| File: | src/gnu/usr.bin/clang/liblldELF/../../../llvm/lld/ELF/Writer.cpp |
| Warning: | line 1914, column 29 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- Writer.cpp ---------------------------------------------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | ||||
| 9 | #include "Writer.h" | |||
| 10 | #include "AArch64ErrataFix.h" | |||
| 11 | #include "ARMErrataFix.h" | |||
| 12 | #include "CallGraphSort.h" | |||
| 13 | #include "Config.h" | |||
| 14 | #include "LinkerScript.h" | |||
| 15 | #include "MapFile.h" | |||
| 16 | #include "OutputSections.h" | |||
| 17 | #include "Relocations.h" | |||
| 18 | #include "SymbolTable.h" | |||
| 19 | #include "Symbols.h" | |||
| 20 | #include "SyntheticSections.h" | |||
| 21 | #include "Target.h" | |||
| 22 | #include "lld/Common/Arrays.h" | |||
| 23 | #include "lld/Common/Filesystem.h" | |||
| 24 | #include "lld/Common/Memory.h" | |||
| 25 | #include "lld/Common/Strings.h" | |||
| 26 | #include "llvm/ADT/StringMap.h" | |||
| 27 | #include "llvm/ADT/StringSwitch.h" | |||
| 28 | #include "llvm/Support/Parallel.h" | |||
| 29 | #include "llvm/Support/RandomNumberGenerator.h" | |||
| 30 | #include "llvm/Support/SHA1.h" | |||
| 31 | #include "llvm/Support/TimeProfiler.h" | |||
| 32 | #include "llvm/Support/xxhash.h" | |||
| 33 | #include <climits> | |||
| 34 | ||||
| 35 | #define DEBUG_TYPE"lld" "lld" | |||
| 36 | ||||
| 37 | using namespace llvm; | |||
| 38 | using namespace llvm::ELF; | |||
| 39 | using namespace llvm::object; | |||
| 40 | using namespace llvm::support; | |||
| 41 | using namespace llvm::support::endian; | |||
| 42 | using namespace lld; | |||
| 43 | using namespace lld::elf; | |||
| 44 | ||||
| 45 | namespace { | |||
| 46 | // The writer writes a SymbolTable result to a file. | |||
| 47 | template <class ELFT> class Writer { | |||
| 48 | public: | |||
| 49 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word = typename ELFT::Word; using Elf_Sword = typename ELFT::Sword ; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr = typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel = typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT ::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed = typename ELFT::Verneed; using Elf_Vernaux = typename ELFT:: Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash = typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash ; using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator = typename ELFT::NoteIterator ; using Elf_CGProfile = typename ELFT::CGProfile; using Elf_BBAddrMap = typename ELFT::BBAddrMap; using Elf_Dyn_Range = typename ELFT ::DynRange; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range = typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT::RelRange; using Elf_Rela_Range = typename ELFT ::RelaRange; using Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range = typename ELFT::PhdrRange; | |||
| 50 | ||||
| 51 | Writer() : buffer(errorHandler().outputBuffer) {} | |||
| 52 | ||||
| 53 | void run(); | |||
| 54 | ||||
| 55 | private: | |||
| 56 | void copyLocalSymbols(); | |||
| 57 | void addSectionSymbols(); | |||
| 58 | void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); | |||
| 59 | void sortSections(); | |||
| 60 | void resolveShfLinkOrder(); | |||
| 61 | void finalizeAddressDependentContent(); | |||
| 62 | void optimizeBasicBlockJumps(); | |||
| 63 | void sortInputSections(); | |||
| 64 | void finalizeSections(); | |||
| 65 | void checkExecuteOnly(); | |||
| 66 | void setReservedSymbolSections(); | |||
| 67 | ||||
| 68 | std::vector<PhdrEntry *> createPhdrs(Partition &part); | |||
| 69 | void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, | |||
| 70 | unsigned pFlags); | |||
| 71 | void assignFileOffsets(); | |||
| 72 | void assignFileOffsetsBinary(); | |||
| 73 | void setPhdrs(Partition &part); | |||
| 74 | void checkSections(); | |||
| 75 | void fixSectionAlignments(); | |||
| 76 | void openFile(); | |||
| 77 | void writeTrapInstr(); | |||
| 78 | void writeHeader(); | |||
| 79 | void writeSections(); | |||
| 80 | void writeSectionsBinary(); | |||
| 81 | void writeBuildId(); | |||
| 82 | ||||
| 83 | std::unique_ptr<FileOutputBuffer> &buffer; | |||
| 84 | ||||
| 85 | void addRelIpltSymbols(); | |||
| 86 | void addStartEndSymbols(); | |||
| 87 | void addStartStopSymbols(OutputSection *sec); | |||
| 88 | ||||
| 89 | uint64_t fileSize; | |||
| 90 | uint64_t sectionHeaderOff; | |||
| 91 | }; | |||
| 92 | } // anonymous namespace | |||
| 93 | ||||
| 94 | static bool isSectionPrefix(StringRef prefix, StringRef name) { | |||
| 95 | return name.startswith(prefix) || name == prefix.drop_back(); | |||
| 96 | } | |||
| 97 | ||||
| 98 | StringRef elf::getOutputSectionName(const InputSectionBase *s) { | |||
| 99 | if (config->relocatable) | |||
| 100 | return s->name; | |||
| 101 | ||||
| 102 | // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want | |||
| 103 | // to emit .rela.text.foo as .rela.text.bar for consistency (this is not | |||
| 104 | // technically required, but not doing it is odd). This code guarantees that. | |||
| 105 | if (auto *isec = dyn_cast<InputSection>(s)) { | |||
| 106 | if (InputSectionBase *rel = isec->getRelocatedSection()) { | |||
| 107 | OutputSection *out = rel->getOutputSection(); | |||
| 108 | if (s->type == SHT_RELA) | |||
| 109 | return saver.save(".rela" + out->name); | |||
| 110 | return saver.save(".rel" + out->name); | |||
| 111 | } | |||
| 112 | } | |||
| 113 | ||||
| 114 | // A BssSection created for a common symbol is identified as "COMMON" in | |||
| 115 | // linker scripts. It should go to .bss section. | |||
| 116 | if (s->name == "COMMON") | |||
| 117 | return ".bss"; | |||
| 118 | ||||
| 119 | if (script->hasSectionsCommand) | |||
| 120 | return s->name; | |||
| 121 | ||||
| 122 | // When no SECTIONS is specified, emulate GNU ld's internal linker scripts | |||
| 123 | // by grouping sections with certain prefixes. | |||
| 124 | ||||
| 125 | // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", | |||
| 126 | // ".text.unlikely.", ".text.startup." or ".text.exit." before others. | |||
| 127 | // We provide an option -z keep-text-section-prefix to group such sections | |||
| 128 | // into separate output sections. This is more flexible. See also | |||
| 129 | // sortISDBySectionOrder(). | |||
| 130 | // ".text.unknown" means the hotness of the section is unknown. When | |||
| 131 | // SampleFDO is used, if a function doesn't have sample, it could be very | |||
| 132 | // cold or it could be a new function never being sampled. Those functions | |||
| 133 | // will be kept in the ".text.unknown" section. | |||
| 134 | // ".text.split." holds symbols which are split out from functions in other | |||
| 135 | // input sections. For example, with -fsplit-machine-functions, placing the | |||
| 136 | // cold parts in .text.split instead of .text.unlikely mitigates against poor | |||
| 137 | // profile inaccuracy. Techniques such as hugepage remapping can make | |||
| 138 | // conservative decisions at the section granularity. | |||
| 139 | if (config->zKeepTextSectionPrefix) | |||
| 140 | for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", | |||
| 141 | ".text.startup.", ".text.exit.", ".text.split."}) | |||
| 142 | if (isSectionPrefix(v, s->name)) | |||
| 143 | return v.drop_back(); | |||
| 144 | ||||
| 145 | for (StringRef v : | |||
| 146 | {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", | |||
| 147 | ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", | |||
| 148 | ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab.", | |||
| 149 | ".openbsd.randomdata."}) | |||
| 150 | if (isSectionPrefix(v, s->name)) | |||
| 151 | return v.drop_back(); | |||
| 152 | ||||
| 153 | return s->name; | |||
| 154 | } | |||
| 155 | ||||
| 156 | static bool needsInterpSection() { | |||
| 157 | return !config->relocatable && !config->shared && | |||
| 158 | !config->dynamicLinker.empty() && script->needsInterpSection(); | |||
| 159 | } | |||
| 160 | ||||
| 161 | template <class ELFT> void elf::writeResult() { | |||
| 162 | Writer<ELFT>().run(); | |||
| 163 | } | |||
| 164 | ||||
| 165 | static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { | |||
| 166 | auto it = std::stable_partition( | |||
| 167 | phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { | |||
| 168 | if (p->p_type != PT_LOAD) | |||
| 169 | return true; | |||
| 170 | if (!p->firstSec) | |||
| 171 | return false; | |||
| 172 | uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; | |||
| 173 | return size != 0; | |||
| 174 | }); | |||
| 175 | ||||
| 176 | // Clear OutputSection::ptLoad for sections contained in removed | |||
| 177 | // segments. | |||
| 178 | DenseSet<PhdrEntry *> removed(it, phdrs.end()); | |||
| 179 | for (OutputSection *sec : outputSections) | |||
| 180 | if (removed.count(sec->ptLoad)) | |||
| 181 | sec->ptLoad = nullptr; | |||
| 182 | phdrs.erase(it, phdrs.end()); | |||
| 183 | } | |||
| 184 | ||||
| 185 | void elf::copySectionsIntoPartitions() { | |||
| 186 | std::vector<InputSectionBase *> newSections; | |||
| 187 | for (unsigned part = 2; part != partitions.size() + 1; ++part) { | |||
| 188 | for (InputSectionBase *s : inputSections) { | |||
| 189 | if (!(s->flags & SHF_ALLOC) || !s->isLive()) | |||
| 190 | continue; | |||
| 191 | InputSectionBase *copy; | |||
| 192 | if (s->type == SHT_NOTE) | |||
| 193 | copy = make<InputSection>(cast<InputSection>(*s)); | |||
| 194 | else if (auto *es = dyn_cast<EhInputSection>(s)) | |||
| 195 | copy = make<EhInputSection>(*es); | |||
| 196 | else | |||
| 197 | continue; | |||
| 198 | copy->partition = part; | |||
| 199 | newSections.push_back(copy); | |||
| 200 | } | |||
| 201 | } | |||
| 202 | ||||
| 203 | inputSections.insert(inputSections.end(), newSections.begin(), | |||
| 204 | newSections.end()); | |||
| 205 | } | |||
| 206 | ||||
| 207 | void elf::combineEhSections() { | |||
| 208 | llvm::TimeTraceScope timeScope("Combine EH sections"); | |||
| 209 | for (InputSectionBase *&s : inputSections) { | |||
| 210 | // Ignore dead sections and the partition end marker (.part.end), | |||
| 211 | // whose partition number is out of bounds. | |||
| 212 | if (!s->isLive() || s->partition == 255) | |||
| 213 | continue; | |||
| 214 | ||||
| 215 | Partition &part = s->getPartition(); | |||
| 216 | if (auto *es = dyn_cast<EhInputSection>(s)) { | |||
| 217 | part.ehFrame->addSection(es); | |||
| 218 | s = nullptr; | |||
| 219 | } else if (s->kind() == SectionBase::Regular && part.armExidx && | |||
| 220 | part.armExidx->addSection(cast<InputSection>(s))) { | |||
| 221 | s = nullptr; | |||
| 222 | } | |||
| 223 | } | |||
| 224 | ||||
| 225 | std::vector<InputSectionBase *> &v = inputSections; | |||
| 226 | v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); | |||
| 227 | } | |||
| 228 | ||||
| 229 | static Defined *addOptionalRegular(StringRef name, SectionBase *sec, | |||
| 230 | uint64_t val, uint8_t stOther = STV_HIDDEN, | |||
| 231 | uint8_t binding = STB_GLOBAL) { | |||
| 232 | Symbol *s = symtab->find(name); | |||
| 233 | if (!s || s->isDefined()) | |||
| 234 | return nullptr; | |||
| 235 | ||||
| 236 | s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, | |||
| 237 | /*size=*/0, sec}); | |||
| 238 | return cast<Defined>(s); | |||
| 239 | } | |||
| 240 | ||||
| 241 | static Defined *addAbsolute(StringRef name) { | |||
| 242 | Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, | |||
| 243 | STT_NOTYPE, 0, 0, nullptr}); | |||
| 244 | return cast<Defined>(sym); | |||
| 245 | } | |||
| 246 | ||||
| 247 | // The linker is expected to define some symbols depending on | |||
| 248 | // the linking result. This function defines such symbols. | |||
| 249 | void elf::addReservedSymbols() { | |||
| 250 | if (config->emachine == EM_MIPS) { | |||
| 251 | // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer | |||
| 252 | // so that it points to an absolute address which by default is relative | |||
| 253 | // to GOT. Default offset is 0x7ff0. | |||
| 254 | // See "Global Data Symbols" in Chapter 6 in the following document: | |||
| 255 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | |||
| 256 | ElfSym::mipsGp = addAbsolute("_gp"); | |||
| 257 | ||||
| 258 | // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between | |||
| 259 | // start of function and 'gp' pointer into GOT. | |||
| 260 | if (symtab->find("_gp_disp")) | |||
| 261 | ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); | |||
| 262 | ||||
| 263 | // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' | |||
| 264 | // pointer. This symbol is used in the code generated by .cpload pseudo-op | |||
| 265 | // in case of using -mno-shared option. | |||
| 266 | // https://sourceware.org/ml/binutils/2004-12/msg00094.html | |||
| 267 | if (symtab->find("__gnu_local_gp")) | |||
| 268 | ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); | |||
| 269 | } else if (config->emachine == EM_PPC) { | |||
| 270 | // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't | |||
| 271 | // support Small Data Area, define it arbitrarily as 0. | |||
| 272 | addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); | |||
| 273 | } else if (config->emachine == EM_PPC64) { | |||
| 274 | addPPC64SaveRestore(); | |||
| 275 | } | |||
| 276 | ||||
| 277 | // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which | |||
| 278 | // combines the typical ELF GOT with the small data sections. It commonly | |||
| 279 | // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both | |||
| 280 | // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to | |||
| 281 | // represent the TOC base which is offset by 0x8000 bytes from the start of | |||
| 282 | // the .got section. | |||
| 283 | // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the | |||
| 284 | // correctness of some relocations depends on its value. | |||
| 285 | StringRef gotSymName = | |||
| 286 | (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; | |||
| 287 | ||||
| 288 | if (Symbol *s = symtab->find(gotSymName)) { | |||
| 289 | if (s->isDefined()) { | |||
| 290 | error(toString(s->file) + " cannot redefine linker defined symbol '" + | |||
| 291 | gotSymName + "'"); | |||
| 292 | return; | |||
| 293 | } | |||
| 294 | ||||
| 295 | uint64_t gotOff = 0; | |||
| 296 | if (config->emachine == EM_PPC64) | |||
| 297 | gotOff = 0x8000; | |||
| 298 | ||||
| 299 | s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, | |||
| 300 | STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); | |||
| 301 | ElfSym::globalOffsetTable = cast<Defined>(s); | |||
| 302 | } | |||
| 303 | ||||
| 304 | // __ehdr_start is the location of ELF file headers. Note that we define | |||
| 305 | // this symbol unconditionally even when using a linker script, which | |||
| 306 | // differs from the behavior implemented by GNU linker which only define | |||
| 307 | // this symbol if ELF headers are in the memory mapped segment. | |||
| 308 | addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); | |||
| 309 | ||||
| 310 | // __executable_start is not documented, but the expectation of at | |||
| 311 | // least the Android libc is that it points to the ELF header. | |||
| 312 | addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); | |||
| 313 | ||||
| 314 | // __dso_handle symbol is passed to cxa_finalize as a marker to identify | |||
| 315 | // each DSO. The address of the symbol doesn't matter as long as they are | |||
| 316 | // different in different DSOs, so we chose the start address of the DSO. | |||
| 317 | addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); | |||
| 318 | ||||
| 319 | // If linker script do layout we do not need to create any standard symbols. | |||
| 320 | if (script->hasSectionsCommand) | |||
| 321 | return; | |||
| 322 | ||||
| 323 | auto add = [](StringRef s, int64_t pos) { | |||
| 324 | return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); | |||
| 325 | }; | |||
| 326 | ||||
| 327 | ElfSym::bss = add("__bss_start", 0); | |||
| 328 | ElfSym::data = add("__data_start", 0); | |||
| 329 | ElfSym::end1 = add("end", -1); | |||
| 330 | ElfSym::end2 = add("_end", -1); | |||
| 331 | ElfSym::etext1 = add("etext", -1); | |||
| 332 | ElfSym::etext2 = add("_etext", -1); | |||
| 333 | ElfSym::edata1 = add("edata", -1); | |||
| 334 | ElfSym::edata2 = add("_edata", -1); | |||
| 335 | } | |||
| 336 | ||||
| 337 | static OutputSection *findSection(StringRef name, unsigned partition = 1) { | |||
| 338 | for (BaseCommand *base : script->sectionCommands) | |||
| 339 | if (auto *sec = dyn_cast<OutputSection>(base)) | |||
| 340 | if (sec->name == name && sec->partition == partition) | |||
| 341 | return sec; | |||
| 342 | return nullptr; | |||
| 343 | } | |||
| 344 | ||||
| 345 | template <class ELFT> void elf::createSyntheticSections() { | |||
| 346 | // Initialize all pointers with NULL. This is needed because | |||
| 347 | // you can call lld::elf::main more than once as a library. | |||
| 348 | memset(&Out::first, 0, sizeof(Out)); | |||
| 349 | ||||
| 350 | // Add the .interp section first because it is not a SyntheticSection. | |||
| 351 | // The removeUnusedSyntheticSections() function relies on the | |||
| 352 | // SyntheticSections coming last. | |||
| 353 | if (needsInterpSection()) { | |||
| 354 | for (size_t i = 1; i <= partitions.size(); ++i) { | |||
| 355 | InputSection *sec = createInterpSection(); | |||
| 356 | sec->partition = i; | |||
| 357 | inputSections.push_back(sec); | |||
| 358 | } | |||
| 359 | } | |||
| 360 | ||||
| 361 | auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; | |||
| 362 | ||||
| 363 | in.shStrTab = make<StringTableSection>(".shstrtab", false); | |||
| 364 | ||||
| 365 | Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); | |||
| 366 | Out::programHeaders->alignment = config->wordsize; | |||
| 367 | ||||
| 368 | if (config->strip != StripPolicy::All) { | |||
| 369 | in.strTab = make<StringTableSection>(".strtab", false); | |||
| 370 | in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); | |||
| 371 | in.symTabShndx = make<SymtabShndxSection>(); | |||
| 372 | } | |||
| 373 | ||||
| 374 | in.bss = make<BssSection>(".bss", 0, 1); | |||
| 375 | add(in.bss); | |||
| 376 | ||||
| 377 | // If there is a SECTIONS command and a .data.rel.ro section name use name | |||
| 378 | // .data.rel.ro.bss so that we match in the .data.rel.ro output section. | |||
| 379 | // This makes sure our relro is contiguous. | |||
| 380 | bool hasDataRelRo = | |||
| 381 | script->hasSectionsCommand && findSection(".data.rel.ro", 0); | |||
| 382 | in.bssRelRo = | |||
| 383 | make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); | |||
| 384 | add(in.bssRelRo); | |||
| 385 | ||||
| 386 | // Add MIPS-specific sections. | |||
| 387 | if (config->emachine == EM_MIPS) { | |||
| 388 | if (!config->shared && config->hasDynSymTab) { | |||
| 389 | in.mipsRldMap = make<MipsRldMapSection>(); | |||
| 390 | add(in.mipsRldMap); | |||
| 391 | } | |||
| 392 | if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) | |||
| 393 | add(sec); | |||
| 394 | if (auto *sec = MipsOptionsSection<ELFT>::create()) | |||
| 395 | add(sec); | |||
| 396 | if (auto *sec = MipsReginfoSection<ELFT>::create()) | |||
| 397 | add(sec); | |||
| 398 | } | |||
| 399 | ||||
| 400 | StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; | |||
| 401 | ||||
| 402 | for (Partition &part : partitions) { | |||
| 403 | auto add = [&](SyntheticSection *sec) { | |||
| 404 | sec->partition = part.getNumber(); | |||
| 405 | inputSections.push_back(sec); | |||
| 406 | }; | |||
| 407 | ||||
| 408 | if (!part.name.empty()) { | |||
| 409 | part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); | |||
| 410 | part.elfHeader->name = part.name; | |||
| 411 | add(part.elfHeader); | |||
| 412 | ||||
| 413 | part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); | |||
| 414 | add(part.programHeaders); | |||
| 415 | } | |||
| 416 | ||||
| 417 | if (config->buildId != BuildIdKind::None) { | |||
| 418 | part.buildId = make<BuildIdSection>(); | |||
| 419 | add(part.buildId); | |||
| 420 | } | |||
| 421 | ||||
| 422 | part.dynStrTab = make<StringTableSection>(".dynstr", true); | |||
| 423 | part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); | |||
