File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaDeclCXX.cpp |
Warning: | line 4005, column 8 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file implements semantic analysis for C++ declarations. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "clang/AST/ASTConsumer.h" | |||
14 | #include "clang/AST/ASTContext.h" | |||
15 | #include "clang/AST/ASTLambda.h" | |||
16 | #include "clang/AST/ASTMutationListener.h" | |||
17 | #include "clang/AST/CXXInheritance.h" | |||
18 | #include "clang/AST/CharUnits.h" | |||
19 | #include "clang/AST/ComparisonCategories.h" | |||
20 | #include "clang/AST/EvaluatedExprVisitor.h" | |||
21 | #include "clang/AST/ExprCXX.h" | |||
22 | #include "clang/AST/RecordLayout.h" | |||
23 | #include "clang/AST/RecursiveASTVisitor.h" | |||
24 | #include "clang/AST/StmtVisitor.h" | |||
25 | #include "clang/AST/TypeLoc.h" | |||
26 | #include "clang/AST/TypeOrdering.h" | |||
27 | #include "clang/Basic/AttributeCommonInfo.h" | |||
28 | #include "clang/Basic/PartialDiagnostic.h" | |||
29 | #include "clang/Basic/TargetInfo.h" | |||
30 | #include "clang/Lex/LiteralSupport.h" | |||
31 | #include "clang/Lex/Preprocessor.h" | |||
32 | #include "clang/Sema/CXXFieldCollector.h" | |||
33 | #include "clang/Sema/DeclSpec.h" | |||
34 | #include "clang/Sema/Initialization.h" | |||
35 | #include "clang/Sema/Lookup.h" | |||
36 | #include "clang/Sema/ParsedTemplate.h" | |||
37 | #include "clang/Sema/Scope.h" | |||
38 | #include "clang/Sema/ScopeInfo.h" | |||
39 | #include "clang/Sema/SemaInternal.h" | |||
40 | #include "clang/Sema/Template.h" | |||
41 | #include "llvm/ADT/ScopeExit.h" | |||
42 | #include "llvm/ADT/SmallString.h" | |||
43 | #include "llvm/ADT/STLExtras.h" | |||
44 | #include "llvm/ADT/StringExtras.h" | |||
45 | #include <map> | |||
46 | #include <set> | |||
47 | ||||
48 | using namespace clang; | |||
49 | ||||
50 | //===----------------------------------------------------------------------===// | |||
51 | // CheckDefaultArgumentVisitor | |||
52 | //===----------------------------------------------------------------------===// | |||
53 | ||||
54 | namespace { | |||
55 | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses | |||
56 | /// the default argument of a parameter to determine whether it | |||
57 | /// contains any ill-formed subexpressions. For example, this will | |||
58 | /// diagnose the use of local variables or parameters within the | |||
59 | /// default argument expression. | |||
60 | class CheckDefaultArgumentVisitor | |||
61 | : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { | |||
62 | Sema &S; | |||
63 | const Expr *DefaultArg; | |||
64 | ||||
65 | public: | |||
66 | CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) | |||
67 | : S(S), DefaultArg(DefaultArg) {} | |||
68 | ||||
69 | bool VisitExpr(const Expr *Node); | |||
70 | bool VisitDeclRefExpr(const DeclRefExpr *DRE); | |||
71 | bool VisitCXXThisExpr(const CXXThisExpr *ThisE); | |||
72 | bool VisitLambdaExpr(const LambdaExpr *Lambda); | |||
73 | bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); | |||
74 | }; | |||
75 | ||||
76 | /// VisitExpr - Visit all of the children of this expression. | |||
77 | bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { | |||
78 | bool IsInvalid = false; | |||
79 | for (const Stmt *SubStmt : Node->children()) | |||
80 | IsInvalid |= Visit(SubStmt); | |||
81 | return IsInvalid; | |||
82 | } | |||
83 | ||||
84 | /// VisitDeclRefExpr - Visit a reference to a declaration, to | |||
85 | /// determine whether this declaration can be used in the default | |||
86 | /// argument expression. | |||
87 | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { | |||
88 | const NamedDecl *Decl = DRE->getDecl(); | |||
89 | if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { | |||
90 | // C++ [dcl.fct.default]p9: | |||
91 | // [...] parameters of a function shall not be used in default | |||
92 | // argument expressions, even if they are not evaluated. [...] | |||
93 | // | |||
94 | // C++17 [dcl.fct.default]p9 (by CWG 2082): | |||
95 | // [...] A parameter shall not appear as a potentially-evaluated | |||
96 | // expression in a default argument. [...] | |||
97 | // | |||
98 | if (DRE->isNonOdrUse() != NOUR_Unevaluated) | |||
99 | return S.Diag(DRE->getBeginLoc(), | |||
100 | diag::err_param_default_argument_references_param) | |||
101 | << Param->getDeclName() << DefaultArg->getSourceRange(); | |||
102 | } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) { | |||
103 | // C++ [dcl.fct.default]p7: | |||
104 | // Local variables shall not be used in default argument | |||
105 | // expressions. | |||
106 | // | |||
107 | // C++17 [dcl.fct.default]p7 (by CWG 2082): | |||
108 | // A local variable shall not appear as a potentially-evaluated | |||
109 | // expression in a default argument. | |||
110 | // | |||
111 | // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): | |||
112 | // Note: A local variable cannot be odr-used (6.3) in a default argument. | |||
113 | // | |||
114 | if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse()) | |||
115 | return S.Diag(DRE->getBeginLoc(), | |||
116 | diag::err_param_default_argument_references_local) | |||
117 | << VDecl->getDeclName() << DefaultArg->getSourceRange(); | |||
118 | } | |||
119 | ||||
120 | return false; | |||
121 | } | |||
122 | ||||
123 | /// VisitCXXThisExpr - Visit a C++ "this" expression. | |||
124 | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { | |||
125 | // C++ [dcl.fct.default]p8: | |||
126 | // The keyword this shall not be used in a default argument of a | |||
127 | // member function. | |||
128 | return S.Diag(ThisE->getBeginLoc(), | |||
