Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
Warning:line 11063, column 52
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SIISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Custom DAG lowering for SI
11//
12//===----------------------------------------------------------------------===//
13
14#include "SIISelLowering.h"
15#include "AMDGPU.h"
16#include "AMDGPUInstrInfo.h"
17#include "AMDGPUTargetMachine.h"
18#include "SIMachineFunctionInfo.h"
19#include "SIRegisterInfo.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22#include "llvm/BinaryFormat/ELF.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
26#include "llvm/CodeGen/MachineLoopInfo.h"
27#include "llvm/IR/DiagnosticInfo.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/IntrinsicsAMDGPU.h"
30#include "llvm/IR/IntrinsicsR600.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/KnownBits.h"
33
34using namespace llvm;
35
36#define DEBUG_TYPE"si-lower" "si-lower"
37
38STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"si-lower", "NumTailCalls"
, "Number of tail calls"}
;
39
40static cl::opt<bool> DisableLoopAlignment(
41 "amdgpu-disable-loop-alignment",
42 cl::desc("Do not align and prefetch loops"),
43 cl::init(false));
44
45static cl::opt<bool> VGPRReserveforSGPRSpill(
46 "amdgpu-reserve-vgpr-for-sgpr-spill",
47 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
48
49static cl::opt<bool> UseDivergentRegisterIndexing(
50 "amdgpu-use-divergent-register-indexing",
51 cl::Hidden,
52 cl::desc("Use indirect register addressing for divergent indexes"),
53 cl::init(false));
54
55static bool hasFP32Denormals(const MachineFunction &MF) {
56 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
57 return Info->getMode().allFP32Denormals();
58}
59
60static bool hasFP64FP16Denormals(const MachineFunction &MF) {
61 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
62 return Info->getMode().allFP64FP16Denormals();
63}
64
65static unsigned findFirstFreeSGPR(CCState &CCInfo) {
66 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
67 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
68 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
69 return AMDGPU::SGPR0 + Reg;
70 }
71 }
72 llvm_unreachable("Cannot allocate sgpr")__builtin_unreachable();
73}
74
75SITargetLowering::SITargetLowering(const TargetMachine &TM,
76 const GCNSubtarget &STI)
77 : AMDGPUTargetLowering(TM, STI),
78 Subtarget(&STI) {
79 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
80 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
81
82 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
83 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
84
85 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
86
87 const SIRegisterInfo *TRI = STI.getRegisterInfo();
88 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
89
90 addRegisterClass(MVT::f64, V64RegClass);
91 addRegisterClass(MVT::v2f32, V64RegClass);
92
93 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
94 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
95
96 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
97 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
98
99 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
100 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
101
102 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
103 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
104
105 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
106 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
107
108 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
109 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
110
111 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
112 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
113
114 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
115 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
116
117 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
118 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
119
120 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
121 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
122
123 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
124 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
125
126 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
127 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
128
129 if (Subtarget->has16BitInsts()) {
130 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
131 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
132
133 // Unless there are also VOP3P operations, not operations are really legal.
134 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
135 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
136 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
137 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
138 }
139
140 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
141 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
142
143 computeRegisterProperties(Subtarget->getRegisterInfo());
144
145 // The boolean content concept here is too inflexible. Compares only ever
146 // really produce a 1-bit result. Any copy/extend from these will turn into a
147 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
148 // it's what most targets use.
149 setBooleanContents(ZeroOrOneBooleanContent);
150 setBooleanVectorContents(ZeroOrOneBooleanContent);
151
152 // We need to custom lower vector stores from local memory
153 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
154 setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
155 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
156 setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
157 setOperationAction(ISD::LOAD, MVT::v6i32, Custom);
158 setOperationAction(ISD::LOAD, MVT::v7i32, Custom);
159 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
160 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
161 setOperationAction(ISD::LOAD, MVT::i1, Custom);
162 setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
163
164 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
165 setOperationAction(ISD::STORE, MVT::v3i32, Custom);
166 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
167 setOperationAction(ISD::STORE, MVT::v5i32, Custom);
168 setOperationAction(ISD::STORE, MVT::v6i32, Custom);
169 setOperationAction(ISD::STORE, MVT::v7i32, Custom);
170 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
171 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
172 setOperationAction(ISD::STORE, MVT::i1, Custom);
173 setOperationAction(ISD::STORE, MVT::v32i32, Custom);
174
175 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
176 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
177 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
178 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
179 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
180 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
181 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
182 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
183 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
184 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
185 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
186 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
187 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
188 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
189 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
190 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
191
192 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
193 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
194 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
195 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
196 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
197 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
198 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
199
200 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
201 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
202
203 setOperationAction(ISD::SELECT, MVT::i1, Promote);
204 setOperationAction(ISD::SELECT, MVT::i64, Custom);
205 setOperationAction(ISD::SELECT, MVT::f64, Promote);
206 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
207
208 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
209 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
210 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
211 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
212 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
213
214 setOperationAction(ISD::SETCC, MVT::i1, Promote);
215 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
216 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
217 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
218
219 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
220 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
221 setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand);
222 setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand);
223 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
224 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
225 setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand);
226 setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand);
227 setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand);
228 setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand);
229 setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand);
230 setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand);
231 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
232 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
233 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
234 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
235
236 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
237 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
239 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
240 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
242 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
243 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
244
245 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
246 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
247 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
248 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
249 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
250 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
251
252 setOperationAction(ISD::UADDO, MVT::i32, Legal);
253 setOperationAction(ISD::USUBO, MVT::i32, Legal);
254
255 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
256 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
257
258 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
259 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
260 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
261
262#if 0
263 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
264 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
265#endif
266
267 // We only support LOAD/STORE and vector manipulation ops for vectors
268 // with > 4 elements.
269 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
270 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
271 MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32,
272 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
273 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
274 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
275 switch (Op) {
276 case ISD::LOAD:
277 case ISD::STORE:
278 case ISD::BUILD_VECTOR:
279 case ISD::BITCAST:
280 case ISD::EXTRACT_VECTOR_ELT:
281 case ISD::INSERT_VECTOR_ELT:
282 case ISD::EXTRACT_SUBVECTOR:
283 case ISD::SCALAR_TO_VECTOR:
284 break;
285 case ISD::INSERT_SUBVECTOR:
286 case ISD::CONCAT_VECTORS:
287 setOperationAction(Op, VT, Custom);
288 break;
289 default:
290 setOperationAction(Op, VT, Expand);
291 break;
292 }
293 }
294 }
295
296 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
297
298 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
299 // is expanded to avoid having two separate loops in case the index is a VGPR.
300
301 // Most operations are naturally 32-bit vector operations. We only support
302 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
303 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
304 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
305 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
306
307 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
308 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
309
310 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
311 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
312
313 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
314 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
315 }
316
317 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
318 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
319 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
320
321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
322 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
323
324 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
325 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
326
327 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
328 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
329 }
330
331 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
332 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
333 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
334
335 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
336 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
337
338 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
339 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
340
341 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
342 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
343 }
344
345 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
346 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
347 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
348
349 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
350 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
351
352 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
353 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
354
355 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
356 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
357 }
358
359 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
360 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
361 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
362
363 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
364 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
365
366 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
367 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
368
369 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
370 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
371 }
372
373 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
374 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
375 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
376 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
377
378 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
379 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
380
381 // Avoid stack access for these.
382 // TODO: Generalize to more vector types.
383 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
384 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
386 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
387
388 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
389 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
390 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
391 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
392 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
393 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
394
395 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
396 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
397 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
398 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
399
400 // Deal with vec3 vector operations when widened to vec4.
401 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
402 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
403 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
404 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
405
406 // Deal with vec5/6/7 vector operations when widened to vec8.
407 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
408 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
409 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom);
410 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom);
411 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom);
412 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom);
413 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
414 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
415
416 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
417 // and output demarshalling
418 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
419 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
420
421 // We can't return success/failure, only the old value,
422 // let LLVM add the comparison
423 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
424 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
425
426 if (Subtarget->hasFlatAddressSpace()) {
427 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
428 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
429 }
430
431 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
432 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
433
434 // FIXME: This should be narrowed to i32, but that only happens if i64 is
435 // illegal.
436 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
437 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
438 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
439
440 // On SI this is s_memtime and s_memrealtime on VI.
441 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
442 setOperationAction(ISD::TRAP, MVT::Other, Custom);
443 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
444
445 if (Subtarget->has16BitInsts()) {
446 setOperationAction(ISD::FPOW, MVT::f16, Promote);
447 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
448 setOperationAction(ISD::FLOG, MVT::f16, Custom);
449 setOperationAction(ISD::FEXP, MVT::f16, Custom);
450 setOperationAction(ISD::FLOG10, MVT::f16, Custom);
451 }
452
453 if (Subtarget->hasMadMacF32Insts())
454 setOperationAction(ISD::FMAD, MVT::f32, Legal);
455
456 if (!Subtarget->hasBFI()) {
457 // fcopysign can be done in a single instruction with BFI.
458 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
459 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
460 }
461
462 if (!Subtarget->hasBCNT(32))
463 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
464
465 if (!Subtarget->hasBCNT(64))
466 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
467
468 if (Subtarget->hasFFBH())
469 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
470
471 if (Subtarget->hasFFBL())
472 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
473
474 // We only really have 32-bit BFE instructions (and 16-bit on VI).
475 //
476 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
477 // effort to match them now. We want this to be false for i64 cases when the
478 // extraction isn't restricted to the upper or lower half. Ideally we would
479 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
480 // span the midpoint are probably relatively rare, so don't worry about them
481 // for now.
482 if (Subtarget->hasBFE())
483 setHasExtractBitsInsn(true);
484
485 // Clamp modifier on add/sub
486 if (Subtarget->hasIntClamp()) {
487 setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
488 setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
489 }
490
491 if (Subtarget->hasAddNoCarry()) {
492 setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
493 setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
494 setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
495 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
496 }
497
498 setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
499 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
500 setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
501 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
502
503
504 // These are really only legal for ieee_mode functions. We should be avoiding
505 // them for functions that don't have ieee_mode enabled, so just say they are
506 // legal.
507 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
508 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
509 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
510 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
511
512
513 if (Subtarget->haveRoundOpsF64()) {
514 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
515 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
516 setOperationAction(ISD::FRINT, MVT::f64, Legal);
517 } else {
518 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
519 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
520 setOperationAction(ISD::FRINT, MVT::f64, Custom);
521 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
522 }
523
524 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
525
526 setOperationAction(ISD::FSIN, MVT::f32, Custom);
527 setOperationAction(ISD::FCOS, MVT::f32, Custom);
528 setOperationAction(ISD::FDIV, MVT::f32, Custom);
529 setOperationAction(ISD::FDIV, MVT::f64, Custom);
530
531 if (Subtarget->has16BitInsts()) {
532 setOperationAction(ISD::Constant, MVT::i16, Legal);
533
534 setOperationAction(ISD::SMIN, MVT::i16, Legal);
535 setOperationAction(ISD::SMAX, MVT::i16, Legal);
536
537 setOperationAction(ISD::UMIN, MVT::i16, Legal);
538 setOperationAction(ISD::UMAX, MVT::i16, Legal);
539
540 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
541 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
542
543 setOperationAction(ISD::ROTR, MVT::i16, Expand);
544 setOperationAction(ISD::ROTL, MVT::i16, Expand);
545
546 setOperationAction(ISD::SDIV, MVT::i16, Promote);
547 setOperationAction(ISD::UDIV, MVT::i16, Promote);
548 setOperationAction(ISD::SREM, MVT::i16, Promote);
549 setOperationAction(ISD::UREM, MVT::i16, Promote);
550 setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
551 setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
552
553 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
554
555 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
556 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
557 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
558 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
559 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
560
561 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
562
563 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
564
565 setOperationAction(ISD::LOAD, MVT::i16, Custom);
566
567 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
568
569 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
570 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
571 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
572 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
573
574 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
575 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom);
576
577 // F16 - Constant Actions.
578 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
579
580 // F16 - Load/Store Actions.
581 setOperationAction(ISD::LOAD, MVT::f16, Promote);
582 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
583 setOperationAction(ISD::STORE, MVT::f16, Promote);
584 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
585
586 // F16 - VOP1 Actions.
587 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
588 setOperationAction(ISD::FCOS, MVT::f16, Custom);
589 setOperationAction(ISD::FSIN, MVT::f16, Custom);
590
591 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
592 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
593
594 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
595 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
596 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
597 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
598 setOperationAction(ISD::FROUND, MVT::f16, Custom);
599
600 // F16 - VOP2 Actions.
601 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
602 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
603
604 setOperationAction(ISD::FDIV, MVT::f16, Custom);
605
606 // F16 - VOP3 Actions.
607 setOperationAction(ISD::FMA, MVT::f16, Legal);
608 if (STI.hasMadF16())
609 setOperationAction(ISD::FMAD, MVT::f16, Legal);
610
611 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
612 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
613 switch (Op) {
614 case ISD::LOAD:
615 case ISD::STORE:
616 case ISD::BUILD_VECTOR:
617 case ISD::BITCAST:
618 case ISD::EXTRACT_VECTOR_ELT:
619 case ISD::INSERT_VECTOR_ELT:
620 case ISD::INSERT_SUBVECTOR:
621 case ISD::EXTRACT_SUBVECTOR:
622 case ISD::SCALAR_TO_VECTOR:
623 break;
624 case ISD::CONCAT_VECTORS:
625 setOperationAction(Op, VT, Custom);
626 break;
627 default:
628 setOperationAction(Op, VT, Expand);
629 break;
630 }
631 }
632 }
633
634 // v_perm_b32 can handle either of these.
635 setOperationAction(ISD::BSWAP, MVT::i16, Legal);
636 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
637 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
638
639 // XXX - Do these do anything? Vector constants turn into build_vector.
640 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
641 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
642
643 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
644 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
645
646 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
647 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
648 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
649 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
650
651 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
652 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
653 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
654 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
655
656 setOperationAction(ISD::AND, MVT::v2i16, Promote);
657 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
658 setOperationAction(ISD::OR, MVT::v2i16, Promote);
659 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
660 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
661 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
662
663 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
664 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
665 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
666 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
667
668 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
669 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
670 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
671 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
672
673 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
674 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
675 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
676 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
677
678 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
679 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
680 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
681
682 if (!Subtarget->hasVOP3PInsts()) {
683 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
684 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
685 }
686
687 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
688 // This isn't really legal, but this avoids the legalizer unrolling it (and
689 // allows matching fneg (fabs x) patterns)
690 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
691
692 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
693 setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
694 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
695 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
696
697 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
698 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
699
700 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
701 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
702 }
703
704 if (Subtarget->hasVOP3PInsts()) {
705 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
706 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
707 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
708 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
709 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
710 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
711 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
712 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
713 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
714 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
715
716 setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
717 setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
718 setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
719 setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
720
721 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
722 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
723 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
724
725 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
726 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
727
728 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
729
730 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
731 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
732
733 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
734 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
735
736 setOperationAction(ISD::SHL, MVT::v4i16, Custom);
737 setOperationAction(ISD::SRA, MVT::v4i16, Custom);
738 setOperationAction(ISD::SRL, MVT::v4i16, Custom);
739 setOperationAction(ISD::ADD, MVT::v4i16, Custom);
740 setOperationAction(ISD::SUB, MVT::v4i16, Custom);
741 setOperationAction(ISD::MUL, MVT::v4i16, Custom);
742
743 setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
744 setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
745 setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
746 setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
747
748 setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
749 setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
750 setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
751 setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
752
753 setOperationAction(ISD::FADD, MVT::v4f16, Custom);
754 setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
755 setOperationAction(ISD::FMA, MVT::v4f16, Custom);
756
757 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
758 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
759
760 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
761 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
762 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
763
764 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
765 setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
766 setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
767
768 if (Subtarget->hasPackedFP32Ops()) {
769 setOperationAction(ISD::FADD, MVT::v2f32, Legal);
770 setOperationAction(ISD::FMUL, MVT::v2f32, Legal);
771 setOperationAction(ISD::FMA, MVT::v2f32, Legal);
772 setOperationAction(ISD::FNEG, MVT::v2f32, Legal);
773
774 for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) {
775 setOperationAction(ISD::FADD, VT, Custom);
776 setOperationAction(ISD::FMUL, VT, Custom);
777 setOperationAction(ISD::FMA, VT, Custom);
778 }
779 }
780 }
781
782 setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
783 setOperationAction(ISD::FABS, MVT::v4f16, Custom);
784
785 if (Subtarget->has16BitInsts()) {
786 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
787 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
788 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
789 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
790 } else {
791 // Legalization hack.
792 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
793 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
794
795 setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
796 setOperationAction(ISD::FABS, MVT::v2f16, Custom);
797 }
798
799 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
800 setOperationAction(ISD::SELECT, VT, Custom);
801 }
802
803 setOperationAction(ISD::SMULO, MVT::i64, Custom);
804 setOperationAction(ISD::UMULO, MVT::i64, Custom);
805
806 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
807 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
808 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
809 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
810 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
811 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
812 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
813
814 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
815 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
816 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
817 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
818 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
819 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
820 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
821 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
822 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
823 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
824 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
825
826 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
827 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
828 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
829 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
830 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
831 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
832 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
833 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
834 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
835 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
836
837 setTargetDAGCombine(ISD::ADD);
838 setTargetDAGCombine(ISD::ADDCARRY);
839 setTargetDAGCombine(ISD::SUB);
840 setTargetDAGCombine(ISD::SUBCARRY);
841 setTargetDAGCombine(ISD::FADD);
842 setTargetDAGCombine(ISD::FSUB);
843 setTargetDAGCombine(ISD::FMINNUM);
844 setTargetDAGCombine(ISD::FMAXNUM);
845 setTargetDAGCombine(ISD::FMINNUM_IEEE);
846 setTargetDAGCombine(ISD::FMAXNUM_IEEE);
847 setTargetDAGCombine(ISD::FMA);
848 setTargetDAGCombine(ISD::SMIN);
849 setTargetDAGCombine(ISD::SMAX);
850 setTargetDAGCombine(ISD::UMIN);
851 setTargetDAGCombine(ISD::UMAX);
852 setTargetDAGCombine(ISD::SETCC);
853 setTargetDAGCombine(ISD::AND);
854 setTargetDAGCombine(ISD::OR);
855 setTargetDAGCombine(ISD::XOR);
856 setTargetDAGCombine(ISD::SINT_TO_FP);
857 setTargetDAGCombine(ISD::UINT_TO_FP);
858 setTargetDAGCombine(ISD::FCANONICALIZE);
859 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
860 setTargetDAGCombine(ISD::ZERO_EXTEND);
861 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
862 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
863 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
864
865 // All memory operations. Some folding on the pointer operand is done to help
866 // matching the constant offsets in the addressing modes.
867 setTargetDAGCombine(ISD::LOAD);
868 setTargetDAGCombine(ISD::STORE);
869 setTargetDAGCombine(ISD::ATOMIC_LOAD);
870 setTargetDAGCombine(ISD::ATOMIC_STORE);
871 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
872 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
873 setTargetDAGCombine(ISD::ATOMIC_SWAP);
874 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
875 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
876 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
877 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
878 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
879 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
880 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
881 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
882 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
883 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
884 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
885 setTargetDAGCombine(ISD::INTRINSIC_VOID);
886 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
887
888 // FIXME: In other contexts we pretend this is a per-function property.
889 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
890
891 setSchedulingPreference(Sched::RegPressure);
892}
893
894const GCNSubtarget *SITargetLowering::getSubtarget() const {
895 return Subtarget;
896}
897
898//===----------------------------------------------------------------------===//
899// TargetLowering queries
900//===----------------------------------------------------------------------===//
901
902// v_mad_mix* support a conversion from f16 to f32.
903//
904// There is only one special case when denormals are enabled we don't currently,
905// where this is OK to use.
906bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
907 EVT DestVT, EVT SrcVT) const {
908 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
909 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
910 DestVT.getScalarType() == MVT::f32 &&
911 SrcVT.getScalarType() == MVT::f16 &&
912 // TODO: This probably only requires no input flushing?
913 !hasFP32Denormals(DAG.getMachineFunction());
914}
915
916bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
917 // SI has some legal vector types, but no legal vector operations. Say no
918 // shuffles are legal in order to prefer scalarizing some vector operations.
919 return false;
920}
921
922MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
923 CallingConv::ID CC,
924 EVT VT) const {
925 if (CC == CallingConv::AMDGPU_KERNEL)
926 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
927
928 if (VT.isVector()) {
929 EVT ScalarVT = VT.getScalarType();
930 unsigned Size = ScalarVT.getSizeInBits();
931 if (Size == 16) {
932 if (Subtarget->has16BitInsts())
933 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
934 return VT.isInteger() ? MVT::i32 : MVT::f32;
935 }
936
937 if (Size < 16)
938 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
939 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
940 }
941
942 if (VT.getSizeInBits() > 32)
943 return MVT::i32;
944
945 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
946}
947
948unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
949 CallingConv::ID CC,
950 EVT VT) const {
951 if (CC == CallingConv::AMDGPU_KERNEL)
952 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
953
954 if (VT.isVector()) {
955 unsigned NumElts = VT.getVectorNumElements();
956 EVT ScalarVT = VT.getScalarType();
957 unsigned Size = ScalarVT.getSizeInBits();
958
959 // FIXME: Should probably promote 8-bit vectors to i16.
960 if (Size == 16 && Subtarget->has16BitInsts())
961 return (NumElts + 1) / 2;
962
963 if (Size <= 32)
964 return NumElts;
965
966 if (Size > 32)
967 return NumElts * ((Size + 31) / 32);
968 } else if (VT.getSizeInBits() > 32)
969 return (VT.getSizeInBits() + 31) / 32;
970
971 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
972}
973
974unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
975 LLVMContext &Context, CallingConv::ID CC,
976 EVT VT, EVT &IntermediateVT,
977 unsigned &NumIntermediates, MVT &RegisterVT) const {
978 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
979 unsigned NumElts = VT.getVectorNumElements();
980 EVT ScalarVT = VT.getScalarType();
981 unsigned Size = ScalarVT.getSizeInBits();
982 // FIXME: We should fix the ABI to be the same on targets without 16-bit
983 // support, but unless we can properly handle 3-vectors, it will be still be
984 // inconsistent.
985 if (Size == 16 && Subtarget->has16BitInsts()) {
986 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
987 IntermediateVT = RegisterVT;
988 NumIntermediates = (NumElts + 1) / 2;
989 return NumIntermediates;
990 }
991
992 if (Size == 32) {
993 RegisterVT = ScalarVT.getSimpleVT();
994 IntermediateVT = RegisterVT;
995 NumIntermediates = NumElts;
996 return NumIntermediates;
997 }
998
999 if (Size < 16 && Subtarget->has16BitInsts()) {
1000 // FIXME: Should probably form v2i16 pieces
1001 RegisterVT = MVT::i16;
1002 IntermediateVT = ScalarVT;
1003 NumIntermediates = NumElts;
1004 return NumIntermediates;
1005 }
1006
1007
1008 if (Size != 16 && Size <= 32) {
1009 RegisterVT = MVT::i32;
1010 IntermediateVT = ScalarVT;
1011 NumIntermediates = NumElts;
1012 return NumIntermediates;
1013 }
1014
1015 if (Size > 32) {
1016 RegisterVT = MVT::i32;
1017 IntermediateVT = RegisterVT;
1018 NumIntermediates = NumElts * ((Size + 31) / 32);
1019 return NumIntermediates;
1020 }
1021 }
1022
1023 return TargetLowering::getVectorTypeBreakdownForCallingConv(
1024 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1025}
1026
1027static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1028 assert(DMaskLanes != 0)((void)0);
1029
1030 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1031 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1032 return EVT::getVectorVT(Ty->getContext(),
1033 EVT::getEVT(VT->getElementType()),
1034 NumElts);
1035 }
1036
1037 return EVT::getEVT(Ty);
1038}
1039
1040// Peek through TFE struct returns to only use the data size.
1041static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1042 auto *ST = dyn_cast<StructType>(Ty);
1043 if (!ST)
1044 return memVTFromImageData(Ty, DMaskLanes);
1045
1046 // Some intrinsics return an aggregate type - special case to work out the
1047 // correct memVT.
1048 //
1049 // Only limited forms of aggregate type currently expected.
1050 if (ST->getNumContainedTypes() != 2 ||
1051 !ST->getContainedType(1)->isIntegerTy(32))
1052 return EVT();
1053 return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1054}
1055
1056bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1057 const CallInst &CI,
1058 MachineFunction &MF,
1059 unsigned IntrID) const {
1060 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1061 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1062 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1063 (Intrinsic::ID)IntrID);
1064 if (Attr.hasFnAttribute(Attribute::ReadNone))
1065 return false;
1066
1067 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1068
1069 if (RsrcIntr->IsImage) {
1070 Info.ptrVal =
1071 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1072 Info.align.reset();
1073 } else {
1074 Info.ptrVal =
1075 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1076 }
1077
1078 Info.flags = MachineMemOperand::MODereferenceable;
1079 if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1080 unsigned DMaskLanes = 4;
1081
1082 if (RsrcIntr->IsImage) {
1083 const AMDGPU::ImageDimIntrinsicInfo *Intr
1084 = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1085 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1086 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1087
1088 if (!BaseOpcode->Gather4) {
1089 // If this isn't a gather, we may have excess loaded elements in the
1090 // IR type. Check the dmask for the real number of elements loaded.
1091 unsigned DMask
1092 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1093 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1094 }
1095
1096 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1097 } else
1098 Info.memVT = EVT::getEVT(CI.getType());
1099
1100 // FIXME: What does alignment mean for an image?
1101 Info.opc = ISD::INTRINSIC_W_CHAIN;
1102 Info.flags |= MachineMemOperand::MOLoad;
1103 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1104 Info.opc = ISD::INTRINSIC_VOID;
1105
1106 Type *DataTy = CI.getArgOperand(0)->getType();
1107 if (RsrcIntr->IsImage) {
1108 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1109 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1110 Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1111 } else
1112 Info.memVT = EVT::getEVT(DataTy);
1113
1114 Info.flags |= MachineMemOperand::MOStore;
1115 } else {
1116 // Atomic
1117 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1118 ISD::INTRINSIC_W_CHAIN;
1119 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1120 Info.flags = MachineMemOperand::MOLoad |
1121 MachineMemOperand::MOStore |
1122 MachineMemOperand::MODereferenceable;
1123
1124 // XXX - Should this be volatile without known ordering?
1125 Info.flags |= MachineMemOperand::MOVolatile;
1126 }
1127 return true;
1128 }
1129
1130 switch (IntrID) {
1131 case Intrinsic::amdgcn_atomic_inc:
1132 case Intrinsic::amdgcn_atomic_dec:
1133 case Intrinsic::amdgcn_ds_ordered_add:
1134 case Intrinsic::amdgcn_ds_ordered_swap:
1135 case Intrinsic::amdgcn_ds_fadd:
1136 case Intrinsic::amdgcn_ds_fmin:
1137 case Intrinsic::amdgcn_ds_fmax: {
1138 Info.opc = ISD::INTRINSIC_W_CHAIN;
1139 Info.memVT = MVT::getVT(CI.getType());
1140 Info.ptrVal = CI.getOperand(0);
1141 Info.align.reset();
1142 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1143
1144 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1145 if (!Vol->isZero())
1146 Info.flags |= MachineMemOperand::MOVolatile;
1147
1148 return true;
1149 }
1150 case Intrinsic::amdgcn_buffer_atomic_fadd: {
1151 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1152
1153 Info.opc = ISD::INTRINSIC_W_CHAIN;
1154 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1155 Info.ptrVal =
1156 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1157 Info.align.reset();
1158 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1159
1160 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1161 if (!Vol || !Vol->isZero())
1162 Info.flags |= MachineMemOperand::MOVolatile;
1163
1164 return true;
1165 }
1166 case Intrinsic::amdgcn_ds_append:
1167 case Intrinsic::amdgcn_ds_consume: {
1168 Info.opc = ISD::INTRINSIC_W_CHAIN;
1169 Info.memVT = MVT::getVT(CI.getType());
1170 Info.ptrVal = CI.getOperand(0);
1171 Info.align.reset();
1172 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1173
1174 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1175 if (!Vol->isZero())
1176 Info.flags |= MachineMemOperand::MOVolatile;
1177
1178 return true;
1179 }
1180 case Intrinsic::amdgcn_global_atomic_csub: {
1181 Info.opc = ISD::INTRINSIC_W_CHAIN;
1182 Info.memVT = MVT::getVT(CI.getType());
1183 Info.ptrVal = CI.getOperand(0);
1184 Info.align.reset();
1185 Info.flags = MachineMemOperand::MOLoad |
1186 MachineMemOperand::MOStore |
1187 MachineMemOperand::MOVolatile;
1188 return true;
1189 }
1190 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1191 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1192 Info.opc = ISD::INTRINSIC_W_CHAIN;
1193 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1194 Info.ptrVal =
1195 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1196 Info.align.reset();
1197 Info.flags = MachineMemOperand::MOLoad |
1198 MachineMemOperand::MODereferenceable;
1199 return true;
1200 }
1201 case Intrinsic::amdgcn_global_atomic_fadd:
1202 case Intrinsic::amdgcn_global_atomic_fmin:
1203 case Intrinsic::amdgcn_global_atomic_fmax:
1204 case Intrinsic::amdgcn_flat_atomic_fadd:
1205 case Intrinsic::amdgcn_flat_atomic_fmin:
1206 case Intrinsic::amdgcn_flat_atomic_fmax: {
1207 Info.opc = ISD::INTRINSIC_W_CHAIN;
1208 Info.memVT = MVT::getVT(CI.getType());
1209 Info.ptrVal = CI.getOperand(0);
1210 Info.align.reset();
1211 Info.flags = MachineMemOperand::MOLoad |
1212 MachineMemOperand::MOStore |
1213 MachineMemOperand::MODereferenceable |
1214 MachineMemOperand::MOVolatile;
1215 return true;
1216 }
1217 case Intrinsic::amdgcn_ds_gws_init:
1218 case Intrinsic::amdgcn_ds_gws_barrier:
1219 case Intrinsic::amdgcn_ds_gws_sema_v:
1220 case Intrinsic::amdgcn_ds_gws_sema_br:
1221 case Intrinsic::amdgcn_ds_gws_sema_p:
1222 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1223 Info.opc = ISD::INTRINSIC_VOID;
1224
1225 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1226 Info.ptrVal =
1227 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1228
1229 // This is an abstract access, but we need to specify a type and size.
1230 Info.memVT = MVT::i32;
1231 Info.size = 4;
1232 Info.align = Align(4);
1233
1234 Info.flags = MachineMemOperand::MOStore;
1235 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1236 Info.flags = MachineMemOperand::MOLoad;
1237 return true;
1238 }
1239 default:
1240 return false;
1241 }
1242}
1243
1244bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1245 SmallVectorImpl<Value*> &Ops,
1246 Type *&AccessTy) const {
1247 switch (II->getIntrinsicID()) {
1248 case Intrinsic::amdgcn_atomic_inc:
1249 case Intrinsic::amdgcn_atomic_dec:
1250 case Intrinsic::amdgcn_ds_ordered_add:
1251 case Intrinsic::amdgcn_ds_ordered_swap:
1252 case Intrinsic::amdgcn_ds_append:
1253 case Intrinsic::amdgcn_ds_consume:
1254 case Intrinsic::amdgcn_ds_fadd:
1255 case Intrinsic::amdgcn_ds_fmin:
1256 case Intrinsic::amdgcn_ds_fmax:
1257 case Intrinsic::amdgcn_global_atomic_fadd:
1258 case Intrinsic::amdgcn_flat_atomic_fadd:
1259 case Intrinsic::amdgcn_flat_atomic_fmin:
1260 case Intrinsic::amdgcn_flat_atomic_fmax:
1261 case Intrinsic::amdgcn_global_atomic_csub: {
1262 Value *Ptr = II->getArgOperand(0);
1263 AccessTy = II->getType();
1264 Ops.push_back(Ptr);
1265 return true;
1266 }
1267 default:
1268 return false;
1269 }
1270}
1271
1272bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1273 if (!Subtarget->hasFlatInstOffsets()) {
1274 // Flat instructions do not have offsets, and only have the register
1275 // address.
1276 return AM.BaseOffs == 0 && AM.Scale == 0;
1277 }
1278
1279 return AM.Scale == 0 &&
1280 (AM.BaseOffs == 0 ||
1281 Subtarget->getInstrInfo()->isLegalFLATOffset(
1282 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1283}
1284
1285bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1286 if (Subtarget->hasFlatGlobalInsts())
1287 return AM.Scale == 0 &&
1288 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1289 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1290 SIInstrFlags::FlatGlobal));
1291
1292 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1293 // Assume the we will use FLAT for all global memory accesses
1294 // on VI.
1295 // FIXME: This assumption is currently wrong. On VI we still use
1296 // MUBUF instructions for the r + i addressing mode. As currently
1297 // implemented, the MUBUF instructions only work on buffer < 4GB.
1298 // It may be possible to support > 4GB buffers with MUBUF instructions,
1299 // by setting the stride value in the resource descriptor which would
1300 // increase the size limit to (stride * 4GB). However, this is risky,
1301 // because it has never been validated.
1302 return isLegalFlatAddressingMode(AM);
1303 }
1304
1305 return isLegalMUBUFAddressingMode(AM);
1306}
1307
1308bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1309 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1310 // additionally can do r + r + i with addr64. 32-bit has more addressing
1311 // mode options. Depending on the resource constant, it can also do
1312 // (i64 r0) + (i32 r1) * (i14 i).
1313 //
1314 // Private arrays end up using a scratch buffer most of the time, so also
1315 // assume those use MUBUF instructions. Scratch loads / stores are currently
1316 // implemented as mubuf instructions with offen bit set, so slightly
1317 // different than the normal addr64.
1318 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1319 return false;
1320
1321 // FIXME: Since we can split immediate into soffset and immediate offset,
1322 // would it make sense to allow any immediate?
1323
1324 switch (AM.Scale) {
1325 case 0: // r + i or just i, depending on HasBaseReg.
1326 return true;
1327 case 1:
1328 return true; // We have r + r or r + i.
1329 case 2:
1330 if (AM.HasBaseReg) {
1331 // Reject 2 * r + r.
1332 return false;
1333 }
1334
1335 // Allow 2 * r as r + r
1336 // Or 2 * r + i is allowed as r + r + i.
1337 return true;
1338 default: // Don't allow n * r
1339 return false;
1340 }
1341}
1342
1343bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1344 const AddrMode &AM, Type *Ty,
1345 unsigned AS, Instruction *I) const {
1346 // No global is ever allowed as a base.
1347 if (AM.BaseGV)
1348 return false;
1349
1350 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1351 return isLegalGlobalAddressingMode(AM);
1352
1353 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1354 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1355 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1356 // If the offset isn't a multiple of 4, it probably isn't going to be
1357 // correctly aligned.
1358 // FIXME: Can we get the real alignment here?
1359 if (AM.BaseOffs % 4 != 0)
1360 return isLegalMUBUFAddressingMode(AM);
1361
1362 // There are no SMRD extloads, so if we have to do a small type access we
1363 // will use a MUBUF load.
1364 // FIXME?: We also need to do this if unaligned, but we don't know the
1365 // alignment here.
1366 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1367 return isLegalGlobalAddressingMode(AM);
1368
1369 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1370 // SMRD instructions have an 8-bit, dword offset on SI.
1371 if (!isUInt<8>(AM.BaseOffs / 4))
1372 return false;
1373 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1374 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1375 // in 8-bits, it can use a smaller encoding.
1376 if (!isUInt<32>(AM.BaseOffs / 4))
1377 return false;
1378 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1379 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1380 if (!isUInt<20>(AM.BaseOffs))
1381 return false;
1382 } else
1383 llvm_unreachable("unhandled generation")__builtin_unreachable();
1384
1385 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1386 return true;
1387
1388 if (AM.Scale == 1 && AM.HasBaseReg)
1389 return true;
1390
1391 return false;
1392
1393 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1394 return isLegalMUBUFAddressingMode(AM);
1395 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1396 AS == AMDGPUAS::REGION_ADDRESS) {
1397 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1398 // field.
1399 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1400 // an 8-bit dword offset but we don't know the alignment here.
1401 if (!isUInt<16>(AM.BaseOffs))
1402 return false;
1403
1404 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1405 return true;
1406
1407 if (AM.Scale == 1 && AM.HasBaseReg)
1408 return true;
1409
1410 return false;
1411 } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1412 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1413 // For an unknown address space, this usually means that this is for some
1414 // reason being used for pure arithmetic, and not based on some addressing
1415 // computation. We don't have instructions that compute pointers with any
1416 // addressing modes, so treat them as having no offset like flat
1417 // instructions.
1418 return isLegalFlatAddressingMode(AM);
1419 }
1420
1421 // Assume a user alias of global for unknown address spaces.
1422 return isLegalGlobalAddressingMode(AM);
1423}
1424
1425bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1426 const SelectionDAG &DAG) const {
1427 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1428 return (MemVT.getSizeInBits() <= 4 * 32);
1429 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1430 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1431 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1432 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1433 return (MemVT.getSizeInBits() <= 2 * 32);
1434 }
1435 return true;
1436}
1437
1438bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1439 unsigned Size, unsigned AddrSpace, Align Alignment,
1440 MachineMemOperand::Flags Flags, bool *IsFast) const {
1441 if (IsFast)
1442 *IsFast = false;
1443
1444 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1445 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1446 // Check if alignment requirements for ds_read/write instructions are
1447 // disabled.
1448 if (Subtarget->hasUnalignedDSAccessEnabled() &&
1449 !Subtarget->hasLDSMisalignedBug()) {
1450 if (IsFast)
1451 *IsFast = Alignment != Align(2);
1452 return true;
1453 }
1454
1455 // Either, the alignment requirements are "enabled", or there is an
1456 // unaligned LDS access related hardware bug though alignment requirements
1457 // are "disabled". In either case, we need to check for proper alignment
1458 // requirements.
1459 //
1460 if (Size == 64) {
1461 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1462 // can do a 4 byte aligned, 8 byte access in a single operation using
1463 // ds_read2/write2_b32 with adjacent offsets.
1464 bool AlignedBy4 = Alignment >= Align(4);
1465 if (IsFast)
1466 *IsFast = AlignedBy4;
1467
1468 return AlignedBy4;
1469 }
1470 if (Size == 96) {
1471 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1472 // gfx8 and older.
1473 bool AlignedBy16 = Alignment >= Align(16);
1474 if (IsFast)
1475 *IsFast = AlignedBy16;
1476
1477 return AlignedBy16;
1478 }
1479 if (Size == 128) {
1480 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1481 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a
1482 // single operation using ds_read2/write2_b64.
1483 bool AlignedBy8 = Alignment >= Align(8);
1484 if (IsFast)
1485 *IsFast = AlignedBy8;
1486
1487 return AlignedBy8;
1488 }
1489 }
1490
1491 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1492 bool AlignedBy4 = Alignment >= Align(4);
1493 if (IsFast)
1494 *IsFast = AlignedBy4;
1495
1496 return AlignedBy4 ||
1497 Subtarget->enableFlatScratch() ||
1498 Subtarget->hasUnalignedScratchAccess();
1499 }
1500
1501 // FIXME: We have to be conservative here and assume that flat operations
1502 // will access scratch. If we had access to the IR function, then we
1503 // could determine if any private memory was used in the function.
1504 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1505 !Subtarget->hasUnalignedScratchAccess()) {
1506 bool AlignedBy4 = Alignment >= Align(4);
1507 if (IsFast)
1508 *IsFast = AlignedBy4;
1509
1510 return AlignedBy4;
1511 }
1512
1513 if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1514 !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1515 AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1516 // If we have an uniform constant load, it still requires using a slow
1517 // buffer instruction if unaligned.
1518 if (IsFast) {
1519 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1520 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1521 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1522 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1523 Alignment >= Align(4) : Alignment != Align(2);
1524 }
1525
1526 return true;
1527 }
1528
1529 // Smaller than dword value must be aligned.
1530 if (Size < 32)
1531 return false;
1532
1533 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1534 // byte-address are ignored, thus forcing Dword alignment.
1535 // This applies to private, global, and constant memory.
1536 if (IsFast)
1537 *IsFast = true;
1538
1539 return Size >= 32 && Alignment >= Align(4);
1540}
1541
1542bool SITargetLowering::allowsMisalignedMemoryAccesses(
1543 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1544 bool *IsFast) const {
1545 if (IsFast)
1546 *IsFast = false;
1547
1548 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1549 // which isn't a simple VT.
1550 // Until MVT is extended to handle this, simply check for the size and
1551 // rely on the condition below: allow accesses if the size is a multiple of 4.
1552 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1553 VT.getStoreSize() > 16)) {
1554 return false;
1555 }
1556
1557 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1558 Alignment, Flags, IsFast);
1559}
1560
1561EVT SITargetLowering::getOptimalMemOpType(
1562 const MemOp &Op, const AttributeList &FuncAttributes) const {
1563 // FIXME: Should account for address space here.
1564
1565 // The default fallback uses the private pointer size as a guess for a type to
1566 // use. Make sure we switch these to 64-bit accesses.
1567
1568 if (Op.size() >= 16 &&
1569 Op.isDstAligned(Align(4))) // XXX: Should only do for global
1570 return MVT::v4i32;
1571
1572 if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1573 return MVT::v2i32;
1574
1575 // Use the default.
1576 return MVT::Other;
1577}
1578
1579bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1580 const MemSDNode *MemNode = cast<MemSDNode>(N);
1581 const Value *Ptr = MemNode->getMemOperand()->getValue();
1582 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1583 return I && I->getMetadata("amdgpu.noclobber");
1584}
1585
1586bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1587 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1588 AS == AMDGPUAS::PRIVATE_ADDRESS;
1589}
1590
1591bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1592 unsigned DestAS) const {
1593 // Flat -> private/local is a simple truncate.
1594 // Flat -> global is no-op
1595 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1596 return true;
1597
1598 const GCNTargetMachine &TM =
1599 static_cast<const GCNTargetMachine &>(getTargetMachine());
1600 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1601}
1602
1603bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1604 const MemSDNode *MemNode = cast<MemSDNode>(N);
1605
1606 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1607}
1608
1609TargetLoweringBase::LegalizeTypeAction
1610SITargetLowering::getPreferredVectorAction(MVT VT) const {
1611 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1612 VT.getScalarType().bitsLE(MVT::i16))
1613 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1614 return TargetLoweringBase::getPreferredVectorAction(VT);
1615}
1616
1617bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1618 Type *Ty) const {
1619 // FIXME: Could be smarter if called for vector constants.
1620 return true;
1621}
1622
1623bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1624 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1625 switch (Op) {
1626 case ISD::LOAD:
1627 case ISD::STORE:
1628
1629 // These operations are done with 32-bit instructions anyway.
1630 case ISD::AND:
1631 case ISD::OR:
1632 case ISD::XOR:
1633 case ISD::SELECT:
1634 // TODO: Extensions?
1635 return true;
1636 default:
1637 return false;
1638 }
1639 }
1640
1641 // SimplifySetCC uses this function to determine whether or not it should
1642 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1643 if (VT == MVT::i1 && Op == ISD::SETCC)
1644 return false;
1645
1646 return TargetLowering::isTypeDesirableForOp(Op, VT);
1647}
1648
1649SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1650 const SDLoc &SL,
1651 SDValue Chain,
1652 uint64_t Offset) const {
1653 const DataLayout &DL = DAG.getDataLayout();
1654 MachineFunction &MF = DAG.getMachineFunction();
1655 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1656
1657 const ArgDescriptor *InputPtrReg;
1658 const TargetRegisterClass *RC;
1659 LLT ArgTy;
1660
1661 std::tie(InputPtrReg, RC, ArgTy) =
1662 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1663
1664 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1665 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1666 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1667 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1668
1669 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1670}
1671
1672SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1673 const SDLoc &SL) const {
1674 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1675 FIRST_IMPLICIT);
1676 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1677}
1678
1679SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1680 const SDLoc &SL, SDValue Val,
1681 bool Signed,
1682 const ISD::InputArg *Arg) const {
1683 // First, if it is a widened vector, narrow it.
1684 if (VT.isVector() &&
1685 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1686 EVT NarrowedVT =
1687 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1688 VT.getVectorNumElements());
1689 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1690 DAG.getConstant(0, SL, MVT::i32));
1691 }
1692
1693 // Then convert the vector elements or scalar value.
1694 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1695 VT.bitsLT(MemVT)) {
1696 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1697 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1698 }
1699
1700 if (MemVT.isFloatingPoint())
1701 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1702 else if (Signed)
1703 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1704 else
1705 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1706
1707 return Val;
1708}
1709
1710SDValue SITargetLowering::lowerKernargMemParameter(
1711 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1712 uint64_t Offset, Align Alignment, bool Signed,
1713 const ISD::InputArg *Arg) const {
1714 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1715
1716 // Try to avoid using an extload by loading earlier than the argument address,
1717 // and extracting the relevant bits. The load should hopefully be merged with
1718 // the previous argument.
1719 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1720 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1721 int64_t AlignDownOffset = alignDown(Offset, 4);
1722 int64_t OffsetDiff = Offset - AlignDownOffset;
1723
1724 EVT IntVT = MemVT.changeTypeToInteger();
1725
1726 // TODO: If we passed in the base kernel offset we could have a better
1727 // alignment than 4, but we don't really need it.
