Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 1247, column 28
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaExprCXX.cpp

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaExprCXX.cpp

1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")((void)0);
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")__builtin_unreachable();
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&((void)0)
89 "not a constructor name")((void)0);
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&((void)0)
433 "should only reject a type result if we have a search type")((void)0);
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&((void)0)
470 "unexpected type in getDestructorType")((void)0);
471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name, bool IsUDSuffix) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)((void)0);
489 if (!IsUDSuffix) {
490 // [over.literal] p8
491 //
492 // double operator""_Bq(long double); // OK: not a reserved identifier
493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494 IdentifierInfo *II = Name.Identifier;
495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496 SourceLocation Loc = Name.getEndLoc();
497 if (Status != ReservedIdentifierStatus::NotReserved &&
498 !PP.getSourceManager().isInSystemHeader(Loc)) {
499 Diag(Loc, diag::warn_reserved_extern_symbol)
500 << II << static_cast<int>(Status)
501 << FixItHint::CreateReplacement(
502 Name.getSourceRange(),
503 (StringRef("operator\"\"") + II->getName()).str());
504 }
505 }
506
507 if (!SS.isValid())
508 return false;
509
510 switch (SS.getScopeRep()->getKind()) {
511 case NestedNameSpecifier::Identifier:
512 case NestedNameSpecifier::TypeSpec:
513 case NestedNameSpecifier::TypeSpecWithTemplate:
514 // Per C++11 [over.literal]p2, literal operators can only be declared at
515 // namespace scope. Therefore, this unqualified-id cannot name anything.
516 // Reject it early, because we have no AST representation for this in the
517 // case where the scope is dependent.
518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519 << SS.getScopeRep();
520 return true;
521
522 case NestedNameSpecifier::Global:
523 case NestedNameSpecifier::Super:
524 case NestedNameSpecifier::Namespace:
525 case NestedNameSpecifier::NamespaceAlias:
526 return false;
527 }
528
529 llvm_unreachable("unknown nested name specifier kind")__builtin_unreachable();
530}
531
532/// Build a C++ typeid expression with a type operand.
533ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 TypeSourceInfo *Operand,
536 SourceLocation RParenLoc) {
537 // C++ [expr.typeid]p4:
538 // The top-level cv-qualifiers of the lvalue expression or the type-id
539 // that is the operand of typeid are always ignored.
540 // If the type of the type-id is a class type or a reference to a class
541 // type, the class shall be completely-defined.
542 Qualifiers Quals;
543 QualType T
544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545 Quals);
546 if (T->getAs<RecordType>() &&
547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548 return ExprError();
549
550 if (T->isVariablyModifiedType())
551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552
553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554 return ExprError();
555
556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557 SourceRange(TypeidLoc, RParenLoc));
558}
559
560/// Build a C++ typeid expression with an expression operand.
561ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562 SourceLocation TypeidLoc,
563 Expr *E,
564 SourceLocation RParenLoc) {
565 bool WasEvaluated = false;
566 if (E && !E->isTypeDependent()) {
567 if (E->getType()->isPlaceholderType()) {
568 ExprResult result = CheckPlaceholderExpr(E);
569 if (result.isInvalid()) return ExprError();
570 E = result.get();
571 }
572
573 QualType T = E->getType();
574 if (const RecordType *RecordT = T->getAs<RecordType>()) {
575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576 // C++ [expr.typeid]p3:
577 // [...] If the type of the expression is a class type, the class
578 // shall be completely-defined.
579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580 return ExprError();
581
582 // C++ [expr.typeid]p3:
583 // When typeid is applied to an expression other than an glvalue of a
584 // polymorphic class type [...] [the] expression is an unevaluated
585 // operand. [...]
586 if (RecordD->isPolymorphic() && E->isGLValue()) {
587 if (isUnevaluatedContext()) {
588 // The operand was processed in unevaluated context, switch the
589 // context and recheck the subexpression.
590 ExprResult Result = TransformToPotentiallyEvaluated(E);
591 if (Result.isInvalid())
592 return ExprError();
593 E = Result.get();
594 }
595
596 // We require a vtable to query the type at run time.
597 MarkVTableUsed(TypeidLoc, RecordD);
598 WasEvaluated = true;
599 }
600 }
601
602 ExprResult Result = CheckUnevaluatedOperand(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606
607 // C++ [expr.typeid]p4:
608 // [...] If the type of the type-id is a reference to a possibly
609 // cv-qualified type, the result of the typeid expression refers to a
610 // std::type_info object representing the cv-unqualified referenced
611 // type.
612 Qualifiers Quals;
613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614 if (!Context.hasSameType(T, UnqualT)) {
615 T = UnqualT;
616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617 }
618 }
619
620 if (E->getType()->isVariablyModifiedType())
621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622 << E->getType());
623 else if (!inTemplateInstantiation() &&
624 E->HasSideEffects(Context, WasEvaluated)) {
625 // The expression operand for typeid is in an unevaluated expression
626 // context, so side effects could result in unintended consequences.
627 Diag(E->getExprLoc(), WasEvaluated
628 ? diag::warn_side_effects_typeid
629 : diag::warn_side_effects_unevaluated_context);
630 }
631
632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633 SourceRange(TypeidLoc, RParenLoc));
634}
635
636/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637ExprResult
638Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640 // typeid is not supported in OpenCL.
641 if (getLangOpts().OpenCLCPlusPlus) {
642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643 << "typeid");
644 }
645
646 // Find the std::type_info type.
647 if (!getStdNamespace())
648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649
650 if (!CXXTypeInfoDecl) {
651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653 LookupQualifiedName(R, getStdNamespace());
654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655 // Microsoft's typeinfo doesn't have type_info in std but in the global
656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658 LookupQualifiedName(R, Context.getTranslationUnitDecl());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 }
661 if (!CXXTypeInfoDecl)
662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663 }
664
665 if (!getLangOpts().RTTI) {
666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667 }
668
669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670
671 if (isType) {
672 // The operand is a type; handle it as such.
673 TypeSourceInfo *TInfo = nullptr;
674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675 &TInfo);
676 if (T.isNull())
677 return ExprError();
678
679 if (!TInfo)
680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681
682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683 }
684
685 // The operand is an expression.
686 ExprResult Result =
687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688
689 if (!getLangOpts().RTTIData && !Result.isInvalid())
690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694 DiagnosticOptions::MSVC);
695 return Result;
696}
697
698/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699/// a single GUID.
700static void
701getUuidAttrOfType(Sema &SemaRef, QualType QT,
702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703 // Optionally remove one level of pointer, reference or array indirection.
704 const Type *Ty = QT.getTypePtr();
705 if (QT->isPointerType() || QT->isReferenceType())
706 Ty = QT->getPointeeType().getTypePtr();
707 else if (QT->isArrayType())
708 Ty = Ty->getBaseElementTypeUnsafe();
709
710 const auto *TD = Ty->getAsTagDecl();
711 if (!TD)
712 return;
713
714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715 UuidAttrs.insert(Uuid);
716 return;
717 }
718
719 // __uuidof can grab UUIDs from template arguments.
720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722 for (const TemplateArgument &TA : TAL.asArray()) {
723 const UuidAttr *UuidForTA = nullptr;
724 if (TA.getKind() == TemplateArgument::Type)
725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726 else if (TA.getKind() == TemplateArgument::Declaration)
727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728
729 if (UuidForTA)
730 UuidAttrs.insert(UuidForTA);
731 }
732 }
733}
734
735/// Build a Microsoft __uuidof expression with a type operand.
736ExprResult Sema::BuildCXXUuidof(QualType Type,
737 SourceLocation TypeidLoc,
738 TypeSourceInfo *Operand,
739 SourceLocation RParenLoc) {
740 MSGuidDecl *Guid = nullptr;
741 if (!Operand->getType()->isDependentType()) {
742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744 if (UuidAttrs.empty())
745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746 if (UuidAttrs.size() > 1)
747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748 Guid = UuidAttrs.back()->getGuidDecl();
749 }
750
751 return new (Context)
752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753}
754
755/// Build a Microsoft __uuidof expression with an expression operand.
756ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757 Expr *E, SourceLocation RParenLoc) {
758 MSGuidDecl *Guid = nullptr;
759 if (!E->getType()->isDependentType()) {
760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763 } else {
764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766 if (UuidAttrs.empty())
767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768 if (UuidAttrs.size() > 1)
769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770 Guid = UuidAttrs.back()->getGuidDecl();
771 }
772 }
773
774 return new (Context)
775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776}
777
778/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779ExprResult
780Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782 QualType GuidType = Context.getMSGuidType();
783 GuidType.addConst();
784
785 if (isType) {
786 // The operand is a type; handle it as such.
787 TypeSourceInfo *TInfo = nullptr;
788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789 &TInfo);
790 if (T.isNull())
791 return ExprError();
792
793 if (!TInfo)
794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795
796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797 }
798
799 // The operand is an expression.
800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801}
802
803/// ActOnCXXBoolLiteral - Parse {true,false} literals.
804ExprResult
805Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&((void)0)
807 "Unknown C++ Boolean value!")((void)0);
808 return new (Context)
809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810}
811
812/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813ExprResult
814Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816}
817
818/// ActOnCXXThrow - Parse throw expressions.
819ExprResult
820Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821 bool IsThrownVarInScope = false;
822 if (Ex) {
823 // C++0x [class.copymove]p31:
824 // When certain criteria are met, an implementation is allowed to omit the
825 // copy/move construction of a class object [...]
826 //
827 // - in a throw-expression, when the operand is the name of a
828 // non-volatile automatic object (other than a function or catch-
829 // clause parameter) whose scope does not extend beyond the end of the
830 // innermost enclosing try-block (if there is one), the copy/move
831 // operation from the operand to the exception object (15.1) can be
832 // omitted by constructing the automatic object directly into the
833 // exception object
834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837 for( ; S; S = S->getParent()) {
838 if (S->isDeclScope(Var)) {
839 IsThrownVarInScope = true;
840 break;
841 }
842
843 if (S->getFlags() &
844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846 Scope::TryScope))
847 break;
848 }
849 }
850 }
851 }
852
853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854}
855
856ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857 bool IsThrownVarInScope) {
858 // Don't report an error if 'throw' is used in system headers.
859 if (!getLangOpts().CXXExceptions &&
860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861 // Delay error emission for the OpenMP device code.
862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863 }
864
865 // Exceptions aren't allowed in CUDA device code.
866 if (getLangOpts().CUDA)
867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868 << "throw" << CurrentCUDATarget();
869
870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872
873 if (Ex && !Ex->isTypeDependent()) {
874 // Initialize the exception result. This implicitly weeds out
875 // abstract types or types with inaccessible copy constructors.
876
877 // C++0x [class.copymove]p31:
878 // When certain criteria are met, an implementation is allowed to omit the
879 // copy/move construction of a class object [...]
880 //
881 // - in a throw-expression, when the operand is the name of a
882 // non-volatile automatic object (other than a function or
883 // catch-clause
884 // parameter) whose scope does not extend beyond the end of the
885 // innermost enclosing try-block (if there is one), the copy/move
886 // operation from the operand to the exception object (15.1) can be
887 // omitted by constructing the automatic object directly into the
888 // exception object
889 NamedReturnInfo NRInfo =
890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891
892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894 return ExprError();
895
896 InitializedEntity Entity =
897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899 if (Res.isInvalid())
900 return ExprError();
901 Ex = Res.get();
902 }
903
904 // PPC MMA non-pointer types are not allowed as throw expr types.
905 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907
908 return new (Context)
909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910}
911
912static void
913collectPublicBases(CXXRecordDecl *RD,
914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917 bool ParentIsPublic) {
918 for (const CXXBaseSpecifier &BS : RD->bases()) {
919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920 bool NewSubobject;
921 // Virtual bases constitute the same subobject. Non-virtual bases are
922 // always distinct subobjects.
923 if (BS.isVirtual())
924 NewSubobject = VBases.insert(BaseDecl).second;
925 else
926 NewSubobject = true;
927
928 if (NewSubobject)
929 ++SubobjectsSeen[BaseDecl];
930
931 // Only add subobjects which have public access throughout the entire chain.
932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933 if (PublicPath)
934 PublicSubobjectsSeen.insert(BaseDecl);
935
936 // Recurse on to each base subobject.
937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938 PublicPath);
939 }
940}
941
942static void getUnambiguousPublicSubobjects(
943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947 SubobjectsSeen[RD] = 1;
948 PublicSubobjectsSeen.insert(RD);
949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950 /*ParentIsPublic=*/true);
951
952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953 // Skip ambiguous objects.
954 if (SubobjectsSeen[PublicSubobject] > 1)
955 continue;
956
957 Objects.push_back(PublicSubobject);
958 }
959}
960
961/// CheckCXXThrowOperand - Validate the operand of a throw.
962bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963 QualType ExceptionObjectTy, Expr *E) {
964 // If the type of the exception would be an incomplete type or a pointer
965 // to an incomplete type other than (cv) void the program is ill-formed.
966 QualType Ty = ExceptionObjectTy;
967 bool isPointer = false;
968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969 Ty = Ptr->getPointeeType();
970 isPointer = true;
971 }
972 if (!isPointer || !Ty->isVoidType()) {
973 if (RequireCompleteType(ThrowLoc, Ty,
974 isPointer ? diag::err_throw_incomplete_ptr
975 : diag::err_throw_incomplete,
976 E->getSourceRange()))
977 return true;
978
979 if (!isPointer && Ty->isSizelessType()) {
980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981 return true;
982 }
983
984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985 diag::err_throw_abstract_type, E))
986 return true;
987 }
988
989 // If the exception has class type, we need additional handling.
990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991 if (!RD)
992 return false;
993
994 // If we are throwing a polymorphic class type or pointer thereof,
995 // exception handling will make use of the vtable.
996 MarkVTableUsed(ThrowLoc, RD);
997
998 // If a pointer is thrown, the referenced object will not be destroyed.
999 if (isPointer)
1000 return false;
1001
1002 // If the class has a destructor, we must be able to call it.
1003 if (!RD->hasIrrelevantDestructor()) {
1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006 CheckDestructorAccess(E->getExprLoc(), Destructor,
1007 PDiag(diag::err_access_dtor_exception) << Ty);
1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009 return true;
1010 }
1011 }
1012
1013 // The MSVC ABI creates a list of all types which can catch the exception
1014 // object. This list also references the appropriate copy constructor to call
1015 // if the object is caught by value and has a non-trivial copy constructor.
1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017 // We are only interested in the public, unambiguous bases contained within
1018 // the exception object. Bases which are ambiguous or otherwise
1019 // inaccessible are not catchable types.
1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022
1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024 // Attempt to lookup the copy constructor. Various pieces of machinery
1025 // will spring into action, like template instantiation, which means this
1026 // cannot be a simple walk of the class's decls. Instead, we must perform
1027 // lookup and overload resolution.
1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029 if (!CD || CD->isDeleted())
1030 continue;
1031
1032 // Mark the constructor referenced as it is used by this throw expression.
1033 MarkFunctionReferenced(E->getExprLoc(), CD);
1034
1035 // Skip this copy constructor if it is trivial, we don't need to record it
1036 // in the catchable type data.
1037 if (CD->isTrivial())
1038 continue;
1039
1040 // The copy constructor is non-trivial, create a mapping from this class
1041 // type to this constructor.
1042 // N.B. The selection of copy constructor is not sensitive to this
1043 // particular throw-site. Lookup will be performed at the catch-site to
1044 // ensure that the copy constructor is, in fact, accessible (via
1045 // friendship or any other means).
1046 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047
1048 // We don't keep the instantiated default argument expressions around so
1049 // we must rebuild them here.
1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052 return true;
1053 }
1054 }
1055 }
1056
1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058 // the runtime with no ability for the compiler to request additional
1059 // alignment. Warn if the exception type requires alignment beyond the minimum
1060 // guaranteed by the target C++ runtime.
1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064 if (ExnObjAlign < TypeAlign) {
1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067 << Ty << (unsigned)TypeAlign.getQuantity()
1068 << (unsigned)ExnObjAlign.getQuantity();
1069 }
1070 }
1071
1072 return false;
1073}
1074
1075static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078
1079 QualType ClassType = ThisTy->getPointeeType();
1080 LambdaScopeInfo *CurLSI = nullptr;
1081 DeclContext *CurDC = CurSemaContext;
1082
1083 // Iterate through the stack of lambdas starting from the innermost lambda to
1084 // the outermost lambda, checking if '*this' is ever captured by copy - since
1085 // that could change the cv-qualifiers of the '*this' object.
1086 // The object referred to by '*this' starts out with the cv-qualifiers of its
1087 // member function. We then start with the innermost lambda and iterate
1088 // outward checking to see if any lambda performs a by-copy capture of '*this'
1089 // - and if so, any nested lambda must respect the 'constness' of that
1090 // capturing lamdbda's call operator.
1091 //
1092
1093 // Since the FunctionScopeInfo stack is representative of the lexical
1094 // nesting of the lambda expressions during initial parsing (and is the best
1095 // place for querying information about captures about lambdas that are
1096 // partially processed) and perhaps during instantiation of function templates
1097 // that contain lambda expressions that need to be transformed BUT not
1098 // necessarily during instantiation of a nested generic lambda's function call
1099 // operator (which might even be instantiated at the end of the TU) - at which
1100 // time the DeclContext tree is mature enough to query capture information
1101 // reliably - we use a two pronged approach to walk through all the lexically
1102 // enclosing lambda expressions:
1103 //
1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106 // enclosed by the call-operator of the LSI below it on the stack (while
1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1108 // the stack represents the innermost lambda.
1109 //
1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111 // represents a lambda's call operator. If it does, we must be instantiating
1112 // a generic lambda's call operator (represented by the Current LSI, and
1113 // should be the only scenario where an inconsistency between the LSI and the
1114 // DeclContext should occur), so climb out the DeclContexts if they
1115 // represent lambdas, while querying the corresponding closure types
1116 // regarding capture information.
1117
1118 // 1) Climb down the function scope info stack.
1119 for (int I = FunctionScopes.size();
1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125
1126 if (!CurLSI->isCXXThisCaptured())
1127 continue;
1128
1129 auto C = CurLSI->getCXXThisCapture();
1130
1131 if (C.isCopyCapture()) {
1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133 if (CurLSI->CallOperator->isConst())
1134 ClassType.addConst();
1135 return ASTCtx.getPointerType(ClassType);
1136 }
1137 }
1138
1139 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1140 // happen during instantiation of its nested generic lambda call operator)
1141 if (isLambdaCallOperator(CurDC)) {
1142 assert(CurLSI && "While computing 'this' capture-type for a generic "((void)0)
1143 "lambda, we must have a corresponding LambdaScopeInfo")((void)0);
1144 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&((void)0)
1145 "While computing 'this' capture-type for a generic lambda, when we "((void)0)
1146 "run out of enclosing LSI's, yet the enclosing DC is a "((void)0)
1147 "lambda-call-operator we must be (i.e. Current LSI) in a generic "((void)0)
1148 "lambda call oeprator")((void)0);
1149 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))((void)0);
1150
1151 auto IsThisCaptured =
1152 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1153 IsConst = false;
1154 IsByCopy = false;
1155 for (auto &&C : Closure->captures()) {
1156 if (C.capturesThis()) {
1157 if (C.getCaptureKind() == LCK_StarThis)
1158 IsByCopy = true;
1159 if (Closure->getLambdaCallOperator()->isConst())
1160 IsConst = true;
1161 return true;
1162 }
1163 }
1164 return false;
1165 };
1166
1167 bool IsByCopyCapture = false;
1168 bool IsConstCapture = false;
1169 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1170 while (Closure &&
1171 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1172 if (IsByCopyCapture) {
1173 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1174 if (IsConstCapture)
1175 ClassType.addConst();
1176 return ASTCtx.getPointerType(ClassType);
1177 }
1178 Closure = isLambdaCallOperator(Closure->getParent())
1179 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1180 : nullptr;
1181 }
1182 }
1183 return ASTCtx.getPointerType(ClassType);
1184}
1185
1186QualType Sema::getCurrentThisType() {
1187 DeclContext *DC = getFunctionLevelDeclContext();
1188 QualType ThisTy = CXXThisTypeOverride;
1189
1190 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1191 if (method && method->isInstance())
1192 ThisTy = method->getThisType();
1193 }
1194
1195 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1196 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1197
1198 // This is a lambda call operator that is being instantiated as a default
1199 // initializer. DC must point to the enclosing class type, so we can recover
1200 // the 'this' type from it.
1201 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1202 // There are no cv-qualifiers for 'this' within default initializers,
1203 // per [expr.prim.general]p4.
1204 ThisTy = Context.getPointerType(ClassTy);
1205 }
1206
1207 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1208 // might need to be adjusted if the lambda or any of its enclosing lambda's
1209 // captures '*this' by copy.
1210 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1211 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1212 CurContext, Context);
1213 return ThisTy;
1214}
1215
1216Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1217 Decl *ContextDecl,
1218 Qualifiers CXXThisTypeQuals,
1219 bool Enabled)
1220 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1221{
1222 if (!Enabled || !ContextDecl)
1223 return;
1224
1225 CXXRecordDecl *Record = nullptr;
1226 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1227 Record = Template->getTemplatedDecl();
1228 else
1229 Record = cast<CXXRecordDecl>(ContextDecl);
1230
1231 QualType T = S.Context.getRecordType(Record);
1232 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1233
1234 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1235
1236 this->Enabled = true;
1237}
1238
1239
1240Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1241 if (Enabled) {
1242 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1243 }
1244}
1245
1246static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1247 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
30
Called C++ object pointer is null
1248 assert(!LSI->isCXXThisCaptured())((void)0);
1249 // [=, this] {}; // until C++20: Error: this when = is the default
1250 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1251 !Sema.getLangOpts().CPlusPlus20)
1252 return;
1253 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1254 << FixItHint::CreateInsertion(
1255 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1256}
1257
1258bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1259 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1260 const bool ByCopy) {
1261 // We don't need to capture this in an unevaluated context.