129 | diag::err_param_default_argument_references_this) | |||
130 | << ThisE->getSourceRange(); | |||
131 | } | |||
132 | ||||
133 | bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( | |||
134 | const PseudoObjectExpr *POE) { | |||
135 | bool Invalid = false; | |||
136 | for (const Expr *E : POE->semantics()) { | |||
137 | // Look through bindings. | |||
138 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { | |||
139 | E = OVE->getSourceExpr(); | |||
140 | assert(E && "pseudo-object binding without source expression?")((void)0); | |||
141 | } | |||
142 | ||||
143 | Invalid |= Visit(E); | |||
144 | } | |||
145 | return Invalid; | |||
146 | } | |||
147 | ||||
148 | bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { | |||
149 | // C++11 [expr.lambda.prim]p13: | |||
150 | // A lambda-expression appearing in a default argument shall not | |||
151 | // implicitly or explicitly capture any entity. | |||
152 | if (Lambda->capture_begin() == Lambda->capture_end()) | |||
153 | return false; | |||
154 | ||||
155 | return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); | |||
156 | } | |||
157 | } // namespace | |||
158 | ||||
159 | void | |||
160 | Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, | |||
161 | const CXXMethodDecl *Method) { | |||
162 | // If we have an MSAny spec already, don't bother. | |||
163 | if (!Method || ComputedEST == EST_MSAny) | |||
164 | return; | |||
165 | ||||
166 | const FunctionProtoType *Proto | |||
167 | = Method->getType()->getAs<FunctionProtoType>(); | |||
168 | Proto = Self->ResolveExceptionSpec(CallLoc, Proto); | |||
169 | if (!Proto) | |||
170 | return; | |||
171 | ||||
172 | ExceptionSpecificationType EST = Proto->getExceptionSpecType(); | |||
173 | ||||
174 | // If we have a throw-all spec at this point, ignore the function. | |||
175 | if (ComputedEST == EST_None) | |||
176 | return; | |||
177 | ||||
178 | if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) | |||
179 | EST = EST_BasicNoexcept; | |||
180 | ||||
181 | switch (EST) { | |||
182 | case EST_Unparsed: | |||
183 | case EST_Uninstantiated: | |||
184 | case EST_Unevaluated: | |||
185 | llvm_unreachable("should not see unresolved exception specs here")__builtin_unreachable(); | |||
186 | ||||
187 | // If this function can throw any exceptions, make a note of that. | |||
188 | case EST_MSAny: | |||
189 | case EST_None: | |||
190 | // FIXME: Whichever we see last of MSAny and None determines our result. | |||
191 | // We should make a consistent, order-independent choice here. | |||
192 | ClearExceptions(); | |||
193 | ComputedEST = EST; | |||
194 | return; | |||
195 | case EST_NoexceptFalse: | |||
196 | ClearExceptions(); | |||
197 | ComputedEST = EST_None; | |||
198 | return; | |||
199 | // FIXME: If the call to this decl is using any of its default arguments, we | |||
200 | // need to search them for potentially-throwing calls. | |||
201 | // If this function has a basic noexcept, it doesn't affect the outcome. | |||
202 | case EST_BasicNoexcept: | |||
203 | case EST_NoexceptTrue: | |||
204 | case EST_NoThrow: | |||
205 | return; | |||
206 | // If we're still at noexcept(true) and there's a throw() callee, | |||
207 | // change to that specification. | |||
208 | case EST_DynamicNone: | |||
209 | if (ComputedEST == EST_BasicNoexcept) | |||
210 | ComputedEST = EST_DynamicNone; | |||
211 | return; | |||
212 | case EST_DependentNoexcept: | |||
213 | llvm_unreachable(__builtin_unreachable() | |||
214 | "should not generate implicit declarations for dependent cases")__builtin_unreachable(); | |||
215 | case EST_Dynamic: | |||
216 | break; | |||
217 | } | |||
218 | assert(EST == EST_Dynamic && "EST case not considered earlier.")((void)0); | |||
219 | assert(ComputedEST != EST_None &&((void)0) | |||
220 | "Shouldn't collect exceptions when throw-all is guaranteed.")((void)0); | |||
221 | ComputedEST = EST_Dynamic; | |||
222 | // Record the exceptions in this function's exception specification. | |||
223 | for (const auto &E : Proto->exceptions()) | |||
224 | if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) | |||
225 | Exceptions.push_back(E); | |||
226 | } | |||
227 | ||||
228 | void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { | |||
229 | if (!S || ComputedEST == EST_MSAny) | |||
230 | return; | |||
231 | ||||
232 | // FIXME: | |||
233 | // | |||
234 | // C++0x [except.spec]p14: | |||
235 | // [An] implicit exception-specification specifies the type-id T if and | |||
236 | // only if T is allowed by the exception-specification of a function directly | |||
237 | // invoked by f's implicit definition; f shall allow all exceptions if any | |||
238 | // function it directly invokes allows all exceptions, and f shall allow no | |||
239 | // exceptions if every function it directly invokes allows no exceptions. | |||
240 | // | |||
241 | // Note in particular that if an implicit exception-specification is generated | |||
242 | // for a function containing a throw-expression, that specification can still | |||
243 | // be noexcept(true). | |||
244 | // | |||
245 | // Note also that 'directly invoked' is not defined in the standard, and there | |||
246 | // is no indication that we should only consider potentially-evaluated calls. | |||
247 | // | |||
248 | // Ultimately we should implement the intent of the standard: the exception | |||
249 | // specification should be the set of exceptions which can be thrown by the | |||
250 | // implicit definition. For now, we assume that any non-nothrow expression can | |||
251 | // throw any exception. | |||
252 | ||||
253 | if (Self->canThrow(S)) | |||
254 | ComputedEST = EST_None; | |||
