| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/IRBuilder.h |
| Warning: | line 2676, column 23 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file defines common loop utility functions. | |||
| 10 | // | |||
| 11 | //===----------------------------------------------------------------------===// | |||
| 12 | ||||
| 13 | #include "llvm/Transforms/Utils/LoopUtils.h" | |||
| 14 | #include "llvm/ADT/DenseSet.h" | |||
| 15 | #include "llvm/ADT/Optional.h" | |||
| 16 | #include "llvm/ADT/PriorityWorklist.h" | |||
| 17 | #include "llvm/ADT/ScopeExit.h" | |||
| 18 | #include "llvm/ADT/SetVector.h" | |||
| 19 | #include "llvm/ADT/SmallPtrSet.h" | |||
| 20 | #include "llvm/ADT/SmallVector.h" | |||
| 21 | #include "llvm/Analysis/AliasAnalysis.h" | |||
| 22 | #include "llvm/Analysis/BasicAliasAnalysis.h" | |||
| 23 | #include "llvm/Analysis/DomTreeUpdater.h" | |||
| 24 | #include "llvm/Analysis/GlobalsModRef.h" | |||
| 25 | #include "llvm/Analysis/InstructionSimplify.h" | |||
| 26 | #include "llvm/Analysis/LoopAccessAnalysis.h" | |||
| 27 | #include "llvm/Analysis/LoopInfo.h" | |||
| 28 | #include "llvm/Analysis/LoopPass.h" | |||
| 29 | #include "llvm/Analysis/MemorySSA.h" | |||
| 30 | #include "llvm/Analysis/MemorySSAUpdater.h" | |||
| 31 | #include "llvm/Analysis/MustExecute.h" | |||
| 32 | #include "llvm/Analysis/ScalarEvolution.h" | |||
| 33 | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | |||
| 34 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | |||
| 35 | #include "llvm/Analysis/TargetTransformInfo.h" | |||
| 36 | #include "llvm/Analysis/ValueTracking.h" | |||
| 37 | #include "llvm/IR/DIBuilder.h" | |||
| 38 | #include "llvm/IR/Dominators.h" | |||
| 39 | #include "llvm/IR/Instructions.h" | |||
| 40 | #include "llvm/IR/IntrinsicInst.h" | |||
| 41 | #include "llvm/IR/MDBuilder.h" | |||
| 42 | #include "llvm/IR/Module.h" | |||
| 43 | #include "llvm/IR/Operator.h" | |||
| 44 | #include "llvm/IR/PatternMatch.h" | |||
| 45 | #include "llvm/IR/ValueHandle.h" | |||
| 46 | #include "llvm/InitializePasses.h" | |||
| 47 | #include "llvm/Pass.h" | |||
| 48 | #include "llvm/Support/Debug.h" | |||
| 49 | #include "llvm/Support/KnownBits.h" | |||
| 50 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | |||
| 51 | #include "llvm/Transforms/Utils/Local.h" | |||
| 52 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | |||
| 53 | ||||
| 54 | using namespace llvm; | |||
| 55 | using namespace llvm::PatternMatch; | |||
| 56 | ||||
| 57 | #define DEBUG_TYPE"loop-utils" "loop-utils" | |||
| 58 | ||||
| 59 | static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; | |||
| 60 | static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; | |||
| 61 | ||||
| 62 | bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, | |||
| 63 | MemorySSAUpdater *MSSAU, | |||
| 64 | bool PreserveLCSSA) { | |||
| 65 | bool Changed = false; | |||
| 66 | ||||
| 67 | // We re-use a vector for the in-loop predecesosrs. | |||
| 68 | SmallVector<BasicBlock *, 4> InLoopPredecessors; | |||
| 69 | ||||
| 70 | auto RewriteExit = [&](BasicBlock *BB) { | |||
| 71 | assert(InLoopPredecessors.empty() &&((void)0) | |||
| 72 | "Must start with an empty predecessors list!")((void)0); | |||
| 73 | auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); | |||
| 74 | ||||
| 75 | // See if there are any non-loop predecessors of this exit block and | |||
| 76 | // keep track of the in-loop predecessors. | |||
| 77 | bool IsDedicatedExit = true; | |||
| 78 | for (auto *PredBB : predecessors(BB)) | |||
| 79 | if (L->contains(PredBB)) { | |||
| 80 | if (isa<IndirectBrInst>(PredBB->getTerminator())) | |||
| 81 | // We cannot rewrite exiting edges from an indirectbr. | |||
| 82 | return false; | |||
| 83 | if (isa<CallBrInst>(PredBB->getTerminator())) | |||
| 84 | // We cannot rewrite exiting edges from a callbr. | |||
| 85 | return false; | |||
| 86 | ||||
| 87 | InLoopPredecessors.push_back(PredBB); | |||
| 88 | } else { | |||
| 89 | IsDedicatedExit = false; | |||
| 90 | } | |||
| 91 | ||||
| 92 | assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!")((void)0); | |||
| 93 | ||||
| 94 | // Nothing to do if this is already a dedicated exit. | |||
| 95 | if (IsDedicatedExit) | |||
| 96 | return false; | |||
| 97 | ||||
| 98 | auto *NewExitBB = SplitBlockPredecessors( | |||
| 99 | BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); | |||
| 100 | ||||
| 101 | if (!NewExitBB) | |||
| 102 | LLVM_DEBUG(do { } while (false) | |||
| 103 | dbgs() << "WARNING: Can't create a dedicated exit block for loop: "do { } while (false) | |||
| 104 | << *L << "\n")do { } while (false); | |||
| 105 | else | |||
| 106 | LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "do { } while (false) | |||
| 107 | << NewExitBB->getName() << "\n")do { } while (false); | |||
| 108 | return true; | |||
| 109 | }; | |||
| 110 | ||||
| 111 | // Walk the exit blocks directly rather than building up a data structure for | |||
| 112 | // them, but only visit each one once. | |||
| 113 | SmallPtrSet<BasicBlock *, 4> Visited; | |||
| 114 | for (auto *BB : L->blocks()) | |||
| 115 | for (auto *SuccBB : successors(BB)) { | |||
| 116 | // We're looking for exit blocks so skip in-loop successors. | |||
| 117 | if (L->contains(SuccBB)) | |||
| 118 | continue; | |||
| 119 | ||||
| 120 | // Visit each exit block exactly once. | |||
| 121 | if (!Visited.insert(SuccBB).second) | |||
| 122 | continue; | |||
| 123 | ||||
| 124 | Changed |= RewriteExit(SuccBB); | |||
| 125 | } | |||
| 126 | ||||
| 127 | return Changed; | |||
| 128 | } | |||
| 129 | ||||
| 130 | /// Returns the instructions that use values defined in the loop. | |||
| 131 | SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { | |||
| 132 | SmallVector<Instruction *, 8> UsedOutside; | |||
| 133 | ||||
| 134 | for (auto *Block : L->getBlocks()) | |||
| 135 | // FIXME: I believe that this could use copy_if if the Inst reference could | |||
| 136 | // be adapted into a pointer. | |||
| 137 | for (auto &Inst : *Block) { | |||
| 138 | auto Users = Inst.users(); | |||
| 139 | if (any_of(Users, [&](User *U) { | |||
| 140 | auto *Use = cast<Instruction>(U); | |||
| 141 | return !L->contains(Use->getParent()); | |||
| 142 | })) | |||
| 143 | UsedOutside.push_back(&Inst); | |||
| 144 | } | |||
| 145 | ||||
| 146 | return UsedOutside; | |||
| 147 | } | |||
| 148 | ||||
| 149 | void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { | |||
| 150 | // By definition, all loop passes need the LoopInfo analysis and the | |||
| 151 | // Dominator tree it depends on. Because they all participate in the loop | |||
| 152 | // pass manager, they must also preserve these. | |||
| 153 | AU.addRequired<DominatorTreeWrapperPass>(); | |||
| 154 | AU.addPreserved<DominatorTreeWrapperPass>(); | |||
| 155 | AU.addRequired<LoopInfoWrapperPass>(); | |||
| 156 | AU.addPreserved<LoopInfoWrapperPass>(); | |||
| 157 | ||||
| 158 | // We must also preserve LoopSimplify and LCSSA. We locally access their IDs | |||
| 159 | // here because users shouldn't directly get them from this header. | |||
| 160 | extern char &LoopSimplifyID; | |||
| 161 | extern char &LCSSAID; | |||
| 162 | AU.addRequiredID(LoopSimplifyID); | |||
| 163 | AU.addPreservedID(LoopSimplifyID); | |||
| 164 | AU.addRequiredID(LCSSAID); | |||
| 165 | AU.addPreservedID(LCSSAID); | |||
| 166 | // This is used in the LPPassManager to perform LCSSA verification on passes | |||
| 167 | // which preserve lcssa form | |||
| 168 | AU.addRequired<LCSSAVerificationPass>(); | |||
| 169 | AU.addPreserved<LCSSAVerificationPass>(); | |||
| 170 | ||||
| 171 | // Loop passes are designed to run inside of a loop pass manager which means | |||
| 172 | // that any function analyses they require must be required by the first loop | |||
| 173 | // pass in the manager (so that it is computed before the loop pass manager | |||
| 174 | // runs) and preserved by all loop pasess in the manager. To make this | |||
| 175 | // reasonably robust, the set needed for most loop passes is maintained here. | |||
| 176 | // If your loop pass requires an analysis not listed here, you will need to | |||
| 177 | // carefully audit the loop pass manager nesting structure that results. | |||
| 178 | AU.addRequired<AAResultsWrapperPass>(); | |||
| 179 | AU.addPreserved<AAResultsWrapperPass>(); | |||
| 180 | AU.addPreserved<BasicAAWrapperPass>(); | |||
| 181 | AU.addPreserved<GlobalsAAWrapperPass>(); | |||
| 182 | AU.addPreserved<SCEVAAWrapperPass>(); | |||
| 183 | AU.addRequired<ScalarEvolutionWrapperPass>(); | |||
| 184 | AU.addPreserved<ScalarEvolutionWrapperPass>(); | |||
| 185 | // FIXME: When all loop passes preserve MemorySSA, it can be required and | |||
| 186 | // preserved here instead of the individual handling in each pass. | |||
| 187 | } | |||
| 188 | ||||
| 189 | /// Manually defined generic "LoopPass" dependency initialization. This is used | |||
| 190 | /// to initialize the exact set of passes from above in \c | |||
| 191 | /// getLoopAnalysisUsage. It can be used within a loop pass's initialization | |||
| 192 | /// with: | |||
| 193 | /// | |||
| 194 | /// INITIALIZE_PASS_DEPENDENCY(LoopPass) | |||
| 195 | /// | |||
| 196 | /// As-if "LoopPass" were a pass. | |||
| 197 | void llvm::initializeLoopPassPass(PassRegistry &Registry) { | |||
| 198 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry); | |||
| 199 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry); | |||
| 200 | INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry); | |||
| 201 | INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)initializeLCSSAWrapperPassPass(Registry); | |||
| 202 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry); | |||
| 203 | INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)initializeBasicAAWrapperPassPass(Registry); | |||
| 204 | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry); | |||
| 205 | INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)initializeSCEVAAWrapperPassPass(Registry); | |||
| 206 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry); | |||
| 207 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry); | |||
| 208 | } | |||
| 209 | ||||
| 210 | /// Create MDNode for input string. | |||
| 211 | static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { | |||
| 212 | LLVMContext &Context = TheLoop->getHeader()->getContext(); | |||
| 213 | Metadata *MDs[] = { | |||
| 214 | MDString::get(Context, Name), | |||
| 215 | ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; | |||
| 216 | return MDNode::get(Context, MDs); | |||
| 217 | } | |||
| 218 | ||||
| 219 | /// Set input string into loop metadata by keeping other values intact. | |||
| 220 | /// If the string is already in loop metadata update value if it is | |||
| 221 | /// different. | |||
| 222 | void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, | |||
| 223 | unsigned V) { | |||
| 224 | SmallVector<Metadata *, 4> MDs(1); | |||
| 225 | // If the loop already has metadata, retain it. | |||
| 226 | MDNode *LoopID = TheLoop->getLoopID(); | |||
| 227 | if (LoopID) { | |||
| 228 | for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { | |||
| 229 | MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); | |||
| 230 | // If it is of form key = value, try to parse it. | |||
| 231 | if (Node->getNumOperands() == 2) { | |||
| 232 | MDString *S = dyn_cast<MDString>(Node->getOperand(0)); | |||
| 233 | if (S && S->getString().equals(StringMD)) { | |||
| 234 | ConstantInt *IntMD = | |||
| 235 | mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); | |||
| 236 | if (IntMD && IntMD->getSExtValue() == V) | |||
| 237 | // It is already in place. Do nothing. | |||
| 238 | return; | |||
| 239 | // We need to update the value, so just skip it here and it will | |||
| 240 | // be added after copying other existed nodes. | |||
| 241 | continue; | |||
| 242 | } | |||
| 243 | } | |||
| 244 | MDs.push_back(Node); | |||
| 245 | } | |||
| 246 | } | |||
| 247 | // Add new metadata. | |||
| 248 | MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); | |||
| 249 | // Replace current metadata node with new one. | |||
| 250 | LLVMContext &Context = TheLoop->getHeader()->getContext(); | |||
| 251 | MDNode *NewLoopID = MDNode::get(Context, MDs); | |||
| 252 | // Set operand 0 to refer to the loop id itself. | |||
| 253 | NewLoopID->replaceOperandWith(0, NewLoopID); | |||
| 254 | TheLoop->setLoopID(NewLoopID); | |||
| 255 | } | |||
| 256 | ||||
| 257 | Optional<ElementCount> | |||
| 258 | llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { | |||
| 259 | Optional<int> Width = | |||
| 260 | getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); | |||
| 261 | ||||
| 262 | if (Width.hasValue()) { | |||
| 263 | Optional<int> IsScalable = getOptionalIntLoopAttribute( | |||
| 264 | TheLoop, "llvm.loop.vectorize.scalable.enable"); | |||
| 265 | return ElementCount::get(*Width, IsScalable.getValueOr(false)); | |||
| 266 | } | |||
| 267 | ||||
| 268 | return None; | |||
| 269 | } | |||
| 270 | ||||
| 271 | Optional<MDNode *> llvm::makeFollowupLoopID( | |||
| 272 | MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, | |||
| 273 | const char *InheritOptionsExceptPrefix, bool AlwaysNew) { | |||
| 274 | if (!OrigLoopID) { | |||
| 275 | if (AlwaysNew) | |||
| 276 | return nullptr; | |||
| 277 | return None; | |||
| 278 | } | |||
| 279 | ||||
| 280 | assert(OrigLoopID->getOperand(0) == OrigLoopID)((void)0); | |||
| 281 | ||||
| 282 | bool InheritAllAttrs = !InheritOptionsExceptPrefix; | |||
| 283 | bool InheritSomeAttrs = | |||
| 284 | InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; | |||
| 285 | SmallVector<Metadata *, 8> MDs; | |||
| 286 | MDs.push_back(nullptr); | |||
| 287 | ||||
| 288 | bool Changed = false; | |||
| 289 | if (InheritAllAttrs || InheritSomeAttrs) { | |||
| 290 | for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { | |||
| 291 | MDNode *Op = cast<MDNode>(Existing.get()); | |||
| 292 | ||||
| 293 | auto InheritThisAttribute = [InheritSomeAttrs, | |||
| 294 | InheritOptionsExceptPrefix](MDNode *Op) { | |||
| 295 | if (!InheritSomeAttrs) | |||
| 296 | return false; | |||
| 297 | ||||
| 298 | // Skip malformatted attribute metadata nodes. | |||
| 299 | if (Op->getNumOperands() == 0) | |||
| 300 | return true; | |||
| 301 | Metadata *NameMD = Op->getOperand(0).get(); | |||
| 302 | if (!isa<MDString>(NameMD)) | |||
| 303 | return true; | |||
| 304 | StringRef AttrName = cast<MDString>(NameMD)->getString(); | |||
| 305 | ||||
| 306 | // Do not inherit excluded attributes. | |||
| 307 | return !AttrName.startswith(InheritOptionsExceptPrefix); | |||
| 308 | }; | |||
| 309 | ||||
| 310 | if (InheritThisAttribute(Op)) | |||
| 311 | MDs.push_back(Op); | |||
| 312 | else | |||
| 313 | Changed = true; | |||
| 314 | } | |||
| 315 | } else { | |||
| 316 | // Modified if we dropped at least one attribute. | |||
| 317 | Changed = OrigLoopID->getNumOperands() > 1; | |||
| 318 | } | |||
| 319 | ||||
| 320 | bool HasAnyFollowup = false; | |||
| 321 | for (StringRef OptionName : FollowupOptions) { | |||
| 322 | MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); | |||
| 323 | if (!FollowupNode) | |||
| 324 | continue; | |||
| 325 | ||||
| 326 | HasAnyFollowup = true; | |||
| 327 | for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { | |||
| 328 | MDs.push_back(Option.get()); | |||
| 329 | Changed = true; | |||
| 330 | } | |||
| 331 | } | |||
| 332 | ||||
| 333 | // Attributes of the followup loop not specified explicity, so signal to the | |||
| 334 | // transformation pass to add suitable attributes. | |||
| 335 | if (!AlwaysNew && !HasAnyFollowup) | |||
| 336 | return None; | |||
| 337 | ||||
| 338 | // If no attributes were added or remove, the previous loop Id can be reused. | |||
| 339 | if (!AlwaysNew && !Changed) | |||
| 340 | return OrigLoopID; | |||
| 341 | ||||
| 342 | // No attributes is equivalent to having no !llvm.loop metadata at all. | |||
| 343 | if (MDs.size() == 1) | |||
| 344 | return nullptr; | |||
| 345 | ||||
| 346 | // Build the new loop ID. | |||
| 347 | MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); | |||
| 348 | FollowupLoopID->replaceOperandWith(0, FollowupLoopID); | |||
| 349 | return FollowupLoopID; | |||
| 350 | } | |||
| 351 | ||||
| 352 | bool llvm::hasDisableAllTransformsHint(const Loop *L) { | |||
| 353 | return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); | |||
| 354 | } | |||
| 355 | ||||
| 356 | bool llvm::hasDisableLICMTransformsHint(const Loop *L) { | |||
| 357 | return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); | |||
| 358 | } | |||
| 359 | ||||
| 360 | TransformationMode llvm::hasUnrollTransformation(const Loop *L) { | |||
| 361 | if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) | |||
| 362 | return TM_SuppressedByUser; | |||
| 363 | ||||
| 364 | Optional<int> Count = | |||
| 365 | getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); | |||
| 366 | if (Count.hasValue()) | |||
| 367 | return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; | |||
| 368 | ||||
| 369 | if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) | |||
| 370 | return TM_ForcedByUser; | |||
| 371 | ||||
| 372 | if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) | |||
| 373 | return TM_ForcedByUser; | |||
| 374 | ||||
| 375 | if (hasDisableAllTransformsHint(L)) | |||
| 376 | return TM_Disable; | |||
| 377 | ||||
| 378 | return TM_Unspecified; | |||
| 379 | } | |||
| 380 | ||||
| 381 | TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { | |||
| 382 | if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) | |||
| 383 | return TM_SuppressedByUser; | |||
| 384 | ||||
| 385 | Optional<int> Count = | |||
| 386 | getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); | |||
| 387 | if (Count.hasValue()) | |||
| 388 | return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; | |||
| 389 | ||||
| 390 | if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) | |||
| 391 | return TM_ForcedByUser; | |||
| 392 | ||||
| 393 | if (hasDisableAllTransformsHint(L)) | |||
| 394 | return TM_Disable; | |||
| 395 | ||||
| 396 | return TM_Unspecified; | |||
| 397 | } | |||
| 398 | ||||
| 399 | TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { | |||
| 400 | Optional<bool> Enable = | |||
| 401 | getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); | |||
| 402 | ||||
| 403 | if (Enable == false) | |||
| 404 | return TM_SuppressedByUser; | |||
| 405 | ||||
| 406 | Optional<ElementCount> VectorizeWidth = | |||
| 407 | getOptionalElementCountLoopAttribute(L); | |||
| 408 | Optional<int> InterleaveCount = | |||
| 409 | getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); | |||
| 410 | ||||
| 411 | // 'Forcing' vector width and interleave count to one effectively disables | |||
| 412 | // this tranformation. | |||
| 413 | if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && | |||
| 414 | InterleaveCount == 1) | |||
| 415 | return TM_SuppressedByUser; | |||
| 416 | ||||
| 417 | if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) | |||
| 418 | return TM_Disable; | |||
| 419 | ||||
| 420 | if (Enable == true) | |||
| 421 | return TM_ForcedByUser; | |||
| 422 | ||||
| 423 | if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) | |||
| 424 | return TM_Disable; | |||
| 425 | ||||
| 426 | if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) | |||
| 427 | return TM_Enable; | |||
| 428 | ||||
| 429 | if (hasDisableAllTransformsHint(L)) | |||
| 430 | return TM_Disable; | |||
| 431 | ||||
| 432 | return TM_Unspecified; | |||
| 433 | } | |||
| 434 | ||||
| 435 | TransformationMode llvm::hasDistributeTransformation(const Loop *L) { | |||
| 436 | if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) | |||
| 437 | return TM_ForcedByUser; | |||
| 438 | ||||
| 439 | if (hasDisableAllTransformsHint(L)) | |||
| 440 | return TM_Disable; | |||
| 441 | ||||
| 442 | return TM_Unspecified; | |||
| 443 | } | |||
| 444 | ||||
| 445 | TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { | |||
| 446 | if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) | |||
| 447 | return TM_SuppressedByUser; | |||
| 448 | ||||
| 449 | if (hasDisableAllTransformsHint(L)) | |||
| 450 | return TM_Disable; | |||
| 451 | ||||
| 452 | return TM_Unspecified; | |||
| 453 | } | |||
| 454 | ||||
| 455 | /// Does a BFS from a given node to all of its children inside a given loop. | |||
| 456 | /// The returned vector of nodes includes the starting point. | |||
| 457 | SmallVector<DomTreeNode *, 16> | |||
| 458 | llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { | |||
| 459 | SmallVector<DomTreeNode *, 16> Worklist; | |||
| 460 | auto AddRegionToWorklist = [&](DomTreeNode *DTN) { | |||
| 461 | // Only include subregions in the top level loop. | |||
| 462 | BasicBlock *BB = DTN->getBlock(); | |||
| 463 | if (CurLoop->contains(BB)) | |||
| 464 | Worklist.push_back(DTN); | |||
| 465 | }; | |||
| 466 | ||||
| 467 | AddRegionToWorklist(N); | |||
| 468 | ||||
| 469 | for (size_t I = 0; I < Worklist.size(); I++) { | |||
| 470 | for (DomTreeNode *Child : Worklist[I]->children()) | |||
| 471 | AddRegionToWorklist(Child); | |||
| 472 | } | |||
| 473 | ||||
| 474 | return Worklist; | |||
| 475 | } | |||
| 476 | ||||
| 477 | void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, | |||
| 478 | LoopInfo *LI, MemorySSA *MSSA) { | |||
| 479 | assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!")((void)0); | |||
| 480 | auto *Preheader = L->getLoopPreheader(); | |||
| 481 | assert(Preheader && "Preheader should exist!")((void)0); | |||
| 482 | ||||
| 483 | std::unique_ptr<MemorySSAUpdater> MSSAU; | |||
| 484 | if (MSSA) | |||
| ||||
| 485 | MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); | |||
| 486 | ||||
| 487 | // Now that we know the removal is safe, remove the loop by changing the | |||
| 488 | // branch from the preheader to go to the single exit block. | |||
| 489 | // | |||
| 490 | // Because we're deleting a large chunk of code at once, the sequence in which | |||
| 491 | // we remove things is very important to avoid invalidation issues. | |||
| 492 | ||||
| 493 | // Tell ScalarEvolution that the loop is deleted. Do this before | |||
| 494 | // deleting the loop so that ScalarEvolution can look at the loop | |||
| 495 | // to determine what it needs to clean up. | |||
| 496 | if (SE) | |||
| 497 | SE->forgetLoop(L); | |||
| 498 | ||||
| 499 | auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); | |||
| 500 | assert(OldBr && "Preheader must end with a branch")((void)0); | |||
| 501 | assert(OldBr->isUnconditional() && "Preheader must have a single successor")((void)0); | |||
| 502 | // Connect the preheader to the exit block. Keep the old edge to the header | |||
| 503 | // around to perform the dominator tree update in two separate steps | |||
| 504 | // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge | |||
| 505 | // preheader -> header. | |||
| 506 | // | |||
| 507 | // | |||
| 508 | // 0. Preheader 1. Preheader 2. Preheader | |||
| 509 | // | | | | | |||
| 510 | // V | V | | |||
| 511 | // Header <--\ | Header <--\ | Header <--\ | |||
| 512 | // | | | | | | | | | | | | |||
| 513 | // | V | | | V | | | V | | |||
| 514 | // | Body --/ | | Body --/ | | Body --/ | |||
| 515 | // V V V V V | |||
| 516 | // Exit Exit Exit | |||
| 517 | // | |||
| 518 | // By doing this is two separate steps we can perform the dominator tree | |||
| 519 | // update without using the batch update API. | |||
| 520 | // | |||
| 521 | // Even when the loop is never executed, we cannot remove the edge from the | |||
| 522 | // source block to the exit block. Consider the case where the unexecuted loop | |||
| 523 | // branches back to an outer loop. If we deleted the loop and removed the edge | |||
| 524 | // coming to this inner loop, this will break the outer loop structure (by | |||
| 525 | // deleting the backedge of the outer loop). If the outer loop is indeed a | |||
| 526 | // non-loop, it will be deleted in a future iteration of loop deletion pass. | |||
| 527 | IRBuilder<> Builder(OldBr); | |||
| 528 | ||||
| 529 | auto *ExitBlock = L->getUniqueExitBlock(); | |||
| 530 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); | |||
| 531 | if (ExitBlock) { | |||
| 532 | assert(ExitBlock && "Should have a unique exit block!")((void)0); | |||
| 533 | assert(L->hasDedicatedExits() && "Loop should have dedicated exits!")((void)0); | |||
| 534 | ||||
| 535 | Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); | |||
| 536 | // Remove the old branch. The conditional branch becomes a new terminator. | |||
| 537 | OldBr->eraseFromParent(); | |||
| 538 | ||||
| 539 | // Rewrite phis in the exit block to get their inputs from the Preheader | |||
| 540 | // instead of the exiting block. | |||
| 541 | for (PHINode &P : ExitBlock->phis()) { | |||
| 542 | // Set the zero'th element of Phi to be from the preheader and remove all | |||
| 543 | // other incoming values. Given the loop has dedicated exits, all other | |||
| 544 | // incoming values must be from the exiting blocks. | |||
| 545 | int PredIndex = 0; | |||
| 546 | P.setIncomingBlock(PredIndex, Preheader); | |||
| 547 | // Removes all incoming values from all other exiting blocks (including | |||
| 548 | // duplicate values from an exiting block). | |||
| 549 | // Nuke all entries except the zero'th entry which is the preheader entry. | |||
| 550 | // NOTE! We need to remove Incoming Values in the reverse order as done | |||
| 551 | // below, to keep the indices valid for deletion (removeIncomingValues | |||
| 552 | // updates getNumIncomingValues and shifts all values down into the | |||
| 553 | // operand being deleted). | |||
| 554 | for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) | |||
| 555 | P.removeIncomingValue(e - i, false); | |||
| 556 | ||||
| 557 | assert((P.getNumIncomingValues() == 1 &&((void)0) | |||
| 558 | P.getIncomingBlock(PredIndex) == Preheader) &&((void)0) | |||
| 559 | "Should have exactly one value and that's from the preheader!")((void)0); | |||
| 560 | } | |||
| 561 | ||||
| 562 | if (DT) { | |||
| 563 | DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); | |||
| 564 | if (MSSA) { | |||
| 565 | MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, | |||
| 566 | *DT); | |||
| 567 | if (VerifyMemorySSA) | |||
| 568 | MSSA->verifyMemorySSA(); | |||
| 569 | } | |||
| 570 | } | |||
| 571 | ||||
| 572 | // Disconnect the loop body by branching directly to its exit. | |||
| 573 | Builder.SetInsertPoint(Preheader->getTerminator()); | |||
| 574 | Builder.CreateBr(ExitBlock); | |||
| 575 | // Remove the old branch. | |||
| 576 | Preheader->getTerminator()->eraseFromParent(); | |||
| 577 | } else { | |||
| 578 | assert(L->hasNoExitBlocks() &&((void)0) | |||
| 579 | "Loop should have either zero or one exit blocks.")((void)0); | |||
| 580 | ||||
| 581 | Builder.SetInsertPoint(OldBr); | |||
| 582 | Builder.CreateUnreachable(); | |||
| 583 | Preheader->getTerminator()->eraseFromParent(); | |||
| 584 | } | |||
| 585 | ||||
| 586 | if (DT) { | |||