| 424 | part.dynamic = make<DynamicSection<ELFT>>(); | |||
| 425 | if (config->androidPackDynRelocs) | |||
| 426 | part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); | |||
| 427 | else | |||
| 428 | part.relaDyn = | |||
| 429 | make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); | |||
| 430 | ||||
| 431 | if (config->hasDynSymTab) { | |||
| 432 | part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); | |||
| 433 | add(part.dynSymTab); | |||
| 434 | ||||
| 435 | part.verSym = make<VersionTableSection>(); | |||
| 436 | add(part.verSym); | |||
| 437 | ||||
| 438 | if (!namedVersionDefs().empty()) { | |||
| 439 | part.verDef = make<VersionDefinitionSection>(); | |||
| 440 | add(part.verDef); | |||
| 441 | } | |||
| 442 | ||||
| 443 | part.verNeed = make<VersionNeedSection<ELFT>>(); | |||
| 444 | add(part.verNeed); | |||
| 445 | ||||
| 446 | if (config->gnuHash) { | |||
| 447 | part.gnuHashTab = make<GnuHashTableSection>(); | |||
| 448 | add(part.gnuHashTab); | |||
| 449 | } | |||
| 450 | ||||
| 451 | if (config->sysvHash) { | |||
| 452 | part.hashTab = make<HashTableSection>(); | |||
| 453 | add(part.hashTab); | |||
| 454 | } | |||
| 455 | ||||
| 456 | add(part.dynamic); | |||
| 457 | add(part.dynStrTab); | |||
| 458 | add(part.relaDyn); | |||
| 459 | } | |||
| 460 | ||||
| 461 | if (config->relrPackDynRelocs) { | |||
| 462 | part.relrDyn = make<RelrSection<ELFT>>(); | |||
| 463 | add(part.relrDyn); | |||
| 464 | } | |||
| 465 | ||||
| 466 | if (!config->relocatable) { | |||
| 467 | if (config->ehFrameHdr) { | |||
| 468 | part.ehFrameHdr = make<EhFrameHeader>(); | |||
| 469 | add(part.ehFrameHdr); | |||
| 470 | } | |||
| 471 | part.ehFrame = make<EhFrameSection>(); | |||
| 472 | add(part.ehFrame); | |||
| 473 | } | |||
| 474 | ||||
| 475 | if (config->emachine == EM_ARM && !config->relocatable) { | |||
| 476 | // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx | |||
| 477 | // InputSections. | |||
| 478 | part.armExidx = make<ARMExidxSyntheticSection>(); | |||
| 479 | add(part.armExidx); | |||
| 480 | } | |||
| 481 | } | |||
| 482 | ||||
| 483 | if (partitions.size() != 1) { | |||
| 484 | // Create the partition end marker. This needs to be in partition number 255 | |||
| 485 | // so that it is sorted after all other partitions. It also has other | |||
| 486 | // special handling (see createPhdrs() and combineEhSections()). | |||
| 487 | in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); | |||
| 488 | in.partEnd->partition = 255; | |||
| 489 | add(in.partEnd); | |||
| 490 | ||||
| 491 | in.partIndex = make<PartitionIndexSection>(); | |||
| 492 | addOptionalRegular("__part_index_begin", in.partIndex, 0); | |||
| 493 | addOptionalRegular("__part_index_end", in.partIndex, | |||
| 494 | in.partIndex->getSize()); | |||
| 495 | add(in.partIndex); | |||
| 496 | } | |||
| 497 | ||||
| 498 | // Add .got. MIPS' .got is so different from the other archs, | |||
| 499 | // it has its own class. | |||
| 500 | if (config->emachine == EM_MIPS) { | |||
| 501 | in.mipsGot = make<MipsGotSection>(); | |||
| 502 | add(in.mipsGot); | |||
| 503 | } else { | |||
| 504 | in.got = make<GotSection>(); | |||
| 505 | add(in.got); | |||
| 506 | } | |||
| 507 | ||||
| 508 | if (config->emachine == EM_PPC) { | |||
| 509 | in.ppc32Got2 = make<PPC32Got2Section>(); | |||
| 510 | add(in.ppc32Got2); | |||
| 511 | } | |||
| 512 | ||||
| 513 | if (config->emachine == EM_PPC64) { | |||
| 514 | in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); | |||
| 515 | add(in.ppc64LongBranchTarget); | |||
| 516 | } | |||
| 517 | ||||
| 518 | in.gotPlt = make<GotPltSection>(); | |||
| 519 | add(in.gotPlt); | |||
| 520 | in.igotPlt = make<IgotPltSection>(); | |||
| 521 | add(in.igotPlt); | |||
| 522 | ||||
| 523 | // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat | |||
| 524 | // it as a relocation and ensure the referenced section is created. | |||
| 525 | if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { | |||
| 526 | if (target->gotBaseSymInGotPlt) | |||
| 527 | in.gotPlt->hasGotPltOffRel = true; | |||
| 528 | else | |||
| 529 | in.got->hasGotOffRel = true; | |||
| 530 | } | |||
| 531 | ||||
| 532 | if (config->gdbIndex) | |||
| 533 | add(GdbIndexSection::create<ELFT>()); | |||
| 534 | ||||
| 535 | // We always need to add rel[a].plt to output if it has entries. | |||
| 536 | // Even for static linking it can contain R_[*]_IRELATIVE relocations. | |||
| 537 | in.relaPlt = make<RelocationSection<ELFT>>( | |||
| 538 | config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); | |||
| 539 | add(in.relaPlt); | |||
| 540 | ||||
| 541 | // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative | |||
| 542 | // relocations are processed last by the dynamic loader. We cannot place the | |||
| 543 | // iplt section in .rel.dyn when Android relocation packing is enabled because | |||
| 544 | // that would cause a section type mismatch. However, because the Android | |||
| 545 | // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired | |||
| 546 | // behaviour by placing the iplt section in .rel.plt. | |||
| 547 | in.relaIplt = make<RelocationSection<ELFT>>( | |||
| 548 | config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, | |||
| 549 | /*sort=*/false); | |||
| 550 | add(in.relaIplt); | |||
| 551 | ||||
| 552 | if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && | |||
| 553 | (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { | |||
| 554 | in.ibtPlt = make<IBTPltSection>(); | |||
| 555 | add(in.ibtPlt); | |||
| 556 | } | |||
| 557 | ||||
| 558 | in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() | |||
| 559 | : make<PltSection>(); | |||
| 560 | add(in.plt); | |||
| 561 | in.iplt = make<IpltSection>(); | |||
| 562 | add(in.iplt); | |||
| 563 | ||||
| 564 | if (config->andFeatures) | |||
| 565 | add(make<GnuPropertySection>()); | |||
| 566 | ||||
| 567 | // .note.GNU-stack is always added when we are creating a re-linkable | |||
| 568 | // object file. Other linkers are using the presence of this marker | |||
| 569 | // section to control the executable-ness of the stack area, but that | |||
| 570 | // is irrelevant these days. Stack area should always be non-executable | |||
| 571 | // by default. So we emit this section unconditionally. | |||
| 572 | if (config->relocatable) | |||
| 573 | add(make<GnuStackSection>()); | |||
| 574 | ||||
| 575 | if (in.symTab) | |||
| 576 | add(in.symTab); | |||
| 577 | if (in.symTabShndx) | |||
| 578 | add(in.symTabShndx); | |||
| 579 | add(in.shStrTab); | |||
| 580 | if (in.strTab) | |||
| 581 | add(in.strTab); | |||
| 582 | } | |||
| 583 | ||||
| 584 | // The main function of the writer. | |||
| 585 | template <class ELFT> void Writer<ELFT>::run() { | |||
| 586 | copyLocalSymbols(); | |||
| 587 | ||||
| 588 | if (config->copyRelocs) | |||
| 589 | addSectionSymbols(); | |||
| 590 | ||||
| 591 | // Now that we have a complete set of output sections. This function | |||
| 592 | // completes section contents. For example, we need to add strings | |||
| 593 | // to the string table, and add entries to .got and .plt. | |||
| 594 | // finalizeSections does that. | |||
| 595 | finalizeSections(); | |||
| 596 | checkExecuteOnly(); | |||
| 597 | if (errorCount()) | |||
| 598 | return; | |||
| 599 | ||||
| 600 | // If -compressed-debug-sections is specified, we need to compress | |||
| 601 | // .debug_* sections. Do it right now because it changes the size of | |||
| 602 | // output sections. | |||
| 603 | for (OutputSection *sec : outputSections) | |||
| 604 | sec->maybeCompress<ELFT>(); | |||
| 605 | ||||
| 606 | if (script->hasSectionsCommand) | |||
| 607 | script->allocateHeaders(mainPart->phdrs); | |||
| 608 | ||||
| 609 | // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a | |||
| 610 | // 0 sized region. This has to be done late since only after assignAddresses | |||
| 611 | // we know the size of the sections. | |||
| 612 | for (Partition &part : partitions) | |||
| 613 | removeEmptyPTLoad(part.phdrs); | |||
| 614 | ||||
| 615 | if (!config->oFormatBinary) | |||
| 616 | assignFileOffsets(); | |||
| 617 | else | |||
| 618 | assignFileOffsetsBinary(); | |||
| 619 | ||||
| 620 | for (Partition &part : partitions) | |||
| 621 | setPhdrs(part); | |||
| 622 | ||||
| 623 | if (config->relocatable) | |||
| 624 | for (OutputSection *sec : outputSections) | |||
| 625 | sec->addr = 0; | |||
| 626 | ||||
| 627 | // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them | |||
| 628 | // before checkSections() because the files may be useful in case | |||
| 629 | // checkSections() or openFile() fails, for example, due to an erroneous file | |||
| 630 | // size. | |||
| 631 | writeMapFile(); | |||
| 632 | writeCrossReferenceTable(); | |||
| 633 | writeArchiveStats(); | |||
| 634 | ||||
| 635 | if (config->checkSections) | |||
| 636 | checkSections(); | |||
| 637 | ||||
| 638 | // It does not make sense try to open the file if we have error already. | |||
| 639 | if (errorCount()) | |||
| 640 | return; | |||
| 641 | ||||
| 642 | { | |||
| 643 | llvm::TimeTraceScope timeScope("Write output file"); | |||
| 644 | // Write the result down to a file. | |||
| 645 | openFile(); | |||
| 646 | if (errorCount()) | |||
| 647 | return; | |||
| 648 | ||||
| 649 | if (!config->oFormatBinary) { | |||
| 650 | if (config->zSeparate != SeparateSegmentKind::None) | |||
| 651 | writeTrapInstr(); | |||
| 652 | writeHeader(); | |||
| 653 | writeSections(); | |||
| 654 | } else { | |||
| 655 | writeSectionsBinary(); | |||
| 656 | } | |||
| 657 | ||||
| 658 | // Backfill .note.gnu.build-id section content. This is done at last | |||
| 659 | // because the content is usually a hash value of the entire output file. | |||
| 660 | writeBuildId(); | |||
| 661 | if (errorCount()) | |||
| 662 | return; | |||
| 663 | ||||
| 664 | if (auto e = buffer->commit()) | |||
| 665 | error("failed to write to the output file: " + toString(std::move(e))); | |||
| 666 | } | |||
| 667 | } | |||
| 668 | ||||
| 669 | template <class ELFT, class RelTy> | |||
| 670 | static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, | |||
| 671 | llvm::ArrayRef<RelTy> rels) { | |||
| 672 | for (const RelTy &rel : rels) { | |||
| 673 | Symbol &sym = file->getRelocTargetSym(rel); | |||
| 674 | if (sym.isLocal()) | |||
| 675 | sym.used = true; | |||
| 676 | } | |||
| 677 | } | |||
| 678 | ||||
| 679 | // The function ensures that the "used" field of local symbols reflects the fact | |||
| 680 | // that the symbol is used in a relocation from a live section. | |||
| 681 | template <class ELFT> static void markUsedLocalSymbols() { | |||
| 682 | // With --gc-sections, the field is already filled. | |||
| 683 | // See MarkLive<ELFT>::resolveReloc(). | |||
| 684 | if (config->gcSections) | |||
| 685 | return; | |||
| 686 | // Without --gc-sections, the field is initialized with "true". | |||
| 687 | // Drop the flag first and then rise for symbols referenced in relocations. | |||
| 688 | for (InputFile *file : objectFiles) { | |||
| 689 | ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); | |||
| 690 | for (Symbol *b : f->getLocalSymbols()) | |||
| 691 | b->used = false; | |||
| 692 | for (InputSectionBase *s : f->getSections()) { | |||
| 693 | InputSection *isec = dyn_cast_or_null<InputSection>(s); | |||
| 694 | if (!isec) | |||
| 695 | continue; | |||
| 696 | if (isec->type == SHT_REL) | |||
| 697 | markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); | |||
| 698 | else if (isec->type == SHT_RELA) | |||
| 699 | markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); | |||
| 700 | } | |||
| 701 | } | |||
| 702 | } | |||
| 703 | ||||
| 704 | static bool shouldKeepInSymtab(const Defined &sym) { | |||
| 705 | if (sym.isSection()) | |||
| 706 | return false; | |||
| 707 | ||||
| 708 | // If --emit-reloc or -r is given, preserve symbols referenced by relocations | |||
| 709 | // from live sections. | |||
| 710 | if (config->copyRelocs && sym.used) | |||
| 711 | return true; | |||
| 712 | ||||
| 713 | // Exclude local symbols pointing to .ARM.exidx sections. | |||
| 714 | // They are probably mapping symbols "$d", which are optional for these | |||
| 715 | // sections. After merging the .ARM.exidx sections, some of these symbols | |||
| 716 | // may become dangling. The easiest way to avoid the issue is not to add | |||
| 717 | // them to the symbol table from the beginning. | |||
| 718 | if (config->emachine == EM_ARM && sym.section && | |||
| 719 | sym.section->type == SHT_ARM_EXIDX) | |||
| 720 | return false; | |||
| 721 | ||||
| 722 | if (config->discard == DiscardPolicy::None) | |||
| 723 | return true; | |||
| 724 | if (config->discard == DiscardPolicy::All) | |||
| 725 | return false; | |||
| 726 | ||||
| 727 | // In ELF assembly .L symbols are normally discarded by the assembler. | |||
| 728 | // If the assembler fails to do so, the linker discards them if | |||
| 729 | // * --discard-locals is used. | |||
| 730 | // * The symbol is in a SHF_MERGE section, which is normally the reason for | |||
| 731 | // the assembler keeping the .L symbol. | |||
| 732 | StringRef name = sym.getName(); | |||
| 733 | bool isLocal = name.startswith(".L") || name.empty(); | |||
| 734 | if (!isLocal) | |||
| 735 | return true; | |||
| 736 | ||||
| 737 | if (config->discard == DiscardPolicy::Locals) | |||
| 738 | return false; | |||
| 739 | ||||
| 740 | SectionBase *sec = sym.section; | |||
| 741 | return !sec || !(sec->flags & SHF_MERGE); | |||
| 742 | } | |||
| 743 | ||||
| 744 | static bool includeInSymtab(const Symbol &b) { | |||
| 745 | if (!b.isLocal() && !b.isUsedInRegularObj) | |||
| 746 | return false; | |||
| 747 | ||||
| 748 | if (auto *d = dyn_cast<Defined>(&b)) { | |||
| 749 | // Always include absolute symbols. | |||
| 750 | SectionBase *sec = d->section; | |||
| 751 | if (!sec) | |||
| 752 | return true; | |||
| 753 | sec = sec->repl; | |||
| 754 | ||||
| 755 | // Exclude symbols pointing to garbage-collected sections. | |||
| 756 | if (isa<InputSectionBase>(sec) && !sec->isLive()) | |||
| 757 | return false; | |||
| 758 | ||||
| 759 | if (auto *s = dyn_cast<MergeInputSection>(sec)) | |||
| 760 | if (!s->getSectionPiece(d->value)->live) | |||
| 761 | return false; | |||
| 762 | return true; | |||
| 763 | } | |||
| 764 | return b.used; | |||
| 765 | } | |||
| 766 | ||||
| 767 | // Local symbols are not in the linker's symbol table. This function scans | |||
| 768 | // each object file's symbol table to copy local symbols to the output. | |||
| 769 | template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { | |||
| 770 | if (!in.symTab) | |||
| 771 | return; | |||
| 772 | llvm::TimeTraceScope timeScope("Add local symbols"); | |||
| 773 | if (config->copyRelocs && config->discard != DiscardPolicy::None) | |||
| 774 | markUsedLocalSymbols<ELFT>(); | |||
| 775 | for (InputFile *file : objectFiles) { | |||
| 776 | ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); | |||
| 777 | for (Symbol *b : f->getLocalSymbols()) { | |||
| 778 | assert(b->isLocal() && "should have been caught in initializeSymbols()")((void)0); | |||
| 779 | auto *dr = dyn_cast<Defined>(b); | |||
| 780 | ||||
| 781 | // No reason to keep local undefined symbol in symtab. | |||
| 782 | if (!dr) | |||
| 783 | continue; | |||
| 784 | if (!includeInSymtab(*b)) | |||
| 785 | continue; | |||
| 786 | if (!shouldKeepInSymtab(*dr)) | |||
| 787 | continue; | |||
| 788 | in.symTab->addSymbol(b); | |||
| 789 | } | |||
| 790 | } | |||
| 791 | } | |||
| 792 | ||||
| 793 | // Create a section symbol for each output section so that we can represent | |||
| 794 | // relocations that point to the section. If we know that no relocation is | |||
| 795 | // referring to a section (that happens if the section is a synthetic one), we | |||
| 796 | // don't create a section symbol for that section. | |||
| 797 | template <class ELFT> void Writer<ELFT>::addSectionSymbols() { | |||
| 798 | for (BaseCommand *base : script->sectionCommands) { | |||
| 799 | auto *sec = dyn_cast<OutputSection>(base); | |||
| 800 | if (!sec) | |||
| 801 | continue; | |||
| 802 | auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { | |||
| 803 | if (auto *isd = dyn_cast<InputSectionDescription>(base)) | |||
| 804 | return !isd->sections.empty(); | |||
| 805 | return false; | |||
| 806 | }); | |||
| 807 | if (i == sec->sectionCommands.end()) | |||
| 808 | continue; | |||
| 809 | InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; | |||
| 810 | ||||
| 811 | // Relocations are not using REL[A] section symbols. | |||
| 812 | if (isec->type == SHT_REL || isec->type == SHT_RELA) | |||
| 813 | continue; | |||
| 814 | ||||
| 815 | // Unlike other synthetic sections, mergeable output sections contain data | |||
| 816 | // copied from input sections, and there may be a relocation pointing to its | |||
| 817 | // contents if -r or -emit-reloc are given. | |||
| 818 | if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) | |||
| 819 | continue; | |||
| 820 | ||||
| 821 | // Set the symbol to be relative to the output section so that its st_value | |||
| 822 | // equals the output section address. Note, there may be a gap between the | |||
| 823 | // start of the output section and isec. | |||
| 824 | auto *sym = | |||
| 825 | make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, | |||
| 826 | /*value=*/0, /*size=*/0, isec->getOutputSection()); | |||
| 827 | in.symTab->addSymbol(sym); | |||
| 828 | } | |||
| 829 | } | |||
| 830 | ||||
| 831 | // Today's loaders have a feature to make segments read-only after | |||
| 832 | // processing dynamic relocations to enhance security. PT_GNU_RELRO | |||
| 833 | // is defined for that. | |||
| 834 | // | |||
| 835 | // This function returns true if a section needs to be put into a | |||
| 836 | // PT_GNU_RELRO segment. | |||
| 837 | static bool isRelroSection(const OutputSection *sec) { | |||
| 838 | if (!config->zRelro) | |||
| 839 | return false; | |||
| 840 | ||||
| 841 | uint64_t flags = sec->flags; | |||
| 842 | ||||
| 843 | // Non-allocatable or non-writable sections don't need RELRO because | |||
| 844 | // they are not writable or not even mapped to memory in the first place. | |||
| 845 | // RELRO is for sections that are essentially read-only but need to | |||
| 846 | // be writable only at process startup to allow dynamic linker to | |||
| 847 | // apply relocations. | |||
| 848 | if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) | |||
| 849 | return false; | |||
| 850 | ||||
| 851 | // Once initialized, TLS data segments are used as data templates | |||
| 852 | // for a thread-local storage. For each new thread, runtime | |||
| 853 | // allocates memory for a TLS and copy templates there. No thread | |||
| 854 | // are supposed to use templates directly. Thus, it can be in RELRO. | |||
| 855 | if (flags & SHF_TLS) | |||
| 856 | return true; | |||
| 857 | ||||
| 858 | // .init_array, .preinit_array and .fini_array contain pointers to | |||
| 859 | // functions that are executed on process startup or exit. These | |||
| 860 | // pointers are set by the static linker, and they are not expected | |||
| 861 | // to change at runtime. But if you are an attacker, you could do | |||
| 862 | // interesting things by manipulating pointers in .fini_array, for | |||
| 863 | // example. So they are put into RELRO. | |||
| 864 | uint32_t type = sec->type; | |||
| 865 | if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || | |||
| 866 | type == SHT_PREINIT_ARRAY) | |||
| 867 | return true; | |||
| 868 | ||||
| 869 | // .got contains pointers to external symbols. They are resolved by | |||
| 870 | // the dynamic linker when a module is loaded into memory, and after | |||
| 871 | // that they are not expected to change. So, it can be in RELRO. | |||
| 872 | if (in.got && sec == in.got->getParent()) | |||
| 873 | return true; | |||
| 874 | ||||
| 875 | // .toc is a GOT-ish section for PowerPC64. Their contents are accessed | |||
| 876 | // through r2 register, which is reserved for that purpose. Since r2 is used | |||
| 877 | // for accessing .got as well, .got and .toc need to be close enough in the | |||
| 878 | // virtual address space. Usually, .toc comes just after .got. Since we place | |||
| 879 | // .got into RELRO, .toc needs to be placed into RELRO too. | |||