1728 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1729 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1730 MachineMemOperand::MODereferenceable |
1731 MachineMemOperand::MOInvariant);
1732
1733 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1734 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1735
1736 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1737 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1738 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1739
1740
1741 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1742 }
1743
1744 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1745 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1746 MachineMemOperand::MODereferenceable |
1747 MachineMemOperand::MOInvariant);
1748
1749 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1750 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1751}
1752
1753SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1754 const SDLoc &SL, SDValue Chain,
1755 const ISD::InputArg &Arg) const {
1756 MachineFunction &MF = DAG.getMachineFunction();
1757 MachineFrameInfo &MFI = MF.getFrameInfo();
1758
1759 if (Arg.Flags.isByVal()) {
1760 unsigned Size = Arg.Flags.getByValSize();
1761 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1762 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1763 }
1764
1765 unsigned ArgOffset = VA.getLocMemOffset();
1766 unsigned ArgSize = VA.getValVT().getStoreSize();
1767
1768 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1769
1770 // Create load nodes to retrieve arguments from the stack.
1771 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1772 SDValue ArgValue;
1773
1774 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1775 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1776 MVT MemVT = VA.getValVT();
1777
1778 switch (VA.getLocInfo()) {
1779 default:
1780 break;
1781 case CCValAssign::BCvt:
1782 MemVT = VA.getLocVT();
1783 break;
1784 case CCValAssign::SExt:
1785 ExtType = ISD::SEXTLOAD;
1786 break;
1787 case CCValAssign::ZExt:
1788 ExtType = ISD::ZEXTLOAD;
1789 break;
1790 case CCValAssign::AExt:
1791 ExtType = ISD::EXTLOAD;
1792 break;
1793 }
1794
1795 ArgValue = DAG.getExtLoad(
1796 ExtType, SL, VA.getLocVT(), Chain, FIN,
1797 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1798 MemVT);
1799 return ArgValue;
1800}
1801
1802SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1803 const SIMachineFunctionInfo &MFI,
1804 EVT VT,
1805 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1806 const ArgDescriptor *Reg;
1807 const TargetRegisterClass *RC;
1808 LLT Ty;
1809
1810 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1811 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1812}
1813
1814static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1815 CallingConv::ID CallConv,
1816 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1817 FunctionType *FType,
1818 SIMachineFunctionInfo *Info) {
1819 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1820 const ISD::InputArg *Arg = &Ins[I];
1821
1822 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&((void)0)
1823 "vector type argument should have been split")((void)0);
1824
1825 // First check if it's a PS input addr.
1826 if (CallConv == CallingConv::AMDGPU_PS &&
1827 !Arg->Flags.isInReg() && PSInputNum <= 15) {
1828 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1829
1830 // Inconveniently only the first part of the split is marked as isSplit,
1831 // so skip to the end. We only want to increment PSInputNum once for the
1832 // entire split argument.
1833 if (Arg->Flags.isSplit()) {
1834 while (!Arg->Flags.isSplitEnd()) {
1835 assert((!Arg->VT.isVector() ||((void)0)
1836 Arg->VT.getScalarSizeInBits() == 16) &&((void)0)
1837 "unexpected vector split in ps argument type")((void)0);
1838 if (!SkipArg)
1839 Splits.push_back(*Arg);
1840 Arg = &Ins[++I];
1841 }
1842 }
1843
1844 if (SkipArg) {
1845 // We can safely skip PS inputs.
1846 Skipped.set(Arg->getOrigArgIndex());
1847 ++PSInputNum;
1848 continue;
1849 }
1850
1851 Info->markPSInputAllocated(PSInputNum);
1852 if (Arg->Used)
1853 Info->markPSInputEnabled(PSInputNum);
1854
1855 ++PSInputNum;
1856 }
1857
1858 Splits.push_back(*Arg);
1859 }
1860}
1861
1862// Allocate special inputs passed in VGPRs.
1863void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1864 MachineFunction &MF,
1865 const SIRegisterInfo &TRI,
1866 SIMachineFunctionInfo &Info) const {
1867 const LLT S32 = LLT::scalar(32);
1868 MachineRegisterInfo &MRI = MF.getRegInfo();
1869
1870 if (Info.hasWorkItemIDX()) {
1871 Register Reg = AMDGPU::VGPR0;
1872 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1873
1874 CCInfo.AllocateReg(Reg);
1875 unsigned Mask = (Subtarget->hasPackedTID() &&
1876 Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1877 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1878 }
1879
1880 if (Info.hasWorkItemIDY()) {
1881 assert(Info.hasWorkItemIDX())((void)0);
1882 if (Subtarget->hasPackedTID()) {
1883 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1884 0x3ff << 10));
1885 } else {
1886 unsigned Reg = AMDGPU::VGPR1;
1887 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1888
1889 CCInfo.AllocateReg(Reg);
1890 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1891 }
1892 }
1893
1894 if (Info.hasWorkItemIDZ()) {
1895 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY())((void)0);
1896 if (Subtarget->hasPackedTID()) {
1897 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1898 0x3ff << 20));
1899 } else {
1900 unsigned Reg = AMDGPU::VGPR2;
1901 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1902
1903 CCInfo.AllocateReg(Reg);
1904 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1905 }
1906 }
1907}
1908
1909// Try to allocate a VGPR at the end of the argument list, or if no argument
1910// VGPRs are left allocating a stack slot.
1911// If \p Mask is is given it indicates bitfield position in the register.
1912// If \p Arg is given use it with new ]p Mask instead of allocating new.
1913static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1914 ArgDescriptor Arg = ArgDescriptor()) {
1915 if (Arg.isSet())
1916 return ArgDescriptor::createArg(Arg, Mask);
1917
1918 ArrayRef<MCPhysReg> ArgVGPRs
1919 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1920 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1921 if (RegIdx == ArgVGPRs.size()) {
1922 // Spill to stack required.
1923 int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1924
1925 return ArgDescriptor::createStack(Offset, Mask);
1926 }
1927
1928 unsigned Reg = ArgVGPRs[RegIdx];
1929 Reg = CCInfo.AllocateReg(Reg);
1930 assert(Reg != AMDGPU::NoRegister)((void)0);
1931
1932 MachineFunction &MF = CCInfo.getMachineFunction();
1933 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1934 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1935 return ArgDescriptor::createRegister(Reg, Mask);
1936}
1937
1938static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1939 const TargetRegisterClass *RC,
1940 unsigned NumArgRegs) {
1941 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1942 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1943 if (RegIdx == ArgSGPRs.size())
1944 report_fatal_error("ran out of SGPRs for arguments");
1945
1946 unsigned Reg = ArgSGPRs[RegIdx];
1947 Reg = CCInfo.AllocateReg(Reg);
1948 assert(Reg != AMDGPU::NoRegister)((void)0);
1949
1950 MachineFunction &MF = CCInfo.getMachineFunction();
1951 MF.addLiveIn(Reg, RC);
1952 return ArgDescriptor::createRegister(Reg);
1953}
1954
1955// If this has a fixed position, we still should allocate the register in the
1956// CCInfo state. Technically we could get away with this for values passed
1957// outside of the normal argument range.
1958static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1959 const TargetRegisterClass *RC,
1960 MCRegister Reg) {
1961 Reg = CCInfo.AllocateReg(Reg);
1962 assert(Reg != AMDGPU::NoRegister)((void)0);
1963 MachineFunction &MF = CCInfo.getMachineFunction();
1964 MF.addLiveIn(Reg, RC);
1965}
1966
1967static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
1968 if (Arg) {
1969 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
1970 Arg.getRegister());
1971 } else
1972 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1973}
1974
1975static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
1976 if (Arg) {
1977 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
1978 Arg.getRegister());
1979 } else
1980 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1981}
1982
1983/// Allocate implicit function VGPR arguments at the end of allocated user
1984/// arguments.
1985void SITargetLowering::allocateSpecialInputVGPRs(
1986 CCState &CCInfo, MachineFunction &MF,
1987 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1988 const unsigned Mask = 0x3ff;
1989 ArgDescriptor Arg;
1990
1991 if (Info.hasWorkItemIDX()) {
1992 Arg = allocateVGPR32Input(CCInfo, Mask);
1993 Info.setWorkItemIDX(Arg);
1994 }
1995
1996 if (Info.hasWorkItemIDY()) {
1997 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1998 Info.setWorkItemIDY(Arg);
1999 }
2000
2001 if (Info.hasWorkItemIDZ())
2002 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2003}
2004
2005/// Allocate implicit function VGPR arguments in fixed registers.
2006void SITargetLowering::allocateSpecialInputVGPRsFixed(
2007 CCState &CCInfo, MachineFunction &MF,
2008 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2009 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2010 if (!Reg)
2011 report_fatal_error("failed to allocated VGPR for implicit arguments");
2012
2013 const unsigned Mask = 0x3ff;
2014 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2015 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2016 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2017}
2018
2019void SITargetLowering::allocateSpecialInputSGPRs(
2020 CCState &CCInfo,
2021 MachineFunction &MF,
2022 const SIRegisterInfo &TRI,
2023 SIMachineFunctionInfo &Info) const {
2024 auto &ArgInfo = Info.getArgInfo();
2025
2026 // TODO: Unify handling with private memory pointers.
2027
2028 if (Info.hasDispatchPtr())
2029 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2030
2031 if (Info.hasQueuePtr())
2032 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2033
2034 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2035 // constant offset from the kernarg segment.
2036 if (Info.hasImplicitArgPtr())
2037 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2038
2039 if (Info.hasDispatchID())
2040 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2041
2042 // flat_scratch_init is not applicable for non-kernel functions.
2043
2044 if (Info.hasWorkGroupIDX())
2045 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2046
2047 if (Info.hasWorkGroupIDY())
2048 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2049
2050 if (Info.hasWorkGroupIDZ())
2051 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2052}
2053
2054// Allocate special inputs passed in user SGPRs.
2055void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2056 MachineFunction &MF,
2057 const SIRegisterInfo &TRI,
2058 SIMachineFunctionInfo &Info) const {
2059 if (Info.hasImplicitBufferPtr()) {
2060 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2061 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2062 CCInfo.AllocateReg(ImplicitBufferPtrReg);
2063 }
2064
2065 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2066 if (Info.hasPrivateSegmentBuffer()) {
2067 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2068 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2069 CCInfo.AllocateReg(PrivateSegmentBufferReg);
2070 }
2071
2072 if (Info.hasDispatchPtr()) {
2073 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2074 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2075 CCInfo.AllocateReg(DispatchPtrReg);
2076 }
2077
2078 if (Info.hasQueuePtr()) {
2079 Register QueuePtrReg = Info.addQueuePtr(TRI);
2080 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2081 CCInfo.AllocateReg(QueuePtrReg);
2082 }
2083
2084 if (Info.hasKernargSegmentPtr()) {
2085 MachineRegisterInfo &MRI = MF.getRegInfo();
2086 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2087 CCInfo.AllocateReg(InputPtrReg);
2088
2089 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2090 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2091 }
2092
2093 if (Info.hasDispatchID()) {
2094 Register DispatchIDReg = Info.addDispatchID(TRI);
2095 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2096 CCInfo.AllocateReg(DispatchIDReg);
2097 }
2098
2099 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2100 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2101 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2102 CCInfo.AllocateReg(FlatScratchInitReg);
2103 }
2104
2105 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2106 // these from the dispatch pointer.
2107}
2108
2109// Allocate special input registers that are initialized per-wave.
2110void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2111 MachineFunction &MF,
2112 SIMachineFunctionInfo &Info,
2113 CallingConv::ID CallConv,
2114 bool IsShader) const {
2115 if (Info.hasWorkGroupIDX()) {
2116 Register Reg = Info.addWorkGroupIDX();
2117 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2118 CCInfo.AllocateReg(Reg);
2119 }
2120
2121 if (Info.hasWorkGroupIDY()) {
2122 Register Reg = Info.addWorkGroupIDY();
2123 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2124 CCInfo.AllocateReg(Reg);
2125 }
2126
2127 if (Info.hasWorkGroupIDZ()) {
2128 Register Reg = Info.addWorkGroupIDZ();
2129 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2130 CCInfo.AllocateReg(Reg);
2131 }
2132
2133 if (Info.hasWorkGroupInfo()) {
2134 Register Reg = Info.addWorkGroupInfo();
2135 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2136 CCInfo.AllocateReg(Reg);
2137 }
2138
2139 if (Info.hasPrivateSegmentWaveByteOffset()) {
2140 // Scratch wave offset passed in system SGPR.
2141 unsigned PrivateSegmentWaveByteOffsetReg;
2142
2143 if (IsShader) {
2144 PrivateSegmentWaveByteOffsetReg =
2145 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2146
2147 // This is true if the scratch wave byte offset doesn't have a fixed
2148 // location.
2149 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2150 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2151 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2152 }
2153 } else
2154 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2155
2156 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2157 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2158 }
2159}
2160
2161static void reservePrivateMemoryRegs(const TargetMachine &TM,
2162 MachineFunction &MF,
2163 const SIRegisterInfo &TRI,
2164 SIMachineFunctionInfo &Info) {
2165 // Now that we've figured out where the scratch register inputs are, see if
2166 // should reserve the arguments and use them directly.
2167 MachineFrameInfo &MFI = MF.getFrameInfo();
2168 bool HasStackObjects = MFI.hasStackObjects();
2169 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2170
2171 // Record that we know we have non-spill stack objects so we don't need to
2172 // check all stack objects later.
2173 if (HasStackObjects)
2174 Info.setHasNonSpillStackObjects(true);
2175
2176 // Everything live out of a block is spilled with fast regalloc, so it's
2177 // almost certain that spilling will be required.
2178 if (TM.getOptLevel() == CodeGenOpt::None)
2179 HasStackObjects = true;
2180
2181 // For now assume stack access is needed in any callee functions, so we need
2182 // the scratch registers to pass in.
2183 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2184
2185 if (!ST.enableFlatScratch()) {
2186 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2187 // If we have stack objects, we unquestionably need the private buffer
2188 // resource. For the Code Object V2 ABI, this will be the first 4 user
2189 // SGPR inputs. We can reserve those and use them directly.
2190
2191 Register PrivateSegmentBufferReg =
2192 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2193 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2194 } else {
2195 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2196 // We tentatively reserve the last registers (skipping the last registers
2197 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2198 // we'll replace these with the ones immediately after those which were
2199 // really allocated. In the prologue copies will be inserted from the
2200 // argument to these reserved registers.
2201
2202 // Without HSA, relocations are used for the scratch pointer and the
2203 // buffer resource setup is always inserted in the prologue. Scratch wave
2204 // offset is still in an input SGPR.
2205 Info.setScratchRSrcReg(ReservedBufferReg);
2206 }
2207 }
2208
2209 MachineRegisterInfo &MRI = MF.getRegInfo();
2210
2211 // For entry functions we have to set up the stack pointer if we use it,
2212 // whereas non-entry functions get this "for free". This means there is no
2213 // intrinsic advantage to using S32 over S34 in cases where we do not have
2214 // calls but do need a frame pointer (i.e. if we are requested to have one
2215 // because frame pointer elimination is disabled). To keep things simple we
2216 // only ever use S32 as the call ABI stack pointer, and so using it does not
2217 // imply we need a separate frame pointer.
2218 //
2219 // Try to use s32 as the SP, but move it if it would interfere with input
2220 // arguments. This won't work with calls though.
2221 //
2222 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2223 // registers.
2224 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2225 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2226 } else {
2227 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()))((void)0);
2228
2229 if (MFI.hasCalls())
2230 report_fatal_error("call in graphics shader with too many input SGPRs");
2231
2232 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2233 if (!MRI.isLiveIn(Reg)) {
2234 Info.setStackPtrOffsetReg(Reg);
2235 break;
2236 }
2237 }
2238
2239 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2240 report_fatal_error("failed to find register for SP");
2241 }
2242
2243 // hasFP should be accurate for entry functions even before the frame is
2244 // finalized, because it does not rely on the known stack size, only
2245 // properties like whether variable sized objects are present.
2246 if (ST.getFrameLowering()->hasFP(MF)) {
2247 Info.setFrameOffsetReg(AMDGPU::SGPR33);
2248 }
2249}
2250
2251bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2252 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2253 return !Info->isEntryFunction();
2254}
2255
2256void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2257
2258}
2259
2260void SITargetLowering::insertCopiesSplitCSR(
2261 MachineBasicBlock *Entry,
2262 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2263 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2264
2265 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2266 if (!IStart)
2267 return;
2268
2269 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2270 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2271 MachineBasicBlock::iterator MBBI = Entry->begin();
2272 for (const MCPhysReg *I = IStart; *I; ++I) {
2273 const TargetRegisterClass *RC = nullptr;
2274 if (AMDGPU::SReg_64RegClass.contains(*I))
2275 RC = &AMDGPU::SGPR_64RegClass;
2276 else if (AMDGPU::SReg_32RegClass.contains(*I))
2277 RC = &AMDGPU::SGPR_32RegClass;
2278 else
2279 llvm_unreachable("Unexpected register class in CSRsViaCopy!")__builtin_unreachable();
2280
2281 Register NewVR = MRI->createVirtualRegister(RC);
2282 // Create copy from CSR to a virtual register.
2283 Entry->addLiveIn(*I);
2284 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2285 .addReg(*I);
2286
2287 // Insert the copy-back instructions right before the terminator.
2288 for (auto *Exit : Exits)
2289 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2290 TII->get(TargetOpcode::COPY), *I)
2291 .addReg(NewVR);
2292 }
2293}
2294
2295SDValue SITargetLowering::LowerFormalArguments(
2296 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2297 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2298 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2299 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2300
2301 MachineFunction &MF = DAG.getMachineFunction();
2302 const Function &Fn = MF.getFunction();
2303 FunctionType *FType = MF.getFunction().getFunctionType();
2304 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2305
2306 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2307 DiagnosticInfoUnsupported NoGraphicsHSA(
2308 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2309 DAG.getContext()->diagnose(NoGraphicsHSA);
2310 return DAG.getEntryNode();
2311 }
2312
2313 Info->allocateModuleLDSGlobal(Fn.getParent());
2314
2315 SmallVector<ISD::InputArg, 16> Splits;
2316 SmallVector<CCValAssign, 16> ArgLocs;
2317 BitVector Skipped(Ins.size());
2318 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2319 *DAG.getContext());
2320
2321 bool IsGraphics = AMDGPU::isGraphics(CallConv);
2322 bool IsKernel = AMDGPU::isKernel(CallConv);
2323 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2324
2325 if (IsGraphics) {
2326 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&((void)0)
2327 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&((void)0)
2328 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&((void)0)
2329 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&((void)0)
2330 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&((void)0)
2331 !Info->hasWorkItemIDZ())((void)0);
2332 }
2333
2334 if (CallConv == CallingConv::AMDGPU_PS) {
2335 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2336
2337 // At least one interpolation mode must be enabled or else the GPU will
2338 // hang.
2339 //
2340 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2341 // set PSInputAddr, the user wants to enable some bits after the compilation
2342 // based on run-time states. Since we can't know what the final PSInputEna
2343 // will look like, so we shouldn't do anything here and the user should take
2344 // responsibility for the correct programming.
2345 //
2346 // Otherwise, the following restrictions apply:
2347 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2348 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2349 // enabled too.
2350 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2351 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2352 CCInfo.AllocateReg(AMDGPU::VGPR0);
2353 CCInfo.AllocateReg(AMDGPU::VGPR1);
2354 Info->markPSInputAllocated(0);
2355 Info->markPSInputEnabled(0);
2356 }
2357 if (Subtarget->isAmdPalOS()) {
2358 // For isAmdPalOS, the user does not enable some bits after compilation
2359 // based on run-time states; the register values being generated here are
2360 // the final ones set in hardware. Therefore we need to apply the
2361 // workaround to PSInputAddr and PSInputEnable together. (The case where
2362 // a bit is set in PSInputAddr but not PSInputEnable is where the
2363 // frontend set up an input arg for a particular interpolation mode, but
2364 // nothing uses that input arg. Really we should have an earlier pass
2365 // that removes such an arg.)
2366 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2367 if ((PsInputBits & 0x7F) == 0 ||
2368 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2369 Info->markPSInputEnabled(
2370 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2371 }
2372 } else if (IsKernel) {
2373 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())((void)0);
2374 } else {
2375 Splits.append(Ins.begin(), Ins.end());
2376 }
2377
2378 if (IsEntryFunc) {
2379 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2380 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2381 } else {
2382 // For the fixed ABI, pass workitem IDs in the last argument register.
2383 if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2384 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2385 }
2386
2387 if (IsKernel) {
2388 analyzeFormalArgumentsCompute(CCInfo, Ins);
2389 } else {
2390 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2391 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2392 }
2393
2394 SmallVector<SDValue, 16> Chains;
2395
2396 // FIXME: This is the minimum kernel argument alignment. We should improve
2397 // this to the maximum alignment of the arguments.
2398 //
2399 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2400 // kern arg offset.
2401 const Align KernelArgBaseAlign = Align(16);
2402
2403 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2404 const ISD::InputArg &Arg = Ins[i];
2405 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2406 InVals.push_back(DAG.getUNDEF(Arg.VT));
2407 continue;
2408 }
2409
2410 CCValAssign &VA = ArgLocs[ArgIdx++];
2411 MVT VT = VA.getLocVT();
2412
2413 if (IsEntryFunc && VA.isMemLoc()) {
2414 VT = Ins[i].VT;
2415 EVT MemVT = VA.getLocVT();
2416
2417 const uint64_t Offset = VA.getLocMemOffset();
2418 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2419
2420 if (Arg.Flags.isByRef()) {
2421 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2422
2423 const GCNTargetMachine &TM =
2424 static_cast<const GCNTargetMachine &>(getTargetMachine());
2425 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2426 Arg.Flags.getPointerAddrSpace())) {
2427 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2428 Arg.Flags.getPointerAddrSpace());
2429 }
2430
2431 InVals.push_back(Ptr);
2432 continue;
2433 }
2434
2435 SDValue Arg = lowerKernargMemParameter(
2436 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2437 Chains.push_back(Arg.getValue(1));
2438
2439 auto *ParamTy =
2440 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2441 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2442 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2443 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2444 // On SI local pointers are just offsets into LDS, so they are always
2445 // less than 16-bits. On CI and newer they could potentially be
2446 // real pointers, so we can't guarantee their size.
2447 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2448 DAG.getValueType(MVT::i16));
2449 }
2450
2451 InVals.push_back(Arg);
2452 continue;
2453 } else if (!IsEntryFunc && VA.isMemLoc()) {
2454 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2455 InVals.push_back(Val);
2456 if (!Arg.Flags.isByVal())
2457 Chains.push_back(Val.getValue(1));
2458 continue;
2459 }
2460
2461 assert(VA.isRegLoc() && "Parameter must be in a register!")((void)0);
2462
2463 Register Reg = VA.getLocReg();
2464 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2465 EVT ValVT = VA.getValVT();
2466
2467 Reg = MF.addLiveIn(Reg, RC);
2468 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2469
2470 if (Arg.Flags.isSRet()) {
2471 // The return object should be reasonably addressable.
2472
2473 // FIXME: This helps when the return is a real sret. If it is a
2474 // automatically inserted sret (i.e. CanLowerReturn returns false), an
2475 // extra copy is inserted in SelectionDAGBuilder which obscures this.
2476 unsigned NumBits
2477 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2478 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2479 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2480 }
2481
2482 // If this is an 8 or 16-bit value, it is really passed promoted
2483 // to 32 bits. Insert an assert[sz]ext to capture this, then
2484 // truncate to the right size.
2485 switch (VA.getLocInfo()) {
2486 case CCValAssign::Full:
2487 break;
2488 case CCValAssign::BCvt:
2489 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2490 break;
2491 case CCValAssign::SExt:
2492 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2493 DAG.getValueType(ValVT));
2494 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2495 break;
2496 case CCValAssign::ZExt:
2497 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2498 DAG.getValueType(ValVT));
2499 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2500 break;
2501 case CCValAssign::AExt:
2502 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2503 break;
2504 default:
2505 llvm_unreachable("Unknown loc info!")__builtin_unreachable();
2506 }
2507
2508 InVals.push_back(Val);
2509 }
2510
2511 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2512 // Special inputs come after user arguments.
2513 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2514 }
2515
2516 // Start adding system SGPRs.
2517 if (IsEntryFunc) {
2518 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2519 } else {
2520 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2521 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2522 }
2523
2524 auto &ArgUsageInfo =
2525 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2526 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2527
2528 unsigned StackArgSize = CCInfo.getNextStackOffset();
2529 Info->setBytesInStackArgArea(StackArgSize);
2530
2531 return Chains.empty() ? Chain :
2532 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2533}
2534
2535// TODO: If return values can't fit in registers, we should return as many as
2536// possible in registers before passing on stack.
2537bool SITargetLowering::CanLowerReturn(
2538 CallingConv::ID CallConv,
2539 MachineFunction &MF, bool IsVarArg,
2540 const SmallVectorImpl<ISD::OutputArg> &Outs,
2541 LLVMContext &Context) const {
2542 // Replacing returns with sret/stack usage doesn't make sense for shaders.
2543 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2544 // for shaders. Vector types should be explicitly handled by CC.
2545 if (AMDGPU::isEntryFunctionCC(CallConv))
2546 return true;
2547
2548 SmallVector<CCValAssign, 16> RVLocs;
2549 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2550 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2551}
2552
2553SDValue
2554SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2555 bool isVarArg,
2556 const SmallVectorImpl<ISD::OutputArg> &Outs,
2557 const SmallVectorImpl<SDValue> &OutVals,
2558 const SDLoc &DL, SelectionDAG &DAG) const {
2559 MachineFunction &MF = DAG.getMachineFunction();
2560 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2561
2562 if (AMDGPU::isKernel(CallConv)) {
2563 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2564 OutVals, DL, DAG);
2565 }
2566
2567 bool IsShader = AMDGPU::isShader(CallConv);
2568
2569 Info->setIfReturnsVoid(Outs.empty());
2570 bool IsWaveEnd = Info->returnsVoid() && IsShader;
2571
2572 // CCValAssign - represent the assignment of the return value to a location.
2573 SmallVector<CCValAssign, 48> RVLocs;
2574 SmallVector<ISD::OutputArg, 48> Splits;
2575
2576 // CCState - Info about the registers and stack slots.
2577 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2578 *DAG.getContext());
2579
2580 // Analyze outgoing return values.
2581 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2582
2583 SDValue Flag;
2584 SmallVector<SDValue, 48> RetOps;
2585 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2586
2587 // Add return address for callable functions.
2588 if (!Info->isEntryFunction()) {
2589 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2590 SDValue ReturnAddrReg = CreateLiveInRegister(
2591 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2592
2593 SDValue ReturnAddrVirtualReg = DAG.getRegister(
2594 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2595 MVT::i64);
2596 Chain =
2597 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2598 Flag = Chain.getValue(1);
2599 RetOps.push_back(ReturnAddrVirtualReg);
2600 }
2601
2602 // Copy the result values into the output registers.
2603 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2604 ++I, ++RealRVLocIdx) {
2605 CCValAssign &VA = RVLocs[I];
2606 assert(VA.isRegLoc() && "Can only return in registers!")((void)0);
2607 // TODO: Partially return in registers if return values don't fit.
2608 SDValue Arg = OutVals[RealRVLocIdx];
2609
2610 // Copied from other backends.
2611 switch (VA.getLocInfo()) {
2612 case CCValAssign::Full:
2613 break;
2614 case CCValAssign::BCvt:
2615 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2616 break;
2617 case CCValAssign::SExt:
2618 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2619 break;
2620 case CCValAssign::ZExt:
2621 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2622 break;
2623 case CCValAssign::AExt:
2624 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2625 break;
2626 default:
2627 llvm_unreachable("Unknown loc info!")__builtin_unreachable();
2628 }
2629
2630 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2631 Flag = Chain.getValue(1);
2632 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2633 }
2634
2635 // FIXME: Does sret work properly?
2636 if (!Info->isEntryFunction()) {
2637 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2638 const MCPhysReg *I =
2639 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2640 if (I) {
2641 for (; *I; ++I) {
2642 if (AMDGPU::SReg_64RegClass.contains(*I))
2643 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2644 else if (AMDGPU::SReg_32RegClass.contains(*I))
2645 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2646 else
2647 llvm_unreachable("Unexpected register class in CSRsViaCopy!")__builtin_unreachable();
2648 }
2649 }
2650 }
2651
2652 // Update chain and glue.
2653 RetOps[0] = Chain;
2654 if (Flag.getNode())
2655 RetOps.push_back(Flag);
2656
2657 unsigned Opc = AMDGPUISD::ENDPGM;
2658 if (!IsWaveEnd)
2659 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2660 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2661}
2662
2663SDValue SITargetLowering::LowerCallResult(
2664 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2665 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2666 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2667 SDValue ThisVal) const {
2668 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2669
2670 // Assign locations to each value returned by this call.
2671 SmallVector<CCValAssign, 16> RVLocs;
2672 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2673 *DAG.getContext());
2674 CCInfo.AnalyzeCallResult(Ins, RetCC);
2675
2676 // Copy all of the result registers out of their specified physreg.
2677 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2678 CCValAssign VA = RVLocs[i];
2679 SDValue Val;
2680
2681 if (VA.isRegLoc()) {
2682 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2683 Chain = Val.getValue(1);
2684 InFlag = Val.getValue(2);
2685 } else if (VA.isMemLoc()) {
2686 report_fatal_error("TODO: return values in memory");
2687 } else
2688 llvm_unreachable("unknown argument location type")__builtin_unreachable();
2689
2690 switch (VA.getLocInfo()) {
2691 case CCValAssign::Full:
2692 break;
2693 case CCValAssign::BCvt:
2694 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2695 break;
2696 case CCValAssign::ZExt:
2697 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2698 DAG.getValueType(VA.getValVT()));
2699 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2700 break;
2701 case CCValAssign::SExt:
2702 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2703 DAG.getValueType(VA.getValVT()));
2704 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2705 break;
2706 case CCValAssign::AExt:
2707 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2708 break;
2709 default:
2710 llvm_unreachable("Unknown loc info!")__builtin_unreachable();
2711 }
2712
2713 InVals.push_back(Val);
2714 }
2715
2716 return Chain;
2717}
2718
2719// Add code to pass special inputs required depending on used features separate
2720// from the explicit user arguments present in the IR.
2721void SITargetLowering::passSpecialInputs(
2722 CallLoweringInfo &CLI,
2723 CCState &CCInfo,
2724 const SIMachineFunctionInfo &Info,
2725 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2726 SmallVectorImpl<SDValue> &MemOpChains,
2727 SDValue Chain) const {
2728 // If we don't have a call site, this was a call inserted by
2729 // legalization. These can never use special inputs.
2730 if (!CLI.CB)
2731 return;
2732
2733 SelectionDAG &DAG = CLI.DAG;
2734 const SDLoc &DL = CLI.DL;
2735
2736 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2737 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2738
2739 const AMDGPUFunctionArgInfo *CalleeArgInfo
2740 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2741 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2742 auto &ArgUsageInfo =
2743 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2744 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2745 }
2746
2747 // TODO: Unify with private memory register handling. This is complicated by
2748 // the fact that at least in kernels, the input argument is not necessarily
2749 // in the same location as the input.
2750 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2751 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2752 AMDGPUFunctionArgInfo::QUEUE_PTR,
2753 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2754 AMDGPUFunctionArgInfo::DISPATCH_ID,
2755 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2756 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2757 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2758 };
2759
2760 for (auto InputID : InputRegs) {
2761 const ArgDescriptor *OutgoingArg;
2762 const TargetRegisterClass *ArgRC;
2763 LLT ArgTy;
2764
2765 std::tie(OutgoingArg, ArgRC, ArgTy) =
2766 CalleeArgInfo->getPreloadedValue(InputID);
2767 if (!OutgoingArg)
2768 continue;
2769
2770 const ArgDescriptor *IncomingArg;
2771 const TargetRegisterClass *IncomingArgRC;
2772 LLT Ty;
2773 std::tie(IncomingArg, IncomingArgRC, Ty) =
2774 CallerArgInfo.getPreloadedValue(InputID);
2775 assert(IncomingArgRC == ArgRC)((void)0);
2776
2777 // All special arguments are ints for now.
2778 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2779 SDValue InputReg;
2780
2781 if (IncomingArg) {
2782 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2783 } else {
2784 // The implicit arg ptr is special because it doesn't have a corresponding
2785 // input for kernels, and is computed from the kernarg segment pointer.
2786 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR)((void)0);
2787 InputReg = getImplicitArgPtr(DAG, DL);
2788 }
2789
2790 if (OutgoingArg->isRegister()) {
2791 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2792 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2793 report_fatal_error("failed to allocate implicit input argument");
2794 } else {
2795 unsigned SpecialArgOffset =
2796 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2797 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2798 SpecialArgOffset);
2799 MemOpChains.push_back(ArgStore);
2800 }
2801 }
2802
2803 // Pack workitem IDs into a single register or pass it as is if already
2804 // packed.
2805 const ArgDescriptor *OutgoingArg;
2806 const TargetRegisterClass *ArgRC;
2807 LLT Ty;
2808
2809 std::tie(OutgoingArg, ArgRC, Ty) =
2810 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2811 if (!OutgoingArg)
2812 std::tie(OutgoingArg, ArgRC, Ty) =
2813 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2814 if (!OutgoingArg)
2815 std::tie(OutgoingArg, ArgRC, Ty) =
2816 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2817 if (!OutgoingArg)
2818 return;
2819
2820 const ArgDescriptor *IncomingArgX = std::get<0>(
2821 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2822 const ArgDescriptor *IncomingArgY = std::get<0>(
2823 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2824 const ArgDescriptor *IncomingArgZ = std::get<0>(
2825 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2826
2827 SDValue InputReg;
2828 SDLoc SL;
2829
2830 // If incoming ids are not packed we need to pack them.
2831 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2832 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2833
2834 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2835 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2836 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2837 DAG.getShiftAmountConstant(10, MVT::i32, SL));
2838 InputReg = InputReg.getNode() ?
2839 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2840 }
2841
2842 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2843 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2844 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2845 DAG.getShiftAmountConstant(20, MVT::i32, SL));
2846 InputReg = InputReg.getNode() ?
2847 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2848 }
2849
2850 if (!InputReg.getNode()) {
2851 // Workitem ids are already packed, any of present incoming arguments
2852 // will carry all required fields.
2853 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2854 IncomingArgX ? *IncomingArgX :
2855 IncomingArgY ? *IncomingArgY :
2856 *IncomingArgZ, ~0u);
2857 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2858 }
2859
2860 if (OutgoingArg->isRegister()) {
2861 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2862 CCInfo.AllocateReg(OutgoingArg->getRegister());
2863 } else {
2864 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2865 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2866 SpecialArgOffset);
2867 MemOpChains.push_back(ArgStore);
2868 }
2869}
2870
2871static bool canGuaranteeTCO(CallingConv::ID CC) {
2872 return CC == CallingConv::Fast;
2873}
2874
2875/// Return true if we might ever do TCO for calls with this calling convention.
2876static bool mayTailCallThisCC(CallingConv::ID CC) {
2877 switch (CC) {
2878 case CallingConv::C:
2879 case CallingConv::AMDGPU_Gfx:
2880 return true;
2881 default:
2882 return canGuaranteeTCO(CC);
2883 }
2884}
2885
2886bool SITargetLowering::isEligibleForTailCallOptimization(
2887 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2888 const SmallVectorImpl<ISD::OutputArg> &Outs,
2889 const SmallVectorImpl<SDValue> &OutVals,
2890 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2891 if (!mayTailCallThisCC(CalleeCC))
2892 return false;
2893
2894 // For a divergent call target, we need to do a waterfall loop over the
2895 // possible callees which precludes us from using a simple jump.
2896 if (Callee->isDivergent())
2897 return false;
2898
2899 MachineFunction &MF = DAG.getMachineFunction();
2900 const Function &CallerF = MF.getFunction();
2901 CallingConv::ID CallerCC = CallerF.getCallingConv();
2902 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2903 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2904
2905 // Kernels aren't callable, and don't have a live in return address so it
2906 // doesn't make sense to do a tail call with entry functions.
2907 if (!CallerPreserved)
2908 return false;
2909
2910 bool CCMatch = CallerCC == CalleeCC;
2911
2912 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2913 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2914 return true;
2915 return false;
2916 }
2917
2918 // TODO: Can we handle var args?
2919 if (IsVarArg)
2920 return false;
2921
2922 for (const Argument &Arg : CallerF.args()) {
2923 if (Arg.hasByValAttr())
2924 return false;
2925 }
2926
2927 LLVMContext &Ctx = *DAG.getContext();
2928
2929 // Check that the call results are passed in the same way.
2930 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2931 CCAssignFnForCall(CalleeCC, IsVarArg),
2932 CCAssignFnForCall(CallerCC, IsVarArg)))
2933 return false;
2934
2935 // The callee has to preserve all registers the caller needs to preserve.
2936 if (!CCMatch) {
2937 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2938 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2939 return false;
2940 }
2941
2942 // Nothing more to check if the callee is taking no arguments.
2943 if (Outs.empty())
2944 return true;
2945
2946 SmallVector<CCValAssign, 16> ArgLocs;
2947 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2948
2949 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2950
2951 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2952 // If the stack arguments for this call do not fit into our own save area then
2953 // the call cannot be made tail.
2954 // TODO: Is this really necessary?
2955 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2956 return false;
2957
2958 const MachineRegisterInfo &MRI = MF.getRegInfo();
2959 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2960}
2961
2962bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2963 if (!CI->isTailCall())
2964 return false;
2965
2966 const Function *ParentFn = CI->getParent()->getParent();
2967 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2968 return false;
2969 return true;
2970}
2971
2972// The wave scratch offset register is used as the global base pointer.
2973SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2974 SmallVectorImpl<SDValue> &InVals) const {
2975 SelectionDAG &DAG = CLI.DAG;
2976 const SDLoc &DL = CLI.DL;
2977 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2978 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2979 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2980 SDValue Chain = CLI.Chain;
2981 SDValue Callee = CLI.Callee;
2982 bool &IsTailCall = CLI.IsTailCall;
2983 CallingConv::ID CallConv = CLI.CallConv;
2984 bool IsVarArg = CLI.IsVarArg;
2985 bool IsSibCall = false;
2986 bool IsThisReturn = false;
2987 MachineFunction &MF = DAG.getMachineFunction();
2988
2989 if (Callee.isUndef() || isNullConstant(Callee)) {
2990 if (!CLI.IsTailCall) {
2991 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2992 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2993 }
2994
2995 return Chain;
2996 }
2997
2998 if (IsVarArg) {
2999 return lowerUnhandledCall(CLI, InVals,
3000 "unsupported call to variadic function ");
3001 }
3002
3003 if (!CLI.CB)
3004 report_fatal_error("unsupported libcall legalization");
3005
3006 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3007 return lowerUnhandledCall(CLI, InVals,
3008 "unsupported required tail call to function ");
3009 }
3010
3011 if (AMDGPU::isShader(CallConv)) {
3012 // Note the issue is with the CC of the called function, not of the call
3013 // itself.
3014 return lowerUnhandledCall(CLI, InVals,
3015 "unsupported call to a shader function ");
3016 }
3017
3018 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3019 CallConv != CallingConv::AMDGPU_Gfx) {
3020 // Only allow calls with specific calling conventions.
3021 return lowerUnhandledCall(CLI, InVals,
3022 "unsupported calling convention for call from "
3023 "graphics shader of function ");
3024 }
3025
3026 if (IsTailCall) {
3027 IsTailCall = isEligibleForTailCallOptimization(
3028 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3029 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3030 report_fatal_error("failed to perform tail call elimination on a call "
3031 "site marked musttail");
3032 }
3033
3034 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3035
3036 // A sibling call is one where we're under the usual C ABI and not planning
3037 // to change that but can still do a tail call:
3038 if (!TailCallOpt && IsTailCall)
3039 IsSibCall = true;
3040
3041 if (IsTailCall)
3042 ++NumTailCalls;
3043 }
3044
3045 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3046 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3047 SmallVector<SDValue, 8> MemOpChains;
3048
3049 // Analyze operands of the call, assigning locations to each operand.
3050 SmallVector<CCValAssign, 16> ArgLocs;
3051 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3052 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3053
3054 if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
3055 CallConv != CallingConv::AMDGPU_Gfx) {
3056 // With a fixed ABI, allocate fixed registers before user arguments.
3057 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3058 }
3059
3060 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3061
3062 // Get a count of how many bytes are to be pushed on the stack.
3063 unsigned NumBytes = CCInfo.getNextStackOffset();
3064
3065 if (IsSibCall) {
3066 // Since we're not changing the ABI to make this a tail call, the memory
3067 // operands are already available in the caller's incoming argument space.
3068 NumBytes = 0;
3069 }
3070
3071 // FPDiff is the byte offset of the call's argument area from the callee's.
3072 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3073 // by this amount for a tail call. In a sibling call it must be 0 because the
3074 // caller will deallocate the entire stack and the callee still expects its
3075 // arguments to begin at SP+0. Completely unused for non-tail calls.
3076 int32_t FPDiff = 0;
3077 MachineFrameInfo &MFI = MF.getFrameInfo();
3078
3079 // Adjust the stack pointer for the new arguments...
3080 // These operations are automatically eliminated by the prolog/epilog pass
3081 if (!IsSibCall) {
3082 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3083
3084 if (!Subtarget->enableFlatScratch()) {
3085 SmallVector<SDValue, 4> CopyFromChains;
3086
3087 // In the HSA case, this should be an identity copy.
3088 SDValue ScratchRSrcReg
3089 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3090 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3091 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3092 Chain = DAG.getTokenFactor(DL, CopyFromChains);
3093 }
3094 }
3095
3096 MVT PtrVT = MVT::i32;
3097
3098 // Walk the register/memloc assignments, inserting copies/loads.
3099 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3100 CCValAssign &VA = ArgLocs[i];
3101 SDValue Arg = OutVals[i];
3102
3103 // Promote the value if needed.
3104 switch (VA.getLocInfo()) {
3105 case CCValAssign::Full:
3106 break;
3107 case CCValAssign::BCvt:
3108 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3109 break;
3110 case CCValAssign::ZExt:
3111 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3112 break;
3113 case CCValAssign::SExt:
3114 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3115 break;
3116 case CCValAssign::AExt:
3117 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3118 break;
3119 case CCValAssign::FPExt:
3120 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3121 break;
3122 default:
3123 llvm_unreachable("Unknown loc info!")__builtin_unreachable();
3124 }
3125
3126 if (VA.isRegLoc()) {
3127 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3128 } else {
3129 assert(VA.isMemLoc())((void)0);
3130
3131 SDValue DstAddr;
3132 MachinePointerInfo DstInfo;
3133
3134 unsigned LocMemOffset = VA.getLocMemOffset();
3135 int32_t Offset = LocMemOffset;
3136
3137 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3138 MaybeAlign Alignment;
3139
3140 if (IsTailCall) {
3141 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3142 unsigned OpSize = Flags.isByVal() ?
3143 Flags.getByValSize() : VA.getValVT().getStoreSize();
3144
3145 // FIXME: We can have better than the minimum byval required alignment.
3146 Alignment =
3147 Flags.isByVal()
3148 ? Flags.getNonZeroByValAlign()
3149 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3150
3151 Offset = Offset + FPDiff;
3152 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3153
3154 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3155 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3156
3157 // Make sure any stack arguments overlapping with where we're storing
3158 // are loaded before this eventual operation. Otherwise they'll be
3159 // clobbered.
3160
3161 // FIXME: Why is this really necessary? This seems to just result in a
3162 // lot of code to copy the stack and write them back to the same
3163 // locations, which are supposed to be immutable?
3164 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3165 } else {
3166 // Stores to the argument stack area are relative to the stack pointer.
3167 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3168 MVT::i32);
3169 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3170 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3171 Alignment =
3172 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3173 }
3174
3175 if (Outs[i].Flags.isByVal()) {
3176 SDValue SizeNode =
3177 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3178 SDValue Cpy =
3179 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3180 Outs[i].Flags.getNonZeroByValAlign(),
3181 /*isVol = */ false, /*AlwaysInline = */ true,
3182 /*isTailCall = */ false, DstInfo,
3183 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3184
3185 MemOpChains.push_back(Cpy);
3186 } else {
3187 SDValue Store =
3188 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3189 MemOpChains.push_back(Store);
3190 }
3191 }
3192 }
3193
3194 if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3195 CallConv != CallingConv::AMDGPU_Gfx) {
3196 // Copy special input registers after user input arguments.
3197 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3198 }
3199
3200 if (!MemOpChains.empty())
3201 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3202
3203 // Build a sequence of copy-to-reg nodes chained together with token chain
3204 // and flag operands which copy the outgoing args into the appropriate regs.
3205 SDValue InFlag;
3206 for (auto &RegToPass : RegsToPass) {
3207 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3208 RegToPass.second, InFlag);
3209 InFlag = Chain.getValue(1);
3210 }
3211
3212
3213 SDValue PhysReturnAddrReg;
3214 if (IsTailCall) {
3215 // Since the return is being combined with the call, we need to pass on the
3216 // return address.
3217
3218 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3219 SDValue ReturnAddrReg = CreateLiveInRegister(
3220 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3221
3222 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3223 MVT::i64);
3224 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3225 InFlag = Chain.getValue(1);
3226 }
3227
3228 // We don't usually want to end the call-sequence here because we would tidy
3229 // the frame up *after* the call, however in the ABI-changing tail-call case
3230 // we've carefully laid out the parameters so that when sp is reset they'll be
3231 // in the correct location.
