Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/Verifier.cpp
Warning:line 2590, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Verifier.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/Verifier.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/Verifier.cpp

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// sanity checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15// * Both of a binary operator's parameters are of the same type
16// * Verify that the indices of mem access instructions match other operands
17// * Verify that arithmetic and other things are only performed on first-class
18// types. Verify that shifts & logicals only happen on integrals f.e.
19// * All of the constants in a switch statement are of the correct type
20// * The code is in valid SSA form
21// * It should be illegal to put a label into any other type (like a structure)
22// or to return one. [except constant arrays!]
23// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24// * PHI nodes must have an entry for each predecessor, with no extras.
25// * PHI nodes must be the first thing in a basic block, all grouped together
26// * PHI nodes must have at least one entry
27// * All basic blocks should only end with terminator insts, not contain them
28// * The entry node to a function must not have predecessors
29// * All Instructions must be embedded into a basic block
30// * Functions cannot take a void-typed parameter
31// * Verify that a function's argument list agrees with it's declared type.
32// * It is illegal to specify a name for a void value.
33// * It is illegal to have a internal global value with no initializer
34// * It is illegal to have a ret instruction that returns a value that does not
35// agree with the function return value type.
36// * Function call argument types match the function prototype
37// * A landing pad is defined by a landingpad instruction, and can be jumped to
38// only by the unwind edge of an invoke instruction.
39// * A landingpad instruction must be the first non-PHI instruction in the
40// block.
41// * Landingpad instructions must be in a function with a personality function.
42// * All other things that are tested by asserts spread about the code...
43//
44//===----------------------------------------------------------------------===//
45
46#include "llvm/IR/Verifier.h"
47#include "llvm/ADT/APFloat.h"
48#include "llvm/ADT/APInt.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/Function.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/GlobalVariable.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/InstVisitor.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/IntrinsicInst.h"
88#include "llvm/IR/Intrinsics.h"
89#include "llvm/IR/IntrinsicsWebAssembly.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/InitializePasses.h"
101#include "llvm/Pass.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Debug.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyNoAliasScopeDomination(
119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121 "scopes are not dominating"));
122
123namespace llvm {
124
125struct VerifierSupport {
126 raw_ostream *OS;
127 const Module &M;
128 ModuleSlotTracker MST;
129 Triple TT;
130 const DataLayout &DL;
131 LLVMContext &Context;
132
133 /// Track the brokenness of the module while recursively visiting.
134 bool Broken = false;
135 /// Broken debug info can be "recovered" from by stripping the debug info.
136 bool BrokenDebugInfo = false;
137 /// Whether to treat broken debug info as an error.
138 bool TreatBrokenDebugInfoAsError = true;
139
140 explicit VerifierSupport(raw_ostream *OS, const Module &M)
141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142 Context(M.getContext()) {}
143
144private:
145 void Write(const Module *M) {
146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147 }
148
149 void Write(const Value *V) {
150 if (V)
151 Write(*V);
152 }
153
154 void Write(const Value &V) {
155 if (isa<Instruction>(V)) {
156 V.print(*OS, MST);
157 *OS << '\n';
158 } else {
159 V.printAsOperand(*OS, true, MST);
160 *OS << '\n';
161 }
162 }
163
164 void Write(const Metadata *MD) {
165 if (!MD)
166 return;
167 MD->print(*OS, MST, &M);
168 *OS << '\n';
169 }
170
171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172 Write(MD.get());
173 }
174
175 void Write(const NamedMDNode *NMD) {
176 if (!NMD)
177 return;
178 NMD->print(*OS, MST);
179 *OS << '\n';
180 }
181
182 void Write(Type *T) {
183 if (!T)
184 return;
185 *OS << ' ' << *T;
186 }
187
188 void Write(const Comdat *C) {
189 if (!C)
190 return;
191 *OS << *C;
192 }
193
194 void Write(const APInt *AI) {
195 if (!AI)
196 return;
197 *OS << *AI << '\n';
198 }
199
200 void Write(const unsigned i) { *OS << i << '\n'; }
201
202 // NOLINTNEXTLINE(readability-identifier-naming)
203 void Write(const Attribute *A) {
204 if (!A)
205 return;
206 *OS << A->getAsString() << '\n';
207 }
208
209 // NOLINTNEXTLINE(readability-identifier-naming)
210 void Write(const AttributeSet *AS) {
211 if (!AS)
212 return;
213 *OS << AS->getAsString() << '\n';
214 }
215
216 // NOLINTNEXTLINE(readability-identifier-naming)
217 void Write(const AttributeList *AL) {
218 if (!AL)
219 return;
220 AL->print(*OS);
221 }
222
223 template <typename T> void Write(ArrayRef<T> Vs) {
224 for (const T &V : Vs)
225 Write(V);
226 }
227
228 template <typename T1, typename... Ts>
229 void WriteTs(const T1 &V1, const Ts &... Vs) {
230 Write(V1);
231 WriteTs(Vs...);
232 }
233
234 template <typename... Ts> void WriteTs() {}
235
236public:
237 /// A check failed, so printout out the condition and the message.
238 ///
239 /// This provides a nice place to put a breakpoint if you want to see why
240 /// something is not correct.
241 void CheckFailed(const Twine &Message) {
242 if (OS)
243 *OS << Message << '\n';
244 Broken = true;
245 }
246
247 /// A check failed (with values to print).
248 ///
249 /// This calls the Message-only version so that the above is easier to set a
250 /// breakpoint on.
251 template <typename T1, typename... Ts>
252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253 CheckFailed(Message);
254 if (OS)
255 WriteTs(V1, Vs...);
256 }
257
258 /// A debug info check failed.
259 void DebugInfoCheckFailed(const Twine &Message) {
260 if (OS)
261 *OS << Message << '\n';
262 Broken |= TreatBrokenDebugInfoAsError;
263 BrokenDebugInfo = true;
264 }
265
266 /// A debug info check failed (with values to print).
267 template <typename T1, typename... Ts>
268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269 const Ts &... Vs) {
270 DebugInfoCheckFailed(Message);
271 if (OS)
272 WriteTs(V1, Vs...);
273 }
274};
275
276} // namespace llvm
277
278namespace {
279
280class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281 friend class InstVisitor<Verifier>;
282
283 DominatorTree DT;
284
285 /// When verifying a basic block, keep track of all of the
286 /// instructions we have seen so far.
287 ///
288 /// This allows us to do efficient dominance checks for the case when an
289 /// instruction has an operand that is an instruction in the same block.
290 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
291
292 /// Keep track of the metadata nodes that have been checked already.
293 SmallPtrSet<const Metadata *, 32> MDNodes;
294
295 /// Keep track which DISubprogram is attached to which function.
296 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
297
298 /// Track all DICompileUnits visited.
299 SmallPtrSet<const Metadata *, 2> CUVisited;
300
301 /// The result type for a landingpad.
302 Type *LandingPadResultTy;
303
304 /// Whether we've seen a call to @llvm.localescape in this function
305 /// already.
306 bool SawFrameEscape;
307
308 /// Whether the current function has a DISubprogram attached to it.
309 bool HasDebugInfo = false;
310
311 /// The current source language.
312 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313
314 /// Whether source was present on the first DIFile encountered in each CU.
315 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
316
317 /// Stores the count of how many objects were passed to llvm.localescape for a
318 /// given function and the largest index passed to llvm.localrecover.
319 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
320
321 // Maps catchswitches and cleanuppads that unwind to siblings to the
322 // terminators that indicate the unwind, used to detect cycles therein.
323 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
324
325 /// Cache of constants visited in search of ConstantExprs.
326 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
327
328 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
329 SmallVector<const Function *, 4> DeoptimizeDeclarations;
330
331 /// Cache of attribute lists verified.
332 SmallPtrSet<const void *, 32> AttributeListsVisited;
333
334 // Verify that this GlobalValue is only used in this module.
335 // This map is used to avoid visiting uses twice. We can arrive at a user
336 // twice, if they have multiple operands. In particular for very large
337 // constant expressions, we can arrive at a particular user many times.
338 SmallPtrSet<const Value *, 32> GlobalValueVisited;
339
340 // Keeps track of duplicate function argument debug info.
341 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
342
343 TBAAVerifier TBAAVerifyHelper;
344
345 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346
347 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
348
349public:
350 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
351 const Module &M)
352 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
353 SawFrameEscape(false), TBAAVerifyHelper(this) {
354 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
355 }
356
357 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
358
359 bool verify(const Function &F) {
360 assert(F.getParent() == &M &&((void)0)
361 "An instance of this class only works with a specific module!")((void)0);
362
363 // First ensure the function is well-enough formed to compute dominance
364 // information, and directly compute a dominance tree. We don't rely on the
365 // pass manager to provide this as it isolates us from a potentially
366 // out-of-date dominator tree and makes it significantly more complex to run
367 // this code outside of a pass manager.
368 // FIXME: It's really gross that we have to cast away constness here.
369 if (!F.empty())
370 DT.recalculate(const_cast<Function &>(F));
371
372 for (const BasicBlock &BB : F) {
373 if (!BB.empty() && BB.back().isTerminator())
374 continue;
375
376 if (OS) {
377 *OS << "Basic Block in function '" << F.getName()
378 << "' does not have terminator!\n";
379 BB.printAsOperand(*OS, true, MST);
380 *OS << "\n";
381 }
382 return false;
383 }
384
385 Broken = false;
386 // FIXME: We strip const here because the inst visitor strips const.
387 visit(const_cast<Function &>(F));
388 verifySiblingFuncletUnwinds();
389 InstsInThisBlock.clear();
390 DebugFnArgs.clear();
391 LandingPadResultTy = nullptr;
392 SawFrameEscape = false;
393 SiblingFuncletInfo.clear();
394 verifyNoAliasScopeDecl();
395 NoAliasScopeDecls.clear();
396
397 return !Broken;
398 }
399
400 /// Verify the module that this instance of \c Verifier was initialized with.
401 bool verify() {
402 Broken = false;
403
404 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
405 for (const Function &F : M)
406 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
407 DeoptimizeDeclarations.push_back(&F);
408
409 // Now that we've visited every function, verify that we never asked to
410 // recover a frame index that wasn't escaped.
411 verifyFrameRecoverIndices();
412 for (const GlobalVariable &GV : M.globals())
413 visitGlobalVariable(GV);
414
415 for (const GlobalAlias &GA : M.aliases())
416 visitGlobalAlias(GA);
417
418 for (const NamedMDNode &NMD : M.named_metadata())
419 visitNamedMDNode(NMD);
420
421 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
422 visitComdat(SMEC.getValue());
423
424 visitModuleFlags(M);
425 visitModuleIdents(M);
426 visitModuleCommandLines(M);
427
428 verifyCompileUnits();
429
430 verifyDeoptimizeCallingConvs();
431 DISubprogramAttachments.clear();
432 return !Broken;
433 }
434
435private:
436 /// Whether a metadata node is allowed to be, or contain, a DILocation.
437 enum class AreDebugLocsAllowed { No, Yes };
438
439 // Verification methods...
440 void visitGlobalValue(const GlobalValue &GV);
441 void visitGlobalVariable(const GlobalVariable &GV);
442 void visitGlobalAlias(const GlobalAlias &GA);
443 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
444 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
445 const GlobalAlias &A, const Constant &C);
446 void visitNamedMDNode(const NamedMDNode &NMD);
447 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
448 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
449 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
450 void visitComdat(const Comdat &C);
451 void visitModuleIdents(const Module &M);
452 void visitModuleCommandLines(const Module &M);
453 void visitModuleFlags(const Module &M);
454 void visitModuleFlag(const MDNode *Op,
455 DenseMap<const MDString *, const MDNode *> &SeenIDs,
456 SmallVectorImpl<const MDNode *> &Requirements);
457 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
458 void visitFunction(const Function &F);
459 void visitBasicBlock(BasicBlock &BB);
460 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
461 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
462 void visitProfMetadata(Instruction &I, MDNode *MD);
463 void visitAnnotationMetadata(MDNode *Annotation);
464
465 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
466#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
467#include "llvm/IR/Metadata.def"
468 void visitDIScope(const DIScope &N);
469 void visitDIVariable(const DIVariable &N);
470 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
471 void visitDITemplateParameter(const DITemplateParameter &N);
472
473 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
474
475 // InstVisitor overrides...
476 using InstVisitor<Verifier>::visit;
477 void visit(Instruction &I);
478
479 void visitTruncInst(TruncInst &I);
480 void visitZExtInst(ZExtInst &I);
481 void visitSExtInst(SExtInst &I);
482 void visitFPTruncInst(FPTruncInst &I);
483 void visitFPExtInst(FPExtInst &I);
484 void visitFPToUIInst(FPToUIInst &I);
485 void visitFPToSIInst(FPToSIInst &I);
486 void visitUIToFPInst(UIToFPInst &I);
487 void visitSIToFPInst(SIToFPInst &I);
488 void visitIntToPtrInst(IntToPtrInst &I);
489 void visitPtrToIntInst(PtrToIntInst &I);
490 void visitBitCastInst(BitCastInst &I);
491 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
492 void visitPHINode(PHINode &PN);
493 void visitCallBase(CallBase &Call);
494 void visitUnaryOperator(UnaryOperator &U);
495 void visitBinaryOperator(BinaryOperator &B);
496 void visitICmpInst(ICmpInst &IC);
497 void visitFCmpInst(FCmpInst &FC);
498 void visitExtractElementInst(ExtractElementInst &EI);
499 void visitInsertElementInst(InsertElementInst &EI);
500 void visitShuffleVectorInst(ShuffleVectorInst &EI);
501 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
502 void visitCallInst(CallInst &CI);
503 void visitInvokeInst(InvokeInst &II);
504 void visitGetElementPtrInst(GetElementPtrInst &GEP);
505 void visitLoadInst(LoadInst &LI);
506 void visitStoreInst(StoreInst &SI);
507 void verifyDominatesUse(Instruction &I, unsigned i);
508 void visitInstruction(Instruction &I);
509 void visitTerminator(Instruction &I);
510 void visitBranchInst(BranchInst &BI);
511 void visitReturnInst(ReturnInst &RI);
512 void visitSwitchInst(SwitchInst &SI);
513 void visitIndirectBrInst(IndirectBrInst &BI);
514 void visitCallBrInst(CallBrInst &CBI);
515 void visitSelectInst(SelectInst &SI);
516 void visitUserOp1(Instruction &I);
517 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
518 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
519 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
520 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
521 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
522 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
523 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
524 void visitFenceInst(FenceInst &FI);
525 void visitAllocaInst(AllocaInst &AI);
526 void visitExtractValueInst(ExtractValueInst &EVI);
527 void visitInsertValueInst(InsertValueInst &IVI);
528 void visitEHPadPredecessors(Instruction &I);
529 void visitLandingPadInst(LandingPadInst &LPI);
530 void visitResumeInst(ResumeInst &RI);
531 void visitCatchPadInst(CatchPadInst &CPI);
532 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
533 void visitCleanupPadInst(CleanupPadInst &CPI);
534 void visitFuncletPadInst(FuncletPadInst &FPI);
535 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
536 void visitCleanupReturnInst(CleanupReturnInst &CRI);
537
538 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
539 void verifySwiftErrorValue(const Value *SwiftErrorVal);
540 void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context);
541 void verifyMustTailCall(CallInst &CI);
542 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
543 void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
544 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
545 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
546 const Value *V);
547 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
548 const Value *V, bool IsIntrinsic);
549 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
550
551 void visitConstantExprsRecursively(const Constant *EntryC);
552 void visitConstantExpr(const ConstantExpr *CE);
553 void verifyStatepoint(const CallBase &Call);
554 void verifyFrameRecoverIndices();
555 void verifySiblingFuncletUnwinds();
556
557 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
558 template <typename ValueOrMetadata>
559 void verifyFragmentExpression(const DIVariable &V,
560 DIExpression::FragmentInfo Fragment,
561 ValueOrMetadata *Desc);
562 void verifyFnArgs(const DbgVariableIntrinsic &I);
563 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
564
565 /// Module-level debug info verification...
566 void verifyCompileUnits();
567
568 /// Module-level verification that all @llvm.experimental.deoptimize
569 /// declarations share the same calling convention.
570 void verifyDeoptimizeCallingConvs();
571
572 /// Verify all-or-nothing property of DIFile source attribute within a CU.
573 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
574
575 /// Verify the llvm.experimental.noalias.scope.decl declarations
576 void verifyNoAliasScopeDecl();
577};
578
579} // end anonymous namespace
580
581/// We know that cond should be true, if not print an error message.
582#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
583 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
584
585/// We know that a debug info condition should be true, if not print
586/// an error message.
587#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
588 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
589
590void Verifier::visit(Instruction &I) {
591 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
592 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
593 InstVisitor<Verifier>::visit(I);
594}
595
596// Helper to recursively iterate over indirect users. By
597// returning false, the callback can ask to stop recursing
598// further.