255 | } | |||
256 | ||||
257 | ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, | |||
258 | SourceLocation EqualLoc) { | |||
259 | if (RequireCompleteType(Param->getLocation(), Param->getType(), | |||
260 | diag::err_typecheck_decl_incomplete_type)) | |||
261 | return true; | |||
262 | ||||
263 | // C++ [dcl.fct.default]p5 | |||
264 | // A default argument expression is implicitly converted (clause | |||
265 | // 4) to the parameter type. The default argument expression has | |||
266 | // the same semantic constraints as the initializer expression in | |||
267 | // a declaration of a variable of the parameter type, using the | |||
268 | // copy-initialization semantics (8.5). | |||
269 | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, | |||
270 | Param); | |||
271 | InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), | |||
272 | EqualLoc); | |||
273 | InitializationSequence InitSeq(*this, Entity, Kind, Arg); | |||
274 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); | |||
275 | if (Result.isInvalid()) | |||
276 | return true; | |||
277 | Arg = Result.getAs<Expr>(); | |||
278 | ||||
279 | CheckCompletedExpr(Arg, EqualLoc); | |||
280 | Arg = MaybeCreateExprWithCleanups(Arg); | |||
281 | ||||
282 | return Arg; | |||
283 | } | |||
284 | ||||
285 | void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, | |||
286 | SourceLocation EqualLoc) { | |||
287 | // Add the default argument to the parameter | |||
288 | Param->setDefaultArg(Arg); | |||
289 | ||||
290 | // We have already instantiated this parameter; provide each of the | |||
291 | // instantiations with the uninstantiated default argument. | |||
292 | UnparsedDefaultArgInstantiationsMap::iterator InstPos | |||
293 | = UnparsedDefaultArgInstantiations.find(Param); | |||
294 | if (InstPos != UnparsedDefaultArgInstantiations.end()) { | |||
295 | for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) | |||
296 | InstPos->second[I]->setUninstantiatedDefaultArg(Arg); | |||
297 | ||||
298 | // We're done tracking this parameter's instantiations. | |||
299 | UnparsedDefaultArgInstantiations.erase(InstPos); | |||
300 | } | |||
301 | } | |||
302 | ||||
303 | /// ActOnParamDefaultArgument - Check whether the default argument | |||
304 | /// provided for a function parameter is well-formed. If so, attach it | |||
305 | /// to the parameter declaration. | |||
306 | void | |||
307 | Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, | |||
308 | Expr *DefaultArg) { | |||
309 | if (!param || !DefaultArg) | |||
310 | return; | |||
311 | ||||
312 | ParmVarDecl *Param = cast<ParmVarDecl>(param); | |||
313 | UnparsedDefaultArgLocs.erase(Param); | |||
314 | ||||
315 | auto Fail = [&] { | |||
316 | Param->setInvalidDecl(); | |||
317 | Param->setDefaultArg(new (Context) OpaqueValueExpr( | |||
318 | EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); | |||
319 | }; | |||
320 | ||||
321 | // Default arguments are only permitted in C++ | |||
322 | if (!getLangOpts().CPlusPlus) { | |||
323 | Diag(EqualLoc, diag::err_param_default_argument) | |||
324 | << DefaultArg->getSourceRange(); | |||
325 | return Fail(); | |||
326 | } | |||
327 | ||||
328 | // Check for unexpanded parameter packs. | |||
329 | if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { | |||
330 | return Fail(); | |||
331 | } | |||
332 | ||||
333 | // C++11 [dcl.fct.default]p3 | |||
334 | // A default argument expression [...] shall not be specified for a | |||
335 | // parameter pack. | |||
336 | if (Param->isParameterPack()) { | |||
337 | Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) | |||
338 | << DefaultArg->getSourceRange(); | |||
339 | // Recover by discarding the default argument. | |||
340 | Param->setDefaultArg(nullptr); | |||
341 | return; | |||
342 | } | |||
343 | ||||
344 | ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); | |||
345 | if (Result.isInvalid()) | |||
346 | return Fail(); | |||
347 | ||||
348 | DefaultArg = Result.getAs<Expr>(); | |||
349 | ||||
350 | // Check that the default argument is well-formed | |||
351 | CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); | |||
352 | if (DefaultArgChecker.Visit(DefaultArg)) | |||
353 | return Fail(); | |||
354 | ||||
355 | SetParamDefaultArgument(Param, DefaultArg, EqualLoc); | |||
356 | } | |||
357 | ||||
358 | /// ActOnParamUnparsedDefaultArgument - We've seen a default | |||
359 | /// argument for a function parameter, but we can't parse it yet | |||
360 | /// because we're inside a class definition. Note that this default | |||
361 | /// argument will be parsed later. | |||
362 | void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, | |||
363 | SourceLocation EqualLoc, | |||
364 | SourceLocation ArgLoc) { | |||
365 | if (!param) | |||
366 | return; | |||
367 | ||||
368 | ParmVarDecl *Param = cast<ParmVarDecl>(param); | |||
369 | Param->setUnparsedDefaultArg(); | |||
370 | UnparsedDefaultArgLocs[Param] = ArgLoc; | |||
371 | } | |||
372 | ||||
373 | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of | |||
374 | /// the default argument for the parameter param failed. | |||
375 | void Sema::ActOnParamDefaultArgumentError(Decl *param, | |||
376 | SourceLocation EqualLoc) { | |||
377 | if (!param) | |||
378 | return; | |||
379 | ||||
380 | ParmVarDecl *Param = cast<ParmVarDecl>(param); | |||
381 | Param->setInvalidDecl(); | |||
382 | UnparsedDefaultArgLocs.erase(Param); | |||
383 | Param->setDefaultArg(new (Context) OpaqueValueExpr( | |||
384 | EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); | |||
385 | } | |||
386 | ||||
387 | /// CheckExtraCXXDefaultArguments - Check for any extra default | |||
