | // ObjC pointers have their own subscripting logic that is not tied |
4783 | // to overload resolution and so should not take this path. |
4784 | if (getLangOpts().CPlusPlus && |
4785 | (base->getType()->isRecordType() || |
4786 | (!base->getType()->isObjCObjectPointerType() && |
4787 | idx->getType()->isRecordType()))) { |
4788 | return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx); |
4789 | } |
4790 | |
4791 | ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc); |
4792 | |
4793 | if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get())) |
4794 | CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get())); |
4795 | |
4796 | return Res; |
4797 | } |
4798 | |
4799 | ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) { |
4800 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); |
4801 | InitializationKind Kind = |
4802 | InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation()); |
4803 | InitializationSequence InitSeq(*this, Entity, Kind, E); |
4804 | return InitSeq.Perform(*this, Entity, Kind, E); |
4805 | } |
4806 | |
4807 | ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, |
4808 | Expr *ColumnIdx, |
4809 | SourceLocation RBLoc) { |
4810 | ExprResult BaseR = CheckPlaceholderExpr(Base); |
4811 | if (BaseR.isInvalid()) |
4812 | return BaseR; |
4813 | Base = BaseR.get(); |
4814 | |
4815 | ExprResult RowR = CheckPlaceholderExpr(RowIdx); |
4816 | if (RowR.isInvalid()) |
4817 | return RowR; |
4818 | RowIdx = RowR.get(); |
4819 | |
4820 | if (!ColumnIdx) |
4821 | return new (Context) MatrixSubscriptExpr( |
4822 | Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc); |
4823 | |
4824 | // Build an unanalyzed expression if any of the operands is type-dependent. |
4825 | if (Base->isTypeDependent() || RowIdx->isTypeDependent() || |
4826 | ColumnIdx->isTypeDependent()) |
4827 | return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, |
4828 | Context.DependentTy, RBLoc); |
4829 | |
4830 | ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx); |
4831 | if (ColumnR.isInvalid()) |
4832 | return ColumnR; |
4833 | ColumnIdx = ColumnR.get(); |
4834 | |
4835 | // Check that IndexExpr is an integer expression. If it is a constant |
4836 | // expression, check that it is less than Dim (= the number of elements in the |
4837 | // corresponding dimension). |
4838 | auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim, |
4839 | bool IsColumnIdx) -> Expr * { |
4840 | if (!IndexExpr->getType()->isIntegerType() && |
4841 | !IndexExpr->isTypeDependent()) { |
4842 | Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer) |
4843 | << IsColumnIdx; |
4844 | return nullptr; |
4845 | } |
4846 | |
4847 | if (Optional<llvm::APSInt> Idx = |
4848 | IndexExpr->getIntegerConstantExpr(Context)) { |
4849 | if ((*Idx < 0 || *Idx >= Dim)) { |
4850 | Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range) |
4851 | << IsColumnIdx << Dim; |
4852 | return nullptr; |
4853 | } |
4854 | } |
4855 | |
4856 | ExprResult ConvExpr = |
4857 | tryConvertExprToType(IndexExpr, Context.getSizeType()); |
4858 | assert(!ConvExpr.isInvalid() &&((void)0) |
4859 | "should be able to convert any integer type to size type")((void)0); |
4860 | return ConvExpr.get(); |
4861 | }; |
4862 | |
4863 | auto *MTy = Base->getType()->getAs<ConstantMatrixType>(); |
4864 | RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false); |
4865 | ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true); |
4866 | if (!RowIdx || !ColumnIdx) |
4867 | return ExprError(); |
4868 | |
4869 | return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, |
4870 | MTy->getElementType(), RBLoc); |
4871 | } |
4872 | |
4873 | void Sema::CheckAddressOfNoDeref(const Expr *E) { |
4874 | ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); |
4875 | const Expr *StrippedExpr = E->IgnoreParenImpCasts(); |
4876 | |
4877 | // For expressions like `&(*s).b`, the base is recorded and what should be |
4878 | // checked. |
4879 | const MemberExpr *Member = nullptr; |
4880 | while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow()) |
4881 | StrippedExpr = Member->getBase()->IgnoreParenImpCasts(); |
4882 | |
4883 | LastRecord.PossibleDerefs.erase(StrippedExpr); |
4884 | } |
4885 | |
4886 | void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) { |
4887 | if (isUnevaluatedContext()) |
4888 | return; |
4889 | |
4890 | QualType ResultTy = E->getType(); |
4891 | ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); |
4892 | |
4893 | // Bail if the element is an array since it is not memory access. |
4894 | if (isa<ArrayType>(ResultTy)) |
4895 | return; |
4896 | |
4897 | if (ResultTy->hasAttr(attr::NoDeref)) { |
4898 | LastRecord.PossibleDerefs.insert(E); |
4899 | return; |
4900 | } |
4901 | |
4902 | // Check if the base type is a pointer to a member access of a struct |
4903 | // marked with noderef. |
4904 | const Expr *Base = E->getBase(); |
4905 | QualType BaseTy = Base->getType(); |
4906 | if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy))) |
4907 | // Not a pointer access |
4908 | return; |
4909 | |
4910 | const MemberExpr *Member = nullptr; |
4911 | while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) && |
4912 | Member->isArrow()) |
4913 | Base = Member->getBase(); |
4914 | |
4915 | if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) { |
4916 | if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) |
4917 | LastRecord.PossibleDerefs.insert(E); |
4918 | } |
4919 | } |
4920 | |
4921 | ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, |
4922 | Expr *LowerBound, |
4923 | SourceLocation ColonLocFirst, |
4924 | SourceLocation ColonLocSecond, |
4925 | Expr *Length, Expr *Stride, |
4926 | SourceLocation RBLoc) { |
4927 | if (Base->getType()->isPlaceholderType() && |
4928 | !Base->getType()->isSpecificPlaceholderType( |
4929 | BuiltinType::OMPArraySection)) { |
4930 | ExprResult Result = CheckPlaceholderExpr(Base); |
4931 | if (Result.isInvalid()) |
4932 | return ExprError(); |
4933 | Base = Result.get(); |
4934 | } |
4935 | if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { |
4936 | ExprResult Result = CheckPlaceholderExpr(LowerBound); |
4937 | if (Result.isInvalid()) |
4938 | return ExprError(); |
4939 | Result = DefaultLvalueConversion(Result.get()); |
4940 | if (Result.isInvalid()) |
4941 | return ExprError(); |
4942 | LowerBound = Result.get(); |
4943 | } |
4944 | if (Length && Length->getType()->isNonOverloadPlaceholderType()) { |
4945 | ExprResult Result = CheckPlaceholderExpr(Length); |
4946 | if (Result.isInvalid()) |
4947 | return ExprError(); |
4948 | Result = DefaultLvalueConversion(Result.get()); |
4949 | if (Result.isInvalid()) |
4950 | return ExprError(); |
4951 | Length = Result.get(); |
4952 | } |
4953 | if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) { |
4954 | ExprResult Result = CheckPlaceholderExpr(Stride); |
4955 | if (Result.isInvalid()) |
4956 | return ExprError(); |
4957 | Result = DefaultLvalueConversion(Result.get()); |
4958 | if (Result.isInvalid()) |
4959 | return ExprError(); |