599static void forEachUser(const Value *User,
600 SmallPtrSet<const Value *, 32> &Visited,
601 llvm::function_ref<bool(const Value *)> Callback) {
602 if (!Visited.insert(User).second)
603 return;
604 for (const Value *TheNextUser : User->materialized_users())
605 if (Callback(TheNextUser))
606 forEachUser(TheNextUser, Visited, Callback);
607}
608
609void Verifier::visitGlobalValue(const GlobalValue &GV) {
610 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
611 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
612
613 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
614 Assert(GO->getAlignment() <= Value::MaximumAlignment,do { if (!(GO->getAlignment() <= Value::MaximumAlignment
)) { CheckFailed("huge alignment values are unsupported", GO)
; return; } } while (false)
615 "huge alignment values are unsupported", GO)do { if (!(GO->getAlignment() <= Value::MaximumAlignment
)) { CheckFailed("huge alignment values are unsupported", GO)
; return; } } while (false)
;
616 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
617 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
618
619 if (GV.hasAppendingLinkage()) {
620 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
621 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
622 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
623 }
624
625 if (GV.isDeclarationForLinker())
626 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
627
628 if (GV.hasDLLImportStorageClass()) {
629 Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
630 "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
;
631
632 Assert((GV.isDeclaration() &&do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
633 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
634 GV.hasAvailableExternallyLinkage(),do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
635 "Global is marked as dllimport, but not external", &GV)do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
636 }
637
638 if (GV.isImplicitDSOLocal())
639 Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
640 "GlobalValue with local linkage or non-default "do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
641 "visibility must be dso_local!",do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
642 &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
;
643
644 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
645 if (const Instruction *I = dyn_cast<Instruction>(V)) {
646 if (!I->getParent() || !I->getParent()->getParent())
647 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
648 I);
649 else if (I->getParent()->getParent()->getParent() != &M)
650 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
651 I->getParent()->getParent(),
652 I->getParent()->getParent()->getParent());
653 return false;
654 } else if (const Function *F = dyn_cast<Function>(V)) {
655 if (F->getParent() != &M)
656 CheckFailed("Global is used by function in a different module", &GV, &M,
657 F, F->getParent());
658 return false;
659 }
660 return true;
661 });
662}
663
664void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
665 if (GV.hasInitializer()) {
666 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
667 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
668 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
669 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
670 // If the global has common linkage, it must have a zero initializer and
671 // cannot be constant.
672 if (GV.hasCommonLinkage()) {
673 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
674 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
675 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
676 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
677 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
678 }
679 }
680
681 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
682 GV.getName() == "llvm.global_dtors")) {
683 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
684 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
685 // Don't worry about emitting an error for it not being an array,
686 // visitGlobalValue will complain on appending non-array.
687 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
688 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
689 PointerType *FuncPtrTy =
690 FunctionType::get(Type::getVoidTy(Context), false)->
691 getPointerTo(DL.getProgramAddressSpace());
692 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
693 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
694 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
695 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
696 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
697 Assert(STy->getNumElements() == 3,do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
698 "the third field of the element type is mandatory, "do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
699 "specify i8* null to migrate from the obsoleted 2-field form")do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
;
700 Type *ETy = STy->getTypeAtIndex(2);
701 Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
702 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
703 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
704 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
705 }
706 }
707
708 if (GV.hasName() && (GV.getName() == "llvm.used" ||
709 GV.getName() == "llvm.compiler.used")) {
710 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
711 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
712 Type *GVType = GV.getValueType();
713 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
714 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
715 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
716 if (GV.hasInitializer()) {
717 const Constant *Init = GV.getInitializer();
718 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
719 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
720 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
721 for (Value *Op : InitArray->operands()) {
722 Value *V = Op->stripPointerCasts();
723 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
724 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
725 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
726 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
727 }
728 }
729 }
730 }
731
732 // Visit any debug info attachments.
733 SmallVector<MDNode *, 1> MDs;
734 GV.getMetadata(LLVMContext::MD_dbg, MDs);
735 for (auto *MD : MDs) {
736 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
737 visitDIGlobalVariableExpression(*GVE);
738 else
739 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
740 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
741 }
742
743 // Scalable vectors cannot be global variables, since we don't know
744 // the runtime size. If the global is an array containing scalable vectors,
745 // that will be caught by the isValidElementType methods in StructType or
746 // ArrayType instead.
747 Assert(!isa<ScalableVectorType>(GV.getValueType()),do { if (!(!isa<ScalableVectorType>(GV.getValueType()))
) { CheckFailed("Globals cannot contain scalable vectors", &
GV); return; } } while (false)
748 "Globals cannot contain scalable vectors", &GV)do { if (!(!isa<ScalableVectorType>(GV.getValueType()))
) { CheckFailed("Globals cannot contain scalable vectors", &
GV); return; } } while (false)
;
749
750 if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
751 Assert(!STy->containsScalableVectorType(),do { if (!(!STy->containsScalableVectorType())) { CheckFailed
("Globals cannot contain scalable vectors", &GV); return;
} } while (false)
752 "Globals cannot contain scalable vectors", &GV)do { if (!(!STy->containsScalableVectorType())) { CheckFailed
("Globals cannot contain scalable vectors", &GV); return;
} } while (false)
;
753
754 if (!GV.hasInitializer()) {
755 visitGlobalValue(GV);
756 return;
757 }
758
759 // Walk any aggregate initializers looking for bitcasts between address spaces
760 visitConstantExprsRecursively(GV.getInitializer());
761
762 visitGlobalValue(GV);
763}
764
765void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
766 SmallPtrSet<const GlobalAlias*, 4> Visited;
767 Visited.insert(&GA);
768 visitAliaseeSubExpr(Visited, GA, C);
769}
770
771void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
772 const GlobalAlias &GA, const Constant &C) {
773 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
774 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
775 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
776
777 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
778 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
779
780 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
781 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
782 } else {
783 // Only continue verifying subexpressions of GlobalAliases.
784 // Do not recurse into global initializers.
785 return;
786 }
787 }
788
789 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
790 visitConstantExprsRecursively(CE);
791
792 for (const Use &U : C.operands()) {
793 Value *V = &*U;
794 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
795 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
796 else if (const auto *C2 = dyn_cast<Constant>(V))
797 visitAliaseeSubExpr(Visited, GA, *C2);
798 }
799}
800
801void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
802 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
803 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
804 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
805 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
806 const Constant *Aliasee = GA.getAliasee();
807 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
808 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
809 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
810
811 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
812 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
813
814 visitAliaseeSubExpr(GA, *Aliasee);
815
816 visitGlobalValue(GA);
817}
818
819void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
820 // There used to be various other llvm.dbg.* nodes, but we don't support
821 // upgrading them and we want to reserve the namespace for future uses.
822 if (NMD.getName().startswith("llvm.dbg."))
823 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
824 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
825 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
826 for (const MDNode *MD : NMD.operands()) {
827 if (NMD.getName() == "llvm.dbg.cu")
828 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
829
830 if (!MD)
831 continue;
832
833 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
834 }
835}
836
837void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
838 // Only visit each node once. Metadata can be mutually recursive, so this
839 // avoids infinite recursion here, as well as being an optimization.
840 if (!MDNodes.insert(&MD).second)
841 return;
842
843 Assert(&MD.getContext() == &Context,do { if (!(&MD.getContext() == &Context)) { CheckFailed
("MDNode context does not match Module context!", &MD); return
; } } while (false)
844 "MDNode context does not match Module context!", &MD)do { if (!(&MD.getContext() == &Context)) { CheckFailed
("MDNode context does not match Module context!", &MD); return
; } } while (false)
;
845
846 switch (MD.getMetadataID()) {
847 default:
848 llvm_unreachable("Invalid MDNode subclass")__builtin_unreachable();
849 case Metadata::MDTupleKind:
850 break;
851#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
852 case Metadata::CLASS##Kind: \
853 visit##CLASS(cast<CLASS>(MD)); \
854 break;
855#include "llvm/IR/Metadata.def"
856 }
857
858 for (const Metadata *Op : MD.operands()) {
859 if (!Op)
860 continue;
861 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
862 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
863 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,do { if (!(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed
::Yes)) { DebugInfoCheckFailed("DILocation not allowed within this metadata node"
, &MD, Op); return; } } while (false)
864 "DILocation not allowed within this metadata node", &MD, Op)do { if (!(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed
::Yes)) { DebugInfoCheckFailed("DILocation not allowed within this metadata node"
, &MD, Op); return; } } while (false)
;
865 if (auto *N = dyn_cast<MDNode>(Op)) {
866 visitMDNode(*N, AllowLocs);
867 continue;
868 }
869 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
870 visitValueAsMetadata(*V, nullptr);
871 continue;
872 }
873 }
874
875 // Check these last, so we diagnose problems in operands first.
876 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
877 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
878}
879
880void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
881 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
882 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
883 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
884
885 auto *L = dyn_cast<LocalAsMetadata>(&MD);
886 if (!L)
887 return;
888
889 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
890
891 // If this was an instruction, bb, or argument, verify that it is in the
892 // function that we expect.
893 Function *ActualF = nullptr;
894 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
895 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
896 ActualF = I->getParent()->getParent();
897 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
898 ActualF = BB->getParent();
899 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
900 ActualF = A->getParent();
901 assert(ActualF && "Unimplemented function local metadata case!")((void)0);
902
903 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
904}
905
906void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
907 Metadata *MD = MDV.getMetadata();
908 if (auto *N = dyn_cast<MDNode>(MD)) {
909 visitMDNode(*N, AreDebugLocsAllowed::No);
910 return;
911 }
912
913 // Only visit each node once. Metadata can be mutually recursive, so this
914 // avoids infinite recursion here, as well as being an optimization.
915 if (!MDNodes.insert(MD).second)
916 return;
917
918 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
919 visitValueAsMetadata(*V, F);
920}
921
922static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
923static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
924static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
925
926void Verifier::visitDILocation(const DILocation &N) {
927 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
928 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
929 if (auto *IA = N.getRawInlinedAt())
930 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
931 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
932 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
933}
934
935void Verifier::visitGenericDINode(const GenericDINode &N) {
936 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
937}
938
939void Verifier::visitDIScope(const DIScope &N) {
940 if (auto *F = N.getRawFile())
941 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
942}
943
944void Verifier::visitDISubrange(const DISubrange &N) {
945 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
946 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
947 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
948 N.getRawUpperBound(),do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
949 "Subrange must contain count or upperBound", &N)do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
;
950 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("Subrange can have any one of count or upperBound", &N);
return; } } while (false)
951 "Subrange can have any one of count or upperBound", &N)do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("Subrange can have any one of count or upperBound", &N);
return; } } while (false)
;
952 auto *CBound = N.getRawCountNode();
953 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||do { if (!(!CBound || isa<ConstantAsMetadata>(CBound) ||
isa<DIVariable>(CBound) || isa<DIExpression>(CBound
))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
954 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),do { if (!(!CBound || isa<ConstantAsMetadata>(CBound) ||
isa<DIVariable>(CBound) || isa<DIExpression>(CBound
))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
955 "Count must be signed constant or DIVariable or DIExpression", &N)do { if (!(!CBound || isa<ConstantAsMetadata>(CBound) ||
isa<DIVariable>(CBound) || isa<DIExpression>(CBound
))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
956 auto Count = N.getCount();
957 AssertDI(!Count || !Count.is<ConstantInt *>() ||do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
958 Count.get<ConstantInt *>()->getSExtValue() >= -1,do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
959 "invalid subrange count", &N)do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
;
960 auto *LBound = N.getRawLowerBound();
961 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
962 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
963 "LowerBound must be signed constant or DIVariable or DIExpression",do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
964 &N)do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
965 auto *UBound = N.getRawUpperBound();
966 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
967 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
968 "UpperBound must be signed constant or DIVariable or DIExpression",do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
969 &N)do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
970 auto *Stride = N.getRawStride();
971 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
972 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
973 "Stride must be signed constant or DIVariable or DIExpression", &N)do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
974}
975
976void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
977 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_generic_subrange)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
978 AssertDI(N.getRawCountNode() || N.getRawUpperBound(),do { if (!(N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed
("GenericSubrange must contain count or upperBound", &N);
return; } } while (false)
979 "GenericSubrange must contain count or upperBound", &N)do { if (!(N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed
("GenericSubrange must contain count or upperBound", &N);
return; } } while (false)
;
980 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("GenericSubrange can have any one of count or upperBound", &
N); return; } } while (false)
981 "GenericSubrange can have any one of count or upperBound", &N)do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("GenericSubrange can have any one of count or upperBound", &
N); return; } } while (false)
;
982 auto *CBound = N.getRawCountNode();
983 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),do { if (!(!CBound || isa<DIVariable>(CBound) || isa<
DIExpression>(CBound))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
984 "Count must be signed constant or DIVariable or DIExpression", &N)do { if (!(!CBound || isa<DIVariable>(CBound) || isa<
DIExpression>(CBound))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
985 auto *LBound = N.getRawLowerBound();
986 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N)do { if (!(LBound)) { DebugInfoCheckFailed("GenericSubrange must contain lowerBound"
, &N); return; } } while (false)
;
987 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),do { if (!(isa<DIVariable>(LBound) || isa<DIExpression
>(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
988 "LowerBound must be signed constant or DIVariable or DIExpression",do { if (!(isa<DIVariable>(LBound) || isa<DIExpression
>(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
989 &N)do { if (!(isa<DIVariable>(LBound) || isa<DIExpression
>(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
990 auto *UBound = N.getRawUpperBound();
991 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),do { if (!(!UBound || isa<DIVariable>(UBound) || isa<
DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
992 "UpperBound must be signed constant or DIVariable or DIExpression",do { if (!(!UBound || isa<DIVariable>(UBound) || isa<
DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
993 &N)do { if (!(!UBound || isa<DIVariable>(UBound) || isa<
DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
994 auto *Stride = N.getRawStride();
995 AssertDI(Stride, "GenericSubrange must contain stride", &N)do { if (!(Stride)) { DebugInfoCheckFailed("GenericSubrange must contain stride"
, &N); return; } } while (false)
;
996 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),do { if (!(isa<DIVariable>(Stride) || isa<DIExpression
>(Stride))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
997 "Stride must be signed constant or DIVariable or DIExpression", &N)do { if (!(isa<DIVariable>(Stride) || isa<DIExpression
>(Stride))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
998}
999
1000void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1001 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1002}
1003
1004void Verifier::visitDIBasicType(const DIBasicType &N) {
1005 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1006 N.getTag() == dwarf::DW_TAG_unspecified_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1007 N.getTag() == dwarf::DW_TAG_string_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1008 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1009}
1010
1011void Verifier::visitDIStringType(const DIStringType &N) {
1012 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_string_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1013 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
1014 "has conflicting flags", &N)do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
;
1015}
1016
1017void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1018 // Common scope checks.
1019 visitDIScope(N);
1020
1021 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1022 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1023 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1024 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1025 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1026 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1027 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1028 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1029 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1030 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1031 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1032 N.getTag() == dwarf::DW_TAG_friend ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1033 N.getTag() == dwarf::DW_TAG_set_type,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1034 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1035 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1036 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
1037 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
1038 }
1039
1040 if (N.getTag() == dwarf::DW_TAG_set_type) {
1041 if (auto *T = N.getRawBaseType()) {
1042 auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1043 auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1044 AssertDI(do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned
|| Basic->getEncoding() == dwarf::DW_ATE_signed || Basic->
getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding
() == dwarf::DW_ATE_signed_char || Basic->getEncoding() ==
dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type"
, &N, T); return; } } while (false)
1045 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned
|| Basic->getEncoding() == dwarf::DW_ATE_signed || Basic->
getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding
() == dwarf::DW_ATE_signed_char || Basic->getEncoding() ==
dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type"
, &N, T); return; } } while (false)
1046 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned
|| Basic->getEncoding() == dwarf::DW_ATE_signed || Basic->
getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding
() == dwarf::DW_ATE_signed_char || Basic->getEncoding() ==
dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type"
, &N, T); return; } } while (false)
1047 Basic->getEncoding() == dwarf::DW_ATE_signed ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned
|| Basic->getEncoding() == dwarf::DW_ATE_signed || Basic->
getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding
() == dwarf::DW_ATE_signed_char || Basic->getEncoding() ==
dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type"
, &N, T); return; } } while (false)
1048 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned
|| Basic->getEncoding() == dwarf::DW_ATE_signed || Basic->
getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding
() == dwarf::DW_ATE_signed_char || Basic->getEncoding() ==
dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type"
, &N, T); return; } } while (false)
1049 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned
|| Basic->getEncoding() == dwarf::DW_ATE_signed || Basic->
getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding
() == dwarf::DW_ATE_signed_char || Basic->getEncoding() ==
dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type"
, &N, T); return; } } while (false)
1050 Basic->getEncoding() == dwarf::DW_ATE_boolean)),do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned
|| Basic->getEncoding() == dwarf::DW_ATE_signed || Basic->
getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding
() == dwarf::DW_ATE_signed_char || Basic->getEncoding() ==
dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type"
, &N, T); return; } } while (false)
1051 "invalid set base type", &N, T)do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned
|| Basic->getEncoding() == dwarf::DW_ATE_signed || Basic->
getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding
() == dwarf::DW_ATE_signed_char || Basic->getEncoding() ==
dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type"
, &N, T); return; } } while (false)
;
1052 }
1053 }
1054
1055 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1056 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
1057 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
1058
1059 if (N.getDWARFAddressSpace()) {
1060 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
1061 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
1062 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
1063 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
1064 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
1065 }
1066}
1067
1068/// Detect mutually exclusive flags.
1069static bool hasConflictingReferenceFlags(unsigned Flags) {
1070 return ((Flags & DINode::FlagLValueReference) &&
1071 (Flags & DINode::FlagRValueReference)) ||
1072 ((Flags & DINode::FlagTypePassByValue) &&
1073 (Flags & DINode::FlagTypePassByReference));
1074}
1075
1076void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1077 auto *Params = dyn_cast<MDTuple>(&RawParams);
1078 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
1079 for (Metadata *Op : Params->operands()) {
1080 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
1081 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
1082 }
1083}
1084
1085void Verifier::visitDICompositeType(const DICompositeType &N) {
1086 // Common scope checks.
