Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 15375, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaDeclCXX.cpp

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaDeclCXX.cpp

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/Template.h"
41#include "llvm/ADT/ScopeExit.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/ADT/StringExtras.h"
45#include <map>
46#include <set>
47
48using namespace clang;
49
50//===----------------------------------------------------------------------===//
51// CheckDefaultArgumentVisitor
52//===----------------------------------------------------------------------===//
53
54namespace {
55/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
56/// the default argument of a parameter to determine whether it
57/// contains any ill-formed subexpressions. For example, this will
58/// diagnose the use of local variables or parameters within the
59/// default argument expression.
60class CheckDefaultArgumentVisitor
61 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
62 Sema &S;
63 const Expr *DefaultArg;
64
65public:
66 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
67 : S(S), DefaultArg(DefaultArg) {}
68
69 bool VisitExpr(const Expr *Node);
70 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
71 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
72 bool VisitLambdaExpr(const LambdaExpr *Lambda);
73 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
74};
75
76/// VisitExpr - Visit all of the children of this expression.
77bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
78 bool IsInvalid = false;
79 for (const Stmt *SubStmt : Node->children())
80 IsInvalid |= Visit(SubStmt);
81 return IsInvalid;
82}
83
84/// VisitDeclRefExpr - Visit a reference to a declaration, to
85/// determine whether this declaration can be used in the default
86/// argument expression.
87bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
88 const NamedDecl *Decl = DRE->getDecl();
89 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
90 // C++ [dcl.fct.default]p9:
91 // [...] parameters of a function shall not be used in default
92 // argument expressions, even if they are not evaluated. [...]
93 //
94 // C++17 [dcl.fct.default]p9 (by CWG 2082):
95 // [...] A parameter shall not appear as a potentially-evaluated
96 // expression in a default argument. [...]
97 //
98 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
99 return S.Diag(DRE->getBeginLoc(),
100 diag::err_param_default_argument_references_param)
101 << Param->getDeclName() << DefaultArg->getSourceRange();
102 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
103 // C++ [dcl.fct.default]p7:
104 // Local variables shall not be used in default argument
105 // expressions.
106 //
107 // C++17 [dcl.fct.default]p7 (by CWG 2082):
108 // A local variable shall not appear as a potentially-evaluated
109 // expression in a default argument.
110 //
111 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
112 // Note: A local variable cannot be odr-used (6.3) in a default argument.
113 //
114 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
115 return S.Diag(DRE->getBeginLoc(),
116 diag::err_param_default_argument_references_local)
117 << VDecl->getDeclName() << DefaultArg->getSourceRange();
118 }
119
120 return false;
121}
122
123/// VisitCXXThisExpr - Visit a C++ "this" expression.
124bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
125 // C++ [dcl.fct.default]p8:
126 // The keyword this shall not be used in a default argument of a
127 // member function.
128 return S.Diag(ThisE->getBeginLoc(),
129 diag::err_param_default_argument_references_this)
130 << ThisE->getSourceRange();
131}
132
133bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
134 const PseudoObjectExpr *POE) {
135 bool Invalid = false;
136 for (const Expr *E : POE->semantics()) {
137 // Look through bindings.
138 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
139 E = OVE->getSourceExpr();
140 assert(E && "pseudo-object binding without source expression?")((void)0);
141 }
142
143 Invalid |= Visit(E);
144 }
145 return Invalid;
146}
147
148bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
149 // C++11 [expr.lambda.prim]p13:
150 // A lambda-expression appearing in a default argument shall not
151 // implicitly or explicitly capture any entity.
152 if (Lambda->capture_begin() == Lambda->capture_end())
153 return false;
154
155 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
156}
157} // namespace
158
159void
160Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
161 const CXXMethodDecl *Method) {
162 // If we have an MSAny spec already, don't bother.
163 if (!Method || ComputedEST == EST_MSAny)
164 return;
165
166 const FunctionProtoType *Proto
167 = Method->getType()->getAs<FunctionProtoType>();
168 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
169 if (!Proto)
170 return;
171
172 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
173
174 // If we have a throw-all spec at this point, ignore the function.
175 if (ComputedEST == EST_None)
176 return;
177
178 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
179 EST = EST_BasicNoexcept;
180
181 switch (EST) {
182 case EST_Unparsed:
183 case EST_Uninstantiated:
184 case EST_Unevaluated:
185 llvm_unreachable("should not see unresolved exception specs here")__builtin_unreachable();
186
187 // If this function can throw any exceptions, make a note of that.
188 case EST_MSAny:
189 case EST_None:
190 // FIXME: Whichever we see last of MSAny and None determines our result.
191 // We should make a consistent, order-independent choice here.
192 ClearExceptions();
193 ComputedEST = EST;
194 return;
195 case EST_NoexceptFalse:
196 ClearExceptions();
197 ComputedEST = EST_None;
198 return;
199 // FIXME: If the call to this decl is using any of its default arguments, we
200 // need to search them for potentially-throwing calls.
201 // If this function has a basic noexcept, it doesn't affect the outcome.
202 case EST_BasicNoexcept:
203 case EST_NoexceptTrue:
204 case EST_NoThrow:
205 return;
206 // If we're still at noexcept(true) and there's a throw() callee,
207 // change to that specification.
208 case EST_DynamicNone:
209 if (ComputedEST == EST_BasicNoexcept)
210 ComputedEST = EST_DynamicNone;
211 return;
212 case EST_DependentNoexcept:
213 llvm_unreachable(__builtin_unreachable()
214 "should not generate implicit declarations for dependent cases")__builtin_unreachable();
215 case EST_Dynamic:
216 break;
217 }
218 assert(EST == EST_Dynamic && "EST case not considered earlier.")((void)0);
219 assert(ComputedEST != EST_None &&((void)0)
220 "Shouldn't collect exceptions when throw-all is guaranteed.")((void)0);
221 ComputedEST = EST_Dynamic;
222 // Record the exceptions in this function's exception specification.
223 for (const auto &E : Proto->exceptions())
224 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
225 Exceptions.push_back(E);
226}
227
228void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
229 if (!S || ComputedEST == EST_MSAny)
230 return;
231
232 // FIXME:
233 //
234 // C++0x [except.spec]p14:
235 // [An] implicit exception-specification specifies the type-id T if and
236 // only if T is allowed by the exception-specification of a function directly
237 // invoked by f's implicit definition; f shall allow all exceptions if any
238 // function it directly invokes allows all exceptions, and f shall allow no
239 // exceptions if every function it directly invokes allows no exceptions.
240 //
241 // Note in particular that if an implicit exception-specification is generated
242 // for a function containing a throw-expression, that specification can still
243 // be noexcept(true).
244 //
245 // Note also that 'directly invoked' is not defined in the standard, and there
246 // is no indication that we should only consider potentially-evaluated calls.
247 //
248 // Ultimately we should implement the intent of the standard: the exception
249 // specification should be the set of exceptions which can be thrown by the
250 // implicit definition. For now, we assume that any non-nothrow expression can
251 // throw any exception.
252
253 if (Self->canThrow(S))
254 ComputedEST = EST_None;
255}
256
257ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
258 SourceLocation EqualLoc) {
259 if (RequireCompleteType(Param->getLocation(), Param->getType(),
260 diag::err_typecheck_decl_incomplete_type))
261 return true;
262
263 // C++ [dcl.fct.default]p5
264 // A default argument expression is implicitly converted (clause
265 // 4) to the parameter type. The default argument expression has
266 // the same semantic constraints as the initializer expression in
267 // a declaration of a variable of the parameter type, using the
268 // copy-initialization semantics (8.5).
269 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
270 Param);
271 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
272 EqualLoc);
273 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
274 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
275 if (Result.isInvalid())
276 return true;
277 Arg = Result.getAs<Expr>();
278
279 CheckCompletedExpr(Arg, EqualLoc);
280 Arg = MaybeCreateExprWithCleanups(Arg);
281
282 return Arg;
283}
284
285void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
286 SourceLocation EqualLoc) {
287 // Add the default argument to the parameter
288 Param->setDefaultArg(Arg);
289
290 // We have already instantiated this parameter; provide each of the
291 // instantiations with the uninstantiated default argument.
292 UnparsedDefaultArgInstantiationsMap::iterator InstPos
293 = UnparsedDefaultArgInstantiations.find(Param);
294 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
295 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
296 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
297
298 // We're done tracking this parameter's instantiations.
299 UnparsedDefaultArgInstantiations.erase(InstPos);
300 }
301}
302
303/// ActOnParamDefaultArgument - Check whether the default argument
304/// provided for a function parameter is well-formed. If so, attach it
305/// to the parameter declaration.
306void
307Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
308 Expr *DefaultArg) {
309 if (!param || !DefaultArg)
310 return;
311
312 ParmVarDecl *Param = cast<ParmVarDecl>(param);
313 UnparsedDefaultArgLocs.erase(Param);
314
315 auto Fail = [&] {
316 Param->setInvalidDecl();
317 Param->setDefaultArg(new (Context) OpaqueValueExpr(
318 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
319 };
320
321 // Default arguments are only permitted in C++
322 if (!getLangOpts().CPlusPlus) {
323 Diag(EqualLoc, diag::err_param_default_argument)
324 << DefaultArg->getSourceRange();
325 return Fail();
326 }
327
328 // Check for unexpanded parameter packs.
329 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
330 return Fail();
331 }
332
333 // C++11 [dcl.fct.default]p3
334 // A default argument expression [...] shall not be specified for a
335 // parameter pack.
336 if (Param->isParameterPack()) {
337 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
338 << DefaultArg->getSourceRange();
339 // Recover by discarding the default argument.
340 Param->setDefaultArg(nullptr);
341 return;
342 }
343
344 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
345 if (Result.isInvalid())
346 return Fail();
347
348 DefaultArg = Result.getAs<Expr>();
349
350 // Check that the default argument is well-formed
351 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
352 if (DefaultArgChecker.Visit(DefaultArg))
353 return Fail();
354
355 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
356}
357
358/// ActOnParamUnparsedDefaultArgument - We've seen a default
359/// argument for a function parameter, but we can't parse it yet
360/// because we're inside a class definition. Note that this default
361/// argument will be parsed later.
362void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
363 SourceLocation EqualLoc,
364 SourceLocation ArgLoc) {
365 if (!param)
366 return;
367
368 ParmVarDecl *Param = cast<ParmVarDecl>(param);
369 Param->setUnparsedDefaultArg();
370 UnparsedDefaultArgLocs[Param] = ArgLoc;
371}
372
373/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
374/// the default argument for the parameter param failed.
375void Sema::ActOnParamDefaultArgumentError(Decl *param,
376 SourceLocation EqualLoc) {
377 if (!param)
378 return;
379
380 ParmVarDecl *Param = cast<ParmVarDecl>(param);
381 Param->setInvalidDecl();
382 UnparsedDefaultArgLocs.erase(Param);
383 Param->setDefaultArg(new (Context) OpaqueValueExpr(
384 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
385}
386
387/// CheckExtraCXXDefaultArguments - Check for any extra default
388/// arguments in the declarator, which is not a function declaration
389/// or definition and therefore is not permitted to have default
390/// arguments. This routine should be invoked for every declarator
391/// that is not a function declaration or definition.
392void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
393 // C++ [dcl.fct.default]p3
394 // A default argument expression shall be specified only in the
395 // parameter-declaration-clause of a function declaration or in a
396 // template-parameter (14.1). It shall not be specified for a
397 // parameter pack. If it is specified in a
398 // parameter-declaration-clause, it shall not occur within a
399 // declarator or abstract-declarator of a parameter-declaration.
400 bool MightBeFunction = D.isFunctionDeclarationContext();
401 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
402 DeclaratorChunk &chunk = D.getTypeObject(i);
403 if (chunk.Kind == DeclaratorChunk::Function) {
404 if (MightBeFunction) {
405 // This is a function declaration. It can have default arguments, but
406 // keep looking in case its return type is a function type with default
407 // arguments.
408 MightBeFunction = false;
409 continue;
410 }
411 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
412 ++argIdx) {
413 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
414 if (Param->hasUnparsedDefaultArg()) {
415 std::unique_ptr<CachedTokens> Toks =
416 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
417 SourceRange SR;
418 if (Toks->size() > 1)
419 SR = SourceRange((*Toks)[1].getLocation(),
420 Toks->back().getLocation());
421 else
422 SR = UnparsedDefaultArgLocs[Param];
423 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
424 << SR;
425 } else if (Param->getDefaultArg()) {
426 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
427 << Param->getDefaultArg()->getSourceRange();
428 Param->setDefaultArg(nullptr);
429 }
430 }
431 } else if (chunk.Kind != DeclaratorChunk::Paren) {
432 MightBeFunction = false;
433 }
434 }
435}
436
437static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
438 return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) {
439 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
440 });
441}
442
443/// MergeCXXFunctionDecl - Merge two declarations of the same C++
444/// function, once we already know that they have the same
445/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
446/// error, false otherwise.
447bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
448 Scope *S) {
449 bool Invalid = false;
450
451 // The declaration context corresponding to the scope is the semantic
452 // parent, unless this is a local function declaration, in which case
453 // it is that surrounding function.
454 DeclContext *ScopeDC = New->isLocalExternDecl()
455 ? New->getLexicalDeclContext()
456 : New->getDeclContext();
457
458 // Find the previous declaration for the purpose of default arguments.
459 FunctionDecl *PrevForDefaultArgs = Old;
460 for (/**/; PrevForDefaultArgs;
461 // Don't bother looking back past the latest decl if this is a local
462 // extern declaration; nothing else could work.
463 PrevForDefaultArgs = New->isLocalExternDecl()
464 ? nullptr
465 : PrevForDefaultArgs->getPreviousDecl()) {
466 // Ignore hidden declarations.
467 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
468 continue;
469
470 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
471 !New->isCXXClassMember()) {
472 // Ignore default arguments of old decl if they are not in
473 // the same scope and this is not an out-of-line definition of
474 // a member function.
475 continue;
476 }
477
478 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
479 // If only one of these is a local function declaration, then they are
480 // declared in different scopes, even though isDeclInScope may think
481 // they're in the same scope. (If both are local, the scope check is
482 // sufficient, and if neither is local, then they are in the same scope.)
483 continue;
484 }
485
486 // We found the right previous declaration.
487 break;
488 }
489
490 // C++ [dcl.fct.default]p4:
491 // For non-template functions, default arguments can be added in
492 // later declarations of a function in the same
493 // scope. Declarations in different scopes have completely
494 // distinct sets of default arguments. That is, declarations in
495 // inner scopes do not acquire default arguments from
496 // declarations in outer scopes, and vice versa. In a given
497 // function declaration, all parameters subsequent to a
498 // parameter with a default argument shall have default
499 // arguments supplied in this or previous declarations. A
500 // default argument shall not be redefined by a later
501 // declaration (not even to the same value).
502 //
503 // C++ [dcl.fct.default]p6:
504 // Except for member functions of class templates, the default arguments
505 // in a member function definition that appears outside of the class
506 // definition are added to the set of default arguments provided by the
507 // member function declaration in the class definition.
508 for (unsigned p = 0, NumParams = PrevForDefaultArgs
509 ? PrevForDefaultArgs->getNumParams()
510 : 0;
511 p < NumParams; ++p) {
512 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
513 ParmVarDecl *NewParam = New->getParamDecl(p);
514
515 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
516 bool NewParamHasDfl = NewParam->hasDefaultArg();
517
518 if (OldParamHasDfl && NewParamHasDfl) {
519 unsigned DiagDefaultParamID =
520 diag::err_param_default_argument_redefinition;
521
522 // MSVC accepts that default parameters be redefined for member functions
523 // of template class. The new default parameter's value is ignored.
524 Invalid = true;
525 if (getLangOpts().MicrosoftExt) {
526 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
527 if (MD && MD->getParent()->getDescribedClassTemplate()) {
528 // Merge the old default argument into the new parameter.
529 NewParam->setHasInheritedDefaultArg();
530 if (OldParam->hasUninstantiatedDefaultArg())
531 NewParam->setUninstantiatedDefaultArg(
532 OldParam->getUninstantiatedDefaultArg());
533 else
534 NewParam->setDefaultArg(OldParam->getInit());
535 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
536 Invalid = false;
537 }
538 }
539
540 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
541 // hint here. Alternatively, we could walk the type-source information
542 // for NewParam to find the last source location in the type... but it
543 // isn't worth the effort right now. This is the kind of test case that
544 // is hard to get right:
545 // int f(int);
546 // void g(int (*fp)(int) = f);
547 // void g(int (*fp)(int) = &f);
548 Diag(NewParam->getLocation(), DiagDefaultParamID)
549 << NewParam->getDefaultArgRange();
550
551 // Look for the function declaration where the default argument was
552 // actually written, which may be a declaration prior to Old.
553 for (auto Older = PrevForDefaultArgs;
554 OldParam->hasInheritedDefaultArg(); /**/) {
555 Older = Older->getPreviousDecl();
556 OldParam = Older->getParamDecl(p);
557 }
558
559 Diag(OldParam->getLocation(), diag::note_previous_definition)
560 << OldParam->getDefaultArgRange();
561 } else if (OldParamHasDfl) {
562 // Merge the old default argument into the new parameter unless the new
563 // function is a friend declaration in a template class. In the latter
564 // case the default arguments will be inherited when the friend
565 // declaration will be instantiated.
566 if (New->getFriendObjectKind() == Decl::FOK_None ||
567 !New->getLexicalDeclContext()->isDependentContext()) {
568 // It's important to use getInit() here; getDefaultArg()
569 // strips off any top-level ExprWithCleanups.
570 NewParam->setHasInheritedDefaultArg();
571 if (OldParam->hasUnparsedDefaultArg())
572 NewParam->setUnparsedDefaultArg();
573 else if (OldParam->hasUninstantiatedDefaultArg())
574 NewParam->setUninstantiatedDefaultArg(
575 OldParam->getUninstantiatedDefaultArg());
576 else
577 NewParam->setDefaultArg(OldParam->getInit());
578 }
579 } else if (NewParamHasDfl) {
580 if (New->getDescribedFunctionTemplate()) {
581 // Paragraph 4, quoted above, only applies to non-template functions.
582 Diag(NewParam->getLocation(),
583 diag::err_param_default_argument_template_redecl)
584 << NewParam->getDefaultArgRange();
585 Diag(PrevForDefaultArgs->getLocation(),
586 diag::note_template_prev_declaration)
587 << false;
588 } else if (New->getTemplateSpecializationKind()
589 != TSK_ImplicitInstantiation &&
590 New->getTemplateSpecializationKind() != TSK_Undeclared) {
591 // C++ [temp.expr.spec]p21:
592 // Default function arguments shall not be specified in a declaration
593 // or a definition for one of the following explicit specializations:
594 // - the explicit specialization of a function template;
595 // - the explicit specialization of a member function template;
596 // - the explicit specialization of a member function of a class
597 // template where the class template specialization to which the
598 // member function specialization belongs is implicitly
599 // instantiated.
600 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
601 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
602 << New->getDeclName()
603 << NewParam->getDefaultArgRange();
604 } else if (New->getDeclContext()->isDependentContext()) {
605 // C++ [dcl.fct.default]p6 (DR217):
606 // Default arguments for a member function of a class template shall
607 // be specified on the initial declaration of the member function
608 // within the class template.
609 //
610 // Reading the tea leaves a bit in DR217 and its reference to DR205
611 // leads me to the conclusion that one cannot add default function
612 // arguments for an out-of-line definition of a member function of a
613 // dependent type.
614 int WhichKind = 2;
615 if (CXXRecordDecl *Record
616 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
617 if (Record->getDescribedClassTemplate())
618 WhichKind = 0;
619 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
620 WhichKind = 1;
621 else
622 WhichKind = 2;
623 }
624
625 Diag(NewParam->getLocation(),
626 diag::err_param_default_argument_member_template_redecl)
627 << WhichKind
628 << NewParam->getDefaultArgRange();
629 }
630 }
631 }
632
633 // DR1344: If a default argument is added outside a class definition and that
634 // default argument makes the function a special member function, the program
635 // is ill-formed. This can only happen for constructors.
636 if (isa<CXXConstructorDecl>(New) &&
637 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
638 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
639 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
640 if (NewSM != OldSM) {
641 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
642 assert(NewParam->hasDefaultArg())((void)0);
643 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
644 << NewParam->getDefaultArgRange() << NewSM;
645 Diag(Old->getLocation(), diag::note_previous_declaration);
646 }
647 }
648
649 const FunctionDecl *Def;
650 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
651 // template has a constexpr specifier then all its declarations shall
652 // contain the constexpr specifier.
653 if (New->getConstexprKind() != Old->getConstexprKind()) {
654 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
655 << New << static_cast<int>(New->getConstexprKind())
656 << static_cast<int>(Old->getConstexprKind());
657 Diag(Old->getLocation(), diag::note_previous_declaration);
658 Invalid = true;
659 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
660 Old->isDefined(Def) &&
661 // If a friend function is inlined but does not have 'inline'
662 // specifier, it is a definition. Do not report attribute conflict
663 // in this case, redefinition will be diagnosed later.
664 (New->isInlineSpecified() ||
665 New->getFriendObjectKind() == Decl::FOK_None)) {
666 // C++11 [dcl.fcn.spec]p4:
667 // If the definition of a function appears in a translation unit before its
668 // first declaration as inline, the program is ill-formed.
669 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
670 Diag(Def->getLocation(), diag::note_previous_definition);
671 Invalid = true;
672 }
673
674 // C++17 [temp.deduct.guide]p3:
675 // Two deduction guide declarations in the same translation unit
676 // for the same class template shall not have equivalent
677 // parameter-declaration-clauses.
678 if (isa<CXXDeductionGuideDecl>(New) &&
679 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
680 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
681 Diag(Old->getLocation(), diag::note_previous_declaration);
682 }
683
684 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
685 // argument expression, that declaration shall be a definition and shall be
686 // the only declaration of the function or function template in the
687 // translation unit.
688 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
689 functionDeclHasDefaultArgument(Old)) {
690 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
691 Diag(Old->getLocation(), diag::note_previous_declaration);
692 Invalid = true;
693 }
694
695 // C++11 [temp.friend]p4 (DR329):
696 // When a function is defined in a friend function declaration in a class
697 // template, the function is instantiated when the function is odr-used.
698 // The same restrictions on multiple declarations and definitions that
699 // apply to non-template function declarations and definitions also apply
700 // to these implicit definitions.
701 const FunctionDecl *OldDefinition = nullptr;
702 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
703 Old->isDefined(OldDefinition, true))
704 CheckForFunctionRedefinition(New, OldDefinition);
705
706 return Invalid;
707}
708
709NamedDecl *
710Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
711 MultiTemplateParamsArg TemplateParamLists) {
712 assert(D.isDecompositionDeclarator())((void)0);
713 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
714
715 // The syntax only allows a decomposition declarator as a simple-declaration,
716 // a for-range-declaration, or a condition in Clang, but we parse it in more
717 // cases than that.
718 if (!D.mayHaveDecompositionDeclarator()) {
719 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
720 << Decomp.getSourceRange();
721 return nullptr;
722 }
723
724 if (!TemplateParamLists.empty()) {
725 // FIXME: There's no rule against this, but there are also no rules that
726 // would actually make it usable, so we reject it for now.
727 Diag(TemplateParamLists.front()->getTemplateLoc(),
728 diag::err_decomp_decl_template);
729 return nullptr;
730 }
731
732 Diag(Decomp.getLSquareLoc(),
733 !getLangOpts().CPlusPlus17
734 ? diag::ext_decomp_decl
735 : D.getContext() == DeclaratorContext::Condition
736 ? diag::ext_decomp_decl_cond
737 : diag::warn_cxx14_compat_decomp_decl)
738 << Decomp.getSourceRange();
739
740 // The semantic context is always just the current context.
741 DeclContext *const DC = CurContext;
742
743 // C++17 [dcl.dcl]/8:
744 // The decl-specifier-seq shall contain only the type-specifier auto
745 // and cv-qualifiers.
746 // C++2a [dcl.dcl]/8:
747 // If decl-specifier-seq contains any decl-specifier other than static,
748 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
749 auto &DS = D.getDeclSpec();
750 {
751 SmallVector<StringRef, 8> BadSpecifiers;
752 SmallVector<SourceLocation, 8> BadSpecifierLocs;
753 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
754 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
755 if (auto SCS = DS.getStorageClassSpec()) {
756 if (SCS == DeclSpec::SCS_static) {
757 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
758 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
759 } else {
760 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
761 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
762 }
763 }
764 if (auto TSCS = DS.getThreadStorageClassSpec()) {
765 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
766 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
767 }
768 if (DS.hasConstexprSpecifier()) {
769 BadSpecifiers.push_back(
770 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
771 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
772 }
773 if (DS.isInlineSpecified()) {
774 BadSpecifiers.push_back("inline");
775 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
776 }
777 if (!BadSpecifiers.empty()) {
778 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
779 Err << (int)BadSpecifiers.size()
780 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
781 // Don't add FixItHints to remove the specifiers; we do still respect
782 // them when building the underlying variable.
783 for (auto Loc : BadSpecifierLocs)
784 Err << SourceRange(Loc, Loc);
785 } else if (!CPlusPlus20Specifiers.empty()) {
786 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
787 getLangOpts().CPlusPlus20
788 ? diag::warn_cxx17_compat_decomp_decl_spec
789 : diag::ext_decomp_decl_spec);
790 Warn << (int)CPlusPlus20Specifiers.size()
791 << llvm::join(CPlusPlus20Specifiers.begin(),
792 CPlusPlus20Specifiers.end(), " ");
793 for (auto Loc : CPlusPlus20SpecifierLocs)
794 Warn << SourceRange(Loc, Loc);
795 }
796 // We can't recover from it being declared as a typedef.
797 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
798 return nullptr;
799 }
800
801 // C++2a [dcl.struct.bind]p1:
802 // A cv that includes volatile is deprecated
803 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
804 getLangOpts().CPlusPlus20)
805 Diag(DS.getVolatileSpecLoc(),
806 diag::warn_deprecated_volatile_structured_binding);
807
808 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
809 QualType R = TInfo->getType();
810
811 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
812 UPPC_DeclarationType))
813 D.setInvalidType();
814
815 // The syntax only allows a single ref-qualifier prior to the decomposition
816 // declarator. No other declarator chunks are permitted. Also check the type
817 // specifier here.
818 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
819 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
820 (D.getNumTypeObjects() == 1 &&
821 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
822 Diag(Decomp.getLSquareLoc(),
823 (D.hasGroupingParens() ||
824 (D.getNumTypeObjects() &&
825 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
826 ? diag::err_decomp_decl_parens
827 : diag::err_decomp_decl_type)
828 << R;
829
830 // In most cases, there's no actual problem with an explicitly-specified
831 // type, but a function type won't work here, and ActOnVariableDeclarator
832 // shouldn't be called for such a type.
833 if (R->isFunctionType())
834 D.setInvalidType();
835 }
836
837 // Build the BindingDecls.
838 SmallVector<BindingDecl*, 8> Bindings;
839
840 // Build the BindingDecls.
841 for (auto &B : D.getDecompositionDeclarator().bindings()) {
842 // Check for name conflicts.
843 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
844 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
845 ForVisibleRedeclaration);
846 LookupName(Previous, S,
847 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
848
849 // It's not permitted to shadow a template parameter name.
850 if (Previous.isSingleResult() &&
851 Previous.getFoundDecl()->isTemplateParameter()) {
852 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
853 Previous.getFoundDecl());
854 Previous.clear();
855 }
856
857 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
858
859 // Find the shadowed declaration before filtering for scope.
860 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
861 ? getShadowedDeclaration(BD, Previous)
862 : nullptr;
863
864 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
865 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
866 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
867 /*AllowInlineNamespace*/false);
868
869 if (!Previous.empty()) {
870 auto *Old = Previous.getRepresentativeDecl();
871 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
872 Diag(Old->getLocation(), diag::note_previous_definition);
873 } else if (ShadowedDecl && !D.isRedeclaration()) {
874 CheckShadow(BD, ShadowedDecl, Previous);
875 }
876 PushOnScopeChains(BD, S, true);
877 Bindings.push_back(BD);
878 ParsingInitForAutoVars.insert(BD);
879 }
880
881 // There are no prior lookup results for the variable itself, because it
882 // is unnamed.
883 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
884 Decomp.getLSquareLoc());
885 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
886 ForVisibleRedeclaration);
887
888 // Build the variable that holds the non-decomposed object.
889 bool AddToScope = true;
890 NamedDecl *New =
891 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
892 MultiTemplateParamsArg(), AddToScope, Bindings);
893 if (AddToScope) {
894 S->AddDecl(New);
895 CurContext->addHiddenDecl(New);
896 }
897
898 if (isInOpenMPDeclareTargetContext())
899 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
900
901 return New;
902}
903
904static bool checkSimpleDecomposition(
905 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
906 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
907 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
908 if ((int64_t)Bindings.size() != NumElems) {
909 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
910 << DecompType << (unsigned)Bindings.size()
911 << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
912 << toString(NumElems, 10) << (NumElems < Bindings.size());
913 return true;
914 }
915
916 unsigned I = 0;
917 for (auto *B : Bindings) {
918 SourceLocation Loc = B->getLocation();
919 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
920 if (E.isInvalid())
921 return true;
922 E = GetInit(Loc, E.get(), I++);
923 if (E.isInvalid())
924 return true;
925 B->setBinding(ElemType, E.get());
926 }
927
928 return false;
929}
930
931static bool checkArrayLikeDecomposition(Sema &S,
932 ArrayRef<BindingDecl *> Bindings,
933 ValueDecl *Src, QualType DecompType,
934 const llvm::APSInt &NumElems,
935 QualType ElemType) {
936 return checkSimpleDecomposition(
937 S, Bindings, Src, DecompType, NumElems, ElemType,
938 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
939 ExprResult E = S.ActOnIntegerConstant(Loc, I);
940 if (E.isInvalid())
941 return ExprError();
942 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
943 });
944}
945
946static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
947 ValueDecl *Src, QualType DecompType,
948 const ConstantArrayType *CAT) {
949 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
950 llvm::APSInt(CAT->getSize()),
951 CAT->getElementType());
952}
953
954static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
955 ValueDecl *Src, QualType DecompType,
956 const VectorType *VT) {
957 return checkArrayLikeDecomposition(
958 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
959 S.Context.getQualifiedType(VT->getElementType(),
960 DecompType.getQualifiers()));
961}
962
963static bool checkComplexDecomposition(Sema &S,
964 ArrayRef<BindingDecl *> Bindings,
965 ValueDecl *Src, QualType DecompType,
966 const ComplexType *CT) {
967 return checkSimpleDecomposition(
968 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
969 S.Context.getQualifiedType(CT->getElementType(),
970 DecompType.getQualifiers()),
971 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
972 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
973 });
974}
975
976static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
977 TemplateArgumentListInfo &Args,
978 const TemplateParameterList *Params) {
979 SmallString<128> SS;
980 llvm::raw_svector_ostream OS(SS);
981 bool First = true;
982 unsigned I = 0;
983 for (auto &Arg : Args.arguments()) {
984 if (!First)
985 OS << ", ";
986 Arg.getArgument().print(
987 PrintingPolicy, OS,
988 TemplateParameterList::shouldIncludeTypeForArgument(Params, I));
989 First = false;
990 I++;
991 }
992 return std::string(OS.str());
993}
994
995static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
996 SourceLocation Loc, StringRef Trait,
997 TemplateArgumentListInfo &Args,
998 unsigned DiagID) {
999 auto DiagnoseMissing = [&] {
1000 if (DiagID)
1001 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
1002 Args, /*Params*/ nullptr);
1003 return true;
1004 };
1005
1006 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1007 NamespaceDecl *Std = S.getStdNamespace();
1008 if (!Std)
1009 return DiagnoseMissing();
1010
1011 // Look up the trait itself, within namespace std. We can diagnose various
1012 // problems with this lookup even if we've been asked to not diagnose a
1013 // missing specialization, because this can only fail if the user has been
1014 // declaring their own names in namespace std or we don't support the
1015 // standard library implementation in use.
1016 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1017 Loc, Sema::LookupOrdinaryName);
1018 if (!S.LookupQualifiedName(Result, Std))
1019 return DiagnoseMissing();
1020 if (Result.isAmbiguous())
1021 return true;
1022
1023 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1024 if (!TraitTD) {
1025 Result.suppressDiagnostics();
1026 NamedDecl *Found = *Result.begin();
1027 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1028 S.Diag(Found->getLocation(), diag::note_declared_at);
1029 return true;
1030 }
1031
1032 // Build the template-id.
1033 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1034 if (TraitTy.isNull())
1035 return true;
1036 if (!S.isCompleteType(Loc, TraitTy)) {
1037 if (DiagID)
1038 S.RequireCompleteType(
1039 Loc, TraitTy, DiagID,
1040 printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1041 TraitTD->getTemplateParameters()));
1042 return true;
1043 }
1044
1045 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1046 assert(RD && "specialization of class template is not a class?")((void)0);
1047
1048 // Look up the member of the trait type.
1049 S.LookupQualifiedName(TraitMemberLookup, RD);
1050 return TraitMemberLookup.isAmbiguous();
1051}
1052
1053static TemplateArgumentLoc
1054getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1055 uint64_t I) {
1056 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1057 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1058}
1059
1060static TemplateArgumentLoc
1061getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1062 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1063}
1064
1065namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1066
1067static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1068 llvm::APSInt &Size) {
1069 EnterExpressionEvaluationContext ContextRAII(
1070 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1071
1072 DeclarationName Value = S.PP.getIdentifierInfo("value");
1073 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1074
1075 // Form template argument list for tuple_size<T>.
1076 TemplateArgumentListInfo Args(Loc, Loc);
1077 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1078
1079 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1080 // it's not tuple-like.
1081 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1082 R.empty())
1083 return IsTupleLike::NotTupleLike;
1084
1085 // If we get this far, we've committed to the tuple interpretation, but
1086 // we can still fail if there actually isn't a usable ::value.
1087
1088 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1089 LookupResult &R;
1090 TemplateArgumentListInfo &Args;
1091 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1092 : R(R), Args(Args) {}
1093 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1094 SourceLocation Loc) override {
1095 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1096 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1097 /*Params*/ nullptr);
1098 }
1099 } Diagnoser(R, Args);
1100
1101 ExprResult E =
1102 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1103 if (E.isInvalid())
1104 return IsTupleLike::Error;
1105
1106 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1107 if (E.isInvalid())
1108 return IsTupleLike::Error;
1109
1110 return IsTupleLike::TupleLike;
1111}
1112
1113/// \return std::tuple_element<I, T>::type.
1114static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1115 unsigned I, QualType T) {
1116 // Form template argument list for tuple_element<I, T>.
1117 TemplateArgumentListInfo Args(Loc, Loc);
1118 Args.addArgument(
1119 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1120 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1121
1122 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1123 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1124 if (lookupStdTypeTraitMember(
1125 S, R, Loc, "tuple_element", Args,
1126 diag::err_decomp_decl_std_tuple_element_not_specialized))
1127 return QualType();
1128
1129 auto *TD = R.getAsSingle<TypeDecl>();
1130 if (!TD) {
1131 R.suppressDiagnostics();
1132 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1133 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1134 /*Params*/ nullptr);
1135 if (!R.empty())
1136 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1137 return QualType();
1138 }
1139
1140 return S.Context.getTypeDeclType(TD);
1141}
1142
1143namespace {
1144struct InitializingBinding {
1145 Sema &S;
1146 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1147 Sema::CodeSynthesisContext Ctx;
1148 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1149 Ctx.PointOfInstantiation = BD->getLocation();
1150 Ctx.Entity = BD;
1151 S.pushCodeSynthesisContext(Ctx);
1152 }
1153 ~InitializingBinding() {
1154 S.popCodeSynthesisContext();
1155 }
1156};
1157}
1158
1159static bool checkTupleLikeDecomposition(Sema &S,
1160 ArrayRef<BindingDecl *> Bindings,
1161 VarDecl *Src, QualType DecompType,
1162 const llvm::APSInt &TupleSize) {
1163 if ((int64_t)Bindings.size() != TupleSize) {
1164 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1165 << DecompType << (unsigned)Bindings.size()
1166 << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
1167 << toString(TupleSize, 10) << (TupleSize < Bindings.size());
1168 return true;
1169 }
1170
1171 if (Bindings.empty())
1172 return false;
1173
1174 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1175
1176 // [dcl.decomp]p3:
1177 // The unqualified-id get is looked up in the scope of E by class member
1178 // access lookup ...
1179 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1180 bool UseMemberGet = false;
1181 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1182 if (auto *RD = DecompType->getAsCXXRecordDecl())
1183 S.LookupQualifiedName(MemberGet, RD);
1184 if (MemberGet.isAmbiguous())
1185 return true;
1186 // ... and if that finds at least one declaration that is a function
1187 // template whose first template parameter is a non-type parameter ...
1188 for (NamedDecl *D : MemberGet) {
1189 if (FunctionTemplateDecl *FTD =
1190 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1191 TemplateParameterList *TPL = FTD->getTemplateParameters();
1192 if (TPL->size() != 0 &&
1193 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1194 // ... the initializer is e.get<i>().
1195 UseMemberGet = true;
1196 break;
1197 }
1198 }
1199 }
1200 }
1201
1202 unsigned I = 0;
1203 for (auto *B : Bindings) {
1204 InitializingBinding InitContext(S, B);
1205 SourceLocation Loc = B->getLocation();
1206
1207 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1208 if (E.isInvalid())
1209 return true;
1210
1211 // e is an lvalue if the type of the entity is an lvalue reference and
1212 // an xvalue otherwise
1213 if (!Src->getType()->isLValueReferenceType())
1214 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1215 E.get(), nullptr, VK_XValue,
1216 FPOptionsOverride());
1217
1218 TemplateArgumentListInfo Args(Loc, Loc);
1219 Args.addArgument(
1220 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1221
1222 if (UseMemberGet) {
1223 // if [lookup of member get] finds at least one declaration, the
1224 // initializer is e.get<i-1>().
1225 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1226 CXXScopeSpec(), SourceLocation(), nullptr,
1227 MemberGet, &Args, nullptr);
1228 if (E.isInvalid())
1229 return true;
1230
1231 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1232 } else {
1233 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1234 // in the associated namespaces.
1235 Expr *Get = UnresolvedLookupExpr::Create(
1236 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1237 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1238 UnresolvedSetIterator(), UnresolvedSetIterator());
1239
1240 Expr *Arg = E.get();
1241 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1242 }
1243 if (E.isInvalid())
1244 return true;
1245 Expr *Init = E.get();
1246
1247 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1248 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1249 if (T.isNull())
1250 return true;
1251
1252 // each vi is a variable of type "reference to T" initialized with the
1253 // initializer, where the reference is an lvalue reference if the
1254 // initializer is an lvalue and an rvalue reference otherwise
1255 QualType RefType =
1256 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1257 if (RefType.isNull())
1258 return true;
1259 auto *RefVD = VarDecl::Create(
1260 S.Context, Src->getDeclContext(), Loc, Loc,
1261 B->getDeclName().getAsIdentifierInfo(), RefType,
1262 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1263 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1264 RefVD->setTSCSpec(Src->getTSCSpec());
1265 RefVD->setImplicit();
1266 if (Src->isInlineSpecified())
1267 RefVD->setInlineSpecified();
1268 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1269
1270 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1271 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1272 InitializationSequence Seq(S, Entity, Kind, Init);
1273 E = Seq.Perform(S, Entity, Kind, Init);
1274 if (E.isInvalid())
1275 return true;
1276 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1277 if (E.isInvalid())
1278 return true;
1279 RefVD->setInit(E.get());
1280 S.CheckCompleteVariableDeclaration(RefVD);
1281
1282 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1283 DeclarationNameInfo(B->getDeclName(), Loc),
1284 RefVD);
1285 if (E.isInvalid())
1286 return true;
1287
1288 B->setBinding(T, E.get());
1289 I++;
1290 }
1291
1292 return false;
1293}
1294
1295/// Find the base class to decompose in a built-in decomposition of a class type.
1296/// This base class search is, unfortunately, not quite like any other that we
1297/// perform anywhere else in C++.
1298static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1299 const CXXRecordDecl *RD,
1300 CXXCastPath &BasePath) {
1301 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1302 CXXBasePath &Path) {
1303 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1304 };
1305
1306 const CXXRecordDecl *ClassWithFields = nullptr;
1307 AccessSpecifier AS = AS_public;
1308 if (RD->hasDirectFields())
1309 // [dcl.decomp]p4:
1310 // Otherwise, all of E's non-static data members shall be public direct
1311 // members of E ...
1312 ClassWithFields = RD;
1313 else {
1314 // ... or of ...
1315 CXXBasePaths Paths;
1316 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1317 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1318 // If no classes have fields, just decompose RD itself. (This will work
1319 // if and only if zero bindings were provided.)
1320 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1321 }
1322
1323 CXXBasePath *BestPath = nullptr;
1324 for (auto &P : Paths) {
1325 if (!BestPath)
1326 BestPath = &P;
1327 else if (!S.Context.hasSameType(P.back().Base->getType(),
1328 BestPath->back().Base->getType())) {
1329 // ... the same ...
1330 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1331 << false << RD << BestPath->back().Base->getType()
1332 << P.back().Base->getType();
1333 return DeclAccessPair();
1334 } else if (P.Access < BestPath->Access) {
1335 BestPath = &P;
1336 }
1337 }
1338
1339 // ... unambiguous ...
1340 QualType BaseType = BestPath->back().Base->getType();
1341 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1342 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1343 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1344 return DeclAccessPair();
1345 }
1346
1347 // ... [accessible, implied by other rules] base class of E.
1348 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1349 *BestPath, diag::err_decomp_decl_inaccessible_base);
1350 AS = BestPath->Access;
1351
1352 ClassWithFields = BaseType->getAsCXXRecordDecl();
1353 S.BuildBasePathArray(Paths, BasePath);
1354 }
1355
1356 // The above search did not check whether the selected class itself has base
1357 // classes with fields, so check that now.
1358 CXXBasePaths Paths;
1359 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1360 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1361 << (ClassWithFields == RD) << RD << ClassWithFields
1362 << Paths.front().back().Base->getType();
1363 return DeclAccessPair();
1364 }
1365
1366 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1367}
1368
1369static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1370 ValueDecl *Src, QualType DecompType,
1371 const CXXRecordDecl *OrigRD) {
1372 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1373 diag::err_incomplete_type))
1374 return true;
1375
1376 CXXCastPath BasePath;
1377 DeclAccessPair BasePair =
1378 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1379 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1380 if (!RD)
1381 return true;
1382 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1383 DecompType.getQualifiers());
1384
1385 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1386 unsigned NumFields =
1387 std::count_if(RD->field_begin(), RD->field_end(),
1388 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1389 assert(Bindings.size() != NumFields)((void)0);
1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1392 << (NumFields < Bindings.size());
1393 return true;
1394 };
1395
1396 // all of E's non-static data members shall be [...] well-formed
1397 // when named as e.name in the context of the structured binding,
1398 // E shall not have an anonymous union member, ...
1399 unsigned I = 0;
1400 for (auto *FD : RD->fields()) {
1401 if (FD->isUnnamedBitfield())
1402 continue;
1403
1404 // All the non-static data members are required to be nameable, so they
1405 // must all have names.
1406 if (!FD->getDeclName()) {
1407 if (RD->isLambda()) {
1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1409 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1410 return true;
1411 }
1412
1413 if (FD->isAnonymousStructOrUnion()) {
1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1415 << DecompType << FD->getType()->isUnionType();
1416 S.Diag(FD->getLocation(), diag::note_declared_at);
1417 return true;
1418 }
1419
1420 // FIXME: Are there any other ways we could have an anonymous member?
1421 }
1422
1423 // We have a real field to bind.
1424 if (I >= Bindings.size())
1425 return DiagnoseBadNumberOfBindings();
1426 auto *B = Bindings[I++];
1427 SourceLocation Loc = B->getLocation();
1428
1429 // The field must be accessible in the context of the structured binding.
1430 // We already checked that the base class is accessible.
1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1432 // const_cast here.
1433 S.CheckStructuredBindingMemberAccess(
1434 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1436 BasePair.getAccess(), FD->getAccess())));
1437
1438 // Initialize the binding to Src.FD.
1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1440 if (E.isInvalid())
1441 return true;
1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1443 VK_LValue, &BasePath);
1444 if (E.isInvalid())
1445 return true;
1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1447 CXXScopeSpec(), FD,
1448 DeclAccessPair::make(FD, FD->getAccess()),
1449 DeclarationNameInfo(FD->getDeclName(), Loc));
1450 if (E.isInvalid())
1451 return true;
1452
1453 // If the type of the member is T, the referenced type is cv T, where cv is
1454 // the cv-qualification of the decomposition expression.
1455 //
1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1457 // 'const' to the type of the field.
1458 Qualifiers Q = DecompType.getQualifiers();
1459 if (FD->isMutable())
1460 Q.removeConst();
1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1462 }
1463
1464 if (I != Bindings.size())
1465 return DiagnoseBadNumberOfBindings();
1466
1467 return false;
1468}
1469
1470void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1471 QualType DecompType = DD->getType();
1472
1473 // If the type of the decomposition is dependent, then so is the type of
1474 // each binding.
1475 if (DecompType->isDependentType()) {
1476 for (auto *B : DD->bindings())
1477 B->setType(Context.DependentTy);
1478 return;
1479 }
1480
1481 DecompType = DecompType.getNonReferenceType();
1482 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1483
1484 // C++1z [dcl.decomp]/2:
1485 // If E is an array type [...]
1486 // As an extension, we also support decomposition of built-in complex and
1487 // vector types.
1488 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1490 DD->setInvalidDecl();
1491 return;
1492 }
1493 if (auto *VT = DecompType->getAs<VectorType>()) {
1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1495 DD->setInvalidDecl();
1496 return;
1497 }
1498 if (auto *CT = DecompType->getAs<ComplexType>()) {
1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1500 DD->setInvalidDecl();
1501 return;
1502 }
1503
1504 // C++1z [dcl.decomp]/3:
1505 // if the expression std::tuple_size<E>::value is a well-formed integral
1506 // constant expression, [...]
1507 llvm::APSInt TupleSize(32);
1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1509 case IsTupleLike::Error:
1510 DD->setInvalidDecl();
1511 return;
1512
1513 case IsTupleLike::TupleLike:
1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1515 DD->setInvalidDecl();
1516 return;
1517
1518 case IsTupleLike::NotTupleLike:
1519 break;
1520 }
1521
1522 // C++1z [dcl.dcl]/8:
1523 // [E shall be of array or non-union class type]
1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1525 if (!RD || RD->isUnion()) {
1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1527 << DD << !RD << DecompType;
1528 DD->setInvalidDecl();
1529 return;
1530 }
1531
1532 // C++1z [dcl.decomp]/4:
1533 // all of E's non-static data members shall be [...] direct members of
1534 // E or of the same unambiguous public base class of E, ...
1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1536 DD->setInvalidDecl();
1537}
1538
1539/// Merge the exception specifications of two variable declarations.
1540///
1541/// This is called when there's a redeclaration of a VarDecl. The function
1542/// checks if the redeclaration might have an exception specification and
1543/// validates compatibility and merges the specs if necessary.
1544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1545 // Shortcut if exceptions are disabled.
1546 if (!getLangOpts().CXXExceptions)
1547 return;
1548
1549 assert(Context.hasSameType(New->getType(), Old->getType()) &&((void)0)
1550 "Should only be called if types are otherwise the same.")((void)0);
1551
1552 QualType NewType = New->getType();
1553 QualType OldType = Old->getType();
1554
1555 // We're only interested in pointers and references to functions, as well
1556 // as pointers to member functions.
1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1558 NewType = R->getPointeeType();
1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1561 NewType = P->getPointeeType();
1562 OldType = OldType->castAs<PointerType>()->getPointeeType();
1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1564 NewType = M->getPointeeType();
1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1566 }
1567
1568 if (!NewType->isFunctionProtoType())
1569 return;
1570
1571 // There's lots of special cases for functions. For function pointers, system
1572 // libraries are hopefully not as broken so that we don't need these
1573 // workarounds.
1574 if (CheckEquivalentExceptionSpec(
1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1577 New->setInvalidDecl();
1578 }
1579}
1580
1581/// CheckCXXDefaultArguments - Verify that the default arguments for a
1582/// function declaration are well-formed according to C++
1583/// [dcl.fct.default].
1584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1585 unsigned NumParams = FD->getNumParams();
1586 unsigned ParamIdx = 0;
1587
1588 // This checking doesn't make sense for explicit specializations; their
1589 // default arguments are determined by the declaration we're specializing,
1590 // not by FD.
1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1592 return;
1593 if (auto *FTD = FD->getDescribedFunctionTemplate())
1594 if (FTD->isMemberSpecialization())
1595 return;
1596
1597 // Find first parameter with a default argument
1598 for (; ParamIdx < NumParams; ++ParamIdx) {
1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1600 if (Param->hasDefaultArg())
1601 break;
1602 }
1603
1604 // C++20 [dcl.fct.default]p4:
1605 // In a given function declaration, each parameter subsequent to a parameter
1606 // with a default argument shall have a default argument supplied in this or
1607 // a previous declaration, unless the parameter was expanded from a
1608 // parameter pack, or shall be a function parameter pack.
1609 for (; ParamIdx < NumParams; ++ParamIdx) {
1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1612 !(CurrentInstantiationScope &&
1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1614 if (Param->isInvalidDecl())
1615 /* We already complained about this parameter. */;
1616 else if (Param->getIdentifier())
1617 Diag(Param->getLocation(),
1618 diag::err_param_default_argument_missing_name)
1619 << Param->getIdentifier();
1620 else
1621 Diag(Param->getLocation(),
1622 diag::err_param_default_argument_missing);
1623 }
1624 }
1625}
1626
1627/// Check that the given type is a literal type. Issue a diagnostic if not,
1628/// if Kind is Diagnose.
1629/// \return \c true if a problem has been found (and optionally diagnosed).
1630template <typename... Ts>
1631static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1632 SourceLocation Loc, QualType T, unsigned DiagID,
1633 Ts &&...DiagArgs) {
1634 if (T->isDependentType())
1635 return false;
1636
1637 switch (Kind) {
1638 case Sema::CheckConstexprKind::Diagnose:
1639 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1640 std::forward<Ts>(DiagArgs)...);
1641
1642 case Sema::CheckConstexprKind::CheckValid:
1643 return !T->isLiteralType(SemaRef.Context);
1644 }
1645
1646 llvm_unreachable("unknown CheckConstexprKind")__builtin_unreachable();
1647}
1648
1649/// Determine whether a destructor cannot be constexpr due to
1650static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1651 const CXXDestructorDecl *DD,
1652 Sema::CheckConstexprKind Kind) {
1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1654 const CXXRecordDecl *RD =
1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1656 if (!RD || RD->hasConstexprDestructor())
1657 return true;
1658
1659 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1661 << static_cast<int>(DD->getConstexprKind()) << !FD
1662 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1665 }
1666 return false;
1667 };
1668
1669 const CXXRecordDecl *RD = DD->getParent();
1670 for (const CXXBaseSpecifier &B : RD->bases())
1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1672 return false;
1673 for (const FieldDecl *FD : RD->fields())
1674 if (!Check(FD->getLocation(), FD->getType(), FD))
1675 return false;
1676 return true;
1677}
1678
1679/// Check whether a function's parameter types are all literal types. If so,
1680/// return true. If not, produce a suitable diagnostic and return false.
1681static bool CheckConstexprParameterTypes(Sema &SemaRef,
1682 const FunctionDecl *FD,
1683 Sema::CheckConstexprKind Kind) {
1684 unsigned ArgIndex = 0;
1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1687 e = FT->param_type_end();
1688 i != e; ++i, ++ArgIndex) {
1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1690 SourceLocation ParamLoc = PD->getLocation();
1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1692 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1694 FD->isConsteval()))
1695 return false;
1696 }
1697 return true;
1698}
1699
1700/// Check whether a function's return type is a literal type. If so, return
1701/// true. If not, produce a suitable diagnostic and return false.
1702static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1703 Sema::CheckConstexprKind Kind) {
1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1705 diag::err_constexpr_non_literal_return,
1706 FD->isConsteval()))
1707 return false;
1708 return true;
1709}
1710
1711/// Get diagnostic %select index for tag kind for
1712/// record diagnostic message.
1713/// WARNING: Indexes apply to particular diagnostics only!
1714///
1715/// \returns diagnostic %select index.
1716static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1717 switch (Tag) {
1718 case TTK_Struct: return 0;
1719 case TTK_Interface: return 1;
1720 case TTK_Class: return 2;
1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!")__builtin_unreachable();
1722 }
1723}
1724
1725static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1726 Stmt *Body,
1727 Sema::CheckConstexprKind Kind);
1728
1729// Check whether a function declaration satisfies the requirements of a
1730// constexpr function definition or a constexpr constructor definition. If so,
1731// return true. If not, produce appropriate diagnostics (unless asked not to by
1732// Kind) and return false.
1733//
1734// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1735bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1736 CheckConstexprKind Kind) {
1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1738 if (MD && MD->isInstance()) {
1739 // C++11 [dcl.constexpr]p4:
1740 // The definition of a constexpr constructor shall satisfy the following
1741 // constraints:
1742 // - the class shall not have any virtual base classes;
1743 //
1744 // FIXME: This only applies to constructors and destructors, not arbitrary
1745 // member functions.
1746 const CXXRecordDecl *RD = MD->getParent();
1747 if (RD->getNumVBases()) {
1748 if (Kind == CheckConstexprKind::CheckValid)
1749 return false;
1750
1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1752 << isa<CXXConstructorDecl>(NewFD)
1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1754 for (const auto &I : RD->vbases())
1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1756 << I.getSourceRange();
1757 return false;
1758 }
1759 }
1760
1761 if (!isa<CXXConstructorDecl>(NewFD)) {
1762 // C++11 [dcl.constexpr]p3:
1763 // The definition of a constexpr function shall satisfy the following
1764 // constraints:
1765 // - it shall not be virtual; (removed in C++20)
1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1767 if (Method && Method->isVirtual()) {
1768 if (getLangOpts().CPlusPlus20) {
1769 if (Kind == CheckConstexprKind::Diagnose)
1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1771 } else {
1772 if (Kind == CheckConstexprKind::CheckValid)
1773 return false;
1774
1775 Method = Method->getCanonicalDecl();
1776 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1777
1778 // If it's not obvious why this function is virtual, find an overridden
1779 // function which uses the 'virtual' keyword.
1780 const CXXMethodDecl *WrittenVirtual = Method;
1781 while (!WrittenVirtual->isVirtualAsWritten())
1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1783 if (WrittenVirtual != Method)
1784 Diag(WrittenVirtual->getLocation(),
1785 diag::note_overridden_virtual_function);
1786 return false;
1787 }
1788 }
1789
1790 // - its return type shall be a literal type;
1791 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1792 return false;
1793 }
1794
1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1796 // A destructor can be constexpr only if the defaulted destructor could be;
1797 // we don't need to check the members and bases if we already know they all
1798 // have constexpr destructors.
1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1800 if (Kind == CheckConstexprKind::CheckValid)
1801 return false;
1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1803 return false;
1804 }
1805 }
1806
1807 // - each of its parameter types shall be a literal type;
1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1809 return false;
1810
1811 Stmt *Body = NewFD->getBody();
1812 assert(Body &&((void)0)
1813 "CheckConstexprFunctionDefinition called on function with no body")((void)0);
1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1815}
1816
1817/// Check the given declaration statement is legal within a constexpr function
1818/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1819///
1820/// \return true if the body is OK (maybe only as an extension), false if we
1821/// have diagnosed a problem.
1822static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1823 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1824 Sema::CheckConstexprKind Kind) {
1825 // C++11 [dcl.constexpr]p3 and p4:
1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1827 // contain only
1828 for (const auto *DclIt : DS->decls()) {
1829 switch (DclIt->getKind()) {
1830 case Decl::StaticAssert:
1831 case Decl::Using:
1832 case Decl::UsingShadow:
1833 case Decl::UsingDirective:
1834 case Decl::UnresolvedUsingTypename:
1835 case Decl::UnresolvedUsingValue:
1836 case Decl::UsingEnum:
1837 // - static_assert-declarations
1838 // - using-declarations,
1839 // - using-directives,
1840 // - using-enum-declaration
1841 continue;
1842
1843 case Decl::Typedef:
1844 case Decl::TypeAlias: {
1845 // - typedef declarations and alias-declarations that do not define
1846 // classes or enumerations,
1847 const auto *TN = cast<TypedefNameDecl>(DclIt);
1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1849 // Don't allow variably-modified types in constexpr functions.
1850 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1853 << TL.getSourceRange() << TL.getType()
1854 << isa<CXXConstructorDecl>(Dcl);
1855 }
1856 return false;
1857 }
1858 continue;
1859 }
1860
1861 case Decl::Enum:
1862 case Decl::CXXRecord:
1863 // C++1y allows types to be defined, not just declared.
1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1865 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1866 SemaRef.Diag(DS->getBeginLoc(),
1867 SemaRef.getLangOpts().CPlusPlus14
1868 ? diag::warn_cxx11_compat_constexpr_type_definition
1869 : diag::ext_constexpr_type_definition)
1870 << isa<CXXConstructorDecl>(Dcl);
1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1872 return false;
1873 }
1874 }
1875 continue;
1876
1877 case Decl::EnumConstant:
1878 case Decl::IndirectField:
1879 case Decl::ParmVar:
1880 // These can only appear with other declarations which are banned in
1881 // C++11 and permitted in C++1y, so ignore them.
1882 continue;
1883
1884 case Decl::Var:
1885 case Decl::Decomposition: {
1886 // C++1y [dcl.constexpr]p3 allows anything except:
1887 // a definition of a variable of non-literal type or of static or
1888 // thread storage duration or [before C++2a] for which no
1889 // initialization is performed.
1890 const auto *VD = cast<VarDecl>(DclIt);
1891 if (VD->isThisDeclarationADefinition()) {
1892 if (VD->isStaticLocal()) {
1893 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1894 SemaRef.Diag(VD->getLocation(),
1895 diag::err_constexpr_local_var_static)
1896 << isa<CXXConstructorDecl>(Dcl)
1897 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1898 }
1899 return false;
1900 }
1901 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1902 diag::err_constexpr_local_var_non_literal_type,
1903 isa<CXXConstructorDecl>(Dcl)))
1904 return false;
1905 if (!VD->getType()->isDependentType() &&
1906 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1907 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1908 SemaRef.Diag(
1909 VD->getLocation(),
1910 SemaRef.getLangOpts().CPlusPlus20
1911 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1912 : diag::ext_constexpr_local_var_no_init)
1913 << isa<CXXConstructorDecl>(Dcl);
1914 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1915 return false;
1916 }
1917 continue;
1918 }
1919 }
1920 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1921 SemaRef.Diag(VD->getLocation(),
1922 SemaRef.getLangOpts().CPlusPlus14
1923 ? diag::warn_cxx11_compat_constexpr_local_var
1924 : diag::ext_constexpr_local_var)
1925 << isa<CXXConstructorDecl>(Dcl);
1926 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1927 return false;
1928 }
1929 continue;
1930 }
1931
1932 case Decl::NamespaceAlias:
1933 case Decl::Function:
1934 // These are disallowed in C++11 and permitted in C++1y. Allow them
1935 // everywhere as an extension.
1936 if (!Cxx1yLoc.isValid())
1937 Cxx1yLoc = DS->getBeginLoc();
1938 continue;
1939
1940 default:
1941 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1942 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1943 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1944 }
1945 return false;
1946 }
1947 }
1948
1949 return true;
1950}
1951
1952/// Check that the given field is initialized within a constexpr constructor.
1953///
1954/// \param Dcl The constexpr constructor being checked.
1955/// \param Field The field being checked. This may be a member of an anonymous
1956/// struct or union nested within the class being checked.
1957/// \param Inits All declarations, including anonymous struct/union members and
1958/// indirect members, for which any initialization was provided.
1959/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1960/// multiple notes for different members to the same error.
1961/// \param Kind Whether we're diagnosing a constructor as written or determining
1962/// whether the formal requirements are satisfied.
1963/// \return \c false if we're checking for validity and the constructor does
1964/// not satisfy the requirements on a constexpr constructor.
1965static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1966 const FunctionDecl *Dcl,
1967 FieldDecl *Field,
1968 llvm::SmallSet<Decl*, 16> &Inits,
1969 bool &Diagnosed,
1970 Sema::CheckConstexprKind Kind) {
1971 // In C++20 onwards, there's nothing to check for validity.
1972 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1973 SemaRef.getLangOpts().CPlusPlus20)
1974 return true;
1975
1976 if (Field->isInvalidDecl())
1977 return true;
1978
1979 if (Field->isUnnamedBitfield())
1980 return true;
1981
1982 // Anonymous unions with no variant members and empty anonymous structs do not
1983 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1984 // indirect fields don't need initializing.
1985 if (Field->isAnonymousStructOrUnion() &&
1986 (Field->getType()->isUnionType()
1987 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1988 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1989 return true;
1990
1991 if (!Inits.count(Field)) {
1992 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1993 if (!Diagnosed) {
1994 SemaRef.Diag(Dcl->getLocation(),
1995 SemaRef.getLangOpts().CPlusPlus20
1996 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1997 : diag::ext_constexpr_ctor_missing_init);
1998 Diagnosed = true;
1999 }
2000 SemaRef.Diag(Field->getLocation(),
2001 diag::note_constexpr_ctor_missing_init);
2002 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2003 return false;
2004 }
2005 } else if (Field->isAnonymousStructOrUnion()) {
2006 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2007 for (auto *I : RD->fields())
2008 // If an anonymous union contains an anonymous struct of which any member
2009 // is initialized, all members must be initialized.
2010 if (!RD->isUnion() || Inits.count(I))
2011 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2012 Kind))
2013 return false;
2014 }
2015 return true;
2016}
2017
2018/// Check the provided statement is allowed in a constexpr function
2019/// definition.
2020static bool
2021CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2022 SmallVectorImpl<SourceLocation> &ReturnStmts,
2023 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2024 Sema::CheckConstexprKind Kind) {
2025 // - its function-body shall be [...] a compound-statement that contains only
2026 switch (S->getStmtClass()) {
2027 case Stmt::NullStmtClass:
2028 // - null statements,
2029 return true;
2030
2031 case Stmt::DeclStmtClass:
2032 // - static_assert-declarations
2033 // - using-declarations,
2034 // - using-directives,
2035 // - typedef declarations and alias-declarations that do not define
2036 // classes or enumerations,
2037 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2038 return false;
2039 return true;
2040
2041 case Stmt::ReturnStmtClass:
2042 // - and exactly one return statement;
2043 if (isa<CXXConstructorDecl>(Dcl)) {
2044 // C++1y allows return statements in constexpr constructors.
2045 if (!Cxx1yLoc.isValid())
2046 Cxx1yLoc = S->getBeginLoc();
2047 return true;
2048 }
2049
2050 ReturnStmts.push_back(S->getBeginLoc());
2051 return true;
2052
2053 case Stmt::CompoundStmtClass: {
2054 // C++1y allows compound-statements.
2055 if (!Cxx1yLoc.isValid())
2056 Cxx1yLoc = S->getBeginLoc();
2057
2058 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2059 for (auto *BodyIt : CompStmt->body()) {
2060 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2061 Cxx1yLoc, Cxx2aLoc, Kind))
2062 return false;
2063 }
2064 return true;
2065 }
2066
2067 case Stmt::AttributedStmtClass:
2068 if (!Cxx1yLoc.isValid())
2069 Cxx1yLoc = S->getBeginLoc();
2070 return true;
2071
2072 case Stmt::IfStmtClass: {
2073 // C++1y allows if-statements.
2074 if (!Cxx1yLoc.isValid())
2075 Cxx1yLoc = S->getBeginLoc();
2076
2077 IfStmt *If = cast<IfStmt>(S);
2078 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2079 Cxx1yLoc, Cxx2aLoc, Kind))
2080 return false;
2081 if (If->getElse() &&
2082 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2083 Cxx1yLoc, Cxx2aLoc, Kind))
2084 return false;
2085 return true;
2086 }
2087
2088 case Stmt::WhileStmtClass:
2089 case Stmt::DoStmtClass:
2090 case Stmt::ForStmtClass:
2091 case Stmt::CXXForRangeStmtClass:
2092 case Stmt::ContinueStmtClass:
2093 // C++1y allows all of these. We don't allow them as extensions in C++11,
2094 // because they don't make sense without variable mutation.
2095 if (!SemaRef.getLangOpts().CPlusPlus14)
2096 break;
2097 if (!Cxx1yLoc.isValid())
2098 Cxx1yLoc = S->getBeginLoc();
2099 for (Stmt *SubStmt : S->children())
2100 if (SubStmt &&
2101 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2102 Cxx1yLoc, Cxx2aLoc, Kind))
2103 return false;
2104 return true;
2105
2106 case Stmt::SwitchStmtClass:
2107 case Stmt::CaseStmtClass:
2108 case Stmt::DefaultStmtClass:
2109 case Stmt::BreakStmtClass:
2110 // C++1y allows switch-statements, and since they don't need variable
2111 // mutation, we can reasonably allow them in C++11 as an extension.
2112 if (!Cxx1yLoc.isValid())
2113 Cxx1yLoc = S->getBeginLoc();
2114 for (Stmt *SubStmt : S->children())
2115 if (SubStmt &&
2116 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2117 Cxx1yLoc, Cxx2aLoc, Kind))
2118 return false;
2119 return true;
2120
2121 case Stmt::GCCAsmStmtClass:
2122 case Stmt::MSAsmStmtClass:
2123 // C++2a allows inline assembly statements.
2124 case Stmt::CXXTryStmtClass:
2125 if (Cxx2aLoc.isInvalid())
2126 Cxx2aLoc = S->getBeginLoc();
2127 for (Stmt *SubStmt : S->children()) {
2128 if (SubStmt &&
2129 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2130 Cxx1yLoc, Cxx2aLoc, Kind))
2131 return false;
2132 }
2133 return true;
2134
2135 case Stmt::CXXCatchStmtClass:
2136 // Do not bother checking the language mode (already covered by the
2137 // try block check).
2138 if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2139 cast<CXXCatchStmt>(S)->getHandlerBlock(),
2140 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2141 return false;
2142 return true;
2143
2144 default:
2145 if (!isa<Expr>(S))
2146 break;
2147
2148 // C++1y allows expression-statements.
2149 if (!Cxx1yLoc.isValid())
2150 Cxx1yLoc = S->getBeginLoc();
2151 return true;
2152 }
2153
2154 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2155 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2156 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2157 }
2158 return false;
2159}
2160
2161/// Check the body for the given constexpr function declaration only contains
2162/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2163///
2164/// \return true if the body is OK, false if we have found or diagnosed a
2165/// problem.
2166static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2167 Stmt *Body,
2168 Sema::CheckConstexprKind Kind) {
2169 SmallVector<SourceLocation, 4> ReturnStmts;
2170
2171 if (isa<CXXTryStmt>(Body)) {
2172 // C++11 [dcl.constexpr]p3:
2173 // The definition of a constexpr function shall satisfy the following
2174 // constraints: [...]
2175 // - its function-body shall be = delete, = default, or a
2176 // compound-statement
2177 //
2178 // C++11 [dcl.constexpr]p4:
2179 // In the definition of a constexpr constructor, [...]
2180 // - its function-body shall not be a function-try-block;
2181 //
2182 // This restriction is lifted in C++2a, as long as inner statements also
2183 // apply the general constexpr rules.
2184 switch (Kind) {
2185 case Sema::CheckConstexprKind::CheckValid:
2186 if (!SemaRef.getLangOpts().CPlusPlus20)
2187 return false;
2188 break;
2189
2190 case Sema::CheckConstexprKind::Diagnose:
2191 SemaRef.Diag(Body->getBeginLoc(),
2192 !SemaRef.getLangOpts().CPlusPlus20
2193 ? diag::ext_constexpr_function_try_block_cxx20
2194 : diag::warn_cxx17_compat_constexpr_function_try_block)
2195 << isa<CXXConstructorDecl>(Dcl);
2196 break;
2197 }
2198 }
2199
2200 // - its function-body shall be [...] a compound-statement that contains only
2201 // [... list of cases ...]
2202 //
2203 // Note that walking the children here is enough to properly check for
2204 // CompoundStmt and CXXTryStmt body.
2205 SourceLocation Cxx1yLoc, Cxx2aLoc;
2206 for (Stmt *SubStmt : Body->children()) {
2207 if (SubStmt &&
2208 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2209 Cxx1yLoc, Cxx2aLoc, Kind))
2210 return false;
2211 }
2212
2213 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2214 // If this is only valid as an extension, report that we don't satisfy the
2215 // constraints of the current language.
2216 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2217 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2218 return false;
2219 } else if (Cxx2aLoc.isValid()) {
2220 SemaRef.Diag(Cxx2aLoc,
2221 SemaRef.getLangOpts().CPlusPlus20
2222 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2223 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2224 << isa<CXXConstructorDecl>(Dcl);
2225 } else if (Cxx1yLoc.isValid()) {
2226 SemaRef.Diag(Cxx1yLoc,
2227 SemaRef.getLangOpts().CPlusPlus14
2228 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2229 : diag::ext_constexpr_body_invalid_stmt)
2230 << isa<CXXConstructorDecl>(Dcl);
2231 }
2232
2233 if (const CXXConstructorDecl *Constructor
2234 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2235 const CXXRecordDecl *RD = Constructor->getParent();
2236 // DR1359:
2237 // - every non-variant non-static data member and base class sub-object
2238 // shall be initialized;
2239 // DR1460:
2240 // - if the class is a union having variant members, exactly one of them
2241 // shall be initialized;
2242 if (RD->isUnion()) {
2243 if (Constructor->getNumCtorInitializers() == 0 &&
2244 RD->hasVariantMembers()) {
2245 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2246 SemaRef.Diag(
2247 Dcl->getLocation(),
2248 SemaRef.getLangOpts().CPlusPlus20
2249 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2250 : diag::ext_constexpr_union_ctor_no_init);
2251 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2252 return false;
2253 }
2254 }
2255 } else if (!Constructor->isDependentContext() &&
2256 !Constructor->isDelegatingConstructor()) {
2257 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((void)0);
2258
2259 // Skip detailed checking if we have enough initializers, and we would
2260 // allow at most one initializer per member.
2261 bool AnyAnonStructUnionMembers = false;
2262 unsigned Fields = 0;
2263 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2264 E = RD->field_end(); I != E; ++I, ++Fields) {
2265 if (I->isAnonymousStructOrUnion()) {
2266 AnyAnonStructUnionMembers = true;
2267 break;
2268 }
2269 }
2270 // DR1460:
2271 // - if the class is a union-like class, but is not a union, for each of
2272 // its anonymous union members having variant members, exactly one of
2273 // them shall be initialized;
2274 if (AnyAnonStructUnionMembers ||
2275 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2276 // Check initialization of non-static data members. Base classes are
2277 // always initialized so do not need to be checked. Dependent bases
2278 // might not have initializers in the member initializer list.
2279 llvm::SmallSet<Decl*, 16> Inits;
2280 for (const auto *I: Constructor->inits()) {
2281 if (FieldDecl *FD = I->getMember())
2282 Inits.insert(FD);
2283 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2284 Inits.insert(ID->chain_begin(), ID->chain_end());
2285 }
2286
2287 bool Diagnosed = false;
2288 for (auto *I : RD->fields())
2289 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2290 Kind))
2291 return false;
2292 }
2293 }
2294 } else {
2295 if (ReturnStmts.empty()) {
2296 // C++1y doesn't require constexpr functions to contain a 'return'
2297 // statement. We still do, unless the return type might be void, because
2298 // otherwise if there's no return statement, the function cannot
2299 // be used in a core constant expression.
2300 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2301 (Dcl->getReturnType()->isVoidType() ||
2302 Dcl->getReturnType()->isDependentType());
2303 switch (Kind) {
2304 case Sema::CheckConstexprKind::Diagnose:
2305 SemaRef.Diag(Dcl->getLocation(),
2306 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2307 : diag::err_constexpr_body_no_return)
2308 << Dcl->isConsteval();
2309 if (!OK)
2310 return false;
2311 break;
2312
2313 case Sema::CheckConstexprKind::CheckValid:
2314 // The formal requirements don't include this rule in C++14, even
2315 // though the "must be able to produce a constant expression" rules
2316 // still imply it in some cases.
2317 if (!SemaRef.getLangOpts().CPlusPlus14)
2318 return false;
2319 break;
2320 }
2321 } else if (ReturnStmts.size() > 1) {
2322 switch (Kind) {
2323 case Sema::CheckConstexprKind::Diagnose:
2324 SemaRef.Diag(
2325 ReturnStmts.back(),
2326 SemaRef.getLangOpts().CPlusPlus14
2327 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2328 : diag::ext_constexpr_body_multiple_return);
2329 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2330 SemaRef.Diag(ReturnStmts[I],
2331 diag::note_constexpr_body_previous_return);
2332 break;
2333
2334 case Sema::CheckConstexprKind::CheckValid:
2335 if (!SemaRef.getLangOpts().CPlusPlus14)
2336 return false;
2337 break;
2338 }
2339 }
2340 }
2341
2342 // C++11 [dcl.constexpr]p5:
2343 // if no function argument values exist such that the function invocation
2344 // substitution would produce a constant expression, the program is
2345 // ill-formed; no diagnostic required.
2346 // C++11 [dcl.constexpr]p3:
2347 // - every constructor call and implicit conversion used in initializing the
2348 // return value shall be one of those allowed in a constant expression.
2349 // C++11 [dcl.constexpr]p4:
2350 // - every constructor involved in initializing non-static data members and
2351 // base class sub-objects shall be a constexpr constructor.
2352 //
2353 // Note that this rule is distinct from the "requirements for a constexpr
2354 // function", so is not checked in CheckValid mode.
2355 SmallVector<PartialDiagnosticAt, 8> Diags;
2356 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2357 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2358 SemaRef.Diag(Dcl->getLocation(),
2359 diag::ext_constexpr_function_never_constant_expr)
2360 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2361 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2362 SemaRef.Diag(Diags[I].first, Diags[I].second);
2363 // Don't return false here: we allow this for compatibility in
2364 // system headers.
2365 }
2366
2367 return true;
2368}
2369
2370/// Get the class that is directly named by the current context. This is the
2371/// class for which an unqualified-id in this scope could name a constructor
2372/// or destructor.
2373///
2374/// If the scope specifier denotes a class, this will be that class.
2375/// If the scope specifier is empty, this will be the class whose
2376/// member-specification we are currently within. Otherwise, there
2377/// is no such class.
2378CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2379 assert(getLangOpts().CPlusPlus && "No class names in C!")((void)0);
2380
2381 if (SS && SS->isInvalid())
2382 return nullptr;
2383
2384 if (SS && SS->isNotEmpty()) {
2385 DeclContext *DC = computeDeclContext(*SS, true);
2386 return dyn_cast_or_null<CXXRecordDecl>(DC);
2387 }
2388
2389 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2390}
2391
2392/// isCurrentClassName - Determine whether the identifier II is the
2393/// name of the class type currently being defined. In the case of
2394/// nested classes, this will only return true if II is the name of
2395/// the innermost class.
2396bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2397 const CXXScopeSpec *SS) {
2398 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2399 return CurDecl && &II == CurDecl->getIdentifier();
2400}
2401
2402/// Determine whether the identifier II is a typo for the name of
2403/// the class type currently being defined. If so, update it to the identifier
2404/// that should have been used.
2405bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2406 assert(getLangOpts().CPlusPlus && "No class names in C!")((void)0);
2407
2408 if (!getLangOpts().SpellChecking)
2409 return false;
2410
2411 CXXRecordDecl *CurDecl;
2412 if (SS && SS->isSet() && !SS->isInvalid()) {
2413 DeclContext *DC = computeDeclContext(*SS, true);
2414 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2415 } else
2416 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2417
2418 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2419 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2420 < II->getLength()) {
2421 II = CurDecl->getIdentifier();
2422 return true;
2423 }
2424
2425 return false;
2426}
2427
2428/// Determine whether the given class is a base class of the given
2429/// class, including looking at dependent bases.
2430static bool findCircularInheritance(const CXXRecordDecl *Class,
2431 const CXXRecordDecl *Current) {
2432 SmallVector<const CXXRecordDecl*, 8> Queue;
2433
2434 Class = Class->getCanonicalDecl();
2435 while (true) {
2436 for (const auto &I : Current->bases()) {
2437 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2438 if (!Base)
2439 continue;
2440
2441 Base = Base->getDefinition();
2442 if (!Base)
2443 continue;
2444
2445 if (Base->getCanonicalDecl() == Class)
2446 return true;
2447
2448 Queue.push_back(Base);
2449 }
2450
2451 if (Queue.empty())
2452 return false;
2453
2454 Current = Queue.pop_back_val();
2455 }
2456
2457 return false;
2458}
2459
2460/// Check the validity of a C++ base class specifier.
2461///
2462/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2463/// and returns NULL otherwise.
2464CXXBaseSpecifier *
2465Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2466 SourceRange SpecifierRange,
2467 bool Virtual, AccessSpecifier Access,
2468 TypeSourceInfo *TInfo,
2469 SourceLocation EllipsisLoc) {
2470 QualType BaseType = TInfo->getType();
2471 if (BaseType->containsErrors()) {
2472 // Already emitted a diagnostic when parsing the error type.
2473 return nullptr;
2474 }
2475 // C++ [class.union]p1:
2476 // A union shall not have base classes.
2477 if (Class->isUnion()) {
2478 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2479 << SpecifierRange;
2480 return nullptr;
2481 }
2482
2483 if (EllipsisLoc.isValid() &&
2484 !TInfo->getType()->containsUnexpandedParameterPack()) {
2485 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2486 << TInfo->getTypeLoc().getSourceRange();
2487 EllipsisLoc = SourceLocation();
2488 }
2489
2490 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2491
2492 if (BaseType->isDependentType()) {
2493 // Make sure that we don't have circular inheritance among our dependent
2494 // bases. For non-dependent bases, the check for completeness below handles
2495 // this.
2496 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2497 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2498 ((BaseDecl = BaseDecl->getDefinition()) &&
2499 findCircularInheritance(Class, BaseDecl))) {
2500 Diag(BaseLoc, diag::err_circular_inheritance)
2501 << BaseType << Context.getTypeDeclType(Class);
2502
2503 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2504 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2505 << BaseType;
2506
2507 return nullptr;
2508 }
2509 }
2510
2511 // Make sure that we don't make an ill-formed AST where the type of the
2512 // Class is non-dependent and its attached base class specifier is an
2513 // dependent type, which violates invariants in many clang code paths (e.g.
2514 // constexpr evaluator). If this case happens (in errory-recovery mode), we
2515 // explicitly mark the Class decl invalid. The diagnostic was already
2516 // emitted.
2517 if (!Class->getTypeForDecl()->isDependentType())
2518 Class->setInvalidDecl();
2519 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2520 Class->getTagKind() == TTK_Class,
2521 Access, TInfo, EllipsisLoc);
2522 }
2523
2524 // Base specifiers must be record types.
2525 if (!BaseType->isRecordType()) {
2526 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2527 return nullptr;
2528 }
2529
2530 // C++ [class.union]p1:
2531 // A union shall not be used as a base class.
2532 if (BaseType->isUnionType()) {
2533 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2534 return nullptr;
2535 }
2536
2537 // For the MS ABI, propagate DLL attributes to base class templates.
2538 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2539 if (Attr *ClassAttr = getDLLAttr(Class)) {
2540 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2541 BaseType->getAsCXXRecordDecl())) {
2542 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2543 BaseLoc);
2544 }
2545 }
2546 }
2547
2548 // C++ [class.derived]p2:
2549 // The class-name in a base-specifier shall not be an incompletely
2550 // defined class.
2551 if (RequireCompleteType(BaseLoc, BaseType,
2552 diag::err_incomplete_base_class, SpecifierRange)) {
2553 Class->setInvalidDecl();
2554 return nullptr;
2555 }
2556
2557 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2558 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2559 assert(BaseDecl && "Record type has no declaration")((void)0);
2560 BaseDecl = BaseDecl->getDefinition();
2561 assert(BaseDecl && "Base type is not incomplete, but has no definition")((void)0);
2562 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2563 assert(CXXBaseDecl && "Base type is not a C++ type")((void)0);
2564
2565 // Microsoft docs say:
2566 // "If a base-class has a code_seg attribute, derived classes must have the
2567 // same attribute."
2568 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2569 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2570 if ((DerivedCSA || BaseCSA) &&
2571 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2572 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2573 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2574 << CXXBaseDecl;
2575 return nullptr;
2576 }
2577
2578 // A class which contains a flexible array member is not suitable for use as a
2579 // base class:
2580 // - If the layout determines that a base comes before another base,
2581 // the flexible array member would index into the subsequent base.
2582 // - If the layout determines that base comes before the derived class,
2583 // the flexible array member would index into the derived class.
2584 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2585 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2586 << CXXBaseDecl->getDeclName();
2587 return nullptr;
2588 }
2589
2590 // C++ [class]p3:
2591 // If a class is marked final and it appears as a base-type-specifier in
2592 // base-clause, the program is ill-formed.
2593 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2594 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2595 << CXXBaseDecl->getDeclName()
2596 << FA->isSpelledAsSealed();
2597 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2598 << CXXBaseDecl->getDeclName() << FA->getRange();
2599 return nullptr;
2600 }
2601
2602 if (BaseDecl->isInvalidDecl())
2603 Class->setInvalidDecl();
2604
2605 // Create the base specifier.
2606 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2607 Class->getTagKind() == TTK_Class,
2608 Access, TInfo, EllipsisLoc);
2609}
2610
2611/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2612/// one entry in the base class list of a class specifier, for
2613/// example:
2614/// class foo : public bar, virtual private baz {
2615/// 'public bar' and 'virtual private baz' are each base-specifiers.
2616BaseResult
2617Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2618 ParsedAttributes &Attributes,
2619 bool Virtual, AccessSpecifier Access,
2620 ParsedType basetype, SourceLocation BaseLoc,
2621 SourceLocation EllipsisLoc) {
2622 if (!classdecl)
2623 return true;
2624
2625 AdjustDeclIfTemplate(classdecl);
2626 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2627 if (!Class)
2628 return true;
2629
2630 // We haven't yet attached the base specifiers.
2631 Class->setIsParsingBaseSpecifiers();
2632
2633 // We do not support any C++11 attributes on base-specifiers yet.
2634 // Diagnose any attributes we see.
2635 for (const ParsedAttr &AL : Attributes) {
2636 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2637 continue;
2638 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2639 ? (unsigned)diag::warn_unknown_attribute_ignored
2640 : (unsigned)diag::err_base_specifier_attribute)
2641 << AL << AL.getRange();
2642 }
2643
2644 TypeSourceInfo *TInfo = nullptr;
2645 GetTypeFromParser(basetype, &TInfo);
2646
2647 if (EllipsisLoc.isInvalid() &&
2648 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2649 UPPC_BaseType))
2650 return true;
2651
2652 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2653 Virtual, Access, TInfo,
2654 EllipsisLoc))
2655 return BaseSpec;
2656 else
2657 Class->setInvalidDecl();
2658
2659 return true;
2660}
2661
2662/// Use small set to collect indirect bases. As this is only used
2663/// locally, there's no need to abstract the small size parameter.
2664typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2665
2666/// Recursively add the bases of Type. Don't add Type itself.
2667static void
2668NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2669 const QualType &Type)
2670{
2671 // Even though the incoming type is a base, it might not be
2672 // a class -- it could be a template parm, for instance.
2673 if (auto Rec = Type->getAs<RecordType>()) {
2674 auto Decl = Rec->getAsCXXRecordDecl();
2675
2676 // Iterate over its bases.
2677 for (const auto &BaseSpec : Decl->bases()) {
2678 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2679 .getUnqualifiedType();
2680 if (Set.insert(Base).second)
2681 // If we've not already seen it, recurse.
2682 NoteIndirectBases(Context, Set, Base);
2683 }
2684 }
2685}
2686
2687/// Performs the actual work of attaching the given base class
2688/// specifiers to a C++ class.
2689bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2690 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2691 if (Bases.empty())
2692 return false;
2693
2694 // Used to keep track of which base types we have already seen, so
2695 // that we can properly diagnose redundant direct base types. Note
2696 // that the key is always the unqualified canonical type of the base
2697 // class.
2698 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2699
2700 // Used to track indirect bases so we can see if a direct base is
2701 // ambiguous.
2702 IndirectBaseSet IndirectBaseTypes;
2703
2704 // Copy non-redundant base specifiers into permanent storage.
2705 unsigned NumGoodBases = 0;
2706 bool Invalid = false;
2707 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2708 QualType NewBaseType
2709 = Context.getCanonicalType(Bases[idx]->getType());
2710 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2711
2712 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2713 if (KnownBase) {
2714 // C++ [class.mi]p3:
2715 // A class shall not be specified as a direct base class of a
2716 // derived class more than once.
2717 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2718 << KnownBase->getType() << Bases[idx]->getSourceRange();
2719
2720 // Delete the duplicate base class specifier; we're going to
2721 // overwrite its pointer later.
2722 Context.Deallocate(Bases[idx]);
2723
2724 Invalid = true;
2725 } else {
2726 // Okay, add this new base class.
2727 KnownBase = Bases[idx];
2728 Bases[NumGoodBases++] = Bases[idx];
2729
2730 // Note this base's direct & indirect bases, if there could be ambiguity.
2731 if (Bases.size() > 1)
2732 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2733
2734 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2735 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2736 if (Class->isInterface() &&
2737 (!RD->isInterfaceLike() ||
2738 KnownBase->getAccessSpecifier() != AS_public)) {
2739 // The Microsoft extension __interface does not permit bases that
2740 // are not themselves public interfaces.
2741 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2742 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2743 << RD->getSourceRange();
2744 Invalid = true;
2745 }
2746 if (RD->hasAttr<WeakAttr>())
2747 Class->addAttr(WeakAttr::CreateImplicit(Context));
2748 }
2749 }
2750 }
2751
2752 // Attach the remaining base class specifiers to the derived class.
2753 Class->setBases(Bases.data(), NumGoodBases);
2754
2755 // Check that the only base classes that are duplicate are virtual.
2756 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2757 // Check whether this direct base is inaccessible due to ambiguity.
2758 QualType BaseType = Bases[idx]->getType();
2759
2760 // Skip all dependent types in templates being used as base specifiers.
2761 // Checks below assume that the base specifier is a CXXRecord.
2762 if (BaseType->isDependentType())
2763 continue;
2764
2765 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2766 .getUnqualifiedType();
2767
2768 if (IndirectBaseTypes.count(CanonicalBase)) {
2769 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2770 /*DetectVirtual=*/true);
2771 bool found
2772 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2773 assert(found)((void)0);
2774 (void)found;
2775
2776 if (Paths.isAmbiguous(CanonicalBase))
2777 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2778 << BaseType << getAmbiguousPathsDisplayString(Paths)
2779 << Bases[idx]->getSourceRange();
2780 else
2781 assert(Bases[idx]->isVirtual())((void)0);
2782 }
2783
2784 // Delete the base class specifier, since its data has been copied
2785 // into the CXXRecordDecl.
2786 Context.Deallocate(Bases[idx]);
2787 }
2788
2789 return Invalid;
2790}
2791
2792/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2793/// class, after checking whether there are any duplicate base
2794/// classes.
2795void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2796 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2797 if (!ClassDecl || Bases.empty())
2798 return;
2799
2800 AdjustDeclIfTemplate(ClassDecl);
2801 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2802}
2803
2804/// Determine whether the type \p Derived is a C++ class that is
2805/// derived from the type \p Base.
2806bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2807 if (!getLangOpts().CPlusPlus)
2808 return false;
2809
2810 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2811 if (!DerivedRD)
2812 return false;
2813
2814 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2815 if (!BaseRD)
2816 return false;
2817
2818 // If either the base or the derived type is invalid, don't try to
2819 // check whether one is derived from the other.
2820 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2821 return false;
2822
2823 // FIXME: In a modules build, do we need the entire path to be visible for us
2824 // to be able to use the inheritance relationship?
2825 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2826 return false;
2827
2828 return DerivedRD->isDerivedFrom(BaseRD);
2829}
2830
2831/// Determine whether the type \p Derived is a C++ class that is
2832/// derived from the type \p Base.
2833bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2834 CXXBasePaths &Paths) {
2835 if (!getLangOpts().CPlusPlus)
2836 return false;
2837
2838 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2839 if (!DerivedRD)
2840 return false;
2841
2842 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2843 if (!BaseRD)
2844 return false;
2845
2846 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2847 return false;
2848
2849 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2850}
2851
2852static void BuildBasePathArray(const CXXBasePath &Path,
2853 CXXCastPath &BasePathArray) {
2854 // We first go backward and check if we have a virtual base.
2855 // FIXME: It would be better if CXXBasePath had the base specifier for
2856 // the nearest virtual base.
2857 unsigned Start = 0;
2858 for (unsigned I = Path.size(); I != 0; --I) {
2859 if (Path[I - 1].Base->isVirtual()) {
2860 Start = I - 1;
2861 break;
2862 }
2863 }
2864
2865 // Now add all bases.
2866 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2867 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2868}
2869
2870
2871void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2872 CXXCastPath &BasePathArray) {
2873 assert(BasePathArray.empty() && "Base path array must be empty!")((void)0);
2874 assert(Paths.isRecordingPaths() && "Must record paths!")((void)0);
2875 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2876}
2877/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2878/// conversion (where Derived and Base are class types) is
2879/// well-formed, meaning that the conversion is unambiguous (and
2880/// that all of the base classes are accessible). Returns true
2881/// and emits a diagnostic if the code is ill-formed, returns false
2882/// otherwise. Loc is the location where this routine should point to
2883/// if there is an error, and Range is the source range to highlight
2884/// if there is an error.
2885///
2886/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2887/// diagnostic for the respective type of error will be suppressed, but the
2888/// check for ill-formed code will still be performed.
2889bool
2890Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2891 unsigned InaccessibleBaseID,
2892 unsigned AmbiguousBaseConvID,
2893 SourceLocation Loc, SourceRange Range,
2894 DeclarationName Name,
2895 CXXCastPath *BasePath,
2896 bool IgnoreAccess) {
2897 // First, determine whether the path from Derived to Base is
2898 // ambiguous. This is slightly more expensive than checking whether
2899 // the Derived to Base conversion exists, because here we need to
2900 // explore multiple paths to determine if there is an ambiguity.
2901 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2902 /*DetectVirtual=*/false);
2903 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2904 if (!DerivationOkay)
2905 return true;
2906
2907 const CXXBasePath *Path = nullptr;
2908 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2909 Path = &Paths.front();
2910
2911 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2912 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2913 // user to access such bases.
2914 if (!Path && getLangOpts().MSVCCompat) {
2915 for (const CXXBasePath &PossiblePath : Paths) {
2916 if (PossiblePath.size() == 1) {
2917 Path = &PossiblePath;
2918 if (AmbiguousBaseConvID)
2919 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2920 << Base << Derived << Range;
2921 break;
2922 }
2923 }
2924 }
2925
2926 if (Path) {
2927 if (!IgnoreAccess) {
2928 // Check that the base class can be accessed.
2929 switch (
2930 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2931 case AR_inaccessible:
2932 return true;
2933 case AR_accessible:
2934 case AR_dependent:
2935 case AR_delayed:
2936 break;
2937 }
2938 }
2939
2940 // Build a base path if necessary.
2941 if (BasePath)
2942 ::BuildBasePathArray(*Path, *BasePath);
2943 return false;
2944 }
2945
2946 if (AmbiguousBaseConvID) {
2947 // We know that the derived-to-base conversion is ambiguous, and
2948 // we're going to produce a diagnostic. Perform the derived-to-base
2949 // search just one more time to compute all of the possible paths so
2950 // that we can print them out. This is more expensive than any of
2951 // the previous derived-to-base checks we've done, but at this point
2952 // performance isn't as much of an issue.
2953 Paths.clear();
2954 Paths.setRecordingPaths(true);
2955 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2956 assert(StillOkay && "Can only be used with a derived-to-base conversion")((void)0);
2957 (void)StillOkay;
2958
2959 // Build up a textual representation of the ambiguous paths, e.g.,
2960 // D -> B -> A, that will be used to illustrate the ambiguous
2961 // conversions in the diagnostic. We only print one of the paths
2962 // to each base class subobject.
2963 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2964
2965 Diag(Loc, AmbiguousBaseConvID)
2966 << Derived << Base << PathDisplayStr << Range << Name;
2967 }
2968 return true;
2969}
2970
2971bool
2972Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2973 SourceLocation Loc, SourceRange Range,
2974 CXXCastPath *BasePath,
2975 bool IgnoreAccess) {
2976 return CheckDerivedToBaseConversion(
2977 Derived, Base, diag::err_upcast_to_inaccessible_base,
2978 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2979 BasePath, IgnoreAccess);
2980}
2981
2982
2983/// Builds a string representing ambiguous paths from a
2984/// specific derived class to different subobjects of the same base
2985/// class.
2986///
2987/// This function builds a string that can be used in error messages
2988/// to show the different paths that one can take through the
2989/// inheritance hierarchy to go from the derived class to different
2990/// subobjects of a base class. The result looks something like this:
2991/// @code
2992/// struct D -> struct B -> struct A
2993/// struct D -> struct C -> struct A
2994/// @endcode
2995std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2996 std::string PathDisplayStr;
2997 std::set<unsigned> DisplayedPaths;
2998 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2999 Path != Paths.end(); ++Path) {
3000 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
3001 // We haven't displayed a path to this particular base
3002 // class subobject yet.
3003 PathDisplayStr += "\n ";
3004 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3005 for (CXXBasePath::const_iterator Element = Path->begin();
3006 Element != Path->end(); ++Element)
3007 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3008 }
3009 }
3010
3011 return PathDisplayStr;
3012}
3013
3014//===----------------------------------------------------------------------===//
3015// C++ class member Handling
3016//===----------------------------------------------------------------------===//
3017
3018/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
3019bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3020 SourceLocation ColonLoc,
3021 const ParsedAttributesView &Attrs) {
3022 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((void)0);
3023 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3024 ASLoc, ColonLoc);
3025 CurContext->addHiddenDecl(ASDecl);
3026 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3027}
3028
3029/// CheckOverrideControl - Check C++11 override control semantics.
3030void Sema::CheckOverrideControl(NamedDecl *D) {
3031 if (D->isInvalidDecl())
3032 return;
3033
3034 // We only care about "override" and "final" declarations.
3035 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3036 return;
3037
3038 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3039
3040 // We can't check dependent instance methods.