| 880 | if (sec->name.equals(".toc")) | |||
| 881 | return true; | |||
| 882 | ||||
| 883 | // .got.plt contains pointers to external function symbols. They are | |||
| 884 | // by default resolved lazily, so we usually cannot put it into RELRO. | |||
| 885 | // However, if "-z now" is given, the lazy symbol resolution is | |||
| 886 | // disabled, which enables us to put it into RELRO. | |||
| 887 | if (sec == in.gotPlt->getParent()) | |||
| 888 | #ifndef __OpenBSD__1 | |||
| 889 | return config->zNow; | |||
| 890 | #else | |||
| 891 | return true; /* kbind(2) means we can always put these in RELRO */ | |||
| 892 | #endif | |||
| 893 | ||||
| 894 | // .dynamic section contains data for the dynamic linker, and | |||
| 895 | // there's no need to write to it at runtime, so it's better to put | |||
| 896 | // it into RELRO. | |||
| 897 | if (sec->name == ".dynamic") | |||
| 898 | return true; | |||
| 899 | ||||
| 900 | // Sections with some special names are put into RELRO. This is a | |||
| 901 | // bit unfortunate because section names shouldn't be significant in | |||
| 902 | // ELF in spirit. But in reality many linker features depend on | |||
| 903 | // magic section names. | |||
| 904 | StringRef s = sec->name; | |||
| 905 | return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || | |||
| 906 | s == ".dtors" || s == ".jcr" || s == ".eh_frame" || | |||
| 907 | s == ".fini_array" || s == ".init_array" || | |||
| 908 | s == ".openbsd.randomdata" || s == ".preinit_array"; | |||
| 909 | } | |||
| 910 | ||||
| 911 | // We compute a rank for each section. The rank indicates where the | |||
| 912 | // section should be placed in the file. Instead of using simple | |||
| 913 | // numbers (0,1,2...), we use a series of flags. One for each decision | |||
| 914 | // point when placing the section. | |||
| 915 | // Using flags has two key properties: | |||
| 916 | // * It is easy to check if a give branch was taken. | |||
| 917 | // * It is easy two see how similar two ranks are (see getRankProximity). | |||
| 918 | enum RankFlags { | |||
| 919 | RF_NOT_ADDR_SET = 1 << 27, | |||
| 920 | RF_NOT_ALLOC = 1 << 26, | |||
| 921 | RF_PARTITION = 1 << 18, // Partition number (8 bits) | |||
| 922 | RF_NOT_PART_EHDR = 1 << 17, | |||
| 923 | RF_NOT_PART_PHDR = 1 << 16, | |||
| 924 | RF_NOT_INTERP = 1 << 15, | |||
| 925 | RF_NOT_NOTE = 1 << 14, | |||
| 926 | RF_WRITE = 1 << 13, | |||
| 927 | RF_EXEC_WRITE = 1 << 12, | |||
| 928 | RF_EXEC = 1 << 11, | |||
| 929 | RF_RODATA = 1 << 10, | |||
| 930 | RF_NOT_RELRO = 1 << 9, | |||
| 931 | RF_NOT_TLS = 1 << 8, | |||
| 932 | RF_BSS = 1 << 7, | |||
| 933 | RF_PPC_NOT_TOCBSS = 1 << 6, | |||
| 934 | RF_PPC_TOCL = 1 << 5, | |||
| 935 | RF_PPC_TOC = 1 << 4, | |||
| 936 | RF_PPC_GOT = 1 << 3, | |||
| 937 | RF_PPC_BRANCH_LT = 1 << 2, | |||
| 938 | RF_MIPS_GPREL = 1 << 1, | |||
| 939 | RF_MIPS_NOT_GOT = 1 << 0 | |||
| 940 | }; | |||
| 941 | ||||
| 942 | static unsigned getSectionRank(const OutputSection *sec) { | |||
| 943 | unsigned rank = sec->partition * RF_PARTITION; | |||
| 944 | ||||
| 945 | // We want to put section specified by -T option first, so we | |||
| 946 | // can start assigning VA starting from them later. | |||
| 947 | if (config->sectionStartMap.count(sec->name)) | |||
| 948 | return rank; | |||
| 949 | rank |= RF_NOT_ADDR_SET; | |||
| 950 | ||||
| 951 | // Allocatable sections go first to reduce the total PT_LOAD size and | |||
| 952 | // so debug info doesn't change addresses in actual code. | |||
| 953 | if (!(sec->flags & SHF_ALLOC)) | |||
| 954 | return rank | RF_NOT_ALLOC; | |||
| 955 | ||||
| 956 | if (sec->type == SHT_LLVM_PART_EHDR) | |||
| 957 | return rank; | |||
| 958 | rank |= RF_NOT_PART_EHDR; | |||
| 959 | ||||
| 960 | if (sec->type == SHT_LLVM_PART_PHDR) | |||
| 961 | return rank; | |||
| 962 | rank |= RF_NOT_PART_PHDR; | |||
| 963 | ||||
| 964 | // Put .interp first because some loaders want to see that section | |||
| 965 | // on the first page of the executable file when loaded into memory. | |||
| 966 | if (sec->name == ".interp") | |||
| 967 | return rank; | |||
| 968 | rank |= RF_NOT_INTERP; | |||
| 969 | ||||
| 970 | // Put .note sections (which make up one PT_NOTE) at the beginning so that | |||
| 971 | // they are likely to be included in a core file even if core file size is | |||
| 972 | // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be | |||
| 973 | // included in a core to match core files with executables. | |||
| 974 | if (sec->type == SHT_NOTE) | |||
| 975 | return rank; | |||
| 976 | rank |= RF_NOT_NOTE; | |||
| 977 | ||||
| 978 | // Sort sections based on their access permission in the following | |||
| 979 | // order: R, RX, RWX, RW. This order is based on the following | |||
| 980 | // considerations: | |||
| 981 | // * Read-only sections come first such that they go in the | |||
| 982 | // PT_LOAD covering the program headers at the start of the file. | |||
| 983 | // * Read-only, executable sections come next. | |||
| 984 | // * Writable, executable sections follow such that .plt on | |||
| 985 | // architectures where it needs to be writable will be placed | |||
| 986 | // between .text and .data. | |||
| 987 | // * Writable sections come last, such that .bss lands at the very | |||
| 988 | // end of the last PT_LOAD. | |||
| 989 | bool isExec = sec->flags & SHF_EXECINSTR; | |||
| 990 | bool isWrite = sec->flags & SHF_WRITE; | |||
| 991 | ||||
| 992 | if (isExec) { | |||
| 993 | if (isWrite) | |||
| 994 | rank |= RF_EXEC_WRITE; | |||
| 995 | else | |||
| 996 | rank |= RF_EXEC; | |||
| 997 | } else if (isWrite) { | |||
| 998 | rank |= RF_WRITE; | |||
| 999 | } else if (sec->type == SHT_PROGBITS) { | |||
| 1000 | // Make non-executable and non-writable PROGBITS sections (e.g .rodata | |||
| 1001 | // .eh_frame) closer to .text. They likely contain PC or GOT relative | |||
| 1002 | // relocations and there could be relocation overflow if other huge sections | |||
| 1003 | // (.dynstr .dynsym) were placed in between. | |||
| 1004 | rank |= RF_RODATA; | |||
| 1005 | } | |||
| 1006 | ||||
| 1007 | // Place RelRo sections first. After considering SHT_NOBITS below, the | |||
| 1008 | // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), | |||
| 1009 | // where | marks where page alignment happens. An alternative ordering is | |||
| 1010 | // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may | |||
| 1011 | // waste more bytes due to 2 alignment places. | |||
| 1012 | if (!isRelroSection(sec)) | |||
| 1013 | rank |= RF_NOT_RELRO; | |||
| 1014 | ||||
| 1015 | // If we got here we know that both A and B are in the same PT_LOAD. | |||
| 1016 | ||||
| 1017 | // The TLS initialization block needs to be a single contiguous block in a R/W | |||
| 1018 | // PT_LOAD, so stick TLS sections directly before the other RelRo R/W | |||
| 1019 | // sections. Since p_filesz can be less than p_memsz, place NOBITS sections | |||
| 1020 | // after PROGBITS. | |||
| 1021 | if (!(sec->flags & SHF_TLS)) | |||
| 1022 | rank |= RF_NOT_TLS; | |||
| 1023 | ||||
| 1024 | // Within TLS sections, or within other RelRo sections, or within non-RelRo | |||
| 1025 | // sections, place non-NOBITS sections first. | |||
| 1026 | if (sec->type == SHT_NOBITS) | |||
| 1027 | rank |= RF_BSS; | |||
| 1028 | ||||
| 1029 | // Some architectures have additional ordering restrictions for sections | |||
| 1030 | // within the same PT_LOAD. | |||
| 1031 | if (config->emachine == EM_PPC64) { | |||
| 1032 | // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections | |||
| 1033 | // that we would like to make sure appear is a specific order to maximize | |||
| 1034 | // their coverage by a single signed 16-bit offset from the TOC base | |||
| 1035 | // pointer. Conversely, the special .tocbss section should be first among | |||
| 1036 | // all SHT_NOBITS sections. This will put it next to the loaded special | |||
| 1037 | // PPC64 sections (and, thus, within reach of the TOC base pointer). | |||
| 1038 | StringRef name = sec->name; | |||
| 1039 | if (name != ".tocbss") | |||
| 1040 | rank |= RF_PPC_NOT_TOCBSS; | |||
| 1041 | ||||
| 1042 | if (name == ".toc1") | |||
| 1043 | rank |= RF_PPC_TOCL; | |||
| 1044 | ||||
| 1045 | if (name == ".toc") | |||
| 1046 | rank |= RF_PPC_TOC; | |||
| 1047 | ||||
| 1048 | if (name == ".got") | |||
| 1049 | rank |= RF_PPC_GOT; | |||
| 1050 | ||||
| 1051 | if (name == ".branch_lt") | |||
| 1052 | rank |= RF_PPC_BRANCH_LT; | |||
| 1053 | } | |||
| 1054 | ||||
| 1055 | if (config->emachine == EM_MIPS) { | |||
| 1056 | // All sections with SHF_MIPS_GPREL flag should be grouped together | |||
| 1057 | // because data in these sections is addressable with a gp relative address. | |||
| 1058 | if (sec->flags & SHF_MIPS_GPREL) | |||
| 1059 | rank |= RF_MIPS_GPREL; | |||
| 1060 | ||||
| 1061 | if (sec->name != ".got") | |||
| 1062 | rank |= RF_MIPS_NOT_GOT; | |||
| 1063 | } | |||
| 1064 | ||||
| 1065 | return rank; | |||
| 1066 | } | |||
| 1067 | ||||
| 1068 | static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { | |||
| 1069 | const OutputSection *a = cast<OutputSection>(aCmd); | |||
| 1070 | const OutputSection *b = cast<OutputSection>(bCmd); | |||
| 1071 | ||||
| 1072 | if (a->sortRank != b->sortRank) | |||
| 1073 | return a->sortRank < b->sortRank; | |||
| 1074 | ||||
| 1075 | if (!(a->sortRank & RF_NOT_ADDR_SET)) | |||
| 1076 | return config->sectionStartMap.lookup(a->name) < | |||
| 1077 | config->sectionStartMap.lookup(b->name); | |||
| 1078 | return false; | |||
| 1079 | } | |||
| 1080 | ||||
| 1081 | void PhdrEntry::add(OutputSection *sec) { | |||
| 1082 | lastSec = sec; | |||
| 1083 | if (!firstSec) | |||
| 1084 | firstSec = sec; | |||
| 1085 | p_align = std::max(p_align, sec->alignment); | |||
| 1086 | if (p_type == PT_LOAD) | |||
| 1087 | sec->ptLoad = this; | |||
| 1088 | } | |||
| 1089 | ||||
| 1090 | // The beginning and the ending of .rel[a].plt section are marked | |||
| 1091 | // with __rel[a]_iplt_{start,end} symbols if it is a statically linked | |||
| 1092 | // executable. The runtime needs these symbols in order to resolve | |||
| 1093 | // all IRELATIVE relocs on startup. For dynamic executables, we don't | |||
| 1094 | // need these symbols, since IRELATIVE relocs are resolved through GOT | |||
| 1095 | // and PLT. For details, see http://www.airs.com/blog/archives/403. | |||
| 1096 | template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { | |||
| 1097 | if (config->relocatable || config->isPic) | |||
| 1098 | return; | |||
| 1099 | ||||
| 1100 | // By default, __rela_iplt_{start,end} belong to a dummy section 0 | |||
| 1101 | // because .rela.plt might be empty and thus removed from output. | |||
| 1102 | // We'll override Out::elfHeader with In.relaIplt later when we are | |||
| 1103 | // sure that .rela.plt exists in output. | |||
| 1104 | ElfSym::relaIpltStart = addOptionalRegular( | |||
| 1105 | config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", | |||
| 1106 | Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); | |||
| 1107 | ||||
| 1108 | ElfSym::relaIpltEnd = addOptionalRegular( | |||
| 1109 | config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", | |||
| 1110 | Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); | |||
| 1111 | } | |||
| 1112 | ||||
| 1113 | template <class ELFT> | |||
| 1114 | void Writer<ELFT>::forEachRelSec( | |||
| 1115 | llvm::function_ref<void(InputSectionBase &)> fn) { | |||
| 1116 | // Scan all relocations. Each relocation goes through a series | |||
| 1117 | // of tests to determine if it needs special treatment, such as | |||
| 1118 | // creating GOT, PLT, copy relocations, etc. | |||
| 1119 | // Note that relocations for non-alloc sections are directly | |||
| 1120 | // processed by InputSection::relocateNonAlloc. | |||
| 1121 | for (InputSectionBase *isec : inputSections) | |||
| 1122 | if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) | |||
| 1123 | fn(*isec); | |||
| 1124 | for (Partition &part : partitions) { | |||
| 1125 | for (EhInputSection *es : part.ehFrame->sections) | |||
| 1126 | fn(*es); | |||
| 1127 | if (part.armExidx && part.armExidx->isLive()) | |||
| 1128 | for (InputSection *ex : part.armExidx->exidxSections) | |||
| 1129 | fn(*ex); | |||
| 1130 | } | |||
| 1131 | } | |||
| 1132 | ||||
| 1133 | // This function generates assignments for predefined symbols (e.g. _end or | |||
| 1134 | // _etext) and inserts them into the commands sequence to be processed at the | |||
| 1135 | // appropriate time. This ensures that the value is going to be correct by the | |||
| 1136 | // time any references to these symbols are processed and is equivalent to | |||
| 1137 | // defining these symbols explicitly in the linker script. | |||
| 1138 | template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { | |||
| 1139 | if (ElfSym::globalOffsetTable) { | |||
| 1140 | // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually | |||
| 1141 | // to the start of the .got or .got.plt section. | |||
| 1142 | InputSection *gotSection = in.gotPlt; | |||
| 1143 | if (!target->gotBaseSymInGotPlt) | |||
| 1144 | gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) | |||
| 1145 | : cast<InputSection>(in.got); | |||
| 1146 | ElfSym::globalOffsetTable->section = gotSection; | |||
| 1147 | } | |||
| 1148 | ||||
| 1149 | // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. | |||
| 1150 | if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { | |||
| 1151 | ElfSym::relaIpltStart->section = in.relaIplt; | |||
| 1152 | ElfSym::relaIpltEnd->section = in.relaIplt; | |||
| 1153 | ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); | |||
| 1154 | } | |||
| 1155 | ||||
| 1156 | PhdrEntry *last = nullptr; | |||
| 1157 | PhdrEntry *lastRO = nullptr; | |||
| 1158 | ||||
| 1159 | for (Partition &part : partitions) { | |||
| 1160 | for (PhdrEntry *p : part.phdrs) { | |||
| 1161 | if (p->p_type != PT_LOAD) | |||
| 1162 | continue; | |||
| 1163 | last = p; | |||
| 1164 | if (!(p->p_flags & PF_W)) | |||
| 1165 | lastRO = p; | |||
| 1166 | } | |||
| 1167 | } | |||
| 1168 | ||||
| 1169 | if (lastRO) { | |||
| 1170 | // _etext is the first location after the last read-only loadable segment. | |||
| 1171 | if (ElfSym::etext1) | |||
| 1172 | ElfSym::etext1->section = lastRO->lastSec; | |||
| 1173 | if (ElfSym::etext2) | |||
| 1174 | ElfSym::etext2->section = lastRO->lastSec; | |||
| 1175 | } | |||
| 1176 | ||||
| 1177 | if (last) { | |||
| 1178 | // _edata points to the end of the last mapped initialized section. | |||
| 1179 | OutputSection *edata = nullptr; | |||
| 1180 | for (OutputSection *os : outputSections) { | |||
| 1181 | if (os->type != SHT_NOBITS) | |||
| 1182 | edata = os; | |||
| 1183 | if (os == last->lastSec) | |||
| 1184 | break; | |||
| 1185 | } | |||
| 1186 | ||||
| 1187 | if (ElfSym::edata1) | |||
| 1188 | ElfSym::edata1->section = edata; | |||
| 1189 | if (ElfSym::edata2) | |||
| 1190 | ElfSym::edata2->section = edata; | |||
| 1191 | ||||
| 1192 | // _end is the first location after the uninitialized data region. | |||
| 1193 | if (ElfSym::end1) | |||
| 1194 | ElfSym::end1->section = last->lastSec; | |||
| 1195 | if (ElfSym::end2) | |||
| 1196 | ElfSym::end2->section = last->lastSec; | |||
| 1197 | } | |||
| 1198 | ||||
| 1199 | if (ElfSym::bss) | |||
| 1200 | ElfSym::bss->section = findSection(".bss"); | |||
| 1201 | ||||
| 1202 | if (ElfSym::data) | |||
| 1203 | ElfSym::data->section = findSection(".data"); | |||
| 1204 | ||||
| 1205 | // Setup MIPS _gp_disp/__gnu_local_gp symbols which should | |||
| 1206 | // be equal to the _gp symbol's value. | |||
| 1207 | if (ElfSym::mipsGp) { | |||
| 1208 | // Find GP-relative section with the lowest address | |||
| 1209 | // and use this address to calculate default _gp value. | |||
| 1210 | for (OutputSection *os : outputSections) { | |||
| 1211 | if (os->flags & SHF_MIPS_GPREL) { | |||
| 1212 | ElfSym::mipsGp->section = os; | |||
| 1213 | ElfSym::mipsGp->value = 0x7ff0; | |||
| 1214 | break; | |||
| 1215 | } | |||
| 1216 | } | |||
| 1217 | } | |||
| 1218 | } | |||
| 1219 | ||||
| 1220 | // We want to find how similar two ranks are. | |||
| 1221 | // The more branches in getSectionRank that match, the more similar they are. | |||
| 1222 | // Since each branch corresponds to a bit flag, we can just use | |||
| 1223 | // countLeadingZeros. | |||
| 1224 | static int getRankProximityAux(OutputSection *a, OutputSection *b) { | |||
| 1225 | return countLeadingZeros(a->sortRank ^ b->sortRank); | |||
| 1226 | } | |||
| 1227 | ||||
| 1228 | static int getRankProximity(OutputSection *a, BaseCommand *b) { | |||
| 1229 | auto *sec = dyn_cast<OutputSection>(b); | |||
| 1230 | return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; | |||
| 1231 | } | |||
| 1232 | ||||
| 1233 | // When placing orphan sections, we want to place them after symbol assignments | |||
| 1234 | // so that an orphan after | |||
| 1235 | // begin_foo = .; | |||
| 1236 | // foo : { *(foo) } | |||
| 1237 | // end_foo = .; | |||
| 1238 | // doesn't break the intended meaning of the begin/end symbols. | |||
| 1239 | // We don't want to go over sections since findOrphanPos is the | |||
| 1240 | // one in charge of deciding the order of the sections. | |||
| 1241 | // We don't want to go over changes to '.', since doing so in | |||
| 1242 | // rx_sec : { *(rx_sec) } | |||
| 1243 | // . = ALIGN(0x1000); | |||
| 1244 | // /* The RW PT_LOAD starts here*/ | |||
| 1245 | // rw_sec : { *(rw_sec) } | |||
| 1246 | // would mean that the RW PT_LOAD would become unaligned. | |||
| 1247 | static bool shouldSkip(BaseCommand *cmd) { | |||
| 1248 | if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) | |||
| 1249 | return assign->name != "."; | |||
| 1250 | return false; | |||
| 1251 | } | |||
| 1252 | ||||
| 1253 | // We want to place orphan sections so that they share as much | |||
| 1254 | // characteristics with their neighbors as possible. For example, if | |||
| 1255 | // both are rw, or both are tls. | |||
| 1256 | static std::vector<BaseCommand *>::iterator | |||
| 1257 | findOrphanPos(std::vector<BaseCommand *>::iterator b, | |||
| 1258 | std::vector<BaseCommand *>::iterator e) { | |||
| 1259 | OutputSection *sec = cast<OutputSection>(*e); | |||
| 1260 | ||||
| 1261 | // Find the first element that has as close a rank as possible. | |||
| 1262 | auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { | |||
| 1263 | return getRankProximity(sec, a) < getRankProximity(sec, b); | |||
| 1264 | }); | |||
| 1265 | if (i == e) | |||
| 1266 | return e; | |||
| 1267 | ||||
| 1268 | // Consider all existing sections with the same proximity. | |||
| 1269 | int proximity = getRankProximity(sec, *i); | |||
| 1270 | for (; i != e; ++i) { | |||
| 1271 | auto *curSec = dyn_cast<OutputSection>(*i); | |||
| 1272 | if (!curSec || !curSec->hasInputSections) | |||
| 1273 | continue; | |||
| 1274 | if (getRankProximity(sec, curSec) != proximity || | |||
| 1275 | sec->sortRank < curSec->sortRank) | |||
| 1276 | break; | |||
| 1277 | } | |||
| 1278 | ||||
| 1279 | auto isOutputSecWithInputSections = [](BaseCommand *cmd) { | |||
| 1280 | auto *os = dyn_cast<OutputSection>(cmd); | |||
| 1281 | return os && os->hasInputSections; | |||
| 1282 | }; | |||
| 1283 | auto j = std::find_if(llvm::make_reverse_iterator(i), | |||
| 1284 | llvm::make_reverse_iterator(b), | |||
| 1285 | isOutputSecWithInputSections); | |||
| 1286 | i = j.base(); | |||
| 1287 | ||||
| 1288 | // As a special case, if the orphan section is the last section, put | |||
| 1289 | // it at the very end, past any other commands. | |||
| 1290 | // This matches bfd's behavior and is convenient when the linker script fully | |||
| 1291 | // specifies the start of the file, but doesn't care about the end (the non | |||
| 1292 | // alloc sections for example). | |||
| 1293 | auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); | |||
| 1294 | if (nextSec == e) | |||
| 1295 | return e; | |||
| 1296 | ||||
| 1297 | while (i != e && shouldSkip(*i)) | |||
| 1298 | ++i; | |||
| 1299 | return i; | |||
| 1300 | } | |||
| 1301 | ||||
| 1302 | // Adds random priorities to sections not already in the map. | |||
| 1303 | static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { | |||