1087 visitDIScope(N);
1088
1089 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1090 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1091 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1092 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1093 N.getTag() == dwarf::DW_TAG_class_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1094 N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1095 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1096
1097 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1098 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
1099 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
1100
1101 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
1102 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
1103 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
1104 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
1105 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1106 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1107 unsigned DIBlockByRefStruct = 1 << 4;
1108 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed
("DIBlockByRefStruct on DICompositeType is no longer supported"
, &N); return; } } while (false)
1109 "DIBlockByRefStruct on DICompositeType is no longer supported", &N)do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed
("DIBlockByRefStruct on DICompositeType is no longer supported"
, &N); return; } } while (false)
;
1110
1111 if (N.isVector()) {
1112 const DINodeArray Elements = N.getElements();
1113 AssertDI(Elements.size() == 1 &&do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
1114 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
1115 "invalid vector, expected one element of type subrange", &N)do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
;
1116 }
1117
1118 if (auto *Params = N.getRawTemplateParams())
1119 visitTemplateParams(N, *Params);
1120
1121 if (auto *D = N.getRawDiscriminator()) {
1122 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
1123 "discriminator can only appear on variant part")do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
;
1124 }
1125
1126 if (N.getRawDataLocation()) {
1127 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("dataLocation can only appear in array type"); return; } } while
(false)
1128 "dataLocation can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("dataLocation can only appear in array type"); return; } } while
(false)
;
1129 }
1130
1131 if (N.getRawAssociated()) {
1132 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("associated can only appear in array type"); return; } } while
(false)
1133 "associated can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("associated can only appear in array type"); return; } } while
(false)
;
1134 }
1135
1136 if (N.getRawAllocated()) {
1137 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("allocated can only appear in array type"); return; } } while
(false)
1138 "allocated can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("allocated can only appear in array type"); return; } } while
(false)
;
1139 }
1140
1141 if (N.getRawRank()) {
1142 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("rank can only appear in array type"); return; } } while (false
)
1143 "rank can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("rank can only appear in array type"); return; } } while (false
)
;
1144 }
1145}
1146
1147void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1148 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1149 if (auto *Types = N.getRawTypeArray()) {
1150 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
1151 for (Metadata *Ty : N.getTypeArray()->operands()) {
1152 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
1153 }
1154 }
1155 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1156 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1157}
1158
1159void Verifier::visitDIFile(const DIFile &N) {
1160 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1161 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1162 if (Checksum) {
1163 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
1164 "invalid checksum kind", &N)do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
;
1165 size_t Size;
1166 switch (Checksum->Kind) {
1167 case DIFile::CSK_MD5:
1168 Size = 32;
1169 break;
1170 case DIFile::CSK_SHA1:
1171 Size = 40;
1172 break;
1173 case DIFile::CSK_SHA256:
1174 Size = 64;
1175 break;
1176 }
1177 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N)do { if (!(Checksum->Value.size() == Size)) { DebugInfoCheckFailed
("invalid checksum length", &N); return; } } while (false
)
;
1178 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
1179 "invalid checksum", &N)do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
;
1180 }
1181}
1182
1183void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1184 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
1185 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1186
1187 // Don't bother verifying the compilation directory or producer string
1188 // as those could be empty.
1189 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
1190 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
1191 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
1192 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
1193
1194 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1195
1196 verifySourceDebugInfo(N, *N.getFile());
1197
1198 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
1199 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
1200
1201 if (auto *Array = N.getRawEnumTypes()) {
1202 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
1203 for (Metadata *Op : N.getEnumTypes()->operands()) {
1204 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1205 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
1206 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
1207 }
1208 }
1209 if (auto *Array = N.getRawRetainedTypes()) {
1210 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
1211 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1212 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1213 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1214 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1215 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1216 }
1217 }
1218 if (auto *Array = N.getRawGlobalVariables()) {
1219 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1220 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1221 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1222 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1223 }
1224 }
1225 if (auto *Array = N.getRawImportedEntities()) {
1226 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1227 for (Metadata *Op : N.getImportedEntities()->operands()) {
1228 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1229 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1230 }
1231 }
1232 if (auto *Array = N.getRawMacros()) {
1233 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1234 for (Metadata *Op : N.getMacros()->operands()) {
1235 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1236 }
1237 }
1238 CUVisited.insert(&N);
1239}
1240
1241void Verifier::visitDISubprogram(const DISubprogram &N) {
1242 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1243 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1244 if (auto *F = N.getRawFile())
1245 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1246 else
1247 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1248 if (auto *T = N.getRawType())
1249 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1250 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1251 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1252 if (auto *Params = N.getRawTemplateParams())
1253 visitTemplateParams(N, *Params);
1254 if (auto *S = N.getRawDeclaration())
1255 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1256 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1257 if (auto *RawNode = N.getRawRetainedNodes()) {
1258 auto *Node = dyn_cast<MDTuple>(RawNode);
1259 AssertDI(Node, "invalid retained nodes list", &N, RawNode)do { if (!(Node)) { DebugInfoCheckFailed("invalid retained nodes list"
, &N, RawNode); return; } } while (false)
;
1260 for (Metadata *Op : Node->operands()) {
1261 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1262 "invalid retained nodes, expected DILocalVariable or DILabel",do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1263 &N, Node, Op)do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
;
1264 }
1265 }
1266 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1267 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1268
1269 auto *Unit = N.getRawUnit();
1270 if (N.isDefinition()) {
1271 // Subprogram definitions (not part of the type hierarchy).
1272 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1273 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1274 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1275 if (N.getFile())
1276 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1277 } else {
1278 // Subprogram declarations (part of the type hierarchy).
1279 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1280 }
1281
1282 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1283 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1284 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1285 for (Metadata *Op : ThrownTypes->operands())
1286 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1287 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1288 }
1289
1290 if (N.areAllCallsDescribed())
1291 AssertDI(N.isDefinition(),do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
1292 "DIFlagAllCallsDescribed must be attached to a definition")do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
;
1293}
1294
1295void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1296 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1297 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1298 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1299 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1300 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
1301}
1302
1303void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1304 visitDILexicalBlockBase(N);
1305
1306 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1307 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1308}
1309
1310void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1311 visitDILexicalBlockBase(N);
1312}
1313
1314void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1315 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_common_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1316 if (auto *S = N.getRawScope())
1317 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1318 if (auto *S = N.getRawDecl())
1319 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S)do { if (!(isa<DIGlobalVariable>(S))) { DebugInfoCheckFailed
("invalid declaration", &N, S); return; } } while (false)
;
1320}
1321
1322void Verifier::visitDINamespace(const DINamespace &N) {
1323 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1324 if (auto *S = N.getRawScope())
1325 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1326}
1327
1328void Verifier::visitDIMacro(const DIMacro &N) {
1329 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1330 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1331 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1332 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1333 if (!N.getValue().empty()) {
1334 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((void)0);
1335 }
1336}
1337
1338void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1339 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1340 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1341 if (auto *F = N.getRawFile())
1342 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1343
1344 if (auto *Array = N.getRawElements()) {
1345 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1346 for (Metadata *Op : N.getElements()->operands()) {
1347 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1348 }
1349 }
1350}
1351
1352void Verifier::visitDIArgList(const DIArgList &N) {
1353 AssertDI(!N.getNumOperands(),do { if (!(!N.getNumOperands())) { DebugInfoCheckFailed("DIArgList should have no operands other than a list of "
"ValueAsMetadata", &N); return; } } while (false)
1354 "DIArgList should have no operands other than a list of "do { if (!(!N.getNumOperands())) { DebugInfoCheckFailed("DIArgList should have no operands other than a list of "
"ValueAsMetadata", &N); return; } } while (false)
1355 "ValueAsMetadata",do { if (!(!N.getNumOperands())) { DebugInfoCheckFailed("DIArgList should have no operands other than a list of "
"ValueAsMetadata", &N); return; } } while (false)
1356 &N)do { if (!(!N.getNumOperands())) { DebugInfoCheckFailed("DIArgList should have no operands other than a list of "
"ValueAsMetadata", &N); return; } } while (false)
;
1357}
1358
1359void Verifier::visitDIModule(const DIModule &N) {
1360 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1361 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1362}
1363
1364void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1365 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1366}
1367
1368void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1369 visitDITemplateParameter(N);
1370
1371 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1372 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1373}
1374
1375void Verifier::visitDITemplateValueParameter(
1376 const DITemplateValueParameter &N) {
1377 visitDITemplateParameter(N);
1378
1379 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1380 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1381 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1382 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1383}
1384
1385void Verifier::visitDIVariable(const DIVariable &N) {
1386 if (auto *S = N.getRawScope())
1387 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1388 if (auto *F = N.getRawFile())
1389 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1390}
1391
1392void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1393 // Checks common to all variables.
1394 visitDIVariable(N);
1395
1396 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1397 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1398 // Assert only if the global variable is not an extern
1399 if (N.isDefinition())
1400 AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type"
, &N); return; } } while (false)
;
1401 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1402 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1403 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1404 }
1405}
1406
1407void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1408 // Checks common to all variables.
1409 visitDIVariable(N);
1410
1411 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1412 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1413 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1414 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1415 if (auto Ty = N.getType())
1416 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType())do { if (!(!isa<DISubroutineType>(Ty))) { DebugInfoCheckFailed
("invalid type", &N, N.getType()); return; } } while (false
)
;
1417}
1418
1419void Verifier::visitDILabel(const DILabel &N) {
1420 if (auto *S = N.getRawScope())
1421 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1422 if (auto *F = N.getRawFile())
1423 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1424
1425 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_label)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1426 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1427 "label requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1428}
1429
1430void Verifier::visitDIExpression(const DIExpression &N) {
1431 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1432}
1433
1434void Verifier::visitDIGlobalVariableExpression(
1435 const DIGlobalVariableExpression &GVE) {
1436 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1437 if (auto *Var = GVE.getVariable())
1438 visitDIGlobalVariable(*Var);
1439 if (auto *Expr = GVE.getExpression()) {
1440 visitDIExpression(*Expr);
1441 if (auto Fragment = Expr->getFragmentInfo())
1442 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1443 }
1444}
1445
1446void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1447 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1448 if (auto *T = N.getRawType())
1449 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1450 if (auto *F = N.getRawFile())
1451 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1452}
1453
1454void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1455 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1456 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1457 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1458 if (auto *S = N.getRawScope())
1459 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1460 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1461 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1462}
1463
1464void Verifier::visitComdat(const Comdat &C) {
1465 // In COFF the Module is invalid if the GlobalValue has private linkage.
1466 // Entities with private linkage don't have entries in the symbol table.
1467 if (TT.isOSBinFormatCOFF())
1468 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1469 Assert(!GV->hasPrivateLinkage(),do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1470 "comdat global value has private linkage", GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1471}
1472
1473void Verifier::visitModuleIdents(const Module &M) {
1474 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1475 if (!Idents)
1476 return;
1477
1478 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1479 // Scan each llvm.ident entry and make sure that this requirement is met.
1480 for (const MDNode *N : Idents->operands()) {
1481 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1482 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1483 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1484 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1485 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1486 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1487 }
1488}
1489
1490void Verifier::visitModuleCommandLines(const Module &M) {
1491 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1492 if (!CommandLines)
1493 return;
1494
1495 // llvm.commandline takes a list of metadata entry. Each entry has only one
1496 // string. Scan each llvm.commandline entry and make sure that this
1497 // requirement is met.
1498 for (const MDNode *N : CommandLines->operands()) {
1499 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
1500 "incorrect number of operands in llvm.commandline metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
;
1501 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1502 ("invalid value for llvm.commandline metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1503 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1504 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1505 }
1506}
1507
1508void Verifier::visitModuleFlags(const Module &M) {
1509 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1510 if (!Flags) return;
1511
1512 // Scan each flag, and track the flags and requirements.
1513 DenseMap<const MDString*, const MDNode*> SeenIDs;
1514 SmallVector<const MDNode*, 16> Requirements;
1515 for (const MDNode *MDN : Flags->operands())
1516 visitModuleFlag(MDN, SeenIDs, Requirements);
1517
1518 // Validate that the requirements in the module are valid.
1519 for (const MDNode *Requirement : Requirements) {
1520 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1521 const Metadata *ReqValue = Requirement->getOperand(1);
1522
1523 const MDNode *Op = SeenIDs.lookup(Flag);
1524 if (!Op) {
1525 CheckFailed("invalid requirement on flag, flag is not present in module",
1526 Flag);
1527 continue;
1528 }
1529
1530 if (Op->getOperand(2) != ReqValue) {
1531 CheckFailed(("invalid requirement on flag, "
1532 "flag does not have the required value"),
1533 Flag);
1534 continue;
1535 }
1536 }
1537}
1538
1539void
1540Verifier::visitModuleFlag(const MDNode *Op,
1541 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1542 SmallVectorImpl<const MDNode *> &Requirements) {
1543 // Each module flag should have three arguments, the merge behavior (a
1544 // constant int), the flag ID (an MDString), and the value.
1545 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1546 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1547 Module::ModFlagBehavior MFB;
1548 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1549 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1550 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1551 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1552 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1553 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1554 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1555 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1556 }
1557 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1558 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1559 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1560
1561 // Sanity check the values for behaviors with additional requirements.
1562 switch (MFB) {
1563 case Module::Error:
1564 case Module::Warning:
1565 case Module::Override:
1566 // These behavior types accept any value.
1567 break;
1568
1569 case Module::Max: {
1570 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1571 "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1572 Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
;
1573 break;
1574 }
1575
1576 case Module::Require: {
1577 // The value should itself be an MDNode with two operands, a flag ID (an
1578 // MDString), and a value.
1579 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1580 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1581 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1582 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1583 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1584 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1585 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1586 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1587
1588 // Append it to the list of requirements, to check once all module flags are
1589 // scanned.
1590 Requirements.push_back(Value);
1591 break;
1592 }
1593
1594 case Module::Append:
1595 case Module::AppendUnique: {
1596 // These behavior types require the operand be an MDNode.
1597 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1598 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1599 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1600 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1601 break;
1602 }
1603 }
1604
1605 // Unless this is a "requires" flag, check the ID is unique.
1606 if (MFB != Module::Require) {
1607 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1608 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1609 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1610 }
1611
1612 if (ID->getString() == "wchar_size") {
1613 ConstantInt *Value
1614 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1615 Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument"
); return; } } while (false)
;
1616 }
1617
1618 if (ID->getString() == "Linker Options") {
1619 // If the llvm.linker.options named metadata exists, we assume that the
1620 // bitcode reader has upgraded the module flag. Otherwise the flag might
1621 // have been created by a client directly.
1622 Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
1623 "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
;
1624 }
1625
1626 if (ID->getString() == "SemanticInterposition") {
1627 ConstantInt *Value =
1628 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1629 Assert(Value,do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument"
); return; } } while (false)
1630 "SemanticInterposition metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument"
); return; } } while (false)
;
1631 }
1632
1633 if (ID->getString() == "CG Profile") {
1634 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1635 visitModuleFlagCGProfileEntry(MDO);
1636 }
1637}
1638
1639void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1640 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1641 if (!FuncMDO)
1642 return;
1643 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1644 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),do { if (!(F && isa<Function>(F->getValue()->
stripPointerCasts()))) { CheckFailed("expected a Function or null"
, FuncMDO); return; } } while (false)
1645 "expected a Function or null", FuncMDO)do { if (!(F && isa<Function>(F->getValue()->
stripPointerCasts()))) { CheckFailed("expected a Function or null"
, FuncMDO); return; } } while (false)
;
1646 };
1647 auto Node = dyn_cast_or_null<MDNode>(MDO);
1648 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO)do { if (!(Node && Node->getNumOperands() == 3)) {
CheckFailed("expected a MDNode triple", MDO); return; } } while
(false)
;
1649 CheckFunction(Node->getOperand(0));
1650 CheckFunction(Node->getOperand(1));
1651 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1652 Assert(Count && Count->getType()->isIntegerTy(),do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
1653 "expected an integer constant", Node->getOperand(2))do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
;
1654}
1655
1656void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1657 for (Attribute A : Attrs) {
1658
1659 if (A.isStringAttribute()) {
1660#define GET_ATTR_NAMES
1661#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1662#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1663 if (A.getKindAsString() == #DISPLAY_NAME) { \
1664 auto V = A.getValueAsString(); \
1665 if (!(V.empty() || V == "true" || V == "false")) \
1666 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1667 ""); \
1668 }
1669
1670#include "llvm/IR/Attributes.inc"
1671 continue;
1672 }
1673
1674 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1675 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1676 V);
1677 return;
1678 }
1679 }
1680}
1681
1682// VerifyParameterAttrs - Check the given attributes for an argument or return
1683// value of the specified type. The value V is printed in error messages.
1684void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1685 const Value *V) {
1686 if (!Attrs.hasAttributes())
1687 return;
1688
1689 verifyAttributeTypes(Attrs, V);
1690
1691 for (Attribute Attr : Attrs)
1692 Assert(Attr.isStringAttribute() ||do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr
(Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString
() + "' does not apply to parameters", V); return; } } while (
false)
1693 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr
(Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString
() + "' does not apply to parameters", V); return; } } while (
false)
1694 "Attribute '" + Attr.getAsString() +do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr
(Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString
() + "' does not apply to parameters", V); return; } } while (
false)
1695 "' does not apply to parameters",do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr
(Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString
() + "' does not apply to parameters", V); return; } } while (
false)
1696 V)do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr
(Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString
() + "' does not apply to parameters", V); return; } } while (
false)
;
1697
1698 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1699 Assert(Attrs.getNumAttributes() == 1,do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
1700 "Attribute 'immarg' is incompatible with other attributes", V)do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
;
1701 }
1702
1703 // Check for mutually incompatible attributes. Only inreg is compatible with
1704 // sret.