4960 | Stride = Result.get(); |
4961 | } |
4962 | |
4963 | // Build an unanalyzed expression if either operand is type-dependent. |
4964 | if (Base->isTypeDependent() || |
4965 | (LowerBound && |
4966 | (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || |
4967 | (Length && (Length->isTypeDependent() || Length->isValueDependent())) || |
4968 | (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) { |
4969 | return new (Context) OMPArraySectionExpr( |
4970 | Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue, |
4971 | OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); |
4972 | } |
4973 | |
4974 | // Perform default conversions. |
4975 | QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); |
4976 | QualType ResultTy; |
4977 | if (OriginalTy->isAnyPointerType()) { |
4978 | ResultTy = OriginalTy->getPointeeType(); |
4979 | } else if (OriginalTy->isArrayType()) { |
4980 | ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); |
4981 | } else { |
4982 | return ExprError( |
4983 | Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) |
4984 | << Base->getSourceRange()); |
4985 | } |
4986 | // C99 6.5.2.1p1 |
4987 | if (LowerBound) { |
4988 | auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), |
4989 | LowerBound); |
4990 | if (Res.isInvalid()) |
4991 | return ExprError(Diag(LowerBound->getExprLoc(), |
4992 | diag::err_omp_typecheck_section_not_integer) |
4993 | << 0 << LowerBound->getSourceRange()); |
4994 | LowerBound = Res.get(); |
4995 | |
4996 | if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
4997 | LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
4998 | Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) |
4999 | << 0 << LowerBound->getSourceRange(); |
5000 | } |
5001 | if (Length) { |
5002 | auto Res = |
5003 | PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); |
5004 | if (Res.isInvalid()) |
5005 | return ExprError(Diag(Length->getExprLoc(), |
5006 | diag::err_omp_typecheck_section_not_integer) |
5007 | << 1 << Length->getSourceRange()); |
5008 | Length = Res.get(); |
5009 | |
5010 | if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
5011 | Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
5012 | Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) |
5013 | << 1 << Length->getSourceRange(); |
5014 | } |
5015 | if (Stride) { |
5016 | ExprResult Res = |
5017 | PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride); |
5018 | if (Res.isInvalid()) |
5019 | return ExprError(Diag(Stride->getExprLoc(), |
5020 | diag::err_omp_typecheck_section_not_integer) |
5021 | << 1 << Stride->getSourceRange()); |
5022 | Stride = Res.get(); |
5023 | |
5024 | if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
5025 | Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
5026 | Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char) |
5027 | << 1 << Stride->getSourceRange(); |
5028 | } |
5029 | |
5030 | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, |
5031 | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object |
5032 | // type. Note that functions are not objects, and that (in C99 parlance) |
5033 | // incomplete types are not object types. |
5034 | if (ResultTy->isFunctionType()) { |
5035 | Diag(Base->getExprLoc(), diag::err_omp_section_function_type) |
5036 | << ResultTy << Base->getSourceRange(); |
5037 | return ExprError(); |
5038 | } |
5039 | |
5040 | if (RequireCompleteType(Base->getExprLoc(), ResultTy, |
5041 | diag::err_omp_section_incomplete_type, Base)) |
5042 | return ExprError(); |
5043 | |
5044 | if (LowerBound && !OriginalTy->isAnyPointerType()) { |
5045 | Expr::EvalResult Result; |
5046 | if (LowerBound->EvaluateAsInt(Result, Context)) { |
5047 | // OpenMP 5.0, [2.1.5 Array Sections] |
5048 | // The array section must be a subset of the original array. |
5049 | llvm::APSInt LowerBoundValue = Result.Val.getInt(); |
5050 | if (LowerBoundValue.isNegative()) { |
5051 | Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) |
5052 | << LowerBound->getSourceRange(); |
5053 | return ExprError(); |
5054 | } |
5055 | } |
5056 | } |
5057 | |
5058 | if (Length) { |
5059 | Expr::EvalResult Result; |
5060 | if (Length->EvaluateAsInt(Result, Context)) { |
5061 | // OpenMP 5.0, [2.1.5 Array Sections] |
5062 | // The length must evaluate to non-negative integers. |
5063 | llvm::APSInt LengthValue = Result.Val.getInt(); |
5064 | if (LengthValue.isNegative()) { |
5065 | Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) |
5066 | << toString(LengthValue, /*Radix=*/10, /*Signed=*/true) |
5067 | << Length->getSourceRange(); |
5068 | return ExprError(); |
5069 | } |
5070 | } |
5071 | } else if (ColonLocFirst.isValid() && |
5072 | (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && |
5073 | !OriginalTy->isVariableArrayType()))) { |
5074 | // OpenMP 5.0, [2.1.5 Array Sections] |
5075 | // When the size of the array dimension is not known, the length must be |
5076 | // specified explicitly. |
5077 | Diag(ColonLocFirst, diag::err_omp_section_length_undefined) |
5078 | << (!OriginalTy.isNull() && OriginalTy->isArrayType()); |
5079 | return ExprError(); |
5080 | } |
5081 | |
5082 | if (Stride) { |
5083 | Expr::EvalResult Result; |
5084 | if (Stride->EvaluateAsInt(Result, Context)) { |
5085 | // OpenMP 5.0, [2.1.5 Array Sections] |
5086 | // The stride must evaluate to a positive integer. |
5087 | llvm::APSInt StrideValue = Result.Val.getInt(); |
5088 | if (!StrideValue.isStrictlyPositive()) { |
5089 | Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive) |
5090 | << toString(StrideValue, /*Radix=*/10, /*Signed=*/true) |
5091 | << Stride->getSourceRange(); |
5092 | return ExprError(); |
5093 | } |
5094 | } |
5095 | } |
5096 | |
5097 | if (!Base->getType()->isSpecificPlaceholderType( |
5098 | BuiltinType::OMPArraySection)) { |
5099 | ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); |
5100 | if (Result.isInvalid()) |
5101 | return ExprError(); |
5102 | Base = Result.get(); |
5103 | } |
5104 | return new (Context) OMPArraySectionExpr( |
5105 | Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue, |
5106 | OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); |
5107 | } |
5108 | |
5109 | ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, |
5110 | SourceLocation RParenLoc, |
5111 | ArrayRef<Expr *> Dims, |
5112 | ArrayRef<SourceRange> Brackets) { |
5113 | if (Base->getType()->isPlaceholderType()) { |
5114 | ExprResult Result = CheckPlaceholderExpr(Base); |
5115 | if (Result.isInvalid()) |
5116 | return ExprError(); |
5117 | Result = DefaultLvalueConversion(Result.get()); |
5118 | if (Result.isInvalid()) |
5119 | return ExprError(); |
5120 | Base = Result.get(); |
5121 | } |
5122 | QualType BaseTy = Base->getType(); |
5123 | // Delay analysis of the types/expressions if instantiation/specialization is |
5124 | // required. |
5125 | if (!BaseTy->isPointerType() && Base->isTypeDependent()) |
5126 | return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base, |
5127 | LParenLoc, RParenLoc, Dims, Brackets); |
5128 | if (!BaseTy->isPointerType() || |