3041 if (MD && MD->isInstance() &&
3042 (MD->getParent()->hasAnyDependentBases() ||
3043 MD->getType()->isDependentType()))
3044 return;
3045
3046 if (MD && !MD->isVirtual()) {
3047 // If we have a non-virtual method, check if if hides a virtual method.
3048 // (In that case, it's most likely the method has the wrong type.)
3049 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3050 FindHiddenVirtualMethods(MD, OverloadedMethods);
3051
3052 if (!OverloadedMethods.empty()) {
3053 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3054 Diag(OA->getLocation(),
3055 diag::override_keyword_hides_virtual_member_function)
3056 << "override" << (OverloadedMethods.size() > 1);
3057 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3058 Diag(FA->getLocation(),
3059 diag::override_keyword_hides_virtual_member_function)
3060 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3061 << (OverloadedMethods.size() > 1);
3062 }
3063 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3064 MD->setInvalidDecl();
3065 return;
3066 }
3067 // Fall through into the general case diagnostic.
3068 // FIXME: We might want to attempt typo correction here.
3069 }
3070
3071 if (!MD || !MD->isVirtual()) {
3072 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3073 Diag(OA->getLocation(),
3074 diag::override_keyword_only_allowed_on_virtual_member_functions)
3075 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3076 D->dropAttr<OverrideAttr>();
3077 }
3078 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3079 Diag(FA->getLocation(),
3080 diag::override_keyword_only_allowed_on_virtual_member_functions)
3081 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3082 << FixItHint::CreateRemoval(FA->getLocation());
3083 D->dropAttr<FinalAttr>();
3084 }
3085 return;
3086 }
3087
3088 // C++11 [class.virtual]p5:
3089 // If a function is marked with the virt-specifier override and
3090 // does not override a member function of a base class, the program is
3091 // ill-formed.
3092 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3093 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3094 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3095 << MD->getDeclName();
3096}
3097
3098void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3099 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3100 return;
3101 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3102 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3103 return;
3104
3105 SourceLocation Loc = MD->getLocation();
3106 SourceLocation SpellingLoc = Loc;
3107 if (getSourceManager().isMacroArgExpansion(Loc))
3108 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3109 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3110 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3111 return;
3112
3113 if (MD->size_overridden_methods() > 0) {
3114 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3115 unsigned DiagID =
3116 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3117 ? DiagInconsistent
3118 : DiagSuggest;
3119 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3120 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3121 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3122 };
3123 if (isa<CXXDestructorDecl>(MD))
3124 EmitDiag(
3125 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3126 diag::warn_suggest_destructor_marked_not_override_overriding);
3127 else
3128 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3129 diag::warn_suggest_function_marked_not_override_overriding);
3130 }
3131}
3132
3133/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3134/// function overrides a virtual member function marked 'final', according to
3135/// C++11 [class.virtual]p4.
3136bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3137 const CXXMethodDecl *Old) {
3138 FinalAttr *FA = Old->getAttr<FinalAttr>();
3139 if (!FA)
3140 return false;
3141
3142 Diag(New->getLocation(), diag::err_final_function_overridden)
3143 << New->getDeclName()
3144 << FA->isSpelledAsSealed();
3145 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3146 return true;
3147}
3148
3149static bool InitializationHasSideEffects(const FieldDecl &FD) {
3150 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3151 // FIXME: Destruction of ObjC lifetime types has side-effects.
3152 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3153 return !RD->isCompleteDefinition() ||
3154 !RD->hasTrivialDefaultConstructor() ||
3155 !RD->hasTrivialDestructor();
3156 return false;
3157}
3158
3159static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3160 ParsedAttributesView::const_iterator Itr =
3161 llvm::find_if(list, [](const ParsedAttr &AL) {
3162 return AL.isDeclspecPropertyAttribute();
3163 });
3164 if (Itr != list.end())
3165 return &*Itr;
3166 return nullptr;
3167}
3168
3169// Check if there is a field shadowing.
3170void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3171 DeclarationName FieldName,
3172 const CXXRecordDecl *RD,
3173 bool DeclIsField) {
3174 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3175 return;
3176
3177 // To record a shadowed field in a base
3178 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3179 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3180 CXXBasePath &Path) {
3181 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3182 // Record an ambiguous path directly
3183 if (Bases.find(Base) != Bases.end())
3184 return true;
3185 for (const auto Field : Base->lookup(FieldName)) {
3186 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3187 Field->getAccess() != AS_private) {
3188 assert(Field->getAccess() != AS_none)((void)0);
3189 assert(Bases.find(Base) == Bases.end())((void)0);
3190 Bases[Base] = Field;
3191 return true;
3192 }
3193 }
3194 return false;
3195 };
3196
3197 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3198 /*DetectVirtual=*/true);
3199 if (!RD->lookupInBases(FieldShadowed, Paths))
3200 return;
3201
3202 for (const auto &P : Paths) {
3203 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3204 auto It = Bases.find(Base);
3205 // Skip duplicated bases
3206 if (It == Bases.end())
3207 continue;
3208 auto BaseField = It->second;
3209 assert(BaseField->getAccess() != AS_private)((void)0);
3210 if (AS_none !=
3211 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3212 Diag(Loc, diag::warn_shadow_field)
3213 << FieldName << RD << Base << DeclIsField;
3214 Diag(BaseField->getLocation(), diag::note_shadow_field);
3215 Bases.erase(It);
3216 }
3217 }
3218}
3219
3220/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3221/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3222/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3223/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3224/// present (but parsing it has been deferred).
3225NamedDecl *
3226Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3227 MultiTemplateParamsArg TemplateParameterLists,
3228 Expr *BW, const VirtSpecifiers &VS,
3229 InClassInitStyle InitStyle) {
3230 const DeclSpec &DS = D.getDeclSpec();
3231 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3232 DeclarationName Name = NameInfo.getName();
3233 SourceLocation Loc = NameInfo.getLoc();
3234
3235 // For anonymous bitfields, the location should point to the type.
3236 if (Loc.isInvalid())
3237 Loc = D.getBeginLoc();
3238
3239 Expr *BitWidth = static_cast<Expr*>(BW);
3240
3241 assert(isa<CXXRecordDecl>(CurContext))((void)0);
3242 assert(!DS.isFriendSpecified())((void)0);
3243
3244 bool isFunc = D.isDeclarationOfFunction();
3245 const ParsedAttr *MSPropertyAttr =
3246 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3247
3248 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3249 // The Microsoft extension __interface only permits public member functions
3250 // and prohibits constructors, destructors, operators, non-public member
3251 // functions, static methods and data members.
3252 unsigned InvalidDecl;
3253 bool ShowDeclName = true;
3254 if (!isFunc &&
3255 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3256 InvalidDecl = 0;
3257 else if (!isFunc)
3258 InvalidDecl = 1;
3259 else if (AS != AS_public)
3260 InvalidDecl = 2;
3261 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3262 InvalidDecl = 3;
3263 else switch (Name.getNameKind()) {
3264 case DeclarationName::CXXConstructorName:
3265 InvalidDecl = 4;
3266 ShowDeclName = false;
3267 break;
3268
3269 case DeclarationName::CXXDestructorName:
3270 InvalidDecl = 5;
3271 ShowDeclName = false;
3272 break;
3273
3274 case DeclarationName::CXXOperatorName:
3275 case DeclarationName::CXXConversionFunctionName:
3276 InvalidDecl = 6;
3277 break;
3278
3279 default:
3280 InvalidDecl = 0;
3281 break;
3282 }
3283
3284 if (InvalidDecl) {
3285 if (ShowDeclName)
3286 Diag(Loc, diag::err_invalid_member_in_interface)
3287 << (InvalidDecl-1) << Name;
3288 else
3289 Diag(Loc, diag::err_invalid_member_in_interface)
3290 << (InvalidDecl-1) << "";
3291 return nullptr;
3292 }
3293 }
3294
3295 // C++ 9.2p6: A member shall not be declared to have automatic storage
3296 // duration (auto, register) or with the extern storage-class-specifier.
3297 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3298 // data members and cannot be applied to names declared const or static,
3299 // and cannot be applied to reference members.
3300 switch (DS.getStorageClassSpec()) {
3301 case DeclSpec::SCS_unspecified:
3302 case DeclSpec::SCS_typedef:
3303 case DeclSpec::SCS_static:
3304 break;
3305 case DeclSpec::SCS_mutable:
3306 if (isFunc) {
3307 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3308
3309 // FIXME: It would be nicer if the keyword was ignored only for this
3310 // declarator. Otherwise we could get follow-up errors.
3311 D.getMutableDeclSpec().ClearStorageClassSpecs();
3312 }
3313 break;
3314 default:
3315 Diag(DS.getStorageClassSpecLoc(),
3316 diag::err_storageclass_invalid_for_member);
3317 D.getMutableDeclSpec().ClearStorageClassSpecs();
3318 break;
3319 }
3320
3321 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3322 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3323 !isFunc);
3324
3325 if (DS.hasConstexprSpecifier() && isInstField) {
3326 SemaDiagnosticBuilder B =
3327 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3328 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3329 if (InitStyle == ICIS_NoInit) {
3330 B << 0 << 0;
3331 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3332 B << FixItHint::CreateRemoval(ConstexprLoc);
3333 else {
3334 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3335 D.getMutableDeclSpec().ClearConstexprSpec();
3336 const char *PrevSpec;
3337 unsigned DiagID;
3338 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3339 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3340 (void)Failed;
3341 assert(!Failed && "Making a constexpr member const shouldn't fail")((void)0);
3342 }
3343 } else {
3344 B << 1;
3345 const char *PrevSpec;
3346 unsigned DiagID;
3347 if (D.getMutableDeclSpec().SetStorageClassSpec(
3348 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3349 Context.getPrintingPolicy())) {
3350 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((void)0)
3351 "This is the only DeclSpec that should fail to be applied")((void)0);
3352 B << 1;
3353 } else {
3354 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3355 isInstField = false;
3356 }
3357 }
3358 }
3359
3360 NamedDecl *Member;
3361 if (isInstField) {
3362 CXXScopeSpec &SS = D.getCXXScopeSpec();
3363
3364 // Data members must have identifiers for names.
3365 if (!Name.isIdentifier()) {
3366 Diag(Loc, diag::err_bad_variable_name)
3367 << Name;
3368 return nullptr;
3369 }
3370
3371 IdentifierInfo *II = Name.getAsIdentifierInfo();
3372
3373 // Member field could not be with "template" keyword.
3374 // So TemplateParameterLists should be empty in this case.
3375 if (TemplateParameterLists.size()) {
3376 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3377 if (TemplateParams->size()) {
3378 // There is no such thing as a member field template.
3379 Diag(D.getIdentifierLoc(), diag::err_template_member)
3380 << II
3381 << SourceRange(TemplateParams->getTemplateLoc(),
3382 TemplateParams->getRAngleLoc());
3383 } else {
3384 // There is an extraneous 'template<>' for this member.
3385 Diag(TemplateParams->getTemplateLoc(),
3386 diag::err_template_member_noparams)
3387 << II
3388 << SourceRange(TemplateParams->getTemplateLoc(),
3389 TemplateParams->getRAngleLoc());
3390 }
3391 return nullptr;
3392 }
3393
3394 if (SS.isSet() && !SS.isInvalid()) {
3395 // The user provided a superfluous scope specifier inside a class
3396 // definition:
3397 //
3398 // class X {
3399 // int X::member;
3400 // };
3401 if (DeclContext *DC = computeDeclContext(SS, false))
3402 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3403 D.getName().getKind() ==
3404 UnqualifiedIdKind::IK_TemplateId);
3405 else
3406 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3407 << Name << SS.getRange();
3408
3409 SS.clear();
3410 }
3411
3412 if (MSPropertyAttr) {
3413 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3414 BitWidth, InitStyle, AS, *MSPropertyAttr);
3415 if (!Member)
3416 return nullptr;
3417 isInstField = false;
3418 } else {
3419 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3420 BitWidth, InitStyle, AS);
3421 if (!Member)
3422 return nullptr;
3423 }
3424
3425 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3426 } else {
3427 Member = HandleDeclarator(S, D, TemplateParameterLists);
3428 if (!Member)
3429 return nullptr;
3430
3431 // Non-instance-fields can't have a bitfield.
3432 if (BitWidth) {
3433 if (Member->isInvalidDecl()) {
3434 // don't emit another diagnostic.
3435 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3436 // C++ 9.6p3: A bit-field shall not be a static member.
3437 // "static member 'A' cannot be a bit-field"
3438 Diag(Loc, diag::err_static_not_bitfield)
3439 << Name << BitWidth->getSourceRange();
3440 } else if (isa<TypedefDecl>(Member)) {
3441 // "typedef member 'x' cannot be a bit-field"
3442 Diag(Loc, diag::err_typedef_not_bitfield)
3443 << Name << BitWidth->getSourceRange();
3444 } else {
3445 // A function typedef ("typedef int f(); f a;").
3446 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3447 Diag(Loc, diag::err_not_integral_type_bitfield)
3448 << Name << cast<ValueDecl>(Member)->getType()
3449 << BitWidth->getSourceRange();
3450 }
3451
3452 BitWidth = nullptr;
3453 Member->setInvalidDecl();
3454 }
3455
3456 NamedDecl *NonTemplateMember = Member;
3457 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3458 NonTemplateMember = FunTmpl->getTemplatedDecl();
3459 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3460 NonTemplateMember = VarTmpl->getTemplatedDecl();
3461
3462 Member->setAccess(AS);
3463
3464 // If we have declared a member function template or static data member
3465 // template, set the access of the templated declaration as well.
3466 if (NonTemplateMember != Member)
3467 NonTemplateMember->setAccess(AS);
3468
3469 // C++ [temp.deduct.guide]p3:
3470 // A deduction guide [...] for a member class template [shall be
3471 // declared] with the same access [as the template].
3472 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3473 auto *TD = DG->getDeducedTemplate();
3474 // Access specifiers are only meaningful if both the template and the
3475 // deduction guide are from the same scope.
3476 if (AS != TD->getAccess() &&
3477 TD->getDeclContext()->getRedeclContext()->Equals(
3478 DG->getDeclContext()->getRedeclContext())) {
3479 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3480 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3481 << TD->getAccess();
3482 const AccessSpecDecl *LastAccessSpec = nullptr;
3483 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3484 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3485 LastAccessSpec = AccessSpec;
3486 }
3487 assert(LastAccessSpec && "differing access with no access specifier")((void)0);
3488 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3489 << AS;
3490 }
3491 }
3492 }
3493
3494 if (VS.isOverrideSpecified())
3495 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3496 AttributeCommonInfo::AS_Keyword));
3497 if (VS.isFinalSpecified())
3498 Member->addAttr(FinalAttr::Create(
3499 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3500 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3501
3502 if (VS.getLastLocation().isValid()) {
3503 // Update the end location of a method that has a virt-specifiers.
3504 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3505 MD->setRangeEnd(VS.getLastLocation());
3506 }
3507
3508 CheckOverrideControl(Member);
3509
3510 assert((Name || isInstField) && "No identifier for non-field ?")((void)0);
3511
3512 if (isInstField) {
3513 FieldDecl *FD = cast<FieldDecl>(Member);
3514 FieldCollector->Add(FD);
3515
3516 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3517 // Remember all explicit private FieldDecls that have a name, no side
3518 // effects and are not part of a dependent type declaration.
3519 if (!FD->isImplicit() && FD->getDeclName() &&
3520 FD->getAccess() == AS_private &&
3521 !FD->hasAttr<UnusedAttr>() &&
3522 !FD->getParent()->isDependentContext() &&
3523 !InitializationHasSideEffects(*FD))
3524 UnusedPrivateFields.insert(FD);
3525 }
3526 }
3527
3528 return Member;
3529}
3530
3531namespace {
3532 class UninitializedFieldVisitor
3533 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3534 Sema &S;
3535 // List of Decls to generate a warning on. Also remove Decls that become
3536 // initialized.
3537 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3538 // List of base classes of the record. Classes are removed after their
3539 // initializers.
3540 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3541 // Vector of decls to be removed from the Decl set prior to visiting the
3542 // nodes. These Decls may have been initialized in the prior initializer.
3543 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3544 // If non-null, add a note to the warning pointing back to the constructor.
3545 const CXXConstructorDecl *Constructor;
3546 // Variables to hold state when processing an initializer list. When
3547 // InitList is true, special case initialization of FieldDecls matching
3548 // InitListFieldDecl.
3549 bool InitList;
3550 FieldDecl *InitListFieldDecl;
3551 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3552
3553 public:
3554 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3555 UninitializedFieldVisitor(Sema &S,
3556 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3557 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3558 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3559 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3560
3561 // Returns true if the use of ME is not an uninitialized use.
3562 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3563 bool CheckReferenceOnly) {
3564 llvm::SmallVector<FieldDecl*, 4> Fields;
3565 bool ReferenceField = false;
3566 while (ME) {
3567 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3568 if (!FD)
3569 return false;
3570 Fields.push_back(FD);
3571 if (FD->getType()->isReferenceType())
3572 ReferenceField = true;
3573 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3574 }
3575
3576 // Binding a reference to an uninitialized field is not an
3577 // uninitialized use.
3578 if (CheckReferenceOnly && !ReferenceField)
3579 return true;
3580
3581 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3582 // Discard the first field since it is the field decl that is being
3583 // initialized.
3584 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3585 UsedFieldIndex.push_back((*I)->getFieldIndex());
3586 }
3587
3588 for (auto UsedIter = UsedFieldIndex.begin(),
3589 UsedEnd = UsedFieldIndex.end(),
3590 OrigIter = InitFieldIndex.begin(),
3591 OrigEnd = InitFieldIndex.end();
3592 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3593 if (*UsedIter < *OrigIter)
3594 return true;
3595 if (*UsedIter > *OrigIter)
3596 break;
3597 }
3598
3599 return false;
3600 }
3601
3602 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3603 bool AddressOf) {
3604 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3605 return;
3606
3607 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3608 // or union.
3609 MemberExpr *FieldME = ME;
3610
3611 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3612
3613 Expr *Base = ME;
3614 while (MemberExpr *SubME =
3615 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3616
3617 if (isa<VarDecl>(SubME->getMemberDecl()))
3618 return;
3619
3620 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3621 if (!FD->isAnonymousStructOrUnion())
3622 FieldME = SubME;
3623
3624 if (!FieldME->getType().isPODType(S.Context))
3625 AllPODFields = false;
3626
3627 Base = SubME->getBase();
3628 }
3629
3630 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3631 Visit(Base);
3632 return;
3633 }
3634
3635 if (AddressOf && AllPODFields)
3636 return;
3637
3638 ValueDecl* FoundVD = FieldME->getMemberDecl();
3639
3640 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3641 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3642 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3643 }
3644
3645 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3646 QualType T = BaseCast->getType();
3647 if (T->isPointerType() &&
3648 BaseClasses.count(T->getPointeeType())) {
3649 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3650 << T->getPointeeType() << FoundVD;
3651 }
3652 }
3653 }
3654
3655 if (!Decls.count(FoundVD))
3656 return;
3657
3658 const bool IsReference = FoundVD->getType()->isReferenceType();
3659
3660 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3661 // Special checking for initializer lists.
3662 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3663 return;
3664 }
3665 } else {
3666 // Prevent double warnings on use of unbounded references.
3667 if (CheckReferenceOnly && !IsReference)
3668 return;
3669 }
3670
3671 unsigned diag = IsReference
3672 ? diag::warn_reference_field_is_uninit
3673 : diag::warn_field_is_uninit;
3674 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3675 if (Constructor)
3676 S.Diag(Constructor->getLocation(),
3677 diag::note_uninit_in_this_constructor)
3678 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3679
3680 }
3681
3682 void HandleValue(Expr *E, bool AddressOf) {
3683 E = E->IgnoreParens();
3684
3685 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3686 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3687 AddressOf /*AddressOf*/);
3688 return;
3689 }
3690
3691 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3692 Visit(CO->getCond());
3693 HandleValue(CO->getTrueExpr(), AddressOf);
3694 HandleValue(CO->getFalseExpr(), AddressOf);
3695 return;
3696 }
3697
3698 if (BinaryConditionalOperator *BCO =
3699 dyn_cast<BinaryConditionalOperator>(E)) {
3700 Visit(BCO->getCond());
3701 HandleValue(BCO->getFalseExpr(), AddressOf);
3702 return;
3703 }
3704
3705 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3706 HandleValue(OVE->getSourceExpr(), AddressOf);
3707 return;
3708 }
3709
3710 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3711 switch (BO->getOpcode()) {
3712 default:
3713 break;
3714 case(BO_PtrMemD):
3715 case(BO_PtrMemI):
3716 HandleValue(BO->getLHS(), AddressOf);
3717 Visit(BO->getRHS());
3718 return;
3719 case(BO_Comma):
3720 Visit(BO->getLHS());
3721 HandleValue(BO->getRHS(), AddressOf);
3722 return;
3723 }
3724 }
3725
3726 Visit(E);
3727 }
3728
3729 void CheckInitListExpr(InitListExpr *ILE) {
3730 InitFieldIndex.push_back(0);
3731 for (auto Child : ILE->children()) {
3732 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3733 CheckInitListExpr(SubList);
3734 } else {
3735 Visit(Child);
3736 }
3737 ++InitFieldIndex.back();
3738 }
3739 InitFieldIndex.pop_back();
3740 }
3741
3742 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3743 FieldDecl *Field, const Type *BaseClass) {
3744 // Remove Decls that may have been initialized in the previous
3745 // initializer.
3746 for (ValueDecl* VD : DeclsToRemove)
3747 Decls.erase(VD);
3748 DeclsToRemove.clear();
3749
3750 Constructor = FieldConstructor;
3751 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3752
3753 if (ILE && Field) {
3754 InitList = true;
3755 InitListFieldDecl = Field;
3756 InitFieldIndex.clear();
3757 CheckInitListExpr(ILE);
3758 } else {
3759 InitList = false;
3760 Visit(E);
3761 }
3762
3763 if (Field)
3764 Decls.erase(Field);
3765 if (BaseClass)
3766 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3767 }
3768
3769 void VisitMemberExpr(MemberExpr *ME) {
3770 // All uses of unbounded reference fields will warn.
3771 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3772 }
3773
3774 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3775 if (E->getCastKind() == CK_LValueToRValue) {
3776 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3777 return;
3778 }
3779
3780 Inherited::VisitImplicitCastExpr(E);
3781 }
3782
3783 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3784 if (E->getConstructor()->isCopyConstructor()) {
3785 Expr *ArgExpr = E->getArg(0);
3786 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3787 if (ILE->getNumInits() == 1)
3788 ArgExpr = ILE->getInit(0);
3789 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3790 if (ICE->getCastKind() == CK_NoOp)
3791 ArgExpr = ICE->getSubExpr();
3792 HandleValue(ArgExpr, false /*AddressOf*/);
3793 return;
3794 }
3795 Inherited::VisitCXXConstructExpr(E);
3796 }
3797
3798 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3799 Expr *Callee = E->getCallee();
3800 if (isa<MemberExpr>(Callee)) {
3801 HandleValue(Callee, false /*AddressOf*/);
3802 for (auto Arg : E->arguments())
3803 Visit(Arg);
3804 return;
3805 }
3806
3807 Inherited::VisitCXXMemberCallExpr(E);
3808 }
3809
3810 void VisitCallExpr(CallExpr *E) {
3811 // Treat std::move as a use.
3812 if (E->isCallToStdMove()) {
3813 HandleValue(E->getArg(0), /*AddressOf=*/false);
3814 return;
3815 }
3816
3817 Inherited::VisitCallExpr(E);
3818 }
3819
3820 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3821 Expr *Callee = E->getCallee();
3822
3823 if (isa<UnresolvedLookupExpr>(Callee))
3824 return Inherited::VisitCXXOperatorCallExpr(E);
3825
3826 Visit(Callee);
3827 for (auto Arg : E->arguments())
3828 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3829 }
3830
3831 void VisitBinaryOperator(BinaryOperator *E) {
3832 // If a field assignment is detected, remove the field from the
3833 // uninitiailized field set.
3834 if (E->getOpcode() == BO_Assign)
3835 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3836 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3837 if (!FD->getType()->isReferenceType())
3838 DeclsToRemove.push_back(FD);
3839
3840 if (E->isCompoundAssignmentOp()) {
3841 HandleValue(E->getLHS(), false /*AddressOf*/);
3842 Visit(E->getRHS());
3843 return;
3844 }
3845
3846 Inherited::VisitBinaryOperator(E);
3847 }
3848
3849 void VisitUnaryOperator(UnaryOperator *E) {
3850 if (E->isIncrementDecrementOp()) {
3851 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3852 return;
3853 }
3854 if (E->getOpcode() == UO_AddrOf) {
3855 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3856 HandleValue(ME->getBase(), true /*AddressOf*/);
3857 return;
3858 }
3859 }
3860
3861 Inherited::VisitUnaryOperator(E);
3862 }
3863 };
3864
3865 // Diagnose value-uses of fields to initialize themselves, e.g.
3866 // foo(foo)
3867 // where foo is not also a parameter to the constructor.
3868 // Also diagnose across field uninitialized use such as
3869 // x(y), y(x)
3870 // TODO: implement -Wuninitialized and fold this into that framework.
3871 static void DiagnoseUninitializedFields(
3872 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3873
3874 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3875 Constructor->getLocation())) {
3876 return;
3877 }
3878
3879 if (Constructor->isInvalidDecl())
3880 return;
3881
3882 const CXXRecordDecl *RD = Constructor->getParent();
3883
3884 if (RD->isDependentContext())
3885 return;
3886
3887 // Holds fields that are uninitialized.
3888 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3889
3890 // At the beginning, all fields are uninitialized.
3891 for (auto *I : RD->decls()) {
3892 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3893 UninitializedFields.insert(FD);
3894 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3895 UninitializedFields.insert(IFD->getAnonField());
3896 }
3897 }
3898
3899 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3900 for (auto I : RD->bases())
3901 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3902
3903 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3904 return;
3905
3906 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3907 UninitializedFields,
3908 UninitializedBaseClasses);
3909
3910 for (const auto *FieldInit : Constructor->inits()) {
3911 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3912 break;
3913
3914 Expr *InitExpr = FieldInit->getInit();
3915 if (!InitExpr)
3916 continue;
3917
3918 if (CXXDefaultInitExpr *Default =
3919 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3920 InitExpr = Default->getExpr();
3921 if (!InitExpr)
3922 continue;
3923 // In class initializers will point to the constructor.
3924 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3925 FieldInit->getAnyMember(),
3926 FieldInit->getBaseClass());
3927 } else {
3928 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3929 FieldInit->getAnyMember(),
3930 FieldInit->getBaseClass());
3931 }
3932 }
3933 }
3934} // namespace
3935
3936/// Enter a new C++ default initializer scope. After calling this, the
3937/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3938/// parsing or instantiating the initializer failed.
3939void Sema::ActOnStartCXXInClassMemberInitializer() {
3940 // Create a synthetic function scope to represent the call to the constructor
3941 // that notionally surrounds a use of this initializer.
3942 PushFunctionScope();
3943}
3944
3945void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3946 if (!D.isFunctionDeclarator())
3947 return;
3948 auto &FTI = D.getFunctionTypeInfo();
3949 if (!FTI.Params)
3950 return;
3951 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3952 FTI.NumParams)) {
3953 auto *ParamDecl = cast<NamedDecl>(Param.Param);
3954 if (ParamDecl->getDeclName())
3955 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3956 }
3957}
3958
3959ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3960 return ActOnRequiresClause(ConstraintExpr);
3961}
3962
3963ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
3964 if (ConstraintExpr.isInvalid())
3965 return ExprError();
3966
3967 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
3968 if (ConstraintExpr.isInvalid())
3969 return ExprError();
3970
3971 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
3972 UPPC_RequiresClause))
3973 return ExprError();
3974
3975 return ConstraintExpr;
3976}
3977
3978/// This is invoked after parsing an in-class initializer for a
3979/// non-static C++ class member, and after instantiating an in-class initializer
3980/// in a class template. Such actions are deferred until the class is complete.
3981void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3982 SourceLocation InitLoc,
3983 Expr *InitExpr) {
3984 // Pop the notional constructor scope we created earlier.
3985 PopFunctionScopeInfo(nullptr, D);
3986
3987 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3988 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&((void)0)
3989 "must set init style when field is created")((void)0);
3990
3991 if (!InitExpr) {
3992 D->setInvalidDecl();
3993 if (FD)
3994 FD->removeInClassInitializer();
3995 return;
3996 }
3997
3998 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3999 FD->setInvalidDecl();
4000 FD->removeInClassInitializer();
4001 return;
4002 }
4003
4004 ExprResult Init = InitExpr;
4005 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
4006 InitializedEntity Entity =
4007 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
4008 InitializationKind Kind =
4009 FD->getInClassInitStyle() == ICIS_ListInit
4010 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4011 InitExpr->getBeginLoc(),
4012 InitExpr->getEndLoc())
4013 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
4014 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4015 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
4016 if (Init.isInvalid()) {
4017 FD->setInvalidDecl();
4018 return;
4019 }
4020 }
4021
4022 // C++11 [class.base.init]p7:
4023 // The initialization of each base and member constitutes a
4024 // full-expression.
4025 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4026 if (Init.isInvalid()) {
4027 FD->setInvalidDecl();
4028 return;
4029 }
4030
4031 InitExpr = Init.get();
4032
4033 FD->setInClassInitializer(InitExpr);
4034}
4035
4036/// Find the direct and/or virtual base specifiers that
4037/// correspond to the given base type, for use in base initialization
4038/// within a constructor.
4039static bool FindBaseInitializer(Sema &SemaRef,
4040 CXXRecordDecl *ClassDecl,
4041 QualType BaseType,
4042 const CXXBaseSpecifier *&DirectBaseSpec,
4043 const CXXBaseSpecifier *&VirtualBaseSpec) {
4044 // First, check for a direct base class.
4045 DirectBaseSpec = nullptr;
4046 for (const auto &Base : ClassDecl->bases()) {
4047 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4048 // We found a direct base of this type. That's what we're
4049 // initializing.
4050 DirectBaseSpec = &Base;
4051 break;
4052 }
4053 }
4054
4055 // Check for a virtual base class.
4056 // FIXME: We might be able to short-circuit this if we know in advance that
4057 // there are no virtual bases.
4058 VirtualBaseSpec = nullptr;
4059 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4060 // We haven't found a base yet; search the class hierarchy for a
4061 // virtual base class.
4062 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4063 /*DetectVirtual=*/false);
4064 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4065 SemaRef.Context.getTypeDeclType(ClassDecl),
4066 BaseType, Paths)) {
4067 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4068 Path != Paths.end(); ++Path) {
4069 if (Path->back().Base->isVirtual()) {
4070 VirtualBaseSpec = Path->back().Base;
4071 break;
4072 }
4073 }
4074 }
4075 }
4076
4077 return DirectBaseSpec || VirtualBaseSpec;
4078}
4079
4080/// Handle a C++ member initializer using braced-init-list syntax.
4081MemInitResult
4082Sema::ActOnMemInitializer(Decl *ConstructorD,
4083 Scope *S,
4084 CXXScopeSpec &SS,
4085 IdentifierInfo *MemberOrBase,
4086 ParsedType TemplateTypeTy,
4087 const DeclSpec &DS,
4088 SourceLocation IdLoc,
4089 Expr *InitList,
4090 SourceLocation EllipsisLoc) {
4091 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4092 DS, IdLoc, InitList,
4093 EllipsisLoc);
4094}
4095
4096/// Handle a C++ member initializer using parentheses syntax.
4097MemInitResult
4098Sema::ActOnMemInitializer(Decl *ConstructorD,
4099 Scope *S,
4100 CXXScopeSpec &SS,
4101 IdentifierInfo *MemberOrBase,
4102 ParsedType TemplateTypeTy,
4103 const DeclSpec &DS,
4104 SourceLocation IdLoc,
4105 SourceLocation LParenLoc,
4106 ArrayRef<Expr *> Args,
4107 SourceLocation RParenLoc,
4108 SourceLocation EllipsisLoc) {
4109 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4110 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4111 DS, IdLoc, List, EllipsisLoc);
4112}
4113
4114namespace {
4115
4116// Callback to only accept typo corrections that can be a valid C++ member
4117// intializer: either a non-static field member or a base class.
4118class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4119public:
4120 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4121 : ClassDecl(ClassDecl) {}
4122
4123 bool ValidateCandidate(const TypoCorrection &candidate) override {
4124 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4125 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4126 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4127 return isa<TypeDecl>(ND);
4128 }
4129 return false;
4130 }
4131
4132 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4133 return std::make_unique<MemInitializerValidatorCCC>(*this);
4134 }
4135
4136private:
4137 CXXRecordDecl *ClassDecl;
4138};
4139
4140}
4141
4142ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4143 CXXScopeSpec &SS,
4144 ParsedType TemplateTypeTy,
4145 IdentifierInfo *MemberOrBase) {
4146 if (SS.getScopeRep() || TemplateTypeTy)
4147 return nullptr;
4148 for (auto *D : ClassDecl->lookup(MemberOrBase))
4149 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
4150 return cast<ValueDecl>(D);
4151 return nullptr;
4152}
4153
4154/// Handle a C++ member initializer.
4155MemInitResult
4156Sema::BuildMemInitializer(Decl *ConstructorD,
4157 Scope *S,
4158 CXXScopeSpec &SS,
4159 IdentifierInfo *MemberOrBase,
4160 ParsedType TemplateTypeTy,
4161 const DeclSpec &DS,
4162 SourceLocation IdLoc,
4163 Expr *Init,
4164 SourceLocation EllipsisLoc) {
4165 ExprResult Res = CorrectDelayedTyposInExpr(Init);
4166 if (!Res.isUsable())
4167 return true;
4168 Init = Res.get();
4169
4170 if (!ConstructorD)
4171 return true;
4172
4173 AdjustDeclIfTemplate(ConstructorD);
4174
4175 CXXConstructorDecl *Constructor
4176 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4177 if (!Constructor) {
4178 // The user wrote a constructor initializer on a function that is
4179 // not a C++ constructor. Ignore the error for now, because we may
4180 // have more member initializers coming; we'll diagnose it just
4181 // once in ActOnMemInitializers.
4182 return true;
4183 }
4184
4185 CXXRecordDecl *ClassDecl = Constructor->getParent();
4186
4187 // C++ [class.base.init]p2:
4188 // Names in a mem-initializer-id are looked up in the scope of the
4189 // constructor's class and, if not found in that scope, are looked
4190 // up in the scope containing the constructor's definition.
4191 // [Note: if the constructor's class contains a member with the
4192 // same name as a direct or virtual base class of the class, a
4193 // mem-initializer-id naming the member or base class and composed
4194 // of a single identifier refers to the class member. A
4195 // mem-initializer-id for the hidden base class may be specified
4196 // using a qualified name. ]
4197
4198 // Look for a member, first.
4199 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4200 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4201 if (EllipsisLoc.isValid())
4202 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4203 << MemberOrBase
4204 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4205
4206 return BuildMemberInitializer(Member, Init, IdLoc);
4207 }
4208 // It didn't name a member, so see if it names a class.
4209 QualType BaseType;
4210 TypeSourceInfo *TInfo = nullptr;
4211
4212 if (TemplateTypeTy) {
4213 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4214 if (BaseType.isNull())
4215 return true;
4216 } else if (DS.getTypeSpecType() == TST_decltype) {
4217 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4218 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4219 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4220 return true;
4221 } else {
4222 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4223 LookupParsedName(R, S, &SS);
4224
4225 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4226 if (!TyD) {
4227 if (R.isAmbiguous()) return true;
4228
4229 // We don't want access-control diagnostics here.
4230 R.suppressDiagnostics();
4231
4232 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4233 bool NotUnknownSpecialization = false;
4234 DeclContext *DC = computeDeclContext(SS, false);
4235 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4236 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4237
4238 if (!NotUnknownSpecialization) {
4239 // When the scope specifier can refer to a member of an unknown
4240 // specialization, we take it as a type name.
4241 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4242 SS.getWithLocInContext(Context),
4243 *MemberOrBase, IdLoc);
4244 if (BaseType.isNull())
4245 return true;
4246
4247 TInfo = Context.CreateTypeSourceInfo(BaseType);
4248 DependentNameTypeLoc TL =
4249 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4250 if (!TL.isNull()) {
4251 TL.setNameLoc(IdLoc);
4252 TL.setElaboratedKeywordLoc(SourceLocation());
4253 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4254 }
4255
4256 R.clear();
4257 R.setLookupName(MemberOrBase);
4258 }
4259 }
4260
4261 // If no results were found, try to correct typos.
4262 TypoCorrection Corr;
4263 MemInitializerValidatorCCC CCC(ClassDecl);
4264 if (R.empty() && BaseType.isNull() &&
4265 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4266 CCC, CTK_ErrorRecovery, ClassDecl))) {
4267 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4268 // We have found a non-static data member with a similar
4269 // name to what was typed; complain and initialize that
4270 // member.
4271 diagnoseTypo(Corr,
4272 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4273 << MemberOrBase << true);
4274 return BuildMemberInitializer(Member, Init, IdLoc);
4275 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4276 const CXXBaseSpecifier *DirectBaseSpec;
4277 const CXXBaseSpecifier *VirtualBaseSpec;
4278 if (FindBaseInitializer(*this, ClassDecl,
4279 Context.getTypeDeclType(Type),
4280 DirectBaseSpec, VirtualBaseSpec)) {
4281 // We have found a direct or virtual base class with a
4282 // similar name to what was typed; complain and initialize
4283 // that base class.
4284 diagnoseTypo(Corr,
4285 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4286 << MemberOrBase << false,
4287 PDiag() /*Suppress note, we provide our own.*/);
4288
4289 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4290 : VirtualBaseSpec;
4291 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4292 << BaseSpec->getType() << BaseSpec->getSourceRange();
4293
4294 TyD = Type;
4295 }
4296 }
4297 }
4298
4299 if (!TyD && BaseType.isNull()) {
4300 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4301 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4302 return true;
4303 }
4304 }
4305
4306 if (BaseType.isNull()) {
4307 BaseType = Context.getTypeDeclType(TyD);
4308 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4309 if (SS.isSet()) {
4310 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4311 BaseType);
4312 TInfo = Context.CreateTypeSourceInfo(BaseType);
4313 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4314 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4315 TL.setElaboratedKeywordLoc(SourceLocation());
4316 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4317 }
4318 }
4319 }
4320
4321 if (!TInfo)
4322 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4323
4324 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4325}
4326
4327MemInitResult
4328Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4329 SourceLocation IdLoc) {
4330 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4331 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4332 assert((DirectMember || IndirectMember) &&((void)0)
4333 "Member must be a FieldDecl or IndirectFieldDecl")((void)0);
4334
4335 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4336 return true;
4337
4338 if (Member->isInvalidDecl())
4339 return true;
4340
4341 MultiExprArg Args;
4342 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4343 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4344 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4345 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4346 } else {
4347 // Template instantiation doesn't reconstruct ParenListExprs for us.
4348 Args = Init;
4349 }
4350
4351 SourceRange InitRange = Init->getSourceRange();
4352
4353 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4354 // Can't check initialization for a member of dependent type or when
4355 // any of the arguments are type-dependent expressions.
4356 DiscardCleanupsInEvaluationContext();
4357 } else {
4358 bool InitList = false;
4359 if (isa<InitListExpr>(Init)) {
4360 InitList = true;
4361 Args = Init;
4362 }
4363
4364 // Initialize the member.
4365 InitializedEntity MemberEntity =
4366 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4367 : InitializedEntity::InitializeMember(IndirectMember,
4368 nullptr);
4369 InitializationKind Kind =
4370 InitList ? InitializationKind::CreateDirectList(
4371 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4372 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4373 InitRange.getEnd());
4374
4375 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4376 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4377 nullptr);
4378 if (MemberInit.isInvalid())
4379 return true;
4380
4381 // C++11 [class.base.init]p7:
4382 // The initialization of each base and member constitutes a
4383 // full-expression.
4384 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4385 /*DiscardedValue*/ false);
4386 if (MemberInit.isInvalid())
4387 return true;
4388
4389 Init = MemberInit.get();
4390 }
4391
4392 if (DirectMember) {
4393 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4394 InitRange.getBegin(), Init,
4395 InitRange.getEnd());
4396 } else {
4397 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4398 InitRange.getBegin(), Init,
4399 InitRange.getEnd());
4400 }
4401}
4402
4403MemInitResult
4404Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4405 CXXRecordDecl *ClassDecl) {
4406 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4407 if (!LangOpts.CPlusPlus11)
4408 return Diag(NameLoc, diag::err_delegating_ctor)
4409 << TInfo->getTypeLoc().getLocalSourceRange();
4410 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4411
4412 bool InitList = true;
4413 MultiExprArg Args = Init;
4414 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4415 InitList = false;
4416 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4417 }
4418
4419 SourceRange InitRange = Init->getSourceRange();
4420 // Initialize the object.
4421 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4422 QualType(ClassDecl->getTypeForDecl(), 0));
4423 InitializationKind Kind =
4424 InitList ? InitializationKind::CreateDirectList(
4425 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4426 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4427 InitRange.getEnd());
4428 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4429 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4430 Args, nullptr);
4431 if (DelegationInit.isInvalid())
4432 return true;
4433
4434 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((void)0)
4435 "Delegating constructor with no target?")((void)0);
4436
4437 // C++11 [class.base.init]p7:
4438 // The initialization of each base and member constitutes a
4439 // full-expression.
4440 DelegationInit = ActOnFinishFullExpr(
4441 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4442 if (DelegationInit.isInvalid())
4443 return true;
4444
4445 // If we are in a dependent context, template instantiation will
4446 // perform this type-checking again. Just save the arguments that we
4447 // received in a ParenListExpr.
4448 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4449 // of the information that we have about the base
4450 // initializer. However, deconstructing the ASTs is a dicey process,
4451 // and this approach is far more likely to get the corner cases right.
4452 if (CurContext->isDependentContext())
4453 DelegationInit = Init;
4454
4455 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4456 DelegationInit.getAs<Expr>(),
4457 InitRange.getEnd());
4458}
4459
4460MemInitResult
4461Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4462 Expr *Init, CXXRecordDecl *ClassDecl,
4463 SourceLocation EllipsisLoc) {
4464 SourceLocation BaseLoc
4465 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4466
4467 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4468 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4469 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4470
4471 // C++ [class.base.init]p2:
4472 // [...] Unless the mem-initializer-id names a nonstatic data
4473 // member of the constructor's class or a direct or virtual base
4474 // of that class, the mem-initializer is ill-formed. A
4475 // mem-initializer-list can initialize a base class using any
4476 // name that denotes that base class type.
4477 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4478
4479 SourceRange InitRange = Init->getSourceRange();
4480 if (EllipsisLoc.isValid()) {
4481 // This is a pack expansion.
4482 if (!BaseType->containsUnexpandedParameterPack()) {
4483 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4484 << SourceRange(BaseLoc, InitRange.getEnd());
4485
4486 EllipsisLoc = SourceLocation();
4487 }
4488 } else {
4489 // Check for any unexpanded parameter packs.
4490 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4491 return true;
4492
4493 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4494 return true;
4495 }
4496
4497 // Check for direct and virtual base classes.
4498 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4499 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4500 if (!Dependent) {
4501 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4502 BaseType))
4503 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4504
4505 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4506 VirtualBaseSpec);
4507
4508 // C++ [base.class.init]p2:
4509 // Unless the mem-initializer-id names a nonstatic data member of the
4510 // constructor's class or a direct or virtual base of that class, the
4511 // mem-initializer is ill-formed.
4512 if (!DirectBaseSpec && !VirtualBaseSpec) {
4513 // If the class has any dependent bases, then it's possible that
4514 // one of those types will resolve to the same type as
4515 // BaseType. Therefore, just treat this as a dependent base
4516 // class initialization. FIXME: Should we try to check the
4517 // initialization anyway? It seems odd.
4518 if (ClassDecl->hasAnyDependentBases())
4519 Dependent = true;
4520 else
4521 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4522 << BaseType << Context.getTypeDeclType(ClassDecl)
4523 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4524 }
4525 }
4526
4527 if (Dependent) {
4528 DiscardCleanupsInEvaluationContext();
4529
4530 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4531 /*IsVirtual=*/false,
4532 InitRange.getBegin(), Init,
4533 InitRange.getEnd(), EllipsisLoc);
4534 }
4535
4536 // C++ [base.class.init]p2:
4537 // If a mem-initializer-id is ambiguous because it designates both
4538 // a direct non-virtual base class and an inherited virtual base
4539 // class, the mem-initializer is ill-formed.
4540 if (DirectBaseSpec && VirtualBaseSpec)
4541 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4542 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4543
4544 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4545 if (!BaseSpec)
4546 BaseSpec = VirtualBaseSpec;
4547
4548 // Initialize the base.
4549 bool InitList = true;
4550 MultiExprArg Args = Init;
4551 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4552 InitList = false;
4553 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4554 }
4555
4556 InitializedEntity BaseEntity =
4557 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4558 InitializationKind Kind =
4559 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4560 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4561 InitRange.getEnd());
4562 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4563 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4564 if (BaseInit.isInvalid())
4565 return true;
4566
4567 // C++11 [class.base.init]p7:
4568 // The initialization of each base and member constitutes a
4569 // full-expression.
4570 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4571 /*DiscardedValue*/ false);
4572 if (BaseInit.isInvalid())
4573 return true;
4574
4575 // If we are in a dependent context, template instantiation will
4576 // perform this type-checking again. Just save the arguments that we
4577 // received in a ParenListExpr.
4578 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4579 // of the information that we have about the base
4580 // initializer. However, deconstructing the ASTs is a dicey process,
4581 // and this approach is far more likely to get the corner cases right.
4582 if (CurContext->isDependentContext())
4583 BaseInit = Init;
4584
4585 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4586 BaseSpec->isVirtual(),
4587 InitRange.getBegin(),
4588 BaseInit.getAs<Expr>(),
4589 InitRange.getEnd(), EllipsisLoc);
4590}
4591
4592// Create a static_cast\<T&&>(expr).
4593static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4594 if (T.isNull()) T = E->getType();
4595 QualType TargetType = SemaRef.BuildReferenceType(
4596 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4597 SourceLocation ExprLoc = E->getBeginLoc();
4598 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4599 TargetType, ExprLoc);
4600
4601 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4602 SourceRange(ExprLoc, ExprLoc),
4603 E->getSourceRange()).get();
4604}
4605
4606/// ImplicitInitializerKind - How an implicit base or member initializer should
4607/// initialize its base or member.
4608enum ImplicitInitializerKind {
4609 IIK_Default,
4610 IIK_Copy,
4611 IIK_Move,
4612 IIK_Inherit
4613};
4614
4615static bool
4616BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4617 ImplicitInitializerKind ImplicitInitKind,
4618 CXXBaseSpecifier *BaseSpec,
4619 bool IsInheritedVirtualBase,
4620 CXXCtorInitializer *&CXXBaseInit) {
4621 InitializedEntity InitEntity
4622 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4623 IsInheritedVirtualBase);
4624
4625 ExprResult BaseInit;
4626
4627 switch (ImplicitInitKind) {
4628 case IIK_Inherit:
4629 case IIK_Default: {
4630 InitializationKind InitKind
4631 = InitializationKind::CreateDefault(Constructor->getLocation());
4632 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4633 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4634 break;
4635 }
4636
4637 case IIK_Move:
4638 case IIK_Copy: {
4639 bool Moving = ImplicitInitKind == IIK_Move;
4640 ParmVarDecl *Param = Constructor->getParamDecl(0);
4641 QualType ParamType = Param->getType().getNonReferenceType();
4642
4643 Expr *CopyCtorArg =
4644 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4645 SourceLocation(), Param, false,
4646 Constructor->getLocation(), ParamType,
4647 VK_LValue, nullptr);
4648
4649 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4650
4651 // Cast to the base class to avoid ambiguities.
4652 QualType ArgTy =
4653 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4654 ParamType.getQualifiers());
4655
4656 if (Moving) {
4657 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4658 }
4659
4660 CXXCastPath BasePath;
4661 BasePath.push_back(BaseSpec);
4662 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4663 CK_UncheckedDerivedToBase,
4664 Moving ? VK_XValue : VK_LValue,
4665 &BasePath).get();
4666
4667 InitializationKind InitKind
4668 = InitializationKind::CreateDirect(Constructor->getLocation(),
4669 SourceLocation(), SourceLocation());
4670 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4671 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4672 break;
4673 }
4674 }
4675
4676 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4677 if (BaseInit.isInvalid())
4678 return true;
4679
4680 CXXBaseInit =
4681 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4682 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4683 SourceLocation()),
4684 BaseSpec->isVirtual(),
4685 SourceLocation(),
4686 BaseInit.getAs<Expr>(),
4687 SourceLocation(),
4688 SourceLocation());
4689
4690 return false;
4691}
4692
4693static bool RefersToRValueRef(Expr *MemRef) {
4694 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4695 return Referenced->getType()->isRValueReferenceType();
4696}
4697
4698static bool
4699BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4700 ImplicitInitializerKind ImplicitInitKind,
4701 FieldDecl *Field, IndirectFieldDecl *Indirect,
4702 CXXCtorInitializer *&CXXMemberInit) {
4703 if (Field->isInvalidDecl())
4704 return true;
4705
4706 SourceLocation Loc = Constructor->getLocation();
4707
4708 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4709 bool Moving = ImplicitInitKind == IIK_Move;
4710 ParmVarDecl *Param = Constructor->getParamDecl(0);
4711 QualType ParamType = Param->getType().getNonReferenceType();
4712
4713 // Suppress copying zero-width bitfields.
4714 if (Field->isZeroLengthBitField(SemaRef.Context))
4715 return false;
4716
4717 Expr *MemberExprBase =
4718 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4719 SourceLocation(), Param, false,
4720 Loc, ParamType, VK_LValue, nullptr);
4721
4722 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4723
4724 if (Moving) {
4725 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4726 }
4727
4728 // Build a reference to this field within the parameter.
4729 CXXScopeSpec SS;
4730 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4731 Sema::LookupMemberName);
4732 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4733 : cast<ValueDecl>(Field), AS_public);
4734 MemberLookup.resolveKind();
4735 ExprResult CtorArg
4736 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4737 ParamType, Loc,
4738 /*IsArrow=*/false,
4739 SS,
4740 /*TemplateKWLoc=*/SourceLocation(),
4741 /*FirstQualifierInScope=*/nullptr,
4742 MemberLookup,
4743 /*TemplateArgs=*/nullptr,
4744 /*S*/nullptr);
4745 if (CtorArg.isInvalid())
4746 return true;
4747
4748 // C++11 [class.copy]p15:
4749 // - if a member m has rvalue reference type T&&, it is direct-initialized
4750 // with static_cast<T&&>(x.m);
4751 if (RefersToRValueRef(CtorArg.get())) {
4752 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4753 }
4754
4755 InitializedEntity Entity =
4756 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4757 /*Implicit*/ true)
4758 : InitializedEntity::InitializeMember(Field, nullptr,
4759 /*Implicit*/ true);
4760
4761 // Direct-initialize to use the copy constructor.
4762 InitializationKind InitKind =
4763 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4764
4765 Expr *CtorArgE = CtorArg.getAs<Expr>();
4766 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4767 ExprResult MemberInit =
4768 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4769 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4770 if (MemberInit.isInvalid())
4771 return true;
4772
4773 if (Indirect)
4774 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4775 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4776 else
4777 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4778 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4779 return false;
4780 }
4781
4782 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&((void)0)
4783 "Unhandled implicit init kind!")((void)0);
4784
4785 QualType FieldBaseElementType =
4786 SemaRef.Context.getBaseElementType(Field->getType());
4787
4788 if (FieldBaseElementType->isRecordType()) {
4789 InitializedEntity InitEntity =
4790 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4791 /*Implicit*/ true)
4792 : InitializedEntity::InitializeMember(Field, nullptr,
4793 /*Implicit*/ true);
4794 InitializationKind InitKind =
4795 InitializationKind::CreateDefault(Loc);
4796
4797 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4798 ExprResult MemberInit =
4799 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4800
4801 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4802 if (MemberInit.isInvalid())
4803 return true;
4804
4805 if (Indirect)
4806 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4807 Indirect, Loc,
4808 Loc,
4809 MemberInit.get(),
4810 Loc);
4811 else
4812 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4813 Field, Loc, Loc,
4814 MemberInit.get(),
4815 Loc);
4816 return false;
4817 }
4818
4819 if (!Field->getParent()->isUnion()) {
4820 if (FieldBaseElementType->isReferenceType()) {
4821 SemaRef.Diag(Constructor->getLocation(),
4822 diag::err_uninitialized_member_in_ctor)
4823 << (int)Constructor->isImplicit()
4824 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4825 << 0 << Field->getDeclName();
4826 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4827 return true;
4828 }
4829
4830 if (FieldBaseElementType.isConstQualified()) {
4831 SemaRef.Diag(Constructor->getLocation(),
4832 diag::err_uninitialized_member_in_ctor)
4833 << (int)Constructor->isImplicit()
4834 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4835 << 1 << Field->getDeclName();
4836 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4837 return true;
4838 }
4839 }
4840
4841 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4842 // ARC and Weak:
4843 // Default-initialize Objective-C pointers to NULL.
4844 CXXMemberInit
4845 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4846 Loc, Loc,
4847 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4848 Loc);
4849 return false;
4850 }
4851
4852 // Nothing to initialize.
4853 CXXMemberInit = nullptr;
4854 return false;
4855}
4856
4857namespace {
4858struct BaseAndFieldInfo {
4859 Sema &S;
4860 CXXConstructorDecl *Ctor;
4861 bool AnyErrorsInInits;
4862 ImplicitInitializerKind IIK;
4863 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4864 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4865 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4866
4867 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4868 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4869 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4870 if (Ctor->getInheritedConstructor())
4871 IIK = IIK_Inherit;
4872 else if (Generated && Ctor->isCopyConstructor())
4873 IIK = IIK_Copy;
4874 else if (Generated && Ctor->isMoveConstructor())
4875 IIK = IIK_Move;
4876 else
4877 IIK = IIK_Default;
4878 }
4879
4880 bool isImplicitCopyOrMove() const {
4881 switch (IIK) {
4882 case IIK_Copy:
4883 case IIK_Move:
4884 return true;
4885
4886 case IIK_Default:
4887 case IIK_Inherit:
4888 return false;
4889 }
4890
4891 llvm_unreachable("Invalid ImplicitInitializerKind!")__builtin_unreachable();
4892 }
4893
4894 bool addFieldInitializer(CXXCtorInitializer *Init) {
4895 AllToInit.push_back(Init);
4896
4897 // Check whether this initializer makes the field "used".
4898 if (Init->getInit()->HasSideEffects(S.Context))
4899 S.UnusedPrivateFields.remove(Init->getAnyMember());
4900
4901 return false;
4902 }
4903
4904 bool isInactiveUnionMember(FieldDecl *Field) {
4905 RecordDecl *Record = Field->getParent();
4906 if (!Record->isUnion())
4907 return false;
4908
4909 if (FieldDecl *Active =
4910 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4911 return Active != Field->getCanonicalDecl();
4912
4913 // In an implicit copy or move constructor, ignore any in-class initializer.
4914 if (isImplicitCopyOrMove())
4915 return true;
4916
4917 // If there's no explicit initialization, the field is active only if it
4918 // has an in-class initializer...
4919 if (Field->hasInClassInitializer())
4920 return false;
4921 // ... or it's an anonymous struct or union whose class has an in-class
4922 // initializer.
4923 if (!Field->isAnonymousStructOrUnion())
4924 return true;
4925 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4926 return !FieldRD->hasInClassInitializer();
4927 }
4928
4929 /// Determine whether the given field is, or is within, a union member
4930 /// that is inactive (because there was an initializer given for a different
4931 /// member of the union, or because the union was not initialized at all).
4932 bool isWithinInactiveUnionMember(FieldDecl *Field,
4933 IndirectFieldDecl *Indirect) {
4934 if (!Indirect)
4935 return isInactiveUnionMember(Field);
4936
4937 for (auto *C : Indirect->chain()) {
4938 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4939 if (Field && isInactiveUnionMember(Field))
4940 return true;
4941 }
4942 return false;
4943 }
4944};
4945}
4946
4947/// Determine whether the given type is an incomplete or zero-lenfgth
4948/// array type.
4949static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4950 if (T->isIncompleteArrayType())
4951 return true;
4952
4953 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4954 if (!ArrayT->getSize())
4955 return true;
4956
4957 T = ArrayT->getElementType();
4958 }
4959
4960 return false;
4961}
4962
4963static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4964 FieldDecl *Field,
4965 IndirectFieldDecl *Indirect = nullptr) {
4966 if (Field->isInvalidDecl())
20
Assuming the condition is false
21
Taking false branch
4967 return false;
4968
4969 // Overwhelmingly common case: we have a direct initializer for this field.
4970 if (CXXCtorInitializer *Init =
22
Assuming 'Init' is null
23
Taking false branch
4971 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4972 return Info.addFieldInitializer(Init);
4973
4974 // C++11 [class.base.init]p8:
4975 // if the entity is a non-static data member that has a
4976 // brace-or-equal-initializer and either
4977 // -- the constructor's class is a union and no other variant member of that
4978 // union is designated by a mem-initializer-id or
4979 // -- the constructor's class is not a union, and, if the entity is a member
4980 // of an anonymous union, no other member of that union is designated by
4981 // a mem-initializer-id,
4982 // the entity is initialized as specified in [dcl.init].
4983 //
4984 // We also apply the same rules to handle anonymous structs within anonymous
4985 // unions.
4986 if (Info.isWithinInactiveUnionMember(Field, Indirect))
24
Taking false branch
4987 return false;
4988
4989 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
25
Taking true branch
4990 ExprResult DIE =
4991 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
26
Calling 'Sema::BuildCXXDefaultInitExpr'
4992 if (DIE.isInvalid())
4993 return true;
4994
4995 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4996 SemaRef.checkInitializerLifetime(Entity, DIE.get());
4997
4998 CXXCtorInitializer *Init;
4999 if (Indirect)
5000 Init = new (SemaRef.Context)
5001 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5002 SourceLocation(), DIE.get(), SourceLocation());
5003 else
5004 Init = new (SemaRef.Context)
5005 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5006 SourceLocation(), DIE.get(), SourceLocation());
5007 return Info.addFieldInitializer(Init);
5008 }
5009
5010 // Don't initialize incomplete or zero-length arrays.
5011 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5012 return false;
5013
5014 // Don't try to build an implicit initializer if there were semantic
5015 // errors in any of the initializers (and therefore we might be
5016 // missing some that the user actually wrote).
5017 if (Info.AnyErrorsInInits)
5018 return false;
5019
5020 CXXCtorInitializer *Init = nullptr;
5021 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5022 Indirect, Init))
5023 return true;
5024
5025 if (!Init)
5026 return false;
5027
5028 return Info.addFieldInitializer(Init);
5029}
5030
5031bool
5032Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5033 CXXCtorInitializer *Initializer) {
5034 assert(Initializer->isDelegatingInitializer())((void)0);
5035 Constructor->setNumCtorInitializers(1);
5036 CXXCtorInitializer **initializer =
5037 new (Context) CXXCtorInitializer*[1];
5038 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5039 Constructor->setCtorInitializers(initializer);
5040
5041 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5042 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5043 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5044 }
5045
5046 DelegatingCtorDecls.push_back(Constructor);
5047
5048 DiagnoseUninitializedFields(*this, Constructor);
5049
5050 return false;
5051}
5052
5053bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5054 ArrayRef<CXXCtorInitializer *> Initializers) {
5055 if (Constructor->isDependentContext()) {
6
Assuming the condition is false
7
Taking false branch
5056 // Just store the initializers as written, they will be checked during
5057 // instantiation.
5058 if (!Initializers.empty()) {
5059 Constructor->setNumCtorInitializers(Initializers.size());
5060 CXXCtorInitializer **baseOrMemberInitializers =
5061 new (Context) CXXCtorInitializer*[Initializers.size()];
5062 memcpy(baseOrMemberInitializers, Initializers.data(),
5063 Initializers.size() * sizeof(CXXCtorInitializer*));
5064 Constructor->setCtorInitializers(baseOrMemberInitializers);
5065 }
5066
5067 // Let template instantiation know whether we had errors.
5068 if (AnyErrors)
5069 Constructor->setInvalidDecl();
5070
5071 return false;
5072 }
5073
5074 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5075
5076 // We need to build the initializer AST according to order of construction
5077 // and not what user specified in the Initializers list.
5078 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5079 if (!ClassDecl)
8
Assuming 'ClassDecl' is non-null
9
Taking false branch
5080 return true;
5081
5082 bool HadError = false;
5083
5084 for (unsigned i = 0; i < Initializers.size(); i++) {
10
Assuming the condition is false
11
Loop condition is false. Execution continues on line 5108
5085 CXXCtorInitializer *Member = Initializers[i];
5086
5087 if (Member->isBaseInitializer())
5088 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5089 else {
5090 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5091
5092 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5093 for (auto *C : F->chain()) {
5094 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5095 if (FD && FD->getParent()->isUnion())
5096 Info.ActiveUnionMember.insert(std::make_pair(
5097 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5098 }
5099 } else if (FieldDecl *FD = Member->getMember()) {
5100 if (FD->getParent()->isUnion())
5101 Info.ActiveUnionMember.insert(std::make_pair(
5102 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5103 }
5104 }
5105 }
5106
5107 // Keep track of the direct virtual bases.
5108 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5109 for (auto &I : ClassDecl->bases()) {
12
Assuming '__begin1' is equal to '__end1'
5110 if (I.isVirtual())
5111 DirectVBases.insert(&I);
5112 }
5113
5114 // Push virtual bases before others.
5115 for (auto &VBase : ClassDecl->vbases()) {
13
Assuming '__begin1' is equal to '__end1'
5116 if (CXXCtorInitializer *Value
5117 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5118 // [class.base.init]p7, per DR257:
5119 // A mem-initializer where the mem-initializer-id names a virtual base
5120 // class is ignored during execution of a constructor of any class that
5121 // is not the most derived class.
5122 if (ClassDecl->isAbstract()) {
5123 // FIXME: Provide a fixit to remove the base specifier. This requires
5124 // tracking the location of the associated comma for a base specifier.
5125 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5126 << VBase.getType() << ClassDecl;
5127 DiagnoseAbstractType(ClassDecl);
5128 }
5129
5130 Info.AllToInit.push_back(Value);
5131 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5132 // [class.base.init]p8, per DR257:
5133 // If a given [...] base class is not named by a mem-initializer-id
5134 // [...] and the entity is not a virtual base class of an abstract
5135 // class, then [...] the entity is default-initialized.
5136 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5137 CXXCtorInitializer *CXXBaseInit;
5138 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5139 &VBase, IsInheritedVirtualBase,
5140 CXXBaseInit)) {
5141 HadError = true;
5142 continue;
5143 }
5144
5145 Info.AllToInit.push_back(CXXBaseInit);
5146 }
5147 }
5148
5149 // Non-virtual bases.
5150 for (auto &Base : ClassDecl->bases()) {
14
Assuming '__begin1' is equal to '__end1'
5151 // Virtuals are in the virtual base list and already constructed.
5152 if (Base.isVirtual())
5153 continue;
5154
5155 if (CXXCtorInitializer *Value
5156 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5157 Info.AllToInit.push_back(Value);
5158 } else if (!AnyErrors) {
5159 CXXCtorInitializer *CXXBaseInit;
5160 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5161 &Base, /*IsInheritedVirtualBase=*/false,
5162 CXXBaseInit)) {
5163 HadError = true;
5164 continue;
5165 }
5166
5167 Info.AllToInit.push_back(CXXBaseInit);
5168 }
5169 }
5170
5171 // Fields.
5172 for (auto *Mem : ClassDecl->decls()) {
5173 if (auto *F
15.1
'F' is non-null
15.1
'F' is non-null
15.1
'F' is non-null
= dyn_cast<FieldDecl>(Mem)) {
15
Assuming 'Mem' is a 'FieldDecl'
16
Taking true branch
5174 // C++ [class.bit]p2:
5175 // A declaration for a bit-field that omits the identifier declares an
5176 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5177 // initialized.
5178 if (F->isUnnamedBitfield())
17
Taking false branch
5179 continue;
5180
5181 // If we're not generating the implicit copy/move constructor, then we'll
5182 // handle anonymous struct/union fields based on their individual
5183 // indirect fields.
5184 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
18
Assuming the condition is false
5185 continue;
5186
5187 if (CollectFieldInitializer(*this, Info, F))
19
Calling 'CollectFieldInitializer'
5188 HadError = true;
5189 continue;
5190 }
5191
5192 // Beyond this point, we only consider default initialization.
5193 if (Info.isImplicitCopyOrMove())
5194 continue;
5195
5196 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5197 if (F->getType()->isIncompleteArrayType()) {
5198 assert(ClassDecl->hasFlexibleArrayMember() &&((void)0)
5199 "Incomplete array type is not valid")((void)0);
5200 continue;
5201 }
5202
5203 // Initialize each field of an anonymous struct individually.
5204 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5205 HadError = true;
5206
5207 continue;
5208 }
5209 }
5210
5211 unsigned NumInitializers = Info.AllToInit.size();
5212 if (NumInitializers > 0) {
5213 Constructor->setNumCtorInitializers(NumInitializers);
5214 CXXCtorInitializer **baseOrMemberInitializers =
5215 new (Context) CXXCtorInitializer*[NumInitializers];
5216 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5217 NumInitializers * sizeof(CXXCtorInitializer*));
5218 Constructor->setCtorInitializers(baseOrMemberInitializers);
5219
5220 // Constructors implicitly reference the base and member
5221 // destructors.
5222 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5223 Constructor->getParent());
5224 }
5225
5226 return HadError;
5227}
5228
5229static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5230 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5231 const RecordDecl *RD = RT->getDecl();
5232 if (RD->isAnonymousStructOrUnion()) {
5233 for (auto *Field : RD->fields())
5234 PopulateKeysForFields(Field, IdealInits);
5235 return;
5236 }
5237 }
5238 IdealInits.push_back(Field->getCanonicalDecl());
5239}
5240
5241static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5242 return Context.getCanonicalType(BaseType).getTypePtr();
5243}
5244
5245static const void *GetKeyForMember(ASTContext &Context,
5246 CXXCtorInitializer *Member) {
5247 if (!Member->isAnyMemberInitializer())
5248 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5249
5250 return Member->getAnyMember()->getCanonicalDecl();
5251}
5252
5253static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5254 const CXXCtorInitializer *Previous,
5255 const CXXCtorInitializer *Current) {
5256 if (Previous->isAnyMemberInitializer())
5257 Diag << 0 << Previous->getAnyMember();
5258 else
5259 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5260
5261 if (Current->isAnyMemberInitializer())
5262 Diag << 0 << Current->getAnyMember();
5263 else
5264 Diag << 1 << Current->getTypeSourceInfo()->getType();
5265}
5266
5267static void DiagnoseBaseOrMemInitializerOrder(
5268 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5269 ArrayRef<CXXCtorInitializer *> Inits) {
5270 if (Constructor->getDeclContext()->isDependentContext())
5271 return;
5272
5273 // Don't check initializers order unless the warning is enabled at the
5274 // location of at least one initializer.
5275 bool ShouldCheckOrder = false;
5276 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5277 CXXCtorInitializer *Init = Inits[InitIndex];
5278 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5279 Init->getSourceLocation())) {
5280 ShouldCheckOrder = true;
5281 break;
5282 }
5283 }
5284 if (!ShouldCheckOrder)
5285 return;
5286
5287 // Build the list of bases and members in the order that they'll
5288 // actually be initialized. The explicit initializers should be in
5289 // this same order but may be missing things.
5290 SmallVector<const void*, 32> IdealInitKeys;
5291
5292 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5293
5294 // 1. Virtual bases.
5295 for (const auto &VBase : ClassDecl->vbases())
5296 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5297
5298 // 2. Non-virtual bases.
5299 for (const auto &Base : ClassDecl->bases()) {
5300 if (Base.isVirtual())
5301 continue;
5302 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5303 }
5304
5305 // 3. Direct fields.
5306 for (auto *Field : ClassDecl->fields()) {
5307 if (Field->isUnnamedBitfield())
5308 continue;
5309
5310 PopulateKeysForFields(Field, IdealInitKeys);
5311 }
5312
5313 unsigned NumIdealInits = IdealInitKeys.size();
5314 unsigned IdealIndex = 0;
5315
5316 // Track initializers that are in an incorrect order for either a warning or
5317 // note if multiple ones occur.
5318 SmallVector<unsigned> WarnIndexes;
5319 // Correlates the index of an initializer in the init-list to the index of
5320 // the field/base in the class.
5321 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5322
5323 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5324 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5325
5326 // Scan forward to try to find this initializer in the idealized
5327 // initializers list.
5328 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5329 if (InitKey == IdealInitKeys[IdealIndex])
5330 break;
5331
5332 // If we didn't find this initializer, it must be because we
5333 // scanned past it on a previous iteration. That can only
5334 // happen if we're out of order; emit a warning.
5335 if (IdealIndex == NumIdealInits && InitIndex) {
5336 WarnIndexes.push_back(InitIndex);
5337
5338 // Move back to the initializer's location in the ideal list.
5339 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5340 if (InitKey == IdealInitKeys[IdealIndex])
5341 break;
5342
5343 assert(IdealIndex < NumIdealInits &&((void)0)
5344 "initializer not found in initializer list")((void)0);
5345 }
5346 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5347 }
5348
5349 if (WarnIndexes.empty())
5350 return;
5351
5352 // Sort based on the ideal order, first in the pair.
5353 llvm::sort(CorrelatedInitOrder,
5354 [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; });
5355
5356 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5357 // emit the diagnostic before we can try adding notes.
5358 {
5359 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5360 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5361 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5362 : diag::warn_some_initializers_out_of_order);
5363
5364 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5365 if (CorrelatedInitOrder[I].second == I)
5366 continue;
5367 // Ideally we would be using InsertFromRange here, but clang doesn't
5368 // appear to handle InsertFromRange correctly when the source range is
5369 // modified by another fix-it.
5370 D << FixItHint::CreateReplacement(
5371 Inits[I]->getSourceRange(),
5372 Lexer::getSourceText(
5373 CharSourceRange::getTokenRange(
5374 Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5375 SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5376 }
5377
5378 // If there is only 1 item out of order, the warning expects the name and
5379 // type of each being added to it.
5380 if (WarnIndexes.size() == 1) {
5381 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5382 Inits[WarnIndexes.front()]);
5383 return;
5384 }
5385 }
5386 // More than 1 item to warn, create notes letting the user know which ones
5387 // are bad.
5388 for (unsigned WarnIndex : WarnIndexes) {
5389 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5390 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5391 diag::note_initializer_out_of_order);
5392 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5393 D << PrevInit->getSourceRange();
5394 }
5395}
5396
5397namespace {
5398bool CheckRedundantInit(Sema &S,
5399 CXXCtorInitializer *Init,
5400 CXXCtorInitializer *&PrevInit) {
5401 if (!PrevInit) {
5402 PrevInit = Init;
5403 return false;
5404 }
5405
5406 if (FieldDecl *Field = Init->getAnyMember())
5407 S.Diag(Init->getSourceLocation(),
5408 diag::err_multiple_mem_initialization)
5409 << Field->getDeclName()
5410 << Init->getSourceRange();
5411 else {
5412 const Type *BaseClass = Init->getBaseClass();
5413 assert(BaseClass && "neither field nor base")((void)0);
5414 S.Diag(Init->getSourceLocation(),
5415 diag::err_multiple_base_initialization)
5416 << QualType(BaseClass, 0)
5417 << Init->getSourceRange();
5418 }
5419 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5420 << 0 << PrevInit->getSourceRange();
5421
5422 return true;
5423}
5424
5425typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5426typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5427
5428bool CheckRedundantUnionInit(Sema &S,
5429 CXXCtorInitializer *Init,
5430 RedundantUnionMap &Unions) {
5431 FieldDecl *Field = Init->getAnyMember();
5432 RecordDecl *Parent = Field->getParent();
5433 NamedDecl *Child = Field;
5434
5435 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5436 if (Parent->isUnion()) {
5437 UnionEntry &En = Unions[Parent];
5438 if (En.first && En.first != Child) {
5439 S.Diag(Init->getSourceLocation(),
5440 diag::err_multiple_mem_union_initialization)
5441 << Field->getDeclName()
5442 << Init->getSourceRange();
5443 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5444 << 0 << En.second->getSourceRange();
5445 return true;
5446 }
5447 if (!En.first) {
5448 En.first = Child;
5449 En.second = Init;
5450 }
5451 if (!Parent->isAnonymousStructOrUnion())
5452 return false;
5453 }
5454
5455 Child = Parent;
5456 Parent = cast<RecordDecl>(Parent->getDeclContext());
5457 }
5458
5459 return false;
5460}
5461} // namespace
5462
5463/// ActOnMemInitializers - Handle the member initializers for a constructor.
5464void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5465 SourceLocation ColonLoc,
5466 ArrayRef<CXXCtorInitializer*> MemInits,
5467 bool AnyErrors) {
5468 if (!ConstructorDecl)
5469 return;
5470
5471 AdjustDeclIfTemplate(ConstructorDecl);
5472
5473 CXXConstructorDecl *Constructor
5474 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5475
5476 if (!Constructor) {
5477 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5478 return;
5479 }
5480
5481 // Mapping for the duplicate initializers check.
5482 // For member initializers, this is keyed with a FieldDecl*.
5483 // For base initializers, this is keyed with a Type*.
5484 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5485
5486 // Mapping for the inconsistent anonymous-union initializers check.
5487 RedundantUnionMap MemberUnions;
5488
5489 bool HadError = false;
5490 for (unsigned i = 0; i < MemInits.size(); i++) {
5491 CXXCtorInitializer *Init = MemInits[i];
5492
5493 // Set the source order index.
5494 Init->setSourceOrder(i);
5495
5496 if (Init->isAnyMemberInitializer()) {
5497 const void *Key = GetKeyForMember(Context, Init);
5498 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5499 CheckRedundantUnionInit(*this, Init, MemberUnions))
5500 HadError = true;
5501 } else if (Init->isBaseInitializer()) {
5502 const void *Key = GetKeyForMember(Context, Init);
5503 if (CheckRedundantInit(*this, Init, Members[Key]))
5504 HadError = true;
5505 } else {
5506 assert(Init->isDelegatingInitializer())((void)0);
5507 // This must be the only initializer
5508 if (MemInits.size() != 1) {
5509 Diag(Init->getSourceLocation(),
5510 diag::err_delegating_initializer_alone)
5511 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5512 // We will treat this as being the only initializer.
5513 }
5514 SetDelegatingInitializer(Constructor, MemInits[i]);
5515 // Return immediately as the initializer is set.
5516 return;
5517 }
5518 }
5519
5520 if (HadError)
5521 return;
5522
5523 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5524
5525 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5526
5527 DiagnoseUninitializedFields(*this, Constructor);
5528}
5529
5530void
5531Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5532 CXXRecordDecl *ClassDecl) {
5533 // Ignore dependent contexts. Also ignore unions, since their members never
5534 // have destructors implicitly called.
5535 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5536 return;
5537
5538 // FIXME: all the access-control diagnostics are positioned on the
5539 // field/base declaration. That's probably good; that said, the
5540 // user might reasonably want to know why the destructor is being
5541 // emitted, and we currently don't say.
5542
5543 // Non-static data members.
5544 for (auto *Field : ClassDecl->fields()) {
5545 if (Field->isInvalidDecl())
5546 continue;
5547
5548 // Don't destroy incomplete or zero-length arrays.
5549 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5550 continue;
5551
5552 QualType FieldType = Context.getBaseElementType(Field->getType());
5553
5554 const RecordType* RT = FieldType->getAs<RecordType>();
5555 if (!RT)
5556 continue;
5557
5558 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5559 if (FieldClassDecl->isInvalidDecl())
5560 continue;
5561 if (FieldClassDecl->hasIrrelevantDestructor())
5562 continue;
5563 // The destructor for an implicit anonymous union member is never invoked.
5564 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5565 continue;
5566
5567 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5568 assert(Dtor && "No dtor found for FieldClassDecl!")((void)0);
5569 CheckDestructorAccess(Field->getLocation(), Dtor,
5570 PDiag(diag::err_access_dtor_field)
5571 << Field->getDeclName()
5572 << FieldType);
5573
5574 MarkFunctionReferenced(Location, Dtor);
5575 DiagnoseUseOfDecl(Dtor, Location);
5576 }
5577
5578 // We only potentially invoke the destructors of potentially constructed
5579 // subobjects.
5580 bool VisitVirtualBases = !ClassDecl->isAbstract();
5581
5582 // If the destructor exists and has already been marked used in the MS ABI,
5583 // then virtual base destructors have already been checked and marked used.
5584 // Skip checking them again to avoid duplicate diagnostics.
5585 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5586 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5587 if (Dtor && Dtor->isUsed())
5588 VisitVirtualBases = false;
5589 }
5590
5591 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5592
5593 // Bases.
5594 for (const auto &Base : ClassDecl->bases()) {
5595 const RecordType *RT = Base.getType()->getAs<RecordType>();
5596 if (!RT)
5597 continue;
5598
5599 // Remember direct virtual bases.
5600 if (Base.isVirtual()) {
5601 if (!VisitVirtualBases)
5602 continue;
5603 DirectVirtualBases.insert(RT);
5604 }
5605
5606 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5607 // If our base class is invalid, we probably can't get its dtor anyway.
5608 if (BaseClassDecl->isInvalidDecl())
5609 continue;
5610 if (BaseClassDecl->hasIrrelevantDestructor())
5611 continue;
5612
5613 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5614 assert(Dtor && "No dtor found for BaseClassDecl!")((void)0);
5615
5616 // FIXME: caret should be on the start of the class name
5617 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5618 PDiag(diag::err_access_dtor_base)
5619 << Base.getType() << Base.getSourceRange(),
5620 Context.getTypeDeclType(ClassDecl));
5621
5622 MarkFunctionReferenced(Location, Dtor);
5623 DiagnoseUseOfDecl(Dtor, Location);
5624 }
5625
5626 if (VisitVirtualBases)
5627 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5628 &DirectVirtualBases);
5629}
5630
5631void Sema::MarkVirtualBaseDestructorsReferenced(
5632 SourceLocation Location, CXXRecordDecl *ClassDecl,
5633 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5634 // Virtual bases.
5635 for (const auto &VBase : ClassDecl->vbases()) {
5636 // Bases are always records in a well-formed non-dependent class.
5637 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5638
5639 // Ignore already visited direct virtual bases.
5640 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5641 continue;
5642
5643 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5644 // If our base class is invalid, we probably can't get its dtor anyway.