1705 unsigned AttrCount = 0;
1706 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1707 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1708 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1709 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1710 Attrs.hasAttribute(Attribute::InReg);
1711 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1712 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1713 Assert(AttrCount <= 1,do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1714 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1715 "'byref', and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1716 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
;
1717
1718 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1719 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1720 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1721 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1722 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1723
1724 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1725 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1726 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1727 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1728 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1729
1730 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1731 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1732 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1733 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1734 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1735
1736 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1737 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1738 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1739 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1740 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1741
1742 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1743 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1744 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1745 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1746 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1747
1748 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1749 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1750 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1751 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1752 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1753
1754 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1755 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1756 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1757 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1758 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1759
1760 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1761 for (Attribute Attr : Attrs) {
1762 if (!Attr.isStringAttribute() &&
1763 IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1764 CheckFailed("Attribute '" + Attr.getAsString() +
1765 "' applied to incompatible type!", V);
1766 return;
1767 }
1768 }
1769
1770 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1771 if (Attrs.hasAttribute(Attribute::ByVal)) {
1772 SmallPtrSet<Type *, 4> Visited;
1773 Assert(Attrs.getByValType()->isSized(&Visited),do { if (!(Attrs.getByValType()->isSized(&Visited))) {
CheckFailed("Attribute 'byval' does not support unsized types!"
, V); return; } } while (false)
1774 "Attribute 'byval' does not support unsized types!", V)do { if (!(Attrs.getByValType()->isSized(&Visited))) {
CheckFailed("Attribute 'byval' does not support unsized types!"
, V); return; } } while (false)
;
1775 }
1776 if (Attrs.hasAttribute(Attribute::ByRef)) {
1777 SmallPtrSet<Type *, 4> Visited;
1778 Assert(Attrs.getByRefType()->isSized(&Visited),do { if (!(Attrs.getByRefType()->isSized(&Visited))) {
CheckFailed("Attribute 'byref' does not support unsized types!"
, V); return; } } while (false)
1779 "Attribute 'byref' does not support unsized types!", V)do { if (!(Attrs.getByRefType()->isSized(&Visited))) {
CheckFailed("Attribute 'byref' does not support unsized types!"
, V); return; } } while (false)
;
1780 }
1781 if (Attrs.hasAttribute(Attribute::InAlloca)) {
1782 SmallPtrSet<Type *, 4> Visited;
1783 Assert(Attrs.getInAllocaType()->isSized(&Visited),do { if (!(Attrs.getInAllocaType()->isSized(&Visited))
) { CheckFailed("Attribute 'inalloca' does not support unsized types!"
, V); return; } } while (false)
1784 "Attribute 'inalloca' does not support unsized types!", V)do { if (!(Attrs.getInAllocaType()->isSized(&Visited))
) { CheckFailed("Attribute 'inalloca' does not support unsized types!"
, V); return; } } while (false)
;
1785 }
1786 if (Attrs.hasAttribute(Attribute::Preallocated)) {
1787 SmallPtrSet<Type *, 4> Visited;
1788 Assert(Attrs.getPreallocatedType()->isSized(&Visited),do { if (!(Attrs.getPreallocatedType()->isSized(&Visited
))) { CheckFailed("Attribute 'preallocated' does not support unsized types!"
, V); return; } } while (false)
1789 "Attribute 'preallocated' does not support unsized types!", V)do { if (!(Attrs.getPreallocatedType()->isSized(&Visited
))) { CheckFailed("Attribute 'preallocated' does not support unsized types!"
, V); return; } } while (false)
;
1790 }
1791 if (!PTy->isOpaque()) {
1792 if (!isa<PointerType>(PTy->getElementType()))
1793 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1794 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1795 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1796 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1797 if (Attrs.hasAttribute(Attribute::ByRef)) {
1798 Assert(Attrs.getByRefType() == PTy->getElementType(),do { if (!(Attrs.getByRefType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byref' type does not match parameter!"
, V); return; } } while (false)
1799 "Attribute 'byref' type does not match parameter!", V)do { if (!(Attrs.getByRefType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byref' type does not match parameter!"
, V); return; } } while (false)
;
1800 }
1801
1802 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1803 Assert(Attrs.getByValType() == PTy->getElementType(),do { if (!(Attrs.getByValType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byval' type does not match parameter!"
, V); return; } } while (false)
1804 "Attribute 'byval' type does not match parameter!", V)do { if (!(Attrs.getByValType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byval' type does not match parameter!"
, V); return; } } while (false)
;
1805 }
1806
1807 if (Attrs.hasAttribute(Attribute::Preallocated)) {
1808 Assert(Attrs.getPreallocatedType() == PTy->getElementType(),do { if (!(Attrs.getPreallocatedType() == PTy->getElementType
())) { CheckFailed("Attribute 'preallocated' type does not match parameter!"
, V); return; } } while (false)
1809 "Attribute 'preallocated' type does not match parameter!", V)do { if (!(Attrs.getPreallocatedType() == PTy->getElementType
())) { CheckFailed("Attribute 'preallocated' type does not match parameter!"
, V); return; } } while (false)
;
1810 }
1811
1812 if (Attrs.hasAttribute(Attribute::InAlloca)) {
1813 Assert(Attrs.getInAllocaType() == PTy->getElementType(),do { if (!(Attrs.getInAllocaType() == PTy->getElementType(
))) { CheckFailed("Attribute 'inalloca' type does not match parameter!"
, V); return; } } while (false)
1814 "Attribute 'inalloca' type does not match parameter!", V)do { if (!(Attrs.getInAllocaType() == PTy->getElementType(
))) { CheckFailed("Attribute 'inalloca' type does not match parameter!"
, V); return; } } while (false)
;
1815 }
1816
1817 if (Attrs.hasAttribute(Attribute::ElementType)) {
1818 Assert(Attrs.getElementType() == PTy->getElementType(),do { if (!(Attrs.getElementType() == PTy->getElementType()
)) { CheckFailed("Attribute 'elementtype' type does not match parameter!"
, V); return; } } while (false)
1819 "Attribute 'elementtype' type does not match parameter!", V)do { if (!(Attrs.getElementType() == PTy->getElementType()
)) { CheckFailed("Attribute 'elementtype' type does not match parameter!"
, V); return; } } while (false)
;
1820 }
1821 }
1822 }
1823}
1824
1825void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1826 const Value *V) {
1827 if (Attrs.hasFnAttribute(Attr)) {
1828 StringRef S = Attrs.getAttribute(AttributeList::FunctionIndex, Attr)
1829 .getValueAsString();
1830 unsigned N;
1831 if (S.getAsInteger(10, N))
1832 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1833 }
1834}
1835
1836// Check parameter attributes against a function type.
1837// The value V is printed in error messages.
1838void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1839 const Value *V, bool IsIntrinsic) {
1840 if (Attrs.isEmpty())
1841 return;
1842
1843 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1844 Assert(Attrs.hasParentContext(Context),do { if (!(Attrs.hasParentContext(Context))) { CheckFailed("Attribute list does not match Module context!"
, &Attrs, V); return; } } while (false)
1845 "Attribute list does not match Module context!", &Attrs, V)do { if (!(Attrs.hasParentContext(Context))) { CheckFailed("Attribute list does not match Module context!"
, &Attrs, V); return; } } while (false)
;
1846 for (const auto &AttrSet : Attrs) {
1847 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),do { if (!(!AttrSet.hasAttributes() || AttrSet.hasParentContext
(Context))) { CheckFailed("Attribute set does not match Module context!"
, &AttrSet, V); return; } } while (false)
1848 "Attribute set does not match Module context!", &AttrSet, V)do { if (!(!AttrSet.hasAttributes() || AttrSet.hasParentContext
(Context))) { CheckFailed("Attribute set does not match Module context!"
, &AttrSet, V); return; } } while (false)
;
1849 for (const auto &A : AttrSet) {
1850 Assert(A.hasParentContext(Context),do { if (!(A.hasParentContext(Context))) { CheckFailed("Attribute does not match Module context!"
, &A, V); return; } } while (false)
1851 "Attribute does not match Module context!", &A, V)do { if (!(A.hasParentContext(Context))) { CheckFailed("Attribute does not match Module context!"
, &A, V); return; } } while (false)
;
1852 }
1853 }
1854 }
1855
1856 bool SawNest = false;
1857 bool SawReturned = false;
1858 bool SawSRet = false;
1859 bool SawSwiftSelf = false;
1860 bool SawSwiftAsync = false;
1861 bool SawSwiftError = false;
1862
1863 // Verify return value attributes.
1864 AttributeSet RetAttrs = Attrs.getRetAttributes();
1865 for (Attribute RetAttr : RetAttrs)
1866 Assert(RetAttr.isStringAttribute() ||do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr
(RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr
.getAsString() + "' does not apply to function return values"
, V); return; } } while (false)
1867 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr
(RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr
.getAsString() + "' does not apply to function return values"
, V); return; } } while (false)
1868 "Attribute '" + RetAttr.getAsString() +do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr
(RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr
.getAsString() + "' does not apply to function return values"
, V); return; } } while (false)
1869 "' does not apply to function return values",do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr
(RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr
.getAsString() + "' does not apply to function return values"
, V); return; } } while (false)
1870 V)do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr
(RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr
.getAsString() + "' does not apply to function return values"
, V); return; } } while (false)
;
1871
1872 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1873
1874 // Verify parameter attributes.
1875 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1876 Type *Ty = FT->getParamType(i);
1877 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1878
1879 if (!IsIntrinsic) {
1880 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
1881 "immarg attribute only applies to intrinsics",V)do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
;
1882 Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),do { if (!(!ArgAttrs.hasAttribute(Attribute::ElementType))) {
CheckFailed("Attribute 'elementtype' can only be applied to intrinsics."
, V); return; } } while (false)
1883 "Attribute 'elementtype' can only be applied to intrinsics.", V)do { if (!(!ArgAttrs.hasAttribute(Attribute::ElementType))) {
CheckFailed("Attribute 'elementtype' can only be applied to intrinsics."
, V); return; } } while (false)
;
1884 }
1885
1886 verifyParameterAttrs(ArgAttrs, Ty, V);
1887
1888 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1889 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1890 SawNest = true;
1891 }
1892
1893 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1894 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1895 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1896 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1897 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1898 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1899 SawReturned = true;
1900 }
1901
1902 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1903 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1904 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1905 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1906 SawSRet = true;
1907 }
1908
1909 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1910 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1911 SawSwiftSelf = true;
1912 }
1913
1914 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1915 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V)do { if (!(!SawSwiftAsync)) { CheckFailed("Cannot have multiple 'swiftasync' parameters!"
, V); return; } } while (false)
;
1916 SawSwiftAsync = true;
1917 }
1918
1919 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1920 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1921 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1922 SawSwiftError = true;
1923 }
1924
1925 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1926 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1927 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1928 }
1929 }
1930
1931 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1932 return;
1933
1934 verifyAttributeTypes(Attrs.getFnAttributes(), V);
1935 for (Attribute FnAttr : Attrs.getFnAttributes())
1936 Assert(FnAttr.isStringAttribute() ||do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr
(FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr
.getAsString() + "' does not apply to functions!", V); return
; } } while (false)
1937 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr
(FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr
.getAsString() + "' does not apply to functions!", V); return
; } } while (false)
1938 "Attribute '" + FnAttr.getAsString() +do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr
(FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr
.getAsString() + "' does not apply to functions!", V); return
; } } while (false)
1939 "' does not apply to functions!",do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr
(FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr
.getAsString() + "' does not apply to functions!", V); return
; } } while (false)
1940 V)do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr
(FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr
.getAsString() + "' does not apply to functions!", V); return
; } } while (false)
;
1941
1942 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1943 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1944 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1945
1946 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1947 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1948 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1949
1950 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1951 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1952 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1953
1954 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1955 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1956 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1957 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1958 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1959
1960 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1961 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1962 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1963
1964 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1965 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1966 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1967
1968 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1969 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1970 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1971
1972 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1973 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1974
1975 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1976 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1977 }
1978
1979 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1980 const GlobalValue *GV = cast<GlobalValue>(V);
1981 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1982 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1983 }
1984
1985 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1986 std::pair<unsigned, Optional<unsigned>> Args =
1987 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1988
1989 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1990 if (ParamNo >= FT->getNumParams()) {
1991 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1992 return false;
1993 }
1994
1995 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1996 CheckFailed("'allocsize' " + Name +
1997 " argument must refer to an integer parameter",
1998 V);
1999 return false;
2000 }
2001
2002 return true;
2003 };
2004
2005 if (!CheckParam("element size", Args.first))
2006 return;
2007
2008 if (Args.second && !CheckParam("number of elements", *Args.second))
2009 return;
2010 }
2011
2012 if (Attrs.hasFnAttribute(Attribute::VScaleRange)) {
2013 std::pair<unsigned, unsigned> Args =
2014 Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex);
2015
2016 if (Args.first > Args.second && Args.second != 0)
2017 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2018 }
2019
2020 if (Attrs.hasFnAttribute("frame-pointer")) {
2021 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
2022 "frame-pointer").getValueAsString();
2023 if (FP != "all" && FP != "non-leaf" && FP != "none")
2024 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2025 }
2026
2027 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2028 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2029 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2030}
2031
2032void Verifier::verifyFunctionMetadata(
2033 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2034 for (const auto &Pair : MDs) {
2035 if (Pair.first == LLVMContext::MD_prof) {
2036 MDNode *MD = Pair.second;
2037 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
2038 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
2039
2040 // Check first operand.
2041 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
2042 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
2043 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
2044 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
2045 MDString *MDS = cast<MDString>(MD->getOperand(0));
2046 StringRef ProfName = MDS->getString();
2047 Assert(ProfName.equals("function_entry_count") ||do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
2048 ProfName.equals("synthetic_function_entry_count"),do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
2049 "first operand should be 'function_entry_count'"do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
2050 " or 'synthetic_function_entry_count'",do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
2051 MD)do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
;
2052
2053 // Check second operand.
2054 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
2055 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
2056 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
2057 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
2058 }
2059 }
2060}
2061
2062void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2063 if (!ConstantExprVisited.insert(EntryC).second)
2064 return;
2065
2066 SmallVector<const Constant *, 16> Stack;
2067 Stack.push_back(EntryC);
2068
2069 while (!Stack.empty()) {
2070 const Constant *C = Stack.pop_back_val();
2071
2072 // Check this constant expression.
2073 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2074 visitConstantExpr(CE);
2075
2076 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2077 // Global Values get visited separately, but we do need to make sure
2078 // that the global value is in the correct module
2079 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
2080 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
2081 continue;
2082 }
2083
2084 // Visit all sub-expressions.
2085 for (const Use &U : C->operands()) {
2086 const auto *OpC = dyn_cast<Constant>(U);
2087 if (!OpC)
2088 continue;
2089 if (!ConstantExprVisited.insert(OpC).second)
2090 continue;
2091 Stack.push_back(OpC);
2092 }
2093 }
2094}
2095
2096void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2097 if (CE->getOpcode() == Instruction::BitCast)
2098 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
2099 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
2100 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
2101}
2102
2103bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2104 // There shouldn't be more attribute sets than there are parameters plus the
2105 // function and return value.
2106 return Attrs.getNumAttrSets() <= Params + 2;
2107}
2108
2109/// Verify that statepoint intrinsic is well formed.
2110void Verifier::verifyStatepoint(const CallBase &Call) {
2111 assert(Call.getCalledFunction() &&((void)0)
2112 Call.getCalledFunction()->getIntrinsicID() ==((void)0)
2113 Intrinsic::experimental_gc_statepoint)((void)0);
2114
2115 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2116 !Call.onlyAccessesArgMemory(),do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2117 "gc.statepoint must read and write all memory to preserve "do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2118 "reordering restrictions required by safepoint semantics",do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2119 Call)do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
;
2120
2121 const int64_t NumPatchBytes =
2122 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2123 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((void)0);
2124 Assert(NumPatchBytes >= 0,do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2125 "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2126 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2127 Call)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
;
2128
2129 const Value *Target = Call.getArgOperand(2);
2130 auto *PT = dyn_cast<PointerType>(Target->getType());
2131 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
2132 "gc.statepoint callee must be of function pointer type", Call, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
;
2133 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2134
2135 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2136 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2137 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2138 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2139 Call)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
;
2140 const int NumParams = (int)TargetFuncType->getNumParams();
2141 if (TargetFuncType->isVarArg()) {
2142 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
2143 "gc.statepoint mismatch in number of vararg call args", Call)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
;
2144
2145 // TODO: Remove this limitation
2146 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2147 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2148 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2149 Call)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
;
2150 } else
2151 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
2152 "gc.statepoint mismatch in number of call args", Call)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
;
2153
2154 const uint64_t Flags
2155 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2156 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
2157 "unknown flag used in gc.statepoint flags argument", Call)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
;
2158
2159 // Verify that the types of the call parameter arguments match
2160 // the type of the wrapped callee.