| 587 | DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); | |||
| 588 | if (MSSA) { | |||
| 589 | MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, | |||
| 590 | *DT); | |||
| 591 | SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), | |||
| 592 | L->block_end()); | |||
| 593 | MSSAU->removeBlocks(DeadBlockSet); | |||
| 594 | if (VerifyMemorySSA) | |||
| 595 | MSSA->verifyMemorySSA(); | |||
| 596 | } | |||
| 597 | } | |||
| 598 | ||||
| 599 | // Use a map to unique and a vector to guarantee deterministic ordering. | |||
| 600 | llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; | |||
| 601 | llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; | |||
| 602 | ||||
| 603 | if (ExitBlock) { | |||
| 604 | // Given LCSSA form is satisfied, we should not have users of instructions | |||
| 605 | // within the dead loop outside of the loop. However, LCSSA doesn't take | |||
| 606 | // unreachable uses into account. We handle them here. | |||
| 607 | // We could do it after drop all references (in this case all users in the | |||
| 608 | // loop will be already eliminated and we have less work to do but according | |||
| 609 | // to API doc of User::dropAllReferences only valid operation after dropping | |||
| 610 | // references, is deletion. So let's substitute all usages of | |||
| 611 | // instruction from the loop with undef value of corresponding type first. | |||
| 612 | for (auto *Block : L->blocks()) | |||
| 613 | for (Instruction &I : *Block) { | |||
| 614 | auto *Undef = UndefValue::get(I.getType()); | |||
| 615 | for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); | |||
| 616 | UI != E;) { | |||
| 617 | Use &U = *UI; | |||
| 618 | ++UI; | |||
| 619 | if (auto *Usr = dyn_cast<Instruction>(U.getUser())) | |||
| 620 | if (L->contains(Usr->getParent())) | |||
| 621 | continue; | |||
| 622 | // If we have a DT then we can check that uses outside a loop only in | |||
| 623 | // unreachable block. | |||
| 624 | if (DT) | |||
| 625 | assert(!DT->isReachableFromEntry(U) &&((void)0) | |||
| 626 | "Unexpected user in reachable block")((void)0); | |||
| 627 | U.set(Undef); | |||
| 628 | } | |||
| 629 | auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); | |||
| 630 | if (!DVI) | |||
| 631 | continue; | |||
| 632 | auto Key = | |||
| 633 | DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); | |||
| 634 | if (Key != DeadDebugSet.end()) | |||
| 635 | continue; | |||
| 636 | DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); | |||
| 637 | DeadDebugInst.push_back(DVI); | |||
| 638 | } | |||
| 639 | ||||
| 640 | // After the loop has been deleted all the values defined and modified | |||
| 641 | // inside the loop are going to be unavailable. | |||
| 642 | // Since debug values in the loop have been deleted, inserting an undef | |||
| 643 | // dbg.value truncates the range of any dbg.value before the loop where the | |||
| 644 | // loop used to be. This is particularly important for constant values. | |||
| 645 | DIBuilder DIB(*ExitBlock->getModule()); | |||
| 646 | Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); | |||
| 647 | assert(InsertDbgValueBefore &&((void)0) | |||
| 648 | "There should be a non-PHI instruction in exit block, else these "((void)0) | |||
| 649 | "instructions will have no parent.")((void)0); | |||
| 650 | for (auto *DVI : DeadDebugInst) | |||
| 651 | DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), | |||
| 652 | DVI->getVariable(), DVI->getExpression(), | |||
| 653 | DVI->getDebugLoc(), InsertDbgValueBefore); | |||
| 654 | } | |||
| 655 | ||||
| 656 | // Remove the block from the reference counting scheme, so that we can | |||
| 657 | // delete it freely later. | |||
| 658 | for (auto *Block : L->blocks()) | |||
| 659 | Block->dropAllReferences(); | |||
| 660 | ||||
| 661 | if (MSSA && VerifyMemorySSA) | |||
| 662 | MSSA->verifyMemorySSA(); | |||
| 663 | ||||
| 664 | if (LI) { | |||
| 665 | // Erase the instructions and the blocks without having to worry | |||
| 666 | // about ordering because we already dropped the references. | |||
| 667 | // NOTE: This iteration is safe because erasing the block does not remove | |||
| 668 | // its entry from the loop's block list. We do that in the next section. | |||
| 669 | for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); | |||
| 670 | LpI != LpE; ++LpI) | |||
| 671 | (*LpI)->eraseFromParent(); | |||
| 672 | ||||
| 673 | // Finally, the blocks from loopinfo. This has to happen late because | |||
| 674 | // otherwise our loop iterators won't work. | |||
| 675 | ||||
| 676 | SmallPtrSet<BasicBlock *, 8> blocks; | |||
| 677 | blocks.insert(L->block_begin(), L->block_end()); | |||
| 678 | for (BasicBlock *BB : blocks) | |||
| 679 | LI->removeBlock(BB); | |||
| 680 | ||||
| 681 | // The last step is to update LoopInfo now that we've eliminated this loop. | |||
| 682 | // Note: LoopInfo::erase remove the given loop and relink its subloops with | |||
| 683 | // its parent. While removeLoop/removeChildLoop remove the given loop but | |||
| 684 | // not relink its subloops, which is what we want. | |||
| 685 | if (Loop *ParentLoop = L->getParentLoop()) { | |||
| 686 | Loop::iterator I = find(*ParentLoop, L); | |||
| 687 | assert(I != ParentLoop->end() && "Couldn't find loop")((void)0); | |||
| 688 | ParentLoop->removeChildLoop(I); | |||
| 689 | } else { | |||
| 690 | Loop::iterator I = find(*LI, L); | |||
| 691 | assert(I != LI->end() && "Couldn't find loop")((void)0); | |||
| 692 | LI->removeLoop(I); | |||
| 693 | } | |||
| 694 | LI->destroy(L); | |||
| 695 | } | |||
| 696 | } | |||
| 697 | ||||
| 698 | static Loop *getOutermostLoop(Loop *L) { | |||
| 699 | while (Loop *Parent = L->getParentLoop()) | |||
| 700 | L = Parent; | |||
| 701 | return L; | |||
| 702 | } | |||
| 703 | ||||
| 704 | void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, | |||
| 705 | LoopInfo &LI, MemorySSA *MSSA) { | |||
| 706 | auto *Latch = L->getLoopLatch(); | |||
| 707 | assert(Latch && "multiple latches not yet supported")((void)0); | |||
| 708 | auto *Header = L->getHeader(); | |||
| 709 | Loop *OutermostLoop = getOutermostLoop(L); | |||
| 710 | ||||
| 711 | SE.forgetLoop(L); | |||
| 712 | ||||
| 713 | // Note: By splitting the backedge, and then explicitly making it unreachable | |||
| 714 | // we gracefully handle corner cases such as non-bottom tested loops and the | |||
| 715 | // like. We also have the benefit of being able to reuse existing well tested | |||
| 716 | // code. It might be worth special casing the common bottom tested case at | |||
| 717 | // some point to avoid code churn. | |||
| 718 | ||||
| 719 | std::unique_ptr<MemorySSAUpdater> MSSAU; | |||
| 720 | if (MSSA) | |||
| 721 | MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); | |||
| 722 | ||||
| 723 | auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); | |||
| 724 | ||||
| 725 | DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); | |||
| 726 | (void)changeToUnreachable(BackedgeBB->getTerminator(), | |||
| 727 | /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); | |||
| 728 | ||||
| 729 | // Erase (and destroy) this loop instance. Handles relinking sub-loops | |||
| 730 | // and blocks within the loop as needed. | |||
| 731 | LI.erase(L); | |||
| 732 | ||||
| 733 | // If the loop we broke had a parent, then changeToUnreachable might have | |||
| 734 | // caused a block to be removed from the parent loop (see loop_nest_lcssa | |||
| 735 | // test case in zero-btc.ll for an example), thus changing the parent's | |||
| 736 | // exit blocks. If that happened, we need to rebuild LCSSA on the outermost | |||
| 737 | // loop which might have a had a block removed. | |||
| 738 | if (OutermostLoop != L) | |||
| 739 | formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); | |||
| 740 | } | |||
| 741 | ||||
| 742 | ||||
| 743 | /// Checks if \p L has single exit through latch block except possibly | |||
| 744 | /// "deoptimizing" exits. Returns branch instruction terminating the loop | |||
| 745 | /// latch if above check is successful, nullptr otherwise. | |||
| 746 | static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { | |||
| 747 | BasicBlock *Latch = L->getLoopLatch(); | |||
| 748 | if (!Latch) | |||
| 749 | return nullptr; | |||
| 750 | ||||
| 751 | BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); | |||
| 752 | if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) | |||
| 753 | return nullptr; | |||
| 754 | ||||
| 755 | assert((LatchBR->getSuccessor(0) == L->getHeader() ||((void)0) | |||
| 756 | LatchBR->getSuccessor(1) == L->getHeader()) &&((void)0) | |||
| 757 | "At least one edge out of the latch must go to the header")((void)0); | |||
| 758 | ||||
| 759 | SmallVector<BasicBlock *, 4> ExitBlocks; | |||
| 760 | L->getUniqueNonLatchExitBlocks(ExitBlocks); | |||
| 761 | if (any_of(ExitBlocks, [](const BasicBlock *EB) { | |||
| 762 | return !EB->getTerminatingDeoptimizeCall(); | |||
| 763 | })) | |||
| 764 | return nullptr; | |||
| 765 | ||||
| 766 | return LatchBR; | |||
| 767 | } | |||
| 768 | ||||
| 769 | Optional<unsigned> | |||
| 770 | llvm::getLoopEstimatedTripCount(Loop *L, | |||
| 771 | unsigned *EstimatedLoopInvocationWeight) { | |||
| 772 | // Support loops with an exiting latch and other existing exists only | |||
| 773 | // deoptimize. | |||
| 774 | BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); | |||
| 775 | if (!LatchBranch) | |||
| 776 | return None; | |||
| 777 | ||||
| 778 | // To estimate the number of times the loop body was executed, we want to | |||
| 779 | // know the number of times the backedge was taken, vs. the number of times | |||
| 780 | // we exited the loop. | |||
| 781 | uint64_t BackedgeTakenWeight, LatchExitWeight; | |||
| 782 | if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) | |||
| 783 | return None; | |||
| 784 | ||||
| 785 | if (LatchBranch->getSuccessor(0) != L->getHeader()) | |||
| 786 | std::swap(BackedgeTakenWeight, LatchExitWeight); | |||
| 787 | ||||
| 788 | if (!LatchExitWeight) | |||
| 789 | return None; | |||
| 790 | ||||
| 791 | if (EstimatedLoopInvocationWeight) | |||
| 792 | *EstimatedLoopInvocationWeight = LatchExitWeight; | |||
| 793 | ||||
| 794 | // Estimated backedge taken count is a ratio of the backedge taken weight by | |||
| 795 | // the weight of the edge exiting the loop, rounded to nearest. | |||
| 796 | uint64_t BackedgeTakenCount = | |||
| 797 | llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); | |||
| 798 | // Estimated trip count is one plus estimated backedge taken count. | |||
| 799 | return BackedgeTakenCount + 1; | |||
| 800 | } | |||
| 801 | ||||
| 802 | bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, | |||
| 803 | unsigned EstimatedloopInvocationWeight) { | |||
| 804 | // Support loops with an exiting latch and other existing exists only | |||
| 805 | // deoptimize. | |||
| 806 | BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); | |||
| 807 | if (!LatchBranch) | |||
| 808 | return false; | |||
| 809 | ||||
| 810 | // Calculate taken and exit weights. | |||
| 811 | unsigned LatchExitWeight = 0; | |||
| 812 | unsigned BackedgeTakenWeight = 0; | |||
| 813 | ||||
| 814 | if (EstimatedTripCount > 0) { | |||
| 815 | LatchExitWeight = EstimatedloopInvocationWeight; | |||
| 816 | BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; | |||
| 817 | } | |||
| 818 | ||||
| 819 | // Make a swap if back edge is taken when condition is "false". | |||
| 820 | if (LatchBranch->getSuccessor(0) != L->getHeader()) | |||
| 821 | std::swap(BackedgeTakenWeight, LatchExitWeight); | |||
| 822 | ||||
| 823 | MDBuilder MDB(LatchBranch->getContext()); | |||
| 824 | ||||
| 825 | // Set/Update profile metadata. | |||
| 826 | LatchBranch->setMetadata( | |||
| 827 | LLVMContext::MD_prof, | |||
| 828 | MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); | |||
| 829 | ||||
| 830 | return true; | |||
| 831 | } | |||
| 832 | ||||
| 833 | bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, | |||
| 834 | ScalarEvolution &SE) { | |||
| 835 | Loop *OuterL = InnerLoop->getParentLoop(); | |||
| 836 | if (!OuterL) | |||
| 837 | return true; | |||
| 838 | ||||
| 839 | // Get the backedge taken count for the inner loop | |||
| 840 | BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); | |||
| 841 | const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); | |||
| 842 | if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || | |||
| 843 | !InnerLoopBECountSC->getType()->isIntegerTy()) | |||
| 844 | return false; | |||
| 845 | ||||
| 846 | // Get whether count is invariant to the outer loop | |||
| 847 | ScalarEvolution::LoopDisposition LD = | |||
| 848 | SE.getLoopDisposition(InnerLoopBECountSC, OuterL); | |||
| 849 | if (LD != ScalarEvolution::LoopInvariant) | |||
| 850 | return false; | |||
| 851 | ||||
| 852 | return true; | |||
| 853 | } | |||
| 854 | ||||
| 855 | Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, | |||
| 856 | Value *Right) { | |||
| 857 | CmpInst::Predicate Pred; | |||
| 858 | switch (RK) { | |||
| 859 | default: | |||
| 860 | llvm_unreachable("Unknown min/max recurrence kind")__builtin_unreachable(); | |||
| 861 | case RecurKind::UMin: | |||
| 862 | Pred = CmpInst::ICMP_ULT; | |||
| 863 | break; | |||
| 864 | case RecurKind::UMax: | |||
| 865 | Pred = CmpInst::ICMP_UGT; | |||
| 866 | break; | |||
| 867 | case RecurKind::SMin: | |||
| 868 | Pred = CmpInst::ICMP_SLT; | |||
| 869 | break; | |||
| 870 | case RecurKind::SMax: | |||
| 871 | Pred = CmpInst::ICMP_SGT; | |||
| 872 | break; | |||
| 873 | case RecurKind::FMin: | |||
| 874 | Pred = CmpInst::FCMP_OLT; | |||
| 875 | break; | |||
| 876 | case RecurKind::FMax: | |||
| 877 | Pred = CmpInst::FCMP_OGT; | |||
| 878 | break; | |||
| 879 | } | |||
| 880 | ||||
| 881 | Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); | |||
| 882 | Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); | |||
| 883 | return Select; | |||
| 884 | } | |||
| 885 | ||||
| 886 | // Helper to generate an ordered reduction. | |||
| 887 | Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, | |||
| 888 | unsigned Op, RecurKind RdxKind, | |||
| 889 | ArrayRef<Value *> RedOps) { | |||
| 890 | unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); | |||
| 891 | ||||
| 892 | // Extract and apply reduction ops in ascending order: | |||
| 893 | // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] | |||
| 894 | Value *Result = Acc; | |||
| 895 | for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { | |||
| 896 | Value *Ext = | |||
| 897 | Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); | |||
| 898 | ||||
| 899 | if (Op != Instruction::ICmp && Op != Instruction::FCmp) { | |||
| 900 | Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, | |||
| 901 | "bin.rdx"); | |||
| 902 | } else { | |||
| 903 | assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&((void)0) | |||
| 904 | "Invalid min/max")((void)0); | |||
| 905 | Result = createMinMaxOp(Builder, RdxKind, Result, Ext); | |||
| 906 | } | |||
| 907 | ||||
| 908 | if (!RedOps.empty()) | |||
| 909 | propagateIRFlags(Result, RedOps); | |||
| 910 | } | |||
| 911 | ||||
| 912 | return Result; | |||
| 913 | } | |||
| 914 | ||||
| 915 | // Helper to generate a log2 shuffle reduction. | |||
| 916 | Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, | |||
| 917 | unsigned Op, RecurKind RdxKind, | |||
| 918 | ArrayRef<Value *> RedOps) { | |||
| 919 | unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); | |||
| 920 | // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles | |||
| 921 | // and vector ops, reducing the set of values being computed by half each | |||
| 922 | // round. | |||
| 923 | assert(isPowerOf2_32(VF) &&((void)0) | |||
| 924 | "Reduction emission only supported for pow2 vectors!")((void)0); | |||
| 925 | Value *TmpVec = Src; | |||
| 926 | SmallVector<int, 32> ShuffleMask(VF); | |||
| 927 | for (unsigned i = VF; i != 1; i >>= 1) { | |||
| 928 | // Move the upper half of the vector to the lower half. | |||
| 929 | for (unsigned j = 0; j != i / 2; ++j) | |||
| 930 | ShuffleMask[j] = i / 2 + j; | |||
| 931 | ||||
| 932 | // Fill the rest of the mask with undef. | |||
| 933 | std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); | |||
| 934 | ||||
| 935 | Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); | |||
| 936 | ||||
| 937 | if (Op != Instruction::ICmp && Op != Instruction::FCmp) { | |||
| 938 | // The builder propagates its fast-math-flags setting. | |||
| 939 | TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, | |||
| 940 | "bin.rdx"); | |||
| 941 | } else { | |||
| 942 | assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&((void)0) | |||
| 943 | "Invalid min/max")((void)0); | |||
| 944 | TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); | |||
| 945 | } | |||
| 946 | if (!RedOps.empty()) | |||
| 947 | propagateIRFlags(TmpVec, RedOps); | |||
| 948 | ||||
| 949 | // We may compute the reassociated scalar ops in a way that does not | |||
| 950 | // preserve nsw/nuw etc. Conservatively, drop those flags. | |||
| 951 | if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) | |||
| 952 | ReductionInst->dropPoisonGeneratingFlags(); | |||
| 953 | } | |||
| 954 | // The result is in the first element of the vector. | |||
| 955 | return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); | |||
| 956 | } | |||
| 957 | ||||
| 958 | Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, | |||
| 959 | const TargetTransformInfo *TTI, | |||
| 960 | Value *Src, RecurKind RdxKind, | |||
| 961 | ArrayRef<Value *> RedOps) { | |||
| 962 | TargetTransformInfo::ReductionFlags RdxFlags; | |||
| 963 | RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax || | |||
| 964 | RdxKind == RecurKind::FMax; | |||
| 965 | RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin; | |||
| 966 | ||||
| 967 | auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); | |||
| 968 | switch (RdxKind) { | |||
| 969 | case RecurKind::Add: | |||
| 970 | return Builder.CreateAddReduce(Src); | |||
| 971 | case RecurKind::Mul: | |||
| 972 | return Builder.CreateMulReduce(Src); | |||
| 973 | case RecurKind::And: | |||
| 974 | return Builder.CreateAndReduce(Src); | |||
| 975 | case RecurKind::Or: | |||
| 976 | return Builder.CreateOrReduce(Src); | |||
| 977 | case RecurKind::Xor: | |||
| 978 | return Builder.CreateXorReduce(Src); | |||
| 979 | case RecurKind::FAdd: | |||
| 980 | return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), | |||
| 981 | Src); | |||
| 982 | case RecurKind::FMul: | |||
| 983 | return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); | |||
| 984 | case RecurKind::SMax: | |||
| 985 | return Builder.CreateIntMaxReduce(Src, true); | |||
| 986 | case RecurKind::SMin: | |||
| 987 | return Builder.CreateIntMinReduce(Src, true); | |||
| 988 | case RecurKind::UMax: | |||
| 989 | return Builder.CreateIntMaxReduce(Src, false); | |||
| 990 | case RecurKind::UMin: | |||
| 991 | return Builder.CreateIntMinReduce(Src, false); | |||
| 992 | case RecurKind::FMax: | |||
| 993 | return Builder.CreateFPMaxReduce(Src); | |||
| 994 | case RecurKind::FMin: | |||
| 995 | return Builder.CreateFPMinReduce(Src); | |||
| 996 | default: | |||
| 997 | llvm_unreachable("Unhandled opcode")__builtin_unreachable(); | |||
| 998 | } | |||
| 999 | } | |||
| 1000 | ||||
| 1001 | Value *llvm::createTargetReduction(IRBuilderBase &B, | |||
| 1002 | const TargetTransformInfo *TTI, | |||
| 1003 | const RecurrenceDescriptor &Desc, | |||
| 1004 | Value *Src) { | |||
| 1005 | // TODO: Support in-order reductions based on the recurrence descriptor. | |||
| 1006 | // All ops in the reduction inherit fast-math-flags from the recurrence | |||
| 1007 | // descriptor. | |||
| 1008 | IRBuilderBase::FastMathFlagGuard FMFGuard(B); | |||
| 1009 | B.setFastMathFlags(Desc.getFastMathFlags()); | |||
| 1010 | return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind()); | |||
| 1011 | } | |||
| 1012 | ||||
| 1013 | Value *llvm::createOrderedReduction(IRBuilderBase &B, | |||
| 1014 | const RecurrenceDescriptor &Desc, | |||
| 1015 | Value *Src, Value *Start) { | |||
| 1016 | assert(Desc.getRecurrenceKind() == RecurKind::FAdd &&((void)0) | |||
| 1017 | "Unexpected reduction kind")((void)0); | |||
| 1018 | assert(Src->getType()->isVectorTy() && "Expected a vector type")((void)0); | |||
| 1019 | assert(!Start->getType()->isVectorTy() && "Expected a scalar type")((void)0); | |||
| 1020 | ||||
| 1021 | return B.CreateFAddReduce(Start, Src); | |||
| 1022 | } | |||
| 1023 | ||||
| 1024 | void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { | |||
| 1025 | auto *VecOp = dyn_cast<Instruction>(I); | |||
| 1026 | if (!VecOp) | |||
| 1027 | return; | |||
| 1028 | auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) | |||
| 1029 | : dyn_cast<Instruction>(OpValue); | |||
| 1030 | if (!Intersection) | |||
| 1031 | return; | |||
| 1032 | const unsigned Opcode = Intersection->getOpcode(); | |||
| 1033 | VecOp->copyIRFlags(Intersection); | |||
| 1034 | for (auto *V : VL) { | |||
| 1035 | auto *Instr = dyn_cast<Instruction>(V); | |||
| 1036 | if (!Instr) | |||
| 1037 | continue; | |||
| 1038 | if (OpValue == nullptr || Opcode == Instr->getOpcode()) | |||
| 1039 | VecOp->andIRFlags(V); | |||
| 1040 | } | |||
| 1041 | } | |||
| 1042 | ||||
| 1043 | bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, | |||
| 1044 | ScalarEvolution &SE) { | |||
| 1045 | const SCEV *Zero = SE.getZero(S->getType()); | |||
| 1046 | return SE.isAvailableAtLoopEntry(S, L) && | |||
| 1047 | SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); | |||
| 1048 | } | |||
| 1049 | ||||
| 1050 | bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, | |||
| 1051 | ScalarEvolution &SE) { | |||
| 1052 | const SCEV *Zero = SE.getZero(S->getType()); | |||
| 1053 | return SE.isAvailableAtLoopEntry(S, L) && | |||
| 1054 | SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); | |||
| 1055 | } | |||
| 1056 | ||||
| 1057 | bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, | |||
| 1058 | bool Signed) { | |||
| 1059 | unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); | |||
| 1060 | APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : | |||
| 1061 | APInt::getMinValue(BitWidth); | |||
| 1062 | auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | |||
| 1063 | return SE.isAvailableAtLoopEntry(S, L) && | |||
| 1064 | SE.isLoopEntryGuardedByCond(L, Predicate, S, | |||
| 1065 | SE.getConstant(Min)); | |||
| 1066 | } | |||
| 1067 | ||||
| 1068 | bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, | |||
| 1069 | bool Signed) { | |||
| 1070 | unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); | |||
| 1071 | APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : | |||
| 1072 | APInt::getMaxValue(BitWidth); | |||
| 1073 | auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | |||
| 1074 | return SE.isAvailableAtLoopEntry(S, L) && | |||
| 1075 | SE.isLoopEntryGuardedByCond(L, Predicate, S, | |||
| 1076 | SE.getConstant(Max)); | |||
| 1077 | } | |||
| 1078 | ||||
| 1079 | //===----------------------------------------------------------------------===// | |||
| 1080 | // rewriteLoopExitValues - Optimize IV users outside the loop. | |||
| 1081 | // As a side effect, reduces the amount of IV processing within the loop. | |||
| 1082 | //===----------------------------------------------------------------------===// | |||
| 1083 | ||||
| 1084 | // Return true if the SCEV expansion generated by the rewriter can replace the | |||
| 1085 | // original value. SCEV guarantees that it produces the same value, but the way | |||
| 1086 | // it is produced may be illegal IR. Ideally, this function will only be | |||
| 1087 | // called for verification. | |||
| 1088 | static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) { | |||
| 1089 | // If an SCEV expression subsumed multiple pointers, its expansion could | |||
| 1090 | // reassociate the GEP changing the base pointer. This is illegal because the | |||
| 1091 | // final address produced by a GEP chain must be inbounds relative to its | |||
| 1092 | // underlying object. Otherwise basic alias analysis, among other things, | |||
| 1093 | // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid | |||
| 1094 | // producing an expression involving multiple pointers. Until then, we must | |||
| 1095 | // bail out here. | |||
| 1096 | // | |||
| 1097 | // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject | |||
| 1098 | // because it understands lcssa phis while SCEV does not. | |||
| 1099 | Value *FromPtr = FromVal; | |||
| 1100 | Value *ToPtr = ToVal; | |||
| 1101 | if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) | |||
| 1102 | FromPtr = GEP->getPointerOperand(); | |||
| 1103 | ||||
| 1104 | if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) | |||
| 1105 | ToPtr = GEP->getPointerOperand(); | |||
| 1106 | ||||
| 1107 | if (FromPtr != FromVal || ToPtr != ToVal) { | |||
| 1108 | // Quickly check the common case | |||
| 1109 | if (FromPtr == ToPtr) | |||
| 1110 | return true; | |||
| 1111 | ||||
| 1112 | // SCEV may have rewritten an expression that produces the GEP's pointer | |||
| 1113 | // operand. That's ok as long as the pointer operand has the same base | |||
| 1114 | // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the | |||
| 1115 | // base of a recurrence. This handles the case in which SCEV expansion | |||
| 1116 | // converts a pointer type recurrence into a nonrecurrent pointer base | |||
| 1117 | // indexed by an integer recurrence. | |||
| 1118 | ||||
| 1119 | // If the GEP base pointer is a vector of pointers, abort. | |||
| 1120 | if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) | |||
| 1121 | return false; | |||
| 1122 | ||||
| 1123 | const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); | |||
| 1124 | const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); | |||
| 1125 | if (FromBase == ToBase) | |||
| 1126 | return true; | |||
| 1127 | ||||
| 1128 | LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "do { } while (false) | |||
| 1129 | << *FromBase << " != " << *ToBase << "\n")do { } while (false); | |||
| 1130 | ||||
| 1131 | return false; | |||
| 1132 | } | |||
| 1133 | return true; | |||
| 1134 | } | |||
| 1135 | ||||
| 1136 | static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { | |||
| 1137 | SmallPtrSet<const Instruction *, 8> Visited; | |||
| 1138 | SmallVector<const Instruction *, 8> WorkList; | |||
| 1139 | Visited.insert(I); | |||
| 1140 | WorkList.push_back(I); | |||
| 1141 | while (!WorkList.empty()) { | |||
| 1142 | const Instruction *Curr = WorkList.pop_back_val(); | |||
| 1143 | // This use is outside the loop, nothing to do. | |||
| 1144 | if (!L->contains(Curr)) | |||
| 1145 | continue; | |||
| 1146 | // Do we assume it is a "hard" use which will not be eliminated easily? | |||
| 1147 | if (Curr->mayHaveSideEffects()) | |||
| 1148 | return true; | |||
| 1149 | // Otherwise, add all its users to worklist. | |||
| 1150 | for (auto U : Curr->users()) { | |||
| 1151 | auto *UI = cast<Instruction>(U); | |||