5645 if (BaseClassDecl->isInvalidDecl())
5646 continue;
5647 if (BaseClassDecl->hasIrrelevantDestructor())
5648 continue;
5649
5650 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5651 assert(Dtor && "No dtor found for BaseClassDecl!")((void)0);
5652 if (CheckDestructorAccess(
5653 ClassDecl->getLocation(), Dtor,
5654 PDiag(diag::err_access_dtor_vbase)
5655 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5656 Context.getTypeDeclType(ClassDecl)) ==
5657 AR_accessible) {
5658 CheckDerivedToBaseConversion(
5659 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5660 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5661 SourceRange(), DeclarationName(), nullptr);
5662 }
5663
5664 MarkFunctionReferenced(Location, Dtor);
5665 DiagnoseUseOfDecl(Dtor, Location);
5666 }
5667}
5668
5669void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5670 if (!CDtorDecl)
1
Assuming 'CDtorDecl' is non-null
2
Taking false branch
5671 return;
5672
5673 if (CXXConstructorDecl *Constructor
3.1
'Constructor' is non-null
3.1
'Constructor' is non-null
3.1
'Constructor' is non-null
4
Taking true branch
5674 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
3
Assuming 'CDtorDecl' is a 'CXXConstructorDecl'
5675 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5
Calling 'Sema::SetCtorInitializers'
5676 DiagnoseUninitializedFields(*this, Constructor); 5677 } 5678} 5679 5680bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5681 if (!getLangOpts().CPlusPlus) 5682 return false; 5683 5684 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5685 if (!RD) 5686 return false; 5687 5688 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5689 // class template specialization here, but doing so breaks a lot of code. 5690 5691 // We can't answer whether something is abstract until it has a 5692 // definition. If it's currently being defined, we'll walk back 5693 // over all the declarations when we have a full definition. 5694 const CXXRecordDecl *Def = RD->getDefinition(); 5695 if (!Def || Def->isBeingDefined()) 5696 return false; 5697 5698 return RD->isAbstract(); 5699} 5700 5701bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5702 TypeDiagnoser &Diagnoser) { 5703 if (!isAbstractType(Loc, T)) 5704 return false; 5705 5706 T = Context.getBaseElementType(T); 5707 Diagnoser.diagnose(*this, Loc, T); 5708 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5709 return true; 5710} 5711 5712void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5713 // Check if we've already emitted the list of pure virtual functions 5714 // for this class. 5715 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5716 return; 5717 5718 // If the diagnostic is suppressed, don't emit the notes. We're only 5719 // going to emit them once, so try to attach them to a diagnostic we're 5720 // actually going to show. 5721 if (Diags.isLastDiagnosticIgnored()) 5722 return; 5723 5724 CXXFinalOverriderMap FinalOverriders; 5725 RD->getFinalOverriders(FinalOverriders); 5726 5727 // Keep a set of seen pure methods so we won't diagnose the same method 5728 // more than once. 5729 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5730 5731 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5732 MEnd = FinalOverriders.end(); 5733 M != MEnd; 5734 ++M) { 5735 for (OverridingMethods::iterator SO = M->second.begin(), 5736 SOEnd = M->second.end(); 5737 SO != SOEnd; ++SO) { 5738 // C++ [class.abstract]p4: 5739 // A class is abstract if it contains or inherits at least one 5740 // pure virtual function for which the final overrider is pure 5741 // virtual. 5742 5743 // 5744 if (SO->second.size() != 1) 5745 continue; 5746 5747 if (!SO->second.front().Method->isPure()) 5748 continue; 5749 5750 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5751 continue; 5752 5753 Diag(SO->second.front().Method->getLocation(), 5754 diag::note_pure_virtual_function) 5755 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5756 } 5757 } 5758 5759 if (!PureVirtualClassDiagSet) 5760 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5761 PureVirtualClassDiagSet->insert(RD); 5762} 5763 5764namespace { 5765struct AbstractUsageInfo { 5766 Sema &S; 5767 CXXRecordDecl *Record; 5768 CanQualType AbstractType; 5769 bool Invalid; 5770 5771 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5772 : S(S), Record(Record), 5773 AbstractType(S.Context.getCanonicalType( 5774 S.Context.getTypeDeclType(Record))), 5775 Invalid(false) {} 5776 5777 void DiagnoseAbstractType() { 5778 if (Invalid) return; 5779 S.DiagnoseAbstractType(Record); 5780 Invalid = true; 5781 } 5782 5783 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5784}; 5785 5786struct CheckAbstractUsage { 5787 AbstractUsageInfo &Info; 5788 const NamedDecl *Ctx; 5789 5790 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5791 : Info(Info), Ctx(Ctx) {} 5792 5793 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5794 switch (TL.getTypeLocClass()) { 5795#define ABSTRACT_TYPELOC(CLASS, PARENT) 5796#define TYPELOC(CLASS, PARENT) \ 5797 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5798#include "clang/AST/TypeLocNodes.def" 5799 } 5800 } 5801 5802 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5803 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5804 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5805 if (!TL.getParam(I)) 5806 continue; 5807 5808 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5809 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5810 } 5811 } 5812 5813 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5814 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5815 } 5816 5817 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5818 // Visit the type parameters from a permissive context. 5819 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5820 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5821 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5822 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5823 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5824 // TODO: other template argument types? 5825 } 5826 } 5827 5828 // Visit pointee types from a permissive context. 5829#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5830 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5831 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5832 } 5833 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5834 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5835 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5836 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5837 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5838 5839 /// Handle all the types we haven't given a more specific 5840 /// implementation for above. 5841 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5842 // Every other kind of type that we haven't called out already 5843 // that has an inner type is either (1) sugar or (2) contains that 5844 // inner type in some way as a subobject. 5845 if (TypeLoc Next = TL.getNextTypeLoc()) 5846 return Visit(Next, Sel); 5847 5848 // If there's no inner type and we're in a permissive context, 5849 // don't diagnose. 5850 if (Sel == Sema::AbstractNone) return; 5851 5852 // Check whether the type matches the abstract type. 5853 QualType T = TL.getType(); 5854 if (T->isArrayType()) { 5855 Sel = Sema::AbstractArrayType; 5856 T = Info.S.Context.getBaseElementType(T); 5857 } 5858 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5859 if (CT != Info.AbstractType) return; 5860 5861 // It matched; do some magic. 5862 if (Sel == Sema::AbstractArrayType) { 5863 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5864 << T << TL.getSourceRange(); 5865 } else { 5866 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5867 << Sel << T << TL.getSourceRange(); 5868 } 5869 Info.DiagnoseAbstractType(); 5870 } 5871}; 5872 5873void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5874 Sema::AbstractDiagSelID Sel) { 5875 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5876} 5877 5878} 5879 5880/// Check for invalid uses of an abstract type in a method declaration. 5881static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5882 CXXMethodDecl *MD) { 5883 // No need to do the check on definitions, which require that 5884 // the return/param types be complete. 5885 if (MD->doesThisDeclarationHaveABody()) 5886 return; 5887 5888 // For safety's sake, just ignore it if we don't have type source 5889 // information. This should never happen for non-implicit methods, 5890 // but... 5891 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 5892 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 5893} 5894 5895/// Check for invalid uses of an abstract type within a class definition. 5896static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5897 CXXRecordDecl *RD) { 5898 for (auto *D : RD->decls()) { 5899 if (D->isImplicit()) continue; 5900 5901 // Methods and method templates. 5902 if (isa<CXXMethodDecl>(D)) { 5903 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 5904 } else if (isa<FunctionTemplateDecl>(D)) { 5905 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 5906 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 5907 5908 // Fields and static variables. 5909 } else if (isa<FieldDecl>(D)) { 5910 FieldDecl *FD = cast<FieldDecl>(D); 5911 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5912 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 5913 } else if (isa<VarDecl>(D)) { 5914 VarDecl *VD = cast<VarDecl>(D); 5915 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 5916 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 5917 5918 // Nested classes and class templates. 5919 } else if (isa<CXXRecordDecl>(D)) { 5920 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 5921 } else if (isa<ClassTemplateDecl>(D)) { 5922 CheckAbstractClassUsage(Info, 5923 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 5924 } 5925 } 5926} 5927 5928static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 5929 Attr *ClassAttr = getDLLAttr(Class); 5930 if (!ClassAttr) 5931 return; 5932 5933 assert(ClassAttr->getKind() == attr::DLLExport)((void)0); 5934 5935 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5936 5937 if (TSK == TSK_ExplicitInstantiationDeclaration) 5938 // Don't go any further if this is just an explicit instantiation 5939 // declaration. 5940 return; 5941 5942 // Add a context note to explain how we got to any diagnostics produced below. 5943 struct MarkingClassDllexported { 5944 Sema &S; 5945 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 5946 SourceLocation AttrLoc) 5947 : S(S) { 5948 Sema::CodeSynthesisContext Ctx; 5949 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 5950 Ctx.PointOfInstantiation = AttrLoc; 5951 Ctx.Entity = Class; 5952 S.pushCodeSynthesisContext(Ctx); 5953 } 5954 ~MarkingClassDllexported() { 5955 S.popCodeSynthesisContext(); 5956 } 5957 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 5958 5959 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 5960 S.MarkVTableUsed(Class->getLocation(), Class, true); 5961 5962 for (Decl *Member : Class->decls()) { 5963 // Defined static variables that are members of an exported base 5964 // class must be marked export too. 5965 auto *VD = dyn_cast<VarDecl>(Member); 5966 if (VD && Member->getAttr<DLLExportAttr>() && 5967 VD->getStorageClass() == SC_Static && 5968 TSK == TSK_ImplicitInstantiation) 5969 S.MarkVariableReferenced(VD->getLocation(), VD); 5970 5971 auto *MD = dyn_cast<CXXMethodDecl>(Member); 5972 if (!MD) 5973 continue; 5974 5975 if (Member->getAttr<DLLExportAttr>()) { 5976 if (MD->isUserProvided()) { 5977 // Instantiate non-default class member functions ... 5978 5979 // .. except for certain kinds of template specializations. 5980 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 5981 continue; 5982 5983 S.MarkFunctionReferenced(Class->getLocation(), MD); 5984 5985 // The function will be passed to the consumer when its definition is 5986 // encountered. 5987 } else if (MD->isExplicitlyDefaulted()) { 5988 // Synthesize and instantiate explicitly defaulted methods. 5989 S.MarkFunctionReferenced(Class->getLocation(), MD); 5990 5991 if (TSK != TSK_ExplicitInstantiationDefinition) { 5992 // Except for explicit instantiation defs, we will not see the 5993 // definition again later, so pass it to the consumer now. 5994 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 5995 } 5996 } else if (!MD->isTrivial() || 5997 MD->isCopyAssignmentOperator() || 5998 MD->isMoveAssignmentOperator()) { 5999 // Synthesize and instantiate non-trivial implicit methods, and the copy 6000 // and move assignment operators. The latter are exported even if they 6001 // are trivial, because the address of an operator can be taken and 6002 // should compare equal across libraries. 6003 S.MarkFunctionReferenced(Class->getLocation(), MD); 6004 6005 // There is no later point when we will see the definition of this 6006 // function, so pass it to the consumer now. 6007 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6008 } 6009 } 6010 } 6011} 6012 6013static void checkForMultipleExportedDefaultConstructors(Sema &S, 6014 CXXRecordDecl *Class) { 6015 // Only the MS ABI has default constructor closures, so we don't need to do 6016 // this semantic checking anywhere else. 6017 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6018 return; 6019 6020 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6021 for (Decl *Member : Class->decls()) { 6022 // Look for exported default constructors. 6023 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6024 if (!CD || !CD->isDefaultConstructor()) 6025 continue; 6026 auto *Attr = CD->getAttr<DLLExportAttr>(); 6027 if (!Attr) 6028 continue; 6029 6030 // If the class is non-dependent, mark the default arguments as ODR-used so 6031 // that we can properly codegen the constructor closure. 6032 if (!Class->isDependentContext()) { 6033 for (ParmVarDecl *PD : CD->parameters()) { 6034 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6035 S.DiscardCleanupsInEvaluationContext(); 6036 } 6037 } 6038 6039 if (LastExportedDefaultCtor) { 6040 S.Diag(LastExportedDefaultCtor->getLocation(), 6041 diag::err_attribute_dll_ambiguous_default_ctor) 6042 << Class; 6043 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6044 << CD->getDeclName(); 6045 return; 6046 } 6047 LastExportedDefaultCtor = CD; 6048 } 6049} 6050 6051static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6052 CXXRecordDecl *Class) { 6053 bool ErrorReported = false; 6054 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6055 ClassTemplateDecl *TD) { 6056 if (ErrorReported) 6057 return; 6058 S.Diag(TD->getLocation(), 6059 diag::err_cuda_device_builtin_surftex_cls_template) 6060 << /*surface*/ 0 << TD; 6061 ErrorReported = true; 6062 }; 6063 6064 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6065 if (!TD) { 6066 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6067 if (!SD) { 6068 S.Diag(Class->getLocation(), 6069 diag::err_cuda_device_builtin_surftex_ref_decl) 6070 << /*surface*/ 0 << Class; 6071 S.Diag(Class->getLocation(), 6072 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6073 << Class; 6074 return; 6075 } 6076 TD = SD->getSpecializedTemplate(); 6077 } 6078 6079 TemplateParameterList *Params = TD->getTemplateParameters(); 6080 unsigned N = Params->size(); 6081 6082 if (N != 2) { 6083 reportIllegalClassTemplate(S, TD); 6084 S.Diag(TD->getLocation(), 6085 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6086 << TD << 2; 6087 } 6088 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6089 reportIllegalClassTemplate(S, TD); 6090 S.Diag(TD->getLocation(), 6091 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6092 << TD << /*1st*/ 0 << /*type*/ 0; 6093 } 6094 if (N > 1) { 6095 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6096 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6097 reportIllegalClassTemplate(S, TD); 6098 S.Diag(TD->getLocation(), 6099 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6100 << TD << /*2nd*/ 1 << /*integer*/ 1; 6101 } 6102 } 6103} 6104 6105static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6106 CXXRecordDecl *Class) { 6107 bool ErrorReported = false; 6108 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6109 ClassTemplateDecl *TD) { 6110 if (ErrorReported) 6111 return; 6112 S.Diag(TD->getLocation(), 6113 diag::err_cuda_device_builtin_surftex_cls_template) 6114 << /*texture*/ 1 << TD; 6115 ErrorReported = true; 6116 }; 6117 6118 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6119 if (!TD) { 6120 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6121 if (!SD) { 6122 S.Diag(Class->getLocation(), 6123 diag::err_cuda_device_builtin_surftex_ref_decl) 6124 << /*texture*/ 1 << Class; 6125 S.Diag(Class->getLocation(), 6126 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6127 << Class; 6128 return; 6129 } 6130 TD = SD->getSpecializedTemplate(); 6131 } 6132 6133 TemplateParameterList *Params = TD->getTemplateParameters(); 6134 unsigned N = Params->size(); 6135 6136 if (N != 3) { 6137 reportIllegalClassTemplate(S, TD); 6138 S.Diag(TD->getLocation(), 6139 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6140 << TD << 3; 6141 } 6142 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6143 reportIllegalClassTemplate(S, TD); 6144 S.Diag(TD->getLocation(), 6145 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6146 << TD << /*1st*/ 0 << /*type*/ 0; 6147 } 6148 if (N > 1) { 6149 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6150 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6151 reportIllegalClassTemplate(S, TD); 6152 S.Diag(TD->getLocation(), 6153 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6154 << TD << /*2nd*/ 1 << /*integer*/ 1; 6155 } 6156 } 6157 if (N > 2) { 6158 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6159 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6160 reportIllegalClassTemplate(S, TD); 6161 S.Diag(TD->getLocation(), 6162 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6163 << TD << /*3rd*/ 2 << /*integer*/ 1; 6164 } 6165 } 6166} 6167 6168void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6169 // Mark any compiler-generated routines with the implicit code_seg attribute. 6170 for (auto *Method : Class->methods()) { 6171 if (Method->isUserProvided()) 6172 continue; 6173 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6174 Method->addAttr(A); 6175 } 6176} 6177 6178/// Check class-level dllimport/dllexport attribute. 6179void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6180 Attr *ClassAttr = getDLLAttr(Class); 6181 6182 // MSVC inherits DLL attributes to partial class template specializations. 6183 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6184 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6185 if (Attr *TemplateAttr = 6186 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6187 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6188 A->setInherited(true); 6189 ClassAttr = A; 6190 } 6191 } 6192 } 6193 6194 if (!ClassAttr) 6195 return; 6196 6197 if (!Class->isExternallyVisible()) { 6198 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6199 << Class << ClassAttr; 6200 return; 6201 } 6202 6203 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6204 !ClassAttr->isInherited()) { 6205 // Diagnose dll attributes on members of class with dll attribute. 6206 for (Decl *Member : Class->decls()) { 6207 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6208 continue; 6209 InheritableAttr *MemberAttr = getDLLAttr(Member); 6210 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6211 continue; 6212 6213 Diag(MemberAttr->getLocation(), 6214 diag::err_attribute_dll_member_of_dll_class) 6215 << MemberAttr << ClassAttr; 6216 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6217 Member->setInvalidDecl(); 6218 } 6219 } 6220 6221 if (Class->getDescribedClassTemplate()) 6222 // Don't inherit dll attribute until the template is instantiated. 6223 return; 6224 6225 // The class is either imported or exported. 6226 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6227 6228 // Check if this was a dllimport attribute propagated from a derived class to 6229 // a base class template specialization. We don't apply these attributes to 6230 // static data members. 6231 const bool PropagatedImport = 6232 !ClassExported && 6233 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6234 6235 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6236 6237 // Ignore explicit dllexport on explicit class template instantiation 6238 // declarations, except in MinGW mode. 6239 if (ClassExported && !ClassAttr->isInherited() && 6240 TSK == TSK_ExplicitInstantiationDeclaration && 6241 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6242 Class->dropAttr<DLLExportAttr>(); 6243 return; 6244 } 6245 6246 // Force declaration of implicit members so they can inherit the attribute. 6247 ForceDeclarationOfImplicitMembers(Class); 6248 6249 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6250 // seem to be true in practice? 6251 6252 for (Decl *Member : Class->decls()) { 6253 VarDecl *VD = dyn_cast<VarDecl>(Member); 6254 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6255 6256 // Only methods and static fields inherit the attributes. 6257 if (!VD && !MD) 6258 continue; 6259 6260 if (MD) { 6261 // Don't process deleted methods. 6262 if (MD->isDeleted()) 6263 continue; 6264 6265 if (MD->isInlined()) { 6266 // MinGW does not import or export inline methods. But do it for 6267 // template instantiations. 6268 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6269 TSK != TSK_ExplicitInstantiationDeclaration && 6270 TSK != TSK_ExplicitInstantiationDefinition) 6271 continue; 6272 6273 // MSVC versions before 2015 don't export the move assignment operators 6274 // and move constructor, so don't attempt to import/export them if 6275 // we have a definition. 6276 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6277 if ((MD->isMoveAssignmentOperator() || 6278 (Ctor && Ctor->isMoveConstructor())) && 6279 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6280 continue; 6281 6282 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6283 // operator is exported anyway. 6284 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6285 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6286 continue; 6287 } 6288 } 6289 6290 // Don't apply dllimport attributes to static data members of class template 6291 // instantiations when the attribute is propagated from a derived class. 6292 if (VD && PropagatedImport) 6293 continue; 6294 6295 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6296 continue; 6297 6298 if (!getDLLAttr(Member)) { 6299 InheritableAttr *NewAttr = nullptr; 6300 6301 // Do not export/import inline function when -fno-dllexport-inlines is 6302 // passed. But add attribute for later local static var check. 6303 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6304 TSK != TSK_ExplicitInstantiationDeclaration && 6305 TSK != TSK_ExplicitInstantiationDefinition) { 6306 if (ClassExported) { 6307 NewAttr = ::new (getASTContext()) 6308 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6309 } else { 6310 NewAttr = ::new (getASTContext()) 6311 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6312 } 6313 } else { 6314 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6315 } 6316 6317 NewAttr->setInherited(true); 6318 Member->addAttr(NewAttr); 6319 6320 if (MD) { 6321 // Propagate DLLAttr to friend re-declarations of MD that have already 6322 // been constructed. 6323 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6324 FD = FD->getPreviousDecl()) { 6325 if (FD->getFriendObjectKind() == Decl::FOK_None) 6326 continue; 6327 assert(!getDLLAttr(FD) &&((void)0) 6328 "friend re-decl should not already have a DLLAttr")((void)0); 6329 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6330 NewAttr->setInherited(true); 6331 FD->addAttr(NewAttr); 6332 } 6333 } 6334 } 6335 } 6336 6337 if (ClassExported) 6338 DelayedDllExportClasses.push_back(Class); 6339} 6340 6341/// Perform propagation of DLL attributes from a derived class to a 6342/// templated base class for MS compatibility. 6343void Sema::propagateDLLAttrToBaseClassTemplate( 6344 CXXRecordDecl *Class, Attr *ClassAttr, 6345 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6346 if (getDLLAttr( 6347 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6348 // If the base class template has a DLL attribute, don't try to change it. 6349 return; 6350 } 6351 6352 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6353 if (!getDLLAttr(BaseTemplateSpec) && 6354 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6355 TSK == TSK_ImplicitInstantiation)) { 6356 // The template hasn't been instantiated yet (or it has, but only as an 6357 // explicit instantiation declaration or implicit instantiation, which means 6358 // we haven't codegenned any members yet), so propagate the attribute. 6359 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6360 NewAttr->setInherited(true); 6361 BaseTemplateSpec->addAttr(NewAttr); 6362 6363 // If this was an import, mark that we propagated it from a derived class to 6364 // a base class template specialization. 6365 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6366 ImportAttr->setPropagatedToBaseTemplate(); 6367 6368 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6369 // needs to be run again to work see the new attribute. Otherwise this will 6370 // get run whenever the template is instantiated. 6371 if (TSK != TSK_Undeclared) 6372 checkClassLevelDLLAttribute(BaseTemplateSpec); 6373 6374 return; 6375 } 6376 6377 if (getDLLAttr(BaseTemplateSpec)) { 6378 // The template has already been specialized or instantiated with an 6379 // attribute, explicitly or through propagation. We should not try to change 6380 // it. 6381 return; 6382 } 6383 6384 // The template was previously instantiated or explicitly specialized without 6385 // a dll attribute, It's too late for us to add an attribute, so warn that 6386 // this is unsupported. 6387 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6388 << BaseTemplateSpec->isExplicitSpecialization(); 6389 Diag(ClassAttr->getLocation(), diag::note_attribute); 6390 if (BaseTemplateSpec->isExplicitSpecialization()) { 6391 Diag(BaseTemplateSpec->getLocation(), 6392 diag::note_template_class_explicit_specialization_was_here) 6393 << BaseTemplateSpec; 6394 } else { 6395 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6396 diag::note_template_class_instantiation_was_here) 6397 << BaseTemplateSpec; 6398 } 6399} 6400 6401/// Determine the kind of defaulting that would be done for a given function. 6402/// 6403/// If the function is both a default constructor and a copy / move constructor 6404/// (due to having a default argument for the first parameter), this picks 6405/// CXXDefaultConstructor. 6406/// 6407/// FIXME: Check that case is properly handled by all callers. 6408Sema::DefaultedFunctionKind 6409Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6410 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6411 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6412 if (Ctor->isDefaultConstructor()) 6413 return Sema::CXXDefaultConstructor; 6414 6415 if (Ctor->isCopyConstructor()) 6416 return Sema::CXXCopyConstructor; 6417 6418 if (Ctor->isMoveConstructor()) 6419 return Sema::CXXMoveConstructor; 6420 } 6421 6422 if (MD->isCopyAssignmentOperator()) 6423 return Sema::CXXCopyAssignment; 6424 6425 if (MD->isMoveAssignmentOperator()) 6426 return Sema::CXXMoveAssignment; 6427 6428 if (isa<CXXDestructorDecl>(FD)) 6429 return Sema::CXXDestructor; 6430 } 6431 6432 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6433 case OO_EqualEqual: 6434 return DefaultedComparisonKind::Equal; 6435 6436 case OO_ExclaimEqual: 6437 return DefaultedComparisonKind::NotEqual; 6438 6439 case OO_Spaceship: 6440 // No point allowing this if <=> doesn't exist in the current language mode. 6441 if (!getLangOpts().CPlusPlus20) 6442 break; 6443 return DefaultedComparisonKind::ThreeWay; 6444 6445 case OO_Less: 6446 case OO_LessEqual: 6447 case OO_Greater: 6448 case OO_GreaterEqual: 6449 // No point allowing this if <=> doesn't exist in the current language mode. 6450 if (!getLangOpts().CPlusPlus20) 6451 break; 6452 return DefaultedComparisonKind::Relational; 6453 6454 default: 6455 break; 6456 } 6457 6458 // Not defaultable. 6459 return DefaultedFunctionKind(); 6460} 6461 6462static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6463 SourceLocation DefaultLoc) { 6464 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6465 if (DFK.isComparison()) 6466 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6467 6468 switch (DFK.asSpecialMember()) { 6469 case Sema::CXXDefaultConstructor: 6470 S.DefineImplicitDefaultConstructor(DefaultLoc, 6471 cast<CXXConstructorDecl>(FD)); 6472 break; 6473 case Sema::CXXCopyConstructor: 6474 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6475 break; 6476 case Sema::CXXCopyAssignment: 6477 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6478 break; 6479 case Sema::CXXDestructor: 6480 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6481 break; 6482 case Sema::CXXMoveConstructor: 6483 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6484 break; 6485 case Sema::CXXMoveAssignment: 6486 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6487 break; 6488 case Sema::CXXInvalid: 6489 llvm_unreachable("Invalid special member.")__builtin_unreachable(); 6490 } 6491} 6492 6493/// Determine whether a type is permitted to be passed or returned in 6494/// registers, per C++ [class.temporary]p3. 6495static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6496 TargetInfo::CallingConvKind CCK) { 6497 if (D->isDependentType() || D->isInvalidDecl()) 6498 return false; 6499 6500 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6501 // The PS4 platform ABI follows the behavior of Clang 3.2. 6502 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6503 return !D->hasNonTrivialDestructorForCall() && 6504 !D->hasNonTrivialCopyConstructorForCall(); 6505 6506 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6507 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6508 bool DtorIsTrivialForCall = false; 6509 6510 // If a class has at least one non-deleted, trivial copy constructor, it 6511 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6512 // 6513 // Note: This permits classes with non-trivial copy or move ctors to be 6514 // passed in registers, so long as they *also* have a trivial copy ctor, 6515 // which is non-conforming. 6516 if (D->needsImplicitCopyConstructor()) { 6517 if (!D->defaultedCopyConstructorIsDeleted()) { 6518 if (D->hasTrivialCopyConstructor()) 6519 CopyCtorIsTrivial = true; 6520 if (D->hasTrivialCopyConstructorForCall()) 6521 CopyCtorIsTrivialForCall = true; 6522 } 6523 } else { 6524 for (const CXXConstructorDecl *CD : D->ctors()) { 6525 if (CD->isCopyConstructor() && !CD->isDeleted()) { 6526 if (CD->isTrivial()) 6527 CopyCtorIsTrivial = true; 6528 if (CD->isTrivialForCall()) 6529 CopyCtorIsTrivialForCall = true; 6530 } 6531 } 6532 } 6533 6534 if (D->needsImplicitDestructor()) { 6535 if (!D->defaultedDestructorIsDeleted() && 6536 D->hasTrivialDestructorForCall()) 6537 DtorIsTrivialForCall = true; 6538 } else if (const auto *DD = D->getDestructor()) { 6539 if (!DD->isDeleted() && DD->isTrivialForCall()) 6540 DtorIsTrivialForCall = true; 6541 } 6542 6543 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6544 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6545 return true; 6546 6547 // If a class has a destructor, we'd really like to pass it indirectly 6548 // because it allows us to elide copies. Unfortunately, MSVC makes that 6549 // impossible for small types, which it will pass in a single register or 6550 // stack slot. Most objects with dtors are large-ish, so handle that early. 6551 // We can't call out all large objects as being indirect because there are 6552 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6553 // how we pass large POD types. 6554 6555 // Note: This permits small classes with nontrivial destructors to be 6556 // passed in registers, which is non-conforming. 6557 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6558 uint64_t TypeSize = isAArch64 ? 128 : 64; 6559 6560 if (CopyCtorIsTrivial && 6561 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6562 return true; 6563 return false; 6564 } 6565 6566 // Per C++ [class.temporary]p3, the relevant condition is: 6567 // each copy constructor, move constructor, and destructor of X is 6568 // either trivial or deleted, and X has at least one non-deleted copy 6569 // or move constructor 6570 bool HasNonDeletedCopyOrMove = false; 6571 6572 if (D->needsImplicitCopyConstructor() && 6573 !D->defaultedCopyConstructorIsDeleted()) { 6574 if (!D->hasTrivialCopyConstructorForCall()) 6575 return false; 6576 HasNonDeletedCopyOrMove = true; 6577 } 6578 6579 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6580 !D->defaultedMoveConstructorIsDeleted()) { 6581 if (!D->hasTrivialMoveConstructorForCall()) 6582 return false; 6583 HasNonDeletedCopyOrMove = true; 6584 } 6585 6586 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6587 !D->hasTrivialDestructorForCall()) 6588 return false; 6589 6590 for (const CXXMethodDecl *MD : D->methods()) { 6591 if (MD->isDeleted()) 6592 continue; 6593 6594 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6595 if (CD && CD->isCopyOrMoveConstructor()) 6596 HasNonDeletedCopyOrMove = true; 6597 else if (!isa<CXXDestructorDecl>(MD)) 6598 continue; 6599 6600 if (!MD->isTrivialForCall()) 6601 return false; 6602 } 6603 6604 return HasNonDeletedCopyOrMove; 6605} 6606 6607/// Report an error regarding overriding, along with any relevant 6608/// overridden methods. 6609/// 6610/// \param DiagID the primary error to report. 6611/// \param MD the overriding method. 6612static bool 6613ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6614 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6615 bool IssuedDiagnostic = false; 6616 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6617 if (Report(O)) { 6618 if (!IssuedDiagnostic) { 6619 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6620 IssuedDiagnostic = true; 6621 } 6622 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6623 } 6624 } 6625 return IssuedDiagnostic; 6626} 6627 6628/// Perform semantic checks on a class definition that has been 6629/// completing, introducing implicitly-declared members, checking for 6630/// abstract types, etc. 6631/// 6632/// \param S The scope in which the class was parsed. Null if we didn't just 6633/// parse a class definition. 6634/// \param Record The completed class. 6635void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6636 if (!Record) 6637 return; 6638 6639 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6640 AbstractUsageInfo Info(*this, Record); 6641 CheckAbstractClassUsage(Info, Record); 6642 } 6643 6644 // If this is not an aggregate type and has no user-declared constructor, 6645 // complain about any non-static data members of reference or const scalar 6646 // type, since they will never get initializers. 6647 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6648 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6649 !Record->isLambda()) { 6650 bool Complained = false; 6651 for (const auto *F : Record->fields()) { 6652 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6653 continue; 6654 6655 if (F->getType()->isReferenceType() || 6656 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6657 if (!Complained) { 6658 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6659 << Record->getTagKind() << Record; 6660 Complained = true; 6661 } 6662 6663 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6664 << F->getType()->isReferenceType() 6665 << F->getDeclName(); 6666 } 6667 } 6668 } 6669 6670 if (Record->getIdentifier()) { 6671 // C++ [class.mem]p13: 6672 // If T is the name of a class, then each of the following shall have a 6673 // name different from T: 6674 // - every member of every anonymous union that is a member of class T. 6675 // 6676 // C++ [class.mem]p14: 6677 // In addition, if class T has a user-declared constructor (12.1), every 6678 // non-static data member of class T shall have a name different from T. 6679 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6680 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6681 ++I) { 6682 NamedDecl *D = (*I)->getUnderlyingDecl(); 6683 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6684 Record->hasUserDeclaredConstructor()) || 6685 isa<IndirectFieldDecl>(D)) { 6686 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6687 << D->getDeclName(); 6688 break; 6689 } 6690 } 6691 } 6692 6693 // Warn if the class has virtual methods but non-virtual public destructor. 6694 if (Record->isPolymorphic() && !Record->isDependentType()) { 6695 CXXDestructorDecl *dtor = Record->getDestructor(); 6696 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6697 !Record->hasAttr<FinalAttr>()) 6698 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6699 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6700 } 6701 6702 if (Record->isAbstract()) { 6703 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6704 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6705 << FA->isSpelledAsSealed(); 6706 DiagnoseAbstractType(Record); 6707 } 6708 } 6709 6710 // Warn if the class has a final destructor but is not itself marked final. 6711 if (!Record->hasAttr<FinalAttr>()) { 6712 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6713 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6714 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6715 << FA->isSpelledAsSealed() 6716 << FixItHint::CreateInsertion( 6717 getLocForEndOfToken(Record->getLocation()), 6718 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6719 Diag(Record->getLocation(), 6720 diag::note_final_dtor_non_final_class_silence) 6721 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6722 } 6723 } 6724 } 6725 6726 // See if trivial_abi has to be dropped. 6727 if (Record->hasAttr<TrivialABIAttr>()) 6728 checkIllFormedTrivialABIStruct(*Record); 6729 6730 // Set HasTrivialSpecialMemberForCall if the record has attribute 6731 // "trivial_abi". 6732 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6733 6734 if (HasTrivialABI) 6735 Record->setHasTrivialSpecialMemberForCall(); 6736 6737 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 6738 // We check these last because they can depend on the properties of the 6739 // primary comparison functions (==, <=>). 6740 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 6741 6742 // Perform checks that can't be done until we know all the properties of a 6743 // member function (whether it's defaulted, deleted, virtual, overriding, 6744 // ...). 6745 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 6746 // A static function cannot override anything. 6747 if (MD->getStorageClass() == SC_Static) { 6748 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 6749 [](const CXXMethodDecl *) { return true; })) 6750 return; 6751 } 6752 6753 // A deleted function cannot override a non-deleted function and vice 6754 // versa. 6755 if (ReportOverrides(*this, 6756 MD->isDeleted() ? diag::err_deleted_override 6757 : diag::err_non_deleted_override, 6758 MD, [&](const CXXMethodDecl *V) { 6759 return MD->isDeleted() != V->isDeleted(); 6760 })) { 6761 if (MD->isDefaulted() && MD->isDeleted()) 6762 // Explain why this defaulted function was deleted. 6763 DiagnoseDeletedDefaultedFunction(MD); 6764 return; 6765 } 6766 6767 // A consteval function cannot override a non-consteval function and vice 6768 // versa. 6769 if (ReportOverrides(*this, 6770 MD->isConsteval() ? diag::err_consteval_override 6771 : diag::err_non_consteval_override, 6772 MD, [&](const CXXMethodDecl *V) { 6773 return MD->isConsteval() != V->isConsteval(); 6774 })) { 6775 if (MD->isDefaulted() && MD->isDeleted()) 6776 // Explain why this defaulted function was deleted. 6777 DiagnoseDeletedDefaultedFunction(MD); 6778 return; 6779 } 6780 }; 6781 6782 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 6783 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 6784 return false; 6785 6786 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 6787 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 6788 DFK.asComparison() == DefaultedComparisonKind::Relational) { 6789 DefaultedSecondaryComparisons.push_back(FD); 6790 return true; 6791 } 6792 6793 CheckExplicitlyDefaultedFunction(S, FD); 6794 return false; 6795 }; 6796 6797 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6798 // Check whether the explicitly-defaulted members are valid. 6799 bool Incomplete = CheckForDefaultedFunction(M); 6800 6801 // Skip the rest of the checks for a member of a dependent class. 6802 if (Record->isDependentType()) 6803 return; 6804 6805 // For an explicitly defaulted or deleted special member, we defer 6806 // determining triviality until the class is complete. That time is now! 6807 CXXSpecialMember CSM = getSpecialMember(M); 6808 if (!M->isImplicit() && !M->isUserProvided()) { 6809 if (CSM != CXXInvalid) { 6810 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 6811 // Inform the class that we've finished declaring this member. 6812 Record->finishedDefaultedOrDeletedMember(M); 6813 M->setTrivialForCall( 6814 HasTrivialABI || 6815 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 6816 Record->setTrivialForCallFlags(M); 6817 } 6818 } 6819 6820 // Set triviality for the purpose of calls if this is a user-provided 6821 // copy/move constructor or destructor. 6822 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 6823 CSM == CXXDestructor) && M->isUserProvided()) { 6824 M->setTrivialForCall(HasTrivialABI); 6825 Record->setTrivialForCallFlags(M); 6826 } 6827 6828 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 6829 M->hasAttr<DLLExportAttr>()) { 6830 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6831 M->isTrivial() && 6832 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 6833 CSM == CXXDestructor)) 6834 M->dropAttr<DLLExportAttr>(); 6835 6836 if (M->hasAttr<DLLExportAttr>()) { 6837 // Define after any fields with in-class initializers have been parsed. 6838 DelayedDllExportMemberFunctions.push_back(M); 6839 } 6840 } 6841 6842 // Define defaulted constexpr virtual functions that override a base class 6843 // function right away. 6844 // FIXME: We can defer doing this until the vtable is marked as used. 6845 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods()) 6846 DefineDefaultedFunction(*this, M, M->getLocation()); 6847 6848 if (!Incomplete) 6849 CheckCompletedMemberFunction(M); 6850 }; 6851 6852 // Check the destructor before any other member function. We need to 6853 // determine whether it's trivial in order to determine whether the claas 6854 // type is a literal type, which is a prerequisite for determining whether 6855 // other special member functions are valid and whether they're implicitly 6856 // 'constexpr'. 6857 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 6858 CompleteMemberFunction(Dtor); 6859 6860 bool HasMethodWithOverrideControl = false, 6861 HasOverridingMethodWithoutOverrideControl = false; 6862 for (auto *D : Record->decls()) { 6863 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 6864 // FIXME: We could do this check for dependent types with non-dependent 6865 // bases. 6866 if (!Record->isDependentType()) { 6867 // See if a method overloads virtual methods in a base 6868 // class without overriding any. 6869 if (!M->isStatic()) 6870 DiagnoseHiddenVirtualMethods(M); 6871 if (M->hasAttr<OverrideAttr>()) 6872 HasMethodWithOverrideControl = true; 6873 else if (M->size_overridden_methods() > 0) 6874 HasOverridingMethodWithoutOverrideControl = true; 6875 } 6876 6877 if (!isa<CXXDestructorDecl>(M)) 6878 CompleteMemberFunction(M); 6879 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 6880 CheckForDefaultedFunction( 6881 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 6882 } 6883 } 6884 6885 if (HasOverridingMethodWithoutOverrideControl) { 6886 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 6887 for (auto *M : Record->methods()) 6888 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 6889 } 6890 6891 // Check the defaulted secondary comparisons after any other member functions. 6892 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 6893 CheckExplicitlyDefaultedFunction(S, FD); 6894 6895 // If this is a member function, we deferred checking it until now. 6896 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 6897 CheckCompletedMemberFunction(MD); 6898 } 6899 6900 // ms_struct is a request to use the same ABI rules as MSVC. Check 6901 // whether this class uses any C++ features that are implemented 6902 // completely differently in MSVC, and if so, emit a diagnostic. 6903 // That diagnostic defaults to an error, but we allow projects to 6904 // map it down to a warning (or ignore it). It's a fairly common 6905 // practice among users of the ms_struct pragma to mass-annotate 6906 // headers, sweeping up a bunch of types that the project doesn't 6907 // really rely on MSVC-compatible layout for. We must therefore 6908 // support "ms_struct except for C++ stuff" as a secondary ABI. 6909 // Don't emit this diagnostic if the feature was enabled as a 6910 // language option (as opposed to via a pragma or attribute), as 6911 // the option -mms-bitfields otherwise essentially makes it impossible 6912 // to build C++ code, unless this diagnostic is turned off. 6913 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 6914 (Record->isPolymorphic() || Record->getNumBases())) { 6915 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 6916 } 6917 6918 checkClassLevelDLLAttribute(Record); 6919 checkClassLevelCodeSegAttribute(Record); 6920 6921 bool ClangABICompat4 = 6922 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 6923 TargetInfo::CallingConvKind CCK = 6924 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 6925 bool CanPass = canPassInRegisters(*this, Record, CCK); 6926 6927 // Do not change ArgPassingRestrictions if it has already been set to 6928 // APK_CanNeverPassInRegs. 6929 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 6930 Record->setArgPassingRestrictions(CanPass 6931 ? RecordDecl::APK_CanPassInRegs 6932 : RecordDecl::APK_CannotPassInRegs); 6933 6934 // If canPassInRegisters returns true despite the record having a non-trivial 6935 // destructor, the record is destructed in the callee. This happens only when 6936 // the record or one of its subobjects has a field annotated with trivial_abi 6937 // or a field qualified with ObjC __strong/__weak. 6938 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 6939 Record->setParamDestroyedInCallee(true); 6940 else if (Record->hasNonTrivialDestructor()) 6941 Record->setParamDestroyedInCallee(CanPass); 6942 6943 if (getLangOpts().ForceEmitVTables) { 6944 // If we want to emit all the vtables, we need to mark it as used. This 6945 // is especially required for cases like vtable assumption loads. 6946 MarkVTableUsed(Record->getInnerLocStart(), Record); 6947 } 6948 6949 if (getLangOpts().CUDA) { 6950 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 6951 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 6952 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 6953 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 6954 } 6955} 6956 6957/// Look up the special member function that would be called by a special 6958/// member function for a subobject of class type. 6959/// 6960/// \param Class The class type of the subobject. 6961/// \param CSM The kind of special member function. 6962/// \param FieldQuals If the subobject is a field, its cv-qualifiers. 6963/// \param ConstRHS True if this is a copy operation with a const object 6964/// on its RHS, that is, if the argument to the outer special member 6965/// function is 'const' and this is not a field marked 'mutable'. 6966static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 6967 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 6968 unsigned FieldQuals, bool ConstRHS) { 6969 unsigned LHSQuals = 0; 6970 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 6971 LHSQuals = FieldQuals; 6972 6973 unsigned RHSQuals = FieldQuals; 6974 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 6975 RHSQuals = 0; 6976 else if (ConstRHS) 6977 RHSQuals |= Qualifiers::Const; 6978 6979 return S.LookupSpecialMember(Class, CSM, 6980 RHSQuals & Qualifiers::Const, 6981 RHSQuals & Qualifiers::Volatile, 6982 false, 6983 LHSQuals & Qualifiers::Const, 6984 LHSQuals & Qualifiers::Volatile); 6985} 6986 6987class Sema::InheritedConstructorInfo { 6988 Sema &S; 6989 SourceLocation UseLoc; 6990 6991 /// A mapping from the base classes through which the constructor was 6992 /// inherited to the using shadow declaration in that base class (or a null 6993 /// pointer if the constructor was declared in that base class). 6994 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 6995 InheritedFromBases; 6996 6997public: 6998 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 6999 ConstructorUsingShadowDecl *Shadow) 7000 : S(S), UseLoc(UseLoc) { 7001 bool DiagnosedMultipleConstructedBases = false; 7002 CXXRecordDecl *ConstructedBase = nullptr; 7003 BaseUsingDecl *ConstructedBaseIntroducer = nullptr; 7004 7005 // Find the set of such base class subobjects and check that there's a 7006 // unique constructed subobject. 7007 for (auto *D : Shadow->redecls()) { 7008 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 7009 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 7010 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 7011 7012 InheritedFromBases.insert( 7013 std::make_pair(DNominatedBase->getCanonicalDecl(), 7014 DShadow->getNominatedBaseClassShadowDecl())); 7015 if (DShadow->constructsVirtualBase()) 7016 InheritedFromBases.insert( 7017 std::make_pair(DConstructedBase->getCanonicalDecl(), 7018 DShadow->getConstructedBaseClassShadowDecl())); 7019 else 7020 assert(DNominatedBase == DConstructedBase)((void)0); 7021 7022 // [class.inhctor.init]p2: 7023 // If the constructor was inherited from multiple base class subobjects 7024 // of type B, the program is ill-formed. 7025 if (!ConstructedBase) { 7026 ConstructedBase = DConstructedBase; 7027 ConstructedBaseIntroducer = D->getIntroducer(); 7028 } else if (ConstructedBase != DConstructedBase && 7029 !Shadow->isInvalidDecl()) { 7030 if (!DiagnosedMultipleConstructedBases) { 7031 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 7032 << Shadow->getTargetDecl(); 7033 S.Diag(ConstructedBaseIntroducer->getLocation(), 7034 diag::note_ambiguous_inherited_constructor_using) 7035 << ConstructedBase; 7036 DiagnosedMultipleConstructedBases = true; 7037 } 7038 S.Diag(D->getIntroducer()->getLocation(), 7039 diag::note_ambiguous_inherited_constructor_using) 7040 << DConstructedBase; 7041 } 7042 } 7043 7044 if (DiagnosedMultipleConstructedBases) 7045 Shadow->setInvalidDecl(); 7046 } 7047 7048 /// Find the constructor to use for inherited construction of a base class, 7049 /// and whether that base class constructor inherits the constructor from a 7050 /// virtual base class (in which case it won't actually invoke it). 7051 std::pair<CXXConstructorDecl *, bool> 7052 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 7053 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 7054 if (It == InheritedFromBases.end()) 7055 return std::make_pair(nullptr, false); 7056 7057 // This is an intermediary class. 7058 if (It->second) 7059 return std::make_pair( 7060 S.findInheritingConstructor(UseLoc, Ctor, It->second), 7061 It->second->constructsVirtualBase()); 7062 7063 // This is the base class from which the constructor was inherited. 7064 return std::make_pair(Ctor, false); 7065 } 7066}; 7067 7068/// Is the special member function which would be selected to perform the 7069/// specified operation on the specified class type a constexpr constructor? 7070static bool 7071specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 7072 Sema::CXXSpecialMember CSM, unsigned Quals, 7073 bool ConstRHS, 7074 CXXConstructorDecl *InheritedCtor = nullptr, 7075 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7076 // If we're inheriting a constructor, see if we need to call it for this base 7077 // class. 7078 if (InheritedCtor) { 7079 assert(CSM == Sema::CXXDefaultConstructor)((void)0); 7080 auto BaseCtor = 7081 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 7082 if (BaseCtor) 7083 return BaseCtor->isConstexpr(); 7084 } 7085 7086 if (CSM == Sema::CXXDefaultConstructor) 7087 return ClassDecl->hasConstexprDefaultConstructor(); 7088 if (CSM == Sema::CXXDestructor) 7089 return ClassDecl->hasConstexprDestructor(); 7090 7091 Sema::SpecialMemberOverloadResult SMOR = 7092 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 7093 if (!SMOR.getMethod()) 7094 // A constructor we wouldn't select can't be "involved in initializing" 7095 // anything. 7096 return true; 7097 return SMOR.getMethod()->isConstexpr(); 7098} 7099 7100/// Determine whether the specified special member function would be constexpr 7101/// if it were implicitly defined. 7102static bool defaultedSpecialMemberIsConstexpr( 7103 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 7104 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 7105 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7106 if (!S.getLangOpts().CPlusPlus11) 7107 return false; 7108 7109 // C++11 [dcl.constexpr]p4: 7110 // In the definition of a constexpr constructor [...] 7111 bool Ctor = true; 7112 switch (CSM) { 7113 case Sema::CXXDefaultConstructor: 7114 if (Inherited) 7115 break; 7116 // Since default constructor lookup is essentially trivial (and cannot 7117 // involve, for instance, template instantiation), we compute whether a 7118 // defaulted default constructor is constexpr directly within CXXRecordDecl. 7119 // 7120 // This is important for performance; we need to know whether the default 7121 // constructor is constexpr to determine whether the type is a literal type. 7122 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7123 7124 case Sema::CXXCopyConstructor: 7125 case Sema::CXXMoveConstructor: 7126 // For copy or move constructors, we need to perform overload resolution. 7127 break; 7128 7129 case Sema::CXXCopyAssignment: 7130 case Sema::CXXMoveAssignment: 7131 if (!S.getLangOpts().CPlusPlus14) 7132 return false; 7133 // In C++1y, we need to perform overload resolution. 7134 Ctor = false; 7135 break; 7136 7137 case Sema::CXXDestructor: 7138 return ClassDecl->defaultedDestructorIsConstexpr(); 7139 7140 case Sema::CXXInvalid: 7141 return false; 7142 } 7143 7144 // -- if the class is a non-empty union, or for each non-empty anonymous 7145 // union member of a non-union class, exactly one non-static data member 7146 // shall be initialized; [DR1359] 7147 // 7148 // If we squint, this is guaranteed, since exactly one non-static data member 7149 // will be initialized (if the constructor isn't deleted), we just don't know 7150 // which one. 7151 if (Ctor && ClassDecl->isUnion()) 7152 return CSM == Sema::CXXDefaultConstructor 7153 ? ClassDecl->hasInClassInitializer() || 7154 !ClassDecl->hasVariantMembers() 7155 : true; 7156 7157 // -- the class shall not have any virtual base classes; 7158 if (Ctor && ClassDecl->getNumVBases()) 7159 return false; 7160 7161 // C++1y [class.copy]p26: 7162 // -- [the class] is a literal type, and 7163 if (!Ctor && !ClassDecl->isLiteral()) 7164 return false; 7165 7166 // -- every constructor involved in initializing [...] base class 7167 // sub-objects shall be a constexpr constructor; 7168 // -- the assignment operator selected to copy/move each direct base 7169 // class is a constexpr function, and 7170 for (const auto &B : ClassDecl->bases()) { 7171 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7172 if (!BaseType) continue; 7173 7174 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7175 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7176 InheritedCtor, Inherited)) 7177 return false; 7178 } 7179 7180 // -- every constructor involved in initializing non-static data members 7181 // [...] shall be a constexpr constructor; 7182 // -- every non-static data member and base class sub-object shall be 7183 // initialized 7184 // -- for each non-static data member of X that is of class type (or array 7185 // thereof), the assignment operator selected to copy/move that member is 7186 // a constexpr function 7187 for (const auto *F : ClassDecl->fields()) { 7188 if (F->isInvalidDecl()) 7189 continue; 7190 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 7191 continue; 7192 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7193 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7194 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7195 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7196 BaseType.getCVRQualifiers(), 7197 ConstArg && !F->isMutable())) 7198 return false; 7199 } else if (CSM == Sema::CXXDefaultConstructor) { 7200 return false; 7201 } 7202 } 7203 7204 // All OK, it's constexpr! 7205 return true; 7206} 7207 7208namespace { 7209/// RAII object to register a defaulted function as having its exception 7210/// specification computed. 7211struct ComputingExceptionSpec { 7212 Sema &S; 7213 7214 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7215 : S(S) { 7216 Sema::CodeSynthesisContext Ctx; 7217 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7218 Ctx.PointOfInstantiation = Loc; 7219 Ctx.Entity = FD; 7220 S.pushCodeSynthesisContext(Ctx); 7221 } 7222 ~ComputingExceptionSpec() { 7223 S.popCodeSynthesisContext(); 7224 } 7225}; 7226} 7227 7228static Sema::ImplicitExceptionSpecification 7229ComputeDefaultedSpecialMemberExceptionSpec( 7230 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 7231 Sema::InheritedConstructorInfo *ICI); 7232 7233static Sema::ImplicitExceptionSpecification 7234ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7235 FunctionDecl *FD, 7236 Sema::DefaultedComparisonKind DCK); 7237 7238static Sema::ImplicitExceptionSpecification 7239computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7240 auto DFK = S.getDefaultedFunctionKind(FD); 7241 if (DFK.isSpecialMember()) 7242 return ComputeDefaultedSpecialMemberExceptionSpec( 7243 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7244 if (DFK.isComparison()) 7245 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7246 DFK.asComparison()); 7247 7248 auto *CD = cast<CXXConstructorDecl>(FD); 7249 assert(CD->getInheritedConstructor() &&((void)0) 7250 "only defaulted functions and inherited constructors have implicit "((void)0) 7251 "exception specs")((void)0); 7252 Sema::InheritedConstructorInfo ICI( 7253 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7254 return ComputeDefaultedSpecialMemberExceptionSpec( 7255 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 7256} 7257 7258static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7259 CXXMethodDecl *MD) { 7260 FunctionProtoType::ExtProtoInfo EPI; 7261 7262 // Build an exception specification pointing back at this member. 7263 EPI.ExceptionSpec.Type = EST_Unevaluated; 7264 EPI.ExceptionSpec.SourceDecl = MD; 7265 7266 // Set the calling convention to the default for C++ instance methods. 7267 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7268 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7269 /*IsCXXMethod=*/true)); 7270 return EPI; 7271} 7272 7273void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7274 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7275 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7276 return; 7277 7278 // Evaluate the exception specification. 7279 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7280 auto ESI = IES.getExceptionSpec(); 7281 7282 // Update the type of the special member to use it. 7283 UpdateExceptionSpec(FD, ESI); 7284} 7285 7286void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7287 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted")((void)0); 7288 7289 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7290 if (!DefKind) { 7291 assert(FD->getDeclContext()->isDependentContext())((void)0); 7292 return; 7293 } 7294 7295 if (DefKind.isComparison()) 7296 UnusedPrivateFields.clear(); 7297 7298 if (DefKind.isSpecialMember() 7299 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7300 DefKind.asSpecialMember()) 7301 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7302 FD->setInvalidDecl(); 7303} 7304 7305bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7306 CXXSpecialMember CSM) { 7307 CXXRecordDecl *RD = MD->getParent(); 7308 7309 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((void)0) 7310 "not an explicitly-defaulted special member")((void)0); 7311 7312 // Defer all checking for special members of a dependent type. 7313 if (RD->isDependentType()) 7314 return false; 7315 7316 // Whether this was the first-declared instance of the constructor. 7317 // This affects whether we implicitly add an exception spec and constexpr. 7318 bool First = MD == MD->getCanonicalDecl(); 7319 7320 bool HadError = false; 7321 7322 // C++11 [dcl.fct.def.default]p1: 7323 // A function that is explicitly defaulted shall 7324 // -- be a special member function [...] (checked elsewhere), 7325 // -- have the same type (except for ref-qualifiers, and except that a 7326 // copy operation can take a non-const reference) as an implicit 7327 // declaration, and 7328 // -- not have default arguments. 7329 // C++2a changes the second bullet to instead delete the function if it's 7330 // defaulted on its first declaration, unless it's "an assignment operator, 7331 // and its return type differs or its parameter type is not a reference". 7332 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7333 bool ShouldDeleteForTypeMismatch = false; 7334 unsigned ExpectedParams = 1; 7335 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 7336 ExpectedParams = 0; 7337 if (MD->getNumParams() != ExpectedParams) { 7338 // This checks for default arguments: a copy or move constructor with a 7339 // default argument is classified as a default constructor, and assignment 7340 // operations and destructors can't have default arguments. 7341 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7342 << CSM << MD->getSourceRange(); 7343 HadError = true; 7344 } else if (MD->isVariadic()) { 7345 if (DeleteOnTypeMismatch) 7346 ShouldDeleteForTypeMismatch = true; 7347 else { 7348 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7349 << CSM << MD->getSourceRange(); 7350 HadError = true; 7351 } 7352 } 7353 7354 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 7355 7356 bool CanHaveConstParam = false; 7357 if (CSM == CXXCopyConstructor) 7358 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7359 else if (CSM == CXXCopyAssignment) 7360 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7361 7362 QualType ReturnType = Context.VoidTy; 7363 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 7364 // Check for return type matching. 7365 ReturnType = Type->getReturnType(); 7366 7367 QualType DeclType = Context.getTypeDeclType(RD); 7368 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 7369 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7370 7371 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7372 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7373 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 7374 HadError = true; 7375 } 7376 7377 // A defaulted special member cannot have cv-qualifiers. 7378 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 7379 if (DeleteOnTypeMismatch) 7380 ShouldDeleteForTypeMismatch = true; 7381 else { 7382 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7383 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 7384 HadError = true; 7385 } 7386 } 7387 } 7388 7389 // Check for parameter type matching. 7390 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 7391 bool HasConstParam = false; 7392 if (ExpectedParams && ArgType->isReferenceType()) { 7393 // Argument must be reference to possibly-const T. 7394 QualType ReferentType = ArgType->getPointeeType(); 7395 HasConstParam = ReferentType.isConstQualified(); 7396 7397 if (ReferentType.isVolatileQualified()) { 7398 if (DeleteOnTypeMismatch) 7399 ShouldDeleteForTypeMismatch = true; 7400 else { 7401 Diag(MD->getLocation(), 7402 diag::err_defaulted_special_member_volatile_param) << CSM; 7403 HadError = true; 7404 } 7405 } 7406 7407 if (HasConstParam && !CanHaveConstParam) { 7408 if (DeleteOnTypeMismatch) 7409 ShouldDeleteForTypeMismatch = true; 7410 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 7411 Diag(MD->getLocation(), 7412 diag::err_defaulted_special_member_copy_const_param) 7413 << (CSM == CXXCopyAssignment); 7414 // FIXME: Explain why this special member can't be const. 7415 HadError = true; 7416 } else { 7417 Diag(MD->getLocation(), 7418 diag::err_defaulted_special_member_move_const_param) 7419 << (CSM == CXXMoveAssignment); 7420 HadError = true; 7421 } 7422 } 7423 } else if (ExpectedParams) { 7424 // A copy assignment operator can take its argument by value, but a 7425 // defaulted one cannot. 7426 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((void)0); 7427 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7428 HadError = true; 7429 } 7430 7431 // C++11 [dcl.fct.def.default]p2: 7432 // An explicitly-defaulted function may be declared constexpr only if it 7433 // would have been implicitly declared as constexpr, 7434 // Do not apply this rule to members of class templates, since core issue 1358 7435 // makes such functions always instantiate to constexpr functions. For 7436 // functions which cannot be constexpr (for non-constructors in C++11 and for 7437 // destructors in C++14 and C++17), this is checked elsewhere. 7438 // 7439 // FIXME: This should not apply if the member is deleted. 7440 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7441 HasConstParam); 7442 if ((getLangOpts().CPlusPlus20 || 7443 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7444 : isa<CXXConstructorDecl>(MD))) && 7445 MD->isConstexpr() && !Constexpr && 7446 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7447 Diag(MD->getBeginLoc(), MD->isConsteval() 7448 ? diag::err_incorrect_defaulted_consteval 7449 : diag::err_incorrect_defaulted_constexpr) 7450 << CSM; 7451 // FIXME: Explain why the special member can't be constexpr. 7452 HadError = true; 7453 } 7454 7455 if (First) { 7456 // C++2a [dcl.fct.def.default]p3: 7457 // If a function is explicitly defaulted on its first declaration, it is 7458 // implicitly considered to be constexpr if the implicit declaration 7459 // would be. 7460 MD->setConstexprKind(Constexpr ? (MD->isConsteval() 7461 ? ConstexprSpecKind::Consteval 7462 : ConstexprSpecKind::Constexpr) 7463 : ConstexprSpecKind::Unspecified); 7464 7465 if (!Type->hasExceptionSpec()) { 7466 // C++2a [except.spec]p3: 7467 // If a declaration of a function does not have a noexcept-specifier 7468 // [and] is defaulted on its first declaration, [...] the exception 7469 // specification is as specified below 7470 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7471 EPI.ExceptionSpec.Type = EST_Unevaluated; 7472 EPI.ExceptionSpec.SourceDecl = MD; 7473 MD->setType(Context.getFunctionType(ReturnType, 7474 llvm::makeArrayRef(&ArgType, 7475 ExpectedParams), 7476 EPI)); 7477 } 7478 } 7479 7480 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7481 if (First) { 7482 SetDeclDeleted(MD, MD->getLocation()); 7483 if (!inTemplateInstantiation() && !HadError) { 7484 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 7485 if (ShouldDeleteForTypeMismatch) { 7486 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 7487 } else { 7488 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7489 } 7490 } 7491 if (ShouldDeleteForTypeMismatch && !HadError) { 7492 Diag(MD->getLocation(), 7493 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 7494 } 7495 } else { 7496 // C++11 [dcl.fct.def.default]p4: 7497 // [For a] user-provided explicitly-defaulted function [...] if such a 7498 // function is implicitly defined as deleted, the program is ill-formed. 7499 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 7500 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl")((void)0); 7501 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7502 HadError = true; 7503 } 7504 } 7505 7506 return HadError; 7507} 7508 7509namespace { 7510/// Helper class for building and checking a defaulted comparison. 7511/// 7512/// Defaulted functions are built in two phases: 7513/// 7514/// * First, the set of operations that the function will perform are 7515/// identified, and some of them are checked. If any of the checked 7516/// operations is invalid in certain ways, the comparison function is 7517/// defined as deleted and no body is built. 7518/// * Then, if the function is not defined as deleted, the body is built. 7519/// 7520/// This is accomplished by performing two visitation steps over the eventual 7521/// body of the function. 7522template<typename Derived, typename ResultList, typename Result, 7523 typename Subobject> 7524class DefaultedComparisonVisitor { 7525public: 7526 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7527 7528 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7529 DefaultedComparisonKind DCK) 7530 : S(S), RD(RD), FD(FD), DCK(DCK) { 7531 if (auto *Info = FD->getDefaultedFunctionInfo()) { 7532 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7533 // UnresolvedSet to avoid this copy. 7534 Fns.assign(Info->getUnqualifiedLookups().begin(), 7535 Info->getUnqualifiedLookups().end()); 7536 } 7537 } 7538 7539 ResultList visit() { 7540 // The type of an lvalue naming a parameter of this function. 7541 QualType ParamLvalType = 7542 FD->getParamDecl(0)->getType().getNonReferenceType(); 7543 7544 ResultList Results; 7545 7546 switch (DCK) { 7547 case DefaultedComparisonKind::None: 7548 llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); 7549 7550 case DefaultedComparisonKind::Equal: 7551 case DefaultedComparisonKind::ThreeWay: 7552 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7553 return Results; 7554 7555 case DefaultedComparisonKind::NotEqual: 7556 case DefaultedComparisonKind::Relational: 7557 Results.add(getDerived().visitExpandedSubobject( 7558 ParamLvalType, getDerived().getCompleteObject())); 7559 return Results; 7560 } 7561 llvm_unreachable("")__builtin_unreachable(); 7562 } 7563 7564protected: 7565 Derived &getDerived() { return static_cast<Derived&>(*this); } 7566 7567 /// Visit the expanded list of subobjects of the given type, as specified in 7568 /// C++2a [class.compare.default]. 7569 /// 7570 /// \return \c true if the ResultList object said we're done, \c false if not. 7571 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7572 Qualifiers Quals) { 7573 // C++2a [class.compare.default]p4: 7574 // The direct base class subobjects of C 7575 for (CXXBaseSpecifier &Base : Record->bases()) 7576 if (Results.add(getDerived().visitSubobject( 7577 S.Context.getQualifiedType(Base.getType(), Quals), 7578 getDerived().getBase(&Base)))) 7579 return true; 7580 7581 // followed by the non-static data members of C 7582 for (FieldDecl *Field : Record->fields()) { 7583 // Recursively expand anonymous structs. 7584 if (Field->isAnonymousStructOrUnion()) { 7585 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7586 Quals)) 7587 return true; 7588 continue; 7589 } 7590 7591 // Figure out the type of an lvalue denoting this field. 7592 Qualifiers FieldQuals = Quals; 7593 if (Field->isMutable()) 7594 FieldQuals.removeConst(); 7595 QualType FieldType = 7596 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7597 7598 if (Results.add(getDerived().visitSubobject( 7599 FieldType, getDerived().getField(Field)))) 7600 return true; 7601 } 7602 7603 // form a list of subobjects. 7604 return false; 7605 } 7606 7607 Result visitSubobject(QualType Type, Subobject Subobj) { 7608 // In that list, any subobject of array type is recursively expanded 7609 const ArrayType *AT = S.Context.getAsArrayType(Type); 7610 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7611 return getDerived().visitSubobjectArray(CAT->getElementType(), 7612 CAT->getSize(), Subobj); 7613 return getDerived().visitExpandedSubobject(Type, Subobj); 7614 } 7615 7616 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7617 Subobject Subobj) { 7618 return getDerived().visitSubobject(Type, Subobj); 7619 } 7620 7621protected: 7622 Sema &S; 7623 CXXRecordDecl *RD; 7624 FunctionDecl *FD; 7625 DefaultedComparisonKind DCK; 7626 UnresolvedSet<16> Fns; 7627}; 7628 7629/// Information about a defaulted comparison, as determined by 7630/// DefaultedComparisonAnalyzer. 7631struct DefaultedComparisonInfo { 7632 bool Deleted = false; 7633 bool Constexpr = true; 7634 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7635 7636 static DefaultedComparisonInfo deleted() { 7637 DefaultedComparisonInfo Deleted; 7638 Deleted.Deleted = true; 7639 return Deleted; 7640 } 7641 7642 bool add(const DefaultedComparisonInfo &R) { 7643 Deleted |= R.Deleted; 7644 Constexpr &= R.Constexpr; 7645 Category = commonComparisonType(Category, R.Category); 7646 return Deleted; 7647 } 7648}; 7649 7650/// An element in the expanded list of subobjects of a defaulted comparison, as 7651/// specified in C++2a [class.compare.default]p4. 7652struct DefaultedComparisonSubobject { 7653 enum { CompleteObject, Member, Base } Kind; 7654 NamedDecl *Decl; 7655 SourceLocation Loc; 7656}; 7657 7658/// A visitor over the notional body of a defaulted comparison that determines 7659/// whether that body would be deleted or constexpr. 7660class DefaultedComparisonAnalyzer 7661 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7662 DefaultedComparisonInfo, 7663 DefaultedComparisonInfo, 7664 DefaultedComparisonSubobject> { 7665public: 7666 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7667 7668private: 7669 DiagnosticKind Diagnose; 7670 7671public: 7672 using Base = DefaultedComparisonVisitor; 7673 using Result = DefaultedComparisonInfo; 7674 using Subobject = DefaultedComparisonSubobject; 7675 7676 friend Base; 7677 7678 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7679 DefaultedComparisonKind DCK, 7680 DiagnosticKind Diagnose = NoDiagnostics) 7681 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7682 7683 Result visit() { 7684 if ((DCK == DefaultedComparisonKind::Equal || 7685 DCK == DefaultedComparisonKind::ThreeWay) && 7686 RD->hasVariantMembers()) { 7687 // C++2a [class.compare.default]p2 [P2002R0]: 7688 // A defaulted comparison operator function for class C is defined as 7689 // deleted if [...] C has variant members. 7690 if (Diagnose == ExplainDeleted) { 7691 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 7692 << FD << RD->isUnion() << RD; 7693 } 7694 return Result::deleted(); 7695 } 7696 7697 return Base::visit(); 7698 } 7699 7700private: 7701 Subobject getCompleteObject() { 7702 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; 7703 } 7704 7705 Subobject getBase(CXXBaseSpecifier *Base) { 7706 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 7707 Base->getBaseTypeLoc()}; 7708 } 7709 7710 Subobject getField(FieldDecl *Field) { 7711 return Subobject{Subobject::Member, Field, Field->getLocation()}; 7712 } 7713 7714 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 7715 // C++2a [class.compare.default]p2 [P2002R0]: 7716 // A defaulted <=> or == operator function for class C is defined as 7717 // deleted if any non-static data member of C is of reference type 7718 if (Type->isReferenceType()) { 7719 if (Diagnose == ExplainDeleted) { 7720 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 7721 << FD << RD; 7722 } 7723 return Result::deleted(); 7724 } 7725 7726 // [...] Let xi be an lvalue denoting the ith element [...] 7727 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 7728 Expr *Args[] = {&Xi, &Xi}; 7729 7730 // All operators start by trying to apply that same operator recursively. 7731 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 7732 assert(OO != OO_None && "not an overloaded operator!")((void)0); 7733 return visitBinaryOperator(OO, Args, Subobj); 7734 } 7735 7736 Result 7737 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 7738 Subobject Subobj, 7739 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 7740 // Note that there is no need to consider rewritten candidates here if 7741 // we've already found there is no viable 'operator<=>' candidate (and are 7742 // considering synthesizing a '<=>' from '==' and '<'). 7743 OverloadCandidateSet CandidateSet( 7744 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 7745 OverloadCandidateSet::OperatorRewriteInfo( 7746 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 7747 7748 /// C++2a [class.compare.default]p1 [P2002R0]: 7749 /// [...] the defaulted function itself is never a candidate for overload 7750 /// resolution [...] 7751 CandidateSet.exclude(FD); 7752 7753 if (Args[0]->getType()->isOverloadableType()) 7754 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 7755 else 7756 // FIXME: We determine whether this is a valid expression by checking to 7757 // see if there's a viable builtin operator candidate for it. That isn't 7758 // really what the rules ask us to do, but should give the right results. 7759 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 7760 7761 Result R; 7762 7763 OverloadCandidateSet::iterator Best; 7764 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 7765 case OR_Success: { 7766 // C++2a [class.compare.secondary]p2 [P2002R0]: 7767 // The operator function [...] is defined as deleted if [...] the 7768 // candidate selected by overload resolution is not a rewritten 7769 // candidate. 7770 if ((DCK == DefaultedComparisonKind::NotEqual || 7771 DCK == DefaultedComparisonKind::Relational) && 7772 !Best->RewriteKind) { 7773 if (Diagnose == ExplainDeleted) { 7774 S.Diag(Best->Function->getLocation(), 7775 diag::note_defaulted_comparison_not_rewritten_callee) 7776 << FD; 7777 } 7778 return Result::deleted(); 7779 } 7780 7781 // Throughout C++2a [class.compare]: if overload resolution does not 7782 // result in a usable function, the candidate function is defined as 7783 // deleted. This requires that we selected an accessible function. 7784 // 7785 // Note that this only considers the access of the function when named 7786 // within the type of the subobject, and not the access path for any 7787 // derived-to-base conversion. 7788 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 7789 if (ArgClass && Best->FoundDecl.getDecl() && 7790 Best->FoundDecl.getDecl()->isCXXClassMember()) { 7791 QualType ObjectType = Subobj.Kind == Subobject::Member 7792 ? Args[0]->getType() 7793 : S.Context.getRecordType(RD); 7794 if (!S.isMemberAccessibleForDeletion( 7795 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 7796 Diagnose == ExplainDeleted 7797 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 7798 << FD << Subobj.Kind << Subobj.Decl 7799 : S.PDiag())) 7800 return Result::deleted(); 7801 } 7802 7803 bool NeedsDeducing = 7804 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); 7805 7806 if (FunctionDecl *BestFD = Best->Function) { 7807 // C++2a [class.compare.default]p3 [P2002R0]: 7808 // A defaulted comparison function is constexpr-compatible if 7809 // [...] no overlod resolution performed [...] results in a 7810 // non-constexpr function. 7811 assert(!BestFD->isDeleted() && "wrong overload resolution result")((void)0); 7812 // If it's not constexpr, explain why not. 7813 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 7814 if (Subobj.Kind != Subobject::CompleteObject) 7815 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 7816 << Subobj.Kind << Subobj.Decl; 7817 S.Diag(BestFD->getLocation(), 7818 diag::note_defaulted_comparison_not_constexpr_here); 7819 // Bail out after explaining; we don't want any more notes. 7820 return Result::deleted(); 7821 } 7822 R.Constexpr &= BestFD->isConstexpr(); 7823 7824 if (NeedsDeducing) { 7825 // If any callee has an undeduced return type, deduce it now. 7826 // FIXME: It's not clear how a failure here should be handled. For 7827 // now, we produce an eager diagnostic, because that is forward 7828 // compatible with most (all?) other reasonable options. 7829 if (BestFD->getReturnType()->isUndeducedType() && 7830 S.DeduceReturnType(BestFD, FD->getLocation(), 7831 /*Diagnose=*/false)) { 7832 // Don't produce a duplicate error when asked to explain why the 7833 // comparison is deleted: we diagnosed that when initially checking 7834 // the defaulted operator. 7835 if (Diagnose == NoDiagnostics) { 7836 S.Diag( 7837 FD->getLocation(), 7838 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 7839 << Subobj.Kind << Subobj.Decl; 7840 S.Diag( 7841 Subobj.Loc, 7842 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 7843 << Subobj.Kind << Subobj.Decl; 7844 S.Diag(BestFD->getLocation(), 7845 diag::note_defaulted_comparison_cannot_deduce_callee) 7846 << Subobj.Kind << Subobj.Decl; 7847 } 7848 return Result::deleted(); 7849 } 7850 auto *Info = S.Context.CompCategories.lookupInfoForType( 7851 BestFD->getCallResultType()); 7852 if (!Info) { 7853 if (Diagnose == ExplainDeleted) { 7854 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 7855 << Subobj.Kind << Subobj.Decl 7856 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 7857 S.Diag(BestFD->getLocation(), 7858 diag::note_defaulted_comparison_cannot_deduce_callee) 7859 << Subobj.Kind << Subobj.Decl; 7860 } 7861 return Result::deleted(); 7862 } 7863 R.Category = Info->Kind; 7864 } 7865 } else { 7866 QualType T = Best->BuiltinParamTypes[0]; 7867 assert(T == Best->BuiltinParamTypes[1] &&((void)0) 7868 "builtin comparison for different types?")((void)0); 7869 assert(Best->BuiltinParamTypes[2].isNull() &&((void)0) 7870 "invalid builtin comparison")((void)0); 7871 7872 if (NeedsDeducing) { 7873 Optional<ComparisonCategoryType> Cat = 7874 getComparisonCategoryForBuiltinCmp(T); 7875 assert(Cat && "no category for builtin comparison?")((void)0); 7876 R.Category = *Cat; 7877 } 7878 } 7879 7880 // Note that we might be rewriting to a different operator. That call is 7881 // not considered until we come to actually build the comparison function. 7882 break; 7883 } 7884 7885 case OR_Ambiguous: 7886 if (Diagnose == ExplainDeleted) { 7887 unsigned Kind = 0; 7888 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 7889 Kind = OO == OO_EqualEqual ? 1 : 2; 7890 CandidateSet.NoteCandidates( 7891 PartialDiagnosticAt( 7892 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 7893 << FD << Kind << Subobj.Kind << Subobj.Decl), 7894 S, OCD_AmbiguousCandidates, Args); 7895 } 7896 R = Result::deleted(); 7897 break; 7898 7899 case OR_Deleted: 7900 if (Diagnose == ExplainDeleted) { 7901 if ((DCK == DefaultedComparisonKind::NotEqual || 7902 DCK == DefaultedComparisonKind::Relational) && 7903 !Best->RewriteKind) { 7904 S.Diag(Best->Function->getLocation(), 7905 diag::note_defaulted_comparison_not_rewritten_callee) 7906 << FD; 7907 } else { 7908 S.Diag(Subobj.Loc, 7909 diag::note_defaulted_comparison_calls_deleted) 7910 << FD << Subobj.Kind << Subobj.Decl; 7911 S.NoteDeletedFunction(Best->Function); 7912 } 7913 } 7914 R = Result::deleted(); 7915 break; 7916 7917 case OR_No_Viable_Function: 7918 // If there's no usable candidate, we're done unless we can rewrite a 7919 // '<=>' in terms of '==' and '<'. 7920 if (OO == OO_Spaceship && 7921 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 7922 // For any kind of comparison category return type, we need a usable 7923 // '==' and a usable '<'. 7924 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 7925 &CandidateSet))) 7926 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 7927 break; 7928 } 7929 7930 if (Diagnose == ExplainDeleted) { 7931 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 7932 << FD << Subobj.Kind << Subobj.Decl; 7933 7934 // For a three-way comparison, list both the candidates for the 7935 // original operator and the candidates for the synthesized operator. 7936 if (SpaceshipCandidates) { 7937 SpaceshipCandidates->NoteCandidates( 7938 S, Args, 7939 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 7940 Args, FD->getLocation())); 7941 S.Diag(Subobj.Loc, 7942 diag::note_defaulted_comparison_no_viable_function_synthesized) 7943 << (OO == OO_EqualEqual ? 0 : 1); 7944 } 7945 7946 CandidateSet.NoteCandidates( 7947 S, Args, 7948 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 7949 FD->getLocation())); 7950 } 7951 R = Result::deleted(); 7952 break; 7953 } 7954 7955 return R; 7956 } 7957}; 7958 7959/// A list of statements. 7960struct StmtListResult { 7961 bool IsInvalid = false; 7962 llvm::SmallVector<Stmt*, 16> Stmts; 7963 7964 bool add(const StmtResult &S) { 7965 IsInvalid |= S.isInvalid(); 7966 if (IsInvalid) 7967 return true; 7968 Stmts.push_back(S.get()); 7969 return false; 7970 } 7971}; 7972 7973/// A visitor over the notional body of a defaulted comparison that synthesizes 7974/// the actual body. 7975class DefaultedComparisonSynthesizer 7976 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 7977 StmtListResult, StmtResult, 7978 std::pair<ExprResult, ExprResult>> { 7979 SourceLocation Loc; 7980 unsigned ArrayDepth = 0; 7981 7982public: 7983 using Base = DefaultedComparisonVisitor; 7984 using ExprPair = std::pair<ExprResult, ExprResult>; 7985 7986 friend Base; 7987 7988 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7989 DefaultedComparisonKind DCK, 7990 SourceLocation BodyLoc) 7991 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 7992 7993 /// Build a suitable function body for this defaulted comparison operator. 7994 StmtResult build() { 7995 Sema::CompoundScopeRAII CompoundScope(S); 7996 7997 StmtListResult Stmts = visit(); 7998 if (Stmts.IsInvalid) 7999 return StmtError(); 8000 8001 ExprResult RetVal; 8002 switch (DCK) { 8003 case DefaultedComparisonKind::None: 8004 llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); 8005 8006 case DefaultedComparisonKind::Equal: { 8007 // C++2a [class.eq]p3: 8008 // [...] compar[e] the corresponding elements [...] until the first 8009 // index i where xi == yi yields [...] false. If no such index exists, 8010 // V is true. Otherwise, V is false. 8011 // 8012 // Join the comparisons with '&&'s and return the result. Use a right 8013 // fold (traversing the conditions right-to-left), because that 8014 // short-circuits more naturally. 8015 auto OldStmts = std::move(Stmts.Stmts); 8016 Stmts.Stmts.clear(); 8017 ExprResult CmpSoFar; 8018 // Finish a particular comparison chain. 8019 auto FinishCmp = [&] { 8020 if (Expr *Prior = CmpSoFar.get()) { 8021 // Convert the last expression to 'return ...;' 8022 if (RetVal.isUnset() && Stmts.Stmts.empty()) 8023 RetVal = CmpSoFar; 8024 // Convert any prior comparison to 'if (!(...)) return false;' 8025 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 8026 return true; 8027 CmpSoFar = ExprResult(); 8028 } 8029 return false; 8030 }; 8031 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 8032 Expr *E = dyn_cast<Expr>(EAsStmt); 8033 if (!E) { 8034 // Found an array comparison. 8035 if (FinishCmp() || Stmts.add(EAsStmt)) 8036 return StmtError(); 8037 continue; 8038 } 8039 8040 if (CmpSoFar.isUnset()) { 8041 CmpSoFar = E; 8042 continue; 8043 } 8044 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 8045 if (CmpSoFar.isInvalid()) 8046 return StmtError(); 8047 } 8048 if (FinishCmp()) 8049 return StmtError(); 8050 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 8051 // If no such index exists, V is true. 8052 if (RetVal.isUnset()) 8053 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 8054 break; 8055 } 8056 8057 case DefaultedComparisonKind::ThreeWay: { 8058 // Per C++2a [class.spaceship]p3, as a fallback add: 8059 // return static_cast<R>(std::strong_ordering::equal); 8060 QualType StrongOrdering = S.CheckComparisonCategoryType( 8061 ComparisonCategoryType::StrongOrdering, Loc, 8062 Sema::ComparisonCategoryUsage::DefaultedOperator); 8063 if (StrongOrdering.isNull()) 8064 return StmtError(); 8065 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 8066 .getValueInfo(ComparisonCategoryResult::Equal) 8067 ->VD; 8068 RetVal = getDecl(EqualVD); 8069 if (RetVal.isInvalid()) 8070 return StmtError(); 8071 RetVal = buildStaticCastToR(RetVal.get()); 8072 break; 8073 } 8074 8075 case DefaultedComparisonKind::NotEqual: 8076 case DefaultedComparisonKind::Relational: 8077 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 8078 break; 8079 } 8080 8081 // Build the final return statement. 8082 if (RetVal.isInvalid()) 8083 return StmtError(); 8084 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 8085 if (ReturnStmt.isInvalid()) 8086 return StmtError(); 8087 Stmts.Stmts.push_back(ReturnStmt.get()); 8088 8089 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 8090 } 8091 8092private: 8093 ExprResult getDecl(ValueDecl *VD) { 8094 return S.BuildDeclarationNameExpr( 8095 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8096 } 8097 8098 ExprResult getParam(unsigned I) { 8099 ParmVarDecl *PD = FD->getParamDecl(I); 8100 return getDecl(PD); 8101 } 8102 8103 ExprPair getCompleteObject() { 8104 unsigned Param = 0; 8105 ExprResult LHS; 8106 if (isa<CXXMethodDecl>(FD)) { 8107 // LHS is '*this'. 8108 LHS = S.ActOnCXXThis(Loc); 8109 if (!LHS.isInvalid()) 8110 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 8111 } else { 8112 LHS = getParam(Param++); 8113 } 8114 ExprResult RHS = getParam(Param++); 8115 assert(Param == FD->getNumParams())((void)0); 8116 return {LHS, RHS}; 8117 } 8118 8119 ExprPair getBase(CXXBaseSpecifier *Base) { 8120 ExprPair Obj = getCompleteObject(); 8121 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8122 return {ExprError(), ExprError()}; 8123 CXXCastPath Path = {Base}; 8124 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 8125 CK_DerivedToBase, VK_LValue, &Path), 8126 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 8127 CK_DerivedToBase, VK_LValue, &Path)}; 8128 } 8129 8130 ExprPair getField(FieldDecl *Field) { 8131 ExprPair Obj = getCompleteObject(); 8132 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8133 return {ExprError(), ExprError()}; 8134 8135 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8136 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8137 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8138 CXXScopeSpec(), Field, Found, NameInfo), 8139 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8140 CXXScopeSpec(), Field, Found, NameInfo)}; 8141 } 8142 8143 // FIXME: When expanding a subobject, register a note in the code synthesis 8144 // stack to say which subobject we're comparing. 8145 8146 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8147 if (Cond.isInvalid()) 8148 return StmtError(); 8149 8150 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8151 if (NotCond.isInvalid()) 8152 return StmtError(); 8153 8154 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8155 assert(!False.isInvalid() && "should never fail")((void)0); 8156 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8157 if (ReturnFalse.isInvalid()) 8158 return StmtError(); 8159 8160 return S.ActOnIfStmt(Loc, false, Loc, nullptr, 8161 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8162 Sema::ConditionKind::Boolean), 8163 Loc, ReturnFalse.get(), SourceLocation(), nullptr); 8164 } 8165 8166 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8167 ExprPair Subobj) { 8168 QualType SizeType = S.Context.getSizeType(); 8169 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8170 8171 // Build 'size_t i$n = 0'. 8172 IdentifierInfo *IterationVarName = nullptr; 8173 { 8174 SmallString<8> Str; 8175 llvm::raw_svector_ostream OS(Str); 8176 OS << "i" << ArrayDepth; 8177 IterationVarName = &S.Context.Idents.get(OS.str()); 8178 } 8179 VarDecl *IterationVar = VarDecl::Create( 8180 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8181 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8182 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8183 IterationVar->setInit( 8184 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8185 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8186 8187 auto IterRef = [&] { 8188 ExprResult Ref = S.BuildDeclarationNameExpr( 8189 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8190 IterationVar); 8191 assert(!Ref.isInvalid() && "can't reference our own variable?")((void)0); 8192 return Ref.get(); 8193 }; 8194 8195 // Build 'i$n != Size'. 8196 ExprResult Cond = S.CreateBuiltinBinOp( 8197 Loc, BO_NE, IterRef(), 8198 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8199 assert(!Cond.isInvalid() && "should never fail")((void)0); 8200 8201 // Build '++i$n'. 8202 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8203 assert(!Inc.isInvalid() && "should never fail")((void)0); 8204 8205 // Build 'a[i$n]' and 'b[i$n]'. 8206 auto Index = [&](ExprResult E) { 8207 if (E.isInvalid()) 8208 return ExprError(); 8209 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8210 }; 8211 Subobj.first = Index(Subobj.first); 8212 Subobj.second = Index(Subobj.second); 8213 8214 // Compare the array elements. 8215 ++ArrayDepth; 8216 StmtResult Substmt = visitSubobject(Type, Subobj); 8217 --ArrayDepth; 8218 8219 if (Substmt.isInvalid()) 8220 return StmtError(); 8221 8222 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8223 // For outer levels or for an 'operator<=>' we already have a suitable 8224 // statement that returns as necessary. 8225 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8226 assert(DCK == DefaultedComparisonKind::Equal &&((void)0) 8227 "should have non-expression statement")((void)0); 8228 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8229 if (Substmt.isInvalid()) 8230 return StmtError(); 8231 } 8232 8233 // Build 'for (...) ...' 8234 return S.ActOnForStmt(Loc, Loc, Init, 8235 S.ActOnCondition(nullptr, Loc, Cond.get(), 8236 Sema::ConditionKind::Boolean), 8237 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8238 Substmt.get()); 8239 } 8240 8241 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8242 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8243 return StmtError(); 8244 8245 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8246 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8247 ExprResult Op; 8248 if (Type->isOverloadableType()) 8249 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8250 Obj.second.get(), /*PerformADL=*/true, 8251 /*AllowRewrittenCandidates=*/true, FD); 8252 else 8253 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8254 if (Op.isInvalid()) 8255 return StmtError(); 8256 8257 switch (DCK) { 8258 case DefaultedComparisonKind::None: 8259 llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); 8260 8261 case DefaultedComparisonKind::Equal: 8262 // Per C++2a [class.eq]p2, each comparison is individually contextually 8263 // converted to bool. 8264 Op = S.PerformContextuallyConvertToBool(Op.get()); 8265 if (Op.isInvalid()) 8266 return StmtError(); 8267 return Op.get(); 8268 8269 case DefaultedComparisonKind::ThreeWay: { 8270 // Per C++2a [class.spaceship]p3, form: 8271 // if (R cmp = static_cast<R>(op); cmp != 0) 8272 // return cmp; 8273 QualType R = FD->getReturnType(); 8274 Op = buildStaticCastToR(Op.get()); 8275 if (Op.isInvalid()) 8276 return StmtError(); 8277 8278 // R cmp = ...; 8279 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8280 VarDecl *VD = 8281 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8282 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8283 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8284 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8285 8286 // cmp != 0 8287 ExprResult VDRef = getDecl(VD); 8288 if (VDRef.isInvalid()) 8289 return StmtError(); 8290 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8291 Expr *Zero = 8292 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8293 ExprResult Comp; 8294 if (VDRef.get()->getType()->isOverloadableType()) 8295 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8296 true, FD); 8297 else 8298 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8299 if (Comp.isInvalid()) 8300 return StmtError(); 8301 Sema::ConditionResult Cond = S.ActOnCondition( 8302 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8303 if (Cond.isInvalid()) 8304 return StmtError(); 8305 8306 // return cmp; 8307 VDRef = getDecl(VD); 8308 if (VDRef.isInvalid()) 8309 return StmtError(); 8310 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8311 if (ReturnStmt.isInvalid()) 8312 return StmtError(); 8313 8314 // if (...) 8315 return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, Loc, InitStmt, Cond, Loc, 8316 ReturnStmt.get(), 8317 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); 8318 } 8319 8320 case DefaultedComparisonKind::NotEqual: 8321 case DefaultedComparisonKind::Relational: 8322 // C++2a [class.compare.secondary]p2: 8323 // Otherwise, the operator function yields x @ y. 8324 return Op.get(); 8325 } 8326 llvm_unreachable("")__builtin_unreachable(); 8327 } 8328 8329 /// Build "static_cast<R>(E)". 8330 ExprResult buildStaticCastToR(Expr *E) { 8331 QualType R = FD->getReturnType(); 8332 assert(!R->isUndeducedType() && "type should have been deduced already")((void)0); 8333 8334 // Don't bother forming a no-op cast in the common case. 8335 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) 8336 return E; 8337 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8338 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8339 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8340 } 8341}; 8342} 8343 8344/// Perform the unqualified lookups that might be needed to form a defaulted 8345/// comparison function for the given operator. 8346static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8347 UnresolvedSetImpl &Operators, 8348 OverloadedOperatorKind Op) { 8349 auto Lookup = [&](OverloadedOperatorKind OO) { 8350 Self.LookupOverloadedOperatorName(OO, S, Operators); 8351 }; 8352 8353 // Every defaulted operator looks up itself. 8354 Lookup(Op); 8355 // ... and the rewritten form of itself, if any. 8356 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8357 Lookup(ExtraOp); 8358 8359 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8360 // synthesize a three-way comparison from '<' and '=='. In a dependent 8361 // context, we also need to look up '==' in case we implicitly declare a 8362 // defaulted 'operator=='. 8363 if (Op == OO_Spaceship) { 8364 Lookup(OO_ExclaimEqual); 8365 Lookup(OO_Less); 8366 Lookup(OO_EqualEqual); 8367 } 8368} 8369 8370bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8371 DefaultedComparisonKind DCK) { 8372 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison")((void)0); 8373 8374 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8375 assert(RD && "defaulted comparison is not defaulted in a class")((void)0); 8376 8377 // Perform any unqualified lookups we're going to need to default this 8378 // function. 8379 if (S) { 8380 UnresolvedSet<32> Operators; 8381 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8382 FD->getOverloadedOperator()); 8383 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( 8384 Context, Operators.pairs())); 8385 } 8386 8387 // C++2a [class.compare.default]p1: 8388 // A defaulted comparison operator function for some class C shall be a 8389 // non-template function declared in the member-specification of C that is 8390 // -- a non-static const member of C having one parameter of type 8391 // const C&, or 8392 // -- a friend of C having two parameters of type const C& or two 8393 // parameters of type C. 8394 QualType ExpectedParmType1 = Context.getRecordType(RD); 8395 QualType ExpectedParmType2 = 8396 Context.getLValueReferenceType(ExpectedParmType1.withConst()); 8397 if (isa<CXXMethodDecl>(FD)) 8398 ExpectedParmType1 = ExpectedParmType2; 8399 for (const ParmVarDecl *Param : FD->parameters()) { 8400 if (!Param->getType()->isDependentType() && 8401 !Context.hasSameType(Param->getType(), ExpectedParmType1) && 8402 !Context.hasSameType(Param->getType(), ExpectedParmType2)) { 8403 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8404 // corresponding defaulted 'operator<=>' already. 8405 if (!FD->isImplicit()) { 8406 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8407 << (int)DCK << Param->getType() << ExpectedParmType1 8408 << !isa<CXXMethodDecl>(FD) 8409 << ExpectedParmType2 << Param->getSourceRange(); 8410 } 8411 return true; 8412 } 8413 } 8414 if (FD->getNumParams() == 2 && 8415 !Context.hasSameType(FD->getParamDecl(0)->getType(), 8416 FD->getParamDecl(1)->getType())) { 8417 if (!FD->isImplicit()) { 8418 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8419 << (int)DCK 8420 << FD->getParamDecl(0)->getType() 8421 << FD->getParamDecl(0)->getSourceRange() 8422 << FD->getParamDecl(1)->getType() 8423 << FD->getParamDecl(1)->getSourceRange(); 8424 } 8425 return true; 8426 } 8427 8428 // ... non-static const member ... 8429 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 8430 assert(!MD->isStatic() && "comparison function cannot be a static member")((void)0); 8431 if (!MD->isConst()) { 8432 SourceLocation InsertLoc; 8433 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8434 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); 8435 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8436 // corresponding defaulted 'operator<=>' already. 8437 if (!MD->isImplicit()) { 8438 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) 8439 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8440 } 8441 8442 // Add the 'const' to the type to recover. 8443 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8444 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8445 EPI.TypeQuals.addConst(); 8446 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8447 FPT->getParamTypes(), EPI)); 8448 } 8449 } else { 8450 // A non-member function declared in a class must be a friend. 8451 assert(FD->getFriendObjectKind() && "expected a friend declaration")((void)0); 8452 } 8453 8454 // C++2a [class.eq]p1, [class.rel]p1: 8455 // A [defaulted comparison other than <=>] shall have a declared return 8456 // type bool. 8457 if (DCK != DefaultedComparisonKind::ThreeWay && 8458 !FD->getDeclaredReturnType()->isDependentType() && 8459 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8460 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8461 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8462 << FD->getReturnTypeSourceRange(); 8463 return true; 8464 } 8465 // C++2a [class.spaceship]p2 [P2002R0]: 8466 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8467 // R shall not contain a placeholder type. 8468 if (DCK == DefaultedComparisonKind::ThreeWay && 8469 FD->getDeclaredReturnType()->getContainedDeducedType() && 8470 !Context.hasSameType(FD->getDeclaredReturnType(), 8471 Context.getAutoDeductType())) { 8472 Diag(FD->getLocation(), 8473 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8474 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8475 << FD->getReturnTypeSourceRange(); 8476 return true; 8477 } 8478 8479 // For a defaulted function in a dependent class, defer all remaining checks 8480 // until instantiation. 8481 if (RD->isDependentType()) 8482 return false; 8483 8484 // Determine whether the function should be defined as deleted. 8485 DefaultedComparisonInfo Info = 8486 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8487 8488 bool First = FD == FD->getCanonicalDecl(); 8489 8490 // If we want to delete the function, then do so; there's nothing else to 8491 // check in that case. 8492 if (Info.Deleted) { 8493 if (!First) { 8494 // C++11 [dcl.fct.def.default]p4: 8495 // [For a] user-provided explicitly-defaulted function [...] if such a 8496 // function is implicitly defined as deleted, the program is ill-formed. 8497 // 8498 // This is really just a consequence of the general rule that you can 8499 // only delete a function on its first declaration. 8500 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8501 << FD->isImplicit() << (int)DCK; 8502 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8503 DefaultedComparisonAnalyzer::ExplainDeleted) 8504 .visit(); 8505 return true; 8506 } 8507 8508 SetDeclDeleted(FD, FD->getLocation()); 8509 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8510 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8511 << (int)DCK; 8512 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8513 DefaultedComparisonAnalyzer::ExplainDeleted) 8514 .visit(); 8515 } 8516 return false; 8517 } 8518 8519 // C++2a [class.spaceship]p2: 8520 // The return type is deduced as the common comparison type of R0, R1, ... 8521 if (DCK == DefaultedComparisonKind::ThreeWay && 8522 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8523 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8524 if (RetLoc.isInvalid()) 8525 RetLoc = FD->getBeginLoc(); 8526 // FIXME: Should we really care whether we have the complete type and the 8527 // 'enumerator' constants here? A forward declaration seems sufficient. 8528 QualType Cat = CheckComparisonCategoryType( 8529 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8530 if (Cat.isNull()) 8531 return true; 8532 Context.adjustDeducedFunctionResultType( 8533 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8534 } 8535 8536 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8537 // An explicitly-defaulted function that is not defined as deleted may be 8538 // declared constexpr or consteval only if it is constexpr-compatible. 8539 // C++2a [class.compare.default]p3 [P2002R0]: 8540 // A defaulted comparison function is constexpr-compatible if it satisfies 8541 // the requirements for a constexpr function [...] 8542 // The only relevant requirements are that the parameter and return types are 8543 // literal types. The remaining conditions are checked by the analyzer. 8544 if (FD->isConstexpr()) { 8545 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8546 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8547 !Info.Constexpr) { 8548 Diag(FD->getBeginLoc(), 8549 diag::err_incorrect_defaulted_comparison_constexpr) 8550 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8551 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8552 DefaultedComparisonAnalyzer::ExplainConstexpr) 8553 .visit(); 8554 } 8555 } 8556 8557 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8558 // If a constexpr-compatible function is explicitly defaulted on its first 8559 // declaration, it is implicitly considered to be constexpr. 8560 // FIXME: Only applying this to the first declaration seems problematic, as 8561 // simple reorderings can affect the meaning of the program. 8562 if (First && !FD->isConstexpr() && Info.Constexpr) 8563 FD->setConstexprKind(ConstexprSpecKind::Constexpr); 8564 8565 // C++2a [except.spec]p3: 8566 // If a declaration of a function does not have a noexcept-specifier 8567 // [and] is defaulted on its first declaration, [...] the exception 8568 // specification is as specified below 8569 if (FD->getExceptionSpecType() == EST_None) { 8570 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 8571 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8572 EPI.ExceptionSpec.Type = EST_Unevaluated; 8573 EPI.ExceptionSpec.SourceDecl = FD; 8574 FD->setType(Context.getFunctionType(FPT->getReturnType(), 8575 FPT->getParamTypes(), EPI)); 8576 } 8577 8578 return false; 8579} 8580 8581void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 8582 FunctionDecl *Spaceship) { 8583 Sema::CodeSynthesisContext Ctx; 8584 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 8585 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 8586 Ctx.Entity = Spaceship; 8587 pushCodeSynthesisContext(Ctx); 8588 8589 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 8590 EqualEqual->setImplicit(); 8591 8592 popCodeSynthesisContext(); 8593} 8594 8595void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 8596 DefaultedComparisonKind DCK) { 8597 assert(FD->isDefaulted() && !FD->isDeleted() &&((void)0) 8598 !FD->doesThisDeclarationHaveABody())((void)0); 8599 if (FD->willHaveBody() || FD->isInvalidDecl()) 8600 return; 8601 8602 SynthesizedFunctionScope Scope(*this, FD); 8603 8604 // Add a context note for diagnostics produced after this point. 8605 Scope.addContextNote(UseLoc); 8606 8607 { 8608 // Build and set up the function body. 8609 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8610 SourceLocation BodyLoc = 8611 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8612 StmtResult Body = 8613 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 8614 if (Body.isInvalid()) { 8615 FD->setInvalidDecl(); 8616 return; 8617 } 8618 FD->setBody(Body.get()); 8619 FD->markUsed(Context); 8620 } 8621 8622 // The exception specification is needed because we are defining the 8623 // function. Note that this will reuse the body we just built. 8624 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 8625 8626 if (ASTMutationListener *L = getASTMutationListener()) 8627 L->CompletedImplicitDefinition(FD); 8628} 8629 8630static Sema::ImplicitExceptionSpecification 8631ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 8632 FunctionDecl *FD, 8633 Sema::DefaultedComparisonKind DCK) { 8634 ComputingExceptionSpec CES(S, FD, Loc); 8635 Sema::ImplicitExceptionSpecification ExceptSpec(S); 8636 8637 if (FD->isInvalidDecl()) 8638 return ExceptSpec; 8639 8640 // The common case is that we just defined the comparison function. In that 8641 // case, just look at whether the body can throw. 8642 if (FD->hasBody()) { 8643 ExceptSpec.CalledStmt(FD->getBody()); 8644 } else { 8645 // Otherwise, build a body so we can check it. This should ideally only 8646 // happen when we're not actually marking the function referenced. (This is 8647 // only really important for efficiency: we don't want to build and throw 8648 // away bodies for comparison functions more than we strictly need to.) 8649 8650 // Pretend to synthesize the function body in an unevaluated context. 8651 // Note that we can't actually just go ahead and define the function here: 8652 // we are not permitted to mark its callees as referenced. 8653 Sema::SynthesizedFunctionScope Scope(S, FD); 8654 EnterExpressionEvaluationContext Context( 8655 S, Sema::ExpressionEvaluationContext::Unevaluated); 8656 8657 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8658 SourceLocation BodyLoc = 8659 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8660 StmtResult Body = 8661 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 8662 if (!Body.isInvalid()) 8663 ExceptSpec.CalledStmt(Body.get()); 8664 8665 // FIXME: Can we hold onto this body and just transform it to potentially 8666 // evaluated when we're asked to define the function rather than rebuilding 8667 // it? Either that, or we should only build the bits of the body that we 8668 // need (the expressions, not the statements). 8669 } 8670 8671 return ExceptSpec; 8672} 8673 8674void Sema::CheckDelayedMemberExceptionSpecs() { 8675 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 8676 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 8677 8678 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 8679 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 8680 8681 // Perform any deferred checking of exception specifications for virtual 8682 // destructors. 8683 for (auto &Check : Overriding) 8684 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 8685 8686 // Perform any deferred checking of exception specifications for befriended 8687 // special members. 8688 for (auto &Check : Equivalent) 8689 CheckEquivalentExceptionSpec(Check.second, Check.first); 8690} 8691 8692namespace { 8693/// CRTP base class for visiting operations performed by a special member 8694/// function (or inherited constructor). 8695template<typename Derived> 8696struct SpecialMemberVisitor { 8697 Sema &S; 8698 CXXMethodDecl *MD; 8699 Sema::CXXSpecialMember CSM; 8700 Sema::InheritedConstructorInfo *ICI; 8701 8702 // Properties of the special member, computed for convenience. 8703 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 8704 8705 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 8706 Sema::InheritedConstructorInfo *ICI) 8707 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 8708 switch (CSM) { 8709 case Sema::CXXDefaultConstructor: 8710 case Sema::CXXCopyConstructor: 8711 case Sema::CXXMoveConstructor: 8712 IsConstructor = true; 8713 break; 8714 case Sema::CXXCopyAssignment: 8715 case Sema::CXXMoveAssignment: 8716 IsAssignment = true; 8717 break; 8718 case Sema::CXXDestructor: 8719 break; 8720 case Sema::CXXInvalid: 8721 llvm_unreachable("invalid special member kind")__builtin_unreachable(); 8722 } 8723 8724 if (MD->getNumParams()) { 8725 if (const ReferenceType *RT = 8726 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 8727 ConstArg = RT->getPointeeType().isConstQualified(); 8728 } 8729 } 8730 8731 Derived &getDerived() { return static_cast<Derived&>(*this); } 8732 8733 /// Is this a "move" special member? 8734 bool isMove() const { 8735 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 8736 } 8737 8738 /// Look up the corresponding special member in the given class. 8739 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 8740 unsigned Quals, bool IsMutable) { 8741 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 8742 ConstArg && !IsMutable); 8743 } 8744 8745 /// Look up the constructor for the specified base class to see if it's 8746 /// overridden due to this being an inherited constructor. 8747 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 8748 if (!ICI) 8749 return {}; 8750 assert(CSM == Sema::CXXDefaultConstructor)((void)0); 8751 auto *BaseCtor = 8752 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 8753 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 8754 return MD; 8755 return {}; 8756 } 8757 8758 /// A base or member subobject. 8759 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 8760 8761 /// Get the location to use for a subobject in diagnostics. 8762 static SourceLocation getSubobjectLoc(Subobject Subobj) { 8763 // FIXME: For an indirect virtual base, the direct base leading to 8764 // the indirect virtual base would be a more useful choice. 8765 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 8766 return B->getBaseTypeLoc(); 8767 else 8768 return Subobj.get<FieldDecl*>()->getLocation(); 8769 } 8770 8771 enum BasesToVisit { 8772 /// Visit all non-virtual (direct) bases. 8773 VisitNonVirtualBases, 8774 /// Visit all direct bases, virtual or not. 8775 VisitDirectBases, 8776 /// Visit all non-virtual bases, and all virtual bases if the class 8777 /// is not abstract. 8778 VisitPotentiallyConstructedBases, 8779 /// Visit all direct or virtual bases. 8780 VisitAllBases 8781 }; 8782 8783 // Visit the bases and members of the class. 8784 bool visit(BasesToVisit Bases) { 8785 CXXRecordDecl *RD = MD->getParent(); 8786 8787 if (Bases == VisitPotentiallyConstructedBases) 8788 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 8789 8790 for (auto &B : RD->bases()) 8791 if ((Bases == VisitDirectBases || !B.isVirtual()) && 8792 getDerived().visitBase(&B)) 8793 return true; 8794 8795 if (Bases == VisitAllBases) 8796 for (auto &B : RD->vbases()) 8797 if (getDerived().visitBase(&B)) 8798 return true; 8799 8800 for (auto *F : RD->fields()) 8801 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 8802 getDerived().visitField(F)) 8803 return true; 8804 8805 return false; 8806 } 8807}; 8808} 8809 8810namespace { 8811struct SpecialMemberDeletionInfo 8812 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 8813 bool Diagnose; 8814 8815 SourceLocation Loc; 8816 8817 bool AllFieldsAreConst; 8818 8819 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 8820 Sema::CXXSpecialMember CSM, 8821 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 8822 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 8823 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 8824 8825 bool inUnion() const { return MD->getParent()->isUnion(); } 8826 8827 Sema::CXXSpecialMember getEffectiveCSM() { 8828 return ICI ? Sema::CXXInvalid : CSM; 8829 } 8830 8831 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 8832 8833 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 8834 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 8835 8836 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 8837 bool shouldDeleteForField(FieldDecl *FD); 8838 bool shouldDeleteForAllConstMembers(); 8839 8840 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 8841 unsigned Quals); 8842 bool shouldDeleteForSubobjectCall(Subobject Subobj, 8843 Sema::SpecialMemberOverloadResult SMOR, 8844 bool IsDtorCallInCtor); 8845 8846 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 8847}; 8848} 8849 8850/// Is the given special member inaccessible when used on the given 8851/// sub-object. 8852bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 8853 CXXMethodDecl *target) { 8854 /// If we're operating on a base class, the object type is the 8855 /// type of this special member. 8856 QualType objectTy; 8857 AccessSpecifier access = target->getAccess(); 8858 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 8859 objectTy = S.Context.getTypeDeclType(MD->getParent()); 8860 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 8861 8862 // If we're operating on a field, the object type is the type of the field. 8863 } else { 8864 objectTy = S.Context.getTypeDeclType(target->getParent()); 8865 } 8866 8867 return S.isMemberAccessibleForDeletion( 8868 target->getParent(), DeclAccessPair::make(target, access), objectTy); 8869} 8870 8871/// Check whether we should delete a special member due to the implicit 8872/// definition containing a call to a special member of a subobject. 8873bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 8874 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 8875 bool IsDtorCallInCtor) { 8876 CXXMethodDecl *Decl = SMOR.getMethod(); 8877 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8878 8879 int DiagKind = -1; 8880 8881 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 8882 DiagKind = !Decl ? 0 : 1; 8883 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 8884 DiagKind = 2; 8885 else if (!isAccessible(Subobj, Decl)) 8886 DiagKind = 3; 8887 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 8888 !Decl->isTrivial()) { 8889 // A member of a union must have a trivial corresponding special member. 