1262 if (isUnevaluatedContext() && !Explicit)
5
Calling 'Sema::isUnevaluatedContext'
13
Returning from 'Sema::isUnevaluatedContext'
1263 return true;
1264
1265 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")((void)0);
1266
1267 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
13.1
'FunctionScopeIndexToStopAt' is null
13.1
'FunctionScopeIndexToStopAt' is null
14
'?' condition is false
1268 ? *FunctionScopeIndexToStopAt 1269 : FunctionScopes.size() - 1; 1270 1271 // Check that we can capture the *enclosing object* (referred to by '*this') 1272 // by the capturing-entity/closure (lambda/block/etc) at 1273 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1274 1275 // Note: The *enclosing object* can only be captured by-value by a 1276 // closure that is a lambda, using the explicit notation: 1277 // [*this] { ... }. 1278 // Every other capture of the *enclosing object* results in its by-reference 1279 // capture. 1280 1281 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1282 // stack), we can capture the *enclosing object* only if: 1283 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1284 // - or, 'L' has an implicit capture. 1285 // AND 1286 // -- there is no enclosing closure 1287 // -- or, there is some enclosing closure 'E' that has already captured the 1288 // *enclosing object*, and every intervening closure (if any) between 'E' 1289 // and 'L' can implicitly capture the *enclosing object*. 1290 // -- or, every enclosing closure can implicitly capture the 1291 // *enclosing object* 1292 1293 1294 unsigned NumCapturingClosures = 0; 1295 for (int idx = MaxFunctionScopesIndex; idx
14.1
'idx' is >= 0
14.1
'idx' is >= 0
>= 0; idx--) {
15
Loop condition is true. Entering loop body
1296 if (CapturingScopeInfo *CSI
16.1
'CSI' is non-null
16.1
'CSI' is non-null
=
17
Taking true branch
1297 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
16
Assuming the object is a 'CapturingScopeInfo'
1298 if (CSI->CXXThisCaptureIndex != 0) {
18
Assuming field 'CXXThisCaptureIndex' is equal to 0
19
Taking false branch
1299 // 'this' is already being captured; there isn't anything more to do. 1300 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1301 break; 1302 } 1303 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
20
Assuming 'CSI' is not a 'LambdaScopeInfo'
21
'LSI' initialized to a null pointer value
1304 if (LSI
21.1
'LSI' is null
21.1
'LSI' is null
&& isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1305 // This context can't implicitly capture 'this'; fail out. 1306 if (BuildAndDiagnose) { 1307 Diag(Loc, diag::err_this_capture) 1308 << (Explicit && idx == MaxFunctionScopesIndex); 1309 if (!Explicit) 1310 buildLambdaThisCaptureFixit(*this, LSI); 1311 } 1312 return true; 1313 } 1314 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
22
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByref
1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
23
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_LambdaByval
1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
24
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_Block
1317 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
25
Assuming field 'ImpCaptureStyle' is not equal to ImpCap_CapturedRegion
1318 (Explicit
25.1
'Explicit' is false
25.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex)) { 1319 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1320 // iteration through can be an explicit capture, all enclosing closures, 1321 // if any, must perform implicit captures. 1322 1323 // This closure can capture 'this'; continue looking upwards. 1324 NumCapturingClosures++; 1325 continue; 1326 } 1327 // This context can't implicitly capture 'this'; fail out. 1328 if (BuildAndDiagnose
25.2
'BuildAndDiagnose' is true
25.2
'BuildAndDiagnose' is true
)
26
Taking true branch
1329 Diag(Loc, diag::err_this_capture) 1330 << (Explicit
26.1
'Explicit' is false
26.1
'Explicit' is false
&& idx == MaxFunctionScopesIndex); 1331 1332 if (!Explicit
26.2
'Explicit' is false
26.2
'Explicit' is false
)
27
Taking true branch
1333 buildLambdaThisCaptureFixit(*this, LSI);
28
Passing null pointer value via 2nd parameter 'LSI'
29
Calling 'buildLambdaThisCaptureFixit'
1334 return true; 1335 } 1336 break; 1337 } 1338 if (!BuildAndDiagnose) return false; 1339 1340 // If we got here, then the closure at MaxFunctionScopesIndex on the 1341 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1342 // (including implicit by-reference captures in any enclosing closures). 1343 1344 // In the loop below, respect the ByCopy flag only for the closure requesting 1345 // the capture (i.e. first iteration through the loop below). Ignore it for 1346 // all enclosing closure's up to NumCapturingClosures (since they must be 1347 // implicitly capturing the *enclosing object* by reference (see loop 1348 // above)). 1349 assert((!ByCopy ||((void)0) 1350 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&((void)0) 1351 "Only a lambda can capture the enclosing object (referred to by "((void)0) 1352 "*this) by copy")((void)0); 1353 QualType ThisTy = getCurrentThisType(); 1354 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1355 --idx, --NumCapturingClosures) { 1356 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1357 1358 // The type of the corresponding data member (not a 'this' pointer if 'by 1359 // copy'). 1360 QualType CaptureType = ThisTy; 1361 if (ByCopy) { 1362 // If we are capturing the object referred to by '*this' by copy, ignore 1363 // any cv qualifiers inherited from the type of the member function for 1364 // the type of the closure-type's corresponding data member and any use 1365 // of 'this'. 1366 CaptureType = ThisTy->getPointeeType(); 1367 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1368 } 1369 1370 bool isNested = NumCapturingClosures > 1; 1371 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1372 } 1373 return false; 1374} 1375 1376ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1377 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1378 /// is a non-lvalue expression whose value is the address of the object for 1379 /// which the function is called. 1380 1381 QualType ThisTy = getCurrentThisType(); 1382 if (ThisTy.isNull())
1
Taking false branch
1383 return Diag(Loc, diag::err_invalid_this_use); 1384 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
2
Calling 'Sema::BuildCXXThisExpr'
1385} 1386 1387Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1388 bool IsImplicit) { 1389 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1390 MarkThisReferenced(This);
3
Calling 'Sema::MarkThisReferenced'
1391 return This; 1392} 1393 1394void Sema::MarkThisReferenced(CXXThisExpr *This) { 1395 CheckCXXThisCapture(This->getExprLoc());
4
Calling 'Sema::CheckCXXThisCapture'
1396} 1397 1398bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1399 // If we're outside the body of a member function, then we'll have a specified 1400 // type for 'this'. 1401 if (CXXThisTypeOverride.isNull()) 1402 return false; 1403 1404 // Determine whether we're looking into a class that's currently being 1405 // defined. 1406 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1407 return Class && Class->isBeingDefined(); 1408} 1409 1410/// Parse construction of a specified type. 1411/// Can be interpreted either as function-style casting ("int(x)") 1412/// or class type construction ("ClassType(x,y,z)") 1413/// or creation of a value-initialized type ("int()"). 1414ExprResult 1415Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1416 SourceLocation LParenOrBraceLoc, 1417 MultiExprArg exprs, 1418 SourceLocation RParenOrBraceLoc, 1419 bool ListInitialization) { 1420 if (!TypeRep) 1421 return ExprError(); 1422 1423 TypeSourceInfo *TInfo; 1424 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1425 if (!TInfo) 1426 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1427 1428 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1429 RParenOrBraceLoc, ListInitialization); 1430 // Avoid creating a non-type-dependent expression that contains typos. 1431 // Non-type-dependent expressions are liable to be discarded without 1432 // checking for embedded typos. 1433 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1434 !Result.get()->isTypeDependent()) 1435 Result = CorrectDelayedTyposInExpr(Result.get()); 1436 else if (Result.isInvalid()) 1437 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1438 RParenOrBraceLoc, exprs, Ty); 1439 return Result; 1440} 1441 1442ExprResult 1443Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1444 SourceLocation LParenOrBraceLoc, 1445 MultiExprArg Exprs, 1446 SourceLocation RParenOrBraceLoc, 1447 bool ListInitialization) { 1448 QualType Ty = TInfo->getType(); 1449 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1450 1451 assert((!ListInitialization ||((void)0) 1452 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&((void)0) 1453 "List initialization must have initializer list as expression.")((void)0); 1454 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1455 1456 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1457 InitializationKind Kind = 1458 Exprs.size() 1459 ? ListInitialization 1460 ? InitializationKind::CreateDirectList( 1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1463 RParenOrBraceLoc) 1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1465 RParenOrBraceLoc); 1466 1467 // C++1z [expr.type.conv]p1: 1468 // If the type is a placeholder for a deduced class type, [...perform class 1469 // template argument deduction...] 1470 DeducedType *Deduced = Ty->getContainedDeducedType(); 1471 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1472 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1473 Kind, Exprs); 1474 if (Ty.isNull()) 1475 return ExprError(); 1476 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1477 } 1478 1479 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1480 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1481 // directly. We work around this by dropping the locations of the braces. 1482 SourceRange Locs = ListInitialization 1483 ? SourceRange() 1484 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1485 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1486 TInfo, Locs.getBegin(), Exprs, 1487 Locs.getEnd()); 1488 } 1489 1490 // C++ [expr.type.conv]p1: 1491 // If the expression list is a parenthesized single expression, the type 1492 // conversion expression is equivalent (in definedness, and if defined in 1493 // meaning) to the corresponding cast expression. 1494 if (Exprs.size() == 1 && !ListInitialization && 1495 !isa<InitListExpr>(Exprs[0])) { 1496 Expr *Arg = Exprs[0]; 1497 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1498 RParenOrBraceLoc); 1499 } 1500 1501 // For an expression of the form T(), T shall not be an array type. 1502 QualType ElemTy = Ty; 1503 if (Ty->isArrayType()) { 1504 if (!ListInitialization) 1505 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1506 << FullRange); 1507 ElemTy = Context.getBaseElementType(Ty); 1508 } 1509 1510 // There doesn't seem to be an explicit rule against this but sanity demands 1511 // we only construct objects with object types. 1512 if (Ty->isFunctionType()) 1513 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1514 << Ty << FullRange); 1515 1516 // C++17 [expr.type.conv]p2: 1517 // If the type is cv void and the initializer is (), the expression is a 1518 // prvalue of the specified type that performs no initialization. 1519 if (!Ty->isVoidType() && 1520 RequireCompleteType(TyBeginLoc, ElemTy, 1521 diag::err_invalid_incomplete_type_use, FullRange)) 1522 return ExprError(); 1523 1524 // Otherwise, the expression is a prvalue of the specified type whose 1525 // result object is direct-initialized (11.6) with the initializer. 1526 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1527 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1528 1529 if (Result.isInvalid()) 1530 return Result; 1531 1532 Expr *Inner = Result.get(); 1533 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1534 Inner = BTE->getSubExpr(); 1535 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1536 !isa<CXXScalarValueInitExpr>(Inner)) { 1537 // If we created a CXXTemporaryObjectExpr, that node also represents the 1538 // functional cast. Otherwise, create an explicit cast to represent 1539 // the syntactic form of a functional-style cast that was used here. 1540 // 1541 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1542 // would give a more consistent AST representation than using a 1543 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1544 // is sometimes handled by initialization and sometimes not. 1545 QualType ResultType = Result.get()->getType(); 1546 SourceRange Locs = ListInitialization 1547 ? SourceRange() 1548 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1549 Result = CXXFunctionalCastExpr::Create( 1550 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1551 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1552 Locs.getBegin(), Locs.getEnd()); 1553 } 1554 1555 return Result; 1556} 1557 1558bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1559 // [CUDA] Ignore this function, if we can't call it. 1560 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1561 if (getLangOpts().CUDA) { 1562 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1563 // If it's not callable at all, it's not the right function. 1564 if (CallPreference < CFP_WrongSide) 1565 return false; 1566 if (CallPreference == CFP_WrongSide) { 1567 // Maybe. We have to check if there are better alternatives. 1568 DeclContext::lookup_result R = 1569 Method->getDeclContext()->lookup(Method->getDeclName()); 1570 for (const auto *D : R) { 1571 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1572 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1573 return false; 1574 } 1575 } 1576 // We've found no better variants. 1577 } 1578 } 1579 1580 SmallVector<const FunctionDecl*, 4> PreventedBy; 1581 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1582 1583 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1584 return Result; 1585 1586 // In case of CUDA, return true if none of the 1-argument deallocator 1587 // functions are actually callable. 1588 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1589 assert(FD->getNumParams() == 1 &&((void)0) 1590 "Only single-operand functions should be in PreventedBy")((void)0); 1591 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1592 }); 1593} 1594 1595/// Determine whether the given function is a non-placement 1596/// deallocation function. 1597static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1598 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1599 return S.isUsualDeallocationFunction(Method); 1600 1601 if (FD->getOverloadedOperator() != OO_Delete && 1602 FD->getOverloadedOperator() != OO_Array_Delete) 1603 return false; 1604 1605 unsigned UsualParams = 1; 1606 1607 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1608 S.Context.hasSameUnqualifiedType( 1609 FD->getParamDecl(UsualParams)->getType(), 1610 S.Context.getSizeType())) 1611 ++UsualParams; 1612 1613 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1614 S.Context.hasSameUnqualifiedType( 1615 FD->getParamDecl(UsualParams)->getType(), 1616 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1617 ++UsualParams; 1618 1619 return UsualParams == FD->getNumParams(); 1620} 1621 1622namespace { 1623 struct UsualDeallocFnInfo { 1624 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1625 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1626 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1627 Destroying(false), HasSizeT(false), HasAlignValT(false), 1628 CUDAPref(Sema::CFP_Native) { 1629 // A function template declaration is never a usual deallocation function. 1630 if (!FD) 1631 return; 1632 unsigned NumBaseParams = 1; 1633 if (FD->isDestroyingOperatorDelete()) { 1634 Destroying = true; 1635 ++NumBaseParams; 1636 } 1637 1638 if (NumBaseParams < FD->getNumParams() && 1639 S.Context.hasSameUnqualifiedType( 1640 FD->getParamDecl(NumBaseParams)->getType(), 1641 S.Context.getSizeType())) { 1642 ++NumBaseParams; 1643 HasSizeT = true; 1644 } 1645 1646 if (NumBaseParams < FD->getNumParams() && 1647 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1648 ++NumBaseParams; 1649 HasAlignValT = true; 1650 } 1651 1652 // In CUDA, determine how much we'd like / dislike to call this. 1653 if (S.getLangOpts().CUDA) 1654 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1655 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1656 } 1657 1658 explicit operator bool() const { return FD; } 1659 1660 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1661 bool WantAlign) const { 1662 // C++ P0722: 1663 // A destroying operator delete is preferred over a non-destroying 1664 // operator delete. 1665 if (Destroying != Other.Destroying) 1666 return Destroying; 1667 1668 // C++17 [expr.delete]p10: 1669 // If the type has new-extended alignment, a function with a parameter 1670 // of type std::align_val_t is preferred; otherwise a function without 1671 // such a parameter is preferred 1672 if (HasAlignValT != Other.HasAlignValT) 1673 return HasAlignValT == WantAlign; 1674 1675 if (HasSizeT != Other.HasSizeT) 1676 return HasSizeT == WantSize; 1677 1678 // Use CUDA call preference as a tiebreaker. 1679 return CUDAPref > Other.CUDAPref; 1680 } 1681 1682 DeclAccessPair Found; 1683 FunctionDecl *FD; 1684 bool Destroying, HasSizeT, HasAlignValT; 1685 Sema::CUDAFunctionPreference CUDAPref; 1686 }; 1687} 1688 1689/// Determine whether a type has new-extended alignment. This may be called when 1690/// the type is incomplete (for a delete-expression with an incomplete pointee 1691/// type), in which case it will conservatively return false if the alignment is 1692/// not known. 1693static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1694 return S.getLangOpts().AlignedAllocation && 1695 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1696 S.getASTContext().getTargetInfo().getNewAlign(); 1697} 1698 1699/// Select the correct "usual" deallocation function to use from a selection of 1700/// deallocation functions (either global or class-scope). 1701static UsualDeallocFnInfo resolveDeallocationOverload( 1702 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1703 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1704 UsualDeallocFnInfo Best; 1705 1706 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1707 UsualDeallocFnInfo Info(S, I.getPair()); 1708 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1709 Info.CUDAPref == Sema::CFP_Never) 1710 continue; 1711 1712 if (!Best) { 1713 Best = Info; 1714 if (BestFns) 1715 BestFns->push_back(Info); 1716 continue; 1717 } 1718 1719 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1720 continue; 1721 1722 // If more than one preferred function is found, all non-preferred 1723 // functions are eliminated from further consideration. 1724 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1725 BestFns->clear(); 1726 1727 Best = Info; 1728 if (BestFns) 1729 BestFns->push_back(Info); 1730 } 1731 1732 return Best; 1733} 1734 1735/// Determine whether a given type is a class for which 'delete[]' would call 1736/// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1737/// we need to store the array size (even if the type is 1738/// trivially-destructible). 1739static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1740 QualType allocType) { 1741 const RecordType *record = 1742 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1743 if (!record) return false; 1744 1745 // Try to find an operator delete[] in class scope. 1746 1747 DeclarationName deleteName = 1748 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1749 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1750 S.LookupQualifiedName(ops, record->getDecl()); 1751 1752 // We're just doing this for information. 1753 ops.suppressDiagnostics(); 1754 1755 // Very likely: there's no operator delete[]. 1756 if (ops.empty()) return false; 1757 1758 // If it's ambiguous, it should be illegal to call operator delete[] 1759 // on this thing, so it doesn't matter if we allocate extra space or not. 1760 if (ops.isAmbiguous()) return false; 1761 1762 // C++17 [expr.delete]p10: 1763 // If the deallocation functions have class scope, the one without a 1764 // parameter of type std::size_t is selected. 1765 auto Best = resolveDeallocationOverload( 1766 S, ops, /*WantSize*/false, 1767 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1768 return Best && Best.HasSizeT; 1769} 1770 1771/// Parsed a C++ 'new' expression (C++ 5.3.4). 1772/// 1773/// E.g.: 1774/// @code new (memory) int[size][4] @endcode 1775/// or 1776/// @code ::new Foo(23, "hello") @endcode 1777/// 1778/// \param StartLoc The first location of the expression. 1779/// \param UseGlobal True if 'new' was prefixed with '::'. 1780/// \param PlacementLParen Opening paren of the placement arguments. 1781/// \param PlacementArgs Placement new arguments. 1782/// \param PlacementRParen Closing paren of the placement arguments. 1783/// \param TypeIdParens If the type is in parens, the source range. 1784/// \param D The type to be allocated, as well as array dimensions. 1785/// \param Initializer The initializing expression or initializer-list, or null 1786/// if there is none. 1787ExprResult 1788Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1789 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1790 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1791 Declarator &D, Expr *Initializer) { 1792 Optional<Expr *> ArraySize; 1793 // If the specified type is an array, unwrap it and save the expression. 1794 if (D.getNumTypeObjects() > 0 && 1795 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1796 DeclaratorChunk &Chunk = D.getTypeObject(0); 1797 if (D.getDeclSpec().hasAutoTypeSpec()) 1798 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1799 << D.getSourceRange()); 1800 if (Chunk.Arr.hasStatic) 1801 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1802 << D.getSourceRange()); 1803 if (!Chunk.Arr.NumElts && !Initializer) 1804 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1805 << D.getSourceRange()); 1806 1807 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1808 D.DropFirstTypeObject(); 1809 } 1810 1811 // Every dimension shall be of constant size. 1812 if (ArraySize) { 1813 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1814 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1815 break; 1816 1817 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1818 if (Expr *NumElts = (Expr *)Array.NumElts) { 1819 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1820 // FIXME: GCC permits constant folding here. We should either do so consistently 1821 // or not do so at all, rather than changing behavior in C++14 onwards. 1822 if (getLangOpts().CPlusPlus14) { 1823 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1824 // shall be a converted constant expression (5.19) of type std::size_t 1825 // and shall evaluate to a strictly positive value. 1826 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1827 Array.NumElts 1828 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1829 CCEK_ArrayBound) 1830 .get(); 1831 } else { 1832 Array.NumElts = 1833 VerifyIntegerConstantExpression( 1834 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1835 .get(); 1836 } 1837 if (!Array.NumElts) 1838 return ExprError(); 1839 } 1840 } 1841 } 1842 } 1843 1844 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1845 QualType AllocType = TInfo->getType(); 1846 if (D.isInvalidType()) 1847 return ExprError(); 1848 1849 SourceRange DirectInitRange; 1850 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1851 DirectInitRange = List->getSourceRange(); 1852 1853 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1854 PlacementLParen, PlacementArgs, PlacementRParen, 1855 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1856 Initializer); 1857} 1858 1859static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1860 Expr *Init) { 1861 if (!Init) 1862 return true; 1863 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1864 return PLE->getNumExprs() == 0; 1865 if (isa<ImplicitValueInitExpr>(Init)) 1866 return true; 1867 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1868 return !CCE->isListInitialization() && 1869 CCE->getConstructor()->isDefaultConstructor(); 1870 else if (Style == CXXNewExpr::ListInit) { 1871 assert(isa<InitListExpr>(Init) &&((void)0) 1872 "Shouldn't create list CXXConstructExprs for arrays.")((void)0); 1873 return true; 1874 } 1875 return false; 1876} 1877 1878bool 1879Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1880 if (!getLangOpts().AlignedAllocationUnavailable) 1881 return false; 1882 if (FD.isDefined()) 1883 return false; 1884 Optional<unsigned> AlignmentParam; 1885 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1886 AlignmentParam.hasValue()) 1887 return true; 1888 return false; 1889} 1890 1891// Emit a diagnostic if an aligned allocation/deallocation function that is not 1892// implemented in the standard library is selected. 