5129 | (!Base->isTypeDependent() && |
5130 | BaseTy->getPointeeType()->isIncompleteType())) |
5131 | return ExprError(Diag(Base->getExprLoc(), |
5132 | diag::err_omp_non_pointer_type_array_shaping_base) |
5133 | << Base->getSourceRange()); |
5134 | |
5135 | SmallVector<Expr *, 4> NewDims; |
5136 | bool ErrorFound = false; |
5137 | for (Expr *Dim : Dims) { |
5138 | if (Dim->getType()->isPlaceholderType()) { |
5139 | ExprResult Result = CheckPlaceholderExpr(Dim); |
5140 | if (Result.isInvalid()) { |
5141 | ErrorFound = true; |
5142 | continue; |
5143 | } |
5144 | Result = DefaultLvalueConversion(Result.get()); |
5145 | if (Result.isInvalid()) { |
5146 | ErrorFound = true; |
5147 | continue; |
5148 | } |
5149 | Dim = Result.get(); |
5150 | } |
5151 | if (!Dim->isTypeDependent()) { |
5152 | ExprResult Result = |
5153 | PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim); |
5154 | if (Result.isInvalid()) { |
5155 | ErrorFound = true; |
5156 | Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer) |
5157 | << Dim->getSourceRange(); |
5158 | continue; |
5159 | } |
5160 | Dim = Result.get(); |
5161 | Expr::EvalResult EvResult; |
5162 | if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) { |
5163 | // OpenMP 5.0, [2.1.4 Array Shaping] |
5164 | // Each si is an integral type expression that must evaluate to a |
5165 | // positive integer. |
5166 | llvm::APSInt Value = EvResult.Val.getInt(); |
5167 | if (!Value.isStrictlyPositive()) { |
5168 | Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive) |
5169 | << toString(Value, /*Radix=*/10, /*Signed=*/true) |
5170 | << Dim->getSourceRange(); |
5171 | ErrorFound = true; |
5172 | continue; |
5173 | } |
5174 | } |
5175 | } |
5176 | NewDims.push_back(Dim); |
5177 | } |
5178 | if (ErrorFound) |
5179 | return ExprError(); |
5180 | return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base, |
5181 | LParenLoc, RParenLoc, NewDims, Brackets); |
5182 | } |
5183 | |
5184 | ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, |
5185 | SourceLocation LLoc, SourceLocation RLoc, |
5186 | ArrayRef<OMPIteratorData> Data) { |
5187 | SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID; |
5188 | bool IsCorrect = true; |
5189 | for (const OMPIteratorData &D : Data) { |
5190 | TypeSourceInfo *TInfo = nullptr; |
5191 | SourceLocation StartLoc; |
5192 | QualType DeclTy; |
5193 | if (!D.Type.getAsOpaquePtr()) { |
5194 | // OpenMP 5.0, 2.1.6 Iterators |
5195 | // In an iterator-specifier, if the iterator-type is not specified then |
5196 | // the type of that iterator is of int type. |
5197 | DeclTy = Context.IntTy; |
5198 | StartLoc = D.DeclIdentLoc; |
5199 | } else { |
5200 | DeclTy = GetTypeFromParser(D.Type, &TInfo); |
5201 | StartLoc = TInfo->getTypeLoc().getBeginLoc(); |
5202 | } |
5203 | |
5204 | bool IsDeclTyDependent = DeclTy->isDependentType() || |
5205 | DeclTy->containsUnexpandedParameterPack() || |
5206 | DeclTy->isInstantiationDependentType(); |
5207 | if (!IsDeclTyDependent) { |
5208 | if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) { |
5209 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ |
5210 | // The iterator-type must be an integral or pointer type. |
5211 | Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) |
5212 | << DeclTy; |
5213 | IsCorrect = false; |
5214 | continue; |
5215 | } |
5216 | if (DeclTy.isConstant(Context)) { |
5217 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ |
5218 | // The iterator-type must not be const qualified. |
5219 | Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) |
5220 | << DeclTy; |
5221 | IsCorrect = false; |
5222 | continue; |
5223 | } |
5224 | } |
5225 | |
5226 | // Iterator declaration. |
5227 | assert(D.DeclIdent && "Identifier expected.")((void)0); |
5228 | // Always try to create iterator declarator to avoid extra error messages |
5229 | // about unknown declarations use. |
5230 | auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc, |
5231 | D.DeclIdent, DeclTy, TInfo, SC_None); |
5232 | VD->setImplicit(); |
5233 | if (S) { |
5234 | // Check for conflicting previous declaration. |
5235 | DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc); |
5236 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
5237 | ForVisibleRedeclaration); |
5238 | Previous.suppressDiagnostics(); |
5239 | LookupName(Previous, S); |
5240 | |
5241 | FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, |
5242 | /*AllowInlineNamespace=*/false); |
5243 | if (!Previous.empty()) { |
5244 | NamedDecl *Old = Previous.getRepresentativeDecl(); |
5245 | Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName(); |
5246 | Diag(Old->getLocation(), diag::note_previous_definition); |
5247 | } else { |
5248 | PushOnScopeChains(VD, S); |
5249 | } |
5250 | } else { |
5251 | CurContext->addDecl(VD); |
5252 | } |
5253 | Expr *Begin = D.Range.Begin; |
5254 | if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) { |
5255 | ExprResult BeginRes = |
5256 | PerformImplicitConversion(Begin, DeclTy, AA_Converting); |
5257 | Begin = BeginRes.get(); |
5258 | } |
5259 | Expr *End = D.Range.End; |
5260 | if (!IsDeclTyDependent && End && !End->isTypeDependent()) { |
5261 | ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting); |
5262 | End = EndRes.get(); |
5263 | } |
5264 | Expr *Step = D.Range.Step; |
5265 | if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) { |
5266 | if (!Step->getType()->isIntegralType(Context)) { |
5267 | Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral) |
5268 | << Step << Step->getSourceRange(); |
5269 | IsCorrect = false; |
5270 | continue; |
5271 | } |
5272 | Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context); |
5273 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions |
5274 | // If the step expression of a range-specification equals zero, the |
5275 | // behavior is unspecified. |
5276 | if (Result && Result->isNullValue()) { |
5277 | Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero) |
5278 | << Step << Step->getSourceRange(); |
5279 | IsCorrect = false; |
5280 | continue; |
5281 | } |
5282 | } |
5283 | if (!Begin || !End || !IsCorrect) { |
5284 | IsCorrect = false; |
5285 | continue; |
5286 | } |
5287 | OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back(); |
5288 | IDElem.IteratorDecl = VD; |
5289 | IDElem.AssignmentLoc = D.AssignLoc; |
5290 | IDElem.Range.Begin = Begin; |
5291 | IDElem.Range.End = End; |
5292 | IDElem.Range.Step = Step; |
5293 | IDElem.ColonLoc = D.ColonLoc; |
5294 | IDElem.SecondColonLoc = D.SecColonLoc; |
5295 | } |
5296 | if (!IsCorrect) { |
5297 | // Invalidate all created iterator declarations if error is found. |
5298 | for (const OMPIteratorExpr::IteratorDefinition &D : ID) { |
5299 | if (Decl *ID = D.IteratorDecl) |
5300 | ID->setInvalidDecl(); |
5301 | } |
5302 | return ExprError(); |
5303 | } |
5304 | SmallVector<OMPIteratorHelperData, 4> Helpers; |
5305 | if (!CurContext->isDependentContext()) { |
5306 | // Build number of ityeration for each iteration range. |
5307 | // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) : |