8890 // As a weird special case, a destructor call from a union's constructor 8891 // must be accessible and non-deleted, but need not be trivial. Such a 8892 // destructor is never actually called, but is semantically checked as 8893 // if it were. 8894 DiagKind = 4; 8895 } 8896 8897 if (DiagKind == -1) 8898 return false; 8899 8900 if (Diagnose) { 8901 if (Field) { 8902 S.Diag(Field->getLocation(), 8903 diag::note_deleted_special_member_class_subobject) 8904 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 8905 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 8906 } else { 8907 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 8908 S.Diag(Base->getBeginLoc(), 8909 diag::note_deleted_special_member_class_subobject) 8910 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 8911 << Base->getType() << DiagKind << IsDtorCallInCtor 8912 << /*IsObjCPtr*/false; 8913 } 8914 8915 if (DiagKind == 1) 8916 S.NoteDeletedFunction(Decl); 8917 // FIXME: Explain inaccessibility if DiagKind == 3. 8918 } 8919 8920 return true; 8921} 8922 8923/// Check whether we should delete a special member function due to having a 8924/// direct or virtual base class or non-static data member of class type M. 8925bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 8926 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 8927 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8928 bool IsMutable = Field && Field->isMutable(); 8929 8930 // C++11 [class.ctor]p5: 8931 // -- any direct or virtual base class, or non-static data member with no 8932 // brace-or-equal-initializer, has class type M (or array thereof) and 8933 // either M has no default constructor or overload resolution as applied 8934 // to M's default constructor results in an ambiguity or in a function 8935 // that is deleted or inaccessible 8936 // C++11 [class.copy]p11, C++11 [class.copy]p23: 8937 // -- a direct or virtual base class B that cannot be copied/moved because 8938 // overload resolution, as applied to B's corresponding special member, 8939 // results in an ambiguity or a function that is deleted or inaccessible 8940 // from the defaulted special member 8941 // C++11 [class.dtor]p5: 8942 // -- any direct or virtual base class [...] has a type with a destructor 8943 // that is deleted or inaccessible 8944 if (!(CSM == Sema::CXXDefaultConstructor && 8945 Field && Field->hasInClassInitializer()) && 8946 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 8947 false)) 8948 return true; 8949 8950 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 8951 // -- any direct or virtual base class or non-static data member has a 8952 // type with a destructor that is deleted or inaccessible 8953 if (IsConstructor) { 8954 Sema::SpecialMemberOverloadResult SMOR = 8955 S.LookupSpecialMember(Class, Sema::CXXDestructor, 8956 false, false, false, false, false); 8957 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 8958 return true; 8959 } 8960 8961 return false; 8962} 8963 8964bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 8965 FieldDecl *FD, QualType FieldType) { 8966 // The defaulted special functions are defined as deleted if this is a variant 8967 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 8968 // type under ARC. 8969 if (!FieldType.hasNonTrivialObjCLifetime()) 8970 return false; 8971 8972 // Don't make the defaulted default constructor defined as deleted if the 8973 // member has an in-class initializer. 8974 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 8975 return false; 8976 8977 if (Diagnose) { 8978 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 8979 S.Diag(FD->getLocation(), 8980 diag::note_deleted_special_member_class_subobject) 8981 << getEffectiveCSM() << ParentClass << /*IsField*/true 8982 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 8983 } 8984 8985 return true; 8986} 8987 8988/// Check whether we should delete a special member function due to the class 8989/// having a particular direct or virtual base class. 8990bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 8991 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 8992 // If program is correct, BaseClass cannot be null, but if it is, the error 8993 // must be reported elsewhere. 8994 if (!BaseClass) 8995 return false; 8996 // If we have an inheriting constructor, check whether we're calling an 8997 // inherited constructor instead of a default constructor. 8998 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 8999 if (auto *BaseCtor = SMOR.getMethod()) { 9000 // Note that we do not check access along this path; other than that, 9001 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 9002 // FIXME: Check that the base has a usable destructor! Sink this into 9003 // shouldDeleteForClassSubobject. 9004 if (BaseCtor->isDeleted() && Diagnose) { 9005 S.Diag(Base->getBeginLoc(), 9006 diag::note_deleted_special_member_class_subobject) 9007 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9008 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 9009 << /*IsObjCPtr*/false; 9010 S.NoteDeletedFunction(BaseCtor); 9011 } 9012 return BaseCtor->isDeleted(); 9013 } 9014 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 9015} 9016 9017/// Check whether we should delete a special member function due to the class 9018/// having a particular non-static data member. 9019bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 9020 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 9021 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 9022 9023 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 9024 return true; 9025 9026 if (CSM == Sema::CXXDefaultConstructor) { 9027 // For a default constructor, all references must be initialized in-class 9028 // and, if a union, it must have a non-const member. 9029 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 9030 if (Diagnose) 9031 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9032 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 9033 return true; 9034 } 9035 // C++11 [class.ctor]p5: any non-variant non-static data member of 9036 // const-qualified type (or array thereof) with no 9037 // brace-or-equal-initializer does not have a user-provided default 9038 // constructor. 9039 if (!inUnion() && FieldType.isConstQualified() && 9040 !FD->hasInClassInitializer() && 9041 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { 9042 if (Diagnose) 9043 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9044 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 9045 return true; 9046 } 9047 9048 if (inUnion() && !FieldType.isConstQualified()) 9049 AllFieldsAreConst = false; 9050 } else if (CSM == Sema::CXXCopyConstructor) { 9051 // For a copy constructor, data members must not be of rvalue reference 9052 // type. 9053 if (FieldType->isRValueReferenceType()) { 9054 if (Diagnose) 9055 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 9056 << MD->getParent() << FD << FieldType; 9057 return true; 9058 } 9059 } else if (IsAssignment) { 9060 // For an assignment operator, data members must not be of reference type. 9061 if (FieldType->isReferenceType()) { 9062 if (Diagnose) 9063 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9064 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 9065 return true; 9066 } 9067 if (!FieldRecord && FieldType.isConstQualified()) { 9068 // C++11 [class.copy]p23: 9069 // -- a non-static data member of const non-class type (or array thereof) 9070 if (Diagnose) 9071 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9072 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 9073 return true; 9074 } 9075 } 9076 9077 if (FieldRecord) { 9078 // Some additional restrictions exist on the variant members. 9079 if (!inUnion() && FieldRecord->isUnion() && 9080 FieldRecord->isAnonymousStructOrUnion()) { 9081 bool AllVariantFieldsAreConst = true; 9082 9083 // FIXME: Handle anonymous unions declared within anonymous unions. 9084 for (auto *UI : FieldRecord->fields()) { 9085 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 9086 9087 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 9088 return true; 9089 9090 if (!UnionFieldType.isConstQualified()) 9091 AllVariantFieldsAreConst = false; 9092 9093 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 9094 if (UnionFieldRecord && 9095 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 9096 UnionFieldType.getCVRQualifiers())) 9097 return true; 9098 } 9099 9100 // At least one member in each anonymous union must be non-const 9101 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 9102 !FieldRecord->field_empty()) { 9103 if (Diagnose) 9104 S.Diag(FieldRecord->getLocation(), 9105 diag::note_deleted_default_ctor_all_const) 9106 << !!ICI << MD->getParent() << /*anonymous union*/1; 9107 return true; 9108 } 9109 9110 // Don't check the implicit member of the anonymous union type. 9111 // This is technically non-conformant, but sanity demands it. 9112 return false; 9113 } 9114 9115 if (shouldDeleteForClassSubobject(FieldRecord, FD, 9116 FieldType.getCVRQualifiers())) 9117 return true; 9118 } 9119 9120 return false; 9121} 9122 9123/// C++11 [class.ctor] p5: 9124/// A defaulted default constructor for a class X is defined as deleted if 9125/// X is a union and all of its variant members are of const-qualified type. 9126bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 9127 // This is a silly definition, because it gives an empty union a deleted 9128 // default constructor. Don't do that. 9129 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 9130 bool AnyFields = false; 9131 for (auto *F : MD->getParent()->fields()) 9132 if ((AnyFields = !F->isUnnamedBitfield())) 9133 break; 9134 if (!AnyFields) 9135 return false; 9136 if (Diagnose) 9137 S.Diag(MD->getParent()->getLocation(), 9138 diag::note_deleted_default_ctor_all_const) 9139 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9140 return true; 9141 } 9142 return false; 9143} 9144 9145/// Determine whether a defaulted special member function should be defined as 9146/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9147/// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9148bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 9149 InheritedConstructorInfo *ICI, 9150 bool Diagnose) { 9151 if (MD->isInvalidDecl()) 9152 return false; 9153 CXXRecordDecl *RD = MD->getParent(); 9154 assert(!RD->isDependentType() && "do deletion after instantiation")((void)0); 9155 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 9156 return false; 9157 9158 // C++11 [expr.lambda.prim]p19: 9159 // The closure type associated with a lambda-expression has a 9160 // deleted (8.4.3) default constructor and a deleted copy 9161 // assignment operator. 9162 // C++2a adds back these operators if the lambda has no lambda-capture. 9163 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9164 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 9165 if (Diagnose) 9166 Diag(RD->getLocation(), diag::note_lambda_decl); 9167 return true; 9168 } 9169 9170 // For an anonymous struct or union, the copy and assignment special members 9171 // will never be used, so skip the check. For an anonymous union declared at 9172 // namespace scope, the constructor and destructor are used. 9173 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 9174 RD->isAnonymousStructOrUnion()) 9175 return false; 9176 9177 // C++11 [class.copy]p7, p18: 9178 // If the class definition declares a move constructor or move assignment 9179 // operator, an implicitly declared copy constructor or copy assignment 9180 // operator is defined as deleted. 9181 if (MD->isImplicit() && 9182 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 9183 CXXMethodDecl *UserDeclaredMove = nullptr; 9184 9185 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9186 // deletion of the corresponding copy operation, not both copy operations. 9187 // MSVC 2015 has adopted the standards conforming behavior. 9188 bool DeletesOnlyMatchingCopy = 9189 getLangOpts().MSVCCompat && 9190 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9191 9192 if (RD->hasUserDeclaredMoveConstructor() && 9193 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 9194 if (!Diagnose) return true; 9195 9196 // Find any user-declared move constructor. 9197 for (auto *I : RD->ctors()) { 9198 if (I->isMoveConstructor()) { 9199 UserDeclaredMove = I; 9200 break; 9201 } 9202 } 9203 assert(UserDeclaredMove)((void)0); 9204 } else if (RD->hasUserDeclaredMoveAssignment() && 9205 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 9206 if (!Diagnose) return true; 9207 9208 // Find any user-declared move assignment operator. 9209 for (auto *I : RD->methods()) { 9210 if (I->isMoveAssignmentOperator()) { 9211 UserDeclaredMove = I; 9212 break; 9213 } 9214 } 9215 assert(UserDeclaredMove)((void)0); 9216 } 9217 9218 if (UserDeclaredMove) { 9219 Diag(UserDeclaredMove->getLocation(), 9220 diag::note_deleted_copy_user_declared_move) 9221 << (CSM == CXXCopyAssignment) << RD 9222 << UserDeclaredMove->isMoveAssignmentOperator(); 9223 return true; 9224 } 9225 } 9226 9227 // Do access control from the special member function 9228 ContextRAII MethodContext(*this, MD); 9229 9230 // C++11 [class.dtor]p5: 9231 // -- for a virtual destructor, lookup of the non-array deallocation function 9232 // results in an ambiguity or in a function that is deleted or inaccessible 9233 if (CSM == CXXDestructor && MD->isVirtual()) { 9234 FunctionDecl *OperatorDelete = nullptr; 9235 DeclarationName Name = 9236 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9237 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9238 OperatorDelete, /*Diagnose*/false)) { 9239 if (Diagnose) 9240 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9241 return true; 9242 } 9243 } 9244 9245 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9246 9247 // Per DR1611, do not consider virtual bases of constructors of abstract 9248 // classes, since we are not going to construct them. 9249 // Per DR1658, do not consider virtual bases of destructors of abstract 9250 // classes either. 9251 // Per DR2180, for assignment operators we only assign (and thus only 9252 // consider) direct bases. 9253 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9254 : SMI.VisitPotentiallyConstructedBases)) 9255 return true; 9256 9257 if (SMI.shouldDeleteForAllConstMembers()) 9258 return true; 9259 9260 if (getLangOpts().CUDA) { 9261 // We should delete the special member in CUDA mode if target inference 9262 // failed. 9263 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9264 // is treated as certain special member, which may not reflect what special 9265 // member MD really is. However inferCUDATargetForImplicitSpecialMember 9266 // expects CSM to match MD, therefore recalculate CSM. 9267 assert(ICI || CSM == getSpecialMember(MD))((void)0); 9268 auto RealCSM = CSM; 9269 if (ICI) 9270 RealCSM = getSpecialMember(MD); 9271 9272 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 9273 SMI.ConstArg, Diagnose); 9274 } 9275 9276 return false; 9277} 9278 9279void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9280 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9281 assert(DFK && "not a defaultable function")((void)0); 9282 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted")((void)0); 9283 9284 if (DFK.isSpecialMember()) { 9285 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9286 nullptr, /*Diagnose=*/true); 9287 } else { 9288 DefaultedComparisonAnalyzer( 9289 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9290 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9291 .visit(); 9292 } 9293} 9294 9295/// Perform lookup for a special member of the specified kind, and determine 9296/// whether it is trivial. If the triviality can be determined without the 9297/// lookup, skip it. This is intended for use when determining whether a 9298/// special member of a containing object is trivial, and thus does not ever 9299/// perform overload resolution for default constructors. 9300/// 9301/// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9302/// member that was most likely to be intended to be trivial, if any. 9303/// 9304/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9305/// determine whether the special member is trivial. 9306static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9307 Sema::CXXSpecialMember CSM, unsigned Quals, 9308 bool ConstRHS, 9309 Sema::TrivialABIHandling TAH, 9310 CXXMethodDecl **Selected) { 9311 if (Selected) 9312 *Selected = nullptr; 9313 9314 switch (CSM) { 9315 case Sema::CXXInvalid: 9316 llvm_unreachable("not a special member")__builtin_unreachable(); 9317 9318 case Sema::CXXDefaultConstructor: 9319 // C++11 [class.ctor]p5: 9320 // A default constructor is trivial if: 9321 // - all the [direct subobjects] have trivial default constructors 9322 // 9323 // Note, no overload resolution is performed in this case. 9324 if (RD->hasTrivialDefaultConstructor()) 9325 return true; 9326 9327 if (Selected) { 9328 // If there's a default constructor which could have been trivial, dig it 9329 // out. Otherwise, if there's any user-provided default constructor, point 9330 // to that as an example of why there's not a trivial one. 9331 CXXConstructorDecl *DefCtor = nullptr; 9332 if (RD->needsImplicitDefaultConstructor()) 9333 S.DeclareImplicitDefaultConstructor(RD); 9334 for (auto *CI : RD->ctors()) { 9335 if (!CI->isDefaultConstructor()) 9336 continue; 9337 DefCtor = CI; 9338 if (!DefCtor->isUserProvided()) 9339 break; 9340 } 9341 9342 *Selected = DefCtor; 9343 } 9344 9345 return false; 9346 9347 case Sema::CXXDestructor: 9348 // C++11 [class.dtor]p5: 9349 // A destructor is trivial if: 9350 // - all the direct [subobjects] have trivial destructors 9351 if (RD->hasTrivialDestructor() || 9352 (TAH == Sema::TAH_ConsiderTrivialABI && 9353 RD->hasTrivialDestructorForCall())) 9354 return true; 9355 9356 if (Selected) { 9357 if (RD->needsImplicitDestructor()) 9358 S.DeclareImplicitDestructor(RD); 9359 *Selected = RD->getDestructor(); 9360 } 9361 9362 return false; 9363 9364 case Sema::CXXCopyConstructor: 9365 // C++11 [class.copy]p12: 9366 // A copy constructor is trivial if: 9367 // - the constructor selected to copy each direct [subobject] is trivial 9368 if (RD->hasTrivialCopyConstructor() || 9369 (TAH == Sema::TAH_ConsiderTrivialABI && 9370 RD->hasTrivialCopyConstructorForCall())) { 9371 if (Quals == Qualifiers::Const) 9372 // We must either select the trivial copy constructor or reach an 9373 // ambiguity; no need to actually perform overload resolution. 9374 return true; 9375 } else if (!Selected) { 9376 return false; 9377 } 9378 // In C++98, we are not supposed to perform overload resolution here, but we 9379 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9380 // cases like B as having a non-trivial copy constructor: 9381 // struct A { template<typename T> A(T&); }; 9382 // struct B { mutable A a; }; 9383 goto NeedOverloadResolution; 9384 9385 case Sema::CXXCopyAssignment: 9386 // C++11 [class.copy]p25: 9387 // A copy assignment operator is trivial if: 9388 // - the assignment operator selected to copy each direct [subobject] is 9389 // trivial 9390 if (RD->hasTrivialCopyAssignment()) { 9391 if (Quals == Qualifiers::Const) 9392 return true; 9393 } else if (!Selected) { 9394 return false; 9395 } 9396 // In C++98, we are not supposed to perform overload resolution here, but we 9397 // treat that as a language defect. 9398 goto NeedOverloadResolution; 9399 9400 case Sema::CXXMoveConstructor: 9401 case Sema::CXXMoveAssignment: 9402 NeedOverloadResolution: 9403 Sema::SpecialMemberOverloadResult SMOR = 9404 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9405 9406 // The standard doesn't describe how to behave if the lookup is ambiguous. 9407 // We treat it as not making the member non-trivial, just like the standard 9408 // mandates for the default constructor. This should rarely matter, because 9409 // the member will also be deleted. 9410 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9411 return true; 9412 9413 if (!SMOR.getMethod()) { 9414 assert(SMOR.getKind() ==((void)0) 9415 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((void)0); 9416 return false; 9417 } 9418 9419 // We deliberately don't check if we found a deleted special member. We're 9420 // not supposed to! 9421 if (Selected) 9422 *Selected = SMOR.getMethod(); 9423 9424 if (TAH == Sema::TAH_ConsiderTrivialABI && 9425 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 9426 return SMOR.getMethod()->isTrivialForCall(); 9427 return SMOR.getMethod()->isTrivial(); 9428 } 9429 9430 llvm_unreachable("unknown special method kind")__builtin_unreachable(); 9431} 9432 9433static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9434 for (auto *CI : RD->ctors()) 9435 if (!CI->isImplicit()) 9436 return CI; 9437 9438 // Look for constructor templates. 9439 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9440 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9441 if (CXXConstructorDecl *CD = 9442 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9443 return CD; 9444 } 9445 9446 return nullptr; 9447} 9448 9449/// The kind of subobject we are checking for triviality. The values of this 9450/// enumeration are used in diagnostics. 9451enum TrivialSubobjectKind { 9452 /// The subobject is a base class. 9453 TSK_BaseClass, 9454 /// The subobject is a non-static data member. 9455 TSK_Field, 9456 /// The object is actually the complete object. 9457 TSK_CompleteObject 9458}; 9459 9460/// Check whether the special member selected for a given type would be trivial. 9461static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9462 QualType SubType, bool ConstRHS, 9463 Sema::CXXSpecialMember CSM, 9464 TrivialSubobjectKind Kind, 9465 Sema::TrivialABIHandling TAH, bool Diagnose) { 9466 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9467 if (!SubRD) 9468 return true; 9469 9470 CXXMethodDecl *Selected; 9471 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9472 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9473 return true; 9474 9475 if (Diagnose) { 9476 if (ConstRHS) 9477 SubType.addConst(); 9478 9479 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 9480 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9481 << Kind << SubType.getUnqualifiedType(); 9482 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9483 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9484 } else if (!Selected) 9485 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9486 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 9487 else if (Selected->isUserProvided()) { 9488 if (Kind == TSK_CompleteObject) 9489 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9490 << Kind << SubType.getUnqualifiedType() << CSM; 9491 else { 9492 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9493 << Kind << SubType.getUnqualifiedType() << CSM; 9494 S.Diag(Selected->getLocation(), diag::note_declared_at); 9495 } 9496 } else { 9497 if (Kind != TSK_CompleteObject) 9498 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9499 << Kind << SubType.getUnqualifiedType() << CSM; 9500 9501 // Explain why the defaulted or deleted special member isn't trivial. 9502 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9503 Diagnose); 9504 } 9505 } 9506 9507 return false; 9508} 9509 9510/// Check whether the members of a class type allow a special member to be 9511/// trivial. 9512static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9513 Sema::CXXSpecialMember CSM, 9514 bool ConstArg, 9515 Sema::TrivialABIHandling TAH, 9516 bool Diagnose) { 9517 for (const auto *FI : RD->fields()) { 9518 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 9519 continue; 9520 9521 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9522 9523 // Pretend anonymous struct or union members are members of this class. 9524 if (FI->isAnonymousStructOrUnion()) { 9525 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9526 CSM, ConstArg, TAH, Diagnose)) 9527 return false; 9528 continue; 9529 } 9530 9531 // C++11 [class.ctor]p5: 9532 // A default constructor is trivial if [...] 9533 // -- no non-static data member of its class has a 9534 // brace-or-equal-initializer 9535 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 9536 if (Diagnose) 9537 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) 9538 << FI; 9539 return false; 9540 } 9541 9542 // Objective C ARC 4.3.5: 9543 // [...] nontrivally ownership-qualified types are [...] not trivially 9544 // default constructible, copy constructible, move constructible, copy 9545 // assignable, move assignable, or destructible [...] 9546 if (FieldType.hasNonTrivialObjCLifetime()) { 9547 if (Diagnose) 9548 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 9549 << RD << FieldType.getObjCLifetime(); 9550 return false; 9551 } 9552 9553 bool ConstRHS = ConstArg && !FI->isMutable(); 9554 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 9555 CSM, TSK_Field, TAH, Diagnose)) 9556 return false; 9557 } 9558 9559 return true; 9560} 9561 9562/// Diagnose why the specified class does not have a trivial special member of 9563/// the given kind. 9564void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 9565 QualType Ty = Context.getRecordType(RD); 9566 9567 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 9568 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 9569 TSK_CompleteObject, TAH_IgnoreTrivialABI, 9570 /*Diagnose*/true); 9571} 9572 9573/// Determine whether a defaulted or deleted special member function is trivial, 9574/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 9575/// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 9576bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 9577 TrivialABIHandling TAH, bool Diagnose) { 9578 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((void)0); 9579 9580 CXXRecordDecl *RD = MD->getParent(); 9581 9582 bool ConstArg = false; 9583 9584 // C++11 [class.copy]p12, p25: [DR1593] 9585 // A [special member] is trivial if [...] its parameter-type-list is 9586 // equivalent to the parameter-type-list of an implicit declaration [...] 9587 switch (CSM) { 9588 case CXXDefaultConstructor: 9589 case CXXDestructor: 9590 // Trivial default constructors and destructors cannot have parameters. 9591 break; 9592 9593 case CXXCopyConstructor: 9594 case CXXCopyAssignment: { 9595 // Trivial copy operations always have const, non-volatile parameter types. 9596 ConstArg = true; 9597 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9598 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 9599 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { 9600 if (Diagnose) 9601 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9602 << Param0->getSourceRange() << Param0->getType() 9603 << Context.getLValueReferenceType( 9604 Context.getRecordType(RD).withConst()); 9605 return false; 9606 } 9607 break; 9608 } 9609 9610 case CXXMoveConstructor: 9611 case CXXMoveAssignment: { 9612 // Trivial move operations always have non-cv-qualified parameters. 9613 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9614 const RValueReferenceType *RT = 9615 Param0->getType()->getAs<RValueReferenceType>(); 9616 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 9617 if (Diagnose) 9618 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9619 << Param0->getSourceRange() << Param0->getType() 9620 << Context.getRValueReferenceType(Context.getRecordType(RD)); 9621 return false; 9622 } 9623 break; 9624 } 9625 9626 case CXXInvalid: 9627 llvm_unreachable("not a special member")__builtin_unreachable(); 9628 } 9629 9630 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 9631 if (Diagnose) 9632 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 9633 diag::note_nontrivial_default_arg) 9634 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 9635 return false; 9636 } 9637 if (MD->isVariadic()) { 9638 if (Diagnose) 9639 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 9640 return false; 9641 } 9642 9643 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9644 // A copy/move [constructor or assignment operator] is trivial if 9645 // -- the [member] selected to copy/move each direct base class subobject 9646 // is trivial 9647 // 9648 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9649 // A [default constructor or destructor] is trivial if 9650 // -- all the direct base classes have trivial [default constructors or 9651 // destructors] 9652 for (const auto &BI : RD->bases()) 9653 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 9654 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 9655 return false; 9656 9657 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9658 // A copy/move [constructor or assignment operator] for a class X is 9659 // trivial if 9660 // -- for each non-static data member of X that is of class type (or array 9661 // thereof), the constructor selected to copy/move that member is 9662 // trivial 9663 // 9664 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9665 // A [default constructor or destructor] is trivial if 9666 // -- for all of the non-static data members of its class that are of class 9667 // type (or array thereof), each such class has a trivial [default 9668 // constructor or destructor] 9669 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 9670 return false; 9671 9672 // C++11 [class.dtor]p5: 9673 // A destructor is trivial if [...] 9674 // -- the destructor is not virtual 9675 if (CSM == CXXDestructor && MD->isVirtual()) { 9676 if (Diagnose) 9677 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 9678 return false; 9679 } 9680 9681 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 9682 // A [special member] for class X is trivial if [...] 9683 // -- class X has no virtual functions and no virtual base classes 9684 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 9685 if (!Diagnose) 9686 return false; 9687 9688 if (RD->getNumVBases()) { 9689 // Check for virtual bases. We already know that the corresponding 9690 // member in all bases is trivial, so vbases must all be direct. 9691 CXXBaseSpecifier &BS = *RD->vbases_begin(); 9692 assert(BS.isVirtual())((void)0); 9693 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 9694 return false; 9695 } 9696 9697 // Must have a virtual method. 9698 for (const auto *MI : RD->methods()) { 9699 if (MI->isVirtual()) { 9700 SourceLocation MLoc = MI->getBeginLoc(); 9701 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 9702 return false; 9703 } 9704 } 9705 9706 llvm_unreachable("dynamic class with no vbases and no virtual functions")__builtin_unreachable(); 9707 } 9708 9709 // Looks like it's trivial! 9710 return true; 9711} 9712 9713namespace { 9714struct FindHiddenVirtualMethod { 9715 Sema *S; 9716 CXXMethodDecl *Method; 9717 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 9718 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9719 9720private: 9721 /// Check whether any most overridden method from MD in Methods 9722 static bool CheckMostOverridenMethods( 9723 const CXXMethodDecl *MD, 9724 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 9725 if (MD->size_overridden_methods() == 0) 9726 return Methods.count(MD->getCanonicalDecl()); 9727 for (const CXXMethodDecl *O : MD->overridden_methods()) 9728 if (CheckMostOverridenMethods(O, Methods)) 9729 return true; 9730 return false; 9731 } 9732 9733public: 9734 /// Member lookup function that determines whether a given C++ 9735 /// method overloads virtual methods in a base class without overriding any, 9736 /// to be used with CXXRecordDecl::lookupInBases(). 9737 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 9738 RecordDecl *BaseRecord = 9739 Specifier->getType()->castAs<RecordType>()->getDecl(); 9740 9741 DeclarationName Name = Method->getDeclName(); 9742 assert(Name.getNameKind() == DeclarationName::Identifier)((void)0); 9743 9744 bool foundSameNameMethod = false; 9745 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 9746 for (Path.Decls = BaseRecord->lookup(Name).begin(); 9747 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { 9748 NamedDecl *D = *Path.Decls; 9749 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 9750 MD = MD->getCanonicalDecl(); 9751 foundSameNameMethod = true; 9752 // Interested only in hidden virtual methods. 9753 if (!MD->isVirtual()) 9754 continue; 9755 // If the method we are checking overrides a method from its base 9756 // don't warn about the other overloaded methods. Clang deviates from 9757 // GCC by only diagnosing overloads of inherited virtual functions that 9758 // do not override any other virtual functions in the base. GCC's 9759 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 9760 // function from a base class. These cases may be better served by a 9761 // warning (not specific to virtual functions) on call sites when the 9762 // call would select a different function from the base class, were it 9763 // visible. 9764 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 9765 if (!S->IsOverload(Method, MD, false)) 9766 return true; 9767 // Collect the overload only if its hidden. 9768 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 9769 overloadedMethods.push_back(MD); 9770 } 9771 } 9772 9773 if (foundSameNameMethod) 9774 OverloadedMethods.append(overloadedMethods.begin(), 9775 overloadedMethods.end()); 9776 return foundSameNameMethod; 9777 } 9778}; 9779} // end anonymous namespace 9780 9781/// Add the most overriden methods from MD to Methods 9782static void AddMostOverridenMethods(const CXXMethodDecl *MD, 9783 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 9784 if (MD->size_overridden_methods() == 0) 9785 Methods.insert(MD->getCanonicalDecl()); 9786 else 9787 for (const CXXMethodDecl *O : MD->overridden_methods()) 9788 AddMostOverridenMethods(O, Methods); 9789} 9790 9791/// Check if a method overloads virtual methods in a base class without 9792/// overriding any. 9793void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 9794 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9795 if (!MD->getDeclName().isIdentifier()) 9796 return; 9797 9798 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 9799 /*bool RecordPaths=*/false, 9800 /*bool DetectVirtual=*/false); 9801 FindHiddenVirtualMethod FHVM; 9802 FHVM.Method = MD; 9803 FHVM.S = this; 9804 9805 // Keep the base methods that were overridden or introduced in the subclass 9806 // by 'using' in a set. A base method not in this set is hidden. 9807 CXXRecordDecl *DC = MD->getParent(); 9808 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 9809 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 9810 NamedDecl *ND = *I; 9811 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 9812 ND = shad->getTargetDecl(); 9813 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 9814 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 9815 } 9816 9817 if (DC->lookupInBases(FHVM, Paths)) 9818 OverloadedMethods = FHVM.OverloadedMethods; 9819} 9820 9821void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 9822 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9823 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 9824 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 9825 PartialDiagnostic PD = PDiag( 9826 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 9827 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 9828 Diag(overloadedMD->getLocation(), PD); 9829 } 9830} 9831 9832/// Diagnose methods which overload virtual methods in a base class 9833/// without overriding any. 9834void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 9835 if (MD->isInvalidDecl()) 9836 return; 9837 9838 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 9839 return; 9840 9841 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9842 FindHiddenVirtualMethods(MD, OverloadedMethods); 9843 if (!OverloadedMethods.empty()) { 9844 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 9845 << MD << (OverloadedMethods.size() > 1); 9846 9847 NoteHiddenVirtualMethods(MD, OverloadedMethods); 9848 } 9849} 9850 9851void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 9852 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 9853 // No diagnostics if this is a template instantiation. 9854 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 9855 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9856 diag::ext_cannot_use_trivial_abi) << &RD; 9857 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9858 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 9859 } 9860 RD.dropAttr<TrivialABIAttr>(); 9861 }; 9862 9863 // Ill-formed if the copy and move constructors are deleted. 9864 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 9865 // If the type is dependent, then assume it might have 9866 // implicit copy or move ctor because we won't know yet at this point. 9867 if (RD.isDependentType()) 9868 return true; 9869 if (RD.needsImplicitCopyConstructor() && 9870 !RD.defaultedCopyConstructorIsDeleted()) 9871 return true; 9872 if (RD.needsImplicitMoveConstructor() && 9873 !RD.defaultedMoveConstructorIsDeleted()) 9874 return true; 9875 for (const CXXConstructorDecl *CD : RD.ctors()) 9876 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 9877 return true; 9878 return false; 9879 }; 9880 9881 if (!HasNonDeletedCopyOrMoveConstructor()) { 9882 PrintDiagAndRemoveAttr(0); 9883 return; 9884 } 9885 9886 // Ill-formed if the struct has virtual functions. 9887 if (RD.isPolymorphic()) { 9888 PrintDiagAndRemoveAttr(1); 9889 return; 9890 } 9891 9892 for (const auto &B : RD.bases()) { 9893 // Ill-formed if the base class is non-trivial for the purpose of calls or a 9894 // virtual base. 9895 if (!B.getType()->isDependentType() && 9896 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 9897 PrintDiagAndRemoveAttr(2); 9898 return; 9899 } 9900 9901 if (B.isVirtual()) { 9902 PrintDiagAndRemoveAttr(3); 9903 return; 9904 } 9905 } 9906 9907 for (const auto *FD : RD.fields()) { 9908 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 9909 // non-trivial for the purpose of calls. 9910 QualType FT = FD->getType(); 9911 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 9912 PrintDiagAndRemoveAttr(4); 9913 return; 9914 } 9915 9916 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 9917 if (!RT->isDependentType() && 9918 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 9919 PrintDiagAndRemoveAttr(5); 9920 return; 9921 } 9922 } 9923} 9924 9925void Sema::ActOnFinishCXXMemberSpecification( 9926 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 9927 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 9928 if (!TagDecl) 9929 return; 9930 9931 AdjustDeclIfTemplate(TagDecl); 9932 9933 for (const ParsedAttr &AL : AttrList) { 9934 if (AL.getKind() != ParsedAttr::AT_Visibility) 9935 continue; 9936 AL.setInvalid(); 9937 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 9938 } 9939 9940 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( 9941 // strict aliasing violation! 9942 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 9943 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); 9944 9945 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 9946} 9947 9948/// Find the equality comparison functions that should be implicitly declared 9949/// in a given class definition, per C++2a [class.compare.default]p3. 9950static void findImplicitlyDeclaredEqualityComparisons( 9951 ASTContext &Ctx, CXXRecordDecl *RD, 9952 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 9953 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 9954 if (!RD->lookup(EqEq).empty()) 9955 // Member operator== explicitly declared: no implicit operator==s. 9956 return; 9957 9958 // Traverse friends looking for an '==' or a '<=>'. 9959 for (FriendDecl *Friend : RD->friends()) { 9960 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 9961 if (!FD) continue; 9962 9963 if (FD->getOverloadedOperator() == OO_EqualEqual) { 9964 // Friend operator== explicitly declared: no implicit operator==s. 9965 Spaceships.clear(); 9966 return; 9967 } 9968 9969 if (FD->getOverloadedOperator() == OO_Spaceship && 9970 FD->isExplicitlyDefaulted()) 9971 Spaceships.push_back(FD); 9972 } 9973 9974 // Look for members named 'operator<=>'. 9975 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 9976 for (NamedDecl *ND : RD->lookup(Cmp)) { 9977 // Note that we could find a non-function here (either a function template 9978 // or a using-declaration). Neither case results in an implicit 9979 // 'operator=='. 9980 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 9981 if (FD->isExplicitlyDefaulted()) 9982 Spaceships.push_back(FD); 9983 } 9984} 9985 9986/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 9987/// special functions, such as the default constructor, copy 9988/// constructor, or destructor, to the given C++ class (C++ 9989/// [special]p1). This routine can only be executed just before the 9990/// definition of the class is complete. 9991void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 9992 // Don't add implicit special members to templated classes. 9993 // FIXME: This means unqualified lookups for 'operator=' within a class 9994 // template don't work properly. 9995 if (!ClassDecl->isDependentType()) { 9996 if (ClassDecl->needsImplicitDefaultConstructor()) { 9997 ++getASTContext().NumImplicitDefaultConstructors; 9998 9999 if (ClassDecl->hasInheritedConstructor()) 10000 DeclareImplicitDefaultConstructor(ClassDecl); 10001 } 10002 10003 if (ClassDecl->needsImplicitCopyConstructor()) { 10004 ++getASTContext().NumImplicitCopyConstructors; 10005 10006 // If the properties or semantics of the copy constructor couldn't be 10007 // determined while the class was being declared, force a declaration 10008 // of it now. 10009 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 10010 ClassDecl->hasInheritedConstructor()) 10011 DeclareImplicitCopyConstructor(ClassDecl); 10012 // For the MS ABI we need to know whether the copy ctor is deleted. A 10013 // prerequisite for deleting the implicit copy ctor is that the class has 10014 // a move ctor or move assignment that is either user-declared or whose 10015 // semantics are inherited from a subobject. FIXME: We should provide a 10016 // more direct way for CodeGen to ask whether the constructor was deleted. 10017 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 10018 (ClassDecl->hasUserDeclaredMoveConstructor() || 10019 ClassDecl->needsOverloadResolutionForMoveConstructor() || 10020 ClassDecl->hasUserDeclaredMoveAssignment() || 10021 ClassDecl->needsOverloadResolutionForMoveAssignment())) 10022 DeclareImplicitCopyConstructor(ClassDecl); 10023 } 10024 10025 if (getLangOpts().CPlusPlus11 && 10026 ClassDecl->needsImplicitMoveConstructor()) { 10027 ++getASTContext().NumImplicitMoveConstructors; 10028 10029 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 10030 ClassDecl->hasInheritedConstructor()) 10031 DeclareImplicitMoveConstructor(ClassDecl); 10032 } 10033 10034 if (ClassDecl->needsImplicitCopyAssignment()) { 10035 ++getASTContext().NumImplicitCopyAssignmentOperators; 10036 10037 // If we have a dynamic class, then the copy assignment operator may be 10038 // virtual, so we have to declare it immediately. This ensures that, e.g., 10039 // it shows up in the right place in the vtable and that we diagnose 10040 // problems with the implicit exception specification. 10041 if (ClassDecl->isDynamicClass() || 10042 ClassDecl->needsOverloadResolutionForCopyAssignment() || 10043 ClassDecl->hasInheritedAssignment()) 10044 DeclareImplicitCopyAssignment(ClassDecl); 10045 } 10046 10047 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 10048 ++getASTContext().NumImplicitMoveAssignmentOperators; 10049 10050 // Likewise for the move assignment operator. 10051 if (ClassDecl->isDynamicClass() || 10052 ClassDecl->needsOverloadResolutionForMoveAssignment() || 10053 ClassDecl->hasInheritedAssignment()) 10054 DeclareImplicitMoveAssignment(ClassDecl); 10055 } 10056 10057 if (ClassDecl->needsImplicitDestructor()) { 10058 ++getASTContext().NumImplicitDestructors; 10059 10060 // If we have a dynamic class, then the destructor may be virtual, so we 10061 // have to declare the destructor immediately. This ensures that, e.g., it 10062 // shows up in the right place in the vtable and that we diagnose problems 10063 // with the implicit exception specification. 10064 if (ClassDecl->isDynamicClass() || 10065 ClassDecl->needsOverloadResolutionForDestructor()) 10066 DeclareImplicitDestructor(ClassDecl); 10067 } 10068 } 10069 10070 // C++2a [class.compare.default]p3: 10071 // If the member-specification does not explicitly declare any member or 10072 // friend named operator==, an == operator function is declared implicitly 10073 // for each defaulted three-way comparison operator function defined in 10074 // the member-specification 10075 // FIXME: Consider doing this lazily. 10076 // We do this during the initial parse for a class template, not during 10077 // instantiation, so that we can handle unqualified lookups for 'operator==' 10078 // when parsing the template. 10079 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 10080 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 10081 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 10082 DefaultedSpaceships); 10083 for (auto *FD : DefaultedSpaceships) 10084 DeclareImplicitEqualityComparison(ClassDecl, FD); 10085 } 10086} 10087 10088unsigned 10089Sema::ActOnReenterTemplateScope(Decl *D, 10090 llvm::function_ref<Scope *()> EnterScope) { 10091 if (!D) 10092 return 0; 10093 AdjustDeclIfTemplate(D); 10094 10095 // In order to get name lookup right, reenter template scopes in order from 10096 // outermost to innermost. 10097 SmallVector<TemplateParameterList *, 4> ParameterLists; 10098 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 10099 10100 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 10101 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 10102 ParameterLists.push_back(DD->getTemplateParameterList(i)); 10103 10104 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10105 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 10106 ParameterLists.push_back(FTD->getTemplateParameters()); 10107 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 10108 LookupDC = VD->getDeclContext(); 10109 10110 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 10111 ParameterLists.push_back(VTD->getTemplateParameters()); 10112 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 10113 ParameterLists.push_back(PSD->getTemplateParameters()); 10114 } 10115 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 10116 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 10117 ParameterLists.push_back(TD->getTemplateParameterList(i)); 10118 10119 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 10120 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 10121 ParameterLists.push_back(CTD->getTemplateParameters()); 10122 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 10123 ParameterLists.push_back(PSD->getTemplateParameters()); 10124 } 10125 } 10126 // FIXME: Alias declarations and concepts. 10127 10128 unsigned Count = 0; 10129 Scope *InnermostTemplateScope = nullptr; 10130 for (TemplateParameterList *Params : ParameterLists) { 10131 // Ignore explicit specializations; they don't contribute to the template 10132 // depth. 10133 if (Params->size() == 0) 10134 continue; 10135 10136 InnermostTemplateScope = EnterScope(); 10137 for (NamedDecl *Param : *Params) { 10138 if (Param->getDeclName()) { 10139 InnermostTemplateScope->AddDecl(Param); 10140 IdResolver.AddDecl(Param); 10141 } 10142 } 10143 ++Count; 10144 } 10145 10146 // Associate the new template scopes with the corresponding entities. 10147 if (InnermostTemplateScope) { 10148 assert(LookupDC && "no enclosing DeclContext for template lookup")((void)0); 10149 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10150 } 10151 10152 return Count; 10153} 10154 10155void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10156 if (!RecordD) return; 10157 AdjustDeclIfTemplate(RecordD); 10158 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10159 PushDeclContext(S, Record); 10160} 10161 10162void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10163 if (!RecordD) return; 10164 PopDeclContext(); 10165} 10166 10167/// This is used to implement the constant expression evaluation part of the 10168/// attribute enable_if extension. There is nothing in standard C++ which would 10169/// require reentering parameters. 10170void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10171 if (!Param) 10172 return; 10173 10174 S->AddDecl(Param); 10175 if (Param->getDeclName()) 10176 IdResolver.AddDecl(Param); 10177} 10178 10179/// ActOnStartDelayedCXXMethodDeclaration - We have completed 10180/// parsing a top-level (non-nested) C++ class, and we are now 10181/// parsing those parts of the given Method declaration that could 10182/// not be parsed earlier (C++ [class.mem]p2), such as default 10183/// arguments. This action should enter the scope of the given 10184/// Method declaration as if we had just parsed the qualified method 10185/// name. However, it should not bring the parameters into scope; 10186/// that will be performed by ActOnDelayedCXXMethodParameter. 10187void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10188} 10189 10190/// ActOnDelayedCXXMethodParameter - We've already started a delayed 10191/// C++ method declaration. We're (re-)introducing the given 10192/// function parameter into scope for use in parsing later parts of 10193/// the method declaration. For example, we could see an 10194/// ActOnParamDefaultArgument event for this parameter. 10195void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10196 if (!ParamD) 10197 return; 10198 10199 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10200 10201 S->AddDecl(Param); 10202 if (Param->getDeclName()) 10203 IdResolver.AddDecl(Param); 10204} 10205 10206/// ActOnFinishDelayedCXXMethodDeclaration - We have finished 10207/// processing the delayed method declaration for Method. The method 10208/// declaration is now considered finished. There may be a separate 10209/// ActOnStartOfFunctionDef action later (not necessarily 10210/// immediately!) for this method, if it was also defined inside the 10211/// class body. 10212void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10213 if (!MethodD) 10214 return; 10215 10216 AdjustDeclIfTemplate(MethodD); 10217 10218 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10219 10220 // Now that we have our default arguments, check the constructor 10221 // again. It could produce additional diagnostics or affect whether 10222 // the class has implicitly-declared destructors, among other 10223 // things. 10224 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10225 CheckConstructor(Constructor); 10226 10227 // Check the default arguments, which we may have added. 10228 if (!Method->isInvalidDecl()) 10229 CheckCXXDefaultArguments(Method); 10230} 10231 10232// Emit the given diagnostic for each non-address-space qualifier. 10233// Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10234static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10235 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10236 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10237 bool DiagOccured = false; 10238 FTI.MethodQualifiers->forEachQualifier( 10239 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10240 SourceLocation SL) { 10241 // This diagnostic should be emitted on any qualifier except an addr 10242 // space qualifier. However, forEachQualifier currently doesn't visit 10243 // addr space qualifiers, so there's no way to write this condition 10244 // right now; we just diagnose on everything. 10245 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10246 DiagOccured = true; 10247 }); 10248 if (DiagOccured) 10249 D.setInvalidType(); 10250 } 10251} 10252 10253/// CheckConstructorDeclarator - Called by ActOnDeclarator to check 10254/// the well-formedness of the constructor declarator @p D with type @p 10255/// R. If there are any errors in the declarator, this routine will 10256/// emit diagnostics and set the invalid bit to true. In any case, the type 10257/// will be updated to reflect a well-formed type for the constructor and 10258/// returned. 10259QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10260 StorageClass &SC) { 10261 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10262 10263 // C++ [class.ctor]p3: 10264 // A constructor shall not be virtual (10.3) or static (9.4). A 10265 // constructor can be invoked for a const, volatile or const 10266 // volatile object. A constructor shall not be declared const, 10267 // volatile, or const volatile (9.3.2). 10268 if (isVirtual) { 10269 if (!D.isInvalidType()) 10270 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10271 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10272 << SourceRange(D.getIdentifierLoc()); 10273 D.setInvalidType(); 10274 } 10275 if (SC == SC_Static) { 10276 if (!D.isInvalidType()) 10277 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10278 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10279 << SourceRange(D.getIdentifierLoc()); 10280 D.setInvalidType(); 10281 SC = SC_None; 10282 } 10283 10284 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10285 diagnoseIgnoredQualifiers( 10286 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10287 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10288 D.getDeclSpec().getRestrictSpecLoc(), 10289 D.getDeclSpec().getAtomicSpecLoc()); 10290 D.setInvalidType(); 10291 } 10292 10293 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10294 10295 // C++0x [class.ctor]p4: 10296 // A constructor shall not be declared with a ref-qualifier. 10297 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10298 if (FTI.hasRefQualifier()) { 10299 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10300 << FTI.RefQualifierIsLValueRef 10301 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10302 D.setInvalidType(); 10303 } 10304 10305 // Rebuild the function type "R" without any type qualifiers (in 10306 // case any of the errors above fired) and with "void" as the 10307 // return type, since constructors don't have return types. 10308 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10309 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10310 return R; 10311 10312 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10313 EPI.TypeQuals = Qualifiers(); 10314 EPI.RefQualifier = RQ_None; 10315 10316 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10317} 10318 10319/// CheckConstructor - Checks a fully-formed constructor for 10320/// well-formedness, issuing any diagnostics required. Returns true if 10321/// the constructor declarator is invalid. 10322void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10323 CXXRecordDecl *ClassDecl 10324 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10325 if (!ClassDecl) 10326 return Constructor->setInvalidDecl(); 10327 10328 // C++ [class.copy]p3: 10329 // A declaration of a constructor for a class X is ill-formed if 10330 // its first parameter is of type (optionally cv-qualified) X and 10331 // either there are no other parameters or else all other 10332 // parameters have default arguments. 10333 if (!Constructor->isInvalidDecl() && 10334 Constructor->hasOneParamOrDefaultArgs() && 10335 Constructor->getTemplateSpecializationKind() != 10336 TSK_ImplicitInstantiation) { 10337 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10338 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10339 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10340 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10341 const char *ConstRef 10342 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10343 : " const &"; 10344 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10345 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10346 10347 // FIXME: Rather that making the constructor invalid, we should endeavor 10348 // to fix the type. 10349 Constructor->setInvalidDecl(); 10350 } 10351 } 10352} 10353 10354/// CheckDestructor - Checks a fully-formed destructor definition for 10355/// well-formedness, issuing any diagnostics required. Returns true 10356/// on error. 10357bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10358 CXXRecordDecl *RD = Destructor->getParent(); 10359 10360 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10361 SourceLocation Loc; 10362 10363 if (!Destructor->isImplicit()) 10364 Loc = Destructor->getLocation(); 10365 else 10366 Loc = RD->getLocation(); 10367 10368 // If we have a virtual destructor, look up the deallocation function 10369 if (FunctionDecl *OperatorDelete = 10370 FindDeallocationFunctionForDestructor(Loc, RD)) { 10371 Expr *ThisArg = nullptr; 10372 10373 // If the notional 'delete this' expression requires a non-trivial 10374 // conversion from 'this' to the type of a destroying operator delete's 10375 // first parameter, perform that conversion now. 10376 if (OperatorDelete->isDestroyingOperatorDelete()) { 10377 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10378 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10379 // C++ [class.dtor]p13: 10380 // ... as if for the expression 'delete this' appearing in a 10381 // non-virtual destructor of the destructor's class. 10382 ContextRAII SwitchContext(*this, Destructor); 10383 ExprResult This = 10384 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10385 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")((void)0); 10386 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 10387 if (This.isInvalid()) { 10388 // FIXME: Register this as a context note so that it comes out 10389 // in the right order. 10390 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10391 return true; 10392 } 10393 ThisArg = This.get(); 10394 } 10395 } 10396 10397 DiagnoseUseOfDecl(OperatorDelete, Loc); 10398 MarkFunctionReferenced(Loc, OperatorDelete); 10399 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10400 } 10401 } 10402 10403 return false; 10404} 10405 10406/// CheckDestructorDeclarator - Called by ActOnDeclarator to check 10407/// the well-formednes of the destructor declarator @p D with type @p 10408/// R. If there are any errors in the declarator, this routine will 10409/// emit diagnostics and set the declarator to invalid. Even if this happens, 10410/// will be updated to reflect a well-formed type for the destructor and 10411/// returned. 10412QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10413 StorageClass& SC) { 10414 // C++ [class.dtor]p1: 10415 // [...] A typedef-name that names a class is a class-name 10416 // (7.1.3); however, a typedef-name that names a class shall not 10417 // be used as the identifier in the declarator for a destructor 10418 // declaration. 10419 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10420 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10421 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10422 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10423 else if (const TemplateSpecializationType *TST = 10424 DeclaratorType->getAs<TemplateSpecializationType>()) 10425 if (TST->isTypeAlias()) 10426 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10427 << DeclaratorType << 1; 10428 10429 // C++ [class.dtor]p2: 10430 // A destructor is used to destroy objects of its class type. A 10431 // destructor takes no parameters, and no return type can be 10432 // specified for it (not even void). The address of a destructor 10433 // shall not be taken. A destructor shall not be static. A 10434 // destructor can be invoked for a const, volatile or const 10435 // volatile object. A destructor shall not be declared const, 10436 // volatile or const volatile (9.3.2). 10437 if (SC == SC_Static) { 10438 if (!D.isInvalidType()) 10439 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 10440 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10441 << SourceRange(D.getIdentifierLoc()) 10442 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10443 10444 SC = SC_None; 10445 } 10446 if (!D.isInvalidType()) { 10447 // Destructors don't have return types, but the parser will 10448 // happily parse something like: 10449 // 10450 // class X { 10451 // float ~X(); 10452 // }; 10453 // 10454 // The return type will be eliminated later. 10455 if (D.getDeclSpec().hasTypeSpecifier()) 10456 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 10457 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 10458 << SourceRange(D.getIdentifierLoc()); 10459 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10460 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 10461 SourceLocation(), 10462 D.getDeclSpec().getConstSpecLoc(), 10463 D.getDeclSpec().getVolatileSpecLoc(), 10464 D.getDeclSpec().getRestrictSpecLoc(), 10465 D.getDeclSpec().getAtomicSpecLoc()); 10466 D.setInvalidType(); 10467 } 10468 } 10469 10470 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 10471 10472 // C++0x [class.dtor]p2: 10473 // A destructor shall not be declared with a ref-qualifier. 10474 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10475 if (FTI.hasRefQualifier()) { 10476 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10477 << FTI.RefQualifierIsLValueRef 10478 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10479 D.setInvalidType(); 10480 } 10481 10482 // Make sure we don't have any parameters. 10483 if (FTIHasNonVoidParameters(FTI)) { 10484 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10485 10486 // Delete the parameters. 10487 FTI.freeParams(); 10488 D.setInvalidType(); 10489 } 10490 10491 // Make sure the destructor isn't variadic. 10492 if (FTI.isVariadic) { 10493 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10494 D.setInvalidType(); 10495 } 10496 10497 // Rebuild the function type "R" without any type qualifiers or 10498 // parameters (in case any of the errors above fired) and with 10499 // "void" as the return type, since destructors don't have return 10500 // types. 10501 if (!D.isInvalidType()) 10502 return R; 10503 10504 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10505 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10506 EPI.Variadic = false; 10507 EPI.TypeQuals = Qualifiers(); 10508 EPI.RefQualifier = RQ_None; 10509 return Context.getFunctionType(Context.VoidTy, None, EPI); 10510} 10511 10512static void extendLeft(SourceRange &R, SourceRange Before) { 10513 if (Before.isInvalid()) 10514 return; 10515 R.setBegin(Before.getBegin()); 10516 if (R.getEnd().isInvalid()) 10517 R.setEnd(Before.getEnd()); 10518} 10519 10520static void extendRight(SourceRange &R, SourceRange After) { 10521 if (After.isInvalid()) 10522 return; 10523 if (R.getBegin().isInvalid()) 10524 R.setBegin(After.getBegin()); 10525 R.setEnd(After.getEnd()); 10526} 10527 10528/// CheckConversionDeclarator - Called by ActOnDeclarator to check the 10529/// well-formednes of the conversion function declarator @p D with 10530/// type @p R. If there are any errors in the declarator, this routine 10531/// will emit diagnostics and return true. Otherwise, it will return 10532/// false. Either way, the type @p R will be updated to reflect a 10533/// well-formed type for the conversion operator. 10534void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 10535 StorageClass& SC) { 10536 // C++ [class.conv.fct]p1: 10537 // Neither parameter types nor return type can be specified. The 10538 // type of a conversion function (8.3.5) is "function taking no 10539 // parameter returning conversion-type-id." 10540 if (SC == SC_Static) { 10541 if (!D.isInvalidType()) 10542 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 10543 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10544 << D.getName().getSourceRange(); 10545 D.setInvalidType(); 10546 SC = SC_None; 10547 } 10548 10549 TypeSourceInfo *ConvTSI = nullptr; 10550 QualType ConvType = 10551 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 10552 10553 const DeclSpec &DS = D.getDeclSpec(); 10554 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 10555 // Conversion functions don't have return types, but the parser will 10556 // happily parse something like: 10557 // 10558 // class X { 10559 // float operator bool(); 10560 // }; 10561 // 10562 // The return type will be changed later anyway. 10563 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 10564 << SourceRange(DS.getTypeSpecTypeLoc()) 10565 << SourceRange(D.getIdentifierLoc()); 10566 D.setInvalidType(); 10567 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 10568 // It's also plausible that the user writes type qualifiers in the wrong 10569 // place, such as: 10570 // struct S { const operator int(); }; 10571 // FIXME: we could provide a fixit to move the qualifiers onto the 10572 // conversion type. 10573 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 10574 << SourceRange(D.getIdentifierLoc()) << 0; 10575 D.setInvalidType(); 10576 } 10577 10578 const auto *Proto = R->castAs<FunctionProtoType>(); 10579 10580 // Make sure we don't have any parameters. 10581 if (Proto->getNumParams() > 0) { 10582 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 10583 10584 // Delete the parameters. 10585 D.getFunctionTypeInfo().freeParams(); 10586 D.setInvalidType(); 10587 } else if (Proto->isVariadic()) { 10588 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 10589 D.setInvalidType(); 10590 } 10591 10592 // Diagnose "&operator bool()" and other such nonsense. This 10593 // is actually a gcc extension which we don't support. 10594 if (Proto->getReturnType() != ConvType) { 10595 bool NeedsTypedef = false; 10596 SourceRange Before, After; 10597 10598 // Walk the chunks and extract information on them for our diagnostic. 10599 bool PastFunctionChunk = false; 10600 for (auto &Chunk : D.type_objects()) { 10601 switch (Chunk.Kind) { 10602 case DeclaratorChunk::Function: 10603 if (!PastFunctionChunk) { 10604 if (Chunk.Fun.HasTrailingReturnType) { 10605 TypeSourceInfo *TRT = nullptr; 10606 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 10607 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 10608 } 10609 PastFunctionChunk = true; 10610 break; 10611 } 10612 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 10613 case DeclaratorChunk::Array: 10614 NeedsTypedef = true; 10615 extendRight(After, Chunk.getSourceRange()); 10616 break; 10617 10618 case DeclaratorChunk::Pointer: 10619 case DeclaratorChunk::BlockPointer: 10620 case DeclaratorChunk::Reference: 10621 case DeclaratorChunk::MemberPointer: 10622 case DeclaratorChunk::Pipe: 10623 extendLeft(Before, Chunk.getSourceRange()); 10624 break; 10625 10626 case DeclaratorChunk::Paren: 10627 extendLeft(Before, Chunk.Loc); 10628 extendRight(After, Chunk.EndLoc); 10629 break; 10630 } 10631 } 10632 10633 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 10634 After.isValid() ? After.getBegin() : 10635 D.getIdentifierLoc(); 10636 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 10637 DB << Before << After; 10638 10639 if (!NeedsTypedef) { 10640 DB << /*don't need a typedef*/0; 10641 10642 // If we can provide a correct fix-it hint, do so. 10643 if (After.isInvalid() && ConvTSI) { 10644 SourceLocation InsertLoc = 10645 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 10646 DB << FixItHint::CreateInsertion(InsertLoc, " ") 10647 << FixItHint::CreateInsertionFromRange( 10648 InsertLoc, CharSourceRange::getTokenRange(Before)) 10649 << FixItHint::CreateRemoval(Before); 10650 } 10651 } else if (!Proto->getReturnType()->isDependentType()) { 10652 DB << /*typedef*/1 << Proto->getReturnType(); 10653 } else if (getLangOpts().CPlusPlus11) { 10654 DB << /*alias template*/2 << Proto->getReturnType(); 10655 } else { 10656 DB << /*might not be fixable*/3; 10657 } 10658 10659 // Recover by incorporating the other type chunks into the result type. 10660 // Note, this does *not* change the name of the function. This is compatible 10661 // with the GCC extension: 10662 // struct S { &operator int(); } s; 10663 // int &r = s.operator int(); // ok in GCC 10664 // S::operator int&() {} // error in GCC, function name is 'operator int'. 10665 ConvType = Proto->getReturnType(); 10666 } 10667 10668 // C++ [class.conv.fct]p4: 10669 // The conversion-type-id shall not represent a function type nor 10670 // an array type. 10671 if (ConvType->isArrayType()) { 10672 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 10673 ConvType = Context.getPointerType(ConvType); 10674 D.setInvalidType(); 10675 } else if (ConvType->isFunctionType()) { 10676 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 10677 ConvType = Context.getPointerType(ConvType); 10678 D.setInvalidType(); 10679 } 10680 10681 // Rebuild the function type "R" without any parameters (in case any 10682 // of the errors above fired) and with the conversion type as the 10683 // return type. 10684 if (D.isInvalidType()) 10685 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); 10686 10687 // C++0x explicit conversion operators. 10688 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 10689 Diag(DS.getExplicitSpecLoc(), 10690 getLangOpts().CPlusPlus11 10691 ? diag::warn_cxx98_compat_explicit_conversion_functions 10692 : diag::ext_explicit_conversion_functions) 10693 << SourceRange(DS.getExplicitSpecRange()); 10694} 10695 10696/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 10697/// the declaration of the given C++ conversion function. This routine 10698/// is responsible for recording the conversion function in the C++ 10699/// class, if possible. 10700Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 10701 assert(Conversion && "Expected to receive a conversion function declaration")((void)0); 10702 10703 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 10704 10705 // Make sure we aren't redeclaring the conversion function. 10706 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 10707 // C++ [class.conv.fct]p1: 10708 // [...] A conversion function is never used to convert a 10709 // (possibly cv-qualified) object to the (possibly cv-qualified) 10710 // same object type (or a reference to it), to a (possibly 10711 // cv-qualified) base class of that type (or a reference to it), 10712 // or to (possibly cv-qualified) void. 10713 QualType ClassType 10714 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 10715 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 10716 ConvType = ConvTypeRef->getPointeeType(); 10717 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 10718 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 10719 /* Suppress diagnostics for instantiations. */; 10720 else if (Conversion->size_overridden_methods() != 0) 10721 /* Suppress diagnostics for overriding virtual function in a base class. */; 10722 else if (ConvType->isRecordType()) { 10723 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 10724 if (ConvType == ClassType) 10725 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 10726 << ClassType; 10727 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 10728 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 10729 << ClassType << ConvType; 10730 } else if (ConvType->isVoidType()) { 10731 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 10732 << ClassType << ConvType; 10733 } 10734 10735 if (FunctionTemplateDecl *ConversionTemplate 10736 = Conversion->getDescribedFunctionTemplate()) 10737 return ConversionTemplate; 10738 10739 return Conversion; 10740} 10741 10742namespace { 10743/// Utility class to accumulate and print a diagnostic listing the invalid 10744/// specifier(s) on a declaration. 10745struct BadSpecifierDiagnoser { 10746 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 10747 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 10748 ~BadSpecifierDiagnoser() { 10749 Diagnostic << Specifiers; 10750 } 10751 10752 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 10753 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 10754 } 10755 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 10756 return check(SpecLoc, 10757 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 10758 } 10759 void check(SourceLocation SpecLoc, const char *Spec) { 10760 if (SpecLoc.isInvalid()) return; 10761 Diagnostic << SourceRange(SpecLoc, SpecLoc); 10762 if (!Specifiers.empty()) Specifiers += " "; 10763 Specifiers += Spec; 10764 } 10765 10766 Sema &S; 10767 Sema::SemaDiagnosticBuilder Diagnostic; 10768 std::string Specifiers; 10769}; 10770} 10771 10772/// Check the validity of a declarator that we parsed for a deduction-guide. 10773/// These aren't actually declarators in the grammar, so we need to check that 10774/// the user didn't specify any pieces that are not part of the deduction-guide 10775/// grammar. 10776void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 10777 StorageClass &SC) { 10778 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 10779 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 10780 assert(GuidedTemplateDecl && "missing template decl for deduction guide")((void)0); 10781 10782 // C++ [temp.deduct.guide]p3: 10783 // A deduction-gide shall be declared in the same scope as the 10784 // corresponding class template. 10785 if (!CurContext->getRedeclContext()->Equals( 10786 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 10787 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 10788 << GuidedTemplateDecl; 10789 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 10790 } 10791 10792 auto &DS = D.getMutableDeclSpec(); 10793 // We leave 'friend' and 'virtual' to be rejected in the normal way. 10794 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 10795 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 10796 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 10797 BadSpecifierDiagnoser Diagnoser( 10798 *this, D.getIdentifierLoc(), 10799 diag::err_deduction_guide_invalid_specifier); 10800 10801 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 10802 DS.ClearStorageClassSpecs(); 10803 SC = SC_None; 10804 10805 // 'explicit' is permitted. 10806 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 10807 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 10808 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 10809 DS.ClearConstexprSpec(); 10810 10811 Diagnoser.check(DS.getConstSpecLoc(), "const"); 10812 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 10813 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 10814 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 10815 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 10816 DS.ClearTypeQualifiers(); 10817 10818 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 10819 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 10820 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 10821 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 10822 DS.ClearTypeSpecType(); 10823 } 10824 10825 if (D.isInvalidType()) 10826 return; 10827 10828 // Check the declarator is simple enough. 10829 bool FoundFunction = false; 10830 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 10831 if (Chunk.Kind == DeclaratorChunk::Paren) 10832 continue; 10833 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 10834 Diag(D.getDeclSpec().getBeginLoc(), 10835 diag::err_deduction_guide_with_complex_decl) 10836 << D.getSourceRange(); 10837 break; 10838 } 10839 if (!Chunk.Fun.hasTrailingReturnType()) { 10840 Diag(D.getName().getBeginLoc(), 10841 diag::err_deduction_guide_no_trailing_return_type); 10842 break; 10843 } 10844 10845 // Check that the return type is written as a specialization of 10846 // the template specified as the deduction-guide's name. 10847 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 10848 TypeSourceInfo *TSI = nullptr; 10849 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 10850 assert(TSI && "deduction guide has valid type but invalid return type?")((void)0); 10851 bool AcceptableReturnType = false; 10852 bool MightInstantiateToSpecialization = false; 10853 if (auto RetTST = 10854 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { 10855 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 10856 bool TemplateMatches = 10857 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 10858 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) 10859 AcceptableReturnType = true; 10860 else { 10861 // This could still instantiate to the right type, unless we know it 10862 // names the wrong class template. 10863 auto *TD = SpecifiedName.getAsTemplateDecl(); 10864 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 10865 !TemplateMatches); 10866 } 10867 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 10868 MightInstantiateToSpecialization = true; 10869 } 10870 10871 if (!AcceptableReturnType) { 10872 Diag(TSI->getTypeLoc().getBeginLoc(), 10873 diag::err_deduction_guide_bad_trailing_return_type) 10874 << GuidedTemplate << TSI->getType() 10875 << MightInstantiateToSpecialization 10876 << TSI->getTypeLoc().getSourceRange(); 10877 } 10878 10879 // Keep going to check that we don't have any inner declarator pieces (we 10880 // could still have a function returning a pointer to a function). 10881 FoundFunction = true; 10882 } 10883 10884 if (D.isFunctionDefinition()) 10885 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 10886} 10887 10888//===----------------------------------------------------------------------===// 10889// Namespace Handling 10890//===----------------------------------------------------------------------===// 10891 10892/// Diagnose a mismatch in 'inline' qualifiers when a namespace is 10893/// reopened. 10894static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 10895 SourceLocation Loc, 10896 IdentifierInfo *II, bool *IsInline, 10897 NamespaceDecl *PrevNS) { 10898 assert(*IsInline != PrevNS->isInline())((void)0); 10899 10900 if (PrevNS->isInline()) 10901 // The user probably just forgot the 'inline', so suggest that it 10902 // be added back. 10903 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 10904 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 10905 else 10906 S.Diag(Loc, diag::err_inline_namespace_mismatch); 10907 10908 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 10909 *IsInline = PrevNS->isInline(); 10910} 10911 10912/// ActOnStartNamespaceDef - This is called at the start of a namespace 10913/// definition. 10914Decl *Sema::ActOnStartNamespaceDef( 10915 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, 10916 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, 10917 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { 10918 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 10919 // For anonymous namespace, take the location of the left brace. 10920 SourceLocation Loc = II ? IdentLoc : LBrace; 10921 bool IsInline = InlineLoc.isValid(); 10922 bool IsInvalid = false; 10923 bool IsStd = false; 10924 bool AddToKnown = false; 10925 Scope *DeclRegionScope = NamespcScope->getParent(); 10926 10927 NamespaceDecl *PrevNS = nullptr; 10928 if (II) { 10929 // C++ [namespace.def]p2: 10930 // The identifier in an original-namespace-definition shall not 10931 // have been previously defined in the declarative region in 10932 // which the original-namespace-definition appears. The 10933 // identifier in an original-namespace-definition is the name of 10934 // the namespace. Subsequently in that declarative region, it is 10935 // treated as an original-namespace-name. 10936 // 10937 // Since namespace names are unique in their scope, and we don't 10938 // look through using directives, just look for any ordinary names 10939 // as if by qualified name lookup. 10940 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 10941 ForExternalRedeclaration); 10942 LookupQualifiedName(R, CurContext->getRedeclContext()); 10943 NamedDecl *PrevDecl = 10944 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 10945 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 10946 10947 if (PrevNS) { 10948 // This is an extended namespace definition. 10949 if (IsInline != PrevNS->isInline()) 10950 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 10951 &IsInline, PrevNS); 10952 } else if (PrevDecl) { 10953 // This is an invalid name redefinition. 10954 Diag(Loc, diag::err_redefinition_different_kind) 10955 << II; 10956 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 10957 IsInvalid = true; 10958 // Continue on to push Namespc as current DeclContext and return it. 10959 } else if (II->isStr("std") && 10960 CurContext->getRedeclContext()->isTranslationUnit()) { 10961 // This is the first "real" definition of the namespace "std", so update 10962 // our cache of the "std" namespace to point at this definition. 10963 PrevNS = getStdNamespace(); 10964 IsStd = true; 10965 AddToKnown = !IsInline; 10966 } else { 10967 // We've seen this namespace for the first time. 10968 AddToKnown = !IsInline; 10969 } 10970 } else { 10971 // Anonymous namespaces. 10972 10973 // Determine whether the parent already has an anonymous namespace. 10974 DeclContext *Parent = CurContext->getRedeclContext(); 10975 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 10976 PrevNS = TU->getAnonymousNamespace(); 10977 } else { 10978 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 10979 PrevNS = ND->getAnonymousNamespace(); 10980 } 10981 10982 if (PrevNS && IsInline != PrevNS->isInline()) 10983 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 10984 &IsInline, PrevNS); 10985 } 10986 10987 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, 10988 StartLoc, Loc, II, PrevNS); 10989 if (IsInvalid) 10990 Namespc->setInvalidDecl(); 10991 10992 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 10993 AddPragmaAttributes(DeclRegionScope, Namespc); 10994 10995 // FIXME: Should we be merging attributes? 10996 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 10997 PushNamespaceVisibilityAttr(Attr, Loc); 10998 10999 if (IsStd) 11000 StdNamespace = Namespc; 11001 if (AddToKnown) 11002 KnownNamespaces[Namespc] = false; 11003 11004 if (II) { 11005 PushOnScopeChains(Namespc, DeclRegionScope); 11006 } else { 11007 // Link the anonymous namespace into its parent. 11008 DeclContext *Parent = CurContext->getRedeclContext(); 11009 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11010 TU->setAnonymousNamespace(Namespc); 11011 } else { 11012 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 11013 } 11014 11015 CurContext->addDecl(Namespc); 11016 11017 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 11018 // behaves as if it were replaced by 11019 // namespace unique { /* empty body */ } 11020 // using namespace unique; 11021 // namespace unique { namespace-body } 11022 // where all occurrences of 'unique' in a translation unit are 11023 // replaced by the same identifier and this identifier differs 11024 // from all other identifiers in the entire program. 11025 11026 // We just create the namespace with an empty name and then add an 11027 // implicit using declaration, just like the standard suggests. 11028 // 11029 // CodeGen enforces the "universally unique" aspect by giving all 11030 // declarations semantically contained within an anonymous 11031 // namespace internal linkage. 11032 11033 if (!PrevNS) { 11034 UD = UsingDirectiveDecl::Create(Context, Parent, 11035 /* 'using' */ LBrace, 11036 /* 'namespace' */ SourceLocation(), 11037 /* qualifier */ NestedNameSpecifierLoc(), 11038 /* identifier */ SourceLocation(), 11039 Namespc, 11040 /* Ancestor */ Parent); 11041 UD->setImplicit(); 11042 Parent->addDecl(UD); 11043 } 11044 } 11045 11046 ActOnDocumentableDecl(Namespc); 11047 11048 // Although we could have an invalid decl (i.e. the namespace name is a 11049 // redefinition), push it as current DeclContext and try to continue parsing. 11050 // FIXME: We should be able to push Namespc here, so that the each DeclContext 11051 // for the namespace has the declarations that showed up in that particular 11052 // namespace definition. 11053 PushDeclContext(NamespcScope, Namespc); 11054 return Namespc; 11055} 11056 11057/// getNamespaceDecl - Returns the namespace a decl represents. If the decl 11058/// is a namespace alias, returns the namespace it points to. 11059static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 11060 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 11061 return AD->getNamespace(); 11062 return dyn_cast_or_null<NamespaceDecl>(D); 11063} 11064 11065/// ActOnFinishNamespaceDef - This callback is called after a namespace is 11066/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 11067void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 11068 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 11069 assert(Namespc && "Invalid parameter, expected NamespaceDecl")((void)0); 11070 Namespc->setRBraceLoc(RBrace); 11071 PopDeclContext(); 11072 if (Namespc->hasAttr<VisibilityAttr>()) 11073 PopPragmaVisibility(true, RBrace); 11074 // If this namespace contains an export-declaration, export it now. 11075 if (DeferredExportedNamespaces.erase(Namespc)) 11076 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 11077} 11078 11079CXXRecordDecl *Sema::getStdBadAlloc() const { 11080 return cast_or_null<CXXRecordDecl>( 11081 StdBadAlloc.get(Context.getExternalSource())); 11082} 11083 11084EnumDecl *Sema::getStdAlignValT() const { 11085 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 11086} 11087 11088NamespaceDecl *Sema::getStdNamespace() const { 11089 return cast_or_null<NamespaceDecl>( 11090 StdNamespace.get(Context.getExternalSource())); 11091} 11092 11093NamespaceDecl *Sema::lookupStdExperimentalNamespace() { 11094 if (!StdExperimentalNamespaceCache) { 11095 if (auto Std = getStdNamespace()) { 11096 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), 11097 SourceLocation(), LookupNamespaceName); 11098 if (!LookupQualifiedName(Result, Std) || 11099 !(StdExperimentalNamespaceCache = 11100 Result.getAsSingle<NamespaceDecl>())) 11101 Result.suppressDiagnostics(); 11102 } 11103 } 11104 return StdExperimentalNamespaceCache; 11105} 11106 11107namespace { 11108 11109enum UnsupportedSTLSelect { 11110 USS_InvalidMember, 11111 USS_MissingMember, 11112 USS_NonTrivial, 11113 USS_Other 11114}; 11115 11116struct InvalidSTLDiagnoser { 11117 Sema &S; 11118 SourceLocation Loc; 11119 QualType TyForDiags; 11120 11121 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11122 const VarDecl *VD = nullptr) { 11123 { 11124 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11125 << TyForDiags << ((int)Sel); 11126 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11127 assert(!Name.empty())((void)0); 11128 D << Name; 11129 } 11130 } 11131 if (Sel == USS_InvalidMember) { 11132 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11133 << VD << VD->getSourceRange(); 11134 } 11135 return QualType(); 11136 } 11137}; 11138} // namespace 11139 11140QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11141 SourceLocation Loc, 11142 ComparisonCategoryUsage Usage) { 11143 assert(getLangOpts().CPlusPlus &&((void)0) 11144 "Looking for comparison category type outside of C++.")((void)0); 11145 11146 // Use an elaborated type for diagnostics which has a name containing the 11147 // prepended 'std' namespace but not any inline namespace names. 11148 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11149 auto *NNS = 11150 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11151 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 11152 }; 11153 11154 // Check if we've already successfully checked the comparison category type 11155 // before. If so, skip checking it again. 11156 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11157 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11158 // The only thing we need to check is that the type has a reachable 11159 // definition in the current context. 11160 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11161 return QualType(); 11162 11163 return Info->getType(); 11164 } 11165 11166 // If lookup failed 11167 if (!Info) { 11168 std::string NameForDiags = "std::"; 11169 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11170 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11171 << NameForDiags << (int)Usage; 11172 return QualType(); 11173 } 11174 11175 assert(Info->Kind == Kind)((void)0); 11176 assert(Info->Record)((void)0); 11177 11178 // Update the Record decl in case we encountered a forward declaration on our 11179 // first pass. FIXME: This is a bit of a hack. 11180 if (Info->Record->hasDefinition()) 11181 Info->Record = Info->Record->getDefinition(); 11182 11183 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11184 return QualType(); 11185 11186 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11187 11188 if (!Info->Record->isTriviallyCopyable()) 11189 return UnsupportedSTLError(USS_NonTrivial); 11190 11191 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11192 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11193 // Tolerate empty base classes. 11194 if (Base->isEmpty()) 11195 continue; 11196 // Reject STL implementations which have at least one non-empty base. 11197 return UnsupportedSTLError(); 11198 } 11199 11200 // Check that the STL has implemented the types using a single integer field. 11201 // This expectation allows better codegen for builtin operators. We require: 11202 // (1) The class has exactly one field. 11203 // (2) The field is an integral or enumeration type. 11204 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11205 if (std::distance(FIt, FEnd) != 1 || 11206 !FIt->getType()->isIntegralOrEnumerationType()) { 11207 return UnsupportedSTLError(); 11208 } 11209 11210 // Build each of the require values and store them in Info. 11211 for (ComparisonCategoryResult CCR : 11212 ComparisonCategories::getPossibleResultsForType(Kind)) { 11213 StringRef MemName = ComparisonCategories::getResultString(CCR); 11214 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11215 11216 if (!ValInfo) 11217 return UnsupportedSTLError(USS_MissingMember, MemName); 11218 11219 VarDecl *VD = ValInfo->VD; 11220 assert(VD && "should not be null!")((void)0); 11221 11222 // Attempt to diagnose reasons why the STL definition of this type 11223 // might be foobar, including it failing to be a constant expression. 11224 // TODO Handle more ways the lookup or result can be invalid. 11225 if (!VD->isStaticDataMember() || 11226 !VD->isUsableInConstantExpressions(Context)) 11227 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11228 11229 // Attempt to evaluate the var decl as a constant expression and extract 11230 // the value of its first field as a ICE. If this fails, the STL 11231 // implementation is not supported. 11232 if (!ValInfo->hasValidIntValue()) 11233 return UnsupportedSTLError(); 11234 11235 MarkVariableReferenced(Loc, VD); 11236 } 11237 11238 // We've successfully built the required types and expressions. Update 11239 // the cache and return the newly cached value. 11240 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11241 return Info->getType(); 11242} 11243 11244/// Retrieve the special "std" namespace, which may require us to 11245/// implicitly define the namespace. 11246NamespaceDecl *Sema::getOrCreateStdNamespace() { 11247 if (!StdNamespace) { 11248 // The "std" namespace has not yet been defined, so build one implicitly. 11249 StdNamespace = NamespaceDecl::Create(Context, 11250 Context.getTranslationUnitDecl(), 11251 /*Inline=*/false, 11252 SourceLocation(), SourceLocation(), 11253 &PP.getIdentifierTable().get("std"), 11254 /*PrevDecl=*/nullptr); 11255 getStdNamespace()->setImplicit(true); 11256 } 11257 11258 return getStdNamespace(); 11259} 11260 11261bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11262 assert(getLangOpts().CPlusPlus &&((void)0) 11263 "Looking for std::initializer_list outside of C++.")((void)0); 11264 11265 // We're looking for implicit instantiations of 11266 // template <typename E> class std::initializer_list. 11267 11268 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11269 return false; 11270 11271 ClassTemplateDecl *Template = nullptr; 11272 const TemplateArgument *Arguments = nullptr; 11273 11274 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11275 11276 ClassTemplateSpecializationDecl *Specialization = 11277 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11278 if (!Specialization) 11279 return false; 11280 11281 Template = Specialization->getSpecializedTemplate(); 11282 Arguments = Specialization->getTemplateArgs().data(); 11283 } else if (const TemplateSpecializationType *TST = 11284 Ty->getAs<TemplateSpecializationType>()) { 11285 Template = dyn_cast_or_null<ClassTemplateDecl>( 11286 TST->getTemplateName().getAsTemplateDecl()); 11287 Arguments = TST->getArgs(); 11288 } 11289 if (!Template) 11290 return false; 11291 11292 if (!StdInitializerList) { 11293 // Haven't recognized std::initializer_list yet, maybe this is it. 11294 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 11295 if (TemplateClass->getIdentifier() != 11296 &PP.getIdentifierTable().get("initializer_list") || 11297 !getStdNamespace()->InEnclosingNamespaceSetOf( 11298 TemplateClass->getDeclContext())) 11299 return false; 11300 // This is a template called std::initializer_list, but is it the right 11301 // template? 11302 TemplateParameterList *Params = Template->getTemplateParameters(); 11303 if (Params->getMinRequiredArguments() != 1) 11304 return false; 11305 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 11306 return false; 11307 11308 // It's the right template. 11309 StdInitializerList = Template; 11310 } 11311 11312 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 11313 return false; 11314 11315 // This is an instance of std::initializer_list. Find the argument type. 11316 if (Element) 11317 *Element = Arguments[0].getAsType(); 11318 return true; 11319} 11320 11321static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 11322 NamespaceDecl *Std = S.getStdNamespace(); 11323 if (!Std) { 11324 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11325 return nullptr; 11326 } 11327 11328 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 11329 Loc, Sema::LookupOrdinaryName); 11330 if (!S.LookupQualifiedName(Result, Std)) { 11331 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11332 return nullptr; 11333 } 11334 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 11335 if (!Template) { 11336 Result.suppressDiagnostics(); 11337 // We found something weird. Complain about the first thing we found. 11338 NamedDecl *Found = *Result.begin(); 11339 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 11340 return nullptr; 11341 } 11342 11343 // We found some template called std::initializer_list. Now verify that it's 11344 // correct. 11345 TemplateParameterList *Params = Template->getTemplateParameters(); 11346 if (Params->getMinRequiredArguments() != 1 || 11347 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 11348 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 11349 return nullptr; 11350 } 11351 11352 return Template; 11353} 11354 11355QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 11356 if (!StdInitializerList) { 11357 StdInitializerList = LookupStdInitializerList(*this, Loc); 11358 if (!StdInitializerList) 11359 return QualType(); 11360 } 11361 11362 TemplateArgumentListInfo Args(Loc, Loc); 11363 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 11364 Context.getTrivialTypeSourceInfo(Element, 11365 Loc))); 11366 return Context.getCanonicalType( 11367 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 11368} 11369 11370bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 11371 // C++ [dcl.init.list]p2: 11372 // A constructor is an initializer-list constructor if its first parameter 11373 // is of type std::initializer_list<E> or reference to possibly cv-qualified 11374 // std::initializer_list<E> for some type E, and either there are no other 11375 // parameters or else all other parameters have default arguments. 11376 if (!Ctor->hasOneParamOrDefaultArgs()) 11377 return false; 11378 11379 QualType ArgType = Ctor->getParamDecl(0)->getType(); 11380 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 11381 ArgType = RT->getPointeeType().getUnqualifiedType(); 11382 11383 return isStdInitializerList(ArgType, nullptr); 11384} 11385 11386/// Determine whether a using statement is in a context where it will be 11387/// apply in all contexts. 11388static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 11389 switch (CurContext->getDeclKind()) { 11390 case Decl::TranslationUnit: 11391 return true; 11392 case Decl::LinkageSpec: 11393 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 11394 default: 11395 return false; 11396 } 11397} 11398 11399namespace { 11400 11401// Callback to only accept typo corrections that are namespaces. 11402class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 11403public: 11404 bool ValidateCandidate(const TypoCorrection &candidate) override { 11405 if (NamedDecl *ND = candidate.getCorrectionDecl()) 11406 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 11407 return false; 11408 } 11409 11410 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11411 return std::make_unique<NamespaceValidatorCCC>(*this); 11412 } 11413}; 11414 11415} 11416 11417static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 11418 CXXScopeSpec &SS, 11419 SourceLocation IdentLoc, 11420 IdentifierInfo *Ident) { 11421 R.clear(); 11422 NamespaceValidatorCCC CCC{}; 11423 if (TypoCorrection Corrected = 11424 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 11425 Sema::CTK_ErrorRecovery)) { 11426 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 11427 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 11428 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 11429 Ident->getName().equals(CorrectedStr); 11430 S.diagnoseTypo(Corrected, 11431 S.PDiag(diag::err_using_directive_member_suggest) 11432 << Ident << DC << DroppedSpecifier << SS.getRange(), 11433 S.PDiag(diag::note_namespace_defined_here)); 11434 } else { 11435 S.diagnoseTypo(Corrected, 11436 S.PDiag(diag::err_using_directive_suggest) << Ident, 11437 S.PDiag(diag::note_namespace_defined_here)); 11438 } 11439 R.addDecl(Corrected.getFoundDecl()); 11440 return true; 11441 } 11442 return false; 11443} 11444 11445Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 11446 SourceLocation NamespcLoc, CXXScopeSpec &SS, 11447 SourceLocation IdentLoc, 11448 IdentifierInfo *NamespcName, 11449 const ParsedAttributesView &AttrList) { 11450 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((void)0); 11451 assert(NamespcName && "Invalid NamespcName.")((void)0); 11452 assert(IdentLoc.isValid() && "Invalid NamespceName location.")((void)0); 11453 11454 // This can only happen along a recovery path. 11455 while (S->isTemplateParamScope()) 11456 S = S->getParent(); 11457 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((void)0); 11458 11459 UsingDirectiveDecl *UDir = nullptr; 11460 NestedNameSpecifier *Qualifier = nullptr; 11461 if (SS.isSet()) 11462 Qualifier = SS.getScopeRep(); 11463 11464 // Lookup namespace name. 11465 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 11466 LookupParsedName(R, S, &SS); 11467 if (R.isAmbiguous()) 11468 return nullptr; 11469 11470 if (R.empty()) { 11471 R.clear(); 11472 // Allow "using namespace std;" or "using namespace ::std;" even if 11473 // "std" hasn't been defined yet, for GCC compatibility. 11474 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 11475 NamespcName->isStr("std")) { 11476 Diag(IdentLoc, diag::ext_using_undefined_std); 11477 R.addDecl(getOrCreateStdNamespace()); 11478 R.resolveKind(); 11479 } 11480 // Otherwise, attempt typo correction. 11481 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 11482 } 11483 11484 if (!R.empty()) { 11485 NamedDecl *Named = R.getRepresentativeDecl(); 11486 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 11487 assert(NS && "expected namespace decl")((void)0); 11488 11489 // The use of a nested name specifier may trigger deprecation warnings. 11490 DiagnoseUseOfDecl(Named, IdentLoc); 11491 11492 // C++ [namespace.udir]p1: 11493 // A using-directive specifies that the names in the nominated 11494 // namespace can be used in the scope in which the 11495 // using-directive appears after the using-directive. During 11496 // unqualified name lookup (3.4.1), the names appear as if they 11497 // were declared in the nearest enclosing namespace which 11498 // contains both the using-directive and the nominated 11499 // namespace. [Note: in this context, "contains" means "contains 11500 // directly or indirectly". ] 11501 11502 // Find enclosing context containing both using-directive and 11503 // nominated namespace. 11504 DeclContext *CommonAncestor = NS; 11505 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 11506 CommonAncestor = CommonAncestor->getParent(); 11507 11508 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 11509 SS.getWithLocInContext(Context), 11510 IdentLoc, Named, CommonAncestor); 11511 11512 if (IsUsingDirectiveInToplevelContext(CurContext) && 11513 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 11514 Diag(IdentLoc, diag::warn_using_directive_in_header); 11515 } 11516 11517 PushUsingDirective(S, UDir); 11518 } else { 11519 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 11520 } 11521 11522 if (UDir) 11523 ProcessDeclAttributeList(S, UDir, AttrList); 11524 11525 return UDir; 11526} 11527 11528void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 11529 // If the scope has an associated entity and the using directive is at 11530 // namespace or translation unit scope, add the UsingDirectiveDecl into 11531 // its lookup structure so qualified name lookup can find it. 11532 DeclContext *Ctx = S->getEntity(); 11533 if (Ctx && !Ctx->isFunctionOrMethod()) 11534 Ctx->addDecl(UDir); 11535 else 11536 // Otherwise, it is at block scope. The using-directives will affect lookup 11537 // only to the end of the scope. 11538 S->PushUsingDirective(UDir); 11539} 11540 11541Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 11542 SourceLocation UsingLoc, 11543 SourceLocation TypenameLoc, CXXScopeSpec &SS, 11544 UnqualifiedId &Name, 11545 SourceLocation EllipsisLoc, 11546 const ParsedAttributesView &AttrList) { 11547 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((void)0); 11548 11549 if (SS.isEmpty()) { 11550 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 11551 return nullptr; 11552 } 11553 11554 switch (Name.getKind()) { 11555 case UnqualifiedIdKind::IK_ImplicitSelfParam: 11556 case UnqualifiedIdKind::IK_Identifier: 11557 case UnqualifiedIdKind::IK_OperatorFunctionId: 11558 case UnqualifiedIdKind::IK_LiteralOperatorId: 11559 case UnqualifiedIdKind::IK_ConversionFunctionId: 11560 break; 11561 11562 case UnqualifiedIdKind::IK_ConstructorName: 11563 case UnqualifiedIdKind::IK_ConstructorTemplateId: 11564 // C++11 inheriting constructors. 11565 Diag(Name.getBeginLoc(), 11566 getLangOpts().CPlusPlus11 11567 ? diag::warn_cxx98_compat_using_decl_constructor 11568 : diag::err_using_decl_constructor) 11569 << SS.getRange(); 11570 11571 if (getLangOpts().CPlusPlus11) break; 11572 11573 return nullptr; 11574 11575 case UnqualifiedIdKind::IK_DestructorName: 11576 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 11577 return nullptr; 11578 11579 case UnqualifiedIdKind::IK_TemplateId: 11580 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 11581 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 11582 return nullptr; 11583 11584 case UnqualifiedIdKind::IK_DeductionGuideName: 11585 llvm_unreachable("cannot parse qualified deduction guide name")__builtin_unreachable(); 11586 } 11587 11588 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 11589 DeclarationName TargetName = TargetNameInfo.getName(); 11590 if (!TargetName) 11591 return nullptr; 11592 11593 // Warn about access declarations. 11594 if (UsingLoc.isInvalid()) { 11595 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 11596 ? diag::err_access_decl 11597 : diag::warn_access_decl_deprecated) 11598 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 11599 } 11600 11601 if (EllipsisLoc.isInvalid()) { 11602 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 11603 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 11604 return nullptr; 11605 } else { 11606 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 11607 !TargetNameInfo.containsUnexpandedParameterPack()) { 11608 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 11609 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 11610 EllipsisLoc = SourceLocation(); 11611 } 11612 } 11613 11614 NamedDecl *UD = 11615 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 11616 SS, TargetNameInfo, EllipsisLoc, AttrList, 11617 /*IsInstantiation*/ false, 11618 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); 11619 if (UD) 11620 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11621 11622 return UD; 11623} 11624 11625Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 11626 SourceLocation UsingLoc, 11627 SourceLocation EnumLoc, 11628 const DeclSpec &DS) { 11629 switch (DS.getTypeSpecType()) { 11630 case DeclSpec::TST_error: 11631 // This will already have been diagnosed 11632 return nullptr; 11633 11634 case DeclSpec::TST_enum: 11635 break; 11636 11637 case DeclSpec::TST_typename: 11638 Diag(DS.getTypeSpecTypeLoc(), diag::err_using_enum_is_dependent); 11639 return nullptr; 11640 11641 default: 11642 llvm_unreachable("unexpected DeclSpec type")__builtin_unreachable(); 11643 } 11644 11645 // As with enum-decls, we ignore attributes for now. 11646 auto *Enum = cast<EnumDecl>(DS.getRepAsDecl()); 11647 if (auto *Def = Enum->getDefinition()) 11648 Enum = Def; 11649 11650 auto *UD = BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, 11651 DS.getTypeSpecTypeNameLoc(), Enum); 11652 if (UD) 11653 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11654 11655 return UD; 11656} 11657 11658/// Determine whether a using declaration considers the given 11659/// declarations as "equivalent", e.g., if they are redeclarations of 11660/// the same entity or are both typedefs of the same type. 11661static bool 11662IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 11663 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 11664 return true; 11665 11666 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 11667 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 11668 return Context.hasSameType(TD1->getUnderlyingType(), 11669 TD2->getUnderlyingType()); 11670 11671 // Two using_if_exists using-declarations are equivalent if both are 11672 // unresolved. 11673 if (isa<UnresolvedUsingIfExistsDecl>(D1) && 11674 isa<UnresolvedUsingIfExistsDecl>(D2)) 11675 return true; 11676 11677 return false; 11678} 11679 11680 11681/// Determines whether to create a using shadow decl for a particular 11682/// decl, given the set of decls existing prior to this using lookup. 11683bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, 11684 const LookupResult &Previous, 11685 UsingShadowDecl *&PrevShadow) { 11686 // Diagnose finding a decl which is not from a base class of the 11687 // current class. We do this now because there are cases where this 11688 // function will silently decide not to build a shadow decl, which 11689 // will pre-empt further diagnostics. 11690 // 11691 // We don't need to do this in C++11 because we do the check once on 11692 // the qualifier. 11693 // 11694 // FIXME: diagnose the following if we care enough: 11695 // struct A { int foo; }; 11696 // struct B : A { using A::foo; }; 11697 // template <class T> struct C : A {}; 11698 // template <class T> struct D : C<T> { using B::foo; } // <--- 11699 // This is invalid (during instantiation) in C++03 because B::foo 11700 // resolves to the using decl in B, which is not a base class of D<T>. 11701 // We can't diagnose it immediately because C<T> is an unknown 11702 // specialization. The UsingShadowDecl in D<T> then points directly 11703 // to A::foo, which will look well-formed when we instantiate. 11704 // The right solution is to not collapse the shadow-decl chain. 11705 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) 11706 if (auto *Using = dyn_cast<UsingDecl>(BUD)) { 11707 DeclContext *OrigDC = Orig->getDeclContext(); 11708 11709 // Handle enums and anonymous structs. 11710 if (isa<EnumDecl>(OrigDC)) 11711 OrigDC = OrigDC->getParent(); 11712 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 11713 while (OrigRec->isAnonymousStructOrUnion()) 11714 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 11715 11716 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 11717 if (OrigDC == CurContext) { 11718 Diag(Using->getLocation(), 11719 diag::err_using_decl_nested_name_specifier_is_current_class) 11720 << Using->getQualifierLoc().getSourceRange(); 11721 Diag(Orig->getLocation(), diag::note_using_decl_target); 11722 Using->setInvalidDecl(); 11723 return true; 11724 } 11725 11726 Diag(Using->getQualifierLoc().getBeginLoc(), 11727 diag::err_using_decl_nested_name_specifier_is_not_base_class) 11728 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) 11729 << Using->getQualifierLoc().getSourceRange(); 11730 Diag(Orig->getLocation(), diag::note_using_decl_target); 11731 Using->setInvalidDecl(); 11732 return true; 11733 } 11734 } 11735 11736 if (Previous.empty()) return false; 11737 11738 NamedDecl *Target = Orig; 11739 if (isa<UsingShadowDecl>(Target)) 11740 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11741 11742 // If the target happens to be one of the previous declarations, we 11743 // don't have a conflict. 11744 // 11745 // FIXME: but we might be increasing its access, in which case we 11746 // should redeclare it. 11747 NamedDecl *NonTag = nullptr, *Tag = nullptr; 11748 bool FoundEquivalentDecl = false; 11749 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 11750 I != E; ++I) { 11751 NamedDecl *D = (*I)->getUnderlyingDecl(); 11752 // We can have UsingDecls in our Previous results because we use the same 11753 // LookupResult for checking whether the UsingDecl itself is a valid 11754 // redeclaration. 11755 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) 11756 continue; 11757 11758 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 11759 // C++ [class.mem]p19: 11760 // If T is the name of a class, then [every named member other than 11761 // a non-static data member] shall have a name different from T 11762 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 11763 !isa<IndirectFieldDecl>(Target) && 11764 !isa<UnresolvedUsingValueDecl>(Target) && 11765 DiagnoseClassNameShadow( 11766 CurContext, 11767 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) 11768 return true; 11769 } 11770 11771 if (IsEquivalentForUsingDecl(Context, D, Target)) { 11772 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 11773 PrevShadow = Shadow; 11774 FoundEquivalentDecl = true; 11775 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 11776 // We don't conflict with an existing using shadow decl of an equivalent 11777 // declaration, but we're not a redeclaration of it. 11778 FoundEquivalentDecl = true; 11779 } 11780 11781 if (isVisible(D)) 11782 (isa<TagDecl>(D) ? Tag : NonTag) = D; 11783 } 11784 11785 if (FoundEquivalentDecl) 11786 return false; 11787 11788 // Always emit a diagnostic for a mismatch between an unresolved 11789 // using_if_exists and a resolved using declaration in either direction. 11790 if (isa<UnresolvedUsingIfExistsDecl>(Target) != 11791 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { 11792 if (!NonTag && !Tag) 11793 return false; 11794 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11795 Diag(Target->getLocation(), diag::note_using_decl_target); 11796 Diag((NonTag ? NonTag : Tag)->getLocation(), 11797 diag::note_using_decl_conflict); 11798 BUD->setInvalidDecl(); 11799 return true; 11800 } 11801 11802 if (FunctionDecl *FD = Target->getAsFunction()) { 11803 NamedDecl *OldDecl = nullptr; 11804 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 11805 /*IsForUsingDecl*/ true)) { 11806 case Ovl_Overload: 11807 return false; 11808 11809 case Ovl_NonFunction: 11810 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11811 break; 11812 11813 // We found a decl with the exact signature. 11814 case Ovl_Match: 11815 // If we're in a record, we want to hide the target, so we 11816 // return true (without a diagnostic) to tell the caller not to 11817 // build a shadow decl. 11818 if (CurContext->isRecord()) 11819 return true; 11820 11821 // If we're not in a record, this is an error. 11822 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11823 break; 11824 } 11825 11826 Diag(Target->getLocation(), diag::note_using_decl_target); 11827 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 11828 BUD->setInvalidDecl(); 11829 return true; 11830 } 11831 11832 // Target is not a function. 11833 11834 if (isa<TagDecl>(Target)) { 11835 // No conflict between a tag and a non-tag. 11836 if (!Tag) return false; 11837 11838 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11839 Diag(Target->getLocation(), diag::note_using_decl_target); 11840 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 11841 BUD->setInvalidDecl(); 11842 return true; 11843 } 11844 11845 // No conflict between a tag and a non-tag. 11846 if (!NonTag) return false; 11847 11848 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11849 Diag(Target->getLocation(), diag::note_using_decl_target); 11850 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 11851 BUD->setInvalidDecl(); 11852 return true; 11853} 11854 11855/// Determine whether a direct base class is a virtual base class. 11856static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 11857 if (!Derived->getNumVBases()) 11858 return false; 11859 for (auto &B : Derived->bases()) 11860 if (B.getType()->getAsCXXRecordDecl() == Base) 11861 return B.isVirtual(); 11862 llvm_unreachable("not a direct base class")__builtin_unreachable(); 11863} 11864 11865/// Builds a shadow declaration corresponding to a 'using' declaration. 11866UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, 11867 NamedDecl *Orig, 11868 UsingShadowDecl *PrevDecl) { 11869 // If we resolved to another shadow declaration, just coalesce them. 11870 NamedDecl *Target = Orig; 11871 if (isa<UsingShadowDecl>(Target)) { 11872 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11873 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")((void)0); 11874 } 11875 11876 NamedDecl *NonTemplateTarget = Target; 11877 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 11878 NonTemplateTarget = TargetTD->getTemplatedDecl(); 11879 11880 UsingShadowDecl *Shadow; 11881 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 11882 UsingDecl *Using = cast<UsingDecl>(BUD); 11883 bool IsVirtualBase = 11884 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 11885 Using->getQualifier()->getAsRecordDecl()); 11886 Shadow = ConstructorUsingShadowDecl::Create( 11887 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); 11888 } else { 11889 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), 11890 Target->getDeclName(), BUD, Target); 11891 } 11892 BUD->addShadowDecl(Shadow); 11893 11894 Shadow->setAccess(BUD->getAccess()); 11895 if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) 11896 Shadow->setInvalidDecl(); 11897 11898 Shadow->setPreviousDecl(PrevDecl); 11899 11900 if (S) 11901 PushOnScopeChains(Shadow, S); 11902 else 11903 CurContext->addDecl(Shadow); 11904 11905 11906 return Shadow; 11907} 11908 11909/// Hides a using shadow declaration. This is required by the current 11910/// using-decl implementation when a resolvable using declaration in a 11911/// class is followed by a declaration which would hide or override 11912/// one or more of the using decl's targets; for example: 11913/// 11914/// struct Base { void foo(int); }; 11915/// struct Derived : Base { 11916/// using Base::foo; 11917/// void foo(int); 11918/// }; 11919/// 11920/// The governing language is C++03 [namespace.udecl]p12: 11921/// 11922/// When a using-declaration brings names from a base class into a 11923/// derived class scope, member functions in the derived class 11924/// override and/or hide member functions with the same name and 11925/// parameter types in a base class (rather than conflicting). 11926/// 11927/// There are two ways to implement this: 11928/// (1) optimistically create shadow decls when they're not hidden 11929/// by existing declarations, or 11930/// (2) don't create any shadow decls (or at least don't make them 11931/// visible) until we've fully parsed/instantiated the class. 11932/// The problem with (1) is that we might have to retroactively remove 11933/// a shadow decl, which requires several O(n) operations because the 11934/// decl structures are (very reasonably) not designed for removal. 11935/// (2) avoids this but is very fiddly and phase-dependent. 11936void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 11937 if (Shadow->getDeclName().getNameKind() == 11938 DeclarationName::CXXConversionFunctionName) 11939 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 11940 11941 // Remove it from the DeclContext... 11942 Shadow->getDeclContext()->removeDecl(Shadow); 11943 11944 // ...and the scope, if applicable... 11945 if (S) { 11946 S->RemoveDecl(Shadow); 11947 IdResolver.RemoveDecl(Shadow); 11948 } 11949 11950 // ...and the using decl. 11951 Shadow->getIntroducer()->removeShadowDecl(Shadow); 11952 11953 // TODO: complain somehow if Shadow was used. It shouldn't 11954 // be possible for this to happen, because...? 11955} 11956 11957/// Find the base specifier for a base class with the given type. 11958static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 11959 QualType DesiredBase, 11960 bool &AnyDependentBases) { 11961 // Check whether the named type is a direct base class. 11962 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 11963 .getUnqualifiedType(); 11964 for (auto &Base : Derived->bases()) { 11965 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 11966 if (CanonicalDesiredBase == BaseType) 11967 return &Base; 11968 if (BaseType->isDependentType()) 11969 AnyDependentBases = true; 11970 } 11971 return nullptr; 11972} 11973 11974namespace { 11975class UsingValidatorCCC final : public CorrectionCandidateCallback { 11976public: 11977 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 11978 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 11979 : HasTypenameKeyword(HasTypenameKeyword), 11980 IsInstantiation(IsInstantiation), OldNNS(NNS), 11981 RequireMemberOf(RequireMemberOf) {} 11982 11983 bool ValidateCandidate(const TypoCorrection &Candidate) override { 11984 NamedDecl *ND = Candidate.getCorrectionDecl(); 11985 11986 // Keywords are not valid here. 11987 if (!ND || isa<NamespaceDecl>(ND)) 11988 return false; 11989 11990 // Completely unqualified names are invalid for a 'using' declaration. 