1893void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1894 SourceLocation Loc) { 1895 if (isUnavailableAlignedAllocationFunction(FD)) { 1896 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1897 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1898 getASTContext().getTargetInfo().getPlatformName()); 1899 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1900 1901 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1902 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1903 Diag(Loc, diag::err_aligned_allocation_unavailable) 1904 << IsDelete << FD.getType().getAsString() << OSName 1905 << OSVersion.getAsString() << OSVersion.empty(); 1906 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1907 } 1908} 1909 1910ExprResult 1911Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1912 SourceLocation PlacementLParen, 1913 MultiExprArg PlacementArgs, 1914 SourceLocation PlacementRParen, 1915 SourceRange TypeIdParens, 1916 QualType AllocType, 1917 TypeSourceInfo *AllocTypeInfo, 1918 Optional<Expr *> ArraySize, 1919 SourceRange DirectInitRange, 1920 Expr *Initializer) { 1921 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1922 SourceLocation StartLoc = Range.getBegin(); 1923 1924 CXXNewExpr::InitializationStyle initStyle; 1925 if (DirectInitRange.isValid()) { 1926 assert(Initializer && "Have parens but no initializer.")((void)0); 1927 initStyle = CXXNewExpr::CallInit; 1928 } else if (Initializer && isa<InitListExpr>(Initializer)) 1929 initStyle = CXXNewExpr::ListInit; 1930 else { 1931 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||((void)0) 1932 isa<CXXConstructExpr>(Initializer)) &&((void)0) 1933 "Initializer expression that cannot have been implicitly created.")((void)0); 1934 initStyle = CXXNewExpr::NoInit; 1935 } 1936 1937 Expr **Inits = &Initializer; 1938 unsigned NumInits = Initializer ? 1 : 0; 1939 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1940 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")((void)0); 1941 Inits = List->getExprs(); 1942 NumInits = List->getNumExprs(); 1943 } 1944 1945 // C++11 [expr.new]p15: 1946 // A new-expression that creates an object of type T initializes that 1947 // object as follows: 1948 InitializationKind Kind 1949 // - If the new-initializer is omitted, the object is default- 1950 // initialized (8.5); if no initialization is performed, 1951 // the object has indeterminate value 1952 = initStyle == CXXNewExpr::NoInit 1953 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1954 // - Otherwise, the new-initializer is interpreted according to 1955 // the 1956 // initialization rules of 8.5 for direct-initialization. 1957 : initStyle == CXXNewExpr::ListInit 1958 ? InitializationKind::CreateDirectList( 1959 TypeRange.getBegin(), Initializer->getBeginLoc(), 1960 Initializer->getEndLoc()) 1961 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1962 DirectInitRange.getBegin(), 1963 DirectInitRange.getEnd()); 1964 1965 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1966 auto *Deduced = AllocType->getContainedDeducedType(); 1967 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1968 if (ArraySize) 1969 return ExprError( 1970 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1971 diag::err_deduced_class_template_compound_type) 1972 << /*array*/ 2 1973 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1974 1975 InitializedEntity Entity 1976 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1977 AllocType = DeduceTemplateSpecializationFromInitializer( 1978 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1979 if (AllocType.isNull()) 1980 return ExprError(); 1981 } else if (Deduced) { 1982 bool Braced = (initStyle == CXXNewExpr::ListInit); 1983 if (NumInits == 1) { 1984 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1985 Inits = p->getInits(); 1986 NumInits = p->getNumInits(); 1987 Braced = true; 1988 } 1989 } 1990 1991 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1992 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1993 << AllocType << TypeRange); 1994 if (NumInits > 1) { 1995 Expr *FirstBad = Inits[1]; 1996 return ExprError(Diag(FirstBad->getBeginLoc(), 1997 diag::err_auto_new_ctor_multiple_expressions) 1998 << AllocType << TypeRange); 1999 } 2000 if (Braced && !getLangOpts().CPlusPlus17) 2001 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2002 << AllocType << TypeRange; 2003 Expr *Deduce = Inits[0]; 2004 QualType DeducedType; 2005 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2006 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2007 << AllocType << Deduce->getType() 2008 << TypeRange << Deduce->getSourceRange()); 2009 if (DeducedType.isNull()) 2010 return ExprError(); 2011 AllocType = DeducedType; 2012 } 2013 2014 // Per C++0x [expr.new]p5, the type being constructed may be a 2015 // typedef of an array type. 2016 if (!ArraySize) { 2017 if (const ConstantArrayType *Array 2018 = Context.getAsConstantArrayType(AllocType)) { 2019 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2020 Context.getSizeType(), 2021 TypeRange.getEnd()); 2022 AllocType = Array->getElementType(); 2023 } 2024 } 2025 2026 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2027 return ExprError(); 2028 2029 // In ARC, infer 'retaining' for the allocated 2030 if (getLangOpts().ObjCAutoRefCount && 2031 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2032 AllocType->isObjCLifetimeType()) { 2033 AllocType = Context.getLifetimeQualifiedType(AllocType, 2034 AllocType->getObjCARCImplicitLifetime()); 2035 } 2036 2037 QualType ResultType = Context.getPointerType(AllocType); 2038 2039 if (ArraySize && *ArraySize && 2040 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2041 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2042 if (result.isInvalid()) return ExprError(); 2043 ArraySize = result.get(); 2044 } 2045 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2046 // integral or enumeration type with a non-negative value." 2047 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2048 // enumeration type, or a class type for which a single non-explicit 2049 // conversion function to integral or unscoped enumeration type exists. 2050 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2051 // std::size_t. 2052 llvm::Optional<uint64_t> KnownArraySize; 2053 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2054 ExprResult ConvertedSize; 2055 if (getLangOpts().CPlusPlus14) { 2056 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")((void)0); 2057 2058 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2059 AA_Converting); 2060 2061 if (!ConvertedSize.isInvalid() && 2062 (*ArraySize)->getType()->getAs<RecordType>()) 2063 // Diagnose the compatibility of this conversion. 2064 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2065 << (*ArraySize)->getType() << 0 << "'size_t'"; 2066 } else { 2067 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2068 protected: 2069 Expr *ArraySize; 2070 2071 public: 2072 SizeConvertDiagnoser(Expr *ArraySize) 2073 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2074 ArraySize(ArraySize) {} 2075 2076 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2077 QualType T) override { 2078 return S.Diag(Loc, diag::err_array_size_not_integral) 2079 << S.getLangOpts().CPlusPlus11 << T; 2080 } 2081 2082 SemaDiagnosticBuilder diagnoseIncomplete( 2083 Sema &S, SourceLocation Loc, QualType T) override { 2084 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2085 << T << ArraySize->getSourceRange(); 2086 } 2087 2088 SemaDiagnosticBuilder diagnoseExplicitConv( 2089 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2090 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2091 } 2092 2093 SemaDiagnosticBuilder noteExplicitConv( 2094 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2095 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2096 << ConvTy->isEnumeralType() << ConvTy; 2097 } 2098 2099 SemaDiagnosticBuilder diagnoseAmbiguous( 2100 Sema &S, SourceLocation Loc, QualType T) override { 2101 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2102 } 2103 2104 SemaDiagnosticBuilder noteAmbiguous( 2105 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2106 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2107 << ConvTy->isEnumeralType() << ConvTy; 2108 } 2109 2110 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2111 QualType T, 2112 QualType ConvTy) override { 2113 return S.Diag(Loc, 2114 S.getLangOpts().CPlusPlus11 2115 ? diag::warn_cxx98_compat_array_size_conversion 2116 : diag::ext_array_size_conversion) 2117 << T << ConvTy->isEnumeralType() << ConvTy; 2118 } 2119 } SizeDiagnoser(*ArraySize); 2120 2121 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2122 SizeDiagnoser); 2123 } 2124 if (ConvertedSize.isInvalid()) 2125 return ExprError(); 2126 2127 ArraySize = ConvertedSize.get(); 2128 QualType SizeType = (*ArraySize)->getType(); 2129 2130 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2131 return ExprError(); 2132 2133 // C++98 [expr.new]p7: 2134 // The expression in a direct-new-declarator shall have integral type 2135 // with a non-negative value. 2136 // 2137 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2138 // per CWG1464. Otherwise, if it's not a constant, we must have an 2139 // unparenthesized array type. 2140 if (!(*ArraySize)->isValueDependent()) { 2141 // We've already performed any required implicit conversion to integer or 2142 // unscoped enumeration type. 2143 // FIXME: Per CWG1464, we are required to check the value prior to 2144 // converting to size_t. This will never find a negative array size in 2145 // C++14 onwards, because Value is always unsigned here! 2146 if (Optional<llvm::APSInt> Value = 2147 (*ArraySize)->getIntegerConstantExpr(Context)) { 2148 if (Value->isSigned() && Value->isNegative()) { 2149 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2150 diag::err_typecheck_negative_array_size) 2151 << (*ArraySize)->getSourceRange()); 2152 } 2153 2154 if (!AllocType->isDependentType()) { 2155 unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits( 2156 Context, AllocType, *Value); 2157 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2158 return ExprError( 2159 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2160 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2161 } 2162 2163 KnownArraySize = Value->getZExtValue(); 2164 } else if (TypeIdParens.isValid()) { 2165 // Can't have dynamic array size when the type-id is in parentheses. 2166 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2167 << (*ArraySize)->getSourceRange() 2168 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2169 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2170 2171 TypeIdParens = SourceRange(); 2172 } 2173 } 2174 2175 // Note that we do *not* convert the argument in any way. It can 2176 // be signed, larger than size_t, whatever. 2177 } 2178 2179 FunctionDecl *OperatorNew = nullptr; 2180 FunctionDecl *OperatorDelete = nullptr; 2181 unsigned Alignment = 2182 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2183 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2184 bool PassAlignment = getLangOpts().AlignedAllocation && 2185 Alignment > NewAlignment; 2186 2187 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2188 if (!AllocType->isDependentType() && 2189 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2190 FindAllocationFunctions( 2191 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2192 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2193 OperatorNew, OperatorDelete)) 2194 return ExprError(); 2195 2196 // If this is an array allocation, compute whether the usual array 2197 // deallocation function for the type has a size_t parameter. 2198 bool UsualArrayDeleteWantsSize = false; 2199 if (ArraySize && !AllocType->isDependentType()) 2200 UsualArrayDeleteWantsSize = 2201 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2202 2203 SmallVector<Expr *, 8> AllPlaceArgs; 2204 if (OperatorNew) { 2205 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2206 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2207 : VariadicDoesNotApply; 2208 2209 // We've already converted the placement args, just fill in any default 2210 // arguments. Skip the first parameter because we don't have a corresponding 2211 // argument. Skip the second parameter too if we're passing in the 2212 // alignment; we've already filled it in. 2213 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2214 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2215 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2216 CallType)) 2217 return ExprError(); 2218 2219 if (!AllPlaceArgs.empty()) 2220 PlacementArgs = AllPlaceArgs; 2221 2222 // We would like to perform some checking on the given `operator new` call, 2223 // but the PlacementArgs does not contain the implicit arguments, 2224 // namely allocation size and maybe allocation alignment, 2225 // so we need to conjure them. 2226 2227 QualType SizeTy = Context.getSizeType(); 2228 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2229 2230 llvm::APInt SingleEltSize( 2231 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2232 2233 // How many bytes do we want to allocate here? 2234 llvm::Optional<llvm::APInt> AllocationSize; 2235 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2236 // For non-array operator new, we only want to allocate one element. 2237 AllocationSize = SingleEltSize; 2238 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2239 // For array operator new, only deal with static array size case. 2240 bool Overflow; 2241 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2242 .umul_ov(SingleEltSize, Overflow); 2243 (void)Overflow; 2244 assert(((void)0) 2245 !Overflow &&((void)0) 2246 "Expected that all the overflows would have been handled already.")((void)0); 2247 } 2248 2249 IntegerLiteral AllocationSizeLiteral( 2250 Context, 2251 AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)), 2252 SizeTy, SourceLocation()); 2253 // Otherwise, if we failed to constant-fold the allocation size, we'll 2254 // just give up and pass-in something opaque, that isn't a null pointer. 2255 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2256 OK_Ordinary, /*SourceExpr=*/nullptr); 2257 2258 // Let's synthesize the alignment argument in case we will need it. 2259 // Since we *really* want to allocate these on stack, this is slightly ugly 2260 // because there might not be a `std::align_val_t` type. 2261 EnumDecl *StdAlignValT = getStdAlignValT(); 2262 QualType AlignValT = 2263 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2264 IntegerLiteral AlignmentLiteral( 2265 Context, 2266 llvm::APInt(Context.getTypeSize(SizeTy), 2267 Alignment / Context.getCharWidth()), 2268 SizeTy, SourceLocation()); 2269 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2270 CK_IntegralCast, &AlignmentLiteral, 2271 VK_PRValue, FPOptionsOverride()); 2272 2273 // Adjust placement args by prepending conjured size and alignment exprs. 2274 llvm::SmallVector<Expr *, 8> CallArgs; 2275 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2276 CallArgs.emplace_back(AllocationSize.hasValue() 2277 ? static_cast<Expr *>(&AllocationSizeLiteral) 2278 : &OpaqueAllocationSize); 2279 if (PassAlignment) 2280 CallArgs.emplace_back(&DesiredAlignment); 2281 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2282 2283 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2284 2285 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2286 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2287 2288 // Warn if the type is over-aligned and is being allocated by (unaligned) 2289 // global operator new. 2290 if (PlacementArgs.empty() && !PassAlignment && 2291 (OperatorNew->isImplicit() || 2292 (OperatorNew->getBeginLoc().isValid() && 2293 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2294 if (Alignment > NewAlignment) 2295 Diag(StartLoc, diag::warn_overaligned_type) 2296 << AllocType 2297 << unsigned(Alignment / Context.getCharWidth()) 2298 << unsigned(NewAlignment / Context.getCharWidth()); 2299 } 2300 } 2301 2302 // Array 'new' can't have any initializers except empty parentheses. 2303 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2304 // dialect distinction. 2305 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2306 SourceRange InitRange(Inits[0]->getBeginLoc(), 2307 Inits[NumInits - 1]->getEndLoc()); 2308 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2309 return ExprError(); 2310 } 2311 2312 // If we can perform the initialization, and we've not already done so, 2313 // do it now. 2314 if (!AllocType->isDependentType() && 2315 !Expr::hasAnyTypeDependentArguments( 2316 llvm::makeArrayRef(Inits, NumInits))) { 2317 // The type we initialize is the complete type, including the array bound. 2318 QualType InitType; 2319 if (KnownArraySize) 2320 InitType = Context.getConstantArrayType( 2321 AllocType, 2322 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2323 *KnownArraySize), 2324 *ArraySize, ArrayType::Normal, 0); 2325 else if (ArraySize) 2326 InitType = 2327 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2328 else 2329 InitType = AllocType; 2330 2331 InitializedEntity Entity 2332 = InitializedEntity::InitializeNew(StartLoc, InitType); 2333 InitializationSequence InitSeq(*this, Entity, Kind, 2334 MultiExprArg(Inits, NumInits)); 2335 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2336 MultiExprArg(Inits, NumInits)); 2337 if (FullInit.isInvalid()) 2338 return ExprError(); 2339 2340 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2341 // we don't want the initialized object to be destructed. 2342 // FIXME: We should not create these in the first place. 2343 if (CXXBindTemporaryExpr *Binder = 2344 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2345 FullInit = Binder->getSubExpr(); 2346 2347 Initializer = FullInit.get(); 2348 2349 // FIXME: If we have a KnownArraySize, check that the array bound of the 2350 // initializer is no greater than that constant value. 2351 2352 if (ArraySize && !*ArraySize) { 2353 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2354 if (CAT) { 2355 // FIXME: Track that the array size was inferred rather than explicitly 2356 // specified. 2357 ArraySize = IntegerLiteral::Create( 2358 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2359 } else { 2360 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2361 << Initializer->getSourceRange(); 2362 } 2363 } 2364 } 2365 2366 // Mark the new and delete operators as referenced. 2367 if (OperatorNew) { 2368 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2369 return ExprError(); 2370 MarkFunctionReferenced(StartLoc, OperatorNew); 2371 } 2372 if (OperatorDelete) { 2373 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2374 return ExprError(); 2375 MarkFunctionReferenced(StartLoc, OperatorDelete); 2376 } 2377 2378 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2379 PassAlignment, UsualArrayDeleteWantsSize, 2380 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2381 Initializer, ResultType, AllocTypeInfo, Range, 2382 DirectInitRange); 2383} 2384 2385/// Checks that a type is suitable as the allocated type 2386/// in a new-expression. 2387bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2388 SourceRange R) { 2389 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2390 // abstract class type or array thereof. 2391 if (AllocType->isFunctionType()) 2392 return Diag(Loc, diag::err_bad_new_type) 2393 << AllocType << 0 << R; 2394 else if (AllocType->isReferenceType()) 2395 return Diag(Loc, diag::err_bad_new_type) 2396 << AllocType << 1 << R; 2397 else if (!AllocType->isDependentType() && 2398 RequireCompleteSizedType( 2399 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2400 return true; 2401 else if (RequireNonAbstractType(Loc, AllocType, 2402 diag::err_allocation_of_abstract_type)) 2403 return true; 2404 else if (AllocType->isVariablyModifiedType()) 2405 return Diag(Loc, diag::err_variably_modified_new_type) 2406 << AllocType; 2407 else if (AllocType.getAddressSpace() != LangAS::Default && 2408 !getLangOpts().OpenCLCPlusPlus) 2409 return Diag(Loc, diag::err_address_space_qualified_new) 2410 << AllocType.getUnqualifiedType() 2411 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2412 else if (getLangOpts().ObjCAutoRefCount) { 2413 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2414 QualType BaseAllocType = Context.getBaseElementType(AT); 2415 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2416 BaseAllocType->isObjCLifetimeType()) 2417 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2418 << BaseAllocType; 2419 } 2420 } 2421 2422 return false; 2423} 2424 2425static bool resolveAllocationOverload( 2426 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2427 bool &PassAlignment, FunctionDecl *&Operator, 2428 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2429 OverloadCandidateSet Candidates(R.getNameLoc(), 2430 OverloadCandidateSet::CSK_Normal); 2431 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2432 Alloc != AllocEnd; ++Alloc) { 2433 // Even member operator new/delete are implicitly treated as 2434 // static, so don't use AddMemberCandidate. 2435 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2436 2437 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2438 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2439 /*ExplicitTemplateArgs=*/nullptr, Args, 2440 Candidates, 2441 /*SuppressUserConversions=*/false); 2442 continue; 2443 } 2444 2445 FunctionDecl *Fn = cast<FunctionDecl>(D); 2446 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2447 /*SuppressUserConversions=*/false); 2448 } 2449 2450 // Do the resolution. 2451 OverloadCandidateSet::iterator Best; 2452 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2453 case OR_Success: { 2454 // Got one! 2455 FunctionDecl *FnDecl = Best->Function; 2456 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2457 Best->FoundDecl) == Sema::AR_inaccessible) 2458 return true; 2459 2460 Operator = FnDecl; 2461 return false; 2462 } 2463 2464 case OR_No_Viable_Function: 2465 // C++17 [expr.new]p13: 2466 // If no matching function is found and the allocated object type has 2467 // new-extended alignment, the alignment argument is removed from the 2468 // argument list, and overload resolution is performed again. 2469 if (PassAlignment) { 2470 PassAlignment = false; 2471 AlignArg = Args[1]; 2472 Args.erase(Args.begin() + 1); 2473 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2474 Operator, &Candidates, AlignArg, 2475 Diagnose); 2476 } 2477 2478 // MSVC will fall back on trying to find a matching global operator new 2479 // if operator new[] cannot be found. Also, MSVC will leak by not 2480 // generating a call to operator delete or operator delete[], but we 2481 // will not replicate that bug. 2482 // FIXME: Find out how this interacts with the std::align_val_t fallback 2483 // once MSVC implements it. 2484 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2485 S.Context.getLangOpts().MSVCCompat) { 2486 R.clear(); 2487 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2488 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2489 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2490 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2491 Operator, /*Candidates=*/nullptr, 2492 /*AlignArg=*/nullptr, Diagnose); 2493 } 2494 2495 if (Diagnose) { 2496 // If this is an allocation of the form 'new (p) X' for some object 2497 // pointer p (or an expression that will decay to such a pointer), 2498 // diagnose the missing inclusion of <new>. 2499 if (!R.isClassLookup() && Args.size() == 2 && 2500 (Args[1]->getType()->isObjectPointerType() || 2501 Args[1]->getType()->isArrayType())) { 2502 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2503 << R.getLookupName() << Range; 2504 // Listing the candidates is unlikely to be useful; skip it. 2505 return true; 2506 } 2507 2508 // Finish checking all candidates before we note any. This checking can 2509 // produce additional diagnostics so can't be interleaved with our 2510 // emission of notes. 2511 // 2512 // For an aligned allocation, separately check the aligned and unaligned 2513 // candidates with their respective argument lists. 2514 SmallVector<OverloadCandidate*, 32> Cands; 2515 SmallVector<OverloadCandidate*, 32> AlignedCands; 2516 llvm::SmallVector<Expr*, 4> AlignedArgs; 2517 if (AlignedCandidates) { 2518 auto IsAligned = [](OverloadCandidate &C) { 2519 return C.Function->getNumParams() > 1 && 2520 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2521 }; 2522 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2523 2524 AlignedArgs.reserve(Args.size() + 1); 2525 AlignedArgs.push_back(Args[0]); 2526 AlignedArgs.push_back(AlignArg); 2527 AlignedArgs.append(Args.begin() + 1, Args.end()); 2528 AlignedCands = AlignedCandidates->CompleteCandidates( 2529 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2530 2531 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2532 R.getNameLoc(), IsUnaligned); 2533 } else { 2534 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2535 R.getNameLoc()); 2536 } 2537 2538 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2539 << R.getLookupName() << Range; 2540 if (AlignedCandidates) 2541 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2542 R.getNameLoc()); 2543 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2544 } 2545 return true; 2546 2547 case OR_Ambiguous: 2548 if (Diagnose) { 2549 Candidates.NoteCandidates( 2550 PartialDiagnosticAt(R.getNameLoc(), 2551 S.PDiag(diag::err_ovl_ambiguous_call) 2552 << R.getLookupName() << Range), 2553 S, OCD_AmbiguousCandidates, Args); 2554 } 2555 return true; 2556 2557 case OR_Deleted: { 2558 if (Diagnose) { 2559 Candidates.NoteCandidates( 2560 PartialDiagnosticAt(R.getNameLoc(), 2561 S.PDiag(diag::err_ovl_deleted_call) 2562 << R.getLookupName() << Range), 2563 S, OCD_AllCandidates, Args); 2564 } 2565 return true; 2566 } 2567 } 2568 llvm_unreachable("Unreachable, bad result from BestViableFunction")__builtin_unreachable(); 2569} 2570 2571bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2572 AllocationFunctionScope NewScope, 2573 AllocationFunctionScope DeleteScope, 2574 QualType AllocType, bool IsArray, 2575 bool &PassAlignment, MultiExprArg PlaceArgs, 2576 FunctionDecl *&OperatorNew, 2577 FunctionDecl *&OperatorDelete, 2578 bool Diagnose) { 2579 // --- Choosing an allocation function --- 2580 // C++ 5.3.4p8 - 14 & 18 2581 // 1) If looking in AFS_Global scope for allocation functions, only look in 2582 // the global scope. Else, if AFS_Class, only look in the scope of the 2583 // allocated class. If AFS_Both, look in both. 2584 // 2) If an array size is given, look for operator new[], else look for 2585 // operator new. 2586 // 3) The first argument is always size_t. Append the arguments from the 2587 // placement form. 2588 2589 SmallVector<Expr*, 8> AllocArgs; 2590 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2591 2592 // We don't care about the actual value of these arguments. 