| 1304 | if (config->shuffleSections.empty()) | |||
| 1305 | return; | |||
| 1306 | ||||
| 1307 | std::vector<InputSectionBase *> matched, sections = inputSections; | |||
| 1308 | matched.reserve(sections.size()); | |||
| 1309 | for (const auto &patAndSeed : config->shuffleSections) { | |||
| 1310 | matched.clear(); | |||
| 1311 | for (InputSectionBase *sec : sections) | |||
| 1312 | if (patAndSeed.first.match(sec->name)) | |||
| 1313 | matched.push_back(sec); | |||
| 1314 | const uint32_t seed = patAndSeed.second; | |||
| 1315 | if (seed == UINT32_MAX0xffffffffU) { | |||
| 1316 | // If --shuffle-sections <section-glob>=-1, reverse the section order. The | |||
| 1317 | // section order is stable even if the number of sections changes. This is | |||
| 1318 | // useful to catch issues like static initialization order fiasco | |||
| 1319 | // reliably. | |||
| 1320 | std::reverse(matched.begin(), matched.end()); | |||
| 1321 | } else { | |||
| 1322 | std::mt19937 g(seed ? seed : std::random_device()()); | |||
| 1323 | llvm::shuffle(matched.begin(), matched.end(), g); | |||
| 1324 | } | |||
| 1325 | size_t i = 0; | |||
| 1326 | for (InputSectionBase *&sec : sections) | |||
| 1327 | if (patAndSeed.first.match(sec->name)) | |||
| 1328 | sec = matched[i++]; | |||
| 1329 | } | |||
| 1330 | ||||
| 1331 | // Existing priorities are < 0, so use priorities >= 0 for the missing | |||
| 1332 | // sections. | |||
| 1333 | int prio = 0; | |||
| 1334 | for (InputSectionBase *sec : sections) { | |||
| 1335 | if (order.try_emplace(sec, prio).second) | |||
| 1336 | ++prio; | |||
| 1337 | } | |||
| 1338 | } | |||
| 1339 | ||||
| 1340 | // Builds section order for handling --symbol-ordering-file. | |||
| 1341 | static DenseMap<const InputSectionBase *, int> buildSectionOrder() { | |||
| 1342 | DenseMap<const InputSectionBase *, int> sectionOrder; | |||
| 1343 | // Use the rarely used option -call-graph-ordering-file to sort sections. | |||
| 1344 | if (!config->callGraphProfile.empty()) | |||
| 1345 | return computeCallGraphProfileOrder(); | |||
| 1346 | ||||
| 1347 | if (config->symbolOrderingFile.empty()) | |||
| 1348 | return sectionOrder; | |||
| 1349 | ||||
| 1350 | struct SymbolOrderEntry { | |||
| 1351 | int priority; | |||
| 1352 | bool present; | |||
| 1353 | }; | |||
| 1354 | ||||
| 1355 | // Build a map from symbols to their priorities. Symbols that didn't | |||
| 1356 | // appear in the symbol ordering file have the lowest priority 0. | |||
| 1357 | // All explicitly mentioned symbols have negative (higher) priorities. | |||
| 1358 | DenseMap<StringRef, SymbolOrderEntry> symbolOrder; | |||
| 1359 | int priority = -config->symbolOrderingFile.size(); | |||
| 1360 | for (StringRef s : config->symbolOrderingFile) | |||
| 1361 | symbolOrder.insert({s, {priority++, false}}); | |||
| 1362 | ||||
| 1363 | // Build a map from sections to their priorities. | |||
| 1364 | auto addSym = [&](Symbol &sym) { | |||
| 1365 | auto it = symbolOrder.find(sym.getName()); | |||
| 1366 | if (it == symbolOrder.end()) | |||
| 1367 | return; | |||
| 1368 | SymbolOrderEntry &ent = it->second; | |||
| 1369 | ent.present = true; | |||
| 1370 | ||||
| 1371 | maybeWarnUnorderableSymbol(&sym); | |||
| 1372 | ||||
| 1373 | if (auto *d = dyn_cast<Defined>(&sym)) { | |||
| 1374 | if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { | |||
| 1375 | int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; | |||
| 1376 | priority = std::min(priority, ent.priority); | |||
| 1377 | } | |||
| 1378 | } | |||
| 1379 | }; | |||
| 1380 | ||||
| 1381 | // We want both global and local symbols. We get the global ones from the | |||
| 1382 | // symbol table and iterate the object files for the local ones. | |||
| 1383 | for (Symbol *sym : symtab->symbols()) | |||
| 1384 | if (!sym->isLazy()) | |||
| 1385 | addSym(*sym); | |||
| 1386 | ||||
| 1387 | for (InputFile *file : objectFiles) | |||
| 1388 | for (Symbol *sym : file->getSymbols()) { | |||
| 1389 | if (!sym->isLocal()) | |||
| 1390 | break; | |||
| 1391 | addSym(*sym); | |||
| 1392 | } | |||
| 1393 | ||||
| 1394 | if (config->warnSymbolOrdering) | |||
| 1395 | for (auto orderEntry : symbolOrder) | |||
| 1396 | if (!orderEntry.second.present) | |||
| 1397 | warn("symbol ordering file: no such symbol: " + orderEntry.first); | |||
| 1398 | ||||
| 1399 | return sectionOrder; | |||
| 1400 | } | |||
| 1401 | ||||
| 1402 | // Sorts the sections in ISD according to the provided section order. | |||
| 1403 | static void | |||
| 1404 | sortISDBySectionOrder(InputSectionDescription *isd, | |||
| 1405 | const DenseMap<const InputSectionBase *, int> &order) { | |||
| 1406 | std::vector<InputSection *> unorderedSections; | |||
| 1407 | std::vector<std::pair<InputSection *, int>> orderedSections; | |||
| 1408 | uint64_t unorderedSize = 0; | |||
| 1409 | ||||
| 1410 | for (InputSection *isec : isd->sections) { | |||
| 1411 | auto i = order.find(isec); | |||
| 1412 | if (i == order.end()) { | |||
| 1413 | unorderedSections.push_back(isec); | |||
| 1414 | unorderedSize += isec->getSize(); | |||
| 1415 | continue; | |||
| 1416 | } | |||
| 1417 | orderedSections.push_back({isec, i->second}); | |||
| 1418 | } | |||
| 1419 | llvm::sort(orderedSections, llvm::less_second()); | |||
| 1420 | ||||
| 1421 | // Find an insertion point for the ordered section list in the unordered | |||
| 1422 | // section list. On targets with limited-range branches, this is the mid-point | |||
| 1423 | // of the unordered section list. This decreases the likelihood that a range | |||
| 1424 | // extension thunk will be needed to enter or exit the ordered region. If the | |||
| 1425 | // ordered section list is a list of hot functions, we can generally expect | |||
| 1426 | // the ordered functions to be called more often than the unordered functions, | |||
| 1427 | // making it more likely that any particular call will be within range, and | |||
| 1428 | // therefore reducing the number of thunks required. | |||
| 1429 | // | |||
| 1430 | // For example, imagine that you have 8MB of hot code and 32MB of cold code. | |||
| 1431 | // If the layout is: | |||
| 1432 | // | |||
| 1433 | // 8MB hot | |||
| 1434 | // 32MB cold | |||
| 1435 | // | |||
| 1436 | // only the first 8-16MB of the cold code (depending on which hot function it | |||
| 1437 | // is actually calling) can call the hot code without a range extension thunk. | |||
| 1438 | // However, if we use this layout: | |||
| 1439 | // | |||
| 1440 | // 16MB cold | |||
| 1441 | // 8MB hot | |||
| 1442 | // 16MB cold | |||
| 1443 | // | |||
| 1444 | // both the last 8-16MB of the first block of cold code and the first 8-16MB | |||
| 1445 | // of the second block of cold code can call the hot code without a thunk. So | |||
| 1446 | // we effectively double the amount of code that could potentially call into | |||
| 1447 | // the hot code without a thunk. | |||
| 1448 | size_t insPt = 0; | |||
| 1449 | if (target->getThunkSectionSpacing() && !orderedSections.empty()) { | |||
| 1450 | uint64_t unorderedPos = 0; | |||
| 1451 | for (; insPt != unorderedSections.size(); ++insPt) { | |||
| 1452 | unorderedPos += unorderedSections[insPt]->getSize(); | |||
| 1453 | if (unorderedPos > unorderedSize / 2) | |||
| 1454 | break; | |||
| 1455 | } | |||
| 1456 | } | |||
| 1457 | ||||
| 1458 | isd->sections.clear(); | |||
| 1459 | for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) | |||
| 1460 | isd->sections.push_back(isec); | |||
| 1461 | for (std::pair<InputSection *, int> p : orderedSections) | |||
| 1462 | isd->sections.push_back(p.first); | |||
| 1463 | for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) | |||
| 1464 | isd->sections.push_back(isec); | |||
| 1465 | } | |||
| 1466 | ||||
| 1467 | static void sortSection(OutputSection *sec, | |||
| 1468 | const DenseMap<const InputSectionBase *, int> &order) { | |||
| 1469 | StringRef name = sec->name; | |||
| 1470 | ||||
| 1471 | // Never sort these. | |||
| 1472 | if (name == ".init" || name == ".fini") | |||
| 1473 | return; | |||
| 1474 | ||||
| 1475 | // IRelative relocations that usually live in the .rel[a].dyn section should | |||
| 1476 | // be processed last by the dynamic loader. To achieve that we add synthetic | |||
| 1477 | // sections in the required order from the beginning so that the in.relaIplt | |||
| 1478 | // section is placed last in an output section. Here we just do not apply | |||
| 1479 | // sorting for an output section which holds the in.relaIplt section. | |||
| 1480 | if (in.relaIplt->getParent() == sec) | |||
| 1481 | return; | |||
| 1482 | ||||
| 1483 | // Sort input sections by priority using the list provided by | |||
| 1484 | // --symbol-ordering-file or --shuffle-sections=. This is a least significant | |||
| 1485 | // digit radix sort. The sections may be sorted stably again by a more | |||
| 1486 | // significant key. | |||
| 1487 | if (!order.empty()) | |||
| 1488 | for (BaseCommand *b : sec->sectionCommands) | |||
| 1489 | if (auto *isd = dyn_cast<InputSectionDescription>(b)) | |||
| 1490 | sortISDBySectionOrder(isd, order); | |||
| 1491 | ||||
| 1492 | // Sort input sections by section name suffixes for | |||
| 1493 | // __attribute__((init_priority(N))). | |||
| 1494 | if (name == ".init_array" || name == ".fini_array") { | |||
| 1495 | if (!script->hasSectionsCommand) | |||
| 1496 | sec->sortInitFini(); | |||
| 1497 | return; | |||
| 1498 | } | |||
| 1499 | ||||
| 1500 | // Sort input sections by the special rule for .ctors and .dtors. | |||
| 1501 | if (name == ".ctors" || name == ".dtors") { | |||
| 1502 | if (!script->hasSectionsCommand) | |||
| 1503 | sec->sortCtorsDtors(); | |||
| 1504 | return; | |||
| 1505 | } | |||
| 1506 | ||||
| 1507 | // .toc is allocated just after .got and is accessed using GOT-relative | |||
| 1508 | // relocations. Object files compiled with small code model have an | |||
| 1509 | // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. | |||
| 1510 | // To reduce the risk of relocation overflow, .toc contents are sorted so that | |||
| 1511 | // sections having smaller relocation offsets are at beginning of .toc | |||
| 1512 | if (config->emachine == EM_PPC64 && name == ".toc") { | |||
| 1513 | if (script->hasSectionsCommand) | |||
| 1514 | return; | |||
| 1515 | assert(sec->sectionCommands.size() == 1)((void)0); | |||
| 1516 | auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); | |||
| 1517 | llvm::stable_sort(isd->sections, | |||
| 1518 | [](const InputSection *a, const InputSection *b) -> bool { | |||
| 1519 | return a->file->ppc64SmallCodeModelTocRelocs && | |||
| 1520 | !b->file->ppc64SmallCodeModelTocRelocs; | |||
| 1521 | }); | |||
| 1522 | return; | |||
| 1523 | } | |||
| 1524 | } | |||
| 1525 | ||||
| 1526 | // If no layout was provided by linker script, we want to apply default | |||
| 1527 | // sorting for special input sections. This also handles --symbol-ordering-file. | |||
| 1528 | template <class ELFT> void Writer<ELFT>::sortInputSections() { | |||
| 1529 | // Build the order once since it is expensive. | |||
| 1530 | DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); | |||
| 1531 | maybeShuffle(order); | |||
| 1532 | for (BaseCommand *base : script->sectionCommands) | |||
| 1533 | if (auto *sec = dyn_cast<OutputSection>(base)) | |||
| 1534 | sortSection(sec, order); | |||
| 1535 | } | |||
| 1536 | ||||
| 1537 | template <class ELFT> void Writer<ELFT>::sortSections() { | |||
| 1538 | llvm::TimeTraceScope timeScope("Sort sections"); | |||
| 1539 | script->adjustSectionsBeforeSorting(); | |||
| 1540 | ||||
| 1541 | // Don't sort if using -r. It is not necessary and we want to preserve the | |||
| 1542 | // relative order for SHF_LINK_ORDER sections. | |||
| 1543 | if (config->relocatable) | |||
| 1544 | return; | |||
| 1545 | ||||
| 1546 | sortInputSections(); | |||
| 1547 | ||||
| 1548 | for (BaseCommand *base : script->sectionCommands) { | |||
| 1549 | auto *os = dyn_cast<OutputSection>(base); | |||
| 1550 | if (!os) | |||
| 1551 | continue; | |||
| 1552 | os->sortRank = getSectionRank(os); | |||
| 1553 | ||||
| 1554 | // We want to assign rude approximation values to outSecOff fields | |||
| 1555 | // to know the relative order of the input sections. We use it for | |||
| 1556 | // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). | |||
| 1557 | uint64_t i = 0; | |||
| 1558 | for (InputSection *sec : getInputSections(os)) | |||
| 1559 | sec->outSecOff = i++; | |||
| 1560 | } | |||
| 1561 | ||||
| 1562 | if (!script->hasSectionsCommand) { | |||
| 1563 | // We know that all the OutputSections are contiguous in this case. | |||
| 1564 | auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; | |||
| 1565 | std::stable_sort( | |||
| 1566 | llvm::find_if(script->sectionCommands, isSection), | |||
| 1567 | llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), | |||
| 1568 | compareSections); | |||
| 1569 | ||||
| 1570 | // Process INSERT commands. From this point onwards the order of | |||
| 1571 | // script->sectionCommands is fixed. | |||
| 1572 | script->processInsertCommands(); | |||
| 1573 | return; | |||
| 1574 | } | |||
| 1575 | ||||
| 1576 | script->processInsertCommands(); | |||
| 1577 | ||||
| 1578 | // Orphan sections are sections present in the input files which are | |||
| 1579 | // not explicitly placed into the output file by the linker script. | |||
| 1580 | // | |||
| 1581 | // The sections in the linker script are already in the correct | |||
| 1582 | // order. We have to figuere out where to insert the orphan | |||
| 1583 | // sections. | |||
| 1584 | // | |||
| 1585 | // The order of the sections in the script is arbitrary and may not agree with | |||
| 1586 | // compareSections. This means that we cannot easily define a strict weak | |||
| 1587 | // ordering. To see why, consider a comparison of a section in the script and | |||
| 1588 | // one not in the script. We have a two simple options: | |||
| 1589 | // * Make them equivalent (a is not less than b, and b is not less than a). | |||
| 1590 | // The problem is then that equivalence has to be transitive and we can | |||
| 1591 | // have sections a, b and c with only b in a script and a less than c | |||
| 1592 | // which breaks this property. | |||
| 1593 | // * Use compareSectionsNonScript. Given that the script order doesn't have | |||
| 1594 | // to match, we can end up with sections a, b, c, d where b and c are in the | |||
| 1595 | // script and c is compareSectionsNonScript less than b. In which case d | |||
| 1596 | // can be equivalent to c, a to b and d < a. As a concrete example: | |||
| 1597 | // .a (rx) # not in script | |||
| 1598 | // .b (rx) # in script | |||
| 1599 | // .c (ro) # in script | |||
| 1600 | // .d (ro) # not in script | |||
| 1601 | // | |||
| 1602 | // The way we define an order then is: | |||
| 1603 | // * Sort only the orphan sections. They are in the end right now. | |||
| 1604 | // * Move each orphan section to its preferred position. We try | |||
| 1605 | // to put each section in the last position where it can share | |||
| 1606 | // a PT_LOAD. | |||
| 1607 | // | |||
| 1608 | // There is some ambiguity as to where exactly a new entry should be | |||
| 1609 | // inserted, because Commands contains not only output section | |||
| 1610 | // commands but also other types of commands such as symbol assignment | |||
| 1611 | // expressions. There's no correct answer here due to the lack of the | |||
| 1612 | // formal specification of the linker script. We use heuristics to | |||
| 1613 | // determine whether a new output command should be added before or | |||
| 1614 | // after another commands. For the details, look at shouldSkip | |||
| 1615 | // function. | |||
| 1616 | ||||
| 1617 | auto i = script->sectionCommands.begin(); | |||
| 1618 | auto e = script->sectionCommands.end(); | |||
| 1619 | auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { | |||
| 1620 | if (auto *sec = dyn_cast<OutputSection>(base)) | |||
| 1621 | return sec->sectionIndex == UINT32_MAX0xffffffffU; | |||
| 1622 | return false; | |||
| 1623 | }); | |||
| 1624 | ||||
| 1625 | // Sort the orphan sections. | |||
| 1626 | std::stable_sort(nonScriptI, e, compareSections); | |||
| 1627 | ||||
| 1628 | // As a horrible special case, skip the first . assignment if it is before any | |||
| 1629 | // section. We do this because it is common to set a load address by starting | |||
| 1630 | // the script with ". = 0xabcd" and the expectation is that every section is | |||
| 1631 | // after that. | |||
| 1632 | auto firstSectionOrDotAssignment = | |||
| 1633 | std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); | |||
| 1634 | if (firstSectionOrDotAssignment != e && | |||
| 1635 | isa<SymbolAssignment>(**firstSectionOrDotAssignment)) | |||
| 1636 | ++firstSectionOrDotAssignment; | |||
| 1637 | i = firstSectionOrDotAssignment; | |||
| 1638 | ||||
| 1639 | while (nonScriptI != e) { | |||
| 1640 | auto pos = findOrphanPos(i, nonScriptI); | |||
| 1641 | OutputSection *orphan = cast<OutputSection>(*nonScriptI); | |||
| 1642 | ||||
| 1643 | // As an optimization, find all sections with the same sort rank | |||
| 1644 | // and insert them with one rotate. | |||
| 1645 | unsigned rank = orphan->sortRank; | |||
| 1646 | auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { | |||
| 1647 | return cast<OutputSection>(cmd)->sortRank != rank; | |||
| 1648 | }); | |||
| 1649 | std::rotate(pos, nonScriptI, end); | |||
| 1650 | nonScriptI = end; | |||
| 1651 | } | |||
| 1652 | ||||
| 1653 | script->adjustSectionsAfterSorting(); | |||
| 1654 | } | |||
| 1655 | ||||
| 1656 | static bool compareByFilePosition(InputSection *a, InputSection *b) { | |||
| 1657 | InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; | |||
| 1658 | InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; | |||
| 1659 | // SHF_LINK_ORDER sections with non-zero sh_link are ordered before | |||
| 1660 | // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. | |||
| 1661 | if (!la || !lb) | |||
| 1662 | return la && !lb; | |||
| 1663 | OutputSection *aOut = la->getParent(); | |||
| 1664 | OutputSection *bOut = lb->getParent(); | |||
| 1665 | ||||
| 1666 | if (aOut != bOut) | |||
| 1667 | return aOut->addr < bOut->addr; | |||
| 1668 | return la->outSecOff < lb->outSecOff; | |||
| 1669 | } | |||
| 1670 | ||||
| 1671 | template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { | |||
| 1672 | llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); | |||
| 1673 | for (OutputSection *sec : outputSections) { | |||
| 1674 | if (!(sec->flags & SHF_LINK_ORDER)) | |||
| 1675 | continue; | |||
| 1676 | ||||
| 1677 | // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated | |||
| 1678 | // this processing inside the ARMExidxsyntheticsection::finalizeContents(). | |||
| 1679 | if (!config->relocatable && config->emachine == EM_ARM && | |||
| 1680 | sec->type == SHT_ARM_EXIDX) | |||
| 1681 | continue; | |||
| 1682 | ||||
| 1683 | // Link order may be distributed across several InputSectionDescriptions. | |||
| 1684 | // Sorting is performed separately. | |||
| 1685 | std::vector<InputSection **> scriptSections; | |||
| 1686 | std::vector<InputSection *> sections; | |||
| 1687 | for (BaseCommand *base : sec->sectionCommands) { | |||
| 1688 | auto *isd = dyn_cast<InputSectionDescription>(base); | |||
| 1689 | if (!isd) | |||
| 1690 | continue; | |||
| 1691 | bool hasLinkOrder = false; | |||
| 1692 | scriptSections.clear(); | |||
| 1693 | sections.clear(); | |||
| 1694 | for (InputSection *&isec : isd->sections) { | |||
| 1695 | if (isec->flags & SHF_LINK_ORDER) { | |||
| 1696 | InputSection *link = isec->getLinkOrderDep(); | |||
| 1697 | if (link && !link->getParent()) | |||
| 1698 | error(toString(isec) + ": sh_link points to discarded section " + | |||
| 1699 | toString(link)); | |||
| 1700 | hasLinkOrder = true; | |||
| 1701 | } | |||
| 1702 | scriptSections.push_back(&isec); | |||
| 1703 | sections.push_back(isec); | |||
| 1704 | } | |||
| 1705 | if (hasLinkOrder && errorCount() == 0) { | |||
| 1706 | llvm::stable_sort(sections, compareByFilePosition); | |||
| 1707 | for (int i = 0, n = sections.size(); i != n; ++i) | |||
| 1708 | *scriptSections[i] = sections[i]; | |||
| 1709 | } | |||
| 1710 | } | |||
| 1711 | } | |||