3232 if (IsTailCall && !IsSibCall) {
3233 Chain = DAG.getCALLSEQ_END(Chain,
3234 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3235 DAG.getTargetConstant(0, DL, MVT::i32),
3236 InFlag, DL);
3237 InFlag = Chain.getValue(1);
3238 }
3239
3240 std::vector<SDValue> Ops;
3241 Ops.push_back(Chain);
3242 Ops.push_back(Callee);
3243 // Add a redundant copy of the callee global which will not be legalized, as
3244 // we need direct access to the callee later.
3245 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3246 const GlobalValue *GV = GSD->getGlobal();
3247 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3248 } else {
3249 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3250 }
3251
3252 if (IsTailCall) {
3253 // Each tail call may have to adjust the stack by a different amount, so
3254 // this information must travel along with the operation for eventual
3255 // consumption by emitEpilogue.
3256 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3257
3258 Ops.push_back(PhysReturnAddrReg);
3259 }
3260
3261 // Add argument registers to the end of the list so that they are known live
3262 // into the call.
3263 for (auto &RegToPass : RegsToPass) {
3264 Ops.push_back(DAG.getRegister(RegToPass.first,
3265 RegToPass.second.getValueType()));
3266 }
3267
3268 // Add a register mask operand representing the call-preserved registers.
3269
3270 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3271 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3272 assert(Mask && "Missing call preserved mask for calling convention")((void)0);
3273 Ops.push_back(DAG.getRegisterMask(Mask));
3274
3275 if (InFlag.getNode())
3276 Ops.push_back(InFlag);
3277
3278 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3279
3280 // If we're doing a tall call, use a TC_RETURN here rather than an
3281 // actual call instruction.
3282 if (IsTailCall) {
3283 MFI.setHasTailCall();
3284 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3285 }
3286
3287 // Returns a chain and a flag for retval copy to use.
3288 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3289 Chain = Call.getValue(0);
3290 InFlag = Call.getValue(1);
3291
3292 uint64_t CalleePopBytes = NumBytes;
3293 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3294 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3295 InFlag, DL);
3296 if (!Ins.empty())
3297 InFlag = Chain.getValue(1);
3298
3299 // Handle result values, copying them out of physregs into vregs that we
3300 // return.
3301 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3302 InVals, IsThisReturn,
3303 IsThisReturn ? OutVals[0] : SDValue());
3304}
3305
3306// This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3307// except for applying the wave size scale to the increment amount.
3308SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3309 SDValue Op, SelectionDAG &DAG) const {
3310 const MachineFunction &MF = DAG.getMachineFunction();
3311 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3312
3313 SDLoc dl(Op);
3314 EVT VT = Op.getValueType();
3315 SDValue Tmp1 = Op;
3316 SDValue Tmp2 = Op.getValue(1);
3317 SDValue Tmp3 = Op.getOperand(2);
3318 SDValue Chain = Tmp1.getOperand(0);
3319
3320 Register SPReg = Info->getStackPtrOffsetReg();
3321
3322 // Chain the dynamic stack allocation so that it doesn't modify the stack
3323 // pointer when other instructions are using the stack.
3324 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3325
3326 SDValue Size = Tmp2.getOperand(1);
3327 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3328 Chain = SP.getValue(1);
3329 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3330 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3331 const TargetFrameLowering *TFL = ST.getFrameLowering();
3332 unsigned Opc =
3333 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3334 ISD::ADD : ISD::SUB;
3335
3336 SDValue ScaledSize = DAG.getNode(
3337 ISD::SHL, dl, VT, Size,
3338 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3339
3340 Align StackAlign = TFL->getStackAlign();
3341 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3342 if (Alignment && *Alignment > StackAlign) {
3343 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3344 DAG.getConstant(-(uint64_t)Alignment->value()
3345 << ST.getWavefrontSizeLog2(),
3346 dl, VT));
3347 }
3348
3349 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
3350 Tmp2 = DAG.getCALLSEQ_END(
3351 Chain, DAG.getIntPtrConstant(0, dl, true),
3352 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3353
3354 return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3355}
3356
3357SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3358 SelectionDAG &DAG) const {
3359 // We only handle constant sizes here to allow non-entry block, static sized
3360 // allocas. A truly dynamic value is more difficult to support because we
3361 // don't know if the size value is uniform or not. If the size isn't uniform,
3362 // we would need to do a wave reduction to get the maximum size to know how
3363 // much to increment the uniform stack pointer.
3364 SDValue Size = Op.getOperand(1);
3365 if (isa<ConstantSDNode>(Size))
3366 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3367
3368 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3369}
3370
3371Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3372 const MachineFunction &MF) const {
3373 Register Reg = StringSwitch<Register>(RegName)
3374 .Case("m0", AMDGPU::M0)
3375 .Case("exec", AMDGPU::EXEC)
3376 .Case("exec_lo", AMDGPU::EXEC_LO)
3377 .Case("exec_hi", AMDGPU::EXEC_HI)
3378 .Case("flat_scratch", AMDGPU::FLAT_SCR)
3379 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3380 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3381 .Default(Register());
3382
3383 if (Reg == AMDGPU::NoRegister) {
3384 report_fatal_error(Twine("invalid register name \""
3385 + StringRef(RegName) + "\"."));
3386
3387 }
3388
3389 if (!Subtarget->hasFlatScrRegister() &&
3390 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3391 report_fatal_error(Twine("invalid register \""
3392 + StringRef(RegName) + "\" for subtarget."));
3393 }
3394
3395 switch (Reg) {
3396 case AMDGPU::M0:
3397 case AMDGPU::EXEC_LO:
3398 case AMDGPU::EXEC_HI:
3399 case AMDGPU::FLAT_SCR_LO:
3400 case AMDGPU::FLAT_SCR_HI:
3401 if (VT.getSizeInBits() == 32)
3402 return Reg;
3403 break;
3404 case AMDGPU::EXEC:
3405 case AMDGPU::FLAT_SCR:
3406 if (VT.getSizeInBits() == 64)
3407 return Reg;
3408 break;
3409 default:
3410 llvm_unreachable("missing register type checking")__builtin_unreachable();
3411 }
3412
3413 report_fatal_error(Twine("invalid type for register \""
3414 + StringRef(RegName) + "\"."));
3415}
3416
3417// If kill is not the last instruction, split the block so kill is always a
3418// proper terminator.
3419MachineBasicBlock *
3420SITargetLowering::splitKillBlock(MachineInstr &MI,
3421 MachineBasicBlock *BB) const {
3422 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3423 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3424 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3425 return SplitBB;
3426}
3427
3428// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3429// \p MI will be the only instruction in the loop body block. Otherwise, it will
3430// be the first instruction in the remainder block.
3431//
3432/// \returns { LoopBody, Remainder }
3433static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3434splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3435 MachineFunction *MF = MBB.getParent();
3436 MachineBasicBlock::iterator I(&MI);
3437
3438 // To insert the loop we need to split the block. Move everything after this
3439 // point to a new block, and insert a new empty block between the two.
3440 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3441 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3442 MachineFunction::iterator MBBI(MBB);
3443 ++MBBI;
3444
3445 MF->insert(MBBI, LoopBB);
3446 MF->insert(MBBI, RemainderBB);
3447
3448 LoopBB->addSuccessor(LoopBB);
3449 LoopBB->addSuccessor(RemainderBB);
3450
3451 // Move the rest of the block into a new block.
3452 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3453
3454 if (InstInLoop) {
3455 auto Next = std::next(I);
3456
3457 // Move instruction to loop body.
3458 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3459
3460 // Move the rest of the block.
3461 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3462 } else {
3463 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3464 }
3465
3466 MBB.addSuccessor(LoopBB);
3467
3468 return std::make_pair(LoopBB, RemainderBB);
3469}
3470
3471/// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3472void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3473 MachineBasicBlock *MBB = MI.getParent();
3474 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3475 auto I = MI.getIterator();
3476 auto E = std::next(I);
3477
3478 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3479 .addImm(0);
3480
3481 MIBundleBuilder Bundler(*MBB, I, E);
3482 finalizeBundle(*MBB, Bundler.begin());
3483}
3484
3485MachineBasicBlock *
3486SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3487 MachineBasicBlock *BB) const {
3488 const DebugLoc &DL = MI.getDebugLoc();
3489
3490 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3491
3492 MachineBasicBlock *LoopBB;
3493 MachineBasicBlock *RemainderBB;
3494 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3495
3496 // Apparently kill flags are only valid if the def is in the same block?
3497 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3498 Src->setIsKill(false);
3499
3500 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3501
3502 MachineBasicBlock::iterator I = LoopBB->end();
3503
3504 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3505 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3506
3507 // Clear TRAP_STS.MEM_VIOL
3508 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3509 .addImm(0)
3510 .addImm(EncodedReg);
3511
3512 bundleInstWithWaitcnt(MI);
3513
3514 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3515
3516 // Load and check TRAP_STS.MEM_VIOL
3517 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3518 .addImm(EncodedReg);
3519
3520 // FIXME: Do we need to use an isel pseudo that may clobber scc?
3521 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3522 .addReg(Reg, RegState::Kill)
3523 .addImm(0);
3524 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3525 .addMBB(LoopBB);
3526
3527 return RemainderBB;
3528}
3529
3530// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3531// wavefront. If the value is uniform and just happens to be in a VGPR, this
3532// will only do one iteration. In the worst case, this will loop 64 times.
3533//
3534// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3535static MachineBasicBlock::iterator
3536emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3537 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3538 const DebugLoc &DL, const MachineOperand &Idx,
3539 unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3540 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3541 Register &SGPRIdxReg) {
3542
3543 MachineFunction *MF = OrigBB.getParent();
3544 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3545 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3546 MachineBasicBlock::iterator I = LoopBB.begin();
3547
3548 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3549 Register PhiExec = MRI.createVirtualRegister(BoolRC);
3550 Register NewExec = MRI.createVirtualRegister(BoolRC);
3551 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3552 Register CondReg = MRI.createVirtualRegister(BoolRC);
3553
3554 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3555 .addReg(InitReg)
3556 .addMBB(&OrigBB)
3557 .addReg(ResultReg)
3558 .addMBB(&LoopBB);
3559
3560 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3561 .addReg(InitSaveExecReg)
3562 .addMBB(&OrigBB)
3563 .addReg(NewExec)
3564 .addMBB(&LoopBB);
3565
3566 // Read the next variant <- also loop target.
3567 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3568 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3569
3570 // Compare the just read M0 value to all possible Idx values.
3571 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3572 .addReg(CurrentIdxReg)
3573 .addReg(Idx.getReg(), 0, Idx.getSubReg());
3574
3575 // Update EXEC, save the original EXEC value to VCC.
3576 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3577 : AMDGPU::S_AND_SAVEEXEC_B64),
3578 NewExec)
3579 .addReg(CondReg, RegState::Kill);
3580
3581 MRI.setSimpleHint(NewExec, CondReg);
3582
3583 if (UseGPRIdxMode) {
3584 if (Offset == 0) {
3585 SGPRIdxReg = CurrentIdxReg;
3586 } else {
3587 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3588 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3589 .addReg(CurrentIdxReg, RegState::Kill)
3590 .addImm(Offset);
3591 }
3592 } else {
3593 // Move index from VCC into M0
3594 if (Offset == 0) {
3595 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3596 .addReg(CurrentIdxReg, RegState::Kill);
3597 } else {
3598 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3599 .addReg(CurrentIdxReg, RegState::Kill)
3600 .addImm(Offset);
3601 }
3602 }
3603
3604 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3605 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3606 MachineInstr *InsertPt =
3607 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3608 : AMDGPU::S_XOR_B64_term), Exec)
3609 .addReg(Exec)
3610 .addReg(NewExec);
3611
3612 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3613 // s_cbranch_scc0?
3614
3615 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3616 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3617 .addMBB(&LoopBB);
3618
3619 return InsertPt->getIterator();
3620}
3621
3622// This has slightly sub-optimal regalloc when the source vector is killed by
3623// the read. The register allocator does not understand that the kill is
3624// per-workitem, so is kept alive for the whole loop so we end up not re-using a
3625// subregister from it, using 1 more VGPR than necessary. This was saved when
3626// this was expanded after register allocation.
3627static MachineBasicBlock::iterator
3628loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3629 unsigned InitResultReg, unsigned PhiReg, int Offset,
3630 bool UseGPRIdxMode, Register &SGPRIdxReg) {
3631 MachineFunction *MF = MBB.getParent();
3632 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3633 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3634 MachineRegisterInfo &MRI = MF->getRegInfo();
3635 const DebugLoc &DL = MI.getDebugLoc();
3636 MachineBasicBlock::iterator I(&MI);
3637
3638 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3639 Register DstReg = MI.getOperand(0).getReg();
3640 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3641 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3642 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3643 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3644
3645 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3646
3647 // Save the EXEC mask
3648 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3649 .addReg(Exec);
3650
3651 MachineBasicBlock *LoopBB;
3652 MachineBasicBlock *RemainderBB;
3653 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3654
3655 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3656
3657 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3658 InitResultReg, DstReg, PhiReg, TmpExec,
3659 Offset, UseGPRIdxMode, SGPRIdxReg);
3660
3661 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3662 MachineFunction::iterator MBBI(LoopBB);
3663 ++MBBI;
3664 MF->insert(MBBI, LandingPad);
3665 LoopBB->removeSuccessor(RemainderBB);
3666 LandingPad->addSuccessor(RemainderBB);
3667 LoopBB->addSuccessor(LandingPad);
3668 MachineBasicBlock::iterator First = LandingPad->begin();
3669 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3670 .addReg(SaveExec);
3671
3672 return InsPt;
3673}
3674
3675// Returns subreg index, offset
3676static std::pair<unsigned, int>
3677computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3678 const TargetRegisterClass *SuperRC,
3679 unsigned VecReg,
3680 int Offset) {
3681 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3682
3683 // Skip out of bounds offsets, or else we would end up using an undefined
3684 // register.
3685 if (Offset >= NumElts || Offset < 0)
3686 return std::make_pair(AMDGPU::sub0, Offset);
3687
3688 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3689}
3690
3691static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3692 MachineRegisterInfo &MRI, MachineInstr &MI,
3693 int Offset) {
3694 MachineBasicBlock *MBB = MI.getParent();
3695 const DebugLoc &DL = MI.getDebugLoc();
3696 MachineBasicBlock::iterator I(&MI);
3697
3698 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3699
3700 assert(Idx->getReg() != AMDGPU::NoRegister)((void)0);
3701
3702 if (Offset == 0) {
3703 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3704 } else {
3705 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3706 .add(*Idx)
3707 .addImm(Offset);
3708 }
3709}
3710
3711static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3712 MachineRegisterInfo &MRI, MachineInstr &MI,
3713 int Offset) {
3714 MachineBasicBlock *MBB = MI.getParent();
3715 const DebugLoc &DL = MI.getDebugLoc();
3716 MachineBasicBlock::iterator I(&MI);
3717
3718 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3719
3720 if (Offset == 0)
3721 return Idx->getReg();
3722
3723 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3724 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3725 .add(*Idx)
3726 .addImm(Offset);
3727 return Tmp;
3728}
3729
3730static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3731 MachineBasicBlock &MBB,
3732 const GCNSubtarget &ST) {
3733 const SIInstrInfo *TII = ST.getInstrInfo();
3734 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3735 MachineFunction *MF = MBB.getParent();
3736 MachineRegisterInfo &MRI = MF->getRegInfo();
3737
3738 Register Dst = MI.getOperand(0).getReg();
3739 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3740 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3741 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3742
3743 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3744 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3745
3746 unsigned SubReg;
3747 std::tie(SubReg, Offset)
3748 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3749
3750 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3751
3752 // Check for a SGPR index.
3753 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3754 MachineBasicBlock::iterator I(&MI);
3755 const DebugLoc &DL = MI.getDebugLoc();
3756
3757 if (UseGPRIdxMode) {
3758 // TODO: Look at the uses to avoid the copy. This may require rescheduling
3759 // to avoid interfering with other uses, so probably requires a new
3760 // optimization pass.
3761 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3762
3763 const MCInstrDesc &GPRIDXDesc =
3764 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3765 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3766 .addReg(SrcReg)
3767 .addReg(Idx)
3768 .addImm(SubReg);
3769 } else {
3770 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3771
3772 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3773 .addReg(SrcReg, 0, SubReg)
3774 .addReg(SrcReg, RegState::Implicit);
3775 }
3776
3777 MI.eraseFromParent();
3778
3779 return &MBB;
3780 }
3781
3782 // Control flow needs to be inserted if indexing with a VGPR.
3783 const DebugLoc &DL = MI.getDebugLoc();
3784 MachineBasicBlock::iterator I(&MI);
3785
3786 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3787 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3788
3789 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3790
3791 Register SGPRIdxReg;
3792 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3793 UseGPRIdxMode, SGPRIdxReg);
3794
3795 MachineBasicBlock *LoopBB = InsPt->getParent();
3796
3797 if (UseGPRIdxMode) {
3798 const MCInstrDesc &GPRIDXDesc =
3799 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3800
3801 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3802 .addReg(SrcReg)
3803 .addReg(SGPRIdxReg)
3804 .addImm(SubReg);
3805 } else {
3806 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3807 .addReg(SrcReg, 0, SubReg)
3808 .addReg(SrcReg, RegState::Implicit);
3809 }
3810
3811 MI.eraseFromParent();
3812
3813 return LoopBB;
3814}
3815
3816static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3817 MachineBasicBlock &MBB,
3818 const GCNSubtarget &ST) {
3819 const SIInstrInfo *TII = ST.getInstrInfo();
3820 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3821 MachineFunction *MF = MBB.getParent();
3822 MachineRegisterInfo &MRI = MF->getRegInfo();
3823
3824 Register Dst = MI.getOperand(0).getReg();
3825 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3826 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3827 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3828 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3829 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3830 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3831
3832 // This can be an immediate, but will be folded later.
3833 assert(Val->getReg())((void)0);
3834
3835 unsigned SubReg;
3836 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3837 SrcVec->getReg(),
3838 Offset);
3839 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3840
3841 if (Idx->getReg() == AMDGPU::NoRegister) {
3842 MachineBasicBlock::iterator I(&MI);
3843 const DebugLoc &DL = MI.getDebugLoc();
3844
3845 assert(Offset == 0)((void)0);
3846
3847 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3848 .add(*SrcVec)
3849 .add(*Val)
3850 .addImm(SubReg);
3851
3852 MI.eraseFromParent();
3853 return &MBB;
3854 }
3855
3856 // Check for a SGPR index.
3857 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3858 MachineBasicBlock::iterator I(&MI);
3859 const DebugLoc &DL = MI.getDebugLoc();
3860
3861 if (UseGPRIdxMode) {
3862 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3863
3864 const MCInstrDesc &GPRIDXDesc =
3865 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3866 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3867 .addReg(SrcVec->getReg())
3868 .add(*Val)
3869 .addReg(Idx)
3870 .addImm(SubReg);
3871 } else {
3872 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3873
3874 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3875 TRI.getRegSizeInBits(*VecRC), 32, false);
3876 BuildMI(MBB, I, DL, MovRelDesc, Dst)
3877 .addReg(SrcVec->getReg())
3878 .add(*Val)
3879 .addImm(SubReg);
3880 }
3881 MI.eraseFromParent();
3882 return &MBB;
3883 }
3884
3885 // Control flow needs to be inserted if indexing with a VGPR.
3886 if (Val->isReg())
3887 MRI.clearKillFlags(Val->getReg());
3888
3889 const DebugLoc &DL = MI.getDebugLoc();
3890
3891 Register PhiReg = MRI.createVirtualRegister(VecRC);
3892
3893 Register SGPRIdxReg;
3894 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3895 UseGPRIdxMode, SGPRIdxReg);
3896 MachineBasicBlock *LoopBB = InsPt->getParent();
3897
3898 if (UseGPRIdxMode) {
3899 const MCInstrDesc &GPRIDXDesc =
3900 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3901
3902 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3903 .addReg(PhiReg)
3904 .add(*Val)
3905 .addReg(SGPRIdxReg)
3906 .addImm(AMDGPU::sub0);
3907 } else {
3908 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3909 TRI.getRegSizeInBits(*VecRC), 32, false);
3910 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3911 .addReg(PhiReg)
3912 .add(*Val)
3913 .addImm(AMDGPU::sub0);
3914 }
3915
3916 MI.eraseFromParent();
3917 return LoopBB;
3918}
3919
3920MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3921 MachineInstr &MI, MachineBasicBlock *BB) const {
3922
3923 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3924 MachineFunction *MF = BB->getParent();
3925 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3926
3927 switch (MI.getOpcode()) {
3928 case AMDGPU::S_UADDO_PSEUDO:
3929 case AMDGPU::S_USUBO_PSEUDO: {
3930 const DebugLoc &DL = MI.getDebugLoc();
3931 MachineOperand &Dest0 = MI.getOperand(0);
3932 MachineOperand &Dest1 = MI.getOperand(1);
3933 MachineOperand &Src0 = MI.getOperand(2);
3934 MachineOperand &Src1 = MI.getOperand(3);
3935
3936 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3937 ? AMDGPU::S_ADD_I32
3938 : AMDGPU::S_SUB_I32;
3939 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3940
3941 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3942 .addImm(1)
3943 .addImm(0);
3944
3945 MI.eraseFromParent();
3946 return BB;
3947 }
3948 case AMDGPU::S_ADD_U64_PSEUDO:
3949 case AMDGPU::S_SUB_U64_PSEUDO: {
3950 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3951 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3952 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3953 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3954 const DebugLoc &DL = MI.getDebugLoc();
3955
3956 MachineOperand &Dest = MI.getOperand(0);
3957 MachineOperand &Src0 = MI.getOperand(1);
3958 MachineOperand &Src1 = MI.getOperand(2);
3959
3960 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3961 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3962
3963 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3964 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3965 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3966 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3967
3968 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3969 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3970 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3971 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3972
3973 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3974
3975 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3976 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3977 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3978 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3979 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3980 .addReg(DestSub0)
3981 .addImm(AMDGPU::sub0)
3982 .addReg(DestSub1)
3983 .addImm(AMDGPU::sub1);
3984 MI.eraseFromParent();
3985 return BB;
3986 }
3987 case AMDGPU::V_ADD_U64_PSEUDO:
3988 case AMDGPU::V_SUB_U64_PSEUDO: {
3989 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3990 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3991 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3992 const DebugLoc &DL = MI.getDebugLoc();
3993
3994 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3995
3996 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3997
3998 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3999 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4000
4001 Register CarryReg = MRI.createVirtualRegister(CarryRC);
4002 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4003
4004 MachineOperand &Dest = MI.getOperand(0);
4005 MachineOperand &Src0 = MI.getOperand(1);
4006 MachineOperand &Src1 = MI.getOperand(2);
4007
4008 const TargetRegisterClass *Src0RC = Src0.isReg()
4009 ? MRI.getRegClass(Src0.getReg())
4010 : &AMDGPU::VReg_64RegClass;
4011 const TargetRegisterClass *Src1RC = Src1.isReg()
4012 ? MRI.getRegClass(Src1.getReg())
4013 : &AMDGPU::VReg_64RegClass;
4014
4015 const TargetRegisterClass *Src0SubRC =
4016 TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4017 const TargetRegisterClass *Src1SubRC =
4018 TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4019
4020 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4021 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4022 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4023 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4024
4025 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4026 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4027 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4028 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4029
4030 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4031 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4032 .addReg(CarryReg, RegState::Define)
4033 .add(SrcReg0Sub0)
4034 .add(SrcReg1Sub0)
4035 .addImm(0); // clamp bit
4036
4037 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4038 MachineInstr *HiHalf =
4039 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4040 .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4041 .add(SrcReg0Sub1)
4042 .add(SrcReg1Sub1)
4043 .addReg(CarryReg, RegState::Kill)
4044 .addImm(0); // clamp bit
4045
4046 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4047 .addReg(DestSub0)
4048 .addImm(AMDGPU::sub0)
4049 .addReg(DestSub1)
4050 .addImm(AMDGPU::sub1);
4051 TII->legalizeOperands(*LoHalf);
4052 TII->legalizeOperands(*HiHalf);
4053 MI.eraseFromParent();
4054 return BB;
4055 }
4056 case AMDGPU::S_ADD_CO_PSEUDO:
4057 case AMDGPU::S_SUB_CO_PSEUDO: {
4058 // This pseudo has a chance to be selected
4059 // only from uniform add/subcarry node. All the VGPR operands
4060 // therefore assumed to be splat vectors.
4061 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4062 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4063 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4064 MachineBasicBlock::iterator MII = MI;
4065 const DebugLoc &DL = MI.getDebugLoc();
4066 MachineOperand &Dest = MI.getOperand(0);
4067 MachineOperand &CarryDest = MI.getOperand(1);
4068 MachineOperand &Src0 = MI.getOperand(2);
4069 MachineOperand &Src1 = MI.getOperand(3);
4070 MachineOperand &Src2 = MI.getOperand(4);
4071 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4072 ? AMDGPU::S_ADDC_U32
4073 : AMDGPU::S_SUBB_U32;
4074 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4075 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4076 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4077 .addReg(Src0.getReg());
4078 Src0.setReg(RegOp0);
4079 }
4080 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4081 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4082 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4083 .addReg(Src1.getReg());
4084 Src1.setReg(RegOp1);
4085 }
4086 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4087 if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4088 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4089 .addReg(Src2.getReg());
4090 Src2.setReg(RegOp2);
4091 }
4092
4093 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4094 if (TRI->getRegSizeInBits(*Src2RC) == 64) {
4095 if (ST.hasScalarCompareEq64()) {
4096 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4097 .addReg(Src2.getReg())
4098 .addImm(0);
4099 } else {
4100 const TargetRegisterClass *SubRC =
4101 TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4102 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4103 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4104 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4105 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4106 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4107
4108 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4109 .add(Src2Sub0)
4110 .add(Src2Sub1);
4111
4112 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4113 .addReg(Src2_32, RegState::Kill)
4114 .addImm(0);
4115 }
4116 } else {
4117 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4118 .addReg(Src2.getReg())
4119 .addImm(0);
4120 }
4121
4122 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4123
4124 BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4125 .addReg(AMDGPU::SCC);
4126 MI.eraseFromParent();
4127 return BB;
4128 }
4129 case AMDGPU::SI_INIT_M0: {
4130 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4131 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4132 .add(MI.getOperand(0));
4133 MI.eraseFromParent();
4134 return BB;
4135 }
4136 case AMDGPU::GET_GROUPSTATICSIZE: {
4137 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||((void)0)
4138 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)((void)0);
4139 DebugLoc DL = MI.getDebugLoc();
4140 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4141 .add(MI.getOperand(0))
4142 .addImm(MFI->getLDSSize());
4143 MI.eraseFromParent();
4144 return BB;
4145 }
4146 case AMDGPU::SI_INDIRECT_SRC_V1:
4147 case AMDGPU::SI_INDIRECT_SRC_V2:
4148 case AMDGPU::SI_INDIRECT_SRC_V4:
4149 case AMDGPU::SI_INDIRECT_SRC_V8:
4150 case AMDGPU::SI_INDIRECT_SRC_V16:
4151 case AMDGPU::SI_INDIRECT_SRC_V32:
4152 return emitIndirectSrc(MI, *BB, *getSubtarget());
4153 case AMDGPU::SI_INDIRECT_DST_V1:
4154 case AMDGPU::SI_INDIRECT_DST_V2:
4155 case AMDGPU::SI_INDIRECT_DST_V4:
4156 case AMDGPU::SI_INDIRECT_DST_V8:
4157 case AMDGPU::SI_INDIRECT_DST_V16:
4158 case AMDGPU::SI_INDIRECT_DST_V32:
4159 return emitIndirectDst(MI, *BB, *getSubtarget());
4160 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4161 case AMDGPU::SI_KILL_I1_PSEUDO:
4162 return splitKillBlock(MI, BB);
4163 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4164 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4165 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4166 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4167
4168 Register Dst = MI.getOperand(0).getReg();
4169 Register Src0 = MI.getOperand(1).getReg();
4170 Register Src1 = MI.getOperand(2).getReg();
4171 const DebugLoc &DL = MI.getDebugLoc();
4172 Register SrcCond = MI.getOperand(3).getReg();
4173
4174 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4175 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4176 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4177 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4178
4179 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4180 .addReg(SrcCond);
4181 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4182 .addImm(0)
4183 .addReg(Src0, 0, AMDGPU::sub0)
4184 .addImm(0)
4185 .addReg(Src1, 0, AMDGPU::sub0)
4186 .addReg(SrcCondCopy);
4187 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4188 .addImm(0)
4189 .addReg(Src0, 0, AMDGPU::sub1)
4190 .addImm(0)
4191 .addReg(Src1, 0, AMDGPU::sub1)
4192 .addReg(SrcCondCopy);
4193
4194 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4195 .addReg(DstLo)
4196 .addImm(AMDGPU::sub0)
4197 .addReg(DstHi)
4198 .addImm(AMDGPU::sub1);
4199 MI.eraseFromParent();
4200 return BB;
4201 }
4202 case AMDGPU::SI_BR_UNDEF: {
4203 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4204 const DebugLoc &DL = MI.getDebugLoc();
4205 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4206 .add(MI.getOperand(0));
4207 Br->getOperand(1).setIsUndef(true); // read undef SCC
4208 MI.eraseFromParent();
4209 return BB;
4210 }
4211 case AMDGPU::ADJCALLSTACKUP:
4212 case AMDGPU::ADJCALLSTACKDOWN: {
4213 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4214 MachineInstrBuilder MIB(*MF, &MI);
4215 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4216 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4217 return BB;
4218 }
4219 case AMDGPU::SI_CALL_ISEL: {
4220 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4221 const DebugLoc &DL = MI.getDebugLoc();
4222
4223 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4224
4225 MachineInstrBuilder MIB;
4226 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4227
4228 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4229 MIB.add(MI.getOperand(I));
4230
4231 MIB.cloneMemRefs(MI);
4232 MI.eraseFromParent();
4233 return BB;
4234 }
4235 case AMDGPU::V_ADD_CO_U32_e32:
4236 case AMDGPU::V_SUB_CO_U32_e32:
4237 case AMDGPU::V_SUBREV_CO_U32_e32: {
4238 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4239 const DebugLoc &DL = MI.getDebugLoc();
4240 unsigned Opc = MI.getOpcode();
4241
4242 bool NeedClampOperand = false;
4243 if (TII->pseudoToMCOpcode(Opc) == -1) {
4244 Opc = AMDGPU::getVOPe64(Opc);
4245 NeedClampOperand = true;
4246 }
4247
4248 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4249 if (TII->isVOP3(*I)) {
4250 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4251 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4252 I.addReg(TRI->getVCC(), RegState::Define);
4253 }
4254 I.add(MI.getOperand(1))
4255 .add(MI.getOperand(2));
4256 if (NeedClampOperand)
4257 I.addImm(0); // clamp bit for e64 encoding
4258
4259 TII->legalizeOperands(*I);
4260
4261 MI.eraseFromParent();
4262 return BB;
4263 }
4264 case AMDGPU::DS_GWS_INIT:
4265 case AMDGPU::DS_GWS_SEMA_BR:
4266 case AMDGPU::DS_GWS_BARRIER:
4267 if (Subtarget->needsAlignedVGPRs()) {
4268 // Add implicit aligned super-reg to force alignment on the data operand.
4269 const DebugLoc &DL = MI.getDebugLoc();
4270 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4271 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
4272 MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
4273 Register DataReg = Op->getReg();
4274 bool IsAGPR = TRI->isAGPR(MRI, DataReg);
4275 Register Undef = MRI.createVirtualRegister(
4276 IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
4277 BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef);
4278 Register NewVR =
4279 MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
4280 : &AMDGPU::VReg_64_Align2RegClass);
4281 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR)
4282 .addReg(DataReg, 0, Op->getSubReg())
4283 .addImm(AMDGPU::sub0)
4284 .addReg(Undef)
4285 .addImm(AMDGPU::sub1);
4286 Op->setReg(NewVR);
4287 Op->setSubReg(AMDGPU::sub0);
4288 MI.addOperand(MachineOperand::CreateReg(NewVR, false, true));
4289 }
4290 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4291 case AMDGPU::DS_GWS_SEMA_V:
4292 case AMDGPU::DS_GWS_SEMA_P:
4293 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4294 // A s_waitcnt 0 is required to be the instruction immediately following.
4295 if (getSubtarget()->hasGWSAutoReplay()) {
4296 bundleInstWithWaitcnt(MI);
4297 return BB;
4298 }
4299
4300 return emitGWSMemViolTestLoop(MI, BB);
4301 case AMDGPU::S_SETREG_B32: {
4302 // Try to optimize cases that only set the denormal mode or rounding mode.
4303 //
4304 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4305 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4306 // instead.
4307 //
4308 // FIXME: This could be predicates on the immediate, but tablegen doesn't
4309 // allow you to have a no side effect instruction in the output of a
4310 // sideeffecting pattern.
4311 unsigned ID, Offset, Width;
4312 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4313 if (ID != AMDGPU::Hwreg::ID_MODE)
4314 return BB;
4315
4316 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4317 const unsigned SetMask = WidthMask << Offset;
4318
4319 if (getSubtarget()->hasDenormModeInst()) {
4320 unsigned SetDenormOp = 0;
4321 unsigned SetRoundOp = 0;
4322
4323 // The dedicated instructions can only set the whole denorm or round mode
4324 // at once, not a subset of bits in either.
4325 if (SetMask ==
4326 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4327 // If this fully sets both the round and denorm mode, emit the two
4328 // dedicated instructions for these.
4329 SetRoundOp = AMDGPU::S_ROUND_MODE;
4330 SetDenormOp = AMDGPU::S_DENORM_MODE;
4331 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4332 SetRoundOp = AMDGPU::S_ROUND_MODE;
4333 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4334 SetDenormOp = AMDGPU::S_DENORM_MODE;
4335 }
4336
4337 if (SetRoundOp || SetDenormOp) {
4338 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4339 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4340 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4341 unsigned ImmVal = Def->getOperand(1).getImm();
4342 if (SetRoundOp) {
4343 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4344 .addImm(ImmVal & 0xf);
4345
4346 // If we also have the denorm mode, get just the denorm mode bits.
4347 ImmVal >>= 4;
4348 }
4349
4350 if (SetDenormOp) {
4351 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4352 .addImm(ImmVal & 0xf);
4353 }
4354
4355 MI.eraseFromParent();
4356 return BB;
4357 }
4358 }
4359 }
4360
4361 // If only FP bits are touched, used the no side effects pseudo.
4362 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4363 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4364 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4365
4366 return BB;
4367 }
4368 default:
4369 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4370 }
4371}
4372
4373bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4374 return isTypeLegal(VT.getScalarType());
4375}
4376
4377bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4378 // This currently forces unfolding various combinations of fsub into fma with
4379 // free fneg'd operands. As long as we have fast FMA (controlled by
4380 // isFMAFasterThanFMulAndFAdd), we should perform these.
4381
4382 // When fma is quarter rate, for f64 where add / sub are at best half rate,
4383 // most of these combines appear to be cycle neutral but save on instruction
4384 // count / code size.
4385 return true;
4386}
4387
4388EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4389 EVT VT) const {
4390 if (!VT.isVector()) {
4391 return MVT::i1;
4392 }
4393 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4394}
4395
4396MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4397 // TODO: Should i16 be used always if legal? For now it would force VALU
4398 // shifts.
4399 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4400}
4401
4402LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4403 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4404 ? Ty.changeElementSize(16)
4405 : Ty.changeElementSize(32);
4406}
4407
4408// Answering this is somewhat tricky and depends on the specific device which
4409// have different rates for fma or all f64 operations.
4410//
4411// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4412// regardless of which device (although the number of cycles differs between
4413// devices), so it is always profitable for f64.
4414//
4415// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4416// only on full rate devices. Normally, we should prefer selecting v_mad_f32
4417// which we can always do even without fused FP ops since it returns the same
4418// result as the separate operations and since it is always full
4419// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4420// however does not support denormals, so we do report fma as faster if we have
4421// a fast fma device and require denormals.
4422//
4423bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4424 EVT VT) const {
4425 VT = VT.getScalarType();
4426
4427 switch (VT.getSimpleVT().SimpleTy) {
4428 case MVT::f32: {
4429 // If mad is not available this depends only on if f32 fma is full rate.
4430 if (!Subtarget->hasMadMacF32Insts())
4431 return Subtarget->hasFastFMAF32();
4432
4433 // Otherwise f32 mad is always full rate and returns the same result as
4434 // the separate operations so should be preferred over fma.
4435 // However does not support denomals.
4436 if (hasFP32Denormals(MF))
4437 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4438
4439 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4440 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4441 }
4442 case MVT::f64:
4443 return true;
4444 case MVT::f16:
4445 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4446 default:
4447 break;
4448 }
4449
4450 return false;
4451}
4452
4453bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4454 const SDNode *N) const {
4455 // TODO: Check future ftz flag
4456 // v_mad_f32/v_mac_f32 do not support denormals.
4457 EVT VT = N->getValueType(0);
4458 if (VT == MVT::f32)
4459 return Subtarget->hasMadMacF32Insts() &&
4460 !hasFP32Denormals(DAG.getMachineFunction());
4461 if (VT == MVT::f16) {
4462 return Subtarget->hasMadF16() &&
4463 !hasFP64FP16Denormals(DAG.getMachineFunction());
4464 }
4465
4466 return false;
4467}
4468
4469//===----------------------------------------------------------------------===//
4470// Custom DAG Lowering Operations
4471//===----------------------------------------------------------------------===//
4472
4473// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4474// wider vector type is legal.
4475SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4476 SelectionDAG &DAG) const {
4477 unsigned Opc = Op.getOpcode();
4478 EVT VT = Op.getValueType();
4479 assert(VT == MVT::v4f16 || VT == MVT::v4i16)((void)0);
4480
4481 SDValue Lo, Hi;
4482 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4483
4484 SDLoc SL(Op);
4485 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4486 Op->getFlags());
4487 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4488 Op->getFlags());
4489
4490 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4491}
4492
4493// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4494// wider vector type is legal.
4495SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4496 SelectionDAG &DAG) const {
4497 unsigned Opc = Op.getOpcode();
4498 EVT VT = Op.getValueType();
4499 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||((void)0)
4500 VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32)((void)0);
4501
4502 SDValue Lo0, Hi0;
4503 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4504 SDValue Lo1, Hi1;
4505 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4506
4507 SDLoc SL(Op);
4508
4509 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4510 Op->getFlags());
4511 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4512 Op->getFlags());
4513
4514 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4515}
4516
4517SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4518 SelectionDAG &DAG) const {
4519 unsigned Opc = Op.getOpcode();
4520 EVT VT = Op.getValueType();
4521 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||((void)0)
4522 VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32)((void)0);
4523
4524 SDValue Lo0, Hi0;
4525 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4526 SDValue Lo1, Hi1;
4527 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4528 SDValue Lo2, Hi2;
4529 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4530
4531 SDLoc SL(Op);
4532
4533 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4534 Op->getFlags());
4535 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4536 Op->getFlags());
4537
4538 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4539}
4540
4541
4542SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4543 switch (Op.getOpcode()) {
4544 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4545 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4546 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4547 case ISD::LOAD: {
4548 SDValue Result = LowerLOAD(Op, DAG);
4549 assert((!Result.getNode() ||((void)0)
4550 Result.getNode()->getNumValues() == 2) &&((void)0)
4551 "Load should return a value and a chain")((void)0);
4552 return Result;
4553 }
4554
4555 case ISD::FSIN:
4556 case ISD::FCOS:
4557 return LowerTrig(Op, DAG);
4558 case ISD::SELECT: return LowerSELECT(Op, DAG);
4559 case ISD::FDIV: return LowerFDIV(Op, DAG);
4560 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4561 case ISD::STORE: return LowerSTORE(Op, DAG);
4562 case ISD::GlobalAddress: {
4563 MachineFunction &MF = DAG.getMachineFunction();
4564 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4565 return LowerGlobalAddress(MFI, Op, DAG);
4566 }
4567 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4568 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4569 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4570 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4571 case ISD::INSERT_SUBVECTOR:
4572 return lowerINSERT_SUBVECTOR(Op, DAG);
4573 case ISD::INSERT_VECTOR_ELT:
4574 return lowerINSERT_VECTOR_ELT(Op, DAG);
4575 case ISD::EXTRACT_VECTOR_ELT:
4576 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4577 case ISD::VECTOR_SHUFFLE:
4578 return lowerVECTOR_SHUFFLE(Op, DAG);
4579 case ISD::BUILD_VECTOR:
4580 return lowerBUILD_VECTOR(Op, DAG);
4581 case ISD::FP_ROUND:
4582 return lowerFP_ROUND(Op, DAG);
4583 case ISD::TRAP:
4584 return lowerTRAP(Op, DAG);
4585 case ISD::DEBUGTRAP:
4586 return lowerDEBUGTRAP(Op, DAG);
4587 case ISD::FABS:
4588 case ISD::FNEG:
4589 case ISD::FCANONICALIZE:
4590 case ISD::BSWAP:
4591 return splitUnaryVectorOp(Op, DAG);
4592 case ISD::FMINNUM:
4593 case ISD::FMAXNUM:
4594 return lowerFMINNUM_FMAXNUM(Op, DAG);
4595 case ISD::FMA:
4596 return splitTernaryVectorOp(Op, DAG);
4597 case ISD::FP_TO_SINT:
4598 case ISD::FP_TO_UINT:
4599 return LowerFP_TO_INT(Op, DAG);
4600 case ISD::SHL:
4601 case ISD::SRA:
4602 case ISD::SRL:
4603 case ISD::ADD:
4604 case ISD::SUB:
4605 case ISD::MUL:
4606 case ISD::SMIN:
4607 case ISD::SMAX:
4608 case ISD::UMIN:
4609 case ISD::UMAX:
4610 case ISD::FADD:
4611 case ISD::FMUL:
4612 case ISD::FMINNUM_IEEE:
4613 case ISD::FMAXNUM_IEEE:
4614 case ISD::UADDSAT:
4615 case ISD::USUBSAT:
4616 case ISD::SADDSAT:
4617 case ISD::SSUBSAT:
4618 return splitBinaryVectorOp(Op, DAG);
4619 case ISD::SMULO:
4620 case ISD::UMULO:
4621 return lowerXMULO(Op, DAG);
4622 case ISD::DYNAMIC_STACKALLOC:
4623 return LowerDYNAMIC_STACKALLOC(Op, DAG);
4624 }
4625 return SDValue();
4626}
4627
4628// Used for D16: Casts the result of an instruction into the right vector,
4629// packs values if loads return unpacked values.
4630static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4631 const SDLoc &DL,
4632 SelectionDAG &DAG, bool Unpacked) {
4633 if (!LoadVT.isVector())
4634 return Result;
4635
4636 // Cast back to the original packed type or to a larger type that is a
4637 // multiple of 32 bit for D16. Widening the return type is a required for
4638 // legalization.
4639 EVT FittingLoadVT = LoadVT;
4640 if ((LoadVT.getVectorNumElements() % 2) == 1) {
4641 FittingLoadVT =
4642 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4643 LoadVT.getVectorNumElements() + 1);
4644 }
4645
4646 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4647 // Truncate to v2i16/v4i16.
4648 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4649
4650 // Workaround legalizer not scalarizing truncate after vector op
4651 // legalization but not creating intermediate vector trunc.
4652 SmallVector<SDValue, 4> Elts;
4653 DAG.ExtractVectorElements(Result, Elts);
4654 for (SDValue &Elt : Elts)
4655 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4656
4657 // Pad illegal v1i16/v3fi6 to v4i16
4658 if ((LoadVT.getVectorNumElements() % 2) == 1)
4659 Elts.push_back(DAG.getUNDEF(MVT::i16));
4660
4661 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4662
4663 // Bitcast to original type (v2f16/v4f16).
4664 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4665 }
4666
4667 // Cast back to the original packed type.
4668 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4669}
4670
4671SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4672 MemSDNode *M,
4673 SelectionDAG &DAG,
4674 ArrayRef<SDValue> Ops,
4675 bool IsIntrinsic) const {
4676 SDLoc DL(M);
4677
4678 bool Unpacked = Subtarget->hasUnpackedD16VMem();
4679 EVT LoadVT = M->getValueType(0);
4680
4681 EVT EquivLoadVT = LoadVT;
4682 if (LoadVT.isVector()) {
4683 if (Unpacked) {
4684 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4685 LoadVT.getVectorNumElements());
4686 } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4687 // Widen v3f16 to legal type
4688 EquivLoadVT =
4689 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4690 LoadVT.getVectorNumElements() + 1);
4691 }
4692 }
4693
4694 // Change from v4f16/v2f16 to EquivLoadVT.