11991 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 11992 return false; 11993 11994 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 11995 // reject. 11996 11997 if (RequireMemberOf) { 11998 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 11999 if (FoundRecord && FoundRecord->isInjectedClassName()) { 12000 // No-one ever wants a using-declaration to name an injected-class-name 12001 // of a base class, unless they're declaring an inheriting constructor. 12002 ASTContext &Ctx = ND->getASTContext(); 12003 if (!Ctx.getLangOpts().CPlusPlus11) 12004 return false; 12005 QualType FoundType = Ctx.getRecordType(FoundRecord); 12006 12007 // Check that the injected-class-name is named as a member of its own 12008 // type; we don't want to suggest 'using Derived::Base;', since that 12009 // means something else. 12010 NestedNameSpecifier *Specifier = 12011 Candidate.WillReplaceSpecifier() 12012 ? Candidate.getCorrectionSpecifier() 12013 : OldNNS; 12014 if (!Specifier->getAsType() || 12015 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 12016 return false; 12017 12018 // Check that this inheriting constructor declaration actually names a 12019 // direct base class of the current class. 12020 bool AnyDependentBases = false; 12021 if (!findDirectBaseWithType(RequireMemberOf, 12022 Ctx.getRecordType(FoundRecord), 12023 AnyDependentBases) && 12024 !AnyDependentBases) 12025 return false; 12026 } else { 12027 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 12028 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 12029 return false; 12030 12031 // FIXME: Check that the base class member is accessible? 12032 } 12033 } else { 12034 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12035 if (FoundRecord && FoundRecord->isInjectedClassName()) 12036 return false; 12037 } 12038 12039 if (isa<TypeDecl>(ND)) 12040 return HasTypenameKeyword || !IsInstantiation; 12041 12042 return !HasTypenameKeyword; 12043 } 12044 12045 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12046 return std::make_unique<UsingValidatorCCC>(*this); 12047 } 12048 12049private: 12050 bool HasTypenameKeyword; 12051 bool IsInstantiation; 12052 NestedNameSpecifier *OldNNS; 12053 CXXRecordDecl *RequireMemberOf; 12054}; 12055} // end anonymous namespace 12056 12057/// Remove decls we can't actually see from a lookup being used to declare 12058/// shadow using decls. 12059/// 12060/// \param S - The scope of the potential shadow decl 12061/// \param Previous - The lookup of a potential shadow decl's name. 12062void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { 12063 // It is really dumb that we have to do this. 12064 LookupResult::Filter F = Previous.makeFilter(); 12065 while (F.hasNext()) { 12066 NamedDecl *D = F.next(); 12067 if (!isDeclInScope(D, CurContext, S)) 12068 F.erase(); 12069 // If we found a local extern declaration that's not ordinarily visible, 12070 // and this declaration is being added to a non-block scope, ignore it. 12071 // We're only checking for scope conflicts here, not also for violations 12072 // of the linkage rules. 12073 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 12074 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 12075 F.erase(); 12076 } 12077 F.done(); 12078} 12079 12080/// Builds a using declaration. 12081/// 12082/// \param IsInstantiation - Whether this call arises from an 12083/// instantiation of an unresolved using declaration. We treat 12084/// the lookup differently for these declarations. 12085NamedDecl *Sema::BuildUsingDeclaration( 12086 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 12087 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 12088 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 12089 const ParsedAttributesView &AttrList, bool IsInstantiation, 12090 bool IsUsingIfExists) { 12091 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((void)0); 12092 SourceLocation IdentLoc = NameInfo.getLoc(); 12093 assert(IdentLoc.isValid() && "Invalid TargetName location.")((void)0); 12094 12095 // FIXME: We ignore attributes for now. 12096 12097 // For an inheriting constructor declaration, the name of the using 12098 // declaration is the name of a constructor in this class, not in the 12099 // base class. 12100 DeclarationNameInfo UsingName = NameInfo; 12101 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 12102 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 12103 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12104 Context.getCanonicalType(Context.getRecordType(RD)))); 12105 12106 // Do the redeclaration lookup in the current scope. 12107 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 12108 ForVisibleRedeclaration); 12109 Previous.setHideTags(false); 12110 if (S) { 12111 LookupName(Previous, S); 12112 12113 FilterUsingLookup(S, Previous); 12114 } else { 12115 assert(IsInstantiation && "no scope in non-instantiation")((void)0); 12116 if (CurContext->isRecord()) 12117 LookupQualifiedName(Previous, CurContext); 12118 else { 12119 // No redeclaration check is needed here; in non-member contexts we 12120 // diagnosed all possible conflicts with other using-declarations when 12121 // building the template: 12122 // 12123 // For a dependent non-type using declaration, the only valid case is 12124 // if we instantiate to a single enumerator. We check for conflicts 12125 // between shadow declarations we introduce, and we check in the template 12126 // definition for conflicts between a non-type using declaration and any 12127 // other declaration, which together covers all cases. 12128 // 12129 // A dependent typename using declaration will never successfully 12130 // instantiate, since it will always name a class member, so we reject 12131 // that in the template definition. 12132 } 12133 } 12134 12135 // Check for invalid redeclarations. 12136 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 12137 SS, IdentLoc, Previous)) 12138 return nullptr; 12139 12140 // 'using_if_exists' doesn't make sense on an inherited constructor. 12141 if (IsUsingIfExists && UsingName.getName().getNameKind() == 12142 DeclarationName::CXXConstructorName) { 12143 Diag(UsingLoc, diag::err_using_if_exists_on_ctor); 12144 return nullptr; 12145 } 12146 12147 DeclContext *LookupContext = computeDeclContext(SS); 12148 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12149 if (!LookupContext || EllipsisLoc.isValid()) { 12150 NamedDecl *D; 12151 // Dependent scope, or an unexpanded pack 12152 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, 12153 SS, NameInfo, IdentLoc)) 12154 return nullptr; 12155 12156 if (HasTypenameKeyword) { 12157 // FIXME: not all declaration name kinds are legal here 12158 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 12159 UsingLoc, TypenameLoc, 12160 QualifierLoc, 12161 IdentLoc, NameInfo.getName(), 12162 EllipsisLoc); 12163 } else { 12164 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 12165 QualifierLoc, NameInfo, EllipsisLoc); 12166 } 12167 D->setAccess(AS); 12168 CurContext->addDecl(D); 12169 ProcessDeclAttributeList(S, D, AttrList); 12170 return D; 12171 } 12172 12173 auto Build = [&](bool Invalid) { 12174 UsingDecl *UD = 12175 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 12176 UsingName, HasTypenameKeyword); 12177 UD->setAccess(AS); 12178 CurContext->addDecl(UD); 12179 ProcessDeclAttributeList(S, UD, AttrList); 12180 UD->setInvalidDecl(Invalid); 12181 return UD; 12182 }; 12183 auto BuildInvalid = [&]{ return Build(true); }; 12184 auto BuildValid = [&]{ return Build(false); }; 12185 12186 if (RequireCompleteDeclContext(SS, LookupContext)) 12187 return BuildInvalid(); 12188 12189 // Look up the target name. 12190 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12191 12192 // Unlike most lookups, we don't always want to hide tag 12193 // declarations: tag names are visible through the using declaration 12194 // even if hidden by ordinary names, *except* in a dependent context 12195 // where it's important for the sanity of two-phase lookup. 12196 if (!IsInstantiation) 12197 R.setHideTags(false); 12198 12199 // For the purposes of this lookup, we have a base object type 12200 // equal to that of the current context. 12201 if (CurContext->isRecord()) { 12202 R.setBaseObjectType( 12203 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12204 } 12205 12206 LookupQualifiedName(R, LookupContext); 12207 12208 // Validate the context, now we have a lookup 12209 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 12210 IdentLoc, &R)) 12211 return nullptr; 12212 12213 if (R.empty() && IsUsingIfExists) 12214 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, 12215 UsingName.getName()), 12216 AS_public); 12217 12218 // Try to correct typos if possible. If constructor name lookup finds no 12219 // results, that means the named class has no explicit constructors, and we 12220 // suppressed declaring implicit ones (probably because it's dependent or 12221 // invalid). 12222 if (R.empty() && 12223 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12224 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of 12225 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where 12226 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. 12227 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12228 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12229 CurContext->isStdNamespace() && 12230 isa<TranslationUnitDecl>(LookupContext) && 12231 getSourceManager().isInSystemHeader(UsingLoc)) 12232 return nullptr; 12233 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12234 dyn_cast<CXXRecordDecl>(CurContext)); 12235 if (TypoCorrection Corrected = 12236 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12237 CTK_ErrorRecovery)) { 12238 // We reject candidates where DroppedSpecifier == true, hence the 12239 // literal '0' below. 12240 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12241 << NameInfo.getName() << LookupContext << 0 12242 << SS.getRange()); 12243 12244 // If we picked a correction with no attached Decl we can't do anything 12245 // useful with it, bail out. 12246 NamedDecl *ND = Corrected.getCorrectionDecl(); 12247 if (!ND) 12248 return BuildInvalid(); 12249 12250 // If we corrected to an inheriting constructor, handle it as one. 12251 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12252 if (RD && RD->isInjectedClassName()) { 12253 // The parent of the injected class name is the class itself. 12254 RD = cast<CXXRecordDecl>(RD->getParent()); 12255 12256 // Fix up the information we'll use to build the using declaration. 12257 if (Corrected.WillReplaceSpecifier()) { 12258 NestedNameSpecifierLocBuilder Builder; 12259 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12260 QualifierLoc.getSourceRange()); 12261 QualifierLoc = Builder.getWithLocInContext(Context); 12262 } 12263 12264 // In this case, the name we introduce is the name of a derived class 12265 // constructor. 12266 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12267 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12268 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12269 UsingName.setNamedTypeInfo(nullptr); 12270 for (auto *Ctor : LookupConstructors(RD)) 12271 R.addDecl(Ctor); 12272 R.resolveKind(); 12273 } else { 12274 // FIXME: Pick up all the declarations if we found an overloaded 12275 // function. 12276 UsingName.setName(ND->getDeclName()); 12277 R.addDecl(ND); 12278 } 12279 } else { 12280 Diag(IdentLoc, diag::err_no_member) 12281 << NameInfo.getName() << LookupContext << SS.getRange(); 12282 return BuildInvalid(); 12283 } 12284 } 12285 12286 if (R.isAmbiguous()) 12287 return BuildInvalid(); 12288 12289 if (HasTypenameKeyword) { 12290 // If we asked for a typename and got a non-type decl, error out. 12291 if (!R.getAsSingle<TypeDecl>() && 12292 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { 12293 Diag(IdentLoc, diag::err_using_typename_non_type); 12294 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12295 Diag((*I)->getUnderlyingDecl()->getLocation(), 12296 diag::note_using_decl_target); 12297 return BuildInvalid(); 12298 } 12299 } else { 12300 // If we asked for a non-typename and we got a type, error out, 12301 // but only if this is an instantiation of an unresolved using 12302 // decl. Otherwise just silently find the type name. 12303 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 12304 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 12305 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 12306 return BuildInvalid(); 12307 } 12308 } 12309 12310 // C++14 [namespace.udecl]p6: 12311 // A using-declaration shall not name a namespace. 12312 if (R.getAsSingle<NamespaceDecl>()) { 12313 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 12314 << SS.getRange(); 12315 return BuildInvalid(); 12316 } 12317 12318 UsingDecl *UD = BuildValid(); 12319 12320 // Some additional rules apply to inheriting constructors. 12321 if (UsingName.getName().getNameKind() == 12322 DeclarationName::CXXConstructorName) { 12323 // Suppress access diagnostics; the access check is instead performed at the 12324 // point of use for an inheriting constructor. 12325 R.suppressDiagnostics(); 12326 if (CheckInheritingConstructorUsingDecl(UD)) 12327 return UD; 12328 } 12329 12330 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 12331 UsingShadowDecl *PrevDecl = nullptr; 12332 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 12333 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 12334 } 12335 12336 return UD; 12337} 12338 12339NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12340 SourceLocation UsingLoc, 12341 SourceLocation EnumLoc, 12342 SourceLocation NameLoc, 12343 EnumDecl *ED) { 12344 bool Invalid = false; 12345 12346 if (CurContext->getRedeclContext()->isRecord()) { 12347 /// In class scope, check if this is a duplicate, for better a diagnostic. 12348 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); 12349 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, 12350 ForVisibleRedeclaration); 12351 12352 LookupName(Previous, S); 12353 12354 for (NamedDecl *D : Previous) 12355 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) 12356 if (UED->getEnumDecl() == ED) { 12357 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) 12358 << SourceRange(EnumLoc, NameLoc); 12359 Diag(D->getLocation(), diag::note_using_enum_decl) << 1; 12360 Invalid = true; 12361 break; 12362 } 12363 } 12364 12365 if (RequireCompleteEnumDecl(ED, NameLoc)) 12366 Invalid = true; 12367 12368 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, 12369 EnumLoc, NameLoc, ED); 12370 UD->setAccess(AS); 12371 CurContext->addDecl(UD); 12372 12373 if (Invalid) { 12374 UD->setInvalidDecl(); 12375 return UD; 12376 } 12377 12378 // Create the shadow decls for each enumerator 12379 for (EnumConstantDecl *EC : ED->enumerators()) { 12380 UsingShadowDecl *PrevDecl = nullptr; 12381 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); 12382 LookupResult Previous(*this, DNI, LookupOrdinaryName, 12383 ForVisibleRedeclaration); 12384 LookupName(Previous, S); 12385 FilterUsingLookup(S, Previous); 12386 12387 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) 12388 BuildUsingShadowDecl(S, UD, EC, PrevDecl); 12389 } 12390 12391 return UD; 12392} 12393 12394NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 12395 ArrayRef<NamedDecl *> Expansions) { 12396 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||((void)0) 12397 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||((void)0) 12398 isa<UsingPackDecl>(InstantiatedFrom))((void)0); 12399 12400 auto *UPD = 12401 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 12402 UPD->setAccess(InstantiatedFrom->getAccess()); 12403 CurContext->addDecl(UPD); 12404 return UPD; 12405} 12406 12407/// Additional checks for a using declaration referring to a constructor name. 12408bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 12409 assert(!UD->hasTypename() && "expecting a constructor name")((void)0); 12410 12411 const Type *SourceType = UD->getQualifier()->getAsType(); 12412 assert(SourceType &&((void)0) 12413 "Using decl naming constructor doesn't have type in scope spec.")((void)0); 12414 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 12415 12416 // Check whether the named type is a direct base class. 12417 bool AnyDependentBases = false; 12418 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 12419 AnyDependentBases); 12420 if (!Base && !AnyDependentBases) { 12421 Diag(UD->getUsingLoc(), 12422 diag::err_using_decl_constructor_not_in_direct_base) 12423 << UD->getNameInfo().getSourceRange() 12424 << QualType(SourceType, 0) << TargetClass; 12425 UD->setInvalidDecl(); 12426 return true; 12427 } 12428 12429 if (Base) 12430 Base->setInheritConstructors(); 12431 12432 return false; 12433} 12434 12435/// Checks that the given using declaration is not an invalid 12436/// redeclaration. Note that this is checking only for the using decl 12437/// itself, not for any ill-formedness among the UsingShadowDecls. 12438bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 12439 bool HasTypenameKeyword, 12440 const CXXScopeSpec &SS, 12441 SourceLocation NameLoc, 12442 const LookupResult &Prev) { 12443 NestedNameSpecifier *Qual = SS.getScopeRep(); 12444 12445 // C++03 [namespace.udecl]p8: 12446 // C++0x [namespace.udecl]p10: 12447 // A using-declaration is a declaration and can therefore be used 12448 // repeatedly where (and only where) multiple declarations are 12449 // allowed. 12450 // 12451 // That's in non-member contexts. 12452 if (!CurContext->getRedeclContext()->isRecord()) { 12453 // A dependent qualifier outside a class can only ever resolve to an 12454 // enumeration type. Therefore it conflicts with any other non-type 12455 // declaration in the same scope. 12456 // FIXME: How should we check for dependent type-type conflicts at block 12457 // scope? 12458 if (Qual->isDependent() && !HasTypenameKeyword) { 12459 for (auto *D : Prev) { 12460 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 12461 bool OldCouldBeEnumerator = 12462 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 12463 Diag(NameLoc, 12464 OldCouldBeEnumerator ? diag::err_redefinition 12465 : diag::err_redefinition_different_kind) 12466 << Prev.getLookupName(); 12467 Diag(D->getLocation(), diag::note_previous_definition); 12468 return true; 12469 } 12470 } 12471 } 12472 return false; 12473 } 12474 12475 const NestedNameSpecifier *CNNS = 12476 Context.getCanonicalNestedNameSpecifier(Qual); 12477 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 12478 NamedDecl *D = *I; 12479 12480 bool DTypename; 12481 NestedNameSpecifier *DQual; 12482 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 12483 DTypename = UD->hasTypename(); 12484 DQual = UD->getQualifier(); 12485 } else if (UnresolvedUsingValueDecl *UD 12486 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 12487 DTypename = false; 12488 DQual = UD->getQualifier(); 12489 } else if (UnresolvedUsingTypenameDecl *UD 12490 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 12491 DTypename = true; 12492 DQual = UD->getQualifier(); 12493 } else continue; 12494 12495 // using decls differ if one says 'typename' and the other doesn't. 12496 // FIXME: non-dependent using decls? 12497 if (HasTypenameKeyword != DTypename) continue; 12498 12499 // using decls differ if they name different scopes (but note that 12500 // template instantiation can cause this check to trigger when it 12501 // didn't before instantiation). 12502 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) 12503 continue; 12504 12505 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 12506 Diag(D->getLocation(), diag::note_using_decl) << 1; 12507 return true; 12508 } 12509 12510 return false; 12511} 12512 12513/// Checks that the given nested-name qualifier used in a using decl 12514/// in the current context is appropriately related to the current 12515/// scope. If an error is found, diagnoses it and returns true. 12516/// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the 12517/// result of that lookup. UD is likewise nullptr, except when we have an 12518/// already-populated UsingDecl whose shadow decls contain the same information 12519/// (i.e. we're instantiating a UsingDecl with non-dependent scope). 12520bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, 12521 const CXXScopeSpec &SS, 12522 const DeclarationNameInfo &NameInfo, 12523 SourceLocation NameLoc, 12524 const LookupResult *R, const UsingDecl *UD) { 12525 DeclContext *NamedContext = computeDeclContext(SS); 12526 assert(bool(NamedContext) == (R || UD) && !(R && UD) &&((void)0) 12527 "resolvable context must have exactly one set of decls")((void)0); 12528 12529 // C++ 20 permits using an enumerator that does not have a class-hierarchy 12530 // relationship. 12531 bool Cxx20Enumerator = false; 12532 if (NamedContext) { 12533 EnumConstantDecl *EC = nullptr; 12534 if (R) 12535 EC = R->getAsSingle<EnumConstantDecl>(); 12536 else if (UD && UD->shadow_size() == 1) 12537 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); 12538 if (EC) 12539 Cxx20Enumerator = getLangOpts().CPlusPlus20; 12540 12541 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { 12542 // C++14 [namespace.udecl]p7: 12543 // A using-declaration shall not name a scoped enumerator. 12544 // C++20 p1099 permits enumerators. 12545 if (EC && R && ED->isScoped()) 12546 Diag(SS.getBeginLoc(), 12547 getLangOpts().CPlusPlus20 12548 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator 12549 : diag::ext_using_decl_scoped_enumerator) 12550 << SS.getRange(); 12551 12552 // We want to consider the scope of the enumerator 12553 NamedContext = ED->getDeclContext(); 12554 } 12555 } 12556 12557 if (!CurContext->isRecord()) { 12558 // C++03 [namespace.udecl]p3: 12559 // C++0x [namespace.udecl]p8: 12560 // A using-declaration for a class member shall be a member-declaration. 12561 // C++20 [namespace.udecl]p7 12562 // ... other than an enumerator ... 12563 12564 // If we weren't able to compute a valid scope, it might validly be a 12565 // dependent class or enumeration scope. If we have a 'typename' keyword, 12566 // the scope must resolve to a class type. 12567 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() 12568 : !HasTypename) 12569 return false; // OK 12570 12571 Diag(NameLoc, 12572 Cxx20Enumerator 12573 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator 12574 : diag::err_using_decl_can_not_refer_to_class_member) 12575 << SS.getRange(); 12576 12577 if (Cxx20Enumerator) 12578 return false; // OK 12579 12580 auto *RD = NamedContext 12581 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 12582 : nullptr; 12583 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { 12584 // See if there's a helpful fixit 12585 12586 if (!R) { 12587 // We will have already diagnosed the problem on the template 12588 // definition, Maybe we should do so again? 12589 } else if (R->getAsSingle<TypeDecl>()) { 12590 if (getLangOpts().CPlusPlus11) { 12591 // Convert 'using X::Y;' to 'using Y = X::Y;'. 12592 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 12593 << 0 // alias declaration 12594 << FixItHint::CreateInsertion(SS.getBeginLoc(), 12595 NameInfo.getName().getAsString() + 12596 " = "); 12597 } else { 12598 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 12599 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 12600 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 12601 << 1 // typedef declaration 12602 << FixItHint::CreateReplacement(UsingLoc, "typedef") 12603 << FixItHint::CreateInsertion( 12604 InsertLoc, " " + NameInfo.getName().getAsString()); 12605 } 12606 } else if (R->getAsSingle<VarDecl>()) { 12607 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12608 // repeating the type of the static data member here. 12609 FixItHint FixIt; 12610 if (getLangOpts().CPlusPlus11) { 12611 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12612 FixIt = FixItHint::CreateReplacement( 12613 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 12614 } 12615 12616 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12617 << 2 // reference declaration 12618 << FixIt; 12619 } else if (R->getAsSingle<EnumConstantDecl>()) { 12620 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12621 // repeating the type of the enumeration here, and we can't do so if 12622 // the type is anonymous. 12623 FixItHint FixIt; 12624 if (getLangOpts().CPlusPlus11) { 12625 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12626 FixIt = FixItHint::CreateReplacement( 12627 UsingLoc, 12628 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 12629 } 12630 12631 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12632 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 12633 << FixIt; 12634 } 12635 } 12636 12637 return true; // Fail 12638 } 12639 12640 // If the named context is dependent, we can't decide much. 12641 if (!NamedContext) { 12642 // FIXME: in C++0x, we can diagnose if we can prove that the 12643 // nested-name-specifier does not refer to a base class, which is 12644 // still possible in some cases. 12645 12646 // Otherwise we have to conservatively report that things might be 12647 // okay. 12648 return false; 12649 } 12650 12651 // The current scope is a record. 12652 if (!NamedContext->isRecord()) { 12653 // Ideally this would point at the last name in the specifier, 12654 // but we don't have that level of source info. 12655 Diag(SS.getBeginLoc(), 12656 Cxx20Enumerator 12657 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator 12658 : diag::err_using_decl_nested_name_specifier_is_not_class) 12659 << SS.getScopeRep() << SS.getRange(); 12660 12661 if (Cxx20Enumerator) 12662 return false; // OK 12663 12664 return true; 12665 } 12666 12667 if (!NamedContext->isDependentContext() && 12668 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 12669 return true; 12670 12671 if (getLangOpts().CPlusPlus11) { 12672 // C++11 [namespace.udecl]p3: 12673 // In a using-declaration used as a member-declaration, the 12674 // nested-name-specifier shall name a base class of the class 12675 // being defined. 12676 12677 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 12678 cast<CXXRecordDecl>(NamedContext))) { 12679 12680 if (Cxx20Enumerator) { 12681 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) 12682 << SS.getRange(); 12683 return false; 12684 } 12685 12686 if (CurContext == NamedContext) { 12687 Diag(SS.getBeginLoc(), 12688 diag::err_using_decl_nested_name_specifier_is_current_class) 12689 << SS.getRange(); 12690 return !getLangOpts().CPlusPlus20; 12691 } 12692 12693 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 12694 Diag(SS.getBeginLoc(), 12695 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12696 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) 12697 << SS.getRange(); 12698 } 12699 return true; 12700 } 12701 12702 return false; 12703 } 12704 12705 // C++03 [namespace.udecl]p4: 12706 // A using-declaration used as a member-declaration shall refer 12707 // to a member of a base class of the class being defined [etc.]. 12708 12709 // Salient point: SS doesn't have to name a base class as long as 12710 // lookup only finds members from base classes. Therefore we can 12711 // diagnose here only if we can prove that that can't happen, 12712 // i.e. if the class hierarchies provably don't intersect. 12713 12714 // TODO: it would be nice if "definitely valid" results were cached 12715 // in the UsingDecl and UsingShadowDecl so that these checks didn't 12716 // need to be repeated. 12717 12718 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 12719 auto Collect = [&Bases](const CXXRecordDecl *Base) { 12720 Bases.insert(Base); 12721 return true; 12722 }; 12723 12724 // Collect all bases. Return false if we find a dependent base. 12725 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 12726 return false; 12727 12728 // Returns true if the base is dependent or is one of the accumulated base 12729 // classes. 12730 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 12731 return !Bases.count(Base); 12732 }; 12733 12734 // Return false if the class has a dependent base or if it or one 12735 // of its bases is present in the base set of the current context. 12736 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 12737 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 12738 return false; 12739 12740 Diag(SS.getRange().getBegin(), 12741 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12742 << SS.getScopeRep() 12743 << cast<CXXRecordDecl>(CurContext) 12744 << SS.getRange(); 12745 12746 return true; 12747} 12748 12749Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 12750 MultiTemplateParamsArg TemplateParamLists, 12751 SourceLocation UsingLoc, UnqualifiedId &Name, 12752 const ParsedAttributesView &AttrList, 12753 TypeResult Type, Decl *DeclFromDeclSpec) { 12754 // Skip up to the relevant declaration scope. 12755 while (S->isTemplateParamScope()) 12756 S = S->getParent(); 12757 assert((S->getFlags() & Scope::DeclScope) &&((void)0) 12758 "got alias-declaration outside of declaration scope")((void)0); 12759 12760 if (Type.isInvalid()) 12761 return nullptr; 12762 12763 bool Invalid = false; 12764 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 12765 TypeSourceInfo *TInfo = nullptr; 12766 GetTypeFromParser(Type.get(), &TInfo); 12767 12768 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 12769 return nullptr; 12770 12771 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 12772 UPPC_DeclarationType)) { 12773 Invalid = true; 12774 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 12775 TInfo->getTypeLoc().getBeginLoc()); 12776 } 12777 12778 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 12779 TemplateParamLists.size() 12780 ? forRedeclarationInCurContext() 12781 : ForVisibleRedeclaration); 12782 LookupName(Previous, S); 12783 12784 // Warn about shadowing the name of a template parameter. 12785 if (Previous.isSingleResult() && 12786 Previous.getFoundDecl()->isTemplateParameter()) { 12787 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 12788 Previous.clear(); 12789 } 12790 12791 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&((void)0) 12792 "name in alias declaration must be an identifier")((void)0); 12793 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 12794 Name.StartLocation, 12795 Name.Identifier, TInfo); 12796 12797 NewTD->setAccess(AS); 12798 12799 if (Invalid) 12800 NewTD->setInvalidDecl(); 12801 12802 ProcessDeclAttributeList(S, NewTD, AttrList); 12803 AddPragmaAttributes(S, NewTD); 12804 12805 CheckTypedefForVariablyModifiedType(S, NewTD); 12806 Invalid |= NewTD->isInvalidDecl(); 12807 12808 bool Redeclaration = false; 12809 12810 NamedDecl *NewND; 12811 if (TemplateParamLists.size()) { 12812 TypeAliasTemplateDecl *OldDecl = nullptr; 12813 TemplateParameterList *OldTemplateParams = nullptr; 12814 12815 if (TemplateParamLists.size() != 1) { 12816 Diag(UsingLoc, diag::err_alias_template_extra_headers) 12817 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 12818 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 12819 } 12820 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 12821 12822 // Check that we can declare a template here. 12823 if (CheckTemplateDeclScope(S, TemplateParams)) 12824 return nullptr; 12825 12826 // Only consider previous declarations in the same scope. 12827 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 12828 /*ExplicitInstantiationOrSpecialization*/false); 12829 if (!Previous.empty()) { 12830 Redeclaration = true; 12831 12832 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 12833 if (!OldDecl && !Invalid) { 12834 Diag(UsingLoc, diag::err_redefinition_different_kind) 12835 << Name.Identifier; 12836 12837 NamedDecl *OldD = Previous.getRepresentativeDecl(); 12838 if (OldD->getLocation().isValid()) 12839 Diag(OldD->getLocation(), diag::note_previous_definition); 12840 12841 Invalid = true; 12842 } 12843 12844 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 12845 if (TemplateParameterListsAreEqual(TemplateParams, 12846 OldDecl->getTemplateParameters(), 12847 /*Complain=*/true, 12848 TPL_TemplateMatch)) 12849 OldTemplateParams = 12850 OldDecl->getMostRecentDecl()->getTemplateParameters(); 12851 else 12852 Invalid = true; 12853 12854 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 12855 if (!Invalid && 12856 !Context.hasSameType(OldTD->getUnderlyingType(), 12857 NewTD->getUnderlyingType())) { 12858 // FIXME: The C++0x standard does not clearly say this is ill-formed, 12859 // but we can't reasonably accept it. 12860 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 12861 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 12862 if (OldTD->getLocation().isValid()) 12863 Diag(OldTD->getLocation(), diag::note_previous_definition); 12864 Invalid = true; 12865 } 12866 } 12867 } 12868 12869 // Merge any previous default template arguments into our parameters, 12870 // and check the parameter list. 12871 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 12872 TPC_TypeAliasTemplate)) 12873 return nullptr; 12874 12875 TypeAliasTemplateDecl *NewDecl = 12876 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 12877 Name.Identifier, TemplateParams, 12878 NewTD); 12879 NewTD->setDescribedAliasTemplate(NewDecl); 12880 12881 NewDecl->setAccess(AS); 12882 12883 if (Invalid) 12884 NewDecl->setInvalidDecl(); 12885 else if (OldDecl) { 12886 NewDecl->setPreviousDecl(OldDecl); 12887 CheckRedeclarationModuleOwnership(NewDecl, OldDecl); 12888 } 12889 12890 NewND = NewDecl; 12891 } else { 12892 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 12893 setTagNameForLinkagePurposes(TD, NewTD); 12894 handleTagNumbering(TD, S); 12895 } 12896 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 12897 NewND = NewTD; 12898 } 12899 12900 PushOnScopeChains(NewND, S); 12901 ActOnDocumentableDecl(NewND); 12902 return NewND; 12903} 12904 12905Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 12906 SourceLocation AliasLoc, 12907 IdentifierInfo *Alias, CXXScopeSpec &SS, 12908 SourceLocation IdentLoc, 12909 IdentifierInfo *Ident) { 12910 12911 // Lookup the namespace name. 12912 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 12913 LookupParsedName(R, S, &SS); 12914 12915 if (R.isAmbiguous()) 12916 return nullptr; 12917 12918 if (R.empty()) { 12919 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 12920 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 12921 return nullptr; 12922 } 12923 } 12924 assert(!R.isAmbiguous() && !R.empty())((void)0); 12925 NamedDecl *ND = R.getRepresentativeDecl(); 12926 12927 // Check if we have a previous declaration with the same name. 12928 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 12929 ForVisibleRedeclaration); 12930 LookupName(PrevR, S); 12931 12932 // Check we're not shadowing a template parameter. 12933 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 12934 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 12935 PrevR.clear(); 12936 } 12937 12938 // Filter out any other lookup result from an enclosing scope. 12939 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 12940 /*AllowInlineNamespace*/false); 12941 12942 // Find the previous declaration and check that we can redeclare it. 12943 NamespaceAliasDecl *Prev = nullptr; 12944 if (PrevR.isSingleResult()) { 12945 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 12946 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 12947 // We already have an alias with the same name that points to the same 12948 // namespace; check that it matches. 12949 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 12950 Prev = AD; 12951 } else if (isVisible(PrevDecl)) { 12952 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 12953 << Alias; 12954 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 12955 << AD->getNamespace(); 12956 return nullptr; 12957 } 12958 } else if (isVisible(PrevDecl)) { 12959 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 12960 ? diag::err_redefinition 12961 : diag::err_redefinition_different_kind; 12962 Diag(AliasLoc, DiagID) << Alias; 12963 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 12964 return nullptr; 12965 } 12966 } 12967 12968 // The use of a nested name specifier may trigger deprecation warnings. 12969 DiagnoseUseOfDecl(ND, IdentLoc); 12970 12971 NamespaceAliasDecl *AliasDecl = 12972 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 12973 Alias, SS.getWithLocInContext(Context), 12974 IdentLoc, ND); 12975 if (Prev) 12976 AliasDecl->setPreviousDecl(Prev); 12977 12978 PushOnScopeChains(AliasDecl, S); 12979 return AliasDecl; 12980} 12981 12982namespace { 12983struct SpecialMemberExceptionSpecInfo 12984 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 12985 SourceLocation Loc; 12986 Sema::ImplicitExceptionSpecification ExceptSpec; 12987 12988 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 12989 Sema::CXXSpecialMember CSM, 12990 Sema::InheritedConstructorInfo *ICI, 12991 SourceLocation Loc) 12992 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 12993 12994 bool visitBase(CXXBaseSpecifier *Base); 12995 bool visitField(FieldDecl *FD); 12996 12997 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 12998 unsigned Quals); 12999 13000 void visitSubobjectCall(Subobject Subobj, 13001 Sema::SpecialMemberOverloadResult SMOR); 13002}; 13003} 13004 13005bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 13006 auto *RT = Base->getType()->getAs<RecordType>(); 13007 if (!RT) 13008 return false; 13009 13010 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 13011 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 13012 if (auto *BaseCtor = SMOR.getMethod()) { 13013 visitSubobjectCall(Base, BaseCtor); 13014 return false; 13015 } 13016 13017 visitClassSubobject(BaseClass, Base, 0); 13018 return false; 13019} 13020 13021bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 13022 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 13023 Expr *E = FD->getInClassInitializer(); 13024 if (!E) 13025 // FIXME: It's a little wasteful to build and throw away a 13026 // CXXDefaultInitExpr here. 13027 // FIXME: We should have a single context note pointing at Loc, and 13028 // this location should be MD->getLocation() instead, since that's 13029 // the location where we actually use the default init expression. 13030 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 13031 if (E) 13032 ExceptSpec.CalledExpr(E); 13033 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 13034 ->getAs<RecordType>()) { 13035 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 13036 FD->getType().getCVRQualifiers()); 13037 } 13038 return false; 13039} 13040 13041void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 13042 Subobject Subobj, 13043 unsigned Quals) { 13044 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 13045 bool IsMutable = Field && Field->isMutable(); 13046 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 13047} 13048 13049void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 13050 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 13051 // Note, if lookup fails, it doesn't matter what exception specification we 13052 // choose because the special member will be deleted. 13053 if (CXXMethodDecl *MD = SMOR.getMethod()) 13054 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 13055} 13056 13057bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 13058 llvm::APSInt Result; 13059 ExprResult Converted = CheckConvertedConstantExpression( 13060 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 13061 ExplicitSpec.setExpr(Converted.get()); 13062 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 13063 ExplicitSpec.setKind(Result.getBoolValue() 13064 ? ExplicitSpecKind::ResolvedTrue 13065 : ExplicitSpecKind::ResolvedFalse); 13066 return true; 13067 } 13068 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 13069 return false; 13070} 13071 13072ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 13073 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 13074 if (!ExplicitExpr->isTypeDependent()) 13075 tryResolveExplicitSpecifier(ES); 13076 return ES; 13077} 13078 13079static Sema::ImplicitExceptionSpecification 13080ComputeDefaultedSpecialMemberExceptionSpec( 13081 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 13082 Sema::InheritedConstructorInfo *ICI) { 13083 ComputingExceptionSpec CES(S, MD, Loc); 13084 13085 CXXRecordDecl *ClassDecl = MD->getParent(); 13086 13087 // C++ [except.spec]p14: 13088 // An implicitly declared special member function (Clause 12) shall have an 13089 // exception-specification. [...] 13090 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 13091 if (ClassDecl->isInvalidDecl()) 13092 return Info.ExceptSpec; 13093 13094 // FIXME: If this diagnostic fires, we're probably missing a check for 13095 // attempting to resolve an exception specification before it's known 13096 // at a higher level. 13097 if (S.RequireCompleteType(MD->getLocation(), 13098 S.Context.getRecordType(ClassDecl), 13099 diag::err_exception_spec_incomplete_type)) 13100 return Info.ExceptSpec; 13101 13102 // C++1z [except.spec]p7: 13103 // [Look for exceptions thrown by] a constructor selected [...] to 13104 // initialize a potentially constructed subobject, 13105 // C++1z [except.spec]p8: 13106 // The exception specification for an implicitly-declared destructor, or a 13107 // destructor without a noexcept-specifier, is potentially-throwing if and 13108 // only if any of the destructors for any of its potentially constructed 13109 // subojects is potentially throwing. 13110 // FIXME: We respect the first rule but ignore the "potentially constructed" 13111 // in the second rule to resolve a core issue (no number yet) that would have 13112 // us reject: 13113 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 13114 // struct B : A {}; 13115 // struct C : B { void f(); }; 13116 // ... due to giving B::~B() a non-throwing exception specification. 13117 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 13118 : Info.VisitAllBases); 13119 13120 return Info.ExceptSpec; 13121} 13122 13123namespace { 13124/// RAII object to register a special member as being currently declared. 13125struct DeclaringSpecialMember { 13126 Sema &S; 13127 Sema::SpecialMemberDecl D; 13128 Sema::ContextRAII SavedContext; 13129 bool WasAlreadyBeingDeclared; 13130 13131 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 13132 : S(S), D(RD, CSM), SavedContext(S, RD) { 13133 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 13134 if (WasAlreadyBeingDeclared) 13135 // This almost never happens, but if it does, ensure that our cache 13136 // doesn't contain a stale result. 13137 S.SpecialMemberCache.clear(); 13138 else { 13139 // Register a note to be produced if we encounter an error while 13140 // declaring the special member. 13141 Sema::CodeSynthesisContext Ctx; 13142 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 13143 // FIXME: We don't have a location to use here. Using the class's 13144 // location maintains the fiction that we declare all special members 13145 // with the class, but (1) it's not clear that lying about that helps our 13146 // users understand what's going on, and (2) there may be outer contexts 13147 // on the stack (some of which are relevant) and printing them exposes 13148 // our lies. 13149 Ctx.PointOfInstantiation = RD->getLocation(); 13150 Ctx.Entity = RD; 13151 Ctx.SpecialMember = CSM; 13152 S.pushCodeSynthesisContext(Ctx); 13153 } 13154 } 13155 ~DeclaringSpecialMember() { 13156 if (!WasAlreadyBeingDeclared) { 13157 S.SpecialMembersBeingDeclared.erase(D); 13158 S.popCodeSynthesisContext(); 13159 } 13160 } 13161 13162 /// Are we already trying to declare this special member? 13163 bool isAlreadyBeingDeclared() const { 13164 return WasAlreadyBeingDeclared; 13165 } 13166}; 13167} 13168 13169void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 13170 // Look up any existing declarations, but don't trigger declaration of all 13171 // implicit special members with this name. 13172 DeclarationName Name = FD->getDeclName(); 13173 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 13174 ForExternalRedeclaration); 13175 for (auto *D : FD->getParent()->lookup(Name)) 13176 if (auto *Acceptable = R.getAcceptableDecl(D)) 13177 R.addDecl(Acceptable); 13178 R.resolveKind(); 13179 R.suppressDiagnostics(); 13180 13181 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false); 13182} 13183 13184void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 13185 QualType ResultTy, 13186 ArrayRef<QualType> Args) { 13187 // Build an exception specification pointing back at this constructor. 13188 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 13189 13190 LangAS AS = getDefaultCXXMethodAddrSpace(); 13191 if (AS != LangAS::Default) { 13192 EPI.TypeQuals.addAddressSpace(AS); 13193 } 13194 13195 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 13196 SpecialMem->setType(QT); 13197 13198 // During template instantiation of implicit special member functions we need 13199 // a reliable TypeSourceInfo for the function prototype in order to allow 13200 // functions to be substituted. 13201 if (inTemplateInstantiation() && 13202 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) { 13203 TypeSourceInfo *TSI = 13204 Context.getTrivialTypeSourceInfo(SpecialMem->getType()); 13205 SpecialMem->setTypeSourceInfo(TSI); 13206 } 13207} 13208 13209CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 13210 CXXRecordDecl *ClassDecl) { 13211 // C++ [class.ctor]p5: 13212 // A default constructor for a class X is a constructor of class X 13213 // that can be called without an argument. If there is no 13214 // user-declared constructor for class X, a default constructor is 13215 // implicitly declared. An implicitly-declared default constructor 13216 // is an inline public member of its class. 13217 assert(ClassDecl->needsImplicitDefaultConstructor() &&((void)0) 13218 "Should not build implicit default constructor!")((void)0); 13219 13220 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 13221 if (DSM.isAlreadyBeingDeclared()) 13222 return nullptr; 13223 13224 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13225 CXXDefaultConstructor, 13226 false); 13227 13228 // Create the actual constructor declaration. 13229 CanQualType ClassType 13230 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13231 SourceLocation ClassLoc = ClassDecl->getLocation(); 13232 DeclarationName Name 13233 = Context.DeclarationNames.getCXXConstructorName(ClassType); 13234 DeclarationNameInfo NameInfo(Name, ClassLoc); 13235 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 13236 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 13237 /*TInfo=*/nullptr, ExplicitSpecifier(), 13238 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 13239 Constexpr ? ConstexprSpecKind::Constexpr 13240 : ConstexprSpecKind::Unspecified); 13241 DefaultCon->setAccess(AS_public); 13242 DefaultCon->setDefaulted(); 13243 13244 if (getLangOpts().CUDA) { 13245 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 13246 DefaultCon, 13247 /* ConstRHS */ false, 13248 /* Diagnose */ false); 13249 } 13250 13251 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); 13252 13253 // We don't need to use SpecialMemberIsTrivial here; triviality for default 13254 // constructors is easy to compute. 13255 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 13256 13257 // Note that we have declared this constructor. 13258 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 13259 13260 Scope *S = getScopeForContext(ClassDecl); 13261 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 13262 13263 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 13264 SetDeclDeleted(DefaultCon, ClassLoc); 13265 13266 if (S) 13267 PushOnScopeChains(DefaultCon, S, false); 13268 ClassDecl->addDecl(DefaultCon); 13269 13270 return DefaultCon; 13271} 13272 13273void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 13274 CXXConstructorDecl *Constructor) { 13275 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&((void)0) 13276 !Constructor->doesThisDeclarationHaveABody() &&((void)0) 13277 !Constructor->isDeleted()) &&((void)0) 13278 "DefineImplicitDefaultConstructor - call it for implicit default ctor")((void)0); 13279 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13280 return; 13281 13282 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13283 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")((void)0); 13284 13285 SynthesizedFunctionScope Scope(*this, Constructor); 13286 13287 // The exception specification is needed because we are defining the 13288 // function. 13289 ResolveExceptionSpec(CurrentLocation, 13290 Constructor->getType()->castAs<FunctionProtoType>()); 13291 MarkVTableUsed(CurrentLocation, ClassDecl); 13292 13293 // Add a context note for diagnostics produced after this point. 13294 Scope.addContextNote(CurrentLocation); 13295 13296 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 13297 Constructor->setInvalidDecl(); 13298 return; 13299 } 13300 13301 SourceLocation Loc = Constructor->getEndLoc().isValid() 13302 ? Constructor->getEndLoc() 13303 : Constructor->getLocation(); 13304 Constructor->setBody(new (Context) CompoundStmt(Loc)); 13305 Constructor->markUsed(Context); 13306 13307 if (ASTMutationListener *L = getASTMutationListener()) { 13308 L->CompletedImplicitDefinition(Constructor); 13309 } 13310 13311 DiagnoseUninitializedFields(*this, Constructor); 13312} 13313 13314void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 13315 // Perform any delayed checks on exception specifications. 13316 CheckDelayedMemberExceptionSpecs(); 13317} 13318 13319/// Find or create the fake constructor we synthesize to model constructing an 13320/// object of a derived class via a constructor of a base class. 13321CXXConstructorDecl * 13322Sema::findInheritingConstructor(SourceLocation Loc, 13323 CXXConstructorDecl *BaseCtor, 13324 ConstructorUsingShadowDecl *Shadow) { 13325 CXXRecordDecl *Derived = Shadow->getParent(); 13326 SourceLocation UsingLoc = Shadow->getLocation(); 13327 13328 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 13329 // For now we use the name of the base class constructor as a member of the 13330 // derived class to indicate a (fake) inherited constructor name. 13331 DeclarationName Name = BaseCtor->getDeclName(); 13332 13333 // Check to see if we already have a fake constructor for this inherited 13334 // constructor call. 13335 for (NamedDecl *Ctor : Derived->lookup(Name)) 13336 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 13337 ->getInheritedConstructor() 13338 .getConstructor(), 13339 BaseCtor)) 13340 return cast<CXXConstructorDecl>(Ctor); 13341 13342 DeclarationNameInfo NameInfo(Name, UsingLoc); 13343 TypeSourceInfo *TInfo = 13344 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 13345 FunctionProtoTypeLoc ProtoLoc = 13346 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 13347 13348 // Check the inherited constructor is valid and find the list of base classes 13349 // from which it was inherited. 13350 InheritedConstructorInfo ICI(*this, Loc, Shadow); 13351 13352 bool Constexpr = 13353 BaseCtor->isConstexpr() && 13354 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 13355 false, BaseCtor, &ICI); 13356 13357 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 13358 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 13359 BaseCtor->getExplicitSpecifier(), /*isInline=*/true, 13360 /*isImplicitlyDeclared=*/true, 13361 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, 13362 InheritedConstructor(Shadow, BaseCtor), 13363 BaseCtor->getTrailingRequiresClause()); 13364 if (Shadow->isInvalidDecl()) 13365 DerivedCtor->setInvalidDecl(); 13366 13367 // Build an unevaluated exception specification for this fake constructor. 13368 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 13369 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 13370 EPI.ExceptionSpec.Type = EST_Unevaluated; 13371 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 13372 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 13373 FPT->getParamTypes(), EPI)); 13374 13375 // Build the parameter declarations. 13376 SmallVector<ParmVarDecl *, 16> ParamDecls; 13377 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 13378 TypeSourceInfo *TInfo = 13379 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 13380 ParmVarDecl *PD = ParmVarDecl::Create( 13381 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 13382 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 13383 PD->setScopeInfo(0, I); 13384 PD->setImplicit(); 13385 // Ensure attributes are propagated onto parameters (this matters for 13386 // format, pass_object_size, ...). 13387 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 13388 ParamDecls.push_back(PD); 13389 ProtoLoc.setParam(I, PD); 13390 } 13391 13392 // Set up the new constructor. 13393 assert(!BaseCtor->isDeleted() && "should not use deleted constructor")((void)0); 13394 DerivedCtor->setAccess(BaseCtor->getAccess()); 13395 DerivedCtor->setParams(ParamDecls); 13396 Derived->addDecl(DerivedCtor); 13397 13398 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 13399 SetDeclDeleted(DerivedCtor, UsingLoc); 13400 13401 return DerivedCtor; 13402} 13403 13404void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 13405 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 13406 Ctor->getInheritedConstructor().getShadowDecl()); 13407 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 13408 /*Diagnose*/true); 13409} 13410 13411void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 13412 CXXConstructorDecl *Constructor) { 13413 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13414 assert(Constructor->getInheritedConstructor() &&((void)0) 13415 !Constructor->doesThisDeclarationHaveABody() &&((void)0) 13416 !Constructor->isDeleted())((void)0); 13417 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13418 return; 13419 13420 // Initializations are performed "as if by a defaulted default constructor", 13421 // so enter the appropriate scope. 13422 SynthesizedFunctionScope Scope(*this, Constructor); 13423 13424 // The exception specification is needed because we are defining the 13425 // function. 13426 ResolveExceptionSpec(CurrentLocation, 13427 Constructor->getType()->castAs<FunctionProtoType>()); 13428 MarkVTableUsed(CurrentLocation, ClassDecl); 13429 13430 // Add a context note for diagnostics produced after this point. 13431 Scope.addContextNote(CurrentLocation); 13432 13433 ConstructorUsingShadowDecl *Shadow = 13434 Constructor->getInheritedConstructor().getShadowDecl(); 13435 CXXConstructorDecl *InheritedCtor = 13436 Constructor->getInheritedConstructor().getConstructor(); 13437 13438 // [class.inhctor.init]p1: 13439 // initialization proceeds as if a defaulted default constructor is used to 13440 // initialize the D object and each base class subobject from which the 13441 // constructor was inherited 13442 13443 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 13444 CXXRecordDecl *RD = Shadow->getParent(); 13445 SourceLocation InitLoc = Shadow->getLocation(); 13446 13447 // Build explicit initializers for all base classes from which the 13448 // constructor was inherited. 13449 SmallVector<CXXCtorInitializer*, 8> Inits; 13450 for (bool VBase : {false, true}) { 13451 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 13452 if (B.isVirtual() != VBase) 13453 continue; 13454 13455 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 13456 if (!BaseRD) 13457 continue; 13458 13459 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 13460 if (!BaseCtor.first) 13461 continue; 13462 13463 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 13464 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 13465 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 13466 13467 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 13468 Inits.push_back(new (Context) CXXCtorInitializer( 13469 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 13470 SourceLocation())); 13471 } 13472 } 13473 13474 // We now proceed as if for a defaulted default constructor, with the relevant 13475 // initializers replaced. 13476 13477 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 13478 Constructor->setInvalidDecl(); 13479 return; 13480 } 13481 13482 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 13483 Constructor->markUsed(Context); 13484 13485 if (ASTMutationListener *L = getASTMutationListener()) { 13486 L->CompletedImplicitDefinition(Constructor); 13487 } 13488 13489 DiagnoseUninitializedFields(*this, Constructor); 13490} 13491 13492CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 13493 // C++ [class.dtor]p2: 13494 // If a class has no user-declared destructor, a destructor is 13495 // declared implicitly. An implicitly-declared destructor is an 13496 // inline public member of its class. 13497 assert(ClassDecl->needsImplicitDestructor())((void)0); 13498 13499 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 13500 if (DSM.isAlreadyBeingDeclared()) 13501 return nullptr; 13502 13503 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13504 CXXDestructor, 13505 false); 13506 13507 // Create the actual destructor declaration. 13508 CanQualType ClassType 13509 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13510 SourceLocation ClassLoc = ClassDecl->getLocation(); 13511 DeclarationName Name 13512 = Context.DeclarationNames.getCXXDestructorName(ClassType); 13513 DeclarationNameInfo NameInfo(Name, ClassLoc); 13514 CXXDestructorDecl *Destructor = 13515 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, 13516 QualType(), nullptr, /*isInline=*/true, 13517 /*isImplicitlyDeclared=*/true, 13518 Constexpr ? ConstexprSpecKind::Constexpr 13519 : ConstexprSpecKind::Unspecified); 13520 Destructor->setAccess(AS_public); 13521 Destructor->setDefaulted(); 13522 13523 if (getLangOpts().CUDA) { 13524 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 13525 Destructor, 13526 /* ConstRHS */ false, 13527 /* Diagnose */ false); 13528 } 13529 13530 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); 13531 13532 // We don't need to use SpecialMemberIsTrivial here; triviality for 13533 // destructors is easy to compute. 13534 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 13535 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 13536 ClassDecl->hasTrivialDestructorForCall()); 13537 13538 // Note that we have declared this destructor. 13539 ++getASTContext().NumImplicitDestructorsDeclared; 13540 13541 Scope *S = getScopeForContext(ClassDecl); 13542 CheckImplicitSpecialMemberDeclaration(S, Destructor); 13543 13544 // We can't check whether an implicit destructor is deleted before we complete 13545 // the definition of the class, because its validity depends on the alignment 13546 // of the class. We'll check this from ActOnFields once the class is complete. 13547 if (ClassDecl->isCompleteDefinition() && 13548 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 13549 SetDeclDeleted(Destructor, ClassLoc); 13550 13551 // Introduce this destructor into its scope. 13552 if (S) 13553 PushOnScopeChains(Destructor, S, false); 13554 ClassDecl->addDecl(Destructor); 13555 13556 return Destructor; 13557} 13558 13559void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 13560 CXXDestructorDecl *Destructor) { 13561 assert((Destructor->isDefaulted() &&((void)0) 13562 !Destructor->doesThisDeclarationHaveABody() &&((void)0) 13563 !Destructor->isDeleted()) &&((void)0) 13564 "DefineImplicitDestructor - call it for implicit default dtor")((void)0); 13565 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 13566 return; 13567 13568 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13569 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor")((void)0); 13570 13571 SynthesizedFunctionScope Scope(*this, Destructor); 13572 13573 // The exception specification is needed because we are defining the 13574 // function. 13575 ResolveExceptionSpec(CurrentLocation, 13576 Destructor->getType()->castAs<FunctionProtoType>()); 13577 MarkVTableUsed(CurrentLocation, ClassDecl); 13578 13579 // Add a context note for diagnostics produced after this point. 13580 Scope.addContextNote(CurrentLocation); 13581 13582 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 13583 Destructor->getParent()); 13584 13585 if (CheckDestructor(Destructor)) { 13586 Destructor->setInvalidDecl(); 13587 return; 13588 } 13589 13590 SourceLocation Loc = Destructor->getEndLoc().isValid() 13591 ? Destructor->getEndLoc() 13592 : Destructor->getLocation(); 13593 Destructor->setBody(new (Context) CompoundStmt(Loc)); 13594 Destructor->markUsed(Context); 13595 13596 if (ASTMutationListener *L = getASTMutationListener()) { 13597 L->CompletedImplicitDefinition(Destructor); 13598 } 13599} 13600 13601void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 13602 CXXDestructorDecl *Destructor) { 13603 if (Destructor->isInvalidDecl()) 13604 return; 13605 13606 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13607 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&((void)0) 13608 "implicit complete dtors unneeded outside MS ABI")((void)0); 13609 assert(ClassDecl->getNumVBases() > 0 &&((void)0) 13610 "complete dtor only exists for classes with vbases")((void)0); 13611 13612 SynthesizedFunctionScope Scope(*this, Destructor); 13613 13614 // Add a context note for diagnostics produced after this point. 13615 Scope.addContextNote(CurrentLocation); 13616 13617 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 13618} 13619 13620/// Perform any semantic analysis which needs to be delayed until all 13621/// pending class member declarations have been parsed. 13622void Sema::ActOnFinishCXXMemberDecls() { 13623 // If the context is an invalid C++ class, just suppress these checks. 13624 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 13625 if (Record->isInvalidDecl()) { 13626 DelayedOverridingExceptionSpecChecks.clear(); 13627 DelayedEquivalentExceptionSpecChecks.clear(); 13628 return; 13629 } 13630 checkForMultipleExportedDefaultConstructors(*this, Record); 13631 } 13632} 13633 13634void Sema::ActOnFinishCXXNonNestedClass() { 13635 referenceDLLExportedClassMethods(); 13636 13637 if (!DelayedDllExportMemberFunctions.empty()) { 13638 SmallVector<CXXMethodDecl*, 4> WorkList; 13639 std::swap(DelayedDllExportMemberFunctions, WorkList); 13640 for (CXXMethodDecl *M : WorkList) { 13641 DefineDefaultedFunction(*this, M, M->getLocation()); 13642 13643 // Pass the method to the consumer to get emitted. This is not necessary 13644 // for explicit instantiation definitions, as they will get emitted 13645 // anyway. 13646 if (M->getParent()->getTemplateSpecializationKind() != 13647 TSK_ExplicitInstantiationDefinition) 13648 ActOnFinishInlineFunctionDef(M); 13649 } 13650 } 13651} 13652 13653void Sema::referenceDLLExportedClassMethods() { 13654 if (!DelayedDllExportClasses.empty()) { 13655 // Calling ReferenceDllExportedMembers might cause the current function to 13656 // be called again, so use a local copy of DelayedDllExportClasses. 13657 SmallVector<CXXRecordDecl *, 4> WorkList; 13658 std::swap(DelayedDllExportClasses, WorkList); 13659 for (CXXRecordDecl *Class : WorkList) 13660 ReferenceDllExportedMembers(*this, Class); 13661 } 13662} 13663 13664void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 13665 assert(getLangOpts().CPlusPlus11 &&((void)0) 13666 "adjusting dtor exception specs was introduced in c++11")((void)0); 13667 13668 if (Destructor->isDependentContext()) 13669 return; 13670 13671 // C++11 [class.dtor]p3: 13672 // A declaration of a destructor that does not have an exception- 13673 // specification is implicitly considered to have the same exception- 13674 // specification as an implicit declaration. 13675 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 13676 if (DtorType->hasExceptionSpec()) 13677 return; 13678 13679 // Replace the destructor's type, building off the existing one. Fortunately, 13680 // the only thing of interest in the destructor type is its extended info. 13681 // The return and arguments are fixed. 13682 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 13683 EPI.ExceptionSpec.Type = EST_Unevaluated; 13684 EPI.ExceptionSpec.SourceDecl = Destructor; 13685 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 13686 13687 // FIXME: If the destructor has a body that could throw, and the newly created 13688 // spec doesn't allow exceptions, we should emit a warning, because this 13689 // change in behavior can break conforming C++03 programs at runtime. 13690 // However, we don't have a body or an exception specification yet, so it 13691 // needs to be done somewhere else. 13692} 13693 13694namespace { 13695/// An abstract base class for all helper classes used in building the 13696// copy/move operators. These classes serve as factory functions and help us 13697// avoid using the same Expr* in the AST twice. 13698class ExprBuilder { 13699 ExprBuilder(const ExprBuilder&) = delete; 13700 ExprBuilder &operator=(const ExprBuilder&) = delete; 13701 13702protected: 13703 static Expr *assertNotNull(Expr *E) { 13704 assert(E && "Expression construction must not fail.")((void)0); 13705 return E; 13706 } 13707 13708public: 13709 ExprBuilder() {} 13710 virtual ~ExprBuilder() {} 13711 13712 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 13713}; 13714 13715class RefBuilder: public ExprBuilder { 13716 VarDecl *Var; 13717 QualType VarType; 13718 13719public: 13720 Expr *build(Sema &S, SourceLocation Loc) const override { 13721 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 13722 } 13723 13724 RefBuilder(VarDecl *Var, QualType VarType) 13725 : Var(Var), VarType(VarType) {} 13726}; 13727 13728class ThisBuilder: public ExprBuilder { 13729public: 13730 Expr *build(Sema &S, SourceLocation Loc) const override { 13731 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 13732 } 13733}; 13734 13735class CastBuilder: public ExprBuilder { 13736 const ExprBuilder &Builder; 13737 QualType Type; 13738 ExprValueKind Kind; 13739 const CXXCastPath &Path; 13740 13741public: 13742 Expr *build(Sema &S, SourceLocation Loc) const override { 13743 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 13744 CK_UncheckedDerivedToBase, Kind, 13745 &Path).get()); 13746 } 13747 13748 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 13749 const CXXCastPath &Path) 13750 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 13751}; 13752 13753class DerefBuilder: public ExprBuilder { 13754 const ExprBuilder &Builder; 13755 13756public: 13757 Expr *build(Sema &S, SourceLocation Loc) const override { 13758 return assertNotNull( 13759 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 13760 } 13761 13762 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13763}; 13764 13765class MemberBuilder: public ExprBuilder { 13766 const ExprBuilder &Builder; 13767 QualType Type; 13768 CXXScopeSpec SS; 13769 bool IsArrow; 13770 LookupResult &MemberLookup; 13771 13772public: 13773 Expr *build(Sema &S, SourceLocation Loc) const override { 13774 return assertNotNull(S.BuildMemberReferenceExpr( 13775 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 13776 nullptr, MemberLookup, nullptr, nullptr).get()); 13777 } 13778 13779 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 13780 LookupResult &MemberLookup) 13781 : Builder(Builder), Type(Type), IsArrow(IsArrow), 13782 MemberLookup(MemberLookup) {} 13783}; 13784 13785class MoveCastBuilder: public ExprBuilder { 13786 const ExprBuilder &Builder; 13787 13788public: 13789 Expr *build(Sema &S, SourceLocation Loc) const override { 13790 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 13791 } 13792 13793 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13794}; 13795 13796class LvalueConvBuilder: public ExprBuilder { 13797 const ExprBuilder &Builder; 13798 13799public: 13800 Expr *build(Sema &S, SourceLocation Loc) const override { 13801 return assertNotNull( 13802 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 13803 } 13804 13805 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13806}; 13807 13808class SubscriptBuilder: public ExprBuilder { 13809 const ExprBuilder &Base; 13810 const ExprBuilder &Index; 13811 13812public: 13813 Expr *build(Sema &S, SourceLocation Loc) const override { 13814 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 13815 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 13816 } 13817 13818 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 13819 : Base(Base), Index(Index) {} 13820}; 13821 13822} // end anonymous namespace 13823 13824/// When generating a defaulted copy or move assignment operator, if a field 13825/// should be copied with __builtin_memcpy rather than via explicit assignments, 13826/// do so. This optimization only applies for arrays of scalars, and for arrays 13827/// of class type where the selected copy/move-assignment operator is trivial. 13828static StmtResult 13829buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 13830 const ExprBuilder &ToB, const ExprBuilder &FromB) { 13831 // Compute the size of the memory buffer to be copied. 13832 QualType SizeType = S.Context.getSizeType(); 13833 llvm::APInt Size(S.Context.getTypeSize(SizeType), 13834 S.Context.getTypeSizeInChars(T).getQuantity()); 13835 13836 // Take the address of the field references for "from" and "to". We 13837 // directly construct UnaryOperators here because semantic analysis 13838 // does not permit us to take the address of an xvalue. 13839 Expr *From = FromB.build(S, Loc); 13840 From = UnaryOperator::Create( 13841 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 13842 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 13843 Expr *To = ToB.build(S, Loc); 13844 To = UnaryOperator::Create( 13845 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 13846 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 13847 13848 const Type *E = T->getBaseElementTypeUnsafe(); 13849 bool NeedsCollectableMemCpy = 13850 E->isRecordType() && 13851 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 13852 13853 // Create a reference to the __builtin_objc_memmove_collectable function 13854 StringRef MemCpyName = NeedsCollectableMemCpy ? 13855 "__builtin_objc_memmove_collectable" : 13856 "__builtin_memcpy"; 13857 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 13858 Sema::LookupOrdinaryName); 13859 S.LookupName(R, S.TUScope, true); 13860 13861 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 13862 if (!MemCpy) 13863 // Something went horribly wrong earlier, and we will have complained 13864 // about it. 13865 return StmtError(); 13866 13867 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 13868 VK_PRValue, Loc, nullptr); 13869 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")((void)0); 13870 13871 Expr *CallArgs[] = { 13872 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 13873 }; 13874 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 13875 Loc, CallArgs, Loc); 13876 13877 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")((void)0); 13878 return Call.getAs<Stmt>(); 13879} 13880 13881/// Builds a statement that copies/moves the given entity from \p From to 13882/// \c To. 13883/// 13884/// This routine is used to copy/move the members of a class with an 13885/// implicitly-declared copy/move assignment operator. When the entities being 13886/// copied are arrays, this routine builds for loops to copy them. 13887/// 13888/// \param S The Sema object used for type-checking. 13889/// 13890/// \param Loc The location where the implicit copy/move is being generated. 13891/// 13892/// \param T The type of the expressions being copied/moved. Both expressions 13893/// must have this type. 13894/// 13895/// \param To The expression we are copying/moving to. 13896/// 13897/// \param From The expression we are copying/moving from. 13898/// 13899/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 13900/// Otherwise, it's a non-static member subobject. 13901/// 13902/// \param Copying Whether we're copying or moving. 13903/// 13904/// \param Depth Internal parameter recording the depth of the recursion. 13905/// 13906/// \returns A statement or a loop that copies the expressions, or StmtResult(0) 13907/// if a memcpy should be used instead. 13908static StmtResult 13909buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 13910 const ExprBuilder &To, const ExprBuilder &From, 13911 bool CopyingBaseSubobject, bool Copying, 13912 unsigned Depth = 0) { 13913 // C++11 [class.copy]p28: 13914 // Each subobject is assigned in the manner appropriate to its type: 13915 // 13916 // - if the subobject is of class type, as if by a call to operator= with 13917 // the subobject as the object expression and the corresponding 13918 // subobject of x as a single function argument (as if by explicit 13919 // qualification; that is, ignoring any possible virtual overriding 13920 // functions in more derived classes); 13921 // 13922 // C++03 [class.copy]p13: 13923 // - if the subobject is of class type, the copy assignment operator for 13924 // the class is used (as if by explicit qualification; that is, 13925 // ignoring any possible virtual overriding functions in more derived 13926 // classes); 13927 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 13928 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 13929 13930 // Look for operator=. 13931 DeclarationName Name 13932 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 13933 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 13934 S.LookupQualifiedName(OpLookup, ClassDecl, false); 13935 13936 // Prior to C++11, filter out any result that isn't a copy/move-assignment 13937 // operator. 13938 if (!S.getLangOpts().CPlusPlus11) { 13939 LookupResult::Filter F = OpLookup.makeFilter(); 13940 while (F.hasNext()) { 13941 NamedDecl *D = F.next(); 13942 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 13943 if (Method->isCopyAssignmentOperator() || 13944 (!Copying && Method->isMoveAssignmentOperator())) 13945 continue; 13946 13947 F.erase(); 13948 } 13949 F.done(); 13950 } 13951 13952 // Suppress the protected check (C++ [class.protected]) for each of the 13953 // assignment operators we found. This strange dance is required when 13954 // we're assigning via a base classes's copy-assignment operator. To 13955 // ensure that we're getting the right base class subobject (without 13956 // ambiguities), we need to cast "this" to that subobject type; to 13957 // ensure that we don't go through the virtual call mechanism, we need 13958 // to qualify the operator= name with the base class (see below). However, 13959 // this means that if the base class has a protected copy assignment 13960 // operator, the protected member access check will fail. So, we 13961 // rewrite "protected" access to "public" access in this case, since we 13962 // know by construction that we're calling from a derived class. 13963 if (CopyingBaseSubobject) { 13964 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 13965 L != LEnd; ++L) { 13966 if (L.getAccess() == AS_protected) 13967 L.setAccess(AS_public); 13968 } 13969 } 13970 13971 // Create the nested-name-specifier that will be used to qualify the 13972 // reference to operator=; this is required to suppress the virtual 13973 // call mechanism. 13974 CXXScopeSpec SS; 13975 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 13976 SS.MakeTrivial(S.Context, 13977 NestedNameSpecifier::Create(S.Context, nullptr, false, 13978 CanonicalT), 13979 Loc); 13980 13981 // Create the reference to operator=. 13982 ExprResult OpEqualRef 13983 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 13984 SS, /*TemplateKWLoc=*/SourceLocation(), 13985 /*FirstQualifierInScope=*/nullptr, 13986 OpLookup, 13987 /*TemplateArgs=*/nullptr, /*S*/nullptr, 13988 /*SuppressQualifierCheck=*/true); 13989 if (OpEqualRef.isInvalid()) 13990 return StmtError(); 13991 13992 // Build the call to the assignment operator. 13993 13994 Expr *FromInst = From.build(S, Loc); 13995 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 13996 OpEqualRef.getAs<Expr>(), 13997 Loc, FromInst, Loc); 13998 if (Call.isInvalid()) 13999 return StmtError(); 14000 14001 // If we built a call to a trivial 'operator=' while copying an array, 14002 // bail out. We'll replace the whole shebang with a memcpy. 14003 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 14004 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 14005 return StmtResult((Stmt*)nullptr); 14006 14007 // Convert to an expression-statement, and clean up any produced 14008 // temporaries. 14009 return S.ActOnExprStmt(Call); 14010 } 14011 14012 // - if the subobject is of scalar type, the built-in assignment 14013 // operator is used. 14014 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 14015 if (!ArrayTy) { 14016 ExprResult Assignment = S.CreateBuiltinBinOp( 14017 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 14018 if (Assignment.isInvalid()) 14019 return StmtError(); 14020 return S.ActOnExprStmt(Assignment); 14021 } 14022 14023 // - if the subobject is an array, each element is assigned, in the 14024 // manner appropriate to the element type; 14025 14026 // Construct a loop over the array bounds, e.g., 14027 // 14028 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 14029 // 14030 // that will copy each of the array elements. 14031 QualType SizeType = S.Context.getSizeType(); 14032 14033 // Create the iteration variable. 14034 IdentifierInfo *IterationVarName = nullptr; 14035 { 14036 SmallString<8> Str; 14037 llvm::raw_svector_ostream OS(Str); 14038 OS << "__i" << Depth; 14039 IterationVarName = &S.Context.Idents.get(OS.str()); 14040 } 14041 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 14042 IterationVarName, SizeType, 14043 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 14044 SC_None); 14045 14046 // Initialize the iteration variable to zero. 14047 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 14048 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 14049 14050 // Creates a reference to the iteration variable. 14051 RefBuilder IterationVarRef(IterationVar, SizeType); 14052 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 14053 14054 // Create the DeclStmt that holds the iteration variable. 14055 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 14056 14057 // Subscript the "from" and "to" expressions with the iteration variable. 14058 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 14059 MoveCastBuilder FromIndexMove(FromIndexCopy); 14060 const ExprBuilder *FromIndex; 14061 if (Copying) 14062 FromIndex = &FromIndexCopy; 14063 else 14064 FromIndex = &FromIndexMove; 14065 14066 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 14067 14068 // Build the copy/move for an individual element of the array. 14069 StmtResult Copy = 14070 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 14071 ToIndex, *FromIndex, CopyingBaseSubobject, 14072 Copying, Depth + 1); 14073 // Bail out if copying fails or if we determined that we should use memcpy. 14074 if (Copy.isInvalid() || !Copy.get()) 14075 return Copy; 14076 14077 // Create the comparison against the array bound. 14078 llvm::APInt Upper 14079 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 14080 Expr *Comparison = BinaryOperator::Create( 14081 S.Context, IterationVarRefRVal.build(S, Loc), 14082 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 14083 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, 14084 S.CurFPFeatureOverrides()); 14085 14086 // Create the pre-increment of the iteration variable. We can determine 14087 // whether the increment will overflow based on the value of the array 14088 // bound. 14089 Expr *Increment = UnaryOperator::Create( 14090 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 14091 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 14092 14093 // Construct the loop that copies all elements of this array. 14094 return S.ActOnForStmt( 14095 Loc, Loc, InitStmt, 14096 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 14097 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 14098} 14099 14100static StmtResult 14101buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 14102 const ExprBuilder &To, const ExprBuilder &From, 14103 bool CopyingBaseSubobject, bool Copying) { 14104 // Maybe we should use a memcpy? 14105 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 14106 T.isTriviallyCopyableType(S.Context)) 14107 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14108 14109 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 14110 CopyingBaseSubobject, 14111 Copying, 0)); 14112 14113 // If we ended up picking a trivial assignment operator for an array of a 14114 // non-trivially-copyable class type, just emit a memcpy. 14115 if (!Result.isInvalid() && !Result.get()) 14116 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14117 14118 return Result; 14119} 14120 14121CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 14122 // Note: The following rules are largely analoguous to the copy 14123 // constructor rules. Note that virtual bases are not taken into account 14124 // for determining the argument type of the operator. Note also that 14125 // operators taking an object instead of a reference are allowed. 14126 assert(ClassDecl->needsImplicitCopyAssignment())((void)0); 14127 14128 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 14129 if (DSM.isAlreadyBeingDeclared()) 14130 return nullptr; 14131 14132 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14133 LangAS AS = getDefaultCXXMethodAddrSpace(); 14134 if (AS != LangAS::Default) 14135 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14136 QualType RetType = Context.getLValueReferenceType(ArgType); 14137 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 14138 if (Const) 14139 ArgType = ArgType.withConst(); 14140 14141 ArgType = Context.getLValueReferenceType(ArgType); 14142 14143 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14144 CXXCopyAssignment, 14145 Const); 14146 14147 // An implicitly-declared copy assignment operator is an inline public 14148 // member of its class. 14149 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14150 SourceLocation ClassLoc = ClassDecl->getLocation(); 14151 DeclarationNameInfo NameInfo(Name, ClassLoc); 14152 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 14153 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14154 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14155 /*isInline=*/true, 14156 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14157 SourceLocation()); 14158 CopyAssignment->setAccess(AS_public); 14159 CopyAssignment->setDefaulted(); 14160 CopyAssignment->setImplicit(); 14161 14162 if (getLangOpts().CUDA) { 14163 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 14164 CopyAssignment, 14165 /* ConstRHS */ Const, 14166 /* Diagnose */ false); 14167 } 14168 14169 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 14170 14171 // Add the parameter to the operator. 14172 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 14173 ClassLoc, ClassLoc, 14174 /*Id=*/nullptr, ArgType, 14175 /*TInfo=*/nullptr, SC_None, 14176 nullptr); 14177 CopyAssignment->setParams(FromParam); 14178 14179 CopyAssignment->setTrivial( 14180 ClassDecl->needsOverloadResolutionForCopyAssignment() 14181 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 14182 : ClassDecl->hasTrivialCopyAssignment()); 14183 14184 // Note that we have added this copy-assignment operator. 14185 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 14186 14187 Scope *S = getScopeForContext(ClassDecl); 14188 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 14189 14190 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) { 14191 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 14192 SetDeclDeleted(CopyAssignment, ClassLoc); 14193 } 14194 14195 if (S) 14196 PushOnScopeChains(CopyAssignment, S, false); 14197 ClassDecl->addDecl(CopyAssignment); 14198 14199 return CopyAssignment; 14200} 14201 14202/// Diagnose an implicit copy operation for a class which is odr-used, but 14203/// which is deprecated because the class has a user-declared copy constructor, 14204/// copy assignment operator, or destructor. 14205static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 14206 assert(CopyOp->isImplicit())((void)0); 14207 14208 CXXRecordDecl *RD = CopyOp->getParent(); 14209 CXXMethodDecl *UserDeclaredOperation = nullptr; 14210 14211 // In Microsoft mode, assignment operations don't affect constructors and 14212 // vice versa. 14213 if (RD->hasUserDeclaredDestructor()) { 14214 UserDeclaredOperation = RD->getDestructor(); 14215 } else if (!isa<CXXConstructorDecl>(CopyOp) && 14216 RD->hasUserDeclaredCopyConstructor() && 14217 !S.getLangOpts().MSVCCompat) { 14218 // Find any user-declared copy constructor. 14219 for (auto *I : RD->ctors()) { 14220 if (I->isCopyConstructor()) { 14221 UserDeclaredOperation = I; 14222 break; 14223 } 14224 } 14225 assert(UserDeclaredOperation)((void)0); 14226 } else if (isa<CXXConstructorDecl>(CopyOp) && 14227 RD->hasUserDeclaredCopyAssignment() && 14228 !S.getLangOpts().MSVCCompat) { 14229 // Find any user-declared move assignment operator. 14230 for (auto *I : RD->methods()) { 14231 if (I->isCopyAssignmentOperator()) { 14232 UserDeclaredOperation = I; 14233 break; 14234 } 14235 } 14236 assert(UserDeclaredOperation)((void)0); 14237 } 14238 14239 if (UserDeclaredOperation) { 14240 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); 14241 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); 14242 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); 14243 unsigned DiagID = 14244 (UDOIsUserProvided && UDOIsDestructor) 14245 ? diag::warn_deprecated_copy_with_user_provided_dtor 14246 : (UDOIsUserProvided && !UDOIsDestructor) 14247 ? diag::warn_deprecated_copy_with_user_provided_copy 14248 : (!UDOIsUserProvided && UDOIsDestructor) 14249 ? diag::warn_deprecated_copy_with_dtor 14250 : diag::warn_deprecated_copy; 14251 S.Diag(UserDeclaredOperation->getLocation(), DiagID) 14252 << RD << IsCopyAssignment; 14253 } 14254} 14255 14256void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 14257 CXXMethodDecl *CopyAssignOperator) { 14258 assert((CopyAssignOperator->isDefaulted() &&((void)0) 14259 CopyAssignOperator->isOverloadedOperator() &&((void)0) 14260 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&((void)0) 14261 !CopyAssignOperator->doesThisDeclarationHaveABody() &&((void)0) 14262 !CopyAssignOperator->isDeleted()) &&((void)0) 14263 "DefineImplicitCopyAssignment called for wrong function")((void)0); 14264 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 14265 return; 14266 14267 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 14268 if (ClassDecl->isInvalidDecl()) { 14269 CopyAssignOperator->setInvalidDecl(); 14270 return; 14271 } 14272 14273 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 14274 14275 // The exception specification is needed because we are defining the 14276 // function. 14277 ResolveExceptionSpec(CurrentLocation, 14278 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 14279 14280 // Add a context note for diagnostics produced after this point. 14281 Scope.addContextNote(CurrentLocation); 14282 14283 // C++11 [class.copy]p18: 14284 // The [definition of an implicitly declared copy assignment operator] is 14285 // deprecated if the class has a user-declared copy constructor or a 14286 // user-declared destructor. 14287 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 14288 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 14289 14290 // C++0x [class.copy]p30: 14291 // The implicitly-defined or explicitly-defaulted copy assignment operator 14292 // for a non-union class X performs memberwise copy assignment of its 14293 // subobjects. The direct base classes of X are assigned first, in the 14294 // order of their declaration in the base-specifier-list, and then the 14295 // immediate non-static data members of X are assigned, in the order in 14296 // which they were declared in the class definition. 14297 14298 // The statements that form the synthesized function body. 14299 SmallVector<Stmt*, 8> Statements; 14300 14301 // The parameter for the "other" object, which we are copying from. 14302 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 14303 Qualifiers OtherQuals = Other->getType().getQualifiers(); 14304 QualType OtherRefType = Other->getType(); 14305 if (const LValueReferenceType *OtherRef 14306 = OtherRefType->getAs<LValueReferenceType>()) { 14307 OtherRefType = OtherRef->getPointeeType(); 14308 OtherQuals = OtherRefType.getQualifiers(); 14309 } 14310 14311 // Our location for everything implicitly-generated. 14312 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 14313 ? CopyAssignOperator->getEndLoc() 14314 : CopyAssignOperator->getLocation(); 14315 14316 // Builds a DeclRefExpr for the "other" object. 14317 RefBuilder OtherRef(Other, OtherRefType); 14318 14319 // Builds the "this" pointer. 14320 ThisBuilder This; 14321 14322 // Assign base classes. 14323 bool Invalid = false; 14324 for (auto &Base : ClassDecl->bases()) { 14325 // Form the assignment: 14326 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 14327 QualType BaseType = Base.getType().getUnqualifiedType(); 14328 if (!BaseType->isRecordType()) { 14329 Invalid = true; 14330 continue; 14331 } 14332 14333 CXXCastPath BasePath; 14334 BasePath.push_back(&Base); 14335 14336 // Construct the "from" expression, which is an implicit cast to the 14337 // appropriately-qualified base type. 14338 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 14339 VK_LValue, BasePath); 14340 14341 // Dereference "this". 14342 DerefBuilder DerefThis(This); 14343 CastBuilder To(DerefThis, 14344 Context.getQualifiedType( 14345 BaseType, CopyAssignOperator->getMethodQualifiers()), 14346 VK_LValue, BasePath); 14347 14348 // Build the copy. 14349 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 14350 To, From, 14351 /*CopyingBaseSubobject=*/true, 14352 /*Copying=*/true); 14353 if (Copy.isInvalid()) { 14354 CopyAssignOperator->setInvalidDecl(); 14355 return; 14356 } 14357 14358 // Success! Record the copy. 14359 Statements.push_back(Copy.getAs<Expr>()); 14360 } 14361 14362 // Assign non-static members. 14363 for (auto *Field : ClassDecl->fields()) { 14364 // FIXME: We should form some kind of AST representation for the implied 14365 // memcpy in a union copy operation. 14366 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14367 continue; 14368 14369 if (Field->isInvalidDecl()) { 14370 Invalid = true; 14371 continue; 14372 } 14373 14374 // Check for members of reference type; we can't copy those. 14375 if (Field->getType()->isReferenceType()) { 14376 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14377 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14378 Diag(Field->getLocation(), diag::note_declared_at); 14379 Invalid = true; 14380 continue; 14381 } 14382 14383 // Check for members of const-qualified, non-class type. 14384 QualType BaseType = Context.getBaseElementType(Field->getType()); 14385 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14386 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14387 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14388 Diag(Field->getLocation(), diag::note_declared_at); 14389 Invalid = true; 14390 continue; 14391 } 14392 14393 // Suppress assigning zero-width bitfields. 14394 if (Field->isZeroLengthBitField(Context)) 14395 continue; 14396 14397 QualType FieldType = Field->getType().getNonReferenceType(); 14398 if (FieldType->isIncompleteArrayType()) { 14399 assert(ClassDecl->hasFlexibleArrayMember() &&((void)0) 14400 "Incomplete array type is not valid")((void)0); 14401 continue; 14402 } 14403 14404 // Build references to the field in the object we're copying from and to. 14405 CXXScopeSpec SS; // Intentionally empty 14406 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14407 LookupMemberName); 14408 MemberLookup.addDecl(Field); 14409 MemberLookup.resolveKind(); 14410 14411 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 14412 14413 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); 14414 14415 // Build the copy of this field. 14416 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 14417 To, From, 14418 /*CopyingBaseSubobject=*/false, 14419 /*Copying=*/true); 14420 if (Copy.isInvalid()) { 14421 CopyAssignOperator->setInvalidDecl(); 14422 return; 14423 } 14424 14425 // Success! Record the copy. 14426 Statements.push_back(Copy.getAs<Stmt>()); 14427 } 14428 14429 if (!Invalid) { 14430 // Add a "return *this;" 14431 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14432 14433 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14434 if (Return.isInvalid()) 14435 Invalid = true; 14436 else 14437 Statements.push_back(Return.getAs<Stmt>()); 14438 } 14439 14440 if (Invalid) { 14441 CopyAssignOperator->setInvalidDecl(); 14442 return; 14443 } 14444 14445 StmtResult Body; 14446 { 14447 CompoundScopeRAII CompoundScope(*this); 14448 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14449 /*isStmtExpr=*/false); 14450 assert(!Body.isInvalid() && "Compound statement creation cannot fail")((void)0); 14451 } 14452 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 14453 CopyAssignOperator->markUsed(Context); 14454 14455 if (ASTMutationListener *L = getASTMutationListener()) { 14456 L->CompletedImplicitDefinition(CopyAssignOperator); 14457 } 14458} 14459 14460CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 14461 assert(ClassDecl->needsImplicitMoveAssignment())((void)0); 14462 14463 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 14464 if (DSM.isAlreadyBeingDeclared()) 14465 return nullptr; 14466 14467 // Note: The following rules are largely analoguous to the move 14468 // constructor rules. 14469 14470 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14471 LangAS AS = getDefaultCXXMethodAddrSpace(); 14472 if (AS != LangAS::Default) 14473 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14474 QualType RetType = Context.getLValueReferenceType(ArgType); 14475 ArgType = Context.getRValueReferenceType(ArgType); 14476 14477 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14478 CXXMoveAssignment, 14479 false); 14480 14481 // An implicitly-declared move assignment operator is an inline public 14482 // member of its class. 14483 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14484 SourceLocation ClassLoc = ClassDecl->getLocation(); 14485 DeclarationNameInfo NameInfo(Name, ClassLoc); 14486 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 14487 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14488 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14489 /*isInline=*/true, 14490 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14491 SourceLocation()); 14492 MoveAssignment->setAccess(AS_public); 14493 MoveAssignment->setDefaulted(); 14494 MoveAssignment->setImplicit(); 14495 14496 if (getLangOpts().CUDA) { 14497 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 14498 MoveAssignment, 14499 /* ConstRHS */ false, 14500 /* Diagnose */ false); 14501 } 14502 14503 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); 14504 14505 // Add the parameter to the operator. 14506 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 14507 ClassLoc, ClassLoc, 14508 /*Id=*/nullptr, ArgType, 14509 /*TInfo=*/nullptr, SC_None, 14510 nullptr); 14511 MoveAssignment->setParams(FromParam); 14512 14513 MoveAssignment->setTrivial( 14514 ClassDecl->needsOverloadResolutionForMoveAssignment() 14515 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 14516 : ClassDecl->hasTrivialMoveAssignment()); 14517 14518 // Note that we have added this copy-assignment operator. 14519 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 14520 14521 Scope *S = getScopeForContext(ClassDecl); 14522 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 14523 14524 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 14525 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 14526 SetDeclDeleted(MoveAssignment, ClassLoc); 14527 } 14528 14529 if (S) 14530 PushOnScopeChains(MoveAssignment, S, false); 14531 ClassDecl->addDecl(MoveAssignment); 14532 14533 return MoveAssignment; 14534} 14535 14536/// Check if we're implicitly defining a move assignment operator for a class 14537/// with virtual bases. Such a move assignment might move-assign the virtual 14538/// base multiple times. 14539static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 14540 SourceLocation CurrentLocation) { 14541 assert(!Class->isDependentContext() && "should not define dependent move")((void)0); 14542 14543 // Only a virtual base could get implicitly move-assigned multiple times. 14544 // Only a non-trivial move assignment can observe this. We only want to 14545 // diagnose if we implicitly define an assignment operator that assigns 14546 // two base classes, both of which move-assign the same virtual base. 14547 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 14548 Class->getNumBases() < 2) 14549 return; 14550 14551 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 14552 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 14553 VBaseMap VBases; 14554 14555 for (auto &BI : Class->bases()) { 14556 Worklist.push_back(&BI); 14557 while (!Worklist.empty()) { 14558 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 14559 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 14560 14561 // If the base has no non-trivial move assignment operators, 14562 // we don't care about moves from it. 14563 if (!Base->hasNonTrivialMoveAssignment()) 14564 continue; 14565 14566 // If there's nothing virtual here, skip it. 14567 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 14568 continue; 14569 14570 // If we're not actually going to call a move assignment for this base, 14571 // or the selected move assignment is trivial, skip it. 14572 Sema::SpecialMemberOverloadResult SMOR = 14573 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 14574 /*ConstArg*/false, /*VolatileArg*/false, 14575 /*RValueThis*/true, /*ConstThis*/false, 14576 /*VolatileThis*/false); 14577 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 14578 !SMOR.getMethod()->isMoveAssignmentOperator()) 14579 continue; 14580 14581 if (BaseSpec->isVirtual()) { 14582 // We're going to move-assign this virtual base, and its move 14583 // assignment operator is not trivial. If this can happen for 14584 // multiple distinct direct bases of Class, diagnose it. (If it 14585 // only happens in one base, we'll diagnose it when synthesizing 14586 // that base class's move assignment operator.) 14587 CXXBaseSpecifier *&Existing = 14588 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 14589 .first->second; 14590 if (Existing && Existing != &BI) { 14591 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 14592 << Class << Base; 14593 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 14594 << (Base->getCanonicalDecl() == 14595 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14596 << Base << Existing->getType() << Existing->getSourceRange(); 14597 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 14598 << (Base->getCanonicalDecl() == 14599 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14600 << Base << BI.getType() << BaseSpec->getSourceRange(); 14601 14602 // Only diagnose each vbase once. 14603 Existing = nullptr; 14604 } 14605 } else { 14606 // Only walk over bases that have defaulted move assignment operators. 14607 // We assume that any user-provided move assignment operator handles 14608 // the multiple-moves-of-vbase case itself somehow. 14609 if (!SMOR.getMethod()->isDefaulted()) 14610 continue; 14611 14612 // We're going to move the base classes of Base. Add them to the list. 14613 for (auto &BI : Base->bases()) 14614 Worklist.push_back(&BI); 14615 } 14616 } 14617 } 14618} 14619 14620void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 14621 CXXMethodDecl *MoveAssignOperator) { 14622 assert((MoveAssignOperator->isDefaulted() &&((void)0) 14623 MoveAssignOperator->isOverloadedOperator() &&((void)0) 14624 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&((void)0) 14625 !MoveAssignOperator->doesThisDeclarationHaveABody() &&((void)0) 14626 !MoveAssignOperator->isDeleted()) &&((void)0) 14627 "DefineImplicitMoveAssignment called for wrong function")((void)0); 14628 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 14629 return; 14630 14631 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 14632 if (ClassDecl->isInvalidDecl()) { 14633 MoveAssignOperator->setInvalidDecl(); 14634 return; 14635 } 14636 14637 // C++0x [class.copy]p28: 14638 // The implicitly-defined or move assignment operator for a non-union class 14639 // X performs memberwise move assignment of its subobjects. The direct base 14640 // classes of X are assigned first, in the order of their declaration in the 14641 // base-specifier-list, and then the immediate non-static data members of X 14642 // are assigned, in the order in which they were declared in the class 14643 // definition. 14644 14645 // Issue a warning if our implicit move assignment operator will move 14646 // from a virtual base more than once. 14647 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 14648 14649 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 14650 14651 // The exception specification is needed because we are defining the 14652 // function. 14653 ResolveExceptionSpec(CurrentLocation, 14654 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 14655 14656 // Add a context note for diagnostics produced after this point. 14657 Scope.addContextNote(CurrentLocation); 14658 14659 // The statements that form the synthesized function body. 14660 SmallVector<Stmt*, 8> Statements; 14661 14662 // The parameter for the "other" object, which we are move from. 14663 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 14664 QualType OtherRefType = 14665 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 14666 14667 // Our location for everything implicitly-generated. 14668 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 14669 ? MoveAssignOperator->getEndLoc() 14670 : MoveAssignOperator->getLocation(); 14671 14672 // Builds a reference to the "other" object. 14673 RefBuilder OtherRef(Other, OtherRefType); 14674 // Cast to rvalue. 14675 MoveCastBuilder MoveOther(OtherRef); 14676 14677 // Builds the "this" pointer. 14678 ThisBuilder This; 14679 14680 // Assign base classes. 14681 bool Invalid = false; 14682 for (auto &Base : ClassDecl->bases()) { 14683 // C++11 [class.copy]p28: 14684 // It is unspecified whether subobjects representing virtual base classes 14685 // are assigned more than once by the implicitly-defined copy assignment 14686 // operator. 14687 // FIXME: Do not assign to a vbase that will be assigned by some other base 14688 // class. For a move-assignment, this can result in the vbase being moved 14689 // multiple times. 14690 14691 // Form the assignment: 14692 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 14693 QualType BaseType = Base.getType().getUnqualifiedType(); 14694 if (!BaseType->isRecordType()) { 14695 Invalid = true; 14696 continue; 14697 } 14698 14699 CXXCastPath BasePath; 14700 BasePath.push_back(&Base); 14701 14702 // Construct the "from" expression, which is an implicit cast to the 14703 // appropriately-qualified base type. 14704 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 14705 14706 // Dereference "this". 14707 DerefBuilder DerefThis(This); 14708 14709 // Implicitly cast "this" to the appropriately-qualified base type. 14710 CastBuilder To(DerefThis, 14711 Context.getQualifiedType( 14712 BaseType, MoveAssignOperator->getMethodQualifiers()), 14713 VK_LValue, BasePath); 14714 14715 // Build the move. 14716 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 14717 To, From, 14718 /*CopyingBaseSubobject=*/true, 14719 /*Copying=*/false); 14720 if (Move.isInvalid()) { 14721 MoveAssignOperator->setInvalidDecl(); 14722 return; 14723 } 14724 14725 // Success! Record the move. 14726 Statements.push_back(Move.getAs<Expr>()); 14727 } 14728 14729 // Assign non-static members. 14730 for (auto *Field : ClassDecl->fields()) { 14731 // FIXME: We should form some kind of AST representation for the implied 14732 // memcpy in a union copy operation. 14733 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14734 continue; 14735 14736 if (Field->isInvalidDecl()) { 14737 Invalid = true; 14738 continue; 14739 } 14740 14741 // Check for members of reference type; we can't move those. 14742 if (Field->getType()->isReferenceType()) { 14743 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14744 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14745 Diag(Field->getLocation(), diag::note_declared_at); 14746 Invalid = true; 14747 continue; 14748 } 14749 14750 // Check for members of const-qualified, non-class type. 14751 QualType BaseType = Context.getBaseElementType(Field->getType()); 14752 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14753 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14754 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14755 Diag(Field->getLocation(), diag::note_declared_at); 14756 Invalid = true; 14757 continue; 14758 } 14759 14760 // Suppress assigning zero-width bitfields. 14761 if (Field->isZeroLengthBitField(Context)) 14762 continue; 14763 14764 QualType FieldType = Field->getType().getNonReferenceType(); 14765 if (FieldType->isIncompleteArrayType()) { 14766 assert(ClassDecl->hasFlexibleArrayMember() &&((void)0) 14767 "Incomplete array type is not valid")((void)0); 14768 continue; 14769 } 14770 14771 // Build references to the field in the object we're copying from and to. 14772 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14773 LookupMemberName); 14774 MemberLookup.addDecl(Field); 14775 MemberLookup.resolveKind(); 14776 MemberBuilder From(MoveOther, OtherRefType, 14777 /*IsArrow=*/false, MemberLookup); 14778 MemberBuilder To(This, getCurrentThisType(), 14779 /*IsArrow=*/true, MemberLookup); 14780 14781 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue((void)0) 14782 "Member reference with rvalue base must be rvalue except for reference "((void)0) 14783 "members, which aren't allowed for move assignment.")((void)0); 14784 14785 // Build the move of this field. 14786 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 14787 To, From, 14788 /*CopyingBaseSubobject=*/false, 14789 /*Copying=*/false); 14790 if (Move.isInvalid()) { 14791 MoveAssignOperator->setInvalidDecl(); 14792 return; 14793 } 14794 14795 // Success! Record the copy. 14796 Statements.push_back(Move.getAs<Stmt>()); 14797 } 14798 14799 if (!Invalid) { 14800 // Add a "return *this;" 14801 ExprResult ThisObj = 14802 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14803 14804 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14805 if (Return.isInvalid()) 14806 Invalid = true; 14807 else 14808 Statements.push_back(Return.getAs<Stmt>()); 14809 } 14810 14811 if (Invalid) { 14812 MoveAssignOperator->setInvalidDecl(); 14813 return; 14814 } 14815 14816 StmtResult Body; 14817 { 14818 CompoundScopeRAII CompoundScope(*this); 14819 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14820 /*isStmtExpr=*/false); 14821 assert(!Body.isInvalid() && "Compound statement creation cannot fail")((void)0); 14822 } 14823 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 14824 MoveAssignOperator->markUsed(Context); 14825 14826 if (ASTMutationListener *L = getASTMutationListener()) { 14827 L->CompletedImplicitDefinition(MoveAssignOperator); 14828 } 14829} 14830 14831CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 14832 CXXRecordDecl *ClassDecl) { 14833 // C++ [class.copy]p4: 14834 // If the class definition does not explicitly declare a copy 14835 // constructor, one is declared implicitly. 14836 assert(ClassDecl->needsImplicitCopyConstructor())((void)0); 14837 14838 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 14839 if (DSM.isAlreadyBeingDeclared()) 14840 return nullptr; 14841 14842 QualType ClassType = Context.getTypeDeclType(ClassDecl); 14843 QualType ArgType = ClassType; 14844 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 14845 if (Const) 14846 ArgType = ArgType.withConst(); 14847 14848 LangAS AS = getDefaultCXXMethodAddrSpace(); 14849 if (AS != LangAS::Default) 14850 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14851 14852 ArgType = Context.getLValueReferenceType(ArgType); 14853 14854 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14855 CXXCopyConstructor, 14856 Const); 14857 14858 DeclarationName Name 14859 = Context.DeclarationNames.getCXXConstructorName( 14860 Context.getCanonicalType(ClassType)); 14861 SourceLocation ClassLoc = ClassDecl->getLocation(); 14862 DeclarationNameInfo NameInfo(Name, ClassLoc); 14863 14864 // An implicitly-declared copy constructor is an inline public 14865 // member of its class. 14866 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 14867 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 14868 ExplicitSpecifier(), 14869 /*isInline=*/true, 14870 /*isImplicitlyDeclared=*/true, 14871 Constexpr ? ConstexprSpecKind::Constexpr 14872 : ConstexprSpecKind::Unspecified); 14873 CopyConstructor->setAccess(AS_public); 14874 CopyConstructor->setDefaulted(); 14875 14876 if (getLangOpts().CUDA) { 14877 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 14878 CopyConstructor, 14879 /* ConstRHS */ Const, 14880 /* Diagnose */ false); 14881 } 14882 14883 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 14884 14885 // During template instantiation of special member functions we need a 14886 // reliable TypeSourceInfo for the parameter types in order to allow functions 14887 // to be substituted. 14888 TypeSourceInfo *TSI = nullptr; 14889 if (inTemplateInstantiation() && ClassDecl->isLambda()) 14890 TSI = Context.getTrivialTypeSourceInfo(ArgType); 14891 14892 // Add the parameter to the constructor. 14893 ParmVarDecl *FromParam = 14894 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, 14895 /*IdentifierInfo=*/nullptr, ArgType, 14896 /*TInfo=*/TSI, SC_None, nullptr); 14897 CopyConstructor->setParams(FromParam); 14898 14899 CopyConstructor->setTrivial( 14900 ClassDecl->needsOverloadResolutionForCopyConstructor() 14901 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 14902 : ClassDecl->hasTrivialCopyConstructor()); 14903 14904 CopyConstructor->setTrivialForCall( 14905 ClassDecl->hasAttr<TrivialABIAttr>() || 14906 (ClassDecl->needsOverloadResolutionForCopyConstructor() 14907 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 14908 TAH_ConsiderTrivialABI) 14909 : ClassDecl->hasTrivialCopyConstructorForCall())); 14910 14911 // Note that we have declared this constructor. 14912 ++getASTContext().NumImplicitCopyConstructorsDeclared; 14913 14914 Scope *S = getScopeForContext(ClassDecl); 14915 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 14916 14917 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 14918 ClassDecl->setImplicitCopyConstructorIsDeleted(); 14919 SetDeclDeleted(CopyConstructor, ClassLoc); 14920 } 14921 14922 if (S) 14923 PushOnScopeChains(CopyConstructor, S, false); 14924 ClassDecl->addDecl(CopyConstructor); 14925 14926 return CopyConstructor; 14927} 14928 14929void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 14930 CXXConstructorDecl *CopyConstructor) { 14931 assert((CopyConstructor->isDefaulted() &&((void)0) 14932 CopyConstructor->isCopyConstructor() &&((void)0) 14933 !CopyConstructor->doesThisDeclarationHaveABody() &&((void)0) 14934 !CopyConstructor->isDeleted()) &&((void)0) 14935 "DefineImplicitCopyConstructor - call it for implicit copy ctor")((void)0); 14936 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 14937 return; 14938 14939 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 14940 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")((void)0); 14941 14942 SynthesizedFunctionScope Scope(*this, CopyConstructor); 14943 14944 // The exception specification is needed because we are defining the 14945 // function. 14946 ResolveExceptionSpec(CurrentLocation, 14947 CopyConstructor->getType()->castAs<FunctionProtoType>()); 14948 MarkVTableUsed(CurrentLocation, ClassDecl); 14949 14950 // Add a context note for diagnostics produced after this point. 14951 Scope.addContextNote(CurrentLocation); 14952 14953 // C++11 [class.copy]p7: 14954 // The [definition of an implicitly declared copy constructor] is 14955 // deprecated if the class has a user-declared copy assignment operator 14956 // or a user-declared destructor. 14957 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 14958 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 14959 14960 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 14961 CopyConstructor->setInvalidDecl(); 14962 } else { 14963 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 14964 ? CopyConstructor->getEndLoc() 14965 : CopyConstructor->getLocation(); 14966 Sema::CompoundScopeRAII CompoundScope(*this); 14967 CopyConstructor->setBody( 14968 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); 14969 CopyConstructor->markUsed(Context); 14970 } 14971 14972 if (ASTMutationListener *L = getASTMutationListener()) { 14973 L->CompletedImplicitDefinition(CopyConstructor); 14974 } 14975} 14976 14977CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 14978 CXXRecordDecl *ClassDecl) { 14979 assert(ClassDecl->needsImplicitMoveConstructor())((void)0); 14980 14981 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 14982 if (DSM.isAlreadyBeingDeclared()) 14983 return nullptr; 14984 14985 QualType ClassType = Context.getTypeDeclType(ClassDecl); 14986 14987 QualType ArgType = ClassType; 14988 LangAS AS = getDefaultCXXMethodAddrSpace(); 14989 if (AS != LangAS::Default) 14990 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 14991 ArgType = Context.getRValueReferenceType(ArgType); 14992 14993 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14994 CXXMoveConstructor, 14995 false); 14996 14997 DeclarationName Name 14998 = Context.DeclarationNames.getCXXConstructorName( 14999 Context.getCanonicalType(ClassType)); 15000 SourceLocation ClassLoc = ClassDecl->getLocation(); 15001 DeclarationNameInfo NameInfo(Name, ClassLoc); 15002 15003 // C++11 [class.copy]p11: 15004 // An implicitly-declared copy/move constructor is an inline public 15005 // member of its class. 15006 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 15007 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15008 ExplicitSpecifier(), 15009 /*isInline=*/true, 15010 /*isImplicitlyDeclared=*/true, 15011 Constexpr ? ConstexprSpecKind::Constexpr 15012 : ConstexprSpecKind::Unspecified); 15013 MoveConstructor->setAccess(AS_public); 15014 MoveConstructor->setDefaulted(); 15015 15016 if (getLangOpts().CUDA) { 15017 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 15018 MoveConstructor, 15019 /* ConstRHS */ false, 15020 /* Diagnose */ false); 15021 } 15022 15023 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 15024 15025 // Add the parameter to the constructor. 15026 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 15027 ClassLoc, ClassLoc, 15028 /*IdentifierInfo=*/nullptr, 15029 ArgType, /*TInfo=*/nullptr, 15030 SC_None, nullptr); 15031 MoveConstructor->setParams(FromParam); 15032 15033 MoveConstructor->setTrivial( 15034 ClassDecl->needsOverloadResolutionForMoveConstructor() 15035 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 15036 : ClassDecl->hasTrivialMoveConstructor()); 15037 15038 MoveConstructor->setTrivialForCall( 15039 ClassDecl->hasAttr<TrivialABIAttr>() || 15040 (ClassDecl->needsOverloadResolutionForMoveConstructor() 15041 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 15042 TAH_ConsiderTrivialABI) 15043 : ClassDecl->hasTrivialMoveConstructorForCall())); 15044 15045 // Note that we have declared this constructor. 15046 ++getASTContext().NumImplicitMoveConstructorsDeclared; 15047 15048 Scope *S = getScopeForContext(ClassDecl); 15049 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 15050 15051 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 15052 ClassDecl->setImplicitMoveConstructorIsDeleted(); 15053 SetDeclDeleted(MoveConstructor, ClassLoc); 15054 } 15055 15056 if (S) 15057 PushOnScopeChains(MoveConstructor, S, false); 15058 ClassDecl->addDecl(MoveConstructor); 15059 15060 return MoveConstructor; 15061} 15062 15063void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 15064 CXXConstructorDecl *MoveConstructor) { 15065 assert((MoveConstructor->isDefaulted() &&((void)0) 15066 MoveConstructor->isMoveConstructor() &&((void)0) 15067 !MoveConstructor->doesThisDeclarationHaveABody() &&((void)0) 15068 !MoveConstructor->isDeleted()) &&((void)0) 15069 "DefineImplicitMoveConstructor - call it for implicit move ctor")((void)0); 15070 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 15071 return; 15072 15073 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 15074 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")((void)0); 15075 15076 SynthesizedFunctionScope Scope(*this, MoveConstructor); 15077 15078 // The exception specification is needed because we are defining the 15079 // function. 15080 ResolveExceptionSpec(CurrentLocation, 15081 MoveConstructor->getType()->castAs<FunctionProtoType>()); 15082 MarkVTableUsed(CurrentLocation, ClassDecl); 15083 15084 // Add a context note for diagnostics produced after this point. 15085 Scope.addContextNote(CurrentLocation); 15086 15087 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 15088 MoveConstructor->setInvalidDecl(); 15089 } else { 15090 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 15091 ? MoveConstructor->getEndLoc() 15092 : MoveConstructor->getLocation(); 15093 Sema::CompoundScopeRAII CompoundScope(*this); 15094 MoveConstructor->setBody(ActOnCompoundStmt( 15095 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); 15096 MoveConstructor->markUsed(Context); 15097 } 15098 15099 if (ASTMutationListener *L = getASTMutationListener()) { 15100 L->CompletedImplicitDefinition(MoveConstructor); 15101 } 15102} 15103 15104bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 15105 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 15106} 15107 15108void Sema::DefineImplicitLambdaToFunctionPointerConversion( 15109 SourceLocation CurrentLocation, 15110 CXXConversionDecl *Conv) { 15111 SynthesizedFunctionScope Scope(*this, Conv); 15112 assert(!Conv->getReturnType()->isUndeducedType())((void)0); 15113 15114 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); 15115 CallingConv CC = 15116 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); 15117 15118 CXXRecordDecl *Lambda = Conv->getParent(); 15119 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 15120 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC); 15121 15122 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 15123 CallOp = InstantiateFunctionDeclaration( 15124 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15125 if (!CallOp) 15126 return; 15127 15128 Invoker = InstantiateFunctionDeclaration( 15129 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15130 if (!Invoker) 15131 return; 15132 } 15133 15134 if (CallOp->isInvalidDecl()) 15135 return; 15136 15137 // Mark the call operator referenced (and add to pending instantiations 15138 // if necessary). 15139 // For both the conversion and static-invoker template specializations 15140 // we construct their body's in this function, so no need to add them 15141 // to the PendingInstantiations. 15142 MarkFunctionReferenced(CurrentLocation, CallOp); 15143 15144 // Fill in the __invoke function with a dummy implementation. IR generation 15145 // will fill in the actual details. Update its type in case it contained 15146 // an 'auto'. 15147 Invoker->markUsed(Context); 15148 Invoker->setReferenced(); 15149 Invoker->setType(Conv->getReturnType()->getPointeeType()); 15150 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 15151 15152 // Construct the body of the conversion function { return __invoke; }. 15153 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), 15154 VK_LValue, Conv->getLocation()); 15155 assert(FunctionRef && "Can't refer to __invoke function?")((void)0); 15156 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 15157 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(), 15158 Conv->getLocation())); 15159 Conv->markUsed(Context); 15160 Conv->setReferenced(); 15161 15162 if (ASTMutationListener *L = getASTMutationListener()) { 15163 L->CompletedImplicitDefinition(Conv); 15164 L->CompletedImplicitDefinition(Invoker); 15165 } 15166} 15167 15168 15169 15170void Sema::DefineImplicitLambdaToBlockPointerConversion( 15171 SourceLocation CurrentLocation, 15172 CXXConversionDecl *Conv) 15173{ 15174 assert(!Conv->getParent()->isGenericLambda())((void)0); 15175 15176 SynthesizedFunctionScope Scope(*this, Conv); 15177 15178 // Copy-initialize the lambda object as needed to capture it. 15179 Expr *This = ActOnCXXThis(CurrentLocation).get(); 15180 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 15181 15182 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 15183 Conv->getLocation(), 15184 Conv, DerefThis); 15185 15186 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 15187 // behavior. Note that only the general conversion function does this 15188 // (since it's unusable otherwise); in the case where we inline the 15189 // block literal, it has block literal lifetime semantics. 15190 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 15191 BuildBlock = ImplicitCastExpr::Create( 15192 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, 15193 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); 15194 15195 if (BuildBlock.isInvalid()) { 15196 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15197 Conv->setInvalidDecl(); 15198 return; 15199 } 15200 15201 // Create the return statement that returns the block from the conversion 15202 // function. 15203 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 15204 if (Return.isInvalid()) { 15205 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15206 Conv->setInvalidDecl(); 15207 return; 15208 } 15209 15210 // Set the body of the conversion function. 15211 Stmt *ReturnS = Return.get(); 15212 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(), 15213 Conv->getLocation())); 15214 Conv->markUsed(Context); 15215 15216 // We're done; notify the mutation listener, if any. 15217 if (ASTMutationListener *L = getASTMutationListener()) { 15218 L->CompletedImplicitDefinition(Conv); 15219 } 15220} 15221 15222/// Determine whether the given list arguments contains exactly one 15223/// "real" (non-default) argument. 15224static bool hasOneRealArgument(MultiExprArg Args) { 15225 switch (Args.size()) { 15226 case 0: 15227 return false; 15228 15229 default: 15230 if (!Args[1]->isDefaultArgument()) 15231 return false; 15232 15233 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 15234 case 1: 15235 return !Args[0]->isDefaultArgument(); 15236 } 15237 15238 return false; 15239} 15240 15241ExprResult 15242Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15243 NamedDecl *FoundDecl, 15244 CXXConstructorDecl *Constructor, 15245 MultiExprArg ExprArgs, 15246 bool HadMultipleCandidates, 15247 bool IsListInitialization, 15248 bool IsStdInitListInitialization, 15249 bool RequiresZeroInit, 15250 unsigned ConstructKind, 15251 SourceRange ParenRange) { 15252 bool Elidable = false; 15253 15254 // C++0x [class.copy]p34: 15255 // When certain criteria are met, an implementation is allowed to 15256 // omit the copy/move construction of a class object, even if the 15257 // copy/move constructor and/or destructor for the object have 15258 // side effects. [...] 15259 // - when a temporary class object that has not been bound to a 15260 // reference (12.2) would be copied/moved to a class object 15261 // with the same cv-unqualified type, the copy/move operation 15262 // can be omitted by constructing the temporary object 15263 // directly into the target of the omitted copy/move 15264 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 15265 // FIXME: Converting constructors should also be accepted. 15266 // But to fix this, the logic that digs down into a CXXConstructExpr 15267 // to find the source object needs to handle it. 15268 // Right now it assumes the source object is passed directly as the 15269 // first argument. 15270 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 15271 Expr *SubExpr = ExprArgs[0]; 15272 // FIXME: Per above, this is also incorrect if we want to accept 15273 // converting constructors, as isTemporaryObject will 15274 // reject temporaries with different type from the 15275 // CXXRecord itself. 15276 Elidable = SubExpr->isTemporaryObject( 15277 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 15278 } 15279 15280 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 15281 FoundDecl, Constructor, 15282 Elidable, ExprArgs, HadMultipleCandidates, 15283 IsListInitialization, 15284 IsStdInitListInitialization, RequiresZeroInit, 15285 ConstructKind, ParenRange); 15286} 15287 15288ExprResult 15289Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15290 NamedDecl *FoundDecl, 15291 CXXConstructorDecl *Constructor, 15292 bool Elidable, 15293 MultiExprArg ExprArgs, 15294 bool HadMultipleCandidates, 15295 bool IsListInitialization, 15296 bool IsStdInitListInitialization, 15297 bool RequiresZeroInit, 15298 unsigned ConstructKind, 15299 SourceRange ParenRange) { 15300 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 15301 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 15302 if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) 15303 return ExprError(); 15304 } 15305 15306 return BuildCXXConstructExpr( 15307 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 15308 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 15309 RequiresZeroInit, ConstructKind, ParenRange); 15310} 15311 15312/// BuildCXXConstructExpr - Creates a complete call to a constructor, 15313/// including handling of its default argument expressions. 15314ExprResult 15315Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15316 CXXConstructorDecl *Constructor, 15317 bool Elidable, 15318 MultiExprArg ExprArgs, 15319 bool HadMultipleCandidates, 15320 bool IsListInitialization, 15321 bool IsStdInitListInitialization, 15322 bool RequiresZeroInit, 15323 unsigned ConstructKind, 15324 SourceRange ParenRange) { 15325 assert(declaresSameEntity(((void)0) 15326 Constructor->getParent(),((void)0) 15327 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&((void)0) 15328 "given constructor for wrong type")((void)0); 15329 MarkFunctionReferenced(ConstructLoc, Constructor); 15330 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 15331 return ExprError(); 15332 if (getLangOpts().SYCLIsDevice && 15333 !checkSYCLDeviceFunction(ConstructLoc, Constructor)) 15334 return ExprError(); 15335 15336 return CheckForImmediateInvocation( 15337 CXXConstructExpr::Create( 15338 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 15339 HadMultipleCandidates, IsListInitialization, 15340 IsStdInitListInitialization, RequiresZeroInit, 15341 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 15342 ParenRange), 15343 Constructor); 15344} 15345 15346ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { 15347 assert(Field->hasInClassInitializer())((void)0); 15348 15349 // If we already have the in-class initializer nothing needs to be done. 15350 if (Field->getInClassInitializer())