5308 | // ((Begini-Stepi-1-Endi) / -Stepi); |
5309 | for (OMPIteratorExpr::IteratorDefinition &D : ID) { |
5310 | // (Endi - Begini) |
5311 | ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End, |
5312 | D.Range.Begin); |
5313 | if(!Res.isUsable()) { |
5314 | IsCorrect = false; |
5315 | continue; |
5316 | } |
5317 | ExprResult St, St1; |
5318 | if (D.Range.Step) { |
5319 | St = D.Range.Step; |
5320 | // (Endi - Begini) + Stepi |
5321 | Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get()); |
5322 | if (!Res.isUsable()) { |
5323 | IsCorrect = false; |
5324 | continue; |
5325 | } |
5326 | // (Endi - Begini) + Stepi - 1 |
5327 | Res = |
5328 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(), |
5329 | ActOnIntegerConstant(D.AssignmentLoc, 1).get()); |
5330 | if (!Res.isUsable()) { |
5331 | IsCorrect = false; |
5332 | continue; |
5333 | } |
5334 | // ((Endi - Begini) + Stepi - 1) / Stepi |
5335 | Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get()); |
5336 | if (!Res.isUsable()) { |
5337 | IsCorrect = false; |
5338 | continue; |
5339 | } |
5340 | St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step); |
5341 | // (Begini - Endi) |
5342 | ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, |
5343 | D.Range.Begin, D.Range.End); |
5344 | if (!Res1.isUsable()) { |
5345 | IsCorrect = false; |
5346 | continue; |
5347 | } |
5348 | // (Begini - Endi) - Stepi |
5349 | Res1 = |
5350 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get()); |
5351 | if (!Res1.isUsable()) { |
5352 | IsCorrect = false; |
5353 | continue; |
5354 | } |
5355 | // (Begini - Endi) - Stepi - 1 |
5356 | Res1 = |
5357 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(), |
5358 | ActOnIntegerConstant(D.AssignmentLoc, 1).get()); |
5359 | if (!Res1.isUsable()) { |
5360 | IsCorrect = false; |
5361 | continue; |
5362 | } |
5363 | // ((Begini - Endi) - Stepi - 1) / (-Stepi) |
5364 | Res1 = |
5365 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get()); |
5366 | if (!Res1.isUsable()) { |
5367 | IsCorrect = false; |
5368 | continue; |
5369 | } |
5370 | // Stepi > 0. |
5371 | ExprResult CmpRes = |
5372 | CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step, |
5373 | ActOnIntegerConstant(D.AssignmentLoc, 0).get()); |
5374 | if (!CmpRes.isUsable()) { |
5375 | IsCorrect = false; |
5376 | continue; |
5377 | } |
5378 | Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(), |
5379 | Res.get(), Res1.get()); |
5380 | if (!Res.isUsable()) { |
5381 | IsCorrect = false; |
5382 | continue; |
5383 | } |
5384 | } |
5385 | Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false); |
5386 | if (!Res.isUsable()) { |
5387 | IsCorrect = false; |
5388 | continue; |
5389 | } |
5390 | |
5391 | // Build counter update. |
5392 | // Build counter. |
5393 | auto *CounterVD = |
5394 | VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(), |
5395 | D.IteratorDecl->getBeginLoc(), nullptr, |
5396 | Res.get()->getType(), nullptr, SC_None); |
5397 | CounterVD->setImplicit(); |
5398 | ExprResult RefRes = |
5399 | BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue, |
5400 | D.IteratorDecl->getBeginLoc()); |
5401 | // Build counter update. |
5402 | // I = Begini + counter * Stepi; |
5403 | ExprResult UpdateRes; |
5404 | if (D.Range.Step) { |
5405 | UpdateRes = CreateBuiltinBinOp( |
5406 | D.AssignmentLoc, BO_Mul, |
5407 | DefaultLvalueConversion(RefRes.get()).get(), St.get()); |
5408 | } else { |
5409 | UpdateRes = DefaultLvalueConversion(RefRes.get()); |
5410 | } |
5411 | if (!UpdateRes.isUsable()) { |
5412 | IsCorrect = false; |
5413 | continue; |
5414 | } |
5415 | UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin, |
5416 | UpdateRes.get()); |
5417 | if (!UpdateRes.isUsable()) { |
5418 | IsCorrect = false; |
5419 | continue; |
5420 | } |
5421 | ExprResult VDRes = |
5422 | BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl), |
5423 | cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue, |
5424 | D.IteratorDecl->getBeginLoc()); |
5425 | UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(), |
5426 | UpdateRes.get()); |
5427 | if (!UpdateRes.isUsable()) { |
5428 | IsCorrect = false; |
5429 | continue; |
5430 | } |
5431 | UpdateRes = |
5432 | ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true); |
5433 | if (!UpdateRes.isUsable()) { |
5434 | IsCorrect = false; |
5435 | continue; |
5436 | } |
5437 | ExprResult CounterUpdateRes = |
5438 | CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get()); |
5439 | if (!CounterUpdateRes.isUsable()) { |
5440 | IsCorrect = false; |
5441 | continue; |
5442 | } |
5443 | CounterUpdateRes = |
5444 | ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true); |
5445 | if (!CounterUpdateRes.isUsable()) { |
5446 | IsCorrect = false; |
5447 | continue; |
5448 | } |
5449 | OMPIteratorHelperData &HD = Helpers.emplace_back(); |
5450 | HD.CounterVD = CounterVD; |
5451 | HD.Upper = Res.get(); |
5452 | HD.Update = UpdateRes.get(); |
5453 | HD.CounterUpdate = CounterUpdateRes.get(); |
5454 | } |
5455 | } else { |
5456 | Helpers.assign(ID.size(), {}); |
5457 | } |
5458 | if (!IsCorrect) { |
5459 | // Invalidate all created iterator declarations if error is found. |
5460 | for (const OMPIteratorExpr::IteratorDefinition &D : ID) { |
5461 | if (Decl *ID = D.IteratorDecl) |
5462 | ID->setInvalidDecl(); |
5463 | } |
5464 | return ExprError(); |
5465 | } |
5466 | return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc, |
5467 | LLoc, RLoc, ID, Helpers); |
5468 | } |
5469 | |
5470 | ExprResult |
5471 | Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, |
5472 | Expr *Idx, SourceLocation RLoc) { |
5473 | Expr *LHSExp = Base; |
5474 | Expr *RHSExp = Idx; |
5475 | |
5476 | ExprValueKind VK = VK_LValue; |
5477 | ExprObjectKind OK = OK_Ordinary; |
5478 | |
5479 | // Per C++ core issue 1213, the result is an xvalue if either operand is |
5480 | // a non-lvalue array, and an lvalue otherwise. |
5481 | if (getLangOpts().CPlusPlus11) { |
5482 | for (auto *Op : {LHSExp, RHSExp}) { |
5483 | Op = Op->IgnoreImplicit(); |
5484 | if (Op->getType()->isArrayType() && !Op->isLValue()) |
5485 | VK = VK_XValue; |
5486 | } |
5487 | } |
5488 | |
5489 | // Perform default conversions. |
5490 | if (!LHSExp->getType()->getAs<VectorType>()) { |
5491 | ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); |
5492 | if (Result.isInvalid()) |
5493 | return ExprError(); |
5494 | LHSExp = Result.get(); |
5495 | } |
5496 | ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); |
5497 | if (Result.isInvalid()) |
5498 | return ExprError(); |
5499 | RHSExp = Result.get(); |
5500 | |
5501 | QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); |
5502 | |
5503 | // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent |
5504 | // to the expression *((e1)+(e2)). This means the array "Base" may actually be |
5505 | // in the subscript position. As a result, we need to derive the array base |
5506 | // and index from the expression types. |
5507 | Expr *BaseExpr, *IndexExpr; |
5508 | QualType ResultType; |