388 | /// arguments in the declarator, which is not a function declaration | |||
389 | /// or definition and therefore is not permitted to have default | |||
390 | /// arguments. This routine should be invoked for every declarator | |||
391 | /// that is not a function declaration or definition. | |||
392 | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { | |||
393 | // C++ [dcl.fct.default]p3 | |||
394 | // A default argument expression shall be specified only in the | |||
395 | // parameter-declaration-clause of a function declaration or in a | |||
396 | // template-parameter (14.1). It shall not be specified for a | |||
397 | // parameter pack. If it is specified in a | |||
398 | // parameter-declaration-clause, it shall not occur within a | |||
399 | // declarator or abstract-declarator of a parameter-declaration. | |||
400 | bool MightBeFunction = D.isFunctionDeclarationContext(); | |||
401 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | |||
402 | DeclaratorChunk &chunk = D.getTypeObject(i); | |||
403 | if (chunk.Kind == DeclaratorChunk::Function) { | |||
404 | if (MightBeFunction) { | |||
405 | // This is a function declaration. It can have default arguments, but | |||
406 | // keep looking in case its return type is a function type with default | |||
407 | // arguments. | |||
408 | MightBeFunction = false; | |||
409 | continue; | |||
410 | } | |||
411 | for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; | |||
412 | ++argIdx) { | |||
413 | ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); | |||
414 | if (Param->hasUnparsedDefaultArg()) { | |||
415 | std::unique_ptr<CachedTokens> Toks = | |||
416 | std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); | |||
417 | SourceRange SR; | |||
418 | if (Toks->size() > 1) | |||
419 | SR = SourceRange((*Toks)[1].getLocation(), | |||
420 | Toks->back().getLocation()); | |||
421 | else | |||
422 | SR = UnparsedDefaultArgLocs[Param]; | |||
423 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | |||
424 | << SR; | |||
425 | } else if (Param->getDefaultArg()) { | |||
426 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | |||
427 | << Param->getDefaultArg()->getSourceRange(); | |||
428 | Param->setDefaultArg(nullptr); | |||
429 | } | |||
430 | } | |||
431 | } else if (chunk.Kind != DeclaratorChunk::Paren) { | |||
432 | MightBeFunction = false; | |||
433 | } | |||
434 | } | |||
435 | } | |||
436 | ||||
437 | static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { | |||
438 | return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) { | |||
439 | return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); | |||
440 | }); | |||
441 | } | |||
442 | ||||
443 | /// MergeCXXFunctionDecl - Merge two declarations of the same C++ | |||
444 | /// function, once we already know that they have the same | |||
445 | /// type. Subroutine of MergeFunctionDecl. Returns true if there was an | |||
446 | /// error, false otherwise. | |||
447 | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, | |||
448 | Scope *S) { | |||
449 | bool Invalid = false; | |||
450 | ||||
451 | // The declaration context corresponding to the scope is the semantic | |||
452 | // parent, unless this is a local function declaration, in which case | |||
453 | // it is that surrounding function. | |||
454 | DeclContext *ScopeDC = New->isLocalExternDecl() | |||
455 | ? New->getLexicalDeclContext() | |||
456 | : New->getDeclContext(); | |||
457 | ||||
458 | // Find the previous declaration for the purpose of default arguments. | |||
459 | FunctionDecl *PrevForDefaultArgs = Old; | |||
460 | for (/**/; PrevForDefaultArgs; | |||
461 | // Don't bother looking back past the latest decl if this is a local | |||
462 | // extern declaration; nothing else could work. | |||
463 | PrevForDefaultArgs = New->isLocalExternDecl() | |||
464 | ? nullptr | |||
465 | : PrevForDefaultArgs->getPreviousDecl()) { | |||
466 | // Ignore hidden declarations. | |||
467 | if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) | |||
468 | continue; | |||
469 | ||||
470 | if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && | |||
471 | !New->isCXXClassMember()) { | |||
472 | // Ignore default arguments of old decl if they are not in | |||
473 | // the same scope and this is not an out-of-line definition of | |||
474 | // a member function. | |||
475 | continue; | |||
476 | } | |||
477 | ||||
478 | if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { | |||
479 | // If only one of these is a local function declaration, then they are | |||
480 | // declared in different scopes, even though isDeclInScope may think | |||
481 | // they're in the same scope. (If both are local, the scope check is | |||
482 | // sufficient, and if neither is local, then they are in the same scope.) | |||
483 | continue; | |||
484 | } | |||
485 | ||||
486 | // We found the right previous declaration. | |||
487 | break; | |||
488 | } | |||
489 | ||||
490 | // C++ [dcl.fct.default]p4: | |||
491 | // For non-template functions, default arguments can be added in | |||
492 | // later declarations of a function in the same | |||
493 | // scope. Declarations in different scopes have completely | |||
494 | // distinct sets of default arguments. That is, declarations in | |||
495 | // inner scopes do not acquire default arguments from | |||
496 | // declarations in outer scopes, and vice versa. In a given | |||
497 | // function declaration, all parameters subsequent to a | |||
498 | // parameter with a default argument shall have default | |||
499 | // arguments supplied in this or previous declarations. A | |||
500 | // default argument shall not be redefined by a later | |||
501 | // declaration (not even to the same value). | |||