2161 AttributeList Attrs = Call.getAttributes();
2162 for (int i = 0; i < NumParams; i++) {
2163 Type *ParamType = TargetFuncType->getParamType(i);
2164 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2165 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2166 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2167 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2168 Call)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
;
2169
2170 if (TargetFuncType->isVarArg()) {
2171 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2172 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2173 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2174 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
2175 }
2176 }
2177
2178 const int EndCallArgsInx = 4 + NumCallArgs;
2179
2180 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2181 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2182 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2183 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2184 Call)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
;
2185 const int NumTransitionArgs =
2186 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2187 Assert(NumTransitionArgs == 0,do { if (!(NumTransitionArgs == 0)) { CheckFailed("gc.statepoint w/inline transition bundle is deprecated"
, Call); return; } } while (false)
2188 "gc.statepoint w/inline transition bundle is deprecated", Call)do { if (!(NumTransitionArgs == 0)) { CheckFailed("gc.statepoint w/inline transition bundle is deprecated"
, Call); return; } } while (false)
;
2189 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2190
2191 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2192 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2193 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2194 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2195 Call)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
;
2196 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2197 Assert(NumDeoptArgs == 0,do { if (!(NumDeoptArgs == 0)) { CheckFailed("gc.statepoint w/inline deopt operands is deprecated"
, Call); return; } } while (false)
2198 "gc.statepoint w/inline deopt operands is deprecated", Call)do { if (!(NumDeoptArgs == 0)) { CheckFailed("gc.statepoint w/inline deopt operands is deprecated"
, Call); return; } } while (false)
;
2199
2200 const int ExpectedNumArgs = 7 + NumCallArgs;
2201 Assert(ExpectedNumArgs == (int)Call.arg_size(),do { if (!(ExpectedNumArgs == (int)Call.arg_size())) { CheckFailed
("gc.statepoint too many arguments", Call); return; } } while
(false)
2202 "gc.statepoint too many arguments", Call)do { if (!(ExpectedNumArgs == (int)Call.arg_size())) { CheckFailed
("gc.statepoint too many arguments", Call); return; } } while
(false)
;
2203
2204 // Check that the only uses of this gc.statepoint are gc.result or
2205 // gc.relocate calls which are tied to this statepoint and thus part
2206 // of the same statepoint sequence
2207 for (const User *U : Call.users()) {
2208 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2209 Assert(UserCall, "illegal use of statepoint token", Call, U)do { if (!(UserCall)) { CheckFailed("illegal use of statepoint token"
, Call, U); return; } } while (false)
;
2210 if (!UserCall)
2211 continue;
2212 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2213 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2214 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2215 Call, U)do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
;
2216 if (isa<GCResultInst>(UserCall)) {
2217 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2218 "gc.result connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2219 } else if (isa<GCRelocateInst>(Call)) {
2220 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2221 "gc.relocate connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2222 }
2223 }
2224
2225 // Note: It is legal for a single derived pointer to be listed multiple
2226 // times. It's non-optimal, but it is legal. It can also happen after
2227 // insertion if we strip a bitcast away.
2228 // Note: It is really tempting to check that each base is relocated and
2229 // that a derived pointer is never reused as a base pointer. This turns
2230 // out to be problematic since optimizations run after safepoint insertion
2231 // can recognize equality properties that the insertion logic doesn't know
2232 // about. See example statepoint.ll in the verifier subdirectory
2233}
2234
2235void Verifier::verifyFrameRecoverIndices() {
2236 for (auto &Counts : FrameEscapeInfo) {
2237 Function *F = Counts.first;
2238 unsigned EscapedObjectCount = Counts.second.first;
2239 unsigned MaxRecoveredIndex = Counts.second.second;
2240 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2241 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2242 "number of arguments passed to llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2243 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2244 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
;
2245 }
2246}
2247
2248static Instruction *getSuccPad(Instruction *Terminator) {
2249 BasicBlock *UnwindDest;
2250 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2251 UnwindDest = II->getUnwindDest();
2252 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2253 UnwindDest = CSI->getUnwindDest();
2254 else
2255 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2256 return UnwindDest->getFirstNonPHI();
2257}
2258
2259void Verifier::verifySiblingFuncletUnwinds() {
2260 SmallPtrSet<Instruction *, 8> Visited;
2261 SmallPtrSet<Instruction *, 8> Active;
2262 for (const auto &Pair : SiblingFuncletInfo) {
2263 Instruction *PredPad = Pair.first;
2264 if (Visited.count(PredPad))
2265 continue;
2266 Active.insert(PredPad);
2267 Instruction *Terminator = Pair.second;
2268 do {
2269 Instruction *SuccPad = getSuccPad(Terminator);
2270 if (Active.count(SuccPad)) {
2271 // Found a cycle; report error
2272 Instruction *CyclePad = SuccPad;
2273 SmallVector<Instruction *, 8> CycleNodes;
2274 do {
2275 CycleNodes.push_back(CyclePad);
2276 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2277 if (CycleTerminator != CyclePad)
2278 CycleNodes.push_back(CycleTerminator);
2279 CyclePad = getSuccPad(CycleTerminator);
2280 } while (CyclePad != SuccPad);
2281 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
2282 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
2283 }
2284 // Don't re-walk a node we've already checked
2285 if (!Visited.insert(SuccPad).second)
2286 break;
2287 // Walk to this successor if it has a map entry.
2288 PredPad = SuccPad;
2289 auto TermI = SiblingFuncletInfo.find(PredPad);
2290 if (TermI == SiblingFuncletInfo.end())
2291 break;
2292 Terminator = TermI->second;
2293 Active.insert(PredPad);
2294 } while (true);
2295 // Each node only has one successor, so we've walked all the active
2296 // nodes' successors.
2297 Active.clear();
2298 }
2299}
2300
2301// visitFunction - Verify that a function is ok.
2302//
2303void Verifier::visitFunction(const Function &F) {
2304 visitGlobalValue(F);
2305
2306 // Check function arguments.
2307 FunctionType *FT = F.getFunctionType();
2308 unsigned NumArgs = F.arg_size();
2309
2310 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1
Assuming the condition is true
2
Taking false branch
3
Loop condition is false. Exiting loop
2311 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
2312
2313 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
4
Taking false branch
5
Loop condition is false. Exiting loop
2314 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
6
Assuming the condition is true
7
Taking false branch
8
Loop condition is false. Exiting loop
2315 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
2316 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
2317 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
9
Taking false branch
10
Loop condition is false. Exiting loop
2318 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
2319 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
2320
2321 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
11
Assuming the condition is false
12
Taking false branch
13
Loop condition is false. Exiting loop
2322 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
2323
2324 AttributeList Attrs = F.getAttributes();
2325
2326 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
14
Taking false branch
15
Loop condition is false. Exiting loop
2327 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
2328
2329 bool IsIntrinsic = F.isIntrinsic();
2330
2331 // Check function attributes.
2332 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic);
2333
2334 // On function declarations/definitions, we do not support the builtin
2335 // attribute. We do not check this in VerifyFunctionAttrs since that is
2336 // checking for Attributes that can/can not ever be on functions.
2337 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
16
Assuming the condition is true
17
Taking false branch
18
Loop condition is false. Exiting loop
2338 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
2339
2340 Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),do { if (!(!Attrs.hasAttrSomewhere(Attribute::ElementType))) {
CheckFailed("Attribute 'elementtype' can only be applied to a callsite."
, &F); return; } } while (false)
19
Assuming the condition is true
20
Taking false branch
21
Loop condition is false. Exiting loop
2341 "Attribute 'elementtype' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasAttrSomewhere(Attribute::ElementType))) {
CheckFailed("Attribute 'elementtype' can only be applied to a callsite."
, &F); return; } } while (false)
;
2342
2343 // Check that this function meets the restrictions on this calling convention.
2344 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2345 // restrictions can be lifted.
2346 switch (F.getCallingConv()) {
22
Control jumps to the 'default' case at line 2347
2347 default:
2348 case CallingConv::C:
2349 break;
23
Execution continues on line 2402
2350 case CallingConv::X86_INTR: {
2351 Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal),do { if (!(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute
::ByVal))) { CheckFailed("Calling convention parameter requires byval"
, &F); return; } } while (false)
2352 "Calling convention parameter requires byval", &F)do { if (!(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute
::ByVal))) { CheckFailed("Calling convention parameter requires byval"
, &F); return; } } while (false)
;
2353 break;
2354 }
2355 case CallingConv::AMDGPU_KERNEL:
2356 case CallingConv::SPIR_KERNEL:
2357 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
2358 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
2359 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2360 case CallingConv::AMDGPU_VS:
2361 case CallingConv::AMDGPU_HS:
2362 case CallingConv::AMDGPU_GS:
2363 case CallingConv::AMDGPU_PS:
2364 case CallingConv::AMDGPU_CS:
2365 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
2366 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
2367 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2368 const unsigned StackAS = DL.getAllocaAddrSpace();
2369 unsigned i = 0;
2370 for (const Argument &Arg : F.args()) {
2371 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),do { if (!(!Attrs.hasParamAttribute(i, Attribute::ByVal))) { CheckFailed
("Calling convention disallows byval", &F); return; } } while
(false)
2372 "Calling convention disallows byval", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::ByVal))) { CheckFailed
("Calling convention disallows byval", &F); return; } } while
(false)
;
2373 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),do { if (!(!Attrs.hasParamAttribute(i, Attribute::Preallocated
))) { CheckFailed("Calling convention disallows preallocated"
, &F); return; } } while (false)
2374 "Calling convention disallows preallocated", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::Preallocated
))) { CheckFailed("Calling convention disallows preallocated"
, &F); return; } } while (false)
;
2375 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),do { if (!(!Attrs.hasParamAttribute(i, Attribute::InAlloca)))
{ CheckFailed("Calling convention disallows inalloca", &
F); return; } } while (false)
2376 "Calling convention disallows inalloca", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::InAlloca)))
{ CheckFailed("Calling convention disallows inalloca", &
F); return; } } while (false)
;
2377
2378 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) {
2379 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2380 // value here.
2381 Assert(Arg.getType()->getPointerAddressSpace() != StackAS,do { if (!(Arg.getType()->getPointerAddressSpace() != StackAS
)) { CheckFailed("Calling convention disallows stack byref", &
F); return; } } while (false)
2382 "Calling convention disallows stack byref", &F)do { if (!(Arg.getType()->getPointerAddressSpace() != StackAS
)) { CheckFailed("Calling convention disallows stack byref", &
F); return; } } while (false)
;
2383 }
2384
2385 ++i;
2386 }
2387 }
2388
2389 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2390 case CallingConv::Fast:
2391 case CallingConv::Cold:
2392 case CallingConv::Intel_OCL_BI:
2393 case CallingConv::PTX_Kernel:
2394 case CallingConv::PTX_Device:
2395 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2396 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2397 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2398 break;
2399 }
2400
2401 // Check that the argument values match the function type for this function...
2402 unsigned i = 0;
2403 for (const Argument &Arg : F.args()) {
24
Assuming '__begin1' is equal to '__end1'
2404 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2405 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2406 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2407 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2408 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2409 if (!IsIntrinsic) {
2410 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2411 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2412 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2413 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2414 Assert(!Arg.getType()->isX86_AMXTy(),do { if (!(!Arg.getType()->isX86_AMXTy())) { CheckFailed("Function takes x86_amx but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2415 "Function takes x86_amx but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isX86_AMXTy())) { CheckFailed("Function takes x86_amx but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2416 }
2417
2418 // Check that swifterror argument is only used by loads and stores.
2419 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2420 verifySwiftErrorValue(&Arg);
2421 }
2422 ++i;
2423 }
2424
2425 if (!IsIntrinsic) {
25
Assuming 'IsIntrinsic' is true
26
Taking false branch
2426 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Function returns a token but isn't an intrinsic", &F); return
; } } while (false)
2427 "Function returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Function returns a token but isn't an intrinsic", &F); return
; } } while (false)
;
2428 Assert(!F.getReturnType()->isX86_AMXTy(),do { if (!(!F.getReturnType()->isX86_AMXTy())) { CheckFailed
("Function returns a x86_amx but isn't an intrinsic", &F)
; return; } } while (false)
2429 "Function returns a x86_amx but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isX86_AMXTy())) { CheckFailed
("Function returns a x86_amx but isn't an intrinsic", &F)
; return; } } while (false)
;
2430 }
2431
2432 // Get the function metadata attachments.
2433 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2434 F.getAllMetadata(MDs);
2435 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((void)0);
2436 verifyFunctionMetadata(MDs);
2437
2438 // Check validity of the personality function
2439 if (F.hasPersonalityFn()) {
27
Assuming the condition is false
28
Taking false branch
2440 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2441 if (Per)
2442 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2443 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2444 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2445 }
2446
2447 if (F.isMaterializable()) {
29
Assuming the condition is false
30
Taking false branch
2448 // Function has a body somewhere we can't see.
2449 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2450 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2451 } else if (F.isDeclaration()) {
31
Assuming the condition is true
32
Taking true branch
2452 for (const auto &I : MDs) {
33
Assuming '__begin3' is equal to '__end3'
2453 // This is used for call site debug information.
2454 AssertDI(I.first != LLVMContext::MD_dbg ||do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2455 !cast<DISubprogram>(I.second)->isDistinct(),do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2456 "function declaration may only have a unique !dbg attachment",do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2457 &F)do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
;
2458 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2459 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2460
2461 // Verify the metadata itself.
2462 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2463 }
2464 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
34
Assuming the condition is true
35
Taking false branch
36
Loop condition is false. Exiting loop
2465 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2466 } else {
2467 // Verify that this function (which has a body) is not named "llvm.*". It
2468 // is not legal to define intrinsics.
2469 Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F)do { if (!(!IsIntrinsic)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2470
2471 // Check the entry node
2472 const BasicBlock *Entry = &F.getEntryBlock();
2473 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2474 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2475
2476 // The address of the entry block cannot be taken, unless it is dead.
2477 if (Entry->hasAddressTaken()) {
2478 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2479 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2480 }
2481
2482 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2483 // Visit metadata attachments.
2484 for (const auto &I : MDs) {
2485 // Verify that the attachment is legal.
2486 auto AllowLocs = AreDebugLocsAllowed::No;
2487 switch (I.first) {
2488 default:
2489 break;
2490 case LLVMContext::MD_dbg: {
2491 ++NumDebugAttachments;
2492 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2493 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2494 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2495 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2496 AssertDI(cast<DISubprogram>(I.second)->isDistinct(),do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
2497 "function definition may only have a distinct !dbg attachment",do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
2498 &F)do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
;
2499
2500 auto *SP = cast<DISubprogram>(I.second);
2501 const Function *&AttachedTo = DISubprogramAttachments[SP];
2502 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2503 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2504 AttachedTo = &F;
2505 AllowLocs = AreDebugLocsAllowed::Yes;
2506 break;
2507 }
2508 case LLVMContext::MD_prof:
2509 ++NumProfAttachments;
2510 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2511 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2512 break;
2513 }
2514
2515 // Verify the metadata itself.
2516 visitMDNode(*I.second, AllowLocs);
2517 }
2518 }
2519
2520 // If this function is actually an intrinsic, verify that it is only used in
2521 // direct call/invokes, never having its "address taken".
2522 // Only do this if the module is materialized, otherwise we don't have all the
2523 // uses.
2524 if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
37
Assuming the condition is false
2525 const User *U;
2526 if (F.hasAddressTaken(&U))
2527 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2528 }
2529
2530 // Check intrinsics' signatures.
2531 switch (F.getIntrinsicID()) {
38
'Default' branch taken. Execution continues on line 2553
2532 case Intrinsic::experimental_gc_get_pointer_base: {
2533 FunctionType *FT = F.getFunctionType();
2534 Assert(FT->getNumParams() == 1, "wrong number of parameters", F)do { if (!(FT->getNumParams() == 1)) { CheckFailed("wrong number of parameters"
, F); return; } } while (false)
;
2535 Assert(isa<PointerType>(F.getReturnType()),do { if (!(isa<PointerType>(F.getReturnType()))) { CheckFailed
("gc.get.pointer.base must return a pointer", F); return; } }
while (false)
2536 "gc.get.pointer.base must return a pointer", F)do { if (!(isa<PointerType>(F.getReturnType()))) { CheckFailed
("gc.get.pointer.base must return a pointer", F); return; } }
while (false)
;
2537 Assert(FT->getParamType(0) == F.getReturnType(),do { if (!(FT->getParamType(0) == F.getReturnType())) { CheckFailed
("gc.get.pointer.base operand and result must be of the same type"
, F); return; } } while (false)
2538 "gc.get.pointer.base operand and result must be of the same type",do { if (!(FT->getParamType(0) == F.getReturnType())) { CheckFailed
("gc.get.pointer.base operand and result must be of the same type"
, F); return; } } while (false)
2539 F)do { if (!(FT->getParamType(0) == F.getReturnType())) { CheckFailed
("gc.get.pointer.base operand and result must be of the same type"
, F); return; } } while (false)
;
2540 break;
2541 }
2542 case Intrinsic::experimental_gc_get_pointer_offset: {
2543 FunctionType *FT = F.getFunctionType();
2544 Assert(FT->getNumParams() == 1, "wrong number of parameters", F)do { if (!(FT->getNumParams() == 1)) { CheckFailed("wrong number of parameters"
, F); return; } } while (false)
;
2545 Assert(isa<PointerType>(FT->getParamType(0)),do { if (!(isa<PointerType>(FT->getParamType(0)))) {
CheckFailed("gc.get.pointer.offset operand must be a pointer"
, F); return; } } while (false)
2546 "gc.get.pointer.offset operand must be a pointer", F)do { if (!(isa<PointerType>(FT->getParamType(0)))) {
CheckFailed("gc.get.pointer.offset operand must be a pointer"
, F); return; } } while (false)
;
2547 Assert(F.getReturnType()->isIntegerTy(),do { if (!(F.getReturnType()->isIntegerTy())) { CheckFailed
("gc.get.pointer.offset must return integer", F); return; } }
while (false)
2548 "gc.get.pointer.offset must return integer", F)do { if (!(F.getReturnType()->isIntegerTy())) { CheckFailed
("gc.get.pointer.offset must return integer", F); return; } }
while (false)
;
2549 break;
2550 }
2551 }
2552
2553 auto *N = F.getSubprogram();
2554 HasDebugInfo = (N != nullptr);
39
Assuming the condition is true
2555 if (!HasDebugInfo
39.1
Field 'HasDebugInfo' is true
39.1
Field 'HasDebugInfo' is true
)
40
Taking false branch
2556 return;
2557
2558 // Check that all !dbg attachments lead to back to N.