4695 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4696
4697 SDValue Load
4698 = DAG.getMemIntrinsicNode(
4699 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4700 VTList, Ops, M->getMemoryVT(),
4701 M->getMemOperand());
4702
4703 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4704
4705 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4706}
4707
4708SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4709 SelectionDAG &DAG,
4710 ArrayRef<SDValue> Ops) const {
4711 SDLoc DL(M);
4712 EVT LoadVT = M->getValueType(0);
4713 EVT EltType = LoadVT.getScalarType();
4714 EVT IntVT = LoadVT.changeTypeToInteger();
4715
4716 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4717
4718 unsigned Opc =
4719 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4720
4721 if (IsD16) {
4722 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4723 }
4724
4725 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4726 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4727 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4728
4729 if (isTypeLegal(LoadVT)) {
4730 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4731 M->getMemOperand(), DAG);
4732 }
4733
4734 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4735 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4736 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4737 M->getMemOperand(), DAG);
4738 return DAG.getMergeValues(
4739 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4740 DL);
4741}
4742
4743static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4744 SDNode *N, SelectionDAG &DAG) {
4745 EVT VT = N->getValueType(0);
4746 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4747 unsigned CondCode = CD->getZExtValue();
4748 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4749 return DAG.getUNDEF(VT);
4750
4751 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4752
4753 SDValue LHS = N->getOperand(1);
4754 SDValue RHS = N->getOperand(2);
4755
4756 SDLoc DL(N);
4757
4758 EVT CmpVT = LHS.getValueType();
4759 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4760 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4761 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4762 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4763 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4764 }
4765
4766 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4767
4768 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4769 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4770
4771 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4772 DAG.getCondCode(CCOpcode));
4773 if (VT.bitsEq(CCVT))
4774 return SetCC;
4775 return DAG.getZExtOrTrunc(SetCC, DL, VT);
4776}
4777
4778static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4779 SDNode *N, SelectionDAG &DAG) {
4780 EVT VT = N->getValueType(0);
4781 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4782
4783 unsigned CondCode = CD->getZExtValue();
4784 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4785 return DAG.getUNDEF(VT);
4786
4787 SDValue Src0 = N->getOperand(1);
4788 SDValue Src1 = N->getOperand(2);
4789 EVT CmpVT = Src0.getValueType();
4790 SDLoc SL(N);
4791
4792 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4793 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4794 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4795 }
4796
4797 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4798 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4799 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4800 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4801 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4802 Src1, DAG.getCondCode(CCOpcode));
4803 if (VT.bitsEq(CCVT))
4804 return SetCC;
4805 return DAG.getZExtOrTrunc(SetCC, SL, VT);
4806}
4807
4808static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4809 SelectionDAG &DAG) {
4810 EVT VT = N->getValueType(0);
4811 SDValue Src = N->getOperand(1);
4812 SDLoc SL(N);
4813
4814 if (Src.getOpcode() == ISD::SETCC) {
4815 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4816 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4817 Src.getOperand(1), Src.getOperand(2));
4818 }
4819 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4820 // (ballot 0) -> 0
4821 if (Arg->isNullValue())
4822 return DAG.getConstant(0, SL, VT);
4823
4824 // (ballot 1) -> EXEC/EXEC_LO
4825 if (Arg->isOne()) {
4826 Register Exec;
4827 if (VT.getScalarSizeInBits() == 32)
4828 Exec = AMDGPU::EXEC_LO;
4829 else if (VT.getScalarSizeInBits() == 64)
4830 Exec = AMDGPU::EXEC;
4831 else
4832 return SDValue();
4833
4834 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4835 }
4836 }
4837
4838 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4839 // ISD::SETNE)
4840 return DAG.getNode(
4841 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4842 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4843}
4844
4845void SITargetLowering::ReplaceNodeResults(SDNode *N,
4846 SmallVectorImpl<SDValue> &Results,
4847 SelectionDAG &DAG) const {
4848 switch (N->getOpcode()) {
4849 case ISD::INSERT_VECTOR_ELT: {
4850 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4851 Results.push_back(Res);
4852 return;
4853 }
4854 case ISD::EXTRACT_VECTOR_ELT: {
4855 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4856 Results.push_back(Res);
4857 return;
4858 }
4859 case ISD::INTRINSIC_WO_CHAIN: {
4860 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4861 switch (IID) {
4862 case Intrinsic::amdgcn_cvt_pkrtz: {
4863 SDValue Src0 = N->getOperand(1);
4864 SDValue Src1 = N->getOperand(2);
4865 SDLoc SL(N);
4866 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4867 Src0, Src1);
4868 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4869 return;
4870 }
4871 case Intrinsic::amdgcn_cvt_pknorm_i16:
4872 case Intrinsic::amdgcn_cvt_pknorm_u16:
4873 case Intrinsic::amdgcn_cvt_pk_i16:
4874 case Intrinsic::amdgcn_cvt_pk_u16: {
4875 SDValue Src0 = N->getOperand(1);
4876 SDValue Src1 = N->getOperand(2);
4877 SDLoc SL(N);
4878 unsigned Opcode;
4879
4880 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4881 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4882 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4883 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4884 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4885 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4886 else
4887 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4888
4889 EVT VT = N->getValueType(0);
4890 if (isTypeLegal(VT))
4891 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4892 else {
4893 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4894 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4895 }
4896 return;
4897 }
4898 }
4899 break;
4900 }
4901 case ISD::INTRINSIC_W_CHAIN: {
4902 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4903 if (Res.getOpcode() == ISD::MERGE_VALUES) {
4904 // FIXME: Hacky
4905 for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4906 Results.push_back(Res.getOperand(I));
4907 }
4908 } else {
4909 Results.push_back(Res);
4910 Results.push_back(Res.getValue(1));
4911 }
4912 return;
4913 }
4914
4915 break;
4916 }
4917 case ISD::SELECT: {
4918 SDLoc SL(N);
4919 EVT VT = N->getValueType(0);
4920 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4921 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4922 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4923
4924 EVT SelectVT = NewVT;
4925 if (NewVT.bitsLT(MVT::i32)) {
4926 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4927 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4928 SelectVT = MVT::i32;
4929 }
4930
4931 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4932 N->getOperand(0), LHS, RHS);
4933
4934 if (NewVT != SelectVT)
4935 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4936 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4937 return;
4938 }
4939 case ISD::FNEG: {
4940 if (N->getValueType(0) != MVT::v2f16)
4941 break;
4942
4943 SDLoc SL(N);
4944 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4945
4946 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4947 BC,
4948 DAG.getConstant(0x80008000, SL, MVT::i32));
4949 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4950 return;
4951 }
4952 case ISD::FABS: {
4953 if (N->getValueType(0) != MVT::v2f16)
4954 break;
4955
4956 SDLoc SL(N);
4957 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4958
4959 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4960 BC,
4961 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4962 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4963 return;
4964 }
4965 default:
4966 break;
4967 }
4968}
4969
4970/// Helper function for LowerBRCOND
4971static SDNode *findUser(SDValue Value, unsigned Opcode) {
4972
4973 SDNode *Parent = Value.getNode();
4974 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4975 I != E; ++I) {
4976
4977 if (I.getUse().get() != Value)
4978 continue;
4979
4980 if (I->getOpcode() == Opcode)
4981 return *I;
4982 }
4983 return nullptr;
4984}
4985
4986unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4987 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4988 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4989 case Intrinsic::amdgcn_if:
4990 return AMDGPUISD::IF;
4991 case Intrinsic::amdgcn_else:
4992 return AMDGPUISD::ELSE;
4993 case Intrinsic::amdgcn_loop:
4994 return AMDGPUISD::LOOP;
4995 case Intrinsic::amdgcn_end_cf:
4996 llvm_unreachable("should not occur")__builtin_unreachable();
4997 default:
4998 return 0;
4999 }
5000 }
5001
5002 // break, if_break, else_break are all only used as inputs to loop, not
5003 // directly as branch conditions.
5004 return 0;
5005}
5006
5007bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5008 const Triple &TT = getTargetMachine().getTargetTriple();
5009 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5010 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5011 AMDGPU::shouldEmitConstantsToTextSection(TT);
5012}
5013
5014bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5015 // FIXME: Either avoid relying on address space here or change the default
5016 // address space for functions to avoid the explicit check.
5017 return (GV->getValueType()->isFunctionTy() ||
5018 !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5019 !shouldEmitFixup(GV) &&
5020 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5021}
5022
5023bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5024 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5025}
5026
5027bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5028 if (!GV->hasExternalLinkage())
5029 return true;
5030
5031 const auto OS = getTargetMachine().getTargetTriple().getOS();
5032 return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5033}
5034
5035/// This transforms the control flow intrinsics to get the branch destination as
5036/// last parameter, also switches branch target with BR if the need arise
5037SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5038 SelectionDAG &DAG) const {
5039 SDLoc DL(BRCOND);
5040
5041 SDNode *Intr = BRCOND.getOperand(1).getNode();
5042 SDValue Target = BRCOND.getOperand(2);
5043 SDNode *BR = nullptr;
5044 SDNode *SetCC = nullptr;
5045
5046 if (Intr->getOpcode() == ISD::SETCC) {
5047 // As long as we negate the condition everything is fine
5048 SetCC = Intr;
5049 Intr = SetCC->getOperand(0).getNode();
5050
5051 } else {
5052 // Get the target from BR if we don't negate the condition
5053 BR = findUser(BRCOND, ISD::BR);
5054 assert(BR && "brcond missing unconditional branch user")((void)0);
5055 Target = BR->getOperand(1);
5056 }
5057
5058 unsigned CFNode = isCFIntrinsic(Intr);
5059 if (CFNode == 0) {
5060 // This is a uniform branch so we don't need to legalize.
5061 return BRCOND;
5062 }
5063
5064 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5065 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5066
5067 assert(!SetCC ||((void)0)
5068 (SetCC->getConstantOperandVal(1) == 1 &&((void)0)
5069 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==((void)0)
5070 ISD::SETNE))((void)0);
5071
5072 // operands of the new intrinsic call
5073 SmallVector<SDValue, 4> Ops;
5074 if (HaveChain)
5075 Ops.push_back(BRCOND.getOperand(0));
5076
5077 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
5078 Ops.push_back(Target);
5079
5080 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5081
5082 // build the new intrinsic call
5083 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5084
5085 if (!HaveChain) {
5086 SDValue Ops[] = {
5087 SDValue(Result, 0),
5088 BRCOND.getOperand(0)
5089 };
5090
5091 Result = DAG.getMergeValues(Ops, DL).getNode();
5092 }
5093
5094 if (BR) {
5095 // Give the branch instruction our target
5096 SDValue Ops[] = {
5097 BR->getOperand(0),
5098 BRCOND.getOperand(2)
5099 };
5100 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5101 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5102 }
5103
5104 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5105
5106 // Copy the intrinsic results to registers
5107 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5108 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5109 if (!CopyToReg)
5110 continue;
5111
5112 Chain = DAG.getCopyToReg(
5113 Chain, DL,
5114 CopyToReg->getOperand(1),
5115 SDValue(Result, i - 1),
5116 SDValue());
5117
5118 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5119 }
5120
5121 // Remove the old intrinsic from the chain
5122 DAG.ReplaceAllUsesOfValueWith(
5123 SDValue(Intr, Intr->getNumValues() - 1),
5124 Intr->getOperand(0));
5125
5126 return Chain;
5127}
5128
5129SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5130 SelectionDAG &DAG) const {
5131 MVT VT = Op.getSimpleValueType();
5132 SDLoc DL(Op);
5133 // Checking the depth
5134 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5135 return DAG.getConstant(0, DL, VT);
5136
5137 MachineFunction &MF = DAG.getMachineFunction();
5138 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5139 // Check for kernel and shader functions
5140 if (Info->isEntryFunction())
5141 return DAG.getConstant(0, DL, VT);
5142
5143 MachineFrameInfo &MFI = MF.getFrameInfo();
5144 // There is a call to @llvm.returnaddress in this function
5145 MFI.setReturnAddressIsTaken(true);
5146
5147 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5148 // Get the return address reg and mark it as an implicit live-in
5149 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5150
5151 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5152}
5153
5154SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5155 SDValue Op,
5156 const SDLoc &DL,
5157 EVT VT) const {
5158 return Op.getValueType().bitsLE(VT) ?
5159 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5160 DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5161 DAG.getTargetConstant(0, DL, MVT::i32));
5162}
5163
5164SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5165 assert(Op.getValueType() == MVT::f16 &&((void)0)
5166 "Do not know how to custom lower FP_ROUND for non-f16 type")((void)0);
5167
5168 SDValue Src = Op.getOperand(0);
5169 EVT SrcVT = Src.getValueType();
5170 if (SrcVT != MVT::f64)
5171 return Op;
5172
5173 SDLoc DL(Op);
5174
5175 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5176 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5177 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5178}
5179
5180SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5181 SelectionDAG &DAG) const {
5182 EVT VT = Op.getValueType();
5183 const MachineFunction &MF = DAG.getMachineFunction();
5184 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5185 bool IsIEEEMode = Info->getMode().IEEE;
5186
5187 // FIXME: Assert during selection that this is only selected for
5188 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5189 // mode functions, but this happens to be OK since it's only done in cases
5190 // where there is known no sNaN.
5191 if (IsIEEEMode)
5192 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5193
5194 if (VT == MVT::v4f16)
5195 return splitBinaryVectorOp(Op, DAG);
5196 return Op;
5197}
5198
5199SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5200 EVT VT = Op.getValueType();
5201 SDLoc SL(Op);
5202 SDValue LHS = Op.getOperand(0);
5203 SDValue RHS = Op.getOperand(1);
5204 bool isSigned = Op.getOpcode() == ISD::SMULO;
5205
5206 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5207 const APInt &C = RHSC->getAPIntValue();
5208 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5209 if (C.isPowerOf2()) {
5210 // smulo(x, signed_min) is same as umulo(x, signed_min).
5211 bool UseArithShift = isSigned && !C.isMinSignedValue();
5212 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5213 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5214 SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5215 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5216 SL, VT, Result, ShiftAmt),
5217 LHS, ISD::SETNE);
5218 return DAG.getMergeValues({ Result, Overflow }, SL);
5219 }
5220 }
5221
5222 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5223 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5224 SL, VT, LHS, RHS);
5225
5226 SDValue Sign = isSigned
5227 ? DAG.getNode(ISD::SRA, SL, VT, Result,
5228 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5229 : DAG.getConstant(0, SL, VT);
5230 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5231
5232 return DAG.getMergeValues({ Result, Overflow }, SL);
5233}
5234
5235SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5236 if (!Subtarget->isTrapHandlerEnabled() ||
5237 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5238 return lowerTrapEndpgm(Op, DAG);
5239
5240 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5241 switch (*HsaAbiVer) {
5242 case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5243 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5244 return lowerTrapHsaQueuePtr(Op, DAG);
5245 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5246 return Subtarget->supportsGetDoorbellID() ?
5247 lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5248 }
5249 }
5250
5251 llvm_unreachable("Unknown trap handler")__builtin_unreachable();
5252}
5253
5254SDValue SITargetLowering::lowerTrapEndpgm(
5255 SDValue Op, SelectionDAG &DAG) const {
5256 SDLoc SL(Op);
5257 SDValue Chain = Op.getOperand(0);
5258 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5259}
5260
5261SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5262 SDValue Op, SelectionDAG &DAG) const {
5263 SDLoc SL(Op);
5264 SDValue Chain = Op.getOperand(0);
5265
5266 MachineFunction &MF = DAG.getMachineFunction();
5267 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5268 Register UserSGPR = Info->getQueuePtrUserSGPR();
5269 assert(UserSGPR != AMDGPU::NoRegister)((void)0);
5270 SDValue QueuePtr = CreateLiveInRegister(
5271 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5272 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5273 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5274 QueuePtr, SDValue());
5275
5276 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5277 SDValue Ops[] = {
5278 ToReg,
5279 DAG.getTargetConstant(TrapID, SL, MVT::i16),
5280 SGPR01,
5281 ToReg.getValue(1)
5282 };
5283 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5284}
5285
5286SDValue SITargetLowering::lowerTrapHsa(
5287 SDValue Op, SelectionDAG &DAG) const {
5288 SDLoc SL(Op);
5289 SDValue Chain = Op.getOperand(0);
5290
5291 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5292 SDValue Ops[] = {
5293 Chain,
5294 DAG.getTargetConstant(TrapID, SL, MVT::i16)
5295 };
5296 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5297}
5298
5299SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5300 SDLoc SL(Op);
5301 SDValue Chain = Op.getOperand(0);
5302 MachineFunction &MF = DAG.getMachineFunction();
5303
5304 if (!Subtarget->isTrapHandlerEnabled() ||
5305 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5306 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5307 "debugtrap handler not supported",
5308 Op.getDebugLoc(),
5309 DS_Warning);
5310 LLVMContext &Ctx = MF.getFunction().getContext();
5311 Ctx.diagnose(NoTrap);
5312 return Chain;
5313 }
5314
5315 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5316 SDValue Ops[] = {
5317 Chain,
5318 DAG.getTargetConstant(TrapID, SL, MVT::i16)
5319 };
5320 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5321}
5322
5323SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5324 SelectionDAG &DAG) const {
5325 // FIXME: Use inline constants (src_{shared, private}_base) instead.
5326 if (Subtarget->hasApertureRegs()) {
5327 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5328 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5329 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5330 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5331 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5332 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5333 unsigned Encoding =
5334 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5335 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5336 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5337
5338 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5339 SDValue ApertureReg = SDValue(
5340 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5341 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5342 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5343 }
5344
5345 MachineFunction &MF = DAG.getMachineFunction();
5346 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5347 Register UserSGPR = Info->getQueuePtrUserSGPR();
5348 assert(UserSGPR != AMDGPU::NoRegister)((void)0);
5349
5350 SDValue QueuePtr = CreateLiveInRegister(
5351 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5352
5353 // Offset into amd_queue_t for group_segment_aperture_base_hi /
5354 // private_segment_aperture_base_hi.
5355 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5356
5357 SDValue Ptr =
5358 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5359
5360 // TODO: Use custom target PseudoSourceValue.
5361 // TODO: We should use the value from the IR intrinsic call, but it might not
5362 // be available and how do we get it?
5363 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5364 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5365 commonAlignment(Align(64), StructOffset),
5366 MachineMemOperand::MODereferenceable |
5367 MachineMemOperand::MOInvariant);
5368}
5369
5370SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5371 SelectionDAG &DAG) const {
5372 SDLoc SL(Op);
5373 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5374
5375 SDValue Src = ASC->getOperand(0);
5376 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5377
5378 const AMDGPUTargetMachine &TM =
5379 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5380
5381 // flat -> local/private
5382 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5383 unsigned DestAS = ASC->getDestAddressSpace();
5384
5385 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5386 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5387 unsigned NullVal = TM.getNullPointerValue(DestAS);
5388 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5389 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5390 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5391
5392 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5393 NonNull, Ptr, SegmentNullPtr);
5394 }
5395 }
5396
5397 // local/private -> flat
5398 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5399 unsigned SrcAS = ASC->getSrcAddressSpace();
5400
5401 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5402 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5403 unsigned NullVal = TM.getNullPointerValue(SrcAS);
5404 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5405
5406 SDValue NonNull
5407 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5408
5409 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5410 SDValue CvtPtr
5411 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5412
5413 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5414 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5415 FlatNullPtr);
5416 }
5417 }
5418
5419 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5420 Src.getValueType() == MVT::i64)
5421 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5422
5423 // global <-> flat are no-ops and never emitted.
5424
5425 const MachineFunction &MF = DAG.getMachineFunction();
5426 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5427 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5428 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5429
5430 return DAG.getUNDEF(ASC->getValueType(0));
5431}
5432
5433// This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5434// the small vector and inserting them into the big vector. That is better than
5435// the default expansion of doing it via a stack slot. Even though the use of
5436// the stack slot would be optimized away afterwards, the stack slot itself
5437// remains.
5438SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5439 SelectionDAG &DAG) const {
5440 SDValue Vec = Op.getOperand(0);
5441 SDValue Ins = Op.getOperand(1);
5442 SDValue Idx = Op.getOperand(2);
5443 EVT VecVT = Vec.getValueType();
5444 EVT InsVT = Ins.getValueType();
5445 EVT EltVT = VecVT.getVectorElementType();
5446 unsigned InsNumElts = InsVT.getVectorNumElements();
5447 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5448 SDLoc SL(Op);
5449
5450 for (unsigned I = 0; I != InsNumElts; ++I) {
5451 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5452 DAG.getConstant(I, SL, MVT::i32));
5453 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5454 DAG.getConstant(IdxVal + I, SL, MVT::i32));
5455 }
5456 return Vec;
5457}
5458
5459SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5460 SelectionDAG &DAG) const {
5461 SDValue Vec = Op.getOperand(0);
5462 SDValue InsVal = Op.getOperand(1);
5463 SDValue Idx = Op.getOperand(2);
5464 EVT VecVT = Vec.getValueType();
5465 EVT EltVT = VecVT.getVectorElementType();
5466 unsigned VecSize = VecVT.getSizeInBits();
5467 unsigned EltSize = EltVT.getSizeInBits();
5468
5469
5470 assert(VecSize <= 64)((void)0);
5471
5472 unsigned NumElts = VecVT.getVectorNumElements();
5473 SDLoc SL(Op);
5474 auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5475
5476 if (NumElts == 4 && EltSize == 16 && KIdx) {
5477 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5478
5479 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5480 DAG.getConstant(0, SL, MVT::i32));
5481 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5482 DAG.getConstant(1, SL, MVT::i32));
5483
5484 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5485 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5486
5487 unsigned Idx = KIdx->getZExtValue();
5488 bool InsertLo = Idx < 2;
5489 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5490 InsertLo ? LoVec : HiVec,
5491 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5492 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5493
5494 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5495
5496 SDValue Concat = InsertLo ?
5497 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5498 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5499
5500 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5501 }
5502
5503 if (isa<ConstantSDNode>(Idx))
5504 return SDValue();
5505
5506 MVT IntVT = MVT::getIntegerVT(VecSize);
5507
5508 // Avoid stack access for dynamic indexing.
5509 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5510
5511 // Create a congruent vector with the target value in each element so that
5512 // the required element can be masked and ORed into the target vector.
5513 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5514 DAG.getSplatBuildVector(VecVT, SL, InsVal));
5515
5516 assert(isPowerOf2_32(EltSize))((void)0);
5517 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5518
5519 // Convert vector index to bit-index.
5520 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5521
5522 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5523 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5524 DAG.getConstant(0xffff, SL, IntVT),
5525 ScaledIdx);
5526
5527 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5528 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5529 DAG.getNOT(SL, BFM, IntVT), BCVec);
5530
5531 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5532 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5533}
5534
5535SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5536 SelectionDAG &DAG) const {
5537 SDLoc SL(Op);
5538
5539 EVT ResultVT = Op.getValueType();
5540 SDValue Vec = Op.getOperand(0);
5541 SDValue Idx = Op.getOperand(1);
5542 EVT VecVT = Vec.getValueType();
5543 unsigned VecSize = VecVT.getSizeInBits();
5544 EVT EltVT = VecVT.getVectorElementType();
5545 assert(VecSize <= 64)((void)0);
5546
5547 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5548
5549 // Make sure we do any optimizations that will make it easier to fold
5550 // source modifiers before obscuring it with bit operations.
5551
5552 // XXX - Why doesn't this get called when vector_shuffle is expanded?
5553 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5554 return Combined;
5555
5556 unsigned EltSize = EltVT.getSizeInBits();
5557 assert(isPowerOf2_32(EltSize))((void)0);
5558
5559 MVT IntVT = MVT::getIntegerVT(VecSize);
5560 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5561
5562 // Convert vector index to bit-index (* EltSize)
5563 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5564
5565 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5566 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5567
5568 if (ResultVT == MVT::f16) {
5569 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5570 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5571 }
5572
5573 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5574}
5575
5576static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5577 assert(Elt % 2 == 0)((void)0);
5578 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5579}
5580
5581SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5582 SelectionDAG &DAG) const {
5583 SDLoc SL(Op);
5584 EVT ResultVT = Op.getValueType();
5585 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5586
5587 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5588 EVT EltVT = PackVT.getVectorElementType();
5589 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5590
5591 // vector_shuffle <0,1,6,7> lhs, rhs
5592 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5593 //
5594 // vector_shuffle <6,7,2,3> lhs, rhs
5595 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5596 //
5597 // vector_shuffle <6,7,0,1> lhs, rhs
5598 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5599
5600 // Avoid scalarizing when both halves are reading from consecutive elements.
5601 SmallVector<SDValue, 4> Pieces;
5602 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5603 if (elementPairIsContiguous(SVN->getMask(), I)) {
5604 const int Idx = SVN->getMaskElt(I);
5605 int VecIdx = Idx < SrcNumElts ? 0 : 1;
5606 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5607 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5608 PackVT, SVN->getOperand(VecIdx),
5609 DAG.getConstant(EltIdx, SL, MVT::i32));
5610 Pieces.push_back(SubVec);
5611 } else {
5612 const int Idx0 = SVN->getMaskElt(I);
5613 const int Idx1 = SVN->getMaskElt(I + 1);
5614 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5615 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5616 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5617 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5618
5619 SDValue Vec0 = SVN->getOperand(VecIdx0);
5620 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5621 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5622
5623 SDValue Vec1 = SVN->getOperand(VecIdx1);
5624 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5625 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5626 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5627 }
5628 }
5629
5630 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5631}
5632
5633SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5634 SelectionDAG &DAG) const {
5635 SDLoc SL(Op);
5636 EVT VT = Op.getValueType();
5637
5638 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5639 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5640
5641 // Turn into pair of packed build_vectors.
5642 // TODO: Special case for constants that can be materialized with s_mov_b64.
5643 SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5644 { Op.getOperand(0), Op.getOperand(1) });
5645 SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5646 { Op.getOperand(2), Op.getOperand(3) });
5647
5648 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5649 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5650
5651 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5652 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5653 }
5654
5655 assert(VT == MVT::v2f16 || VT == MVT::v2i16)((void)0);
5656 assert(!Subtarget->hasVOP3PInsts() && "this should be legal")((void)0);
5657
5658 SDValue Lo = Op.getOperand(0);
5659 SDValue Hi = Op.getOperand(1);
5660
5661 // Avoid adding defined bits with the zero_extend.
5662 if (Hi.isUndef()) {
5663 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5664 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5665 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5666 }
5667
5668 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5669 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5670
5671 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5672 DAG.getConstant(16, SL, MVT::i32));
5673 if (Lo.isUndef())
5674 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5675
5676 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5677 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5678
5679 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5680 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5681}
5682
5683bool
5684SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5685 // We can fold offsets for anything that doesn't require a GOT relocation.
5686 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5687 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5688 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5689 !shouldEmitGOTReloc(GA->getGlobal());
5690}
5691
5692static SDValue
5693buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5694 const SDLoc &DL, int64_t Offset, EVT PtrVT,
5695 unsigned GAFlags = SIInstrInfo::MO_NONE) {
5696 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!")((void)0);
5697 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5698 // lowered to the following code sequence:
5699 //
5700 // For constant address space:
5701 // s_getpc_b64 s[0:1]
5702 // s_add_u32 s0, s0, $symbol
5703 // s_addc_u32 s1, s1, 0
5704 //
5705 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5706 // a fixup or relocation is emitted to replace $symbol with a literal
5707 // constant, which is a pc-relative offset from the encoding of the $symbol
5708 // operand to the global variable.
5709 //
5710 // For global address space:
5711 // s_getpc_b64 s[0:1]
5712 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5713 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5714 //
5715 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5716 // fixups or relocations are emitted to replace $symbol@*@lo and
5717 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5718 // which is a 64-bit pc-relative offset from the encoding of the $symbol
5719 // operand to the global variable.
5720 //
5721 // What we want here is an offset from the value returned by s_getpc
5722 // (which is the address of the s_add_u32 instruction) to the global
5723 // variable, but since the encoding of $symbol starts 4 bytes after the start
5724 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5725 // small. This requires us to add 4 to the global variable offset in order to
5726 // compute the correct address. Similarly for the s_addc_u32 instruction, the
5727 // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5728 // instruction.
5729 SDValue PtrLo =
5730 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5731 SDValue PtrHi;
5732 if (GAFlags == SIInstrInfo::MO_NONE) {
5733 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5734 } else {
5735 PtrHi =
5736 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5737 }
5738 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5739}
5740
5741SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5742 SDValue Op,
5743 SelectionDAG &DAG) const {
5744 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5745 SDLoc DL(GSD);
5746 EVT PtrVT = Op.getValueType();
5747
5748 const GlobalValue *GV = GSD->getGlobal();
5749 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5750 shouldUseLDSConstAddress(GV)) ||
5751 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5752 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5753 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5754 GV->hasExternalLinkage()) {
5755 Type *Ty = GV->getValueType();
5756 // HIP uses an unsized array `extern __shared__ T s[]` or similar
5757 // zero-sized type in other languages to declare the dynamic shared
5758 // memory which size is not known at the compile time. They will be
5759 // allocated by the runtime and placed directly after the static
5760 // allocated ones. They all share the same offset.
5761 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5762 assert(PtrVT == MVT::i32 && "32-bit pointer is expected.")((void)0);
5763 // Adjust alignment for that dynamic shared memory array.
5764 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5765 return SDValue(
5766 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5767 }
5768 }
5769 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5770 }
5771
5772 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5773 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5774 SIInstrInfo::MO_ABS32_LO);
5775 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5776 }
5777
5778 if (shouldEmitFixup(GV))
5779 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5780 else if (shouldEmitPCReloc(GV))
5781 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5782 SIInstrInfo::MO_REL32);
5783
5784 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5785 SIInstrInfo::MO_GOTPCREL32);
5786
5787 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5788 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5789 const DataLayout &DataLayout = DAG.getDataLayout();
5790 Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5791 MachinePointerInfo PtrInfo
5792 = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5793
5794 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5795 MachineMemOperand::MODereferenceable |
5796 MachineMemOperand::MOInvariant);
5797}
5798
5799SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5800 const SDLoc &DL, SDValue V) const {
5801 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5802 // the destination register.
5803 //
5804 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5805 // so we will end up with redundant moves to m0.
5806 //
5807 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5808
5809 // A Null SDValue creates a glue result.
5810 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5811 V, Chain);
5812 return SDValue(M0, 0);
5813}
5814
5815SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5816 SDValue Op,
5817 MVT VT,
5818 unsigned Offset) const {
5819 SDLoc SL(Op);
5820 SDValue Param = lowerKernargMemParameter(
5821 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5822 // The local size values will have the hi 16-bits as zero.
5823 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5824 DAG.getValueType(VT));
5825}
5826
5827static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5828 EVT VT) {
5829 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5830 "non-hsa intrinsic with hsa target",
5831 DL.getDebugLoc());
5832 DAG.getContext()->diagnose(BadIntrin);
5833 return DAG.getUNDEF(VT);
5834}
5835
5836static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5837 EVT VT) {
5838 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5839 "intrinsic not supported on subtarget",
5840 DL.getDebugLoc());
5841 DAG.getContext()->diagnose(BadIntrin);
5842 return DAG.getUNDEF(VT);
5843}
5844
5845static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5846 ArrayRef<SDValue> Elts) {
5847 assert(!Elts.empty())((void)0);
5848 MVT Type;
5849 unsigned NumElts = Elts.size();
5850
5851 if (NumElts <= 8) {
5852 Type = MVT::getVectorVT(MVT::f32, NumElts);
5853 } else {
5854 assert(Elts.size() <= 16)((void)0);
5855 Type = MVT::v16f32;
5856 NumElts = 16;
5857 }
5858
5859 SmallVector<SDValue, 16> VecElts(NumElts);
5860 for (unsigned i = 0; i < Elts.size(); ++i) {
5861 SDValue Elt = Elts[i];
5862 if (Elt.getValueType() != MVT::f32)
5863 Elt = DAG.getBitcast(MVT::f32, Elt);
5864 VecElts[i] = Elt;
5865 }
5866 for (unsigned i = Elts.size(); i < NumElts; ++i)
5867 VecElts[i] = DAG.getUNDEF(MVT::f32);
5868
5869 if (NumElts == 1)
5870 return VecElts[0];
5871 return DAG.getBuildVector(Type, DL, VecElts);
5872}
5873
5874static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5875 SDValue Src, int ExtraElts) {
5876 EVT SrcVT = Src.getValueType();
5877
5878 SmallVector<SDValue, 8> Elts;
5879
5880 if (SrcVT.isVector())
5881 DAG.ExtractVectorElements(Src, Elts);
5882 else
5883 Elts.push_back(Src);
5884
5885 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5886 while (ExtraElts--)
5887 Elts.push_back(Undef);
5888
5889 return DAG.getBuildVector(CastVT, DL, Elts);
5890}
5891
5892// Re-construct the required return value for a image load intrinsic.
5893// This is more complicated due to the optional use TexFailCtrl which means the required
5894// return type is an aggregate
5895static SDValue constructRetValue(SelectionDAG &DAG,
5896 MachineSDNode *Result,
5897 ArrayRef<EVT> ResultTypes,
5898 bool IsTexFail, bool Unpacked, bool IsD16,
5899 int DMaskPop, int NumVDataDwords,
5900 const SDLoc &DL) {
5901 // Determine the required return type. This is the same regardless of IsTexFail flag
5902 EVT ReqRetVT = ResultTypes[0];
5903 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5904 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5905 ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5906
5907 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5908 DMaskPop : (DMaskPop + 1) / 2;
5909
5910 MVT DataDwordVT = NumDataDwords == 1 ?
5911 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5912
5913 MVT MaskPopVT = MaskPopDwords == 1 ?
5914 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5915
5916 SDValue Data(Result, 0);
5917 SDValue TexFail;
5918
5919 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5920 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5921 if (MaskPopVT.isVector()) {
5922 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5923 SDValue(Result, 0), ZeroIdx);
5924 } else {
5925 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5926 SDValue(Result, 0), ZeroIdx);
5927 }
5928 }
5929
5930 if (DataDwordVT.isVector())
5931 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5932 NumDataDwords - MaskPopDwords);
5933
5934 if (IsD16)
5935 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5936
5937 EVT LegalReqRetVT = ReqRetVT;
5938 if (!ReqRetVT.isVector()) {
5939 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5940 } else {
5941 // We need to widen the return vector to a legal type
5942 if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5943 ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5944 LegalReqRetVT =
5945 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5946 ReqRetVT.getVectorNumElements() + 1);
5947 }
5948 }
5949 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5950
5951 if (IsTexFail) {
5952 TexFail =
5953 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5954 DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5955
5956 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5957 }
5958
5959 if (Result->getNumValues() == 1)
5960 return Data;
5961
5962 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5963}
5964
5965static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5966 SDValue *LWE, bool &IsTexFail) {
5967 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5968
5969 uint64_t Value = TexFailCtrlConst->getZExtValue();
5970 if (Value) {
5971 IsTexFail = true;
5972 }
5973
5974 SDLoc DL(TexFailCtrlConst);
5975 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5976 Value &= ~(uint64_t)0x1;
5977 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5978 Value &= ~(uint64_t)0x2;
5979
5980 return Value == 0;
5981}
5982
5983static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
5984 MVT PackVectorVT,
5985 SmallVectorImpl<SDValue> &PackedAddrs,
5986 unsigned DimIdx, unsigned EndIdx,
5987 unsigned NumGradients) {
5988 SDLoc DL(Op);
5989 for (unsigned I = DimIdx; I < EndIdx; I++) {
5990 SDValue Addr = Op.getOperand(I);
5991
5992 // Gradients are packed with undef for each coordinate.
5993 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5994 // 1D: undef,dx/dh; undef,dx/dv
5995 // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5996 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5997 if (((I + 1) >= EndIdx) ||
5998 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5999 I == DimIdx + NumGradients - 1))) {
6000 if (Addr.getValueType() != MVT::i16)
6001 Addr = DAG.getBitcast(MVT::i16, Addr);
6002 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6003 } else {
6004 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6005 I++;
6006 }
6007 Addr = DAG.getBitcast(MVT::f32, Addr);
6008 PackedAddrs.push_back(Addr);
6009 }
6010}
6011
6012SDValue SITargetLowering::lowerImage(SDValue Op,
6013 const AMDGPU::ImageDimIntrinsicInfo *Intr,
6014 SelectionDAG &DAG, bool WithChain) const {
6015 SDLoc DL(Op);
6016 MachineFunction &MF = DAG.getMachineFunction();
6017 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6018 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6019 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6020 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6021 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
6022 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
6023 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
6024 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
6025 unsigned IntrOpcode = Intr->BaseOpcode;
6026 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6027
6028 SmallVector<EVT, 3> ResultTypes(Op->values());
6029 SmallVector<EVT, 3> OrigResultTypes(Op->values());
6030 bool IsD16 = false;
6031 bool IsG16 = false;
6032 bool IsA16 = false;
6033 SDValue VData;
6034 int NumVDataDwords;
6035 bool AdjustRetType = false;
6036
6037 // Offset of intrinsic arguments
6038 const unsigned ArgOffset = WithChain ? 2 : 1;
6039
6040 unsigned DMask;
6041 unsigned DMaskLanes = 0;
6042
6043 if (BaseOpcode->Atomic) {
6044 VData = Op.getOperand(2);
6045
6046 bool Is64Bit = VData.getValueType() == MVT::i64;
6047 if (BaseOpcode->AtomicX2) {
6048 SDValue VData2 = Op.getOperand(3);
6049 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6050 {VData, VData2});
6051 if (Is64Bit)
6052 VData = DAG.getBitcast(MVT::v4i32, VData);
6053
6054 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6055 DMask = Is64Bit ? 0xf : 0x3;
6056 NumVDataDwords = Is64Bit ? 4 : 2;
6057 } else {
6058 DMask = Is64Bit ? 0x3 : 0x1;
6059 NumVDataDwords = Is64Bit ? 2 : 1;
6060 }
6061 } else {
6062 auto *DMaskConst =
6063 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6064 DMask = DMaskConst->getZExtValue();
6065 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6066
6067 if (BaseOpcode->Store) {
6068 VData = Op.getOperand(2);
6069
6070 MVT StoreVT = VData.getSimpleValueType();
6071 if (StoreVT.getScalarType() == MVT::f16) {
6072 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6073 return Op; // D16 is unsupported for this instruction
6074
6075 IsD16 = true;
6076 VData = handleD16VData(VData, DAG, true);
6077 }
6078
6079 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6080 } else {
6081 // Work out the num dwords based on the dmask popcount and underlying type
6082 // and whether packing is supported.
6083 MVT LoadVT = ResultTypes[0].getSimpleVT();
6084 if (LoadVT.getScalarType() == MVT::f16) {
6085 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6086 return Op; // D16 is unsupported for this instruction
6087
6088 IsD16 = true;
6089 }
6090
6091 // Confirm that the return type is large enough for the dmask specified
6092 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6093 (!LoadVT.isVector() && DMaskLanes > 1))
6094 return Op;
6095
6096 // The sq block of gfx8 and gfx9 do not estimate register use correctly
6097 // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6098 // instructions.
6099 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6100 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6101 NumVDataDwords = (DMaskLanes + 1) / 2;
6102 else
6103 NumVDataDwords = DMaskLanes;
6104
6105 AdjustRetType = true;
6106 }
6107 }
6108
6109 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6110 SmallVector<SDValue, 4> VAddrs;
6111
6112 // Optimize _L to _LZ when _L is zero
6113 if (LZMappingInfo) {
6114 if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6115 Op.getOperand(ArgOffset + Intr->LodIndex))) {
6116 if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6117 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
6118 VAddrEnd--; // remove 'lod'
6119 }
6120 }
6121 }
6122
6123 // Optimize _mip away, when 'lod' is zero
6124 if (MIPMappingInfo) {
6125 if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6126 Op.getOperand(ArgOffset + Intr->MipIndex))) {
6127 if (ConstantLod->isNullValue()) {
6128 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
6129 VAddrEnd--; // remove 'mip'
6130 }
6131 }
6132 }
6133
6134 // Push back extra arguments.
6135 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6136 VAddrs.push_back(Op.getOperand(ArgOffset + I));
6137
6138 // Check for 16 bit addresses or derivatives and pack if true.
6139 MVT VAddrVT =
6140 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6141 MVT VAddrScalarVT = VAddrVT.getScalarType();
6142 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6143 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6144
6145 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6146 VAddrScalarVT = VAddrVT.getScalarType();
6147 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6148 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6149
6150 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6151 // 16 bit gradients are supported, but are tied to the A16 control
6152 // so both gradients and addresses must be 16 bit
6153 LLVM_DEBUG(do { } while (false)
6154 dbgs() << "Failed to lower image intrinsic: 16 bit addresses "do { } while (false)
6155 "require 16 bit args for both gradients and addresses")do { } while (false);
6156 return Op;
6157 }
6158
6159 if (IsA16) {
6160 if (!ST->hasA16()) {
6161 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "do { } while (false)
6162 "support 16 bit addresses\n")do { } while (false);
6163 return Op;
6164 }
6165 }
6166
6167 // We've dealt with incorrect input so we know that if IsA16, IsG16
6168 // are set then we have to compress/pack operands (either address,
6169 // gradient or both)
6170 // In the case where a16 and gradients are tied (no G16 support) then we
6171 // have already verified that both IsA16 and IsG16 are true
6172 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6173 // Activate g16
6174 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6175 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6176 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6177 }
6178
6179 // Add gradients (packed or unpacked)
6180 if (IsG16) {
6181 // Pack the gradients
6182 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6183 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6184 ArgOffset + Intr->GradientStart,
6185 ArgOffset + Intr->CoordStart, Intr->NumGradients);
6186 } else {
6187 for (unsigned I = ArgOffset + Intr->GradientStart;
6188 I < ArgOffset + Intr->CoordStart; I++)
6189 VAddrs.push_back(Op.getOperand(I));
6190 }
6191
6192 // Add addresses (packed or unpacked)
6193 if (IsA16) {
6194 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6195 ArgOffset + Intr->CoordStart, VAddrEnd,
6196 0 /* No gradients */);
6197 } else {
6198 // Add uncompressed address
6199 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6200 VAddrs.push_back(Op.getOperand(I));
6201 }
6202
6203 // If the register allocator cannot place the address registers contiguously
6204 // without introducing moves, then using the non-sequential address encoding
6205 // is always preferable, since it saves VALU instructions and is usually a
6206 // wash in terms of code size or even better.
6207 //
6208 // However, we currently have no way of hinting to the register allocator that
6209 // MIMG addresses should be placed contiguously when it is possible to do so,
6210 // so force non-NSA for the common 2-address case as a heuristic.
6211 //
6212 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6213 // allocation when possible.
6214 bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6215 VAddrs.size() >= 3 &&
6216 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6217 SDValue VAddr;
6218 if (!UseNSA)
6219 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6220
6221 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6222 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6223 SDValue Unorm;
6224 if (!BaseOpcode->Sampler) {
6225 Unorm = True;
6226 } else {
6227 auto UnormConst =
6228 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6229
6230 Unorm = UnormConst->getZExtValue() ? True : False;
6231 }
6232
6233 SDValue TFE;
6234 SDValue LWE;
6235 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6236 bool IsTexFail = false;
6237 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6238 return Op;
6239
6240 if (IsTexFail) {
6241 if (!DMaskLanes) {
6242 // Expecting to get an error flag since TFC is on - and dmask is 0
6243 // Force dmask to be at least 1 otherwise the instruction will fail
6244 DMask = 0x1;
6245 DMaskLanes = 1;
6246 NumVDataDwords = 1;
6247 }
6248 NumVDataDwords += 1;
6249 AdjustRetType = true;
6250 }
6251
6252 // Has something earlier tagged that the return type needs adjusting
6253 // This happens if the instruction is a load or has set TexFailCtrl flags
6254 if (AdjustRetType) {
6255 // NumVDataDwords reflects the true number of dwords required in the return type
6256 if (DMaskLanes == 0 && !BaseOpcode->Store) {
6257 // This is a no-op load. This can be eliminated
6258 SDValue Undef = DAG.getUNDEF(Op.getValueType());
6259 if (isa<MemSDNode>(Op))
6260 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6261 return Undef;
6262 }
6263
6264 EVT NewVT = NumVDataDwords > 1 ?
6265 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6266 : MVT::i32;
6267
6268 ResultTypes[0] = NewVT;
6269 if (ResultTypes.size() == 3) {
6270 // Original result was aggregate type used for TexFailCtrl results
6271 // The actual instruction returns as a vector type which has now been
6272 // created. Remove the aggregate result.