| 1152 | if (Visited.insert(UI).second) | |||
| 1153 | WorkList.push_back(UI); | |||
| 1154 | } | |||
| 1155 | } | |||
| 1156 | return false; | |||
| 1157 | } | |||
| 1158 | ||||
| 1159 | // Collect information about PHI nodes which can be transformed in | |||
| 1160 | // rewriteLoopExitValues. | |||
| 1161 | struct RewritePhi { | |||
| 1162 | PHINode *PN; // For which PHI node is this replacement? | |||
| 1163 | unsigned Ith; // For which incoming value? | |||
| 1164 | const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. | |||
| 1165 | Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? | |||
| 1166 | bool HighCost; // Is this expansion a high-cost? | |||
| 1167 | ||||
| 1168 | Value *Expansion = nullptr; | |||
| 1169 | bool ValidRewrite = false; | |||
| 1170 | ||||
| 1171 | RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, | |||
| 1172 | bool H) | |||
| 1173 | : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), | |||
| 1174 | HighCost(H) {} | |||
| 1175 | }; | |||
| 1176 | ||||
| 1177 | // Check whether it is possible to delete the loop after rewriting exit | |||
| 1178 | // value. If it is possible, ignore ReplaceExitValue and do rewriting | |||
| 1179 | // aggressively. | |||
| 1180 | static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { | |||
| 1181 | BasicBlock *Preheader = L->getLoopPreheader(); | |||
| 1182 | // If there is no preheader, the loop will not be deleted. | |||
| 1183 | if (!Preheader) | |||
| 1184 | return false; | |||
| 1185 | ||||
| 1186 | // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. | |||
| 1187 | // We obviate multiple ExitingBlocks case for simplicity. | |||
| 1188 | // TODO: If we see testcase with multiple ExitingBlocks can be deleted | |||
| 1189 | // after exit value rewriting, we can enhance the logic here. | |||
| 1190 | SmallVector<BasicBlock *, 4> ExitingBlocks; | |||
| 1191 | L->getExitingBlocks(ExitingBlocks); | |||
| 1192 | SmallVector<BasicBlock *, 8> ExitBlocks; | |||
| 1193 | L->getUniqueExitBlocks(ExitBlocks); | |||
| 1194 | if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) | |||
| 1195 | return false; | |||
| 1196 | ||||
| 1197 | BasicBlock *ExitBlock = ExitBlocks[0]; | |||
| 1198 | BasicBlock::iterator BI = ExitBlock->begin(); | |||
| 1199 | while (PHINode *P = dyn_cast<PHINode>(BI)) { | |||
| 1200 | Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); | |||
| 1201 | ||||
| 1202 | // If the Incoming value of P is found in RewritePhiSet, we know it | |||
| 1203 | // could be rewritten to use a loop invariant value in transformation | |||
| 1204 | // phase later. Skip it in the loop invariant check below. | |||
| 1205 | bool found = false; | |||
| 1206 | for (const RewritePhi &Phi : RewritePhiSet) { | |||
| 1207 | if (!Phi.ValidRewrite) | |||
| 1208 | continue; | |||
| 1209 | unsigned i = Phi.Ith; | |||
| 1210 | if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { | |||
| 1211 | found = true; | |||
| 1212 | break; | |||
| 1213 | } | |||
| 1214 | } | |||
| 1215 | ||||
| 1216 | Instruction *I; | |||
| 1217 | if (!found && (I = dyn_cast<Instruction>(Incoming))) | |||
| 1218 | if (!L->hasLoopInvariantOperands(I)) | |||
| 1219 | return false; | |||
| 1220 | ||||
| 1221 | ++BI; | |||
| 1222 | } | |||
| 1223 | ||||
| 1224 | for (auto *BB : L->blocks()) | |||
| 1225 | if (llvm::any_of(*BB, [](Instruction &I) { | |||
| 1226 | return I.mayHaveSideEffects(); | |||
| 1227 | })) | |||
| 1228 | return false; | |||
| 1229 | ||||
| 1230 | return true; | |||
| 1231 | } | |||
| 1232 | ||||
| 1233 | int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, | |||
| 1234 | ScalarEvolution *SE, | |||
| 1235 | const TargetTransformInfo *TTI, | |||
| 1236 | SCEVExpander &Rewriter, DominatorTree *DT, | |||
| 1237 | ReplaceExitVal ReplaceExitValue, | |||
| 1238 | SmallVector<WeakTrackingVH, 16> &DeadInsts) { | |||
| 1239 | // Check a pre-condition. | |||
| 1240 | assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&((void)0) | |||
| 1241 | "Indvars did not preserve LCSSA!")((void)0); | |||
| 1242 | ||||
| 1243 | SmallVector<BasicBlock*, 8> ExitBlocks; | |||
| 1244 | L->getUniqueExitBlocks(ExitBlocks); | |||
| 1245 | ||||
| 1246 | SmallVector<RewritePhi, 8> RewritePhiSet; | |||
| 1247 | // Find all values that are computed inside the loop, but used outside of it. | |||
| 1248 | // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan | |||
| 1249 | // the exit blocks of the loop to find them. | |||
| 1250 | for (BasicBlock *ExitBB : ExitBlocks) { | |||
| 1251 | // If there are no PHI nodes in this exit block, then no values defined | |||
| 1252 | // inside the loop are used on this path, skip it. | |||
| 1253 | PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); | |||
| 1254 | if (!PN) continue; | |||
| 1255 | ||||
| 1256 | unsigned NumPreds = PN->getNumIncomingValues(); | |||
| 1257 | ||||
| 1258 | // Iterate over all of the PHI nodes. | |||
| 1259 | BasicBlock::iterator BBI = ExitBB->begin(); | |||
| 1260 | while ((PN = dyn_cast<PHINode>(BBI++))) { | |||
| 1261 | if (PN->use_empty()) | |||
| 1262 | continue; // dead use, don't replace it | |||
| 1263 | ||||
| 1264 | if (!SE->isSCEVable(PN->getType())) | |||
| 1265 | continue; | |||
| 1266 | ||||
| 1267 | // It's necessary to tell ScalarEvolution about this explicitly so that | |||
| 1268 | // it can walk the def-use list and forget all SCEVs, as it may not be | |||
| 1269 | // watching the PHI itself. Once the new exit value is in place, there | |||
| 1270 | // may not be a def-use connection between the loop and every instruction | |||
| 1271 | // which got a SCEVAddRecExpr for that loop. | |||
| 1272 | SE->forgetValue(PN); | |||
| 1273 | ||||
| 1274 | // Iterate over all of the values in all the PHI nodes. | |||
| 1275 | for (unsigned i = 0; i != NumPreds; ++i) { | |||
| 1276 | // If the value being merged in is not integer or is not defined | |||
| 1277 | // in the loop, skip it. | |||
| 1278 | Value *InVal = PN->getIncomingValue(i); | |||
| 1279 | if (!isa<Instruction>(InVal)) | |||
| 1280 | continue; | |||
| 1281 | ||||
| 1282 | // If this pred is for a subloop, not L itself, skip it. | |||
| 1283 | if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) | |||
| 1284 | continue; // The Block is in a subloop, skip it. | |||
| 1285 | ||||
| 1286 | // Check that InVal is defined in the loop. | |||
| 1287 | Instruction *Inst = cast<Instruction>(InVal); | |||
| 1288 | if (!L->contains(Inst)) | |||
| 1289 | continue; | |||
| 1290 | ||||
| 1291 | // Okay, this instruction has a user outside of the current loop | |||
| 1292 | // and varies predictably *inside* the loop. Evaluate the value it | |||
| 1293 | // contains when the loop exits, if possible. We prefer to start with | |||
| 1294 | // expressions which are true for all exits (so as to maximize | |||
| 1295 | // expression reuse by the SCEVExpander), but resort to per-exit | |||
| 1296 | // evaluation if that fails. | |||
| 1297 | const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); | |||
| 1298 | if (isa<SCEVCouldNotCompute>(ExitValue) || | |||
| 1299 | !SE->isLoopInvariant(ExitValue, L) || | |||
| 1300 | !isSafeToExpand(ExitValue, *SE)) { | |||
| 1301 | // TODO: This should probably be sunk into SCEV in some way; maybe a | |||
| 1302 | // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for | |||
| 1303 | // most SCEV expressions and other recurrence types (e.g. shift | |||
| 1304 | // recurrences). Is there existing code we can reuse? | |||
| 1305 | const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); | |||
| 1306 | if (isa<SCEVCouldNotCompute>(ExitCount)) | |||
| 1307 | continue; | |||
| 1308 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) | |||
| 1309 | if (AddRec->getLoop() == L) | |||
| 1310 | ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); | |||
| 1311 | if (isa<SCEVCouldNotCompute>(ExitValue) || | |||
| 1312 | !SE->isLoopInvariant(ExitValue, L) || | |||
| 1313 | !isSafeToExpand(ExitValue, *SE)) | |||
| 1314 | continue; | |||
| 1315 | } | |||
| 1316 | ||||
| 1317 | // Computing the value outside of the loop brings no benefit if it is | |||
| 1318 | // definitely used inside the loop in a way which can not be optimized | |||
| 1319 | // away. Avoid doing so unless we know we have a value which computes | |||
| 1320 | // the ExitValue already. TODO: This should be merged into SCEV | |||
| 1321 | // expander to leverage its knowledge of existing expressions. | |||
| 1322 | if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && | |||
| 1323 | !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) | |||
| 1324 | continue; | |||
| 1325 | ||||
| 1326 | // Check if expansions of this SCEV would count as being high cost. | |||
| 1327 | bool HighCost = Rewriter.isHighCostExpansion( | |||
| 1328 | ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); | |||
| 1329 | ||||
| 1330 | // Note that we must not perform expansions until after | |||
| 1331 | // we query *all* the costs, because if we perform temporary expansion | |||
| 1332 | // inbetween, one that we might not intend to keep, said expansion | |||
| 1333 | // *may* affect cost calculation of the the next SCEV's we'll query, | |||
| 1334 | // and next SCEV may errneously get smaller cost. | |||
| 1335 | ||||
| 1336 | // Collect all the candidate PHINodes to be rewritten. | |||
| 1337 | RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); | |||
| 1338 | } | |||
| 1339 | } | |||
| 1340 | } | |||
| 1341 | ||||
| 1342 | // Now that we've done preliminary filtering and billed all the SCEV's, | |||
| 1343 | // we can perform the last sanity check - the expansion must be valid. | |||
| 1344 | for (RewritePhi &Phi : RewritePhiSet) { | |||
| 1345 | Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(), | |||
| 1346 | Phi.ExpansionPoint); | |||
| 1347 | ||||
| 1348 | LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "do { } while (false) | |||
| 1349 | << *(Phi.Expansion) << '\n'do { } while (false) | |||
| 1350 | << " LoopVal = " << *(Phi.ExpansionPoint) << "\n")do { } while (false); | |||
| 1351 | ||||
| 1352 | // FIXME: isValidRewrite() is a hack. it should be an assert, eventually. | |||
| 1353 | Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion); | |||
| 1354 | if (!Phi.ValidRewrite) { | |||
| 1355 | DeadInsts.push_back(Phi.Expansion); | |||
| 1356 | continue; | |||
| 1357 | } | |||
| 1358 | ||||
| 1359 | #ifndef NDEBUG1 | |||
| 1360 | // If we reuse an instruction from a loop which is neither L nor one of | |||
| 1361 | // its containing loops, we end up breaking LCSSA form for this loop by | |||
| 1362 | // creating a new use of its instruction. | |||
| 1363 | if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion)) | |||
| 1364 | if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) | |||
| 1365 | if (EVL != L) | |||
| 1366 | assert(EVL->contains(L) && "LCSSA breach detected!")((void)0); | |||
| 1367 | #endif | |||
| 1368 | } | |||
| 1369 | ||||
| 1370 | // TODO: after isValidRewrite() is an assertion, evaluate whether | |||
| 1371 | // it is beneficial to change how we calculate high-cost: | |||
| 1372 | // if we have SCEV 'A' which we know we will expand, should we calculate | |||
| 1373 | // the cost of other SCEV's after expanding SCEV 'A', | |||
| 1374 | // thus potentially giving cost bonus to those other SCEV's? | |||
| 1375 | ||||
| 1376 | bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); | |||
| 1377 | int NumReplaced = 0; | |||
| 1378 | ||||
| 1379 | // Transformation. | |||
| 1380 | for (const RewritePhi &Phi : RewritePhiSet) { | |||
| 1381 | if (!Phi.ValidRewrite) | |||
| 1382 | continue; | |||
| 1383 | ||||
| 1384 | PHINode *PN = Phi.PN; | |||
| 1385 | Value *ExitVal = Phi.Expansion; | |||
| 1386 | ||||
| 1387 | // Only do the rewrite when the ExitValue can be expanded cheaply. | |||
| 1388 | // If LoopCanBeDel is true, rewrite exit value aggressively. | |||
| 1389 | if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { | |||
| 1390 | DeadInsts.push_back(ExitVal); | |||
| 1391 | continue; | |||
| 1392 | } | |||
| 1393 | ||||
| 1394 | NumReplaced++; | |||
| 1395 | Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); | |||
| 1396 | PN->setIncomingValue(Phi.Ith, ExitVal); | |||
| 1397 | ||||
| 1398 | // If this instruction is dead now, delete it. Don't do it now to avoid | |||
| 1399 | // invalidating iterators. | |||
| 1400 | if (isInstructionTriviallyDead(Inst, TLI)) | |||
| 1401 | DeadInsts.push_back(Inst); | |||
| 1402 | ||||
| 1403 | // Replace PN with ExitVal if that is legal and does not break LCSSA. | |||
| 1404 | if (PN->getNumIncomingValues() == 1 && | |||
| 1405 | LI->replacementPreservesLCSSAForm(PN, ExitVal)) { | |||
| 1406 | PN->replaceAllUsesWith(ExitVal); | |||
| 1407 | PN->eraseFromParent(); | |||
| 1408 | } | |||
| 1409 | } | |||
| 1410 | ||||
| 1411 | // The insertion point instruction may have been deleted; clear it out | |||
| 1412 | // so that the rewriter doesn't trip over it later. | |||
| 1413 | Rewriter.clearInsertPoint(); | |||
| 1414 | return NumReplaced; | |||
| 1415 | } | |||
| 1416 | ||||
| 1417 | /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for | |||
| 1418 | /// \p OrigLoop. | |||
| 1419 | void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, | |||
| 1420 | Loop *RemainderLoop, uint64_t UF) { | |||
| 1421 | assert(UF > 0 && "Zero unrolled factor is not supported")((void)0); | |||
| 1422 | assert(UnrolledLoop != RemainderLoop &&((void)0) | |||
| 1423 | "Unrolled and Remainder loops are expected to distinct")((void)0); | |||
| 1424 | ||||
| 1425 | // Get number of iterations in the original scalar loop. | |||
| 1426 | unsigned OrigLoopInvocationWeight = 0; | |||
| 1427 | Optional<unsigned> OrigAverageTripCount = | |||
| 1428 | getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); | |||
| 1429 | if (!OrigAverageTripCount) | |||
| 1430 | return; | |||
| 1431 | ||||
| 1432 | // Calculate number of iterations in unrolled loop. | |||
| 1433 | unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; | |||
| 1434 | // Calculate number of iterations for remainder loop. | |||
| 1435 | unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; | |||
| 1436 | ||||
| 1437 | setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, | |||
| 1438 | OrigLoopInvocationWeight); | |||
| 1439 | setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, | |||
| 1440 | OrigLoopInvocationWeight); | |||
| 1441 | } | |||
| 1442 | ||||
| 1443 | /// Utility that implements appending of loops onto a worklist. | |||
| 1444 | /// Loops are added in preorder (analogous for reverse postorder for trees), | |||
| 1445 | /// and the worklist is processed LIFO. | |||
| 1446 | template <typename RangeT> | |||
| 1447 | void llvm::appendReversedLoopsToWorklist( | |||
| 1448 | RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { | |||
| 1449 | // We use an internal worklist to build up the preorder traversal without | |||
| 1450 | // recursion. | |||
| 1451 | SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; | |||
| 1452 | ||||
| 1453 | // We walk the initial sequence of loops in reverse because we generally want | |||
| 1454 | // to visit defs before uses and the worklist is LIFO. | |||
| 1455 | for (Loop *RootL : Loops) { | |||
| 1456 | assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.")((void)0); | |||
| 1457 | assert(PreOrderWorklist.empty() &&((void)0) | |||
| 1458 | "Must start with an empty preorder walk worklist.")((void)0); | |||
| 1459 | PreOrderWorklist.push_back(RootL); | |||
| 1460 | do { | |||
| 1461 | Loop *L = PreOrderWorklist.pop_back_val(); | |||
| 1462 | PreOrderWorklist.append(L->begin(), L->end()); | |||
| 1463 | PreOrderLoops.push_back(L); | |||
| 1464 | } while (!PreOrderWorklist.empty()); | |||
| 1465 | ||||
| 1466 | Worklist.insert(std::move(PreOrderLoops)); | |||
| 1467 | PreOrderLoops.clear(); | |||
| 1468 | } | |||
| 1469 | } | |||
| 1470 | ||||
| 1471 | template <typename RangeT> | |||
| 1472 | void llvm::appendLoopsToWorklist(RangeT &&Loops, | |||
| 1473 | SmallPriorityWorklist<Loop *, 4> &Worklist) { | |||
| 1474 | appendReversedLoopsToWorklist(reverse(Loops), Worklist); | |||
| 1475 | } | |||
| 1476 | ||||
| 1477 | template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( | |||
| 1478 | ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); | |||
| 1479 | ||||
| 1480 | template void | |||
| 1481 | llvm::appendLoopsToWorklist<Loop &>(Loop &L, | |||
| 1482 | SmallPriorityWorklist<Loop *, 4> &Worklist); | |||
| 1483 | ||||
| 1484 | void llvm::appendLoopsToWorklist(LoopInfo &LI, | |||
| 1485 | SmallPriorityWorklist<Loop *, 4> &Worklist) { | |||
| 1486 | appendReversedLoopsToWorklist(LI, Worklist); | |||
| 1487 | } | |||
| 1488 | ||||
| 1489 | Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, | |||
| 1490 | LoopInfo *LI, LPPassManager *LPM) { | |||
| 1491 | Loop &New = *LI->AllocateLoop(); | |||
| 1492 | if (PL) | |||
| 1493 | PL->addChildLoop(&New); | |||
| 1494 | else | |||
| 1495 | LI->addTopLevelLoop(&New); | |||
| 1496 | ||||
| 1497 | if (LPM) | |||
| 1498 | LPM->addLoop(New); | |||
| 1499 | ||||
| 1500 | // Add all of the blocks in L to the new loop. | |||
| 1501 | for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); | |||
| 1502 | I != E; ++I) | |||
| 1503 | if (LI->getLoopFor(*I) == L) | |||
| 1504 | New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); | |||
| 1505 | ||||
| 1506 | // Add all of the subloops to the new loop. | |||
| 1507 | for (Loop *I : *L) | |||
| 1508 | cloneLoop(I, &New, VM, LI, LPM); | |||
| 1509 | ||||
| 1510 | return &New; | |||
| 1511 | } | |||
| 1512 | ||||
| 1513 | /// IR Values for the lower and upper bounds of a pointer evolution. We | |||
| 1514 | /// need to use value-handles because SCEV expansion can invalidate previously | |||
| 1515 | /// expanded values. Thus expansion of a pointer can invalidate the bounds for | |||
| 1516 | /// a previous one. | |||
| 1517 | struct PointerBounds { | |||
| 1518 | TrackingVH<Value> Start; | |||
| 1519 | TrackingVH<Value> End; | |||
| 1520 | }; | |||
| 1521 | ||||
| 1522 | /// Expand code for the lower and upper bound of the pointer group \p CG | |||
| 1523 | /// in \p TheLoop. \return the values for the bounds. | |||
| 1524 | static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, | |||
| 1525 | Loop *TheLoop, Instruction *Loc, | |||
| 1526 | SCEVExpander &Exp) { | |||
| 1527 | LLVMContext &Ctx = Loc->getContext(); | |||
| 1528 | Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace); | |||
| 1529 | ||||
| 1530 | Value *Start = nullptr, *End = nullptr; | |||
| 1531 | LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n")do { } while (false); | |||
| 1532 | Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); | |||
| 1533 | End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); | |||
| 1534 | LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n")do { } while (false); | |||
| 1535 | return {Start, End}; | |||
| 1536 | } | |||
| 1537 | ||||
| 1538 | /// Turns a collection of checks into a collection of expanded upper and | |||
| 1539 | /// lower bounds for both pointers in the check. | |||
| 1540 | static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> | |||
| 1541 | expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, | |||
| 1542 | Instruction *Loc, SCEVExpander &Exp) { | |||
| 1543 | SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; | |||
| 1544 | ||||
| 1545 | // Here we're relying on the SCEV Expander's cache to only emit code for the | |||
| 1546 | // same bounds once. | |||
| 1547 | transform(PointerChecks, std::back_inserter(ChecksWithBounds), | |||
| 1548 | [&](const RuntimePointerCheck &Check) { | |||
| 1549 | PointerBounds First = expandBounds(Check.first, L, Loc, Exp), | |||
| 1550 | Second = expandBounds(Check.second, L, Loc, Exp); | |||
| 1551 | return std::make_pair(First, Second); | |||
| 1552 | }); | |||
| 1553 | ||||
| 1554 | return ChecksWithBounds; | |||
| 1555 | } | |||
| 1556 | ||||
| 1557 | std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks( | |||
| 1558 | Instruction *Loc, Loop *TheLoop, | |||
| 1559 | const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, | |||
| 1560 | SCEVExpander &Exp) { | |||
| 1561 | // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. | |||
| 1562 | // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible | |||
| 1563 | auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); | |||
| 1564 | ||||
| 1565 | LLVMContext &Ctx = Loc->getContext(); | |||
| 1566 | Instruction *FirstInst = nullptr; | |||
| 1567 | IRBuilder<> ChkBuilder(Loc); | |||
| 1568 | // Our instructions might fold to a constant. | |||
| 1569 | Value *MemoryRuntimeCheck = nullptr; | |||
| 1570 | ||||
| 1571 | // FIXME: this helper is currently a duplicate of the one in | |||
| 1572 | // LoopVectorize.cpp. | |||
| 1573 | auto GetFirstInst = [](Instruction *FirstInst, Value *V, | |||
| 1574 | Instruction *Loc) -> Instruction * { | |||
| 1575 | if (FirstInst) | |||
| 1576 | return FirstInst; | |||
| 1577 | if (Instruction *I = dyn_cast<Instruction>(V)) | |||
| 1578 | return I->getParent() == Loc->getParent() ? I : nullptr; | |||
| 1579 | return nullptr; | |||
| 1580 | }; | |||
| 1581 | ||||
| 1582 | for (const auto &Check : ExpandedChecks) { | |||
| 1583 | const PointerBounds &A = Check.first, &B = Check.second; | |||
| 1584 | // Check if two pointers (A and B) conflict where conflict is computed as: | |||
| 1585 | // start(A) <= end(B) && start(B) <= end(A) | |||
| 1586 | unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); | |||
| 1587 | unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); | |||
| 1588 | ||||
| 1589 | assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&((void)0) | |||
| 1590 | (AS1 == A.End->getType()->getPointerAddressSpace()) &&((void)0) | |||
| 1591 | "Trying to bounds check pointers with different address spaces")((void)0); | |||
| 1592 | ||||
| 1593 | Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); | |||
| 1594 | Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); | |||
| 1595 | ||||
| 1596 | Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); | |||
| 1597 | Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); | |||
| 1598 | Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); | |||
| 1599 | Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); | |||
| 1600 | ||||
| 1601 | // [A|B].Start points to the first accessed byte under base [A|B]. | |||
| 1602 | // [A|B].End points to the last accessed byte, plus one. | |||
| 1603 | // There is no conflict when the intervals are disjoint: | |||
| 1604 | // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) | |||
| 1605 | // | |||
| 1606 | // bound0 = (B.Start < A.End) | |||
| 1607 | // bound1 = (A.Start < B.End) | |||
| 1608 | // IsConflict = bound0 & bound1 | |||
| 1609 | Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); | |||
| 1610 | FirstInst = GetFirstInst(FirstInst, Cmp0, Loc); | |||
| 1611 | Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); | |||
| 1612 | FirstInst = GetFirstInst(FirstInst, Cmp1, Loc); | |||
| 1613 | Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); | |||
| 1614 | FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); | |||
| 1615 | if (MemoryRuntimeCheck) { | |||
| 1616 | IsConflict = | |||
| 1617 | ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); | |||
| 1618 | FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); | |||
| 1619 | } | |||
| 1620 | MemoryRuntimeCheck = IsConflict; | |||
| 1621 | } | |||
| 1622 | ||||
| 1623 | if (!MemoryRuntimeCheck) | |||
| 1624 | return std::make_pair(nullptr, nullptr); | |||
| 1625 | ||||
| 1626 | // We have to do this trickery because the IRBuilder might fold the check to a | |||
| 1627 | // constant expression in which case there is no Instruction anchored in a | |||
| 1628 | // the block. | |||
| 1629 | Instruction *Check = | |||
| 1630 | BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); | |||
| 1631 | ChkBuilder.Insert(Check, "memcheck.conflict"); | |||
| 1632 | FirstInst = GetFirstInst(FirstInst, Check, Loc); | |||
| 1633 | return std::make_pair(FirstInst, Check); | |||
| 1634 | } | |||
| 1635 | ||||
| 1636 | Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L, | |||
| 1637 | unsigned MSSAThreshold, | |||
| 1638 | MemorySSA &MSSA, | |||
| 1639 | AAResults &AA) { | |||
| 1640 | auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); | |||
| 1641 | if (!TI || !TI->isConditional()) | |||
| 1642 | return {}; | |||
| 1643 | ||||
| 1644 | auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); | |||
| 1645 | // The case with the condition outside the loop should already be handled | |||
| 1646 | // earlier. | |||
| 1647 | if (!CondI || !L.contains(CondI)) | |||
| 1648 | return {}; | |||
| 1649 | ||||
| 1650 | SmallVector<Instruction *> InstToDuplicate; | |||
| 1651 | InstToDuplicate.push_back(CondI); | |||
| 1652 | ||||
| 1653 | SmallVector<Value *, 4> WorkList; | |||
| 1654 | WorkList.append(CondI->op_begin(), CondI->op_end()); | |||
| 1655 | ||||
| 1656 | SmallVector<MemoryAccess *, 4> AccessesToCheck; | |||
| 1657 | SmallVector<MemoryLocation, 4> AccessedLocs; | |||
| 1658 | while (!WorkList.empty()) { | |||
| 1659 | Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); | |||
| 1660 | if (!I || !L.contains(I)) | |||
| 1661 | continue; | |||
| 1662 | ||||
| 1663 | // TODO: support additional instructions. | |||
| 1664 | if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) | |||
| 1665 | return {}; | |||
| 1666 | ||||
| 1667 | // Do not duplicate volatile and atomic loads. | |||
| 1668 | if (auto *LI = dyn_cast<LoadInst>(I)) | |||
| 1669 | if (LI->isVolatile() || LI->isAtomic()) | |||
| 1670 | return {}; | |||
| 1671 | ||||
| 1672 | InstToDuplicate.push_back(I); | |||
| 1673 | if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { | |||
| 1674 | if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { | |||
| 1675 | // Queue the defining access to check for alias checks. | |||
| 1676 | AccessesToCheck.push_back(MemUse->getDefiningAccess()); | |||
| 1677 | AccessedLocs.push_back(MemoryLocation::get(I)); | |||
| 1678 | } else { | |||
| 1679 | // MemoryDefs may clobber the location or may be atomic memory | |||
| 1680 | // operations. Bail out. | |||
| 1681 | return {}; | |||
| 1682 | } | |||
| 1683 | } | |||
| 1684 | WorkList.append(I->op_begin(), I->op_end()); | |||
| 1685 | } | |||
| 1686 | ||||
| 1687 | if (InstToDuplicate.empty()) | |||
| 1688 | return {}; | |||
| 1689 | ||||
| 1690 | SmallVector<BasicBlock *, 4> ExitingBlocks; | |||
| 1691 | L.getExitingBlocks(ExitingBlocks); | |||
| 1692 | auto HasNoClobbersOnPath = | |||
| 1693 | [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, | |||
| 1694 | MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, | |||
| 1695 | SmallVector<MemoryAccess *, 4> AccessesToCheck) | |||
| 1696 | -> Optional<IVConditionInfo> { | |||
| 1697 | IVConditionInfo Info; | |||
| 1698 | // First, collect all blocks in the loop that are on a patch from Succ | |||
| 1699 | // to the header. | |||
| 1700 | SmallVector<BasicBlock *, 4> WorkList; | |||