502 | // | |||
503 | // C++ [dcl.fct.default]p6: | |||
504 | // Except for member functions of class templates, the default arguments | |||
505 | // in a member function definition that appears outside of the class | |||
506 | // definition are added to the set of default arguments provided by the | |||
507 | // member function declaration in the class definition. | |||
508 | for (unsigned p = 0, NumParams = PrevForDefaultArgs | |||
509 | ? PrevForDefaultArgs->getNumParams() | |||
510 | : 0; | |||
511 | p < NumParams; ++p) { | |||
512 | ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); | |||
513 | ParmVarDecl *NewParam = New->getParamDecl(p); | |||
514 | ||||
515 | bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; | |||
516 | bool NewParamHasDfl = NewParam->hasDefaultArg(); | |||
517 | ||||
518 | if (OldParamHasDfl && NewParamHasDfl) { | |||
519 | unsigned DiagDefaultParamID = | |||
520 | diag::err_param_default_argument_redefinition; | |||
521 | ||||
522 | // MSVC accepts that default parameters be redefined for member functions | |||
523 | // of template class. The new default parameter's value is ignored. | |||
524 | Invalid = true; | |||
525 | if (getLangOpts().MicrosoftExt) { | |||
526 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); | |||
527 | if (MD && MD->getParent()->getDescribedClassTemplate()) { | |||
528 | // Merge the old default argument into the new parameter. | |||
529 | NewParam->setHasInheritedDefaultArg(); | |||
530 | if (OldParam->hasUninstantiatedDefaultArg()) | |||
531 | NewParam->setUninstantiatedDefaultArg( | |||
532 | OldParam->getUninstantiatedDefaultArg()); | |||
533 | else | |||
534 | NewParam->setDefaultArg(OldParam->getInit()); | |||
535 | DiagDefaultParamID = diag::ext_param_default_argument_redefinition; | |||
536 | Invalid = false; | |||
537 | } | |||
538 | } | |||
539 | ||||
540 | // FIXME: If we knew where the '=' was, we could easily provide a fix-it | |||
541 | // hint here. Alternatively, we could walk the type-source information | |||
542 | // for NewParam to find the last source location in the type... but it | |||
543 | // isn't worth the effort right now. This is the kind of test case that | |||
544 | // is hard to get right: | |||
545 | // int f(int); | |||
546 | // void g(int (*fp)(int) = f); | |||
547 | // void g(int (*fp)(int) = &f); | |||
548 | Diag(NewParam->getLocation(), DiagDefaultParamID) | |||
549 | << NewParam->getDefaultArgRange(); | |||
550 | ||||
551 | // Look for the function declaration where the default argument was | |||
552 | // actually written, which may be a declaration prior to Old. | |||
553 | for (auto Older = PrevForDefaultArgs; | |||
554 | OldParam->hasInheritedDefaultArg(); /**/) { | |||
555 | Older = Older->getPreviousDecl(); | |||
556 | OldParam = Older->getParamDecl(p); | |||
557 | } | |||
558 | ||||
559 | Diag(OldParam->getLocation(), diag::note_previous_definition) | |||
560 | << OldParam->getDefaultArgRange(); | |||
561 | } else if (OldParamHasDfl) { | |||
562 | // Merge the old default argument into the new parameter unless the new | |||
563 | // function is a friend declaration in a template class. In the latter | |||
564 | // case the default arguments will be inherited when the friend | |||
565 | // declaration will be instantiated. | |||
566 | if (New->getFriendObjectKind() == Decl::FOK_None || | |||
567 | !New->getLexicalDeclContext()->isDependentContext()) { | |||
568 | // It's important to use getInit() here; getDefaultArg() | |||
569 | // strips off any top-level ExprWithCleanups. | |||
570 | NewParam->setHasInheritedDefaultArg(); | |||
571 | if (OldParam->hasUnparsedDefaultArg()) | |||
572 | NewParam->setUnparsedDefaultArg(); | |||
573 | else if (OldParam->hasUninstantiatedDefaultArg()) | |||
574 | NewParam->setUninstantiatedDefaultArg( | |||
575 | OldParam->getUninstantiatedDefaultArg()); | |||
576 | else | |||
577 | NewParam->setDefaultArg(OldParam->getInit()); | |||
578 | } | |||
579 | } else if (NewParamHasDfl) { | |||
580 | if (New->getDescribedFunctionTemplate()) { | |||
581 | // Paragraph 4, quoted above, only applies to non-template functions. | |||
582 | Diag(NewParam->getLocation(), | |||
583 | diag::err_param_default_argument_template_redecl) | |||
584 | << NewParam->getDefaultArgRange(); | |||
585 | Diag(PrevForDefaultArgs->getLocation(), | |||
586 | diag::note_template_prev_declaration) | |||
587 | << false; | |||
588 | } else if (New->getTemplateSpecializationKind() | |||
589 | != TSK_ImplicitInstantiation && | |||
590 | New->getTemplateSpecializationKind() != TSK_Undeclared) { | |||
591 | // C++ [temp.expr.spec]p21: | |||
592 | // Default function arguments shall not be specified in a declaration | |||
593 | // or a definition for one of the following explicit specializations: | |||
594 | // - the explicit specialization of a function template; | |||
595 | // - the explicit specialization of a member function template; | |||
596 | // - the explicit specialization of a member function of a class | |||
597 | // template where the class template specialization to which the | |||
598 | // member function specialization belongs is implicitly | |||
599 | // instantiated. | |||
600 | Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) | |||
601 | << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) | |||
602 | << New->getDeclName() | |||
603 | << NewParam->getDefaultArgRange(); | |||
604 | } else if (New->getDeclContext()->isDependentContext()) { | |||
605 | // C++ [dcl.fct.default]p6 (DR217): | |||
606 | // Default arguments for a member function of a class template shall | |||