27
Calling 'FieldDecl::getInClassInitializer'
34
Returning from 'FieldDecl::getInClassInitializer'
35
Taking false branch
15351 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15352 15353 // If we might have already tried and failed to instantiate, don't try again. 15354 if (Field->isInvalidDecl())
36
Assuming the condition is false
37
Taking false branch
15355 return ExprError(); 15356 15357 // Maybe we haven't instantiated the in-class initializer. Go check the 15358 // pattern FieldDecl to see if it has one. 15359 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); 15360 15361 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
38
Calling 'isTemplateInstantiation'
42
Returning from 'isTemplateInstantiation'
43
Taking true branch
15362 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); 15363 DeclContext::lookup_result Lookup = 15364 ClassPattern->lookup(Field->getDeclName()); 15365 15366 FieldDecl *Pattern = nullptr;
44
'Pattern' initialized to a null pointer value
15367 for (auto L : Lookup) { 15368 if (isa<FieldDecl>(L)) { 15369 Pattern = cast<FieldDecl>(L); 15370 break; 15371 } 15372 } 15373 assert(Pattern && "We must have set the Pattern!")((void)0); 15374 15375 if (!Pattern->hasInClassInitializer() ||
45
Called C++ object pointer is null
15376 InstantiateInClassInitializer(Loc, Field, Pattern, 15377 getTemplateInstantiationArgs(Field))) { 15378 // Don't diagnose this again. 15379 Field->setInvalidDecl(); 15380 return ExprError(); 15381 } 15382 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15383 } 15384 15385 // DR1351: 15386 // If the brace-or-equal-initializer of a non-static data member 15387 // invokes a defaulted default constructor of its class or of an 15388 // enclosing class in a potentially evaluated subexpression, the 15389 // program is ill-formed. 15390 // 15391 // This resolution is unworkable: the exception specification of the 15392 // default constructor can be needed in an unevaluated context, in 15393 // particular, in the operand of a noexcept-expression, and we can be 15394 // unable to compute an exception specification for an enclosed class. 15395 // 15396 // Any attempt to resolve the exception specification of a defaulted default 15397 // constructor before the initializer is lexically complete will ultimately 15398 // come here at which point we can diagnose it. 15399 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); 15400 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed) 15401 << OutermostClass << Field; 15402 Diag(Field->getEndLoc(), 15403 diag::note_default_member_initializer_not_yet_parsed); 15404 // Recover by marking the field invalid, unless we're in a SFINAE context. 15405 if (!isSFINAEContext()) 15406 Field->setInvalidDecl(); 15407 return ExprError(); 15408} 15409 15410void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 15411 if (VD->isInvalidDecl()) return; 15412 // If initializing the variable failed, don't also diagnose problems with 15413 // the desctructor, they're likely related. 15414 if (VD->getInit() && VD->getInit()->containsErrors()) 15415 return; 15416 15417 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 15418 if (ClassDecl->isInvalidDecl()) return; 15419 if (ClassDecl->hasIrrelevantDestructor()) return; 15420 if (ClassDecl->isDependentContext()) return; 15421 15422 if (VD->isNoDestroy(getASTContext())) 15423 return; 15424 15425 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 15426 15427 // If this is an array, we'll require the destructor during initialization, so 15428 // we can skip over this. We still want to emit exit-time destructor warnings 15429 // though. 15430 if (!VD->getType()->isArrayType()) { 15431 MarkFunctionReferenced(VD->getLocation(), Destructor); 15432 CheckDestructorAccess(VD->getLocation(), Destructor, 15433 PDiag(diag::err_access_dtor_var) 15434 << VD->getDeclName() << VD->getType()); 15435 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 15436 } 15437 15438 if (Destructor->isTrivial()) return; 15439 15440 // If the destructor is constexpr, check whether the variable has constant 15441 // destruction now. 15442 if (Destructor->isConstexpr()) { 15443 bool HasConstantInit = false; 15444 if (VD->getInit() && !VD->getInit()->isValueDependent()) 15445 HasConstantInit = VD->evaluateValue(); 15446 SmallVector<PartialDiagnosticAt, 8> Notes; 15447 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 15448 HasConstantInit) { 15449 Diag(VD->getLocation(), 15450 diag::err_constexpr_var_requires_const_destruction) << VD; 15451 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 15452 Diag(Notes[I].first, Notes[I].second); 15453 } 15454 } 15455 15456 if (!VD->hasGlobalStorage()) return; 15457 15458 // Emit warning for non-trivial dtor in global scope (a real global, 15459 // class-static, function-static). 15460 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 15461 15462 // TODO: this should be re-enabled for static locals by !CXAAtExit 15463 if (!VD->isStaticLocal()) 15464 Diag(VD->getLocation(), diag::warn_global_destructor); 15465} 15466 15467/// Given a constructor and the set of arguments provided for the 15468/// constructor, convert the arguments and add any required default arguments 15469/// to form a proper call to this constructor. 15470/// 15471/// \returns true if an error occurred, false otherwise. 15472bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 15473 QualType DeclInitType, MultiExprArg ArgsPtr, 15474 SourceLocation Loc, 15475 SmallVectorImpl<Expr *> &ConvertedArgs, 15476 bool AllowExplicit, 15477 bool IsListInitialization) { 15478 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 15479 unsigned NumArgs = ArgsPtr.size(); 15480 Expr **Args = ArgsPtr.data(); 15481 15482 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 15483 unsigned NumParams = Proto->getNumParams(); 15484 15485 // If too few arguments are available, we'll fill in the rest with defaults. 15486 if (NumArgs < NumParams) 15487 ConvertedArgs.reserve(NumParams); 15488 else 15489 ConvertedArgs.reserve(NumArgs); 15490 15491 VariadicCallType CallType = 15492 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 15493 SmallVector<Expr *, 8> AllArgs; 15494 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 15495 Proto, 0, 15496 llvm::makeArrayRef(Args, NumArgs), 15497 AllArgs, 15498 CallType, AllowExplicit, 15499 IsListInitialization); 15500 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 15501 15502 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 15503 15504 CheckConstructorCall(Constructor, DeclInitType, 15505 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), 15506 Proto, Loc); 15507 15508 return Invalid; 15509} 15510 15511static inline bool 15512CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 15513 const FunctionDecl *FnDecl) { 15514 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 15515 if (isa<NamespaceDecl>(DC)) { 15516 return SemaRef.Diag(FnDecl->getLocation(), 15517 diag::err_operator_new_delete_declared_in_namespace) 15518 << FnDecl->getDeclName(); 15519 } 15520 15521 if (isa<TranslationUnitDecl>(DC) && 15522 FnDecl->getStorageClass() == SC_Static) { 15523 return SemaRef.Diag(FnDecl->getLocation(), 15524 diag::err_operator_new_delete_declared_static) 15525 << FnDecl->getDeclName(); 15526 } 15527 15528 return false; 15529} 15530 15531static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, 15532 const PointerType *PtrTy) { 15533 auto &Ctx = SemaRef.Context; 15534 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); 15535 PtrQuals.removeAddressSpace(); 15536 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( 15537 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); 15538} 15539 15540static inline bool 15541CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 15542 CanQualType ExpectedResultType, 15543 CanQualType ExpectedFirstParamType, 15544 unsigned DependentParamTypeDiag, 15545 unsigned InvalidParamTypeDiag) { 15546 QualType ResultType = 15547 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 15548 15549 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15550 // The operator is valid on any address space for OpenCL. 15551 // Drop address space from actual and expected result types. 15552 if (const auto *PtrTy = ResultType->getAs<PointerType>()) 15553 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15554 15555 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) 15556 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15557 } 15558 15559 // Check that the result type is what we expect. 15560 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 15561 // Reject even if the type is dependent; an operator delete function is 15562 // required to have a non-dependent result type. 15563 return SemaRef.Diag( 15564 FnDecl->getLocation(), 15565 ResultType->isDependentType() 15566 ? diag::err_operator_new_delete_dependent_result_type 15567 : diag::err_operator_new_delete_invalid_result_type) 15568 << FnDecl->getDeclName() << ExpectedResultType; 15569 } 15570 15571 // A function template must have at least 2 parameters. 15572 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 15573 return SemaRef.Diag(FnDecl->getLocation(), 15574 diag::err_operator_new_delete_template_too_few_parameters) 15575 << FnDecl->getDeclName(); 15576 15577 // The function decl must have at least 1 parameter. 15578 if (FnDecl->getNumParams() == 0) 15579 return SemaRef.Diag(FnDecl->getLocation(), 15580 diag::err_operator_new_delete_too_few_parameters) 15581 << FnDecl->getDeclName(); 15582 15583 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 15584 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15585 // The operator is valid on any address space for OpenCL. 15586 // Drop address space from actual and expected first parameter types. 15587 if (const auto *PtrTy = 15588 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) 15589 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15590 15591 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) 15592 ExpectedFirstParamType = 15593 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15594 } 15595 15596 // Check that the first parameter type is what we expect. 15597 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 15598 ExpectedFirstParamType) { 15599 // The first parameter type is not allowed to be dependent. As a tentative 15600 // DR resolution, we allow a dependent parameter type if it is the right 15601 // type anyway, to allow destroying operator delete in class templates. 15602 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 15603 ? DependentParamTypeDiag 15604 : InvalidParamTypeDiag) 15605 << FnDecl->getDeclName() << ExpectedFirstParamType; 15606 } 15607 15608 return false; 15609} 15610 15611static bool 15612CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 15613 // C++ [basic.stc.dynamic.allocation]p1: 15614 // A program is ill-formed if an allocation function is declared in a 15615 // namespace scope other than global scope or declared static in global 15616 // scope. 15617 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15618 return true; 15619 15620 CanQualType SizeTy = 15621 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 15622 15623 // C++ [basic.stc.dynamic.allocation]p1: 15624 // The return type shall be void*. The first parameter shall have type 15625 // std::size_t. 15626 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 15627 SizeTy, 15628 diag::err_operator_new_dependent_param_type, 15629 diag::err_operator_new_param_type)) 15630 return true; 15631 15632 // C++ [basic.stc.dynamic.allocation]p1: 15633 // The first parameter shall not have an associated default argument. 15634 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 15635 return SemaRef.Diag(FnDecl->getLocation(), 15636 diag::err_operator_new_default_arg) 15637 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 15638 15639 return false; 15640} 15641 15642static bool 15643CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 15644 // C++ [basic.stc.dynamic.deallocation]p1: 15645 // A program is ill-formed if deallocation functions are declared in a 15646 // namespace scope other than global scope or declared static in global 15647 // scope. 15648 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15649 return true; 15650 15651 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 15652 15653 // C++ P0722: 15654 // Within a class C, the first parameter of a destroying operator delete 15655 // shall be of type C *. The first parameter of any other deallocation 15656 // function shall be of type void *. 15657 CanQualType ExpectedFirstParamType = 15658 MD && MD->isDestroyingOperatorDelete() 15659 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 15660 SemaRef.Context.getRecordType(MD->getParent()))) 15661 : SemaRef.Context.VoidPtrTy; 15662 15663 // C++ [basic.stc.dynamic.deallocation]p2: 15664 // Each deallocation function shall return void 15665 if (CheckOperatorNewDeleteTypes( 15666 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 15667 diag::err_operator_delete_dependent_param_type, 15668 diag::err_operator_delete_param_type)) 15669 return true; 15670 15671 // C++ P0722: 15672 // A destroying operator delete shall be a usual deallocation function. 15673 if (MD && !MD->getParent()->isDependentContext() && 15674 MD->isDestroyingOperatorDelete() && 15675 !SemaRef.isUsualDeallocationFunction(MD)) { 15676 SemaRef.Diag(MD->getLocation(), 15677 diag::err_destroying_operator_delete_not_usual); 15678 return true; 15679 } 15680 15681 return false; 15682} 15683 15684/// CheckOverloadedOperatorDeclaration - Check whether the declaration 15685/// of this overloaded operator is well-formed. If so, returns false; 15686/// otherwise, emits appropriate diagnostics and returns true. 15687bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 15688 assert(FnDecl && FnDecl->isOverloadedOperator() &&((void)0) 15689 "Expected an overloaded operator declaration")((void)0); 15690 15691 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 15692 15693 // C++ [over.oper]p5: 15694 // The allocation and deallocation functions, operator new, 15695 // operator new[], operator delete and operator delete[], are 15696 // described completely in 3.7.3. The attributes and restrictions 15697 // found in the rest of this subclause do not apply to them unless 15698 // explicitly stated in 3.7.3. 15699 if (Op == OO_Delete || Op == OO_Array_Delete) 15700 return CheckOperatorDeleteDeclaration(*this, FnDecl); 15701 15702 if (Op == OO_New || Op == OO_Array_New) 15703 return CheckOperatorNewDeclaration(*this, FnDecl); 15704 15705 // C++ [over.oper]p6: 15706 // An operator function shall either be a non-static member 15707 // function or be a non-member function and have at least one 15708 // parameter whose type is a class, a reference to a class, an 15709 // enumeration, or a reference to an enumeration. 15710 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 15711 if (MethodDecl->isStatic()) 15712 return Diag(FnDecl->getLocation(), 15713 diag::err_operator_overload_static) << FnDecl->getDeclName(); 15714 } else { 15715 bool ClassOrEnumParam = false; 15716 for (auto Param : FnDecl->parameters()) { 15717 QualType ParamType = Param->getType().getNonReferenceType(); 15718 if (ParamType->isDependentType() || ParamType->isRecordType() || 15719 ParamType->isEnumeralType()) { 15720 ClassOrEnumParam = true; 15721 break; 15722 } 15723 } 15724 15725 if (!ClassOrEnumParam) 15726 return Diag(FnDecl->getLocation(), 15727 diag::err_operator_overload_needs_class_or_enum) 15728 << FnDecl->getDeclName(); 15729 } 15730 15731 // C++ [over.oper]p8: 15732 // An operator function cannot have default arguments (8.3.6), 15733 // except where explicitly stated below. 15734 // 15735 // Only the function-call operator allows default arguments 15736 // (C++ [over.call]p1). 15737 if (Op != OO_Call) { 15738 for (auto Param : FnDecl->parameters()) { 15739 if (Param->hasDefaultArg()) 15740 return Diag(Param->getLocation(), 15741 diag::err_operator_overload_default_arg) 15742 << FnDecl->getDeclName() << Param->getDefaultArgRange(); 15743 } 15744 } 15745 15746 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 15747 { false, false, false } 15748#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 15749 , { Unary, Binary, MemberOnly } 15750#include "clang/Basic/OperatorKinds.def" 15751 }; 15752 15753 bool CanBeUnaryOperator = OperatorUses[Op][0]; 15754 bool CanBeBinaryOperator = OperatorUses[Op][1]; 15755 bool MustBeMemberOperator = OperatorUses[Op][2]; 15756 15757 // C++ [over.oper]p8: 15758 // [...] Operator functions cannot have more or fewer parameters 15759 // than the number required for the corresponding operator, as 15760 // described in the rest of this subclause. 15761 unsigned NumParams = FnDecl->getNumParams() 15762 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 15763 if (Op != OO_Call && 15764 ((NumParams == 1 && !CanBeUnaryOperator) || 15765 (NumParams == 2 && !CanBeBinaryOperator) || 15766 (NumParams < 1) || (NumParams > 2))) { 15767 // We have the wrong number of parameters. 15768 unsigned ErrorKind; 15769 if (CanBeUnaryOperator && CanBeBinaryOperator) { 15770 ErrorKind = 2; // 2 -> unary or binary. 15771 } else if (CanBeUnaryOperator) { 15772 ErrorKind = 0; // 0 -> unary 15773 } else { 15774 assert(CanBeBinaryOperator &&((void)0) 15775 "All non-call overloaded operators are unary or binary!")((void)0); 15776 ErrorKind = 1; // 1 -> binary 15777 } 15778 15779 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 15780 << FnDecl->getDeclName() << NumParams << ErrorKind; 15781 } 15782 15783 // Overloaded operators other than operator() cannot be variadic. 15784 if (Op != OO_Call && 15785 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 15786 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 15787 << FnDecl->getDeclName(); 15788 } 15789 15790 // Some operators must be non-static member functions. 15791 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 15792 return Diag(FnDecl->getLocation(), 15793 diag::err_operator_overload_must_be_member) 15794 << FnDecl->getDeclName(); 15795 } 15796 15797 // C++ [over.inc]p1: 15798 // The user-defined function called operator++ implements the 15799 // prefix and postfix ++ operator. If this function is a member 15800 // function with no parameters, or a non-member function with one 15801 // parameter of class or enumeration type, it defines the prefix 15802 // increment operator ++ for objects of that type. If the function 15803 // is a member function with one parameter (which shall be of type 15804 // int) or a non-member function with two parameters (the second 15805 // of which shall be of type int), it defines the postfix 15806 // increment operator ++ for objects of that type. 15807 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 15808 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 15809 QualType ParamType = LastParam->getType(); 15810 15811 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 15812 !ParamType->isDependentType()) 15813 return Diag(LastParam->getLocation(), 15814 diag::err_operator_overload_post_incdec_must_be_int) 15815 << LastParam->getType() << (Op == OO_MinusMinus); 15816 } 15817 15818 return false; 15819} 15820 15821static bool 15822checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 15823 FunctionTemplateDecl *TpDecl) { 15824 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 15825 15826 // Must have one or two template parameters. 15827 if (TemplateParams->size() == 1) { 15828 NonTypeTemplateParmDecl *PmDecl = 15829 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 15830 15831 // The template parameter must be a char parameter pack. 15832 if (PmDecl && PmDecl->isTemplateParameterPack() && 15833 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 15834 return false; 15835 15836 // C++20 [over.literal]p5: 15837 // A string literal operator template is a literal operator template 15838 // whose template-parameter-list comprises a single non-type 15839 // template-parameter of class type. 15840 // 15841 // As a DR resolution, we also allow placeholders for deduced class 15842 // template specializations. 15843 if (SemaRef.getLangOpts().CPlusPlus20 && 15844 !PmDecl->isTemplateParameterPack() && 15845 (PmDecl->getType()->isRecordType() || 15846 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) 15847 return false; 15848 } else if (TemplateParams->size() == 2) { 15849 TemplateTypeParmDecl *PmType = 15850 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 15851 NonTypeTemplateParmDecl *PmArgs = 15852 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 15853 15854 // The second template parameter must be a parameter pack with the 15855 // first template parameter as its type. 15856 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 15857 PmArgs->isTemplateParameterPack()) { 15858 const TemplateTypeParmType *TArgs = 15859 PmArgs->getType()->getAs<TemplateTypeParmType>(); 15860 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 15861 TArgs->getIndex() == PmType->getIndex()) { 15862 if (!SemaRef.inTemplateInstantiation()) 15863 SemaRef.Diag(TpDecl->getLocation(), 15864 diag::ext_string_literal_operator_template); 15865 return false; 15866 } 15867 } 15868 } 15869 15870 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 15871 diag::err_literal_operator_template) 15872 << TpDecl->getTemplateParameters()->getSourceRange(); 15873 return true; 15874} 15875 15876/// CheckLiteralOperatorDeclaration - Check whether the declaration 15877/// of this literal operator function is well-formed. If so, returns 15878/// false; otherwise, emits appropriate diagnostics and returns true. 15879bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 15880 if (isa<CXXMethodDecl>(FnDecl)) { 15881 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 15882 << FnDecl->getDeclName(); 15883 return true; 15884 } 15885 15886 if (FnDecl->isExternC()) { 15887 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 15888 if (const LinkageSpecDecl *LSD = 15889 FnDecl->getDeclContext()->getExternCContext()) 15890 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 15891 return true; 15892 } 15893 15894 // This might be the definition of a literal operator template. 15895 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 15896 15897 // This might be a specialization of a literal operator template. 15898 if (!TpDecl) 15899 TpDecl = FnDecl->getPrimaryTemplate(); 15900 15901 // template <char...> type operator "" name() and 15902 // template <class T, T...> type operator "" name() are the only valid 15903 // template signatures, and the only valid signatures with no parameters. 15904 // 15905 // C++20 also allows template <SomeClass T> type operator "" name(). 15906 if (TpDecl) { 15907 if (FnDecl->param_size() != 0) { 15908 Diag(FnDecl->getLocation(), 15909 diag::err_literal_operator_template_with_params); 15910 return true; 15911 } 15912 15913 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 15914 return true; 15915 15916 } else if (FnDecl->param_size() == 1) { 15917 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 15918 15919 QualType ParamType = Param->getType().getUnqualifiedType(); 15920 15921 // Only unsigned long long int, long double, any character type, and const 15922 // char * are allowed as the only parameters. 15923 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 15924 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 15925 Context.hasSameType(ParamType, Context.CharTy) || 15926 Context.hasSameType(ParamType, Context.WideCharTy) || 15927 Context.hasSameType(ParamType, Context.Char8Ty) || 15928 Context.hasSameType(ParamType, Context.Char16Ty) || 15929 Context.hasSameType(ParamType, Context.Char32Ty)) { 15930 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 15931 QualType InnerType = Ptr->getPointeeType(); 15932 15933 // Pointer parameter must be a const char *. 15934 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 15935 Context.CharTy) && 15936 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 15937 Diag(Param->getSourceRange().getBegin(), 15938 diag::err_literal_operator_param) 15939 << ParamType << "'const char *'" << Param->getSourceRange(); 15940 return true; 15941 } 15942 15943 } else if (ParamType->isRealFloatingType()) { 15944 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 15945 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 15946 return true; 15947 15948 } else if (ParamType->isIntegerType()) { 15949 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 15950 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 15951 return true; 15952 15953 } else { 15954 Diag(Param->getSourceRange().getBegin(), 15955 diag::err_literal_operator_invalid_param) 15956 << ParamType << Param->getSourceRange(); 15957 return true; 15958 } 15959 15960 } else if (FnDecl->param_size() == 2) { 15961 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 15962 15963 // First, verify that the first parameter is correct. 15964 15965 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 15966 15967 // Two parameter function must have a pointer to const as a 15968 // first parameter; let's strip those qualifiers. 15969 const PointerType *PT = FirstParamType->getAs<PointerType>(); 15970 15971 if (!PT) { 15972 Diag((*Param)->getSourceRange().getBegin(), 15973 diag::err_literal_operator_param) 15974 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15975 return true; 15976 } 15977 15978 QualType PointeeType = PT->getPointeeType(); 15979 // First parameter must be const 15980 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 15981 Diag((*Param)->getSourceRange().getBegin(), 15982 diag::err_literal_operator_param) 15983 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15984 return true; 15985 } 15986 15987 QualType InnerType = PointeeType.getUnqualifiedType(); 15988 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 15989 // const char32_t* are allowed as the first parameter to a two-parameter 15990 // function 15991 if (!(Context.hasSameType(InnerType, Context.CharTy) || 15992 Context.hasSameType(InnerType, Context.WideCharTy) || 15993 Context.hasSameType(InnerType, Context.Char8Ty) || 15994 Context.hasSameType(InnerType, Context.Char16Ty) || 15995 Context.hasSameType(InnerType, Context.Char32Ty))) { 15996 Diag((*Param)->getSourceRange().getBegin(), 15997 diag::err_literal_operator_param) 15998 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 15999 return true; 16000 } 16001 16002 // Move on to the second and final parameter. 16003 ++Param; 16004 16005 // The second parameter must be a std::size_t. 16006 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 16007 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 16008 Diag((*Param)->getSourceRange().getBegin(), 16009 diag::err_literal_operator_param) 16010 << SecondParamType << Context.getSizeType() 16011 << (*Param)->getSourceRange(); 16012 return true; 16013 } 16014 } else { 16015 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 16016 return true; 16017 } 16018 16019 // Parameters are good. 16020 16021 // A parameter-declaration-clause containing a default argument is not 16022 // equivalent to any of the permitted forms. 16023 for (auto Param : FnDecl->parameters()) { 16024 if (Param->hasDefaultArg()) { 16025 Diag(Param->getDefaultArgRange().getBegin(), 16026 diag::err_literal_operator_default_argument) 16027 << Param->getDefaultArgRange(); 16028 break; 16029 } 16030 } 16031 16032 StringRef LiteralName 16033 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 16034 if (LiteralName[0] != '_' && 16035 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 16036 // C++11 [usrlit.suffix]p1: 16037 // Literal suffix identifiers that do not start with an underscore 16038 // are reserved for future standardization. 16039 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 16040 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 16041 } 16042 16043 return false; 16044} 16045 16046/// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 16047/// linkage specification, including the language and (if present) 16048/// the '{'. ExternLoc is the location of the 'extern', Lang is the 16049/// language string literal. LBraceLoc, if valid, provides the location of 16050/// the '{' brace. Otherwise, this linkage specification does not 16051/// have any braces. 16052Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 16053 Expr *LangStr, 16054 SourceLocation LBraceLoc) { 16055 StringLiteral *Lit = cast<StringLiteral>(LangStr); 16056 if (!Lit->isAscii()) { 16057 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 16058 << LangStr->getSourceRange(); 16059 return nullptr; 16060 } 16061 16062 StringRef Lang = Lit->getString(); 16063 LinkageSpecDecl::LanguageIDs Language; 16064 if (Lang == "C") 16065 Language = LinkageSpecDecl::lang_c; 16066 else if (Lang == "C++") 16067 Language = LinkageSpecDecl::lang_cxx; 16068 else { 16069 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 16070 << LangStr->getSourceRange(); 16071 return nullptr; 16072 } 16073 16074 // FIXME: Add all the various semantics of linkage specifications 16075 16076 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 16077 LangStr->getExprLoc(), Language, 16078 LBraceLoc.isValid()); 16079 CurContext->addDecl(D); 16080 PushDeclContext(S, D); 16081 return D; 16082} 16083 16084/// ActOnFinishLinkageSpecification - Complete the definition of 16085/// the C++ linkage specification LinkageSpec. If RBraceLoc is 16086/// valid, it's the position of the closing '}' brace in a linkage 16087/// specification that uses braces. 16088Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 16089 Decl *LinkageSpec, 16090 SourceLocation RBraceLoc) { 16091 if (RBraceLoc.isValid()) { 16092 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 16093 LSDecl->setRBraceLoc(RBraceLoc); 16094 } 16095 PopDeclContext(); 16096 return LinkageSpec; 16097} 16098 16099Decl *Sema::ActOnEmptyDeclaration(Scope *S, 16100 const ParsedAttributesView &AttrList, 16101 SourceLocation SemiLoc) { 16102 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 16103 // Attribute declarations appertain to empty declaration so we handle 16104 // them here. 16105 ProcessDeclAttributeList(S, ED, AttrList); 16106 16107 CurContext->addDecl(ED); 16108 return ED; 16109} 16110 16111/// Perform semantic analysis for the variable declaration that 16112/// occurs within a C++ catch clause, returning the newly-created 16113/// variable. 16114VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 16115 TypeSourceInfo *TInfo, 16116 SourceLocation StartLoc, 16117 SourceLocation Loc, 16118 IdentifierInfo *Name) { 16119 bool Invalid = false; 16120 QualType ExDeclType = TInfo->getType(); 16121 16122 // Arrays and functions decay. 16123 if (ExDeclType->isArrayType()) 16124 ExDeclType = Context.getArrayDecayedType(ExDeclType); 16125 else if (ExDeclType->isFunctionType()) 16126 ExDeclType = Context.getPointerType(ExDeclType); 16127 16128 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 16129 // The exception-declaration shall not denote a pointer or reference to an 16130 // incomplete type, other than [cv] void*. 16131 // N2844 forbids rvalue references. 16132 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 16133 Diag(Loc, diag::err_catch_rvalue_ref); 16134 Invalid = true; 16135 } 16136 16137 if (ExDeclType->isVariablyModifiedType()) { 16138 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 16139 Invalid = true; 16140 } 16141 16142 QualType BaseType = ExDeclType; 16143 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 16144 unsigned DK = diag::err_catch_incomplete; 16145 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 16146 BaseType = Ptr->getPointeeType(); 16147 Mode = 1; 16148 DK = diag::err_catch_incomplete_ptr; 16149 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 16150 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 16151 BaseType = Ref->getPointeeType(); 16152 Mode = 2; 16153 DK = diag::err_catch_incomplete_ref; 16154 } 16155 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 16156 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 16157 Invalid = true; 16158 16159 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 16160 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 16161 Invalid = true; 16162 } 16163 16164 if (!Invalid && !ExDeclType->isDependentType() && 16165 RequireNonAbstractType(Loc, ExDeclType, 16166 diag::err_abstract_type_in_decl, 16167 AbstractVariableType)) 16168 Invalid = true; 16169 16170 // Only the non-fragile NeXT runtime currently supports C++ catches 16171 // of ObjC types, and no runtime supports catching ObjC types by value. 16172 if (!Invalid && getLangOpts().ObjC) { 16173 QualType T = ExDeclType; 16174 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 16175 T = RT->getPointeeType(); 16176 16177 if (T->isObjCObjectType()) { 16178 Diag(Loc, diag::err_objc_object_catch); 16179 Invalid = true; 16180 } else if (T->isObjCObjectPointerType()) { 16181 // FIXME: should this be a test for macosx-fragile specifically? 16182 if (getLangOpts().ObjCRuntime.isFragile()) 16183 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 16184 } 16185 } 16186 16187 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 16188 ExDeclType, TInfo, SC_None); 16189 ExDecl->setExceptionVariable(true); 16190 16191 // In ARC, infer 'retaining' for variables of retainable type. 16192 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 16193 Invalid = true; 16194 16195 if (!Invalid && !ExDeclType->isDependentType()) { 16196 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 16197 // Insulate this from anything else we might currently be parsing. 16198 EnterExpressionEvaluationContext scope( 16199 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 16200 16201 // C++ [except.handle]p16: 16202 // The object declared in an exception-declaration or, if the 16203 // exception-declaration does not specify a name, a temporary (12.2) is 16204 // copy-initialized (8.5) from the exception object. [...] 16205 // The object is destroyed when the handler exits, after the destruction 16206 // of any automatic objects initialized within the handler. 16207 // 16208 // We just pretend to initialize the object with itself, then make sure 16209 // it can be destroyed later. 16210 QualType initType = Context.getExceptionObjectType(ExDeclType); 16211 16212 InitializedEntity entity = 16213 InitializedEntity::InitializeVariable(ExDecl); 16214 InitializationKind initKind = 16215 InitializationKind::CreateCopy(Loc, SourceLocation()); 16216 16217 Expr *opaqueValue = 16218 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 16219 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 16220 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 16221 if (result.isInvalid()) 16222 Invalid = true; 16223 else { 16224 // If the constructor used was non-trivial, set this as the 16225 // "initializer". 16226 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 16227 if (!construct->getConstructor()->isTrivial()) { 16228 Expr *init = MaybeCreateExprWithCleanups(construct); 16229 ExDecl->setInit(init); 16230 } 16231 16232 // And make sure it's destructable. 16233 FinalizeVarWithDestructor(ExDecl, recordType); 16234 } 16235 } 16236 } 16237 16238 if (Invalid) 16239 ExDecl->setInvalidDecl(); 16240 16241 return ExDecl; 16242} 16243 16244/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 16245/// handler. 16246Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 16247 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16248 bool Invalid = D.isInvalidType(); 16249 16250 // Check for unexpanded parameter packs. 16251 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16252 UPPC_ExceptionType)) { 16253 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 16254 D.getIdentifierLoc()); 16255 Invalid = true; 16256 } 16257 16258 IdentifierInfo *II = D.getIdentifier(); 16259 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 16260 LookupOrdinaryName, 16261 ForVisibleRedeclaration)) { 16262 // The scope should be freshly made just for us. There is just no way 16263 // it contains any previous declaration, except for function parameters in 16264 // a function-try-block's catch statement. 16265 assert(!S->isDeclScope(PrevDecl))((void)0); 16266 if (isDeclInScope(PrevDecl, CurContext, S)) { 16267 Diag(D.getIdentifierLoc(), diag::err_redefinition) 16268 << D.getIdentifier(); 16269 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 16270 Invalid = true; 16271 } else if (PrevDecl->isTemplateParameter()) 16272 // Maybe we will complain about the shadowed template parameter. 16273 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16274 } 16275 16276 if (D.getCXXScopeSpec().isSet() && !Invalid) { 16277 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 16278 << D.getCXXScopeSpec().getRange(); 16279 Invalid = true; 16280 } 16281 16282 VarDecl *ExDecl = BuildExceptionDeclaration( 16283 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 16284 if (Invalid) 16285 ExDecl->setInvalidDecl(); 16286 16287 // Add the exception declaration into this scope. 16288 if (II) 16289 PushOnScopeChains(ExDecl, S); 16290 else 16291 CurContext->addDecl(ExDecl); 16292 16293 ProcessDeclAttributes(S, ExDecl, D); 16294 return ExDecl; 16295} 16296 16297Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16298 Expr *AssertExpr, 16299 Expr *AssertMessageExpr, 16300 SourceLocation RParenLoc) { 16301 StringLiteral *AssertMessage = 16302 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 16303 16304 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 16305 return nullptr; 16306 16307 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 16308 AssertMessage, RParenLoc, false); 16309} 16310 16311Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16312 Expr *AssertExpr, 16313 StringLiteral *AssertMessage, 16314 SourceLocation RParenLoc, 16315 bool Failed) { 16316 assert(AssertExpr != nullptr && "Expected non-null condition")((void)0); 16317 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 16318 !Failed) { 16319 // In a static_assert-declaration, the constant-expression shall be a 16320 // constant expression that can be contextually converted to bool. 16321 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 16322 if (Converted.isInvalid()) 16323 Failed = true; 16324 16325 ExprResult FullAssertExpr = 16326 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 16327 /*DiscardedValue*/ false, 16328 /*IsConstexpr*/ true); 16329 if (FullAssertExpr.isInvalid()) 16330 Failed = true; 16331 else 16332 AssertExpr = FullAssertExpr.get(); 16333 16334 llvm::APSInt Cond; 16335 if (!Failed && VerifyIntegerConstantExpression( 16336 AssertExpr, &Cond, 16337 diag::err_static_assert_expression_is_not_constant) 16338 .isInvalid()) 16339 Failed = true; 16340 16341 if (!Failed && !Cond) { 16342 SmallString<256> MsgBuffer; 16343 llvm::raw_svector_ostream Msg(MsgBuffer); 16344 if (AssertMessage) 16345 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); 16346 16347 Expr *InnerCond = nullptr; 16348 std::string InnerCondDescription; 16349 std::tie(InnerCond, InnerCondDescription) = 16350 findFailedBooleanCondition(Converted.get()); 16351 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 16352 // Drill down into concept specialization expressions to see why they 16353 // weren't satisfied. 16354 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16355 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16356 ConstraintSatisfaction Satisfaction; 16357 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 16358 DiagnoseUnsatisfiedConstraint(Satisfaction); 16359 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 16360 && !isa<IntegerLiteral>(InnerCond)) { 16361 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) 16362 << InnerCondDescription << !AssertMessage 16363 << Msg.str() << InnerCond->getSourceRange(); 16364 } else { 16365 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16366 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16367 } 16368 Failed = true; 16369 } 16370 } else { 16371 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 16372 /*DiscardedValue*/false, 16373 /*IsConstexpr*/true); 16374 if (FullAssertExpr.isInvalid()) 16375 Failed = true; 16376 else 16377 AssertExpr = FullAssertExpr.get(); 16378 } 16379 16380 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 16381 AssertExpr, AssertMessage, RParenLoc, 16382 Failed); 16383 16384 CurContext->addDecl(Decl); 16385 return Decl; 16386} 16387 16388/// Perform semantic analysis of the given friend type declaration. 16389/// 16390/// \returns A friend declaration that. 16391FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 16392 SourceLocation FriendLoc, 16393 TypeSourceInfo *TSInfo) { 16394 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")((void)0); 16395 16396 QualType T = TSInfo->getType(); 16397 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 16398 16399 // C++03 [class.friend]p2: 16400 // An elaborated-type-specifier shall be used in a friend declaration 16401 // for a class.* 16402 // 16403 // * The class-key of the elaborated-type-specifier is required. 16404 if (!CodeSynthesisContexts.empty()) { 16405 // Do not complain about the form of friend template types during any kind 16406 // of code synthesis. For template instantiation, we will have complained 16407 // when the template was defined. 16408 } else { 16409 if (!T->isElaboratedTypeSpecifier()) { 16410 // If we evaluated the type to a record type, suggest putting 16411 // a tag in front. 16412 if (const RecordType *RT = T->getAs<RecordType>()) { 16413 RecordDecl *RD = RT->getDecl(); 16414 16415 SmallString<16> InsertionText(" "); 16416 InsertionText += RD->getKindName(); 16417 16418 Diag(TypeRange.getBegin(), 16419 getLangOpts().CPlusPlus11 ? 16420 diag::warn_cxx98_compat_unelaborated_friend_type : 16421 diag::ext_unelaborated_friend_type) 16422 << (unsigned) RD->getTagKind() 16423 << T 16424 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 16425 InsertionText); 16426 } else { 16427 Diag(FriendLoc, 16428 getLangOpts().CPlusPlus11 ? 16429 diag::warn_cxx98_compat_nonclass_type_friend : 16430 diag::ext_nonclass_type_friend) 16431 << T 16432 << TypeRange; 16433 } 16434 } else if (T->getAs<EnumType>()) { 16435 Diag(FriendLoc, 16436 getLangOpts().CPlusPlus11 ? 16437 diag::warn_cxx98_compat_enum_friend : 16438 diag::ext_enum_friend) 16439 << T 16440 << TypeRange; 16441 } 16442 16443 // C++11 [class.friend]p3: 16444 // A friend declaration that does not declare a function shall have one 16445 // of the following forms: 16446 // friend elaborated-type-specifier ; 16447 // friend simple-type-specifier ; 16448 // friend typename-specifier ; 16449 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 16450 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 16451 } 16452 16453 // If the type specifier in a friend declaration designates a (possibly 16454 // cv-qualified) class type, that class is declared as a friend; otherwise, 16455 // the friend declaration is ignored. 16456 return FriendDecl::Create(Context, CurContext, 16457 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 16458 FriendLoc); 16459} 16460 16461/// Handle a friend tag declaration where the scope specifier was 16462/// templated. 16463Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 16464 unsigned TagSpec, SourceLocation TagLoc, 16465 CXXScopeSpec &SS, IdentifierInfo *Name, 16466 SourceLocation NameLoc, 16467 const ParsedAttributesView &Attr, 16468 MultiTemplateParamsArg TempParamLists) { 16469 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 16470 16471 bool IsMemberSpecialization = false; 16472 bool Invalid = false; 16473 16474 if (TemplateParameterList *TemplateParams = 16475 MatchTemplateParametersToScopeSpecifier( 16476 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 16477 IsMemberSpecialization, Invalid)) { 16478 if (TemplateParams->size() > 0) { 16479 // This is a declaration of a class template. 16480 if (Invalid) 16481 return nullptr; 16482 16483 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 16484 NameLoc, Attr, TemplateParams, AS_public, 16485 /*ModulePrivateLoc=*/SourceLocation(), 16486 FriendLoc, TempParamLists.size() - 1, 16487 TempParamLists.data()).get(); 16488 } else { 16489 // The "template<>" header is extraneous. 16490 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 16491 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 16492 IsMemberSpecialization = true; 16493 } 16494 } 16495 16496 if (Invalid) return nullptr; 16497 16498 bool isAllExplicitSpecializations = true; 16499 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 16500 if (TempParamLists[I]->size()) { 16501 isAllExplicitSpecializations = false; 16502 break; 16503 } 16504 } 16505 16506 // FIXME: don't ignore attributes. 16507 16508 // If it's explicit specializations all the way down, just forget 16509 // about the template header and build an appropriate non-templated 16510 // friend. TODO: for source fidelity, remember the headers. 16511 if (isAllExplicitSpecializations) { 16512 if (SS.isEmpty()) { 16513 bool Owned = false; 16514 bool IsDependent = false; 16515 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, 16516 Attr, AS_public, 16517 /*ModulePrivateLoc=*/SourceLocation(), 16518 MultiTemplateParamsArg(), Owned, IsDependent, 16519 /*ScopedEnumKWLoc=*/SourceLocation(), 16520 /*ScopedEnumUsesClassTag=*/false, 16521 /*UnderlyingType=*/TypeResult(), 16522 /*IsTypeSpecifier=*/false, 16523 /*IsTemplateParamOrArg=*/false); 16524 } 16525 16526 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 16527 ElaboratedTypeKeyword Keyword 16528 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16529 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 16530 *Name, NameLoc); 16531 if (T.isNull()) 16532 return nullptr; 16533 16534 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16535 if (isa<DependentNameType>(T)) { 16536 DependentNameTypeLoc TL = 16537 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16538 TL.setElaboratedKeywordLoc(TagLoc); 16539 TL.setQualifierLoc(QualifierLoc); 16540 TL.setNameLoc(NameLoc); 16541 } else { 16542 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 16543 TL.setElaboratedKeywordLoc(TagLoc); 16544 TL.setQualifierLoc(QualifierLoc); 16545 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 16546 } 16547 16548 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16549 TSI, FriendLoc, TempParamLists); 16550 Friend->setAccess(AS_public); 16551 CurContext->addDecl(Friend); 16552 return Friend; 16553 } 16554 16555 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")((void)0); 16556 16557 16558 16559 // Handle the case of a templated-scope friend class. e.g. 16560 // template <class T> class A<T>::B; 16561 // FIXME: we don't support these right now. 16562 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 16563 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 16564 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16565 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 16566 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16567 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16568 TL.setElaboratedKeywordLoc(TagLoc); 16569 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 16570 TL.setNameLoc(NameLoc); 16571 16572 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16573 TSI, FriendLoc, TempParamLists); 16574 Friend->setAccess(AS_public); 16575 Friend->setUnsupportedFriend(true); 16576 CurContext->addDecl(Friend); 16577 return Friend; 16578} 16579 16580/// Handle a friend type declaration. This works in tandem with 16581/// ActOnTag. 16582/// 16583/// Notes on friend class templates: 16584/// 16585/// We generally treat friend class declarations as if they were 16586/// declaring a class. So, for example, the elaborated type specifier 16587/// in a friend declaration is required to obey the restrictions of a 16588/// class-head (i.e. no typedefs in the scope chain), template 16589/// parameters are required to match up with simple template-ids, &c. 16590/// However, unlike when declaring a template specialization, it's 16591/// okay to refer to a template specialization without an empty 16592/// template parameter declaration, e.g. 16593/// friend class A<T>::B<unsigned>; 16594/// We permit this as a special case; if there are any template 16595/// parameters present at all, require proper matching, i.e. 16596/// template <> template \<class T> friend class A<int>::B; 16597Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 16598 MultiTemplateParamsArg TempParams) { 16599 SourceLocation Loc = DS.getBeginLoc(); 16600 16601 assert(DS.isFriendSpecified())((void)0); 16602 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((void)0); 16603 16604 // C++ [class.friend]p3: 16605 // A friend declaration that does not declare a function shall have one of 16606 // the following forms: 16607 // friend elaborated-type-specifier ; 16608 // friend simple-type-specifier ; 16609 // friend typename-specifier ; 16610 // 16611 // Any declaration with a type qualifier does not have that form. (It's 16612 // legal to specify a qualified type as a friend, you just can't write the 16613 // keywords.) 16614 if (DS.getTypeQualifiers()) { 16615 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 16616 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 16617 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 16618 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 16619 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 16620 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 16621 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 16622 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 16623 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 16624 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 16625 } 16626 16627 // Try to convert the decl specifier to a type. This works for 16628 // friend templates because ActOnTag never produces a ClassTemplateDecl 16629 // for a TUK_Friend. 16630 Declarator TheDeclarator(DS, DeclaratorContext::Member); 16631 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 16632 QualType T = TSI->getType(); 16633 if (TheDeclarator.isInvalidType()) 16634 return nullptr; 16635 16636 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 16637 return nullptr; 16638 16639 // This is definitely an error in C++98. It's probably meant to 16640 // be forbidden in C++0x, too, but the specification is just 16641 // poorly written. 16642 // 16643 // The problem is with declarations like the following: 16644 // template <T> friend A<T>::foo; 16645 // where deciding whether a class C is a friend or not now hinges 16646 // on whether there exists an instantiation of A that causes 16647 // 'foo' to equal C. There are restrictions on class-heads 16648 // (which we declare (by fiat) elaborated friend declarations to 16649 // be) that makes this tractable. 16650 // 16651 // FIXME: handle "template <> friend class A<T>;", which 16652 // is possibly well-formed? Who even knows? 16653 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 16654 Diag(Loc, diag::err_tagless_friend_type_template) 16655 << DS.getSourceRange(); 16656 return nullptr; 16657 } 16658 16659 // C++98 [class.friend]p1: A friend of a class is a function 16660 // or class that is not a member of the class . . . 16661 // This is fixed in DR77, which just barely didn't make the C++03 16662 // deadline. It's also a very silly restriction that seriously 16663 // affects inner classes and which nobody else seems to implement; 16664 // thus we never diagnose it, not even in -pedantic. 16665 // 16666 // But note that we could warn about it: it's always useless to 16667 // friend one of your own members (it's not, however, worthless to 16668 // friend a member of an arbitrary specialization of your template). 16669 16670 Decl *D; 16671 if (!TempParams.empty()) 16672 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 16673 TempParams, 16674 TSI, 16675 DS.getFriendSpecLoc()); 16676 else 16677 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 16678 16679 if (!D) 16680 return nullptr; 16681 16682 D->setAccess(AS_public); 16683 CurContext->addDecl(D); 16684 16685 return D; 16686} 16687 16688NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 16689 MultiTemplateParamsArg TemplateParams) { 16690 const DeclSpec &DS = D.getDeclSpec(); 16691 16692 assert(DS.isFriendSpecified())((void)0); 16693 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((void)0); 16694 16695 SourceLocation Loc = D.getIdentifierLoc(); 16696 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16697 16698 // C++ [class.friend]p1 16699 // A friend of a class is a function or class.... 16700 // Note that this sees through typedefs, which is intended. 16701 // It *doesn't* see through dependent types, which is correct 16702 // according to [temp.arg.type]p3: 16703 // If a declaration acquires a function type through a 16704 // type dependent on a template-parameter and this causes 16705 // a declaration that does not use the syntactic form of a 16706 // function declarator to have a function type, the program 16707 // is ill-formed. 16708 if (!TInfo->getType()->isFunctionType()) { 16709 Diag(Loc, diag::err_unexpected_friend); 16710 16711 // It might be worthwhile to try to recover by creating an 16712 // appropriate declaration. 16713 return nullptr; 16714 } 16715 16716 // C++ [namespace.memdef]p3 16717 // - If a friend declaration in a non-local class first declares a 16718 // class or function, the friend class or function is a member 16719 // of the innermost enclosing namespace. 16720 // - The name of the friend is not found by simple name lookup 16721 // until a matching declaration is provided in that namespace 16722 // scope (either before or after the class declaration granting 16723 // friendship). 16724 // - If a friend function is called, its name may be found by the 16725 // name lookup that considers functions from namespaces and 16726 // classes associated with the types of the function arguments. 16727 // - When looking for a prior declaration of a class or a function 16728 // declared as a friend, scopes outside the innermost enclosing 16729 // namespace scope are not considered. 16730 16731 CXXScopeSpec &SS = D.getCXXScopeSpec(); 16732 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 16733 assert(NameInfo.getName())((void)0); 16734 16735 // Check for unexpanded parameter packs. 16736 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 16737 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 16738 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 16739 return nullptr; 16740 16741 // The context we found the declaration in, or in which we should 16742 // create the declaration. 16743 DeclContext *DC; 16744 Scope *DCScope = S; 16745 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 16746 ForExternalRedeclaration); 16747 16748 // There are five cases here. 16749 // - There's no scope specifier and we're in a local class. Only look 16750 // for functions declared in the immediately-enclosing block scope. 16751 // We recover from invalid scope qualifiers as if they just weren't there. 16752 FunctionDecl *FunctionContainingLocalClass = nullptr; 16753 if ((SS.isInvalid() || !SS.isSet()) && 16754 (FunctionContainingLocalClass = 16755 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 16756 // C++11 [class.friend]p11: 16757 // If a friend declaration appears in a local class and the name 16758 // specified is an unqualified name, a prior declaration is 16759 // looked up without considering scopes that are outside the 16760 // innermost enclosing non-class scope. For a friend function 16761 // declaration, if there is no prior declaration, the program is 16762 // ill-formed. 16763 16764 // Find the innermost enclosing non-class scope. This is the block 16765 // scope containing the local class definition (or for a nested class, 16766 // the outer local class). 16767 DCScope = S->getFnParent(); 16768 16769 // Look up the function name in the scope. 16770 Previous.clear(LookupLocalFriendName); 16771 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 16772 16773 if (!Previous.empty()) { 16774 // All possible previous declarations must have the same context: 16775 // either they were declared at block scope or they are members of 16776 // one of the enclosing local classes. 16777 DC = Previous.getRepresentativeDecl()->getDeclContext(); 16778 } else { 16779 // This is ill-formed, but provide the context that we would have 16780 // declared the function in, if we were permitted to, for error recovery. 16781 DC = FunctionContainingLocalClass; 16782 } 16783 adjustContextForLocalExternDecl(DC); 16784 16785 // C++ [class.friend]p6: 16786 // A function can be defined in a friend declaration of a class if and 16787 // only if the class is a non-local class (9.8), the function name is 16788 // unqualified, and the function has namespace scope. 16789 if (D.isFunctionDefinition()) { 16790 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 16791 } 16792 16793 // - There's no scope specifier, in which case we just go to the 16794 // appropriate scope and look for a function or function template 16795 // there as appropriate. 16796 } else if (SS.isInvalid() || !SS.isSet()) { 16797 // C++11 [namespace.memdef]p3: 16798 // If the name in a friend declaration is neither qualified nor 16799 // a template-id and the declaration is a function or an 16800 // elaborated-type-specifier, the lookup to determine whether 16801 // the entity has been previously declared shall not consider 16802 // any scopes outside the innermost enclosing namespace. 16803 bool isTemplateId = 16804 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 16805 16806 // Find the appropriate context according to the above. 16807 DC = CurContext; 16808 16809 // Skip class contexts. If someone can cite chapter and verse 16810 // for this behavior, that would be nice --- it's what GCC and 16811 // EDG do, and it seems like a reasonable intent, but the spec 16812 // really only says that checks for unqualified existing 16813 // declarations should stop at the nearest enclosing namespace, 16814 // not that they should only consider the nearest enclosing 16815 // namespace. 16816 while (DC->isRecord()) 16817 DC = DC->getParent(); 16818 16819 DeclContext *LookupDC = DC; 16820 while (LookupDC->isTransparentContext()) 16821 LookupDC = LookupDC->getParent(); 16822 16823 while (true) { 16824 LookupQualifiedName(Previous, LookupDC); 16825 16826 if (!Previous.empty()) { 16827 DC = LookupDC; 16828 break; 16829 } 16830 16831 if (isTemplateId) { 16832 if (isa<TranslationUnitDecl>(LookupDC)) break; 16833 } else { 16834 if (LookupDC->isFileContext()) break; 16835 } 16836 LookupDC = LookupDC->getParent(); 16837 } 16838 16839 DCScope = getScopeForDeclContext(S, DC); 16840 16841 // - There's a non-dependent scope specifier, in which case we 16842 // compute it and do a previous lookup there for a function 16843 // or function template. 16844 } else if (!SS.getScopeRep()->isDependent()) { 16845 DC = computeDeclContext(SS); 16846 if (!DC) return nullptr; 16847 16848 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 16849 16850 LookupQualifiedName(Previous, DC); 16851 16852 // C++ [class.friend]p1: A friend of a class is a function or 16853 // class that is not a member of the class . . . 16854 if (DC->Equals(CurContext)) 16855 Diag(DS.getFriendSpecLoc(), 16856 getLangOpts().CPlusPlus11 ? 16857 diag::warn_cxx98_compat_friend_is_member : 16858 diag::err_friend_is_member); 16859 16860 if (D.isFunctionDefinition()) { 16861 // C++ [class.friend]p6: 16862 // A function can be defined in a friend declaration of a class if and 16863 // only if the class is a non-local class (9.8), the function name is 16864 // unqualified, and the function has namespace scope. 16865 // 16866 // FIXME: We should only do this if the scope specifier names the 16867 // innermost enclosing namespace; otherwise the fixit changes the 16868 // meaning of the code. 16869 SemaDiagnosticBuilder DB 16870 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 16871 16872 DB << SS.getScopeRep(); 16873 if (DC->isFileContext()) 16874 DB << FixItHint::CreateRemoval(SS.getRange()); 16875 SS.clear(); 16876 } 16877 16878 // - There's a scope specifier that does not match any template 16879 // parameter lists, in which case we use some arbitrary context, 16880 // create a method or method template, and wait for instantiation. 16881 // - There's a scope specifier that does match some template 16882 // parameter lists, which we don't handle right now. 16883 } else { 16884 if (D.isFunctionDefinition()) { 16885 // C++ [class.friend]p6: 16886 // A function can be defined in a friend declaration of a class if and 16887 // only if the class is a non-local class (9.8), the function name is 16888 // unqualified, and the function has namespace scope. 16889 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 16890 << SS.getScopeRep(); 16891 } 16892 16893 DC = CurContext; 16894 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")((void)0); 16895 } 16896 16897 if (!DC->isRecord()) { 16898 int DiagArg = -1; 16899 switch (D.getName().getKind()) { 16900 case UnqualifiedIdKind::IK_ConstructorTemplateId: 16901 case UnqualifiedIdKind::IK_ConstructorName: 16902 DiagArg = 0; 16903 break; 16904 case UnqualifiedIdKind::IK_DestructorName: 16905 DiagArg = 1; 16906 break; 16907 case UnqualifiedIdKind::IK_ConversionFunctionId: 16908 DiagArg = 2; 16909 break; 16910 case UnqualifiedIdKind::IK_DeductionGuideName: 16911 DiagArg = 3; 16912 break; 16913 case UnqualifiedIdKind::IK_Identifier: 16914 case UnqualifiedIdKind::IK_ImplicitSelfParam: 16915 case UnqualifiedIdKind::IK_LiteralOperatorId: 16916 case UnqualifiedIdKind::IK_OperatorFunctionId: 16917 case UnqualifiedIdKind::IK_TemplateId: 16918 break; 16919 } 16920 // This implies that it has to be an operator or function. 16921 if (DiagArg >= 0) { 16922 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 16923 return nullptr; 16924 } 16925 } 16926 16927 // FIXME: This is an egregious hack to cope with cases where the scope stack 16928 // does not contain the declaration context, i.e., in an out-of-line 16929 // definition of a class. 16930 Scope FakeDCScope(S, Scope::DeclScope, Diags); 16931 if (!DCScope) { 16932 FakeDCScope.setEntity(DC); 16933 DCScope = &FakeDCScope; 16934 } 16935 16936 bool AddToScope = true; 16937 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 16938 TemplateParams, AddToScope); 16939 if (!ND) return nullptr; 16940 16941 assert(ND->getLexicalDeclContext() == CurContext)((void)0); 16942 16943 // If we performed typo correction, we might have added a scope specifier 16944 // and changed the decl context. 16945 DC = ND->getDeclContext(); 16946 16947 // Add the function declaration to the appropriate lookup tables, 16948 // adjusting the redeclarations list as necessary. We don't 16949 // want to do this yet if the friending class is dependent. 16950 // 16951 // Also update the scope-based lookup if the target context's 16952 // lookup context is in lexical scope. 16953 if (!CurContext->isDependentContext()) { 16954 DC = DC->getRedeclContext(); 16955 DC->makeDeclVisibleInContext(ND); 16956 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 16957 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 16958 } 16959 16960 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 16961 D.getIdentifierLoc(), ND, 16962 DS.getFriendSpecLoc()); 16963 FrD->setAccess(AS_public); 16964 CurContext->addDecl(FrD); 16965 16966 if (ND->isInvalidDecl()) { 16967 FrD->setInvalidDecl(); 16968 } else { 16969 if (DC->isRecord()) CheckFriendAccess(ND); 16970 16971 FunctionDecl *FD; 16972 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 16973 FD = FTD->getTemplatedDecl(); 16974 else 16975 FD = cast<FunctionDecl>(ND); 16976 16977 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 16978 // default argument expression, that declaration shall be a definition 16979 // and shall be the only declaration of the function or function 16980 // template in the translation unit. 16981 if (functionDeclHasDefaultArgument(FD)) { 16982 // We can't look at FD->getPreviousDecl() because it may not have been set 16983 // if we're in a dependent context. If the function is known to be a 16984 // redeclaration, we will have narrowed Previous down to the right decl. 16985 if (D.isRedeclaration()) { 16986 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 16987 Diag(Previous.getRepresentativeDecl()->getLocation(), 16988 diag::note_previous_declaration); 16989 } else if (!D.isFunctionDefinition()) 16990 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 16991 } 16992 16993 // Mark templated-scope function declarations as unsupported. 16994 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 16995 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 16996 << SS.getScopeRep() << SS.getRange() 16997 << cast<CXXRecordDecl>(CurContext); 16998 FrD->setUnsupportedFriend(true); 16999 } 17000 } 17001 17002 warnOnReservedIdentifier(ND); 17003 17004 return ND; 17005} 17006 17007void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 17008 AdjustDeclIfTemplate(Dcl); 17009 17010 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 17011 if (!Fn) { 17012 Diag(DelLoc, diag::err_deleted_non_function); 17013 return; 17014 } 17015 17016 // Deleted function does not have a body. 17017 Fn->setWillHaveBody(false); 17018 17019 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 17020 // Don't consider the implicit declaration we generate for explicit 17021 // specializations. FIXME: Do not generate these implicit declarations. 17022 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 17023 Prev->getPreviousDecl()) && 17024 !Prev->isDefined()) { 17025 Diag(DelLoc, diag::err_deleted_decl_not_first); 17026 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 17027 Prev->isImplicit() ? diag::note_previous_implicit_declaration 17028 : diag::note_previous_declaration); 17029 // We can't recover from this; the declaration might have already 17030 // been used. 17031 Fn->setInvalidDecl(); 17032 return; 17033 } 17034 17035 // To maintain the invariant that functions are only deleted on their first 17036 // declaration, mark the implicitly-instantiated declaration of the 17037 // explicitly-specialized function as deleted instead of marking the 17038 // instantiated redeclaration. 17039 Fn = Fn->getCanonicalDecl(); 17040 } 17041 17042 // dllimport/dllexport cannot be deleted. 17043 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 17044 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 17045 Fn->setInvalidDecl(); 17046 } 17047 17048 // C++11 [basic.start.main]p3: 17049 // A program that defines main as deleted [...] is ill-formed. 17050 if (Fn->isMain()) 17051 Diag(DelLoc, diag::err_deleted_main); 17052 17053 // C++11 [dcl.fct.def.delete]p4: 17054 // A deleted function is implicitly inline. 17055 Fn->setImplicitlyInline(); 17056 Fn->setDeletedAsWritten(); 17057} 17058 17059void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 17060 if (!Dcl || Dcl->isInvalidDecl()) 17061 return; 17062 17063 auto *FD = dyn_cast<FunctionDecl>(Dcl); 17064 if (!FD) { 17065 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 17066 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 17067 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 17068 return; 17069 } 17070 } 17071 17072 Diag(DefaultLoc, diag::err_default_special_members) 17073 << getLangOpts().CPlusPlus20; 17074 return; 17075 } 17076 17077 // Reject if this can't possibly be a defaultable function. 17078 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 17079 if (!DefKind && 17080 // A dependent function that doesn't locally look defaultable can 17081 // still instantiate to a defaultable function if it's a constructor 17082 // or assignment operator. 17083 (!FD->isDependentContext() || 17084 (!isa<CXXConstructorDecl>(FD) && 17085 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 17086 Diag(DefaultLoc, diag::err_default_special_members) 17087 << getLangOpts().CPlusPlus20; 17088 return; 17089 } 17090 17091 if (DefKind.isComparison() && 17092 !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 17093 Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class) 17094 << (int)DefKind.asComparison(); 17095 return; 17096 } 17097 17098 // Issue compatibility warning. We already warned if the operator is 17099 // 'operator<=>' when parsing the '<=>' token. 17100 if (DefKind.isComparison() && 17101 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 17102 Diag(DefaultLoc, getLangOpts().CPlusPlus20 17103 ? diag::warn_cxx17_compat_defaulted_comparison 17104 : diag::ext_defaulted_comparison); 17105 } 17106 17107 FD->setDefaulted(); 17108 FD->setExplicitlyDefaulted(); 17109 17110 // Defer checking functions that are defaulted in a dependent context. 17111 if (FD->isDependentContext()) 17112 return; 17113 17114 // Unset that we will have a body for this function. We might not, 17115 // if it turns out to be trivial, and we don't need this marking now 17116 // that we've marked it as defaulted. 17117 FD->setWillHaveBody(false); 17118 17119 // If this definition appears within the record, do the checking when 17120 // the record is complete. This is always the case for a defaulted 17121 // comparison. 17122 if (DefKind.isComparison()) 17123 return; 17124 auto *MD = cast<CXXMethodDecl>(FD); 17125 17126 const FunctionDecl *Primary = FD; 17127 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 17128 // Ask the template instantiation pattern that actually had the 17129 // '= default' on it. 17130 Primary = Pattern; 17131 17132 // If the method was defaulted on its first declaration, we will have 17133 // already performed the checking in CheckCompletedCXXClass. Such a 17134 // declaration doesn't trigger an implicit definition. 17135 if (Primary->getCanonicalDecl()->isDefaulted()) 17136 return; 17137 17138 // FIXME: Once we support defining comparisons out of class, check for a 17139 // defaulted comparison here. 17140 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember())) 17141 MD->setInvalidDecl(); 17142 else 17143 DefineDefaultedFunction(*this, MD, DefaultLoc); 17144} 17145 17146static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 17147 for (Stmt *SubStmt : S->children()) { 17148 if (!SubStmt) 17149 continue; 17150 if (isa<ReturnStmt>(SubStmt)) 17151 Self.Diag(SubStmt->getBeginLoc(), 17152 diag::err_return_in_constructor_handler); 17153 if (!isa<Expr>(SubStmt)) 17154 SearchForReturnInStmt(Self, SubStmt); 17155 } 17156} 17157 17158void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 17159 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 17160 CXXCatchStmt *Handler = TryBlock->getHandler(I); 17161 SearchForReturnInStmt(*this, Handler); 17162 } 17163} 17164 17165bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 17166 const CXXMethodDecl *Old) { 17167 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 17168 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 17169 17170 if (OldFT->hasExtParameterInfos()) { 17171 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 17172 // A parameter of the overriding method should be annotated with noescape 17173 // if the corresponding parameter of the overridden method is annotated. 17174 if (OldFT->getExtParameterInfo(I).isNoEscape() && 17175 !NewFT->getExtParameterInfo(I).isNoEscape()) { 17176 Diag(New->getParamDecl(I)->getLocation(), 17177 diag::warn_overriding_method_missing_noescape); 17178 Diag(Old->getParamDecl(I)->getLocation(), 17179 diag::note_overridden_marked_noescape); 17180 } 17181 } 17182 17183 // Virtual overrides must have the same code_seg. 17184 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 17185 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 17186 if ((NewCSA || OldCSA) && 17187 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 17188 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 17189 Diag(Old->getLocation(), diag::note_previous_declaration); 17190 return true; 17191 } 17192 17193 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 17194 17195 // If the calling conventions match, everything is fine 17196 if (NewCC == OldCC) 17197 return false; 17198 17199 // If the calling conventions mismatch because the new function is static, 17200 // suppress the calling convention mismatch error; the error about static 17201 // function override (err_static_overrides_virtual from 17202 // Sema::CheckFunctionDeclaration) is more clear. 17203 if (New->getStorageClass() == SC_Static) 17204 return false; 17205 17206 Diag(New->getLocation(), 17207 diag::err_conflicting_overriding_cc_attributes) 17208 << New->getDeclName() << New->getType() << Old->getType(); 17209 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 17210 return true; 17211} 17212 17213bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 17214 const CXXMethodDecl *Old) { 17215 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 17216 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 17217 17218 if (Context.hasSameType(NewTy, OldTy) || 17219 NewTy->isDependentType() || OldTy->isDependentType()) 17220 return false; 17221 17222 // Check if the return types are covariant 17223 QualType NewClassTy, OldClassTy; 17224 17225 /// Both types must be pointers or references to classes. 17226 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 17227 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 17228 NewClassTy = NewPT->getPointeeType(); 17229 OldClassTy = OldPT->getPointeeType(); 17230 } 17231 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 17232 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 17233 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 17234 NewClassTy = NewRT->getPointeeType(); 17235 OldClassTy = OldRT->getPointeeType(); 17236 } 17237 } 17238 } 17239 17240 // The return types aren't either both pointers or references to a class type. 17241 if (NewClassTy.isNull()) { 17242 Diag(New->getLocation(), 17243 diag::err_different_return_type_for_overriding_virtual_function) 17244 << New->getDeclName() << NewTy << OldTy 17245 << New->getReturnTypeSourceRange(); 17246 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17247 << Old->getReturnTypeSourceRange(); 17248 17249 return true; 17250 } 17251 17252 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 17253 // C++14 [class.virtual]p8: 17254 // If the class type in the covariant return type of D::f differs from 17255 // that of B::f, the class type in the return type of D::f shall be 17256 // complete at the point of declaration of D::f or shall be the class 17257 // type D. 17258 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 17259 if (!RT->isBeingDefined() && 17260 RequireCompleteType(New->getLocation(), NewClassTy, 17261 diag::err_covariant_return_incomplete, 17262 New->getDeclName())) 17263 return true; 17264 } 17265 17266 // Check if the new class derives from the old class. 17267 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 17268 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 17269 << New->getDeclName() << NewTy << OldTy 17270 << New->getReturnTypeSourceRange(); 17271 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17272 << Old->getReturnTypeSourceRange(); 17273 return true; 17274 } 17275 17276 // Check if we the conversion from derived to base is valid. 17277 if (CheckDerivedToBaseConversion( 17278 NewClassTy, OldClassTy, 17279 diag::err_covariant_return_inaccessible_base, 17280 diag::err_covariant_return_ambiguous_derived_to_base_conv, 17281 New->getLocation(), New->getReturnTypeSourceRange(), 17282 New->getDeclName(), nullptr)) { 17283 // FIXME: this note won't trigger for delayed access control 17284 // diagnostics, and it's impossible to get an undelayed error 17285 // here from access control during the original parse because 17286 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 17287 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17288 << Old->getReturnTypeSourceRange(); 17289 return true; 17290 } 17291 } 17292 17293 // The qualifiers of the return types must be the same. 17294 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 17295 Diag(New->getLocation(), 17296 diag::err_covariant_return_type_different_qualifications) 17297 << New->getDeclName() << NewTy << OldTy 17298 << New->getReturnTypeSourceRange(); 17299 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17300 << Old->getReturnTypeSourceRange(); 17301 return true; 17302 } 17303 17304 17305 // The new class type must have the same or less qualifiers as the old type. 17306 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 17307 Diag(New->getLocation(), 17308 diag::err_covariant_return_type_class_type_more_qualified) 17309 << New->getDeclName() << NewTy << OldTy 17310 << New->getReturnTypeSourceRange(); 17311 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17312 << Old->getReturnTypeSourceRange(); 17313 return true; 17314 } 17315 17316 return false; 17317} 17318 17319/// Mark the given method pure. 17320/// 17321/// \param Method the method to be marked pure. 17322/// 17323/// \param InitRange the source range that covers the "0" initializer. 17324bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 17325 SourceLocation EndLoc = InitRange.getEnd(); 17326 if (EndLoc.isValid()) 17327 Method->setRangeEnd(EndLoc); 17328 17329 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 17330 Method->setPure(); 17331 return false; 17332 } 17333 17334 if (!Method->isInvalidDecl()) 17335 Diag(Method->getLocation(), diag::err_non_virtual_pure) 17336 << Method->getDeclName() << InitRange; 17337 return true; 17338} 17339 17340void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 17341 if (D->getFriendObjectKind()) 17342 Diag(D->getLocation(), diag::err_pure_friend); 17343 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 17344 CheckPureMethod(M, ZeroLoc); 17345 else 17346 Diag(D->getLocation(), diag::err_illegal_initializer); 17347} 17348 17349/// Determine whether the given declaration is a global variable or 17350/// static data member. 17351static bool isNonlocalVariable(const Decl *D) { 17352 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 17353 return Var->hasGlobalStorage(); 17354 17355 return false; 17356} 17357 17358/// Invoked when we are about to parse an initializer for the declaration 17359/// 'Dcl'. 17360/// 17361/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 17362/// static data member of class X, names should be looked up in the scope of 17363/// class X. If the declaration had a scope specifier, a scope will have 17364/// been created and passed in for this purpose. Otherwise, S will be null. 17365void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 17366 // If there is no declaration, there was an error parsing it. 17367 if (!D || D->isInvalidDecl()) 17368 return; 17369 17370 // We will always have a nested name specifier here, but this declaration 17371 // might not be out of line if the specifier names the current namespace: 17372 // extern int n; 17373 // int ::n = 0; 17374 if (S && D->isOutOfLine()) 17375 EnterDeclaratorContext(S, D->getDeclContext()); 17376 17377 // If we are parsing the initializer for a static data member, push a 17378 // new expression evaluation context that is associated with this static 17379 // data member. 17380 if (isNonlocalVariable(D)) 17381 PushExpressionEvaluationContext( 17382 ExpressionEvaluationContext::PotentiallyEvaluated, D); 17383} 17384 17385/// Invoked after we are finished parsing an initializer for the declaration D. 17386void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 17387 // If there is no declaration, there was an error parsing it. 17388 if (!D || D->isInvalidDecl()) 17389 return; 17390 17391 if (isNonlocalVariable(D)) 17392 PopExpressionEvaluationContext(); 17393 17394 if (S && D->isOutOfLine()) 17395 ExitDeclaratorContext(S); 17396} 17397 17398/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 17399/// C++ if/switch/while/for statement. 17400/// e.g: "if (int x = f()) {...}" 17401DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 17402 // C++ 6.4p2: 17403 // The declarator shall not specify a function or an array. 17404 // The type-specifier-seq shall not contain typedef and shall not declare a 17405 // new class or enumeration. 17406 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&((void)0) 17407 "Parser allowed 'typedef' as storage class of condition decl.")((void)0); 17408 17409 Decl *Dcl = ActOnDeclarator(S, D); 17410 if (!Dcl) 17411 return true; 17412 17413 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 17414 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 17415 << D.getSourceRange(); 17416 return true; 17417 } 17418 17419 return Dcl; 17420} 17421 17422void Sema::LoadExternalVTableUses() { 17423 if (!ExternalSource) 17424 return; 17425 17426 SmallVector<ExternalVTableUse, 4> VTables; 17427 ExternalSource->ReadUsedVTables(VTables); 17428 SmallVector<VTableUse, 4> NewUses; 17429 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 17430 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 17431 = VTablesUsed.find(VTables[I].Record); 17432 // Even if a definition wasn't required before, it may be required now. 17433 if (Pos != VTablesUsed.end()) { 17434 if (!Pos->second && VTables[I].DefinitionRequired) 17435 Pos->second = true; 17436 continue; 17437 } 17438 17439 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 17440 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 17441 } 17442 17443 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 17444} 17445 17446void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 17447 bool DefinitionRequired) { 17448 // Ignore any vtable uses in unevaluated operands or for classes that do 17449 // not have a vtable. 17450 if (!Class->isDynamicClass() || Class->isDependentContext() || 17451 CurContext->isDependentContext() || isUnevaluatedContext()) 17452 return; 17453 // Do not mark as used if compiling for the device outside of the target 17454 // region. 17455 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice && 17456 !isInOpenMPDeclareTargetContext() && 17457 !isInOpenMPTargetExecutionDirective()) { 17458 if (!DefinitionRequired) 17459 MarkVirtualMembersReferenced(Loc, Class); 17460 return; 17461 } 17462 17463 // Try to insert this class into the map. 17464 LoadExternalVTableUses(); 17465 Class = Class->getCanonicalDecl(); 17466 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 17467 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 17468 if (!Pos.second) { 17469 // If we already had an entry, check to see if we are promoting this vtable 17470 // to require a definition. If so, we need to reappend to the VTableUses 17471 // list, since we may have already processed the first entry. 17472 if (DefinitionRequired && !Pos.first->second) { 17473 Pos.first->second = true; 17474 } else { 17475 // Otherwise, we can early exit. 17476 return; 17477 } 17478 } else { 17479 // The Microsoft ABI requires that we perform the destructor body 17480 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 17481 // the deleting destructor is emitted with the vtable, not with the 17482 // destructor definition as in the Itanium ABI. 17483 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 17484 CXXDestructorDecl *DD = Class->getDestructor(); 17485 if (DD && DD->isVirtual() && !DD->isDeleted()) { 17486 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 17487 // If this is an out-of-line declaration, marking it referenced will 17488 // not do anything. Manually call CheckDestructor to look up operator 17489 // delete(). 17490 ContextRAII SavedContext(*this, DD); 17491 CheckDestructor(DD); 17492 } else { 17493 MarkFunctionReferenced(Loc, Class->getDestructor()); 17494 } 17495 } 17496 } 17497 } 17498 17499 // Local classes need to have their virtual members marked 17500 // immediately. For all other classes, we mark their virtual members 17501 // at the end of the translation unit. 17502 if (Class->isLocalClass()) 17503 MarkVirtualMembersReferenced(Loc, Class); 17504 else 17505 VTableUses.push_back(std::make_pair(Class, Loc)); 17506} 17507 17508bool Sema::DefineUsedVTables() { 17509 LoadExternalVTableUses(); 17510 if (VTableUses.empty()) 17511 return false; 17512 17513 // Note: The VTableUses vector could grow as a result of marking 17514 // the members of a class as "used", so we check the size each 17515 // time through the loop and prefer indices (which are stable) to 17516 // iterators (which are not). 17517 bool DefinedAnything = false; 17518 for (unsigned I = 0; I != VTableUses.size(); ++I) { 17519 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 17520 if (!Class) 17521 continue; 17522 TemplateSpecializationKind ClassTSK = 17523 Class->getTemplateSpecializationKind(); 17524 17525 SourceLocation Loc = VTableUses[I].second; 17526 17527 bool DefineVTable = true; 17528 17529 // If this class has a key function, but that key function is 17530 // defined in another translation unit, we don't need to emit the 17531 // vtable even though we're using it. 17532 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 17533 if (KeyFunction && !KeyFunction->hasBody()) { 17534 // The key function is in another translation unit. 17535 DefineVTable = false; 17536 TemplateSpecializationKind TSK = 17537 KeyFunction->getTemplateSpecializationKind(); 17538 assert(TSK != TSK_ExplicitInstantiationDefinition &&((void)0) 17539 TSK != TSK_ImplicitInstantiation &&((void)0) 17540 "Instantiations don't have key functions")((void)0); 17541 (void)TSK; 17542 } else if (!KeyFunction) { 17543 // If we have a class with no key function that is the subject 17544 // of an explicit instantiation declaration, suppress the 17545 // vtable; it will live with the explicit instantiation 17546 // definition. 17547 bool IsExplicitInstantiationDeclaration = 17548 ClassTSK == TSK_ExplicitInstantiationDeclaration; 17549 for (auto R : Class->redecls()) { 17550 TemplateSpecializationKind TSK 17551 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 17552 if (TSK == TSK_ExplicitInstantiationDeclaration) 17553 IsExplicitInstantiationDeclaration = true; 17554 else if (TSK == TSK_ExplicitInstantiationDefinition) { 17555 IsExplicitInstantiationDeclaration = false; 17556 break; 17557 } 17558 } 17559 17560 if (IsExplicitInstantiationDeclaration) 17561 DefineVTable = false; 17562 } 17563 17564 // The exception specifications for all virtual members may be needed even 17565 // if we are not providing an authoritative form of the vtable in this TU. 17566 // We may choose to emit it available_externally anyway. 17567 if (!DefineVTable) { 17568 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 17569 continue; 17570 } 17571 17572 // Mark all of the virtual members of this class as referenced, so 17573 // that we can build a vtable. Then, tell the AST consumer that a 17574 // vtable for this class is required. 17575 DefinedAnything = true; 17576 MarkVirtualMembersReferenced(Loc, Class); 17577 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 17578 if (VTablesUsed[Canonical]) 17579 Consumer.HandleVTable(Class); 17580 17581 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 17582 // no key function or the key function is inlined. Don't warn in C++ ABIs 17583 // that lack key functions, since the user won't be able to make one. 17584 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 17585 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) { 17586 const FunctionDecl *KeyFunctionDef = nullptr; 17587 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 17588 KeyFunctionDef->isInlined())) { 17589 Diag(Class->getLocation(), 17590 ClassTSK == TSK_ExplicitInstantiationDefinition 17591 ? diag::warn_weak_template_vtable 17592 : diag::warn_weak_vtable) 17593 << Class; 17594 } 17595 } 17596 } 17597 VTableUses.clear(); 17598 17599 return DefinedAnything; 17600} 17601 17602void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 17603 const CXXRecordDecl *RD) { 17604 for (const auto *I : RD->methods()) 17605 if (I->isVirtual() && !I->isPure()) 17606 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 17607} 17608 17609void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 17610 const CXXRecordDecl *RD, 17611 bool ConstexprOnly) { 17612 // Mark all functions which will appear in RD's vtable as used. 17613 CXXFinalOverriderMap FinalOverriders; 17614 RD->getFinalOverriders(FinalOverriders); 17615 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 17616 E = FinalOverriders.end(); 17617 I != E; ++I) { 17618 for (OverridingMethods::const_iterator OI = I->second.begin(), 17619 OE = I->second.end(); 17620 OI != OE; ++OI) { 17621 assert(OI->second.size() > 0 && "no final overrider")((void)0); 17622 CXXMethodDecl *Overrider = OI->second.front().Method; 17623 17624 // C++ [basic.def.odr]p2: 17625 // [...] A virtual member function is used if it is not pure. [...] 17626 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 17627 MarkFunctionReferenced(Loc, Overrider); 17628 } 17629 } 17630 17631 // Only classes that have virtual bases need a VTT. 17632 if (RD->getNumVBases() == 0) 17633 return; 17634 17635 for (const auto &I : RD->bases()) { 17636 const auto *Base = 17637 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 17638 if (Base->getNumVBases() == 0) 17639 continue; 17640 MarkVirtualMembersReferenced(Loc, Base); 17641 } 17642} 17643 17644/// SetIvarInitializers - This routine builds initialization ASTs for the 17645/// Objective-C implementation whose ivars need be initialized. 17646void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 17647 if (!getLangOpts().CPlusPlus) 17648 return; 17649 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 17650 SmallVector<ObjCIvarDecl*, 8> ivars; 17651 CollectIvarsToConstructOrDestruct(OID, ivars); 17652 if (ivars.empty()) 17653 return; 17654 SmallVector<CXXCtorInitializer*, 32> AllToInit; 17655 for (unsigned i = 0; i < ivars.size(); i++) { 17656 FieldDecl *Field = ivars[i]; 17657 if (Field->isInvalidDecl()) 17658 continue; 17659 17660 CXXCtorInitializer *Member; 17661 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 17662 InitializationKind InitKind = 17663 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 17664 17665 InitializationSequence InitSeq(*this, InitEntity, InitKind, None); 17666 ExprResult MemberInit = 17667 InitSeq.Perform(*this, InitEntity, InitKind, None); 17668 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 17669 // Note, MemberInit could actually come back empty if no initialization 17670 // is required (e.g., because it would call a trivial default constructor) 17671 if (!MemberInit.get() || MemberInit.isInvalid()) 17672 continue; 17673 17674 Member = 17675 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 17676 SourceLocation(), 17677 MemberInit.getAs<Expr>(), 17678 SourceLocation()); 17679 AllToInit.push_back(Member); 17680 17681 // Be sure that the destructor is accessible and is marked as referenced. 17682 if (const RecordType *RecordTy = 17683 Context.getBaseElementType(Field->getType()) 17684 ->getAs<RecordType>()) { 17685 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 17686 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 17687 MarkFunctionReferenced(Field->getLocation(), Destructor); 17688 CheckDestructorAccess(Field->getLocation(), Destructor, 17689 PDiag(diag::err_access_dtor_ivar) 17690 << Context.getBaseElementType(Field->getType())); 17691 } 17692 } 17693 } 17694 ObjCImplementation->setIvarInitializers(Context, 17695 AllToInit.data(), AllToInit.size()); 17696 } 17697} 17698 17699static 17700void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 17701 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 17702 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 17703 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 17704 Sema &S) { 17705 if (Ctor->isInvalidDecl()) 17706 return; 17707 17708 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 17709 17710 // Target may not be determinable yet, for instance if this is a dependent 17711 // call in an uninstantiated template. 17712 if (Target) { 17713 const FunctionDecl *FNTarget = nullptr; 17714 (void)Target->hasBody(FNTarget); 17715 Target = const_cast<CXXConstructorDecl*>( 17716 cast_or_null<CXXConstructorDecl>(FNTarget)); 17717 } 17718 17719 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 17720 // Avoid dereferencing a null pointer here. 17721 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 17722 17723 if (!Current.insert(Canonical).second) 17724 return; 17725 17726 // We know that beyond here, we aren't chaining into a cycle. 17727 if (!Target || !Target->isDelegatingConstructor() || 17728 Target->isInvalidDecl() || Valid.count(TCanonical)) { 17729 Valid.insert(Current.begin(), Current.end()); 17730 Current.clear(); 17731 // We've hit a cycle. 17732 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 17733 Current.count(TCanonical)) { 17734 // If we haven't diagnosed this cycle yet, do so now. 17735 if (!Invalid.count(TCanonical)) { 17736 S.Diag((*Ctor->init_begin())->getSourceLocation(), 17737 diag::warn_delegating_ctor_cycle) 17738 << Ctor; 17739 17740 // Don't add a note for a function delegating directly to itself. 17741 if (TCanonical != Canonical) 17742 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 17743 17744 CXXConstructorDecl *C = Target; 17745 while (C->getCanonicalDecl() != Canonical) { 17746 const FunctionDecl *FNTarget = nullptr; 17747 (void)C->getTargetConstructor()->hasBody(FNTarget); 17748 assert(FNTarget && "Ctor cycle through bodiless function")((void)0); 17749 17750 C = const_cast<CXXConstructorDecl*>( 17751 cast<CXXConstructorDecl>(FNTarget)); 17752 S.Diag(C->getLocation(), diag::note_which_delegates_to); 17753 } 17754 } 17755 17756 Invalid.insert(Current.begin(), Current.end()); 17757 Current.clear(); 17758 } else { 17759 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 17760 } 17761} 17762 17763 17764void Sema::CheckDelegatingCtorCycles() { 17765 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 17766 17767 for (DelegatingCtorDeclsType::iterator 17768 I = DelegatingCtorDecls.begin(ExternalSource), 17769 E = DelegatingCtorDecls.end(); 17770 I != E; ++I) 17771 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 17772 17773 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 17774 (*CI)->setInvalidDecl(); 17775} 17776 17777namespace { 17778 /// AST visitor that finds references to the 'this' expression. 17779 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 17780 Sema &S; 17781 17782 public: 17783 explicit FindCXXThisExpr(Sema &S) : S(S) { } 17784 17785 bool VisitCXXThisExpr(CXXThisExpr *E) { 17786 S.Diag(E->getLocation(), diag::err_this_static_member_func) 17787 << E->isImplicit(); 17788 return false; 17789 } 17790 }; 17791} 17792 17793bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 17794 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17795 if (!TSInfo) 17796 return false; 17797 17798 TypeLoc TL = TSInfo->getTypeLoc(); 17799 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17800 if (!ProtoTL) 17801 return false; 17802 17803 // C++11 [expr.prim.general]p3: 17804 // [The expression this] shall not appear before the optional 17805 // cv-qualifier-seq and it shall not appear within the declaration of a 17806 // static member function (although its type and value category are defined 17807 // within a static member function as they are within a non-static member 17808 // function). [ Note: this is because declaration matching does not occur 17809 // until the complete declarator is known. - end note ] 17810 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17811 FindCXXThisExpr Finder(*this); 17812 17813 // If the return type came after the cv-qualifier-seq, check it now. 17814 if (Proto->hasTrailingReturn() && 17815 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 17816 return true; 17817 17818 // Check the exception specification. 17819 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 17820 return true; 17821 17822 // Check the trailing requires clause 17823 if (Expr *E = Method->getTrailingRequiresClause()) 17824 if (!Finder.TraverseStmt(E)) 17825 return true; 17826 17827 return checkThisInStaticMemberFunctionAttributes(Method); 17828} 17829 17830bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 17831 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17832 if (!TSInfo) 17833 return false; 17834 17835 TypeLoc TL = TSInfo->getTypeLoc(); 17836 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17837 if (!ProtoTL) 17838 return false; 17839 17840 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17841 FindCXXThisExpr Finder(*this); 17842 17843 switch (Proto->getExceptionSpecType()) { 17844 case EST_Unparsed: 17845 case EST_Uninstantiated: 17846 case EST_Unevaluated: 17847 case EST_BasicNoexcept: 17848 case EST_NoThrow: 17849 case EST_DynamicNone: 17850 case EST_MSAny: 17851 case EST_None: 17852 break; 17853 17854 case EST_DependentNoexcept: 17855 case EST_NoexceptFalse: 17856 case EST_NoexceptTrue: 17857 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 17858 return true; 17859 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 17860 17861 case EST_Dynamic: 17862 for (const auto &E : Proto->exceptions()) { 17863 if (!Finder.TraverseType(E)) 17864 return true; 17865 } 17866 break; 17867 } 17868 17869 return false; 17870} 17871 17872bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 17873 FindCXXThisExpr Finder(*this); 17874 17875 // Check attributes. 17876 for (const auto *A : Method->attrs()) { 17877 // FIXME: This should be emitted by tblgen. 17878 Expr *Arg = nullptr; 17879 ArrayRef<Expr *> Args; 17880 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 17881 Arg = G->getArg(); 17882 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 17883 Arg = G->getArg(); 17884 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 17885 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); 17886 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 17887 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); 17888 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 17889 Arg = ETLF->getSuccessValue(); 17890 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); 17891 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 17892 Arg = STLF->getSuccessValue(); 17893 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); 17894 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 17895 Arg = LR->getArg(); 17896 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 17897 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); 17898 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 17899 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17900 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 17901 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17902 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 17903 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17904 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 17905 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17906 17907 if (Arg && !Finder.TraverseStmt(Arg)) 17908 return true; 17909 17910 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 17911 if (!Finder.TraverseStmt(Args[I])) 17912 return true; 17913 } 17914 } 17915 17916 return false; 17917} 17918 17919void Sema::checkExceptionSpecification( 17920 bool IsTopLevel, ExceptionSpecificationType EST, 17921 ArrayRef<ParsedType> DynamicExceptions, 17922 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 17923 SmallVectorImpl<QualType> &Exceptions, 17924 FunctionProtoType::ExceptionSpecInfo &ESI) { 17925 Exceptions.clear(); 17926 ESI.Type = EST; 17927 if (EST == EST_Dynamic) { 17928 Exceptions.reserve(DynamicExceptions.size()); 17929 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 17930 // FIXME: Preserve type source info. 17931 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 17932 17933 if (IsTopLevel) { 17934 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 17935 collectUnexpandedParameterPacks(ET, Unexpanded); 17936 if (!Unexpanded.empty()) { 17937 DiagnoseUnexpandedParameterPacks( 17938 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 17939 Unexpanded); 17940 continue; 17941 } 17942 } 17943 17944 // Check that the type is valid for an exception spec, and 17945 // drop it if not. 17946 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 17947 Exceptions.push_back(ET); 17948 } 17949 ESI.Exceptions = Exceptions; 17950 return; 17951 } 17952 17953 if (isComputedNoexcept(EST)) { 17954 assert((NoexceptExpr->isTypeDependent() ||((void)0) 17955 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==((void)0) 17956 Context.BoolTy) &&((void)0) 17957 "Parser should have made sure that the expression is boolean")((void)0); 17958 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 17959 ESI.Type = EST_BasicNoexcept; 17960 return; 17961 } 17962 17963 ESI.NoexceptExpr = NoexceptExpr; 17964 return; 17965 } 17966} 17967 17968void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 17969 ExceptionSpecificationType EST, 17970 SourceRange SpecificationRange, 17971 ArrayRef<ParsedType> DynamicExceptions, 17972 ArrayRef<SourceRange> DynamicExceptionRanges, 17973 Expr *NoexceptExpr) { 17974 if (!MethodD) 17975 return; 17976 17977 // Dig out the method we're referring to. 17978 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 17979 MethodD = FunTmpl->getTemplatedDecl(); 17980 17981 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 17982 if (!Method) 17983 return; 17984 17985 // Check the exception specification. 17986 llvm::SmallVector<QualType, 4> Exceptions; 17987 FunctionProtoType::ExceptionSpecInfo ESI; 17988 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 17989 DynamicExceptionRanges, NoexceptExpr, Exceptions, 17990 ESI); 17991 17992 // Update the exception specification on the function type. 17993 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 17994 17995 if (Method->isStatic()) 17996 checkThisInStaticMemberFunctionExceptionSpec(Method); 17997 17998 if (Method->isVirtual()) { 17999 // Check overrides, which we previously had to delay. 18000 for (const CXXMethodDecl *O : Method->overridden_methods()) 18001 CheckOverridingFunctionExceptionSpec(Method, O); 18002 } 18003} 18004 18005/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 18006/// 18007MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 18008 SourceLocation DeclStart, Declarator &D, 18009 Expr *BitWidth, 18010 InClassInitStyle InitStyle, 18011 AccessSpecifier AS, 18012 const ParsedAttr &MSPropertyAttr) { 18013 IdentifierInfo *II = D.getIdentifier(); 18014 if (!II) { 18015 Diag(DeclStart, diag::err_anonymous_property); 18016 return nullptr; 18017 } 18018 SourceLocation Loc = D.getIdentifierLoc(); 18019 18020 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 18021 QualType T = TInfo->getType(); 18022 if (getLangOpts().CPlusPlus) { 18023 CheckExtraCXXDefaultArguments(D); 18024 18025 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 18026 UPPC_DataMemberType)) { 18027 D.setInvalidType(); 18028 T = Context.IntTy; 18029 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 18030 } 18031 } 18032 18033 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 18034 18035 if (D.getDeclSpec().isInlineSpecified()) 18036 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 18037 << getLangOpts().CPlusPlus17; 18038 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 18039 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 18040 diag::err_invalid_thread) 18041 << DeclSpec::getSpecifierName(TSCS); 18042 18043 // Check to see if this name was declared as a member previously 18044 NamedDecl *PrevDecl = nullptr; 18045 LookupResult Previous(*this, II, Loc, LookupMemberName, 18046 ForVisibleRedeclaration); 18047 LookupName(Previous, S); 18048 switch (Previous.getResultKind()) { 18049 case LookupResult::Found: 18050 case LookupResult::FoundUnresolvedValue: 18051 PrevDecl = Previous.getAsSingle<NamedDecl>(); 18052 break; 18053 18054 case LookupResult::FoundOverloaded: 18055 PrevDecl = Previous.getRepresentativeDecl(); 18056 break; 18057 18058 case LookupResult::NotFound: 18059 case LookupResult::NotFoundInCurrentInstantiation: 18060 case LookupResult::Ambiguous: 18061 break; 18062 } 18063 18064 if (PrevDecl && PrevDecl->isTemplateParameter()) { 18065 // Maybe we will complain about the shadowed template parameter. 18066 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 18067 // Just pretend that we didn't see the previous declaration. 18068 PrevDecl = nullptr; 18069 } 18070 18071 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 18072 PrevDecl = nullptr; 18073 18074 SourceLocation TSSL = D.getBeginLoc(); 18075 MSPropertyDecl *NewPD = 18076 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 18077 MSPropertyAttr.getPropertyDataGetter(), 18078 MSPropertyAttr.getPropertyDataSetter()); 18079 ProcessDeclAttributes(TUScope, NewPD, D); 18080 NewPD->setAccess(AS); 18081 18082 if (NewPD->isInvalidDecl()) 18083 Record->setInvalidDecl(); 18084 18085 if (D.getDeclSpec().isModulePrivateSpecified()) 18086 NewPD->setModulePrivate(); 18087 18088 if (NewPD->isInvalidDecl() && PrevDecl) { 18089 // Don't introduce NewFD into scope; there's already something 18090 // with the same name in the same scope. 18091 } else if (II) { 18092 PushOnScopeChains(NewPD, S); 18093 } else 18094 Record->addDecl(NewPD); 18095 18096 return NewPD; 18097} 18098 18099void Sema::ActOnStartFunctionDeclarationDeclarator( 18100 Declarator &Declarator, unsigned TemplateParameterDepth) { 18101 auto &Info = InventedParameterInfos.emplace_back(); 18102 TemplateParameterList *ExplicitParams = nullptr; 18103 ArrayRef<TemplateParameterList *> ExplicitLists = 18104 Declarator.getTemplateParameterLists(); 18105 if (!ExplicitLists.empty()) { 18106 bool IsMemberSpecialization, IsInvalid; 18107 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 18108 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 18109 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 18110 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 18111 /*SuppressDiagnostic=*/true); 18112 } 18113 if (ExplicitParams) { 18114 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 18115 for (NamedDecl *Param : *ExplicitParams) 18116 Info.TemplateParams.push_back(Param); 18117 Info.NumExplicitTemplateParams = ExplicitParams->size(); 18118 } else { 18119 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 18120 Info.NumExplicitTemplateParams = 0; 18121 } 18122} 18123 18124void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 18125 auto &FSI = InventedParameterInfos.back(); 18126 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 18127 if (FSI.NumExplicitTemplateParams != 0) { 18128 TemplateParameterList *ExplicitParams = 18129 Declarator.getTemplateParameterLists().back(); 18130 Declarator.setInventedTemplateParameterList( 18131 TemplateParameterList::Create( 18132 Context, ExplicitParams->getTemplateLoc(), 18133 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 18134 ExplicitParams->getRAngleLoc(), 18135 ExplicitParams->getRequiresClause())); 18136 } else { 18137 Declarator.setInventedTemplateParameterList( 18138 TemplateParameterList::Create( 18139 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 18140 SourceLocation(), /*RequiresClause=*/nullptr)); 18141 } 18142 } 18143 InventedParameterInfos.pop_back(); 18144}

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/AST/Decl.h

1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECL_H
14#define LLVM_CLANG_AST_DECL_H
15
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/DeclAccessPair.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/Redeclarable.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/AddressSpaces.h"
26#include "clang/Basic/Diagnostic.h"
27#include "clang/Basic/IdentifierTable.h"
28#include "clang/Basic/LLVM.h"
29#include "clang/Basic/Linkage.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/PragmaKinds.h"
33#include "clang/Basic/SourceLocation.h"
34#include "clang/Basic/Specifiers.h"
35#include "clang/Basic/Visibility.h"
36#include "llvm/ADT/APSInt.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/TrailingObjects.h"
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <string>
50#include <utility>
51
52namespace clang {
53
54class ASTContext;
55struct ASTTemplateArgumentListInfo;
56class Attr;
57class CompoundStmt;
58class DependentFunctionTemplateSpecializationInfo;
59class EnumDecl;
60class Expr;
61class FunctionTemplateDecl;
62class FunctionTemplateSpecializationInfo;
63class FunctionTypeLoc;
64class LabelStmt;
65class MemberSpecializationInfo;
66class Module;
67class NamespaceDecl;
68class ParmVarDecl;
69class RecordDecl;
70class Stmt;
71class StringLiteral;
72class TagDecl;
73class TemplateArgumentList;
74class TemplateArgumentListInfo;
75class TemplateParameterList;
76class TypeAliasTemplateDecl;
77class TypeLoc;
78class UnresolvedSetImpl;
79class VarTemplateDecl;
80
81/// The top declaration context.