2593 // FIXME: Should the Sema create the expression and embed it in the syntax 2594 // tree? Or should the consumer just recalculate the value? 2595 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2596 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 2597 Context.getTargetInfo().getPointerWidth(0)), 2598 Context.getSizeType(), 2599 SourceLocation()); 2600 AllocArgs.push_back(&Size); 2601 2602 QualType AlignValT = Context.VoidTy; 2603 if (PassAlignment) { 2604 DeclareGlobalNewDelete(); 2605 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2606 } 2607 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2608 if (PassAlignment) 2609 AllocArgs.push_back(&Align); 2610 2611 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2612 2613 // C++ [expr.new]p8: 2614 // If the allocated type is a non-array type, the allocation 2615 // function's name is operator new and the deallocation function's 2616 // name is operator delete. If the allocated type is an array 2617 // type, the allocation function's name is operator new[] and the 2618 // deallocation function's name is operator delete[]. 2619 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2620 IsArray ? OO_Array_New : OO_New); 2621 2622 QualType AllocElemType = Context.getBaseElementType(AllocType); 2623 2624 // Find the allocation function. 2625 { 2626 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2627 2628 // C++1z [expr.new]p9: 2629 // If the new-expression begins with a unary :: operator, the allocation 2630 // function's name is looked up in the global scope. Otherwise, if the 2631 // allocated type is a class type T or array thereof, the allocation 2632 // function's name is looked up in the scope of T. 2633 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2634 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2635 2636 // We can see ambiguity here if the allocation function is found in 2637 // multiple base classes. 2638 if (R.isAmbiguous()) 2639 return true; 2640 2641 // If this lookup fails to find the name, or if the allocated type is not 2642 // a class type, the allocation function's name is looked up in the 2643 // global scope. 2644 if (R.empty()) { 2645 if (NewScope == AFS_Class) 2646 return true; 2647 2648 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2649 } 2650 2651 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2652 if (PlaceArgs.empty()) { 2653 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2654 } else { 2655 Diag(StartLoc, diag::err_openclcxx_placement_new); 2656 } 2657 return true; 2658 } 2659 2660 assert(!R.empty() && "implicitly declared allocation functions not found")((void)0); 2661 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((void)0); 2662 2663 // We do our own custom access checks below. 2664 R.suppressDiagnostics(); 2665 2666 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2667 OperatorNew, /*Candidates=*/nullptr, 2668 /*AlignArg=*/nullptr, Diagnose)) 2669 return true; 2670 } 2671 2672 // We don't need an operator delete if we're running under -fno-exceptions. 2673 if (!getLangOpts().Exceptions) { 2674 OperatorDelete = nullptr; 2675 return false; 2676 } 2677 2678 // Note, the name of OperatorNew might have been changed from array to 2679 // non-array by resolveAllocationOverload. 2680 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2681 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2682 ? OO_Array_Delete 2683 : OO_Delete); 2684 2685 // C++ [expr.new]p19: 2686 // 2687 // If the new-expression begins with a unary :: operator, the 2688 // deallocation function's name is looked up in the global 2689 // scope. Otherwise, if the allocated type is a class type T or an 2690 // array thereof, the deallocation function's name is looked up in 2691 // the scope of T. If this lookup fails to find the name, or if 2692 // the allocated type is not a class type or array thereof, the 2693 // deallocation function's name is looked up in the global scope. 2694 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2695 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2696 auto *RD = 2697 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2698 LookupQualifiedName(FoundDelete, RD); 2699 } 2700 if (FoundDelete.isAmbiguous()) 2701 return true; // FIXME: clean up expressions? 2702 2703 // Filter out any destroying operator deletes. We can't possibly call such a 2704 // function in this context, because we're handling the case where the object 2705 // was not successfully constructed. 2706 // FIXME: This is not covered by the language rules yet. 2707 { 2708 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2709 while (Filter.hasNext()) { 2710 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2711 if (FD && FD->isDestroyingOperatorDelete()) 2712 Filter.erase(); 2713 } 2714 Filter.done(); 2715 } 2716 2717 bool FoundGlobalDelete = FoundDelete.empty(); 2718 if (FoundDelete.empty()) { 2719 FoundDelete.clear(LookupOrdinaryName); 2720 2721 if (DeleteScope == AFS_Class) 2722 return true; 2723 2724 DeclareGlobalNewDelete(); 2725 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2726 } 2727 2728 FoundDelete.suppressDiagnostics(); 2729 2730 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2731 2732 // Whether we're looking for a placement operator delete is dictated 2733 // by whether we selected a placement operator new, not by whether 2734 // we had explicit placement arguments. This matters for things like 2735 // struct A { void *operator new(size_t, int = 0); ... }; 2736 // A *a = new A() 2737 // 2738 // We don't have any definition for what a "placement allocation function" 2739 // is, but we assume it's any allocation function whose 2740 // parameter-declaration-clause is anything other than (size_t). 2741 // 2742 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2743 // This affects whether an exception from the constructor of an overaligned 2744 // type uses the sized or non-sized form of aligned operator delete. 2745 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2746 OperatorNew->isVariadic(); 2747 2748 if (isPlacementNew) { 2749 // C++ [expr.new]p20: 2750 // A declaration of a placement deallocation function matches the 2751 // declaration of a placement allocation function if it has the 2752 // same number of parameters and, after parameter transformations 2753 // (8.3.5), all parameter types except the first are 2754 // identical. [...] 2755 // 2756 // To perform this comparison, we compute the function type that 2757 // the deallocation function should have, and use that type both 2758 // for template argument deduction and for comparison purposes. 2759 QualType ExpectedFunctionType; 2760 { 2761 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2762 2763 SmallVector<QualType, 4> ArgTypes; 2764 ArgTypes.push_back(Context.VoidPtrTy); 2765 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2766 ArgTypes.push_back(Proto->getParamType(I)); 2767 2768 FunctionProtoType::ExtProtoInfo EPI; 2769 // FIXME: This is not part of the standard's rule. 2770 EPI.Variadic = Proto->isVariadic(); 2771 2772 ExpectedFunctionType 2773 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2774 } 2775 2776 for (LookupResult::iterator D = FoundDelete.begin(), 2777 DEnd = FoundDelete.end(); 2778 D != DEnd; ++D) { 2779 FunctionDecl *Fn = nullptr; 2780 if (FunctionTemplateDecl *FnTmpl = 2781 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2782 // Perform template argument deduction to try to match the 2783 // expected function type. 2784 TemplateDeductionInfo Info(StartLoc); 2785 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2786 Info)) 2787 continue; 2788 } else 2789 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2790 2791 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2792 ExpectedFunctionType, 2793 /*AdjustExcpetionSpec*/true), 2794 ExpectedFunctionType)) 2795 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2796 } 2797 2798 if (getLangOpts().CUDA) 2799 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2800 } else { 2801 // C++1y [expr.new]p22: 2802 // For a non-placement allocation function, the normal deallocation 2803 // function lookup is used 2804 // 2805 // Per [expr.delete]p10, this lookup prefers a member operator delete 2806 // without a size_t argument, but prefers a non-member operator delete 2807 // with a size_t where possible (which it always is in this case). 2808 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2809 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2810 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2811 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2812 &BestDeallocFns); 2813 if (Selected) 2814 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2815 else { 2816 // If we failed to select an operator, all remaining functions are viable 2817 // but ambiguous. 2818 for (auto Fn : BestDeallocFns) 2819 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2820 } 2821 } 2822 2823 // C++ [expr.new]p20: 2824 // [...] If the lookup finds a single matching deallocation 2825 // function, that function will be called; otherwise, no 2826 // deallocation function will be called. 2827 if (Matches.size() == 1) { 2828 OperatorDelete = Matches[0].second; 2829 2830 // C++1z [expr.new]p23: 2831 // If the lookup finds a usual deallocation function (3.7.4.2) 2832 // with a parameter of type std::size_t and that function, considered 2833 // as a placement deallocation function, would have been 2834 // selected as a match for the allocation function, the program 2835 // is ill-formed. 2836 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2837 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2838 UsualDeallocFnInfo Info(*this, 2839 DeclAccessPair::make(OperatorDelete, AS_public)); 2840 // Core issue, per mail to core reflector, 2016-10-09: 2841 // If this is a member operator delete, and there is a corresponding 2842 // non-sized member operator delete, this isn't /really/ a sized 2843 // deallocation function, it just happens to have a size_t parameter. 2844 bool IsSizedDelete = Info.HasSizeT; 2845 if (IsSizedDelete && !FoundGlobalDelete) { 2846 auto NonSizedDelete = 2847 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2848 /*WantAlign*/Info.HasAlignValT); 2849 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2850 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2851 IsSizedDelete = false; 2852 } 2853 2854 if (IsSizedDelete) { 2855 SourceRange R = PlaceArgs.empty() 2856 ? SourceRange() 2857 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2858 PlaceArgs.back()->getEndLoc()); 2859 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2860 if (!OperatorDelete->isImplicit()) 2861 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2862 << DeleteName; 2863 } 2864 } 2865 2866 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2867 Matches[0].first); 2868 } else if (!Matches.empty()) { 2869 // We found multiple suitable operators. Per [expr.new]p20, that means we 2870 // call no 'operator delete' function, but we should at least warn the user. 2871 // FIXME: Suppress this warning if the construction cannot throw. 2872 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2873 << DeleteName << AllocElemType; 2874 2875 for (auto &Match : Matches) 2876 Diag(Match.second->getLocation(), 2877 diag::note_member_declared_here) << DeleteName; 2878 } 2879 2880 return false; 2881} 2882 2883/// DeclareGlobalNewDelete - Declare the global forms of operator new and 2884/// delete. These are: 2885/// @code 2886/// // C++03: 2887/// void* operator new(std::size_t) throw(std::bad_alloc); 2888/// void* operator new[](std::size_t) throw(std::bad_alloc); 2889/// void operator delete(void *) throw(); 2890/// void operator delete[](void *) throw(); 2891/// // C++11: 2892/// void* operator new(std::size_t); 2893/// void* operator new[](std::size_t); 2894/// void operator delete(void *) noexcept; 2895/// void operator delete[](void *) noexcept; 2896/// // C++1y: 2897/// void* operator new(std::size_t); 2898/// void* operator new[](std::size_t); 2899/// void operator delete(void *) noexcept; 2900/// void operator delete[](void *) noexcept; 2901/// void operator delete(void *, std::size_t) noexcept; 2902/// void operator delete[](void *, std::size_t) noexcept; 2903/// @endcode 2904/// Note that the placement and nothrow forms of new are *not* implicitly 2905/// declared. Their use requires including \<new\>. 2906void Sema::DeclareGlobalNewDelete() { 2907 if (GlobalNewDeleteDeclared) 2908 return; 2909 2910 // The implicitly declared new and delete operators 2911 // are not supported in OpenCL. 2912 if (getLangOpts().OpenCLCPlusPlus) 2913 return; 2914 2915 // C++ [basic.std.dynamic]p2: 2916 // [...] The following allocation and deallocation functions (18.4) are 2917 // implicitly declared in global scope in each translation unit of a 2918 // program 2919 // 2920 // C++03: 2921 // void* operator new(std::size_t) throw(std::bad_alloc); 2922 // void* operator new[](std::size_t) throw(std::bad_alloc); 2923 // void operator delete(void*) throw(); 2924 // void operator delete[](void*) throw(); 2925 // C++11: 2926 // void* operator new(std::size_t); 2927 // void* operator new[](std::size_t); 2928 // void operator delete(void*) noexcept; 2929 // void operator delete[](void*) noexcept; 2930 // C++1y: 2931 // void* operator new(std::size_t); 2932 // void* operator new[](std::size_t); 2933 // void operator delete(void*) noexcept; 2934 // void operator delete[](void*) noexcept; 2935 // void operator delete(void*, std::size_t) noexcept; 2936 // void operator delete[](void*, std::size_t) noexcept; 2937 // 2938 // These implicit declarations introduce only the function names operator 2939 // new, operator new[], operator delete, operator delete[]. 2940 // 2941 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2942 // "std" or "bad_alloc" as necessary to form the exception specification. 2943 // However, we do not make these implicit declarations visible to name 2944 // lookup. 2945 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2946 // The "std::bad_alloc" class has not yet been declared, so build it 2947 // implicitly. 2948 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2949 getOrCreateStdNamespace(), 2950 SourceLocation(), SourceLocation(), 2951 &PP.getIdentifierTable().get("bad_alloc"), 2952 nullptr); 2953 getStdBadAlloc()->setImplicit(true); 2954 } 2955 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2956 // The "std::align_val_t" enum class has not yet been declared, so build it 2957 // implicitly. 2958 auto *AlignValT = EnumDecl::Create( 2959 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2960 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2961 AlignValT->setIntegerType(Context.getSizeType()); 2962 AlignValT->setPromotionType(Context.getSizeType()); 2963 AlignValT->setImplicit(true); 2964 StdAlignValT = AlignValT; 2965 } 2966 2967 GlobalNewDeleteDeclared = true; 2968 2969 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2970 QualType SizeT = Context.getSizeType(); 2971 2972 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2973 QualType Return, QualType Param) { 2974 llvm::SmallVector<QualType, 3> Params; 2975 Params.push_back(Param); 2976 2977 // Create up to four variants of the function (sized/aligned). 2978 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2979 (Kind == OO_Delete || Kind == OO_Array_Delete); 2980 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2981 2982 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2983 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2984 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2985 if (Sized) 2986 Params.push_back(SizeT); 2987 2988 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2989 if (Aligned) 2990 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2991 2992 DeclareGlobalAllocationFunction( 2993 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2994 2995 if (Aligned) 2996 Params.pop_back(); 2997 } 2998 } 2999 }; 3000 3001 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3002 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3003 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3004 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3005} 3006 3007/// DeclareGlobalAllocationFunction - Declares a single implicit global 3008/// allocation function if it doesn't already exist. 3009void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3010 QualType Return, 3011 ArrayRef<QualType> Params) { 3012 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3013 3014 // Check if this function is already declared. 3015 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3016 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3017 Alloc != AllocEnd; ++Alloc) { 3018 // Only look at non-template functions, as it is the predefined, 3019 // non-templated allocation function we are trying to declare here. 3020 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3021 if (Func->getNumParams() == Params.size()) { 3022 llvm::SmallVector<QualType, 3> FuncParams; 3023 for (auto *P : Func->parameters()) 3024 FuncParams.push_back( 3025 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3026 if (llvm::makeArrayRef(FuncParams) == Params) { 3027 // Make the function visible to name lookup, even if we found it in 3028 // an unimported module. It either is an implicitly-declared global 3029 // allocation function, or is suppressing that function. 3030 Func->setVisibleDespiteOwningModule(); 3031 return; 3032 } 3033 } 3034 } 3035 } 3036 3037 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3038 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3039 3040 QualType BadAllocType; 3041 bool HasBadAllocExceptionSpec 3042 = (Name.getCXXOverloadedOperator() == OO_New || 3043 Name.getCXXOverloadedOperator() == OO_Array_New); 3044 if (HasBadAllocExceptionSpec) { 3045 if (!getLangOpts().CPlusPlus11) { 3046 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3047 assert(StdBadAlloc && "Must have std::bad_alloc declared")((void)0); 3048 EPI.ExceptionSpec.Type = EST_Dynamic; 3049 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3050 } 3051 } else { 3052 EPI.ExceptionSpec = 3053 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3054 } 3055 3056 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3057 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3058 FunctionDecl *Alloc = FunctionDecl::Create( 3059 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, 3060 FnType, /*TInfo=*/nullptr, SC_None, false, true); 3061 Alloc->setImplicit(); 3062 // Global allocation functions should always be visible. 3063 Alloc->setVisibleDespiteOwningModule(); 3064 3065 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3066 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3067 ? VisibilityAttr::Hidden 3068 : VisibilityAttr::Default)); 3069 3070 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3071 for (QualType T : Params) { 3072 ParamDecls.push_back(ParmVarDecl::Create( 3073 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3074 /*TInfo=*/nullptr, SC_None, nullptr)); 3075 ParamDecls.back()->setImplicit(); 3076 } 3077 Alloc->setParams(ParamDecls); 3078 if (ExtraAttr) 3079 Alloc->addAttr(ExtraAttr); 3080 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3081 Context.getTranslationUnitDecl()->addDecl(Alloc); 3082 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3083 }; 3084 3085 if (!LangOpts.CUDA) 3086 CreateAllocationFunctionDecl(nullptr); 3087 else { 3088 // Host and device get their own declaration so each can be 3089 // defined or re-declared independently. 3090 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3091 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3092 } 3093} 3094 3095FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3096 bool CanProvideSize, 3097 bool Overaligned, 3098 DeclarationName Name) { 3099 DeclareGlobalNewDelete(); 3100 3101 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3102 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3103 3104 // FIXME: It's possible for this to result in ambiguity, through a 3105 // user-declared variadic operator delete or the enable_if attribute. We 3106 // should probably not consider those cases to be usual deallocation 3107 // functions. But for now we just make an arbitrary choice in that case. 3108 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3109 Overaligned); 3110 assert(Result.FD && "operator delete missing from global scope?")((void)0); 3111 return Result.FD; 3112} 3113 3114FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3115 CXXRecordDecl *RD) { 3116 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3117 3118 FunctionDecl *OperatorDelete = nullptr; 3119 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3120 return nullptr; 3121 if (OperatorDelete) 3122 return OperatorDelete; 3123 3124 // If there's no class-specific operator delete, look up the global 3125 // non-array delete. 3126 return FindUsualDeallocationFunction( 3127 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3128 Name); 3129} 3130 3131bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3132 DeclarationName Name, 3133 FunctionDecl *&Operator, bool Diagnose) { 3134 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3135 // Try to find operator delete/operator delete[] in class scope. 3136 LookupQualifiedName(Found, RD); 3137 3138 if (Found.isAmbiguous()) 3139 return true; 3140 3141 Found.suppressDiagnostics(); 3142 3143 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3144 3145 // C++17 [expr.delete]p10: 3146 // If the deallocation functions have class scope, the one without a 3147 // parameter of type std::size_t is selected. 3148 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3149 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3150 /*WantAlign*/ Overaligned, &Matches); 3151 3152 // If we could find an overload, use it. 3153 if (Matches.size() == 1) { 3154 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3155 3156 // FIXME: DiagnoseUseOfDecl? 3157 if (Operator->isDeleted()) { 3158 if (Diagnose) { 3159 Diag(StartLoc, diag::err_deleted_function_use); 3160 NoteDeletedFunction(Operator); 3161 } 3162 return true; 3163 } 3164 3165 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3166 Matches[0].Found, Diagnose) == AR_inaccessible) 3167 return true; 3168 3169 return false; 3170 } 3171 3172 // We found multiple suitable operators; complain about the ambiguity. 3173 // FIXME: The standard doesn't say to do this; it appears that the intent 3174 // is that this should never happen. 3175 if (!Matches.empty()) { 3176 if (Diagnose) { 3177 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3178 << Name << RD; 3179 for (auto &Match : Matches) 3180 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3181 } 3182 return true; 3183 } 3184 3185 // We did find operator delete/operator delete[] declarations, but 3186 // none of them were suitable. 3187 if (!Found.empty()) { 3188 if (Diagnose) { 3189 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3190 << Name << RD; 3191 3192 for (NamedDecl *D : Found) 3193 Diag(D->getUnderlyingDecl()->getLocation(), 3194 diag::note_member_declared_here) << Name; 3195 } 3196 return true; 3197 } 3198 3199 Operator = nullptr; 3200 return false; 3201} 3202 3203namespace { 3204/// Checks whether delete-expression, and new-expression used for 3205/// initializing deletee have the same array form. 3206class MismatchingNewDeleteDetector { 3207public: 3208 enum MismatchResult { 3209 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3210 NoMismatch, 3211 /// Indicates that variable is initialized with mismatching form of \a new. 3212 VarInitMismatches, 3213 /// Indicates that member is initialized with mismatching form of \a new. 3214 MemberInitMismatches, 3215 /// Indicates that 1 or more constructors' definitions could not been 3216 /// analyzed, and they will be checked again at the end of translation unit. 3217 AnalyzeLater 3218 }; 3219 3220 /// \param EndOfTU True, if this is the final analysis at the end of 3221 /// translation unit. False, if this is the initial analysis at the point 3222 /// delete-expression was encountered. 3223 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3224 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3225 HasUndefinedConstructors(false) {} 3226 3227 /// Checks whether pointee of a delete-expression is initialized with 3228 /// matching form of new-expression. 3229 /// 3230 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3231 /// point where delete-expression is encountered, then a warning will be 3232 /// issued immediately. If return value is \c AnalyzeLater at the point where 3233 /// delete-expression is seen, then member will be analyzed at the end of 3234 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3235 /// couldn't be analyzed. If at least one constructor initializes the member 3236 /// with matching type of new, the return value is \c NoMismatch. 3237 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3238 /// Analyzes a class member. 3239 /// \param Field Class member to analyze. 3240 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3241 /// for deleting the \p Field. 