6273 ResultTypes.erase(&ResultTypes[1]);
6274 }
6275 }
6276
6277 unsigned CPol = cast<ConstantSDNode>(
6278 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6279 if (BaseOpcode->Atomic)
6280 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6281 if (CPol & ~AMDGPU::CPol::ALL)
6282 return Op;
6283
6284 SmallVector<SDValue, 26> Ops;
6285 if (BaseOpcode->Store || BaseOpcode->Atomic)
6286 Ops.push_back(VData); // vdata
6287 if (UseNSA)
6288 append_range(Ops, VAddrs);
6289 else
6290 Ops.push_back(VAddr);
6291 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6292 if (BaseOpcode->Sampler)
6293 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6294 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6295 if (IsGFX10Plus)
6296 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6297 Ops.push_back(Unorm);
6298 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6299 Ops.push_back(IsA16 && // r128, a16 for gfx9
6300 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6301 if (IsGFX10Plus)
6302 Ops.push_back(IsA16 ? True : False);
6303 if (!Subtarget->hasGFX90AInsts()) {
6304 Ops.push_back(TFE); //tfe
6305 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6306 report_fatal_error("TFE is not supported on this GPU");
6307 }
6308 Ops.push_back(LWE); // lwe
6309 if (!IsGFX10Plus)
6310 Ops.push_back(DimInfo->DA ? True : False);
6311 if (BaseOpcode->HasD16)
6312 Ops.push_back(IsD16 ? True : False);
6313 if (isa<MemSDNode>(Op))
6314 Ops.push_back(Op.getOperand(0)); // chain
6315
6316 int NumVAddrDwords =
6317 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6318 int Opcode = -1;
6319
6320 if (IsGFX10Plus) {
6321 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6322 UseNSA ? AMDGPU::MIMGEncGfx10NSA
6323 : AMDGPU::MIMGEncGfx10Default,
6324 NumVDataDwords, NumVAddrDwords);
6325 } else {
6326 if (Subtarget->hasGFX90AInsts()) {
6327 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6328 NumVDataDwords, NumVAddrDwords);
6329 if (Opcode == -1)
6330 report_fatal_error(
6331 "requested image instruction is not supported on this GPU");
6332 }
6333 if (Opcode == -1 &&
6334 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6335 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6336 NumVDataDwords, NumVAddrDwords);
6337 if (Opcode == -1)
6338 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6339 NumVDataDwords, NumVAddrDwords);
6340 }
6341 assert(Opcode != -1)((void)0);
6342
6343 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6344 if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6345 MachineMemOperand *MemRef = MemOp->getMemOperand();
6346 DAG.setNodeMemRefs(NewNode, {MemRef});
6347 }
6348
6349 if (BaseOpcode->AtomicX2) {
6350 SmallVector<SDValue, 1> Elt;
6351 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6352 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6353 }
6354 if (BaseOpcode->Store)
6355 return SDValue(NewNode, 0);
6356 return constructRetValue(DAG, NewNode,
6357 OrigResultTypes, IsTexFail,
6358 Subtarget->hasUnpackedD16VMem(), IsD16,
6359 DMaskLanes, NumVDataDwords, DL);
6360}
6361
6362SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6363 SDValue Offset, SDValue CachePolicy,
6364 SelectionDAG &DAG) const {
6365 MachineFunction &MF = DAG.getMachineFunction();
6366
6367 const DataLayout &DataLayout = DAG.getDataLayout();
6368 Align Alignment =
6369 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6370
6371 MachineMemOperand *MMO = MF.getMachineMemOperand(
6372 MachinePointerInfo(),
6373 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6374 MachineMemOperand::MOInvariant,
6375 VT.getStoreSize(), Alignment);
6376
6377 if (!Offset->isDivergent()) {
6378 SDValue Ops[] = {
6379 Rsrc,
6380 Offset, // Offset
6381 CachePolicy
6382 };
6383
6384 // Widen vec3 load to vec4.
6385 if (VT.isVector() && VT.getVectorNumElements() == 3) {
6386 EVT WidenedVT =
6387 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6388 auto WidenedOp = DAG.getMemIntrinsicNode(
6389 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6390 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6391 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6392 DAG.getVectorIdxConstant(0, DL));
6393 return Subvector;
6394 }
6395
6396 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6397 DAG.getVTList(VT), Ops, VT, MMO);
6398 }
6399
6400 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6401 // assume that the buffer is unswizzled.
6402 SmallVector<SDValue, 4> Loads;
6403 unsigned NumLoads = 1;
6404 MVT LoadVT = VT.getSimpleVT();
6405 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6406 assert((LoadVT.getScalarType() == MVT::i32 ||((void)0)
6407 LoadVT.getScalarType() == MVT::f32))((void)0);
6408
6409 if (NumElts == 8 || NumElts == 16) {
6410 NumLoads = NumElts / 4;
6411 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6412 }
6413
6414 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6415 SDValue Ops[] = {
6416 DAG.getEntryNode(), // Chain
6417 Rsrc, // rsrc
6418 DAG.getConstant(0, DL, MVT::i32), // vindex
6419 {}, // voffset
6420 {}, // soffset
6421 {}, // offset
6422 CachePolicy, // cachepolicy
6423 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6424 };
6425
6426 // Use the alignment to ensure that the required offsets will fit into the
6427 // immediate offsets.
6428 setBufferOffsets(Offset, DAG, &Ops[3],
6429 NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6430
6431 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6432 for (unsigned i = 0; i < NumLoads; ++i) {
6433 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6434 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6435 LoadVT, MMO, DAG));
6436 }
6437
6438 if (NumElts == 8 || NumElts == 16)
6439 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6440
6441 return Loads[0];
6442}
6443
6444SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6445 SelectionDAG &DAG) const {
6446 MachineFunction &MF = DAG.getMachineFunction();
6447 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6448
6449 EVT VT = Op.getValueType();
6450 SDLoc DL(Op);
6451 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6452
6453 // TODO: Should this propagate fast-math-flags?
6454
6455 switch (IntrinsicID) {
6456 case Intrinsic::amdgcn_implicit_buffer_ptr: {
6457 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6458 return emitNonHSAIntrinsicError(DAG, DL, VT);
6459 return getPreloadedValue(DAG, *MFI, VT,
6460 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6461 }
6462 case Intrinsic::amdgcn_dispatch_ptr:
6463 case Intrinsic::amdgcn_queue_ptr: {
6464 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6465 DiagnosticInfoUnsupported BadIntrin(
6466 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6467 DL.getDebugLoc());
6468 DAG.getContext()->diagnose(BadIntrin);
6469 return DAG.getUNDEF(VT);
6470 }
6471
6472 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6473 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6474 return getPreloadedValue(DAG, *MFI, VT, RegID);
6475 }
6476 case Intrinsic::amdgcn_implicitarg_ptr: {
6477 if (MFI->isEntryFunction())
6478 return getImplicitArgPtr(DAG, DL);
6479 return getPreloadedValue(DAG, *MFI, VT,
6480 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6481 }
6482 case Intrinsic::amdgcn_kernarg_segment_ptr: {
6483 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6484 // This only makes sense to call in a kernel, so just lower to null.
6485 return DAG.getConstant(0, DL, VT);
6486 }
6487
6488 return getPreloadedValue(DAG, *MFI, VT,
6489 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6490 }
6491 case Intrinsic::amdgcn_dispatch_id: {
6492 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6493 }
6494 case Intrinsic::amdgcn_rcp:
6495 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6496 case Intrinsic::amdgcn_rsq:
6497 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6498 case Intrinsic::amdgcn_rsq_legacy:
6499 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6500 return emitRemovedIntrinsicError(DAG, DL, VT);
6501 return SDValue();
6502 case Intrinsic::amdgcn_rcp_legacy:
6503 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6504 return emitRemovedIntrinsicError(DAG, DL, VT);
6505 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6506 case Intrinsic::amdgcn_rsq_clamp: {
6507 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6508 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6509
6510 Type *Type = VT.getTypeForEVT(*DAG.getContext());
6511 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6512 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6513
6514 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6515 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6516 DAG.getConstantFP(Max, DL, VT));
6517 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6518 DAG.getConstantFP(Min, DL, VT));
6519 }
6520 case Intrinsic::r600_read_ngroups_x:
6521 if (Subtarget->isAmdHsaOS())
6522 return emitNonHSAIntrinsicError(DAG, DL, VT);
6523
6524 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6525 SI::KernelInputOffsets::NGROUPS_X, Align(4),
6526 false);
6527 case Intrinsic::r600_read_ngroups_y:
6528 if (Subtarget->isAmdHsaOS())
6529 return emitNonHSAIntrinsicError(DAG, DL, VT);
6530
6531 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6532 SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6533 false);
6534 case Intrinsic::r600_read_ngroups_z:
6535 if (Subtarget->isAmdHsaOS())
6536 return emitNonHSAIntrinsicError(DAG, DL, VT);
6537
6538 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6539 SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6540 false);
6541 case Intrinsic::r600_read_global_size_x:
6542 if (Subtarget->isAmdHsaOS())
6543 return emitNonHSAIntrinsicError(DAG, DL, VT);
6544
6545 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6546 SI::KernelInputOffsets::GLOBAL_SIZE_X,
6547 Align(4), false);
6548 case Intrinsic::r600_read_global_size_y:
6549 if (Subtarget->isAmdHsaOS())
6550 return emitNonHSAIntrinsicError(DAG, DL, VT);
6551
6552 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6553 SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6554 Align(4), false);
6555 case Intrinsic::r600_read_global_size_z:
6556 if (Subtarget->isAmdHsaOS())
6557 return emitNonHSAIntrinsicError(DAG, DL, VT);
6558
6559 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6560 SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6561 Align(4), false);
6562 case Intrinsic::r600_read_local_size_x:
6563 if (Subtarget->isAmdHsaOS())
6564 return emitNonHSAIntrinsicError(DAG, DL, VT);
6565
6566 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6567 SI::KernelInputOffsets::LOCAL_SIZE_X);
6568 case Intrinsic::r600_read_local_size_y:
6569 if (Subtarget->isAmdHsaOS())
6570 return emitNonHSAIntrinsicError(DAG, DL, VT);
6571
6572 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6573 SI::KernelInputOffsets::LOCAL_SIZE_Y);
6574 case Intrinsic::r600_read_local_size_z:
6575 if (Subtarget->isAmdHsaOS())
6576 return emitNonHSAIntrinsicError(DAG, DL, VT);
6577
6578 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6579 SI::KernelInputOffsets::LOCAL_SIZE_Z);
6580 case Intrinsic::amdgcn_workgroup_id_x:
6581 return getPreloadedValue(DAG, *MFI, VT,
6582 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6583 case Intrinsic::amdgcn_workgroup_id_y:
6584 return getPreloadedValue(DAG, *MFI, VT,
6585 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6586 case Intrinsic::amdgcn_workgroup_id_z:
6587 return getPreloadedValue(DAG, *MFI, VT,
6588 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6589 case Intrinsic::amdgcn_workitem_id_x:
6590 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6591 SDLoc(DAG.getEntryNode()),
6592 MFI->getArgInfo().WorkItemIDX);
6593 case Intrinsic::amdgcn_workitem_id_y:
6594 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6595 SDLoc(DAG.getEntryNode()),
6596 MFI->getArgInfo().WorkItemIDY);
6597 case Intrinsic::amdgcn_workitem_id_z:
6598 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6599 SDLoc(DAG.getEntryNode()),
6600 MFI->getArgInfo().WorkItemIDZ);
6601 case Intrinsic::amdgcn_wavefrontsize:
6602 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6603 SDLoc(Op), MVT::i32);
6604 case Intrinsic::amdgcn_s_buffer_load: {
6605 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6606 if (CPol & ~AMDGPU::CPol::ALL)
6607 return Op;
6608 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6609 DAG);
6610 }
6611 case Intrinsic::amdgcn_fdiv_fast:
6612 return lowerFDIV_FAST(Op, DAG);
6613 case Intrinsic::amdgcn_sin:
6614 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6615
6616 case Intrinsic::amdgcn_cos:
6617 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6618
6619 case Intrinsic::amdgcn_mul_u24:
6620 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6621 case Intrinsic::amdgcn_mul_i24:
6622 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6623
6624 case Intrinsic::amdgcn_log_clamp: {
6625 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6626 return SDValue();
6627
6628 return emitRemovedIntrinsicError(DAG, DL, VT);
6629 }
6630 case Intrinsic::amdgcn_ldexp:
6631 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6632 Op.getOperand(1), Op.getOperand(2));
6633
6634 case Intrinsic::amdgcn_fract:
6635 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6636
6637 case Intrinsic::amdgcn_class:
6638 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6639 Op.getOperand(1), Op.getOperand(2));
6640 case Intrinsic::amdgcn_div_fmas:
6641 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6642 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6643 Op.getOperand(4));
6644
6645 case Intrinsic::amdgcn_div_fixup:
6646 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6647 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6648
6649 case Intrinsic::amdgcn_div_scale: {
6650 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6651
6652 // Translate to the operands expected by the machine instruction. The
6653 // first parameter must be the same as the first instruction.
6654 SDValue Numerator = Op.getOperand(1);
6655 SDValue Denominator = Op.getOperand(2);
6656
6657 // Note this order is opposite of the machine instruction's operations,
6658 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6659 // intrinsic has the numerator as the first operand to match a normal
6660 // division operation.
6661
6662 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6663
6664 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6665 Denominator, Numerator);
6666 }
6667 case Intrinsic::amdgcn_icmp: {
6668 // There is a Pat that handles this variant, so return it as-is.
6669 if (Op.getOperand(1).getValueType() == MVT::i1 &&
6670 Op.getConstantOperandVal(2) == 0 &&
6671 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6672 return Op;
6673 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6674 }
6675 case Intrinsic::amdgcn_fcmp: {
6676 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6677 }
6678 case Intrinsic::amdgcn_ballot:
6679 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6680 case Intrinsic::amdgcn_fmed3:
6681 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6682 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6683 case Intrinsic::amdgcn_fdot2:
6684 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6685 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6686 Op.getOperand(4));
6687 case Intrinsic::amdgcn_fmul_legacy:
6688 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6689 Op.getOperand(1), Op.getOperand(2));
6690 case Intrinsic::amdgcn_sffbh:
6691 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6692 case Intrinsic::amdgcn_sbfe:
6693 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6694 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6695 case Intrinsic::amdgcn_ubfe:
6696 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6697 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6698 case Intrinsic::amdgcn_cvt_pkrtz:
6699 case Intrinsic::amdgcn_cvt_pknorm_i16:
6700 case Intrinsic::amdgcn_cvt_pknorm_u16:
6701 case Intrinsic::amdgcn_cvt_pk_i16:
6702 case Intrinsic::amdgcn_cvt_pk_u16: {
6703 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6704 EVT VT = Op.getValueType();
6705 unsigned Opcode;
6706
6707 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6708 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6709 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6710 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6711 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6712 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6713 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6714 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6715 else
6716 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6717
6718 if (isTypeLegal(VT))
6719 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6720
6721 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6722 Op.getOperand(1), Op.getOperand(2));
6723 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6724 }
6725 case Intrinsic::amdgcn_fmad_ftz:
6726 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6727 Op.getOperand(2), Op.getOperand(3));
6728
6729 case Intrinsic::amdgcn_if_break:
6730 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6731 Op->getOperand(1), Op->getOperand(2)), 0);
6732
6733 case Intrinsic::amdgcn_groupstaticsize: {
6734 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6735 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6736 return Op;
6737
6738 const Module *M = MF.getFunction().getParent();
6739 const GlobalValue *GV =
6740 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6741 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6742 SIInstrInfo::MO_ABS32_LO);
6743 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6744 }
6745 case Intrinsic::amdgcn_is_shared:
6746 case Intrinsic::amdgcn_is_private: {
6747 SDLoc SL(Op);
6748 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6749 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6750 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6751 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6752 Op.getOperand(1));
6753
6754 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6755 DAG.getConstant(1, SL, MVT::i32));
6756 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6757 }
6758 case Intrinsic::amdgcn_alignbit:
6759 return DAG.getNode(ISD::FSHR, DL, VT,
6760 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6761 case Intrinsic::amdgcn_perm:
6762 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
6763 Op.getOperand(2), Op.getOperand(3));
6764 case Intrinsic::amdgcn_reloc_constant: {
6765 Module *M = const_cast<Module *>(MF.getFunction().getParent());
6766 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6767 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6768 auto RelocSymbol = cast<GlobalVariable>(
6769 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6770 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6771 SIInstrInfo::MO_ABS32_LO);
6772 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6773 }
6774 default:
6775 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6776 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6777 return lowerImage(Op, ImageDimIntr, DAG, false);
6778
6779 return Op;
6780 }
6781}
6782
6783/// Update \p MMO based on the offset inputs to an intrinsic.
6784static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
6785 SDValue SOffset, SDValue Offset,
6786 SDValue VIndex = SDValue()) {
6787 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6788 !isa<ConstantSDNode>(Offset)) {
6789 // The combined offset is not known to be constant, so we cannot represent
6790 // it in the MMO. Give up.
6791 MMO->setValue((Value *)nullptr);
6792 return;
6793 }
6794
6795 if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
6796 !cast<ConstantSDNode>(VIndex)->isNullValue())) {
6797 // The strided index component of the address is not known to be zero, so we
6798 // cannot represent it in the MMO. Give up.
6799 MMO->setValue((Value *)nullptr);
6800 return;
6801 }
6802
6803 MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
6804 cast<ConstantSDNode>(SOffset)->getSExtValue() +
6805 cast<ConstantSDNode>(Offset)->getSExtValue());
6806}
6807
6808SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6809 SelectionDAG &DAG,
6810 unsigned NewOpcode) const {
6811 SDLoc DL(Op);
6812
6813 SDValue VData = Op.getOperand(2);
6814 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6815 SDValue Ops[] = {
6816 Op.getOperand(0), // Chain
6817 VData, // vdata
6818 Op.getOperand(3), // rsrc
6819 DAG.getConstant(0, DL, MVT::i32), // vindex
6820 Offsets.first, // voffset
6821 Op.getOperand(5), // soffset
6822 Offsets.second, // offset
6823 Op.getOperand(6), // cachepolicy
6824 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6825 };
6826
6827 auto *M = cast<MemSDNode>(Op);
6828 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
6829
6830 EVT MemVT = VData.getValueType();
6831 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6832 M->getMemOperand());
6833}
6834
6835// Return a value to use for the idxen operand by examining the vindex operand.
6836static unsigned getIdxEn(SDValue VIndex) {
6837 if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
6838 // No need to set idxen if vindex is known to be zero.
6839 return VIndexC->getZExtValue() != 0;
6840 return 1;
6841}
6842
6843SDValue
6844SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6845 unsigned NewOpcode) const {
6846 SDLoc DL(Op);
6847
6848 SDValue VData = Op.getOperand(2);
6849 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6850 SDValue Ops[] = {
6851 Op.getOperand(0), // Chain
6852 VData, // vdata
6853 Op.getOperand(3), // rsrc
6854 Op.getOperand(4), // vindex
6855 Offsets.first, // voffset
6856 Op.getOperand(6), // soffset
6857 Offsets.second, // offset
6858 Op.getOperand(7), // cachepolicy
6859 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6860 };
6861
6862 auto *M = cast<MemSDNode>(Op);
6863 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
6864
6865 EVT MemVT = VData.getValueType();
6866 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6867 M->getMemOperand());
6868}
6869
6870SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6871 SelectionDAG &DAG) const {
6872 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6873 SDLoc DL(Op);
6874
6875 switch (IntrID) {
6876 case Intrinsic::amdgcn_ds_ordered_add:
6877 case Intrinsic::amdgcn_ds_ordered_swap: {
6878 MemSDNode *M = cast<MemSDNode>(Op);
6879 SDValue Chain = M->getOperand(0);
6880 SDValue M0 = M->getOperand(2);
6881 SDValue Value = M->getOperand(3);
6882 unsigned IndexOperand = M->getConstantOperandVal(7);
6883 unsigned WaveRelease = M->getConstantOperandVal(8);
6884 unsigned WaveDone = M->getConstantOperandVal(9);
6885
6886 unsigned OrderedCountIndex = IndexOperand & 0x3f;
6887 IndexOperand &= ~0x3f;
6888 unsigned CountDw = 0;
6889
6890 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6891 CountDw = (IndexOperand >> 24) & 0xf;
6892 IndexOperand &= ~(0xf << 24);
6893
6894 if (CountDw < 1 || CountDw > 4) {
6895 report_fatal_error(
6896 "ds_ordered_count: dword count must be between 1 and 4");
6897 }
6898 }
6899
6900 if (IndexOperand)
6901 report_fatal_error("ds_ordered_count: bad index operand");
6902
6903 if (WaveDone && !WaveRelease)
6904 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6905
6906 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6907 unsigned ShaderType =
6908 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6909 unsigned Offset0 = OrderedCountIndex << 2;
6910 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6911 (Instruction << 4);
6912
6913 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6914 Offset1 |= (CountDw - 1) << 6;
6915
6916 unsigned Offset = Offset0 | (Offset1 << 8);
6917
6918 SDValue Ops[] = {
6919 Chain,
6920 Value,
6921 DAG.getTargetConstant(Offset, DL, MVT::i16),
6922 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6923 };
6924 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6925 M->getVTList(), Ops, M->getMemoryVT(),
6926 M->getMemOperand());
6927 }
6928 case Intrinsic::amdgcn_ds_fadd: {
6929 MemSDNode *M = cast<MemSDNode>(Op);
6930 unsigned Opc;
6931 switch (IntrID) {
6932 case Intrinsic::amdgcn_ds_fadd:
6933 Opc = ISD::ATOMIC_LOAD_FADD;
6934 break;
6935 }
6936
6937 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6938 M->getOperand(0), M->getOperand(2), M->getOperand(3),
6939 M->getMemOperand());
6940 }
6941 case Intrinsic::amdgcn_atomic_inc:
6942 case Intrinsic::amdgcn_atomic_dec:
6943 case Intrinsic::amdgcn_ds_fmin:
6944 case Intrinsic::amdgcn_ds_fmax: {
6945 MemSDNode *M = cast<MemSDNode>(Op);
6946 unsigned Opc;
6947 switch (IntrID) {
6948 case Intrinsic::amdgcn_atomic_inc:
6949 Opc = AMDGPUISD::ATOMIC_INC;
6950 break;
6951 case Intrinsic::amdgcn_atomic_dec:
6952 Opc = AMDGPUISD::ATOMIC_DEC;
6953 break;
6954 case Intrinsic::amdgcn_ds_fmin:
6955 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6956 break;
6957 case Intrinsic::amdgcn_ds_fmax:
6958 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6959 break;
6960 default:
6961 llvm_unreachable("Unknown intrinsic!")__builtin_unreachable();
6962 }
6963 SDValue Ops[] = {
6964 M->getOperand(0), // Chain
6965 M->getOperand(2), // Ptr
6966 M->getOperand(3) // Value
6967 };
6968
6969 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6970 M->getMemoryVT(), M->getMemOperand());
6971 }
6972 case Intrinsic::amdgcn_buffer_load:
6973 case Intrinsic::amdgcn_buffer_load_format: {
6974 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6975 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6976 unsigned IdxEn = getIdxEn(Op.getOperand(3));
6977 SDValue Ops[] = {
6978 Op.getOperand(0), // Chain
6979 Op.getOperand(2), // rsrc
6980 Op.getOperand(3), // vindex
6981 SDValue(), // voffset -- will be set by setBufferOffsets
6982 SDValue(), // soffset -- will be set by setBufferOffsets
6983 SDValue(), // offset -- will be set by setBufferOffsets
6984 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6985 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6986 };
6987 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6988
6989 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6990 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6991
6992 EVT VT = Op.getValueType();
6993 EVT IntVT = VT.changeTypeToInteger();
6994 auto *M = cast<MemSDNode>(Op);
6995 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
6996 EVT LoadVT = Op.getValueType();
6997
6998 if (LoadVT.getScalarType() == MVT::f16)
6999 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7000 M, DAG, Ops);
7001
7002 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7003 if (LoadVT.getScalarType() == MVT::i8 ||
7004 LoadVT.getScalarType() == MVT::i16)
7005 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7006
7007 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7008 M->getMemOperand(), DAG);
7009 }
7010 case Intrinsic::amdgcn_raw_buffer_load:
7011 case Intrinsic::amdgcn_raw_buffer_load_format: {
7012 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7013
7014 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7015 SDValue Ops[] = {
7016 Op.getOperand(0), // Chain
7017 Op.getOperand(2), // rsrc
7018 DAG.getConstant(0, DL, MVT::i32), // vindex
7019 Offsets.first, // voffset
7020 Op.getOperand(4), // soffset
7021 Offsets.second, // offset
7022 Op.getOperand(5), // cachepolicy, swizzled buffer
7023 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7024 };
7025
7026 auto *M = cast<MemSDNode>(Op);
7027 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7028 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7029 }
7030 case Intrinsic::amdgcn_struct_buffer_load:
7031 case Intrinsic::amdgcn_struct_buffer_load_format: {
7032 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7033
7034 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7035 SDValue Ops[] = {
7036 Op.getOperand(0), // Chain
7037 Op.getOperand(2), // rsrc
7038 Op.getOperand(3), // vindex
7039 Offsets.first, // voffset
7040 Op.getOperand(5), // soffset
7041 Offsets.second, // offset
7042 Op.getOperand(6), // cachepolicy, swizzled buffer
7043 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7044 };
7045
7046 auto *M = cast<MemSDNode>(Op);
7047 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7048 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7049 }
7050 case Intrinsic::amdgcn_tbuffer_load: {
7051 MemSDNode *M = cast<MemSDNode>(Op);
7052 EVT LoadVT = Op.getValueType();
7053
7054 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7055 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7056 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7057 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7058 unsigned IdxEn = getIdxEn(Op.getOperand(3));
7059 SDValue Ops[] = {
7060 Op.getOperand(0), // Chain
7061 Op.getOperand(2), // rsrc
7062 Op.getOperand(3), // vindex
7063 Op.getOperand(4), // voffset
7064 Op.getOperand(5), // soffset
7065 Op.getOperand(6), // offset
7066 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7067 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7068 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7069 };
7070
7071 if (LoadVT.getScalarType() == MVT::f16)
7072 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7073 M, DAG, Ops);
7074 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7075 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7076 DAG);
7077 }
7078 case Intrinsic::amdgcn_raw_tbuffer_load: {
7079 MemSDNode *M = cast<MemSDNode>(Op);
7080 EVT LoadVT = Op.getValueType();
7081 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7082
7083 SDValue Ops[] = {
7084 Op.getOperand(0), // Chain
7085 Op.getOperand(2), // rsrc
7086 DAG.getConstant(0, DL, MVT::i32), // vindex
7087 Offsets.first, // voffset
7088 Op.getOperand(4), // soffset
7089 Offsets.second, // offset
7090 Op.getOperand(5), // format
7091 Op.getOperand(6), // cachepolicy, swizzled buffer
7092 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7093 };
7094
7095 if (LoadVT.getScalarType() == MVT::f16)
7096 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7097 M, DAG, Ops);
7098 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7099 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7100 DAG);
7101 }
7102 case Intrinsic::amdgcn_struct_tbuffer_load: {
7103 MemSDNode *M = cast<MemSDNode>(Op);
7104 EVT LoadVT = Op.getValueType();
7105 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7106
7107 SDValue Ops[] = {
7108 Op.getOperand(0), // Chain
7109 Op.getOperand(2), // rsrc
7110 Op.getOperand(3), // vindex
7111 Offsets.first, // voffset
7112 Op.getOperand(5), // soffset
7113 Offsets.second, // offset
7114 Op.getOperand(6), // format
7115 Op.getOperand(7), // cachepolicy, swizzled buffer
7116 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7117 };
7118
7119 if (LoadVT.getScalarType() == MVT::f16)
7120 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7121 M, DAG, Ops);
7122 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7123 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7124 DAG);
7125 }
7126 case Intrinsic::amdgcn_buffer_atomic_swap:
7127 case Intrinsic::amdgcn_buffer_atomic_add:
7128 case Intrinsic::amdgcn_buffer_atomic_sub:
7129 case Intrinsic::amdgcn_buffer_atomic_csub:
7130 case Intrinsic::amdgcn_buffer_atomic_smin:
7131 case Intrinsic::amdgcn_buffer_atomic_umin:
7132 case Intrinsic::amdgcn_buffer_atomic_smax:
7133 case Intrinsic::amdgcn_buffer_atomic_umax:
7134 case Intrinsic::amdgcn_buffer_atomic_and:
7135 case Intrinsic::amdgcn_buffer_atomic_or:
7136 case Intrinsic::amdgcn_buffer_atomic_xor:
7137 case Intrinsic::amdgcn_buffer_atomic_fadd: {
7138 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7139 unsigned IdxEn = getIdxEn(Op.getOperand(4));
7140 SDValue Ops[] = {
7141 Op.getOperand(0), // Chain
7142 Op.getOperand(2), // vdata
7143 Op.getOperand(3), // rsrc
7144 Op.getOperand(4), // vindex
7145 SDValue(), // voffset -- will be set by setBufferOffsets
7146 SDValue(), // soffset -- will be set by setBufferOffsets
7147 SDValue(), // offset -- will be set by setBufferOffsets
7148 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7149 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7150 };
7151 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7152
7153 EVT VT = Op.getValueType();
7154
7155 auto *M = cast<MemSDNode>(Op);
7156 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7157 unsigned Opcode = 0;
7158
7159 switch (IntrID) {
7160 case Intrinsic::amdgcn_buffer_atomic_swap:
7161 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7162 break;
7163 case Intrinsic::amdgcn_buffer_atomic_add:
7164 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7165 break;
7166 case Intrinsic::amdgcn_buffer_atomic_sub:
7167 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7168 break;
7169 case Intrinsic::amdgcn_buffer_atomic_csub:
7170 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7171 break;
7172 case Intrinsic::amdgcn_buffer_atomic_smin:
7173 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7174 break;
7175 case Intrinsic::amdgcn_buffer_atomic_umin:
7176 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7177 break;
7178 case Intrinsic::amdgcn_buffer_atomic_smax:
7179 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7180 break;
7181 case Intrinsic::amdgcn_buffer_atomic_umax:
7182 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7183 break;
7184 case Intrinsic::amdgcn_buffer_atomic_and:
7185 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7186 break;
7187 case Intrinsic::amdgcn_buffer_atomic_or:
7188 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7189 break;
7190 case Intrinsic::amdgcn_buffer_atomic_xor:
7191 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7192 break;
7193 case Intrinsic::amdgcn_buffer_atomic_fadd:
7194 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7195 DiagnosticInfoUnsupported
7196 NoFpRet(DAG.getMachineFunction().getFunction(),
7197 "return versions of fp atomics not supported",
7198 DL.getDebugLoc(), DS_Error);
7199 DAG.getContext()->diagnose(NoFpRet);
7200 return SDValue();
7201 }
7202 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7203 break;
7204 default:
7205 llvm_unreachable("unhandled atomic opcode")__builtin_unreachable();
7206 }
7207
7208 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7209 M->getMemOperand());
7210 }
7211 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7212 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7213 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7214 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7215 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7216 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7217 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7218 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7219 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7220 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7221 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7222 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7223 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7224 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7225 case Intrinsic::amdgcn_raw_buffer_atomic_add:
7226 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7227 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7228 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7229 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7230 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7231 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7232 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7233 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7234 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7235 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7236 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7237 case Intrinsic::amdgcn_raw_buffer_atomic_and:
7238 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7239 case Intrinsic::amdgcn_raw_buffer_atomic_or:
7240 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7241 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7242 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7243 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7244 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7245 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7246 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7247 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7248 return lowerStructBufferAtomicIntrin(Op, DAG,
7249 AMDGPUISD::BUFFER_ATOMIC_SWAP);
7250 case Intrinsic::amdgcn_struct_buffer_atomic_add:
7251 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7252 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7253 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7254 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7255 return lowerStructBufferAtomicIntrin(Op, DAG,
7256 AMDGPUISD::BUFFER_ATOMIC_SMIN);
7257 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7258 return lowerStructBufferAtomicIntrin(Op, DAG,
7259 AMDGPUISD::BUFFER_ATOMIC_UMIN);
7260 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7261 return lowerStructBufferAtomicIntrin(Op, DAG,
7262 AMDGPUISD::BUFFER_ATOMIC_SMAX);
7263 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7264 return lowerStructBufferAtomicIntrin(Op, DAG,
7265 AMDGPUISD::BUFFER_ATOMIC_UMAX);
7266 case Intrinsic::amdgcn_struct_buffer_atomic_and:
7267 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7268 case Intrinsic::amdgcn_struct_buffer_atomic_or:
7269 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7270 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7271 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7272 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7273 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7274 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7275 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7276
7277 case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7278 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7279 unsigned IdxEn = getIdxEn(Op.getOperand(5));
7280 SDValue Ops[] = {
7281 Op.getOperand(0), // Chain
7282 Op.getOperand(2), // src
7283 Op.getOperand(3), // cmp
7284 Op.getOperand(4), // rsrc
7285 Op.getOperand(5), // vindex
7286 SDValue(), // voffset -- will be set by setBufferOffsets
7287 SDValue(), // soffset -- will be set by setBufferOffsets
7288 SDValue(), // offset -- will be set by setBufferOffsets
7289 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7290 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7291 };
7292 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7293
7294 EVT VT = Op.getValueType();
7295 auto *M = cast<MemSDNode>(Op);
7296 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7297
7298 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7299 Op->getVTList(), Ops, VT, M->getMemOperand());
7300 }
7301 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7302 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7303 SDValue Ops[] = {
7304 Op.getOperand(0), // Chain
7305 Op.getOperand(2), // src
7306 Op.getOperand(3), // cmp
7307 Op.getOperand(4), // rsrc
7308 DAG.getConstant(0, DL, MVT::i32), // vindex
7309 Offsets.first, // voffset
7310 Op.getOperand(6), // soffset
7311 Offsets.second, // offset
7312 Op.getOperand(7), // cachepolicy
7313 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7314 };
7315 EVT VT = Op.getValueType();
7316 auto *M = cast<MemSDNode>(Op);
7317 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7318
7319 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7320 Op->getVTList(), Ops, VT, M->getMemOperand());
7321 }
7322 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7323 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7324 SDValue Ops[] = {
7325 Op.getOperand(0), // Chain
7326 Op.getOperand(2), // src
7327 Op.getOperand(3), // cmp
7328 Op.getOperand(4), // rsrc
7329 Op.getOperand(5), // vindex
7330 Offsets.first, // voffset
7331 Op.getOperand(7), // soffset
7332 Offsets.second, // offset
7333 Op.getOperand(8), // cachepolicy
7334 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7335 };
7336 EVT VT = Op.getValueType();
7337 auto *M = cast<MemSDNode>(Op);
7338 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7339
7340 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7341 Op->getVTList(), Ops, VT, M->getMemOperand());
7342 }
7343 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7344 SDLoc DL(Op);
7345 MemSDNode *M = cast<MemSDNode>(Op);
7346 SDValue NodePtr = M->getOperand(2);
7347 SDValue RayExtent = M->getOperand(3);
7348 SDValue RayOrigin = M->getOperand(4);
7349 SDValue RayDir = M->getOperand(5);
7350 SDValue RayInvDir = M->getOperand(6);
7351 SDValue TDescr = M->getOperand(7);
7352
7353 assert(NodePtr.getValueType() == MVT::i32 ||((void)0)
7354 NodePtr.getValueType() == MVT::i64)((void)0);
7355 assert(RayDir.getValueType() == MVT::v4f16 ||((void)0)
7356 RayDir.getValueType() == MVT::v4f32)((void)0);
7357
7358 if (!Subtarget->hasGFX10_AEncoding()) {
7359 emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7360 return SDValue();
7361 }
7362
7363 bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7364 bool Is64 = NodePtr.getValueType() == MVT::i64;
7365 unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
7366 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
7367 : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
7368 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;
7369
7370 SmallVector<SDValue, 16> Ops;
7371
7372 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7373 SmallVector<SDValue, 3> Lanes;
7374 DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7375 if (Lanes[0].getValueSizeInBits() == 32) {
7376 for (unsigned I = 0; I < 3; ++I)
7377 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7378 } else {
7379 if (IsAligned) {
7380 Ops.push_back(
7381 DAG.getBitcast(MVT::i32,
7382 DAG.getBuildVector(MVT::v2f16, DL,
7383 { Lanes[0], Lanes[1] })));
7384 Ops.push_back(Lanes[2]);
7385 } else {
7386 SDValue Elt0 = Ops.pop_back_val();
7387 Ops.push_back(
7388 DAG.getBitcast(MVT::i32,
7389 DAG.getBuildVector(MVT::v2f16, DL,
7390 { Elt0, Lanes[0] })));
7391 Ops.push_back(
7392 DAG.getBitcast(MVT::i32,
7393 DAG.getBuildVector(MVT::v2f16, DL,
7394 { Lanes[1], Lanes[2] })));
7395 }
7396 }
7397 };
7398
7399 if (Is64)
7400 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7401 else
7402 Ops.push_back(NodePtr);
7403
7404 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7405 packLanes(RayOrigin, true);
7406 packLanes(RayDir, true);
7407 packLanes(RayInvDir, false);
7408 Ops.push_back(TDescr);
7409 if (IsA16)
7410 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7411 Ops.push_back(M->getChain());
7412
7413 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7414 MachineMemOperand *MemRef = M->getMemOperand();
7415 DAG.setNodeMemRefs(NewNode, {MemRef});
7416 return SDValue(NewNode, 0);
7417 }
7418 case Intrinsic::amdgcn_global_atomic_fadd:
7419 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7420 DiagnosticInfoUnsupported
7421 NoFpRet(DAG.getMachineFunction().getFunction(),
7422 "return versions of fp atomics not supported",
7423 DL.getDebugLoc(), DS_Error);
7424 DAG.getContext()->diagnose(NoFpRet);
7425 return SDValue();
7426 }
7427 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7428 case Intrinsic::amdgcn_global_atomic_fmin:
7429 case Intrinsic::amdgcn_global_atomic_fmax:
7430 case Intrinsic::amdgcn_flat_atomic_fadd:
7431 case Intrinsic::amdgcn_flat_atomic_fmin:
7432 case Intrinsic::amdgcn_flat_atomic_fmax: {
7433 MemSDNode *M = cast<MemSDNode>(Op);
7434 SDValue Ops[] = {
7435 M->getOperand(0), // Chain
7436 M->getOperand(2), // Ptr
7437 M->getOperand(3) // Value
7438 };
7439 unsigned Opcode = 0;
7440 switch (IntrID) {
7441 case Intrinsic::amdgcn_global_atomic_fadd:
7442 case Intrinsic::amdgcn_flat_atomic_fadd: {
7443 EVT VT = Op.getOperand(3).getValueType();
7444 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7445 DAG.getVTList(VT, MVT::Other), Ops,
7446 M->getMemOperand());
7447 }
7448 case Intrinsic::amdgcn_global_atomic_fmin:
7449 case Intrinsic::amdgcn_flat_atomic_fmin: {
7450 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7451 break;
7452 }
7453 case Intrinsic::amdgcn_global_atomic_fmax:
7454 case Intrinsic::amdgcn_flat_atomic_fmax: {
7455 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7456 break;
7457 }
7458 default:
7459 llvm_unreachable("unhandled atomic opcode")__builtin_unreachable();
7460 }
7461 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7462 M->getVTList(), Ops, M->getMemoryVT(),
7463 M->getMemOperand());
7464 }
7465 default:
7466
7467 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7468 AMDGPU::getImageDimIntrinsicInfo(IntrID))
7469 return lowerImage(Op, ImageDimIntr, DAG, true);
7470
7471 return SDValue();
7472 }
7473}
7474
7475// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7476// dwordx4 if on SI.
7477SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7478 SDVTList VTList,
7479 ArrayRef<SDValue> Ops, EVT MemVT,
7480 MachineMemOperand *MMO,
7481 SelectionDAG &DAG) const {
7482 EVT VT = VTList.VTs[0];
7483 EVT WidenedVT = VT;
7484 EVT WidenedMemVT = MemVT;
7485 if (!Subtarget->hasDwordx3LoadStores() &&
7486 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7487 WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7488 WidenedVT.getVectorElementType(), 4);
7489 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7490 WidenedMemVT.getVectorElementType(), 4);
7491 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7492 }
7493
7494 assert(VTList.NumVTs == 2)((void)0);
7495 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7496
7497 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7498 WidenedMemVT, MMO);
7499 if (WidenedVT != VT) {
7500 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7501 DAG.getVectorIdxConstant(0, DL));
7502 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7503 }
7504 return NewOp;
7505}
7506
7507SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7508 bool ImageStore) const {
7509 EVT StoreVT = VData.getValueType();
7510
7511 // No change for f16 and legal vector D16 types.
7512 if (!StoreVT.isVector())
7513 return VData;
7514
7515 SDLoc DL(VData);
7516 unsigned NumElements = StoreVT.getVectorNumElements();
7517
7518 if (Subtarget->hasUnpackedD16VMem()) {
7519 // We need to unpack the packed data to store.
7520 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7521 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7522
7523 EVT EquivStoreVT =
7524 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7525 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7526 return DAG.UnrollVectorOp(ZExt.getNode());
7527 }
7528
7529 // The sq block of gfx8.1 does not estimate register use correctly for d16
7530 // image store instructions. The data operand is computed as if it were not a
7531 // d16 image instruction.
7532 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7533 // Bitcast to i16
7534 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7535 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7536
7537 // Decompose into scalars
7538 SmallVector<SDValue, 4> Elts;
7539 DAG.ExtractVectorElements(IntVData, Elts);
7540
7541 // Group pairs of i16 into v2i16 and bitcast to i32
7542 SmallVector<SDValue, 4> PackedElts;
7543 for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7544 SDValue Pair =
7545 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7546 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7547 PackedElts.push_back(IntPair);
7548 }
7549 if ((NumElements % 2) == 1) {
7550 // Handle v3i16
7551 unsigned I = Elts.size() / 2;
7552 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7553 {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7554 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7555 PackedElts.push_back(IntPair);
7556 }
7557
7558 // Pad using UNDEF
7559 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7560
7561 // Build final vector
7562 EVT VecVT =
7563 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7564 return DAG.getBuildVector(VecVT, DL, PackedElts);
7565 }
7566
7567 if (NumElements == 3) {
7568 EVT IntStoreVT =
7569 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7570 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7571
7572 EVT WidenedStoreVT = EVT::getVectorVT(
7573 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7574 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7575 WidenedStoreVT.getStoreSizeInBits());
7576 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7577 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7578 }
7579
7580 assert(isTypeLegal(StoreVT))((void)0);
7581 return VData;
7582}
7583
7584SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7585 SelectionDAG &DAG) const {
7586 SDLoc DL(Op);
7587 SDValue Chain = Op.getOperand(0);
7588 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7589 MachineFunction &MF = DAG.getMachineFunction();
7590
7591 switch (IntrinsicID) {
7592 case Intrinsic::amdgcn_exp_compr: {
7593 SDValue Src0 = Op.getOperand(4);
7594 SDValue Src1 = Op.getOperand(5);
7595 // Hack around illegal type on SI by directly selecting it.