2559 //
2560 // FIXME: Check this incrementally while visiting !dbg attachments.
2561 // FIXME: Only check when N is the canonical subprogram for F.
2562 SmallPtrSet<const MDNode *, 32> Seen;
2563 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2564 // Be careful about using DILocation here since we might be dealing with
2565 // broken code (this is the Verifier after all).
2566 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
46
Assuming 'Node' is a 'DILocation'
2567 if (!DL
46.1
'DL' is non-null
46.1
'DL' is non-null
)
47
Taking false branch
2568 return;
2569 if (!Seen.insert(DL).second)
48
Assuming field 'second' is true
49
Taking false branch
2570 return;
2571
2572 Metadata *Parent = DL->getRawScope();
2573 AssertDI(Parent && isa<DILocalScope>(Parent),do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
50
Assuming 'Parent' is non-null
51
Assuming 'Parent' is a 'DILocalScope'
52
Taking false branch
53
Loop condition is false. Exiting loop
2574 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
2575 Parent)do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
;
2576
2577 DILocalScope *Scope = DL->getInlinedAtScope();
54
Calling 'DILocation::getInlinedAtScope'
61
Returning from 'DILocation::getInlinedAtScope'
2578 Assert(Scope, "Failed to find DILocalScope", DL)do { if (!(Scope)) { CheckFailed("Failed to find DILocalScope"
, DL); return; } } while (false)
;
62
Taking false branch
63
Loop condition is false. Exiting loop
2579
2580 if (!Seen.insert(Scope).second)
64
Assuming field 'second' is true
65
Taking false branch
2581 return;
2582
2583 DISubprogram *SP = Scope->getSubprogram();
66
'SP' initialized here
2584
2585 // Scope and SP could be the same MDNode and we don't want to skip
2586 // validation in that case
2587 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
67
Assuming 'SP' is null
68
Taking false branch
2588 return;
2589
2590 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
69
Called C++ object pointer is null
2591 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2592 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2593 };
2594 for (auto &BB : F)
2595 for (auto &I : BB) {
2596 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
45
Calling 'operator()'
2597 // The llvm.loop annotations also contain two DILocations.
2598 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
41
Assuming 'MD' is null
42
Taking false branch
2599 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2600 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2601 if (BrokenDebugInfo)
43
Assuming field 'BrokenDebugInfo' is false
44
Taking false branch
2602 return;
2603 }
2604}
2605
2606// verifyBasicBlock - Verify that a basic block is well formed...
2607//
2608void Verifier::visitBasicBlock(BasicBlock &BB) {
2609 InstsInThisBlock.clear();
2610
2611 // Ensure that basic blocks have terminators!
2612 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2613
2614 // Check constraints that this basic block imposes on all of the PHI nodes in
2615 // it.
2616 if (isa<PHINode>(BB.front())) {
2617 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2618 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2619 llvm::sort(Preds);
2620 for (const PHINode &PN : BB.phis()) {
2621 Assert(PN.getNumIncomingValues() == Preds.size(),do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2622 "PHINode should have one entry for each predecessor of its "do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2623 "parent basic block!",do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2624 &PN)do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
;
2625
2626 // Get and sort all incoming values in the PHI node...
2627 Values.clear();
2628 Values.reserve(PN.getNumIncomingValues());
2629 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2630 Values.push_back(
2631 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2632 llvm::sort(Values);
2633
2634 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2635 // Check to make sure that if there is more than one entry for a
2636 // particular basic block in this PHI node, that the incoming values are
2637 // all identical.
2638 //
2639 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2640 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2641 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2642 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2643 &PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
;
2644
2645 // Check to make sure that the predecessors and PHI node entries are
2646 // matched up.
2647 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2648 "PHI node entries do not match predecessors!", &PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2649 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
;
2650 }
2651 }
2652 }
2653
2654 // Check that all instructions have their parent pointers set up correctly.
2655 for (auto &I : BB)
2656 {
2657 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2658 }
2659}
2660
2661void Verifier::visitTerminator(Instruction &I) {
2662 // Ensure that terminators only exist at the end of the basic block.
2663 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2664 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2665 visitInstruction(I);
2666}
2667
2668void Verifier::visitBranchInst(BranchInst &BI) {
2669 if (BI.isConditional()) {
2670 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2671 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2672 }
2673 visitTerminator(BI);
2674}
2675
2676void Verifier::visitReturnInst(ReturnInst &RI) {
2677 Function *F = RI.getParent()->getParent();
2678 unsigned N = RI.getNumOperands();
2679 if (F->getReturnType()->isVoidTy())
2680 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2681 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2682 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2683 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2684 else
2685 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2686 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2687 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2688 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2689
2690 // Check to make sure that the return value has necessary properties for
2691 // terminators...
2692 visitTerminator(RI);
2693}
2694
2695void Verifier::visitSwitchInst(SwitchInst &SI) {
2696 // Check to make sure that all of the constants in the switch instruction
2697 // have the same type as the switched-on value.
2698 Type *SwitchTy = SI.getCondition()->getType();
2699 SmallPtrSet<ConstantInt*, 32> Constants;
2700 for (auto &Case : SI.cases()) {
2701 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2702 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2703 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2704 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2705 }
2706
2707 visitTerminator(SI);
2708}
2709
2710void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2711 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2712 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2713 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2714 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2715 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2716
2717 visitTerminator(BI);
2718}
2719
2720void Verifier::visitCallBrInst(CallBrInst &CBI) {
2721 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
2722 &CBI)do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
;
2723 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2724 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed")do { if (!(!IA->canThrow())) { CheckFailed("Unwinding from Callbr is not allowed"
); return; } } while (false)
;
2725 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2726 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
2727 "Callbr successors must all have pointer type!", &CBI)do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
;
2728 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2729 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
2730 "Using an unescaped label as a callbr argument!", &CBI)do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
;
2731 if (isa<BasicBlock>(CBI.getOperand(i)))
2732 for (unsigned j = i + 1; j != e; ++j)
2733 Assert(CBI.getOperand(i) != CBI.getOperand(j),do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
2734 "Duplicate callbr destination!", &CBI)do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
;
2735 }
2736 {
2737 SmallPtrSet<BasicBlock *, 4> ArgBBs;
2738 for (Value *V : CBI.args())
2739 if (auto *BA = dyn_cast<BlockAddress>(V))
2740 ArgBBs.insert(BA->getBasicBlock());
2741 for (BasicBlock *BB : CBI.getIndirectDests())
2742 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI)do { if (!(ArgBBs.count(BB))) { CheckFailed("Indirect label missing from arglist."
, &CBI); return; } } while (false)
;
2743 }
2744
2745 visitTerminator(CBI);
2746}
2747
2748void Verifier::visitSelectInst(SelectInst &SI) {
2749 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2750 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2751 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2752
2753 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2754 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2755 visitInstruction(SI);
2756}
2757
2758/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2759/// a pass, if any exist, it's an error.
2760///
2761void Verifier::visitUserOp1(Instruction &I) {
2762 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2763}
2764
2765void Verifier::visitTruncInst(TruncInst &I) {
2766 // Get the source and destination types
2767 Type *SrcTy = I.getOperand(0)->getType();
2768 Type *DestTy = I.getType();
2769
2770 // Get the size of the types in bits, we'll need this later
2771 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2772 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2773
2774 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2775 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2776 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2777 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2778 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2779
2780 visitInstruction(I);
2781}
2782
2783void Verifier::visitZExtInst(ZExtInst &I) {
2784 // Get the source and destination types
2785 Type *SrcTy = I.getOperand(0)->getType();
2786 Type *DestTy = I.getType();
2787
2788 // Get the size of the types in bits, we'll need this later
2789 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2790 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2791 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2792 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2793 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2794 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2795
2796 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2797
2798 visitInstruction(I);
2799}
2800
2801void Verifier::visitSExtInst(SExtInst &I) {
2802 // Get the source and destination types
2803 Type *SrcTy = I.getOperand(0)->getType();
2804 Type *DestTy = I.getType();
2805
2806 // Get the size of the types in bits, we'll need this later
2807 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2808 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2809
2810 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2811 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2812 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2813 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2814 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2815
2816 visitInstruction(I);
2817}
2818
2819void Verifier::visitFPTruncInst(FPTruncInst &I) {
2820 // Get the source and destination types
2821 Type *SrcTy = I.getOperand(0)->getType();
2822 Type *DestTy = I.getType();
2823 // Get the size of the types in bits, we'll need this later
2824 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2825 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2826
2827 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2828 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2829 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2830 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2831 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2832
2833 visitInstruction(I);
2834}
2835
2836void Verifier::visitFPExtInst(FPExtInst &I) {
2837 // Get the source and destination types
2838 Type *SrcTy = I.getOperand(0)->getType();
2839 Type *DestTy = I.getType();
2840
2841 // Get the size of the types in bits, we'll need this later
2842 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2843 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2844
2845 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2846 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2847 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2848 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2849 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2850
2851 visitInstruction(I);
2852}
2853
2854void Verifier::visitUIToFPInst(UIToFPInst &I) {
2855 // Get the source and destination types
2856 Type *SrcTy = I.getOperand(0)->getType();
2857 Type *DestTy = I.getType();
2858
2859 bool SrcVec = SrcTy->isVectorTy();
2860 bool DstVec = DestTy->isVectorTy();
2861
2862 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2863 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2864 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2865 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2866 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2867 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2868
2869 if (SrcVec && DstVec)
2870 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2871 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2872 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
;
2873
2874 visitInstruction(I);
2875}
2876
2877void Verifier::visitSIToFPInst(SIToFPInst &I) {
2878 // Get the source and destination types
2879 Type *SrcTy = I.getOperand(0)->getType();
2880 Type *DestTy = I.getType();
2881
2882 bool SrcVec = SrcTy->isVectorTy();
2883 bool DstVec = DestTy->isVectorTy();
2884
2885 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2886 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2887 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2888 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2889 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2890 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2891
2892 if (SrcVec && DstVec)
2893 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2894 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2895 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
;
2896
2897 visitInstruction(I);
2898}
2899
2900void Verifier::visitFPToUIInst(FPToUIInst &I) {
2901 // Get the source and destination types
2902 Type *SrcTy = I.getOperand(0)->getType();
2903 Type *DestTy = I.getType();
2904
2905 bool SrcVec = SrcTy->isVectorTy();
2906 bool DstVec = DestTy->isVectorTy();
2907
2908 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2909 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2910 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2911 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2912 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2913 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2914
2915 if (SrcVec && DstVec)
2916 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
2917 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
2918 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
;
2919
2920 visitInstruction(I);
2921}
2922
2923void Verifier::visitFPToSIInst(FPToSIInst &I) {
2924 // Get the source and destination types
2925 Type *SrcTy = I.getOperand(0)->getType();
2926 Type *DestTy = I.getType();
2927
2928 bool SrcVec = SrcTy->isVectorTy();
2929 bool DstVec = DestTy->isVectorTy();
2930
2931 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2932 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2933 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2934 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2935 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2936 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2937
2938 if (SrcVec && DstVec)
2939 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
2940 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
2941 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
;
2942
2943 visitInstruction(I);
2944}
2945
2946void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2947 // Get the source and destination types
2948 Type *SrcTy = I.getOperand(0)->getType();
2949 Type *DestTy = I.getType();
2950
2951 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer"
, &I); return; } } while (false)
;
2952
2953 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral"
, &I); return; } } while (false)
;
2954 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2955 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2956
2957 if (SrcTy->isVectorTy()) {
2958 auto *VSrc = cast<VectorType>(SrcTy);
2959 auto *VDest = cast<VectorType>(DestTy);
2960 Assert(VSrc->getElementCount() == VDest->getElementCount(),do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2961 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2962 }
2963
2964 visitInstruction(I);
2965}
2966
2967void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2968 // Get the source and destination types
2969 Type *SrcTy = I.getOperand(0)->getType();
2970 Type *DestTy = I.getType();
2971
2972 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
2973 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
;
2974 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer"
, &I); return; } } while (false)
;
2975
2976 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2977 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2978 if (SrcTy->isVectorTy()) {
2979 auto *VSrc = cast<VectorType>(SrcTy);
2980 auto *VDest = cast<VectorType>(DestTy);
2981 Assert(VSrc->getElementCount() == VDest->getElementCount(),do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2982 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2983 }
2984 visitInstruction(I);
2985}
2986
2987void Verifier::visitBitCastInst(BitCastInst &I) {
2988 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2989 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2990 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2991 visitInstruction(I);
2992}
2993
2994void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2995 Type *SrcTy = I.getOperand(0)->getType();
2996 Type *DestTy = I.getType();
2997
2998 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2999 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
3000 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
3001 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
3002 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
3003 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
3004 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3005 Assert(SrcVTy->getElementCount() ==do { if (!(SrcVTy->getElementCount() == cast<VectorType
>(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
3006 cast<VectorType>(DestTy)->getElementCount(),do { if (!(SrcVTy->getElementCount() == cast<VectorType
>(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
3007 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcVTy->getElementCount() == cast<VectorType
>(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
3008 visitInstruction(I);
3009}
3010
3011/// visitPHINode - Ensure that a PHI node is well formed.
3012///
3013void Verifier::visitPHINode(PHINode &PN) {
3014 // Ensure that the PHI nodes are all grouped together at the top of the block.
3015 // This can be tested by checking whether the instruction before this is
3016 // either nonexistent (because this is begin()) or is a PHI node. If not,
3017 // then there is some other instruction before a PHI.
3018 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
3019 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
3020 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
3021
3022 // Check that a PHI doesn't yield a Token.
3023 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
3024
3025 // Check that all of the values of the PHI node have the same type as the
3026 // result, and that the incoming blocks are really basic blocks.
3027 for (Value *IncValue : PN.incoming_values()) {
3028 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
3029 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
3030 }
3031
3032 // All other PHI node constraints are checked in the visitBasicBlock method.
3033
3034 visitInstruction(PN);
3035}
3036
3037void Verifier::visitCallBase(CallBase &Call) {
3038 Assert(Call.getCalledOperand()->getType()->isPointerTy(),do { if (!(Call.getCalledOperand()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
3039 "Called function must be a pointer!", Call)do { if (!(Call.getCalledOperand()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
;
3040 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3041
3042 Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),do { if (!(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType
()))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
3043 "Called function is not the same type as the call!", Call)do { if (!(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType
()))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
;
3044
3045 FunctionType *FTy = Call.getFunctionType();
3046
3047 // Verify that the correct number of arguments are being passed
3048 if (FTy->isVarArg())
3049 Assert(Call.arg_size() >= FTy->getNumParams(),do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
3050 "Called function requires more parameters than were provided!",do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
3051 Call)do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
;
3052 else
3053 Assert(Call.arg_size() == FTy->getNumParams(),do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
3054 "Incorrect number of arguments passed to called function!", Call)do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
;
3055
3056 // Verify that all arguments to the call match the function type.
3057 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3058 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
3059 "Call parameter type does not match function signature!",do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
3060 Call.getArgOperand(i), FTy->getParamType(i), Call)do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
;
3061
3062 AttributeList Attrs = Call.getAttributes();
3063
3064 Assert(verifyAttributeCount(Attrs, Call.arg_size()),do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
3065 "Attribute after last parameter!", Call)do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
;
3066
3067 Function *Callee =
3068 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3069 bool IsIntrinsic = Callee && Callee->isIntrinsic();
3070 if (IsIntrinsic)
3071 Assert(Callee->getValueType() == FTy,do { if (!(Callee->getValueType() == FTy)) { CheckFailed("Intrinsic called with incompatible signature"
, Call); return; } } while (false)
3072 "Intrinsic called with incompatible signature", Call)do { if (!(Callee->getValueType() == FTy)) { CheckFailed("Intrinsic called with incompatible signature"
, Call); return; } } while (false)
;
3073
3074 if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
3075 // Don't allow speculatable on call sites, unless the underlying function
3076 // declaration is also speculatable.
3077 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
3078 "speculatable attribute may not apply to call sites", Call)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
;
3079 }
3080
3081 if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
3082 Assert(Call.getCalledFunction()->getIntrinsicID() ==do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3083 Intrinsic::call_preallocated_arg,do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3084 "preallocated as a call site attribute can only be on "do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3085 "llvm.call.preallocated.arg")do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
;
3086 }
3087
3088 // Verify call attributes.
3089 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3090
3091 // Conservatively check the inalloca argument.