5509 | if (LHSTy->isDependentType() || RHSTy->isDependentType()) { |
5510 | BaseExpr = LHSExp; |
5511 | IndexExpr = RHSExp; |
5512 | ResultType = Context.DependentTy; |
5513 | } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { |
5514 | BaseExpr = LHSExp; |
5515 | IndexExpr = RHSExp; |
5516 | ResultType = PTy->getPointeeType(); |
5517 | } else if (const ObjCObjectPointerType *PTy = |
5518 | LHSTy->getAs<ObjCObjectPointerType>()) { |
5519 | BaseExpr = LHSExp; |
5520 | IndexExpr = RHSExp; |
5521 | |
5522 | // Use custom logic if this should be the pseudo-object subscript |
5523 | // expression. |
5524 | if (!LangOpts.isSubscriptPointerArithmetic()) |
5525 | return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, |
5526 | nullptr); |
5527 | |
5528 | ResultType = PTy->getPointeeType(); |
5529 | } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { |
5530 | // Handle the uncommon case of "123[Ptr]". |
5531 | BaseExpr = RHSExp; |
5532 | IndexExpr = LHSExp; |
5533 | ResultType = PTy->getPointeeType(); |
5534 | } else if (const ObjCObjectPointerType *PTy = |
5535 | RHSTy->getAs<ObjCObjectPointerType>()) { |
5536 | // Handle the uncommon case of "123[Ptr]". |
5537 | BaseExpr = RHSExp; |
5538 | IndexExpr = LHSExp; |
5539 | ResultType = PTy->getPointeeType(); |
5540 | if (!LangOpts.isSubscriptPointerArithmetic()) { |
5541 | Diag(LLoc, diag::err_subscript_nonfragile_interface) |
5542 | << ResultType << BaseExpr->getSourceRange(); |
5543 | return ExprError(); |
5544 | } |
5545 | } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { |
5546 | BaseExpr = LHSExp; // vectors: V[123] |
5547 | IndexExpr = RHSExp; |
5548 | // We apply C++ DR1213 to vector subscripting too. |
5549 | if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { |
5550 | ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); |
5551 | if (Materialized.isInvalid()) |
5552 | return ExprError(); |
5553 | LHSExp = Materialized.get(); |
5554 | } |
5555 | VK = LHSExp->getValueKind(); |
5556 | if (VK != VK_PRValue) |
5557 | OK = OK_VectorComponent; |
5558 | |
5559 | ResultType = VTy->getElementType(); |
5560 | QualType BaseType = BaseExpr->getType(); |
5561 | Qualifiers BaseQuals = BaseType.getQualifiers(); |
5562 | Qualifiers MemberQuals = ResultType.getQualifiers(); |
5563 | Qualifiers Combined = BaseQuals + MemberQuals; |
5564 | if (Combined != MemberQuals) |
5565 | ResultType = Context.getQualifiedType(ResultType, Combined); |
5566 | } else if (LHSTy->isArrayType()) { |
5567 | // If we see an array that wasn't promoted by |
5568 | // DefaultFunctionArrayLvalueConversion, it must be an array that |
5569 | // wasn't promoted because of the C90 rule that doesn't |
5570 | // allow promoting non-lvalue arrays. Warn, then |
5571 | // force the promotion here. |
5572 | Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) |
5573 | << LHSExp->getSourceRange(); |
5574 | LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), |
5575 | CK_ArrayToPointerDecay).get(); |
5576 | LHSTy = LHSExp->getType(); |
5577 | |
5578 | BaseExpr = LHSExp; |
5579 | IndexExpr = RHSExp; |
5580 | ResultType = LHSTy->castAs<PointerType>()->getPointeeType(); |
5581 | } else if (RHSTy->isArrayType()) { |
5582 | // Same as previous, except for 123[f().a] case |
5583 | Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) |
5584 | << RHSExp->getSourceRange(); |
5585 | RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), |
5586 | CK_ArrayToPointerDecay).get(); |
5587 | RHSTy = RHSExp->getType(); |
5588 | |
5589 | BaseExpr = RHSExp; |
5590 | IndexExpr = LHSExp; |
5591 | ResultType = RHSTy->castAs<PointerType>()->getPointeeType(); |
5592 | } else { |
5593 | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) |
5594 | << LHSExp->getSourceRange() << RHSExp->getSourceRange()); |
5595 | } |
5596 | // C99 6.5.2.1p1 |
5597 | if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) |
5598 | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) |
5599 | << IndexExpr->getSourceRange()); |
5600 | |
5601 | if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
5602 | IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
5603 | && !IndexExpr->isTypeDependent()) |
5604 | Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); |
5605 | |
5606 | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, |
5607 | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object |
5608 | // type. Note that Functions are not objects, and that (in C99 parlance) |
5609 | // incomplete types are not object types. |
5610 | if (ResultType->isFunctionType()) { |
5611 | Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type) |
5612 | << ResultType << BaseExpr->getSourceRange(); |
5613 | return ExprError(); |
5614 | } |
5615 | |
5616 | if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { |
5617 | // GNU extension: subscripting on pointer to void |
5618 | Diag(LLoc, diag::ext_gnu_subscript_void_type) |
5619 | << BaseExpr->getSourceRange(); |
5620 | |
5621 | // C forbids expressions of unqualified void type from being l-values. |
5622 | // See IsCForbiddenLValueType. |
5623 | if (!ResultType.hasQualifiers()) |
5624 | VK = VK_PRValue; |
5625 | } else if (!ResultType->isDependentType() && |
5626 | RequireCompleteSizedType( |
5627 | LLoc, ResultType, |
5628 | diag::err_subscript_incomplete_or_sizeless_type, BaseExpr)) |
5629 | return ExprError(); |
5630 | |
5631 | assert(VK == VK_PRValue || LangOpts.CPlusPlus ||((void)0) |
5632 | !ResultType.isCForbiddenLValueType())((void)0); |
5633 | |
5634 | if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() && |
5635 | FunctionScopes.size() > 1) { |
5636 | if (auto *TT = |
5637 | LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) { |
5638 | for (auto I = FunctionScopes.rbegin(), |
5639 | E = std::prev(FunctionScopes.rend()); |
5640 | I != E; ++I) { |
5641 | auto *CSI = dyn_cast<CapturingScopeInfo>(*I); |
5642 | if (CSI == nullptr) |
5643 | break; |
5644 | DeclContext *DC = nullptr; |
5645 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) |
5646 | DC = LSI->CallOperator; |
5647 | else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) |
5648 | DC = CRSI->TheCapturedDecl; |
5649 | else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) |
5650 | DC = BSI->TheDecl; |
5651 | if (DC) { |
5652 | if (DC->containsDecl(TT->getDecl())) |
5653 | break; |
5654 | captureVariablyModifiedType( |
5655 | Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI); |
5656 | } |
5657 | } |
5658 | } |
5659 | } |
5660 | |
5661 | return new (Context) |
5662 | ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); |
5663 | } |
5664 | |
5665 | bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, |
5666 | ParmVarDecl *Param) { |
5667 | if (Param->hasUnparsedDefaultArg()) { |
5668 | // If we've already cleared out the location for the default argument, |
5669 | // that means we're parsing it right now. |
5670 | if (!UnparsedDefaultArgLocs.count(Param)) { |
5671 | Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; |
5672 | Diag(CallLoc, diag::note_recursive_default_argument_used_here); |
5673 | Param->setInvalidDecl(); |