| 1701 | WorkList.push_back(Succ); | |||
| 1702 | WorkList.push_back(Header); | |||
| 1703 | SmallPtrSet<BasicBlock *, 4> Seen; | |||
| 1704 | Seen.insert(Header); | |||
| 1705 | Info.PathIsNoop &= | |||
| 1706 | all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); | |||
| 1707 | ||||
| 1708 | while (!WorkList.empty()) { | |||
| 1709 | BasicBlock *Current = WorkList.pop_back_val(); | |||
| 1710 | if (!L.contains(Current)) | |||
| 1711 | continue; | |||
| 1712 | const auto &SeenIns = Seen.insert(Current); | |||
| 1713 | if (!SeenIns.second) | |||
| 1714 | continue; | |||
| 1715 | ||||
| 1716 | Info.PathIsNoop &= all_of( | |||
| 1717 | *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); | |||
| 1718 | WorkList.append(succ_begin(Current), succ_end(Current)); | |||
| 1719 | } | |||
| 1720 | ||||
| 1721 | // Require at least 2 blocks on a path through the loop. This skips | |||
| 1722 | // paths that directly exit the loop. | |||
| 1723 | if (Seen.size() < 2) | |||
| 1724 | return {}; | |||
| 1725 | ||||
| 1726 | // Next, check if there are any MemoryDefs that are on the path through | |||
| 1727 | // the loop (in the Seen set) and they may-alias any of the locations in | |||
| 1728 | // AccessedLocs. If that is the case, they may modify the condition and | |||
| 1729 | // partial unswitching is not possible. | |||
| 1730 | SmallPtrSet<MemoryAccess *, 4> SeenAccesses; | |||
| 1731 | while (!AccessesToCheck.empty()) { | |||
| 1732 | MemoryAccess *Current = AccessesToCheck.pop_back_val(); | |||
| 1733 | auto SeenI = SeenAccesses.insert(Current); | |||
| 1734 | if (!SeenI.second || !Seen.contains(Current->getBlock())) | |||
| 1735 | continue; | |||
| 1736 | ||||
| 1737 | // Bail out if exceeded the threshold. | |||
| 1738 | if (SeenAccesses.size() >= MSSAThreshold) | |||
| 1739 | return {}; | |||
| 1740 | ||||
| 1741 | // MemoryUse are read-only accesses. | |||
| 1742 | if (isa<MemoryUse>(Current)) | |||
| 1743 | continue; | |||
| 1744 | ||||
| 1745 | // For a MemoryDef, check if is aliases any of the location feeding | |||
| 1746 | // the original condition. | |||
| 1747 | if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { | |||
| 1748 | if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { | |||
| 1749 | return isModSet( | |||
| 1750 | AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); | |||
| 1751 | })) | |||
| 1752 | return {}; | |||
| 1753 | } | |||
| 1754 | ||||
| 1755 | for (Use &U : Current->uses()) | |||
| 1756 | AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); | |||
| 1757 | } | |||
| 1758 | ||||
| 1759 | // We could also allow loops with known trip counts without mustprogress, | |||
| 1760 | // but ScalarEvolution may not be available. | |||
| 1761 | Info.PathIsNoop &= isMustProgress(&L); | |||
| 1762 | ||||
| 1763 | // If the path is considered a no-op so far, check if it reaches a | |||
| 1764 | // single exit block without any phis. This ensures no values from the | |||
| 1765 | // loop are used outside of the loop. | |||
| 1766 | if (Info.PathIsNoop) { | |||
| 1767 | for (auto *Exiting : ExitingBlocks) { | |||
| 1768 | if (!Seen.contains(Exiting)) | |||
| 1769 | continue; | |||
| 1770 | for (auto *Succ : successors(Exiting)) { | |||
| 1771 | if (L.contains(Succ)) | |||
| 1772 | continue; | |||
| 1773 | ||||
| 1774 | Info.PathIsNoop &= llvm::empty(Succ->phis()) && | |||
| 1775 | (!Info.ExitForPath || Info.ExitForPath == Succ); | |||
| 1776 | if (!Info.PathIsNoop) | |||
| 1777 | break; | |||
| 1778 | assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&((void)0) | |||
| 1779 | "cannot have multiple exit blocks")((void)0); | |||
| 1780 | Info.ExitForPath = Succ; | |||
| 1781 | } | |||
| 1782 | } | |||
| 1783 | } | |||
| 1784 | if (!Info.ExitForPath) | |||
| 1785 | Info.PathIsNoop = false; | |||
| 1786 | ||||
| 1787 | Info.InstToDuplicate = InstToDuplicate; | |||
| 1788 | return Info; | |||
| 1789 | }; | |||
| 1790 | ||||
| 1791 | // If we branch to the same successor, partial unswitching will not be | |||
| 1792 | // beneficial. | |||
| 1793 | if (TI->getSuccessor(0) == TI->getSuccessor(1)) | |||
| 1794 | return {}; | |||
| 1795 | ||||
| 1796 | if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), | |||
| 1797 | AccessesToCheck)) { | |||
| 1798 | Info->KnownValue = ConstantInt::getTrue(TI->getContext()); | |||
| 1799 | return Info; | |||
| 1800 | } | |||
| 1801 | if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), | |||
| 1802 | AccessesToCheck)) { | |||
| 1803 | Info->KnownValue = ConstantInt::getFalse(TI->getContext()); | |||
| 1804 | return Info; | |||
| 1805 | } | |||
| 1806 | ||||
| 1807 | return {}; | |||
| 1808 | } |
| 1 | //===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file defines the IRBuilder class, which is used as a convenient way | |||
| 10 | // to create LLVM instructions with a consistent and simplified interface. | |||
| 11 | // | |||
| 12 | //===----------------------------------------------------------------------===// | |||
| 13 | ||||
| 14 | #ifndef LLVM_IR_IRBUILDER_H | |||
| 15 | #define LLVM_IR_IRBUILDER_H | |||
| 16 | ||||
| 17 | #include "llvm-c/Types.h" | |||
| 18 | #include "llvm/ADT/ArrayRef.h" | |||
| 19 | #include "llvm/ADT/None.h" | |||
| 20 | #include "llvm/ADT/STLExtras.h" | |||
| 21 | #include "llvm/ADT/StringRef.h" | |||
| 22 | #include "llvm/ADT/Twine.h" | |||
| 23 | #include "llvm/IR/BasicBlock.h" | |||
| 24 | #include "llvm/IR/Constant.h" | |||
| 25 | #include "llvm/IR/ConstantFolder.h" | |||
| 26 | #include "llvm/IR/Constants.h" | |||
| 27 | #include "llvm/IR/DataLayout.h" | |||
| 28 | #include "llvm/IR/DebugInfoMetadata.h" | |||
| 29 | #include "llvm/IR/DebugLoc.h" | |||
| 30 | #include "llvm/IR/DerivedTypes.h" | |||
| 31 | #include "llvm/IR/Function.h" | |||
| 32 | #include "llvm/IR/GlobalVariable.h" | |||
| 33 | #include "llvm/IR/InstrTypes.h" | |||
| 34 | #include "llvm/IR/Instruction.h" | |||
| 35 | #include "llvm/IR/Instructions.h" | |||
| 36 | #include "llvm/IR/IntrinsicInst.h" | |||
| 37 | #include "llvm/IR/LLVMContext.h" | |||
| 38 | #include "llvm/IR/Module.h" | |||
| 39 | #include "llvm/IR/Operator.h" | |||
| 40 | #include "llvm/IR/Type.h" | |||
| 41 | #include "llvm/IR/Value.h" | |||
| 42 | #include "llvm/IR/ValueHandle.h" | |||
| 43 | #include "llvm/Support/AtomicOrdering.h" | |||
| 44 | #include "llvm/Support/CBindingWrapping.h" | |||
| 45 | #include "llvm/Support/Casting.h" | |||
| 46 | #include <cassert> | |||
| 47 | #include <cstddef> | |||
| 48 | #include <cstdint> | |||
| 49 | #include <functional> | |||
| 50 | #include <utility> | |||
| 51 | ||||
| 52 | namespace llvm { | |||
| 53 | ||||
| 54 | class APInt; | |||
| 55 | class MDNode; | |||
| 56 | class Use; | |||
| 57 | ||||
| 58 | /// This provides the default implementation of the IRBuilder | |||
| 59 | /// 'InsertHelper' method that is called whenever an instruction is created by | |||
| 60 | /// IRBuilder and needs to be inserted. | |||
| 61 | /// | |||
| 62 | /// By default, this inserts the instruction at the insertion point. | |||
| 63 | class IRBuilderDefaultInserter { | |||
| 64 | public: | |||
| 65 | virtual ~IRBuilderDefaultInserter(); | |||
| 66 | ||||
| 67 | virtual void InsertHelper(Instruction *I, const Twine &Name, | |||
| 68 | BasicBlock *BB, | |||
| 69 | BasicBlock::iterator InsertPt) const { | |||
| 70 | if (BB) BB->getInstList().insert(InsertPt, I); | |||
| 71 | I->setName(Name); | |||
| 72 | } | |||
| 73 | }; | |||
| 74 | ||||
| 75 | /// Provides an 'InsertHelper' that calls a user-provided callback after | |||
| 76 | /// performing the default insertion. | |||
| 77 | class IRBuilderCallbackInserter : public IRBuilderDefaultInserter { | |||
| 78 | std::function<void(Instruction *)> Callback; | |||
| 79 | ||||
| 80 | public: | |||
| 81 | virtual ~IRBuilderCallbackInserter(); | |||
| 82 | ||||
| 83 | IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback) | |||
| 84 | : Callback(std::move(Callback)) {} | |||
| 85 | ||||
| 86 | void InsertHelper(Instruction *I, const Twine &Name, | |||
| 87 | BasicBlock *BB, | |||
| 88 | BasicBlock::iterator InsertPt) const override { | |||
| 89 | IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); | |||
| 90 | Callback(I); | |||
| 91 | } | |||
| 92 | }; | |||
| 93 | ||||
| 94 | /// Common base class shared among various IRBuilders. | |||
| 95 | class IRBuilderBase { | |||
| 96 | /// Pairs of (metadata kind, MDNode *) that should be added to all newly | |||
| 97 | /// created instructions, like !dbg metadata. | |||
| 98 | SmallVector<std::pair<unsigned, MDNode *>, 2> MetadataToCopy; | |||
| 99 | ||||
| 100 | /// Add or update the an entry (Kind, MD) to MetadataToCopy, if \p MD is not | |||
| 101 | /// null. If \p MD is null, remove the entry with \p Kind. | |||
| 102 | void AddOrRemoveMetadataToCopy(unsigned Kind, MDNode *MD) { | |||
| 103 | if (!MD) { | |||
| 104 | erase_if(MetadataToCopy, [Kind](const std::pair<unsigned, MDNode *> &KV) { | |||
| 105 | return KV.first == Kind; | |||
| 106 | }); | |||
| 107 | return; | |||
| 108 | } | |||
| 109 | ||||
| 110 | for (auto &KV : MetadataToCopy) | |||
| 111 | if (KV.first == Kind) { | |||
| 112 | KV.second = MD; | |||
| 113 | return; | |||
| 114 | } | |||
| 115 | ||||
| 116 | MetadataToCopy.emplace_back(Kind, MD); | |||
| 117 | } | |||
| 118 | ||||
| 119 | protected: | |||
| 120 | BasicBlock *BB; | |||
| 121 | BasicBlock::iterator InsertPt; | |||
| 122 | LLVMContext &Context; | |||
| 123 | const IRBuilderFolder &Folder; | |||
| 124 | const IRBuilderDefaultInserter &Inserter; | |||
| 125 | ||||
| 126 | MDNode *DefaultFPMathTag; | |||
| 127 | FastMathFlags FMF; | |||
| 128 | ||||
| 129 | bool IsFPConstrained; | |||
| 130 | fp::ExceptionBehavior DefaultConstrainedExcept; | |||
| 131 | RoundingMode DefaultConstrainedRounding; | |||
| 132 | ||||
| 133 | ArrayRef<OperandBundleDef> DefaultOperandBundles; | |||
| 134 | ||||
| 135 | public: | |||
| 136 | IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder, | |||
| 137 | const IRBuilderDefaultInserter &Inserter, | |||
| 138 | MDNode *FPMathTag, ArrayRef<OperandBundleDef> OpBundles) | |||
| 139 | : Context(context), Folder(Folder), Inserter(Inserter), | |||
| 140 | DefaultFPMathTag(FPMathTag), IsFPConstrained(false), | |||
| 141 | DefaultConstrainedExcept(fp::ebStrict), | |||
| 142 | DefaultConstrainedRounding(RoundingMode::Dynamic), | |||
| 143 | DefaultOperandBundles(OpBundles) { | |||
| 144 | ClearInsertionPoint(); | |||
| 145 | } | |||
| 146 | ||||
| 147 | /// Insert and return the specified instruction. | |||
| 148 | template<typename InstTy> | |||
| 149 | InstTy *Insert(InstTy *I, const Twine &Name = "") const { | |||
| 150 | Inserter.InsertHelper(I, Name, BB, InsertPt); | |||
| 151 | AddMetadataToInst(I); | |||
| 152 | return I; | |||
| 153 | } | |||
| 154 | ||||
| 155 | /// No-op overload to handle constants. | |||
| 156 | Constant *Insert(Constant *C, const Twine& = "") const { | |||
| 157 | return C; | |||
| 158 | } | |||
| 159 | ||||
| 160 | Value *Insert(Value *V, const Twine &Name = "") const { | |||
| 161 | if (Instruction *I = dyn_cast<Instruction>(V)) | |||
| 162 | return Insert(I, Name); | |||
| 163 | assert(isa<Constant>(V))((void)0); | |||
| 164 | return V; | |||
| 165 | } | |||
| 166 | ||||
| 167 | //===--------------------------------------------------------------------===// | |||
| 168 | // Builder configuration methods | |||
| 169 | //===--------------------------------------------------------------------===// | |||
| 170 | ||||
| 171 | /// Clear the insertion point: created instructions will not be | |||
| 172 | /// inserted into a block. | |||
| 173 | void ClearInsertionPoint() { | |||
| 174 | BB = nullptr; | |||
| 175 | InsertPt = BasicBlock::iterator(); | |||
| 176 | } | |||
| 177 | ||||
| 178 | BasicBlock *GetInsertBlock() const { return BB; } | |||
| 179 | BasicBlock::iterator GetInsertPoint() const { return InsertPt; } | |||
| 180 | LLVMContext &getContext() const { return Context; } | |||
| 181 | ||||
| 182 | /// This specifies that created instructions should be appended to the | |||
| 183 | /// end of the specified block. | |||
| 184 | void SetInsertPoint(BasicBlock *TheBB) { | |||
| 185 | BB = TheBB; | |||
| 186 | InsertPt = BB->end(); | |||
| 187 | } | |||
| 188 | ||||
| 189 | /// This specifies that created instructions should be inserted before | |||
| 190 | /// the specified instruction. | |||
| 191 | void SetInsertPoint(Instruction *I) { | |||
| 192 | BB = I->getParent(); | |||
| 193 | InsertPt = I->getIterator(); | |||
| 194 | assert(InsertPt != BB->end() && "Can't read debug loc from end()")((void)0); | |||
| 195 | SetCurrentDebugLocation(I->getDebugLoc()); | |||
| 196 | } | |||
| 197 | ||||
| 198 | /// This specifies that created instructions should be inserted at the | |||
| 199 | /// specified point. | |||
| 200 | void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) { | |||
| 201 | BB = TheBB; | |||
| 202 | InsertPt = IP; | |||
| 203 | if (IP != TheBB->end()) | |||
| 204 | SetCurrentDebugLocation(IP->getDebugLoc()); | |||
| 205 | } | |||
| 206 | ||||
| 207 | /// Set location information used by debugging information. | |||
| 208 | void SetCurrentDebugLocation(DebugLoc L) { | |||
| 209 | AddOrRemoveMetadataToCopy(LLVMContext::MD_dbg, L.getAsMDNode()); | |||
| 210 | } | |||
| 211 | ||||
| 212 | /// Collect metadata with IDs \p MetadataKinds from \p Src which should be | |||
| 213 | /// added to all created instructions. Entries present in MedataDataToCopy but | |||
| 214 | /// not on \p Src will be dropped from MetadataToCopy. | |||
| 215 | void CollectMetadataToCopy(Instruction *Src, | |||
| 216 | ArrayRef<unsigned> MetadataKinds) { | |||
| 217 | for (unsigned K : MetadataKinds) | |||
| 218 | AddOrRemoveMetadataToCopy(K, Src->getMetadata(K)); | |||
| 219 | } | |||
| 220 | ||||
| 221 | /// Get location information used by debugging information. | |||
| 222 | DebugLoc getCurrentDebugLocation() const { | |||
| 223 | for (auto &KV : MetadataToCopy) | |||
| 224 | if (KV.first == LLVMContext::MD_dbg) | |||
| 225 | return {cast<DILocation>(KV.second)}; | |||
| 226 | ||||
| 227 | return {}; | |||
| 228 | } | |||
| 229 | ||||
| 230 | /// If this builder has a current debug location, set it on the | |||
| 231 | /// specified instruction. | |||
| 232 | void SetInstDebugLocation(Instruction *I) const { | |||
| 233 | for (const auto &KV : MetadataToCopy) | |||
| 234 | if (KV.first == LLVMContext::MD_dbg) { | |||
| 235 | I->setDebugLoc(DebugLoc(KV.second)); | |||
| 236 | return; | |||
| 237 | } | |||
| 238 | } | |||
| 239 | ||||
| 240 | /// Add all entries in MetadataToCopy to \p I. | |||
| 241 | void AddMetadataToInst(Instruction *I) const { | |||
| 242 | for (auto &KV : MetadataToCopy) | |||
| 243 | I->setMetadata(KV.first, KV.second); | |||
| 244 | } | |||
| 245 | ||||
| 246 | /// Get the return type of the current function that we're emitting | |||
| 247 | /// into. | |||
| 248 | Type *getCurrentFunctionReturnType() const; | |||
| 249 | ||||
| 250 | /// InsertPoint - A saved insertion point. | |||
| 251 | class InsertPoint { | |||
| 252 | BasicBlock *Block = nullptr; | |||
| 253 | BasicBlock::iterator Point; | |||
| 254 | ||||
| 255 | public: | |||
| 256 | /// Creates a new insertion point which doesn't point to anything. | |||
| 257 | InsertPoint() = default; | |||
| 258 | ||||
| 259 | /// Creates a new insertion point at the given location. | |||
| 260 | InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint) | |||
| 261 | : Block(InsertBlock), Point(InsertPoint) {} | |||
| 262 | ||||
| 263 | /// Returns true if this insert point is set. | |||
| 264 | bool isSet() const { return (Block != nullptr); } | |||
| 265 | ||||
| 266 | BasicBlock *getBlock() const { return Block; } | |||
| 267 | BasicBlock::iterator getPoint() const { return Point; } | |||
| 268 | }; | |||
| 269 | ||||
| 270 | /// Returns the current insert point. | |||
| 271 | InsertPoint saveIP() const { | |||
| 272 | return InsertPoint(GetInsertBlock(), GetInsertPoint()); | |||
| 273 | } | |||
| 274 | ||||
| 275 | /// Returns the current insert point, clearing it in the process. | |||
| 276 | InsertPoint saveAndClearIP() { | |||
| 277 | InsertPoint IP(GetInsertBlock(), GetInsertPoint()); | |||
| 278 | ClearInsertionPoint(); | |||
| 279 | return IP; | |||
| 280 | } | |||
| 281 | ||||
| 282 | /// Sets the current insert point to a previously-saved location. | |||
| 283 | void restoreIP(InsertPoint IP) { | |||
| 284 | if (IP.isSet()) | |||
| 285 | SetInsertPoint(IP.getBlock(), IP.getPoint()); | |||
| 286 | else | |||
| 287 | ClearInsertionPoint(); | |||
| 288 | } | |||
| 289 | ||||
| 290 | /// Get the floating point math metadata being used. | |||
| 291 | MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; } | |||
| 292 | ||||
| 293 | /// Get the flags to be applied to created floating point ops | |||
| 294 | FastMathFlags getFastMathFlags() const { return FMF; } | |||
| 295 | ||||
| 296 | FastMathFlags &getFastMathFlags() { return FMF; } | |||
| 297 | ||||
| 298 | /// Clear the fast-math flags. | |||
| 299 | void clearFastMathFlags() { FMF.clear(); } | |||
| 300 | ||||
| 301 | /// Set the floating point math metadata to be used. | |||
| 302 | void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; } | |||
| 303 | ||||
| 304 | /// Set the fast-math flags to be used with generated fp-math operators | |||
| 305 | void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; } | |||
| 306 | ||||
| 307 | /// Enable/Disable use of constrained floating point math. When | |||
| 308 | /// enabled the CreateF<op>() calls instead create constrained | |||
| 309 | /// floating point intrinsic calls. Fast math flags are unaffected | |||
| 310 | /// by this setting. | |||
| 311 | void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; } | |||
| 312 | ||||
| 313 | /// Query for the use of constrained floating point math | |||
| 314 | bool getIsFPConstrained() { return IsFPConstrained; } | |||
| 315 | ||||
| 316 | /// Set the exception handling to be used with constrained floating point | |||
| 317 | void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) { | |||
| 318 | #ifndef NDEBUG1 | |||
| 319 | Optional<StringRef> ExceptStr = ExceptionBehaviorToStr(NewExcept); | |||
| 320 | assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")((void)0); | |||
| 321 | #endif | |||
| 322 | DefaultConstrainedExcept = NewExcept; | |||
| 323 | } | |||
| 324 | ||||
| 325 | /// Set the rounding mode handling to be used with constrained floating point | |||
| 326 | void setDefaultConstrainedRounding(RoundingMode NewRounding) { | |||
| 327 | #ifndef NDEBUG1 | |||
| 328 | Optional<StringRef> RoundingStr = RoundingModeToStr(NewRounding); | |||
| 329 | assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")((void)0); | |||
| 330 | #endif | |||
| 331 | DefaultConstrainedRounding = NewRounding; | |||
| 332 | } | |||
| 333 | ||||
| 334 | /// Get the exception handling used with constrained floating point | |||
| 335 | fp::ExceptionBehavior getDefaultConstrainedExcept() { | |||
| 336 | return DefaultConstrainedExcept; | |||
| 337 | } | |||
| 338 | ||||
| 339 | /// Get the rounding mode handling used with constrained floating point | |||
| 340 | RoundingMode getDefaultConstrainedRounding() { | |||
| 341 | return DefaultConstrainedRounding; | |||
| 342 | } | |||
| 343 | ||||
| 344 | void setConstrainedFPFunctionAttr() { | |||
| 345 | assert(BB && "Must have a basic block to set any function attributes!")((void)0); | |||
| 346 | ||||
| 347 | Function *F = BB->getParent(); | |||
| 348 | if (!F->hasFnAttribute(Attribute::StrictFP)) { | |||
| 349 | F->addFnAttr(Attribute::StrictFP); | |||
| 350 | } | |||
| 351 | } | |||
| 352 | ||||
| 353 | void setConstrainedFPCallAttr(CallBase *I) { | |||
| 354 | I->addAttribute(AttributeList::FunctionIndex, Attribute::StrictFP); | |||
| 355 | } | |||
| 356 | ||||
| 357 | void setDefaultOperandBundles(ArrayRef<OperandBundleDef> OpBundles) { | |||
| 358 | DefaultOperandBundles = OpBundles; | |||
| 359 | } | |||
| 360 | ||||
| 361 | //===--------------------------------------------------------------------===// | |||
| 362 | // RAII helpers. | |||
| 363 | //===--------------------------------------------------------------------===// | |||
| 364 | ||||
| 365 | // RAII object that stores the current insertion point and restores it | |||
| 366 | // when the object is destroyed. This includes the debug location. | |||
| 367 | class InsertPointGuard { | |||
| 368 | IRBuilderBase &Builder; | |||
| 369 | AssertingVH<BasicBlock> Block; | |||
| 370 | BasicBlock::iterator Point; | |||
| 371 | DebugLoc DbgLoc; | |||
| 372 | ||||
| 373 | public: | |||
| 374 | InsertPointGuard(IRBuilderBase &B) | |||
| 375 | : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), | |||
| 376 | DbgLoc(B.getCurrentDebugLocation()) {} | |||
| 377 | ||||
| 378 | InsertPointGuard(const InsertPointGuard &) = delete; | |||
| 379 | InsertPointGuard &operator=(const InsertPointGuard &) = delete; | |||
| 380 | ||||
| 381 | ~InsertPointGuard() { | |||
| 382 | Builder.restoreIP(InsertPoint(Block, Point)); | |||
| 383 | Builder.SetCurrentDebugLocation(DbgLoc); | |||
| 384 | } | |||
| 385 | }; | |||
| 386 | ||||
| 387 | // RAII object that stores the current fast math settings and restores | |||
| 388 | // them when the object is destroyed. | |||
| 389 | class FastMathFlagGuard { | |||
| 390 | IRBuilderBase &Builder; | |||
| 391 | FastMathFlags FMF; | |||
| 392 | MDNode *FPMathTag; | |||
| 393 | bool IsFPConstrained; | |||
| 394 | fp::ExceptionBehavior DefaultConstrainedExcept; | |||
| 395 | RoundingMode DefaultConstrainedRounding; | |||
| 396 | ||||
| 397 | public: | |||
| 398 | FastMathFlagGuard(IRBuilderBase &B) | |||
| 399 | : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag), | |||
| 400 | IsFPConstrained(B.IsFPConstrained), | |||
| 401 | DefaultConstrainedExcept(B.DefaultConstrainedExcept), | |||
| 402 | DefaultConstrainedRounding(B.DefaultConstrainedRounding) {} | |||
| 403 | ||||
| 404 | FastMathFlagGuard(const FastMathFlagGuard &) = delete; | |||
| 405 | FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete; | |||
| 406 | ||||
| 407 | ~FastMathFlagGuard() { | |||
| 408 | Builder.FMF = FMF; | |||
| 409 | Builder.DefaultFPMathTag = FPMathTag; | |||
| 410 | Builder.IsFPConstrained = IsFPConstrained; | |||
| 411 | Builder.DefaultConstrainedExcept = DefaultConstrainedExcept; | |||
| 412 | Builder.DefaultConstrainedRounding = DefaultConstrainedRounding; | |||
| 413 | } | |||
| 414 | }; | |||
| 415 | ||||
| 416 | // RAII object that stores the current default operand bundles and restores | |||
| 417 | // them when the object is destroyed. | |||
| 418 | class OperandBundlesGuard { | |||
| 419 | IRBuilderBase &Builder; | |||
| 420 | ArrayRef<OperandBundleDef> DefaultOperandBundles; | |||
| 421 | ||||
| 422 | public: | |||
| 423 | OperandBundlesGuard(IRBuilderBase &B) | |||
| 424 | : Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {} | |||
| 425 | ||||
| 426 | OperandBundlesGuard(const OperandBundlesGuard &) = delete; | |||
| 427 | OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete; | |||
| 428 | ||||
| 429 | ~OperandBundlesGuard() { | |||
| 430 | Builder.DefaultOperandBundles = DefaultOperandBundles; | |||
| 431 | } | |||
| 432 | }; | |||
| 433 | ||||
| 434 | ||||
| 435 | //===--------------------------------------------------------------------===// | |||
| 436 | // Miscellaneous creation methods. | |||
| 437 | //===--------------------------------------------------------------------===// | |||
| 438 | ||||
| 439 | /// Make a new global variable with initializer type i8* | |||
| 440 | /// | |||
| 441 | /// Make a new global variable with an initializer that has array of i8 type | |||
| 442 | /// filled in with the null terminated string value specified. The new global | |||
| 443 | /// variable will be marked mergable with any others of the same contents. If | |||
| 444 | /// Name is specified, it is the name of the global variable created. | |||
| 445 | /// | |||
| 446 | /// If no module is given via \p M, it is take from the insertion point basic | |||
| 447 | /// block. | |||
| 448 | GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "", | |||
| 449 | unsigned AddressSpace = 0, | |||
| 450 | Module *M = nullptr); | |||
| 451 | ||||
| 452 | /// Get a constant value representing either true or false. | |||
| 453 | ConstantInt *getInt1(bool V) { | |||
| 454 | return ConstantInt::get(getInt1Ty(), V); | |||
| 455 | } | |||
| 456 | ||||
| 457 | /// Get the constant value for i1 true. | |||
| 458 | ConstantInt *getTrue() { | |||
| 459 | return ConstantInt::getTrue(Context); | |||
| 460 | } | |||
| 461 | ||||
| 462 | /// Get the constant value for i1 false. | |||
| 463 | ConstantInt *getFalse() { | |||
| 464 | return ConstantInt::getFalse(Context); | |||
| 465 | } | |||
| 466 | ||||
| 467 | /// Get a constant 8-bit value. | |||
| 468 | ConstantInt *getInt8(uint8_t C) { | |||
| 469 | return ConstantInt::get(getInt8Ty(), C); | |||
| 470 | } | |||
| 471 | ||||
| 472 | /// Get a constant 16-bit value. | |||
| 473 | ConstantInt *getInt16(uint16_t C) { | |||
| 474 | return ConstantInt::get(getInt16Ty(), C); | |||
| 475 | } | |||
| 476 | ||||
| 477 | /// Get a constant 32-bit value. | |||
| 478 | ConstantInt *getInt32(uint32_t C) { | |||
| 479 | return ConstantInt::get(getInt32Ty(), C); | |||
| 480 | } | |||
| 481 | ||||
| 482 | /// Get a constant 64-bit value. | |||
| 483 | ConstantInt *getInt64(uint64_t C) { | |||
| 484 | return ConstantInt::get(getInt64Ty(), C); | |||
| 485 | } | |||
| 486 | ||||
| 487 | /// Get a constant N-bit value, zero extended or truncated from | |||
| 488 | /// a 64-bit value. | |||
| 489 | ConstantInt *getIntN(unsigned N, uint64_t C) { | |||
| 490 | return ConstantInt::get(getIntNTy(N), C); | |||
| 491 | } | |||
| 492 | ||||
| 493 | /// Get a constant integer value. | |||
| 494 | ConstantInt *getInt(const APInt &AI) { | |||
| 495 | return ConstantInt::get(Context, AI); | |||
| 496 | } | |||
| 497 | ||||
| 498 | //===--------------------------------------------------------------------===// | |||
| 499 | // Type creation methods | |||
| 500 | //===--------------------------------------------------------------------===// | |||
| 501 | ||||
| 502 | /// Fetch the type representing a single bit | |||
| 503 | IntegerType *getInt1Ty() { | |||
| 504 | return Type::getInt1Ty(Context); | |||
| 505 | } | |||
| 506 | ||||
| 507 | /// Fetch the type representing an 8-bit integer. | |||
| 508 | IntegerType *getInt8Ty() { | |||
| 509 | return Type::getInt8Ty(Context); | |||
| 510 | } | |||
| 511 | ||||
| 512 | /// Fetch the type representing a 16-bit integer. | |||
| 513 | IntegerType *getInt16Ty() { | |||
| 514 | return Type::getInt16Ty(Context); | |||
| 515 | } | |||
| 516 | ||||
| 517 | /// Fetch the type representing a 32-bit integer. | |||
| 518 | IntegerType *getInt32Ty() { | |||
| 519 | return Type::getInt32Ty(Context); | |||
| 520 | } | |||
| 521 | ||||
| 522 | /// Fetch the type representing a 64-bit integer. | |||
| 523 | IntegerType *getInt64Ty() { | |||
| 524 | return Type::getInt64Ty(Context); | |||