3242 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3243 FieldDecl *Field; 3244 /// List of mismatching new-expressions used for initialization of the pointee 3245 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3246 /// Indicates whether delete-expression was in array form. 3247 bool IsArrayForm; 3248 3249private: 3250 const bool EndOfTU; 3251 /// Indicates that there is at least one constructor without body. 3252 bool HasUndefinedConstructors; 3253 /// Returns \c CXXNewExpr from given initialization expression. 3254 /// \param E Expression used for initializing pointee in delete-expression. 3255 /// E can be a single-element \c InitListExpr consisting of new-expression. 3256 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3257 /// Returns whether member is initialized with mismatching form of 3258 /// \c new either by the member initializer or in-class initialization. 3259 /// 3260 /// If bodies of all constructors are not visible at the end of translation 3261 /// unit or at least one constructor initializes member with the matching 3262 /// form of \c new, mismatch cannot be proven, and this function will return 3263 /// \c NoMismatch. 3264 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3265 /// Returns whether variable is initialized with mismatching form of 3266 /// \c new. 3267 /// 3268 /// If variable is initialized with matching form of \c new or variable is not 3269 /// initialized with a \c new expression, this function will return true. 3270 /// If variable is initialized with mismatching form of \c new, returns false. 3271 /// \param D Variable to analyze. 3272 bool hasMatchingVarInit(const DeclRefExpr *D); 3273 /// Checks whether the constructor initializes pointee with mismatching 3274 /// form of \c new. 3275 /// 3276 /// Returns true, if member is initialized with matching form of \c new in 3277 /// member initializer list. Returns false, if member is initialized with the 3278 /// matching form of \c new in this constructor's initializer or given 3279 /// constructor isn't defined at the point where delete-expression is seen, or 3280 /// member isn't initialized by the constructor. 3281 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3282 /// Checks whether member is initialized with matching form of 3283 /// \c new in member initializer list. 3284 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3285 /// Checks whether member is initialized with mismatching form of \c new by 3286 /// in-class initializer. 3287 MismatchResult analyzeInClassInitializer(); 3288}; 3289} 3290 3291MismatchingNewDeleteDetector::MismatchResult 3292MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3293 NewExprs.clear(); 3294 assert(DE && "Expected delete-expression")((void)0); 3295 IsArrayForm = DE->isArrayForm(); 3296 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3297 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3298 return analyzeMemberExpr(ME); 3299 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3300 if (!hasMatchingVarInit(D)) 3301 return VarInitMismatches; 3302 } 3303 return NoMismatch; 3304} 3305 3306const CXXNewExpr * 3307MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3308 assert(E != nullptr && "Expected a valid initializer expression")((void)0); 3309 E = E->IgnoreParenImpCasts(); 3310 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3311 if (ILE->getNumInits() == 1) 3312 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3313 } 3314 3315 return dyn_cast_or_null<const CXXNewExpr>(E); 3316} 3317 3318bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3319 const CXXCtorInitializer *CI) { 3320 const CXXNewExpr *NE = nullptr; 3321 if (Field == CI->getMember() && 3322 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3323 if (NE->isArray() == IsArrayForm) 3324 return true; 3325 else 3326 NewExprs.push_back(NE); 3327 } 3328 return false; 3329} 3330 3331bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3332 const CXXConstructorDecl *CD) { 3333 if (CD->isImplicit()) 3334 return false; 3335 const FunctionDecl *Definition = CD; 3336 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3337 HasUndefinedConstructors = true; 3338 return EndOfTU; 3339 } 3340 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3341 if (hasMatchingNewInCtorInit(CI)) 3342 return true; 3343 } 3344 return false; 3345} 3346 3347MismatchingNewDeleteDetector::MismatchResult 3348MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3349 assert(Field != nullptr && "This should be called only for members")((void)0); 3350 const Expr *InitExpr = Field->getInClassInitializer(); 3351 if (!InitExpr) 3352 return EndOfTU ? NoMismatch : AnalyzeLater; 3353 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3354 if (NE->isArray() != IsArrayForm) { 3355 NewExprs.push_back(NE); 3356 return MemberInitMismatches; 3357 } 3358 } 3359 return NoMismatch; 3360} 3361 3362MismatchingNewDeleteDetector::MismatchResult 3363MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3364 bool DeleteWasArrayForm) { 3365 assert(Field != nullptr && "Analysis requires a valid class member.")((void)0); 3366 this->Field = Field; 3367 IsArrayForm = DeleteWasArrayForm; 3368 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3369 for (const auto *CD : RD->ctors()) { 3370 if (hasMatchingNewInCtor(CD)) 3371 return NoMismatch; 3372 } 3373 if (HasUndefinedConstructors) 3374 return EndOfTU ? NoMismatch : AnalyzeLater; 3375 if (!NewExprs.empty()) 3376 return MemberInitMismatches; 3377 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3378 : NoMismatch; 3379} 3380 3381MismatchingNewDeleteDetector::MismatchResult 3382MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3383 assert(ME != nullptr && "Expected a member expression")((void)0); 3384 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3385 return analyzeField(F, IsArrayForm); 3386 return NoMismatch; 3387} 3388 3389bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3390 const CXXNewExpr *NE = nullptr; 3391 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3392 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3393 NE->isArray() != IsArrayForm) { 3394 NewExprs.push_back(NE); 3395 } 3396 } 3397 return NewExprs.empty(); 3398} 3399 3400static void 3401DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3402 const MismatchingNewDeleteDetector &Detector) { 3403 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3404 FixItHint H; 3405 if (!Detector.IsArrayForm) 3406 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3407 else { 3408 SourceLocation RSquare = Lexer::findLocationAfterToken( 3409 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3410 SemaRef.getLangOpts(), true); 3411 if (RSquare.isValid()) 3412 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3413 } 3414 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3415 << Detector.IsArrayForm << H; 3416 3417 for (const auto *NE : Detector.NewExprs) 3418 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3419 << Detector.IsArrayForm; 3420} 3421 3422void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3423 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3424 return; 3425 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3426 switch (Detector.analyzeDeleteExpr(DE)) { 3427 case MismatchingNewDeleteDetector::VarInitMismatches: 3428 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3429 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3430 break; 3431 } 3432 case MismatchingNewDeleteDetector::AnalyzeLater: { 3433 DeleteExprs[Detector.Field].push_back( 3434 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3435 break; 3436 } 3437 case MismatchingNewDeleteDetector::NoMismatch: 3438 break; 3439 } 3440} 3441 3442void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3443 bool DeleteWasArrayForm) { 3444 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3445 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3446 case MismatchingNewDeleteDetector::VarInitMismatches: 3447 llvm_unreachable("This analysis should have been done for class members.")__builtin_unreachable(); 3448 case MismatchingNewDeleteDetector::AnalyzeLater: 3449 llvm_unreachable("Analysis cannot be postponed any point beyond end of "__builtin_unreachable() 3450 "translation unit.")__builtin_unreachable(); 3451 case MismatchingNewDeleteDetector::MemberInitMismatches: 3452 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3453 break; 3454 case MismatchingNewDeleteDetector::NoMismatch: 3455 break; 3456 } 3457} 3458 3459/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3460/// @code ::delete ptr; @endcode 3461/// or 3462/// @code delete [] ptr; @endcode 3463ExprResult 3464Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3465 bool ArrayForm, Expr *ExE) { 3466 // C++ [expr.delete]p1: 3467 // The operand shall have a pointer type, or a class type having a single 3468 // non-explicit conversion function to a pointer type. The result has type 3469 // void. 3470 // 3471 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3472 3473 ExprResult Ex = ExE; 3474 FunctionDecl *OperatorDelete = nullptr; 3475 bool ArrayFormAsWritten = ArrayForm; 3476 bool UsualArrayDeleteWantsSize = false; 3477 3478 if (!Ex.get()->isTypeDependent()) { 3479 // Perform lvalue-to-rvalue cast, if needed. 3480 Ex = DefaultLvalueConversion(Ex.get()); 3481 if (Ex.isInvalid()) 3482 return ExprError(); 3483 3484 QualType Type = Ex.get()->getType(); 3485 3486 class DeleteConverter : public ContextualImplicitConverter { 3487 public: 3488 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3489 3490 bool match(QualType ConvType) override { 3491 // FIXME: If we have an operator T* and an operator void*, we must pick 3492 // the operator T*. 3493 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3494 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3495 return true; 3496 return false; 3497 } 3498 3499 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3500 QualType T) override { 3501 return S.Diag(Loc, diag::err_delete_operand) << T; 3502 } 3503 3504 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3505 QualType T) override { 3506 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3507 } 3508 3509 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3510 QualType T, 3511 QualType ConvTy) override { 3512 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3513 } 3514 3515 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3516 QualType ConvTy) override { 3517 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3518 << ConvTy; 3519 } 3520 3521 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3522 QualType T) override { 3523 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3524 } 3525 3526 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3527 QualType ConvTy) override { 3528 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3529 << ConvTy; 3530 } 3531 3532 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3533 QualType T, 3534 QualType ConvTy) override { 3535 llvm_unreachable("conversion functions are permitted")__builtin_unreachable(); 3536 } 3537 } Converter; 3538 3539 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3540 if (Ex.isInvalid()) 3541 return ExprError(); 3542 Type = Ex.get()->getType(); 3543 if (!Converter.match(Type)) 3544 // FIXME: PerformContextualImplicitConversion should return ExprError 3545 // itself in this case. 3546 return ExprError(); 3547 3548 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3549 QualType PointeeElem = Context.getBaseElementType(Pointee); 3550 3551 if (Pointee.getAddressSpace() != LangAS::Default && 3552 !getLangOpts().OpenCLCPlusPlus) 3553 return Diag(Ex.get()->getBeginLoc(), 3554 diag::err_address_space_qualified_delete) 3555 << Pointee.getUnqualifiedType() 3556 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3557 3558 CXXRecordDecl *PointeeRD = nullptr; 3559 if (Pointee->isVoidType() && !isSFINAEContext()) { 3560 // The C++ standard bans deleting a pointer to a non-object type, which 3561 // effectively bans deletion of "void*". However, most compilers support 3562 // this, so we treat it as a warning unless we're in a SFINAE context. 3563 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3564 << Type << Ex.get()->getSourceRange(); 3565 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3566 Pointee->isSizelessType()) { 3567 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3568 << Type << Ex.get()->getSourceRange()); 3569 } else if (!Pointee->isDependentType()) { 3570 // FIXME: This can result in errors if the definition was imported from a 3571 // module but is hidden. 3572 if (!RequireCompleteType(StartLoc, Pointee, 3573 diag::warn_delete_incomplete, Ex.get())) { 3574 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3575 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3576 } 3577 } 3578 3579 if (Pointee->isArrayType() && !ArrayForm) { 3580 Diag(StartLoc, diag::warn_delete_array_type) 3581 << Type << Ex.get()->getSourceRange() 3582 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3583 ArrayForm = true; 3584 } 3585 3586 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3587 ArrayForm ? OO_Array_Delete : OO_Delete); 3588 3589 if (PointeeRD) { 3590 if (!UseGlobal && 3591 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3592 OperatorDelete)) 3593 return ExprError(); 3594 3595 // If we're allocating an array of records, check whether the 3596 // usual operator delete[] has a size_t parameter. 3597 if (ArrayForm) { 3598 // If the user specifically asked to use the global allocator, 3599 // we'll need to do the lookup into the class. 3600 if (UseGlobal) 3601 UsualArrayDeleteWantsSize = 3602 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3603 3604 // Otherwise, the usual operator delete[] should be the 3605 // function we just found. 3606 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3607 UsualArrayDeleteWantsSize = 3608 UsualDeallocFnInfo(*this, 3609 DeclAccessPair::make(OperatorDelete, AS_public)) 3610 .HasSizeT; 3611 } 3612 3613 if (!PointeeRD->hasIrrelevantDestructor()) 3614 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3615 MarkFunctionReferenced(StartLoc, 3616 const_cast<CXXDestructorDecl*>(Dtor)); 3617 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3618 return ExprError(); 3619 } 3620 3621 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3622 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3623 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3624 SourceLocation()); 3625 } 3626 3627 if (!OperatorDelete) { 3628 if (getLangOpts().OpenCLCPlusPlus) { 3629 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3630 return ExprError(); 3631 } 3632 3633 bool IsComplete = isCompleteType(StartLoc, Pointee); 3634 bool CanProvideSize = 3635 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3636 Pointee.isDestructedType()); 3637 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3638 3639 // Look for a global declaration. 3640 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3641 Overaligned, DeleteName); 3642 } 3643 3644 MarkFunctionReferenced(StartLoc, OperatorDelete); 3645 3646 // Check access and ambiguity of destructor if we're going to call it. 3647 // Note that this is required even for a virtual delete. 3648 bool IsVirtualDelete = false; 3649 if (PointeeRD) { 3650 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3651 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3652 PDiag(diag::err_access_dtor) << PointeeElem); 3653 IsVirtualDelete = Dtor->isVirtual(); 3654 } 3655 } 3656 3657 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3658 3659 // Convert the operand to the type of the first parameter of operator 3660 // delete. This is only necessary if we selected a destroying operator 3661 // delete that we are going to call (non-virtually); converting to void* 3662 // is trivial and left to AST consumers to handle. 3663 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3664 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3665 Qualifiers Qs = Pointee.getQualifiers(); 3666 if (Qs.hasCVRQualifiers()) { 3667 // Qualifiers are irrelevant to this conversion; we're only looking 3668 // for access and ambiguity. 3669 Qs.removeCVRQualifiers(); 3670 QualType Unqual = Context.getPointerType( 3671 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3672 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3673 } 3674 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3675 if (Ex.isInvalid()) 3676 return ExprError(); 3677 } 3678 } 3679 3680 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3681 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3682 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3683 AnalyzeDeleteExprMismatch(Result); 3684 return Result; 3685} 3686 3687static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3688 bool IsDelete, 3689 FunctionDecl *&Operator) { 3690 3691 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3692 IsDelete ? OO_Delete : OO_New); 3693 3694 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3695 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3696 assert(!R.empty() && "implicitly declared allocation functions not found")((void)0); 3697 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((void)0); 3698 3699 // We do our own custom access checks below. 3700 R.suppressDiagnostics(); 3701 3702 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3703 OverloadCandidateSet Candidates(R.getNameLoc(), 3704 OverloadCandidateSet::CSK_Normal); 3705 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3706 FnOvl != FnOvlEnd; ++FnOvl) { 3707 // Even member operator new/delete are implicitly treated as 3708 // static, so don't use AddMemberCandidate. 3709 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3710 3711 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3712 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3713 /*ExplicitTemplateArgs=*/nullptr, Args, 3714 Candidates, 3715 /*SuppressUserConversions=*/false); 3716 continue; 3717 } 3718 3719 FunctionDecl *Fn = cast<FunctionDecl>(D); 3720 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3721 /*SuppressUserConversions=*/false); 3722 } 3723 3724 SourceRange Range = TheCall->getSourceRange(); 3725 3726 // Do the resolution. 3727 OverloadCandidateSet::iterator Best; 3728 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3729 case OR_Success: { 3730 // Got one! 3731 FunctionDecl *FnDecl = Best->Function; 3732 assert(R.getNamingClass() == nullptr &&((void)0) 3733 "class members should not be considered")((void)0); 3734 3735 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3736 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3737 << (IsDelete ? 1 : 0) << Range; 3738 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3739 << R.getLookupName() << FnDecl->getSourceRange(); 3740 return true; 3741 } 3742 3743 Operator = FnDecl; 3744 return false; 3745 } 3746 3747 case OR_No_Viable_Function: 3748 Candidates.NoteCandidates( 3749 PartialDiagnosticAt(R.getNameLoc(), 3750 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3751 << R.getLookupName() << Range), 3752 S, OCD_AllCandidates, Args); 3753 return true; 3754 3755 case OR_Ambiguous: 3756 Candidates.NoteCandidates( 3757 PartialDiagnosticAt(R.getNameLoc(), 3758 S.PDiag(diag::err_ovl_ambiguous_call) 3759 << R.getLookupName() << Range), 3760 S, OCD_AmbiguousCandidates, Args); 3761 return true; 3762 3763 case OR_Deleted: { 3764 Candidates.NoteCandidates( 3765 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3766 << R.getLookupName() << Range), 3767 S, OCD_AllCandidates, Args); 3768 return true; 3769 } 3770 } 3771 llvm_unreachable("Unreachable, bad result from BestViableFunction")__builtin_unreachable(); 3772} 3773 3774ExprResult 3775Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3776 bool IsDelete) { 3777 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3778 if (!getLangOpts().CPlusPlus) { 3779 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3780 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3781 << "C++"; 3782 return ExprError(); 3783 } 3784 // CodeGen assumes it can find the global new and delete to call, 3785 // so ensure that they are declared. 3786 DeclareGlobalNewDelete(); 3787 3788 FunctionDecl *OperatorNewOrDelete = nullptr; 3789 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3790 OperatorNewOrDelete)) 3791 return ExprError(); 3792 assert(OperatorNewOrDelete && "should be found")((void)0); 3793 3794 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3795 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3796 3797 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3798 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3799 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3800 InitializedEntity Entity = 3801 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3802 ExprResult Arg = PerformCopyInitialization( 3803 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3804 if (Arg.isInvalid()) 3805 return ExprError(); 3806 TheCall->setArg(i, Arg.get()); 3807 } 3808 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3809 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&((void)0) 3810 "Callee expected to be implicit cast to a builtin function pointer")((void)0); 3811 Callee->setType(OperatorNewOrDelete->getType()); 3812 3813 return TheCallResult; 3814} 3815 3816void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3817 bool IsDelete, bool CallCanBeVirtual, 3818 bool WarnOnNonAbstractTypes, 3819 SourceLocation DtorLoc) { 3820 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3821 return; 3822 3823 // C++ [expr.delete]p3: 3824 // In the first alternative (delete object), if the static type of the 3825 // object to be deleted is different from its dynamic type, the static 3826 // type shall be a base class of the dynamic type of the object to be 3827 // deleted and the static type shall have a virtual destructor or the 3828 // behavior is undefined. 3829 // 3830 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3831 // Note: a final class cannot be derived from, no issue there 3832 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3833 return; 3834 3835 // If the superclass is in a system header, there's nothing that can be done. 3836 // The `delete` (where we emit the warning) can be in a system header, 3837 // what matters for this warning is where the deleted type is defined. 3838 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3839 return; 3840 3841 QualType ClassType = dtor->getThisType()->getPointeeType(); 3842 if (PointeeRD->isAbstract()) { 3843 // If the class is abstract, we warn by default, because we're 3844 // sure the code has undefined behavior. 3845 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3846 << ClassType; 3847 } else if (WarnOnNonAbstractTypes) { 3848 // Otherwise, if this is not an array delete, it's a bit suspect, 3849 // but not necessarily wrong. 3850 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3851 << ClassType; 3852 } 3853 if (!IsDelete) { 3854 std::string TypeStr; 3855 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3856 Diag(DtorLoc, diag::note_delete_non_virtual) 3857 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3858 } 3859} 3860 3861Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3862 SourceLocation StmtLoc, 3863 ConditionKind CK) { 3864 ExprResult E = 3865 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3866 if (E.isInvalid()) 3867 return ConditionError(); 3868 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3869 CK == ConditionKind::ConstexprIf); 3870} 3871 3872/// Check the use of the given variable as a C++ condition in an if, 3873/// while, do-while, or switch statement. 3874ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3875 SourceLocation StmtLoc, 3876 ConditionKind CK) { 3877 if (ConditionVar->isInvalidDecl()) 3878 return ExprError(); 3879 3880 QualType T = ConditionVar->getType(); 3881 3882 // C++ [stmt.select]p2: 3883 // The declarator shall not specify a function or an array. 3884 if (T->isFunctionType()) 3885 return ExprError(Diag(ConditionVar->getLocation(), 3886 diag::err_invalid_use_of_function_type) 3887 << ConditionVar->getSourceRange()); 3888 else if (T->isArrayType()) 3889 return ExprError(Diag(ConditionVar->getLocation(), 3890 diag::err_invalid_use_of_array_type) 3891 << ConditionVar->getSourceRange()); 3892 3893 ExprResult Condition = BuildDeclRefExpr( 3894 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3895 ConditionVar->getLocation()); 3896 3897 switch (CK) { 3898 case ConditionKind::Boolean: 3899 return CheckBooleanCondition(StmtLoc, Condition.get()); 3900 3901 case ConditionKind::ConstexprIf: 3902 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3903 3904 case ConditionKind::Switch: 3905 return CheckSwitchCondition(StmtLoc, Condition.get()); 3906 } 3907 3908 llvm_unreachable("unexpected condition kind")__builtin_unreachable(); 3909} 3910 3911/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3912ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3913 // C++11 6.4p4: 3914 // The value of a condition that is an initialized declaration in a statement 3915 // other than a switch statement is the value of the declared variable 3916 // implicitly converted to type bool. If that conversion is ill-formed, the 3917 // program is ill-formed. 3918 // The value of a condition that is an expression is the value of the 3919 // expression, implicitly converted to bool. 3920 // 3921 // C++2b 8.5.2p2 3922 // If the if statement is of the form if constexpr, the value of the condition 3923 // is contextually converted to bool and the converted expression shall be 3924 // a constant expression. 