5674 | return true; |
5675 | } |
5676 | |
5677 | Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later) |
5678 | << FD << cast<CXXRecordDecl>(FD->getDeclContext()); |
5679 | Diag(UnparsedDefaultArgLocs[Param], |
5680 | diag::note_default_argument_declared_here); |
5681 | return true; |
5682 | } |
5683 | |
5684 | if (Param->hasUninstantiatedDefaultArg() && |
5685 | InstantiateDefaultArgument(CallLoc, FD, Param)) |
5686 | return true; |
5687 | |
5688 | assert(Param->hasInit() && "default argument but no initializer?")((void)0); |
5689 | |
5690 | // If the default expression creates temporaries, we need to |
5691 | // push them to the current stack of expression temporaries so they'll |
5692 | // be properly destroyed. |
5693 | // FIXME: We should really be rebuilding the default argument with new |
5694 | // bound temporaries; see the comment in PR5810. |
5695 | // We don't need to do that with block decls, though, because |
5696 | // blocks in default argument expression can never capture anything. |
5697 | if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) { |
5698 | // Set the "needs cleanups" bit regardless of whether there are |
5699 | // any explicit objects. |
5700 | Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects()); |
5701 | |
5702 | // Append all the objects to the cleanup list. Right now, this |
5703 | // should always be a no-op, because blocks in default argument |
5704 | // expressions should never be able to capture anything. |
5705 | assert(!Init->getNumObjects() &&((void)0) |
5706 | "default argument expression has capturing blocks?")((void)0); |
5707 | } |
5708 | |
5709 | // We already type-checked the argument, so we know it works. |
5710 | // Just mark all of the declarations in this potentially-evaluated expression |
5711 | // as being "referenced". |
5712 | EnterExpressionEvaluationContext EvalContext( |
5713 | *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); |
5714 | MarkDeclarationsReferencedInExpr(Param->getDefaultArg(), |
5715 | /*SkipLocalVariables=*/true); |
5716 | return false; |
5717 | } |
5718 | |
5719 | ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, |
5720 | FunctionDecl *FD, ParmVarDecl *Param) { |
5721 | assert(Param->hasDefaultArg() && "can't build nonexistent default arg")((void)0); |
5722 | if (CheckCXXDefaultArgExpr(CallLoc, FD, Param)) |
5723 | return ExprError(); |
5724 | return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext); |
5725 | } |
5726 | |
5727 | Sema::VariadicCallType |
5728 | Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, |
5729 | Expr *Fn) { |
5730 | if (Proto && Proto->isVariadic()) { |
5731 | if (dyn_cast_or_null<CXXConstructorDecl>(FDecl)) |
5732 | return VariadicConstructor; |
5733 | else if (Fn && Fn->getType()->isBlockPointerType()) |
5734 | return VariadicBlock; |
5735 | else if (FDecl) { |
5736 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) |
5737 | if (Method->isInstance()) |
5738 | return VariadicMethod; |
5739 | } else if (Fn && Fn->getType() == Context.BoundMemberTy) |
5740 | return VariadicMethod; |
5741 | return VariadicFunction; |
5742 | } |
5743 | return VariadicDoesNotApply; |
5744 | } |
5745 | |
5746 | namespace { |
5747 | class FunctionCallCCC final : public FunctionCallFilterCCC { |
5748 | public: |
5749 | FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, |
5750 | unsigned NumArgs, MemberExpr *ME) |
5751 | : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), |
5752 | FunctionName(FuncName) {} |
5753 | |
5754 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
5755 | if (!candidate.getCorrectionSpecifier() || |
5756 | candidate.getCorrectionAsIdentifierInfo() != FunctionName) { |
5757 | return false; |
5758 | } |
5759 | |
5760 | return FunctionCallFilterCCC::ValidateCandidate(candidate); |
5761 | } |
5762 | |
5763 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
5764 | return std::make_unique<FunctionCallCCC>(*this); |
5765 | } |
5766 | |
5767 | private: |
5768 | const IdentifierInfo *const FunctionName; |
5769 | }; |
5770 | } |
5771 | |
5772 | static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, |
5773 | FunctionDecl *FDecl, |
5774 | ArrayRef<Expr *> Args) { |
5775 | MemberExpr *ME = dyn_cast<MemberExpr>(Fn); |
5776 | DeclarationName FuncName = FDecl->getDeclName(); |
5777 | SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc(); |
5778 | |
5779 | FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME); |
5780 | if (TypoCorrection Corrected = S.CorrectTypo( |
5781 | DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, |
5782 | S.getScopeForContext(S.CurContext), nullptr, CCC, |
5783 | Sema::CTK_ErrorRecovery)) { |
5784 | if (NamedDecl *ND = Corrected.getFoundDecl()) { |
5785 | if (Corrected.isOverloaded()) { |
5786 | OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); |
5787 | OverloadCandidateSet::iterator Best; |
5788 | for (NamedDecl *CD : Corrected) { |
5789 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) |
5790 | S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, |
5791 | OCS); |
5792 | } |
5793 | switch (OCS.BestViableFunction(S, NameLoc, Best)) { |
5794 | case OR_Success: |
5795 | ND = Best->FoundDecl; |
5796 | Corrected.setCorrectionDecl(ND); |
5797 | break; |
5798 | default: |
5799 | break; |
5800 | } |
5801 | } |
5802 | ND = ND->getUnderlyingDecl(); |
5803 | if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) |
5804 | return Corrected; |
5805 | } |
5806 | } |
5807 | return TypoCorrection(); |
5808 | } |
5809 | |
5810 | /// ConvertArgumentsForCall - Converts the arguments specified in |
5811 | /// Args/NumArgs to the parameter types of the function FDecl with |
5812 | /// function prototype Proto. Call is the call expression itself, and |
5813 | /// Fn is the function expression. For a C++ member function, this |
5814 | /// routine does not attempt to convert the object argument. Returns |
5815 | /// true if the call is ill-formed. |
5816 | bool |
5817 | Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, |
5818 | FunctionDecl *FDecl, |
5819 | const FunctionProtoType *Proto, |
5820 | ArrayRef<Expr *> Args, |
5821 | SourceLocation RParenLoc, |
5822 | bool IsExecConfig) { |
5823 | // Bail out early if calling a builtin with custom typechecking. |
5824 | if (FDecl) |
5825 | if (unsigned ID = FDecl->getBuiltinID()) |
5826 | if (Context.BuiltinInfo.hasCustomTypechecking(ID)) |
5827 | return false; |
5828 | |
5829 | // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by |
5830 | // assignment, to the types of the corresponding parameter, ... |
5831 | unsigned NumParams = Proto->getNumParams(); |
5832 | bool Invalid = false; |
5833 | unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; |
5834 | unsigned FnKind = Fn->getType()->isBlockPointerType() |
5835 | ? 1 /* block */ |
5836 | : (IsExecConfig ? 3 /* kernel function (exec config) */ |
5837 | : 0 /* function */); |
5838 | |
5839 | // If too few arguments are available (and we don't have default |
5840 | // arguments for the remaining parameters), don't make the call. |