| 1712 | } | |||
| 1713 | ||||
| 1714 | static void finalizeSynthetic(SyntheticSection *sec) { | |||
| 1715 | if (sec && sec->isNeeded() && sec->getParent()) { | |||
| 1716 | llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); | |||
| 1717 | sec->finalizeContents(); | |||
| 1718 | } | |||
| 1719 | } | |||
| 1720 | ||||
| 1721 | // We need to generate and finalize the content that depends on the address of | |||
| 1722 | // InputSections. As the generation of the content may also alter InputSection | |||
| 1723 | // addresses we must converge to a fixed point. We do that here. See the comment | |||
| 1724 | // in Writer<ELFT>::finalizeSections(). | |||
| 1725 | template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { | |||
| 1726 | llvm::TimeTraceScope timeScope("Finalize address dependent content"); | |||
| 1727 | ThunkCreator tc; | |||
| 1728 | AArch64Err843419Patcher a64p; | |||
| 1729 | ARMErr657417Patcher a32p; | |||
| 1730 | script->assignAddresses(); | |||
| 1731 | // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they | |||
| 1732 | // do require the relative addresses of OutputSections because linker scripts | |||
| 1733 | // can assign Virtual Addresses to OutputSections that are not monotonically | |||
| 1734 | // increasing. | |||
| 1735 | for (Partition &part : partitions) | |||
| 1736 | finalizeSynthetic(part.armExidx); | |||
| 1737 | resolveShfLinkOrder(); | |||
| 1738 | ||||
| 1739 | // Converts call x@GDPLT to call __tls_get_addr | |||
| 1740 | if (config->emachine == EM_HEXAGON) | |||
| 1741 | hexagonTLSSymbolUpdate(outputSections); | |||
| 1742 | ||||
| 1743 | int assignPasses = 0; | |||
| 1744 | for (;;) { | |||
| 1745 | bool changed = target->needsThunks && tc.createThunks(outputSections); | |||
| 1746 | ||||
| 1747 | // With Thunk Size much smaller than branch range we expect to | |||
| 1748 | // converge quickly; if we get to 15 something has gone wrong. | |||
| 1749 | if (changed && tc.pass >= 15) { | |||
| 1750 | error("thunk creation not converged"); | |||
| 1751 | break; | |||
| 1752 | } | |||
| 1753 | ||||
| 1754 | if (config->fixCortexA53Errata843419) { | |||
| 1755 | if (changed) | |||
| 1756 | script->assignAddresses(); | |||
| 1757 | changed |= a64p.createFixes(); | |||
| 1758 | } | |||
| 1759 | if (config->fixCortexA8) { | |||
| 1760 | if (changed) | |||
| 1761 | script->assignAddresses(); | |||
| 1762 | changed |= a32p.createFixes(); | |||
| 1763 | } | |||
| 1764 | ||||
| 1765 | if (in.mipsGot) | |||
| 1766 | in.mipsGot->updateAllocSize(); | |||
| 1767 | ||||
| 1768 | for (Partition &part : partitions) { | |||
| 1769 | changed |= part.relaDyn->updateAllocSize(); | |||
| 1770 | if (part.relrDyn) | |||
| 1771 | changed |= part.relrDyn->updateAllocSize(); | |||
| 1772 | } | |||
| 1773 | ||||
| 1774 | const Defined *changedSym = script->assignAddresses(); | |||
| 1775 | if (!changed) { | |||
| 1776 | // Some symbols may be dependent on section addresses. When we break the | |||
| 1777 | // loop, the symbol values are finalized because a previous | |||
| 1778 | // assignAddresses() finalized section addresses. | |||
| 1779 | if (!changedSym) | |||
| 1780 | break; | |||
| 1781 | if (++assignPasses == 5) { | |||
| 1782 | errorOrWarn("assignment to symbol " + toString(*changedSym) + | |||
| 1783 | " does not converge"); | |||
| 1784 | break; | |||
| 1785 | } | |||
| 1786 | } | |||
| 1787 | } | |||
| 1788 | ||||
| 1789 | // If addrExpr is set, the address may not be a multiple of the alignment. | |||
| 1790 | // Warn because this is error-prone. | |||
| 1791 | for (BaseCommand *cmd : script->sectionCommands) | |||
| 1792 | if (auto *os = dyn_cast<OutputSection>(cmd)) | |||
| 1793 | if (os->addr % os->alignment != 0) | |||
| 1794 | warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + | |||
| 1795 | os->name + " is not a multiple of alignment (" + | |||
| 1796 | Twine(os->alignment) + ")"); | |||
| 1797 | } | |||
| 1798 | ||||
| 1799 | // If Input Sections have been shrunk (basic block sections) then | |||
| 1800 | // update symbol values and sizes associated with these sections. With basic | |||
| 1801 | // block sections, input sections can shrink when the jump instructions at | |||
| 1802 | // the end of the section are relaxed. | |||
| 1803 | static void fixSymbolsAfterShrinking() { | |||
| 1804 | for (InputFile *File : objectFiles) { | |||
| 1805 | parallelForEach(File->getSymbols(), [&](Symbol *Sym) { | |||
| 1806 | auto *def = dyn_cast<Defined>(Sym); | |||
| 1807 | if (!def) | |||
| 1808 | return; | |||
| 1809 | ||||
| 1810 | const SectionBase *sec = def->section; | |||
| 1811 | if (!sec) | |||
| 1812 | return; | |||
| 1813 | ||||
| 1814 | const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); | |||
| 1815 | if (!inputSec || !inputSec->bytesDropped) | |||
| 1816 | return; | |||
| 1817 | ||||
| 1818 | const size_t OldSize = inputSec->data().size(); | |||
| 1819 | const size_t NewSize = OldSize - inputSec->bytesDropped; | |||
| 1820 | ||||
| 1821 | if (def->value > NewSize && def->value <= OldSize) { | |||
| 1822 | LLVM_DEBUG(llvm::dbgs()do { } while (false) | |||
| 1823 | << "Moving symbol " << Sym->getName() << " from "do { } while (false) | |||
| 1824 | << def->value << " to "do { } while (false) | |||
| 1825 | << def->value - inputSec->bytesDropped << " bytes\n")do { } while (false); | |||
| 1826 | def->value -= inputSec->bytesDropped; | |||
| 1827 | return; | |||
| 1828 | } | |||
| 1829 | ||||
| 1830 | if (def->value + def->size > NewSize && def->value <= OldSize && | |||
| 1831 | def->value + def->size <= OldSize) { | |||
| 1832 | LLVM_DEBUG(llvm::dbgs()do { } while (false) | |||
| 1833 | << "Shrinking symbol " << Sym->getName() << " from "do { } while (false) | |||
| 1834 | << def->size << " to " << def->size - inputSec->bytesDroppeddo { } while (false) | |||
| 1835 | << " bytes\n")do { } while (false); | |||
| 1836 | def->size -= inputSec->bytesDropped; | |||
| 1837 | } | |||
| 1838 | }); | |||
| 1839 | } | |||
| 1840 | } | |||
| 1841 | ||||
| 1842 | // If basic block sections exist, there are opportunities to delete fall thru | |||
| 1843 | // jumps and shrink jump instructions after basic block reordering. This | |||
| 1844 | // relaxation pass does that. It is only enabled when --optimize-bb-jumps | |||
| 1845 | // option is used. | |||
| 1846 | template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { | |||
| 1847 | assert(config->optimizeBBJumps)((void)0); | |||
| 1848 | ||||
| 1849 | script->assignAddresses(); | |||
| 1850 | // For every output section that has executable input sections, this | |||
| 1851 | // does the following: | |||
| 1852 | // 1. Deletes all direct jump instructions in input sections that | |||
| 1853 | // jump to the following section as it is not required. | |||
| 1854 | // 2. If there are two consecutive jump instructions, it checks | |||
| 1855 | // if they can be flipped and one can be deleted. | |||
| 1856 | for (OutputSection *os : outputSections) { | |||
| 1857 | if (!(os->flags & SHF_EXECINSTR)) | |||
| 1858 | continue; | |||
| 1859 | std::vector<InputSection *> sections = getInputSections(os); | |||
| 1860 | std::vector<unsigned> result(sections.size()); | |||
| 1861 | // Delete all fall through jump instructions. Also, check if two | |||
| 1862 | // consecutive jump instructions can be flipped so that a fall | |||
| 1863 | // through jmp instruction can be deleted. | |||
| 1864 | parallelForEachN(0, sections.size(), [&](size_t i) { | |||
| 1865 | InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; | |||
| 1866 | InputSection &is = *sections[i]; | |||
| 1867 | result[i] = | |||
| 1868 | target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; | |||
| 1869 | }); | |||
| 1870 | size_t numDeleted = std::count(result.begin(), result.end(), 1); | |||
| 1871 | if (numDeleted > 0) { | |||
| 1872 | script->assignAddresses(); | |||
| 1873 | LLVM_DEBUG(llvm::dbgs()do { } while (false) | |||
| 1874 | << "Removing " << numDeleted << " fall through jumps\n")do { } while (false); | |||
| 1875 | } | |||
| 1876 | } | |||
| 1877 | ||||
| 1878 | fixSymbolsAfterShrinking(); | |||
| 1879 | ||||
| 1880 | for (OutputSection *os : outputSections) { | |||
| 1881 | std::vector<InputSection *> sections = getInputSections(os); | |||
| 1882 | for (InputSection *is : sections) | |||
| 1883 | is->trim(); | |||
| 1884 | } | |||
| 1885 | } | |||
| 1886 | ||||
| 1887 | // In order to allow users to manipulate linker-synthesized sections, | |||
| 1888 | // we had to add synthetic sections to the input section list early, | |||
| 1889 | // even before we make decisions whether they are needed. This allows | |||
| 1890 | // users to write scripts like this: ".mygot : { .got }". | |||
| 1891 | // | |||
| 1892 | // Doing it has an unintended side effects. If it turns out that we | |||
| 1893 | // don't need a .got (for example) at all because there's no | |||
| 1894 | // relocation that needs a .got, we don't want to emit .got. | |||
| 1895 | // | |||
| 1896 | // To deal with the above problem, this function is called after | |||
| 1897 | // scanRelocations is called to remove synthetic sections that turn | |||
| 1898 | // out to be empty. | |||
| 1899 | static void removeUnusedSyntheticSections() { | |||
| 1900 | // All input synthetic sections that can be empty are placed after | |||
| 1901 | // all regular ones. Reverse iterate to find the first synthetic section | |||
| 1902 | // after a non-synthetic one which will be our starting point. | |||
| 1903 | auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), | |||
| 1904 | [](InputSectionBase *s) { | |||
| 1905 | return !isa<SyntheticSection>(s); | |||
| 1906 | }) | |||
| 1907 | .base(); | |||
| 1908 | ||||
| 1909 | DenseSet<InputSectionDescription *> isdSet; | |||
| 1910 | // Mark unused synthetic sections for deletion | |||
| 1911 | auto end = std::stable_partition( | |||
| 1912 | start, inputSections.end(), [&](InputSectionBase *s) { | |||
| 1913 | SyntheticSection *ss = dyn_cast<SyntheticSection>(s); | |||
| 1914 | OutputSection *os = ss->getParent(); | |||
| ||||
| 1915 | if (!os || ss->isNeeded()) | |||
| 1916 | return true; | |||
| 1917 | ||||
| 1918 | // If we reach here, then ss is an unused synthetic section and we want | |||
| 1919 | // to remove it from the corresponding input section description, and | |||
| 1920 | // orphanSections. | |||
| 1921 | for (BaseCommand *b : os->sectionCommands) | |||
| 1922 | if (auto *isd = dyn_cast<InputSectionDescription>(b)) | |||
| 1923 | isdSet.insert(isd); | |||
| 1924 | ||||
| 1925 | llvm::erase_if( | |||
| 1926 | script->orphanSections, | |||
| 1927 | [=](const InputSectionBase *isec) { return isec == ss; }); | |||
| 1928 | ||||
| 1929 | return false; | |||
| 1930 | }); | |||
| 1931 | ||||
| 1932 | DenseSet<InputSectionBase *> unused(end, inputSections.end()); | |||
| 1933 | for (auto *isd : isdSet) | |||
| 1934 | llvm::erase_if(isd->sections, | |||
| 1935 | [=](InputSection *isec) { return unused.count(isec); }); | |||
| 1936 | ||||
| 1937 | // Erase unused synthetic sections. | |||
| 1938 | inputSections.erase(end, inputSections.end()); | |||
| 1939 | } | |||
| 1940 | ||||
| 1941 | // Create output section objects and add them to OutputSections. | |||
| 1942 | template <class ELFT> void Writer<ELFT>::finalizeSections() { | |||
| 1943 | Out::preinitArray = findSection(".preinit_array"); | |||
| 1944 | Out::initArray = findSection(".init_array"); | |||
| 1945 | Out::finiArray = findSection(".fini_array"); | |||
| 1946 | ||||
| 1947 | // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop | |||
| 1948 | // symbols for sections, so that the runtime can get the start and end | |||
| 1949 | // addresses of each section by section name. Add such symbols. | |||
| 1950 | if (!config->relocatable) { | |||
| ||||
| 1951 | addStartEndSymbols(); | |||
| 1952 | for (BaseCommand *base : script->sectionCommands) | |||
| 1953 | if (auto *sec = dyn_cast<OutputSection>(base)) | |||
| 1954 | addStartStopSymbols(sec); | |||
| 1955 | } | |||
| 1956 | ||||
| 1957 | // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. | |||
| 1958 | // It should be okay as no one seems to care about the type. | |||
| 1959 | // Even the author of gold doesn't remember why gold behaves that way. | |||
| 1960 | // https://sourceware.org/ml/binutils/2002-03/msg00360.html | |||
| 1961 | if (mainPart->dynamic->parent) | |||
| 1962 | symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, | |||
| 1963 | STV_HIDDEN, STT_NOTYPE, | |||
| 1964 | /*value=*/0, /*size=*/0, mainPart->dynamic}); | |||
| 1965 | ||||
| 1966 | // Define __rel[a]_iplt_{start,end} symbols if needed. | |||
| 1967 | addRelIpltSymbols(); | |||
| 1968 | ||||
| 1969 | // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol | |||
| 1970 | // should only be defined in an executable. If .sdata does not exist, its | |||
| 1971 | // value/section does not matter but it has to be relative, so set its | |||
| 1972 | // st_shndx arbitrarily to 1 (Out::elfHeader). | |||
| 1973 | if (config->emachine == EM_RISCV && !config->shared) { | |||
| 1974 | OutputSection *sec = findSection(".sdata"); | |||
| 1975 | ElfSym::riscvGlobalPointer = | |||
| 1976 | addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, | |||
| 1977 | 0x800, STV_DEFAULT, STB_GLOBAL); | |||
| 1978 | } | |||
| 1979 | ||||
| 1980 | if (config->emachine == EM_X86_64) { | |||
| 1981 | // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a | |||
| 1982 | // way that: | |||
| 1983 | // | |||
| 1984 | // 1) Without relaxation: it produces a dynamic TLSDESC relocation that | |||
| 1985 | // computes 0. | |||
| 1986 | // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in | |||
| 1987 | // the TLS block). | |||
| 1988 | // | |||
| 1989 | // 2) is special cased in @tpoff computation. To satisfy 1), we define it as | |||
| 1990 | // an absolute symbol of zero. This is different from GNU linkers which | |||
| 1991 | // define _TLS_MODULE_BASE_ relative to the first TLS section. | |||
| 1992 | Symbol *s = symtab->find("_TLS_MODULE_BASE_"); | |||
| 1993 | if (s && s->isUndefined()) { | |||
| 1994 | s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, | |||
| 1995 | STT_TLS, /*value=*/0, 0, | |||
| 1996 | /*section=*/nullptr}); | |||
| 1997 | ElfSym::tlsModuleBase = cast<Defined>(s); | |||
| 1998 | } | |||
| 1999 | } | |||
| 2000 | ||||
| 2001 | { | |||
| 2002 | llvm::TimeTraceScope timeScope("Finalize .eh_frame"); | |||
| 2003 | // This responsible for splitting up .eh_frame section into | |||
| 2004 | // pieces. The relocation scan uses those pieces, so this has to be | |||
| 2005 | // earlier. | |||
| 2006 | for (Partition &part : partitions) | |||
| 2007 | finalizeSynthetic(part.ehFrame); | |||
| 2008 | } | |||
| 2009 | ||||
| 2010 | for (Symbol *sym : symtab->symbols()) | |||
| 2011 | sym->isPreemptible = computeIsPreemptible(*sym); | |||
| 2012 | ||||
| 2013 | // Change values of linker-script-defined symbols from placeholders (assigned | |||
| 2014 | // by declareSymbols) to actual definitions. | |||
| 2015 | script->processSymbolAssignments(); | |||
| 2016 | ||||
| 2017 | { | |||
| 2018 | llvm::TimeTraceScope timeScope("Scan relocations"); | |||
| 2019 | // Scan relocations. This must be done after every symbol is declared so | |||
| 2020 | // that we can correctly decide if a dynamic relocation is needed. This is | |||
| 2021 | // called after processSymbolAssignments() because it needs to know whether | |||
| 2022 | // a linker-script-defined symbol is absolute. | |||
| 2023 | ppc64noTocRelax.clear(); | |||
| 2024 | if (!config->relocatable) { | |||
| 2025 | forEachRelSec(scanRelocations<ELFT>); | |||
| 2026 | reportUndefinedSymbols<ELFT>(); | |||
| 2027 | } | |||
| 2028 | } | |||
| 2029 | ||||
| 2030 | if (in.plt && in.plt->isNeeded()) | |||
| 2031 | in.plt->addSymbols(); | |||
| 2032 | if (in.iplt && in.iplt->isNeeded()) | |||
| 2033 | in.iplt->addSymbols(); | |||
| 2034 | ||||
| 2035 | if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { | |||
| 2036 | auto diagnose = | |||
| 2037 | config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError | |||
| 2038 | ? errorOrWarn | |||
| 2039 | : warn; | |||
| 2040 | // Error on undefined symbols in a shared object, if all of its DT_NEEDED | |||
| 2041 | // entries are seen. These cases would otherwise lead to runtime errors | |||
| 2042 | // reported by the dynamic linker. | |||
| 2043 | // | |||
| 2044 | // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to | |||
| 2045 | // catch more cases. That is too much for us. Our approach resembles the one | |||
| 2046 | // used in ld.gold, achieves a good balance to be useful but not too smart. | |||
| 2047 | for (SharedFile *file : sharedFiles) { | |||
| 2048 | bool allNeededIsKnown = | |||
| 2049 | llvm::all_of(file->dtNeeded, [&](StringRef needed) { | |||
| 2050 | return symtab->soNames.count(needed); | |||
| 2051 | }); | |||
| 2052 | if (!allNeededIsKnown) | |||
| 2053 | continue; | |||
| 2054 | for (Symbol *sym : file->requiredSymbols) | |||
| 2055 | if (sym->isUndefined() && !sym->isWeak()) | |||
| 2056 | diagnose(toString(file) + ": undefined reference to " + | |||
| 2057 | toString(*sym) + " [--no-allow-shlib-undefined]"); | |||
| 2058 | } | |||
| 2059 | } | |||
| 2060 | ||||
| 2061 | { | |||
| 2062 | llvm::TimeTraceScope timeScope("Add symbols to symtabs"); | |||
| 2063 | // Now that we have defined all possible global symbols including linker- | |||
| 2064 | // synthesized ones. Visit all symbols to give the finishing touches. | |||
| 2065 | for (Symbol *sym : symtab->symbols()) { | |||
| 2066 | if (!includeInSymtab(*sym)) | |||
| 2067 | continue; | |||
| 2068 | if (in.symTab) | |||
| 2069 | in.symTab->addSymbol(sym); | |||
| 2070 | ||||
| 2071 | if (sym->includeInDynsym()) { | |||
| 2072 | partitions[sym->partition - 1].dynSymTab->addSymbol(sym); | |||
| 2073 | if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) | |||
| 2074 | if (file->isNeeded && !sym->isUndefined()) | |||
| 2075 | addVerneed(sym); | |||
| 2076 | } | |||
| 2077 | } | |||
| 2078 | ||||
| 2079 | // We also need to scan the dynamic relocation tables of the other | |||
| 2080 | // partitions and add any referenced symbols to the partition's dynsym. | |||
| 2081 | for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { | |||
| 2082 | DenseSet<Symbol *> syms; | |||
| 2083 | for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) | |||
| 2084 | syms.insert(e.sym); | |||
| 2085 | for (DynamicReloc &reloc : part.relaDyn->relocs) | |||
| 2086 | if (reloc.sym && reloc.needsDynSymIndex() && | |||
| 2087 | syms.insert(reloc.sym).second) | |||
| 2088 | part.dynSymTab->addSymbol(reloc.sym); | |||
| 2089 | } | |||
| 2090 | } | |||
| 2091 | ||||
| 2092 | // Do not proceed if there was an undefined symbol. | |||
| 2093 | if (errorCount()) | |||
| 2094 | return; | |||
| 2095 | ||||
| 2096 | if (in.mipsGot) | |||
| 2097 | in.mipsGot->build(); | |||
| 2098 | ||||
| 2099 | removeUnusedSyntheticSections(); | |||
| 2100 | script->diagnoseOrphanHandling(); | |||
| 2101 | ||||
| 2102 | sortSections(); | |||
| 2103 | ||||
| 2104 | // Now that we have the final list, create a list of all the | |||
| 2105 | // OutputSections for convenience. | |||
| 2106 | for (BaseCommand *base : script->sectionCommands) | |||
| 2107 | if (auto *sec = dyn_cast<OutputSection>(base)) | |||
| 2108 | outputSections.push_back(sec); | |||
| 2109 | ||||
| 2110 | // Prefer command line supplied address over other constraints. | |||
| 2111 | for (OutputSection *sec : outputSections) { | |||
| 2112 | auto i = config->sectionStartMap.find(sec->name); | |||
| 2113 | if (i != config->sectionStartMap.end()) | |||
| 2114 | sec->addrExpr = [=] { return i->second; }; | |||
| 2115 | } | |||
| 2116 | ||||
| 2117 | // With the outputSections available check for GDPLT relocations | |||
| 2118 | // and add __tls_get_addr symbol if needed. | |||
| 2119 | if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { | |||
| 2120 | Symbol *sym = symtab->addSymbol(Undefined{ | |||
| 2121 | nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); | |||
| 2122 | sym->isPreemptible = true; | |||
| 2123 | partitions[0].dynSymTab->addSymbol(sym); | |||
| 2124 | } | |||
| 2125 | ||||
| 2126 | // This is a bit of a hack. A value of 0 means undef, so we set it | |||