3925 // 3926 3927 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3928 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3929 return E; 3930 3931 // FIXME: Return this value to the caller so they don't need to recompute it. 3932 llvm::APSInt Cond; 3933 E = VerifyIntegerConstantExpression( 3934 E.get(), &Cond, 3935 diag::err_constexpr_if_condition_expression_is_not_constant); 3936 return E; 3937} 3938 3939/// Helper function to determine whether this is the (deprecated) C++ 3940/// conversion from a string literal to a pointer to non-const char or 3941/// non-const wchar_t (for narrow and wide string literals, 3942/// respectively). 3943bool 3944Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3945 // Look inside the implicit cast, if it exists. 3946 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3947 From = Cast->getSubExpr(); 3948 3949 // A string literal (2.13.4) that is not a wide string literal can 3950 // be converted to an rvalue of type "pointer to char"; a wide 3951 // string literal can be converted to an rvalue of type "pointer 3952 // to wchar_t" (C++ 4.2p2). 3953 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3954 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3955 if (const BuiltinType *ToPointeeType 3956 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3957 // This conversion is considered only when there is an 3958 // explicit appropriate pointer target type (C++ 4.2p2). 3959 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3960 switch (StrLit->getKind()) { 3961 case StringLiteral::UTF8: 3962 case StringLiteral::UTF16: 3963 case StringLiteral::UTF32: 3964 // We don't allow UTF literals to be implicitly converted 3965 break; 3966 case StringLiteral::Ascii: 3967 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3968 ToPointeeType->getKind() == BuiltinType::Char_S); 3969 case StringLiteral::Wide: 3970 return Context.typesAreCompatible(Context.getWideCharType(), 3971 QualType(ToPointeeType, 0)); 3972 } 3973 } 3974 } 3975 3976 return false; 3977} 3978 3979static ExprResult BuildCXXCastArgument(Sema &S, 3980 SourceLocation CastLoc, 3981 QualType Ty, 3982 CastKind Kind, 3983 CXXMethodDecl *Method, 3984 DeclAccessPair FoundDecl, 3985 bool HadMultipleCandidates, 3986 Expr *From) { 3987 switch (Kind) { 3988 default: llvm_unreachable("Unhandled cast kind!")__builtin_unreachable(); 3989 case CK_ConstructorConversion: { 3990 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3991 SmallVector<Expr*, 8> ConstructorArgs; 3992 3993 if (S.RequireNonAbstractType(CastLoc, Ty, 3994 diag::err_allocation_of_abstract_type)) 3995 return ExprError(); 3996 3997 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 3998 ConstructorArgs)) 3999 return ExprError(); 4000 4001 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4002 InitializedEntity::InitializeTemporary(Ty)); 4003 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4004 return ExprError(); 4005 4006 ExprResult Result = S.BuildCXXConstructExpr( 4007 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4008 ConstructorArgs, HadMultipleCandidates, 4009 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4010 CXXConstructExpr::CK_Complete, SourceRange()); 4011 if (Result.isInvalid()) 4012 return ExprError(); 4013 4014 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4015 } 4016 4017 case CK_UserDefinedConversion: { 4018 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")((void)0); 4019 4020 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4021 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4022 return ExprError(); 4023 4024 // Create an implicit call expr that calls it. 4025 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4026 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4027 HadMultipleCandidates); 4028 if (Result.isInvalid()) 4029 return ExprError(); 4030 // Record usage of conversion in an implicit cast. 4031 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4032 CK_UserDefinedConversion, Result.get(), 4033 nullptr, Result.get()->getValueKind(), 4034 S.CurFPFeatureOverrides()); 4035 4036 return S.MaybeBindToTemporary(Result.get()); 4037 } 4038 } 4039} 4040 4041/// PerformImplicitConversion - Perform an implicit conversion of the 4042/// expression From to the type ToType using the pre-computed implicit 4043/// conversion sequence ICS. Returns the converted 4044/// expression. Action is the kind of conversion we're performing, 4045/// used in the error message. 4046ExprResult 4047Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4048 const ImplicitConversionSequence &ICS, 4049 AssignmentAction Action, 4050 CheckedConversionKind CCK) { 4051 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4052 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4053 return From; 4054 4055 switch (ICS.getKind()) { 4056 case ImplicitConversionSequence::StandardConversion: { 4057 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4058 Action, CCK); 4059 if (Res.isInvalid()) 4060 return ExprError(); 4061 From = Res.get(); 4062 break; 4063 } 4064 4065 case ImplicitConversionSequence::UserDefinedConversion: { 4066 4067 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4068 CastKind CastKind; 4069 QualType BeforeToType; 4070 assert(FD && "no conversion function for user-defined conversion seq")((void)0); 4071 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4072 CastKind = CK_UserDefinedConversion; 4073 4074 // If the user-defined conversion is specified by a conversion function, 4075 // the initial standard conversion sequence converts the source type to 4076 // the implicit object parameter of the conversion function. 4077 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4078 } else { 4079 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4080 CastKind = CK_ConstructorConversion; 4081 // Do no conversion if dealing with ... for the first conversion. 4082 if (!ICS.UserDefined.EllipsisConversion) { 4083 // If the user-defined conversion is specified by a constructor, the 4084 // initial standard conversion sequence converts the source type to 4085 // the type required by the argument of the constructor 4086 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4087 } 4088 } 4089 // Watch out for ellipsis conversion. 4090 if (!ICS.UserDefined.EllipsisConversion) { 4091 ExprResult Res = 4092 PerformImplicitConversion(From, BeforeToType, 4093 ICS.UserDefined.Before, AA_Converting, 4094 CCK); 4095 if (Res.isInvalid()) 4096 return ExprError(); 4097 From = Res.get(); 4098 } 4099 4100 ExprResult CastArg = BuildCXXCastArgument( 4101 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4102 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4103 ICS.UserDefined.HadMultipleCandidates, From); 4104 4105 if (CastArg.isInvalid()) 4106 return ExprError(); 4107 4108 From = CastArg.get(); 4109 4110 // C++ [over.match.oper]p7: 4111 // [...] the second standard conversion sequence of a user-defined 4112 // conversion sequence is not applied. 4113 if (CCK == CCK_ForBuiltinOverloadedOp) 4114 return From; 4115 4116 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4117 AA_Converting, CCK); 4118 } 4119 4120 case ImplicitConversionSequence::AmbiguousConversion: 4121 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4122 PDiag(diag::err_typecheck_ambiguous_condition) 4123 << From->getSourceRange()); 4124 return ExprError(); 4125 4126 case ImplicitConversionSequence::EllipsisConversion: 4127 llvm_unreachable("Cannot perform an ellipsis conversion")__builtin_unreachable(); 4128 4129 case ImplicitConversionSequence::BadConversion: 4130 Sema::AssignConvertType ConvTy = 4131 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4132 bool Diagnosed = DiagnoseAssignmentResult( 4133 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4134 ToType, From->getType(), From, Action); 4135 assert(Diagnosed && "failed to diagnose bad conversion")((void)0); (void)Diagnosed; 4136 return ExprError(); 4137 } 4138 4139 // Everything went well. 4140 return From; 4141} 4142 4143/// PerformImplicitConversion - Perform an implicit conversion of the 4144/// expression From to the type ToType by following the standard 4145/// conversion sequence SCS. Returns the converted 4146/// expression. Flavor is the context in which we're performing this 4147/// conversion, for use in error messages. 4148ExprResult 4149Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4150 const StandardConversionSequence& SCS, 4151 AssignmentAction Action, 4152 CheckedConversionKind CCK) { 4153 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4154 4155 // Overall FIXME: we are recomputing too many types here and doing far too 4156 // much extra work. What this means is that we need to keep track of more 4157 // information that is computed when we try the implicit conversion initially, 4158 // so that we don't need to recompute anything here. 4159 QualType FromType = From->getType(); 4160 4161 if (SCS.CopyConstructor) { 4162 // FIXME: When can ToType be a reference type? 4163 assert(!ToType->isReferenceType())((void)0); 4164 if (SCS.Second == ICK_Derived_To_Base) { 4165 SmallVector<Expr*, 8> ConstructorArgs; 4166 if (CompleteConstructorCall( 4167 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4168 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4169 return ExprError(); 4170 return BuildCXXConstructExpr( 4171 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4172 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4173 ConstructorArgs, /*HadMultipleCandidates*/ false, 4174 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4175 CXXConstructExpr::CK_Complete, SourceRange()); 4176 } 4177 return BuildCXXConstructExpr( 4178 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4179 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4180 From, /*HadMultipleCandidates*/ false, 4181 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4182 CXXConstructExpr::CK_Complete, SourceRange()); 4183 } 4184 4185 // Resolve overloaded function references. 4186 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4187 DeclAccessPair Found; 4188 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4189 true, Found); 4190 if (!Fn) 4191 return ExprError(); 4192 4193 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4194 return ExprError(); 4195 4196 From = FixOverloadedFunctionReference(From, Found, Fn); 4197 FromType = From->getType(); 4198 } 4199 4200 // If we're converting to an atomic type, first convert to the corresponding 4201 // non-atomic type. 4202 QualType ToAtomicType; 4203 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4204 ToAtomicType = ToType; 4205 ToType = ToAtomic->getValueType(); 4206 } 4207 4208 QualType InitialFromType = FromType; 4209 // Perform the first implicit conversion. 4210 switch (SCS.First) { 4211 case ICK_Identity: 4212 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4213 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4214 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4215 From, /*BasePath=*/nullptr, VK_PRValue, 4216 FPOptionsOverride()); 4217 } 4218 break; 4219 4220 case ICK_Lvalue_To_Rvalue: { 4221 assert(From->getObjectKind() != OK_ObjCProperty)((void)0); 4222 ExprResult FromRes = DefaultLvalueConversion(From); 4223 if (FromRes.isInvalid()) 4224 return ExprError(); 4225 4226 From = FromRes.get(); 4227 FromType = From->getType(); 4228 break; 4229 } 4230 4231 case ICK_Array_To_Pointer: 4232 FromType = Context.getArrayDecayedType(FromType); 4233 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4234 /*BasePath=*/nullptr, CCK) 4235 .get(); 4236 break; 4237 4238 case ICK_Function_To_Pointer: 4239 FromType = Context.getPointerType(FromType); 4240 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4241 VK_PRValue, /*BasePath=*/nullptr, CCK) 4242 .get(); 4243 break; 4244 4245 default: 4246 llvm_unreachable("Improper first standard conversion")__builtin_unreachable(); 4247 } 4248 4249 // Perform the second implicit conversion 4250 switch (SCS.Second) { 4251 case ICK_Identity: 4252 // C++ [except.spec]p5: 4253 // [For] assignment to and initialization of pointers to functions, 4254 // pointers to member functions, and references to functions: the 4255 // target entity shall allow at least the exceptions allowed by the 4256 // source value in the assignment or initialization. 4257 switch (Action) { 4258 case AA_Assigning: 4259 case AA_Initializing: 4260 // Note, function argument passing and returning are initialization. 4261 case AA_Passing: 4262 case AA_Returning: 4263 case AA_Sending: 4264 case AA_Passing_CFAudited: 4265 if (CheckExceptionSpecCompatibility(From, ToType)) 4266 return ExprError(); 4267 break; 4268 4269 case AA_Casting: 4270 case AA_Converting: 4271 // Casts and implicit conversions are not initialization, so are not 4272 // checked for exception specification mismatches. 4273 break; 4274 } 4275 // Nothing else to do. 4276 break; 4277 4278 case ICK_Integral_Promotion: 4279 case ICK_Integral_Conversion: 4280 if (ToType->isBooleanType()) { 4281 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&((void)0) 4282 SCS.Second == ICK_Integral_Promotion &&((void)0) 4283 "only enums with fixed underlying type can promote to bool")((void)0); 4284 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4285 /*BasePath=*/nullptr, CCK) 4286 .get(); 4287 } else { 4288 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4289 /*BasePath=*/nullptr, CCK) 4290 .get(); 4291 } 4292 break; 4293 4294 case ICK_Floating_Promotion: 4295 case ICK_Floating_Conversion: 4296 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4297 /*BasePath=*/nullptr, CCK) 4298 .get(); 4299 break; 4300 4301 case ICK_Complex_Promotion: 4302 case ICK_Complex_Conversion: { 4303 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4304 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4305 CastKind CK; 4306 if (FromEl->isRealFloatingType()) { 4307 if (ToEl->isRealFloatingType()) 4308 CK = CK_FloatingComplexCast; 4309 else 4310 CK = CK_FloatingComplexToIntegralComplex; 4311 } else if (ToEl->isRealFloatingType()) { 4312 CK = CK_IntegralComplexToFloatingComplex; 4313 } else { 4314 CK = CK_IntegralComplexCast; 4315 } 4316 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4317 CCK) 4318 .get(); 4319 break; 4320 } 4321 4322 case ICK_Floating_Integral: 4323 if (ToType->isRealFloatingType()) 4324 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4325 /*BasePath=*/nullptr, CCK) 4326 .get(); 4327 else 4328 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4329 /*BasePath=*/nullptr, CCK) 4330 .get(); 4331 break; 4332 4333 case ICK_Compatible_Conversion: 4334 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4335 /*BasePath=*/nullptr, CCK).get(); 4336 break; 4337 4338 case ICK_Writeback_Conversion: 4339 case ICK_Pointer_Conversion: { 4340 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4341 // Diagnose incompatible Objective-C conversions 4342 if (Action == AA_Initializing || Action == AA_Assigning) 4343 Diag(From->getBeginLoc(), 4344 diag::ext_typecheck_convert_incompatible_pointer) 4345 << ToType << From->getType() << Action << From->getSourceRange() 4346 << 0; 4347 else 4348 Diag(From->getBeginLoc(), 4349 diag::ext_typecheck_convert_incompatible_pointer) 4350 << From->getType() << ToType << Action << From->getSourceRange() 4351 << 0; 4352 4353 if (From->getType()->isObjCObjectPointerType() && 4354 ToType->isObjCObjectPointerType()) 4355 EmitRelatedResultTypeNote(From); 4356 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4357 !CheckObjCARCUnavailableWeakConversion(ToType, 4358 From->getType())) { 4359 if (Action == AA_Initializing) 4360 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4361 else 4362 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4363 << (Action == AA_Casting) << From->getType() << ToType 4364 << From->getSourceRange(); 4365 } 4366 4367 // Defer address space conversion to the third conversion. 4368 QualType FromPteeType = From->getType()->getPointeeType(); 4369 QualType ToPteeType = ToType->getPointeeType(); 4370 QualType NewToType = ToType; 4371 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4372 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4373 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4374 NewToType = Context.getAddrSpaceQualType(NewToType, 4375 FromPteeType.getAddressSpace()); 4376 if (ToType->isObjCObjectPointerType()) 4377 NewToType = Context.getObjCObjectPointerType(NewToType); 4378 else if (ToType->isBlockPointerType()) 4379 NewToType = Context.getBlockPointerType(NewToType); 4380 else 4381 NewToType = Context.getPointerType(NewToType); 4382 } 4383 4384 CastKind Kind; 4385 CXXCastPath BasePath; 4386 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4387 return ExprError(); 4388 4389 // Make sure we extend blocks if necessary. 4390 // FIXME: doing this here is really ugly. 4391 if (Kind == CK_BlockPointerToObjCPointerCast) { 4392 ExprResult E = From; 4393 (void) PrepareCastToObjCObjectPointer(E); 4394 From = E.get(); 4395 } 4396 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4397 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4398 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4399 .get(); 4400 break; 4401 } 4402 4403 case ICK_Pointer_Member: { 4404 CastKind Kind; 4405 CXXCastPath BasePath; 4406 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4407 return ExprError(); 4408 if (CheckExceptionSpecCompatibility(From, ToType)) 4409 return ExprError(); 4410 4411 // We may not have been able to figure out what this member pointer resolved 4412 // to up until this exact point. Attempt to lock-in it's inheritance model. 4413 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4414 (void)isCompleteType(From->getExprLoc(), From->getType()); 4415 (void)isCompleteType(From->getExprLoc(), ToType); 4416 } 4417 4418 From = 4419 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4420 break; 4421 } 4422 4423 case ICK_Boolean_Conversion: 4424 // Perform half-to-boolean conversion via float. 4425 if (From->getType()->isHalfType()) { 4426 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4427 FromType = Context.FloatTy; 4428 } 4429 4430 From = ImpCastExprToType(From, Context.BoolTy, 4431 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4432 /*BasePath=*/nullptr, CCK) 4433 .get(); 4434 break; 4435 4436 case ICK_Derived_To_Base: { 4437 CXXCastPath BasePath; 4438 if (CheckDerivedToBaseConversion( 4439 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4440 From->getSourceRange(), &BasePath, CStyle)) 4441 return ExprError(); 4442 4443 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4444 CK_DerivedToBase, From->getValueKind(), 4445 &BasePath, CCK).get(); 4446 break; 4447 } 4448 4449 case ICK_Vector_Conversion: 4450 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4451 /*BasePath=*/nullptr, CCK) 4452 .get(); 4453 break; 4454 4455 case ICK_SVE_Vector_Conversion: 4456 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4457 /*BasePath=*/nullptr, CCK) 4458 .get(); 4459 break; 4460 4461 case ICK_Vector_Splat: { 4462 // Vector splat from any arithmetic type to a vector. 4463 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4464 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4465 /*BasePath=*/nullptr, CCK) 4466 .get(); 4467 break; 4468 } 4469 4470 case ICK_Complex_Real: 4471 // Case 1. x -> _Complex y 4472 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4473 QualType ElType = ToComplex->getElementType(); 4474 bool isFloatingComplex = ElType->isRealFloatingType(); 4475 4476 // x -> y 4477 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4478 // do nothing 4479 } else if (From->getType()->isRealFloatingType()) { 4480 From = ImpCastExprToType(From, ElType, 4481 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4482 } else { 4483 assert(From->getType()->isIntegerType())((void)0); 4484 From = ImpCastExprToType(From, ElType, 4485 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4486 } 4487 // y -> _Complex y 4488 From = ImpCastExprToType(From, ToType, 4489 isFloatingComplex ? CK_FloatingRealToComplex 4490 : CK_IntegralRealToComplex).get(); 4491 4492 // Case 2. _Complex x -> y 4493 } else { 4494 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4495 QualType ElType = FromComplex->getElementType(); 4496 bool isFloatingComplex = ElType->isRealFloatingType(); 4497 4498 // _Complex x -> x 4499 From = ImpCastExprToType(From, ElType, 4500 isFloatingComplex ? CK_FloatingComplexToReal 4501 : CK_IntegralComplexToReal, 4502 VK_PRValue, /*BasePath=*/nullptr, CCK) 4503 .get(); 4504 4505 // x -> y 4506 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4507 // do nothing 4508 } else if (ToType->isRealFloatingType()) { 4509 From = ImpCastExprToType(From, ToType, 4510 isFloatingComplex ? CK_FloatingCast 4511 : CK_IntegralToFloating, 4512 VK_PRValue, /*BasePath=*/nullptr, CCK) 4513 .get(); 4514 } else { 4515 assert(ToType->isIntegerType())((void)0); 4516 From = ImpCastExprToType(From, ToType, 4517 isFloatingComplex ? CK_FloatingToIntegral 4518 : CK_IntegralCast, 4519 VK_PRValue, /*BasePath=*/nullptr, CCK) 4520 .get(); 4521 } 4522 } 4523 break; 4524 4525 case ICK_Block_Pointer_Conversion: { 4526 LangAS AddrSpaceL = 4527 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4528 LangAS AddrSpaceR = 4529 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4530 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&((void)0) 4531 "Invalid cast")((void)0); 4532 CastKind Kind = 4533 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4534 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4535 VK_PRValue, /*BasePath=*/nullptr, CCK) 4536 .get(); 4537 break; 4538 } 4539 4540 case ICK_TransparentUnionConversion: { 4541 ExprResult FromRes = From; 4542 Sema::AssignConvertType ConvTy = 4543 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4544 if (FromRes.isInvalid()) 4545 return ExprError(); 4546 From = FromRes.get(); 4547 assert ((ConvTy == Sema::Compatible) &&((void)0) 4548 "Improper transparent union conversion")((void)0); 4549 (void)ConvTy; 4550 break; 4551 } 4552 4553 case ICK_Zero_Event_Conversion: 4554 case ICK_Zero_Queue_Conversion: 4555 From = ImpCastExprToType(From, ToType, 4556 CK_ZeroToOCLOpaqueType, 4557 From->getValueKind()).get(); 4558 break; 4559 4560 case ICK_Lvalue_To_Rvalue: 4561 case ICK_Array_To_Pointer: 4562 case ICK_Function_To_Pointer: 4563 case ICK_Function_Conversion: 4564 case ICK_Qualification: 4565 case ICK_Num_Conversion_Kinds: 4566 case ICK_C_Only_Conversion: 4567 case ICK_Incompatible_Pointer_Conversion: 4568 llvm_unreachable("Improper second standard conversion")__builtin_unreachable(); 4569 } 4570 4571 switch (SCS.Third) { 4572 case ICK_Identity: 4573 // Nothing to do. 4574 break; 4575 4576 case ICK_Function_Conversion: 4577 // If both sides are functions (or pointers/references to them), there could 4578 // be incompatible exception declarations. 4579 if (CheckExceptionSpecCompatibility(From, ToType)) 4580 return ExprError(); 4581 4582 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4583 /*BasePath=*/nullptr, CCK) 4584 .get(); 4585 break; 4586 4587 case ICK_Qualification: { 4588 ExprValueKind VK = From->getValueKind(); 4589 CastKind CK = CK_NoOp; 4590 4591 if (ToType->isReferenceType() && 4592 ToType->getPointeeType().getAddressSpace() != 4593 From->getType().getAddressSpace()) 4594 CK = CK_AddressSpaceConversion; 4595 4596 if (ToType->isPointerType() && 4597 ToType->getPointeeType().getAddressSpace() != 4598 From->getType()->getPointeeType().getAddressSpace()) 4599 CK = CK_AddressSpaceConversion; 4600 4601 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4602 /*BasePath=*/nullptr, CCK) 4603 .get(); 4604 4605 if (SCS.DeprecatedStringLiteralToCharPtr && 4606 !getLangOpts().WritableStrings) { 4607 Diag(From->getBeginLoc(), 4608 getLangOpts().CPlusPlus11 4609 ? diag::ext_deprecated_string_literal_conversion 4610 : diag::warn_deprecated_string_literal_conversion) 4611 << ToType.getNonReferenceType(); 4612 } 4613 4614 break; 4615 } 4616 4617 default: 4618 llvm_unreachable("Improper third standard conversion")__builtin_unreachable(); 4619 } 4620 4621 // If this conversion sequence involved a scalar -> atomic conversion, perform 4622 // that conversion now. 4623 if (!ToAtomicType.isNull()) { 4624 assert(Context.hasSameType(((void)0) 4625 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))((void)0); 4626 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4627 VK_PRValue, nullptr, CCK) 4628 .get(); 4629 } 4630 4631 // Materialize a temporary if we're implicitly converting to a reference 4632 // type. This is not required by the C++ rules but is necessary to maintain 4633 // AST invariants. 4634 if (ToType->isReferenceType() && From->isPRValue()) { 4635 ExprResult Res = TemporaryMaterializationConversion(From); 4636 if (Res.isInvalid()) 4637 return ExprError(); 4638 From = Res.get(); 4639 } 4640 4641 // If this conversion sequence succeeded and involved implicitly converting a 4642 // _Nullable type to a _Nonnull one, complain. 4643 if (!isCast(CCK)) 4644 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4645 From->getBeginLoc()); 4646 4647 return From; 4648} 4649 4650/// Check the completeness of a type in a unary type trait. 4651/// 4652/// If the particular type trait requires a complete type, tries to complete 4653/// it. If completing the type fails, a diagnostic is emitted and false 4654/// returned. If completing the type succeeds or no completion was required, 4655/// returns true. 4656static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4657 SourceLocation Loc, 4658 QualType ArgTy) { 4659 // C++0x [meta.unary.prop]p3: 4660 // For all of the class templates X declared in this Clause, instantiating 4661 // that template with a template argument that is a class template 4662 // specialization may result in the implicit instantiation of the template 4663 // argument if and only if the semantics of X require that the argument 4664 // must be a complete type. 4665 // We apply this rule to all the type trait expressions used to implement 4666 // these class templates. We also try to follow any GCC documented behavior 4667 // in these expressions to ensure portability of standard libraries. 