5841 | if (Args.size() < NumParams) { |
5842 | if (Args.size() < MinArgs) { |
5843 | TypoCorrection TC; |
5844 | if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { |
5845 | unsigned diag_id = |
5846 | MinArgs == NumParams && !Proto->isVariadic() |
5847 | ? diag::err_typecheck_call_too_few_args_suggest |
5848 | : diag::err_typecheck_call_too_few_args_at_least_suggest; |
5849 | diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs |
5850 | << static_cast<unsigned>(Args.size()) |
5851 | << TC.getCorrectionRange()); |
5852 | } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) |
5853 | Diag(RParenLoc, |
5854 | MinArgs == NumParams && !Proto->isVariadic() |
5855 | ? diag::err_typecheck_call_too_few_args_one |
5856 | : diag::err_typecheck_call_too_few_args_at_least_one) |
5857 | << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); |
5858 | else |
5859 | Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() |
5860 | ? diag::err_typecheck_call_too_few_args |
5861 | : diag::err_typecheck_call_too_few_args_at_least) |
5862 | << FnKind << MinArgs << static_cast<unsigned>(Args.size()) |
5863 | << Fn->getSourceRange(); |
5864 | |
5865 | // Emit the location of the prototype. |
5866 | if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) |
5867 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; |
5868 | |
5869 | return true; |
5870 | } |
5871 | // We reserve space for the default arguments when we create |
5872 | // the call expression, before calling ConvertArgumentsForCall. |
5873 | assert((Call->getNumArgs() == NumParams) &&((void)0) |
5874 | "We should have reserved space for the default arguments before!")((void)0); |
5875 | } |
5876 | |
5877 | // If too many are passed and not variadic, error on the extras and drop |
5878 | // them. |
5879 | if (Args.size() > NumParams) { |
5880 | if (!Proto->isVariadic()) { |
5881 | TypoCorrection TC; |
5882 | if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { |
5883 | unsigned diag_id = |
5884 | MinArgs == NumParams && !Proto->isVariadic() |
5885 | ? diag::err_typecheck_call_too_many_args_suggest |
5886 | : diag::err_typecheck_call_too_many_args_at_most_suggest; |
5887 | diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams |
5888 | << static_cast<unsigned>(Args.size()) |
5889 | << TC.getCorrectionRange()); |
5890 | } else if (NumParams == 1 && FDecl && |
5891 | FDecl->getParamDecl(0)->getDeclName()) |
5892 | Diag(Args[NumParams]->getBeginLoc(), |
5893 | MinArgs == NumParams |
5894 | ? diag::err_typecheck_call_too_many_args_one |
5895 | : diag::err_typecheck_call_too_many_args_at_most_one) |
5896 | << FnKind << FDecl->getParamDecl(0) |
5897 | << static_cast<unsigned>(Args.size()) << Fn->getSourceRange() |
5898 | << SourceRange(Args[NumParams]->getBeginLoc(), |
5899 | Args.back()->getEndLoc()); |
5900 | else |
5901 | Diag(Args[NumParams]->getBeginLoc(), |
5902 | MinArgs == NumParams |
5903 | ? diag::err_typecheck_call_too_many_args |
5904 | : diag::err_typecheck_call_too_many_args_at_most) |
5905 | << FnKind << NumParams << static_cast<unsigned>(Args.size()) |
5906 | << Fn->getSourceRange() |
5907 | << SourceRange(Args[NumParams]->getBeginLoc(), |
5908 | Args.back()->getEndLoc()); |
5909 | |
5910 | // Emit the location of the prototype. |
5911 | if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) |
5912 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; |
5913 | |
5914 | // This deletes the extra arguments. |
5915 | Call->shrinkNumArgs(NumParams); |
5916 | return true; |
5917 | } |
5918 | } |
5919 | SmallVector<Expr *, 8> AllArgs; |
5920 | VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); |
5921 | |
5922 | Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args, |
5923 | AllArgs, CallType); |
5924 | if (Invalid) |
5925 | return true; |
5926 | unsigned TotalNumArgs = AllArgs.size(); |
5927 | for (unsigned i = 0; i < TotalNumArgs; ++i) |
5928 | Call->setArg(i, AllArgs[i]); |
5929 | |
5930 | Call->computeDependence(); |
5931 | return false; |
5932 | } |
5933 | |
5934 | bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, |
5935 | const FunctionProtoType *Proto, |
5936 | unsigned FirstParam, ArrayRef<Expr *> Args, |
5937 | SmallVectorImpl<Expr *> &AllArgs, |
5938 | VariadicCallType CallType, bool AllowExplicit, |
5939 | bool IsListInitialization) { |
5940 | unsigned NumParams = Proto->getNumParams(); |
5941 | bool Invalid = false; |
5942 | size_t ArgIx = 0; |
5943 | // Continue to check argument types (even if we have too few/many args). |
5944 | for (unsigned i = FirstParam; i < NumParams; i++) { |
5945 | QualType ProtoArgType = Proto->getParamType(i); |
5946 | |
5947 | Expr *Arg; |
5948 | ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; |
5949 | if (ArgIx < Args.size()) { |
5950 | Arg = Args[ArgIx++]; |
5951 | |
5952 | if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType, |
5953 | diag::err_call_incomplete_argument, Arg)) |
5954 | return true; |
5955 | |
5956 | // Strip the unbridged-cast placeholder expression off, if applicable. |
5957 | bool CFAudited = false; |
5958 | if (Arg->getType() == Context.ARCUnbridgedCastTy && |
5959 | FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && |
5960 | (!Param || !Param->hasAttr<CFConsumedAttr>())) |
5961 | Arg = stripARCUnbridgedCast(Arg); |
5962 | else if (getLangOpts().ObjCAutoRefCount && |
5963 | FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && |
5964 | (!Param || !Param->hasAttr<CFConsumedAttr>())) |
5965 | CFAudited = true; |
5966 | |
5967 | if (Proto->getExtParameterInfo(i).isNoEscape() && |
5968 | ProtoArgType->isBlockPointerType()) |
5969 | if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context))) |
5970 | BE->getBlockDecl()->setDoesNotEscape(); |
5971 | |
5972 | InitializedEntity Entity = |
5973 | Param ? InitializedEntity::InitializeParameter(Context, Param, |
5974 | ProtoArgType) |
5975 | : InitializedEntity::InitializeParameter( |
5976 | Context, ProtoArgType, Proto->isParamConsumed(i)); |
5977 | |
5978 | // Remember that parameter belongs to a CF audited API. |
5979 | if (CFAudited) |
5980 | Entity.setParameterCFAudited(); |
5981 | |
5982 | ExprResult ArgE = PerformCopyInitialization( |
5983 | Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); |
5984 | if (ArgE.isInvalid()) |
5985 | return true; |
5986 | |
5987 | Arg = ArgE.getAs<Expr>(); |
5988 | } else { |
5989 | assert(Param && "can't use default arguments without a known callee")((void)0); |
5990 | |
5991 | ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); |
5992 | if (ArgExpr.isInvalid()) |
5993 | return true; |
5994 | |
5995 | Arg = ArgExpr.getAs<Expr>(); |
5996 | } |
5997 | |
5998 | // Check for array bounds violations for each argument to the call. This |
5999 | // check only triggers warnings when the argument isn't a more complex Expr |
6000 | // with its own checking, such as a BinaryOperator. |
6001 | CheckArrayAccess(Arg); |
6002 | |
6003 | // Check for violations of C99 static array rules (C99 6.7.5.3p7). |
6004 | CheckStaticArrayArgument(CallLoc, Param, Arg); |