| 2127 | // to 1 to make __ehdr_start defined. The section number is not | |||
| 2128 | // particularly relevant. | |||
| 2129 | Out::elfHeader->sectionIndex = 1; | |||
| 2130 | ||||
| 2131 | for (size_t i = 0, e = outputSections.size(); i != e; ++i) { | |||
| 2132 | OutputSection *sec = outputSections[i]; | |||
| 2133 | sec->sectionIndex = i + 1; | |||
| 2134 | sec->shName = in.shStrTab->addString(sec->name); | |||
| 2135 | } | |||
| 2136 | ||||
| 2137 | // Binary and relocatable output does not have PHDRS. | |||
| 2138 | // The headers have to be created before finalize as that can influence the | |||
| 2139 | // image base and the dynamic section on mips includes the image base. | |||
| 2140 | if (!config->relocatable && !config->oFormatBinary) { | |||
| 2141 | for (Partition &part : partitions) { | |||
| 2142 | part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() | |||
| 2143 | : createPhdrs(part); | |||
| 2144 | if (config->emachine == EM_ARM) { | |||
| 2145 | // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME | |||
| 2146 | addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); | |||
| 2147 | } | |||
| 2148 | if (config->emachine == EM_MIPS) { | |||
| 2149 | // Add separate segments for MIPS-specific sections. | |||
| 2150 | addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); | |||
| 2151 | addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); | |||
| 2152 | addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); | |||
| 2153 | } | |||
| 2154 | } | |||
| 2155 | Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); | |||
| 2156 | ||||
| 2157 | // Find the TLS segment. This happens before the section layout loop so that | |||
| 2158 | // Android relocation packing can look up TLS symbol addresses. We only need | |||
| 2159 | // to care about the main partition here because all TLS symbols were moved | |||
| 2160 | // to the main partition (see MarkLive.cpp). | |||
| 2161 | for (PhdrEntry *p : mainPart->phdrs) | |||
| 2162 | if (p->p_type == PT_TLS) | |||
| 2163 | Out::tlsPhdr = p; | |||
| 2164 | } | |||
| 2165 | ||||
| 2166 | // Some symbols are defined in term of program headers. Now that we | |||
| 2167 | // have the headers, we can find out which sections they point to. | |||
| 2168 | setReservedSymbolSections(); | |||
| 2169 | ||||
| 2170 | { | |||
| 2171 | llvm::TimeTraceScope timeScope("Finalize synthetic sections"); | |||
| 2172 | ||||
| 2173 | finalizeSynthetic(in.bss); | |||
| 2174 | finalizeSynthetic(in.bssRelRo); | |||
| 2175 | finalizeSynthetic(in.symTabShndx); | |||
| 2176 | finalizeSynthetic(in.shStrTab); | |||
| 2177 | finalizeSynthetic(in.strTab); | |||
| 2178 | finalizeSynthetic(in.got); | |||
| 2179 | finalizeSynthetic(in.mipsGot); | |||
| 2180 | finalizeSynthetic(in.igotPlt); | |||
| 2181 | finalizeSynthetic(in.gotPlt); | |||
| 2182 | finalizeSynthetic(in.relaIplt); | |||
| 2183 | finalizeSynthetic(in.relaPlt); | |||
| 2184 | finalizeSynthetic(in.plt); | |||
| 2185 | finalizeSynthetic(in.iplt); | |||
| 2186 | finalizeSynthetic(in.ppc32Got2); | |||
| 2187 | finalizeSynthetic(in.partIndex); | |||
| 2188 | ||||
| 2189 | // Dynamic section must be the last one in this list and dynamic | |||
| 2190 | // symbol table section (dynSymTab) must be the first one. | |||
| 2191 | for (Partition &part : partitions) { | |||
| 2192 | finalizeSynthetic(part.dynSymTab); | |||
| 2193 | finalizeSynthetic(part.gnuHashTab); | |||
| 2194 | finalizeSynthetic(part.hashTab); | |||
| 2195 | finalizeSynthetic(part.verDef); | |||
| 2196 | finalizeSynthetic(part.relaDyn); | |||
| 2197 | finalizeSynthetic(part.relrDyn); | |||
| 2198 | finalizeSynthetic(part.ehFrameHdr); | |||
| 2199 | finalizeSynthetic(part.verSym); | |||
| 2200 | finalizeSynthetic(part.verNeed); | |||
| 2201 | finalizeSynthetic(part.dynamic); | |||
| 2202 | } | |||
| 2203 | } | |||
| 2204 | ||||
| 2205 | if (!script->hasSectionsCommand && !config->relocatable) | |||
| 2206 | fixSectionAlignments(); | |||
| 2207 | ||||
| 2208 | // This is used to: | |||
| 2209 | // 1) Create "thunks": | |||
| 2210 | // Jump instructions in many ISAs have small displacements, and therefore | |||
| 2211 | // they cannot jump to arbitrary addresses in memory. For example, RISC-V | |||
| 2212 | // JAL instruction can target only +-1 MiB from PC. It is a linker's | |||
| 2213 | // responsibility to create and insert small pieces of code between | |||
| 2214 | // sections to extend the ranges if jump targets are out of range. Such | |||
| 2215 | // code pieces are called "thunks". | |||
| 2216 | // | |||
| 2217 | // We add thunks at this stage. We couldn't do this before this point | |||
| 2218 | // because this is the earliest point where we know sizes of sections and | |||
| 2219 | // their layouts (that are needed to determine if jump targets are in | |||
| 2220 | // range). | |||
| 2221 | // | |||
| 2222 | // 2) Update the sections. We need to generate content that depends on the | |||
| 2223 | // address of InputSections. For example, MIPS GOT section content or | |||
| 2224 | // android packed relocations sections content. | |||
| 2225 | // | |||
| 2226 | // 3) Assign the final values for the linker script symbols. Linker scripts | |||
| 2227 | // sometimes using forward symbol declarations. We want to set the correct | |||
| 2228 | // values. They also might change after adding the thunks. | |||
| 2229 | finalizeAddressDependentContent(); | |||
| 2230 | if (errorCount()) | |||
| 2231 | return; | |||
| 2232 | ||||
| 2233 | { | |||
| 2234 | llvm::TimeTraceScope timeScope("Finalize synthetic sections"); | |||
| 2235 | // finalizeAddressDependentContent may have added local symbols to the | |||
| 2236 | // static symbol table. | |||
| 2237 | finalizeSynthetic(in.symTab); | |||
| 2238 | finalizeSynthetic(in.ppc64LongBranchTarget); | |||
| 2239 | } | |||
| 2240 | ||||
| 2241 | // Relaxation to delete inter-basic block jumps created by basic block | |||
| 2242 | // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps | |||
| 2243 | // can relax jump instructions based on symbol offset. | |||
| 2244 | if (config->optimizeBBJumps) | |||
| 2245 | optimizeBasicBlockJumps(); | |||
| 2246 | ||||
| 2247 | // Fill other section headers. The dynamic table is finalized | |||
| 2248 | // at the end because some tags like RELSZ depend on result | |||
| 2249 | // of finalizing other sections. | |||
| 2250 | for (OutputSection *sec : outputSections) | |||
| 2251 | sec->finalize(); | |||
| 2252 | } | |||
| 2253 | ||||
| 2254 | // Ensure data sections are not mixed with executable sections when | |||
| 2255 | // -execute-only is used. -execute-only is a feature to make pages executable | |||
| 2256 | // but not readable, and the feature is currently supported only on AArch64. | |||
| 2257 | template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { | |||
| 2258 | if (!config->executeOnly) | |||
| 2259 | return; | |||
| 2260 | ||||
| 2261 | for (OutputSection *os : outputSections) | |||
| 2262 | if (os->flags & SHF_EXECINSTR) | |||
| 2263 | for (InputSection *isec : getInputSections(os)) | |||
| 2264 | if (!(isec->flags & SHF_EXECINSTR)) | |||
| 2265 | error("cannot place " + toString(isec) + " into " + toString(os->name) + | |||
| 2266 | ": -execute-only does not support intermingling data and code"); | |||
| 2267 | } | |||
| 2268 | ||||
| 2269 | // The linker is expected to define SECNAME_start and SECNAME_end | |||
| 2270 | // symbols for a few sections. This function defines them. | |||
| 2271 | template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { | |||
| 2272 | // If a section does not exist, there's ambiguity as to how we | |||
| 2273 | // define _start and _end symbols for an init/fini section. Since | |||
| 2274 | // the loader assume that the symbols are always defined, we need to | |||
| 2275 | // always define them. But what value? The loader iterates over all | |||
| 2276 | // pointers between _start and _end to run global ctors/dtors, so if | |||
| 2277 | // the section is empty, their symbol values don't actually matter | |||
| 2278 | // as long as _start and _end point to the same location. | |||
| 2279 | // | |||
| 2280 | // That said, we don't want to set the symbols to 0 (which is | |||
| 2281 | // probably the simplest value) because that could cause some | |||
| 2282 | // program to fail to link due to relocation overflow, if their | |||
| 2283 | // program text is above 2 GiB. We use the address of the .text | |||
| 2284 | // section instead to prevent that failure. | |||
| 2285 | // | |||
| 2286 | // In rare situations, the .text section may not exist. If that's the | |||
| 2287 | // case, use the image base address as a last resort. | |||
| 2288 | OutputSection *Default = findSection(".text"); | |||
| 2289 | if (!Default) | |||
| 2290 | Default = Out::elfHeader; | |||
| 2291 | ||||
| 2292 | auto define = [=](StringRef start, StringRef end, OutputSection *os) { | |||
| 2293 | if (os) { | |||
| 2294 | addOptionalRegular(start, os, 0); | |||
| 2295 | addOptionalRegular(end, os, -1); | |||
| 2296 | } else { | |||
| 2297 | addOptionalRegular(start, Default, 0); | |||
| 2298 | addOptionalRegular(end, Default, 0); | |||
| 2299 | } | |||
| 2300 | }; | |||
| 2301 | ||||
| 2302 | define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); | |||
| 2303 | define("__init_array_start", "__init_array_end", Out::initArray); | |||
| 2304 | define("__fini_array_start", "__fini_array_end", Out::finiArray); | |||
| 2305 | ||||
| 2306 | if (OutputSection *sec = findSection(".ARM.exidx")) | |||
| 2307 | define("__exidx_start", "__exidx_end", sec); | |||
| 2308 | } | |||
| 2309 | ||||
| 2310 | // If a section name is valid as a C identifier (which is rare because of | |||
| 2311 | // the leading '.'), linkers are expected to define __start_<secname> and | |||
| 2312 | // __stop_<secname> symbols. They are at beginning and end of the section, | |||
| 2313 | // respectively. This is not requested by the ELF standard, but GNU ld and | |||
| 2314 | // gold provide the feature, and used by many programs. | |||
| 2315 | template <class ELFT> | |||
| 2316 | void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { | |||
| 2317 | StringRef s = sec->name; | |||
| 2318 | if (!isValidCIdentifier(s)) | |||
| 2319 | return; | |||
| 2320 | addOptionalRegular(saver.save("__start_" + s), sec, 0, | |||
| 2321 | config->zStartStopVisibility); | |||
| 2322 | addOptionalRegular(saver.save("__stop_" + s), sec, -1, | |||
| 2323 | config->zStartStopVisibility); | |||
| 2324 | } | |||
| 2325 | ||||
| 2326 | static bool needsPtLoad(OutputSection *sec) { | |||
| 2327 | if (!(sec->flags & SHF_ALLOC)) | |||
| 2328 | return false; | |||
| 2329 | ||||
| 2330 | // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is | |||
| 2331 | // responsible for allocating space for them, not the PT_LOAD that | |||
| 2332 | // contains the TLS initialization image. | |||
| 2333 | if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) | |||
| 2334 | return false; | |||
| 2335 | return true; | |||
| 2336 | } | |||
| 2337 | ||||
| 2338 | // Linker scripts are responsible for aligning addresses. Unfortunately, most | |||
| 2339 | // linker scripts are designed for creating two PT_LOADs only, one RX and one | |||
| 2340 | // RW. This means that there is no alignment in the RO to RX transition and we | |||
| 2341 | // cannot create a PT_LOAD there. | |||
| 2342 | static uint64_t computeFlags(uint64_t flags) { | |||
| 2343 | if (config->omagic) | |||
| 2344 | return PF_R | PF_W | PF_X; | |||
| 2345 | if (config->executeOnly && (flags & PF_X)) | |||
| 2346 | return flags & ~PF_R; | |||
| 2347 | if (config->singleRoRx && !(flags & PF_W)) | |||
| 2348 | return flags | PF_X; | |||
| 2349 | return flags; | |||
| 2350 | } | |||
| 2351 | ||||
| 2352 | // Decide which program headers to create and which sections to include in each | |||
| 2353 | // one. | |||
| 2354 | template <class ELFT> | |||
| 2355 | std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { | |||
| 2356 | std::vector<PhdrEntry *> ret; | |||
| 2357 | auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { | |||
| 2358 | ret.push_back(make<PhdrEntry>(type, flags)); | |||
| 2359 | return ret.back(); | |||
| 2360 | }; | |||
| 2361 | ||||
| 2362 | unsigned partNo = part.getNumber(); | |||
| 2363 | bool isMain = partNo == 1; | |||
| 2364 | ||||
| 2365 | // Add the first PT_LOAD segment for regular output sections. | |||
| 2366 | uint64_t flags = computeFlags(PF_R); | |||
| 2367 | PhdrEntry *load = nullptr; | |||
| 2368 | ||||
| 2369 | // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly | |||
| 2370 | // PT_LOAD. | |||
| 2371 | if (!config->nmagic && !config->omagic) { | |||
| 2372 | // The first phdr entry is PT_PHDR which describes the program header | |||
| 2373 | // itself. | |||
| 2374 | if (isMain) | |||
| 2375 | addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); | |||
| 2376 | else | |||
| 2377 | addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); | |||
| 2378 | ||||
| 2379 | // PT_INTERP must be the second entry if exists. | |||
| 2380 | if (OutputSection *cmd = findSection(".interp", partNo)) | |||
| 2381 | addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); | |||
| 2382 | ||||
| 2383 | // Add the headers. We will remove them if they don't fit. | |||
| 2384 | // In the other partitions the headers are ordinary sections, so they don't | |||
| 2385 | // need to be added here. | |||
| 2386 | if (isMain) { | |||
| 2387 | load = addHdr(PT_LOAD, flags); | |||
| 2388 | load->add(Out::elfHeader); | |||
| 2389 | load->add(Out::programHeaders); | |||
| 2390 | } | |||
| 2391 | } | |||
| 2392 | ||||
| 2393 | // PT_GNU_RELRO includes all sections that should be marked as | |||
| 2394 | // read-only by dynamic linker after processing relocations. | |||
| 2395 | // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give | |||
| 2396 | // an error message if more than one PT_GNU_RELRO PHDR is required. | |||
| 2397 | PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); | |||
| 2398 | bool inRelroPhdr = false; | |||
| 2399 | OutputSection *relroEnd = nullptr; | |||
| 2400 | for (OutputSection *sec : outputSections) { | |||
| 2401 | if (sec->partition != partNo || !needsPtLoad(sec)) | |||
| 2402 | continue; | |||
| 2403 | if (isRelroSection(sec)) { | |||
| 2404 | inRelroPhdr = true; | |||
| 2405 | if (!relroEnd) | |||
| 2406 | relRo->add(sec); | |||
| 2407 | else | |||
| 2408 | error("section: " + sec->name + " is not contiguous with other relro" + | |||
| 2409 | " sections"); | |||
| 2410 | } else if (inRelroPhdr) { | |||
| 2411 | inRelroPhdr = false; | |||
| 2412 | relroEnd = sec; | |||
| 2413 | } | |||
| 2414 | } | |||
| 2415 | ||||
| 2416 | for (OutputSection *sec : outputSections) { | |||
| 2417 | if (!needsPtLoad(sec)) | |||
| 2418 | continue; | |||
| 2419 | ||||
| 2420 | // Normally, sections in partitions other than the current partition are | |||
| 2421 | // ignored. But partition number 255 is a special case: it contains the | |||
| 2422 | // partition end marker (.part.end). It needs to be added to the main | |||
| 2423 | // partition so that a segment is created for it in the main partition, | |||
| 2424 | // which will cause the dynamic loader to reserve space for the other | |||
| 2425 | // partitions. | |||
| 2426 | if (sec->partition != partNo) { | |||
| 2427 | if (isMain && sec->partition == 255) | |||
| 2428 | addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); | |||
| 2429 | continue; | |||
| 2430 | } | |||
| 2431 | ||||
| 2432 | // Segments are contiguous memory regions that has the same attributes | |||
| 2433 | // (e.g. executable or writable). There is one phdr for each segment. | |||
| 2434 | // Therefore, we need to create a new phdr when the next section has | |||
| 2435 | // different flags or is loaded at a discontiguous address or memory | |||
| 2436 | // region using AT or AT> linker script command, respectively. At the same | |||
| 2437 | // time, we don't want to create a separate load segment for the headers, | |||
| 2438 | // even if the first output section has an AT or AT> attribute. | |||
| 2439 | uint64_t newFlags = computeFlags(sec->getPhdrFlags()); | |||
| 2440 | bool sameLMARegion = | |||
| 2441 | load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; | |||
| 2442 | if (!(load && newFlags == flags && sec != relroEnd && | |||
| 2443 | sec->memRegion == load->firstSec->memRegion && | |||
| 2444 | (sameLMARegion || load->lastSec == Out::programHeaders))) { | |||
| 2445 | load = addHdr(PT_LOAD, newFlags); | |||
| 2446 | flags = newFlags; | |||
| 2447 | } | |||
| 2448 | ||||
| 2449 | load->add(sec); | |||
| 2450 | } | |||
| 2451 | ||||
| 2452 | // Add a TLS segment if any. | |||
| 2453 | PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); | |||
| 2454 | for (OutputSection *sec : outputSections) | |||
| 2455 | if (sec->partition == partNo && sec->flags & SHF_TLS) | |||
| 2456 | tlsHdr->add(sec); | |||
| 2457 | if (tlsHdr->firstSec) | |||
| 2458 | ret.push_back(tlsHdr); | |||
| 2459 | ||||
| 2460 | // Add an entry for .dynamic. | |||
| 2461 | if (OutputSection *sec = part.dynamic->getParent()) | |||
| 2462 | addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); | |||
| 2463 | ||||
| 2464 | if (relRo->firstSec) | |||
| 2465 | ret.push_back(relRo); | |||
| 2466 | ||||
| 2467 | // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. | |||
| 2468 | if (part.ehFrame->isNeeded() && part.ehFrameHdr && | |||
| 2469 | part.ehFrame->getParent() && part.ehFrameHdr->getParent()) | |||
| 2470 | addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) | |||
| 2471 | ->add(part.ehFrameHdr->getParent()); | |||
| 2472 | ||||
| 2473 | // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes | |||
| 2474 | // the dynamic linker fill the segment with random data. | |||
| 2475 | if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) | |||
| 2476 | addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); | |||
| 2477 | ||||
| 2478 | if (config->zGnustack != GnuStackKind::None) { | |||
| 2479 | // PT_GNU_STACK is a special section to tell the loader to make the | |||
| 2480 | // pages for the stack non-executable. If you really want an executable | |||
| 2481 | // stack, you can pass -z execstack, but that's not recommended for | |||
| 2482 | // security reasons. | |||
| 2483 | unsigned perm = PF_R | PF_W; | |||
| 2484 | if (config->zGnustack == GnuStackKind::Exec) | |||
| 2485 | perm |= PF_X; | |||
| 2486 | addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; | |||
| 2487 | } | |||
| 2488 | ||||
| 2489 | // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable | |||
| 2490 | // is expected to perform W^X violations, such as calling mprotect(2) or | |||
| 2491 | // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on | |||
| 2492 | // OpenBSD. | |||
| 2493 | if (config->zWxneeded) | |||
| 2494 | addHdr(PT_OPENBSD_WXNEEDED, PF_X); | |||
| 2495 | ||||
| 2496 | if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) | |||
| 2497 | addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); | |||
| 2498 | ||||
| 2499 | // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the | |||
| 2500 | // same alignment. | |||
| 2501 | PhdrEntry *note = nullptr; | |||
| 2502 | for (OutputSection *sec : outputSections) { | |||
| 2503 | if (sec->partition != partNo) | |||
| 2504 | continue; | |||
| 2505 | if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { | |||
| 2506 | if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) | |||
| 2507 | note = addHdr(PT_NOTE, PF_R); | |||
| 2508 | note->add(sec); | |||
| 2509 | } else { | |||
| 2510 | note = nullptr; | |||
| 2511 | } | |||
| 2512 | } | |||
| 2513 | return ret; | |||
| 2514 | } | |||
| 2515 | ||||
| 2516 | template <class ELFT> | |||
| 2517 | void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, | |||
| 2518 | unsigned pType, unsigned pFlags) { | |||
| 2519 | unsigned partNo = part.getNumber(); | |||
| 2520 | auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { | |||
| 2521 | return cmd->partition == partNo && cmd->type == shType; | |||
| 2522 | }); | |||
| 2523 | if (i == outputSections.end()) | |||
| 2524 | return; | |||
| 2525 | ||||
| 2526 | PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); | |||