82class TranslationUnitDecl : public Decl,
83 public DeclContext,
84 public Redeclarable<TranslationUnitDecl> {
85 using redeclarable_base = Redeclarable<TranslationUnitDecl>;
86
87 TranslationUnitDecl *getNextRedeclarationImpl() override {
88 return getNextRedeclaration();
89 }
90
91 TranslationUnitDecl *getPreviousDeclImpl() override {
92 return getPreviousDecl();
93 }
94
95 TranslationUnitDecl *getMostRecentDeclImpl() override {
96 return getMostRecentDecl();
97 }
98
99 ASTContext &Ctx;
100
101 /// The (most recently entered) anonymous namespace for this
102 /// translation unit, if one has been created.
103 NamespaceDecl *AnonymousNamespace = nullptr;
104
105 explicit TranslationUnitDecl(ASTContext &ctx);
106
107 virtual void anchor();
108
109public:
110 using redecl_range = redeclarable_base::redecl_range;
111 using redecl_iterator = redeclarable_base::redecl_iterator;
112
113 using redeclarable_base::getMostRecentDecl;
114 using redeclarable_base::getPreviousDecl;
115 using redeclarable_base::isFirstDecl;
116 using redeclarable_base::redecls;
117 using redeclarable_base::redecls_begin;
118 using redeclarable_base::redecls_end;
119
120 ASTContext &getASTContext() const { return Ctx; }
121
122 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
123 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
124
125 static TranslationUnitDecl *Create(ASTContext &C);
126
127 // Implement isa/cast/dyncast/etc.
128 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
129 static bool classofKind(Kind K) { return K == TranslationUnit; }
130 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
131 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
132 }
133 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
134 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
135 }
136};
137
138/// Represents a `#pragma comment` line. Always a child of
139/// TranslationUnitDecl.
140class PragmaCommentDecl final
141 : public Decl,
142 private llvm::TrailingObjects<PragmaCommentDecl, char> {
143 friend class ASTDeclReader;
144 friend class ASTDeclWriter;
145 friend TrailingObjects;
146
147 PragmaMSCommentKind CommentKind;
148
149 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
150 PragmaMSCommentKind CommentKind)
151 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
152
153 virtual void anchor();
154
155public:
156 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
157 SourceLocation CommentLoc,
158 PragmaMSCommentKind CommentKind,
159 StringRef Arg);
160 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
161 unsigned ArgSize);
162
163 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
164
165 StringRef getArg() const { return getTrailingObjects<char>(); }
166
167 // Implement isa/cast/dyncast/etc.
168 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
169 static bool classofKind(Kind K) { return K == PragmaComment; }
170};
171
172/// Represents a `#pragma detect_mismatch` line. Always a child of
173/// TranslationUnitDecl.
174class PragmaDetectMismatchDecl final
175 : public Decl,
176 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
177 friend class ASTDeclReader;
178 friend class ASTDeclWriter;
179 friend TrailingObjects;
180
181 size_t ValueStart;
182
183 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
184 size_t ValueStart)
185 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
186
187 virtual void anchor();
188
189public:
190 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
191 TranslationUnitDecl *DC,
192 SourceLocation Loc, StringRef Name,
193 StringRef Value);
194 static PragmaDetectMismatchDecl *
195 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
196
197 StringRef getName() const { return getTrailingObjects<char>(); }
198 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
199
200 // Implement isa/cast/dyncast/etc.
201 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
202 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
203};
204
205/// Declaration context for names declared as extern "C" in C++. This
206/// is neither the semantic nor lexical context for such declarations, but is
207/// used to check for conflicts with other extern "C" declarations. Example:
208///
209/// \code
210/// namespace N { extern "C" void f(); } // #1
211/// void N::f() {} // #2
212/// namespace M { extern "C" void f(); } // #3
213/// \endcode
214///
215/// The semantic context of #1 is namespace N and its lexical context is the
216/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
217/// context is the TU. However, both declarations are also visible in the
218/// extern "C" context.
219///
220/// The declaration at #3 finds it is a redeclaration of \c N::f through
221/// lookup in the extern "C" context.
222class ExternCContextDecl : public Decl, public DeclContext {
223 explicit ExternCContextDecl(TranslationUnitDecl *TU)
224 : Decl(ExternCContext, TU, SourceLocation()),
225 DeclContext(ExternCContext) {}
226
227 virtual void anchor();
228
229public:
230 static ExternCContextDecl *Create(const ASTContext &C,
231 TranslationUnitDecl *TU);
232
233 // Implement isa/cast/dyncast/etc.
234 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
235 static bool classofKind(Kind K) { return K == ExternCContext; }
236 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
237 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
238 }
239 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
240 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
241 }
242};
243
244/// This represents a decl that may have a name. Many decls have names such
245/// as ObjCMethodDecl, but not \@class, etc.
246///
247/// Note that not every NamedDecl is actually named (e.g., a struct might
248/// be anonymous), and not every name is an identifier.
249class NamedDecl : public Decl {
250 /// The name of this declaration, which is typically a normal
251 /// identifier but may also be a special kind of name (C++
252 /// constructor, Objective-C selector, etc.)
253 DeclarationName Name;
254
255 virtual void anchor();
256
257private:
258 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY__attribute__((__pure__));
259
260protected:
261 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
262 : Decl(DK, DC, L), Name(N) {}
263
264public:
265 /// Get the identifier that names this declaration, if there is one.
266 ///
267 /// This will return NULL if this declaration has no name (e.g., for
268 /// an unnamed class) or if the name is a special name (C++ constructor,
269 /// Objective-C selector, etc.).
270 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
271
272 /// Get the name of identifier for this declaration as a StringRef.
273 ///
274 /// This requires that the declaration have a name and that it be a simple
275 /// identifier.
276 StringRef getName() const {
277 assert(Name.isIdentifier() && "Name is not a simple identifier")((void)0);
278 return getIdentifier() ? getIdentifier()->getName() : "";
279 }
280
281 /// Get a human-readable name for the declaration, even if it is one of the
282 /// special kinds of names (C++ constructor, Objective-C selector, etc).
283 ///
284 /// Creating this name requires expensive string manipulation, so it should
285 /// be called only when performance doesn't matter. For simple declarations,
286 /// getNameAsCString() should suffice.
287 //
288 // FIXME: This function should be renamed to indicate that it is not just an
289 // alternate form of getName(), and clients should move as appropriate.
290 //
291 // FIXME: Deprecated, move clients to getName().
292 std::string getNameAsString() const { return Name.getAsString(); }
293
294 /// Pretty-print the unqualified name of this declaration. Can be overloaded
295 /// by derived classes to provide a more user-friendly name when appropriate.
296 virtual void printName(raw_ostream &os) const;
297
298 /// Get the actual, stored name of the declaration, which may be a special
299 /// name.
300 ///
301 /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
302 /// should be sent into the diagnostic instead of using the result of
303 /// \p getDeclName().
304 ///
305 /// A \p DeclarationName in a diagnostic will just be streamed to the output,
306 /// which will directly result in a call to \p DeclarationName::print.
307 ///
308 /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
309 /// \p DeclarationName::print, but with two customisation points along the
310 /// way (\p getNameForDiagnostic and \p printName). These are used to print
311 /// the template arguments if any, and to provide a user-friendly name for
312 /// some entities (such as unnamed variables and anonymous records).
313 DeclarationName getDeclName() const { return Name; }
314
315 /// Set the name of this declaration.
316 void setDeclName(DeclarationName N) { Name = N; }
317
318 /// Returns a human-readable qualified name for this declaration, like
319 /// A::B::i, for i being member of namespace A::B.
320 ///
321 /// If the declaration is not a member of context which can be named (record,
322 /// namespace), it will return the same result as printName().
323 ///
324 /// Creating this name is expensive, so it should be called only when
325 /// performance doesn't matter.
326 void printQualifiedName(raw_ostream &OS) const;
327 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
328
329 /// Print only the nested name specifier part of a fully-qualified name,
330 /// including the '::' at the end. E.g.
331 /// when `printQualifiedName(D)` prints "A::B::i",
332 /// this function prints "A::B::".
333 void printNestedNameSpecifier(raw_ostream &OS) const;
334 void printNestedNameSpecifier(raw_ostream &OS,
335 const PrintingPolicy &Policy) const;
336
337 // FIXME: Remove string version.
338 std::string getQualifiedNameAsString() const;
339
340 /// Appends a human-readable name for this declaration into the given stream.
341 ///
342 /// This is the method invoked by Sema when displaying a NamedDecl
343 /// in a diagnostic. It does not necessarily produce the same
344 /// result as printName(); for example, class template
345 /// specializations are printed with their template arguments.
346 virtual void getNameForDiagnostic(raw_ostream &OS,
347 const PrintingPolicy &Policy,
348 bool Qualified) const;
349
350 /// Determine whether this declaration, if known to be well-formed within
351 /// its context, will replace the declaration OldD if introduced into scope.
352 ///
353 /// A declaration will replace another declaration if, for example, it is
354 /// a redeclaration of the same variable or function, but not if it is a
355 /// declaration of a different kind (function vs. class) or an overloaded
356 /// function.
357 ///
358 /// \param IsKnownNewer \c true if this declaration is known to be newer
359 /// than \p OldD (for instance, if this declaration is newly-created).
360 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
361
362 /// Determine whether this declaration has linkage.
363 bool hasLinkage() const;
364
365 using Decl::isModulePrivate;
366 using Decl::setModulePrivate;
367
368 /// Determine whether this declaration is a C++ class member.
369 bool isCXXClassMember() const {
370 const DeclContext *DC = getDeclContext();
371
372 // C++0x [class.mem]p1:
373 // The enumerators of an unscoped enumeration defined in
374 // the class are members of the class.
375 if (isa<EnumDecl>(DC))
376 DC = DC->getRedeclContext();
377
378 return DC->isRecord();
379 }
380
381 /// Determine whether the given declaration is an instance member of
382 /// a C++ class.
383 bool isCXXInstanceMember() const;
384
385 /// Determine if the declaration obeys the reserved identifier rules of the
386 /// given language.
387 ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
388
389 /// Determine what kind of linkage this entity has.
390 ///
391 /// This is not the linkage as defined by the standard or the codegen notion
392 /// of linkage. It is just an implementation detail that is used to compute
393 /// those.
394 Linkage getLinkageInternal() const;
395
396 /// Get the linkage from a semantic point of view. Entities in
397 /// anonymous namespaces are external (in c++98).
398 Linkage getFormalLinkage() const {
399 return clang::getFormalLinkage(getLinkageInternal());
400 }
401
402 /// True if this decl has external linkage.
403 bool hasExternalFormalLinkage() const {
404 return isExternalFormalLinkage(getLinkageInternal());
405 }
406
407 bool isExternallyVisible() const {
408 return clang::isExternallyVisible(getLinkageInternal());
409 }
410
411 /// Determine whether this declaration can be redeclared in a
412 /// different translation unit.
413 bool isExternallyDeclarable() const {
414 return isExternallyVisible() && !getOwningModuleForLinkage();
415 }
416
417 /// Determines the visibility of this entity.
418 Visibility getVisibility() const {
419 return getLinkageAndVisibility().getVisibility();
420 }
421
422 /// Determines the linkage and visibility of this entity.
423 LinkageInfo getLinkageAndVisibility() const;
424
425 /// Kinds of explicit visibility.
426 enum ExplicitVisibilityKind {
427 /// Do an LV computation for, ultimately, a type.
428 /// Visibility may be restricted by type visibility settings and
429 /// the visibility of template arguments.
430 VisibilityForType,
431
432 /// Do an LV computation for, ultimately, a non-type declaration.
433 /// Visibility may be restricted by value visibility settings and
434 /// the visibility of template arguments.
435 VisibilityForValue
436 };
437
438 /// If visibility was explicitly specified for this
439 /// declaration, return that visibility.
440 Optional<Visibility>
441 getExplicitVisibility(ExplicitVisibilityKind kind) const;
442
443 /// True if the computed linkage is valid. Used for consistency
444 /// checking. Should always return true.
445 bool isLinkageValid() const;
446
447 /// True if something has required us to compute the linkage
448 /// of this declaration.
449 ///
450 /// Language features which can retroactively change linkage (like a
451 /// typedef name for linkage purposes) may need to consider this,
452 /// but hopefully only in transitory ways during parsing.
453 bool hasLinkageBeenComputed() const {
454 return hasCachedLinkage();
455 }
456
457 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
458 /// the underlying named decl.
459 NamedDecl *getUnderlyingDecl() {
460 // Fast-path the common case.
461 if (this->getKind() != UsingShadow &&
462 this->getKind() != ConstructorUsingShadow &&
463 this->getKind() != ObjCCompatibleAlias &&
464 this->getKind() != NamespaceAlias)
465 return this;
466
467 return getUnderlyingDeclImpl();
468 }
469 const NamedDecl *getUnderlyingDecl() const {
470 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
471 }
472
473 NamedDecl *getMostRecentDecl() {
474 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
475 }
476 const NamedDecl *getMostRecentDecl() const {
477 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
478 }
479
480 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
481
482 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
483 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
484};
485
486inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
487 ND.printName(OS);
488 return OS;
489}
490
491/// Represents the declaration of a label. Labels also have a
492/// corresponding LabelStmt, which indicates the position that the label was
493/// defined at. For normal labels, the location of the decl is the same as the
494/// location of the statement. For GNU local labels (__label__), the decl
495/// location is where the __label__ is.
496class LabelDecl : public NamedDecl {
497 LabelStmt *TheStmt;
498 StringRef MSAsmName;
499 bool MSAsmNameResolved = false;
500
501 /// For normal labels, this is the same as the main declaration
502 /// label, i.e., the location of the identifier; for GNU local labels,
503 /// this is the location of the __label__ keyword.
504 SourceLocation LocStart;
505
506 LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
507 LabelStmt *S, SourceLocation StartL)
508 : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
509
510 void anchor() override;
511
512public:
513 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
514 SourceLocation IdentL, IdentifierInfo *II);
515 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
516 SourceLocation IdentL, IdentifierInfo *II,
517 SourceLocation GnuLabelL);
518 static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
519
520 LabelStmt *getStmt() const { return TheStmt; }
521 void setStmt(LabelStmt *T) { TheStmt = T; }
522
523 bool isGnuLocal() const { return LocStart != getLocation(); }
524 void setLocStart(SourceLocation L) { LocStart = L; }
525
526 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
527 return SourceRange(LocStart, getLocation());
528 }
529
530 bool isMSAsmLabel() const { return !MSAsmName.empty(); }
531 bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
532 void setMSAsmLabel(StringRef Name);
533 StringRef getMSAsmLabel() const { return MSAsmName; }
534 void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
535
536 // Implement isa/cast/dyncast/etc.
537 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
538 static bool classofKind(Kind K) { return K == Label; }
539};
540
541/// Represent a C++ namespace.
542class NamespaceDecl : public NamedDecl, public DeclContext,
543 public Redeclarable<NamespaceDecl>
544{
545 /// The starting location of the source range, pointing
546 /// to either the namespace or the inline keyword.
547 SourceLocation LocStart;
548
549 /// The ending location of the source range.
550 SourceLocation RBraceLoc;
551
552 /// A pointer to either the anonymous namespace that lives just inside
553 /// this namespace or to the first namespace in the chain (the latter case
554 /// only when this is not the first in the chain), along with a
555 /// boolean value indicating whether this is an inline namespace.
556 llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
557
558 NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
559 SourceLocation StartLoc, SourceLocation IdLoc,
560 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
561
562 using redeclarable_base = Redeclarable<NamespaceDecl>;
563
564 NamespaceDecl *getNextRedeclarationImpl() override;
565 NamespaceDecl *getPreviousDeclImpl() override;
566 NamespaceDecl *getMostRecentDeclImpl() override;
567
568public:
569 friend class ASTDeclReader;
570 friend class ASTDeclWriter;
571
572 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
573 bool Inline, SourceLocation StartLoc,
574 SourceLocation IdLoc, IdentifierInfo *Id,
575 NamespaceDecl *PrevDecl);
576
577 static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
578
579 using redecl_range = redeclarable_base::redecl_range;
580 using redecl_iterator = redeclarable_base::redecl_iterator;
581
582 using redeclarable_base::redecls_begin;
583 using redeclarable_base::redecls_end;
584 using redeclarable_base::redecls;
585 using redeclarable_base::getPreviousDecl;
586 using redeclarable_base::getMostRecentDecl;
587 using redeclarable_base::isFirstDecl;
588
589 /// Returns true if this is an anonymous namespace declaration.
590 ///
591 /// For example:
592 /// \code
593 /// namespace {
594 /// ...
595 /// };
596 /// \endcode
597 /// q.v. C++ [namespace.unnamed]
598 bool isAnonymousNamespace() const {
599 return !getIdentifier();
600 }
601
602 /// Returns true if this is an inline namespace declaration.
603 bool isInline() const {
604 return AnonOrFirstNamespaceAndInline.getInt();
605 }
606
607 /// Set whether this is an inline namespace declaration.
608 void setInline(bool Inline) {
609 AnonOrFirstNamespaceAndInline.setInt(Inline);
610 }
611
612 /// Returns true if the inline qualifier for \c Name is redundant.
613 bool isRedundantInlineQualifierFor(DeclarationName Name) const {
614 if (!isInline())
615 return false;
616 auto X = lookup(Name);
617 auto Y = getParent()->lookup(Name);
618 return std::distance(X.begin(), X.end()) ==
619 std::distance(Y.begin(), Y.end());
620 }
621
622 /// Get the original (first) namespace declaration.
623 NamespaceDecl *getOriginalNamespace();
624
625 /// Get the original (first) namespace declaration.
626 const NamespaceDecl *getOriginalNamespace() const;
627
628 /// Return true if this declaration is an original (first) declaration
629 /// of the namespace. This is false for non-original (subsequent) namespace
630 /// declarations and anonymous namespaces.
631 bool isOriginalNamespace() const;
632
633 /// Retrieve the anonymous namespace nested inside this namespace,
634 /// if any.
635 NamespaceDecl *getAnonymousNamespace() const {
636 return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
637 }
638
639 void setAnonymousNamespace(NamespaceDecl *D) {
640 getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
641 }
642
643 /// Retrieves the canonical declaration of this namespace.
644 NamespaceDecl *getCanonicalDecl() override {
645 return getOriginalNamespace();
646 }
647 const NamespaceDecl *getCanonicalDecl() const {
648 return getOriginalNamespace();
649 }
650
651 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
652 return SourceRange(LocStart, RBraceLoc);
653 }
654
655 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
656 SourceLocation getRBraceLoc() const { return RBraceLoc; }
657 void setLocStart(SourceLocation L) { LocStart = L; }
658 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
659
660 // Implement isa/cast/dyncast/etc.
661 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
662 static bool classofKind(Kind K) { return K == Namespace; }
663 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
664 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
665 }
666 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
667 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
668 }
669};
670
671/// Represent the declaration of a variable (in which case it is
672/// an lvalue) a function (in which case it is a function designator) or
673/// an enum constant.
674class ValueDecl : public NamedDecl {
675 QualType DeclType;
676
677 void anchor() override;
678
679protected:
680 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
681 DeclarationName N, QualType T)
682 : NamedDecl(DK, DC, L, N), DeclType(T) {}
683
684public:
685 QualType getType() const { return DeclType; }
686 void setType(QualType newType) { DeclType = newType; }
687
688 /// Determine whether this symbol is weakly-imported,
689 /// or declared with the weak or weak-ref attr.
690 bool isWeak() const;
691
692 // Implement isa/cast/dyncast/etc.
693 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
694 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
695};
696
697/// A struct with extended info about a syntactic
698/// name qualifier, to be used for the case of out-of-line declarations.
699struct QualifierInfo {
700 NestedNameSpecifierLoc QualifierLoc;
701
702 /// The number of "outer" template parameter lists.
703 /// The count includes all of the template parameter lists that were matched
704 /// against the template-ids occurring into the NNS and possibly (in the
705 /// case of an explicit specialization) a final "template <>".
706 unsigned NumTemplParamLists = 0;
707
708 /// A new-allocated array of size NumTemplParamLists,
709 /// containing pointers to the "outer" template parameter lists.
710 /// It includes all of the template parameter lists that were matched
711 /// against the template-ids occurring into the NNS and possibly (in the
712 /// case of an explicit specialization) a final "template <>".
713 TemplateParameterList** TemplParamLists = nullptr;
714
715 QualifierInfo() = default;
716 QualifierInfo(const QualifierInfo &) = delete;
717 QualifierInfo& operator=(const QualifierInfo &) = delete;
718
719 /// Sets info about "outer" template parameter lists.
720 void setTemplateParameterListsInfo(ASTContext &Context,
721 ArrayRef<TemplateParameterList *> TPLists);
722};
723
724/// Represents a ValueDecl that came out of a declarator.
725/// Contains type source information through TypeSourceInfo.
726class DeclaratorDecl : public ValueDecl {
727 // A struct representing a TInfo, a trailing requires-clause and a syntactic
728 // qualifier, to be used for the (uncommon) case of out-of-line declarations
729 // and constrained function decls.
730 struct ExtInfo : public QualifierInfo {
731 TypeSourceInfo *TInfo;
732 Expr *TrailingRequiresClause = nullptr;
733 };
734
735 llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
736
737 /// The start of the source range for this declaration,
738 /// ignoring outer template declarations.
739 SourceLocation InnerLocStart;
740
741 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
742 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
743 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
744
745protected:
746 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
747 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
748 SourceLocation StartL)
749 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
750
751public:
752 friend class ASTDeclReader;
753 friend class ASTDeclWriter;
754
755 TypeSourceInfo *getTypeSourceInfo() const {
756 return hasExtInfo()
757 ? getExtInfo()->TInfo
758 : DeclInfo.get<TypeSourceInfo*>();
759 }
760
761 void setTypeSourceInfo(TypeSourceInfo *TI) {
762 if (hasExtInfo())
763 getExtInfo()->TInfo = TI;
764 else
765 DeclInfo = TI;
766 }
767
768 /// Return start of source range ignoring outer template declarations.
769 SourceLocation getInnerLocStart() const { return InnerLocStart; }
770 void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
771
772 /// Return start of source range taking into account any outer template
773 /// declarations.
774 SourceLocation getOuterLocStart() const;
775
776 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
777
778 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
779 return getOuterLocStart();
780 }
781
782 /// Retrieve the nested-name-specifier that qualifies the name of this
783 /// declaration, if it was present in the source.
784 NestedNameSpecifier *getQualifier() const {
785 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
786 : nullptr;
787 }
788
789 /// Retrieve the nested-name-specifier (with source-location
790 /// information) that qualifies the name of this declaration, if it was
791 /// present in the source.
792 NestedNameSpecifierLoc getQualifierLoc() const {
793 return hasExtInfo() ? getExtInfo()->QualifierLoc
794 : NestedNameSpecifierLoc();
795 }
796
797 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
798
799 /// \brief Get the constraint-expression introduced by the trailing
800 /// requires-clause in the function/member declaration, or null if no
801 /// requires-clause was provided.
802 Expr *getTrailingRequiresClause() {
803 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
804 : nullptr;
805 }
806
807 const Expr *getTrailingRequiresClause() const {
808 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
809 : nullptr;
810 }
811
812 void setTrailingRequiresClause(Expr *TrailingRequiresClause);
813
814 unsigned getNumTemplateParameterLists() const {
815 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
816 }
817
818 TemplateParameterList *getTemplateParameterList(unsigned index) const {
819 assert(index < getNumTemplateParameterLists())((void)0);
820 return getExtInfo()->TemplParamLists[index];
821 }
822
823 void setTemplateParameterListsInfo(ASTContext &Context,
824 ArrayRef<TemplateParameterList *> TPLists);
825
826 SourceLocation getTypeSpecStartLoc() const;
827 SourceLocation getTypeSpecEndLoc() const;
828
829 // Implement isa/cast/dyncast/etc.
830 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
831 static bool classofKind(Kind K) {
832 return K >= firstDeclarator && K <= lastDeclarator;
833 }
834};
835
836/// Structure used to store a statement, the constant value to
837/// which it was evaluated (if any), and whether or not the statement
838/// is an integral constant expression (if known).
839struct EvaluatedStmt {
840 /// Whether this statement was already evaluated.
841 bool WasEvaluated : 1;
842
843 /// Whether this statement is being evaluated.
844 bool IsEvaluating : 1;
845
846 /// Whether this variable is known to have constant initialization. This is
847 /// currently only computed in C++, for static / thread storage duration
848 /// variables that might have constant initialization and for variables that
849 /// are usable in constant expressions.
850 bool HasConstantInitialization : 1;
851
852 /// Whether this variable is known to have constant destruction. That is,
853 /// whether running the destructor on the initial value is a side-effect
854 /// (and doesn't inspect any state that might have changed during program
855 /// execution). This is currently only computed if the destructor is
856 /// non-trivial.
857 bool HasConstantDestruction : 1;
858
859 /// In C++98, whether the initializer is an ICE. This affects whether the
860 /// variable is usable in constant expressions.
861 bool HasICEInit : 1;
862 bool CheckedForICEInit : 1;
863
864 Stmt *Value;
865 APValue Evaluated;
866
867 EvaluatedStmt()
868 : WasEvaluated(false), IsEvaluating(false),
869 HasConstantInitialization(false), HasConstantDestruction(false),
870 HasICEInit(false), CheckedForICEInit(false) {}
871};
872
873/// Represents a variable declaration or definition.
874class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
875public:
876 /// Initialization styles.
877 enum InitializationStyle {
878 /// C-style initialization with assignment
879 CInit,
880
881 /// Call-style initialization (C++98)
882 CallInit,
883
884 /// Direct list-initialization (C++11)
885 ListInit
886 };
887
888 /// Kinds of thread-local storage.
889 enum TLSKind {
890 /// Not a TLS variable.
891 TLS_None,
892
893 /// TLS with a known-constant initializer.
894 TLS_Static,
895
896 /// TLS with a dynamic initializer.
897 TLS_Dynamic
898 };
899
900 /// Return the string used to specify the storage class \p SC.
901 ///
902 /// It is illegal to call this function with SC == None.
903 static const char *getStorageClassSpecifierString(StorageClass SC);
904
905protected:
906 // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
907 // have allocated the auxiliary struct of information there.
908 //
909 // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
910 // this as *many* VarDecls are ParmVarDecls that don't have default
911 // arguments. We could save some space by moving this pointer union to be
912 // allocated in trailing space when necessary.
913 using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
914
915 /// The initializer for this variable or, for a ParmVarDecl, the
916 /// C++ default argument.
917 mutable InitType Init;
918
919private:
920 friend class ASTDeclReader;
921 friend class ASTNodeImporter;
922 friend class StmtIteratorBase;
923
924 class VarDeclBitfields {
925 friend class ASTDeclReader;
926 friend class VarDecl;
927
928 unsigned SClass : 3;
929 unsigned TSCSpec : 2;
930 unsigned InitStyle : 2;
931
932 /// Whether this variable is an ARC pseudo-__strong variable; see
933 /// isARCPseudoStrong() for details.
934 unsigned ARCPseudoStrong : 1;
935 };
936 enum { NumVarDeclBits = 8 };
937
938protected:
939 enum { NumParameterIndexBits = 8 };
940
941 enum DefaultArgKind {
942 DAK_None,
943 DAK_Unparsed,
944 DAK_Uninstantiated,
945 DAK_Normal
946 };
947
948 enum { NumScopeDepthOrObjCQualsBits = 7 };
949
950 class ParmVarDeclBitfields {
951 friend class ASTDeclReader;
952 friend class ParmVarDecl;
953
954 unsigned : NumVarDeclBits;
955
956 /// Whether this parameter inherits a default argument from a
957 /// prior declaration.
958 unsigned HasInheritedDefaultArg : 1;
959
960 /// Describes the kind of default argument for this parameter. By default
961 /// this is none. If this is normal, then the default argument is stored in
962 /// the \c VarDecl initializer expression unless we were unable to parse
963 /// (even an invalid) expression for the default argument.
964 unsigned DefaultArgKind : 2;
965
966 /// Whether this parameter undergoes K&R argument promotion.
967 unsigned IsKNRPromoted : 1;
968
969 /// Whether this parameter is an ObjC method parameter or not.
970 unsigned IsObjCMethodParam : 1;
971
972 /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
973 /// Otherwise, the number of function parameter scopes enclosing
974 /// the function parameter scope in which this parameter was
975 /// declared.
976 unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
977
978 /// The number of parameters preceding this parameter in the
979 /// function parameter scope in which it was declared.
980 unsigned ParameterIndex : NumParameterIndexBits;
981 };
982
983 class NonParmVarDeclBitfields {
984 friend class ASTDeclReader;
985 friend class ImplicitParamDecl;
986 friend class VarDecl;
987
988 unsigned : NumVarDeclBits;
989
990 // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
991 /// Whether this variable is a definition which was demoted due to
992 /// module merge.
993 unsigned IsThisDeclarationADemotedDefinition : 1;
994
995 /// Whether this variable is the exception variable in a C++ catch
996 /// or an Objective-C @catch statement.
997 unsigned ExceptionVar : 1;
998
999 /// Whether this local variable could be allocated in the return
1000 /// slot of its function, enabling the named return value optimization
1001 /// (NRVO).
1002 unsigned NRVOVariable : 1;
1003
1004 /// Whether this variable is the for-range-declaration in a C++0x
1005 /// for-range statement.
1006 unsigned CXXForRangeDecl : 1;
1007
1008 /// Whether this variable is the for-in loop declaration in Objective-C.
1009 unsigned ObjCForDecl : 1;
1010
1011 /// Whether this variable is (C++1z) inline.
1012 unsigned IsInline : 1;
1013
1014 /// Whether this variable has (C++1z) inline explicitly specified.
1015 unsigned IsInlineSpecified : 1;
1016
1017 /// Whether this variable is (C++0x) constexpr.
1018 unsigned IsConstexpr : 1;
1019
1020 /// Whether this variable is the implicit variable for a lambda
1021 /// init-capture.
1022 unsigned IsInitCapture : 1;
1023
1024 /// Whether this local extern variable's previous declaration was
1025 /// declared in the same block scope. This controls whether we should merge
1026 /// the type of this declaration with its previous declaration.
1027 unsigned PreviousDeclInSameBlockScope : 1;
1028
1029 /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1030 /// something else.
1031 unsigned ImplicitParamKind : 3;
1032
1033 unsigned EscapingByref : 1;
1034 };
1035
1036 union {
1037 unsigned AllBits;
1038 VarDeclBitfields VarDeclBits;
1039 ParmVarDeclBitfields ParmVarDeclBits;
1040 NonParmVarDeclBitfields NonParmVarDeclBits;
1041 };
1042
1043 VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1044 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1045 TypeSourceInfo *TInfo, StorageClass SC);
1046
1047 using redeclarable_base = Redeclarable<VarDecl>;
1048
1049 VarDecl *getNextRedeclarationImpl() override {
1050 return getNextRedeclaration();
1051 }
1052
1053 VarDecl *getPreviousDeclImpl() override {
1054 return getPreviousDecl();
1055 }
1056
1057 VarDecl *getMostRecentDeclImpl() override {
1058 return getMostRecentDecl();
1059 }
1060
1061public:
1062 using redecl_range = redeclarable_base::redecl_range;
1063 using redecl_iterator = redeclarable_base::redecl_iterator;
1064
1065 using redeclarable_base::redecls_begin;
1066 using redeclarable_base::redecls_end;
1067 using redeclarable_base::redecls;
1068 using redeclarable_base::getPreviousDecl;
1069 using redeclarable_base::getMostRecentDecl;
1070 using redeclarable_base::isFirstDecl;
1071
1072 static VarDecl *Create(ASTContext &C, DeclContext *DC,
1073 SourceLocation StartLoc, SourceLocation IdLoc,
1074 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1075 StorageClass S);
1076
1077 static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1078
1079 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1080
1081 /// Returns the storage class as written in the source. For the
1082 /// computed linkage of symbol, see getLinkage.
1083 StorageClass getStorageClass() const {
1084 return (StorageClass) VarDeclBits.SClass;
1085 }
1086 void setStorageClass(StorageClass SC);
1087
1088 void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1089 VarDeclBits.TSCSpec = TSC;
1090 assert(VarDeclBits.TSCSpec == TSC && "truncation")((void)0);
1091 }
1092 ThreadStorageClassSpecifier getTSCSpec() const {
1093 return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1094 }
1095 TLSKind getTLSKind() const;
1096
1097 /// Returns true if a variable with function scope is a non-static local
1098 /// variable.
1099 bool hasLocalStorage() const {
1100 if (getStorageClass() == SC_None) {
1101 // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1102 // used to describe variables allocated in global memory and which are
1103 // accessed inside a kernel(s) as read-only variables. As such, variables
1104 // in constant address space cannot have local storage.
1105 if (getType().getAddressSpace() == LangAS::opencl_constant)
1106 return false;
1107 // Second check is for C++11 [dcl.stc]p4.
1108 return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1109 }
1110
1111 // Global Named Register (GNU extension)
1112 if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1113 return false;
1114
1115 // Return true for: Auto, Register.
1116 // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1117
1118 return getStorageClass() >= SC_Auto;
1119 }
1120
1121 /// Returns true if a variable with function scope is a static local
1122 /// variable.
1123 bool isStaticLocal() const {
1124 return (getStorageClass() == SC_Static ||
1125 // C++11 [dcl.stc]p4
1126 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1127 && !isFileVarDecl();
1128 }
1129
1130 /// Returns true if a variable has extern or __private_extern__
1131 /// storage.
1132 bool hasExternalStorage() const {
1133 return getStorageClass() == SC_Extern ||
1134 getStorageClass() == SC_PrivateExtern;
1135 }
1136
1137 /// Returns true for all variables that do not have local storage.
1138 ///
1139 /// This includes all global variables as well as static variables declared
1140 /// within a function.
1141 bool hasGlobalStorage() const { return !hasLocalStorage(); }
1142
1143 /// Get the storage duration of this variable, per C++ [basic.stc].
1144 StorageDuration getStorageDuration() const {
1145 return hasLocalStorage() ? SD_Automatic :
1146 getTSCSpec() ? SD_Thread : SD_Static;
1147 }
1148
1149 /// Compute the language linkage.
1150 LanguageLinkage getLanguageLinkage() const;
1151
1152 /// Determines whether this variable is a variable with external, C linkage.
1153 bool isExternC() const;
1154
1155 /// Determines whether this variable's context is, or is nested within,
1156 /// a C++ extern "C" linkage spec.
1157 bool isInExternCContext() const;
1158
1159 /// Determines whether this variable's context is, or is nested within,
1160 /// a C++ extern "C++" linkage spec.
1161 bool isInExternCXXContext() const;
1162
1163 /// Returns true for local variable declarations other than parameters.
1164 /// Note that this includes static variables inside of functions. It also
1165 /// includes variables inside blocks.
1166 ///
1167 /// void foo() { int x; static int y; extern int z; }
1168 bool isLocalVarDecl() const {
1169 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1170 return false;
1171 if (const DeclContext *DC = getLexicalDeclContext())
1172 return DC->getRedeclContext()->isFunctionOrMethod();
1173 return false;
1174 }
1175
1176 /// Similar to isLocalVarDecl but also includes parameters.
1177 bool isLocalVarDeclOrParm() const {
1178 return isLocalVarDecl() || getKind() == Decl::ParmVar;
1179 }
1180
1181 /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1182 bool isFunctionOrMethodVarDecl() const {
1183 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1184 return false;
1185 const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1186 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1187 }
1188
1189 /// Determines whether this is a static data member.
1190 ///
1191 /// This will only be true in C++, and applies to, e.g., the
1192 /// variable 'x' in:
1193 /// \code
1194 /// struct S {
1195 /// static int x;
1196 /// };
1197 /// \endcode
1198 bool isStaticDataMember() const {
1199 // If it wasn't static, it would be a FieldDecl.
1200 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1201 }
1202
1203 VarDecl *getCanonicalDecl() override;
1204 const VarDecl *getCanonicalDecl() const {
1205 return const_cast<VarDecl*>(this)->getCanonicalDecl();
1206 }
1207
1208 enum DefinitionKind {
1209 /// This declaration is only a declaration.
1210 DeclarationOnly,
1211
1212 /// This declaration is a tentative definition.
1213 TentativeDefinition,
1214
1215 /// This declaration is definitely a definition.
1216 Definition
1217 };
1218
1219 /// Check whether this declaration is a definition. If this could be
1220 /// a tentative definition (in C), don't check whether there's an overriding
1221 /// definition.
1222 DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1223 DefinitionKind isThisDeclarationADefinition() const {
1224 return isThisDeclarationADefinition(getASTContext());
1225 }
1226
1227 /// Check whether this variable is defined in this translation unit.
1228 DefinitionKind hasDefinition(ASTContext &) const;
1229 DefinitionKind hasDefinition() const {
1230 return hasDefinition(getASTContext());
1231 }
1232
1233 /// Get the tentative definition that acts as the real definition in a TU.
1234 /// Returns null if there is a proper definition available.
1235 VarDecl *getActingDefinition();
1236 const VarDecl *getActingDefinition() const {
1237 return const_cast<VarDecl*>(this)->getActingDefinition();
1238 }
1239
1240 /// Get the real (not just tentative) definition for this declaration.
1241 VarDecl *getDefinition(ASTContext &);
1242 const VarDecl *getDefinition(ASTContext &C) const {
1243 return const_cast<VarDecl*>(this)->getDefinition(C);
1244 }
1245 VarDecl *getDefinition() {
1246 return getDefinition(getASTContext());
1247 }
1248 const VarDecl *getDefinition() const {
1249 return const_cast<VarDecl*>(this)->getDefinition();
1250 }
1251
1252 /// Determine whether this is or was instantiated from an out-of-line
1253 /// definition of a static data member.
1254 bool isOutOfLine() const override;
1255
1256 /// Returns true for file scoped variable declaration.
1257 bool isFileVarDecl() const {
1258 Kind K = getKind();
1259 if (K == ParmVar || K == ImplicitParam)
1260 return false;
1261
1262 if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1263 return true;
1264
1265 if (isStaticDataMember())
1266 return true;
1267
1268 return false;
1269 }
1270
1271 /// Get the initializer for this variable, no matter which
1272 /// declaration it is attached to.
1273 const Expr *getAnyInitializer() const {
1274 const VarDecl *D;
1275 return getAnyInitializer(D);
1276 }
1277
1278 /// Get the initializer for this variable, no matter which
1279 /// declaration it is attached to. Also get that declaration.
1280 const Expr *getAnyInitializer(const VarDecl *&D) const;
1281
1282 bool hasInit() const;
1283 const Expr *getInit() const {
1284 return const_cast<VarDecl *>(this)->getInit();
1285 }
1286 Expr *getInit();
1287
1288 /// Retrieve the address of the initializer expression.
1289 Stmt **getInitAddress();
1290
1291 void setInit(Expr *I);
1292
1293 /// Get the initializing declaration of this variable, if any. This is
1294 /// usually the definition, except that for a static data member it can be
1295 /// the in-class declaration.
1296 VarDecl *getInitializingDeclaration();
1297 const VarDecl *getInitializingDeclaration() const {
1298 return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1299 }
1300
1301 /// Determine whether this variable's value might be usable in a
1302 /// constant expression, according to the relevant language standard.
1303 /// This only checks properties of the declaration, and does not check
1304 /// whether the initializer is in fact a constant expression.
1305 ///
1306 /// This corresponds to C++20 [expr.const]p3's notion of a
1307 /// "potentially-constant" variable.
1308 bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1309
1310 /// Determine whether this variable's value can be used in a
1311 /// constant expression, according to the relevant language standard,
1312 /// including checking whether it was initialized by a constant expression.
1313 bool isUsableInConstantExpressions(const ASTContext &C) const;
1314
1315 EvaluatedStmt *ensureEvaluatedStmt() const;
1316 EvaluatedStmt *getEvaluatedStmt() const;
1317
1318 /// Attempt to evaluate the value of the initializer attached to this
1319 /// declaration, and produce notes explaining why it cannot be evaluated.
1320 /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1321 APValue *evaluateValue() const;
1322
1323private:
1324 APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1325 bool IsConstantInitialization) const;
1326
1327public:
1328 /// Return the already-evaluated value of this variable's
1329 /// initializer, or NULL if the value is not yet known. Returns pointer
1330 /// to untyped APValue if the value could not be evaluated.
1331 APValue *getEvaluatedValue() const;
1332
1333 /// Evaluate the destruction of this variable to determine if it constitutes
1334 /// constant destruction.
1335 ///
1336 /// \pre hasConstantInitialization()
1337 /// \return \c true if this variable has constant destruction, \c false if
1338 /// not.
1339 bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1340
1341 /// Determine whether this variable has constant initialization.
1342 ///
1343 /// This is only set in two cases: when the language semantics require
1344 /// constant initialization (globals in C and some globals in C++), and when
1345 /// the variable is usable in constant expressions (constexpr, const int, and
1346 /// reference variables in C++).
1347 bool hasConstantInitialization() const;
1348
1349 /// Determine whether the initializer of this variable is an integer constant
1350 /// expression. For use in C++98, where this affects whether the variable is
1351 /// usable in constant expressions.
1352 bool hasICEInitializer(const ASTContext &Context) const;
1353
1354 /// Evaluate the initializer of this variable to determine whether it's a
1355 /// constant initializer. Should only be called once, after completing the
1356 /// definition of the variable.
1357 bool checkForConstantInitialization(
1358 SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1359
1360 void setInitStyle(InitializationStyle Style) {
1361 VarDeclBits.InitStyle = Style;
1362 }
1363
1364 /// The style of initialization for this declaration.
1365 ///
1366 /// C-style initialization is "int x = 1;". Call-style initialization is
1367 /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1368 /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1369 /// expression for class types. List-style initialization is C++11 syntax,
1370 /// e.g. "int x{1};". Clients can distinguish between different forms of
1371 /// initialization by checking this value. In particular, "int x = {1};" is
1372 /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1373 /// Init expression in all three cases is an InitListExpr.
1374 InitializationStyle getInitStyle() const {
1375 return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1376 }
1377
1378 /// Whether the initializer is a direct-initializer (list or call).
1379 bool isDirectInit() const {
1380 return getInitStyle() != CInit;
1381 }
1382
1383 /// If this definition should pretend to be a declaration.
1384 bool isThisDeclarationADemotedDefinition() const {
1385 return isa<ParmVarDecl>(this) ? false :
1386 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1387 }
1388
1389 /// This is a definition which should be demoted to a declaration.
1390 ///
1391 /// In some cases (mostly module merging) we can end up with two visible
1392 /// definitions one of which needs to be demoted to a declaration to keep
1393 /// the AST invariants.
1394 void demoteThisDefinitionToDeclaration() {
1395 assert(isThisDeclarationADefinition() && "Not a definition!")((void)0);
1396 assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!")((void)0);
1397 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1398 }
1399
1400 /// Determine whether this variable is the exception variable in a
1401 /// C++ catch statememt or an Objective-C \@catch statement.
1402 bool isExceptionVariable() const {
1403 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1404 }
1405 void setExceptionVariable(bool EV) {
1406 assert(!isa<ParmVarDecl>(this))((void)0);
1407 NonParmVarDeclBits.ExceptionVar = EV;
1408 }
1409
1410 /// Determine whether this local variable can be used with the named
1411 /// return value optimization (NRVO).
1412 ///
1413 /// The named return value optimization (NRVO) works by marking certain
1414 /// non-volatile local variables of class type as NRVO objects. These
1415 /// locals can be allocated within the return slot of their containing
1416 /// function, in which case there is no need to copy the object to the
1417 /// return slot when returning from the function. Within the function body,
1418 /// each return that returns the NRVO object will have this variable as its
1419 /// NRVO candidate.
1420 bool isNRVOVariable() const {
1421 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1422 }
1423 void setNRVOVariable(bool NRVO) {
1424 assert(!isa<ParmVarDecl>(this))((void)0);
1425 NonParmVarDeclBits.NRVOVariable = NRVO;
1426 }
1427
1428 /// Determine whether this variable is the for-range-declaration in
1429 /// a C++0x for-range statement.
1430 bool isCXXForRangeDecl() const {
1431 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1432 }
1433 void setCXXForRangeDecl(bool FRD) {
1434 assert(!isa<ParmVarDecl>(this))((void)0);
1435 NonParmVarDeclBits.CXXForRangeDecl = FRD;
1436 }
1437
1438 /// Determine whether this variable is a for-loop declaration for a
1439 /// for-in statement in Objective-C.
1440 bool isObjCForDecl() const {
1441 return NonParmVarDeclBits.ObjCForDecl;
1442 }
1443
1444 void setObjCForDecl(bool FRD) {
1445 NonParmVarDeclBits.ObjCForDecl = FRD;
1446 }
1447
1448 /// Determine whether this variable is an ARC pseudo-__strong variable. A
1449 /// pseudo-__strong variable has a __strong-qualified type but does not
1450 /// actually retain the object written into it. Generally such variables are
1451 /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1452 /// the variable is annotated with the objc_externally_retained attribute, 2)
1453 /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1454 /// loop.
1455 bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1456 void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1457
1458 /// Whether this variable is (C++1z) inline.
1459 bool isInline() const {
1460 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1461 }
1462 bool isInlineSpecified() const {
1463 return isa<ParmVarDecl>(this) ? false
1464 : NonParmVarDeclBits.IsInlineSpecified;
1465 }
1466 void setInlineSpecified() {
1467 assert(!isa<ParmVarDecl>(this))((void)0);
1468 NonParmVarDeclBits.IsInline = true;
1469 NonParmVarDeclBits.IsInlineSpecified = true;
1470 }
1471 void setImplicitlyInline() {
1472 assert(!isa<ParmVarDecl>(this))((void)0);
1473 NonParmVarDeclBits.IsInline = true;
1474 }
1475
1476 /// Whether this variable is (C++11) constexpr.
1477 bool isConstexpr() const {
1478 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1479 }
1480 void setConstexpr(bool IC) {
1481 assert(!isa<ParmVarDecl>(this))((void)0);
1482 NonParmVarDeclBits.IsConstexpr = IC;
1483 }
1484
1485 /// Whether this variable is the implicit variable for a lambda init-capture.
1486 bool isInitCapture() const {
1487 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1488 }
1489 void setInitCapture(bool IC) {
1490 assert(!isa<ParmVarDecl>(this))((void)0);
1491 NonParmVarDeclBits.IsInitCapture = IC;
1492 }
1493
1494 /// Determine whether this variable is actually a function parameter pack or
1495 /// init-capture pack.
1496 bool isParameterPack() const;
1497
1498 /// Whether this local extern variable declaration's previous declaration
1499 /// was declared in the same block scope. Only correct in C++.
1500 bool isPreviousDeclInSameBlockScope() const {
1501 return isa<ParmVarDecl>(this)
1502 ? false
1503 : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1504 }
1505 void setPreviousDeclInSameBlockScope(bool Same) {
1506 assert(!isa<ParmVarDecl>(this))((void)0);
1507 NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1508 }
1509
1510 /// Indicates the capture is a __block variable that is captured by a block
1511 /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1512 /// returns false).
1513 bool isEscapingByref() const;
1514
1515 /// Indicates the capture is a __block variable that is never captured by an
1516 /// escaping block.
1517 bool isNonEscapingByref() const;
1518
1519 void setEscapingByref() {
1520 NonParmVarDeclBits.EscapingByref = true;
1521 }
1522
1523 /// Determines if this variable's alignment is dependent.
1524 bool hasDependentAlignment() const;
1525
1526 /// Retrieve the variable declaration from which this variable could
1527 /// be instantiated, if it is an instantiation (rather than a non-template).
1528 VarDecl *getTemplateInstantiationPattern() const;
1529
1530 /// If this variable is an instantiated static data member of a
1531 /// class template specialization, returns the templated static data member
1532 /// from which it was instantiated.
1533 VarDecl *getInstantiatedFromStaticDataMember() const;
1534
1535 /// If this variable is an instantiation of a variable template or a
1536 /// static data member of a class template, determine what kind of
1537 /// template specialization or instantiation this is.
1538 TemplateSpecializationKind getTemplateSpecializationKind() const;
1539
1540 /// Get the template specialization kind of this variable for the purposes of
1541 /// template instantiation. This differs from getTemplateSpecializationKind()
1542 /// for an instantiation of a class-scope explicit specialization.
1543 TemplateSpecializationKind
1544 getTemplateSpecializationKindForInstantiation() const;
1545
1546 /// If this variable is an instantiation of a variable template or a
1547 /// static data member of a class template, determine its point of
1548 /// instantiation.
1549 SourceLocation getPointOfInstantiation() const;
1550
1551 /// If this variable is an instantiation of a static data member of a
1552 /// class template specialization, retrieves the member specialization
1553 /// information.
1554 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1555
1556 /// For a static data member that was instantiated from a static
1557 /// data member of a class template, set the template specialiation kind.
1558 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1559 SourceLocation PointOfInstantiation = SourceLocation());
1560
1561 /// Specify that this variable is an instantiation of the
1562 /// static data member VD.
1563 void setInstantiationOfStaticDataMember(VarDecl *VD,
1564 TemplateSpecializationKind TSK);
1565
1566 /// Retrieves the variable template that is described by this
1567 /// variable declaration.
1568 ///
1569 /// Every variable template is represented as a VarTemplateDecl and a
1570 /// VarDecl. The former contains template properties (such as
1571 /// the template parameter lists) while the latter contains the
1572 /// actual description of the template's
1573 /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1574 /// VarDecl that from a VarTemplateDecl, while
1575 /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1576 /// a VarDecl.
1577 VarTemplateDecl *getDescribedVarTemplate() const;
1578
1579 void setDescribedVarTemplate(VarTemplateDecl *Template);
1580
1581 // Is this variable known to have a definition somewhere in the complete
1582 // program? This may be true even if the declaration has internal linkage and
1583 // has no definition within this source file.
1584 bool isKnownToBeDefined() const;
1585
1586 /// Is destruction of this variable entirely suppressed? If so, the variable
1587 /// need not have a usable destructor at all.
1588 bool isNoDestroy(const ASTContext &) const;
1589
1590 /// Would the destruction of this variable have any effect, and if so, what
1591 /// kind?
1592 QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1593
1594 // Implement isa/cast/dyncast/etc.
1595 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1596 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1597};
1598
1599class ImplicitParamDecl : public VarDecl {
1600 void anchor() override;
1601
1602public:
1603 /// Defines the kind of the implicit parameter: is this an implicit parameter
1604 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1605 /// context or something else.
1606 enum ImplicitParamKind : unsigned {
1607 /// Parameter for Objective-C 'self' argument
1608 ObjCSelf,
1609
1610 /// Parameter for Objective-C '_cmd' argument
1611 ObjCCmd,
1612
1613 /// Parameter for C++ 'this' argument
1614 CXXThis,
1615
1616 /// Parameter for C++ virtual table pointers
1617 CXXVTT,
1618
1619 /// Parameter for captured context
1620 CapturedContext,
1621
1622 /// Other implicit parameter
1623 Other,
1624 };
1625
1626 /// Create implicit parameter.
1627 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1628 SourceLocation IdLoc, IdentifierInfo *Id,
1629 QualType T, ImplicitParamKind ParamKind);
1630 static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1631 ImplicitParamKind ParamKind);
1632
1633 static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1634
1635 ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1636 IdentifierInfo *Id, QualType Type,
1637 ImplicitParamKind ParamKind)
1638 : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1639 /*TInfo=*/nullptr, SC_None) {
1640 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1641 setImplicit();
1642 }
1643
1644 ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1645 : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1646 SourceLocation(), /*Id=*/nullptr, Type,
1647 /*TInfo=*/nullptr, SC_None) {
1648 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1649 setImplicit();
1650 }
1651
1652 /// Returns the implicit parameter kind.
1653 ImplicitParamKind getParameterKind() const {
1654 return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1655 }
1656
1657 // Implement isa/cast/dyncast/etc.
1658 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1659 static bool classofKind(Kind K) { return K == ImplicitParam; }
1660};
1661
1662/// Represents a parameter to a function.
1663class ParmVarDecl : public VarDecl {
1664public:
1665 enum { MaxFunctionScopeDepth = 255 };
1666 enum { MaxFunctionScopeIndex = 255 };
1667
1668protected:
1669 ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1670 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1671 TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1672 : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1673 assert(ParmVarDeclBits.HasInheritedDefaultArg == false)((void)0);
1674 assert(ParmVarDeclBits.DefaultArgKind == DAK_None)((void)0);
1675 assert(ParmVarDeclBits.IsKNRPromoted == false)((void)0);
1676 assert(ParmVarDeclBits.IsObjCMethodParam == false)((void)0);
1677 setDefaultArg(DefArg);
1678 }
1679
1680public:
1681 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1682 SourceLocation StartLoc,
1683 SourceLocation IdLoc, IdentifierInfo *Id,
1684 QualType T, TypeSourceInfo *TInfo,
1685 StorageClass S, Expr *DefArg);
1686
1687 static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1688
1689 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1690
1691 void setObjCMethodScopeInfo(unsigned parameterIndex) {
1692 ParmVarDeclBits.IsObjCMethodParam = true;
1693 setParameterIndex(parameterIndex);
1694 }
1695
1696 void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1697 assert(!ParmVarDeclBits.IsObjCMethodParam)((void)0);
1698
1699 ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1700 assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth((void)0)
1701 && "truncation!")((void)0);
1702
1703 setParameterIndex(parameterIndex);
1704 }
1705
1706 bool isObjCMethodParameter() const {
1707 return ParmVarDeclBits.IsObjCMethodParam;
1708 }
1709
1710 /// Determines whether this parameter is destroyed in the callee function.
1711 bool isDestroyedInCallee() const;
1712
1713 unsigned getFunctionScopeDepth() const {
1714 if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1715 return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1716 }
1717
1718 static constexpr unsigned getMaxFunctionScopeDepth() {
1719 return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1720 }
1721
1722 /// Returns the index of this parameter in its prototype or method scope.
1723 unsigned getFunctionScopeIndex() const {
1724 return getParameterIndex();
1725 }
1726
1727 ObjCDeclQualifier getObjCDeclQualifier() const {
1728 if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1729 return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1730 }
1731 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1732 assert(ParmVarDeclBits.IsObjCMethodParam)((void)0);
1733 ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1734 }
1735
1736 /// True if the value passed to this parameter must undergo
1737 /// K&R-style default argument promotion:
1738 ///
1739 /// C99 6.5.2.2.
1740 /// If the expression that denotes the called function has a type
1741 /// that does not include a prototype, the integer promotions are
1742 /// performed on each argument, and arguments that have type float
1743 /// are promoted to double.
1744 bool isKNRPromoted() const {
1745 return ParmVarDeclBits.IsKNRPromoted;
1746 }
1747 void setKNRPromoted(bool promoted) {
1748 ParmVarDeclBits.IsKNRPromoted = promoted;
1749 }
1750
1751 Expr *getDefaultArg();
1752 const Expr *getDefaultArg() const {
1753 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1754 }
1755
1756 void setDefaultArg(Expr *defarg);
1757
1758 /// Retrieve the source range that covers the entire default
1759 /// argument.
1760 SourceRange getDefaultArgRange() const;
1761 void setUninstantiatedDefaultArg(Expr *arg);
1762 Expr *getUninstantiatedDefaultArg();
1763 const Expr *getUninstantiatedDefaultArg() const {
1764 return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1765 }
1766
1767 /// Determines whether this parameter has a default argument,
1768 /// either parsed or not.
1769 bool hasDefaultArg() const;
1770
1771 /// Determines whether this parameter has a default argument that has not
1772 /// yet been parsed. This will occur during the processing of a C++ class
1773 /// whose member functions have default arguments, e.g.,
1774 /// @code
1775 /// class X {
1776 /// public:
1777 /// void f(int x = 17); // x has an unparsed default argument now
1778 /// }; // x has a regular default argument now
1779 /// @endcode
1780 bool hasUnparsedDefaultArg() const {
1781 return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1782 }
1783
1784 bool hasUninstantiatedDefaultArg() const {
1785 return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1786 }
1787
1788 /// Specify that this parameter has an unparsed default argument.
1789 /// The argument will be replaced with a real default argument via
1790 /// setDefaultArg when the class definition enclosing the function
1791 /// declaration that owns this default argument is completed.
1792 void setUnparsedDefaultArg() {
1793 ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1794 }
1795
1796 bool hasInheritedDefaultArg() const {
1797 return ParmVarDeclBits.HasInheritedDefaultArg;
1798 }
1799
1800 void setHasInheritedDefaultArg(bool I = true) {
1801 ParmVarDeclBits.HasInheritedDefaultArg = I;
1802 }
1803
1804 QualType getOriginalType() const;
1805
1806 /// Sets the function declaration that owns this
1807 /// ParmVarDecl. Since ParmVarDecls are often created before the
1808 /// FunctionDecls that own them, this routine is required to update
1809 /// the DeclContext appropriately.
1810 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1811
1812 // Implement isa/cast/dyncast/etc.
1813 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1814 static bool classofKind(Kind K) { return K == ParmVar; }
1815
1816private:
1817 enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1818
1819 void setParameterIndex(unsigned parameterIndex) {
1820 if (parameterIndex >= ParameterIndexSentinel) {
1821 setParameterIndexLarge(parameterIndex);
1822 return;
1823 }
1824
1825 ParmVarDeclBits.ParameterIndex = parameterIndex;
1826 assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!")((void)0);
1827 }
1828 unsigned getParameterIndex() const {
1829 unsigned d = ParmVarDeclBits.ParameterIndex;
1830 return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1831 }
1832
1833 void setParameterIndexLarge(unsigned parameterIndex);
1834 unsigned getParameterIndexLarge() const;
1835};
1836
1837enum class MultiVersionKind {
1838 None,
1839 Target,
1840 CPUSpecific,
1841 CPUDispatch
1842};
1843
1844/// Represents a function declaration or definition.
1845///
1846/// Since a given function can be declared several times in a program,
1847/// there may be several FunctionDecls that correspond to that
1848/// function. Only one of those FunctionDecls will be found when
1849/// traversing the list of declarations in the context of the
1850/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1851/// contains all of the information known about the function. Other,
1852/// previous declarations of the function are available via the
1853/// getPreviousDecl() chain.
1854class FunctionDecl : public DeclaratorDecl,
1855 public DeclContext,
1856 public Redeclarable<FunctionDecl> {
1857 // This class stores some data in DeclContext::FunctionDeclBits
1858 // to save some space. Use the provided accessors to access it.
1859public:
1860 /// The kind of templated function a FunctionDecl can be.
1861 enum TemplatedKind {
1862 // Not templated.
1863 TK_NonTemplate,
1864 // The pattern in a function template declaration.
1865 TK_FunctionTemplate,
1866 // A non-template function that is an instantiation or explicit
1867 // specialization of a member of a templated class.
1868 TK_MemberSpecialization,
1869 // An instantiation or explicit specialization of a function template.
1870 // Note: this might have been instantiated from a templated class if it
1871 // is a class-scope explicit specialization.
1872 TK_FunctionTemplateSpecialization,
1873 // A function template specialization that hasn't yet been resolved to a
1874 // particular specialized function template.
1875 TK_DependentFunctionTemplateSpecialization
1876 };
1877
1878 /// Stashed information about a defaulted function definition whose body has
1879 /// not yet been lazily generated.
1880 class DefaultedFunctionInfo final
1881 : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1882 friend TrailingObjects;
1883 unsigned NumLookups;
1884
1885 public:
1886 static DefaultedFunctionInfo *Create(ASTContext &Context,
1887 ArrayRef<DeclAccessPair> Lookups);
1888 /// Get the unqualified lookup results that should be used in this
1889 /// defaulted function definition.
1890 ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1891 return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1892 }
1893 };
1894
1895private:
1896 /// A new[]'d array of pointers to VarDecls for the formal
1897 /// parameters of this function. This is null if a prototype or if there are
1898 /// no formals.
1899 ParmVarDecl **ParamInfo = nullptr;
1900
1901 /// The active member of this union is determined by
1902 /// FunctionDeclBits.HasDefaultedFunctionInfo.
1903 union {
1904 /// The body of the function.
1905 LazyDeclStmtPtr Body;
1906 /// Information about a future defaulted function definition.
1907 DefaultedFunctionInfo *DefaultedInfo;
1908 };
1909
1910 unsigned ODRHash;
1911
1912 /// End part of this FunctionDecl's source range.
1913 ///
1914 /// We could compute the full range in getSourceRange(). However, when we're
1915 /// dealing with a function definition deserialized from a PCH/AST file,
1916 /// we can only compute the full range once the function body has been
1917 /// de-serialized, so it's far better to have the (sometimes-redundant)
1918 /// EndRangeLoc.
1919 SourceLocation EndRangeLoc;
1920
1921 /// The template or declaration that this declaration
1922 /// describes or was instantiated from, respectively.
1923 ///
1924 /// For non-templates, this value will be NULL. For function
1925 /// declarations that describe a function template, this will be a
1926 /// pointer to a FunctionTemplateDecl. For member functions
1927 /// of class template specializations, this will be a MemberSpecializationInfo
1928 /// pointer containing information about the specialization.
1929 /// For function template specializations, this will be a
1930 /// FunctionTemplateSpecializationInfo, which contains information about
1931 /// the template being specialized and the template arguments involved in
1932 /// that specialization.
1933 llvm::PointerUnion<FunctionTemplateDecl *,
1934 MemberSpecializationInfo *,
1935 FunctionTemplateSpecializationInfo *,
1936 DependentFunctionTemplateSpecializationInfo *>
1937 TemplateOrSpecialization;
1938
1939 /// Provides source/type location info for the declaration name embedded in
1940 /// the DeclaratorDecl base class.
1941 DeclarationNameLoc DNLoc;
1942
1943 /// Specify that this function declaration is actually a function
1944 /// template specialization.
1945 ///
1946 /// \param C the ASTContext.
1947 ///
1948 /// \param Template the function template that this function template
1949 /// specialization specializes.
1950 ///
1951 /// \param TemplateArgs the template arguments that produced this
1952 /// function template specialization from the template.
1953 ///
1954 /// \param InsertPos If non-NULL, the position in the function template
1955 /// specialization set where the function template specialization data will
1956 /// be inserted.
1957 ///
1958 /// \param TSK the kind of template specialization this is.
1959 ///
1960 /// \param TemplateArgsAsWritten location info of template arguments.
1961 ///
1962 /// \param PointOfInstantiation point at which the function template
1963 /// specialization was first instantiated.
1964 void setFunctionTemplateSpecialization(ASTContext &C,
1965 FunctionTemplateDecl *Template,
1966 const TemplateArgumentList *TemplateArgs,
1967 void *InsertPos,
1968 TemplateSpecializationKind TSK,
1969 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1970 SourceLocation PointOfInstantiation);
1971
1972 /// Specify that this record is an instantiation of the
1973 /// member function FD.
1974 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1975 TemplateSpecializationKind TSK);
1976
1977 void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1978
1979 // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1980 // need to access this bit but we want to avoid making ASTDeclWriter
1981 // a friend of FunctionDeclBitfields just for this.
1982 bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1983
1984 /// Whether an ODRHash has been stored.
1985 bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1986
1987 /// State that an ODRHash has been stored.
1988 void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1989
1990protected:
1991 FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1992 const DeclarationNameInfo &NameInfo, QualType T,
1993 TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
1994 ConstexprSpecKind ConstexprKind,
1995 Expr *TrailingRequiresClause = nullptr);
1996
1997 using redeclarable_base = Redeclarable<FunctionDecl>;
1998
1999 FunctionDecl *getNextRedeclarationImpl() override {
2000 return getNextRedeclaration();
2001 }
2002
2003 FunctionDecl *getPreviousDeclImpl() override {
2004 return getPreviousDecl();
2005 }
2006
2007 FunctionDecl *getMostRecentDeclImpl() override {
2008 return getMostRecentDecl();
2009 }
2010
2011public:
2012 friend class ASTDeclReader;
2013 friend class ASTDeclWriter;
2014
2015 using redecl_range = redeclarable_base::redecl_range;
2016 using redecl_iterator = redeclarable_base::redecl_iterator;
2017
2018 using redeclarable_base::redecls_begin;
2019 using redeclarable_base::redecls_end;
2020 using redeclarable_base::redecls;
2021 using redeclarable_base::getPreviousDecl;
2022 using redeclarable_base::getMostRecentDecl;
2023 using redeclarable_base::isFirstDecl;
2024
2025 static FunctionDecl *
2026 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2027 SourceLocation NLoc, DeclarationName N, QualType T,
2028 TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified = false,
2029 bool hasWrittenPrototype = true,
2030 ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
2031 Expr *TrailingRequiresClause = nullptr) {
2032 DeclarationNameInfo NameInfo(N, NLoc);
2033 return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2034 isInlineSpecified, hasWrittenPrototype,
2035 ConstexprKind, TrailingRequiresClause);
2036 }
2037
2038 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
2039 SourceLocation StartLoc,
2040 const DeclarationNameInfo &NameInfo, QualType T,
2041 TypeSourceInfo *TInfo, StorageClass SC,
2042 bool isInlineSpecified, bool hasWrittenPrototype,
2043 ConstexprSpecKind ConstexprKind,
2044 Expr *TrailingRequiresClause);
2045
2046 static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2047
2048 DeclarationNameInfo getNameInfo() const {
2049 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2050 }
2051
2052 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2053 bool Qualified) const override;
2054
2055 void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2056
2057 /// Returns the location of the ellipsis of a variadic function.
2058 SourceLocation getEllipsisLoc() const {
2059 const auto *FPT = getType()->getAs<FunctionProtoType>();
2060 if (FPT && FPT->isVariadic())
2061 return FPT->getEllipsisLoc();
2062 return SourceLocation();
2063 }
2064
2065 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2066
2067 // Function definitions.
2068 //
2069 // A function declaration may be:
2070 // - a non defining declaration,
2071 // - a definition. A function may be defined because:
2072 // - it has a body, or will have it in the case of late parsing.
2073 // - it has an uninstantiated body. The body does not exist because the
2074 // function is not used yet, but the declaration is considered a
2075 // definition and does not allow other definition of this function.
2076 // - it does not have a user specified body, but it does not allow
2077 // redefinition, because it is deleted/defaulted or is defined through
2078 // some other mechanism (alias, ifunc).
2079
2080 /// Returns true if the function has a body.
2081 ///
2082 /// The function body might be in any of the (re-)declarations of this
2083 /// function. The variant that accepts a FunctionDecl pointer will set that
2084 /// function declaration to the actual declaration containing the body (if
2085 /// there is one).
2086 bool hasBody(const FunctionDecl *&Definition) const;
2087
2088 bool hasBody() const override {
2089 const FunctionDecl* Definition;
2090 return hasBody(Definition);
2091 }
2092
2093 /// Returns whether the function has a trivial body that does not require any
2094 /// specific codegen.
2095 bool hasTrivialBody() const;
2096
2097 /// Returns true if the function has a definition that does not need to be
2098 /// instantiated.
2099 ///
2100 /// The variant that accepts a FunctionDecl pointer will set that function
2101 /// declaration to the declaration that is a definition (if there is one).
2102 ///
2103 /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2104 /// declarations that were instantiataed from function definitions.
2105 /// Such a declaration behaves as if it is a definition for the
2106 /// purpose of redefinition checking, but isn't actually a "real"
2107 /// definition until its body is instantiated.
2108 bool isDefined(const FunctionDecl *&Definition,
2109 bool CheckForPendingFriendDefinition = false) const;
2110
2111 bool isDefined() const {
2112 const FunctionDecl* Definition;
2113 return isDefined(Definition);
2114 }
2115
2116 /// Get the definition for this declaration.
2117 FunctionDecl *getDefinition() {
2118 const FunctionDecl *Definition;
2119 if (isDefined(Definition))
2120 return const_cast<FunctionDecl *>(Definition);
2121 return nullptr;
2122 }
2123 const FunctionDecl *getDefinition() const {
2124 return const_cast<FunctionDecl *>(this)->getDefinition();
2125 }
2126
2127 /// Retrieve the body (definition) of the function. The function body might be
2128 /// in any of the (re-)declarations of this function. The variant that accepts
2129 /// a FunctionDecl pointer will set that function declaration to the actual
2130 /// declaration containing the body (if there is one).
2131 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2132 /// unnecessary AST de-serialization of the body.
2133 Stmt *getBody(const FunctionDecl *&Definition) const;
2134
2135 Stmt *getBody() const override {
2136 const FunctionDecl* Definition;
2137 return getBody(Definition);
2138 }
2139
2140 /// Returns whether this specific declaration of the function is also a
2141 /// definition that does not contain uninstantiated body.
2142 ///
2143 /// This does not determine whether the function has been defined (e.g., in a
2144 /// previous definition); for that information, use isDefined.
2145 ///
2146 /// Note: the function declaration does not become a definition until the
2147 /// parser reaches the definition, if called before, this function will return
2148 /// `false`.
2149 bool isThisDeclarationADefinition() const {
2150 return isDeletedAsWritten() || isDefaulted() ||
2151 doesThisDeclarationHaveABody() || hasSkippedBody() ||
2152 willHaveBody() || hasDefiningAttr();
2153 }
2154
2155 /// Determine whether this specific declaration of the function is a friend
2156 /// declaration that was instantiated from a function definition. Such
2157 /// declarations behave like definitions in some contexts.
2158 bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2159
2160 /// Returns whether this specific declaration of the function has a body.
2161 bool doesThisDeclarationHaveABody() const {
2162 return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2163 isLateTemplateParsed();
2164 }
2165
2166 void setBody(Stmt *B);
2167 void setLazyBody(uint64_t Offset) {
2168 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2169 Body = LazyDeclStmtPtr(Offset);
2170 }
2171
2172 void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2173 DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2174
2175 /// Whether this function is variadic.
2176 bool isVariadic() const;
2177
2178 /// Whether this function is marked as virtual explicitly.
2179 bool isVirtualAsWritten() const {
2180 return FunctionDeclBits.IsVirtualAsWritten;
2181 }
2182
2183 /// State that this function is marked as virtual explicitly.
2184 void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2185
2186 /// Whether this virtual function is pure, i.e. makes the containing class
2187 /// abstract.
2188 bool isPure() const { return FunctionDeclBits.IsPure; }
2189 void setPure(bool P = true);
2190
2191 /// Whether this templated function will be late parsed.
2192 bool isLateTemplateParsed() const {
2193 return FunctionDeclBits.IsLateTemplateParsed;
2194 }
2195
2196 /// State that this templated function will be late parsed.
2197 void setLateTemplateParsed(bool ILT = true) {
2198 FunctionDeclBits.IsLateTemplateParsed = ILT;
2199 }
2200
2201 /// Whether this function is "trivial" in some specialized C++ senses.
2202 /// Can only be true for default constructors, copy constructors,
2203 /// copy assignment operators, and destructors. Not meaningful until
2204 /// the class has been fully built by Sema.
2205 bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2206 void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2207
2208 bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2209 void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2210
2211 /// Whether this function is defaulted. Valid for e.g.
2212 /// special member functions, defaulted comparisions (not methods!).
2213 bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2214 void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2215
2216 /// Whether this function is explicitly defaulted.
2217 bool isExplicitlyDefaulted() const {
2218 return FunctionDeclBits.IsExplicitlyDefaulted;
2219 }
2220
2221 /// State that this function is explicitly defaulted.
2222 void setExplicitlyDefaulted(bool ED = true) {
2223 FunctionDeclBits.IsExplicitlyDefaulted = ED;
2224 }
2225
2226 /// True if this method is user-declared and was not
2227 /// deleted or defaulted on its first declaration.
2228 bool isUserProvided() const {
2229 auto *DeclAsWritten = this;
2230 if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2231 DeclAsWritten = Pattern;
2232 return !(DeclAsWritten->isDeleted() ||
2233 DeclAsWritten->getCanonicalDecl()->isDefaulted());
2234 }
2235
2236 /// Whether falling off this function implicitly returns null/zero.
2237 /// If a more specific implicit return value is required, front-ends
2238 /// should synthesize the appropriate return statements.
2239 bool hasImplicitReturnZero() const {
2240 return FunctionDeclBits.HasImplicitReturnZero;
2241 }
2242
2243 /// State that falling off this function implicitly returns null/zero.
2244 /// If a more specific implicit return value is required, front-ends
2245 /// should synthesize the appropriate return statements.
2246 void setHasImplicitReturnZero(bool IRZ) {
2247 FunctionDeclBits.HasImplicitReturnZero = IRZ;
2248 }
2249
2250 /// Whether this function has a prototype, either because one
2251 /// was explicitly written or because it was "inherited" by merging
2252 /// a declaration without a prototype with a declaration that has a
2253 /// prototype.
2254 bool hasPrototype() const {
2255 return hasWrittenPrototype() || hasInheritedPrototype();
2256 }
2257
2258 /// Whether this function has a written prototype.
2259 bool hasWrittenPrototype() const {
2260 return FunctionDeclBits.HasWrittenPrototype;
2261 }
2262
2263 /// State that this function has a written prototype.