| 525 | } | |||
| 526 | ||||
| 527 | /// Fetch the type representing a 128-bit integer. | |||
| 528 | IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); } | |||
| 529 | ||||
| 530 | /// Fetch the type representing an N-bit integer. | |||
| 531 | IntegerType *getIntNTy(unsigned N) { | |||
| 532 | return Type::getIntNTy(Context, N); | |||
| 533 | } | |||
| 534 | ||||
| 535 | /// Fetch the type representing a 16-bit floating point value. | |||
| 536 | Type *getHalfTy() { | |||
| 537 | return Type::getHalfTy(Context); | |||
| 538 | } | |||
| 539 | ||||
| 540 | /// Fetch the type representing a 16-bit brain floating point value. | |||
| 541 | Type *getBFloatTy() { | |||
| 542 | return Type::getBFloatTy(Context); | |||
| 543 | } | |||
| 544 | ||||
| 545 | /// Fetch the type representing a 32-bit floating point value. | |||
| 546 | Type *getFloatTy() { | |||
| 547 | return Type::getFloatTy(Context); | |||
| 548 | } | |||
| 549 | ||||
| 550 | /// Fetch the type representing a 64-bit floating point value. | |||
| 551 | Type *getDoubleTy() { | |||
| 552 | return Type::getDoubleTy(Context); | |||
| 553 | } | |||
| 554 | ||||
| 555 | /// Fetch the type representing void. | |||
| 556 | Type *getVoidTy() { | |||
| 557 | return Type::getVoidTy(Context); | |||
| 558 | } | |||
| 559 | ||||
| 560 | /// Fetch the type representing a pointer to an 8-bit integer value. | |||
| 561 | PointerType *getInt8PtrTy(unsigned AddrSpace = 0) { | |||
| 562 | return Type::getInt8PtrTy(Context, AddrSpace); | |||
| 563 | } | |||
| 564 | ||||
| 565 | /// Fetch the type representing a pointer to an integer value. | |||
| 566 | IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) { | |||
| 567 | return DL.getIntPtrType(Context, AddrSpace); | |||
| 568 | } | |||
| 569 | ||||
| 570 | //===--------------------------------------------------------------------===// | |||
| 571 | // Intrinsic creation methods | |||
| 572 | //===--------------------------------------------------------------------===// | |||
| 573 | ||||
| 574 | /// Create and insert a memset to the specified pointer and the | |||
| 575 | /// specified value. | |||
| 576 | /// | |||
| 577 | /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is | |||
| 578 | /// specified, it will be added to the instruction. Likewise with alias.scope | |||
| 579 | /// and noalias tags. | |||
| 580 | CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, | |||
| 581 | MaybeAlign Align, bool isVolatile = false, | |||
| 582 | MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, | |||
| 583 | MDNode *NoAliasTag = nullptr) { | |||
| 584 | return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile, | |||
| 585 | TBAATag, ScopeTag, NoAliasTag); | |||
| 586 | } | |||
| 587 | ||||
| 588 | CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align, | |||
| 589 | bool isVolatile = false, MDNode *TBAATag = nullptr, | |||
| 590 | MDNode *ScopeTag = nullptr, | |||
| 591 | MDNode *NoAliasTag = nullptr); | |||
| 592 | ||||
| 593 | /// Create and insert an element unordered-atomic memset of the region of | |||
| 594 | /// memory starting at the given pointer to the given value. | |||
| 595 | /// | |||
| 596 | /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is | |||
| 597 | /// specified, it will be added to the instruction. Likewise with alias.scope | |||
| 598 | /// and noalias tags. | |||
| 599 | CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val, | |||
| 600 | uint64_t Size, Align Alignment, | |||
| 601 | uint32_t ElementSize, | |||
| 602 | MDNode *TBAATag = nullptr, | |||
| 603 | MDNode *ScopeTag = nullptr, | |||
| 604 | MDNode *NoAliasTag = nullptr) { | |||
| 605 | return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size), | |||
| 606 | Align(Alignment), ElementSize, | |||
| 607 | TBAATag, ScopeTag, NoAliasTag); | |||
| 608 | } | |||
| 609 | ||||
| 610 | CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val, | |||
| 611 | Value *Size, Align Alignment, | |||
| 612 | uint32_t ElementSize, | |||
| 613 | MDNode *TBAATag = nullptr, | |||
| 614 | MDNode *ScopeTag = nullptr, | |||
| 615 | MDNode *NoAliasTag = nullptr); | |||
| 616 | ||||
| 617 | /// Create and insert a memcpy between the specified pointers. | |||
| 618 | /// | |||
| 619 | /// If the pointers aren't i8*, they will be converted. If a TBAA tag is | |||
| 620 | /// specified, it will be added to the instruction. Likewise with alias.scope | |||
| 621 | /// and noalias tags. | |||
| 622 | CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src, | |||
| 623 | MaybeAlign SrcAlign, uint64_t Size, | |||
| 624 | bool isVolatile = false, MDNode *TBAATag = nullptr, | |||
| 625 | MDNode *TBAAStructTag = nullptr, | |||
| 626 | MDNode *ScopeTag = nullptr, | |||
| 627 | MDNode *NoAliasTag = nullptr) { | |||
| 628 | return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size), | |||
| 629 | isVolatile, TBAATag, TBAAStructTag, ScopeTag, | |||
| 630 | NoAliasTag); | |||
| 631 | } | |||
| 632 | ||||
| 633 | CallInst *CreateMemTransferInst( | |||
| 634 | Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src, | |||
| 635 | MaybeAlign SrcAlign, Value *Size, bool isVolatile = false, | |||
| 636 | MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, | |||
| 637 | MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); | |||
| 638 | ||||
| 639 | CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src, | |||
| 640 | MaybeAlign SrcAlign, Value *Size, | |||
| 641 | bool isVolatile = false, MDNode *TBAATag = nullptr, | |||
| 642 | MDNode *TBAAStructTag = nullptr, | |||
| 643 | MDNode *ScopeTag = nullptr, | |||
| 644 | MDNode *NoAliasTag = nullptr) { | |||
| 645 | return CreateMemTransferInst(Intrinsic::memcpy, Dst, DstAlign, Src, | |||
| 646 | SrcAlign, Size, isVolatile, TBAATag, | |||
| 647 | TBAAStructTag, ScopeTag, NoAliasTag); | |||
| 648 | } | |||
| 649 | ||||
| 650 | CallInst * | |||
| 651 | CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src, | |||
| 652 | MaybeAlign SrcAlign, Value *Size, bool IsVolatile = false, | |||
| 653 | MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, | |||
| 654 | MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); | |||
| 655 | ||||
| 656 | /// Create and insert an element unordered-atomic memcpy between the | |||
| 657 | /// specified pointers. | |||
| 658 | /// | |||
| 659 | /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively. | |||
| 660 | /// | |||
| 661 | /// If the pointers aren't i8*, they will be converted. If a TBAA tag is | |||
| 662 | /// specified, it will be added to the instruction. Likewise with alias.scope | |||
| 663 | /// and noalias tags. | |||
| 664 | CallInst *CreateElementUnorderedAtomicMemCpy( | |||
| 665 | Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, | |||
| 666 | uint32_t ElementSize, MDNode *TBAATag = nullptr, | |||
| 667 | MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, | |||
| 668 | MDNode *NoAliasTag = nullptr); | |||
| 669 | ||||
| 670 | CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src, | |||
| 671 | MaybeAlign SrcAlign, uint64_t Size, | |||
| 672 | bool isVolatile = false, MDNode *TBAATag = nullptr, | |||
| 673 | MDNode *ScopeTag = nullptr, | |||
| 674 | MDNode *NoAliasTag = nullptr) { | |||
| 675 | return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size), | |||
| 676 | isVolatile, TBAATag, ScopeTag, NoAliasTag); | |||
| 677 | } | |||
| 678 | ||||
| 679 | CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src, | |||
| 680 | MaybeAlign SrcAlign, Value *Size, | |||
| 681 | bool isVolatile = false, MDNode *TBAATag = nullptr, | |||
| 682 | MDNode *ScopeTag = nullptr, | |||
| 683 | MDNode *NoAliasTag = nullptr); | |||
| 684 | ||||
| 685 | /// \brief Create and insert an element unordered-atomic memmove between the | |||
| 686 | /// specified pointers. | |||
| 687 | /// | |||
| 688 | /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, | |||
| 689 | /// respectively. | |||
| 690 | /// | |||
| 691 | /// If the pointers aren't i8*, they will be converted. If a TBAA tag is | |||
| 692 | /// specified, it will be added to the instruction. Likewise with alias.scope | |||
| 693 | /// and noalias tags. | |||
| 694 | CallInst *CreateElementUnorderedAtomicMemMove( | |||
| 695 | Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, | |||
| 696 | uint32_t ElementSize, MDNode *TBAATag = nullptr, | |||
| 697 | MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, | |||
| 698 | MDNode *NoAliasTag = nullptr); | |||
| 699 | ||||
| 700 | /// Create a vector fadd reduction intrinsic of the source vector. | |||
| 701 | /// The first parameter is a scalar accumulator value for ordered reductions. | |||
| 702 | CallInst *CreateFAddReduce(Value *Acc, Value *Src); | |||
| 703 | ||||
| 704 | /// Create a vector fmul reduction intrinsic of the source vector. | |||
| 705 | /// The first parameter is a scalar accumulator value for ordered reductions. | |||
| 706 | CallInst *CreateFMulReduce(Value *Acc, Value *Src); | |||
| 707 | ||||
| 708 | /// Create a vector int add reduction intrinsic of the source vector. | |||
| 709 | CallInst *CreateAddReduce(Value *Src); | |||
| 710 | ||||
| 711 | /// Create a vector int mul reduction intrinsic of the source vector. | |||
| 712 | CallInst *CreateMulReduce(Value *Src); | |||
| 713 | ||||
| 714 | /// Create a vector int AND reduction intrinsic of the source vector. | |||
| 715 | CallInst *CreateAndReduce(Value *Src); | |||
| 716 | ||||
| 717 | /// Create a vector int OR reduction intrinsic of the source vector. | |||
| 718 | CallInst *CreateOrReduce(Value *Src); | |||
| 719 | ||||
| 720 | /// Create a vector int XOR reduction intrinsic of the source vector. | |||
| 721 | CallInst *CreateXorReduce(Value *Src); | |||
| 722 | ||||
| 723 | /// Create a vector integer max reduction intrinsic of the source | |||
| 724 | /// vector. | |||
| 725 | CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false); | |||
| 726 | ||||
| 727 | /// Create a vector integer min reduction intrinsic of the source | |||
| 728 | /// vector. | |||
| 729 | CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false); | |||
| 730 | ||||
| 731 | /// Create a vector float max reduction intrinsic of the source | |||
| 732 | /// vector. | |||
| 733 | CallInst *CreateFPMaxReduce(Value *Src); | |||
| 734 | ||||
| 735 | /// Create a vector float min reduction intrinsic of the source | |||
| 736 | /// vector. | |||
| 737 | CallInst *CreateFPMinReduce(Value *Src); | |||
| 738 | ||||
| 739 | /// Create a lifetime.start intrinsic. | |||
| 740 | /// | |||
| 741 | /// If the pointer isn't i8* it will be converted. | |||
| 742 | CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr); | |||
| 743 | ||||
| 744 | /// Create a lifetime.end intrinsic. | |||
| 745 | /// | |||
| 746 | /// If the pointer isn't i8* it will be converted. | |||
| 747 | CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr); | |||
| 748 | ||||
| 749 | /// Create a call to invariant.start intrinsic. | |||
| 750 | /// | |||
| 751 | /// If the pointer isn't i8* it will be converted. | |||
| 752 | CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr); | |||
| 753 | ||||
| 754 | /// Create a call to Masked Load intrinsic | |||
| 755 | CallInst *CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask, | |||
| 756 | Value *PassThru = nullptr, const Twine &Name = ""); | |||
| 757 | ||||
| 758 | /// Create a call to Masked Store intrinsic | |||
| 759 | CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment, | |||
| 760 | Value *Mask); | |||
| 761 | ||||
| 762 | /// Create a call to Masked Gather intrinsic | |||
| 763 | CallInst *CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment, | |||
| 764 | Value *Mask = nullptr, Value *PassThru = nullptr, | |||
| 765 | const Twine &Name = ""); | |||
| 766 | ||||
| 767 | /// Create a call to Masked Scatter intrinsic | |||
| 768 | CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment, | |||
| 769 | Value *Mask = nullptr); | |||
| 770 | ||||
| 771 | /// Create an assume intrinsic call that allows the optimizer to | |||
| 772 | /// assume that the provided condition will be true. | |||
| 773 | /// | |||
| 774 | /// The optional argument \p OpBundles specifies operand bundles that are | |||
| 775 | /// added to the call instruction. | |||
| 776 | CallInst *CreateAssumption(Value *Cond, | |||
| 777 | ArrayRef<OperandBundleDef> OpBundles = llvm::None); | |||
| 778 | ||||
| 779 | /// Create a llvm.experimental.noalias.scope.decl intrinsic call. | |||
| 780 | Instruction *CreateNoAliasScopeDeclaration(Value *Scope); | |||
| 781 | Instruction *CreateNoAliasScopeDeclaration(MDNode *ScopeTag) { | |||
| 782 | return CreateNoAliasScopeDeclaration( | |||
| 783 | MetadataAsValue::get(Context, ScopeTag)); | |||
| 784 | } | |||
| 785 | ||||
| 786 | /// Create a call to the experimental.gc.statepoint intrinsic to | |||
| 787 | /// start a new statepoint sequence. | |||
| 788 | CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, | |||
| 789 | Value *ActualCallee, | |||
| 790 | ArrayRef<Value *> CallArgs, | |||
| 791 | Optional<ArrayRef<Value *>> DeoptArgs, | |||
| 792 | ArrayRef<Value *> GCArgs, | |||
| 793 | const Twine &Name = ""); | |||
| 794 | ||||
| 795 | /// Create a call to the experimental.gc.statepoint intrinsic to | |||
| 796 | /// start a new statepoint sequence. | |||
| 797 | CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, | |||
| 798 | Value *ActualCallee, uint32_t Flags, | |||
| 799 | ArrayRef<Value *> CallArgs, | |||
| 800 | Optional<ArrayRef<Use>> TransitionArgs, | |||
| 801 | Optional<ArrayRef<Use>> DeoptArgs, | |||
| 802 | ArrayRef<Value *> GCArgs, | |||
| 803 | const Twine &Name = ""); | |||
| 804 | ||||
| 805 | /// Conveninence function for the common case when CallArgs are filled | |||
| 806 | /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be | |||
| 807 | /// .get()'ed to get the Value pointer. | |||
| 808 | CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, | |||
| 809 | Value *ActualCallee, ArrayRef<Use> CallArgs, | |||
| 810 | Optional<ArrayRef<Value *>> DeoptArgs, | |||
| 811 | ArrayRef<Value *> GCArgs, | |||
| 812 | const Twine &Name = ""); | |||
| 813 | ||||
| 814 | /// Create an invoke to the experimental.gc.statepoint intrinsic to | |||
| 815 | /// start a new statepoint sequence. | |||
| 816 | InvokeInst * | |||
| 817 | CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes, | |||
| 818 | Value *ActualInvokee, BasicBlock *NormalDest, | |||
| 819 | BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs, | |||
| 820 | Optional<ArrayRef<Value *>> DeoptArgs, | |||
| 821 | ArrayRef<Value *> GCArgs, const Twine &Name = ""); | |||
| 822 | ||||
| 823 | /// Create an invoke to the experimental.gc.statepoint intrinsic to | |||
| 824 | /// start a new statepoint sequence. | |||
| 825 | InvokeInst *CreateGCStatepointInvoke( | |||
| 826 | uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee, | |||
| 827 | BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags, | |||
| 828 | ArrayRef<Value *> InvokeArgs, Optional<ArrayRef<Use>> TransitionArgs, | |||
| 829 | Optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs, | |||
| 830 | const Twine &Name = ""); | |||
| 831 | ||||
| 832 | // Convenience function for the common case when CallArgs are filled in using | |||
| 833 | // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to | |||
| 834 | // get the Value *. | |||
| 835 | InvokeInst * | |||
| 836 | CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes, | |||
| 837 | Value *ActualInvokee, BasicBlock *NormalDest, | |||
| 838 | BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs, | |||
| 839 | Optional<ArrayRef<Value *>> DeoptArgs, | |||
| 840 | ArrayRef<Value *> GCArgs, const Twine &Name = ""); | |||
| 841 | ||||
| 842 | /// Create a call to the experimental.gc.result intrinsic to extract | |||
| 843 | /// the result from a call wrapped in a statepoint. | |||
| 844 | CallInst *CreateGCResult(Instruction *Statepoint, | |||
| 845 | Type *ResultType, | |||
| 846 | const Twine &Name = ""); | |||
| 847 | ||||
| 848 | /// Create a call to the experimental.gc.relocate intrinsics to | |||
| 849 | /// project the relocated value of one pointer from the statepoint. | |||
| 850 | CallInst *CreateGCRelocate(Instruction *Statepoint, | |||
| 851 | int BaseOffset, | |||
| 852 | int DerivedOffset, | |||
| 853 | Type *ResultType, | |||
| 854 | const Twine &Name = ""); | |||
| 855 | ||||
| 856 | /// Create a call to the experimental.gc.pointer.base intrinsic to get the | |||
| 857 | /// base pointer for the specified derived pointer. | |||
| 858 | CallInst *CreateGCGetPointerBase(Value *DerivedPtr, const Twine &Name = ""); | |||
| 859 | ||||
| 860 | /// Create a call to the experimental.gc.get.pointer.offset intrinsic to get | |||
| 861 | /// the offset of the specified derived pointer from its base. | |||
| 862 | CallInst *CreateGCGetPointerOffset(Value *DerivedPtr, const Twine &Name = ""); | |||
| 863 | ||||
| 864 | /// Create a call to llvm.vscale, multiplied by \p Scaling. The type of VScale | |||
| 865 | /// will be the same type as that of \p Scaling. | |||
| 866 | Value *CreateVScale(Constant *Scaling, const Twine &Name = ""); | |||
| 867 | ||||
| 868 | /// Creates a vector of type \p DstType with the linear sequence <0, 1, ...> | |||
| 869 | Value *CreateStepVector(Type *DstType, const Twine &Name = ""); | |||
| 870 | ||||
| 871 | /// Create a call to intrinsic \p ID with 1 operand which is mangled on its | |||
| 872 | /// type. | |||
| 873 | CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, | |||
| 874 | Instruction *FMFSource = nullptr, | |||
| 875 | const Twine &Name = ""); | |||
| 876 | ||||
| 877 | /// Create a call to intrinsic \p ID with 2 operands which is mangled on the | |||
| 878 | /// first type. | |||
| 879 | CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, | |||
| 880 | Instruction *FMFSource = nullptr, | |||
| 881 | const Twine &Name = ""); | |||
| 882 | ||||
| 883 | /// Create a call to intrinsic \p ID with \p args, mangled using \p Types. If | |||
| 884 | /// \p FMFSource is provided, copy fast-math-flags from that instruction to | |||
| 885 | /// the intrinsic. | |||
| 886 | CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types, | |||
| 887 | ArrayRef<Value *> Args, | |||
| 888 | Instruction *FMFSource = nullptr, | |||
| 889 | const Twine &Name = ""); | |||
| 890 | ||||
| 891 | /// Create call to the minnum intrinsic. | |||
| 892 | CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 893 | return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name); | |||
| 894 | } | |||
| 895 | ||||
| 896 | /// Create call to the maxnum intrinsic. | |||
| 897 | CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 898 | return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name); | |||
| 899 | } | |||
| 900 | ||||
| 901 | /// Create call to the minimum intrinsic. | |||
| 902 | CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 903 | return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name); | |||
| 904 | } | |||
| 905 | ||||
| 906 | /// Create call to the maximum intrinsic. | |||
| 907 | CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 908 | return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name); | |||
| 909 | } | |||
| 910 | ||||
| 911 | /// Create a call to the arithmetic_fence intrinsic. | |||
| 912 | CallInst *CreateArithmeticFence(Value *Val, Type *DstType, | |||
| 913 | const Twine &Name = "") { | |||
| 914 | return CreateIntrinsic(Intrinsic::arithmetic_fence, DstType, Val, nullptr, | |||
| 915 | Name); | |||
| 916 | } | |||
| 917 | ||||
| 918 | /// Create a call to the experimental.vector.extract intrinsic. | |||
| 919 | CallInst *CreateExtractVector(Type *DstType, Value *SrcVec, Value *Idx, | |||
| 920 | const Twine &Name = "") { | |||
| 921 | return CreateIntrinsic(Intrinsic::experimental_vector_extract, | |||
| 922 | {DstType, SrcVec->getType()}, {SrcVec, Idx}, nullptr, | |||
| 923 | Name); | |||
| 924 | } | |||
| 925 | ||||
| 926 | /// Create a call to the experimental.vector.insert intrinsic. | |||
| 927 | CallInst *CreateInsertVector(Type *DstType, Value *SrcVec, Value *SubVec, | |||
| 928 | Value *Idx, const Twine &Name = "") { | |||
| 929 | return CreateIntrinsic(Intrinsic::experimental_vector_insert, | |||
| 930 | {DstType, SubVec->getType()}, {SrcVec, SubVec, Idx}, | |||
| 931 | nullptr, Name); | |||
| 932 | } | |||
| 933 | ||||
| 934 | private: | |||
| 935 | /// Create a call to a masked intrinsic with given Id. | |||
| 936 | CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops, | |||
| 937 | ArrayRef<Type *> OverloadedTypes, | |||
| 938 | const Twine &Name = ""); | |||
| 939 | ||||
| 940 | Value *getCastedInt8PtrValue(Value *Ptr); | |||
| 941 | ||||
| 942 | //===--------------------------------------------------------------------===// | |||
| 943 | // Instruction creation methods: Terminators | |||
| 944 | //===--------------------------------------------------------------------===// | |||
| 945 | ||||
| 946 | private: | |||
| 947 | /// Helper to add branch weight and unpredictable metadata onto an | |||
| 948 | /// instruction. | |||
| 949 | /// \returns The annotated instruction. | |||
| 950 | template <typename InstTy> | |||
| 951 | InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) { | |||
| 952 | if (Weights) | |||
| 953 | I->setMetadata(LLVMContext::MD_prof, Weights); | |||
| 954 | if (Unpredictable) | |||
| 955 | I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable); | |||
| 956 | return I; | |||
| 957 | } | |||
| 958 | ||||
| 959 | public: | |||
| 960 | /// Create a 'ret void' instruction. | |||
| 961 | ReturnInst *CreateRetVoid() { | |||
| 962 | return Insert(ReturnInst::Create(Context)); | |||
| 963 | } | |||
| 964 | ||||
| 965 | /// Create a 'ret <val>' instruction. | |||
| 966 | ReturnInst *CreateRet(Value *V) { | |||
| 967 | return Insert(ReturnInst::Create(Context, V)); | |||
| 968 | } | |||
| 969 | ||||
| 970 | /// Create a sequence of N insertvalue instructions, | |||
| 971 | /// with one Value from the retVals array each, that build a aggregate | |||
| 972 | /// return value one value at a time, and a ret instruction to return | |||
| 973 | /// the resulting aggregate value. | |||
| 974 | /// | |||
| 975 | /// This is a convenience function for code that uses aggregate return values | |||
| 976 | /// as a vehicle for having multiple return values. | |||
| 977 | ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) { | |||
| 978 | Value *V = UndefValue::get(getCurrentFunctionReturnType()); | |||
| 979 | for (unsigned i = 0; i != N; ++i) | |||
| 980 | V = CreateInsertValue(V, retVals[i], i, "mrv"); | |||
| 981 | return Insert(ReturnInst::Create(Context, V)); | |||
| 982 | } | |||
| 983 | ||||
| 984 | /// Create an unconditional 'br label X' instruction. | |||
| 985 | BranchInst *CreateBr(BasicBlock *Dest) { | |||
| 986 | return Insert(BranchInst::Create(Dest)); | |||
| 987 | } | |||
| 988 | ||||
| 989 | /// Create a conditional 'br Cond, TrueDest, FalseDest' | |||
| 990 | /// instruction. | |||
| 991 | BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, | |||
| 992 | MDNode *BranchWeights = nullptr, | |||
| 993 | MDNode *Unpredictable = nullptr) { | |||
| 994 | return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond), | |||
| 995 | BranchWeights, Unpredictable)); | |||
| 996 | } | |||
| 997 | ||||
| 998 | /// Create a conditional 'br Cond, TrueDest, FalseDest' | |||
| 999 | /// instruction. Copy branch meta data if available. | |||
| 1000 | BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, | |||
| 1001 | Instruction *MDSrc) { | |||
| 1002 | BranchInst *Br = BranchInst::Create(True, False, Cond); | |||
| 1003 | if (MDSrc) { | |||
| 1004 | unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable, | |||
| 1005 | LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; | |||
| 1006 | Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4)); | |||
| 1007 | } | |||
| 1008 | return Insert(Br); | |||
| 1009 | } | |||
| 1010 | ||||
| 1011 | /// Create a switch instruction with the specified value, default dest, | |||
| 1012 | /// and with a hint for the number of cases that will be added (for efficient | |||
| 1013 | /// allocation). | |||
| 1014 | SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10, | |||
| 1015 | MDNode *BranchWeights = nullptr, | |||
| 1016 | MDNode *Unpredictable = nullptr) { | |||
| 1017 | return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases), | |||
| 1018 | BranchWeights, Unpredictable)); | |||
| 1019 | } | |||
| 1020 | ||||
| 1021 | /// Create an indirect branch instruction with the specified address | |||
| 1022 | /// operand, with an optional hint for the number of destinations that will be | |||
| 1023 | /// added (for efficient allocation). | |||
| 1024 | IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) { | |||
| 1025 | return Insert(IndirectBrInst::Create(Addr, NumDests)); | |||
| 1026 | } | |||
| 1027 | ||||
| 1028 | /// Create an invoke instruction. | |||
| 1029 | InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee, | |||
| 1030 | BasicBlock *NormalDest, BasicBlock *UnwindDest, | |||
| 1031 | ArrayRef<Value *> Args, | |||
| 1032 | ArrayRef<OperandBundleDef> OpBundles, | |||
| 1033 | const Twine &Name = "") { | |||
| 1034 | InvokeInst *II = | |||
| 1035 | InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles); | |||
| 1036 | if (IsFPConstrained) | |||
| 1037 | setConstrainedFPCallAttr(II); | |||
| 1038 | return Insert(II, Name); | |||
| 1039 | } | |||
| 1040 | InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee, | |||
| 1041 | BasicBlock *NormalDest, BasicBlock *UnwindDest, | |||
| 1042 | ArrayRef<Value *> Args = None, | |||
| 1043 | const Twine &Name = "") { | |||
| 1044 | InvokeInst *II = | |||
| 1045 | InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args); | |||
| 1046 | if (IsFPConstrained) | |||
| 1047 | setConstrainedFPCallAttr(II); | |||
| 1048 | return Insert(II, Name); | |||
| 1049 | } | |||
| 1050 | ||||
| 1051 | InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest, | |||
| 1052 | BasicBlock *UnwindDest, ArrayRef<Value *> Args, | |||
| 1053 | ArrayRef<OperandBundleDef> OpBundles, | |||
| 1054 | const Twine &Name = "") { | |||
| 1055 | return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(), | |||
| 1056 | NormalDest, UnwindDest, Args, OpBundles, Name); | |||
| 1057 | } | |||
| 1058 | ||||
| 1059 | InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest, | |||
| 1060 | BasicBlock *UnwindDest, | |||
| 1061 | ArrayRef<Value *> Args = None, | |||
| 1062 | const Twine &Name = "") { | |||
| 1063 | return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(), | |||
| 1064 | NormalDest, UnwindDest, Args, Name); | |||
| 1065 | } | |||
| 1066 | ||||
| 1067 | /// \brief Create a callbr instruction. | |||
| 1068 | CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee, | |||
| 1069 | BasicBlock *DefaultDest, | |||
| 1070 | ArrayRef<BasicBlock *> IndirectDests, | |||
| 1071 | ArrayRef<Value *> Args = None, | |||
| 1072 | const Twine &Name = "") { | |||