3092 // We have a bug if we can find that there is an underlying alloca without
3093 // inalloca.
3094 if (Call.hasInAllocaArgument()) {
3095 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3096 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3097 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
3098 "inalloca argument for call has mismatched alloca", AI, Call)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
3099 }
3100
3101 // For each argument of the callsite, if it has the swifterror argument,
3102 // make sure the underlying alloca/parameter it comes from has a swifterror as
3103 // well.
3104 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3105 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3106 Value *SwiftErrorArg = Call.getArgOperand(i);
3107 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3108 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
3109 "swifterror argument for call has mismatched alloca", AI, Call)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
3110 continue;
3111 }
3112 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3113 Assert(ArgI,do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
3114 "swifterror argument should come from an alloca or parameter",do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
3115 SwiftErrorArg, Call)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
;
3116 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
3117 "swifterror argument for call has mismatched parameter", ArgI,do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
3118 Call)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
;
3119 }
3120
3121 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3122 // Don't allow immarg on call sites, unless the underlying declaration
3123 // also has the matching immarg.
3124 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
3125 "immarg may not apply only to call sites",do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
3126 Call.getArgOperand(i), Call)do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
;
3127 }
3128
3129 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3130 Value *ArgVal = Call.getArgOperand(i);
3131 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
3132 "immarg operand has non-immediate parameter", ArgVal, Call)do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
;
3133 }
3134
3135 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3136 Value *ArgVal = Call.getArgOperand(i);
3137 bool hasOB =
3138 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3139 bool isMustTail = Call.isMustTailCall();
3140 Assert(hasOB != isMustTail,do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3141 "preallocated operand either requires a preallocated bundle or "do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3142 "the call to be musttail (but not both)",do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3143 ArgVal, Call)do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
;
3144 }
3145 }
3146
3147 if (FTy->isVarArg()) {
3148 // FIXME? is 'nest' even legal here?
3149 bool SawNest = false;
3150 bool SawReturned = false;
3151
3152 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3153 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3154 SawNest = true;
3155 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3156 SawReturned = true;
3157 }
3158
3159 // Check attributes on the varargs part.
3160 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3161 Type *Ty = Call.getArgOperand(Idx)->getType();
3162 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3163 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3164
3165 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3166 Assert(!SawNest, "More than one parameter has attribute nest!", Call)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, Call); return; } } while (false)
;
3167 SawNest = true;
3168 }
3169
3170 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3171 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
3172 Call)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
;
3173 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3174 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3175 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3176 Call)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
;
3177 SawReturned = true;
3178 }
3179
3180 // Statepoint intrinsic is vararg but the wrapped function may be not.
3181 // Allow sret here and check the wrapped function in verifyStatepoint.
3182 if (!Call.getCalledFunction() ||
3183 Call.getCalledFunction()->getIntrinsicID() !=
3184 Intrinsic::experimental_gc_statepoint)
3185 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
3186 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
3187 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
3188
3189 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3190 Assert(Idx == Call.arg_size() - 1,do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
3191 "inalloca isn't on the last argument!", Call)do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
;
3192 }
3193 }
3194
3195 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3196 if (!IsIntrinsic) {
3197 for (Type *ParamTy : FTy->params()) {
3198 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
3199 "Function has metadata parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
3200 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
3201 "Function has token parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
3202 }
3203 }
3204
3205 // Verify that indirect calls don't return tokens.
3206 if (!Call.getCalledFunction()) {
3207 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
3208 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
3209 Assert(!FTy->getReturnType()->isX86_AMXTy(),do { if (!(!FTy->getReturnType()->isX86_AMXTy())) { CheckFailed
("Return type cannot be x86_amx for indirect call!"); return;
} } while (false)
3210 "Return type cannot be x86_amx for indirect call!")do { if (!(!FTy->getReturnType()->isX86_AMXTy())) { CheckFailed
("Return type cannot be x86_amx for indirect call!"); return;
} } while (false)
;
3211 }
3212
3213 if (Function *F = Call.getCalledFunction())
3214 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3215 visitIntrinsicCall(ID, Call);
3216
3217 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3218 // most one "gc-transition", at most one "cfguardtarget",
3219 // and at most one "preallocated" operand bundle.
3220 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3221 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3222 FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3223 FoundAttachedCallBundle = false;
3224 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3225 OperandBundleUse BU = Call.getOperandBundleAt(i);
3226 uint32_t Tag = BU.getTagID();
3227 if (Tag == LLVMContext::OB_deopt) {
3228 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, Call); return; } } while (false)
;
3229 FoundDeoptBundle = true;
3230 } else if (Tag == LLVMContext::OB_gc_transition) {
3231 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
3232 Call)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
;
3233 FoundGCTransitionBundle = true;
3234 } else if (Tag == LLVMContext::OB_funclet) {
3235 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, Call); return; } } while (false)
;
3236 FoundFuncletBundle = true;
3237 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
3238 "Expected exactly one funclet bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
;
3239 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
3240 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
3241 Call)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
;
3242 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3243 Assert(!FoundCFGuardTargetBundle,do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles"
, Call); return; } } while (false)
3244 "Multiple CFGuardTarget operand bundles", Call)do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles"
, Call); return; } } while (false)
;
3245 FoundCFGuardTargetBundle = true;
3246 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand"
, Call); return; } } while (false)
3247 "Expected exactly one cfguardtarget bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand"
, Call); return; } } while (false)
;
3248 } else if (Tag == LLVMContext::OB_preallocated) {
3249 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",do { if (!(!FoundPreallocatedBundle)) { CheckFailed("Multiple preallocated operand bundles"
, Call); return; } } while (false)
3250 Call)do { if (!(!FoundPreallocatedBundle)) { CheckFailed("Multiple preallocated operand bundles"
, Call); return; } } while (false)
;
3251 FoundPreallocatedBundle = true;
3252 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one preallocated bundle operand"
, Call); return; } } while (false)
3253 "Expected exactly one preallocated bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one preallocated bundle operand"
, Call); return; } } while (false)
;
3254 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3255 Assert(Input &&do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3256 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3257 "\"preallocated\" argument must be a token from "do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3258 "llvm.call.preallocated.setup",do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3259 Call)do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
;
3260 } else if (Tag == LLVMContext::OB_gc_live) {
3261 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",do { if (!(!FoundGCLiveBundle)) { CheckFailed("Multiple gc-live operand bundles"
, Call); return; } } while (false)
3262 Call)do { if (!(!FoundGCLiveBundle)) { CheckFailed("Multiple gc-live operand bundles"
, Call); return; } } while (false)
;
3263 FoundGCLiveBundle = true;
3264 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3265 Assert(!FoundAttachedCallBundle,do { if (!(!FoundAttachedCallBundle)) { CheckFailed("Multiple \"clang.arc.attachedcall\" operand bundles"
, Call); return; } } while (false)
3266 "Multiple \"clang.arc.attachedcall\" operand bundles", Call)do { if (!(!FoundAttachedCallBundle)) { CheckFailed("Multiple \"clang.arc.attachedcall\" operand bundles"
, Call); return; } } while (false)
;
3267 FoundAttachedCallBundle = true;
3268 }
3269 }
3270
3271 if (FoundAttachedCallBundle)
3272 Assert((FTy->getReturnType()->isPointerTy() ||do { if (!((FTy->getReturnType()->isPointerTy() || (Call
.doesNotReturn() && FTy->getReturnType()->isVoidTy
())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a "
"function returning a pointer or a non-returning function that has "
"a void return type", Call); return; } } while (false)
3273 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),do { if (!((FTy->getReturnType()->isPointerTy() || (Call
.doesNotReturn() && FTy->getReturnType()->isVoidTy
())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a "
"function returning a pointer or a non-returning function that has "
"a void return type", Call); return; } } while (false)
3274 "a call with operand bundle \"clang.arc.attachedcall\" must call a "do { if (!((FTy->getReturnType()->isPointerTy() || (Call
.doesNotReturn() && FTy->getReturnType()->isVoidTy
())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a "
"function returning a pointer or a non-returning function that has "
"a void return type", Call); return; } } while (false)
3275 "function returning a pointer or a non-returning function that has "do { if (!((FTy->getReturnType()->isPointerTy() || (Call
.doesNotReturn() && FTy->getReturnType()->isVoidTy
())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a "
"function returning a pointer or a non-returning function that has "
"a void return type", Call); return; } } while (false)
3276 "a void return type",do { if (!((FTy->getReturnType()->isPointerTy() || (Call
.doesNotReturn() && FTy->getReturnType()->isVoidTy
())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a "
"function returning a pointer or a non-returning function that has "
"a void return type", Call); return; } } while (false)
3277 Call)do { if (!((FTy->getReturnType()->isPointerTy() || (Call
.doesNotReturn() && FTy->getReturnType()->isVoidTy
())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a "
"function returning a pointer or a non-returning function that has "
"a void return type", Call); return; } } while (false)
;
3278
3279 // Verify that each inlinable callsite of a debug-info-bearing function in a
3280 // debug-info-bearing function has a debug location attached to it. Failure to
3281 // do so causes assertion failures when the inliner sets up inline scope info.
3282 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3283 Call.getCalledFunction()->getSubprogram())
3284 AssertDI(Call.getDebugLoc(),do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3285 "inlinable function call in a function with "do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3286 "debug info must have a !dbg location",do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3287 Call)do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
;
3288
3289 visitInstruction(Call);
3290}
3291
3292void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs,
3293 StringRef Context) {
3294 Assert(!Attrs.contains(Attribute::InAlloca),do { if (!(!Attrs.contains(Attribute::InAlloca))) { CheckFailed
(Twine("inalloca attribute not allowed in ") + Context); return
; } } while (false)
3295 Twine("inalloca attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::InAlloca))) { CheckFailed
(Twine("inalloca attribute not allowed in ") + Context); return
; } } while (false)
;
3296 Assert(!Attrs.contains(Attribute::InReg),do { if (!(!Attrs.contains(Attribute::InReg))) { CheckFailed(
Twine("inreg attribute not allowed in ") + Context); return; }
} while (false)
3297 Twine("inreg attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::InReg))) { CheckFailed(
Twine("inreg attribute not allowed in ") + Context); return; }
} while (false)
;
3298 Assert(!Attrs.contains(Attribute::SwiftError),do { if (!(!Attrs.contains(Attribute::SwiftError))) { CheckFailed
(Twine("swifterror attribute not allowed in ") + Context); return
; } } while (false)
3299 Twine("swifterror attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::SwiftError))) { CheckFailed
(Twine("swifterror attribute not allowed in ") + Context); return
; } } while (false)
;
3300 Assert(!Attrs.contains(Attribute::Preallocated),do { if (!(!Attrs.contains(Attribute::Preallocated))) { CheckFailed
(Twine("preallocated attribute not allowed in ") + Context); return
; } } while (false)
3301 Twine("preallocated attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::Preallocated))) { CheckFailed
(Twine("preallocated attribute not allowed in ") + Context); return
; } } while (false)
;
3302 Assert(!Attrs.contains(Attribute::ByRef),do { if (!(!Attrs.contains(Attribute::ByRef))) { CheckFailed(
Twine("byref attribute not allowed in ") + Context); return; }
} while (false)
3303 Twine("byref attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::ByRef))) { CheckFailed(
Twine("byref attribute not allowed in ") + Context); return; }
} while (false)
;
3304}
3305
3306/// Two types are "congruent" if they are identical, or if they are both pointer
3307/// types with different pointee types and the same address space.
3308static bool isTypeCongruent(Type *L, Type *R) {
3309 if (L == R)
3310 return true;
3311 PointerType *PL = dyn_cast<PointerType>(L);
3312 PointerType *PR = dyn_cast<PointerType>(R);
3313 if (!PL || !PR)
3314 return false;
3315 return PL->getAddressSpace() == PR->getAddressSpace();
3316}
3317
3318static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3319 static const Attribute::AttrKind ABIAttrs[] = {
3320 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3321 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3322 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3323 Attribute::ByRef};
3324 AttrBuilder Copy;
3325 for (auto AK : ABIAttrs) {
3326 Attribute Attr = Attrs.getParamAttributes(I).getAttribute(AK);
3327 if (Attr.isValid())
3328 Copy.addAttribute(Attr);
3329 }
3330
3331 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3332 if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3333 (Attrs.hasParamAttribute(I, Attribute::ByVal) ||
3334 Attrs.hasParamAttribute(I, Attribute::ByRef)))
3335 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3336 return Copy;
3337}
3338
3339void Verifier::verifyMustTailCall(CallInst &CI) {
3340 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
3341
3342 Function *F = CI.getParent()->getParent();
3343 FunctionType *CallerTy = F->getFunctionType();
3344 FunctionType *CalleeTy = CI.getFunctionType();
3345 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
3346 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
3347 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
3348 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
3349
3350 // - The calling conventions of the caller and callee must match.
3351 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
3352 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
3353
3354 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3355 // or a pointer bitcast followed by a ret instruction.
3356 // - The ret instruction must return the (possibly bitcasted) value
3357 // produced by the call or void.
3358 Value *RetVal = &CI;
3359 Instruction *Next = CI.getNextNode();
3360
3361 // Handle the optional bitcast.
3362 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3363 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
3364 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
3365 RetVal = BI;
3366 Next = BI->getNextNode();
3367 }
3368
3369 // Check the return.
3370 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3371 Assert(Ret, "musttail call must precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
3372 &CI)do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
3373 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal || isa<UndefValue>(Ret->getReturnValue(
)))) { CheckFailed("musttail call result must be returned", Ret
); return; } } while (false)
3374 isa<UndefValue>(Ret->getReturnValue()),do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal || isa<UndefValue>(Ret->getReturnValue(
)))) { CheckFailed("musttail call result must be returned", Ret
); return; } } while (false)
3375 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal || isa<UndefValue>(Ret->getReturnValue(
)))) { CheckFailed("musttail call result must be returned", Ret
); return; } } while (false)
;
3376
3377 AttributeList CallerAttrs = F->getAttributes();
3378 AttributeList CalleeAttrs = CI.getAttributes();
3379 if (CI.getCallingConv() == CallingConv::SwiftTail ||
3380 CI.getCallingConv() == CallingConv::Tail) {
3381 StringRef CCName =
3382 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3383
3384 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3385 // are allowed in swifttailcc call
3386 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3387 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3388 SmallString<32> Context{CCName, StringRef(" musttail caller")};
3389 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3390 }
3391 for (int I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3392 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3393 SmallString<32> Context{CCName, StringRef(" musttail callee")};
3394 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3395 }
3396 // - Varargs functions are not allowed
3397 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +do { if (!(!CallerTy->isVarArg())) { CheckFailed(Twine("cannot guarantee "
) + CCName + " tail call for varargs function"); return; } } while
(false)
3398 " tail call for varargs function")do { if (!(!CallerTy->isVarArg())) { CheckFailed(Twine("cannot guarantee "
) + CCName + " tail call for varargs function"); return; } } while
(false)
;
3399 return;
3400 }
3401
3402 // - The caller and callee prototypes must match. Pointer types of
3403 // parameters or return types may differ in pointee type, but not
3404 // address space.
3405 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3406 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3407 "cannot guarantee tail call due to mismatched parameter counts",do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3408 &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
3409 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3410 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3411 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3412 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
3413 }
3414 }
3415
3416 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3417 // returned, preallocated, and inalloca, must match.
3418 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3419 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3420 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3421 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3422 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3423 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3424 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
3425 }
3426}
3427
3428void Verifier::visitCallInst(CallInst &CI) {
3429 visitCallBase(CI);
3430
3431 if (CI.isMustTailCall())
3432 verifyMustTailCall(CI);
3433}
3434
3435void Verifier::visitInvokeInst(InvokeInst &II) {
3436 visitCallBase(II);
3437
3438 // Verify that the first non-PHI instruction of the unwind destination is an
3439 // exception handling instruction.
3440 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3441 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3442 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3443 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
3444
3445 visitTerminator(II);
3446}
3447
3448/// visitUnaryOperator - Check the argument to the unary operator.
3449///
3450void Verifier::visitUnaryOperator(UnaryOperator &U) {
3451 Assert(U.getType() == U.getOperand(0)->getType(),do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3452 "Unary operators must have same type for"do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3453 "operands and result!",do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3454 &U)do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
;
3455
3456 switch (U.getOpcode()) {
3457 // Check that floating-point arithmetic operators are only used with
3458 // floating-point operands.
3459 case Instruction::FNeg:
3460 Assert(U.getType()->isFPOrFPVectorTy(),do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
3461 "FNeg operator only works with float types!", &U)do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
;
3462 break;
3463 default:
3464 llvm_unreachable("Unknown UnaryOperator opcode!")__builtin_unreachable();
3465 }
3466
3467 visitInstruction(U);
3468}
3469
3470/// visitBinaryOperator - Check that both arguments to the binary operator are
3471/// of the same type!
3472///
3473void Verifier::visitBinaryOperator(BinaryOperator &B) {
3474 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
3475 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
3476
3477 switch (B.getOpcode()) {
3478 // Check that integer arithmetic operators are only used with
3479 // integral operands.
3480 case Instruction::Add:
3481 case Instruction::Sub:
3482 case Instruction::Mul:
3483 case Instruction::SDiv:
3484 case Instruction::UDiv:
3485 case Instruction::SRem:
3486 case Instruction::URem:
3487 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
3488 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
3489 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3490 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3491 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3492 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3493 break;
3494 // Check that floating-point arithmetic operators are only used with
3495 // floating-point operands.