4668 switch (UTT) { 4669 default: llvm_unreachable("not a UTT")__builtin_unreachable(); 4670 // is_complete_type somewhat obviously cannot require a complete type. 4671 case UTT_IsCompleteType: 4672 // Fall-through 4673 4674 // These traits are modeled on the type predicates in C++0x 4675 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4676 // requiring a complete type, as whether or not they return true cannot be 4677 // impacted by the completeness of the type. 4678 case UTT_IsVoid: 4679 case UTT_IsIntegral: 4680 case UTT_IsFloatingPoint: 4681 case UTT_IsArray: 4682 case UTT_IsPointer: 4683 case UTT_IsLvalueReference: 4684 case UTT_IsRvalueReference: 4685 case UTT_IsMemberFunctionPointer: 4686 case UTT_IsMemberObjectPointer: 4687 case UTT_IsEnum: 4688 case UTT_IsUnion: 4689 case UTT_IsClass: 4690 case UTT_IsFunction: 4691 case UTT_IsReference: 4692 case UTT_IsArithmetic: 4693 case UTT_IsFundamental: 4694 case UTT_IsObject: 4695 case UTT_IsScalar: 4696 case UTT_IsCompound: 4697 case UTT_IsMemberPointer: 4698 // Fall-through 4699 4700 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4701 // which requires some of its traits to have the complete type. However, 4702 // the completeness of the type cannot impact these traits' semantics, and 4703 // so they don't require it. This matches the comments on these traits in 4704 // Table 49. 4705 case UTT_IsConst: 4706 case UTT_IsVolatile: 4707 case UTT_IsSigned: 4708 case UTT_IsUnsigned: 4709 4710 // This type trait always returns false, checking the type is moot. 4711 case UTT_IsInterfaceClass: 4712 return true; 4713 4714 // C++14 [meta.unary.prop]: 4715 // If T is a non-union class type, T shall be a complete type. 4716 case UTT_IsEmpty: 4717 case UTT_IsPolymorphic: 4718 case UTT_IsAbstract: 4719 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4720 if (!RD->isUnion()) 4721 return !S.RequireCompleteType( 4722 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4723 return true; 4724 4725 // C++14 [meta.unary.prop]: 4726 // If T is a class type, T shall be a complete type. 4727 case UTT_IsFinal: 4728 case UTT_IsSealed: 4729 if (ArgTy->getAsCXXRecordDecl()) 4730 return !S.RequireCompleteType( 4731 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4732 return true; 4733 4734 // C++1z [meta.unary.prop]: 4735 // remove_all_extents_t<T> shall be a complete type or cv void. 4736 case UTT_IsAggregate: 4737 case UTT_IsTrivial: 4738 case UTT_IsTriviallyCopyable: 4739 case UTT_IsStandardLayout: 4740 case UTT_IsPOD: 4741 case UTT_IsLiteral: 4742 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4743 // or an array of unknown bound. But GCC actually imposes the same constraints 4744 // as above. 4745 case UTT_HasNothrowAssign: 4746 case UTT_HasNothrowMoveAssign: 4747 case UTT_HasNothrowConstructor: 4748 case UTT_HasNothrowCopy: 4749 case UTT_HasTrivialAssign: 4750 case UTT_HasTrivialMoveAssign: 4751 case UTT_HasTrivialDefaultConstructor: 4752 case UTT_HasTrivialMoveConstructor: 4753 case UTT_HasTrivialCopy: 4754 case UTT_HasTrivialDestructor: 4755 case UTT_HasVirtualDestructor: 4756 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4757 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 4758 4759 // C++1z [meta.unary.prop]: 4760 // T shall be a complete type, cv void, or an array of unknown bound. 4761 case UTT_IsDestructible: 4762 case UTT_IsNothrowDestructible: 4763 case UTT_IsTriviallyDestructible: 4764 case UTT_HasUniqueObjectRepresentations: 4765 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4766 return true; 4767 4768 return !S.RequireCompleteType( 4769 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4770 } 4771} 4772 4773static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4774 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4775 bool (CXXRecordDecl::*HasTrivial)() const, 4776 bool (CXXRecordDecl::*HasNonTrivial)() const, 4777 bool (CXXMethodDecl::*IsDesiredOp)() const) 4778{ 4779 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4780 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4781 return true; 4782 4783 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4784 DeclarationNameInfo NameInfo(Name, KeyLoc); 4785 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4786 if (Self.LookupQualifiedName(Res, RD)) { 4787 bool FoundOperator = false; 4788 Res.suppressDiagnostics(); 4789 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4790 Op != OpEnd; ++Op) { 4791 if (isa<FunctionTemplateDecl>(*Op)) 4792 continue; 4793 4794 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4795 if((Operator->*IsDesiredOp)()) { 4796 FoundOperator = true; 4797 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4798 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4799 if (!CPT || !CPT->isNothrow()) 4800 return false; 4801 } 4802 } 4803 return FoundOperator; 4804 } 4805 return false; 4806} 4807 4808static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4809 SourceLocation KeyLoc, QualType T) { 4810 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((void)0); 4811 4812 ASTContext &C = Self.Context; 4813 switch(UTT) { 4814 default: llvm_unreachable("not a UTT")__builtin_unreachable(); 4815 // Type trait expressions corresponding to the primary type category 4816 // predicates in C++0x [meta.unary.cat]. 4817 case UTT_IsVoid: 4818 return T->isVoidType(); 4819 case UTT_IsIntegral: 4820 return T->isIntegralType(C); 4821 case UTT_IsFloatingPoint: 4822 return T->isFloatingType(); 4823 case UTT_IsArray: 4824 return T->isArrayType(); 4825 case UTT_IsPointer: 4826 return T->isAnyPointerType(); 4827 case UTT_IsLvalueReference: 4828 return T->isLValueReferenceType(); 4829 case UTT_IsRvalueReference: 4830 return T->isRValueReferenceType(); 4831 case UTT_IsMemberFunctionPointer: 4832 return T->isMemberFunctionPointerType(); 4833 case UTT_IsMemberObjectPointer: 4834 return T->isMemberDataPointerType(); 4835 case UTT_IsEnum: 4836 return T->isEnumeralType(); 4837 case UTT_IsUnion: 4838 return T->isUnionType(); 4839 case UTT_IsClass: 4840 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4841 case UTT_IsFunction: 4842 return T->isFunctionType(); 4843 4844 // Type trait expressions which correspond to the convenient composition 4845 // predicates in C++0x [meta.unary.comp]. 4846 case UTT_IsReference: 4847 return T->isReferenceType(); 4848 case UTT_IsArithmetic: 4849 return T->isArithmeticType() && !T->isEnumeralType(); 4850 case UTT_IsFundamental: 4851 return T->isFundamentalType(); 4852 case UTT_IsObject: 4853 return T->isObjectType(); 4854 case UTT_IsScalar: 4855 // Note: semantic analysis depends on Objective-C lifetime types to be 4856 // considered scalar types. However, such types do not actually behave 4857 // like scalar types at run time (since they may require retain/release 4858 // operations), so we report them as non-scalar. 4859 if (T->isObjCLifetimeType()) { 4860 switch (T.getObjCLifetime()) { 4861 case Qualifiers::OCL_None: 4862 case Qualifiers::OCL_ExplicitNone: 4863 return true; 4864 4865 case Qualifiers::OCL_Strong: 4866 case Qualifiers::OCL_Weak: 4867 case Qualifiers::OCL_Autoreleasing: 4868 return false; 4869 } 4870 } 4871 4872 return T->isScalarType(); 4873 case UTT_IsCompound: 4874 return T->isCompoundType(); 4875 case UTT_IsMemberPointer: 4876 return T->isMemberPointerType(); 4877 4878 // Type trait expressions which correspond to the type property predicates 4879 // in C++0x [meta.unary.prop]. 4880 case UTT_IsConst: 4881 return T.isConstQualified(); 4882 case UTT_IsVolatile: 4883 return T.isVolatileQualified(); 4884 case UTT_IsTrivial: 4885 return T.isTrivialType(C); 4886 case UTT_IsTriviallyCopyable: 4887 return T.isTriviallyCopyableType(C); 4888 case UTT_IsStandardLayout: 4889 return T->isStandardLayoutType(); 4890 case UTT_IsPOD: 4891 return T.isPODType(C); 4892 case UTT_IsLiteral: 4893 return T->isLiteralType(C); 4894 case UTT_IsEmpty: 4895 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4896 return !RD->isUnion() && RD->isEmpty(); 4897 return false; 4898 case UTT_IsPolymorphic: 4899 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4900 return !RD->isUnion() && RD->isPolymorphic(); 4901 return false; 4902 case UTT_IsAbstract: 4903 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4904 return !RD->isUnion() && RD->isAbstract(); 4905 return false; 4906 case UTT_IsAggregate: 4907 // Report vector extensions and complex types as aggregates because they 4908 // support aggregate initialization. GCC mirrors this behavior for vectors 4909 // but not _Complex. 4910 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4911 T->isAnyComplexType(); 4912 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4913 // even then only when it is used with the 'interface struct ...' syntax 4914 // Clang doesn't support /CLR which makes this type trait moot. 4915 case UTT_IsInterfaceClass: 4916 return false; 4917 case UTT_IsFinal: 4918 case UTT_IsSealed: 4919 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4920 return RD->hasAttr<FinalAttr>(); 4921 return false; 4922 case UTT_IsSigned: 4923 // Enum types should always return false. 4924 // Floating points should always return true. 4925 return T->isFloatingType() || 4926 (T->isSignedIntegerType() && !T->isEnumeralType()); 4927 case UTT_IsUnsigned: 4928 // Enum types should always return false. 4929 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4930 4931 // Type trait expressions which query classes regarding their construction, 4932 // destruction, and copying. Rather than being based directly on the 4933 // related type predicates in the standard, they are specified by both 4934 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4935 // specifications. 4936 // 4937 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4938 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4939 // 4940 // Note that these builtins do not behave as documented in g++: if a class 4941 // has both a trivial and a non-trivial special member of a particular kind, 4942 // they return false! For now, we emulate this behavior. 4943 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4944 // does not correctly compute triviality in the presence of multiple special 4945 // members of the same kind. Revisit this once the g++ bug is fixed. 4946 case UTT_HasTrivialDefaultConstructor: 4947 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4948 // If __is_pod (type) is true then the trait is true, else if type is 4949 // a cv class or union type (or array thereof) with a trivial default 4950 // constructor ([class.ctor]) then the trait is true, else it is false. 4951 if (T.isPODType(C)) 4952 return true; 4953 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4954 return RD->hasTrivialDefaultConstructor() && 4955 !RD->hasNonTrivialDefaultConstructor(); 4956 return false; 4957 case UTT_HasTrivialMoveConstructor: 4958 // This trait is implemented by MSVC 2012 and needed to parse the 4959 // standard library headers. Specifically this is used as the logic 4960 // behind std::is_trivially_move_constructible (20.9.4.3). 4961 if (T.isPODType(C)) 4962 return true; 4963 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4964 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4965 return false; 4966 case UTT_HasTrivialCopy: 4967 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4968 // If __is_pod (type) is true or type is a reference type then 4969 // the trait is true, else if type is a cv class or union type 4970 // with a trivial copy constructor ([class.copy]) then the trait 4971 // is true, else it is false. 4972 if (T.isPODType(C) || T->isReferenceType()) 4973 return true; 4974 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4975 return RD->hasTrivialCopyConstructor() && 4976 !RD->hasNonTrivialCopyConstructor(); 4977 return false; 4978 case UTT_HasTrivialMoveAssign: 4979 // This trait is implemented by MSVC 2012 and needed to parse the 4980 // standard library headers. Specifically it is used as the logic 4981 // behind std::is_trivially_move_assignable (20.9.4.3) 4982 if (T.isPODType(C)) 4983 return true; 4984 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4985 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4986 return false; 4987 case UTT_HasTrivialAssign: 4988 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4989 // If type is const qualified or is a reference type then the 4990 // trait is false. Otherwise if __is_pod (type) is true then the 4991 // trait is true, else if type is a cv class or union type with 4992 // a trivial copy assignment ([class.copy]) then the trait is 4993 // true, else it is false. 4994 // Note: the const and reference restrictions are interesting, 4995 // given that const and reference members don't prevent a class 4996 // from having a trivial copy assignment operator (but do cause 4997 // errors if the copy assignment operator is actually used, q.v. 4998 // [class.copy]p12). 4999 5000 if (T.isConstQualified()) 5001 return false; 5002 if (T.isPODType(C)) 5003 return true; 5004 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5005 return RD->hasTrivialCopyAssignment() && 5006 !RD->hasNonTrivialCopyAssignment(); 5007 return false; 5008 case UTT_IsDestructible: 5009 case UTT_IsTriviallyDestructible: 5010 case UTT_IsNothrowDestructible: 5011 // C++14 [meta.unary.prop]: 5012 // For reference types, is_destructible<T>::value is true. 5013 if (T->isReferenceType()) 5014 return true; 5015 5016 // Objective-C++ ARC: autorelease types don't require destruction. 5017 if (T->isObjCLifetimeType() && 5018 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5019 return true; 5020 5021 // C++14 [meta.unary.prop]: 5022 // For incomplete types and function types, is_destructible<T>::value is 5023 // false. 5024 if (T->isIncompleteType() || T->isFunctionType()) 5025 return false; 5026 5027 // A type that requires destruction (via a non-trivial destructor or ARC 5028 // lifetime semantics) is not trivially-destructible. 5029 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5030 return false; 5031 5032 // C++14 [meta.unary.prop]: 5033 // For object types and given U equal to remove_all_extents_t<T>, if the 5034 // expression std::declval<U&>().~U() is well-formed when treated as an 5035 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5036 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5037 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5038 if (!Destructor) 5039 return false; 5040 // C++14 [dcl.fct.def.delete]p2: 5041 // A program that refers to a deleted function implicitly or 5042 // explicitly, other than to declare it, is ill-formed. 5043 if (Destructor->isDeleted()) 5044 return false; 5045 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5046 return false; 5047 if (UTT == UTT_IsNothrowDestructible) { 5048 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5049 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5050 if (!CPT || !CPT->isNothrow()) 5051 return false; 5052 } 5053 } 5054 return true; 5055 5056 case UTT_HasTrivialDestructor: 5057 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5058 // If __is_pod (type) is true or type is a reference type 5059 // then the trait is true, else if type is a cv class or union 5060 // type (or array thereof) with a trivial destructor 5061 // ([class.dtor]) then the trait is true, else it is 5062 // false. 5063 if (T.isPODType(C) || T->isReferenceType()) 5064 return true; 5065 5066 // Objective-C++ ARC: autorelease types don't require destruction. 5067 if (T->isObjCLifetimeType() && 5068 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5069 return true; 5070 5071 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5072 return RD->hasTrivialDestructor(); 5073 return false; 5074 // TODO: Propagate nothrowness for implicitly declared special members. 5075 case UTT_HasNothrowAssign: 5076 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5077 // If type is const qualified or is a reference type then the 5078 // trait is false. Otherwise if __has_trivial_assign (type) 5079 // is true then the trait is true, else if type is a cv class 5080 // or union type with copy assignment operators that are known 5081 // not to throw an exception then the trait is true, else it is 5082 // false. 5083 if (C.getBaseElementType(T).isConstQualified()) 5084 return false; 5085 if (T->isReferenceType()) 5086 return false; 5087 if (T.isPODType(C) || T->isObjCLifetimeType()) 5088 return true; 5089 5090 if (const RecordType *RT = T->getAs<RecordType>()) 5091 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5092 &CXXRecordDecl::hasTrivialCopyAssignment, 5093 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5094 &CXXMethodDecl::isCopyAssignmentOperator); 5095 return false; 5096 case UTT_HasNothrowMoveAssign: 5097 // This trait is implemented by MSVC 2012 and needed to parse the 5098 // standard library headers. Specifically this is used as the logic 5099 // behind std::is_nothrow_move_assignable (20.9.4.3). 5100 if (T.isPODType(C)) 5101 return true; 5102 5103 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5104 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5105 &CXXRecordDecl::hasTrivialMoveAssignment, 5106 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5107 &CXXMethodDecl::isMoveAssignmentOperator); 5108 return false; 5109 case UTT_HasNothrowCopy: 5110 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5111 // If __has_trivial_copy (type) is true then the trait is true, else 5112 // if type is a cv class or union type with copy constructors that are 5113 // known not to throw an exception then the trait is true, else it is 5114 // false. 5115 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5116 return true; 5117 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5118 if (RD->hasTrivialCopyConstructor() && 5119 !RD->hasNonTrivialCopyConstructor()) 5120 return true; 5121 5122 bool FoundConstructor = false; 5123 unsigned FoundTQs; 5124 for (const auto *ND : Self.LookupConstructors(RD)) { 5125 // A template constructor is never a copy constructor. 5126 // FIXME: However, it may actually be selected at the actual overload 5127 // resolution point. 5128 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5129 continue; 5130 // UsingDecl itself is not a constructor 5131 if (isa<UsingDecl>(ND)) 5132 continue; 5133 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5134 if (Constructor->isCopyConstructor(FoundTQs)) { 5135 FoundConstructor = true; 5136 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5137 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5138 if (!CPT) 5139 return false; 5140 // TODO: check whether evaluating default arguments can throw. 5141 // For now, we'll be conservative and assume that they can throw. 5142 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5143 return false; 5144 } 5145 } 5146 5147 return FoundConstructor; 5148 } 5149 return false; 5150 case UTT_HasNothrowConstructor: 5151 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5152 // If __has_trivial_constructor (type) is true then the trait is 5153 // true, else if type is a cv class or union type (or array 5154 // thereof) with a default constructor that is known not to 5155 // throw an exception then the trait is true, else it is false. 5156 if (T.isPODType(C) || T->isObjCLifetimeType()) 5157 return true; 5158 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5159 if (RD->hasTrivialDefaultConstructor() && 5160 !RD->hasNonTrivialDefaultConstructor()) 5161 return true; 5162 5163 bool FoundConstructor = false; 5164 for (const auto *ND : Self.LookupConstructors(RD)) { 5165 // FIXME: In C++0x, a constructor template can be a default constructor. 5166 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5167 continue; 5168 // UsingDecl itself is not a constructor 5169 if (isa<UsingDecl>(ND)) 5170 continue; 5171 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5172 if (Constructor->isDefaultConstructor()) { 5173 FoundConstructor = true; 5174 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5175 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5176 if (!CPT) 5177 return false; 5178 // FIXME: check whether evaluating default arguments can throw. 5179 // For now, we'll be conservative and assume that they can throw. 5180 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5181 return false; 5182 } 5183 } 5184 return FoundConstructor; 5185 } 5186 return false; 5187 case UTT_HasVirtualDestructor: 5188 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5189 // If type is a class type with a virtual destructor ([class.dtor]) 5190 // then the trait is true, else it is false. 5191 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5192 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5193 return Destructor->isVirtual(); 5194 return false; 5195 5196 // These type trait expressions are modeled on the specifications for the 5197 // Embarcadero C++0x type trait functions: 5198 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5199 case UTT_IsCompleteType: 5200 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5201 // Returns True if and only if T is a complete type at the point of the 5202 // function call. 5203 return !T->isIncompleteType(); 5204 case UTT_HasUniqueObjectRepresentations: 5205 return C.hasUniqueObjectRepresentations(T); 5206 } 5207} 5208 5209static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5210 QualType RhsT, SourceLocation KeyLoc); 5211 5212static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5213 ArrayRef<TypeSourceInfo *> Args, 5214 SourceLocation RParenLoc) { 5215 if (Kind <= UTT_Last) 5216 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5217 5218 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5219 // traits to avoid duplication. 5220 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5221 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5222 Args[1]->getType(), RParenLoc); 5223 5224 switch (Kind) { 5225 case clang::BTT_ReferenceBindsToTemporary: 5226 case clang::TT_IsConstructible: 5227 case clang::TT_IsNothrowConstructible: 5228 case clang::TT_IsTriviallyConstructible: { 5229 // C++11 [meta.unary.prop]: 5230 // is_trivially_constructible is defined as: 5231 // 5232 // is_constructible<T, Args...>::value is true and the variable 5233 // definition for is_constructible, as defined below, is known to call 5234 // no operation that is not trivial. 5235 // 5236 // The predicate condition for a template specialization 5237 // is_constructible<T, Args...> shall be satisfied if and only if the 5238 // following variable definition would be well-formed for some invented 5239 // variable t: 5240 // 5241 // T t(create<Args>()...); 5242 assert(!Args.empty())((void)0); 5243 5244 // Precondition: T and all types in the parameter pack Args shall be 5245 // complete types, (possibly cv-qualified) void, or arrays of 5246 // unknown bound. 5247 for (const auto *TSI : Args) { 5248 QualType ArgTy = TSI->getType(); 5249 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5250 continue; 5251 5252 if (S.RequireCompleteType(KWLoc, ArgTy, 5253 diag::err_incomplete_type_used_in_type_trait_expr)) 5254 return false; 5255 } 5256 5257 // Make sure the first argument is not incomplete nor a function type. 5258 QualType T = Args[0]->getType(); 5259 if (T->isIncompleteType() || T->isFunctionType()) 5260 return false; 5261 5262 // Make sure the first argument is not an abstract type. 5263 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5264 if (RD && RD->isAbstract()) 5265 return false; 5266 5267 llvm::BumpPtrAllocator OpaqueExprAllocator; 5268 SmallVector<Expr *, 2> ArgExprs; 5269 ArgExprs.reserve(Args.size() - 1); 5270 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5271 QualType ArgTy = Args[I]->getType(); 5272 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5273 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5274 ArgExprs.push_back( 5275 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5276 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5277 ArgTy.getNonLValueExprType(S.Context), 5278 Expr::getValueKindForType(ArgTy))); 5279 } 5280 5281 // Perform the initialization in an unevaluated context within a SFINAE 5282 // trap at translation unit scope. 5283 EnterExpressionEvaluationContext Unevaluated( 5284 S, Sema::ExpressionEvaluationContext::Unevaluated); 5285 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5286 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5287 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 5288 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5289 RParenLoc)); 5290 InitializationSequence Init(S, To, InitKind, ArgExprs); 5291 if (Init.Failed()) 5292 return false; 5293 5294 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5295 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5296 return false; 5297 5298 if (Kind == clang::TT_IsConstructible) 5299 return true; 5300 5301 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5302 if (!T->isReferenceType()) 5303 return false; 5304 5305 return !Init.isDirectReferenceBinding(); 5306 } 5307 5308 if (Kind == clang::TT_IsNothrowConstructible) 5309 return S.canThrow(Result.get()) == CT_Cannot; 5310 5311 if (Kind == clang::TT_IsTriviallyConstructible) { 5312 // Under Objective-C ARC and Weak, if the destination has non-trivial 5313 // Objective-C lifetime, this is a non-trivial construction. 5314 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5315 return false; 5316 5317 // The initialization succeeded; now make sure there are no non-trivial 5318 // calls. 