| 1073 | return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, | |||
| 1074 | Args), Name); | |||
| 1075 | } | |||
| 1076 | CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee, | |||
| 1077 | BasicBlock *DefaultDest, | |||
| 1078 | ArrayRef<BasicBlock *> IndirectDests, | |||
| 1079 | ArrayRef<Value *> Args, | |||
| 1080 | ArrayRef<OperandBundleDef> OpBundles, | |||
| 1081 | const Twine &Name = "") { | |||
| 1082 | return Insert( | |||
| 1083 | CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, | |||
| 1084 | OpBundles), Name); | |||
| 1085 | } | |||
| 1086 | ||||
| 1087 | CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest, | |||
| 1088 | ArrayRef<BasicBlock *> IndirectDests, | |||
| 1089 | ArrayRef<Value *> Args = None, | |||
| 1090 | const Twine &Name = "") { | |||
| 1091 | return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(), | |||
| 1092 | DefaultDest, IndirectDests, Args, Name); | |||
| 1093 | } | |||
| 1094 | CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest, | |||
| 1095 | ArrayRef<BasicBlock *> IndirectDests, | |||
| 1096 | ArrayRef<Value *> Args, | |||
| 1097 | ArrayRef<OperandBundleDef> OpBundles, | |||
| 1098 | const Twine &Name = "") { | |||
| 1099 | return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(), | |||
| 1100 | DefaultDest, IndirectDests, Args, Name); | |||
| 1101 | } | |||
| 1102 | ||||
| 1103 | ResumeInst *CreateResume(Value *Exn) { | |||
| 1104 | return Insert(ResumeInst::Create(Exn)); | |||
| 1105 | } | |||
| 1106 | ||||
| 1107 | CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad, | |||
| 1108 | BasicBlock *UnwindBB = nullptr) { | |||
| 1109 | return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB)); | |||
| 1110 | } | |||
| 1111 | ||||
| 1112 | CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB, | |||
| 1113 | unsigned NumHandlers, | |||
| 1114 | const Twine &Name = "") { | |||
| 1115 | return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers), | |||
| 1116 | Name); | |||
| 1117 | } | |||
| 1118 | ||||
| 1119 | CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args, | |||
| 1120 | const Twine &Name = "") { | |||
| 1121 | return Insert(CatchPadInst::Create(ParentPad, Args), Name); | |||
| 1122 | } | |||
| 1123 | ||||
| 1124 | CleanupPadInst *CreateCleanupPad(Value *ParentPad, | |||
| 1125 | ArrayRef<Value *> Args = None, | |||
| 1126 | const Twine &Name = "") { | |||
| 1127 | return Insert(CleanupPadInst::Create(ParentPad, Args), Name); | |||
| 1128 | } | |||
| 1129 | ||||
| 1130 | CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) { | |||
| 1131 | return Insert(CatchReturnInst::Create(CatchPad, BB)); | |||
| 1132 | } | |||
| 1133 | ||||
| 1134 | UnreachableInst *CreateUnreachable() { | |||
| 1135 | return Insert(new UnreachableInst(Context)); | |||
| 1136 | } | |||
| 1137 | ||||
| 1138 | //===--------------------------------------------------------------------===// | |||
| 1139 | // Instruction creation methods: Binary Operators | |||
| 1140 | //===--------------------------------------------------------------------===// | |||
| 1141 | private: | |||
| 1142 | BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc, | |||
| 1143 | Value *LHS, Value *RHS, | |||
| 1144 | const Twine &Name, | |||
| 1145 | bool HasNUW, bool HasNSW) { | |||
| 1146 | BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name); | |||
| 1147 | if (HasNUW) BO->setHasNoUnsignedWrap(); | |||
| 1148 | if (HasNSW) BO->setHasNoSignedWrap(); | |||
| 1149 | return BO; | |||
| 1150 | } | |||
| 1151 | ||||
| 1152 | Instruction *setFPAttrs(Instruction *I, MDNode *FPMD, | |||
| 1153 | FastMathFlags FMF) const { | |||
| 1154 | if (!FPMD) | |||
| 1155 | FPMD = DefaultFPMathTag; | |||
| 1156 | if (FPMD) | |||
| 1157 | I->setMetadata(LLVMContext::MD_fpmath, FPMD); | |||
| 1158 | I->setFastMathFlags(FMF); | |||
| 1159 | return I; | |||
| 1160 | } | |||
| 1161 | ||||
| 1162 | Value *foldConstant(Instruction::BinaryOps Opc, Value *L, | |||
| 1163 | Value *R, const Twine &Name) const { | |||
| 1164 | auto *LC = dyn_cast<Constant>(L); | |||
| 1165 | auto *RC = dyn_cast<Constant>(R); | |||
| 1166 | return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr; | |||
| 1167 | } | |||
| 1168 | ||||
| 1169 | Value *getConstrainedFPRounding(Optional<RoundingMode> Rounding) { | |||
| 1170 | RoundingMode UseRounding = DefaultConstrainedRounding; | |||
| 1171 | ||||
| 1172 | if (Rounding.hasValue()) | |||
| 1173 | UseRounding = Rounding.getValue(); | |||
| 1174 | ||||
| 1175 | Optional<StringRef> RoundingStr = RoundingModeToStr(UseRounding); | |||
| 1176 | assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")((void)0); | |||
| 1177 | auto *RoundingMDS = MDString::get(Context, RoundingStr.getValue()); | |||
| 1178 | ||||
| 1179 | return MetadataAsValue::get(Context, RoundingMDS); | |||
| 1180 | } | |||
| 1181 | ||||
| 1182 | Value *getConstrainedFPExcept(Optional<fp::ExceptionBehavior> Except) { | |||
| 1183 | fp::ExceptionBehavior UseExcept = DefaultConstrainedExcept; | |||
| 1184 | ||||
| 1185 | if (Except.hasValue()) | |||
| 1186 | UseExcept = Except.getValue(); | |||
| 1187 | ||||
| 1188 | Optional<StringRef> ExceptStr = ExceptionBehaviorToStr(UseExcept); | |||
| 1189 | assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")((void)0); | |||
| 1190 | auto *ExceptMDS = MDString::get(Context, ExceptStr.getValue()); | |||
| 1191 | ||||
| 1192 | return MetadataAsValue::get(Context, ExceptMDS); | |||
| 1193 | } | |||
| 1194 | ||||
| 1195 | Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) { | |||
| 1196 | assert(CmpInst::isFPPredicate(Predicate) &&((void)0) | |||
| 1197 | Predicate != CmpInst::FCMP_FALSE &&((void)0) | |||
| 1198 | Predicate != CmpInst::FCMP_TRUE &&((void)0) | |||
| 1199 | "Invalid constrained FP comparison predicate!")((void)0); | |||
| 1200 | ||||
| 1201 | StringRef PredicateStr = CmpInst::getPredicateName(Predicate); | |||
| 1202 | auto *PredicateMDS = MDString::get(Context, PredicateStr); | |||
| 1203 | ||||
| 1204 | return MetadataAsValue::get(Context, PredicateMDS); | |||
| 1205 | } | |||
| 1206 | ||||
| 1207 | public: | |||
| 1208 | Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1209 | bool HasNUW = false, bool HasNSW = false) { | |||
| 1210 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1211 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 1212 | return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name); | |||
| 1213 | return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name, | |||
| 1214 | HasNUW, HasNSW); | |||
| 1215 | } | |||
| 1216 | ||||
| 1217 | Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1218 | return CreateAdd(LHS, RHS, Name, false, true); | |||
| 1219 | } | |||
| 1220 | ||||
| 1221 | Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1222 | return CreateAdd(LHS, RHS, Name, true, false); | |||
| 1223 | } | |||
| 1224 | ||||
| 1225 | Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1226 | bool HasNUW = false, bool HasNSW = false) { | |||
| 1227 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1228 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 1229 | return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name); | |||
| 1230 | return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name, | |||
| 1231 | HasNUW, HasNSW); | |||
| 1232 | } | |||
| 1233 | ||||
| 1234 | Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1235 | return CreateSub(LHS, RHS, Name, false, true); | |||
| 1236 | } | |||
| 1237 | ||||
| 1238 | Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1239 | return CreateSub(LHS, RHS, Name, true, false); | |||
| 1240 | } | |||
| 1241 | ||||
| 1242 | Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1243 | bool HasNUW = false, bool HasNSW = false) { | |||
| 1244 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1245 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 1246 | return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name); | |||
| 1247 | return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name, | |||
| 1248 | HasNUW, HasNSW); | |||
| 1249 | } | |||
| 1250 | ||||
| 1251 | Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1252 | return CreateMul(LHS, RHS, Name, false, true); | |||
| 1253 | } | |||
| 1254 | ||||
| 1255 | Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1256 | return CreateMul(LHS, RHS, Name, true, false); | |||
| 1257 | } | |||
| 1258 | ||||
| 1259 | Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1260 | bool isExact = false) { | |||
| 1261 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1262 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 1263 | return Insert(Folder.CreateUDiv(LC, RC, isExact), Name); | |||
| 1264 | if (!isExact) | |||
| 1265 | return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name); | |||
| 1266 | return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name); | |||
| 1267 | } | |||
| 1268 | ||||
| 1269 | Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1270 | return CreateUDiv(LHS, RHS, Name, true); | |||
| 1271 | } | |||
| 1272 | ||||
| 1273 | Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1274 | bool isExact = false) { | |||
| 1275 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1276 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 1277 | return Insert(Folder.CreateSDiv(LC, RC, isExact), Name); | |||
| 1278 | if (!isExact) | |||
| 1279 | return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name); | |||
| 1280 | return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name); | |||
| 1281 | } | |||
| 1282 | ||||
| 1283 | Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1284 | return CreateSDiv(LHS, RHS, Name, true); | |||
| 1285 | } | |||
| 1286 | ||||
| 1287 | Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1288 | if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V; | |||
| 1289 | return Insert(BinaryOperator::CreateURem(LHS, RHS), Name); | |||
| 1290 | } | |||
| 1291 | ||||
| 1292 | Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1293 | if (Value *V = foldConstant(Instruction::SRem, LHS, RHS, Name)) return V; | |||
| 1294 | return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name); | |||
| 1295 | } | |||
| 1296 | ||||
| 1297 | Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1298 | bool HasNUW = false, bool HasNSW = false) { | |||
| 1299 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1300 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 1301 | return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name); | |||
| 1302 | return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name, | |||
| 1303 | HasNUW, HasNSW); | |||
| 1304 | } | |||
| 1305 | ||||
| 1306 | Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "", | |||
| 1307 | bool HasNUW = false, bool HasNSW = false) { | |||
| 1308 | return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name, | |||
| 1309 | HasNUW, HasNSW); | |||
| 1310 | } | |||
| 1311 | ||||
| 1312 | Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "", | |||
| 1313 | bool HasNUW = false, bool HasNSW = false) { | |||
| 1314 | return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name, | |||
| 1315 | HasNUW, HasNSW); | |||
| 1316 | } | |||
| 1317 | ||||
| 1318 | Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1319 | bool isExact = false) { | |||
| 1320 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1321 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 1322 | return Insert(Folder.CreateLShr(LC, RC, isExact), Name); | |||
| 1323 | if (!isExact) | |||
| 1324 | return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name); | |||
| 1325 | return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name); | |||
| 1326 | } | |||
| 1327 | ||||
| 1328 | Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "", | |||
| 1329 | bool isExact = false) { | |||
| 1330 | return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); | |||
| 1331 | } | |||
| 1332 | ||||
| 1333 | Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "", | |||
| 1334 | bool isExact = false) { | |||
| 1335 | return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); | |||
| 1336 | } | |||
| 1337 | ||||
| 1338 | Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1339 | bool isExact = false) { | |||
| 1340 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1341 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 1342 | return Insert(Folder.CreateAShr(LC, RC, isExact), Name); | |||
| 1343 | if (!isExact) | |||
| 1344 | return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name); | |||
| 1345 | return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name); | |||
| 1346 | } | |||
| 1347 | ||||
| 1348 | Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "", | |||
| 1349 | bool isExact = false) { | |||
| 1350 | return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); | |||
| 1351 | } | |||
| 1352 | ||||
| 1353 | Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "", | |||
| 1354 | bool isExact = false) { | |||
| 1355 | return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); | |||
| 1356 | } | |||
| 1357 | ||||
| 1358 | Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1359 | if (auto *RC = dyn_cast<Constant>(RHS)) { | |||
| 1360 | if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isMinusOne()) | |||
| 1361 | return LHS; // LHS & -1 -> LHS | |||
| 1362 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1363 | return Insert(Folder.CreateAnd(LC, RC), Name); | |||
| 1364 | } | |||
| 1365 | return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name); | |||
| 1366 | } | |||
| 1367 | ||||
| 1368 | Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") { | |||
| 1369 | return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name); | |||
| 1370 | } | |||
| 1371 | ||||
| 1372 | Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") { | |||
| 1373 | return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name); | |||
| 1374 | } | |||
| 1375 | ||||
| 1376 | Value *CreateAnd(ArrayRef<Value*> Ops) { | |||
| 1377 | assert(!Ops.empty())((void)0); | |||
| 1378 | Value *Accum = Ops[0]; | |||
| 1379 | for (unsigned i = 1; i < Ops.size(); i++) | |||
| 1380 | Accum = CreateAnd(Accum, Ops[i]); | |||
| 1381 | return Accum; | |||
| 1382 | } | |||
| 1383 | ||||
| 1384 | Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1385 | if (auto *RC = dyn_cast<Constant>(RHS)) { | |||
| 1386 | if (RC->isNullValue()) | |||
| 1387 | return LHS; // LHS | 0 -> LHS | |||
| 1388 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 1389 | return Insert(Folder.CreateOr(LC, RC), Name); | |||
| 1390 | } | |||
| 1391 | return Insert(BinaryOperator::CreateOr(LHS, RHS), Name); | |||
| 1392 | } | |||
| 1393 | ||||
| 1394 | Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") { | |||
| 1395 | return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name); | |||
| 1396 | } | |||
| 1397 | ||||
| 1398 | Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") { | |||
| 1399 | return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name); | |||
| 1400 | } | |||
| 1401 | ||||
| 1402 | Value *CreateOr(ArrayRef<Value*> Ops) { | |||
| 1403 | assert(!Ops.empty())((void)0); | |||
| 1404 | Value *Accum = Ops[0]; | |||
| 1405 | for (unsigned i = 1; i < Ops.size(); i++) | |||
| 1406 | Accum = CreateOr(Accum, Ops[i]); | |||
| 1407 | return Accum; | |||
| 1408 | } | |||
| 1409 | ||||
| 1410 | Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 1411 | if (Value *V = foldConstant(Instruction::Xor, LHS, RHS, Name)) return V; | |||
| 1412 | return Insert(BinaryOperator::CreateXor(LHS, RHS), Name); | |||
| 1413 | } | |||
| 1414 | ||||
| 1415 | Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") { | |||
| 1416 | return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name); | |||
| 1417 | } | |||
| 1418 | ||||
| 1419 | Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") { | |||
| 1420 | return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name); | |||
| 1421 | } | |||
| 1422 | ||||
| 1423 | Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "", | |||
| 1424 | MDNode *FPMD = nullptr) { | |||
| 1425 | if (IsFPConstrained) | |||
| 1426 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd, | |||
| 1427 | L, R, nullptr, Name, FPMD); | |||
| 1428 | ||||
| 1429 | if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V; | |||
| 1430 | Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF); | |||
| 1431 | return Insert(I, Name); | |||
| 1432 | } | |||
| 1433 | ||||
| 1434 | /// Copy fast-math-flags from an instruction rather than using the builder's | |||
| 1435 | /// default FMF. | |||
| 1436 | Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource, | |||
| 1437 | const Twine &Name = "") { | |||
| 1438 | if (IsFPConstrained) | |||
| 1439 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd, | |||
| 1440 | L, R, FMFSource, Name); | |||
| 1441 | ||||
| 1442 | if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V; | |||
| 1443 | Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr, | |||
| 1444 | FMFSource->getFastMathFlags()); | |||
| 1445 | return Insert(I, Name); | |||
| 1446 | } | |||
| 1447 | ||||
| 1448 | Value *CreateFSub(Value *L, Value *R, const Twine &Name = "", | |||
| 1449 | MDNode *FPMD = nullptr) { | |||
| 1450 | if (IsFPConstrained) | |||
| 1451 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub, | |||
| 1452 | L, R, nullptr, Name, FPMD); | |||
| 1453 | ||||
| 1454 | if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V; | |||
| 1455 | Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF); | |||
| 1456 | return Insert(I, Name); | |||
| 1457 | } | |||
| 1458 | ||||
| 1459 | /// Copy fast-math-flags from an instruction rather than using the builder's | |||
| 1460 | /// default FMF. | |||
| 1461 | Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource, | |||
| 1462 | const Twine &Name = "") { | |||
| 1463 | if (IsFPConstrained) | |||
| 1464 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub, | |||
| 1465 | L, R, FMFSource, Name); | |||
| 1466 | ||||
| 1467 | if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V; | |||
| 1468 | Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr, | |||
| 1469 | FMFSource->getFastMathFlags()); | |||
| 1470 | return Insert(I, Name); | |||
| 1471 | } | |||
| 1472 | ||||
| 1473 | Value *CreateFMul(Value *L, Value *R, const Twine &Name = "", | |||
| 1474 | MDNode *FPMD = nullptr) { | |||
| 1475 | if (IsFPConstrained) | |||
| 1476 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul, | |||
| 1477 | L, R, nullptr, Name, FPMD); | |||
| 1478 | ||||
| 1479 | if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V; | |||
| 1480 | Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF); | |||
| 1481 | return Insert(I, Name); | |||
| 1482 | } | |||
| 1483 | ||||
| 1484 | /// Copy fast-math-flags from an instruction rather than using the builder's | |||
| 1485 | /// default FMF. | |||
| 1486 | Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource, | |||
| 1487 | const Twine &Name = "") { | |||
| 1488 | if (IsFPConstrained) | |||
| 1489 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul, | |||
| 1490 | L, R, FMFSource, Name); | |||
| 1491 | ||||
| 1492 | if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V; | |||
| 1493 | Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr, | |||
| 1494 | FMFSource->getFastMathFlags()); | |||
| 1495 | return Insert(I, Name); | |||
| 1496 | } | |||
| 1497 | ||||
| 1498 | Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "", | |||
| 1499 | MDNode *FPMD = nullptr) { | |||
| 1500 | if (IsFPConstrained) | |||
| 1501 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv, | |||
| 1502 | L, R, nullptr, Name, FPMD); | |||
| 1503 | ||||
| 1504 | if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V; | |||
| 1505 | Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF); | |||
| 1506 | return Insert(I, Name); | |||
| 1507 | } | |||
| 1508 | ||||
| 1509 | /// Copy fast-math-flags from an instruction rather than using the builder's | |||
| 1510 | /// default FMF. | |||
| 1511 | Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource, | |||
| 1512 | const Twine &Name = "") { | |||
| 1513 | if (IsFPConstrained) | |||
| 1514 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv, | |||
| 1515 | L, R, FMFSource, Name); | |||
| 1516 | ||||
| 1517 | if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V; | |||
| 1518 | Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr, | |||
| 1519 | FMFSource->getFastMathFlags()); | |||
| 1520 | return Insert(I, Name); | |||
| 1521 | } | |||
| 1522 | ||||
| 1523 | Value *CreateFRem(Value *L, Value *R, const Twine &Name = "", | |||
| 1524 | MDNode *FPMD = nullptr) { | |||
| 1525 | if (IsFPConstrained) | |||
| 1526 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem, | |||
| 1527 | L, R, nullptr, Name, FPMD); | |||
| 1528 | ||||
| 1529 | if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V; | |||
| 1530 | Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF); | |||
| 1531 | return Insert(I, Name); | |||
| 1532 | } | |||
| 1533 | ||||
| 1534 | /// Copy fast-math-flags from an instruction rather than using the builder's | |||
| 1535 | /// default FMF. | |||
| 1536 | Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource, | |||
| 1537 | const Twine &Name = "") { | |||
| 1538 | if (IsFPConstrained) | |||
| 1539 | return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem, | |||
| 1540 | L, R, FMFSource, Name); | |||
| 1541 | ||||
| 1542 | if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V; | |||
| 1543 | Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr, | |||
| 1544 | FMFSource->getFastMathFlags()); | |||
| 1545 | return Insert(I, Name); | |||
| 1546 | } | |||
| 1547 | ||||
| 1548 | Value *CreateBinOp(Instruction::BinaryOps Opc, | |||
| 1549 | Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 1550 | MDNode *FPMathTag = nullptr) { | |||
| 1551 | if (Value *V = foldConstant(Opc, LHS, RHS, Name)) return V; | |||
| 1552 | Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS); | |||
| 1553 | if (isa<FPMathOperator>(BinOp)) | |||
| 1554 | setFPAttrs(BinOp, FPMathTag, FMF); | |||
| 1555 | return Insert(BinOp, Name); | |||
| 1556 | } | |||
| 1557 | ||||
| 1558 | Value *CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name = "") { | |||
| 1559 | assert(Cond2->getType()->isIntOrIntVectorTy(1))((void)0); | |||
| 1560 | return CreateSelect(Cond1, Cond2, | |||
| 1561 | ConstantInt::getNullValue(Cond2->getType()), Name); | |||
| 1562 | } | |||
| 1563 | ||||
| 1564 | Value *CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name = "") { | |||
| 1565 | assert(Cond2->getType()->isIntOrIntVectorTy(1))((void)0); | |||
| 1566 | return CreateSelect(Cond1, ConstantInt::getAllOnesValue(Cond2->getType()), | |||
| 1567 | Cond2, Name); | |||
| 1568 | } | |||
| 1569 | ||||
| 1570 | CallInst *CreateConstrainedFPBinOp( | |||
| 1571 | Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr, | |||
| 1572 | const Twine &Name = "", MDNode *FPMathTag = nullptr, | |||
| 1573 | Optional<RoundingMode> Rounding = None, | |||
| 1574 | Optional<fp::ExceptionBehavior> Except = None); | |||
| 1575 | ||||
| 1576 | Value *CreateNeg(Value *V, const Twine &Name = "", | |||
| 1577 | bool HasNUW = false, bool HasNSW = false) { | |||
| 1578 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 1579 | return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name); | |||
| 1580 | BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name); | |||
| 1581 | if (HasNUW) BO->setHasNoUnsignedWrap(); | |||
| 1582 | if (HasNSW) BO->setHasNoSignedWrap(); | |||
| 1583 | return BO; | |||
| 1584 | } | |||
| 1585 | ||||
| 1586 | Value *CreateNSWNeg(Value *V, const Twine &Name = "") { | |||
| 1587 | return CreateNeg(V, Name, false, true); | |||
| 1588 | } | |||
| 1589 | ||||
| 1590 | Value *CreateNUWNeg(Value *V, const Twine &Name = "") { | |||
| 1591 | return CreateNeg(V, Name, true, false); | |||
| 1592 | } | |||
| 1593 | ||||
| 1594 | Value *CreateFNeg(Value *V, const Twine &Name = "", | |||
| 1595 | MDNode *FPMathTag = nullptr) { | |||
| 1596 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 1597 | return Insert(Folder.CreateFNeg(VC), Name); | |||
| 1598 | return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF), | |||
| 1599 | Name); | |||
| 1600 | } | |||
| 1601 | ||||
| 1602 | /// Copy fast-math-flags from an instruction rather than using the builder's | |||
| 1603 | /// default FMF. | |||
| 1604 | Value *CreateFNegFMF(Value *V, Instruction *FMFSource, | |||
| 1605 | const Twine &Name = "") { | |||
| 1606 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 1607 | return Insert(Folder.CreateFNeg(VC), Name); | |||
| 1608 | return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr, | |||
| 1609 | FMFSource->getFastMathFlags()), | |||
| 1610 | Name); | |||
| 1611 | } | |||
| 1612 | ||||
| 1613 | Value *CreateNot(Value *V, const Twine &Name = "") { | |||
| 1614 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 1615 | return Insert(Folder.CreateNot(VC), Name); | |||
| 1616 | return Insert(BinaryOperator::CreateNot(V), Name); | |||
| 1617 | } | |||
| 1618 | ||||
| 1619 | Value *CreateUnOp(Instruction::UnaryOps Opc, | |||
| 1620 | Value *V, const Twine &Name = "", | |||
| 1621 | MDNode *FPMathTag = nullptr) { | |||
| 1622 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 1623 | return Insert(Folder.CreateUnOp(Opc, VC), Name); | |||
| 1624 | Instruction *UnOp = UnaryOperator::Create(Opc, V); | |||
| 1625 | if (isa<FPMathOperator>(UnOp)) | |||
| 1626 | setFPAttrs(UnOp, FPMathTag, FMF); | |||
| 1627 | return Insert(UnOp, Name); | |||
| 1628 | } | |||
| 1629 | ||||
| 1630 | /// Create either a UnaryOperator or BinaryOperator depending on \p Opc. | |||
| 1631 | /// Correct number of operands must be passed accordingly. | |||
| 1632 | Value *CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops, | |||
| 1633 | const Twine &Name = "", MDNode *FPMathTag = nullptr); | |||
| 1634 | ||||
| 1635 | //===--------------------------------------------------------------------===// | |||
| 1636 | // Instruction creation methods: Memory Instructions | |||
| 1637 | //===--------------------------------------------------------------------===// | |||
| 1638 | ||||
| 1639 | AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace, | |||
| 1640 | Value *ArraySize = nullptr, const Twine &Name = "") { | |||
| 1641 | const DataLayout &DL = BB->getModule()->getDataLayout(); | |||
| 1642 | Align AllocaAlign = DL.getPrefTypeAlign(Ty); | |||
| 1643 | return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name); | |||
| 1644 | } | |||
| 1645 | ||||
| 1646 | AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr, | |||
| 1647 | const Twine &Name = "") { | |||
| 1648 | const DataLayout &DL = BB->getModule()->getDataLayout(); | |||
| 1649 | Align AllocaAlign = DL.getPrefTypeAlign(Ty); | |||
| 1650 | unsigned AddrSpace = DL.getAllocaAddrSpace(); | |||
| 1651 | return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name); | |||
| 1652 | } | |||
| 1653 | ||||