7596 if (isTypeLegal(Src0.getValueType()))
7597 return SDValue();
7598
7599 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7600 SDValue Undef = DAG.getUNDEF(MVT::f32);
7601 const SDValue Ops[] = {
7602 Op.getOperand(2), // tgt
7603 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7604 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7605 Undef, // src2
7606 Undef, // src3
7607 Op.getOperand(7), // vm
7608 DAG.getTargetConstant(1, DL, MVT::i1), // compr
7609 Op.getOperand(3), // en
7610 Op.getOperand(0) // Chain
7611 };
7612
7613 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7614 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7615 }
7616 case Intrinsic::amdgcn_s_barrier: {
7617 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7618 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7619 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7620 if (WGSize <= ST.getWavefrontSize())
7621 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7622 Op.getOperand(0)), 0);
7623 }
7624 return SDValue();
7625 };
7626 case Intrinsic::amdgcn_tbuffer_store: {
7627 SDValue VData = Op.getOperand(2);
7628 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7629 if (IsD16)
7630 VData = handleD16VData(VData, DAG);
7631 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7632 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7633 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7634 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7635 unsigned IdxEn = getIdxEn(Op.getOperand(4));
7636 SDValue Ops[] = {
7637 Chain,
7638 VData, // vdata
7639 Op.getOperand(3), // rsrc
7640 Op.getOperand(4), // vindex
7641 Op.getOperand(5), // voffset
7642 Op.getOperand(6), // soffset
7643 Op.getOperand(7), // offset
7644 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7645 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7646 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7647 };
7648 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7649 AMDGPUISD::TBUFFER_STORE_FORMAT;
7650 MemSDNode *M = cast<MemSDNode>(Op);
7651 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7652 M->getMemoryVT(), M->getMemOperand());
7653 }
7654
7655 case Intrinsic::amdgcn_struct_tbuffer_store: {
7656 SDValue VData = Op.getOperand(2);
7657 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7658 if (IsD16)
7659 VData = handleD16VData(VData, DAG);
7660 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7661 SDValue Ops[] = {
7662 Chain,
7663 VData, // vdata
7664 Op.getOperand(3), // rsrc
7665 Op.getOperand(4), // vindex
7666 Offsets.first, // voffset
7667 Op.getOperand(6), // soffset
7668 Offsets.second, // offset
7669 Op.getOperand(7), // format
7670 Op.getOperand(8), // cachepolicy, swizzled buffer
7671 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7672 };
7673 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7674 AMDGPUISD::TBUFFER_STORE_FORMAT;
7675 MemSDNode *M = cast<MemSDNode>(Op);
7676 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7677 M->getMemoryVT(), M->getMemOperand());
7678 }
7679
7680 case Intrinsic::amdgcn_raw_tbuffer_store: {
7681 SDValue VData = Op.getOperand(2);
7682 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7683 if (IsD16)
7684 VData = handleD16VData(VData, DAG);
7685 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7686 SDValue Ops[] = {
7687 Chain,
7688 VData, // vdata
7689 Op.getOperand(3), // rsrc
7690 DAG.getConstant(0, DL, MVT::i32), // vindex
7691 Offsets.first, // voffset
7692 Op.getOperand(5), // soffset
7693 Offsets.second, // offset
7694 Op.getOperand(6), // format
7695 Op.getOperand(7), // cachepolicy, swizzled buffer
7696 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7697 };
7698 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7699 AMDGPUISD::TBUFFER_STORE_FORMAT;
7700 MemSDNode *M = cast<MemSDNode>(Op);
7701 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7702 M->getMemoryVT(), M->getMemOperand());
7703 }
7704
7705 case Intrinsic::amdgcn_buffer_store:
7706 case Intrinsic::amdgcn_buffer_store_format: {
7707 SDValue VData = Op.getOperand(2);
7708 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7709 if (IsD16)
7710 VData = handleD16VData(VData, DAG);
7711 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7712 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7713 unsigned IdxEn = getIdxEn(Op.getOperand(4));
7714 SDValue Ops[] = {
7715 Chain,
7716 VData,
7717 Op.getOperand(3), // rsrc
7718 Op.getOperand(4), // vindex
7719 SDValue(), // voffset -- will be set by setBufferOffsets
7720 SDValue(), // soffset -- will be set by setBufferOffsets
7721 SDValue(), // offset -- will be set by setBufferOffsets
7722 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7723 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7724 };
7725 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7726
7727 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7728 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7729 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7730 MemSDNode *M = cast<MemSDNode>(Op);
7731 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7732
7733 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7734 EVT VDataType = VData.getValueType().getScalarType();
7735 if (VDataType == MVT::i8 || VDataType == MVT::i16)
7736 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7737
7738 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7739 M->getMemoryVT(), M->getMemOperand());
7740 }
7741
7742 case Intrinsic::amdgcn_raw_buffer_store:
7743 case Intrinsic::amdgcn_raw_buffer_store_format: {
7744 const bool IsFormat =
7745 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7746
7747 SDValue VData = Op.getOperand(2);
7748 EVT VDataVT = VData.getValueType();
7749 EVT EltType = VDataVT.getScalarType();
7750 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7751 if (IsD16) {
7752 VData = handleD16VData(VData, DAG);
7753 VDataVT = VData.getValueType();
7754 }
7755
7756 if (!isTypeLegal(VDataVT)) {
7757 VData =
7758 DAG.getNode(ISD::BITCAST, DL,
7759 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7760 }
7761
7762 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7763 SDValue Ops[] = {
7764 Chain,
7765 VData,
7766 Op.getOperand(3), // rsrc
7767 DAG.getConstant(0, DL, MVT::i32), // vindex
7768 Offsets.first, // voffset
7769 Op.getOperand(5), // soffset
7770 Offsets.second, // offset
7771 Op.getOperand(6), // cachepolicy, swizzled buffer
7772 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7773 };
7774 unsigned Opc =
7775 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7776 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7777 MemSDNode *M = cast<MemSDNode>(Op);
7778 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7779
7780 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7781 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7782 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7783
7784 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7785 M->getMemoryVT(), M->getMemOperand());
7786 }
7787
7788 case Intrinsic::amdgcn_struct_buffer_store:
7789 case Intrinsic::amdgcn_struct_buffer_store_format: {
7790 const bool IsFormat =
7791 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7792
7793 SDValue VData = Op.getOperand(2);
7794 EVT VDataVT = VData.getValueType();
7795 EVT EltType = VDataVT.getScalarType();
7796 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7797
7798 if (IsD16) {
7799 VData = handleD16VData(VData, DAG);
7800 VDataVT = VData.getValueType();
7801 }
7802
7803 if (!isTypeLegal(VDataVT)) {
7804 VData =
7805 DAG.getNode(ISD::BITCAST, DL,
7806 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7807 }
7808
7809 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7810 SDValue Ops[] = {
7811 Chain,
7812 VData,
7813 Op.getOperand(3), // rsrc
7814 Op.getOperand(4), // vindex
7815 Offsets.first, // voffset
7816 Op.getOperand(6), // soffset
7817 Offsets.second, // offset
7818 Op.getOperand(7), // cachepolicy, swizzled buffer
7819 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7820 };
7821 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7822 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7823 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7824 MemSDNode *M = cast<MemSDNode>(Op);
7825 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7826
7827 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7828 EVT VDataType = VData.getValueType().getScalarType();
7829 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7830 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7831
7832 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7833 M->getMemoryVT(), M->getMemOperand());
7834 }
7835 case Intrinsic::amdgcn_end_cf:
7836 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7837 Op->getOperand(2), Chain), 0);
7838
7839 default: {
7840 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7841 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7842 return lowerImage(Op, ImageDimIntr, DAG, true);
7843
7844 return Op;
7845 }
7846 }
7847}
7848
7849// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7850// offset (the offset that is included in bounds checking and swizzling, to be
7851// split between the instruction's voffset and immoffset fields) and soffset
7852// (the offset that is excluded from bounds checking and swizzling, to go in
7853// the instruction's soffset field). This function takes the first kind of
7854// offset and figures out how to split it between voffset and immoffset.
7855std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7856 SDValue Offset, SelectionDAG &DAG) const {
7857 SDLoc DL(Offset);
7858 const unsigned MaxImm = 4095;
7859 SDValue N0 = Offset;
7860 ConstantSDNode *C1 = nullptr;
7861
7862 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7863 N0 = SDValue();
7864 else if (DAG.isBaseWithConstantOffset(N0)) {
7865 C1 = cast<ConstantSDNode>(N0.getOperand(1));
7866 N0 = N0.getOperand(0);
7867 }
7868
7869 if (C1) {
7870 unsigned ImmOffset = C1->getZExtValue();
7871 // If the immediate value is too big for the immoffset field, put the value
7872 // and -4096 into the immoffset field so that the value that is copied/added
7873 // for the voffset field is a multiple of 4096, and it stands more chance
7874 // of being CSEd with the copy/add for another similar load/store.
7875 // However, do not do that rounding down to a multiple of 4096 if that is a
7876 // negative number, as it appears to be illegal to have a negative offset
7877 // in the vgpr, even if adding the immediate offset makes it positive.
7878 unsigned Overflow = ImmOffset & ~MaxImm;
7879 ImmOffset -= Overflow;
7880 if ((int32_t)Overflow < 0) {
7881 Overflow += ImmOffset;
7882 ImmOffset = 0;
7883 }
7884 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7885 if (Overflow) {
7886 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7887 if (!N0)
7888 N0 = OverflowVal;
7889 else {
7890 SDValue Ops[] = { N0, OverflowVal };
7891 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7892 }
7893 }
7894 }
7895 if (!N0)
7896 N0 = DAG.getConstant(0, DL, MVT::i32);
7897 if (!C1)
7898 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7899 return {N0, SDValue(C1, 0)};
7900}
7901
7902// Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7903// three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7904// pointed to by Offsets.
7905void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7906 SelectionDAG &DAG, SDValue *Offsets,
7907 Align Alignment) const {
7908 SDLoc DL(CombinedOffset);
7909 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7910 uint32_t Imm = C->getZExtValue();
7911 uint32_t SOffset, ImmOffset;
7912 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7913 Alignment)) {
7914 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7915 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7916 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7917 return;
7918 }
7919 }
7920 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7921 SDValue N0 = CombinedOffset.getOperand(0);
7922 SDValue N1 = CombinedOffset.getOperand(1);
7923 uint32_t SOffset, ImmOffset;
7924 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7925 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7926 Subtarget, Alignment)) {
7927 Offsets[0] = N0;
7928 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7929 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7930 return;
7931 }
7932 }
7933 Offsets[0] = CombinedOffset;
7934 Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7935 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7936}
7937
7938// Handle 8 bit and 16 bit buffer loads
7939SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7940 EVT LoadVT, SDLoc DL,
7941 ArrayRef<SDValue> Ops,
7942 MemSDNode *M) const {
7943 EVT IntVT = LoadVT.changeTypeToInteger();
7944 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7945 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7946
7947 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7948 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7949 Ops, IntVT,
7950 M->getMemOperand());
7951 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7952 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7953
7954 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7955}
7956
7957// Handle 8 bit and 16 bit buffer stores
7958SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7959 EVT VDataType, SDLoc DL,
7960 SDValue Ops[],
7961 MemSDNode *M) const {
7962 if (VDataType == MVT::f16)
7963 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7964
7965 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7966 Ops[1] = BufferStoreExt;
7967 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7968 AMDGPUISD::BUFFER_STORE_SHORT;
7969 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7970 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7971 M->getMemOperand());
7972}
7973
7974static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7975 ISD::LoadExtType ExtType, SDValue Op,
7976 const SDLoc &SL, EVT VT) {
7977 if (VT.bitsLT(Op.getValueType()))
7978 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7979
7980 switch (ExtType) {
7981 case ISD::SEXTLOAD:
7982 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7983 case ISD::ZEXTLOAD:
7984 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7985 case ISD::EXTLOAD:
7986 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7987 case ISD::NON_EXTLOAD:
7988 return Op;
7989 }
7990
7991 llvm_unreachable("invalid ext type")__builtin_unreachable();
7992}
7993
7994SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7995 SelectionDAG &DAG = DCI.DAG;
7996 if (Ld->getAlignment() < 4 || Ld->isDivergent())
7997 return SDValue();
7998
7999 // FIXME: Constant loads should all be marked invariant.
8000 unsigned AS = Ld->getAddressSpace();
8001 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8002 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8003 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8004 return SDValue();
8005
8006 // Don't do this early, since it may interfere with adjacent load merging for
8007 // illegal types. We can avoid losing alignment information for exotic types
8008 // pre-legalize.
8009 EVT MemVT = Ld->getMemoryVT();
8010 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8011 MemVT.getSizeInBits() >= 32)
8012 return SDValue();
8013
8014 SDLoc SL(Ld);
8015
8016 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&((void)0)
8017 "unexpected vector extload")((void)0);
8018
8019 // TODO: Drop only high part of range.
8020 SDValue Ptr = Ld->getBasePtr();
8021 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
8022 MVT::i32, SL, Ld->getChain(), Ptr,
8023 Ld->getOffset(),
8024 Ld->getPointerInfo(), MVT::i32,
8025 Ld->getAlignment(),
8026 Ld->getMemOperand()->getFlags(),
8027 Ld->getAAInfo(),
8028 nullptr); // Drop ranges
8029
8030 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8031 if (MemVT.isFloatingPoint()) {
8032 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&((void)0)
8033 "unexpected fp extload")((void)0);
8034 TruncVT = MemVT.changeTypeToInteger();
8035 }
8036
8037 SDValue Cvt = NewLoad;
8038 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8039 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8040 DAG.getValueType(TruncVT));
8041 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8042 Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8043 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8044 } else {
8045 assert(Ld->getExtensionType() == ISD::EXTLOAD)((void)0);
8046 }
8047
8048 EVT VT = Ld->getValueType(0);
8049 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8050
8051 DCI.AddToWorklist(Cvt.getNode());
8052
8053 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8054 // the appropriate extension from the 32-bit load.
8055 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8056 DCI.AddToWorklist(Cvt.getNode());
8057
8058 // Handle conversion back to floating point if necessary.
8059 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8060
8061 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8062}
8063
8064SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8065 SDLoc DL(Op);
8066 LoadSDNode *Load = cast<LoadSDNode>(Op);
8067 ISD::LoadExtType ExtType = Load->getExtensionType();
8068 EVT MemVT = Load->getMemoryVT();
8069
8070 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8071 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8072 return SDValue();
8073
8074 // FIXME: Copied from PPC
8075 // First, load into 32 bits, then truncate to 1 bit.
8076
8077 SDValue Chain = Load->getChain();
8078 SDValue BasePtr = Load->getBasePtr();
8079 MachineMemOperand *MMO = Load->getMemOperand();
8080
8081 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8082
8083 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8084 BasePtr, RealMemVT, MMO);
8085
8086 if (!MemVT.isVector()) {
8087 SDValue Ops[] = {
8088 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8089 NewLD.getValue(1)
8090 };
8091
8092 return DAG.getMergeValues(Ops, DL);
8093 }
8094
8095 SmallVector<SDValue, 3> Elts;
8096 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8097 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8098 DAG.getConstant(I, DL, MVT::i32));
8099
8100 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8101 }
8102
8103 SDValue Ops[] = {
8104 DAG.getBuildVector(MemVT, DL, Elts),
8105 NewLD.getValue(1)
8106 };
8107
8108 return DAG.getMergeValues(Ops, DL);
8109 }
8110
8111 if (!MemVT.isVector())
8112 return SDValue();
8113
8114 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&((void)0)
8115 "Custom lowering for non-i32 vectors hasn't been implemented.")((void)0);
8116
8117 unsigned Alignment = Load->getAlignment();
8118 unsigned AS = Load->getAddressSpace();
8119 if (Subtarget->hasLDSMisalignedBug() &&
8120 AS == AMDGPUAS::FLAT_ADDRESS &&
8121 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8122 return SplitVectorLoad(Op, DAG);
8123 }
8124
8125 MachineFunction &MF = DAG.getMachineFunction();
8126 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8127 // If there is a possibilty that flat instruction access scratch memory
8128 // then we need to use the same legalization rules we use for private.
8129 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8130 !Subtarget->hasMultiDwordFlatScratchAddressing())
8131 AS = MFI->hasFlatScratchInit() ?
8132 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8133
8134 unsigned NumElements = MemVT.getVectorNumElements();
8135
8136 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8137 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8138 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8139 if (MemVT.isPow2VectorType())
8140 return SDValue();
8141 return WidenOrSplitVectorLoad(Op, DAG);
8142 }
8143 // Non-uniform loads will be selected to MUBUF instructions, so they
8144 // have the same legalization requirements as global and private
8145 // loads.
8146 //
8147 }
8148
8149 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8150 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8151 AS == AMDGPUAS::GLOBAL_ADDRESS) {
8152 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8153 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8154 Alignment >= 4 && NumElements < 32) {
8155 if (MemVT.isPow2VectorType())
8156 return SDValue();
8157 return WidenOrSplitVectorLoad(Op, DAG);
8158 }
8159 // Non-uniform loads will be selected to MUBUF instructions, so they
8160 // have the same legalization requirements as global and private
8161 // loads.
8162 //
8163 }
8164 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8165 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8166 AS == AMDGPUAS::GLOBAL_ADDRESS ||
8167 AS == AMDGPUAS::FLAT_ADDRESS) {
8168 if (NumElements > 4)
8169 return SplitVectorLoad(Op, DAG);
8170 // v3 loads not supported on SI.
8171 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8172 return WidenOrSplitVectorLoad(Op, DAG);
8173
8174 // v3 and v4 loads are supported for private and global memory.
8175 return SDValue();
8176 }
8177 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8178 // Depending on the setting of the private_element_size field in the
8179 // resource descriptor, we can only make private accesses up to a certain
8180 // size.
8181 switch (Subtarget->getMaxPrivateElementSize()) {
8182 case 4: {
8183 SDValue Ops[2];
8184 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8185 return DAG.getMergeValues(Ops, DL);
8186 }
8187 case 8:
8188 if (NumElements > 2)
8189 return SplitVectorLoad(Op, DAG);
8190 return SDValue();
8191 case 16:
8192 // Same as global/flat
8193 if (NumElements > 4)
8194 return SplitVectorLoad(Op, DAG);
8195 // v3 loads not supported on SI.
8196 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8197 return WidenOrSplitVectorLoad(Op, DAG);
8198
8199 return SDValue();
8200 default:
8201 llvm_unreachable("unsupported private_element_size")__builtin_unreachable();
8202 }
8203 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8204 // Use ds_read_b128 or ds_read_b96 when possible.
8205 if (Subtarget->hasDS96AndDS128() &&
8206 ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8207 MemVT.getStoreSize() == 12) &&
8208 allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8209 Load->getAlign()))
8210 return SDValue();
8211
8212 if (NumElements > 2)
8213 return SplitVectorLoad(Op, DAG);
8214
8215 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8216 // address is negative, then the instruction is incorrectly treated as
8217 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8218 // loads here to avoid emitting ds_read2_b32. We may re-combine the
8219 // load later in the SILoadStoreOptimizer.
8220 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8221 NumElements == 2 && MemVT.getStoreSize() == 8 &&
8222 Load->getAlignment() < 8) {
8223 return SplitVectorLoad(Op, DAG);
8224 }
8225 }
8226
8227 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8228 MemVT, *Load->getMemOperand())) {
8229 SDValue Ops[2];
8230 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8231 return DAG.getMergeValues(Ops, DL);
8232 }
8233
8234 return SDValue();
8235}
8236
8237SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8238 EVT VT = Op.getValueType();
8239 assert(VT.getSizeInBits() == 64)((void)0);
8240
8241 SDLoc DL(Op);
8242 SDValue Cond = Op.getOperand(0);
8243
8244 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8245 SDValue One = DAG.getConstant(1, DL, MVT::i32);
8246
8247 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8248 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8249
8250 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8251 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8252
8253 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8254
8255 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8256 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8257
8258 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8259
8260 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8261 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8262}
8263
8264// Catch division cases where we can use shortcuts with rcp and rsq
8265// instructions.
8266SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8267 SelectionDAG &DAG) const {
8268 SDLoc SL(Op);
8269 SDValue LHS = Op.getOperand(0);
8270 SDValue RHS = Op.getOperand(1);
8271 EVT VT = Op.getValueType();
8272 const SDNodeFlags Flags = Op->getFlags();
8273
8274 bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8275
8276 // Without !fpmath accuracy information, we can't do more because we don't
8277 // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8278 if (!AllowInaccurateRcp)
8279 return SDValue();
8280
8281 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8282 if (CLHS->isExactlyValue(1.0)) {
8283 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8284 // the CI documentation has a worst case error of 1 ulp.
8285 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8286 // use it as long as we aren't trying to use denormals.
8287 //
8288 // v_rcp_f16 and v_rsq_f16 DO support denormals.
8289
8290 // 1.0 / sqrt(x) -> rsq(x)
8291
8292 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8293 // error seems really high at 2^29 ULP.
8294 if (RHS.getOpcode() == ISD::FSQRT)
8295 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8296
8297 // 1.0 / x -> rcp(x)
8298 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8299 }
8300
8301 // Same as for 1.0, but expand the sign out of the constant.
8302 if (CLHS->isExactlyValue(-1.0)) {
8303 // -1.0 / x -> rcp (fneg x)
8304 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8305 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8306 }
8307 }
8308
8309 // Turn into multiply by the reciprocal.
8310 // x / y -> x * (1.0 / y)
8311 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8312 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8313}
8314
8315SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8316 SelectionDAG &DAG) const {
8317 SDLoc SL(Op);
8318 SDValue X = Op.getOperand(0);
8319 SDValue Y = Op.getOperand(1);
8320 EVT VT = Op.getValueType();
8321 const SDNodeFlags Flags = Op->getFlags();
8322
8323 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8324 DAG.getTarget().Options.UnsafeFPMath;
8325 if (!AllowInaccurateDiv)
8326 return SDValue();
8327
8328 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8329 SDValue One = DAG.getConstantFP(1.0, SL, VT);
8330
8331 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8332 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8333
8334 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8335 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8336 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8337 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8338 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8339 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8340}
8341
8342static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8343 EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8344 SDNodeFlags Flags) {
8345 if (GlueChain->getNumValues() <= 1) {
8346 return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8347 }
8348
8349 assert(GlueChain->getNumValues() == 3)((void)0);
8350
8351 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8352 switch (Opcode) {
8353 default: llvm_unreachable("no chain equivalent for opcode")__builtin_unreachable();
8354 case ISD::FMUL:
8355 Opcode = AMDGPUISD::FMUL_W_CHAIN;
8356 break;
8357 }
8358
8359 return DAG.getNode(Opcode, SL, VTList,
8360 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8361 Flags);
8362}
8363
8364static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8365 EVT VT, SDValue A, SDValue B, SDValue C,
8366 SDValue GlueChain, SDNodeFlags Flags) {
8367 if (GlueChain->getNumValues() <= 1) {
8368 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8369 }
8370
8371 assert(GlueChain->getNumValues() == 3)((void)0);
8372
8373 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8374 switch (Opcode) {
8375 default: llvm_unreachable("no chain equivalent for opcode")__builtin_unreachable();
8376 case ISD::FMA:
8377 Opcode = AMDGPUISD::FMA_W_CHAIN;
8378 break;
8379 }
8380
8381 return DAG.getNode(Opcode, SL, VTList,
8382 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8383 Flags);
8384}
8385
8386SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8387 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8388 return FastLowered;
8389
8390 SDLoc SL(Op);
8391 SDValue Src0 = Op.getOperand(0);
8392 SDValue Src1 = Op.getOperand(1);
8393
8394 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8395 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8396
8397 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8398 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8399
8400 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8401 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8402
8403 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8404}
8405
8406// Faster 2.5 ULP division that does not support denormals.
8407SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8408 SDLoc SL(Op);
8409 SDValue LHS = Op.getOperand(1);
8410 SDValue RHS = Op.getOperand(2);
8411
8412 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8413
8414 const APFloat K0Val(BitsToFloat(0x6f800000));
8415 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8416
8417 const APFloat K1Val(BitsToFloat(0x2f800000));
8418 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8419
8420 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8421
8422 EVT SetCCVT =
8423 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8424
8425 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8426
8427 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8428
8429 // TODO: Should this propagate fast-math-flags?
8430 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8431
8432 // rcp does not support denormals.
8433 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8434
8435 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8436
8437 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8438}
8439
8440// Returns immediate value for setting the F32 denorm mode when using the
8441// S_DENORM_MODE instruction.
8442static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8443 const SDLoc &SL, const GCNSubtarget *ST) {
8444 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE")((void)0);
8445 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8446 ? FP_DENORM_FLUSH_NONE3
8447 : FP_DENORM_FLUSH_IN_FLUSH_OUT0;
8448
8449 int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8450 return DAG.getTargetConstant(Mode, SL, MVT::i32);
8451}
8452
8453SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8454 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8455 return FastLowered;
8456
8457 // The selection matcher assumes anything with a chain selecting to a
8458 // mayRaiseFPException machine instruction. Since we're introducing a chain
8459 // here, we need to explicitly report nofpexcept for the regular fdiv
8460 // lowering.
8461 SDNodeFlags Flags = Op->getFlags();
8462 Flags.setNoFPExcept(true);
8463
8464 SDLoc SL(Op);
8465 SDValue LHS = Op.getOperand(0);
8466 SDValue RHS = Op.getOperand(1);
8467
8468 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8469
8470 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8471
8472 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8473 {RHS, RHS, LHS}, Flags);
8474 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8475 {LHS, RHS, LHS}, Flags);
8476
8477 // Denominator is scaled to not be denormal, so using rcp is ok.
8478 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8479 DenominatorScaled, Flags);
8480 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8481 DenominatorScaled, Flags);
8482
8483 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8484 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8485 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8486 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8487
8488 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8489
8490 if (!HasFP32Denormals) {
8491 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8492 // lowering. The chain dependence is insufficient, and we need glue. We do
8493 // not need the glue variants in a strictfp function.
8494
8495 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8496
8497 SDNode *EnableDenorm;
8498 if (Subtarget->hasDenormModeInst()) {
8499 const SDValue EnableDenormValue =
8500 getSPDenormModeValue(FP_DENORM_FLUSH_NONE3, DAG, SL, Subtarget);
8501
8502 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8503 DAG.getEntryNode(), EnableDenormValue).getNode();
8504 } else {
8505 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE3,
8506 SL, MVT::i32);
8507 EnableDenorm =
8508 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8509 {EnableDenormValue, BitField, DAG.getEntryNode()});
8510 }
8511
8512 SDValue Ops[3] = {
8513 NegDivScale0,
8514 SDValue(EnableDenorm, 0),
8515 SDValue(EnableDenorm, 1)
8516 };
8517
8518 NegDivScale0 = DAG.getMergeValues(Ops, SL);
8519 }
8520
8521 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8522 ApproxRcp, One, NegDivScale0, Flags);
8523
8524 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8525 ApproxRcp, Fma0, Flags);
8526
8527 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8528 Fma1, Fma1, Flags);
8529
8530 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8531 NumeratorScaled, Mul, Flags);
8532
8533 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8534 Fma2, Fma1, Mul, Fma2, Flags);
8535
8536 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8537 NumeratorScaled, Fma3, Flags);
8538
8539 if (!HasFP32Denormals) {
8540 SDNode *DisableDenorm;
8541 if (Subtarget->hasDenormModeInst()) {
8542 const SDValue DisableDenormValue =
8543 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT0, DAG, SL, Subtarget);
8544
8545 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8546 Fma4.getValue(1), DisableDenormValue,
8547 Fma4.getValue(2)).getNode();
8548 } else {
8549 const SDValue DisableDenormValue =
8550 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT0, SL, MVT::i32);
8551
8552 DisableDenorm = DAG.getMachineNode(
8553 AMDGPU::S_SETREG_B32, SL, MVT::Other,
8554 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8555 }
8556
8557 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8558 SDValue(DisableDenorm, 0), DAG.getRoot());
8559 DAG.setRoot(OutputChain);
8560 }
8561
8562 SDValue Scale = NumeratorScaled.getValue(1);
8563 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8564 {Fma4, Fma1, Fma3, Scale}, Flags);
8565
8566 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8567}
8568
8569SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8570 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8571 return FastLowered;
8572
8573 SDLoc SL(Op);
8574 SDValue X = Op.getOperand(0);
8575 SDValue Y = Op.getOperand(1);
8576
8577 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8578
8579 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8580
8581 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8582
8583 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8584
8585 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8586
8587 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8588
8589 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8590
8591 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8592
8593 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8594
8595 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8596 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8597
8598 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8599 NegDivScale0, Mul, DivScale1);
8600
8601 SDValue Scale;
8602
8603 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8604 // Workaround a hardware bug on SI where the condition output from div_scale
8605 // is not usable.
8606
8607 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8608
8609 // Figure out if the scale to use for div_fmas.
8610 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8611 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8612 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8613 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8614
8615 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8616 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8617
8618 SDValue Scale0Hi
8619 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8620 SDValue Scale1Hi
8621 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8622
8623 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8624 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8625 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8626 } else {
8627 Scale = DivScale1.getValue(1);
8628 }
8629
8630 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8631 Fma4, Fma3, Mul, Scale);
8632
8633 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8634}
8635
8636SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8637 EVT VT = Op.getValueType();
8638
8639 if (VT == MVT::f32)
8640 return LowerFDIV32(Op, DAG);
8641
8642 if (VT == MVT::f64)
8643 return LowerFDIV64(Op, DAG);
8644
8645 if (VT == MVT::f16)
8646 return LowerFDIV16(Op, DAG);
8647
8648 llvm_unreachable("Unexpected type for fdiv")__builtin_unreachable();
8649}
8650
8651SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8652 SDLoc DL(Op);
8653 StoreSDNode *Store = cast<StoreSDNode>(Op);
8654 EVT VT = Store->getMemoryVT();
8655
8656 if (VT == MVT::i1) {
8657 return DAG.getTruncStore(Store->getChain(), DL,
8658 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8659 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8660 }
8661
8662 assert(VT.isVector() &&((void)0)
8663 Store->getValue().getValueType().getScalarType() == MVT::i32)((void)0);
8664
8665 unsigned AS = Store->getAddressSpace();
8666 if (Subtarget->hasLDSMisalignedBug() &&
8667 AS == AMDGPUAS::FLAT_ADDRESS &&
8668 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8669 return SplitVectorStore(Op, DAG);
8670 }
8671
8672 MachineFunction &MF = DAG.getMachineFunction();
8673 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8674 // If there is a possibilty that flat instruction access scratch memory
8675 // then we need to use the same legalization rules we use for private.
8676 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8677 !Subtarget->hasMultiDwordFlatScratchAddressing())
8678 AS = MFI->hasFlatScratchInit() ?
8679 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8680
8681 unsigned NumElements = VT.getVectorNumElements();
8682 if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8683 AS == AMDGPUAS::FLAT_ADDRESS) {
8684 if (NumElements > 4)
8685 return SplitVectorStore(Op, DAG);
8686 // v3 stores not supported on SI.
8687 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8688 return SplitVectorStore(Op, DAG);
8689
8690 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8691 VT, *Store->getMemOperand()))
8692 return expandUnalignedStore(Store, DAG);
8693
8694 return SDValue();
8695 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8696 switch (Subtarget->getMaxPrivateElementSize()) {
8697 case 4:
8698 return scalarizeVectorStore(Store, DAG);
8699 case 8:
8700 if (NumElements > 2)
8701 return SplitVectorStore(Op, DAG);
8702 return SDValue();
8703 case 16:
8704 if (NumElements > 4 ||
8705 (NumElements == 3 && !Subtarget->enableFlatScratch()))
8706 return SplitVectorStore(Op, DAG);
8707 return SDValue();
8708 default:
8709 llvm_unreachable("unsupported private_element_size")__builtin_unreachable();
8710 }
8711 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8712 // Use ds_write_b128 or ds_write_b96 when possible.
8713 if (Subtarget->hasDS96AndDS128() &&
8714 ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8715 (VT.getStoreSize() == 12)) &&
8716 allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8717 Store->getAlign()))
8718 return SDValue();
8719
8720 if (NumElements > 2)
8721 return SplitVectorStore(Op, DAG);
8722
8723 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8724 // address is negative, then the instruction is incorrectly treated as
8725 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8726 // stores here to avoid emitting ds_write2_b32. We may re-combine the
8727 // store later in the SILoadStoreOptimizer.
8728 if (!Subtarget->hasUsableDSOffset() &&
8729 NumElements == 2 && VT.getStoreSize() == 8 &&
8730 Store->getAlignment() < 8) {
8731 return SplitVectorStore(Op, DAG);
8732 }
8733
8734 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8735 VT, *Store->getMemOperand())) {
8736 if (VT.isVector())
8737 return SplitVectorStore(Op, DAG);
8738 return expandUnalignedStore(Store, DAG);
8739 }
8740
8741 return SDValue();
8742 } else {
8743 llvm_unreachable("unhandled address space")__builtin_unreachable();
8744 }
8745}
8746
8747SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8748 SDLoc DL(Op);
8749 EVT VT = Op.getValueType();
8750 SDValue Arg = Op.getOperand(0);
8751 SDValue TrigVal;
8752
8753 // Propagate fast-math flags so that the multiply we introduce can be folded
8754 // if Arg is already the result of a multiply by constant.
8755 auto Flags = Op->getFlags();
8756
8757 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8758
8759 if (Subtarget->hasTrigReducedRange()) {
8760 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8761 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8762 } else {
8763 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8764 }
8765
8766 switch (Op.getOpcode()) {
8767 case ISD::FCOS:
8768 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8769 case ISD::FSIN:
8770 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8771 default:
8772 llvm_unreachable("Wrong trig opcode")__builtin_unreachable();
8773 }
8774}
8775
8776SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8777 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8778 assert(AtomicNode->isCompareAndSwap())((void)0);
8779 unsigned AS = AtomicNode->getAddressSpace();
8780
8781 // No custom lowering required for local address space
8782 if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8783 return Op;
8784
8785 // Non-local address space requires custom lowering for atomic compare
8786 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8787 SDLoc DL(Op);
8788 SDValue ChainIn = Op.getOperand(0);
8789 SDValue Addr = Op.getOperand(1);
8790 SDValue Old = Op.getOperand(2);
8791 SDValue New = Op.getOperand(3);
8792 EVT VT = Op.getValueType();
8793 MVT SimpleVT = VT.getSimpleVT();
8794 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8795
8796 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8797 SDValue Ops[] = { ChainIn, Addr, NewOld };
8798
8799 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8800 Ops, VT, AtomicNode->getMemOperand());
8801}
8802
8803//===----------------------------------------------------------------------===//
8804// Custom DAG optimizations
8805//===----------------------------------------------------------------------===//
8806
8807SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8808 DAGCombinerInfo &DCI) const {
8809 EVT VT = N->getValueType(0);
8810 EVT ScalarVT = VT.getScalarType();
8811 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8812 return SDValue();
8813
8814 SelectionDAG &DAG = DCI.DAG;
8815 SDLoc DL(N);
8816
8817 SDValue Src = N->getOperand(0);
8818 EVT SrcVT = Src.getValueType();
8819
8820 // TODO: We could try to match extracting the higher bytes, which would be
8821 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8822 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8823 // about in practice.
8824 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8825 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8826 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8827 DCI.AddToWorklist(Cvt.getNode());
8828
8829 // For the f16 case, fold to a cast to f32 and then cast back to f16.
8830 if (ScalarVT != MVT::f32) {
8831 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8832 DAG.getTargetConstant(0, DL, MVT::i32));
8833 }
8834 return Cvt;
8835 }
8836 }
8837
8838 return SDValue();
8839}
8840
8841// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8842
8843// This is a variant of
8844// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8845//
8846// The normal DAG combiner will do this, but only if the add has one use since
8847// that would increase the number of instructions.
8848//
8849// This prevents us from seeing a constant offset that can be folded into a
8850// memory instruction's addressing mode. If we know the resulting add offset of
8851// a pointer can be folded into an addressing offset, we can replace the pointer
8852// operand with the add of new constant offset. This eliminates one of the uses,
8853// and may allow the remaining use to also be simplified.
8854//
8855SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8856 unsigned AddrSpace,
8857 EVT MemVT,
8858 DAGCombinerInfo &DCI) const {
8859 SDValue N0 = N->getOperand(0);
8860 SDValue N1 = N->getOperand(1);
8861
8862 // We only do this to handle cases where it's profitable when there are
8863 // multiple uses of the add, so defer to the standard combine.
8864 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8865 N0->hasOneUse())
8866 return SDValue();
8867
8868 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8869 if (!CN1)
8870 return SDValue();
8871
8872 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8873 if (!CAdd)
8874 return SDValue();
8875
8876 // If the resulting offset is too large, we can't fold it into the addressing
8877 // mode offset.
8878 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8879 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8880
8881 AddrMode AM;
8882 AM.HasBaseReg = true;
8883 AM.BaseOffs = Offset.getSExtValue();
8884 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8885 return SDValue();
8886
8887 SelectionDAG &DAG = DCI.DAG;
8888 SDLoc SL(N);
8889 EVT VT = N->getValueType(0);
8890
8891 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8892 SDValue COffset = DAG.getConstant(Offset, SL, VT);
8893
8894 SDNodeFlags Flags;
8895 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8896 (N0.getOpcode() == ISD::OR ||
8897 N0->getFlags().hasNoUnsignedWrap()));
8898
8899 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8900}
8901
8902/// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8903/// by the chain and intrinsic ID. Theoretically we would also need to check the
8904/// specific intrinsic, but they all place the pointer operand first.
8905static unsigned getBasePtrIndex(const MemSDNode *N) {
8906 switch (N->getOpcode()) {
8907 case ISD::STORE:
8908 case ISD::INTRINSIC_W_CHAIN:
8909 case ISD::INTRINSIC_VOID:
8910 return 2;
8911 default:
8912 return 1;
8913 }
8914}
8915
8916SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8917 DAGCombinerInfo &DCI) const {
8918 SelectionDAG &DAG = DCI.DAG;
8919 SDLoc SL(N);
8920
8921 unsigned PtrIdx = getBasePtrIndex(N);
8922 SDValue Ptr = N->getOperand(PtrIdx);
8923
8924 // TODO: We could also do this for multiplies.
8925 if (Ptr.getOpcode() == ISD::SHL) {
8926 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
8927 N->getMemoryVT(), DCI);
8928 if (NewPtr) {
8929 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8930
8931 NewOps[PtrIdx] = NewPtr;
8932 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8933 }
8934 }
8935
8936 return SDValue();
8937}
8938
8939static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8940 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8941 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8942 (Opc == ISD::XOR && Val == 0);
8943}
8944
8945// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8946// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8947// integer combine opportunities since most 64-bit operations are decomposed
8948// this way. TODO: We won't want this for SALU especially if it is an inline
8949// immediate.
8950SDValue SITargetLowering::splitBinaryBitConstantOp(
8951 DAGCombinerInfo &DCI,
8952 const SDLoc &SL,
8953 unsigned Opc, SDValue LHS,
8954 const ConstantSDNode *CRHS) const {
8955 uint64_t Val = CRHS->getZExtValue();
8956 uint32_t ValLo = Lo_32(Val);
8957 uint32_t ValHi = Hi_32(Val);
8958 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8959
8960 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8961 bitOpWithConstantIsReducible(Opc, ValHi)) ||
8962 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8963 // If we need to materialize a 64-bit immediate, it will be split up later
8964 // anyway. Avoid creating the harder to understand 64-bit immediate
8965 // materialization.
8966 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8967 }
8968
8969 return SDValue();
8970}
8971
8972// Returns true if argument is a boolean value which is not serialized into
8973// memory or argument and does not require v_cndmask_b32 to be deserialized.
8974static bool isBoolSGPR(SDValue V) {
8975 if (V.getValueType() != MVT::i1)
8976 return false;
8977 switch (V.getOpcode()) {
8978 default:
8979 break;
8980 case ISD::SETCC:
8981 case AMDGPUISD::FP_CLASS:
8982 return true;
8983 case ISD::AND:
8984 case ISD::OR:
8985 case ISD::XOR:
8986 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
8987 }
8988 return false;
8989}
8990
8991// If a constant has all zeroes or all ones within each byte return it.
8992// Otherwise return 0.
8993static uint32_t getConstantPermuteMask(uint32_t C) {
8994 // 0xff for any zero byte in the mask
8995 uint32_t ZeroByteMask = 0;
8996 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8997 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8998 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8999 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9000 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9001 if ((NonZeroByteMask & C) != NonZeroByteMask)
9002 return 0; // Partial bytes selected.
9003 return C;
9004}
9005
9006// Check if a node selects whole bytes from its operand 0 starting at a byte
9007// boundary while masking the rest. Returns select mask as in the v_perm_b32
9008// or -1 if not succeeded.
9009// Note byte select encoding:
9010// value 0-3 selects corresponding source byte;
9011// value 0xc selects zero;
9012// value 0xff selects 0xff.
9013static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9014 assert(V.getValueSizeInBits() == 32)((void)0);
9015
9016 if (V.getNumOperands() != 2)
9017 return ~0;
9018
9019 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9020 if (!N1)
9021 return ~0;
9022
9023 uint32_t C = N1->getZExtValue();
9024
9025 switch (V.getOpcode()) {
9026 default:
9027 break;
9028 case ISD::AND:
9029 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9030 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9031 }
9032 break;
9033
9034 case ISD::OR:
9035 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9036 return (0x03020100 & ~ConstMask) | ConstMask;
9037 }
9038 break;
9039
9040 case ISD::SHL:
9041 if (C % 8)
9042 return ~0;
9043
9044 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9045
9046 case ISD::SRL:
9047 if (C % 8)
9048 return ~0;
9049
9050 return uint32_t(0x0c0c0c0c03020100ull >> C);
9051 }
9052
9053 return ~0;
9054}
9055
9056SDValue SITargetLowering::performAndCombine(SDNode *N,
9057 DAGCombinerInfo &DCI) const {
9058 if (DCI.isBeforeLegalize())
9059 return SDValue();
9060
9061 SelectionDAG &DAG = DCI.DAG;
9062 EVT VT = N->getValueType(0);
9063 SDValue LHS = N->getOperand(0);
9064 SDValue RHS = N->getOperand(1);
9065
9066
9067 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9068 if (VT == MVT::i64 && CRHS) {
9069 if (SDValue Split
9070 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9071 return Split;
9072 }
9073
9074 if (CRHS && VT == MVT::i32) {
9075 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9076 // nb = number of trailing zeroes in mask
9077 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9078 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9079 uint64_t Mask = CRHS->getZExtValue();
9080 unsigned Bits = countPopulation(Mask);
9081 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9082 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9083 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9084 unsigned Shift = CShift->getZExtValue();
9085 unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9086 unsigned Offset = NB + Shift;
9087 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9088 SDLoc SL(N);
9089 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9090 LHS->getOperand(0),
9091 DAG.getConstant(Offset, SL, MVT::i32),
9092 DAG.getConstant(Bits, SL, MVT::i32));
9093 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9094 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9095 DAG.getValueType(NarrowVT));
9096 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9097 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9098 return Shl;
9099 }
9100 }
9101 }
9102
9103 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9104 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9105 isa<ConstantSDNode>(LHS.getOperand(2))) {
9106 uint32_t Sel = getConstantPermuteMask(Mask);
9107 if (!Sel)
9108 return SDValue();
9109
9110 // Select 0xc for all zero bytes
9111 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9112 SDLoc DL(N);
9113 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9114 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9115 }
9116 }
9117
9118 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9119 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9120 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9121 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9122 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9123
9124 SDValue X = LHS.getOperand(0);
9125 SDValue Y = RHS.getOperand(0);
9126 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9127 return SDValue();
9128
9129 if (LCC == ISD::SETO) {
9130 if (X != LHS.getOperand(1))
9131 return SDValue();
9132
9133 if (RCC == ISD::SETUNE) {
9134 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9135 if (!C1 || !C1->isInfinity() || C1->isNegative())
9136 return SDValue();
9137
9138 const uint32_t Mask = SIInstrFlags::N_NORMAL |
9139 SIInstrFlags::N_SUBNORMAL |
9140 SIInstrFlags::N_ZERO |
9141 SIInstrFlags::P_ZERO |
9142 SIInstrFlags::P_SUBNORMAL |
9143 SIInstrFlags::P_NORMAL;
9144
9145 static_assert(((~(SIInstrFlags::S_NAN |
9146 SIInstrFlags::Q_NAN |
9147 SIInstrFlags::N_INFINITY |
9148 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9149 "mask not equal");
9150
9151 SDLoc DL(N);
9152 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9153 X, DAG.getConstant(Mask, DL, MVT::i32));
9154 }
9155 }
9156 }
9157
9158 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9159 std::swap(LHS, RHS);
9160
9161 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9162 RHS.hasOneUse()) {
9163 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9164 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9165 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9166 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9167 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9168 (RHS.getOperand(0) == LHS.getOperand(0) &&
9169 LHS.getOperand(0) == LHS.getOperand(1))) {
9170 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9171 unsigned NewMask = LCC == ISD::SETO ?
9172 Mask->getZExtValue() & ~OrdMask :
9173 Mask->getZExtValue() & OrdMask;
9174
9175 SDLoc DL(N);
9176 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9177 DAG.getConstant(NewMask, DL, MVT::i32));
9178 }
9179 }
9180
9181 if (VT == MVT::i32 &&
9182 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9183 // and x, (sext cc from i1) => select cc, x, 0
9184 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9185 std::swap(LHS, RHS);
9186 if (isBoolSGPR(RHS.getOperand(0)))
9187 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9188 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9189 }
9190
9191 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9192 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9193 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9194 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9195 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9196 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9197 if (LHSMask != ~0u && RHSMask != ~0u) {
9198 // Canonicalize the expression in an attempt to have fewer unique masks
9199 // and therefore fewer registers used to hold the masks.
9200 if (LHSMask > RHSMask) {
9201 std::swap(LHSMask, RHSMask);
9202 std::swap(LHS, RHS);
9203 }
9204
9205 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9206 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9207 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9208 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9209
9210 // Check of we need to combine values from two sources within a byte.
9211 if (!(LHSUsedLanes & RHSUsedLanes) &&
9212 // If we select high and lower word keep it for SDWA.
9213 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9214 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9215 // Each byte in each mask is either selector mask 0-3, or has higher
9216 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9217 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9218 // mask which is not 0xff wins. By anding both masks we have a correct
9219 // result except that 0x0c shall be corrected to give 0x0c only.
9220 uint32_t Mask = LHSMask & RHSMask;
9221 for (unsigned I = 0; I < 32; I += 8) {
9222 uint32_t ByteSel = 0xff << I;
9223 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9224 Mask &= (0x0c << I) & 0xffffffff;
9225 }
9226
9227 // Add 4 to each active LHS lane. It will not affect any existing 0xff
9228 // or 0x0c.
9229 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9230 SDLoc DL(N);
9231
9232 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9233 LHS.getOperand(0), RHS.getOperand(0),
9234 DAG.getConstant(Sel, DL, MVT::i32));
9235 }
9236 }
9237 }
9238
9239 return SDValue();
9240}
9241
9242SDValue SITargetLowering::performOrCombine(SDNode *N,
9243 DAGCombinerInfo &DCI) const {
9244 SelectionDAG &DAG = DCI.DAG;
9245 SDValue LHS = N->getOperand(0);
9246 SDValue RHS = N->getOperand(1);
9247
9248 EVT VT = N->getValueType(0);
9249 if (VT == MVT::i1) {
9250 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9251 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9252 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9253 SDValue Src = LHS.getOperand(0);
9254 if (Src != RHS.getOperand(0))
9255 return SDValue();
9256
9257 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9258 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9259 if (!CLHS || !CRHS)
9260 return SDValue();
9261
9262 // Only 10 bits are used.
9263 static const uint32_t MaxMask = 0x3ff;
9264
9265 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9266 SDLoc DL(N);
9267 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9268 Src, DAG.getConstant(NewMask, DL, MVT::i32));
9269 }
9270
9271 return SDValue();
9272 }
9273
9274 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9275 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9276 LHS.getOpcode() == AMDGPUISD::PERM &&
9277 isa<ConstantSDNode>(LHS.getOperand(2))) {
9278 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9279 if (!Sel)
9280 return SDValue();
9281
9282 Sel |= LHS.getConstantOperandVal(2);
9283 SDLoc DL(N);
9284 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9285 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9286 }
9287
9288 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9289 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9290 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9291 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9292 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9293 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9294 if (LHSMask != ~0u && RHSMask != ~0u) {
9295 // Canonicalize the expression in an attempt to have fewer unique masks
9296 // and therefore fewer registers used to hold the masks.
9297 if (LHSMask > RHSMask) {
9298 std::swap(LHSMask, RHSMask);
9299 std::swap(LHS, RHS);
9300 }
9301
9302 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9303 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9304 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9305 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9306
9307 // Check of we need to combine values from two sources within a byte.
9308 if (!(LHSUsedLanes & RHSUsedLanes) &&
9309 // If we select high and lower word keep it for SDWA.
9310 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9311 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9312 // Kill zero bytes selected by other mask. Zero value is 0xc.