| 2527 | entry->add(*i); | |||
| 2528 | part.phdrs.push_back(entry); | |||
| 2529 | } | |||
| 2530 | ||||
| 2531 | // Place the first section of each PT_LOAD to a different page (of maxPageSize). | |||
| 2532 | // This is achieved by assigning an alignment expression to addrExpr of each | |||
| 2533 | // such section. | |||
| 2534 | template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { | |||
| 2535 | const PhdrEntry *prev; | |||
| 2536 | auto pageAlign = [&](const PhdrEntry *p) { | |||
| 2537 | OutputSection *cmd = p->firstSec; | |||
| 2538 | if (!cmd) | |||
| 2539 | return; | |||
| 2540 | cmd->alignExpr = [align = cmd->alignment]() { return align; }; | |||
| 2541 | if (!cmd->addrExpr) { | |||
| 2542 | // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid | |||
| 2543 | // padding in the file contents. | |||
| 2544 | // | |||
| 2545 | // When -z separate-code is used we must not have any overlap in pages | |||
| 2546 | // between an executable segment and a non-executable segment. We align to | |||
| 2547 | // the next maximum page size boundary on transitions between executable | |||
| 2548 | // and non-executable segments. | |||
| 2549 | // | |||
| 2550 | // SHT_LLVM_PART_EHDR marks the start of a partition. The partition | |||
| 2551 | // sections will be extracted to a separate file. Align to the next | |||
| 2552 | // maximum page size boundary so that we can find the ELF header at the | |||
| 2553 | // start. We cannot benefit from overlapping p_offset ranges with the | |||
| 2554 | // previous segment anyway. | |||
| 2555 | if (config->zSeparate == SeparateSegmentKind::Loadable || | |||
| 2556 | (config->zSeparate == SeparateSegmentKind::Code && prev && | |||
| 2557 | (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || | |||
| 2558 | cmd->type == SHT_LLVM_PART_EHDR) | |||
| 2559 | cmd->addrExpr = [] { | |||
| 2560 | return alignTo(script->getDot(), config->maxPageSize); | |||
| 2561 | }; | |||
| 2562 | // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, | |||
| 2563 | // it must be the RW. Align to p_align(PT_TLS) to make sure | |||
| 2564 | // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if | |||
| 2565 | // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) | |||
| 2566 | // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not | |||
| 2567 | // be congruent to 0 modulo p_align(PT_TLS). | |||
| 2568 | // | |||
| 2569 | // Technically this is not required, but as of 2019, some dynamic loaders | |||
| 2570 | // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and | |||
| 2571 | // x86-64) doesn't make runtime address congruent to p_vaddr modulo | |||
| 2572 | // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same | |||
| 2573 | // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS | |||
| 2574 | // blocks correctly. We need to keep the workaround for a while. | |||
| 2575 | else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) | |||
| 2576 | cmd->addrExpr = [] { | |||
| 2577 | return alignTo(script->getDot(), config->maxPageSize) + | |||
| 2578 | alignTo(script->getDot() % config->maxPageSize, | |||
| 2579 | Out::tlsPhdr->p_align); | |||
| 2580 | }; | |||
| 2581 | else | |||
| 2582 | cmd->addrExpr = [] { | |||
| 2583 | return alignTo(script->getDot(), config->maxPageSize) + | |||
| 2584 | script->getDot() % config->maxPageSize; | |||
| 2585 | }; | |||
| 2586 | } | |||
| 2587 | }; | |||
| 2588 | ||||
| 2589 | #ifdef __OpenBSD__1 | |||
| 2590 | // On i386, produce binaries that are compatible with our W^X implementation | |||
| 2591 | if (config->emachine == EM_386) { | |||
| 2592 | auto NXAlign = [](OutputSection *Cmd) { | |||
| 2593 | if (Cmd && !Cmd->addrExpr) | |||
| 2594 | Cmd->addrExpr = [=] { | |||
| 2595 | return alignTo(script->getDot(), 0x20000000); | |||
| 2596 | }; | |||
| 2597 | }; | |||
| 2598 | ||||
| 2599 | for (Partition &part : partitions) { | |||
| 2600 | PhdrEntry *firstRW = nullptr; | |||
| 2601 | for (PhdrEntry *P : part.phdrs) { | |||
| 2602 | if (P->p_type == PT_LOAD && (P->p_flags & PF_W)) { | |||
| 2603 | firstRW = P; | |||
| 2604 | break; | |||
| 2605 | } | |||
| 2606 | } | |||
| 2607 | ||||
| 2608 | if (firstRW) | |||
| 2609 | NXAlign(firstRW->firstSec); | |||
| 2610 | } | |||
| 2611 | } | |||
| 2612 | #endif | |||
| 2613 | ||||
| 2614 | for (Partition &part : partitions) { | |||
| 2615 | prev = nullptr; | |||
| 2616 | for (const PhdrEntry *p : part.phdrs) | |||
| 2617 | if (p->p_type == PT_LOAD && p->firstSec) { | |||
| 2618 | pageAlign(p); | |||
| 2619 | prev = p; | |||
| 2620 | } | |||
| 2621 | } | |||
| 2622 | } | |||
| 2623 | ||||
| 2624 | // Compute an in-file position for a given section. The file offset must be the | |||
| 2625 | // same with its virtual address modulo the page size, so that the loader can | |||
| 2626 | // load executables without any address adjustment. | |||
| 2627 | static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { | |||
| 2628 | // The first section in a PT_LOAD has to have congruent offset and address | |||
| 2629 | // modulo the maximum page size. | |||
| 2630 | if (os->ptLoad && os->ptLoad->firstSec == os) | |||
| 2631 | return alignTo(off, os->ptLoad->p_align, os->addr); | |||
| 2632 | ||||
| 2633 | // File offsets are not significant for .bss sections other than the first one | |||
| 2634 | // in a PT_LOAD. By convention, we keep section offsets monotonically | |||
| 2635 | // increasing rather than setting to zero. | |||
| 2636 | if (os->type == SHT_NOBITS) | |||
| 2637 | return off; | |||
| 2638 | ||||
| 2639 | // If the section is not in a PT_LOAD, we just have to align it. | |||
| 2640 | if (!os->ptLoad) | |||
| 2641 | return alignTo(off, os->alignment); | |||
| 2642 | ||||
| 2643 | // If two sections share the same PT_LOAD the file offset is calculated | |||
| 2644 | // using this formula: Off2 = Off1 + (VA2 - VA1). | |||
| 2645 | OutputSection *first = os->ptLoad->firstSec; | |||
| 2646 | return first->offset + os->addr - first->addr; | |||
| 2647 | } | |||
| 2648 | ||||
| 2649 | // Set an in-file position to a given section and returns the end position of | |||
| 2650 | // the section. | |||
| 2651 | static uint64_t setFileOffset(OutputSection *os, uint64_t off) { | |||
| 2652 | off = computeFileOffset(os, off); | |||
| 2653 | os->offset = off; | |||
| 2654 | ||||
| 2655 | if (os->type == SHT_NOBITS) | |||
| 2656 | return off; | |||
| 2657 | return off + os->size; | |||
| 2658 | } | |||
| 2659 | ||||
| 2660 | template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { | |||
| 2661 | // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. | |||
| 2662 | auto needsOffset = [](OutputSection &sec) { | |||
| 2663 | return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; | |||
| 2664 | }; | |||
| 2665 | uint64_t minAddr = UINT64_MAX0xffffffffffffffffULL; | |||
| 2666 | for (OutputSection *sec : outputSections) | |||
| 2667 | if (needsOffset(*sec)) { | |||
| 2668 | sec->offset = sec->getLMA(); | |||
| 2669 | minAddr = std::min(minAddr, sec->offset); | |||
| 2670 | } | |||
| 2671 | ||||
| 2672 | // Sections are laid out at LMA minus minAddr. | |||
| 2673 | fileSize = 0; | |||
| 2674 | for (OutputSection *sec : outputSections) | |||
| 2675 | if (needsOffset(*sec)) { | |||
| 2676 | sec->offset -= minAddr; | |||
| 2677 | fileSize = std::max(fileSize, sec->offset + sec->size); | |||
| 2678 | } | |||
| 2679 | } | |||
| 2680 | ||||
| 2681 | static std::string rangeToString(uint64_t addr, uint64_t len) { | |||
| 2682 | return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; | |||
| 2683 | } | |||
| 2684 | ||||
| 2685 | // Assign file offsets to output sections. | |||
| 2686 | template <class ELFT> void Writer<ELFT>::assignFileOffsets() { | |||
| 2687 | uint64_t off = 0; | |||
| 2688 | off = setFileOffset(Out::elfHeader, off); | |||
| 2689 | off = setFileOffset(Out::programHeaders, off); | |||
| 2690 | ||||
| 2691 | PhdrEntry *lastRX = nullptr; | |||
| 2692 | for (Partition &part : partitions) | |||
| 2693 | for (PhdrEntry *p : part.phdrs) | |||
| 2694 | if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) | |||
| 2695 | lastRX = p; | |||
| 2696 | ||||
| 2697 | // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC | |||
| 2698 | // will not occupy file offsets contained by a PT_LOAD. | |||
| 2699 | for (OutputSection *sec : outputSections) { | |||
| 2700 | if (!(sec->flags & SHF_ALLOC)) | |||
| 2701 | continue; | |||
| 2702 | off = setFileOffset(sec, off); | |||
| 2703 | ||||
| 2704 | // If this is a last section of the last executable segment and that | |||
| 2705 | // segment is the last loadable segment, align the offset of the | |||
| 2706 | // following section to avoid loading non-segments parts of the file. | |||
| 2707 | if (config->zSeparate != SeparateSegmentKind::None && lastRX && | |||
| 2708 | lastRX->lastSec == sec) | |||
| 2709 | off = alignTo(off, config->commonPageSize); | |||
| 2710 | } | |||
| 2711 | for (OutputSection *sec : outputSections) | |||
| 2712 | if (!(sec->flags & SHF_ALLOC)) | |||
| 2713 | off = setFileOffset(sec, off); | |||
| 2714 | ||||
| 2715 | sectionHeaderOff = alignTo(off, config->wordsize); | |||
| 2716 | fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); | |||
| 2717 | ||||
| 2718 | // Our logic assumes that sections have rising VA within the same segment. | |||
| 2719 | // With use of linker scripts it is possible to violate this rule and get file | |||
| 2720 | // offset overlaps or overflows. That should never happen with a valid script | |||
| 2721 | // which does not move the location counter backwards and usually scripts do | |||
| 2722 | // not do that. Unfortunately, there are apps in the wild, for example, Linux | |||
| 2723 | // kernel, which control segment distribution explicitly and move the counter | |||
| 2724 | // backwards, so we have to allow doing that to support linking them. We | |||
| 2725 | // perform non-critical checks for overlaps in checkSectionOverlap(), but here | |||
| 2726 | // we want to prevent file size overflows because it would crash the linker. | |||
| 2727 | for (OutputSection *sec : outputSections) { | |||
| 2728 | if (sec->type == SHT_NOBITS) | |||
| 2729 | continue; | |||
| 2730 | if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) | |||
| 2731 | error("unable to place section " + sec->name + " at file offset " + | |||
| 2732 | rangeToString(sec->offset, sec->size) + | |||
| 2733 | "; check your linker script for overflows"); | |||
| 2734 | } | |||
| 2735 | } | |||
| 2736 | ||||
| 2737 | // Finalize the program headers. We call this function after we assign | |||
| 2738 | // file offsets and VAs to all sections. | |||
| 2739 | template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { | |||
| 2740 | for (PhdrEntry *p : part.phdrs) { | |||
| 2741 | OutputSection *first = p->firstSec; | |||
| 2742 | OutputSection *last = p->lastSec; | |||
| 2743 | ||||
| 2744 | if (first) { | |||
| 2745 | p->p_filesz = last->offset - first->offset; | |||
| 2746 | if (last->type != SHT_NOBITS) | |||
| 2747 | p->p_filesz += last->size; | |||
| 2748 | ||||
| 2749 | p->p_memsz = last->addr + last->size - first->addr; | |||
| 2750 | p->p_offset = first->offset; | |||
| 2751 | p->p_vaddr = first->addr; | |||
| 2752 | ||||
| 2753 | // File offsets in partitions other than the main partition are relative | |||
| 2754 | // to the offset of the ELF headers. Perform that adjustment now. | |||
| 2755 | if (part.elfHeader) | |||
| 2756 | p->p_offset -= part.elfHeader->getParent()->offset; | |||
| 2757 | ||||
| 2758 | if (!p->hasLMA) | |||
| 2759 | p->p_paddr = first->getLMA(); | |||
| 2760 | } | |||
| 2761 | ||||
| 2762 | if (p->p_type == PT_GNU_RELRO) { | |||
| 2763 | p->p_align = 1; | |||
| 2764 | // musl/glibc ld.so rounds the size down, so we need to round up | |||
| 2765 | // to protect the last page. This is a no-op on FreeBSD which always | |||
| 2766 | // rounds up. | |||
| 2767 | p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - | |||
| 2768 | p->p_offset; | |||
| 2769 | } | |||
| 2770 | } | |||
| 2771 | } | |||
| 2772 | ||||
| 2773 | // A helper struct for checkSectionOverlap. | |||
| 2774 | namespace { | |||
| 2775 | struct SectionOffset { | |||
| 2776 | OutputSection *sec; | |||
| 2777 | uint64_t offset; | |||
| 2778 | }; | |||
| 2779 | } // namespace | |||
| 2780 | ||||
| 2781 | // Check whether sections overlap for a specific address range (file offsets, | |||
| 2782 | // load and virtual addresses). | |||
| 2783 | static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, | |||
| 2784 | bool isVirtualAddr) { | |||
| 2785 | llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { | |||
| 2786 | return a.offset < b.offset; | |||
| 2787 | }); | |||
| 2788 | ||||
| 2789 | // Finding overlap is easy given a vector is sorted by start position. | |||
| 2790 | // If an element starts before the end of the previous element, they overlap. | |||
| 2791 | for (size_t i = 1, end = sections.size(); i < end; ++i) { | |||
| 2792 | SectionOffset a = sections[i - 1]; | |||
| 2793 | SectionOffset b = sections[i]; | |||
| 2794 | if (b.offset >= a.offset + a.sec->size) | |||
| 2795 | continue; | |||
| 2796 | ||||
| 2797 | // If both sections are in OVERLAY we allow the overlapping of virtual | |||
| 2798 | // addresses, because it is what OVERLAY was designed for. | |||
| 2799 | if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) | |||
| 2800 | continue; | |||
| 2801 | ||||
| 2802 | errorOrWarn("section " + a.sec->name + " " + name + | |||
| 2803 | " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + | |||
| 2804 | " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + | |||
| 2805 | b.sec->name + " range is " + | |||
| 2806 | rangeToString(b.offset, b.sec->size)); | |||
| 2807 | } | |||
| 2808 | } | |||
| 2809 | ||||
| 2810 | // Check for overlapping sections and address overflows. | |||
| 2811 | // | |||
| 2812 | // In this function we check that none of the output sections have overlapping | |||
| 2813 | // file offsets. For SHF_ALLOC sections we also check that the load address | |||
| 2814 | // ranges and the virtual address ranges don't overlap | |||
| 2815 | template <class ELFT> void Writer<ELFT>::checkSections() { | |||
| 2816 | // First, check that section's VAs fit in available address space for target. | |||
| 2817 | for (OutputSection *os : outputSections) | |||
| 2818 | if ((os->addr + os->size < os->addr) || | |||
| 2819 | (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX0xffffffffU)) | |||
| 2820 | errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + | |||
| 2821 | " of size 0x" + utohexstr(os->size) + | |||
| 2822 | " exceeds available address space"); | |||
| 2823 | ||||
| 2824 | // Check for overlapping file offsets. In this case we need to skip any | |||
| 2825 | // section marked as SHT_NOBITS. These sections don't actually occupy space in | |||
| 2826 | // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat | |||
| 2827 | // binary is specified only add SHF_ALLOC sections are added to the output | |||
| 2828 | // file so we skip any non-allocated sections in that case. | |||
| 2829 | std::vector<SectionOffset> fileOffs; | |||
| 2830 | for (OutputSection *sec : outputSections) | |||
| 2831 | if (sec->size > 0 && sec->type != SHT_NOBITS && | |||
| 2832 | (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) | |||
| 2833 | fileOffs.push_back({sec, sec->offset}); | |||
| 2834 | checkOverlap("file", fileOffs, false); | |||
| 2835 | ||||
| 2836 | // When linking with -r there is no need to check for overlapping virtual/load | |||
| 2837 | // addresses since those addresses will only be assigned when the final | |||
| 2838 | // executable/shared object is created. | |||
| 2839 | if (config->relocatable) | |||
| 2840 | return; | |||
| 2841 | ||||
| 2842 | // Checking for overlapping virtual and load addresses only needs to take | |||
| 2843 | // into account SHF_ALLOC sections since others will not be loaded. | |||
| 2844 | // Furthermore, we also need to skip SHF_TLS sections since these will be | |||
| 2845 | // mapped to other addresses at runtime and can therefore have overlapping | |||
| 2846 | // ranges in the file. | |||
| 2847 | std::vector<SectionOffset> vmas; | |||
| 2848 | for (OutputSection *sec : outputSections) | |||
| 2849 | if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) | |||
| 2850 | vmas.push_back({sec, sec->addr}); | |||
| 2851 | checkOverlap("virtual address", vmas, true); | |||
| 2852 | ||||
| 2853 | // Finally, check that the load addresses don't overlap. This will usually be | |||
| 2854 | // the same as the virtual addresses but can be different when using a linker | |||
| 2855 | // script with AT(). | |||
| 2856 | std::vector<SectionOffset> lmas; | |||
| 2857 | for (OutputSection *sec : outputSections) | |||
| 2858 | if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) | |||
| 2859 | lmas.push_back({sec, sec->getLMA()}); | |||
| 2860 | checkOverlap("load address", lmas, false); | |||
| 2861 | } | |||
| 2862 | ||||
| 2863 | // The entry point address is chosen in the following ways. | |||
| 2864 | // | |||
| 2865 | // 1. the '-e' entry command-line option; | |||
| 2866 | // 2. the ENTRY(symbol) command in a linker control script; | |||
| 2867 | // 3. the value of the symbol _start, if present; | |||
| 2868 | // 4. the number represented by the entry symbol, if it is a number; | |||
| 2869 | // 5. the address of the first byte of the .text section, if present; | |||
| 2870 | // 6. the address 0. | |||
| 2871 | static uint64_t getEntryAddr() { | |||
| 2872 | // Case 1, 2 or 3 | |||
| 2873 | if (Symbol *b = symtab->find(config->entry)) | |||
| 2874 | return b->getVA(); | |||
| 2875 | ||||
| 2876 | // Case 4 | |||
| 2877 | uint64_t addr; | |||
| 2878 | if (to_integer(config->entry, addr)) | |||
| 2879 | return addr; | |||
| 2880 | ||||
| 2881 | // Case 5 | |||
| 2882 | if (OutputSection *sec = findSection(".text")) { | |||
| 2883 | if (config->warnMissingEntry) | |||
| 2884 | warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + | |||
| 2885 | utohexstr(sec->addr)); | |||
| 2886 | return sec->addr; | |||
| 2887 | } | |||
| 2888 | ||||
| 2889 | // Case 6 | |||
| 2890 | if (config->warnMissingEntry) | |||
| 2891 | warn("cannot find entry symbol " + config->entry + | |||
| 2892 | "; not setting start address"); | |||
| 2893 | return 0; | |||
| 2894 | } | |||
| 2895 | ||||
| 2896 | static uint16_t getELFType() { | |||
| 2897 | if (config->isPic) | |||
| 2898 | return ET_DYN; | |||
| 2899 | if (config->relocatable) | |||
| 2900 | return ET_REL; | |||
| 2901 | return ET_EXEC; | |||
| 2902 | } | |||
| 2903 | ||||
| 2904 | template <class ELFT> void Writer<ELFT>::writeHeader() { | |||
| 2905 | writeEhdr<ELFT>(Out::bufferStart, *mainPart); | |||
| 2906 | writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); | |||
| 2907 | ||||
| 2908 | auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); | |||
| 2909 | eHdr->e_type = getELFType(); | |||
| 2910 | eHdr->e_entry = getEntryAddr(); | |||
| 2911 | eHdr->e_shoff = sectionHeaderOff; | |||
| 2912 | ||||
| 2913 | // Write the section header table. | |||
| 2914 | // | |||
| 2915 | // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum | |||
| 2916 | // and e_shstrndx fields. When the value of one of these fields exceeds | |||
| 2917 | // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and | |||
| 2918 | // use fields in the section header at index 0 to store | |||
| 2919 | // the value. The sentinel values and fields are: | |||
| 2920 | // e_shnum = 0, SHdrs[0].sh_size = number of sections. | |||
| 2921 | // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. | |||
| 2922 | auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); | |||
| 2923 | size_t num = outputSections.size() + 1; | |||
| 2924 | if (num >= SHN_LORESERVE) | |||
| 2925 | sHdrs->sh_size = num; | |||
| 2926 | else | |||
| 2927 | eHdr->e_shnum = num; | |||
| 2928 | ||||
| 2929 | uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; | |||
| 2930 | if (strTabIndex >= SHN_LORESERVE) { | |||
| 2931 | sHdrs->sh_link = strTabIndex; | |||
| 2932 | eHdr->e_shstrndx = SHN_XINDEX; | |||
| 2933 | } else { | |||
| 2934 | eHdr->e_shstrndx = strTabIndex; | |||
| 2935 | } | |||
| 2936 | ||||