607 | // be specified on the initial declaration of the member function | |||
608 | // within the class template. | |||
609 | // | |||
610 | // Reading the tea leaves a bit in DR217 and its reference to DR205 | |||
611 | // leads me to the conclusion that one cannot add default function | |||
612 | // arguments for an out-of-line definition of a member function of a | |||
613 | // dependent type. | |||
614 | int WhichKind = 2; | |||
615 | if (CXXRecordDecl *Record | |||
616 | = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { | |||
617 | if (Record->getDescribedClassTemplate()) | |||
618 | WhichKind = 0; | |||
619 | else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) | |||
620 | WhichKind = 1; | |||
621 | else | |||
622 | WhichKind = 2; | |||
623 | } | |||
624 | ||||
625 | Diag(NewParam->getLocation(), | |||
626 | diag::err_param_default_argument_member_template_redecl) | |||
627 | << WhichKind | |||
628 | << NewParam->getDefaultArgRange(); | |||
629 | } | |||
630 | } | |||
631 | } | |||
632 | ||||
633 | // DR1344: If a default argument is added outside a class definition and that | |||
634 | // default argument makes the function a special member function, the program | |||
635 | // is ill-formed. This can only happen for constructors. | |||
636 | if (isa<CXXConstructorDecl>(New) && | |||
637 | New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { | |||
638 | CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), | |||
639 | OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); | |||
640 | if (NewSM != OldSM) { | |||
641 | ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); | |||
642 | assert(NewParam->hasDefaultArg())((void)0); | |||
643 | Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) | |||
644 | << NewParam->getDefaultArgRange() << NewSM; | |||
645 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
646 | } | |||
647 | } | |||
648 | ||||
649 | const FunctionDecl *Def; | |||
650 | // C++11 [dcl.constexpr]p1: If any declaration of a function or function | |||
651 | // template has a constexpr specifier then all its declarations shall | |||
652 | // contain the constexpr specifier. | |||
653 | if (New->getConstexprKind() != Old->getConstexprKind()) { | |||
654 | Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) | |||
655 | << New << static_cast<int>(New->getConstexprKind()) | |||
656 | << static_cast<int>(Old->getConstexprKind()); | |||
657 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
658 | Invalid = true; | |||
659 | } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && | |||
660 | Old->isDefined(Def) && | |||
661 | // If a friend function is inlined but does not have 'inline' | |||
662 | // specifier, it is a definition. Do not report attribute conflict | |||
663 | // in this case, redefinition will be diagnosed later. | |||
664 | (New->isInlineSpecified() || | |||
665 | New->getFriendObjectKind() == Decl::FOK_None)) { | |||
666 | // C++11 [dcl.fcn.spec]p4: | |||
667 | // If the definition of a function appears in a translation unit before its | |||
668 | // first declaration as inline, the program is ill-formed. | |||
669 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; | |||
670 | Diag(Def->getLocation(), diag::note_previous_definition); | |||
671 | Invalid = true; | |||
672 | } | |||
673 | ||||
674 | // C++17 [temp.deduct.guide]p3: | |||
675 | // Two deduction guide declarations in the same translation unit | |||
676 | // for the same class template shall not have equivalent | |||
677 | // parameter-declaration-clauses. | |||
678 | if (isa<CXXDeductionGuideDecl>(New) && | |||
679 | !New->isFunctionTemplateSpecialization() && isVisible(Old)) { | |||
680 | Diag(New->getLocation(), diag::err_deduction_guide_redeclared); | |||
681 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
682 | } | |||
683 | ||||
684 | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default | |||
685 | // argument expression, that declaration shall be a definition and shall be | |||
686 | // the only declaration of the function or function template in the | |||
687 | // translation unit. | |||
688 | if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && | |||
689 | functionDeclHasDefaultArgument(Old)) { | |||
690 | Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); | |||
691 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
692 | Invalid = true; | |||
693 | } | |||
694 | ||||
695 | // C++11 [temp.friend]p4 (DR329): | |||
696 | // When a function is defined in a friend function declaration in a class | |||
697 | // template, the function is instantiated when the function is odr-used. | |||
698 | // The same restrictions on multiple declarations and definitions that | |||
699 | // apply to non-template function declarations and definitions also apply | |||
700 | // to these implicit definitions. | |||
701 | const FunctionDecl *OldDefinition = nullptr; | |||
702 | if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && | |||
703 | Old->isDefined(OldDefinition, true)) | |||
704 | CheckForFunctionRedefinition(New, OldDefinition); | |||
705 | ||||
706 | return Invalid; | |||
707 | } | |||
708 | ||||
709 | NamedDecl * | |||
710 | Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, | |||
711 | MultiTemplateParamsArg TemplateParamLists) { | |||
712 | assert(D.isDecompositionDeclarator())((void)0); | |||
713 | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); | |||
714 | ||||
715 | // The syntax only allows a decomposition declarator as a simple-declaration, | |||
716 | // a for-range-declaration, or a condition in Clang, but we parse it in more | |||
717 | // cases than that. | |||
718 | if (!D.mayHaveDecompositionDeclarator()) { | |||