9313 LHSMask &= ~RHSUsedLanes;
9314 RHSMask &= ~LHSUsedLanes;
9315 // Add 4 to each active LHS lane
9316 LHSMask |= LHSUsedLanes & 0x04040404;
9317 // Combine masks
9318 uint32_t Sel = LHSMask | RHSMask;
9319 SDLoc DL(N);
9320
9321 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9322 LHS.getOperand(0), RHS.getOperand(0),
9323 DAG.getConstant(Sel, DL, MVT::i32));
9324 }
9325 }
9326 }
9327
9328 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9329 return SDValue();
9330
9331 // TODO: This could be a generic combine with a predicate for extracting the
9332 // high half of an integer being free.
9333
9334 // (or i64:x, (zero_extend i32:y)) ->
9335 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9336 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9337 RHS.getOpcode() != ISD::ZERO_EXTEND)
9338 std::swap(LHS, RHS);
9339
9340 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9341 SDValue ExtSrc = RHS.getOperand(0);
9342 EVT SrcVT = ExtSrc.getValueType();
9343 if (SrcVT == MVT::i32) {
9344 SDLoc SL(N);
9345 SDValue LowLHS, HiBits;
9346 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9347 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9348
9349 DCI.AddToWorklist(LowOr.getNode());
9350 DCI.AddToWorklist(HiBits.getNode());
9351
9352 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9353 LowOr, HiBits);
9354 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9355 }
9356 }
9357
9358 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9359 if (CRHS) {
9360 if (SDValue Split
9361 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9362 return Split;
9363 }
9364
9365 return SDValue();
9366}
9367
9368SDValue SITargetLowering::performXorCombine(SDNode *N,
9369 DAGCombinerInfo &DCI) const {
9370 EVT VT = N->getValueType(0);
9371 if (VT != MVT::i64)
9372 return SDValue();
9373
9374 SDValue LHS = N->getOperand(0);
9375 SDValue RHS = N->getOperand(1);
9376
9377 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9378 if (CRHS) {
9379 if (SDValue Split
9380 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9381 return Split;
9382 }
9383
9384 return SDValue();
9385}
9386
9387SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9388 DAGCombinerInfo &DCI) const {
9389 if (!Subtarget->has16BitInsts() ||
9390 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9391 return SDValue();
9392
9393 EVT VT = N->getValueType(0);
9394 if (VT != MVT::i32)
9395 return SDValue();
9396
9397 SDValue Src = N->getOperand(0);
9398 if (Src.getValueType() != MVT::i16)
9399 return SDValue();
9400
9401 return SDValue();
9402}
9403
9404SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9405 DAGCombinerInfo &DCI)
9406 const {
9407 SDValue Src = N->getOperand(0);
9408 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9409
9410 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9411 VTSign->getVT() == MVT::i8) ||
9412 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9413 VTSign->getVT() == MVT::i16)) &&
9414 Src.hasOneUse()) {
9415 auto *M = cast<MemSDNode>(Src);
9416 SDValue Ops[] = {
9417 Src.getOperand(0), // Chain
9418 Src.getOperand(1), // rsrc
9419 Src.getOperand(2), // vindex
9420 Src.getOperand(3), // voffset
9421 Src.getOperand(4), // soffset
9422 Src.getOperand(5), // offset
9423 Src.getOperand(6),
9424 Src.getOperand(7)
9425 };
9426 // replace with BUFFER_LOAD_BYTE/SHORT
9427 SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9428 Src.getOperand(0).getValueType());
9429 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9430 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9431 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9432 ResList,
9433 Ops, M->getMemoryVT(),
9434 M->getMemOperand());
9435 return DCI.DAG.getMergeValues({BufferLoadSignExt,
9436 BufferLoadSignExt.getValue(1)}, SDLoc(N));
9437 }
9438 return SDValue();
9439}
9440
9441SDValue SITargetLowering::performClassCombine(SDNode *N,
9442 DAGCombinerInfo &DCI) const {
9443 SelectionDAG &DAG = DCI.DAG;
9444 SDValue Mask = N->getOperand(1);
9445
9446 // fp_class x, 0 -> false
9447 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9448 if (CMask->isNullValue())
9449 return DAG.getConstant(0, SDLoc(N), MVT::i1);
9450 }
9451
9452 if (N->getOperand(0).isUndef())
9453 return DAG.getUNDEF(MVT::i1);
9454
9455 return SDValue();
9456}
9457
9458SDValue SITargetLowering::performRcpCombine(SDNode *N,
9459 DAGCombinerInfo &DCI) const {
9460 EVT VT = N->getValueType(0);
9461 SDValue N0 = N->getOperand(0);
9462
9463 if (N0.isUndef())
9464 return N0;
9465
9466 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9467 N0.getOpcode() == ISD::SINT_TO_FP)) {
9468 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9469 N->getFlags());
9470 }
9471
9472 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9473 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9474 N0.getOperand(0), N->getFlags());
9475 }
9476
9477 return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9478}
9479
9480bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9481 unsigned MaxDepth) const {
9482 unsigned Opcode = Op.getOpcode();
9483 if (Opcode == ISD::FCANONICALIZE)
9484 return true;
9485
9486 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9487 auto F = CFP->getValueAPF();
9488 if (F.isNaN() && F.isSignaling())
9489 return false;
9490 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9491 }
9492
9493 // If source is a result of another standard FP operation it is already in
9494 // canonical form.
9495 if (MaxDepth == 0)
9496 return false;
9497
9498 switch (Opcode) {
9499 // These will flush denorms if required.
9500 case ISD::FADD:
9501 case ISD::FSUB:
9502 case ISD::FMUL:
9503 case ISD::FCEIL:
9504 case ISD::FFLOOR:
9505 case ISD::FMA:
9506 case ISD::FMAD:
9507 case ISD::FSQRT:
9508 case ISD::FDIV:
9509 case ISD::FREM:
9510 case ISD::FP_ROUND:
9511 case ISD::FP_EXTEND:
9512 case AMDGPUISD::FMUL_LEGACY:
9513 case AMDGPUISD::FMAD_FTZ:
9514 case AMDGPUISD::RCP:
9515 case AMDGPUISD::RSQ:
9516 case AMDGPUISD::RSQ_CLAMP:
9517 case AMDGPUISD::RCP_LEGACY:
9518 case AMDGPUISD::RCP_IFLAG:
9519 case AMDGPUISD::DIV_SCALE:
9520 case AMDGPUISD::DIV_FMAS:
9521 case AMDGPUISD::DIV_FIXUP:
9522 case AMDGPUISD::FRACT:
9523 case AMDGPUISD::LDEXP:
9524 case AMDGPUISD::CVT_PKRTZ_F16_F32:
9525 case AMDGPUISD::CVT_F32_UBYTE0:
9526 case AMDGPUISD::CVT_F32_UBYTE1:
9527 case AMDGPUISD::CVT_F32_UBYTE2:
9528 case AMDGPUISD::CVT_F32_UBYTE3:
9529 return true;
9530
9531 // It can/will be lowered or combined as a bit operation.
9532 // Need to check their input recursively to handle.
9533 case ISD::FNEG:
9534 case ISD::FABS:
9535 case ISD::FCOPYSIGN:
9536 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9537
9538 case ISD::FSIN:
9539 case ISD::FCOS:
9540 case ISD::FSINCOS:
9541 return Op.getValueType().getScalarType() != MVT::f16;
9542
9543 case ISD::FMINNUM:
9544 case ISD::FMAXNUM:
9545 case ISD::FMINNUM_IEEE:
9546 case ISD::FMAXNUM_IEEE:
9547 case AMDGPUISD::CLAMP:
9548 case AMDGPUISD::FMED3:
9549 case AMDGPUISD::FMAX3:
9550 case AMDGPUISD::FMIN3: {
9551 // FIXME: Shouldn't treat the generic operations different based these.
9552 // However, we aren't really required to flush the result from
9553 // minnum/maxnum..
9554
9555 // snans will be quieted, so we only need to worry about denormals.
9556 if (Subtarget->supportsMinMaxDenormModes() ||
9557 denormalsEnabledForType(DAG, Op.getValueType()))
9558 return true;
9559
9560 // Flushing may be required.
9561 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9562 // targets need to check their input recursively.
9563
9564 // FIXME: Does this apply with clamp? It's implemented with max.
9565 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9566 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9567 return false;
9568 }
9569
9570 return true;
9571 }
9572 case ISD::SELECT: {
9573 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9574 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9575 }
9576 case ISD::BUILD_VECTOR: {
9577 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9578 SDValue SrcOp = Op.getOperand(i);
9579 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9580 return false;
9581 }
9582
9583 return true;
9584 }
9585 case ISD::EXTRACT_VECTOR_ELT:
9586 case ISD::EXTRACT_SUBVECTOR: {
9587 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9588 }
9589 case ISD::INSERT_VECTOR_ELT: {
9590 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9591 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9592 }
9593 case ISD::UNDEF:
9594 // Could be anything.
9595 return false;
9596
9597 case ISD::BITCAST:
9598 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9599 case ISD::TRUNCATE: {
9600 // Hack round the mess we make when legalizing extract_vector_elt
9601 if (Op.getValueType() == MVT::i16) {
9602 SDValue TruncSrc = Op.getOperand(0);
9603 if (TruncSrc.getValueType() == MVT::i32 &&
9604 TruncSrc.getOpcode() == ISD::BITCAST &&
9605 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9606 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9607 }
9608 }
9609 return false;
9610 }
9611 case ISD::INTRINSIC_WO_CHAIN: {
9612 unsigned IntrinsicID
9613 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9614 // TODO: Handle more intrinsics
9615 switch (IntrinsicID) {
9616 case Intrinsic::amdgcn_cvt_pkrtz:
9617 case Intrinsic::amdgcn_cubeid:
9618 case Intrinsic::amdgcn_frexp_mant:
9619 case Intrinsic::amdgcn_fdot2:
9620 case Intrinsic::amdgcn_rcp:
9621 case Intrinsic::amdgcn_rsq:
9622 case Intrinsic::amdgcn_rsq_clamp:
9623 case Intrinsic::amdgcn_rcp_legacy:
9624 case Intrinsic::amdgcn_rsq_legacy:
9625 case Intrinsic::amdgcn_trig_preop:
9626 return true;
9627 default:
9628 break;
9629 }
9630
9631 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9632 }
9633 default:
9634 return denormalsEnabledForType(DAG, Op.getValueType()) &&
9635 DAG.isKnownNeverSNaN(Op);
9636 }
9637
9638 llvm_unreachable("invalid operation")__builtin_unreachable();
9639}
9640
9641bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
9642 unsigned MaxDepth) const {
9643 MachineRegisterInfo &MRI = MF.getRegInfo();
9644 MachineInstr *MI = MRI.getVRegDef(Reg);
9645 unsigned Opcode = MI->getOpcode();
9646
9647 if (Opcode == AMDGPU::G_FCANONICALIZE)
9648 return true;
9649
9650 if (Opcode == AMDGPU::G_FCONSTANT) {
9651 auto F = MI->getOperand(1).getFPImm()->getValueAPF();
9652 if (F.isNaN() && F.isSignaling())
9653 return false;
9654 return !F.isDenormal() || denormalsEnabledForType(MRI.getType(Reg), MF);
9655 }
9656
9657 if (MaxDepth == 0)
9658 return false;
9659
9660 switch (Opcode) {
9661 case AMDGPU::G_FMINNUM_IEEE:
9662 case AMDGPU::G_FMAXNUM_IEEE: {
9663 if (Subtarget->supportsMinMaxDenormModes() ||
9664 denormalsEnabledForType(MRI.getType(Reg), MF))
9665 return true;
9666 for (unsigned I = 1, E = MI->getNumOperands(); I != E; ++I) {
9667 if (!isCanonicalized(MI->getOperand(I).getReg(), MF, MaxDepth - 1))
9668 return false;
9669 }
9670 return true;
9671 }
9672 default:
9673 return denormalsEnabledForType(MRI.getType(Reg), MF) &&
9674 isKnownNeverSNaN(Reg, MRI);
9675 }
9676
9677 llvm_unreachable("invalid operation")__builtin_unreachable();
9678}
9679
9680// Constant fold canonicalize.
9681SDValue SITargetLowering::getCanonicalConstantFP(
9682 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9683 // Flush denormals to 0 if not enabled.
9684 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9685 return DAG.getConstantFP(0.0, SL, VT);
9686
9687 if (C.isNaN()) {
9688 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9689 if (C.isSignaling()) {
9690 // Quiet a signaling NaN.
9691 // FIXME: Is this supposed to preserve payload bits?
9692 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9693 }
9694
9695 // Make sure it is the canonical NaN bitpattern.
9696 //
9697 // TODO: Can we use -1 as the canonical NaN value since it's an inline
9698 // immediate?
9699 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9700 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9701 }
9702
9703 // Already canonical.
9704 return DAG.getConstantFP(C, SL, VT);
9705}
9706
9707static bool vectorEltWillFoldAway(SDValue Op) {
9708 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9709}
9710
9711SDValue SITargetLowering::performFCanonicalizeCombine(
9712 SDNode *N,
9713 DAGCombinerInfo &DCI) const {
9714 SelectionDAG &DAG = DCI.DAG;
9715 SDValue N0 = N->getOperand(0);
9716 EVT VT = N->getValueType(0);
9717
9718 // fcanonicalize undef -> qnan
9719 if (N0.isUndef()) {
9720 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9721 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9722 }
9723
9724 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9725 EVT VT = N->getValueType(0);
9726 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9727 }
9728
9729 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9730 // (fcanonicalize k)
9731 //
9732 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9733
9734 // TODO: This could be better with wider vectors that will be split to v2f16,
9735 // and to consider uses since there aren't that many packed operations.
9736 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9737 isTypeLegal(MVT::v2f16)) {
9738 SDLoc SL(N);
9739 SDValue NewElts[2];
9740 SDValue Lo = N0.getOperand(0);
9741 SDValue Hi = N0.getOperand(1);
9742 EVT EltVT = Lo.getValueType();
9743
9744 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9745 for (unsigned I = 0; I != 2; ++I) {
9746 SDValue Op = N0.getOperand(I);
9747 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9748 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9749 CFP->getValueAPF());
9750 } else if (Op.isUndef()) {
9751 // Handled below based on what the other operand is.
9752 NewElts[I] = Op;
9753 } else {
9754 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9755 }
9756 }
9757
9758 // If one half is undef, and one is constant, perfer a splat vector rather
9759 // than the normal qNaN. If it's a register, prefer 0.0 since that's
9760 // cheaper to use and may be free with a packed operation.
9761 if (NewElts[0].isUndef()) {
9762 if (isa<ConstantFPSDNode>(NewElts[1]))
9763 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9764 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9765 }
9766
9767 if (NewElts[1].isUndef()) {
9768 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9769 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9770 }
9771
9772 return DAG.getBuildVector(VT, SL, NewElts);
9773 }
9774 }
9775
9776 unsigned SrcOpc = N0.getOpcode();
9777
9778 // If it's free to do so, push canonicalizes further up the source, which may
9779 // find a canonical source.
9780 //
9781 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9782 // sNaNs.
9783 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9784 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9785 if (CRHS && N0.hasOneUse()) {
9786 SDLoc SL(N);
9787 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9788 N0.getOperand(0));
9789 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9790 DCI.AddToWorklist(Canon0.getNode());
9791
9792 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9793 }
9794 }
9795
9796 return isCanonicalized(DAG, N0) ? N0 : SDValue();
9797}
9798
9799static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9800 switch (Opc) {
9801 case ISD::FMAXNUM:
9802 case ISD::FMAXNUM_IEEE:
9803 return AMDGPUISD::FMAX3;
9804 case ISD::SMAX:
9805 return AMDGPUISD::SMAX3;
9806 case ISD::UMAX:
9807 return AMDGPUISD::UMAX3;
9808 case ISD::FMINNUM:
9809 case ISD::FMINNUM_IEEE:
9810 return AMDGPUISD::FMIN3;
9811 case ISD::SMIN:
9812 return AMDGPUISD::SMIN3;
9813 case ISD::UMIN:
9814 return AMDGPUISD::UMIN3;
9815 default:
9816 llvm_unreachable("Not a min/max opcode")__builtin_unreachable();
9817 }
9818}
9819
9820SDValue SITargetLowering::performIntMed3ImmCombine(
9821 SelectionDAG &DAG, const SDLoc &SL,
9822 SDValue Op0, SDValue Op1, bool Signed) const {
9823 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9824 if (!K1)
9825 return SDValue();
9826
9827 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9828 if (!K0)
9829 return SDValue();
9830
9831 if (Signed) {
9832 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9833 return SDValue();
9834 } else {
9835 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9836 return SDValue();
9837 }
9838
9839 EVT VT = K0->getValueType(0);
9840 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9841 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9842 return DAG.getNode(Med3Opc, SL, VT,
9843 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9844 }
9845
9846 // If there isn't a 16-bit med3 operation, convert to 32-bit.
9847 if (VT == MVT::i16) {
9848 MVT NVT = MVT::i32;
9849 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9850
9851 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9852 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9853 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9854
9855 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9856 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9857 }
9858
9859 return SDValue();
9860}
9861
9862static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9863 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9864 return C;
9865
9866 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9867 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9868 return C;
9869 }
9870
9871 return nullptr;
9872}
9873
9874SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9875 const SDLoc &SL,
9876 SDValue Op0,
9877 SDValue Op1) const {
9878 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9879 if (!K1)
9880 return SDValue();
9881
9882 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9883 if (!K0)
9884 return SDValue();
9885
9886 // Ordered >= (although NaN inputs should have folded away by now).
9887 if (K0->getValueAPF() > K1->getValueAPF())
9888 return SDValue();
9889
9890 const MachineFunction &MF = DAG.getMachineFunction();
9891 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9892
9893 // TODO: Check IEEE bit enabled?
9894 EVT VT = Op0.getValueType();
9895 if (Info->getMode().DX10Clamp) {
9896 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9897 // hardware fmed3 behavior converting to a min.
9898 // FIXME: Should this be allowing -0.0?
9899 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9900 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9901 }
9902
9903 // med3 for f16 is only available on gfx9+, and not available for v2f16.
9904 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9905 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9906 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9907 // then give the other result, which is different from med3 with a NaN
9908 // input.
9909 SDValue Var = Op0.getOperand(0);
9910 if (!DAG.isKnownNeverSNaN(Var))
9911 return SDValue();
9912
9913 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9914
9915 if ((!K0->hasOneUse() ||
9916 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9917 (!K1->hasOneUse() ||
9918 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9919 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9920 Var, SDValue(K0, 0), SDValue(K1, 0));
9921 }
9922 }
9923
9924 return SDValue();
9925}
9926
9927SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9928 DAGCombinerInfo &DCI) const {
9929 SelectionDAG &DAG = DCI.DAG;
9930
9931 EVT VT = N->getValueType(0);
9932 unsigned Opc = N->getOpcode();
9933 SDValue Op0 = N->getOperand(0);
9934 SDValue Op1 = N->getOperand(1);
9935
9936 // Only do this if the inner op has one use since this will just increases
9937 // register pressure for no benefit.
9938
9939 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9940 !VT.isVector() &&
9941 (VT == MVT::i32 || VT == MVT::f32 ||
9942 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9943 // max(max(a, b), c) -> max3(a, b, c)
9944 // min(min(a, b), c) -> min3(a, b, c)
9945 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9946 SDLoc DL(N);
9947 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9948 DL,
9949 N->getValueType(0),
9950 Op0.getOperand(0),
9951 Op0.getOperand(1),
9952 Op1);
9953 }
9954
9955 // Try commuted.
9956 // max(a, max(b, c)) -> max3(a, b, c)
9957 // min(a, min(b, c)) -> min3(a, b, c)
9958 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9959 SDLoc DL(N);
9960 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9961 DL,
9962 N->getValueType(0),
9963 Op0,
9964 Op1.getOperand(0),
9965 Op1.getOperand(1));
9966 }
9967 }
9968
9969 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9970 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9971 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9972 return Med3;
9973 }
9974
9975 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9976 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9977 return Med3;
9978 }
9979
9980 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9981 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9982 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9983 (Opc == AMDGPUISD::FMIN_LEGACY &&
9984 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9985 (VT == MVT::f32 || VT == MVT::f64 ||
9986 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9987 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9988 Op0.hasOneUse()) {
9989 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9990 return Res;
9991 }
9992
9993 return SDValue();
9994}
9995
9996static bool isClampZeroToOne(SDValue A, SDValue B) {
9997 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9998 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9999 // FIXME: Should this be allowing -0.0?
10000 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10001 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10002 }
10003 }
10004
10005 return false;
10006}
10007
10008// FIXME: Should only worry about snans for version with chain.
10009SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10010 DAGCombinerInfo &DCI) const {
10011 EVT VT = N->getValueType(0);
10012 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10013 // NaNs. With a NaN input, the order of the operands may change the result.
10014
10015 SelectionDAG &DAG = DCI.DAG;
10016 SDLoc SL(N);
10017
10018 SDValue Src0 = N->getOperand(0);
10019 SDValue Src1 = N->getOperand(1);
10020 SDValue Src2 = N->getOperand(2);
10021
10022 if (isClampZeroToOne(Src0, Src1)) {
10023 // const_a, const_b, x -> clamp is safe in all cases including signaling
10024 // nans.
10025 // FIXME: Should this be allowing -0.0?
10026 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10027 }
10028
10029 const MachineFunction &MF = DAG.getMachineFunction();
10030 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10031
10032 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10033 // handling no dx10-clamp?
10034 if (Info->getMode().DX10Clamp) {
10035 // If NaNs is clamped to 0, we are free to reorder the inputs.
10036
10037 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10038 std::swap(Src0, Src1);
10039
10040 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10041 std::swap(Src1, Src2);
10042
10043 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10044 std::swap(Src0, Src1);
10045
10046 if (isClampZeroToOne(Src1, Src2))
10047 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10048 }
10049
10050 return SDValue();
10051}
10052
10053SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10054 DAGCombinerInfo &DCI) const {
10055 SDValue Src0 = N->getOperand(0);
10056 SDValue Src1 = N->getOperand(1);
10057 if (Src0.isUndef() && Src1.isUndef())
10058 return DCI.DAG.getUNDEF(N->getValueType(0));
10059 return SDValue();
10060}
10061
10062// Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10063// expanded into a set of cmp/select instructions.
10064bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10065 unsigned NumElem,
10066 bool IsDivergentIdx) {
10067 if (UseDivergentRegisterIndexing)
10068 return false;
10069
10070 unsigned VecSize = EltSize * NumElem;
10071
10072 // Sub-dword vectors of size 2 dword or less have better implementation.
10073 if (VecSize <= 64 && EltSize < 32)
10074 return false;
10075
10076 // Always expand the rest of sub-dword instructions, otherwise it will be
10077 // lowered via memory.
10078 if (EltSize < 32)
10079 return true;
10080
10081 // Always do this if var-idx is divergent, otherwise it will become a loop.
10082 if (IsDivergentIdx)
10083 return true;
10084
10085 // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10086 unsigned NumInsts = NumElem /* Number of compares */ +
10087 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10088 return NumInsts <= 16;
10089}
10090
10091static bool shouldExpandVectorDynExt(SDNode *N) {
10092 SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10093 if (isa<ConstantSDNode>(Idx))
10094 return false;
10095
10096 SDValue Vec = N->getOperand(0);
10097 EVT VecVT = Vec.getValueType();
10098 EVT EltVT = VecVT.getVectorElementType();
10099 unsigned EltSize = EltVT.getSizeInBits();
10100 unsigned NumElem = VecVT.getVectorNumElements();
10101
10102 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10103 Idx->isDivergent());
10104}
10105
10106SDValue SITargetLowering::performExtractVectorEltCombine(
10107 SDNode *N, DAGCombinerInfo &DCI) const {
10108 SDValue Vec = N->getOperand(0);
10109 SelectionDAG &DAG = DCI.DAG;
10110
10111 EVT VecVT = Vec.getValueType();
10112 EVT EltVT = VecVT.getVectorElementType();
10113
10114 if ((Vec.getOpcode() == ISD::FNEG ||
10115 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10116 SDLoc SL(N);
10117 EVT EltVT = N->getValueType(0);
10118 SDValue Idx = N->getOperand(1);
10119 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10120 Vec.getOperand(0), Idx);
10121 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10122 }
10123
10124 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10125 // =>
10126 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10127 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10128 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10129 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10130 SDLoc SL(N);
10131 EVT EltVT = N->getValueType(0);
10132 SDValue Idx = N->getOperand(1);
10133 unsigned Opc = Vec.getOpcode();
10134
10135 switch(Opc) {
10136 default:
10137 break;
10138 // TODO: Support other binary operations.
10139 case ISD::FADD:
10140 case ISD::FSUB:
10141 case ISD::FMUL:
10142 case ISD::ADD:
10143 case ISD::UMIN:
10144 case ISD::UMAX:
10145 case ISD::SMIN:
10146 case ISD::SMAX:
10147 case ISD::FMAXNUM:
10148 case ISD::FMINNUM:
10149 case ISD::FMAXNUM_IEEE:
10150 case ISD::FMINNUM_IEEE: {
10151 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10152 Vec.getOperand(0), Idx);
10153 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10154 Vec.getOperand(1), Idx);
10155
10156 DCI.AddToWorklist(Elt0.getNode());
10157 DCI.AddToWorklist(Elt1.getNode());
10158 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10159 }
10160 }
10161 }
10162
10163 unsigned VecSize = VecVT.getSizeInBits();
10164 unsigned EltSize = EltVT.getSizeInBits();
10165
10166 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10167 if (::shouldExpandVectorDynExt(N)) {
10168 SDLoc SL(N);
10169 SDValue Idx = N->getOperand(1);
10170 SDValue V;
10171 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10172 SDValue IC = DAG.getVectorIdxConstant(I, SL);
10173 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10174 if (I == 0)
10175 V = Elt;
10176 else
10177 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10178 }
10179 return V;
10180 }
10181
10182 if (!DCI.isBeforeLegalize())
10183 return SDValue();
10184
10185 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10186 // elements. This exposes more load reduction opportunities by replacing
10187 // multiple small extract_vector_elements with a single 32-bit extract.
10188 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10189 if (isa<MemSDNode>(Vec) &&
10190 EltSize <= 16 &&
10191 EltVT.isByteSized() &&
10192 VecSize > 32 &&
10193 VecSize % 32 == 0 &&
10194 Idx) {
10195 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10196
10197 unsigned BitIndex = Idx->getZExtValue() * EltSize;
10198 unsigned EltIdx = BitIndex / 32;
10199 unsigned LeftoverBitIdx = BitIndex % 32;
10200 SDLoc SL(N);
10201
10202 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10203 DCI.AddToWorklist(Cast.getNode());
10204
10205 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10206 DAG.getConstant(EltIdx, SL, MVT::i32));
10207 DCI.AddToWorklist(Elt.getNode());
10208 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10209 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10210 DCI.AddToWorklist(Srl.getNode());
10211
10212 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10213 DCI.AddToWorklist(Trunc.getNode());
10214 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10215 }
10216
10217 return SDValue();
10218}
10219
10220SDValue
10221SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10222 DAGCombinerInfo &DCI) const {
10223 SDValue Vec = N->getOperand(0);
10224 SDValue Idx = N->getOperand(2);
10225 EVT VecVT = Vec.getValueType();
10226 EVT EltVT = VecVT.getVectorElementType();
10227
10228 // INSERT_VECTOR_ELT (<n x e>, var-idx)
10229 // => BUILD_VECTOR n x select (e, const-idx)
10230 if (!::shouldExpandVectorDynExt(N))
10231 return SDValue();
10232
10233 SelectionDAG &DAG = DCI.DAG;
10234 SDLoc SL(N);
10235 SDValue Ins = N->getOperand(1);
10236 EVT IdxVT = Idx.getValueType();
10237
10238 SmallVector<SDValue, 16> Ops;
10239 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10240 SDValue IC = DAG.getConstant(I, SL, IdxVT);
10241 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10242 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10243 Ops.push_back(V);
10244 }
10245
10246 return DAG.getBuildVector(VecVT, SL, Ops);
10247}
10248
10249unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10250 const SDNode *N0,
10251 const SDNode *N1) const {
10252 EVT VT = N0->getValueType(0);
10253
10254 // Only do this if we are not trying to support denormals. v_mad_f32 does not
10255 // support denormals ever.
10256 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10257 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10258 getSubtarget()->hasMadF16())) &&
10259 isOperationLegal(ISD::FMAD, VT))
10260 return ISD::FMAD;
10261
10262 const TargetOptions &Options = DAG.getTarget().Options;
10263 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10264 (N0->getFlags().hasAllowContract() &&
10265 N1->getFlags().hasAllowContract())) &&
10266 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10267 return ISD::FMA;
10268 }
10269
10270 return 0;
10271}
10272
10273// For a reassociatable opcode perform:
10274// op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10275SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10276 SelectionDAG &DAG) const {
10277 EVT VT = N->getValueType(0);
10278 if (VT != MVT::i32 && VT != MVT::i64)
10279 return SDValue();
10280
10281 unsigned Opc = N->getOpcode();
10282 SDValue Op0 = N->getOperand(0);
10283 SDValue Op1 = N->getOperand(1);
10284
10285 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10286 return SDValue();
10287
10288 if (Op0->isDivergent())
10289 std::swap(Op0, Op1);
10290
10291 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10292 return SDValue();
10293
10294 SDValue Op2 = Op1.getOperand(1);
10295 Op1 = Op1.getOperand(0);
10296 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10297 return SDValue();
10298
10299 if (Op1->isDivergent())
10300 std::swap(Op1, Op2);
10301
10302 // If either operand is constant this will conflict with
10303 // DAGCombiner::ReassociateOps().
10304 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10305 DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10306 return SDValue();
10307
10308 SDLoc SL(N);
10309 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10310 return DAG.getNode(Opc, SL, VT, Add1, Op2);
10311}
10312
10313static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10314 EVT VT,
10315 SDValue N0, SDValue N1, SDValue N2,
10316 bool Signed) {
10317 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10318 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10319 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10320 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10321}
10322
10323SDValue SITargetLowering::performAddCombine(SDNode *N,
10324 DAGCombinerInfo &DCI) const {
10325 SelectionDAG &DAG = DCI.DAG;
10326 EVT VT = N->getValueType(0);
10327 SDLoc SL(N);
10328 SDValue LHS = N->getOperand(0);
10329 SDValue RHS = N->getOperand(1);
10330
10331 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10332 && Subtarget->hasMad64_32() &&
10333 !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10334 VT.getScalarSizeInBits() <= 64) {
10335 if (LHS.getOpcode() != ISD::MUL)
10336 std::swap(LHS, RHS);
10337
10338 SDValue MulLHS = LHS.getOperand(0);
10339 SDValue MulRHS = LHS.getOperand(1);
10340 SDValue AddRHS = RHS;
10341
10342 // TODO: Maybe restrict if SGPR inputs.
10343 if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10344 numBitsUnsigned(MulRHS, DAG) <= 32) {
10345 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10346 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10347 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10348 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10349 }
10350
10351 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10352 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10353 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10354 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10355 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10356 }
10357
10358 return SDValue();
10359 }
10360
10361 if (SDValue V = reassociateScalarOps(N, DAG)) {
10362 return V;
10363 }
10364
10365 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10366 return SDValue();
10367
10368 // add x, zext (setcc) => addcarry x, 0, setcc
10369 // add x, sext (setcc) => subcarry x, 0, setcc
10370 unsigned Opc = LHS.getOpcode();
10371 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10372 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10373 std::swap(RHS, LHS);
10374
10375 Opc = RHS.getOpcode();
10376 switch (Opc) {
10377 default: break;
10378 case ISD::ZERO_EXTEND:
10379 case ISD::SIGN_EXTEND:
10380 case ISD::ANY_EXTEND: {
10381 auto Cond = RHS.getOperand(0);
10382 // If this won't be a real VOPC output, we would still need to insert an
10383 // extra instruction anyway.
10384 if (!isBoolSGPR(Cond))
10385 break;
10386 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10387 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10388 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10389 return DAG.getNode(Opc, SL, VTList, Args);
10390 }
10391 case ISD::ADDCARRY: {
10392 // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10393 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10394 if (!C || C->getZExtValue() != 0) break;
10395 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10396 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10397 }
10398 }
10399 return SDValue();
10400}
10401
10402SDValue SITargetLowering::performSubCombine(SDNode *N,
10403 DAGCombinerInfo &DCI) const {
10404 SelectionDAG &DAG = DCI.DAG;
10405 EVT VT = N->getValueType(0);
10406
10407 if (VT != MVT::i32)
10408 return SDValue();
10409
10410 SDLoc SL(N);
10411 SDValue LHS = N->getOperand(0);
10412 SDValue RHS = N->getOperand(1);
10413
10414 // sub x, zext (setcc) => subcarry x, 0, setcc
10415 // sub x, sext (setcc) => addcarry x, 0, setcc
10416 unsigned Opc = RHS.getOpcode();
10417 switch (Opc) {
10418 default: break;
10419 case ISD::ZERO_EXTEND:
10420 case ISD::SIGN_EXTEND:
10421 case ISD::ANY_EXTEND: {
10422 auto Cond = RHS.getOperand(0);
10423 // If this won't be a real VOPC output, we would still need to insert an
10424 // extra instruction anyway.
10425 if (!isBoolSGPR(Cond))
10426 break;
10427 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10428 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10429 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10430 return DAG.getNode(Opc, SL, VTList, Args);
10431 }
10432 }
10433
10434 if (LHS.getOpcode() == ISD::SUBCARRY) {
10435 // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10436 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10437 if (!C || !C->isNullValue())
10438 return SDValue();
10439 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10440 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10441 }
10442 return SDValue();
10443}
10444
10445SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10446 DAGCombinerInfo &DCI) const {
10447
10448 if (N->getValueType(0) != MVT::i32)
10449 return SDValue();
10450
10451 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10452 if (!C || C->getZExtValue() != 0)
10453 return SDValue();
10454
10455 SelectionDAG &DAG = DCI.DAG;
10456 SDValue LHS = N->getOperand(0);
10457
10458 // addcarry (add x, y), 0, cc => addcarry x, y, cc
10459 // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10460 unsigned LHSOpc = LHS.getOpcode();
10461 unsigned Opc = N->getOpcode();
10462 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10463 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10464 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10465 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10466 }
10467 return SDValue();
10468}
10469
10470SDValue SITargetLowering::performFAddCombine(SDNode *N,
10471 DAGCombinerInfo &DCI) const {
10472 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10473 return SDValue();
10474
10475 SelectionDAG &DAG = DCI.DAG;
10476 EVT VT = N->getValueType(0);
10477
10478 SDLoc SL(N);
10479 SDValue LHS = N->getOperand(0);
10480 SDValue RHS = N->getOperand(1);
10481
10482 // These should really be instruction patterns, but writing patterns with
10483 // source modiifiers is a pain.
10484
10485 // fadd (fadd (a, a), b) -> mad 2.0, a, b
10486 if (LHS.getOpcode() == ISD::FADD) {
10487 SDValue A = LHS.getOperand(0);
10488 if (A == LHS.getOperand(1)) {
10489 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10490 if (FusedOp != 0) {
10491 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10492 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10493 }
10494 }
10495 }
10496
10497 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10498 if (RHS.getOpcode() == ISD::FADD) {
10499 SDValue A = RHS.getOperand(0);
10500 if (A == RHS.getOperand(1)) {
10501 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10502 if (FusedOp != 0) {
10503 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10504 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10505 }
10506 }
10507 }
10508
10509 return SDValue();
10510}
10511
10512SDValue SITargetLowering::performFSubCombine(SDNode *N,
10513 DAGCombinerInfo &DCI) const {
10514 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10515 return SDValue();
10516
10517 SelectionDAG &DAG = DCI.DAG;
10518 SDLoc SL(N);
10519 EVT VT = N->getValueType(0);
10520 assert(!VT.isVector())((void)0);
10521
10522 // Try to get the fneg to fold into the source modifier. This undoes generic
10523 // DAG combines and folds them into the mad.
10524 //
10525 // Only do this if we are not trying to support denormals. v_mad_f32 does
10526 // not support denormals ever.
10527 SDValue LHS = N->getOperand(0);
10528 SDValue RHS = N->getOperand(1);
10529 if (LHS.getOpcode() == ISD::FADD) {
10530 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10531 SDValue A = LHS.getOperand(0);
10532 if (A == LHS.getOperand(1)) {
10533 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10534 if (FusedOp != 0){
10535 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10536 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10537
10538 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10539 }
10540 }
10541 }
10542
10543 if (RHS.getOpcode() == ISD::FADD) {
10544 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10545
10546 SDValue A = RHS.getOperand(0);
10547 if (A == RHS.getOperand(1)) {
10548 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10549 if (FusedOp != 0){
10550 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10551 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10552 }
10553 }
10554 }
10555
10556 return SDValue();
10557}
10558
10559SDValue SITargetLowering::performFMACombine(SDNode *N,
10560 DAGCombinerInfo &DCI) const {
10561 SelectionDAG &DAG = DCI.DAG;
10562 EVT VT = N->getValueType(0);
10563 SDLoc SL(N);
10564
10565 if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
10566 return SDValue();
10567
10568 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10569 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10570 SDValue Op1 = N->getOperand(0);
10571 SDValue Op2 = N->getOperand(1);
10572 SDValue FMA = N->getOperand(2);
10573
10574 if (FMA.getOpcode() != ISD::FMA ||
10575 Op1.getOpcode() != ISD::FP_EXTEND ||
10576 Op2.getOpcode() != ISD::FP_EXTEND)
10577 return SDValue();
10578
10579 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10580 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10581 // is sufficient to allow generaing fdot2.
10582 const TargetOptions &Options = DAG.getTarget().Options;
10583 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10584 (N->getFlags().hasAllowContract() &&
10585 FMA->getFlags().hasAllowContract())) {
10586 Op1 = Op1.getOperand(0);
10587 Op2 = Op2.getOperand(0);
10588 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10589 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10590 return SDValue();
10591
10592 SDValue Vec1 = Op1.getOperand(0);
10593 SDValue Idx1 = Op1.getOperand(1);
10594 SDValue Vec2 = Op2.getOperand(0);
10595
10596 SDValue FMAOp1 = FMA.getOperand(0);
10597 SDValue FMAOp2 = FMA.getOperand(1);
10598 SDValue FMAAcc = FMA.getOperand(2);
10599
10600 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10601 FMAOp2.getOpcode() != ISD::FP_EXTEND)
10602 return SDValue();
10603
10604 FMAOp1 = FMAOp1.getOperand(0);
10605 FMAOp2 = FMAOp2.getOperand(0);
10606 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10607 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10608 return SDValue();
10609
10610 SDValue Vec3 = FMAOp1.getOperand(0);
10611 SDValue Vec4 = FMAOp2.getOperand(0);
10612 SDValue Idx2 = FMAOp1.getOperand(1);
10613
10614 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10615 // Idx1 and Idx2 cannot be the same.
10616 Idx1 == Idx2)
10617 return SDValue();
10618
10619 if (Vec1 == Vec2 || Vec3 == Vec4)
10620 return SDValue();
10621
10622 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10623 return SDValue();
10624
10625 if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10626 (Vec1 == Vec4 && Vec2 == Vec3)) {
10627 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10628 DAG.getTargetConstant(0, SL, MVT::i1));
10629 }
10630 }
10631 return SDValue();
10632}
10633
10634SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10635 DAGCombinerInfo &DCI) const {
10636 SelectionDAG &DAG = DCI.DAG;
10637 SDLoc SL(N);
10638
10639 SDValue LHS = N->getOperand(0);
10640 SDValue RHS = N->getOperand(1);
10641 EVT VT = LHS.getValueType();
10642 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10643
10644 auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10645 if (!CRHS) {
10646 CRHS = dyn_cast<ConstantSDNode>(LHS);
10647 if (CRHS) {
10648 std::swap(LHS, RHS);
10649 CC = getSetCCSwappedOperands(CC);
10650 }
10651 }
10652
10653 if (CRHS) {
10654 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10655 isBoolSGPR(LHS.getOperand(0))) {
10656 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10657 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10658 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
10659 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
10660 if ((CRHS->isAllOnesValue() &&
10661 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10662 (CRHS->isNullValue() &&
10663 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10664 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10665 DAG.getConstant(-1, SL, MVT::i1));
10666 if ((CRHS->isAllOnesValue() &&
10667 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10668 (CRHS->isNullValue() &&
10669 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10670 return LHS.getOperand(0);
10671 }
10672
10673 uint64_t CRHSVal = CRHS->getZExtValue();
10674 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10675 LHS.getOpcode() == ISD::SELECT &&
10676 isa<ConstantSDNode>(LHS.getOperand(1)) &&
10677 isa<ConstantSDNode>(LHS.getOperand(2)) &&
10678 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10679 isBoolSGPR(LHS.getOperand(0))) {
10680 // Given CT != FT:
10681 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10682 // setcc (select cc, CT, CF), CF, ne => cc
10683 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10684 // setcc (select cc, CT, CF), CT, eq => cc
10685 uint64_t CT = LHS.getConstantOperandVal(1);
10686 uint64_t CF = LHS.getConstantOperandVal(2);
10687
10688 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10689 (CT == CRHSVal && CC == ISD::SETNE))
10690 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10691 DAG.getConstant(-1, SL, MVT::i1));
10692 if ((CF == CRHSVal && CC == ISD::SETNE) ||
10693 (CT == CRHSVal && CC == ISD::SETEQ))
10694 return LHS.getOperand(0);
10695 }
10696 }
10697
10698 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10699 VT != MVT::f16))
10700 return SDValue();
10701
10702 // Match isinf/isfinite pattern
10703 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10704 // (fcmp one (fabs x), inf) -> (fp_class x,
10705 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10706 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10707 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10708 if (!CRHS)
10709 return SDValue();
10710
10711 const APFloat &APF = CRHS->getValueAPF();
10712 if (APF.isInfinity() && !APF.isNegative()) {
10713 const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10714 SIInstrFlags::N_INFINITY;
10715 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10716 SIInstrFlags::P_ZERO |
10717 SIInstrFlags::N_NORMAL |
10718 SIInstrFlags::P_NORMAL |
10719 SIInstrFlags::N_SUBNORMAL |
10720 SIInstrFlags::P_SUBNORMAL;
10721 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10722 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10723 DAG.getConstant(Mask, SL, MVT::i32));
10724 }
10725 }
10726
10727 return SDValue();
10728}
10729
10730SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10731 DAGCombinerInfo &DCI) const {
10732 SelectionDAG &DAG = DCI.DAG;
10733 SDLoc SL(N);
10734 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10735
10736 SDValue Src = N->getOperand(0);
10737 SDValue Shift = N->getOperand(0);
10738
10739 // TODO: Extend type shouldn't matter (assuming legal types).
10740 if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10741 Shift = Shift.getOperand(0);
10742
10743 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10744 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x
10745 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10746 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10747 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10748 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
10749 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10750 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10751 SDLoc(Shift.getOperand(0)), MVT::i32);
10752
10753 unsigned ShiftOffset = 8 * Offset;
10754 if (Shift.getOpcode() == ISD::SHL)
10755 ShiftOffset -= C->getZExtValue();
10756 else
10757 ShiftOffset += C->getZExtValue();
10758
10759 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10760 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10761 MVT::f32, Shift);
10762 }
10763 }
10764 }
10765
10766 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10767 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10768 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10769 // We simplified Src. If this node is not dead, visit it again so it is
10770 // folded properly.