2264 void setHasWrittenPrototype(bool P = true) {
2265 FunctionDeclBits.HasWrittenPrototype = P;
2266 }
2267
2268 /// Whether this function inherited its prototype from a
2269 /// previous declaration.
2270 bool hasInheritedPrototype() const {
2271 return FunctionDeclBits.HasInheritedPrototype;
2272 }
2273
2274 /// State that this function inherited its prototype from a
2275 /// previous declaration.
2276 void setHasInheritedPrototype(bool P = true) {
2277 FunctionDeclBits.HasInheritedPrototype = P;
2278 }
2279
2280 /// Whether this is a (C++11) constexpr function or constexpr constructor.
2281 bool isConstexpr() const {
2282 return getConstexprKind() != ConstexprSpecKind::Unspecified;
2283 }
2284 void setConstexprKind(ConstexprSpecKind CSK) {
2285 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2286 }
2287 ConstexprSpecKind getConstexprKind() const {
2288 return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2289 }
2290 bool isConstexprSpecified() const {
2291 return getConstexprKind() == ConstexprSpecKind::Constexpr;
2292 }
2293 bool isConsteval() const {
2294 return getConstexprKind() == ConstexprSpecKind::Consteval;
2295 }
2296
2297 /// Whether the instantiation of this function is pending.
2298 /// This bit is set when the decision to instantiate this function is made
2299 /// and unset if and when the function body is created. That leaves out
2300 /// cases where instantiation did not happen because the template definition
2301 /// was not seen in this TU. This bit remains set in those cases, under the
2302 /// assumption that the instantiation will happen in some other TU.
2303 bool instantiationIsPending() const {
2304 return FunctionDeclBits.InstantiationIsPending;
2305 }
2306
2307 /// State that the instantiation of this function is pending.
2308 /// (see instantiationIsPending)
2309 void setInstantiationIsPending(bool IC) {
2310 FunctionDeclBits.InstantiationIsPending = IC;
2311 }
2312
2313 /// Indicates the function uses __try.
2314 bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2315 void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2316
2317 /// Whether this function has been deleted.
2318 ///
2319 /// A function that is "deleted" (via the C++0x "= delete" syntax)
2320 /// acts like a normal function, except that it cannot actually be
2321 /// called or have its address taken. Deleted functions are
2322 /// typically used in C++ overload resolution to attract arguments
2323 /// whose type or lvalue/rvalue-ness would permit the use of a
2324 /// different overload that would behave incorrectly. For example,
2325 /// one might use deleted functions to ban implicit conversion from
2326 /// a floating-point number to an Integer type:
2327 ///
2328 /// @code
2329 /// struct Integer {
2330 /// Integer(long); // construct from a long
2331 /// Integer(double) = delete; // no construction from float or double
2332 /// Integer(long double) = delete; // no construction from long double
2333 /// };
2334 /// @endcode
2335 // If a function is deleted, its first declaration must be.
2336 bool isDeleted() const {
2337 return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2338 }
2339
2340 bool isDeletedAsWritten() const {
2341 return FunctionDeclBits.IsDeleted && !isDefaulted();
2342 }
2343
2344 void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2345
2346 /// Determines whether this function is "main", which is the
2347 /// entry point into an executable program.
2348 bool isMain() const;
2349
2350 /// Determines whether this function is a MSVCRT user defined entry
2351 /// point.
2352 bool isMSVCRTEntryPoint() const;
2353
2354 /// Determines whether this operator new or delete is one
2355 /// of the reserved global placement operators:
2356 /// void *operator new(size_t, void *);
2357 /// void *operator new[](size_t, void *);
2358 /// void operator delete(void *, void *);
2359 /// void operator delete[](void *, void *);
2360 /// These functions have special behavior under [new.delete.placement]:
2361 /// These functions are reserved, a C++ program may not define
2362 /// functions that displace the versions in the Standard C++ library.
2363 /// The provisions of [basic.stc.dynamic] do not apply to these
2364 /// reserved placement forms of operator new and operator delete.
2365 ///
2366 /// This function must be an allocation or deallocation function.
2367 bool isReservedGlobalPlacementOperator() const;
2368
2369 /// Determines whether this function is one of the replaceable
2370 /// global allocation functions:
2371 /// void *operator new(size_t);
2372 /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2373 /// void *operator new[](size_t);
2374 /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2375 /// void operator delete(void *) noexcept;
2376 /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2377 /// void operator delete(void *, const std::nothrow_t &) noexcept;
2378 /// void operator delete[](void *) noexcept;
2379 /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2380 /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2381 /// These functions have special behavior under C++1y [expr.new]:
2382 /// An implementation is allowed to omit a call to a replaceable global
2383 /// allocation function. [...]
2384 ///
2385 /// If this function is an aligned allocation/deallocation function, return
2386 /// the parameter number of the requested alignment through AlignmentParam.
2387 ///
2388 /// If this function is an allocation/deallocation function that takes
2389 /// the `std::nothrow_t` tag, return true through IsNothrow,
2390 bool isReplaceableGlobalAllocationFunction(
2391 Optional<unsigned> *AlignmentParam = nullptr,
2392 bool *IsNothrow = nullptr) const;
2393
2394 /// Determine if this function provides an inline implementation of a builtin.
2395 bool isInlineBuiltinDeclaration() const;
2396
2397 /// Determine whether this is a destroying operator delete.
2398 bool isDestroyingOperatorDelete() const;
2399
2400 /// Compute the language linkage.
2401 LanguageLinkage getLanguageLinkage() const;
2402
2403 /// Determines whether this function is a function with
2404 /// external, C linkage.
2405 bool isExternC() const;
2406
2407 /// Determines whether this function's context is, or is nested within,
2408 /// a C++ extern "C" linkage spec.
2409 bool isInExternCContext() const;
2410
2411 /// Determines whether this function's context is, or is nested within,
2412 /// a C++ extern "C++" linkage spec.
2413 bool isInExternCXXContext() const;
2414
2415 /// Determines whether this is a global function.
2416 bool isGlobal() const;
2417
2418 /// Determines whether this function is known to be 'noreturn', through
2419 /// an attribute on its declaration or its type.
2420 bool isNoReturn() const;
2421
2422 /// True if the function was a definition but its body was skipped.
2423 bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2424 void setHasSkippedBody(bool Skipped = true) {
2425 FunctionDeclBits.HasSkippedBody = Skipped;
2426 }
2427
2428 /// True if this function will eventually have a body, once it's fully parsed.
2429 bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2430 void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2431
2432 /// True if this function is considered a multiversioned function.
2433 bool isMultiVersion() const {
2434 return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2435 }
2436
2437 /// Sets the multiversion state for this declaration and all of its
2438 /// redeclarations.
2439 void setIsMultiVersion(bool V = true) {
2440 getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2441 }
2442
2443 /// Gets the kind of multiversioning attribute this declaration has. Note that
2444 /// this can return a value even if the function is not multiversion, such as
2445 /// the case of 'target'.
2446 MultiVersionKind getMultiVersionKind() const;
2447
2448
2449 /// True if this function is a multiversioned dispatch function as a part of
2450 /// the cpu_specific/cpu_dispatch functionality.
2451 bool isCPUDispatchMultiVersion() const;
2452 /// True if this function is a multiversioned processor specific function as a
2453 /// part of the cpu_specific/cpu_dispatch functionality.
2454 bool isCPUSpecificMultiVersion() const;
2455
2456 /// True if this function is a multiversioned dispatch function as a part of
2457 /// the target functionality.
2458 bool isTargetMultiVersion() const;
2459
2460 /// \brief Get the associated-constraints of this function declaration.
2461 /// Currently, this will either be a vector of size 1 containing the
2462 /// trailing-requires-clause or an empty vector.
2463 ///
2464 /// Use this instead of getTrailingRequiresClause for concepts APIs that
2465 /// accept an ArrayRef of constraint expressions.
2466 void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2467 if (auto *TRC = getTrailingRequiresClause())
2468 AC.push_back(TRC);
2469 }
2470
2471 void setPreviousDeclaration(FunctionDecl * PrevDecl);
2472
2473 FunctionDecl *getCanonicalDecl() override;
2474 const FunctionDecl *getCanonicalDecl() const {
2475 return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2476 }
2477
2478 unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2479
2480 // ArrayRef interface to parameters.
2481 ArrayRef<ParmVarDecl *> parameters() const {
2482 return {ParamInfo, getNumParams()};
2483 }
2484 MutableArrayRef<ParmVarDecl *> parameters() {
2485 return {ParamInfo, getNumParams()};
2486 }
2487
2488 // Iterator access to formal parameters.
2489 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2490 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2491
2492 bool param_empty() const { return parameters().empty(); }
2493 param_iterator param_begin() { return parameters().begin(); }
2494 param_iterator param_end() { return parameters().end(); }
2495 param_const_iterator param_begin() const { return parameters().begin(); }
2496 param_const_iterator param_end() const { return parameters().end(); }
2497 size_t param_size() const { return parameters().size(); }
2498
2499 /// Return the number of parameters this function must have based on its
2500 /// FunctionType. This is the length of the ParamInfo array after it has been
2501 /// created.
2502 unsigned getNumParams() const;
2503
2504 const ParmVarDecl *getParamDecl(unsigned i) const {
2505 assert(i < getNumParams() && "Illegal param #")((void)0);
2506 return ParamInfo[i];
2507 }
2508 ParmVarDecl *getParamDecl(unsigned i) {
2509 assert(i < getNumParams() && "Illegal param #")((void)0);
2510 return ParamInfo[i];
2511 }
2512 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2513 setParams(getASTContext(), NewParamInfo);
2514 }
2515
2516 /// Returns the minimum number of arguments needed to call this function. This
2517 /// may be fewer than the number of function parameters, if some of the
2518 /// parameters have default arguments (in C++).
2519 unsigned getMinRequiredArguments() const;
2520
2521 /// Determine whether this function has a single parameter, or multiple
2522 /// parameters where all but the first have default arguments.
2523 ///
2524 /// This notion is used in the definition of copy/move constructors and
2525 /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2526 /// parameter packs are not treated specially here.
2527 bool hasOneParamOrDefaultArgs() const;
2528
2529 /// Find the source location information for how the type of this function
2530 /// was written. May be absent (for example if the function was declared via
2531 /// a typedef) and may contain a different type from that of the function
2532 /// (for example if the function type was adjusted by an attribute).
2533 FunctionTypeLoc getFunctionTypeLoc() const;
2534
2535 QualType getReturnType() const {
2536 return getType()->castAs<FunctionType>()->getReturnType();
2537 }
2538
2539 /// Attempt to compute an informative source range covering the
2540 /// function return type. This may omit qualifiers and other information with
2541 /// limited representation in the AST.
2542 SourceRange getReturnTypeSourceRange() const;
2543
2544 /// Attempt to compute an informative source range covering the
2545 /// function parameters, including the ellipsis of a variadic function.
2546 /// The source range excludes the parentheses, and is invalid if there are
2547 /// no parameters and no ellipsis.
2548 SourceRange getParametersSourceRange() const;
2549
2550 /// Get the declared return type, which may differ from the actual return
2551 /// type if the return type is deduced.
2552 QualType getDeclaredReturnType() const {
2553 auto *TSI = getTypeSourceInfo();
2554 QualType T = TSI ? TSI->getType() : getType();
2555 return T->castAs<FunctionType>()->getReturnType();
2556 }
2557
2558 /// Gets the ExceptionSpecificationType as declared.
2559 ExceptionSpecificationType getExceptionSpecType() const {
2560 auto *TSI = getTypeSourceInfo();
2561 QualType T = TSI ? TSI->getType() : getType();
2562 const auto *FPT = T->getAs<FunctionProtoType>();
2563 return FPT ? FPT->getExceptionSpecType() : EST_None;
2564 }
2565
2566 /// Attempt to compute an informative source range covering the
2567 /// function exception specification, if any.
2568 SourceRange getExceptionSpecSourceRange() const;
2569
2570 /// Determine the type of an expression that calls this function.
2571 QualType getCallResultType() const {
2572 return getType()->castAs<FunctionType>()->getCallResultType(
2573 getASTContext());
2574 }
2575
2576 /// Returns the storage class as written in the source. For the
2577 /// computed linkage of symbol, see getLinkage.
2578 StorageClass getStorageClass() const {
2579 return static_cast<StorageClass>(FunctionDeclBits.SClass);
2580 }
2581
2582 /// Sets the storage class as written in the source.
2583 void setStorageClass(StorageClass SClass) {
2584 FunctionDeclBits.SClass = SClass;
2585 }
2586
2587 /// Determine whether the "inline" keyword was specified for this
2588 /// function.
2589 bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2590
2591 /// Set whether the "inline" keyword was specified for this function.
2592 void setInlineSpecified(bool I) {
2593 FunctionDeclBits.IsInlineSpecified = I;
2594 FunctionDeclBits.IsInline = I;
2595 }
2596
2597 /// Flag that this function is implicitly inline.
2598 void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2599
2600 /// Determine whether this function should be inlined, because it is
2601 /// either marked "inline" or "constexpr" or is a member function of a class
2602 /// that was defined in the class body.
2603 bool isInlined() const { return FunctionDeclBits.IsInline; }
2604
2605 bool isInlineDefinitionExternallyVisible() const;
2606
2607 bool isMSExternInline() const;
2608
2609 bool doesDeclarationForceExternallyVisibleDefinition() const;
2610
2611 bool isStatic() const { return getStorageClass() == SC_Static; }
2612
2613 /// Whether this function declaration represents an C++ overloaded
2614 /// operator, e.g., "operator+".
2615 bool isOverloadedOperator() const {
2616 return getOverloadedOperator() != OO_None;
2617 }
2618
2619 OverloadedOperatorKind getOverloadedOperator() const;
2620
2621 const IdentifierInfo *getLiteralIdentifier() const;
2622
2623 /// If this function is an instantiation of a member function
2624 /// of a class template specialization, retrieves the function from
2625 /// which it was instantiated.
2626 ///
2627 /// This routine will return non-NULL for (non-templated) member
2628 /// functions of class templates and for instantiations of function
2629 /// templates. For example, given:
2630 ///
2631 /// \code
2632 /// template<typename T>
2633 /// struct X {
2634 /// void f(T);
2635 /// };
2636 /// \endcode
2637 ///
2638 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2639 /// whose parent is the class template specialization X<int>. For
2640 /// this declaration, getInstantiatedFromFunction() will return
2641 /// the FunctionDecl X<T>::A. When a complete definition of
2642 /// X<int>::A is required, it will be instantiated from the
2643 /// declaration returned by getInstantiatedFromMemberFunction().
2644 FunctionDecl *getInstantiatedFromMemberFunction() const;
2645
2646 /// What kind of templated function this is.
2647 TemplatedKind getTemplatedKind() const;
2648
2649 /// If this function is an instantiation of a member function of a
2650 /// class template specialization, retrieves the member specialization
2651 /// information.
2652 MemberSpecializationInfo *getMemberSpecializationInfo() const;
2653
2654 /// Specify that this record is an instantiation of the
2655 /// member function FD.
2656 void setInstantiationOfMemberFunction(FunctionDecl *FD,
2657 TemplateSpecializationKind TSK) {
2658 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2659 }
2660
2661 /// Retrieves the function template that is described by this
2662 /// function declaration.
2663 ///
2664 /// Every function template is represented as a FunctionTemplateDecl
2665 /// and a FunctionDecl (or something derived from FunctionDecl). The
2666 /// former contains template properties (such as the template
2667 /// parameter lists) while the latter contains the actual
2668 /// description of the template's
2669 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2670 /// FunctionDecl that describes the function template,
2671 /// getDescribedFunctionTemplate() retrieves the
2672 /// FunctionTemplateDecl from a FunctionDecl.
2673 FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2674
2675 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2676
2677 /// Determine whether this function is a function template
2678 /// specialization.
2679 bool isFunctionTemplateSpecialization() const {
2680 return getPrimaryTemplate() != nullptr;
2681 }
2682
2683 /// If this function is actually a function template specialization,
2684 /// retrieve information about this function template specialization.
2685 /// Otherwise, returns NULL.
2686 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2687
2688 /// Determines whether this function is a function template
2689 /// specialization or a member of a class template specialization that can
2690 /// be implicitly instantiated.
2691 bool isImplicitlyInstantiable() const;
2692
2693 /// Determines if the given function was instantiated from a
2694 /// function template.
2695 bool isTemplateInstantiation() const;
2696
2697 /// Retrieve the function declaration from which this function could
2698 /// be instantiated, if it is an instantiation (rather than a non-template
2699 /// or a specialization, for example).
2700 ///
2701 /// If \p ForDefinition is \c false, explicit specializations will be treated
2702 /// as if they were implicit instantiations. This will then find the pattern
2703 /// corresponding to non-definition portions of the declaration, such as
2704 /// default arguments and the exception specification.
2705 FunctionDecl *
2706 getTemplateInstantiationPattern(bool ForDefinition = true) const;
2707
2708 /// Retrieve the primary template that this function template
2709 /// specialization either specializes or was instantiated from.
2710 ///
2711 /// If this function declaration is not a function template specialization,
2712 /// returns NULL.
2713 FunctionTemplateDecl *getPrimaryTemplate() const;
2714
2715 /// Retrieve the template arguments used to produce this function
2716 /// template specialization from the primary template.
2717 ///
2718 /// If this function declaration is not a function template specialization,
2719 /// returns NULL.
2720 const TemplateArgumentList *getTemplateSpecializationArgs() const;
2721
2722 /// Retrieve the template argument list as written in the sources,
2723 /// if any.
2724 ///
2725 /// If this function declaration is not a function template specialization
2726 /// or if it had no explicit template argument list, returns NULL.
2727 /// Note that it an explicit template argument list may be written empty,
2728 /// e.g., template<> void foo<>(char* s);
2729 const ASTTemplateArgumentListInfo*
2730 getTemplateSpecializationArgsAsWritten() const;
2731
2732 /// Specify that this function declaration is actually a function
2733 /// template specialization.
2734 ///
2735 /// \param Template the function template that this function template
2736 /// specialization specializes.
2737 ///
2738 /// \param TemplateArgs the template arguments that produced this
2739 /// function template specialization from the template.
2740 ///
2741 /// \param InsertPos If non-NULL, the position in the function template
2742 /// specialization set where the function template specialization data will
2743 /// be inserted.
2744 ///
2745 /// \param TSK the kind of template specialization this is.
2746 ///
2747 /// \param TemplateArgsAsWritten location info of template arguments.
2748 ///
2749 /// \param PointOfInstantiation point at which the function template
2750 /// specialization was first instantiated.
2751 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2752 const TemplateArgumentList *TemplateArgs,
2753 void *InsertPos,
2754 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2755 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2756 SourceLocation PointOfInstantiation = SourceLocation()) {
2757 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2758 InsertPos, TSK, TemplateArgsAsWritten,
2759 PointOfInstantiation);
2760 }
2761
2762 /// Specifies that this function declaration is actually a
2763 /// dependent function template specialization.
2764 void setDependentTemplateSpecialization(ASTContext &Context,
2765 const UnresolvedSetImpl &Templates,
2766 const TemplateArgumentListInfo &TemplateArgs);
2767
2768 DependentFunctionTemplateSpecializationInfo *
2769 getDependentSpecializationInfo() const;
2770
2771 /// Determine what kind of template instantiation this function
2772 /// represents.
2773 TemplateSpecializationKind getTemplateSpecializationKind() const;
2774
2775 /// Determine the kind of template specialization this function represents
2776 /// for the purpose of template instantiation.
2777 TemplateSpecializationKind
2778 getTemplateSpecializationKindForInstantiation() const;
2779
2780 /// Determine what kind of template instantiation this function
2781 /// represents.
2782 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2783 SourceLocation PointOfInstantiation = SourceLocation());
2784
2785 /// Retrieve the (first) point of instantiation of a function template
2786 /// specialization or a member of a class template specialization.
2787 ///
2788 /// \returns the first point of instantiation, if this function was
2789 /// instantiated from a template; otherwise, returns an invalid source
2790 /// location.
2791 SourceLocation getPointOfInstantiation() const;
2792
2793 /// Determine whether this is or was instantiated from an out-of-line
2794 /// definition of a member function.
2795 bool isOutOfLine() const override;
2796
2797 /// Identify a memory copying or setting function.
2798 /// If the given function is a memory copy or setting function, returns
2799 /// the corresponding Builtin ID. If the function is not a memory function,
2800 /// returns 0.
2801 unsigned getMemoryFunctionKind() const;
2802
2803 /// Returns ODRHash of the function. This value is calculated and
2804 /// stored on first call, then the stored value returned on the other calls.
2805 unsigned getODRHash();
2806
2807 /// Returns cached ODRHash of the function. This must have been previously
2808 /// computed and stored.
2809 unsigned getODRHash() const;
2810
2811 // Implement isa/cast/dyncast/etc.
2812 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2813 static bool classofKind(Kind K) {
2814 return K >= firstFunction && K <= lastFunction;
2815 }
2816 static DeclContext *castToDeclContext(const FunctionDecl *D) {
2817 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2818 }
2819 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2820 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2821 }
2822};
2823
2824/// Represents a member of a struct/union/class.
2825class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2826 unsigned BitField : 1;
2827 unsigned Mutable : 1;
2828 mutable unsigned CachedFieldIndex : 30;
2829
2830 /// The kinds of value we can store in InitializerOrBitWidth.
2831 ///
2832 /// Note that this is compatible with InClassInitStyle except for
2833 /// ISK_CapturedVLAType.
2834 enum InitStorageKind {
2835 /// If the pointer is null, there's nothing special. Otherwise,
2836 /// this is a bitfield and the pointer is the Expr* storing the
2837 /// bit-width.
2838 ISK_NoInit = (unsigned) ICIS_NoInit,
2839
2840 /// The pointer is an (optional due to delayed parsing) Expr*
2841 /// holding the copy-initializer.
2842 ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2843
2844 /// The pointer is an (optional due to delayed parsing) Expr*
2845 /// holding the list-initializer.
2846 ISK_InClassListInit = (unsigned) ICIS_ListInit,
2847
2848 /// The pointer is a VariableArrayType* that's been captured;
2849 /// the enclosing context is a lambda or captured statement.
2850 ISK_CapturedVLAType,
2851 };
2852
2853 /// If this is a bitfield with a default member initializer, this
2854 /// structure is used to represent the two expressions.
2855 struct InitAndBitWidth {
2856 Expr *Init;
2857 Expr *BitWidth;
2858 };
2859
2860 /// Storage for either the bit-width, the in-class initializer, or
2861 /// both (via InitAndBitWidth), or the captured variable length array bound.
2862 ///
2863 /// If the storage kind is ISK_InClassCopyInit or
2864 /// ISK_InClassListInit, but the initializer is null, then this
2865 /// field has an in-class initializer that has not yet been parsed
2866 /// and attached.
2867 // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2868 // overwhelmingly common case that we have none of these things.
2869 llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2870
2871protected:
2872 FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2873 SourceLocation IdLoc, IdentifierInfo *Id,
2874 QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2875 InClassInitStyle InitStyle)
2876 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2877 BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2878 InitStorage(nullptr, (InitStorageKind) InitStyle) {
2879 if (BW)
2880 setBitWidth(BW);
2881 }
2882
2883public:
2884 friend class ASTDeclReader;
2885 friend class ASTDeclWriter;
2886
2887 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2888 SourceLocation StartLoc, SourceLocation IdLoc,
2889 IdentifierInfo *Id, QualType T,
2890 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2891 InClassInitStyle InitStyle);
2892
2893 static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2894
2895 /// Returns the index of this field within its record,
2896 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2897 unsigned getFieldIndex() const;
2898
2899 /// Determines whether this field is mutable (C++ only).
2900 bool isMutable() const { return Mutable; }
2901
2902 /// Determines whether this field is a bitfield.
2903 bool isBitField() const { return BitField; }
2904
2905 /// Determines whether this is an unnamed bitfield.
2906 bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2907
2908 /// Determines whether this field is a
2909 /// representative for an anonymous struct or union. Such fields are
2910 /// unnamed and are implicitly generated by the implementation to
2911 /// store the data for the anonymous union or struct.
2912 bool isAnonymousStructOrUnion() const;
2913
2914 Expr *getBitWidth() const {
2915 if (!BitField)
2916 return nullptr;
2917 void *Ptr = InitStorage.getPointer();
2918 if (getInClassInitStyle())
2919 return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2920 return static_cast<Expr*>(Ptr);
2921 }
2922
2923 unsigned getBitWidthValue(const ASTContext &Ctx) const;
2924
2925 /// Set the bit-field width for this member.
2926 // Note: used by some clients (i.e., do not remove it).
2927 void setBitWidth(Expr *Width) {
2928 assert(!hasCapturedVLAType() && !BitField &&((void)0)
2929 "bit width or captured type already set")((void)0);
2930 assert(Width && "no bit width specified")((void)0);
2931 InitStorage.setPointer(
2932 InitStorage.getInt()
2933 ? new (getASTContext())
2934 InitAndBitWidth{getInClassInitializer(), Width}
2935 : static_cast<void*>(Width));
2936 BitField = true;
2937 }
2938
2939 /// Remove the bit-field width from this member.
2940 // Note: used by some clients (i.e., do not remove it).
2941 void removeBitWidth() {
2942 assert(isBitField() && "no bitfield width to remove")((void)0);
2943 InitStorage.setPointer(getInClassInitializer());
2944 BitField = false;
2945 }
2946
2947 /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2948 /// at all and instead act as a separator between contiguous runs of other
2949 /// bit-fields.
2950 bool isZeroLengthBitField(const ASTContext &Ctx) const;
2951
2952 /// Determine if this field is a subobject of zero size, that is, either a
2953 /// zero-length bit-field or a field of empty class type with the
2954 /// [[no_unique_address]] attribute.
2955 bool isZeroSize(const ASTContext &Ctx) const;
2956
2957 /// Get the kind of (C++11) default member initializer that this field has.
2958 InClassInitStyle getInClassInitStyle() const {
2959 InitStorageKind storageKind = InitStorage.getInt();
2960 return (storageKind == ISK_CapturedVLAType
2961 ? ICIS_NoInit : (InClassInitStyle) storageKind);
2962 }
2963
2964 /// Determine whether this member has a C++11 default member initializer.
2965 bool hasInClassInitializer() const {
2966 return getInClassInitStyle() != ICIS_NoInit;
29
Assuming the condition is false
30
Returning zero, which participates in a condition later
2967 }
2968
2969 /// Get the C++11 default member initializer for this member, or null if one
2970 /// has not been set. If a valid declaration has a default member initializer,
2971 /// but this returns null, then we have not parsed and attached it yet.
2972 Expr *getInClassInitializer() const {
2973 if (!hasInClassInitializer())
28
Calling 'FieldDecl::hasInClassInitializer'
31
Returning from 'FieldDecl::hasInClassInitializer'
32
Taking true branch
2974 return nullptr;
33
Returning null pointer, which participates in a condition later
2975 void *Ptr = InitStorage.getPointer();
2976 if (BitField)
2977 return static_cast<InitAndBitWidth*>(Ptr)->Init;
2978 return static_cast<Expr*>(Ptr);
2979 }
2980
2981 /// Set the C++11 in-class initializer for this member.
2982 void setInClassInitializer(Expr *Init) {
2983 assert(hasInClassInitializer() && !getInClassInitializer())((void)0);
2984 if (BitField)
2985 static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2986 else
2987 InitStorage.setPointer(Init);
2988 }
2989
2990 /// Remove the C++11 in-class initializer from this member.
2991 void removeInClassInitializer() {
2992 assert(hasInClassInitializer() && "no initializer to remove")((void)0);
2993 InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
2994 }
2995
2996 /// Determine whether this member captures the variable length array
2997 /// type.
2998 bool hasCapturedVLAType() const {
2999 return InitStorage.getInt() == ISK_CapturedVLAType;
3000 }
3001
3002 /// Get the captured variable length array type.
3003 const VariableArrayType *getCapturedVLAType() const {
3004 return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
3005 InitStorage.getPointer())
3006 : nullptr;
3007 }
3008
3009 /// Set the captured variable length array type for this field.
3010 void setCapturedVLAType(const VariableArrayType *VLAType);
3011
3012 /// Returns the parent of this field declaration, which
3013 /// is the struct in which this field is defined.
3014 ///
3015 /// Returns null if this is not a normal class/struct field declaration, e.g.
3016 /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
3017 const RecordDecl *getParent() const {
3018 return dyn_cast<RecordDecl>(getDeclContext());
3019 }
3020
3021 RecordDecl *getParent() {
3022 return dyn_cast<RecordDecl>(getDeclContext());
3023 }
3024
3025 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3026
3027 /// Retrieves the canonical declaration of this field.
3028 FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3029 const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3030
3031 // Implement isa/cast/dyncast/etc.
3032 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3033 static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
3034};
3035
3036/// An instance of this object exists for each enum constant
3037/// that is defined. For example, in "enum X {a,b}", each of a/b are
3038/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
3039/// TagType for the X EnumDecl.
3040class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
3041 Stmt *Init; // an integer constant expression
3042 llvm::APSInt Val; // The value.
3043
3044protected:
3045 EnumConstantDecl(DeclContext *DC, SourceLocation L,
3046 IdentifierInfo *Id, QualType T, Expr *E,
3047 const llvm::APSInt &V)
3048 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
3049
3050public:
3051 friend class StmtIteratorBase;
3052
3053 static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
3054 SourceLocation L, IdentifierInfo *Id,
3055 QualType T, Expr *E,
3056 const llvm::APSInt &V);
3057 static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3058
3059 const Expr *getInitExpr() const { return (const Expr*) Init; }
3060 Expr *getInitExpr() { return (Expr*) Init; }
3061 const llvm::APSInt &getInitVal() const { return Val; }
3062
3063 void setInitExpr(Expr *E) { Init = (Stmt*) E; }
3064 void setInitVal(const llvm::APSInt &V) { Val = V; }
3065
3066 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3067
3068 /// Retrieves the canonical declaration of this enumerator.
3069 EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
3070 const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3071
3072 // Implement isa/cast/dyncast/etc.
3073 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3074 static bool classofKind(Kind K) { return K == EnumConstant; }
3075};
3076
3077/// Represents a field injected from an anonymous union/struct into the parent
3078/// scope. These are always implicit.
3079class IndirectFieldDecl : public ValueDecl,
3080 public Mergeable<IndirectFieldDecl> {
3081 NamedDecl **Chaining;
3082 unsigned ChainingSize;
3083
3084 IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
3085 DeclarationName N, QualType T,
3086 MutableArrayRef<NamedDecl *> CH);
3087
3088 void anchor() override;
3089
3090public:
3091 friend class ASTDeclReader;
3092
3093 static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3094 SourceLocation L, IdentifierInfo *Id,
3095 QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
3096
3097 static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3098
3099 using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3100
3101 ArrayRef<NamedDecl *> chain() const {
3102 return llvm::makeArrayRef(Chaining, ChainingSize);
3103 }
3104 chain_iterator chain_begin() const { return chain().begin(); }
3105 chain_iterator chain_end() const { return chain().end(); }
3106
3107 unsigned getChainingSize() const { return ChainingSize; }
3108
3109 FieldDecl *getAnonField() const {
3110 assert(chain().size() >= 2)((void)0);
3111 return cast<FieldDecl>(chain().back());
3112 }
3113
3114 VarDecl *getVarDecl() const {
3115 assert(chain().size() >= 2)((void)0);
3116 return dyn_cast<VarDecl>(chain().front());
3117 }
3118
3119 IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3120 const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3121
3122 // Implement isa/cast/dyncast/etc.
3123 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3124 static bool classofKind(Kind K) { return K == IndirectField; }
3125};
3126
3127/// Represents a declaration of a type.
3128class TypeDecl : public NamedDecl {
3129 friend class ASTContext;
3130
3131 /// This indicates the Type object that represents
3132 /// this TypeDecl. It is a cache maintained by
3133 /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3134 /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3135 mutable const Type *TypeForDecl = nullptr;
3136
3137 /// The start of the source range for this declaration.
3138 SourceLocation LocStart;
3139
3140 void anchor() override;
3141
3142protected:
3143 TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
3144 SourceLocation StartL = SourceLocation())
3145 : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3146
3147public:
3148 // Low-level accessor. If you just want the type defined by this node,
3149 // check out ASTContext::getTypeDeclType or one of
3150 // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3151 // already know the specific kind of node this is.
3152 const Type *getTypeForDecl() const { return TypeForDecl; }
3153 void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3154
3155 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
3156 void setLocStart(SourceLocation L) { LocStart = L; }
3157 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
3158 if (LocStart.isValid())
3159 return SourceRange(LocStart, getLocation());
3160 else
3161 return SourceRange(getLocation());
3162 }
3163
3164 // Implement isa/cast/dyncast/etc.
3165 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3166 static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3167};
3168
3169/// Base class for declarations which introduce a typedef-name.
3170class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3171 struct alignas(8) ModedTInfo {
3172 TypeSourceInfo *first;
3173 QualType second;
3174 };
3175
3176 /// If int part is 0, we have not computed IsTransparentTag.
3177 /// Otherwise, IsTransparentTag is (getInt() >> 1).
3178 mutable llvm::PointerIntPair<
3179 llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3180 MaybeModedTInfo;
3181
3182 void anchor() override;
3183
3184protected:
3185 TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3186 SourceLocation StartLoc, SourceLocation IdLoc,
3187 IdentifierInfo *Id, TypeSourceInfo *TInfo)
3188 : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3189 MaybeModedTInfo(TInfo, 0) {}
3190
3191 using redeclarable_base = Redeclarable<TypedefNameDecl>;
3192
3193 TypedefNameDecl *getNextRedeclarationImpl() override {
3194 return getNextRedeclaration();
3195 }
3196
3197 TypedefNameDecl *getPreviousDeclImpl() override {
3198 return getPreviousDecl();
3199 }
3200
3201 TypedefNameDecl *getMostRecentDeclImpl() override {
3202 return getMostRecentDecl();
3203 }
3204
3205public:
3206 using redecl_range = redeclarable_base::redecl_range;
3207 using redecl_iterator = redeclarable_base::redecl_iterator;
3208
3209 using redeclarable_base::redecls_begin;
3210 using redeclarable_base::redecls_end;
3211 using redeclarable_base::redecls;
3212 using redeclarable_base::getPreviousDecl;
3213 using redeclarable_base::getMostRecentDecl;
3214 using redeclarable_base::isFirstDecl;
3215
3216 bool isModed() const {
3217 return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3218 }
3219
3220 TypeSourceInfo *getTypeSourceInfo() const {
3221 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3222 : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3223 }
3224
3225 QualType getUnderlyingType() const {
3226 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3227 : MaybeModedTInfo.getPointer()
3228 .get<TypeSourceInfo *>()
3229 ->getType();
3230 }
3231
3232 void setTypeSourceInfo(TypeSourceInfo *newType) {
3233 MaybeModedTInfo.setPointer(newType);
3234 }
3235
3236 void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3237 MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3238 ModedTInfo({unmodedTSI, modedTy}));
3239 }
3240
3241 /// Retrieves the canonical declaration of this typedef-name.
3242 TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
3243 const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3244
3245 /// Retrieves the tag declaration for which this is the typedef name for
3246 /// linkage purposes, if any.
3247 ///
3248 /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3249 /// this typedef declaration.
3250 TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3251
3252 /// Determines if this typedef shares a name and spelling location with its
3253 /// underlying tag type, as is the case with the NS_ENUM macro.
3254 bool isTransparentTag() const {
3255 if (MaybeModedTInfo.getInt())
3256 return MaybeModedTInfo.getInt() & 0x2;
3257 return isTransparentTagSlow();
3258 }
3259
3260 // Implement isa/cast/dyncast/etc.
3261 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3262 static bool classofKind(Kind K) {
3263 return K >= firstTypedefName && K <= lastTypedefName;
3264 }
3265
3266private:
3267 bool isTransparentTagSlow() const;
3268};
3269
3270/// Represents the declaration of a typedef-name via the 'typedef'
3271/// type specifier.
3272class TypedefDecl : public TypedefNameDecl {
3273 TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3274 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3275 : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3276
3277public:
3278 static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3279 SourceLocation StartLoc, SourceLocation IdLoc,
3280 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3281 static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3282
3283 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3284
3285 // Implement isa/cast/dyncast/etc.
3286 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3287 static bool classofKind(Kind K) { return K == Typedef; }
3288};
3289
3290/// Represents the declaration of a typedef-name via a C++11
3291/// alias-declaration.
3292class TypeAliasDecl : public TypedefNameDecl {
3293 /// The template for which this is the pattern, if any.
3294 TypeAliasTemplateDecl *Template;
3295
3296 TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3297 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3298 : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3299 Template(nullptr) {}
3300
3301public:
3302 static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3303 SourceLocation StartLoc, SourceLocation IdLoc,
3304 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3305 static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3306
3307 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3308
3309 TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3310 void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3311
3312 // Implement isa/cast/dyncast/etc.
3313 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3314 static bool classofKind(Kind K) { return K == TypeAlias; }
3315};
3316
3317/// Represents the declaration of a struct/union/class/enum.
3318class TagDecl : public TypeDecl,
3319 public DeclContext,
3320 public Redeclarable<TagDecl> {
3321 // This class stores some data in DeclContext::TagDeclBits
3322 // to save some space. Use the provided accessors to access it.
3323public:
3324 // This is really ugly.
3325 using TagKind = TagTypeKind;
3326
3327private:
3328 SourceRange BraceRange;
3329
3330 // A struct representing syntactic qualifier info,
3331 // to be used for the (uncommon) case of out-of-line declarations.
3332 using ExtInfo = QualifierInfo;
3333
3334 /// If the (out-of-line) tag declaration name
3335 /// is qualified, it points to the qualifier info (nns and range);
3336 /// otherwise, if the tag declaration is anonymous and it is part of
3337 /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3338 /// otherwise, if the tag declaration is anonymous and it is used as a
3339 /// declaration specifier for variables, it points to the first VarDecl (used
3340 /// for mangling);
3341 /// otherwise, it is a null (TypedefNameDecl) pointer.
3342 llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3343
3344 bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3345 ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3346 const ExtInfo *getExtInfo() const {
3347 return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3348 }
3349
3350protected:
3351 TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3352 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3353 SourceLocation StartL);
3354
3355 using redeclarable_base = Redeclarable<TagDecl>;
3356
3357 TagDecl *getNextRedeclarationImpl() override {
3358 return getNextRedeclaration();
3359 }
3360
3361 TagDecl *getPreviousDeclImpl() override {
3362 return getPreviousDecl();
3363 }
3364
3365 TagDecl *getMostRecentDeclImpl() override {
3366 return getMostRecentDecl();
3367 }
3368
3369 /// Completes the definition of this tag declaration.
3370 ///
3371 /// This is a helper function for derived classes.
3372 void completeDefinition();
3373
3374 /// True if this decl is currently being defined.
3375 void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3376
3377 /// Indicates whether it is possible for declarations of this kind
3378 /// to have an out-of-date definition.
3379 ///
3380 /// This option is only enabled when modules are enabled.
3381 void setMayHaveOutOfDateDef(bool V = true) {
3382 TagDeclBits.MayHaveOutOfDateDef = V;
3383 }
3384
3385public:
3386 friend class ASTDeclReader;
3387 friend class ASTDeclWriter;
3388
3389 using redecl_range = redeclarable_base::redecl_range;
3390 using redecl_iterator = redeclarable_base::redecl_iterator;
3391
3392 using redeclarable_base::redecls_begin;
3393 using redeclarable_base::redecls_end;
3394 using redeclarable_base::redecls;
3395 using redeclarable_base::getPreviousDecl;
3396 using redeclarable_base::getMostRecentDecl;
3397 using redeclarable_base::isFirstDecl;
3398
3399 SourceRange getBraceRange() const { return BraceRange; }
3400 void setBraceRange(SourceRange R) { BraceRange = R; }
3401
3402 /// Return SourceLocation representing start of source
3403 /// range ignoring outer template declarations.
3404 SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3405
3406 /// Return SourceLocation representing start of source
3407 /// range taking into account any outer template declarations.
3408 SourceLocation getOuterLocStart() const;
3409 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3410
3411 TagDecl *getCanonicalDecl() override;
3412 const TagDecl *getCanonicalDecl() const {
3413 return const_cast<TagDecl*>(this)->getCanonicalDecl();
3414 }
3415
3416 /// Return true if this declaration is a completion definition of the type.
3417 /// Provided for consistency.
3418 bool isThisDeclarationADefinition() const {
3419 return isCompleteDefinition();
3420 }
3421
3422 /// Return true if this decl has its body fully specified.
3423 bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3424
3425 /// True if this decl has its body fully specified.
3426 void setCompleteDefinition(bool V = true) {
3427 TagDeclBits.IsCompleteDefinition = V;
3428 }
3429
3430 /// Return true if this complete decl is
3431 /// required to be complete for some existing use.
3432 bool isCompleteDefinitionRequired() const {
3433 return TagDeclBits.IsCompleteDefinitionRequired;
3434 }
3435
3436 /// True if this complete decl is
3437 /// required to be complete for some existing use.
3438 void setCompleteDefinitionRequired(bool V = true) {
3439 TagDeclBits.IsCompleteDefinitionRequired = V;
3440 }
3441
3442 /// Return true if this decl is currently being defined.
3443 bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3444
3445 /// True if this tag declaration is "embedded" (i.e., defined or declared
3446 /// for the very first time) in the syntax of a declarator.
3447 bool isEmbeddedInDeclarator() const {
3448 return TagDeclBits.IsEmbeddedInDeclarator;
3449 }
3450
3451 /// True if this tag declaration is "embedded" (i.e., defined or declared
3452 /// for the very first time) in the syntax of a declarator.
3453 void setEmbeddedInDeclarator(bool isInDeclarator) {
3454 TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3455 }
3456
3457 /// True if this tag is free standing, e.g. "struct foo;".
3458 bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3459
3460 /// True if this tag is free standing, e.g. "struct foo;".
3461 void setFreeStanding(bool isFreeStanding = true) {
3462 TagDeclBits.IsFreeStanding = isFreeStanding;
3463 }
3464
3465 /// Indicates whether it is possible for declarations of this kind
3466 /// to have an out-of-date definition.
3467 ///
3468 /// This option is only enabled when modules are enabled.
3469 bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3470
3471 /// Whether this declaration declares a type that is
3472 /// dependent, i.e., a type that somehow depends on template
3473 /// parameters.
3474 bool isDependentType() const { return isDependentContext(); }
3475
3476 /// Starts the definition of this tag declaration.
3477 ///
3478 /// This method should be invoked at the beginning of the definition
3479 /// of this tag declaration. It will set the tag type into a state
3480 /// where it is in the process of being defined.
3481 void startDefinition();
3482
3483 /// Returns the TagDecl that actually defines this
3484 /// struct/union/class/enum. When determining whether or not a
3485 /// struct/union/class/enum has a definition, one should use this
3486 /// method as opposed to 'isDefinition'. 'isDefinition' indicates
3487 /// whether or not a specific TagDecl is defining declaration, not
3488 /// whether or not the struct/union/class/enum type is defined.
3489 /// This method returns NULL if there is no TagDecl that defines
3490 /// the struct/union/class/enum.
3491 TagDecl *getDefinition() const;
3492
3493 StringRef getKindName() const {
3494 return TypeWithKeyword::getTagTypeKindName(getTagKind());
3495 }
3496
3497 TagKind getTagKind() const {
3498 return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3499 }
3500
3501 void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3502
3503 bool isStruct() const { return getTagKind() == TTK_Struct; }
3504 bool isInterface() const { return getTagKind() == TTK_Interface; }
3505 bool isClass() const { return getTagKind() == TTK_Class; }
3506 bool isUnion() const { return getTagKind() == TTK_Union; }
3507 bool isEnum() const { return getTagKind() == TTK_Enum; }
3508
3509 /// Is this tag type named, either directly or via being defined in
3510 /// a typedef of this type?
3511 ///
3512 /// C++11 [basic.link]p8:
3513 /// A type is said to have linkage if and only if:
3514 /// - it is a class or enumeration type that is named (or has a
3515 /// name for linkage purposes) and the name has linkage; ...
3516 /// C++11 [dcl.typedef]p9:
3517 /// If the typedef declaration defines an unnamed class (or enum),
3518 /// the first typedef-name declared by the declaration to be that
3519 /// class type (or enum type) is used to denote the class type (or
3520 /// enum type) for linkage purposes only.
3521 ///
3522 /// C does not have an analogous rule, but the same concept is
3523 /// nonetheless useful in some places.
3524 bool hasNameForLinkage() const {
3525 return (getDeclName() || getTypedefNameForAnonDecl());
3526 }
3527
3528 TypedefNameDecl *getTypedefNameForAnonDecl() const {
3529 return hasExtInfo() ? nullptr
3530 : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3531 }
3532
3533 void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3534
3535 /// Retrieve the nested-name-specifier that qualifies the name of this
3536 /// declaration, if it was present in the source.
3537 NestedNameSpecifier *getQualifier() const {
3538 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3539 : nullptr;
3540 }
3541
3542 /// Retrieve the nested-name-specifier (with source-location
3543 /// information) that qualifies the name of this declaration, if it was
3544 /// present in the source.
3545 NestedNameSpecifierLoc getQualifierLoc() const {
3546 return hasExtInfo() ? getExtInfo()->QualifierLoc
3547 : NestedNameSpecifierLoc();
3548 }
3549
3550 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3551
3552 unsigned getNumTemplateParameterLists() const {
3553 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3554 }
3555
3556 TemplateParameterList *getTemplateParameterList(unsigned i) const {
3557 assert(i < getNumTemplateParameterLists())((void)0);
3558 return getExtInfo()->TemplParamLists[i];
3559 }
3560
3561 void setTemplateParameterListsInfo(ASTContext &Context,
3562 ArrayRef<TemplateParameterList *> TPLists);
3563
3564 // Implement isa/cast/dyncast/etc.
3565 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3566 static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3567
3568 static DeclContext *castToDeclContext(const TagDecl *D) {
3569 return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3570 }
3571
3572 static TagDecl *castFromDeclContext(const DeclContext *DC) {
3573 return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3574 }
3575};
3576
3577/// Represents an enum. In C++11, enums can be forward-declared
3578/// with a fixed underlying type, and in C we allow them to be forward-declared
3579/// with no underlying type as an extension.
3580class EnumDecl : public TagDecl {
3581 // This class stores some data in DeclContext::EnumDeclBits
3582 // to save some space. Use the provided accessors to access it.
3583
3584 /// This represent the integer type that the enum corresponds
3585 /// to for code generation purposes. Note that the enumerator constants may
3586 /// have a different type than this does.
3587 ///
3588 /// If the underlying integer type was explicitly stated in the source
3589 /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3590 /// was automatically deduced somehow, and this is a Type*.
3591 ///
3592 /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3593 /// some cases it won't.
3594 ///
3595 /// The underlying type of an enumeration never has any qualifiers, so
3596 /// we can get away with just storing a raw Type*, and thus save an
3597 /// extra pointer when TypeSourceInfo is needed.
3598 llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3599
3600 /// The integer type that values of this type should
3601 /// promote to. In C, enumerators are generally of an integer type
3602 /// directly, but gcc-style large enumerators (and all enumerators
3603 /// in C++) are of the enum type instead.
3604 QualType PromotionType;
3605
3606 /// If this enumeration is an instantiation of a member enumeration
3607 /// of a class template specialization, this is the member specialization
3608 /// information.
3609 MemberSpecializationInfo *SpecializationInfo = nullptr;
3610
3611 /// Store the ODRHash after first calculation.
3612 /// The corresponding flag HasODRHash is in EnumDeclBits
3613 /// and can be accessed with the provided accessors.
3614 unsigned ODRHash;
3615
3616 EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3617 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3618 bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3619
3620 void anchor() override;
3621
3622 void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3623 TemplateSpecializationKind TSK);
3624
3625 /// Sets the width in bits required to store all the
3626 /// non-negative enumerators of this enum.
3627 void setNumPositiveBits(unsigned Num) {
3628 EnumDeclBits.NumPositiveBits = Num;
3629 assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount")((void)0);
3630 }
3631
3632 /// Returns the width in bits required to store all the
3633 /// negative enumerators of this enum. (see getNumNegativeBits)
3634 void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3635
3636public:
3637 /// True if this tag declaration is a scoped enumeration. Only
3638 /// possible in C++11 mode.
3639 void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3640
3641 /// If this tag declaration is a scoped enum,
3642 /// then this is true if the scoped enum was declared using the class
3643 /// tag, false if it was declared with the struct tag. No meaning is
3644 /// associated if this tag declaration is not a scoped enum.
3645 void setScopedUsingClassTag(bool ScopedUCT = true) {
3646 EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3647 }
3648
3649 /// True if this is an Objective-C, C++11, or
3650 /// Microsoft-style enumeration with a fixed underlying type.
3651 void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3652
3653private:
3654 /// True if a valid hash is stored in ODRHash.
3655 bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3656 void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3657
3658public:
3659 friend class ASTDeclReader;
3660
3661 EnumDecl *getCanonicalDecl() override {
3662 return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3663 }
3664 const EnumDecl *getCanonicalDecl() const {
3665 return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3666 }
3667
3668 EnumDecl *getPreviousDecl() {
3669 return cast_or_null<EnumDecl>(
3670 static_cast<TagDecl *>(this)->getPreviousDecl());
3671 }
3672 const EnumDecl *getPreviousDecl() const {
3673 return const_cast<EnumDecl*>(this)->getPreviousDecl();
3674 }
3675
3676 EnumDecl *getMostRecentDecl() {
3677 return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3678 }
3679 const EnumDecl *getMostRecentDecl() const {
3680 return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3681 }
3682
3683 EnumDecl *getDefinition() const {
3684 return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3685 }
3686
3687 static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3688 SourceLocation StartLoc, SourceLocation IdLoc,
3689 IdentifierInfo *Id, EnumDecl *PrevDecl,
3690 bool IsScoped, bool IsScopedUsingClassTag,
3691 bool IsFixed);
3692 static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3693
3694 /// When created, the EnumDecl corresponds to a
3695 /// forward-declared enum. This method is used to mark the
3696 /// declaration as being defined; its enumerators have already been
3697 /// added (via DeclContext::addDecl). NewType is the new underlying
3698 /// type of the enumeration type.
3699 void completeDefinition(QualType NewType,
3700 QualType PromotionType,
3701 unsigned NumPositiveBits,
3702 unsigned NumNegativeBits);
3703
3704 // Iterates through the enumerators of this enumeration.
3705 using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3706 using enumerator_range =
3707 llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3708
3709 enumerator_range enumerators() const {
3710 return enumerator_range(enumerator_begin(), enumerator_end());
3711 }
3712
3713 enumerator_iterator enumerator_begin() const {
3714 const EnumDecl *E = getDefinition();
3715 if (!E)
3716 E = this;
3717 return enumerator_iterator(E->decls_begin());
3718 }
3719
3720 enumerator_iterator enumerator_end() const {
3721 const EnumDecl *E = getDefinition();
3722 if (!E)
3723 E = this;
3724 return enumerator_iterator(E->decls_end());
3725 }
3726
3727 /// Return the integer type that enumerators should promote to.
3728 QualType getPromotionType() const { return PromotionType; }
3729
3730 /// Set the promotion type.
3731 void setPromotionType(QualType T) { PromotionType = T; }
3732
3733 /// Return the integer type this enum decl corresponds to.
3734 /// This returns a null QualType for an enum forward definition with no fixed
3735 /// underlying type.
3736 QualType getIntegerType() const {
3737 if (!IntegerType)
3738 return QualType();
3739 if (const Type *T = IntegerType.dyn_cast<const Type*>())
3740 return QualType(T, 0);
3741 return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3742 }
3743
3744 /// Set the underlying integer type.
3745 void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3746
3747 /// Set the underlying integer type source info.
3748 void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3749
3750 /// Return the type source info for the underlying integer type,
3751 /// if no type source info exists, return 0.
3752 TypeSourceInfo *getIntegerTypeSourceInfo() const {
3753 return IntegerType.dyn_cast<TypeSourceInfo*>();
3754 }
3755
3756 /// Retrieve the source range that covers the underlying type if
3757 /// specified.
3758 SourceRange getIntegerTypeRange() const LLVM_READONLY__attribute__((__pure__));
3759
3760 /// Returns the width in bits required to store all the
3761 /// non-negative enumerators of this enum.
3762 unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3763
3764 /// Returns the width in bits required to store all the
3765 /// negative enumerators of this enum. These widths include
3766 /// the rightmost leading 1; that is:
3767 ///
3768 /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
3769 /// ------------------------ ------- -----------------
3770 /// -1 1111111 1
3771 /// -10 1110110 5
3772 /// -101 1001011 8
3773 unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3774
3775 /// Returns true if this is a C++11 scoped enumeration.
3776 bool isScoped() const { return EnumDeclBits.IsScoped; }
3777
3778 /// Returns true if this is a C++11 scoped enumeration.
3779 bool isScopedUsingClassTag() const {
3780 return EnumDeclBits.IsScopedUsingClassTag;
3781 }
3782
3783 /// Returns true if this is an Objective-C, C++11, or
3784 /// Microsoft-style enumeration with a fixed underlying type.
3785 bool isFixed() const { return EnumDeclBits.IsFixed; }
3786
3787 unsigned getODRHash();
3788
3789 /// Returns true if this can be considered a complete type.
3790 bool isComplete() const {
3791 // IntegerType is set for fixed type enums and non-fixed but implicitly
3792 // int-sized Microsoft enums.
3793 return isCompleteDefinition() || IntegerType;
3794 }
3795
3796 /// Returns true if this enum is either annotated with
3797 /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3798 bool isClosed() const;
3799
3800 /// Returns true if this enum is annotated with flag_enum and isn't annotated
3801 /// with enum_extensibility(open).
3802 bool isClosedFlag() const;
3803
3804 /// Returns true if this enum is annotated with neither flag_enum nor
3805 /// enum_extensibility(open).
3806 bool isClosedNonFlag() const;
3807
3808 /// Retrieve the enum definition from which this enumeration could
3809 /// be instantiated, if it is an instantiation (rather than a non-template).
3810 EnumDecl *getTemplateInstantiationPattern() const;
3811
3812 /// Returns the enumeration (declared within the template)
3813 /// from which this enumeration type was instantiated, or NULL if
3814 /// this enumeration was not instantiated from any template.
3815 EnumDecl *getInstantiatedFromMemberEnum() const;
3816
3817 /// If this enumeration is a member of a specialization of a
3818 /// templated class, determine what kind of template specialization
3819 /// or instantiation this is.
3820 TemplateSpecializationKind getTemplateSpecializationKind() const;
3821
3822 /// For an enumeration member that was instantiated from a member
3823 /// enumeration of a templated class, set the template specialiation kind.
3824 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3825 SourceLocation PointOfInstantiation = SourceLocation());
3826
3827 /// If this enumeration is an instantiation of a member enumeration of
3828 /// a class template specialization, retrieves the member specialization
3829 /// information.
3830 MemberSpecializationInfo *getMemberSpecializationInfo() const {
3831 return SpecializationInfo;
3832 }
3833
3834 /// Specify that this enumeration is an instantiation of the
3835 /// member enumeration ED.
3836 void setInstantiationOfMemberEnum(EnumDecl *ED,
3837 TemplateSpecializationKind TSK) {
3838 setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3839 }
3840
3841 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3842 static bool classofKind(Kind K) { return K == Enum; }
3843};
3844
3845/// Represents a struct/union/class. For example:
3846/// struct X; // Forward declaration, no "body".
3847/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
3848/// This decl will be marked invalid if *any* members are invalid.
3849class RecordDecl : public TagDecl {
3850 // This class stores some data in DeclContext::RecordDeclBits
3851 // to save some space. Use the provided accessors to access it.
3852public:
3853 friend class DeclContext;
3854 /// Enum that represents the different ways arguments are passed to and
3855 /// returned from function calls. This takes into account the target-specific
3856 /// and version-specific rules along with the rules determined by the
3857 /// language.
3858 enum ArgPassingKind : unsigned {
3859 /// The argument of this type can be passed directly in registers.
3860 APK_CanPassInRegs,
3861
3862 /// The argument of this type cannot be passed directly in registers.
3863 /// Records containing this type as a subobject are not forced to be passed
3864 /// indirectly. This value is used only in C++. This value is required by
3865 /// C++ because, in uncommon situations, it is possible for a class to have
3866 /// only trivial copy/move constructors even when one of its subobjects has
3867 /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
3868 /// constructor in the derived class is deleted).
3869 APK_CannotPassInRegs,
3870
3871 /// The argument of this type cannot be passed directly in registers.
3872 /// Records containing this type as a subobject are forced to be passed
3873 /// indirectly.
3874 APK_CanNeverPassInRegs
3875 };
3876
3877protected:
3878 RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3879 SourceLocation StartLoc, SourceLocation IdLoc,
3880 IdentifierInfo *Id, RecordDecl *PrevDecl);
3881
3882public:
3883 static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3884 SourceLocation StartLoc, SourceLocation IdLoc,
3885 IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
3886 static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
3887
3888 RecordDecl *getPreviousDecl() {
3889 return cast_or_null<RecordDecl>(
3890 static_cast<TagDecl *>(this)->getPreviousDecl());
3891 }
3892 const RecordDecl *getPreviousDecl() const {
3893 return const_cast<RecordDecl*>(this)->getPreviousDecl();
3894 }
3895
3896 RecordDecl *getMostRecentDecl() {
3897 return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3898 }
3899 const RecordDecl *getMostRecentDecl() const {
3900 return const_cast<RecordDecl*>(this)->getMostRecentDecl();
3901 }
3902
3903 bool hasFlexibleArrayMember() const {
3904 return RecordDeclBits.HasFlexibleArrayMember;
3905 }
3906
3907 void setHasFlexibleArrayMember(bool V) {
3908 RecordDeclBits.HasFlexibleArrayMember = V;
3909 }
3910
3911 /// Whether this is an anonymous struct or union. To be an anonymous
3912 /// struct or union, it must have been declared without a name and
3913 /// there must be no objects of this type declared, e.g.,
3914 /// @code
3915 /// union { int i; float f; };
3916 /// @endcode
3917 /// is an anonymous union but neither of the following are:
3918 /// @code
3919 /// union X { int i; float f; };
3920 /// union { int i; float f; } obj;
3921 /// @endcode
3922 bool isAnonymousStructOrUnion() const {
3923 return RecordDeclBits.AnonymousStructOrUnion;
3924 }
3925
3926 void setAnonymousStructOrUnion(bool Anon) {
3927 RecordDeclBits.AnonymousStructOrUnion = Anon;
3928 }
3929
3930 bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
3931 void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
3932
3933 bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
3934
3935 void setHasVolatileMember(bool val) {
3936 RecordDeclBits.HasVolatileMember = val;
3937 }
3938
3939 bool hasLoadedFieldsFromExternalStorage() const {
3940 return RecordDeclBits.LoadedFieldsFromExternalStorage;
3941 }
3942
3943 void setHasLoadedFieldsFromExternalStorage(bool val) const {
3944 RecordDeclBits.LoadedFieldsFromExternalStorage = val;
3945 }
3946
3947 /// Functions to query basic properties of non-trivial C structs.
3948 bool isNonTrivialToPrimitiveDefaultInitialize() const {
3949 return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
3950 }
3951
3952 void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
3953 RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
3954 }
3955
3956 bool isNonTrivialToPrimitiveCopy() const {
3957 return RecordDeclBits.NonTrivialToPrimitiveCopy;
3958 }
3959
3960 void setNonTrivialToPrimitiveCopy(bool V) {
3961 RecordDeclBits.NonTrivialToPrimitiveCopy = V;
3962 }
3963
3964 bool isNonTrivialToPrimitiveDestroy() const {
3965 return RecordDeclBits.NonTrivialToPrimitiveDestroy;
3966 }
3967
3968 void setNonTrivialToPrimitiveDestroy(bool V) {
3969 RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
3970 }
3971
3972 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
3973 return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
3974 }
3975
3976 void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
3977 RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
3978 }
3979
3980 bool hasNonTrivialToPrimitiveDestructCUnion() const {
3981 return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
3982 }
3983
3984 void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
3985 RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
3986 }
3987
3988 bool hasNonTrivialToPrimitiveCopyCUnion() const {
3989 return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
3990 }
3991
3992 void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
3993 RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
3994 }
3995
3996 /// Determine whether this class can be passed in registers. In C++ mode,
3997 /// it must have at least one trivial, non-deleted copy or move constructor.
3998 /// FIXME: This should be set as part of completeDefinition.
3999 bool canPassInRegisters() const {
4000 return getArgPassingRestrictions() == APK_CanPassInRegs;
4001 }
4002
4003 ArgPassingKind getArgPassingRestrictions() const {
4004 return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
4005 }
4006
4007 void setArgPassingRestrictions(ArgPassingKind Kind) {
4008 RecordDeclBits.ArgPassingRestrictions = Kind;
4009 }
4010
4011 bool isParamDestroyedInCallee() const {
4012 return RecordDeclBits.ParamDestroyedInCallee;
4013 }
4014
4015 void setParamDestroyedInCallee(bool V) {
4016 RecordDeclBits.ParamDestroyedInCallee = V;
4017 }
4018
4019 /// Determines whether this declaration represents the
4020 /// injected class name.
4021 ///
4022 /// The injected class name in C++ is the name of the class that
4023 /// appears inside the class itself. For example:
4024 ///
4025 /// \code
4026 /// struct C {
4027 /// // C is implicitly declared here as a synonym for the class name.
4028 /// };
4029 ///
4030 /// C::C c; // same as "C c;"
4031 /// \endcode
4032 bool isInjectedClassName() const;
4033
4034 /// Determine whether this record is a class describing a lambda
4035 /// function object.
4036 bool isLambda() const;
4037
4038 /// Determine whether this record is a record for captured variables in
4039 /// CapturedStmt construct.
4040 bool isCapturedRecord() const;
4041
4042 /// Mark the record as a record for captured variables in CapturedStmt
4043 /// construct.
4044 void setCapturedRecord();
4045
4046 /// Returns the RecordDecl that actually defines
4047 /// this struct/union/class. When determining whether or not a
4048 /// struct/union/class is completely defined, one should use this
4049 /// method as opposed to 'isCompleteDefinition'.
4050 /// 'isCompleteDefinition' indicates whether or not a specific
4051 /// RecordDecl is a completed definition, not whether or not the
4052 /// record type is defined. This method returns NULL if there is
4053 /// no RecordDecl that defines the struct/union/tag.
4054 RecordDecl *getDefinition() const {
4055 return cast_or_null<RecordDecl>(TagDecl::getDefinition());
4056 }
4057
4058 /// Returns whether this record is a union, or contains (at any nesting level)
4059 /// a union member. This is used by CMSE to warn about possible information
4060 /// leaks.
4061 bool isOrContainsUnion() const;
4062
4063 // Iterator access to field members. The field iterator only visits
4064 // the non-static data members of this class, ignoring any static
4065 // data members, functions, constructors, destructors, etc.
4066 using field_iterator = specific_decl_iterator<FieldDecl>;
4067 using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
4068
4069 field_range fields() const { return field_range(field_begin(), field_end()); }
4070 field_iterator field_begin() const;
4071
4072 field_iterator field_end() const {
4073 return field_iterator(decl_iterator());
4074 }
4075
4076 // Whether there are any fields (non-static data members) in this record.
4077 bool field_empty() const {
4078 return field_begin() == field_end();
4079 }
4080
4081 /// Note that the definition of this type is now complete.
4082 virtual void completeDefinition();
4083
4084 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4085 static bool classofKind(Kind K) {
4086 return K >= firstRecord && K <= lastRecord;
4087 }
4088
4089 /// Get whether or not this is an ms_struct which can
4090 /// be turned on with an attribute, pragma, or -mms-bitfields
4091 /// commandline option.
4092 bool isMsStruct(const ASTContext &C) const;
4093
4094 /// Whether we are allowed to insert extra padding between fields.
4095 /// These padding are added to help AddressSanitizer detect
4096 /// intra-object-overflow bugs.
4097 bool mayInsertExtraPadding(bool EmitRemark = false) const;
4098
4099 /// Finds the first data member which has a name.
4100 /// nullptr is returned if no named data member exists.
4101 const FieldDecl *findFirstNamedDataMember() const;
4102
4103private:
4104 /// Deserialize just the fields.
4105 void LoadFieldsFromExternalStorage() const;
4106};
4107
4108class FileScopeAsmDecl : public Decl {
4109 StringLiteral *AsmString;
4110 SourceLocation RParenLoc;
4111
4112 FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4113 SourceLocation StartL, SourceLocation EndL)
4114 : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4115
4116 virtual void anchor();
4117
4118public:
4119 static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
4120 StringLiteral *Str, SourceLocation AsmLoc,
4121 SourceLocation RParenLoc);
4122
4123 static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4124
4125 SourceLocation getAsmLoc() const { return getLocation(); }
4126 SourceLocation getRParenLoc() const { return RParenLoc; }
4127 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4128 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
4129 return SourceRange(getAsmLoc(), getRParenLoc());
4130 }
4131
4132 const StringLiteral *getAsmString() const { return AsmString; }
4133 StringLiteral *getAsmString() { return AsmString; }
4134 void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4135
4136 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4137 static bool classofKind(Kind K) { return K == FileScopeAsm; }
4138};
4139
4140/// Represents a block literal declaration, which is like an
4141/// unnamed FunctionDecl. For example:
4142/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
4143class BlockDecl : public Decl, public DeclContext {
4144 // This class stores some data in DeclContext::BlockDeclBits
4145 // to save some space. Use the provided accessors to access it.
4146public:
4147 /// A class which contains all the information about a particular
4148 /// captured value.
4149 class Capture {
4150 enum {
4151 flag_isByRef = 0x1,
4152 flag_isNested = 0x2
4153 };
4154
4155 /// The variable being captured.
4156 llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4157
4158 /// The copy expression, expressed in terms of a DeclRef (or
4159 /// BlockDeclRef) to the captured variable. Only required if the
4160 /// variable has a C++ class type.
4161 Expr *CopyExpr;
4162
4163 public:
4164 Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4165 : VariableAndFlags(variable,
4166 (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4167 CopyExpr(copy) {}
4168
4169 /// The variable being captured.
4170 VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4171
4172 /// Whether this is a "by ref" capture, i.e. a capture of a __block
4173 /// variable.
4174 bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4175
4176 bool isEscapingByref() const {
4177 return getVariable()->isEscapingByref();
4178 }
4179
4180 bool isNonEscapingByref() const {
4181 return getVariable()->isNonEscapingByref();
4182 }
4183
4184 /// Whether this is a nested capture, i.e. the variable captured
4185 /// is not from outside the immediately enclosing function/block.
4186 bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4187
4188 bool hasCopyExpr() const { return CopyExpr != nullptr; }
4189 Expr *getCopyExpr() const { return CopyExpr; }
4190 void setCopyExpr(Expr *e) { CopyExpr = e; }
4191 };
4192
4193private:
4194 /// A new[]'d array of pointers to ParmVarDecls for the formal
4195 /// parameters of this function. This is null if a prototype or if there are
4196 /// no formals.
4197 ParmVarDecl **ParamInfo = nullptr;
4198 unsigned NumParams = 0;
4199
4200 Stmt *Body = nullptr;
4201 TypeSourceInfo *SignatureAsWritten = nullptr;
4202
4203 const Capture *Captures = nullptr;
4204 unsigned NumCaptures = 0;
4205
4206 unsigned ManglingNumber = 0;
4207 Decl *ManglingContextDecl = nullptr;
4208
4209protected:
4210 BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4211
4212public:
4213 static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4214 static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4215
4216 SourceLocation getCaretLocation() const { return getLocation(); }
4217
4218 bool isVariadic() const { return BlockDeclBits.IsVariadic; }
4219 void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4220
4221 CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
4222 Stmt *getBody() const override { return (Stmt*) Body; }
4223 void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4224
4225 void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
4226 TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4227
4228 // ArrayRef access to formal parameters.
4229 ArrayRef<ParmVarDecl *> parameters() const {
4230 return {ParamInfo, getNumParams()};
4231 }
4232 MutableArrayRef<ParmVarDecl *> parameters() {
4233 return {ParamInfo, getNumParams()};
4234 }
4235
4236 // Iterator access to formal parameters.
4237 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4238 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4239
4240 bool param_empty() const { return parameters().empty(); }
4241 param_iterator param_begin() { return parameters().begin(); }
4242 param_iterator param_end() { return parameters().end(); }
4243 param_const_iterator param_begin() const { return parameters().begin(); }
4244 param_const_iterator param_end() const { return parameters().end(); }
4245 size_t param_size() const { return parameters().size(); }
4246
4247 unsigned getNumParams() const { return NumParams; }
4248
4249 const ParmVarDecl *getParamDecl(unsigned i) const {
4250 assert(i < getNumParams() && "Illegal param #")((void)0);
4251 return ParamInfo[i];
4252 }
4253 ParmVarDecl *getParamDecl(unsigned i) {
4254 assert(i < getNumParams() && "Illegal param #")((void)0);
4255 return ParamInfo[i];
4256 }
4257
4258 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4259
4260 /// True if this block (or its nested blocks) captures
4261 /// anything of local storage from its enclosing scopes.
4262 bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4263
4264 /// Returns the number of captured variables.
4265 /// Does not include an entry for 'this'.
4266 unsigned getNumCaptures() const { return NumCaptures; }
4267
4268 using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4269
4270 ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4271
4272 capture_const_iterator capture_begin() const { return captures().begin(); }
4273 capture_const_iterator capture_end() const { return captures().end(); }
4274
4275 bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4276 void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4277
4278 bool blockMissingReturnType() const {
4279 return BlockDeclBits.BlockMissingReturnType;
4280 }
4281
4282 void setBlockMissingReturnType(bool val = true) {
4283 BlockDeclBits.BlockMissingReturnType = val;
4284 }
4285
4286 bool isConversionFromLambda() const {
4287 return BlockDeclBits.IsConversionFromLambda;
4288 }
4289
4290 void setIsConversionFromLambda(bool val = true) {
4291 BlockDeclBits.IsConversionFromLambda = val;
4292 }
4293
4294 bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4295 void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4296
4297 bool canAvoidCopyToHeap() const {
4298 return BlockDeclBits.CanAvoidCopyToHeap;
4299 }
4300 void setCanAvoidCopyToHeap(bool B = true) {
4301 BlockDeclBits.CanAvoidCopyToHeap = B;
4302 }
4303
4304 bool capturesVariable(const VarDecl *var) const;
4305
4306 void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4307 bool CapturesCXXThis);
4308
4309 unsigned getBlockManglingNumber() const { return ManglingNumber; }
4310
4311 Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4312
4313 void setBlockMangling(unsigned Number, Decl *Ctx) {
4314 ManglingNumber = Number;
4315 ManglingContextDecl = Ctx;
4316 }
4317
4318 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4319
4320 // Implement isa/cast/dyncast/etc.
4321 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4322 static bool classofKind(Kind K) { return K == Block; }
4323 static DeclContext *castToDeclContext(const BlockDecl *D) {
4324 return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4325 }
4326 static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4327 return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4328 }
4329};
4330
4331/// Represents the body of a CapturedStmt, and serves as its DeclContext.
4332class CapturedDecl final
4333 : public Decl,
4334 public DeclContext,
4335 private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4336protected:
4337 size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4338 return NumParams;
4339 }
4340
4341private:
4342 /// The number of parameters to the outlined function.
4343 unsigned NumParams;
4344
4345 /// The position of context parameter in list of parameters.
4346 unsigned ContextParam;
4347
4348 /// The body of the outlined function.
4349 llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4350
4351 explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4352
4353 ImplicitParamDecl *const *getParams() const {
4354 return getTrailingObjects<ImplicitParamDecl *>();
4355 }
4356
4357 ImplicitParamDecl **getParams() {
4358 return getTrailingObjects<ImplicitParamDecl *>();
4359 }
4360
4361public:
4362 friend class ASTDeclReader;
4363 friend class ASTDeclWriter;
4364 friend TrailingObjects;
4365
4366 static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4367 unsigned NumParams);
4368 static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4369 unsigned NumParams);
4370
4371 Stmt *getBody() const override;
4372 void setBody(Stmt *B);
4373
4374 bool isNothrow() const;
4375 void setNothrow(bool Nothrow = true);
4376
4377 unsigned getNumParams() const { return NumParams; }
4378
4379 ImplicitParamDecl *getParam(unsigned i) const {
4380 assert(i < NumParams)((void)0);
4381 return getParams()[i];
4382 }
4383 void setParam(unsigned i, ImplicitParamDecl *P) {
4384 assert(i < NumParams)((void)0);
4385 getParams()[i] = P;
4386 }
4387
4388 // ArrayRef interface to parameters.
4389 ArrayRef<ImplicitParamDecl *> parameters() const {
4390 return {getParams(), getNumParams()};
4391 }
4392 MutableArrayRef<ImplicitParamDecl *> parameters() {
4393 return {getParams(), getNumParams()};
4394 }
4395
4396 /// Retrieve the parameter containing captured variables.
4397 ImplicitParamDecl *getContextParam() const {
4398 assert(ContextParam < NumParams)((void)0);
4399 return getParam(ContextParam);
4400 }
4401 void setContextParam(unsigned i, ImplicitParamDecl *P) {
4402 assert(i < NumParams)((void)0);
4403 ContextParam = i;
4404 setParam(i, P);
4405 }
4406 unsigned getContextParamPosition() const { return ContextParam; }
4407
4408 using param_iterator = ImplicitParamDecl *const *;
4409 using param_range = llvm::iterator_range<param_iterator>;
4410
4411 /// Retrieve an iterator pointing to the first parameter decl.
4412 param_iterator param_begin() const { return getParams(); }
4413 /// Retrieve an iterator one past the last parameter decl.
4414 param_iterator param_end() const { return getParams() + NumParams; }
4415
4416 // Implement isa/cast/dyncast/etc.
4417 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4418 static bool classofKind(Kind K) { return K == Captured; }
4419 static DeclContext *castToDeclContext(const CapturedDecl *D) {
4420 return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4421 }
4422 static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4423 return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4424 }
4425};
4426
4427/// Describes a module import declaration, which makes the contents
4428/// of the named module visible in the current translation unit.
4429///
4430/// An import declaration imports the named module (or submodule). For example:
4431/// \code
4432/// @import std.vector;
4433/// \endcode
4434///
4435/// Import declarations can also be implicitly generated from
4436/// \#include/\#import directives.
4437class ImportDecl final : public Decl,
4438 llvm::TrailingObjects<ImportDecl, SourceLocation> {
4439 friend class ASTContext;
4440 friend class ASTDeclReader;
4441 friend class ASTReader;
4442 friend TrailingObjects;
4443
4444 /// The imported module.
4445 Module *ImportedModule = nullptr;
4446
4447 /// The next import in the list of imports local to the translation
4448 /// unit being parsed (not loaded from an AST file).
4449 ///
4450 /// Includes a bit that indicates whether we have source-location information
4451 /// for each identifier in the module name.
4452 ///
4453 /// When the bit is false, we only have a single source location for the
4454 /// end of the import declaration.
4455 llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
4456
4457 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4458 ArrayRef<SourceLocation> IdentifierLocs);
4459
4460 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4461 SourceLocation EndLoc);
4462
4463 ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4464
4465 bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
4466
4467 void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
4468
4469 /// The next import in the list of imports local to the translation
4470 /// unit being parsed (not loaded from an AST file).
4471 ImportDecl *getNextLocalImport() const {
4472 return NextLocalImportAndComplete.getPointer();
4473 }
4474
4475 void setNextLocalImport(ImportDecl *Import) {
4476 NextLocalImportAndComplete.setPointer(Import);
4477 }
4478
4479public:
4480 /// Create a new module import declaration.
4481 static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4482 SourceLocation StartLoc, Module *Imported,
4483 ArrayRef<SourceLocation> IdentifierLocs);
4484
4485 /// Create a new module import declaration for an implicitly-generated
4486 /// import.
4487 static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4488 SourceLocation StartLoc, Module *Imported,
4489 SourceLocation EndLoc);
4490
4491 /// Create a new, deserialized module import declaration.
4492 static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4493 unsigned NumLocations);
4494
4495 /// Retrieve the module that was imported by the import declaration.
4496 Module *getImportedModule() const { return ImportedModule; }
4497
4498 /// Retrieves the locations of each of the identifiers that make up
4499 /// the complete module name in the import declaration.
4500 ///
4501 /// This will return an empty array if the locations of the individual
4502 /// identifiers aren't available.
4503 ArrayRef<SourceLocation> getIdentifierLocs() const;
4504
4505 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4506
4507 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4508 static bool classofKind(Kind K) { return K == Import; }
4509};
4510
4511/// Represents a C++ Modules TS module export declaration.
4512///
4513/// For example:
4514/// \code
4515/// export void foo();
4516/// \endcode
4517class ExportDecl final : public Decl, public DeclContext {
4518 virtual void anchor();
4519
4520private:
4521 friend class ASTDeclReader;
4522
4523 /// The source location for the right brace (if valid).
4524 SourceLocation RBraceLoc;
4525
4526 ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4527 : Decl(Export, DC, ExportLoc), DeclContext(Export),
4528 RBraceLoc(SourceLocation()) {}
4529
4530public:
4531 static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4532 SourceLocation ExportLoc);
4533 static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4534
4535 SourceLocation getExportLoc() const { return getLocation(); }
4536 SourceLocation getRBraceLoc() const { return RBraceLoc; }
4537 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4538
4539 bool hasBraces() const { return RBraceLoc.isValid(); }
4540
4541 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4542 if (hasBraces())
4543 return RBraceLoc;
4544 // No braces: get the end location of the (only) declaration in context
4545 // (if present).
4546 return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4547 }
4548
4549 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
4550 return SourceRange(getLocation(), getEndLoc());
4551 }
4552
4553 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4554 static bool classofKind(Kind K) { return K == Export; }
4555 static DeclContext *castToDeclContext(const ExportDecl *D) {
4556 return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4557 }
4558 static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4559 return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4560 }
4561};
4562
4563/// Represents an empty-declaration.
4564class EmptyDecl : public Decl {
4565 EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4566
4567 virtual void anchor();
4568
4569public:
4570 static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4571 SourceLocation L);
4572 static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4573
4574 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4575 static bool classofKind(Kind K) { return K == Empty; }
4576};
4577
4578/// Insertion operator for diagnostics. This allows sending NamedDecl's
4579/// into a diagnostic with <<.
4580inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
4581 const NamedDecl *ND) {
4582 PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4583 DiagnosticsEngine::ak_nameddecl);
4584 return PD;
4585}
4586
4587template<typename decl_type>
4588void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4589 // Note: This routine is implemented here because we need both NamedDecl
4590 // and Redeclarable to be defined.
4591 assert(RedeclLink.isFirst() &&((void)0)
4592 "setPreviousDecl on a decl already in a redeclaration chain")((void)0);
4593
4594 if (PrevDecl) {
4595 // Point to previous. Make sure that this is actually the most recent
4596 // redeclaration, or we can build invalid chains. If the most recent
4597 // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4598 First = PrevDecl->getFirstDecl();
4599 assert(First->RedeclLink.isFirst() && "Expected first")((void)0);
4600 decl_type *MostRecent = First->getNextRedeclaration();
4601 RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4602
4603 // If the declaration was previously visible, a redeclaration of it remains
4604 // visible even if it wouldn't be visible by itself.
4605 static_cast<decl_type*>(this)->IdentifierNamespace |=
4606 MostRecent->getIdentifierNamespace() &
4607 (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4608 } else {
4609 // Make this first.
4610 First = static_cast<decl_type*>(this);
4611 }
4612
4613 // First one will point to this one as latest.
4614 First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4615
4616 assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||((void)0)
4617 cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid())((void)0);
4618}
4619
4620// Inline function definitions.
4621
4622/// Check if the given decl is complete.
4623///
4624/// We use this function to break a cycle between the inline definitions in
4625/// Type.h and Decl.h.
4626inline bool IsEnumDeclComplete(EnumDecl *ED) {
4627 return ED->isComplete();
4628}
4629
4630/// Check if the given decl is scoped.
4631///
4632/// We use this function to break a cycle between the inline definitions in
4633/// Type.h and Decl.h.
4634inline bool IsEnumDeclScoped(EnumDecl *ED) {
4635 return ED->isScoped();
4636}
4637
4638/// OpenMP variants are mangled early based on their OpenMP context selector.
4639/// The new name looks likes this:
4640/// <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
4641static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
4642 return "$ompvariant";
4643}
4644
4645} // namespace clang
4646
4647#endif // LLVM_CLANG_AST_DECL_H

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/Basic/Specifiers.h

1//===--- Specifiers.h - Declaration and Type Specifiers ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Defines various enumerations that describe declaration and
11/// type specifiers.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_BASIC_SPECIFIERS_H
16#define LLVM_CLANG_BASIC_SPECIFIERS_H
17
18#include "llvm/ADT/StringRef.h"
19#include "llvm/Support/DataTypes.h"
20#include "llvm/Support/ErrorHandling.h"
21
22namespace clang {
23
24 /// Define the meaning of possible values of the kind in ExplicitSpecifier.
25 enum class ExplicitSpecKind : unsigned {
26 ResolvedFalse,
27 ResolvedTrue,
28 Unresolved,
29 };
30
31 /// Define the kind of constexpr specifier.
32 enum class ConstexprSpecKind { Unspecified, Constexpr, Consteval, Constinit };
33
34 /// Specifies the width of a type, e.g., short, long, or long long.
35 enum class TypeSpecifierWidth { Unspecified, Short, Long, LongLong };
36
37 /// Specifies the signedness of a type, e.g., signed or unsigned.
38 enum class TypeSpecifierSign { Unspecified, Signed, Unsigned };
39
40 enum class TypeSpecifiersPipe { Unspecified, Pipe };
41
42 /// Specifies the kind of type.
43 enum TypeSpecifierType {
44 TST_unspecified,
45 TST_void,
46 TST_char,
47 TST_wchar, // C++ wchar_t
48 TST_char8, // C++20 char8_t (proposed)
49 TST_char16, // C++11 char16_t
50 TST_char32, // C++11 char32_t
51 TST_int,
52 TST_int128,
53 TST_extint, // Extended Int types.
54 TST_half, // OpenCL half, ARM NEON __fp16
55 TST_Float16, // C11 extension ISO/IEC TS 18661-3
56 TST_Accum, // ISO/IEC JTC1 SC22 WG14 N1169 Extension
57 TST_Fract,
58 TST_BFloat16,
59 TST_float,
60 TST_double,
61 TST_float128,
62 TST_bool, // _Bool
63 TST_decimal32, // _Decimal32
64 TST_decimal64, // _Decimal64
65 TST_decimal128, // _Decimal128
66 TST_enum,
67 TST_union,
68 TST_struct,
69 TST_class, // C++ class type
70 TST_interface, // C++ (Microsoft-specific) __interface type
71 TST_typename, // Typedef, C++ class-name or enum name, etc.
72 TST_typeofType,
73 TST_typeofExpr,
74 TST_decltype, // C++11 decltype
75 TST_underlyingType, // __underlying_type for C++11
76 TST_auto, // C++11 auto
77 TST_decltype_auto, // C++1y decltype(auto)
78 TST_auto_type, // __auto_type extension
79 TST_unknown_anytype, // __unknown_anytype extension
80 TST_atomic, // C11 _Atomic
81#define GENERIC_IMAGE_TYPE(ImgType, Id) TST_##ImgType##_t, // OpenCL image types
82#include "clang/Basic/OpenCLImageTypes.def"
83 TST_error // erroneous type
84 };
85
86 /// Structure that packs information about the type specifiers that
87 /// were written in a particular type specifier sequence.
88 struct WrittenBuiltinSpecs {
89 static_assert(TST_error < 1 << 6, "Type bitfield not wide enough for TST");
90 /*DeclSpec::TST*/ unsigned Type : 6;
91 /*DeclSpec::TSS*/ unsigned Sign : 2;
92 /*TypeSpecifierWidth*/ unsigned Width : 2;
93 unsigned ModeAttr : 1;
94 };
95
96 /// A C++ access specifier (public, private, protected), plus the
97 /// special value "none" which means different things in different contexts.
98 enum AccessSpecifier {
99 AS_public,
100 AS_protected,
101 AS_private,
102 AS_none
103 };
104
105 /// The categorization of expression values, currently following the
106 /// C++11 scheme.
107 enum ExprValueKind {
108 /// A pr-value expression (in the C++11 taxonomy)
109 /// produces a temporary value.
110 VK_PRValue,
111
112 /// An l-value expression is a reference to an object with
113 /// independent storage.
114 VK_LValue,
115
116 /// An x-value expression is a reference to an object with
117 /// independent storage but which can be "moved", i.e.
118 /// efficiently cannibalized for its resources.
119 VK_XValue
120 };
121
122 /// A further classification of the kind of object referenced by an
123 /// l-value or x-value.
124 enum ExprObjectKind {
125 /// An ordinary object is located at an address in memory.
126 OK_Ordinary,
127
128 /// A bitfield object is a bitfield on a C or C++ record.
129 OK_BitField,
130
131 /// A vector component is an element or range of elements on a vector.
132 OK_VectorComponent,
133
134 /// An Objective-C property is a logical field of an Objective-C
135 /// object which is read and written via Objective-C method calls.
136 OK_ObjCProperty,
137
138 /// An Objective-C array/dictionary subscripting which reads an
139 /// object or writes at the subscripted array/dictionary element via
140 /// Objective-C method calls.
141 OK_ObjCSubscript,
142
143 /// A matrix component is a single element of a matrix.
144 OK_MatrixComponent
145 };
146
147 /// The reason why a DeclRefExpr does not constitute an odr-use.
148 enum NonOdrUseReason {
149 /// This is an odr-use.
150 NOUR_None = 0,
151 /// This name appears in an unevaluated operand.
152 NOUR_Unevaluated,
153 /// This name appears as a potential result of an lvalue-to-rvalue
154 /// conversion that is a constant expression.
155 NOUR_Constant,
156 /// This name appears as a potential result of a discarded value
157 /// expression.
158 NOUR_Discarded,
159 };
160
161 /// Describes the kind of template specialization that a
162 /// particular template specialization declaration represents.
163 enum TemplateSpecializationKind {
164 /// This template specialization was formed from a template-id but
165 /// has not yet been declared, defined, or instantiated.
166 TSK_Undeclared = 0,
167 /// This template specialization was implicitly instantiated from a
168 /// template. (C++ [temp.inst]).
169 TSK_ImplicitInstantiation,
170 /// This template specialization was declared or defined by an
171 /// explicit specialization (C++ [temp.expl.spec]) or partial
172 /// specialization (C++ [temp.class.spec]).
173 TSK_ExplicitSpecialization,
174 /// This template specialization was instantiated from a template
175 /// due to an explicit instantiation declaration request
176 /// (C++11 [temp.explicit]).
177 TSK_ExplicitInstantiationDeclaration,
178 /// This template specialization was instantiated from a template
179 /// due to an explicit instantiation definition request
180 /// (C++ [temp.explicit]).
181 TSK_ExplicitInstantiationDefinition
182 };
183
184 /// Determine whether this template specialization kind refers
185 /// to an instantiation of an entity (as opposed to a non-template or
186 /// an explicit specialization).
187 inline bool isTemplateInstantiation(TemplateSpecializationKind Kind) {
188 return Kind != TSK_Undeclared && Kind != TSK_ExplicitSpecialization;
39
Assuming 'Kind' is not equal to TSK_Undeclared
40
Assuming 'Kind' is not equal to TSK_ExplicitSpecialization
41
Returning the value 1, which participates in a condition later
189 }
190
191 /// True if this template specialization kind is an explicit
192 /// specialization, explicit instantiation declaration, or explicit
193 /// instantiation definition.
194 inline bool isTemplateExplicitInstantiationOrSpecialization(
195 TemplateSpecializationKind Kind) {
196 switch (Kind) {
197 case TSK_ExplicitSpecialization:
198 case TSK_ExplicitInstantiationDeclaration:
199 case TSK_ExplicitInstantiationDefinition:
200 return true;
201
202 case TSK_Undeclared:
203 case TSK_ImplicitInstantiation:
204 return false;
205 }
206 llvm_unreachable("bad template specialization kind")__builtin_unreachable();
207 }
208
209 /// Thread storage-class-specifier.
210 enum ThreadStorageClassSpecifier {
211 TSCS_unspecified,
212 /// GNU __thread.
213 TSCS___thread,
214 /// C++11 thread_local. Implies 'static' at block scope, but not at
215 /// class scope.
216 TSCS_thread_local,
217 /// C11 _Thread_local. Must be combined with either 'static' or 'extern'
218 /// if used at block scope.
219 TSCS__Thread_local
220 };
221
222 /// Storage classes.
223 enum StorageClass {
224 // These are legal on both functions and variables.
225 SC_None,
226 SC_Extern,
227 SC_Static,
228 SC_PrivateExtern,
229
230 // These are only legal on variables.
231 SC_Auto,
232 SC_Register
233 };
234
235 /// Checks whether the given storage class is legal for functions.
236 inline bool isLegalForFunction(StorageClass SC) {
237 return SC <= SC_PrivateExtern;
238 }
239
240 /// Checks whether the given storage class is legal for variables.
241 inline bool isLegalForVariable(StorageClass SC) {
242 return true;
243 }
244
245 /// In-class initialization styles for non-static data members.
246 enum InClassInitStyle {
247 ICIS_NoInit, ///< No in-class initializer.
248 ICIS_CopyInit, ///< Copy initialization.
249 ICIS_ListInit ///< Direct list-initialization.
250 };
251
252 /// CallingConv - Specifies the calling convention that a function uses.
253 enum CallingConv {
254 CC_C, // __attribute__((cdecl))
255 CC_X86StdCall, // __attribute__((stdcall))
256 CC_X86FastCall, // __attribute__((fastcall))
257 CC_X86ThisCall, // __attribute__((thiscall))
258 CC_X86VectorCall, // __attribute__((vectorcall))
259 CC_X86Pascal, // __attribute__((pascal))
260 CC_Win64, // __attribute__((ms_abi))
261 CC_X86_64SysV, // __attribute__((sysv_abi))
262 CC_X86RegCall, // __attribute__((regcall))
263 CC_AAPCS, // __attribute__((pcs("aapcs")))
264 CC_AAPCS_VFP, // __attribute__((pcs("aapcs-vfp")))
265 CC_IntelOclBicc, // __attribute__((intel_ocl_bicc))
266 CC_SpirFunction, // default for OpenCL functions on SPIR target
267 CC_OpenCLKernel, // inferred for OpenCL kernels
268 CC_Swift, // __attribute__((swiftcall))
269 CC_SwiftAsync, // __attribute__((swiftasynccall))
270 CC_PreserveMost, // __attribute__((preserve_most))
271 CC_PreserveAll, // __attribute__((preserve_all))
272 CC_AArch64VectorCall, // __attribute__((aarch64_vector_pcs))
273 };
274
275 /// Checks whether the given calling convention supports variadic
276 /// calls. Unprototyped calls also use the variadic call rules.
277 inline bool supportsVariadicCall(CallingConv CC) {
278 switch (CC) {
279 case CC_X86StdCall:
280 case CC_X86FastCall:
281 case CC_X86ThisCall:
282 case CC_X86RegCall:
283 case CC_X86Pascal:
284 case CC_X86VectorCall:
285 case CC_SpirFunction:
286 case CC_OpenCLKernel:
287 case CC_Swift:
288 case CC_SwiftAsync:
289 return false;
290 default:
291 return true;
292 }
293 }
294
295 /// The storage duration for an object (per C++ [basic.stc]).
296 enum StorageDuration {
297 SD_FullExpression, ///< Full-expression storage duration (for temporaries).
298 SD_Automatic, ///< Automatic storage duration (most local variables).
299 SD_Thread, ///< Thread storage duration.
300 SD_Static, ///< Static storage duration.
301 SD_Dynamic ///< Dynamic storage duration.
302 };
303
304 /// Describes the nullability of a particular type.
305 enum class NullabilityKind : uint8_t {
306 /// Values of this type can never be null.
307 NonNull = 0,
308 /// Values of this type can be null.
309 Nullable,
310 /// Whether values of this type can be null is (explicitly)
311 /// unspecified. This captures a (fairly rare) case where we
312 /// can't conclude anything about the nullability of the type even
313 /// though it has been considered.
314 Unspecified,
315 // Generally behaves like Nullable, except when used in a block parameter
316 // that was imported into a swift async method. There, swift will assume
317 // that the parameter can get null even if no error occured. _Nullable
318 // parameters are assumed to only get null on error.
319 NullableResult,
320 };
321
322 /// Return true if \p L has a weaker nullability annotation than \p R. The
323 /// ordering is: Unspecified < Nullable < NonNull.
324 inline bool hasWeakerNullability(NullabilityKind L, NullabilityKind R) {
325 return uint8_t(L) > uint8_t(R);
326 }
327
328 /// Retrieve the spelling of the given nullability kind.
329 llvm::StringRef getNullabilitySpelling(NullabilityKind kind,
330 bool isContextSensitive = false);
331
332 /// Kinds of parameter ABI.
333 enum class ParameterABI {
334 /// This parameter uses ordinary ABI rules for its type.
335 Ordinary,
336
337 /// This parameter (which must have pointer type) is a Swift
338 /// indirect result parameter.
339 SwiftIndirectResult,
340
341 /// This parameter (which must have pointer-to-pointer type) uses
342 /// the special Swift error-result ABI treatment. There can be at
343 /// most one parameter on a given function that uses this treatment.
344 SwiftErrorResult,
345
346 /// This parameter (which must have pointer type) uses the special
347 /// Swift context-pointer ABI treatment. There can be at
348 /// most one parameter on a given function that uses this treatment.
349 SwiftContext,
350
351 /// This parameter (which must have pointer type) uses the special
352 /// Swift asynchronous context-pointer ABI treatment. There can be at
353 /// most one parameter on a given function that uses this treatment.
354 SwiftAsyncContext,
355 };
356
357 /// Assigned inheritance model for a class in the MS C++ ABI. Must match order
358 /// of spellings in MSInheritanceAttr.
359 enum class MSInheritanceModel {
360 Single = 0,
361 Multiple = 1,
362 Virtual = 2,
363 Unspecified = 3,
364 };
365
366 llvm::StringRef getParameterABISpelling(ParameterABI kind);
367
368 inline llvm::StringRef getAccessSpelling(AccessSpecifier AS) {
369 switch (AS) {
370 case AccessSpecifier::AS_public:
371 return "public";
372 case AccessSpecifier::AS_protected:
373 return "protected";
374 case AccessSpecifier::AS_private:
375 return "private";
376 case AccessSpecifier::AS_none:
377 return {};
378 }
379 llvm_unreachable("Unknown AccessSpecifier")__builtin_unreachable();
380 }
381} // end namespace clang
382
383#endif // LLVM_CLANG_BASIC_SPECIFIERS_H