719 | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) | |||
720 | << Decomp.getSourceRange(); | |||
721 | return nullptr; | |||
722 | } | |||
723 | ||||
724 | if (!TemplateParamLists.empty()) { | |||
725 | // FIXME: There's no rule against this, but there are also no rules that | |||
726 | // would actually make it usable, so we reject it for now. | |||
727 | Diag(TemplateParamLists.front()->getTemplateLoc(), | |||
728 | diag::err_decomp_decl_template); | |||
729 | return nullptr; | |||
730 | } | |||
731 | ||||
732 | Diag(Decomp.getLSquareLoc(), | |||
733 | !getLangOpts().CPlusPlus17 | |||
734 | ? diag::ext_decomp_decl | |||
735 | : D.getContext() == DeclaratorContext::Condition | |||
736 | ? diag::ext_decomp_decl_cond | |||
737 | : diag::warn_cxx14_compat_decomp_decl) | |||
738 | << Decomp.getSourceRange(); | |||
739 | ||||
740 | // The semantic context is always just the current context. | |||
741 | DeclContext *const DC = CurContext; | |||
742 | ||||
743 | // C++17 [dcl.dcl]/8: | |||
744 | // The decl-specifier-seq shall contain only the type-specifier auto | |||
745 | // and cv-qualifiers. | |||
746 | // C++2a [dcl.dcl]/8: | |||
747 | // If decl-specifier-seq contains any decl-specifier other than static, | |||
748 | // thread_local, auto, or cv-qualifiers, the program is ill-formed. | |||
749 | auto &DS = D.getDeclSpec(); | |||
750 | { | |||
751 | SmallVector<StringRef, 8> BadSpecifiers; | |||
752 | SmallVector<SourceLocation, 8> BadSpecifierLocs; | |||
753 | SmallVector<StringRef, 8> CPlusPlus20Specifiers; | |||
754 | SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; | |||
755 | if (auto SCS = DS.getStorageClassSpec()) { | |||
756 | if (SCS == DeclSpec::SCS_static) { | |||
757 | CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); | |||
758 | CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); | |||
759 | } else { | |||
760 | BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); | |||
761 | BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); | |||
762 | } | |||
763 | } | |||
764 | if (auto TSCS = DS.getThreadStorageClassSpec()) { | |||
765 | CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); | |||
766 | CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); | |||
767 | } | |||
768 | if (DS.hasConstexprSpecifier()) { | |||
769 | BadSpecifiers.push_back( | |||
770 | DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); | |||
771 | BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); | |||
772 | } | |||
773 | if (DS.isInlineSpecified()) { | |||
774 | BadSpecifiers.push_back("inline"); | |||
775 | BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); | |||
776 | } | |||
777 | if (!BadSpecifiers.empty()) { | |||
778 | auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); | |||
779 | Err << (int)BadSpecifiers.size() | |||
780 | << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); | |||
781 | // Don't add FixItHints to remove the specifiers; we do still respect | |||
782 | // them when building the underlying variable. | |||
783 | for (auto Loc : BadSpecifierLocs) | |||
784 | Err << SourceRange(Loc, Loc); | |||
785 | } else if (!CPlusPlus20Specifiers.empty()) { | |||
786 | auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), | |||
787 | getLangOpts().CPlusPlus20 | |||
788 | ? diag::warn_cxx17_compat_decomp_decl_spec | |||
789 | : diag::ext_decomp_decl_spec); | |||
790 | Warn << (int)CPlusPlus20Specifiers.size() | |||
791 | << llvm::join(CPlusPlus20Specifiers.begin(), | |||
792 | CPlusPlus20Specifiers.end(), " "); | |||
793 | for (auto Loc : CPlusPlus20SpecifierLocs) | |||
794 | Warn << SourceRange(Loc, Loc); | |||
795 | } | |||
796 | // We can't recover from it being declared as a typedef. | |||
797 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) | |||
798 | return nullptr; | |||
799 | } | |||
800 | ||||
801 | // C++2a [dcl.struct.bind]p1: | |||
802 | // A cv that includes volatile is deprecated | |||
803 | if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && | |||
804 | getLangOpts().CPlusPlus20) | |||
805 | Diag(DS.getVolatileSpecLoc(), | |||
806 | diag::warn_deprecated_volatile_structured_binding); | |||
807 | ||||
808 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
809 | QualType R = TInfo->getType(); | |||
810 | ||||
811 | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | |||
812 | UPPC_DeclarationType)) | |||
813 | D.setInvalidType(); | |||
814 | ||||
815 | // The syntax only allows a single ref-qualifier prior to the decomposition | |||
816 | // declarator. No other declarator chunks are permitted. Also check the type | |||
817 | // specifier here. | |||
818 | if (DS.getTypeSpecType() != DeclSpec::TST_auto || | |||
819 | D.hasGroupingParens() || D.getNumTypeObjects() > 1 || | |||
820 | (D.getNumTypeObjects() == 1 && | |||
821 | D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { | |||
822 | Diag(Decomp.getLSquareLoc(), | |||
823 | (D.hasGroupingParens() || | |||
824 | (D.getNumTypeObjects() && | |||
825 | D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) | |||
826 | ? diag::err_decomp_decl_parens | |||
827 | : diag::err_decomp_decl_type) | |||
828 | << R; | |||
829 | ||||
830 | // In most cases, there's no actual problem with an explicitly-specified | |||
831 | // type, but a function type won't work here, and ActOnVariableDeclarator | |||
832 | // shouldn't be called for such a type. | |||
833 | if (R->isFunctionType()) | |||
834 | D.setInvalidType(); | |||
835 | } | |||
836 | ||||
837 | // Build the BindingDecls. | |||
838 | SmallVector<BindingDecl*, 8> Bindings; | |||
839 | ||||
840 | // Build the BindingDecls. | |||
841 | for (auto &B : D.getDecompositionDeclarator().bindings()) { | |||