| 1654 | /// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of | |||
| 1655 | /// converting the string to 'bool' for the isVolatile parameter. | |||
| 1656 | LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) { | |||
| 1657 | return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name); | |||
| 1658 | } | |||
| 1659 | ||||
| 1660 | LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") { | |||
| 1661 | return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name); | |||
| 1662 | } | |||
| 1663 | ||||
| 1664 | LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile, | |||
| 1665 | const Twine &Name = "") { | |||
| 1666 | return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), isVolatile, Name); | |||
| 1667 | } | |||
| 1668 | ||||
| 1669 | // Deprecated [opaque pointer types] | |||
| 1670 | LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const char *Name) | |||
| 1671 | const char *Name),[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const char *Name) | |||
| 1672 | "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const char *Name) | |||
| 1673 | "loaded type instead")[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const char *Name) { | |||
| 1674 | return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, Name); | |||
| 1675 | } | |||
| 1676 | ||||
| 1677 | // Deprecated [opaque pointer types] | |||
| 1678 | LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") | |||
| 1679 | const Twine &Name = ""),[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") | |||
| 1680 | "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") | |||
| 1681 | "loaded type instead")[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") { | |||
| 1682 | return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, Name); | |||
| 1683 | } | |||
| 1684 | ||||
| 1685 | // Deprecated [opaque pointer types] | |||
| 1686 | LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") | |||
| 1687 | bool isVolatile,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") | |||
| 1688 | const Twine &Name = ""),[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") | |||
| 1689 | "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") | |||
| 1690 | "loaded type instead")[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") { | |||
| 1691 | return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, isVolatile, | |||
| 1692 | Name); | |||
| 1693 | } | |||
| 1694 | ||||
| 1695 | StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) { | |||
| 1696 | return CreateAlignedStore(Val, Ptr, MaybeAlign(), isVolatile); | |||
| 1697 | } | |||
| 1698 | ||||
| 1699 | LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, | |||
| 1700 | const char *Name) { | |||
| 1701 | return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name); | |||
| 1702 | } | |||
| 1703 | ||||
| 1704 | LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, | |||
| 1705 | const Twine &Name = "") { | |||
| 1706 | return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name); | |||
| 1707 | } | |||
| 1708 | ||||
| 1709 | LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, | |||
| 1710 | bool isVolatile, const Twine &Name = "") { | |||
| 1711 | if (!Align) { | |||
| 1712 | const DataLayout &DL = BB->getModule()->getDataLayout(); | |||
| 1713 | Align = DL.getABITypeAlign(Ty); | |||
| 1714 | } | |||
| 1715 | return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile, *Align), Name); | |||
| 1716 | } | |||
| 1717 | ||||
| 1718 | // Deprecated [opaque pointer types] | |||
| 1719 | LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const char *Name) | |||
| 1720 | MaybeAlign Align,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const char *Name) | |||
| 1721 | const char *Name),[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const char *Name) | |||
| 1722 | "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const char *Name) | |||
| 1723 | "loaded type instead")[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const char *Name) { | |||
| 1724 | return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr, | |||
| 1725 | Align, Name); | |||
| 1726 | } | |||
| 1727 | // Deprecated [opaque pointer types] | |||
| 1728 | LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const Twine &Name = "") | |||
| 1729 | MaybeAlign Align,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const Twine &Name = "") | |||
| 1730 | const Twine &Name = ""),[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const Twine &Name = "") | |||
| 1731 | "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const Twine &Name = "") | |||
| 1732 | "loaded type instead")[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, const Twine &Name = "") { | |||
| 1733 | return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr, | |||
| 1734 | Align, Name); | |||
| 1735 | } | |||
| 1736 | // Deprecated [opaque pointer types] | |||
| 1737 | LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name = "") | |||
| 1738 | MaybeAlign Align,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name = "") | |||
| 1739 | bool isVolatile,[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name = "") | |||
| 1740 | const Twine &Name = ""),[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name = "") | |||
| 1741 | "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name = "") | |||
| 1742 | "loaded type instead")[[deprecated("Use the version that explicitly specifies the " "loaded type instead")]] LoadInst *CreateAlignedLoad(Value * Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name = "") { | |||
| 1743 | return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr, | |||
| 1744 | Align, isVolatile, Name); | |||
| 1745 | } | |||
| 1746 | ||||
| 1747 | StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align, | |||
| 1748 | bool isVolatile = false) { | |||
| 1749 | if (!Align) { | |||
| 1750 | const DataLayout &DL = BB->getModule()->getDataLayout(); | |||
| 1751 | Align = DL.getABITypeAlign(Val->getType()); | |||
| 1752 | } | |||
| 1753 | return Insert(new StoreInst(Val, Ptr, isVolatile, *Align)); | |||
| 1754 | } | |||
| 1755 | FenceInst *CreateFence(AtomicOrdering Ordering, | |||
| 1756 | SyncScope::ID SSID = SyncScope::System, | |||
| 1757 | const Twine &Name = "") { | |||
| 1758 | return Insert(new FenceInst(Context, Ordering, SSID), Name); | |||
| 1759 | } | |||
| 1760 | ||||
| 1761 | AtomicCmpXchgInst * | |||
| 1762 | CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, MaybeAlign Align, | |||
| 1763 | AtomicOrdering SuccessOrdering, | |||
| 1764 | AtomicOrdering FailureOrdering, | |||
| 1765 | SyncScope::ID SSID = SyncScope::System) { | |||
| 1766 | if (!Align) { | |||
| 1767 | const DataLayout &DL = BB->getModule()->getDataLayout(); | |||
| 1768 | Align = llvm::Align(DL.getTypeStoreSize(New->getType())); | |||
| 1769 | } | |||
| 1770 | ||||
| 1771 | return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, *Align, SuccessOrdering, | |||
| 1772 | FailureOrdering, SSID)); | |||
| 1773 | } | |||
| 1774 | ||||
| 1775 | AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, | |||
| 1776 | Value *Val, MaybeAlign Align, | |||
| 1777 | AtomicOrdering Ordering, | |||
| 1778 | SyncScope::ID SSID = SyncScope::System) { | |||
| 1779 | if (!Align) { | |||
| 1780 | const DataLayout &DL = BB->getModule()->getDataLayout(); | |||
| 1781 | Align = llvm::Align(DL.getTypeStoreSize(Val->getType())); | |||
| 1782 | } | |||
| 1783 | ||||
| 1784 | return Insert(new AtomicRMWInst(Op, Ptr, Val, *Align, Ordering, SSID)); | |||
| 1785 | } | |||
| 1786 | ||||
| 1787 | LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead" )]] Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList , const Twine &Name = "") | |||
| 1788 | Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,[[deprecated("Use the version with explicit element type instead" )]] Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList , const Twine &Name = "") | |||
| 1789 | const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead" )]] Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList , const Twine &Name = "") | |||
| 1790 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList , const Twine &Name = "") { | |||
| 1791 | return CreateGEP(Ptr->getType()->getScalarType()->getPointerElementType(), | |||
| 1792 | Ptr, IdxList, Name); | |||
| 1793 | } | |||
| 1794 | ||||
| 1795 | Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList, | |||
| 1796 | const Twine &Name = "") { | |||
| 1797 | if (auto *PC = dyn_cast<Constant>(Ptr)) { | |||
| 1798 | // Every index must be constant. | |||
| 1799 | size_t i, e; | |||
| 1800 | for (i = 0, e = IdxList.size(); i != e; ++i) | |||
| 1801 | if (!isa<Constant>(IdxList[i])) | |||
| 1802 | break; | |||
| 1803 | if (i == e) | |||
| 1804 | return Insert(Folder.CreateGetElementPtr(Ty, PC, IdxList), Name); | |||
| 1805 | } | |||
| 1806 | return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name); | |||
| 1807 | } | |||
| 1808 | ||||
| 1809 | LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead" )]] Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") | |||
| 1810 | Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,[[deprecated("Use the version with explicit element type instead" )]] Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") | |||
| 1811 | const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead" )]] Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") | |||
| 1812 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") { | |||
| 1813 | return CreateInBoundsGEP( | |||
| 1814 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, | |||
| 1815 | Name); | |||
| 1816 | } | |||
| 1817 | ||||
| 1818 | Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList, | |||
| 1819 | const Twine &Name = "") { | |||
| 1820 | if (auto *PC = dyn_cast<Constant>(Ptr)) { | |||
| 1821 | // Every index must be constant. | |||
| 1822 | size_t i, e; | |||
| 1823 | for (i = 0, e = IdxList.size(); i != e; ++i) | |||
| 1824 | if (!isa<Constant>(IdxList[i])) | |||
| 1825 | break; | |||
| 1826 | if (i == e) | |||
| 1827 | return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IdxList), | |||
| 1828 | Name); | |||
| 1829 | } | |||
| 1830 | return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name); | |||
| 1831 | } | |||
| 1832 | ||||
| 1833 | Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") { | |||
| 1834 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1835 | if (auto *IC = dyn_cast<Constant>(Idx)) | |||
| 1836 | return Insert(Folder.CreateGetElementPtr(Ty, PC, IC), Name); | |||
| 1837 | return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name); | |||
| 1838 | } | |||
| 1839 | ||||
| 1840 | Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx, | |||
| 1841 | const Twine &Name = "") { | |||
| 1842 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1843 | if (auto *IC = dyn_cast<Constant>(Idx)) | |||
| 1844 | return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IC), Name); | |||
| 1845 | return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name); | |||
| 1846 | } | |||
| 1847 | ||||
| 1848 | LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") | |||
| 1849 | Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0,[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") | |||
| 1850 | const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") | |||
| 1851 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") { | |||
| 1852 | return CreateConstGEP1_32( | |||
| 1853 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0, | |||
| 1854 | Name); | |||
| 1855 | } | |||
| 1856 | ||||
| 1857 | Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, | |||
| 1858 | const Twine &Name = "") { | |||
| 1859 | Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0); | |||
| 1860 | ||||
| 1861 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1862 | return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name); | |||
| 1863 | ||||
| 1864 | return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name); | |||
| 1865 | } | |||
| 1866 | ||||
| 1867 | Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, | |||
| 1868 | const Twine &Name = "") { | |||
| 1869 | Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0); | |||
| 1870 | ||||
| 1871 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1872 | return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name); | |||
| 1873 | ||||
| 1874 | return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name); | |||
| 1875 | } | |||
| 1876 | ||||
| 1877 | Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1, | |||
| 1878 | const Twine &Name = "") { | |||
| 1879 | Value *Idxs[] = { | |||
| 1880 | ConstantInt::get(Type::getInt32Ty(Context), Idx0), | |||
| 1881 | ConstantInt::get(Type::getInt32Ty(Context), Idx1) | |||
| 1882 | }; | |||
| 1883 | ||||
| 1884 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1885 | return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name); | |||
| 1886 | ||||
| 1887 | return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name); | |||
| 1888 | } | |||
| 1889 | ||||
| 1890 | Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, | |||
| 1891 | unsigned Idx1, const Twine &Name = "") { | |||
| 1892 | Value *Idxs[] = { | |||
| 1893 | ConstantInt::get(Type::getInt32Ty(Context), Idx0), | |||
| 1894 | ConstantInt::get(Type::getInt32Ty(Context), Idx1) | |||
| 1895 | }; | |||
| 1896 | ||||
| 1897 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1898 | return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name); | |||
| 1899 | ||||
| 1900 | return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name); | |||
| 1901 | } | |||
| 1902 | ||||
| 1903 | Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0, | |||
| 1904 | const Twine &Name = "") { | |||
| 1905 | Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0); | |||
| 1906 | ||||
| 1907 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1908 | return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name); | |||
| 1909 | ||||
| 1910 | return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name); | |||
| 1911 | } | |||
| 1912 | ||||
| 1913 | LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") | |||
| 1914 | Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0,[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") | |||
| 1915 | const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") | |||
| 1916 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") { | |||
| 1917 | return CreateConstGEP1_64( | |||
| 1918 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0, | |||
| 1919 | Name); | |||
| 1920 | } | |||
| 1921 | ||||
| 1922 | Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0, | |||
| 1923 | const Twine &Name = "") { | |||
| 1924 | Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0); | |||
| 1925 | ||||
| 1926 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1927 | return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name); | |||
| 1928 | ||||
| 1929 | return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name); | |||
| 1930 | } | |||
| 1931 | ||||
| 1932 | LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0 , const Twine &Name = "") | |||
| 1933 | Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0 , const Twine &Name = "") | |||
| 1934 | const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0 , const Twine &Name = "") | |||
| 1935 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0 , const Twine &Name = "") { | |||
| 1936 | return CreateConstInBoundsGEP1_64( | |||
| 1937 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0, | |||
| 1938 | Name); | |||
| 1939 | } | |||
| 1940 | ||||
| 1941 | Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1, | |||
| 1942 | const Twine &Name = "") { | |||
| 1943 | Value *Idxs[] = { | |||
| 1944 | ConstantInt::get(Type::getInt64Ty(Context), Idx0), | |||
| 1945 | ConstantInt::get(Type::getInt64Ty(Context), Idx1) | |||
| 1946 | }; | |||
| 1947 | ||||
| 1948 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1949 | return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name); | |||
| 1950 | ||||
| 1951 | return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name); | |||
| 1952 | } | |||
| 1953 | ||||
| 1954 | LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") | |||
| 1955 | Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") | |||
| 1956 | const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") | |||
| 1957 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") { | |||
| 1958 | return CreateConstGEP2_64( | |||
| 1959 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0, | |||
| 1960 | Idx1, Name); | |||
| 1961 | } | |||
| 1962 | ||||
| 1963 | Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, | |||
| 1964 | uint64_t Idx1, const Twine &Name = "") { | |||
| 1965 | Value *Idxs[] = { | |||
| 1966 | ConstantInt::get(Type::getInt64Ty(Context), Idx0), | |||
| 1967 | ConstantInt::get(Type::getInt64Ty(Context), Idx1) | |||
| 1968 | }; | |||
| 1969 | ||||
| 1970 | if (auto *PC = dyn_cast<Constant>(Ptr)) | |||
| 1971 | return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name); | |||
| 1972 | ||||
| 1973 | return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name); | |||
| 1974 | } | |||
| 1975 | ||||
| 1976 | LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0 , uint64_t Idx1, const Twine &Name = "") | |||
| 1977 | Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0,[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0 , uint64_t Idx1, const Twine &Name = "") | |||
| 1978 | uint64_t Idx1, const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0 , uint64_t Idx1, const Twine &Name = "") | |||
| 1979 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0 , uint64_t Idx1, const Twine &Name = "") { | |||
| 1980 | return CreateConstInBoundsGEP2_64( | |||
| 1981 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0, | |||
| 1982 | Idx1, Name); | |||
| 1983 | } | |||
| 1984 | ||||
| 1985 | Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx, | |||
| 1986 | const Twine &Name = "") { | |||
| 1987 | return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name); | |||
| 1988 | } | |||
| 1989 | ||||
| 1990 | LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead" )]] Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") | |||
| 1991 | Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead" )]] Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") | |||
| 1992 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") { | |||
| 1993 | return CreateConstInBoundsGEP2_32( | |||
| 1994 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, 0, Idx, | |||
| 1995 | Name); | |||
| 1996 | } | |||
| 1997 | ||||
| 1998 | /// Same as CreateGlobalString, but return a pointer with "i8*" type | |||
| 1999 | /// instead of a pointer to array of i8. | |||
| 2000 | /// | |||
| 2001 | /// If no module is given via \p M, it is take from the insertion point basic | |||
| 2002 | /// block. | |||
| 2003 | Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "", | |||
| 2004 | unsigned AddressSpace = 0, | |||
| 2005 | Module *M = nullptr) { | |||
| 2006 | GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace, M); | |||
| 2007 | Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0); | |||
| 2008 | Constant *Indices[] = {Zero, Zero}; | |||
| 2009 | return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV, | |||
| 2010 | Indices); | |||
| 2011 | } | |||
| 2012 | ||||
| 2013 | //===--------------------------------------------------------------------===// | |||
| 2014 | // Instruction creation methods: Cast/Conversion Operators | |||
| 2015 | //===--------------------------------------------------------------------===// | |||
| 2016 | ||||
| 2017 | Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") { | |||
| 2018 | return CreateCast(Instruction::Trunc, V, DestTy, Name); | |||
| 2019 | } | |||
| 2020 | ||||
| 2021 | Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") { | |||
| 2022 | return CreateCast(Instruction::ZExt, V, DestTy, Name); | |||
| 2023 | } | |||
| 2024 | ||||
| 2025 | Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") { | |||
| 2026 | return CreateCast(Instruction::SExt, V, DestTy, Name); | |||
| 2027 | } | |||
| 2028 | ||||
| 2029 | /// Create a ZExt or Trunc from the integer value V to DestTy. Return | |||
| 2030 | /// the value untouched if the type of V is already DestTy. | |||
| 2031 | Value *CreateZExtOrTrunc(Value *V, Type *DestTy, | |||
| 2032 | const Twine &Name = "") { | |||
| 2033 | assert(V->getType()->isIntOrIntVectorTy() &&((void)0) | |||
| 2034 | DestTy->isIntOrIntVectorTy() &&((void)0) | |||
| 2035 | "Can only zero extend/truncate integers!")((void)0); | |||
| 2036 | Type *VTy = V->getType(); | |||
| 2037 | if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits()) | |||
| 2038 | return CreateZExt(V, DestTy, Name); | |||
| 2039 | if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) | |||
| 2040 | return CreateTrunc(V, DestTy, Name); | |||
| 2041 | return V; | |||
| 2042 | } | |||
| 2043 | ||||
| 2044 | /// Create a SExt or Trunc from the integer value V to DestTy. Return | |||
| 2045 | /// the value untouched if the type of V is already DestTy. | |||
| 2046 | Value *CreateSExtOrTrunc(Value *V, Type *DestTy, | |||
| 2047 | const Twine &Name = "") { | |||
| 2048 | assert(V->getType()->isIntOrIntVectorTy() &&((void)0) | |||
| 2049 | DestTy->isIntOrIntVectorTy() &&((void)0) | |||
| 2050 | "Can only sign extend/truncate integers!")((void)0); | |||
| 2051 | Type *VTy = V->getType(); | |||
| 2052 | if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits()) | |||
| 2053 | return CreateSExt(V, DestTy, Name); | |||
| 2054 | if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) | |||
| 2055 | return CreateTrunc(V, DestTy, Name); | |||
| 2056 | return V; | |||
| 2057 | } | |||
| 2058 | ||||
| 2059 | Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") { | |||
| 2060 | if (IsFPConstrained) | |||
| 2061 | return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui, | |||
| 2062 | V, DestTy, nullptr, Name); | |||
| 2063 | return CreateCast(Instruction::FPToUI, V, DestTy, Name); | |||
| 2064 | } | |||
| 2065 | ||||
| 2066 | Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") { | |||
| 2067 | if (IsFPConstrained) | |||
| 2068 | return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi, | |||
| 2069 | V, DestTy, nullptr, Name); | |||
| 2070 | return CreateCast(Instruction::FPToSI, V, DestTy, Name); | |||
| 2071 | } | |||
| 2072 | ||||
| 2073 | Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){ | |||
| 2074 | if (IsFPConstrained) | |||
| 2075 | return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp, | |||
| 2076 | V, DestTy, nullptr, Name); | |||
| 2077 | return CreateCast(Instruction::UIToFP, V, DestTy, Name); | |||
| 2078 | } | |||
| 2079 | ||||
| 2080 | Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){ | |||
| 2081 | if (IsFPConstrained) | |||
| 2082 | return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp, | |||
| 2083 | V, DestTy, nullptr, Name); | |||
| 2084 | return CreateCast(Instruction::SIToFP, V, DestTy, Name); | |||
| 2085 | } | |||
| 2086 | ||||
| 2087 | Value *CreateFPTrunc(Value *V, Type *DestTy, | |||
| 2088 | const Twine &Name = "") { | |||
| 2089 | if (IsFPConstrained) | |||
| 2090 | return CreateConstrainedFPCast( | |||
| 2091 | Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr, | |||
| 2092 | Name); | |||
| 2093 | return CreateCast(Instruction::FPTrunc, V, DestTy, Name); | |||
| 2094 | } | |||
| 2095 | ||||
| 2096 | Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") { | |||
| 2097 | if (IsFPConstrained) | |||
| 2098 | return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext, | |||
| 2099 | V, DestTy, nullptr, Name); | |||
| 2100 | return CreateCast(Instruction::FPExt, V, DestTy, Name); | |||
| 2101 | } | |||
| 2102 | ||||
| 2103 | Value *CreatePtrToInt(Value *V, Type *DestTy, | |||
| 2104 | const Twine &Name = "") { | |||
| 2105 | return CreateCast(Instruction::PtrToInt, V, DestTy, Name); | |||
| 2106 | } | |||
| 2107 | ||||
| 2108 | Value *CreateIntToPtr(Value *V, Type *DestTy, | |||
| 2109 | const Twine &Name = "") { | |||
| 2110 | return CreateCast(Instruction::IntToPtr, V, DestTy, Name); | |||
| 2111 | } | |||
| 2112 | ||||
| 2113 | Value *CreateBitCast(Value *V, Type *DestTy, | |||
| 2114 | const Twine &Name = "") { | |||
| 2115 | return CreateCast(Instruction::BitCast, V, DestTy, Name); | |||
| 2116 | } | |||
| 2117 | ||||
| 2118 | Value *CreateAddrSpaceCast(Value *V, Type *DestTy, | |||
| 2119 | const Twine &Name = "") { | |||
| 2120 | return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name); | |||
| 2121 | } | |||
| 2122 | ||||
| 2123 | Value *CreateZExtOrBitCast(Value *V, Type *DestTy, | |||
| 2124 | const Twine &Name = "") { | |||
| 2125 | if (V->getType() == DestTy) | |||
| 2126 | return V; | |||
| 2127 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 2128 | return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name); | |||
| 2129 | return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name); | |||
| 2130 | } | |||
| 2131 | ||||
| 2132 | Value *CreateSExtOrBitCast(Value *V, Type *DestTy, | |||
| 2133 | const Twine &Name = "") { | |||
| 2134 | if (V->getType() == DestTy) | |||
| 2135 | return V; | |||
| 2136 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 2137 | return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name); | |||
| 2138 | return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name); | |||
| 2139 | } | |||
| 2140 | ||||
| 2141 | Value *CreateTruncOrBitCast(Value *V, Type *DestTy, | |||
| 2142 | const Twine &Name = "") { | |||
| 2143 | if (V->getType() == DestTy) | |||
| 2144 | return V; | |||
| 2145 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 2146 | return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name); | |||
| 2147 | return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name); | |||
| 2148 | } | |||
| 2149 | ||||
| 2150 | Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, | |||
| 2151 | const Twine &Name = "") { | |||
| 2152 | if (V->getType() == DestTy) | |||
| 2153 | return V; | |||
| 2154 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 2155 | return Insert(Folder.CreateCast(Op, VC, DestTy), Name); | |||
| 2156 | return Insert(CastInst::Create(Op, V, DestTy), Name); | |||
| 2157 | } | |||
| 2158 | ||||
| 2159 | Value *CreatePointerCast(Value *V, Type *DestTy, | |||
| 2160 | const Twine &Name = "") { | |||
| 2161 | if (V->getType() == DestTy) | |||
| 2162 | return V; | |||
| 2163 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 2164 | return Insert(Folder.CreatePointerCast(VC, DestTy), Name); | |||
| 2165 | return Insert(CastInst::CreatePointerCast(V, DestTy), Name); | |||
| 2166 | } | |||
| 2167 | ||||
| 2168 | Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy, | |||
| 2169 | const Twine &Name = "") { | |||
| 2170 | if (V->getType() == DestTy) | |||
| 2171 | return V; | |||
| 2172 | ||||
| 2173 | if (auto *VC = dyn_cast<Constant>(V)) { | |||