3496 case Instruction::FAdd:
3497 case Instruction::FSub:
3498 case Instruction::FMul:
3499 case Instruction::FDiv:
3500 case Instruction::FRem:
3501 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3502 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3503 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3504 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
3505 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3506 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3507 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3508 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3509 break;
3510 // Check that logical operators are only used with integral operands.
3511 case Instruction::And:
3512 case Instruction::Or:
3513 case Instruction::Xor:
3514 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
3515 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
3516 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3517 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3518 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
3519 break;
3520 case Instruction::Shl:
3521 case Instruction::LShr:
3522 case Instruction::AShr:
3523 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
3524 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
3525 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
3526 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
3527 break;
3528 default:
3529 llvm_unreachable("Unknown BinaryOperator opcode!")__builtin_unreachable();
3530 }
3531
3532 visitInstruction(B);
3533}
3534
3535void Verifier::visitICmpInst(ICmpInst &IC) {
3536 // Check that the operands are the same type
3537 Type *Op0Ty = IC.getOperand(0)->getType();
3538 Type *Op1Ty = IC.getOperand(1)->getType();
3539 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
3540 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
3541 // Check that the operands are the right type
3542 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
3543 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
3544 // Check that the predicate is valid.
3545 Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
3546 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
;
3547
3548 visitInstruction(IC);
3549}
3550
3551void Verifier::visitFCmpInst(FCmpInst &FC) {
3552 // Check that the operands are the same type
3553 Type *Op0Ty = FC.getOperand(0)->getType();
3554 Type *Op1Ty = FC.getOperand(1)->getType();
3555 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
3556 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
3557 // Check that the operands are the right type
3558 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
3559 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
3560 // Check that the predicate is valid.
3561 Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
3562 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
;
3563
3564 visitInstruction(FC);
3565}
3566
3567void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3568 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3569 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3570 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
3571 visitInstruction(EI);
3572}
3573
3574void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3575 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3576 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3577 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
3578 visitInstruction(IE);
3579}
3580
3581void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3582 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3583 SV.getShuffleMask()),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3584 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
3585 visitInstruction(SV);
3586}
3587
3588void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3589 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3590
3591 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
3592 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
3593 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
3594
3595 SmallVector<Value *, 16> Idxs(GEP.indices());
3596 Assert(all_of(do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3597 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3598 "GEP indexes must be integers", &GEP)do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
;
3599 Type *ElTy =
3600 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3601 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3602
3603 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3604 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3605 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
;
3606
3607 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3608 // Additional checks for vector GEPs.
3609 ElementCount GEPWidth = GEPVTy->getElementCount();
3610 if (GEP.getPointerOperandType()->isVectorTy())
3611 Assert(do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3612 GEPWidth ==do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3613 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3614 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3615 for (Value *Idx : Idxs) {
3616 Type *IndexTy = Idx->getType();
3617 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3618 ElementCount IndexWidth = IndexVTy->getElementCount();
3619 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3620 }
3621 Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
3622 "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
;
3623 }
3624 }
3625
3626 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3627 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
3628 "GEP address space doesn't match type", &GEP)do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
;
3629 }
3630
3631 visitInstruction(GEP);
3632}
3633
3634static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3635 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3636}
3637
3638void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3639 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((void)0)
3640 "precondition violation")((void)0);
3641
3642 unsigned NumOperands = Range->getNumOperands();
3643 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3644 unsigned NumRanges = NumOperands / 2;
3645 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3646
3647 ConstantRange LastRange(1, true); // Dummy initial value
3648 for (unsigned i = 0; i < NumRanges; ++i) {
3649 ConstantInt *Low =
3650 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3651 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3652 ConstantInt *High =
3653 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3654 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3655 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3656 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3657
3658 APInt HighV = High->getValue();
3659 APInt LowV = Low->getValue();
3660 ConstantRange CurRange(LowV, HighV);
3661 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3662 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3663 if (i != 0) {
3664 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3665 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3666 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3667 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3668 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3669 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3670 }
3671 LastRange = ConstantRange(LowV, HighV);
3672 }
3673 if (NumRanges > 2) {
3674 APInt FirstLow =
3675 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3676 APInt FirstHigh =
3677 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3678 ConstantRange FirstRange(FirstLow, FirstHigh);
3679 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3680 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3681 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3682 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3683 }
3684}
3685
3686void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3687 unsigned Size = DL.getTypeSizeInBits(Ty);
3688 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3689 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3690 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3691}
3692
3693void Verifier::visitLoadInst(LoadInst &LI) {
3694 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3695 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3696 Type *ElTy = LI.getType();
3697 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3698 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3699 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3700 if (LI.isAtomic()) {
3701 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3702 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3703 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3704 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3705 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3706 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3707 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3708 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3709 ElTy, &LI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3710 checkAtomicMemAccessSize(ElTy, &LI);
3711 } else {
3712 Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
3713 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
;
3714 }
3715
3716 visitInstruction(LI);
3717}
3718
3719void Verifier::visitStoreInst(StoreInst &SI) {
3720 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3721 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3722 Type *ElTy = SI.getOperand(0)->getType();
3723 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),do { if (!(PTy->isOpaqueOrPointeeTypeMatches(ElTy))) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3724 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(PTy->isOpaqueOrPointeeTypeMatches(ElTy))) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3725 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3726 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3727 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3728 if (SI.isAtomic()) {
3729 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3730 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3731 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3732 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3733 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3734 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3735 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3736 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3737 ElTy, &SI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3738 checkAtomicMemAccessSize(ElTy, &SI);
3739 } else {
3740 Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3741 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3742 }
3743 visitInstruction(SI);
3744}
3745
3746/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3747void Verifier::verifySwiftErrorCall(CallBase &Call,
3748 const Value *SwiftErrorVal) {
3749 for (const auto &I : llvm::enumerate(Call.args())) {
3750 if (I.value() == SwiftErrorVal) {
3751 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),do { if (!(Call.paramHasAttr(I.index(), Attribute::SwiftError
))) { CheckFailed("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3752 "swifterror value when used in a callsite should be marked "do { if (!(Call.paramHasAttr(I.index(), Attribute::SwiftError
))) { CheckFailed("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3753 "with swifterror attribute",do { if (!(Call.paramHasAttr(I.index(), Attribute::SwiftError
))) { CheckFailed("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3754 SwiftErrorVal, Call)do { if (!(Call.paramHasAttr(I.index(), Attribute::SwiftError
))) { CheckFailed("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
;
3755 }
3756 }
3757}
3758
3759void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3760 // Check that swifterror value is only used by loads, stores, or as
3761 // a swifterror argument.
3762 for (const User *U : SwiftErrorVal->users()) {
3763 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3764 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3765 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3766 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3767 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3768 // If it is used by a store, check it is the second operand.
3769 if (auto StoreI = dyn_cast<StoreInst>(U))
3770 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3771 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3772 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3773 if (auto *Call = dyn_cast<CallBase>(U))
3774 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3775 }
3776}
3777
3778void Verifier::visitAllocaInst(AllocaInst &AI) {
3779 SmallPtrSet<Type*, 4> Visited;
3780 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3781 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3782 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3783 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3784 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3785 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3786
3787 if (AI.isSwiftError()) {
3788 verifySwiftErrorValue(&AI);
3789 }
3790
3791 visitInstruction(AI);
3792}
3793
3794void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3795 Type *ElTy = CXI.getOperand(1)->getType();
3796 Assert(ElTy->isIntOrPtrTy(),do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3797 "cmpxchg operand must have integer or pointer type", ElTy, &CXI)do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3798 checkAtomicMemAccessSize(ElTy, &CXI);
3799 visitInstruction(CXI);
3800}
3801
3802void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3803 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3804 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3805 auto Op = RMWI.getOperation();
3806 Type *ElTy = RMWI.getOperand(1)->getType();
3807 if (Op == AtomicRMWInst::Xchg) {
3808 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3809 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3810 " operand must have integer or floating point type!",do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3811 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
;
3812 } else if (AtomicRMWInst::isFPOperation(Op)) {
3813 Assert(ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3814 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3815 " operand must have floating point type!",do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3816 &RMWI, ElTy)do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
;
3817 } else {
3818 Assert(ElTy->isIntegerTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3819 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3820 " operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3821 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3822 }
3823 checkAtomicMemAccessSize(ElTy, &RMWI);
3824 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
3825 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
;
3826 visitInstruction(RMWI);
3827}
3828
3829void Verifier::visitFenceInst(FenceInst &FI) {
3830 const AtomicOrdering Ordering = FI.getOrdering();
3831 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3832 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3833 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3834 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3835 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3836 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3837 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3838 visitInstruction(FI);
3839}
3840
3841void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3842 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3843 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3844 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3845
3846 visitInstruction(EVI);
3847}
3848
3849void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3850 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3851 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3852 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3853 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3854
3855 visitInstruction(IVI);
3856}
3857
3858static Value *getParentPad(Value *EHPad) {
3859 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3860 return FPI->getParentPad();
3861
3862 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3863}
3864
3865void Verifier::visitEHPadPredecessors(Instruction &I) {
3866 assert(I.isEHPad())((void)0);
3867
3868 BasicBlock *BB = I.getParent();
3869 Function *F = BB->getParent();
3870
3871 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3872
3873 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3874 // The landingpad instruction defines its parent as a landing pad block. The
3875 // landing pad block may be branched to only by the unwind edge of an
3876 // invoke.
3877 for (BasicBlock *PredBB : predecessors(BB)) {
3878 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3879 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3880 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3881 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3882 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3883 }
3884 return;
3885 }
3886 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3887 if (!pred_empty(BB))
3888 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3889 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3890 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3891 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3892 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3893 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3894 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3895 return;
3896 }
3897
3898 // Verify that each pred has a legal terminator with a legal to/from EH
3899 // pad relationship.
3900 Instruction *ToPad = &I;
3901 Value *ToPadParent = getParentPad(ToPad);
3902 for (BasicBlock *PredBB : predecessors(BB)) {
3903 Instruction *TI = PredBB->getTerminator();
3904 Value *FromPad;
3905 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3906 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3907 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3908 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3909 FromPad = Bundle->Inputs[0];
3910 else
3911 FromPad = ConstantTokenNone::get(II->getContext());
3912 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3913 FromPad = CRI->getOperand(0);
3914 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3915 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3916 FromPad = CSI;
3917 } else {
3918 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3919 }
3920
3921 // The edge may exit from zero or more nested pads.
3922 SmallSet<Value *, 8> Seen;
3923 for (;; FromPad = getParentPad(FromPad)) {
3924 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3925 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3926 if (FromPad == ToPadParent) {
3927 // This is a legal unwind edge.
3928 break;
3929 }
3930 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3931 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3932 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3933 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3934 }
3935 }
3936}
3937
3938void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3939 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3940 // isn't a cleanup.
3941 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3942 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3943
3944 visitEHPadPredecessors(LPI);
3945
3946 if (!LandingPadResultTy)
3947 LandingPadResultTy = LPI.getType();
3948 else
3949 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3950 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3951 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3952 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3953
3954 Function *F = LPI.getParent()->getParent();
3955 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3956 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3957
3958 // The landingpad instruction must be the first non-PHI instruction in the
3959 // block.
3960 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3961 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3962 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3963
3964 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3965 Constant *Clause = LPI.getClause(i);
3966 if (LPI.isCatch(i)) {
3967 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3968 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3969 } else {
3970 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3971 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3972 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3973 }
3974 }
3975
3976 visitInstruction(LPI);
3977}
3978
3979void Verifier::visitResumeInst(ResumeInst &RI) {
3980 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3981 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3982
3983 if (!LandingPadResultTy)
3984 LandingPadResultTy = RI.getValue()->getType();
3985 else
3986 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3987 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3988 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3989 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3990
3991 visitTerminator(RI);
3992}
3993
3994void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3995 BasicBlock *BB = CPI.getParent();
3996
3997 Function *F = BB->getParent();
3998 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3999 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
4000
4001 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
4002 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
4003 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
4004
4005 // The catchpad instruction must be the first non-PHI instruction in the
4006 // block.
4007 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
4008 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
4009
4010 visitEHPadPredecessors(CPI);
4011 visitFuncletPadInst(CPI);
4012}
4013
4014void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4015 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
4016 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
4017 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
4018
4019 visitTerminator(CatchReturn);
4020}
4021
4022void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4023 BasicBlock *BB = CPI.getParent();
4024
4025 Function *F = BB->getParent();
4026 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
4027 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
4028
4029 // The cleanuppad instruction must be the first non-PHI instruction in the
4030 // block.
4031 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
4032 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
4033 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
4034
4035 auto *ParentPad = CPI.getParentPad();
4036 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
4037 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
4038
4039 visitEHPadPredecessors(CPI);
4040 visitFuncletPadInst(CPI);
4041}
4042
4043void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4044 User *FirstUser = nullptr;
4045 Value *FirstUnwindPad = nullptr;
4046 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4047 SmallSet<FuncletPadInst *, 8> Seen;
4048
4049 while (!Worklist.empty()) {
4050 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4051 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
4052 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
4053 Value *UnresolvedAncestorPad = nullptr;
4054 for (User *U : CurrentPad->users()) {
4055 BasicBlock *UnwindDest;
4056 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4057 UnwindDest = CRI->getUnwindDest();
4058 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4059 // We allow catchswitch unwind to caller to nest
4060 // within an outer pad that unwinds somewhere else,
4061 // because catchswitch doesn't have a nounwind variant.
4062 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4063 if (CSI->unwindsToCaller())
4064 continue;
4065 UnwindDest = CSI->getUnwindDest();
4066 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4067 UnwindDest = II->getUnwindDest();
4068 } else if (isa<CallInst>(U)) {
4069 // Calls which don't unwind may be found inside funclet
4070 // pads that unwind somewhere else. We don't *require*
4071 // such calls to be annotated nounwind.
4072 continue;
4073 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4074 // The unwind dest for a cleanup can only be found by
4075 // recursive search. Add it to the worklist, and we'll
4076 // search for its first use that determines where it unwinds.
4077 Worklist.push_back(CPI);
4078 continue;
4079 } else {
4080 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
4081 continue;
4082 }
4083
4084 Value *UnwindPad;
4085 bool ExitsFPI;
4086 if (UnwindDest) {
4087 UnwindPad = UnwindDest->getFirstNonPHI();
4088 if (!cast<Instruction>(UnwindPad)->isEHPad())
4089 continue;
4090 Value *UnwindParent = getParentPad(UnwindPad);
4091 // Ignore unwind edges that don't exit CurrentPad.
4092 if (UnwindParent == CurrentPad)
4093 continue;
4094 // Determine whether the original funclet pad is exited,
4095 // and if we are scanning nested pads determine how many
4096 // of them are exited so we can stop searching their
4097 // children.
4098 Value *ExitedPad = CurrentPad;
4099 ExitsFPI = false;
4100 do {
4101 if (ExitedPad == &FPI) {
4102 ExitsFPI = true;
4103 // Now we can resolve any ancestors of CurrentPad up to
4104 // FPI, but not including FPI since we need to make sure
4105 // to check all direct users of FPI for consistency.
4106 UnresolvedAncestorPad = &FPI;
4107 break;
4108 }
4109 Value *ExitedParent = getParentPad(ExitedPad);
4110 if (ExitedParent == UnwindParent) {
4111 // ExitedPad is the ancestor-most pad which this unwind
4112 // edge exits, so we can resolve up to it, meaning that
4113 // ExitedParent is the first ancestor still unresolved.
4114 UnresolvedAncestorPad = ExitedParent;
4115 break;
4116 }
4117 ExitedPad = ExitedParent;
4118 } while (!isa<ConstantTokenNone>(ExitedPad));
4119 } else {
4120 // Unwinding to caller exits all pads.
4121 UnwindPad = ConstantTokenNone::get(FPI.getContext());
4122 ExitsFPI = true;
4123 UnresolvedAncestorPad = &FPI;
4124 }
4125
4126 if (ExitsFPI) {
4127 // This unwind edge exits FPI. Make sure it agrees with other
4128 // such edges.
4129 if (FirstUser) {
4130 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4131 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4132 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4133 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
4134 } else {
4135 FirstUser = U;
4136 FirstUnwindPad = UnwindPad;
4137 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4138 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4139 getParentPad(UnwindPad) == getParentPad(&FPI))
4140 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4141 }
4142 }
4143 // Make sure we visit all uses of FPI, but for nested pads stop as
4144 // soon as we know where they unwind to.
4145 if (CurrentPad != &FPI)
4146 break;
4147 }
4148 if (UnresolvedAncestorPad) {
4149 if (CurrentPad == UnresolvedAncestorPad) {
4150 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4151 // we've found an unwind edge that exits it, because we need to verify
4152 // all direct uses of FPI.
4153 assert(CurrentPad == &FPI)((void)0);
4154 continue;
4155 }
4156 // Pop off the worklist any nested pads that we've found an unwind
4157 // destination for. The pads on the worklist are the uncles,
4158 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4159 // for all ancestors of CurrentPad up to but not including
4160 // UnresolvedAncestorPad.
4161 Value *ResolvedPad = CurrentPad;
4162 while (!Worklist.empty()) {
4163 Value *UnclePad = Worklist.back();
4164 Value *AncestorPad = getParentPad(UnclePad);
4165 // Walk ResolvedPad up the ancestor list until we either find the
4166 // uncle's parent or the last resolved ancestor.
4167 while (ResolvedPad != AncestorPad) {
4168 Value *ResolvedParent = getParentPad(ResolvedPad);
4169 if (ResolvedParent == UnresolvedAncestorPad) {