10771 if (N->getOpcode() != ISD::DELETED_NODE)
10772 DCI.AddToWorklist(N);
10773 return SDValue(N, 0);
10774 }
10775
10776 // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10777 if (SDValue DemandedSrc =
10778 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10779 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10780
10781 return SDValue();
10782}
10783
10784SDValue SITargetLowering::performClampCombine(SDNode *N,
10785 DAGCombinerInfo &DCI) const {
10786 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10787 if (!CSrc)
10788 return SDValue();
10789
10790 const MachineFunction &MF = DCI.DAG.getMachineFunction();
10791 const APFloat &F = CSrc->getValueAPF();
10792 APFloat Zero = APFloat::getZero(F.getSemantics());
10793 if (F < Zero ||
10794 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10795 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10796 }
10797
10798 APFloat One(F.getSemantics(), "1.0");
10799 if (F > One)
10800 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10801
10802 return SDValue(CSrc, 0);
10803}
10804
10805
10806SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10807 DAGCombinerInfo &DCI) const {
10808 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10809 return SDValue();
10810 switch (N->getOpcode()) {
10811 case ISD::ADD:
10812 return performAddCombine(N, DCI);
10813 case ISD::SUB:
10814 return performSubCombine(N, DCI);
10815 case ISD::ADDCARRY:
10816 case ISD::SUBCARRY:
10817 return performAddCarrySubCarryCombine(N, DCI);
10818 case ISD::FADD:
10819 return performFAddCombine(N, DCI);
10820 case ISD::FSUB:
10821 return performFSubCombine(N, DCI);
10822 case ISD::SETCC:
10823 return performSetCCCombine(N, DCI);
10824 case ISD::FMAXNUM:
10825 case ISD::FMINNUM:
10826 case ISD::FMAXNUM_IEEE:
10827 case ISD::FMINNUM_IEEE:
10828 case ISD::SMAX:
10829 case ISD::SMIN:
10830 case ISD::UMAX:
10831 case ISD::UMIN:
10832 case AMDGPUISD::FMIN_LEGACY:
10833 case AMDGPUISD::FMAX_LEGACY:
10834 return performMinMaxCombine(N, DCI);
10835 case ISD::FMA:
10836 return performFMACombine(N, DCI);
10837 case ISD::AND:
10838 return performAndCombine(N, DCI);
10839 case ISD::OR:
10840 return performOrCombine(N, DCI);
10841 case ISD::XOR:
10842 return performXorCombine(N, DCI);
10843 case ISD::ZERO_EXTEND:
10844 return performZeroExtendCombine(N, DCI);
10845 case ISD::SIGN_EXTEND_INREG:
10846 return performSignExtendInRegCombine(N , DCI);
10847 case AMDGPUISD::FP_CLASS:
10848 return performClassCombine(N, DCI);
10849 case ISD::FCANONICALIZE:
10850 return performFCanonicalizeCombine(N, DCI);
10851 case AMDGPUISD::RCP:
10852 return performRcpCombine(N, DCI);
10853 case AMDGPUISD::FRACT:
10854 case AMDGPUISD::RSQ:
10855 case AMDGPUISD::RCP_LEGACY:
10856 case AMDGPUISD::RCP_IFLAG:
10857 case AMDGPUISD::RSQ_CLAMP:
10858 case AMDGPUISD::LDEXP: {
10859 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10860 SDValue Src = N->getOperand(0);
10861 if (Src.isUndef())
10862 return Src;
10863 break;
10864 }
10865 case ISD::SINT_TO_FP:
10866 case ISD::UINT_TO_FP:
10867 return performUCharToFloatCombine(N, DCI);
10868 case AMDGPUISD::CVT_F32_UBYTE0:
10869 case AMDGPUISD::CVT_F32_UBYTE1:
10870 case AMDGPUISD::CVT_F32_UBYTE2:
10871 case AMDGPUISD::CVT_F32_UBYTE3:
10872 return performCvtF32UByteNCombine(N, DCI);
10873 case AMDGPUISD::FMED3:
10874 return performFMed3Combine(N, DCI);
10875 case AMDGPUISD::CVT_PKRTZ_F16_F32:
10876 return performCvtPkRTZCombine(N, DCI);
10877 case AMDGPUISD::CLAMP:
10878 return performClampCombine(N, DCI);
10879 case ISD::SCALAR_TO_VECTOR: {
10880 SelectionDAG &DAG = DCI.DAG;
10881 EVT VT = N->getValueType(0);
10882
10883 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10884 if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10885 SDLoc SL(N);
10886 SDValue Src = N->getOperand(0);
10887 EVT EltVT = Src.getValueType();
10888 if (EltVT == MVT::f16)
10889 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10890
10891 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10892 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10893 }
10894
10895 break;
10896 }
10897 case ISD::EXTRACT_VECTOR_ELT:
10898 return performExtractVectorEltCombine(N, DCI);
10899 case ISD::INSERT_VECTOR_ELT:
10900 return performInsertVectorEltCombine(N, DCI);
10901 case ISD::LOAD: {
10902 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10903 return Widended;
10904 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10905 }
10906 default: {
10907 if (!DCI.isBeforeLegalize()) {
10908 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10909 return performMemSDNodeCombine(MemNode, DCI);
10910 }
10911
10912 break;
10913 }
10914 }
10915
10916 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10917}
10918
10919/// Helper function for adjustWritemask
10920static unsigned SubIdx2Lane(unsigned Idx) {
10921 switch (Idx) {
10922 default: return ~0u;
10923 case AMDGPU::sub0: return 0;
10924 case AMDGPU::sub1: return 1;
10925 case AMDGPU::sub2: return 2;
10926 case AMDGPU::sub3: return 3;
10927 case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10928 }
10929}
10930
10931/// Adjust the writemask of MIMG instructions
10932SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10933 SelectionDAG &DAG) const {
10934 unsigned Opcode = Node->getMachineOpcode();
10935
10936 // Subtract 1 because the vdata output is not a MachineSDNode operand.
10937 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10938 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
7
Assuming 'D16Idx' is < 0
10939 return Node; // not implemented for D16
10940
10941 SDNode *Users[5] = { nullptr };
8
Initializing to a null pointer value
10942 unsigned Lane = 0;
9
'Lane' initialized to 0
10943 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10944 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10945 unsigned NewDmask = 0;
10946 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10947 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10948 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
10
Assuming 'TFEIdx' is < 0
12
'?' condition is true
10949 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
11
Assuming the condition is true
10950 unsigned TFCLane = 0;
10951 bool HasChain = Node->getNumValues() > 1;
13
Assuming the condition is false
10952
10953 if (OldDmask == 0) {
14
Assuming 'OldDmask' is not equal to 0
15
Taking false branch
10954 // These are folded out, but on the chance it happens don't assert.
10955 return Node;
10956 }
10957
10958 unsigned OldBitsSet = countPopulation(OldDmask);
10959 // Work out which is the TFE/LWE lane if that is enabled.
10960 if (UsesTFC
15.1
'UsesTFC' is true
) {
16
Taking true branch
10961 TFCLane = OldBitsSet;
10962 }
10963
10964 // Try to figure out the used register components
10965 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
17
Loop condition is false. Execution continues on line 11006
10966 I != E; ++I) {
10967
10968 // Don't look at users of the chain.
10969 if (I.getUse().getResNo() != 0)
10970 continue;
10971
10972 // Abort if we can't understand the usage
10973 if (!I->isMachineOpcode() ||
10974 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10975 return Node;
10976
10977 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10978 // Note that subregs are packed, i.e. Lane==0 is the first bit set
10979 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10980 // set, etc.
10981 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10982 if (Lane == ~0u)
10983 return Node;
10984
10985 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10986 if (UsesTFC && Lane == TFCLane) {
10987 Users[Lane] = *I;
10988 } else {
10989 // Set which texture component corresponds to the lane.
10990 unsigned Comp;
10991 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10992 Comp = countTrailingZeros(Dmask);
10993 Dmask &= ~(1 << Comp);
10994 }
10995
10996 // Abort if we have more than one user per component.
10997 if (Users[Lane])
10998 return Node;
10999
11000 Users[Lane] = *I;
11001 NewDmask |= 1 << Comp;
11002 }
11003 }
11004
11005 // Don't allow 0 dmask, as hardware assumes one channel enabled.
11006 bool NoChannels = !NewDmask;
11007 if (NoChannels
17.1
'NoChannels' is true
) {
18
Taking true branch
11008 if (!UsesTFC
18.1
'UsesTFC' is true
) {
19
Taking false branch
11009 // No uses of the result and not using TFC. Then do nothing.
11010 return Node;
11011 }
11012 // If the original dmask has one channel - then nothing to do
11013 if (OldBitsSet == 1)
20
Assuming 'OldBitsSet' is not equal to 1
21
Taking false branch
11014 return Node;
11015 // Use an arbitrary dmask - required for the instruction to work
11016 NewDmask = 1;
11017 }
11018 // Abort if there's no change
11019 if (NewDmask == OldDmask)
22
Assuming 'NewDmask' is not equal to 'OldDmask'
23
Taking false branch
11020 return Node;
11021
11022 unsigned BitsSet = countPopulation(NewDmask);
11023
11024 // Check for TFE or LWE - increase the number of channels by one to account
11025 // for the extra return value
11026 // This will need adjustment for D16 if this is also included in
11027 // adjustWriteMask (this function) but at present D16 are excluded.
11028 unsigned NewChannels = BitsSet + UsesTFC;
11029
11030 int NewOpcode =
11031 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11032 assert(NewOpcode != -1 &&((void)0)
11033 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&((void)0)
11034 "failed to find equivalent MIMG op")((void)0);
11035
11036 // Adjust the writemask in the node
11037 SmallVector<SDValue, 12> Ops;
11038 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11039 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11040 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11041
11042 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11043
11044 MVT ResultVT = NewChannels == 1 ?
24
Assuming 'NewChannels' is equal to 1
25
'?' condition is true
11045 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11046 NewChannels == 5 ? 8 : NewChannels);
11047 SDVTList NewVTList = HasChain
25.1
'HasChain' is false
?
26
'?' condition is false
11048 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11049
11050
11051 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11052 NewVTList, Ops);
11053
11054 if (HasChain
26.1
'HasChain' is false
) {
27
Taking false branch
11055 // Update chain.
11056 DAG.setNodeMemRefs(NewNode, Node->memoperands());
11057 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11058 }
11059
11060 if (NewChannels
27.1
'NewChannels' is equal to 1
== 1) {
28
Taking true branch
11061 assert(Node->hasNUsesOfValue(1, 0))((void)0);
11062 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11063 SDLoc(Node), Users[Lane]->getValueType(0),
29
Called C++ object pointer is null
11064 SDValue(NewNode, 0));
11065 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11066 return nullptr;
11067 }
11068
11069 // Update the users of the node with the new indices
11070 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11071 SDNode *User = Users[i];
11072 if (!User) {
11073 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11074 // Users[0] is still nullptr because channel 0 doesn't really have a use.
11075 if (i || !NoChannels)
11076 continue;
11077 } else {
11078 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11079 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11080 }
11081
11082 switch (Idx) {
11083 default: break;
11084 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11085 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11086 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11087 case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11088 }
11089 }
11090
11091 DAG.RemoveDeadNode(Node);
11092 return nullptr;
11093}
11094
11095static bool isFrameIndexOp(SDValue Op) {
11096 if (Op.getOpcode() == ISD::AssertZext)
11097 Op = Op.getOperand(0);
11098
11099 return isa<FrameIndexSDNode>(Op);
11100}
11101
11102/// Legalize target independent instructions (e.g. INSERT_SUBREG)
11103/// with frame index operands.
11104/// LLVM assumes that inputs are to these instructions are registers.
11105SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11106 SelectionDAG &DAG) const {
11107 if (Node->getOpcode() == ISD::CopyToReg) {
11108 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11109 SDValue SrcVal = Node->getOperand(2);
11110
11111 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11112 // to try understanding copies to physical registers.
11113 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11114 SDLoc SL(Node);
11115 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11116 SDValue VReg = DAG.getRegister(
11117 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11118
11119 SDNode *Glued = Node->getGluedNode();
11120 SDValue ToVReg
11121 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11122 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11123 SDValue ToResultReg
11124 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11125 VReg, ToVReg.getValue(1));
11126 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11127 DAG.RemoveDeadNode(Node);
11128 return ToResultReg.getNode();
11129 }
11130 }
11131
11132 SmallVector<SDValue, 8> Ops;
11133 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11134 if (!isFrameIndexOp(Node->getOperand(i))) {
11135 Ops.push_back(Node->getOperand(i));
11136 continue;
11137 }
11138
11139 SDLoc DL(Node);
11140 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11141 Node->getOperand(i).getValueType(),
11142 Node->getOperand(i)), 0));
11143 }
11144
11145 return DAG.UpdateNodeOperands(Node, Ops);
11146}
11147
11148/// Fold the instructions after selecting them.
11149/// Returns null if users were already updated.
11150SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11151 SelectionDAG &DAG) const {
11152 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11153 unsigned Opcode = Node->getMachineOpcode();
11154
11155 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
1
Assuming the condition is true
2
Assuming the condition is true
5
Taking true branch
11156 !TII->isGather4(Opcode) &&
3
Assuming the condition is true
11157 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
4
Assuming the condition is true
11158 return adjustWritemask(Node, DAG);
6
Calling 'SITargetLowering::adjustWritemask'
11159 }
11160
11161 if (Opcode == AMDGPU::INSERT_SUBREG ||
11162 Opcode == AMDGPU::REG_SEQUENCE) {
11163 legalizeTargetIndependentNode(Node, DAG);
11164 return Node;
11165 }
11166
11167 switch (Opcode) {
11168 case AMDGPU::V_DIV_SCALE_F32_e64:
11169 case AMDGPU::V_DIV_SCALE_F64_e64: {
11170 // Satisfy the operand register constraint when one of the inputs is
11171 // undefined. Ordinarily each undef value will have its own implicit_def of
11172 // a vreg, so force these to use a single register.
11173 SDValue Src0 = Node->getOperand(1);
11174 SDValue Src1 = Node->getOperand(3);
11175 SDValue Src2 = Node->getOperand(5);
11176
11177 if ((Src0.isMachineOpcode() &&
11178 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11179 (Src0 == Src1 || Src0 == Src2))
11180 break;
11181
11182 MVT VT = Src0.getValueType().getSimpleVT();
11183 const TargetRegisterClass *RC =
11184 getRegClassFor(VT, Src0.getNode()->isDivergent());
11185
11186 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11187 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11188
11189 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11190 UndefReg, Src0, SDValue());
11191
11192 // src0 must be the same register as src1 or src2, even if the value is
11193 // undefined, so make sure we don't violate this constraint.
11194 if (Src0.isMachineOpcode() &&
11195 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11196 if (Src1.isMachineOpcode() &&
11197 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11198 Src0 = Src1;
11199 else if (Src2.isMachineOpcode() &&
11200 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11201 Src0 = Src2;
11202 else {
11203 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)((void)0);
11204 Src0 = UndefReg;
11205 Src1 = UndefReg;
11206 }
11207 } else
11208 break;
11209
11210 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11211 Ops[1] = Src0;
11212 Ops[3] = Src1;
11213 Ops[5] = Src2;
11214 Ops.push_back(ImpDef.getValue(1));
11215 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11216 }
11217 default:
11218 break;
11219 }
11220
11221 return Node;
11222}
11223
11224// Any MIMG instructions that use tfe or lwe require an initialization of the
11225// result register that will be written in the case of a memory access failure.
11226// The required code is also added to tie this init code to the result of the
11227// img instruction.
11228void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11229 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11230 const SIRegisterInfo &TRI = TII->getRegisterInfo();
11231 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11232 MachineBasicBlock &MBB = *MI.getParent();
11233
11234 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11235 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11236 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11237
11238 if (!TFE && !LWE) // intersect_ray
11239 return;
11240
11241 unsigned TFEVal = TFE ? TFE->getImm() : 0;
11242 unsigned LWEVal = LWE->getImm();
11243 unsigned D16Val = D16 ? D16->getImm() : 0;
11244
11245 if (!TFEVal && !LWEVal)
11246 return;
11247
11248 // At least one of TFE or LWE are non-zero
11249 // We have to insert a suitable initialization of the result value and
11250 // tie this to the dest of the image instruction.
11251
11252 const DebugLoc &DL = MI.getDebugLoc();
11253
11254 int DstIdx =
11255 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11256
11257 // Calculate which dword we have to initialize to 0.
11258 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11259
11260 // check that dmask operand is found.
11261 assert(MO_Dmask && "Expected dmask operand in instruction")((void)0);
11262
11263 unsigned dmask = MO_Dmask->getImm();
11264 // Determine the number of active lanes taking into account the
11265 // Gather4 special case
11266 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11267
11268 bool Packed = !Subtarget->hasUnpackedD16VMem();
11269
11270 unsigned InitIdx =
11271 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11272
11273 // Abandon attempt if the dst size isn't large enough
11274 // - this is in fact an error but this is picked up elsewhere and
11275 // reported correctly.
11276 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11277 if (DstSize < InitIdx)
11278 return;
11279
11280 // Create a register for the intialization value.
11281 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11282 unsigned NewDst = 0; // Final initialized value will be in here
11283
11284 // If PRTStrictNull feature is enabled (the default) then initialize
11285 // all the result registers to 0, otherwise just the error indication
11286 // register (VGPRn+1)
11287 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11288 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11289
11290 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11291 for (; SizeLeft; SizeLeft--, CurrIdx++) {
11292 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11293 // Initialize dword
11294 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11295 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11296 .addImm(0);
11297 // Insert into the super-reg
11298 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11299 .addReg(PrevDst)
11300 .addReg(SubReg)
11301 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11302
11303 PrevDst = NewDst;
11304 }
11305
11306 // Add as an implicit operand
11307 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11308
11309 // Tie the just added implicit operand to the dst
11310 MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11311}
11312
11313/// Assign the register class depending on the number of
11314/// bits set in the writemask
11315void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11316 SDNode *Node) const {
11317 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11318
11319 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11320
11321 if (TII->isVOP3(MI.getOpcode())) {
11322 // Make sure constant bus requirements are respected.
11323 TII->legalizeOperandsVOP3(MRI, MI);
11324
11325 // Prefer VGPRs over AGPRs in mAI instructions where possible.
11326 // This saves a chain-copy of registers and better ballance register
11327 // use between vgpr and agpr as agpr tuples tend to be big.
11328 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11329 unsigned Opc = MI.getOpcode();
11330 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11331 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11332 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11333 if (I == -1)
11334 break;
11335 MachineOperand &Op = MI.getOperand(I);
11336 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11337 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11338 !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11339 continue;
11340 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11341 if (!Src || !Src->isCopy() ||
11342 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11343 continue;
11344 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11345 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11346 // All uses of agpr64 and agpr32 can also accept vgpr except for
11347 // v_accvgpr_read, but we do not produce agpr reads during selection,
11348 // so no use checks are needed.
11349 MRI.setRegClass(Op.getReg(), NewRC);
11350 }
11351 }
11352
11353 return;
11354 }
11355
11356 // Replace unused atomics with the no return version.
11357 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11358 if (NoRetAtomicOp != -1) {
11359 if (!Node->hasAnyUseOfValue(0)) {
11360 int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11361 AMDGPU::OpName::cpol);
11362 if (CPolIdx != -1) {
11363 MachineOperand &CPol = MI.getOperand(CPolIdx);
11364 CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC);
11365 }
11366 MI.RemoveOperand(0);
11367 MI.setDesc(TII->get(NoRetAtomicOp));
11368 return;
11369 }
11370
11371 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11372 // instruction, because the return type of these instructions is a vec2 of
11373 // the memory type, so it can be tied to the input operand.
11374 // This means these instructions always have a use, so we need to add a
11375 // special case to check if the atomic has only one extract_subreg use,
11376 // which itself has no uses.
11377 if ((Node->hasNUsesOfValue(1, 0) &&
11378 Node->use_begin()->isMachineOpcode() &&
11379 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11380 !Node->use_begin()->hasAnyUseOfValue(0))) {
11381 Register Def = MI.getOperand(0).getReg();
11382
11383 // Change this into a noret atomic.
11384 MI.setDesc(TII->get(NoRetAtomicOp));
11385 MI.RemoveOperand(0);
11386
11387 // If we only remove the def operand from the atomic instruction, the
11388 // extract_subreg will be left with a use of a vreg without a def.
11389 // So we need to insert an implicit_def to avoid machine verifier
11390 // errors.
11391 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11392 TII->get(AMDGPU::IMPLICIT_DEF), Def);
11393 }
11394 return;
11395 }
11396
11397 if (TII->isMIMG(MI) && !MI.mayStore())
11398 AddIMGInit(MI);
11399}
11400
11401static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11402 uint64_t Val) {
11403 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11404 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11405}
11406
11407MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11408 const SDLoc &DL,
11409 SDValue Ptr) const {
11410 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11411
11412 // Build the half of the subregister with the constants before building the
11413 // full 128-bit register. If we are building multiple resource descriptors,
11414 // this will allow CSEing of the 2-component register.
11415 const SDValue Ops0[] = {
11416 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11417 buildSMovImm32(DAG, DL, 0),
11418 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11419 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11420 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11421 };
11422
11423 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11424 MVT::v2i32, Ops0), 0);
11425
11426 // Combine the constants and the pointer.
11427 const SDValue Ops1[] = {
11428 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11429 Ptr,
11430 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11431 SubRegHi,
11432 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11433 };
11434
11435 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11436}
11437
11438/// Return a resource descriptor with the 'Add TID' bit enabled
11439/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11440/// of the resource descriptor) to create an offset, which is added to
11441/// the resource pointer.
11442MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11443 SDValue Ptr, uint32_t RsrcDword1,
11444 uint64_t RsrcDword2And3) const {
11445 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11446 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11447 if (RsrcDword1) {
11448 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11449 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11450 0);
11451 }
11452
11453 SDValue DataLo = buildSMovImm32(DAG, DL,
11454 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)0xFFFFFFFFULL);
11455 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11456
11457 const SDValue Ops[] = {
11458 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11459 PtrLo,
11460 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11461 PtrHi,
11462 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11463 DataLo,
11464 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11465 DataHi,
11466 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11467 };
11468
11469 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11470}
11471
11472//===----------------------------------------------------------------------===//
11473// SI Inline Assembly Support
11474//===----------------------------------------------------------------------===//
11475
11476std::pair<unsigned, const TargetRegisterClass *>
11477SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11478 StringRef Constraint,
11479 MVT VT) const {
11480 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11481
11482 const TargetRegisterClass *RC = nullptr;
11483 if (Constraint.size() == 1) {
11484 const unsigned BitWidth = VT.getSizeInBits();
11485 switch (Constraint[0]) {
11486 default:
11487 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11488 case 's':
11489 case 'r':
11490 switch (BitWidth) {
11491 case 16:
11492 RC = &AMDGPU::SReg_32RegClass;
11493 break;
11494 case 64:
11495 RC = &AMDGPU::SGPR_64RegClass;
11496 break;
11497 default:
11498 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11499 if (!RC)
11500 return std::make_pair(0U, nullptr);
11501 break;
11502 }
11503 break;
11504 case 'v':
11505 switch (BitWidth) {
11506 case 16:
11507 RC = &AMDGPU::VGPR_32RegClass;
11508 break;
11509 default:
11510 RC = TRI->getVGPRClassForBitWidth(BitWidth);
11511 if (!RC)
11512 return std::make_pair(0U, nullptr);
11513 break;
11514 }
11515 break;
11516 case 'a':
11517 if (!Subtarget->hasMAIInsts())
11518 break;
11519 switch (BitWidth) {
11520 case 16:
11521 RC = &AMDGPU::AGPR_32RegClass;
11522 break;
11523 default:
11524 RC = TRI->getAGPRClassForBitWidth(BitWidth);
11525 if (!RC)
11526 return std::make_pair(0U, nullptr);
11527 break;
11528 }
11529 break;
11530 }
11531 // We actually support i128, i16 and f16 as inline parameters
11532 // even if they are not reported as legal
11533 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11534 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11535 return std::make_pair(0U, RC);
11536 }
11537
11538 if (Constraint.size() > 1) {
11539 if (Constraint[1] == 'v') {
11540 RC = &AMDGPU::VGPR_32RegClass;
11541 } else if (Constraint[1] == 's') {
11542 RC = &AMDGPU::SGPR_32RegClass;
11543 } else if (Constraint[1] == 'a') {
11544 RC = &AMDGPU::AGPR_32RegClass;
11545 }
11546
11547 if (RC) {
11548 uint32_t Idx;
11549 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11550 if (!Failed && Idx < RC->getNumRegs())
11551 return std::make_pair(RC->getRegister(Idx), RC);
11552 }
11553 }
11554
11555 // FIXME: Returns VS_32 for physical SGPR constraints
11556 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11557}
11558
11559static bool isImmConstraint(StringRef Constraint) {
11560 if (Constraint.size() == 1) {
11561 switch (Constraint[0]) {
11562 default: break;
11563 case 'I':
11564 case 'J':
11565 case 'A':
11566 case 'B':
11567 case 'C':
11568 return true;
11569 }
11570 } else if (Constraint == "DA" ||
11571 Constraint == "DB") {
11572 return true;
11573 }
11574 return false;
11575}
11576
11577SITargetLowering::ConstraintType
11578SITargetLowering::getConstraintType(StringRef Constraint) const {
11579 if (Constraint.size() == 1) {
11580 switch (Constraint[0]) {
11581 default: break;
11582 case 's':
11583 case 'v':
11584 case 'a':
11585 return C_RegisterClass;
11586 }
11587 }
11588 if (isImmConstraint(Constraint)) {
11589 return C_Other;
11590 }
11591 return TargetLowering::getConstraintType(Constraint);
11592}
11593
11594static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11595 if (!AMDGPU::isInlinableIntLiteral(Val)) {
11596 Val = Val & maskTrailingOnes<uint64_t>(Size);
11597 }
11598 return Val;
11599}
11600
11601void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11602 std::string &Constraint,
11603 std::vector<SDValue> &Ops,
11604 SelectionDAG &DAG) const {
11605 if (isImmConstraint(Constraint)) {
11606 uint64_t Val;
11607 if (getAsmOperandConstVal(Op, Val) &&
11608 checkAsmConstraintVal(Op, Constraint, Val)) {
11609 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11610 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11611 }
11612 } else {
11613 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11614 }
11615}
11616
11617bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11618 unsigned Size = Op.getScalarValueSizeInBits();
11619 if (Size > 64)
11620 return false;
11621
11622 if (Size == 16 && !Subtarget->has16BitInsts())
11623 return false;
11624
11625 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11626 Val = C->getSExtValue();
11627 return true;
11628 }
11629 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11630 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11631 return true;
11632 }
11633 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11634 if (Size != 16 || Op.getNumOperands() != 2)
11635 return false;
11636 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11637 return false;
11638 if (ConstantSDNode *C = V->getConstantSplatNode()) {
11639 Val = C->getSExtValue();
11640 return true;
11641 }
11642 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11643 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11644 return true;
11645 }
11646 }
11647
11648 return false;
11649}
11650
11651bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11652 const std::string &Constraint,
11653 uint64_t Val) const {
11654 if (Constraint.size() == 1) {
11655 switch (Constraint[0]) {
11656 case 'I':
11657 return AMDGPU::isInlinableIntLiteral(Val);
11658 case 'J':
11659 return isInt<16>(Val);
11660 case 'A':
11661 return checkAsmConstraintValA(Op, Val);
11662 case 'B':
11663 return isInt<32>(Val);
11664 case 'C':
11665 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11666 AMDGPU::isInlinableIntLiteral(Val);
11667 default:
11668 break;
11669 }
11670 } else if (Constraint.size() == 2) {
11671 if (Constraint == "DA") {
11672 int64_t HiBits = static_cast<int32_t>(Val >> 32);
11673 int64_t LoBits = static_cast<int32_t>(Val);
11674 return checkAsmConstraintValA(Op, HiBits, 32) &&
11675 checkAsmConstraintValA(Op, LoBits, 32);
11676 }
11677 if (Constraint == "DB") {
11678 return true;
11679 }
11680 }
11681 llvm_unreachable("Invalid asm constraint")__builtin_unreachable();
11682}
11683
11684bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11685 uint64_t Val,
11686 unsigned MaxSize) const {
11687 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11688 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11689 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11690 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11691 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11692 return true;
11693 }
11694 return false;
11695}
11696
11697static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
11698 switch (UnalignedClassID) {
11699 case AMDGPU::VReg_64RegClassID:
11700 return AMDGPU::VReg_64_Align2RegClassID;
11701 case AMDGPU::VReg_96RegClassID:
11702 return AMDGPU::VReg_96_Align2RegClassID;
11703 case AMDGPU::VReg_128RegClassID:
11704 return AMDGPU::VReg_128_Align2RegClassID;
11705 case AMDGPU::VReg_160RegClassID:
11706 return AMDGPU::VReg_160_Align2RegClassID;
11707 case AMDGPU::VReg_192RegClassID:
11708 return AMDGPU::VReg_192_Align2RegClassID;
11709 case AMDGPU::VReg_224RegClassID:
11710 return AMDGPU::VReg_224_Align2RegClassID;
11711 case AMDGPU::VReg_256RegClassID:
11712 return AMDGPU::VReg_256_Align2RegClassID;
11713 case AMDGPU::VReg_512RegClassID:
11714 return AMDGPU::VReg_512_Align2RegClassID;
11715 case AMDGPU::VReg_1024RegClassID:
11716 return AMDGPU::VReg_1024_Align2RegClassID;
11717 case AMDGPU::AReg_64RegClassID:
11718 return AMDGPU::AReg_64_Align2RegClassID;
11719 case AMDGPU::AReg_96RegClassID:
11720 return AMDGPU::AReg_96_Align2RegClassID;
11721 case AMDGPU::AReg_128RegClassID:
11722 return AMDGPU::AReg_128_Align2RegClassID;
11723 case AMDGPU::AReg_160RegClassID:
11724 return AMDGPU::AReg_160_Align2RegClassID;
11725 case AMDGPU::AReg_192RegClassID:
11726 return AMDGPU::AReg_192_Align2RegClassID;
11727 case AMDGPU::AReg_256RegClassID:
11728 return AMDGPU::AReg_256_Align2RegClassID;
11729 case AMDGPU::AReg_512RegClassID:
11730 return AMDGPU::AReg_512_Align2RegClassID;
11731 case AMDGPU::AReg_1024RegClassID:
11732 return AMDGPU::AReg_1024_Align2RegClassID;
11733 default:
11734 return -1;
11735 }
11736}
11737
11738// Figure out which registers should be reserved for stack access. Only after
11739// the function is legalized do we know all of the non-spill stack objects or if
11740// calls are present.
11741void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11742 MachineRegisterInfo &MRI = MF.getRegInfo();
11743 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11744 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11745 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11746 const SIInstrInfo *TII = ST.getInstrInfo();
11747
11748 if (Info->isEntryFunction()) {
11749 // Callable functions have fixed registers used for stack access.
11750 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11751 }
11752
11753 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),((void)0)
11754 Info->getStackPtrOffsetReg()))((void)0);
11755 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11756 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11757
11758 // We need to worry about replacing the default register with itself in case
11759 // of MIR testcases missing the MFI.
11760 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11761 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11762
11763 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11764 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11765
11766 Info->limitOccupancy(MF);
11767
11768 if (ST.isWave32() && !MF.empty()) {
11769 for (auto &MBB : MF) {
11770 for (auto &MI : MBB) {
11771 TII->fixImplicitOperands(MI);
11772 }
11773 }
11774 }
11775
11776 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
11777 // classes if required. Ideally the register class constraints would differ
11778 // per-subtarget, but there's no easy way to achieve that right now. This is
11779 // not a problem for VGPRs because the correctly aligned VGPR class is implied
11780 // from using them as the register class for legal types.
11781 if (ST.needsAlignedVGPRs()) {
11782 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
11783 const Register Reg = Register::index2VirtReg(I);
11784 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
11785 if (!RC)
11786 continue;
11787 int NewClassID = getAlignedAGPRClassID(RC->getID());
11788 if (NewClassID != -1)
11789 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
11790 }
11791 }
11792
11793 TargetLoweringBase::finalizeLowering(MF);
11794
11795 // Allocate a VGPR for future SGPR Spill if
11796 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11797 // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11798 if (VGPRReserveforSGPRSpill && TRI->spillSGPRToVGPR() &&
11799 !Info->VGPRReservedForSGPRSpill && !Info->isEntryFunction())
11800 Info->reserveVGPRforSGPRSpills(MF);
11801}
11802
11803void SITargetLowering::computeKnownBitsForFrameIndex(
11804 const int FI, KnownBits &Known, const MachineFunction &MF) const {
11805 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11806
11807 // Set the high bits to zero based on the maximum allowed scratch size per
11808 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11809 // calculation won't overflow, so assume the sign bit is never set.
11810 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11811}
11812
11813static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11814 KnownBits &Known, unsigned Dim) {
11815 unsigned MaxValue =
11816 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11817 Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11818}
11819
11820void SITargetLowering::computeKnownBitsForTargetInstr(
11821 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11822 const MachineRegisterInfo &MRI, unsigned Depth) const {
11823 const MachineInstr *MI = MRI.getVRegDef(R);
11824 switch (MI->getOpcode()) {
11825 case AMDGPU::G_INTRINSIC: {
11826 switch (MI->getIntrinsicID()) {
11827 case Intrinsic::amdgcn_workitem_id_x:
11828 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11829 break;
11830 case Intrinsic::amdgcn_workitem_id_y:
11831 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11832 break;
11833 case Intrinsic::amdgcn_workitem_id_z:
11834 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11835 break;
11836 case Intrinsic::amdgcn_mbcnt_lo:
11837 case Intrinsic::amdgcn_mbcnt_hi: {
11838 // These return at most the wavefront size - 1.
11839 unsigned Size = MRI.getType(R).getSizeInBits();
11840 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11841 break;
11842 }
11843 case Intrinsic::amdgcn_groupstaticsize: {
11844 // We can report everything over the maximum size as 0. We can't report
11845 // based on the actual size because we don't know if it's accurate or not
11846 // at any given point.
11847 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11848 break;
11849 }
11850 }
11851 break;
11852 }
11853 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11854 Known.Zero.setHighBits(24);
11855 break;
11856 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11857 Known.Zero.setHighBits(16);
11858 break;
11859 }
11860}
11861
11862Align SITargetLowering::computeKnownAlignForTargetInstr(
11863 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11864 unsigned Depth) const {
11865 const MachineInstr *MI = MRI.getVRegDef(R);
11866 switch (MI->getOpcode()) {
11867 case AMDGPU::G_INTRINSIC:
11868 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11869 // FIXME: Can this move to generic code? What about the case where the call
11870 // site specifies a lower alignment?
11871 Intrinsic::ID IID = MI->getIntrinsicID();
11872 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11873 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11874 if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11875 return *RetAlign;
11876 return Align(1);
11877 }
11878 default:
11879 return Align(1);
11880 }
11881}
11882
11883Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11884 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11885 const Align CacheLineAlign = Align(64);
11886
11887 // Pre-GFX10 target did not benefit from loop alignment
11888 if (!ML || DisableLoopAlignment ||
11889 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11890 getSubtarget()->hasInstFwdPrefetchBug())
11891 return PrefAlign;
11892
11893 // On GFX10 I$ is 4 x 64 bytes cache lines.
11894 // By default prefetcher keeps one cache line behind and reads two ahead.
11895 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11896 // behind and one ahead.
11897 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11898 // If loop fits 64 bytes it always spans no more than two cache lines and
11899 // does not need an alignment.
11900 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11901 // Else if loop is less or equal 192 bytes we need two lines behind.
11902
11903 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11904 const MachineBasicBlock *Header = ML->getHeader();
11905 if (Header->getAlignment() != PrefAlign)
11906 return Header->getAlignment(); // Already processed.
11907
11908 unsigned LoopSize = 0;
11909 for (const MachineBasicBlock *MBB : ML->blocks()) {
11910 // If inner loop block is aligned assume in average half of the alignment
11911 // size to be added as nops.
11912 if (MBB != Header)
11913 LoopSize += MBB->getAlignment().value() / 2;
11914
11915 for (const MachineInstr &MI : *MBB) {
11916 LoopSize += TII->getInstSizeInBytes(MI);
11917 if (LoopSize > 192)
11918 return PrefAlign;
11919 }
11920 }
11921
11922 if (LoopSize <= 64)
11923 return PrefAlign;
11924
11925 if (LoopSize <= 128)
11926 return CacheLineAlign;
11927
11928 // If any of parent loops is surrounded by prefetch instructions do not
11929 // insert new for inner loop, which would reset parent's settings.
11930 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11931 if (MachineBasicBlock *Exit = P->getExitBlock()) {
11932 auto I = Exit->getFirstNonDebugInstr();
11933 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11934 return CacheLineAlign;
11935 }
11936 }
11937
11938 MachineBasicBlock *Pre = ML->getLoopPreheader();
11939 MachineBasicBlock *Exit = ML->getExitBlock();
11940
11941 if (Pre && Exit) {
11942 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11943 TII->get(AMDGPU::S_INST_PREFETCH))
11944 .addImm(1); // prefetch 2 lines behind PC
11945
11946 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11947 TII->get(AMDGPU::S_INST_PREFETCH))
11948 .addImm(2); // prefetch 1 line behind PC
11949 }
11950
11951 return CacheLineAlign;
11952}
11953
11954LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
11955static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11956 assert(N->getOpcode() == ISD::CopyFromReg)((void)0);
11957 do {
11958 // Follow the chain until we find an INLINEASM node.
11959 N = N->getOperand(0).getNode();
11960 if (N->getOpcode() == ISD::INLINEASM ||
11961 N->getOpcode() == ISD::INLINEASM_BR)
11962 return true;
11963 } while (N->getOpcode() == ISD::CopyFromReg);
11964 return false;
11965}
11966
11967bool SITargetLowering::isSDNodeSourceOfDivergence(
11968 const SDNode *N, FunctionLoweringInfo *FLI,
11969 LegacyDivergenceAnalysis *KDA) const {
11970 switch (N->getOpcode()) {
11971 case ISD::CopyFromReg: {
11972 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11973 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11974 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11975 Register Reg = R->getReg();
11976
11977 // FIXME: Why does this need to consider isLiveIn?
11978 if (Reg.isPhysical() || MRI.isLiveIn(Reg))
11979 return !TRI->isSGPRReg(MRI, Reg);
11980
11981 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
11982 return KDA->isDivergent(V);
11983
11984 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N))((void)0);
11985 return !TRI->isSGPRReg(MRI, Reg);
11986 }
11987 case ISD::LOAD: {
11988 const LoadSDNode *L = cast<LoadSDNode>(N);
11989 unsigned AS = L->getAddressSpace();
11990 // A flat load may access private memory.
11991 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
11992 }
11993 case ISD::CALLSEQ_END:
11994 return true;
11995 case ISD::INTRINSIC_WO_CHAIN:
11996 return AMDGPU::isIntrinsicSourceOfDivergence(
11997 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
11998 case ISD::INTRINSIC_W_CHAIN:
11999 return AMDGPU::isIntrinsicSourceOfDivergence(
12000 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12001 case AMDGPUISD::ATOMIC_CMP_SWAP:
12002 case AMDGPUISD::ATOMIC_INC:
12003 case AMDGPUISD::ATOMIC_DEC:
12004 case AMDGPUISD::ATOMIC_LOAD_FMIN:
12005 case AMDGPUISD::ATOMIC_LOAD_FMAX:
12006 case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12007 case AMDGPUISD::BUFFER_ATOMIC_ADD:
12008 case AMDGPUISD::BUFFER_ATOMIC_SUB:
12009 case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12010 case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12011 case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12012 case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12013 case AMDGPUISD::BUFFER_ATOMIC_AND:
12014 case AMDGPUISD::BUFFER_ATOMIC_OR:
12015 case AMDGPUISD::BUFFER_ATOMIC_XOR:
12016 case AMDGPUISD::BUFFER_ATOMIC_INC:
12017 case AMDGPUISD::BUFFER_ATOMIC_DEC:
12018 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12019 case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12020 case AMDGPUISD::BUFFER_ATOMIC_FADD:
12021 case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12022 case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12023 // Target-specific read-modify-write atomics are sources of divergence.
12024 return true;
12025 default:
12026 if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12027 // Generic read-modify-write atomics are sources of divergence.
12028 return A->readMem() && A->writeMem();
12029 }
12030 return false;
12031 }
12032}
12033
12034bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12035 EVT VT) const {
12036 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12037 case MVT::f32:
12038 return hasFP32Denormals(DAG.getMachineFunction());
12039 case MVT::f64:
12040 case MVT::f16:
12041 return hasFP64FP16Denormals(DAG.getMachineFunction());
12042 default:
12043 return false;
12044 }
12045}
12046
12047bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12048 MachineFunction &MF) const {
12049 switch (Ty.getScalarSizeInBits()) {
12050 case 32:
12051 return hasFP32Denormals(MF);
12052 case 64:
12053 case 16:
12054 return hasFP64FP16Denormals(MF);
12055 default:
12056 return false;
12057 }
12058}
12059
12060bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12061 const SelectionDAG &DAG,
12062 bool SNaN,
12063 unsigned Depth) const {
12064 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12065 const MachineFunction &MF = DAG.getMachineFunction();
12066 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12067
12068 if (Info->getMode().DX10Clamp)
12069 return true; // Clamped to 0.
12070 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12071 }
12072
12073 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12074 SNaN, Depth);
12075}
12076
12077// Global FP atomic instructions have a hardcoded FP mode and do not support
12078// FP32 denormals, and only support v2f16 denormals.
12079static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12080 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12081 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12082 if (&Flt == &APFloat::IEEEsingle())
12083 return DenormMode == DenormalMode::getPreserveSign();
12084 return DenormMode == DenormalMode::getIEEE();
12085}
12086
12087TargetLowering::AtomicExpansionKind
12088SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12089 switch (RMW->getOperation()) {
12090 case AtomicRMWInst::FAdd: {
12091 Type *Ty = RMW->getType();
12092
12093 // We don't have a way to support 16-bit atomics now, so just leave them
12094 // as-is.
12095 if (Ty->isHalfTy())
12096 return AtomicExpansionKind::None;
12097
12098 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12099 return AtomicExpansionKind::CmpXChg;
12100
12101 unsigned AS = RMW->getPointerAddressSpace();
12102
12103 if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12104 Subtarget->hasAtomicFaddInsts()) {
12105 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12106 // floating point atomic instructions. May generate more efficient code,
12107 // but may not respect rounding and denormal modes, and may give incorrect
12108 // results for certain memory destinations.
12109 if (RMW->getFunction()
12110 ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12111 .getValueAsString() != "true")
12112 return AtomicExpansionKind::CmpXChg;
12113
12114 if (Subtarget->hasGFX90AInsts()) {
12115 if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12116 return AtomicExpansionKind::CmpXChg;
12117
12118 auto SSID = RMW->getSyncScopeID();
12119 if (SSID == SyncScope::System ||
12120 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12121 return AtomicExpansionKind::CmpXChg;
12122
12123 return AtomicExpansionKind::None;
12124 }
12125
12126 if (AS == AMDGPUAS::FLAT_ADDRESS)
12127 return AtomicExpansionKind::CmpXChg;
12128
12129 return RMW->use_empty() ? AtomicExpansionKind::None
12130 : AtomicExpansionKind::CmpXChg;
12131 }
12132
12133 // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
12134 // to round-to-nearest-even.
12135 // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12136 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) {
12137 if (!Ty->isDoubleTy())
12138 return AtomicExpansionKind::None;
12139
12140 return (fpModeMatchesGlobalFPAtomicMode(RMW) ||
12141 RMW->getFunction()
12142 ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12143 .getValueAsString() == "true")
12144 ? AtomicExpansionKind::None
12145 : AtomicExpansionKind::CmpXChg;
12146 }
12147
12148 return AtomicExpansionKind::CmpXChg;
12149 }
12150 default:
12151 break;
12152 }
12153
12154 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12155}
12156
12157const TargetRegisterClass *
12158SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12159 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12160 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12161 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12162 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12163 : &AMDGPU::SReg_32RegClass;
12164 if (!TRI->isSGPRClass(RC) && !isDivergent)
12165 return TRI->getEquivalentSGPRClass(RC);
12166 else if (TRI->isSGPRClass(RC) && isDivergent)
12167 return TRI->getEquivalentVGPRClass(RC);
12168
12169 return RC;
12170}
12171
12172// FIXME: This is a workaround for DivergenceAnalysis not understanding always
12173// uniform values (as produced by the mask results of control flow intrinsics)
12174// used outside of divergent blocks. The phi users need to also be treated as
12175// always uniform.
12176static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12177 unsigned WaveSize) {
12178 // FIXME: We asssume we never cast the mask results of a control flow
12179 // intrinsic.
12180 // Early exit if the type won't be consistent as a compile time hack.
12181 IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12182 if (!IT || IT->getBitWidth() != WaveSize)
12183 return false;
12184
12185 if (!isa<Instruction>(V))
12186 return false;
12187 if (!Visited.insert(V).second)
12188 return false;
12189 bool Result = false;
12190 for (auto U : V->users()) {
12191 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12192 if (V == U->getOperand(1)) {
12193 switch (Intrinsic->getIntrinsicID()) {
12194 default:
12195 Result = false;
12196 break;
12197 case Intrinsic::amdgcn_if_break:
12198 case Intrinsic::amdgcn_if:
12199 case Intrinsic::amdgcn_else:
12200 Result = true;
12201 break;
12202 }
12203 }
12204 if (V == U->getOperand(0)) {
12205 switch (Intrinsic->getIntrinsicID()) {
12206 default:
12207 Result = false;
12208 break;
12209 case Intrinsic::amdgcn_end_cf:
12210 case Intrinsic::amdgcn_loop:
12211 Result = true;
12212 break;
12213 }
12214 }
12215 } else {
12216 Result = hasCFUser(U, Visited, WaveSize);
12217 }
12218 if (Result)
12219 break;
12220 }
12221 return Result;
12222}
12223
12224bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12225 const Value *V) const {
12226 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12227 if (CI->isInlineAsm()) {
12228 // FIXME: This cannot give a correct answer. This should only trigger in
12229 // the case where inline asm returns mixed SGPR and VGPR results, used
12230 // outside the defining block. We don't have a specific result to
12231 // consider, so this assumes if any value is SGPR, the overall register
12232 // also needs to be SGPR.
12233 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12234 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12235 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12236 for (auto &TC : TargetConstraints) {
12237 if (TC.Type == InlineAsm::isOutput) {
12238 ComputeConstraintToUse(TC, SDValue());
12239 unsigned AssignedReg;
12240 const TargetRegisterClass *RC;
12241 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
12242 SIRI, TC.ConstraintCode, TC.ConstraintVT);
12243 if (RC) {
12244 MachineRegisterInfo &MRI = MF.getRegInfo();
12245 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
12246 return true;
12247 else if (SIRI->isSGPRClass(RC))
12248 return true;
12249 }
12250 }
12251 }
12252 }
12253 }
12254 SmallPtrSet<const Value *, 16> Visited;
12255 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12256}
12257
12258std::pair<InstructionCost, MVT>
12259SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12260 Type *Ty) const {
12261 std::pair<InstructionCost, MVT> Cost =
12262 TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12263 auto Size = DL.getTypeSizeInBits(Ty);
12264 // Maximum load or store can handle 8 dwords for scalar and 4 for
12265 // vector ALU. Let's assume anything above 8 dwords is expensive
12266 // even if legal.
12267 if (Size <= 256)
12268 return Cost;
12269
12270 Cost.first = (Size + 255) / 256;
12271 return Cost;
12272}