| 2174 | return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy), | |||
| 2175 | Name); | |||
| 2176 | } | |||
| 2177 | ||||
| 2178 | return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy), | |||
| 2179 | Name); | |||
| 2180 | } | |||
| 2181 | ||||
| 2182 | Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned, | |||
| 2183 | const Twine &Name = "") { | |||
| 2184 | if (V->getType() == DestTy) | |||
| 2185 | return V; | |||
| 2186 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 2187 | return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name); | |||
| 2188 | return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name); | |||
| 2189 | } | |||
| 2190 | ||||
| 2191 | Value *CreateBitOrPointerCast(Value *V, Type *DestTy, | |||
| 2192 | const Twine &Name = "") { | |||
| 2193 | if (V->getType() == DestTy) | |||
| 2194 | return V; | |||
| 2195 | if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy()) | |||
| 2196 | return CreatePtrToInt(V, DestTy, Name); | |||
| 2197 | if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy()) | |||
| 2198 | return CreateIntToPtr(V, DestTy, Name); | |||
| 2199 | ||||
| 2200 | return CreateBitCast(V, DestTy, Name); | |||
| 2201 | } | |||
| 2202 | ||||
| 2203 | Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") { | |||
| 2204 | if (V->getType() == DestTy) | |||
| 2205 | return V; | |||
| 2206 | if (auto *VC = dyn_cast<Constant>(V)) | |||
| 2207 | return Insert(Folder.CreateFPCast(VC, DestTy), Name); | |||
| 2208 | return Insert(CastInst::CreateFPCast(V, DestTy), Name); | |||
| 2209 | } | |||
| 2210 | ||||
| 2211 | CallInst *CreateConstrainedFPCast( | |||
| 2212 | Intrinsic::ID ID, Value *V, Type *DestTy, | |||
| 2213 | Instruction *FMFSource = nullptr, const Twine &Name = "", | |||
| 2214 | MDNode *FPMathTag = nullptr, | |||
| 2215 | Optional<RoundingMode> Rounding = None, | |||
| 2216 | Optional<fp::ExceptionBehavior> Except = None); | |||
| 2217 | ||||
| 2218 | // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a | |||
| 2219 | // compile time error, instead of converting the string to bool for the | |||
| 2220 | // isSigned parameter. | |||
| 2221 | Value *CreateIntCast(Value *, Type *, const char *) = delete; | |||
| 2222 | ||||
| 2223 | //===--------------------------------------------------------------------===// | |||
| 2224 | // Instruction creation methods: Compare Instructions | |||
| 2225 | //===--------------------------------------------------------------------===// | |||
| 2226 | ||||
| 2227 | Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2228 | return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name); | |||
| 2229 | } | |||
| 2230 | ||||
| 2231 | Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2232 | return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name); | |||
| 2233 | } | |||
| 2234 | ||||
| 2235 | Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2236 | return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name); | |||
| 2237 | } | |||
| 2238 | ||||
| 2239 | Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2240 | return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name); | |||
| 2241 | } | |||
| 2242 | ||||
| 2243 | Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2244 | return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name); | |||
| 2245 | } | |||
| 2246 | ||||
| 2247 | Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2248 | return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name); | |||
| 2249 | } | |||
| 2250 | ||||
| 2251 | Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2252 | return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name); | |||
| 2253 | } | |||
| 2254 | ||||
| 2255 | Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2256 | return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name); | |||
| 2257 | } | |||
| 2258 | ||||
| 2259 | Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2260 | return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name); | |||
| 2261 | } | |||
| 2262 | ||||
| 2263 | Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") { | |||
| 2264 | return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name); | |||
| 2265 | } | |||
| 2266 | ||||
| 2267 | Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2268 | MDNode *FPMathTag = nullptr) { | |||
| 2269 | return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag); | |||
| 2270 | } | |||
| 2271 | ||||
| 2272 | Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2273 | MDNode *FPMathTag = nullptr) { | |||
| 2274 | return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag); | |||
| 2275 | } | |||
| 2276 | ||||
| 2277 | Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2278 | MDNode *FPMathTag = nullptr) { | |||
| 2279 | return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag); | |||
| 2280 | } | |||
| 2281 | ||||
| 2282 | Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2283 | MDNode *FPMathTag = nullptr) { | |||
| 2284 | return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag); | |||
| 2285 | } | |||
| 2286 | ||||
| 2287 | Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2288 | MDNode *FPMathTag = nullptr) { | |||
| 2289 | return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag); | |||
| 2290 | } | |||
| 2291 | ||||
| 2292 | Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2293 | MDNode *FPMathTag = nullptr) { | |||
| 2294 | return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag); | |||
| 2295 | } | |||
| 2296 | ||||
| 2297 | Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2298 | MDNode *FPMathTag = nullptr) { | |||
| 2299 | return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag); | |||
| 2300 | } | |||
| 2301 | ||||
| 2302 | Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2303 | MDNode *FPMathTag = nullptr) { | |||
| 2304 | return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag); | |||
| 2305 | } | |||
| 2306 | ||||
| 2307 | Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2308 | MDNode *FPMathTag = nullptr) { | |||
| 2309 | return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag); | |||
| 2310 | } | |||
| 2311 | ||||
| 2312 | Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2313 | MDNode *FPMathTag = nullptr) { | |||
| 2314 | return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag); | |||
| 2315 | } | |||
| 2316 | ||||
| 2317 | Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2318 | MDNode *FPMathTag = nullptr) { | |||
| 2319 | return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag); | |||
| 2320 | } | |||
| 2321 | ||||
| 2322 | Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2323 | MDNode *FPMathTag = nullptr) { | |||
| 2324 | return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag); | |||
| 2325 | } | |||
| 2326 | ||||
| 2327 | Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2328 | MDNode *FPMathTag = nullptr) { | |||
| 2329 | return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag); | |||
| 2330 | } | |||
| 2331 | ||||
| 2332 | Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "", | |||
| 2333 | MDNode *FPMathTag = nullptr) { | |||
| 2334 | return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag); | |||
| 2335 | } | |||
| 2336 | ||||
| 2337 | Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, | |||
| 2338 | const Twine &Name = "") { | |||
| 2339 | if (auto *LC = dyn_cast<Constant>(LHS)) | |||
| 2340 | if (auto *RC = dyn_cast<Constant>(RHS)) | |||
| 2341 | return Insert(Folder.CreateICmp(P, LC, RC), Name); | |||
| 2342 | return Insert(new ICmpInst(P, LHS, RHS), Name); | |||
| 2343 | } | |||
| 2344 | ||||
| 2345 | // Create a quiet floating-point comparison (i.e. one that raises an FP | |||
| 2346 | // exception only in the case where an input is a signaling NaN). | |||
| 2347 | // Note that this differs from CreateFCmpS only if IsFPConstrained is true. | |||
| 2348 | Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, | |||
| 2349 | const Twine &Name = "", MDNode *FPMathTag = nullptr) { | |||
| 2350 | return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false); | |||
| 2351 | } | |||
| 2352 | ||||
| 2353 | Value *CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, | |||
| 2354 | const Twine &Name = "", MDNode *FPMathTag = nullptr) { | |||
| 2355 | return CmpInst::isFPPredicate(Pred) | |||
| 2356 | ? CreateFCmp(Pred, LHS, RHS, Name, FPMathTag) | |||
| 2357 | : CreateICmp(Pred, LHS, RHS, Name); | |||
| 2358 | } | |||
| 2359 | ||||
| 2360 | // Create a signaling floating-point comparison (i.e. one that raises an FP | |||
| 2361 | // exception whenever an input is any NaN, signaling or quiet). | |||
| 2362 | // Note that this differs from CreateFCmp only if IsFPConstrained is true. | |||
| 2363 | Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS, | |||
| 2364 | const Twine &Name = "", MDNode *FPMathTag = nullptr) { | |||
| 2365 | return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true); | |||
| 2366 | } | |||
| 2367 | ||||
| 2368 | private: | |||
| 2369 | // Helper routine to create either a signaling or a quiet FP comparison. | |||
| 2370 | Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS, | |||
| 2371 | const Twine &Name, MDNode *FPMathTag, | |||
| 2372 | bool IsSignaling); | |||
| 2373 | ||||
| 2374 | public: | |||
| 2375 | CallInst *CreateConstrainedFPCmp( | |||
| 2376 | Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R, | |||
| 2377 | const Twine &Name = "", Optional<fp::ExceptionBehavior> Except = None); | |||
| 2378 | ||||
| 2379 | //===--------------------------------------------------------------------===// | |||
| 2380 | // Instruction creation methods: Other Instructions | |||
| 2381 | //===--------------------------------------------------------------------===// | |||
| 2382 | ||||
| 2383 | PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues, | |||
| 2384 | const Twine &Name = "") { | |||
| 2385 | PHINode *Phi = PHINode::Create(Ty, NumReservedValues); | |||
| 2386 | if (isa<FPMathOperator>(Phi)) | |||
| 2387 | setFPAttrs(Phi, nullptr /* MDNode* */, FMF); | |||
| 2388 | return Insert(Phi, Name); | |||
| 2389 | } | |||
| 2390 | ||||
| 2391 | CallInst *CreateCall(FunctionType *FTy, Value *Callee, | |||
| 2392 | ArrayRef<Value *> Args = None, const Twine &Name = "", | |||
| 2393 | MDNode *FPMathTag = nullptr) { | |||
| 2394 | CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles); | |||
| 2395 | if (IsFPConstrained) | |||
| 2396 | setConstrainedFPCallAttr(CI); | |||
| 2397 | if (isa<FPMathOperator>(CI)) | |||
| 2398 | setFPAttrs(CI, FPMathTag, FMF); | |||
| 2399 | return Insert(CI, Name); | |||
| 2400 | } | |||
| 2401 | ||||
| 2402 | CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args, | |||
| 2403 | ArrayRef<OperandBundleDef> OpBundles, | |||
| 2404 | const Twine &Name = "", MDNode *FPMathTag = nullptr) { | |||
| 2405 | CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles); | |||
| 2406 | if (IsFPConstrained) | |||
| 2407 | setConstrainedFPCallAttr(CI); | |||
| 2408 | if (isa<FPMathOperator>(CI)) | |||
| 2409 | setFPAttrs(CI, FPMathTag, FMF); | |||
| 2410 | return Insert(CI, Name); | |||
| 2411 | } | |||
| 2412 | ||||
| 2413 | CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args = None, | |||
| 2414 | const Twine &Name = "", MDNode *FPMathTag = nullptr) { | |||
| 2415 | return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name, | |||
| 2416 | FPMathTag); | |||
| 2417 | } | |||
| 2418 | ||||
| 2419 | CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args, | |||
| 2420 | ArrayRef<OperandBundleDef> OpBundles, | |||
| 2421 | const Twine &Name = "", MDNode *FPMathTag = nullptr) { | |||
| 2422 | return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, | |||
| 2423 | OpBundles, Name, FPMathTag); | |||
| 2424 | } | |||
| 2425 | ||||
| 2426 | CallInst *CreateConstrainedFPCall( | |||
| 2427 | Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "", | |||
| 2428 | Optional<RoundingMode> Rounding = None, | |||
| 2429 | Optional<fp::ExceptionBehavior> Except = None); | |||
| 2430 | ||||
| 2431 | Value *CreateSelect(Value *C, Value *True, Value *False, | |||
| 2432 | const Twine &Name = "", Instruction *MDFrom = nullptr); | |||
| 2433 | ||||
| 2434 | VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") { | |||
| 2435 | return Insert(new VAArgInst(List, Ty), Name); | |||
| 2436 | } | |||
| 2437 | ||||
| 2438 | Value *CreateExtractElement(Value *Vec, Value *Idx, | |||
| 2439 | const Twine &Name = "") { | |||
| 2440 | if (auto *VC = dyn_cast<Constant>(Vec)) | |||
| 2441 | if (auto *IC = dyn_cast<Constant>(Idx)) | |||
| 2442 | return Insert(Folder.CreateExtractElement(VC, IC), Name); | |||
| 2443 | return Insert(ExtractElementInst::Create(Vec, Idx), Name); | |||
| 2444 | } | |||
| 2445 | ||||
| 2446 | Value *CreateExtractElement(Value *Vec, uint64_t Idx, | |||
| 2447 | const Twine &Name = "") { | |||
| 2448 | return CreateExtractElement(Vec, getInt64(Idx), Name); | |||
| 2449 | } | |||
| 2450 | ||||
| 2451 | Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx, | |||
| 2452 | const Twine &Name = "") { | |||
| 2453 | if (auto *VC = dyn_cast<Constant>(Vec)) | |||
| 2454 | if (auto *NC = dyn_cast<Constant>(NewElt)) | |||
| 2455 | if (auto *IC = dyn_cast<Constant>(Idx)) | |||
| 2456 | return Insert(Folder.CreateInsertElement(VC, NC, IC), Name); | |||
| 2457 | return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name); | |||
| 2458 | } | |||
| 2459 | ||||
| 2460 | Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx, | |||
| 2461 | const Twine &Name = "") { | |||
| 2462 | return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name); | |||
| 2463 | } | |||
| 2464 | ||||
| 2465 | Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask, | |||
| 2466 | const Twine &Name = "") { | |||
| 2467 | SmallVector<int, 16> IntMask; | |||
| 2468 | ShuffleVectorInst::getShuffleMask(cast<Constant>(Mask), IntMask); | |||
| 2469 | return CreateShuffleVector(V1, V2, IntMask, Name); | |||
| 2470 | } | |||
| 2471 | ||||
| 2472 | LLVM_ATTRIBUTE_DEPRECATED(Value *CreateShuffleVector(Value *V1, Value *V2,[[deprecated("Pass indices as 'int' instead")]] Value *CreateShuffleVector (Value *V1, Value *V2, ArrayRef<uint32_t> Mask, const Twine &Name = "") | |||
| 2473 | ArrayRef<uint32_t> Mask,[[deprecated("Pass indices as 'int' instead")]] Value *CreateShuffleVector (Value *V1, Value *V2, ArrayRef<uint32_t> Mask, const Twine &Name = "") | |||
| 2474 | const Twine &Name = ""),[[deprecated("Pass indices as 'int' instead")]] Value *CreateShuffleVector (Value *V1, Value *V2, ArrayRef<uint32_t> Mask, const Twine &Name = "") | |||
| 2475 | "Pass indices as 'int' instead")[[deprecated("Pass indices as 'int' instead")]] Value *CreateShuffleVector (Value *V1, Value *V2, ArrayRef<uint32_t> Mask, const Twine &Name = "") { | |||
| 2476 | SmallVector<int, 16> IntMask; | |||
| 2477 | IntMask.assign(Mask.begin(), Mask.end()); | |||
| 2478 | return CreateShuffleVector(V1, V2, IntMask, Name); | |||
| 2479 | } | |||
| 2480 | ||||
| 2481 | /// See class ShuffleVectorInst for a description of the mask representation. | |||
| 2482 | Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask, | |||
| 2483 | const Twine &Name = "") { | |||
| 2484 | if (auto *V1C = dyn_cast<Constant>(V1)) | |||
| 2485 | if (auto *V2C = dyn_cast<Constant>(V2)) | |||
| 2486 | return Insert(Folder.CreateShuffleVector(V1C, V2C, Mask), Name); | |||
| 2487 | return Insert(new ShuffleVectorInst(V1, V2, Mask), Name); | |||
| 2488 | } | |||
| 2489 | ||||
| 2490 | /// Create a unary shuffle. The second vector operand of the IR instruction | |||
| 2491 | /// is poison. | |||
| 2492 | Value *CreateShuffleVector(Value *V, ArrayRef<int> Mask, | |||
| 2493 | const Twine &Name = "") { | |||
| 2494 | return CreateShuffleVector(V, PoisonValue::get(V->getType()), Mask, Name); | |||
| 2495 | } | |||
| 2496 | ||||
| 2497 | Value *CreateExtractValue(Value *Agg, | |||
| 2498 | ArrayRef<unsigned> Idxs, | |||
| 2499 | const Twine &Name = "") { | |||
| 2500 | if (auto *AggC = dyn_cast<Constant>(Agg)) | |||
| 2501 | return Insert(Folder.CreateExtractValue(AggC, Idxs), Name); | |||
| 2502 | return Insert(ExtractValueInst::Create(Agg, Idxs), Name); | |||
| 2503 | } | |||
| 2504 | ||||
| 2505 | Value *CreateInsertValue(Value *Agg, Value *Val, | |||
| 2506 | ArrayRef<unsigned> Idxs, | |||
| 2507 | const Twine &Name = "") { | |||
| 2508 | if (auto *AggC = dyn_cast<Constant>(Agg)) | |||
| 2509 | if (auto *ValC = dyn_cast<Constant>(Val)) | |||
| 2510 | return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name); | |||
| 2511 | return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name); | |||
| 2512 | } | |||
| 2513 | ||||
| 2514 | LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses, | |||
| 2515 | const Twine &Name = "") { | |||
| 2516 | return Insert(LandingPadInst::Create(Ty, NumClauses), Name); | |||
| 2517 | } | |||
| 2518 | ||||
| 2519 | Value *CreateFreeze(Value *V, const Twine &Name = "") { | |||
| 2520 | return Insert(new FreezeInst(V), Name); | |||
| 2521 | } | |||
| 2522 | ||||
| 2523 | //===--------------------------------------------------------------------===// | |||
| 2524 | // Utility creation methods | |||
| 2525 | //===--------------------------------------------------------------------===// | |||
| 2526 | ||||
| 2527 | /// Return an i1 value testing if \p Arg is null. | |||
| 2528 | Value *CreateIsNull(Value *Arg, const Twine &Name = "") { | |||
| 2529 | return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()), | |||
| 2530 | Name); | |||
| 2531 | } | |||
| 2532 | ||||
| 2533 | /// Return an i1 value testing if \p Arg is not null. | |||
| 2534 | Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") { | |||
| 2535 | return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()), | |||
| 2536 | Name); | |||
| 2537 | } | |||
| 2538 | ||||
| 2539 | /// Return the i64 difference between two pointer values, dividing out | |||
| 2540 | /// the size of the pointed-to objects. | |||
| 2541 | /// | |||
| 2542 | /// This is intended to implement C-style pointer subtraction. As such, the | |||
| 2543 | /// pointers must be appropriately aligned for their element types and | |||
| 2544 | /// pointing into the same object. | |||
| 2545 | Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = ""); | |||
| 2546 | ||||
| 2547 | /// Create a launder.invariant.group intrinsic call. If Ptr type is | |||
| 2548 | /// different from pointer to i8, it's casted to pointer to i8 in the same | |||
| 2549 | /// address space before call and casted back to Ptr type after call. | |||
| 2550 | Value *CreateLaunderInvariantGroup(Value *Ptr); | |||
| 2551 | ||||
| 2552 | /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is | |||
| 2553 | /// different from pointer to i8, it's casted to pointer to i8 in the same | |||
| 2554 | /// address space before call and casted back to Ptr type after call. | |||
| 2555 | Value *CreateStripInvariantGroup(Value *Ptr); | |||
| 2556 | ||||
| 2557 | /// Return a vector value that contains the vector V reversed | |||
| 2558 | Value *CreateVectorReverse(Value *V, const Twine &Name = ""); | |||
| 2559 | ||||
| 2560 | /// Return a vector splice intrinsic if using scalable vectors, otherwise | |||
| 2561 | /// return a shufflevector. If the immediate is positive, a vector is | |||
| 2562 | /// extracted from concat(V1, V2), starting at Imm. If the immediate | |||
| 2563 | /// is negative, we extract -Imm elements from V1 and the remaining | |||
| 2564 | /// elements from V2. Imm is a signed integer in the range | |||
| 2565 | /// -VL <= Imm < VL (where VL is the runtime vector length of the | |||
| 2566 | /// source/result vector) | |||
| 2567 | Value *CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, | |||
| 2568 | const Twine &Name = ""); | |||
| 2569 | ||||
| 2570 | /// Return a vector value that contains \arg V broadcasted to \p | |||
| 2571 | /// NumElts elements. | |||
| 2572 | Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = ""); | |||
| 2573 | ||||
| 2574 | /// Return a vector value that contains \arg V broadcasted to \p | |||
| 2575 | /// EC elements. | |||
| 2576 | Value *CreateVectorSplat(ElementCount EC, Value *V, const Twine &Name = ""); | |||
| 2577 | ||||
| 2578 | /// Return a value that has been extracted from a larger integer type. | |||
| 2579 | Value *CreateExtractInteger(const DataLayout &DL, Value *From, | |||
| 2580 | IntegerType *ExtractedTy, uint64_t Offset, | |||
| 2581 | const Twine &Name); | |||
| 2582 | ||||
| 2583 | Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base, | |||
| 2584 | unsigned Dimension, unsigned LastIndex, | |||
| 2585 | MDNode *DbgInfo); | |||
| 2586 | ||||
| 2587 | Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex, | |||
| 2588 | MDNode *DbgInfo); | |||
| 2589 | ||||
| 2590 | Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base, | |||
| 2591 | unsigned Index, unsigned FieldIndex, | |||
| 2592 | MDNode *DbgInfo); | |||
| 2593 | ||||
| 2594 | private: | |||
| 2595 | /// Helper function that creates an assume intrinsic call that | |||
| 2596 | /// represents an alignment assumption on the provided pointer \p PtrValue | |||
| 2597 | /// with offset \p OffsetValue and alignment value \p AlignValue. | |||
| 2598 | CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL, | |||
| 2599 | Value *PtrValue, Value *AlignValue, | |||
| 2600 | Value *OffsetValue); | |||
| 2601 | ||||
| 2602 | public: | |||
| 2603 | /// Create an assume intrinsic call that represents an alignment | |||
| 2604 | /// assumption on the provided pointer. | |||
| 2605 | /// | |||
| 2606 | /// An optional offset can be provided, and if it is provided, the offset | |||
| 2607 | /// must be subtracted from the provided pointer to get the pointer with the | |||
| 2608 | /// specified alignment. | |||
| 2609 | CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue, | |||
| 2610 | unsigned Alignment, | |||
| 2611 | Value *OffsetValue = nullptr); | |||
| 2612 | ||||
| 2613 | /// Create an assume intrinsic call that represents an alignment | |||
| 2614 | /// assumption on the provided pointer. | |||
| 2615 | /// | |||
| 2616 | /// An optional offset can be provided, and if it is provided, the offset | |||
| 2617 | /// must be subtracted from the provided pointer to get the pointer with the | |||
| 2618 | /// specified alignment. | |||
| 2619 | /// | |||
| 2620 | /// This overload handles the condition where the Alignment is dependent | |||
| 2621 | /// on an existing value rather than a static value. | |||
| 2622 | CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue, | |||
| 2623 | Value *Alignment, | |||
| 2624 | Value *OffsetValue = nullptr); | |||
| 2625 | }; | |||
| 2626 | ||||
| 2627 | /// This provides a uniform API for creating instructions and inserting | |||
| 2628 | /// them into a basic block: either at the end of a BasicBlock, or at a specific | |||
| 2629 | /// iterator location in a block. | |||
| 2630 | /// | |||
| 2631 | /// Note that the builder does not expose the full generality of LLVM | |||
| 2632 | /// instructions. For access to extra instruction properties, use the mutators | |||
| 2633 | /// (e.g. setVolatile) on the instructions after they have been | |||
| 2634 | /// created. Convenience state exists to specify fast-math flags and fp-math | |||
| 2635 | /// tags. | |||
| 2636 | /// | |||
| 2637 | /// The first template argument specifies a class to use for creating constants. | |||
| 2638 | /// This defaults to creating minimally folded constants. The second template | |||
| 2639 | /// argument allows clients to specify custom insertion hooks that are called on | |||
| 2640 | /// every newly created insertion. | |||
| 2641 | template <typename FolderTy = ConstantFolder, | |||
| 2642 | typename InserterTy = IRBuilderDefaultInserter> | |||
| 2643 | class IRBuilder : public IRBuilderBase { | |||
| 2644 | private: | |||
| 2645 | FolderTy Folder; | |||
| 2646 | InserterTy Inserter; | |||
| 2647 | ||||
| 2648 | public: | |||
| 2649 | IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(), | |||
| 2650 | MDNode *FPMathTag = nullptr, | |||
| 2651 | ArrayRef<OperandBundleDef> OpBundles = None) | |||
| 2652 | : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles), | |||
| 2653 | Folder(Folder), Inserter(Inserter) {} | |||
| 2654 | ||||
| 2655 | explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr, | |||
| 2656 | ArrayRef<OperandBundleDef> OpBundles = None) | |||
| 2657 | : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {} | |||
| 2658 | ||||
| 2659 | explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder, | |||
| 2660 | MDNode *FPMathTag = nullptr, | |||
| 2661 | ArrayRef<OperandBundleDef> OpBundles = None) | |||
| 2662 | : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter, | |||
| 2663 | FPMathTag, OpBundles), Folder(Folder) { | |||
| 2664 | SetInsertPoint(TheBB); | |||
| 2665 | } | |||
| 2666 | ||||
| 2667 | explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr, | |||
| 2668 | ArrayRef<OperandBundleDef> OpBundles = None) | |||
| 2669 | : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter, | |||
| 2670 | FPMathTag, OpBundles) { | |||
| 2671 | SetInsertPoint(TheBB); | |||
| 2672 | } | |||
| 2673 | ||||
| 2674 | explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr, | |||
| 2675 | ArrayRef<OperandBundleDef> OpBundles = None) | |||
| 2676 | : IRBuilderBase(IP->getContext(), this->Folder, this->Inserter, | |||
| ||||
| 2677 | FPMathTag, OpBundles) { | |||
| 2678 | SetInsertPoint(IP); | |||
| 2679 | } | |||
| 2680 | ||||
| 2681 | IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder, | |||
| 2682 | MDNode *FPMathTag = nullptr, | |||
| 2683 | ArrayRef<OperandBundleDef> OpBundles = None) | |||
| 2684 | : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter, | |||
| 2685 | FPMathTag, OpBundles), Folder(Folder) { | |||
| 2686 | SetInsertPoint(TheBB, IP); | |||
| 2687 | } | |||
| 2688 | ||||
| 2689 | IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, | |||
| 2690 | MDNode *FPMathTag = nullptr, | |||
| 2691 | ArrayRef<OperandBundleDef> OpBundles = None) | |||
| 2692 | : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter, | |||
| 2693 | FPMathTag, OpBundles) { | |||
| 2694 | SetInsertPoint(TheBB, IP); | |||
| 2695 | } | |||
| 2696 | ||||
| 2697 | /// Avoid copying the full IRBuilder. Prefer using InsertPointGuard | |||
| 2698 | /// or FastMathFlagGuard instead. | |||
| 2699 | IRBuilder(const IRBuilder &) = delete; | |||
| 2700 | ||||
| 2701 | InserterTy &getInserter() { return Inserter; } | |||
| 2702 | }; | |||
| 2703 | ||||
| 2704 | // Create wrappers for C Binding types (see CBindingWrapping.h). | |||
| 2705 | DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)inline IRBuilder<> *unwrap(LLVMBuilderRef P) { return reinterpret_cast <IRBuilder<>*>(P); } inline LLVMBuilderRef wrap(const IRBuilder<> *P) { return reinterpret_cast<LLVMBuilderRef >(const_cast<IRBuilder<>*>(P)); } | |||
| 2706 | ||||
| 2707 | } // end namespace llvm | |||
| 2708 | ||||
| 2709 | #endif // LLVM_IR_IRBUILDER_H |