6005 | |
6006 | AllArgs.push_back(Arg); |
6007 | } |
6008 | |
6009 | // If this is a variadic call, handle args passed through "...". |
6010 | if (CallType != VariadicDoesNotApply) { |
6011 | // Assume that extern "C" functions with variadic arguments that |
6012 | // return __unknown_anytype aren't *really* variadic. |
6013 | if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && |
6014 | FDecl->isExternC()) { |
6015 | for (Expr *A : Args.slice(ArgIx)) { |
6016 | QualType paramType; // ignored |
6017 | ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); |
6018 | Invalid |= arg.isInvalid(); |
6019 | AllArgs.push_back(arg.get()); |
6020 | } |
6021 | |
6022 | // Otherwise do argument promotion, (C99 6.5.2.2p7). |
6023 | } else { |
6024 | for (Expr *A : Args.slice(ArgIx)) { |
6025 | ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); |
6026 | Invalid |= Arg.isInvalid(); |
6027 | AllArgs.push_back(Arg.get()); |
6028 | } |
6029 | } |
6030 | |
6031 | // Check for array bounds violations. |
6032 | for (Expr *A : Args.slice(ArgIx)) |
6033 | CheckArrayAccess(A); |
6034 | } |
6035 | return Invalid; |
6036 | } |
6037 | |
6038 | static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { |
6039 | TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); |
6040 | if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>()) |
6041 | TL = DTL.getOriginalLoc(); |
6042 | if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>()) |
6043 | S.Diag(PVD->getLocation(), diag::note_callee_static_array) |
6044 | << ATL.getLocalSourceRange(); |
6045 | } |
6046 | |
6047 | /// CheckStaticArrayArgument - If the given argument corresponds to a static |
6048 | /// array parameter, check that it is non-null, and that if it is formed by |
6049 | /// array-to-pointer decay, the underlying array is sufficiently large. |
6050 | /// |
6051 | /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the |
6052 | /// array type derivation, then for each call to the function, the value of the |
6053 | /// corresponding actual argument shall provide access to the first element of |
6054 | /// an array with at least as many elements as specified by the size expression. |
6055 | void |
6056 | Sema::CheckStaticArrayArgument(SourceLocation CallLoc, |
6057 | ParmVarDecl *Param, |
6058 | const Expr *ArgExpr) { |
6059 | // Static array parameters are not supported in C++. |
6060 | if (!Param || getLangOpts().CPlusPlus) |
6061 | return; |
6062 | |
6063 | QualType OrigTy = Param->getOriginalType(); |
6064 | |
6065 | const ArrayType *AT = Context.getAsArrayType(OrigTy); |
6066 | if (!AT || AT->getSizeModifier() != ArrayType::Static) |
6067 | return; |
6068 | |
6069 | if (ArgExpr->isNullPointerConstant(Context, |
6070 | Expr::NPC_NeverValueDependent)) { |
6071 | Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); |
6072 | DiagnoseCalleeStaticArrayParam(*this, Param); |
6073 | return; |
6074 | } |
6075 | |
6076 | const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT); |
6077 | if (!CAT) |
6078 | return; |
6079 | |
6080 | const ConstantArrayType *ArgCAT = |
6081 | Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType()); |
6082 | if (!ArgCAT) |
6083 | return; |
6084 | |
6085 | if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(), |
6086 | ArgCAT->getElementType())) { |
6087 | if (ArgCAT->getSize().ult(CAT->getSize())) { |
6088 | Diag(CallLoc, diag::warn_static_array_too_small) |
6089 | << ArgExpr->getSourceRange() |
6090 | << (unsigned)ArgCAT->getSize().getZExtValue() |
6091 | << (unsigned)CAT->getSize().getZExtValue() << 0; |
6092 | DiagnoseCalleeStaticArrayParam(*this, Param); |
6093 | } |
6094 | return; |
6095 | } |
6096 | |
6097 | Optional<CharUnits> ArgSize = |
6098 | getASTContext().getTypeSizeInCharsIfKnown(ArgCAT); |
6099 | Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT); |
6100 | if (ArgSize && ParmSize && *ArgSize < *ParmSize) { |
6101 | Diag(CallLoc, diag::warn_static_array_too_small) |
6102 | << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity() |
6103 | << (unsigned)ParmSize->getQuantity() << 1; |
6104 | DiagnoseCalleeStaticArrayParam(*this, Param); |
6105 | } |
6106 | } |
6107 | |
6108 | /// Given a function expression of unknown-any type, try to rebuild it |
6109 | /// to have a function type. |
6110 | static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); |
6111 | |
6112 | /// Is the given type a placeholder that we need to lower out |
6113 | /// immediately during argument processing? |
6114 | static bool isPlaceholderToRemoveAsArg(QualType type) { |
6115 | // Placeholders are never sugared. |
6116 | const BuiltinType *placeholder = dyn_cast<BuiltinType>(type); |
6117 | if (!placeholder) return false; |
6118 | |
6119 | switch (placeholder->getKind()) { |
6120 | // Ignore all the non-placeholder types. |
6121 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
6122 | case BuiltinType::Id: |
6123 | #include "clang/Basic/OpenCLImageTypes.def" |
6124 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
6125 | case BuiltinType::Id: |
6126 | #include "clang/Basic/OpenCLExtensionTypes.def" |
6127 | // In practice we'll never use this, since all SVE types are sugared |
6128 | // via TypedefTypes rather than exposed directly as BuiltinTypes. |
6129 | #define SVE_TYPE(Name, Id, SingletonId) \ |
6130 | case BuiltinType::Id: |
6131 | #include "clang/Basic/AArch64SVEACLETypes.def" |
6132 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
6133 | case BuiltinType::Id: |
6134 | #include "clang/Basic/PPCTypes.def" |
6135 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
6136 | #include "clang/Basic/RISCVVTypes.def" |
6137 | #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) |
6138 | #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: |
6139 | #include "clang/AST/BuiltinTypes.def" |
6140 | return false; |
6141 | |
6142 | // We cannot lower out overload sets; they might validly be resolved |
6143 | // by the call machinery. |
6144 | case BuiltinType::Overload: |
6145 | return false; |
6146 | |
6147 | // Unbridged casts in ARC can be handled in some call positions and |
6148 | // should be left in place. |
6149 | case BuiltinType::ARCUnbridgedCast: |
6150 | return false; |
6151 | |
6152 | // Pseudo-objects should be converted as soon as possible. |
6153 | case BuiltinType::PseudoObject: |
6154 | return true; |
6155 | |
6156 | // The debugger mode could theoretically but currently does not try |
6157 | // to resolve unknown-typed arguments based on known parameter types. |
6158 | case BuiltinType::UnknownAny: |
6159 | return true; |
6160 | |
6161 | // These are always invalid as call arguments and should be reported. |
6162 | case BuiltinType::BoundMember: |
6163 | case BuiltinType::BuiltinFn: |
6164 | case BuiltinType::IncompleteMatrixIdx: |
6165 | case BuiltinType::OMPArraySection: |
6166 | case BuiltinType::OMPArrayShaping: |
6167 | case BuiltinType::OMPIterator: |
6168 | return true; |
6169 | |
6170 | } |
6171 | llvm_unreachable("bad builtin type kind")__builtin_unreachable(); |
6172 | } |
6173 | |