| 2937 | for (OutputSection *sec : outputSections) | |||
| 2938 | sec->writeHeaderTo<ELFT>(++sHdrs); | |||
| 2939 | } | |||
| 2940 | ||||
| 2941 | // Open a result file. | |||
| 2942 | template <class ELFT> void Writer<ELFT>::openFile() { | |||
| 2943 | uint64_t maxSize = config->is64 ? INT64_MAX0x7fffffffffffffffLL : UINT32_MAX0xffffffffU; | |||
| 2944 | if (fileSize != size_t(fileSize) || maxSize < fileSize) { | |||
| 2945 | std::string msg; | |||
| 2946 | raw_string_ostream s(msg); | |||
| 2947 | s << "output file too large: " << Twine(fileSize) << " bytes\n" | |||
| 2948 | << "section sizes:\n"; | |||
| 2949 | for (OutputSection *os : outputSections) | |||
| 2950 | s << os->name << ' ' << os->size << "\n"; | |||
| 2951 | error(s.str()); | |||
| 2952 | return; | |||
| 2953 | } | |||
| 2954 | ||||
| 2955 | unlinkAsync(config->outputFile); | |||
| 2956 | unsigned flags = 0; | |||
| 2957 | if (!config->relocatable) | |||
| 2958 | flags |= FileOutputBuffer::F_executable; | |||
| 2959 | if (!config->mmapOutputFile) | |||
| 2960 | flags |= FileOutputBuffer::F_no_mmap; | |||
| 2961 | Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = | |||
| 2962 | FileOutputBuffer::create(config->outputFile, fileSize, flags); | |||
| 2963 | ||||
| 2964 | if (!bufferOrErr) { | |||
| 2965 | error("failed to open " + config->outputFile + ": " + | |||
| 2966 | llvm::toString(bufferOrErr.takeError())); | |||
| 2967 | return; | |||
| 2968 | } | |||
| 2969 | buffer = std::move(*bufferOrErr); | |||
| 2970 | Out::bufferStart = buffer->getBufferStart(); | |||
| 2971 | } | |||
| 2972 | ||||
| 2973 | template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { | |||
| 2974 | for (OutputSection *sec : outputSections) | |||
| 2975 | if (sec->flags & SHF_ALLOC) | |||
| 2976 | sec->writeTo<ELFT>(Out::bufferStart + sec->offset); | |||
| 2977 | } | |||
| 2978 | ||||
| 2979 | static void fillTrap(uint8_t *i, uint8_t *end) { | |||
| 2980 | for (; i + 4 <= end; i += 4) | |||
| 2981 | memcpy(i, &target->trapInstr, 4); | |||
| 2982 | } | |||
| 2983 | ||||
| 2984 | // Fill the last page of executable segments with trap instructions | |||
| 2985 | // instead of leaving them as zero. Even though it is not required by any | |||
| 2986 | // standard, it is in general a good thing to do for security reasons. | |||
| 2987 | // | |||
| 2988 | // We'll leave other pages in segments as-is because the rest will be | |||
| 2989 | // overwritten by output sections. | |||
| 2990 | template <class ELFT> void Writer<ELFT>::writeTrapInstr() { | |||
| 2991 | for (Partition &part : partitions) { | |||
| 2992 | // Fill the last page. | |||
| 2993 | for (PhdrEntry *p : part.phdrs) | |||
| 2994 | if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) | |||
| 2995 | fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, | |||
| 2996 | config->commonPageSize), | |||
| 2997 | Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, | |||
| 2998 | config->commonPageSize)); | |||
| 2999 | ||||
| 3000 | // Round up the file size of the last segment to the page boundary iff it is | |||
| 3001 | // an executable segment to ensure that other tools don't accidentally | |||
| 3002 | // trim the instruction padding (e.g. when stripping the file). | |||
| 3003 | PhdrEntry *last = nullptr; | |||
| 3004 | for (PhdrEntry *p : part.phdrs) | |||
| 3005 | if (p->p_type == PT_LOAD) | |||
| 3006 | last = p; | |||
| 3007 | ||||
| 3008 | if (last && (last->p_flags & PF_X)) | |||
| 3009 | last->p_memsz = last->p_filesz = | |||
| 3010 | alignTo(last->p_filesz, config->commonPageSize); | |||
| 3011 | } | |||
| 3012 | } | |||
| 3013 | ||||
| 3014 | // Write section contents to a mmap'ed file. | |||
| 3015 | template <class ELFT> void Writer<ELFT>::writeSections() { | |||
| 3016 | // In -r or -emit-relocs mode, write the relocation sections first as in | |||
| 3017 | // ELf_Rel targets we might find out that we need to modify the relocated | |||
| 3018 | // section while doing it. | |||
| 3019 | for (OutputSection *sec : outputSections) | |||
| 3020 | if (sec->type == SHT_REL || sec->type == SHT_RELA) | |||
| 3021 | sec->writeTo<ELFT>(Out::bufferStart + sec->offset); | |||
| 3022 | ||||
| 3023 | for (OutputSection *sec : outputSections) | |||
| 3024 | if (sec->type != SHT_REL && sec->type != SHT_RELA) | |||
| 3025 | sec->writeTo<ELFT>(Out::bufferStart + sec->offset); | |||
| 3026 | ||||
| 3027 | // Finally, check that all dynamic relocation addends were written correctly. | |||
| 3028 | if (config->checkDynamicRelocs && config->writeAddends) { | |||
| 3029 | for (OutputSection *sec : outputSections) | |||
| 3030 | if (sec->type == SHT_REL || sec->type == SHT_RELA) | |||
| 3031 | sec->checkDynRelAddends(Out::bufferStart); | |||
| 3032 | } | |||
| 3033 | } | |||
| 3034 | ||||
| 3035 | // Computes a hash value of Data using a given hash function. | |||
| 3036 | // In order to utilize multiple cores, we first split data into 1MB | |||
| 3037 | // chunks, compute a hash for each chunk, and then compute a hash value | |||
| 3038 | // of the hash values. | |||
| 3039 | static void | |||
| 3040 | computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, | |||
| 3041 | llvm::ArrayRef<uint8_t> data, | |||
| 3042 | std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { | |||
| 3043 | std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); | |||
| 3044 | std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); | |||
| 3045 | ||||
| 3046 | // Compute hash values. | |||
| 3047 | parallelForEachN(0, chunks.size(), [&](size_t i) { | |||
| 3048 | hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); | |||
| 3049 | }); | |||
| 3050 | ||||
| 3051 | // Write to the final output buffer. | |||
| 3052 | hashFn(hashBuf.data(), hashes); | |||
| 3053 | } | |||
| 3054 | ||||
| 3055 | template <class ELFT> void Writer<ELFT>::writeBuildId() { | |||
| 3056 | if (!mainPart->buildId || !mainPart->buildId->getParent()) | |||
| 3057 | return; | |||
| 3058 | ||||
| 3059 | if (config->buildId == BuildIdKind::Hexstring) { | |||
| 3060 | for (Partition &part : partitions) | |||
| 3061 | part.buildId->writeBuildId(config->buildIdVector); | |||
| 3062 | return; | |||
| 3063 | } | |||
| 3064 | ||||
| 3065 | // Compute a hash of all sections of the output file. | |||
| 3066 | size_t hashSize = mainPart->buildId->hashSize; | |||
| 3067 | std::vector<uint8_t> buildId(hashSize); | |||
| 3068 | llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; | |||
| 3069 | ||||
| 3070 | switch (config->buildId) { | |||
| 3071 | case BuildIdKind::Fast: | |||
| 3072 | computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { | |||
| 3073 | write64le(dest, xxHash64(arr)); | |||
| 3074 | }); | |||
| 3075 | break; | |||
| 3076 | case BuildIdKind::Md5: | |||
| 3077 | computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { | |||
| 3078 | memcpy(dest, MD5::hash(arr).data(), hashSize); | |||
| 3079 | }); | |||
| 3080 | break; | |||
| 3081 | case BuildIdKind::Sha1: | |||
| 3082 | computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { | |||
| 3083 | memcpy(dest, SHA1::hash(arr).data(), hashSize); | |||
| 3084 | }); | |||
| 3085 | break; | |||
| 3086 | case BuildIdKind::Uuid: | |||
| 3087 | if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) | |||
| 3088 | error("entropy source failure: " + ec.message()); | |||
| 3089 | break; | |||
| 3090 | default: | |||
| 3091 | llvm_unreachable("unknown BuildIdKind")__builtin_unreachable(); | |||
| 3092 | } | |||
| 3093 | for (Partition &part : partitions) | |||
| 3094 | part.buildId->writeBuildId(buildId); | |||
| 3095 | } | |||
| 3096 | ||||
| 3097 | template void elf::createSyntheticSections<ELF32LE>(); | |||
| 3098 | template void elf::createSyntheticSections<ELF32BE>(); | |||
| 3099 | template void elf::createSyntheticSections<ELF64LE>(); | |||
| 3100 | template void elf::createSyntheticSections<ELF64BE>(); | |||
| 3101 | ||||
| 3102 | template void elf::writeResult<ELF32LE>(); | |||
| 3103 | template void elf::writeResult<ELF32BE>(); | |||
| 3104 | template void elf::writeResult<ELF64LE>(); | |||
| 3105 | template void elf::writeResult<ELF64BE>(); |
| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef _LIBCPP___ALGORITHM_STABLE_PARTITION_H |
| 10 | #define _LIBCPP___ALGORITHM_STABLE_PARTITION_H |
| 11 | |
| 12 | #include <__config> |
| 13 | #include <__algorithm/rotate.h> |
| 14 | #include <__iterator/iterator_traits.h> |
| 15 | #include <__utility/swap.h> |
| 16 | #include <memory> |
| 17 | |
| 18 | #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) |
| 19 | #pragma GCC system_header |
| 20 | #endif |
| 21 | |
| 22 | _LIBCPP_PUSH_MACROSpush_macro("min") push_macro("max") |
| 23 | #include <__undef_macros> |
| 24 | |
| 25 | _LIBCPP_BEGIN_NAMESPACE_STDnamespace std { inline namespace __1 { |
| 26 | |
| 27 | template <class _Predicate, class _ForwardIterator, class _Distance, class _Pair> |
| 28 | _ForwardIterator |
| 29 | __stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, |
| 30 | _Distance __len, _Pair __p, forward_iterator_tag __fit) |
| 31 | { |
| 32 | // *__first is known to be false |
| 33 | // __len >= 1 |
| 34 | if (__len == 1) |
| 35 | return __first; |
| 36 | if (__len == 2) |
| 37 | { |
| 38 | _ForwardIterator __m = __first; |
| 39 | if (__pred(*++__m)) |
| 40 | { |
| 41 | swap(*__first, *__m); |
| 42 | return __m; |
| 43 | } |
| 44 | return __first; |
| 45 | } |
| 46 | if (__len <= __p.second) |
| 47 | { // The buffer is big enough to use |
| 48 | typedef typename iterator_traits<_ForwardIterator>::value_type value_type; |
| 49 | __destruct_n __d(0); |
| 50 | unique_ptr<value_type, __destruct_n&> __h(__p.first, __d); |
| 51 | // Move the falses into the temporary buffer, and the trues to the front of the line |
| 52 | // Update __first to always point to the end of the trues |
| 53 | value_type* __t = __p.first; |
| 54 | ::new ((void*)__t) value_type(_VSTDstd::__1::move(*__first)); |
| 55 | __d.template __incr<value_type>(); |
| 56 | ++__t; |
| 57 | _ForwardIterator __i = __first; |
| 58 | while (++__i != __last) |
| 59 | { |
| 60 | if (__pred(*__i)) |
| 61 | { |
| 62 | *__first = _VSTDstd::__1::move(*__i); |
| 63 | ++__first; |
| 64 | } |
| 65 | else |
| 66 | { |
| 67 | ::new ((void*)__t) value_type(_VSTDstd::__1::move(*__i)); |
| 68 | __d.template __incr<value_type>(); |
| 69 | ++__t; |
| 70 | } |
| 71 | } |
| 72 | // All trues now at start of range, all falses in buffer |
| 73 | // Move falses back into range, but don't mess up __first which points to first false |
| 74 | __i = __first; |
| 75 | for (value_type* __t2 = __p.first; __t2 < __t; ++__t2, (void) ++__i) |
| 76 | *__i = _VSTDstd::__1::move(*__t2); |
| 77 | // __h destructs moved-from values out of the temp buffer, but doesn't deallocate buffer |
| 78 | return __first; |
| 79 | } |
| 80 | // Else not enough buffer, do in place |
| 81 | // __len >= 3 |
| 82 | _ForwardIterator __m = __first; |
| 83 | _Distance __len2 = __len / 2; // __len2 >= 2 |
| 84 | _VSTDstd::__1::advance(__m, __len2); |
| 85 | // recurse on [__first, __m), *__first know to be false |
| 86 | // F????????????????? |
| 87 | // f m l |
| 88 | typedef typename add_lvalue_reference<_Predicate>::type _PredRef; |
| 89 | _ForwardIterator __first_false = _VSTDstd::__1::__stable_partition<_PredRef>(__first, __m, __pred, __len2, __p, __fit); |
| 90 | // TTTFFFFF?????????? |
| 91 | // f ff m l |
| 92 | // recurse on [__m, __last], except increase __m until *(__m) is false, *__last know to be true |
| 93 | _ForwardIterator __m1 = __m; |
| 94 | _ForwardIterator __second_false = __last; |
| 95 | _Distance __len_half = __len - __len2; |
| 96 | while (__pred(*__m1)) |
| 97 | { |
| 98 | if (++__m1 == __last) |
| 99 | goto __second_half_done; |
| 100 | --__len_half; |
| 101 | } |
| 102 | // TTTFFFFFTTTF?????? |
| 103 | // f ff m m1 l |
| 104 | __second_false = _VSTDstd::__1::__stable_partition<_PredRef>(__m1, __last, __pred, __len_half, __p, __fit); |
| 105 | __second_half_done: |
| 106 | // TTTFFFFFTTTTTFFFFF |
| 107 | // f ff m sf l |
| 108 | return _VSTDstd::__1::rotate(__first_false, __m, __second_false); |
| 109 | // TTTTTTTTFFFFFFFFFF |
| 110 | // | |
| 111 | } |
| 112 | |
| 113 | template <class _Predicate, class _ForwardIterator> |
| 114 | _ForwardIterator |
| 115 | __stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, |
| 116 | forward_iterator_tag) |
| 117 | { |
| 118 | const unsigned __alloc_limit = 3; // might want to make this a function of trivial assignment |
| 119 | // Either prove all true and return __first or point to first false |
| 120 | while (true) |
| 121 | { |
| 122 | if (__first == __last) |
| 123 | return __first; |
| 124 | if (!__pred(*__first)) |
| 125 | break; |
| 126 | ++__first; |
| 127 | } |
| 128 | // We now have a reduced range [__first, __last) |
| 129 | // *__first is known to be false |
| 130 | typedef typename iterator_traits<_ForwardIterator>::difference_type difference_type; |
| 131 | typedef typename iterator_traits<_ForwardIterator>::value_type value_type; |
| 132 | difference_type __len = _VSTDstd::__1::distance(__first, __last); |
| 133 | pair<value_type*, ptrdiff_t> __p(0, 0); |
| 134 | unique_ptr<value_type, __return_temporary_buffer> __h; |
| 135 | if (__len >= __alloc_limit) |
| 136 | { |
| 137 | __p = _VSTDstd::__1::get_temporary_buffer<value_type>(__len); |
| 138 | __h.reset(__p.first); |
| 139 | } |
| 140 | return _VSTDstd::__1::__stable_partition<typename add_lvalue_reference<_Predicate>::type> |
| 141 | (__first, __last, __pred, __len, __p, forward_iterator_tag()); |
| 142 | } |
| 143 | |
| 144 | template <class _Predicate, class _BidirectionalIterator, class _Distance, class _Pair> |
| 145 | _BidirectionalIterator |
| 146 | __stable_partition(_BidirectionalIterator __first, _BidirectionalIterator __last, _Predicate __pred, |
| 147 | _Distance __len, _Pair __p, bidirectional_iterator_tag __bit) |
| 148 | { |
| 149 | // *__first is known to be false |
| 150 | // *__last is known to be true |
| 151 | // __len >= 2 |
| 152 | if (__len == 2) |
| 153 | { |
| 154 | swap(*__first, *__last); |
| 155 | return __last; |
| 156 | } |
| 157 | if (__len == 3) |
| 158 | { |
| 159 | _BidirectionalIterator __m = __first; |
| 160 | if (__pred(*++__m)) |
| 161 | { |
| 162 | swap(*__first, *__m); |
| 163 | swap(*__m, *__last); |
| 164 | return __last; |
| 165 | } |
| 166 | swap(*__m, *__last); |
| 167 | swap(*__first, *__m); |
| 168 | return __m; |
| 169 | } |
| 170 | if (__len <= __p.second) |
| 171 | { // The buffer is big enough to use |
| 172 | typedef typename iterator_traits<_BidirectionalIterator>::value_type value_type; |
| 173 | __destruct_n __d(0); |
| 174 | unique_ptr<value_type, __destruct_n&> __h(__p.first, __d); |
| 175 | // Move the falses into the temporary buffer, and the trues to the front of the line |
| 176 | // Update __first to always point to the end of the trues |
| 177 | value_type* __t = __p.first; |
| 178 | ::new ((void*)__t) value_type(_VSTDstd::__1::move(*__first)); |
| 179 | __d.template __incr<value_type>(); |
| 180 | ++__t; |
| 181 | _BidirectionalIterator __i = __first; |
| 182 | while (++__i != __last) |
| 183 | { |
| 184 | if (__pred(*__i)) |
| 185 | { |
| 186 | *__first = _VSTDstd::__1::move(*__i); |
| 187 | ++__first; |
| 188 | } |
| 189 | else |
| 190 | { |
| 191 | ::new ((void*)__t) value_type(_VSTDstd::__1::move(*__i)); |
| 192 | __d.template __incr<value_type>(); |
| 193 | ++__t; |
| 194 | } |
| 195 | } |
| 196 | // move *__last, known to be true |
| 197 | *__first = _VSTDstd::__1::move(*__i); |
| 198 | __i = ++__first; |
| 199 | // All trues now at start of range, all falses in buffer |
| 200 | // Move falses back into range, but don't mess up __first which points to first false |
| 201 | for (value_type* __t2 = __p.first; __t2 < __t; ++__t2, (void) ++__i) |
| 202 | *__i = _VSTDstd::__1::move(*__t2); |
| 203 | // __h destructs moved-from values out of the temp buffer, but doesn't deallocate buffer |
| 204 | return __first; |
| 205 | } |
| 206 | // Else not enough buffer, do in place |
| 207 | // __len >= 4 |
| 208 | _BidirectionalIterator __m = __first; |
| 209 | _Distance __len2 = __len / 2; // __len2 >= 2 |
| 210 | _VSTDstd::__1::advance(__m, __len2); |
| 211 | // recurse on [__first, __m-1], except reduce __m-1 until *(__m-1) is true, *__first know to be false |
| 212 | // F????????????????T |
| 213 | // f m l |
| 214 | _BidirectionalIterator __m1 = __m; |
| 215 | _BidirectionalIterator __first_false = __first; |
| 216 | _Distance __len_half = __len2; |
| 217 | while (!__pred(*--__m1)) |
| 218 | { |
| 219 | if (__m1 == __first) |
| 220 | goto __first_half_done; |
| 221 | --__len_half; |
| 222 | } |
| 223 | // F???TFFF?????????T |
| 224 | // f m1 m l |
| 225 | typedef typename add_lvalue_reference<_Predicate>::type _PredRef; |
| 226 | __first_false = _VSTDstd::__1::__stable_partition<_PredRef>(__first, __m1, __pred, __len_half, __p, __bit); |
| 227 | __first_half_done: |
| 228 | // TTTFFFFF?????????T |
| 229 | // f ff m l |
| 230 | // recurse on [__m, __last], except increase __m until *(__m) is false, *__last know to be true |
| 231 | __m1 = __m; |
| 232 | _BidirectionalIterator __second_false = __last; |
| 233 | ++__second_false; |
| 234 | __len_half = __len - __len2; |
| 235 | while (__pred(*__m1)) |
| 236 | { |
| 237 | if (++__m1 == __last) |
| 238 | goto __second_half_done; |
| 239 | --__len_half; |
| 240 | } |
| 241 | // TTTFFFFFTTTF?????T |
| 242 | // f ff m m1 l |
| 243 | __second_false = _VSTDstd::__1::__stable_partition<_PredRef>(__m1, __last, __pred, __len_half, __p, __bit); |
| 244 | __second_half_done: |
| 245 | // TTTFFFFFTTTTTFFFFF |
| 246 | // f ff m sf l |
| 247 | return _VSTDstd::__1::rotate(__first_false, __m, __second_false); |
| 248 | // TTTTTTTTFFFFFFFFFF |
| 249 | // | |
| 250 | } |
| 251 | |
| 252 | template <class _Predicate, class _BidirectionalIterator> |
| 253 | _BidirectionalIterator |
| 254 | __stable_partition(_BidirectionalIterator __first, _BidirectionalIterator __last, _Predicate __pred, |
| 255 | bidirectional_iterator_tag) |
| 256 | { |
| 257 | typedef typename iterator_traits<_BidirectionalIterator>::difference_type difference_type; |
| 258 | typedef typename iterator_traits<_BidirectionalIterator>::value_type value_type; |
| 259 | const difference_type __alloc_limit = 4; // might want to make this a function of trivial assignment |
| 260 | // Either prove all true and return __first or point to first false |
| 261 | while (true) |
| 262 | { |
| 263 | if (__first == __last) |
| 264 | return __first; |
| 265 | if (!__pred(*__first)) |
| 266 | break; |
| 267 | ++__first; |
| 268 | } |
| 269 | // __first points to first false, everything prior to __first is already set. |
| 270 | // Either prove [__first, __last) is all false and return __first, or point __last to last true |
| 271 | do |
| 272 | { |
| 273 | if (__first == --__last) |
| 274 | return __first; |
| 275 | } while (!__pred(*__last)); |
| 276 | // We now have a reduced range [__first, __last] |
| 277 | // *__first is known to be false |
| 278 | // *__last is known to be true |
| 279 | // __len >= 2 |
| 280 | difference_type __len = _VSTDstd::__1::distance(__first, __last) + 1; |
| 281 | pair<value_type*, ptrdiff_t> __p(0, 0); |
| 282 | unique_ptr<value_type, __return_temporary_buffer> __h; |
| 283 | if (__len >= __alloc_limit) |
| 284 | { |
| 285 | __p = _VSTDstd::__1::get_temporary_buffer<value_type>(__len); |
| 286 | __h.reset(__p.first); |
| 287 | } |
| 288 | return _VSTDstd::__1::__stable_partition<typename add_lvalue_reference<_Predicate>::type> |
| 289 | (__first, __last, __pred, __len, __p, bidirectional_iterator_tag()); |
| 290 | } |
| 291 | |
| 292 | template <class _ForwardIterator, class _Predicate> |
| 293 | inline _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) |
| 294 | _ForwardIterator |
| 295 | stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) |
| 296 | { |
| 297 | return _VSTDstd::__1::__stable_partition<typename add_lvalue_reference<_Predicate>::type> |
| 298 | (__first, __last, __pred, typename iterator_traits<_ForwardIterator>::iterator_category()); |
| 299 | } |
| 300 | |
| 301 | _LIBCPP_END_NAMESPACE_STD} } |
| 302 | |
| 303 | _LIBCPP_POP_MACROSpop_macro("min") pop_macro("max") |
| 304 | |
| 305 | #endif // _LIBCPP___ALGORITHM_STABLE_PARTITION_H |