5319 return !Result.get()->hasNonTrivialCall(S.Context); 5320 } 5321 5322 llvm_unreachable("unhandled type trait")__builtin_unreachable(); 5323 return false; 5324 } 5325 default: llvm_unreachable("not a TT")__builtin_unreachable(); 5326 } 5327 5328 return false; 5329} 5330 5331ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5332 ArrayRef<TypeSourceInfo *> Args, 5333 SourceLocation RParenLoc) { 5334 QualType ResultType = Context.getLogicalOperationType(); 5335 5336 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5337 *this, Kind, KWLoc, Args[0]->getType())) 5338 return ExprError(); 5339 5340 bool Dependent = false; 5341 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5342 if (Args[I]->getType()->isDependentType()) { 5343 Dependent = true; 5344 break; 5345 } 5346 } 5347 5348 bool Result = false; 5349 if (!Dependent) 5350 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5351 5352 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5353 RParenLoc, Result); 5354} 5355 5356ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5357 ArrayRef<ParsedType> Args, 5358 SourceLocation RParenLoc) { 5359 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5360 ConvertedArgs.reserve(Args.size()); 5361 5362 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5363 TypeSourceInfo *TInfo; 5364 QualType T = GetTypeFromParser(Args[I], &TInfo); 5365 if (!TInfo) 5366 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5367 5368 ConvertedArgs.push_back(TInfo); 5369 } 5370 5371 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5372} 5373 5374static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5375 QualType RhsT, SourceLocation KeyLoc) { 5376 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&((void)0) 5377 "Cannot evaluate traits of dependent types")((void)0); 5378 5379 switch(BTT) { 5380 case BTT_IsBaseOf: { 5381 // C++0x [meta.rel]p2 5382 // Base is a base class of Derived without regard to cv-qualifiers or 5383 // Base and Derived are not unions and name the same class type without 5384 // regard to cv-qualifiers. 5385 5386 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5387 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5388 if (!rhsRecord || !lhsRecord) { 5389 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5390 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5391 if (!LHSObjTy || !RHSObjTy) 5392 return false; 5393 5394 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5395 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5396 if (!BaseInterface || !DerivedInterface) 5397 return false; 5398 5399 if (Self.RequireCompleteType( 5400 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5401 return false; 5402 5403 return BaseInterface->isSuperClassOf(DerivedInterface); 5404 } 5405 5406 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)((void)0) 5407 == (lhsRecord == rhsRecord))((void)0); 5408 5409 // Unions are never base classes, and never have base classes. 5410 // It doesn't matter if they are complete or not. See PR#41843 5411 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5412 return false; 5413 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5414 return false; 5415 5416 if (lhsRecord == rhsRecord) 5417 return true; 5418 5419 // C++0x [meta.rel]p2: 5420 // If Base and Derived are class types and are different types 5421 // (ignoring possible cv-qualifiers) then Derived shall be a 5422 // complete type. 5423 if (Self.RequireCompleteType(KeyLoc, RhsT, 5424 diag::err_incomplete_type_used_in_type_trait_expr)) 5425 return false; 5426 5427 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5428 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5429 } 5430 case BTT_IsSame: 5431 return Self.Context.hasSameType(LhsT, RhsT); 5432 case BTT_TypeCompatible: { 5433 // GCC ignores cv-qualifiers on arrays for this builtin. 5434 Qualifiers LhsQuals, RhsQuals; 5435 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5436 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5437 return Self.Context.typesAreCompatible(Lhs, Rhs); 5438 } 5439 case BTT_IsConvertible: 5440 case BTT_IsConvertibleTo: { 5441 // C++0x [meta.rel]p4: 5442 // Given the following function prototype: 5443 // 5444 // template <class T> 5445 // typename add_rvalue_reference<T>::type create(); 5446 // 5447 // the predicate condition for a template specialization 5448 // is_convertible<From, To> shall be satisfied if and only if 5449 // the return expression in the following code would be 5450 // well-formed, including any implicit conversions to the return 5451 // type of the function: 5452 // 5453 // To test() { 5454 // return create<From>(); 5455 // } 5456 // 5457 // Access checking is performed as if in a context unrelated to To and 5458 // From. Only the validity of the immediate context of the expression 5459 // of the return-statement (including conversions to the return type) 5460 // is considered. 5461 // 5462 // We model the initialization as a copy-initialization of a temporary 5463 // of the appropriate type, which for this expression is identical to the 5464 // return statement (since NRVO doesn't apply). 5465 5466 // Functions aren't allowed to return function or array types. 5467 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5468 return false; 5469 5470 // A return statement in a void function must have void type. 5471 if (RhsT->isVoidType()) 5472 return LhsT->isVoidType(); 5473 5474 // A function definition requires a complete, non-abstract return type. 5475 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5476 return false; 5477 5478 // Compute the result of add_rvalue_reference. 5479 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5480 LhsT = Self.Context.getRValueReferenceType(LhsT); 5481 5482 // Build a fake source and destination for initialization. 5483 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5484 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5485 Expr::getValueKindForType(LhsT)); 5486 Expr *FromPtr = &From; 5487 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5488 SourceLocation())); 5489 5490 // Perform the initialization in an unevaluated context within a SFINAE 5491 // trap at translation unit scope. 5492 EnterExpressionEvaluationContext Unevaluated( 5493 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5494 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5495 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5496 InitializationSequence Init(Self, To, Kind, FromPtr); 5497 if (Init.Failed()) 5498 return false; 5499 5500 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5501 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5502 } 5503 5504 case BTT_IsAssignable: 5505 case BTT_IsNothrowAssignable: 5506 case BTT_IsTriviallyAssignable: { 5507 // C++11 [meta.unary.prop]p3: 5508 // is_trivially_assignable is defined as: 5509 // is_assignable<T, U>::value is true and the assignment, as defined by 5510 // is_assignable, is known to call no operation that is not trivial 5511 // 5512 // is_assignable is defined as: 5513 // The expression declval<T>() = declval<U>() is well-formed when 5514 // treated as an unevaluated operand (Clause 5). 5515 // 5516 // For both, T and U shall be complete types, (possibly cv-qualified) 5517 // void, or arrays of unknown bound. 5518 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5519 Self.RequireCompleteType(KeyLoc, LhsT, 5520 diag::err_incomplete_type_used_in_type_trait_expr)) 5521 return false; 5522 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5523 Self.RequireCompleteType(KeyLoc, RhsT, 5524 diag::err_incomplete_type_used_in_type_trait_expr)) 5525 return false; 5526 5527 // cv void is never assignable. 5528 if (LhsT->isVoidType() || RhsT->isVoidType()) 5529 return false; 5530 5531 // Build expressions that emulate the effect of declval<T>() and 5532 // declval<U>(). 5533 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5534 LhsT = Self.Context.getRValueReferenceType(LhsT); 5535 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5536 RhsT = Self.Context.getRValueReferenceType(RhsT); 5537 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5538 Expr::getValueKindForType(LhsT)); 5539 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5540 Expr::getValueKindForType(RhsT)); 5541 5542 // Attempt the assignment in an unevaluated context within a SFINAE 5543 // trap at translation unit scope. 5544 EnterExpressionEvaluationContext Unevaluated( 5545 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5546 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5547 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5548 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5549 &Rhs); 5550 if (Result.isInvalid()) 5551 return false; 5552 5553 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5554 Self.CheckUnusedVolatileAssignment(Result.get()); 5555 5556 if (SFINAE.hasErrorOccurred()) 5557 return false; 5558 5559 if (BTT == BTT_IsAssignable) 5560 return true; 5561 5562 if (BTT == BTT_IsNothrowAssignable) 5563 return Self.canThrow(Result.get()) == CT_Cannot; 5564 5565 if (BTT == BTT_IsTriviallyAssignable) { 5566 // Under Objective-C ARC and Weak, if the destination has non-trivial 5567 // Objective-C lifetime, this is a non-trivial assignment. 5568 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5569 return false; 5570 5571 return !Result.get()->hasNonTrivialCall(Self.Context); 5572 } 5573 5574 llvm_unreachable("unhandled type trait")__builtin_unreachable(); 5575 return false; 5576 } 5577 default: llvm_unreachable("not a BTT")__builtin_unreachable(); 5578 } 5579 llvm_unreachable("Unknown type trait or not implemented")__builtin_unreachable(); 5580} 5581 5582ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5583 SourceLocation KWLoc, 5584 ParsedType Ty, 5585 Expr* DimExpr, 5586 SourceLocation RParen) { 5587 TypeSourceInfo *TSInfo; 5588 QualType T = GetTypeFromParser(Ty, &TSInfo); 5589 if (!TSInfo) 5590 TSInfo = Context.getTrivialTypeSourceInfo(T); 5591 5592 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5593} 5594 5595static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5596 QualType T, Expr *DimExpr, 5597 SourceLocation KeyLoc) { 5598 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((void)0); 5599 5600 switch(ATT) { 5601 case ATT_ArrayRank: 5602 if (T->isArrayType()) { 5603 unsigned Dim = 0; 5604 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5605 ++Dim; 5606 T = AT->getElementType(); 5607 } 5608 return Dim; 5609 } 5610 return 0; 5611 5612 case ATT_ArrayExtent: { 5613 llvm::APSInt Value; 5614 uint64_t Dim; 5615 if (Self.VerifyIntegerConstantExpression( 5616 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5617 .isInvalid()) 5618 return 0; 5619 if (Value.isSigned() && Value.isNegative()) { 5620 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5621 << DimExpr->getSourceRange(); 5622 return 0; 5623 } 5624 Dim = Value.getLimitedValue(); 5625 5626 if (T->isArrayType()) { 5627 unsigned D = 0; 5628 bool Matched = false; 5629 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5630 if (Dim == D) { 5631 Matched = true; 5632 break; 5633 } 5634 ++D; 5635 T = AT->getElementType(); 5636 } 5637 5638 if (Matched && T->isArrayType()) { 5639 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5640 return CAT->getSize().getLimitedValue(); 5641 } 5642 } 5643 return 0; 5644 } 5645 } 5646 llvm_unreachable("Unknown type trait or not implemented")__builtin_unreachable(); 5647} 5648 5649ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5650 SourceLocation KWLoc, 5651 TypeSourceInfo *TSInfo, 5652 Expr* DimExpr, 5653 SourceLocation RParen) { 5654 QualType T = TSInfo->getType(); 5655 5656 // FIXME: This should likely be tracked as an APInt to remove any host 5657 // assumptions about the width of size_t on the target. 5658 uint64_t Value = 0; 5659 if (!T->isDependentType()) 5660 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5661 5662 // While the specification for these traits from the Embarcadero C++ 5663 // compiler's documentation says the return type is 'unsigned int', Clang 5664 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5665 // compiler, there is no difference. On several other platforms this is an 5666 // important distinction. 5667 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5668 RParen, Context.getSizeType()); 5669} 5670 5671ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5672 SourceLocation KWLoc, 5673 Expr *Queried, 5674 SourceLocation RParen) { 5675 // If error parsing the expression, ignore. 5676 if (!Queried) 5677 return ExprError(); 5678 5679 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5680 5681 return Result; 5682} 5683 5684static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5685 switch (ET) { 5686 case ET_IsLValueExpr: return E->isLValue(); 5687 case ET_IsRValueExpr: 5688 return E->isPRValue(); 5689 } 5690 llvm_unreachable("Expression trait not covered by switch")__builtin_unreachable(); 5691} 5692 5693ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5694 SourceLocation KWLoc, 5695 Expr *Queried, 5696 SourceLocation RParen) { 5697 if (Queried->isTypeDependent()) { 5698 // Delay type-checking for type-dependent expressions. 5699 } else if (Queried->getType()->isPlaceholderType()) { 5700 ExprResult PE = CheckPlaceholderExpr(Queried); 5701 if (PE.isInvalid()) return ExprError(); 5702 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5703 } 5704 5705 bool Value = EvaluateExpressionTrait(ET, Queried); 5706 5707 return new (Context) 5708 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5709} 5710 5711QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5712 ExprValueKind &VK, 5713 SourceLocation Loc, 5714 bool isIndirect) { 5715 assert(!LHS.get()->getType()->isPlaceholderType() &&((void)0) 5716 !RHS.get()->getType()->isPlaceholderType() &&((void)0) 5717 "placeholders should have been weeded out by now")((void)0); 5718 5719 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5720 // temporary materialization conversion otherwise. 5721 if (isIndirect) 5722 LHS = DefaultLvalueConversion(LHS.get()); 5723 else if (LHS.get()->isPRValue()) 5724 LHS = TemporaryMaterializationConversion(LHS.get()); 5725 if (LHS.isInvalid()) 5726 return QualType(); 5727 5728 // The RHS always undergoes lvalue conversions. 5729 RHS = DefaultLvalueConversion(RHS.get()); 5730 if (RHS.isInvalid()) return QualType(); 5731 5732 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5733 // C++ 5.5p2 5734 // The binary operator .* [p3: ->*] binds its second operand, which shall 5735 // be of type "pointer to member of T" (where T is a completely-defined 5736 // class type) [...] 5737 QualType RHSType = RHS.get()->getType(); 5738 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5739 if (!MemPtr) { 5740 Diag(Loc, diag::err_bad_memptr_rhs) 5741 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5742 return QualType(); 5743 } 5744 5745 QualType Class(MemPtr->getClass(), 0); 5746 5747 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5748 // member pointer points must be completely-defined. However, there is no 5749 // reason for this semantic distinction, and the rule is not enforced by 5750 // other compilers. Therefore, we do not check this property, as it is 5751 // likely to be considered a defect. 5752 5753 // C++ 5.5p2 5754 // [...] to its first operand, which shall be of class T or of a class of 5755 // which T is an unambiguous and accessible base class. [p3: a pointer to 5756 // such a class] 5757 QualType LHSType = LHS.get()->getType(); 5758 if (isIndirect) { 5759 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5760 LHSType = Ptr->getPointeeType(); 5761 else { 5762 Diag(Loc, diag::err_bad_memptr_lhs) 5763 << OpSpelling << 1 << LHSType 5764 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5765 return QualType(); 5766 } 5767 } 5768 5769 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5770 // If we want to check the hierarchy, we need a complete type. 5771 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5772 OpSpelling, (int)isIndirect)) { 5773 return QualType(); 5774 } 5775 5776 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5777 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5778 << (int)isIndirect << LHS.get()->getType(); 5779 return QualType(); 5780 } 5781 5782 CXXCastPath BasePath; 5783 if (CheckDerivedToBaseConversion( 5784 LHSType, Class, Loc, 5785 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5786 &BasePath)) 5787 return QualType(); 5788 5789 // Cast LHS to type of use. 5790 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5791 if (isIndirect) 5792 UseType = Context.getPointerType(UseType); 5793 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 5794 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5795 &BasePath); 5796 } 5797 5798 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5799 // Diagnose use of pointer-to-member type which when used as 5800 // the functional cast in a pointer-to-member expression. 5801 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5802 return QualType(); 5803 } 5804 5805 // C++ 5.5p2 5806 // The result is an object or a function of the type specified by the 5807 // second operand. 5808 // The cv qualifiers are the union of those in the pointer and the left side, 5809 // in accordance with 5.5p5 and 5.2.5. 5810 QualType Result = MemPtr->getPointeeType(); 5811 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5812 5813 // C++0x [expr.mptr.oper]p6: 5814 // In a .* expression whose object expression is an rvalue, the program is 5815 // ill-formed if the second operand is a pointer to member function with 5816 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5817 // expression is an lvalue, the program is ill-formed if the second operand 5818 // is a pointer to member function with ref-qualifier &&. 5819 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5820 switch (Proto->getRefQualifier()) { 5821 case RQ_None: 5822 // Do nothing 5823 break; 5824 5825 case RQ_LValue: 5826 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5827 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5828 // is (exactly) 'const'. 5829 if (Proto->isConst() && !Proto->isVolatile()) 5830 Diag(Loc, getLangOpts().CPlusPlus20 5831 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5832 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5833 else 5834 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5835 << RHSType << 1 << LHS.get()->getSourceRange(); 5836 } 5837 break; 5838 5839 case RQ_RValue: 5840 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5841 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5842 << RHSType << 0 << LHS.get()->getSourceRange(); 5843 break; 5844 } 5845 } 5846 5847 // C++ [expr.mptr.oper]p6: 5848 // The result of a .* expression whose second operand is a pointer 5849 // to a data member is of the same value category as its 5850 // first operand. The result of a .* expression whose second 5851 // operand is a pointer to a member function is a prvalue. The 5852 // result of an ->* expression is an lvalue if its second operand 5853 // is a pointer to data member and a prvalue otherwise. 5854 if (Result->isFunctionType()) { 5855 VK = VK_PRValue; 5856 return Context.BoundMemberTy; 5857 } else if (isIndirect) { 5858 VK = VK_LValue; 5859 } else { 5860 VK = LHS.get()->getValueKind(); 5861 } 5862 5863 return Result; 5864} 5865 5866/// Try to convert a type to another according to C++11 5.16p3. 5867/// 5868/// This is part of the parameter validation for the ? operator. If either 5869/// value operand is a class type, the two operands are attempted to be 5870/// converted to each other. This function does the conversion in one direction. 5871/// It returns true if the program is ill-formed and has already been diagnosed 5872/// as such. 5873static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5874 SourceLocation QuestionLoc, 5875 bool &HaveConversion, 5876 QualType &ToType) { 5877 HaveConversion = false; 5878 ToType = To->getType(); 5879 5880 InitializationKind Kind = 5881 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5882 // C++11 5.16p3 5883 // The process for determining whether an operand expression E1 of type T1 5884 // can be converted to match an operand expression E2 of type T2 is defined 5885 // as follows: 5886 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5887 // implicitly converted to type "lvalue reference to T2", subject to the 5888 // constraint that in the conversion the reference must bind directly to 5889 // an lvalue. 5890 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5891 // implicitly converted to the type "rvalue reference to R2", subject to 5892 // the constraint that the reference must bind directly. 5893 if (To->isLValue() || To->isXValue()) { 5894 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType) 5895 : Self.Context.getRValueReferenceType(ToType); 5896 5897 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5898 5899 InitializationSequence InitSeq(Self, Entity, Kind, From); 5900 if (InitSeq.isDirectReferenceBinding()) { 5901 ToType = T; 5902 HaveConversion = true; 5903 return false; 5904 } 5905 5906 if (InitSeq.isAmbiguous()) 5907 return InitSeq.Diagnose(Self, Entity, Kind, From); 5908 } 5909 5910 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5911 // -- if E1 and E2 have class type, and the underlying class types are 5912 // the same or one is a base class of the other: 5913 QualType FTy = From->getType(); 5914 QualType TTy = To->getType(); 5915 const RecordType *FRec = FTy->getAs<RecordType>(); 5916 const RecordType *TRec = TTy->getAs<RecordType>(); 5917 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5918 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5919 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5920 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5921 // E1 can be converted to match E2 if the class of T2 is the 5922 // same type as, or a base class of, the class of T1, and 5923 // [cv2 > cv1]. 5924 if (FRec == TRec || FDerivedFromT) { 5925 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5926 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5927 InitializationSequence InitSeq(Self, Entity, Kind, From); 5928 if (InitSeq) { 5929 HaveConversion = true; 5930 return false; 5931 } 5932 5933 if (InitSeq.isAmbiguous()) 5934 return InitSeq.Diagnose(Self, Entity, Kind, From); 5935 } 5936 } 5937 5938 return false; 5939 } 5940 5941 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5942 // implicitly converted to the type that expression E2 would have 5943 // if E2 were converted to an rvalue (or the type it has, if E2 is 5944 // an rvalue). 5945 // 5946 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5947 // to the array-to-pointer or function-to-pointer conversions. 5948 TTy = TTy.getNonLValueExprType(Self.Context); 5949 5950 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5951 InitializationSequence InitSeq(Self, Entity, Kind, From); 5952 HaveConversion = !InitSeq.Failed(); 5953 ToType = TTy; 5954 if (InitSeq.isAmbiguous()) 5955 return InitSeq.Diagnose(Self, Entity, Kind, From); 5956 5957 return false; 5958} 5959 5960/// Try to find a common type for two according to C++0x 5.16p5. 5961/// 5962/// This is part of the parameter validation for the ? operator. If either 5963/// value operand is a class type, overload resolution is used to find a 5964/// conversion to a common type. 5965static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5966 SourceLocation QuestionLoc) { 5967 Expr *Args[2] = { LHS.get(), RHS.get() }; 5968 OverloadCandidateSet CandidateSet(QuestionLoc, 5969 OverloadCandidateSet::CSK_Operator); 5970 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5971 CandidateSet); 5972 5973 OverloadCandidateSet::iterator Best; 5974 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5975 case OR_Success: { 5976 // We found a match. Perform the conversions on the arguments and move on. 5977 ExprResult LHSRes = Self.PerformImplicitConversion( 5978 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5979 Sema::AA_Converting); 5980 if (LHSRes.isInvalid()) 5981 break; 5982 LHS = LHSRes; 5983 5984 ExprResult RHSRes = Self.PerformImplicitConversion( 5985 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5986 Sema::AA_Converting); 5987 if (RHSRes.isInvalid()) 5988 break; 5989 RHS = RHSRes; 5990 if (Best->Function) 5991 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5992 return false; 5993 } 5994 5995 case OR_No_Viable_Function: 5996 5997 // Emit a better diagnostic if one of the expressions is a null pointer 5998 // constant and the other is a pointer type. In this case, the user most 5999 // likely forgot to take the address of the other expression. 6000 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6001 return true; 6002 6003 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6004 << LHS.get()->getType() << RHS.get()->getType() 6005 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6006 return true; 6007 6008 case OR_Ambiguous: 6009 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6010 << LHS.get()->getType() << RHS.get()->getType() 6011 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6012 // FIXME: Print the possible common types by printing the return types of 6013 // the viable candidates. 6014 break; 6015 6016 case OR_Deleted: 6017 llvm_unreachable("Conditional operator has only built-in overloads")__builtin_unreachable(); 6018 } 6019 return true; 6020} 6021 6022/// Perform an "extended" implicit conversion as returned by 6023/// TryClassUnification. 6024static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6025 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6026 InitializationKind Kind = 6027 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6028 Expr *Arg = E.get(); 6029 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6030 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6031 if (Result.isInvalid()) 6032 return true; 6033 6034 E = Result; 6035 return false; 6036} 6037 6038// Check the condition operand of ?: to see if it is valid for the GCC