842 | // Check for name conflicts. | |||
843 | DeclarationNameInfo NameInfo(B.Name, B.NameLoc); | |||
844 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |||
845 | ForVisibleRedeclaration); | |||
846 | LookupName(Previous, S, | |||
847 | /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); | |||
848 | ||||
849 | // It's not permitted to shadow a template parameter name. | |||
850 | if (Previous.isSingleResult() && | |||
851 | Previous.getFoundDecl()->isTemplateParameter()) { | |||
852 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), | |||
853 | Previous.getFoundDecl()); | |||
854 | Previous.clear(); | |||
855 | } | |||
856 | ||||
857 | auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); | |||
858 | ||||
859 | // Find the shadowed declaration before filtering for scope. | |||
860 | NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() | |||
861 | ? getShadowedDeclaration(BD, Previous) | |||
862 | : nullptr; | |||
863 | ||||
864 | bool ConsiderLinkage = DC->isFunctionOrMethod() && | |||
865 | DS.getStorageClassSpec() == DeclSpec::SCS_extern; | |||
866 | FilterLookupForScope(Previous, DC, S, ConsiderLinkage, | |||
867 | /*AllowInlineNamespace*/false); | |||
868 | ||||
869 | if (!Previous.empty()) { | |||
870 | auto *Old = Previous.getRepresentativeDecl(); | |||
871 | Diag(B.NameLoc, diag::err_redefinition) << B.Name; | |||
872 | Diag(Old->getLocation(), diag::note_previous_definition); | |||
873 | } else if (ShadowedDecl && !D.isRedeclaration()) { | |||
874 | CheckShadow(BD, ShadowedDecl, Previous); | |||
875 | } | |||
876 | PushOnScopeChains(BD, S, true); | |||
877 | Bindings.push_back(BD); | |||
878 | ParsingInitForAutoVars.insert(BD); | |||
879 | } | |||
880 | ||||
881 | // There are no prior lookup results for the variable itself, because it | |||
882 | // is unnamed. | |||
883 | DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, | |||
884 | Decomp.getLSquareLoc()); | |||
885 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |||
886 | ForVisibleRedeclaration); | |||
887 | ||||
888 | // Build the variable that holds the non-decomposed object. | |||
889 | bool AddToScope = true; | |||
890 | NamedDecl *New = | |||
891 | ActOnVariableDeclarator(S, D, DC, TInfo, Previous, | |||
892 | MultiTemplateParamsArg(), AddToScope, Bindings); | |||
893 | if (AddToScope) { | |||
894 | S->AddDecl(New); | |||
895 | CurContext->addHiddenDecl(New); | |||
896 | } | |||
897 | ||||
898 | if (isInOpenMPDeclareTargetContext()) | |||
899 | checkDeclIsAllowedInOpenMPTarget(nullptr, New); | |||
900 | ||||
901 | return New; | |||
902 | } | |||
903 | ||||
904 | static bool checkSimpleDecomposition( | |||
905 | Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, | |||
906 | QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, | |||
907 | llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { | |||
908 | if ((int64_t)Bindings.size() != NumElems) { | |||
909 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | |||
910 | << DecompType << (unsigned)Bindings.size() | |||
911 | << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) | |||
912 | << toString(NumElems, 10) << (NumElems < Bindings.size()); | |||
913 | return true; | |||
914 | } | |||
915 | ||||
916 | unsigned I = 0; | |||
917 | for (auto *B : Bindings) { | |||
918 | SourceLocation Loc = B->getLocation(); | |||
919 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | |||
920 | if (E.isInvalid()) | |||
921 | return true; | |||
922 | E = GetInit(Loc, E.get(), I++); | |||
923 | if (E.isInvalid()) | |||
924 | return true; | |||
925 | B->setBinding(ElemType, E.get()); | |||
926 | } | |||
927 | ||||
928 | return false; | |||
929 | } | |||
930 | ||||
931 | static bool checkArrayLikeDecomposition(Sema &S, | |||
932 | ArrayRef<BindingDecl *> Bindings, | |||
933 | ValueDecl *Src, QualType DecompType, | |||
934 | const llvm::APSInt &NumElems, | |||
935 | QualType ElemType) { | |||
936 | return checkSimpleDecomposition( | |||
937 | S, Bindings, Src, DecompType, NumElems, ElemType, | |||
938 | [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { | |||
939 | ExprResult E = S.ActOnIntegerConstant(Loc, I); | |||
940 | if (E.isInvalid()) | |||
941 | return ExprError(); | |||
942 | return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); | |||
943 | }); | |||
944 | } | |||
945 | ||||
946 | static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | |||
947 | ValueDecl *Src, QualType DecompType, | |||
948 | const ConstantArrayType *CAT) { | |||
949 | return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, | |||
950 | llvm::APSInt(CAT->getSize()), | |||
951 | CAT->getElementType()); | |||
952 | } | |||
953 | ||||
954 | static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | |||
955 | ValueDecl *Src, QualType DecompType, | |||
956 | const VectorType *VT) { | |||
957 | return checkArrayLikeDecomposition( | |||
958 | S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), | |||
959 | S.Context.getQualifiedType(VT->getElementType(), | |||
960 | DecompType.getQualifiers())); | |||
961 | } | |||
962 | ||||
963 | static bool checkComplexDecomposition(Sema &S, | |||
964 | ArrayRef<BindingDecl *> Bindings, | |||
965 | ValueDecl *Src, QualType DecompType, | |||
966 | const ComplexType *CT) { | |||
967 | return checkSimpleDecomposition( | |||
968 | S, Bindings, Src, DecompType, llvm::APSInt::get(2), | |||
969 | S.Context.getQualifiedType(CT->getElementType(), | |||
970 | DecompType.getQualifiers()), | |||
971 | [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { | |||
972 | return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); | |||
973 | }); | |||
974 | } | |||
975 | ||||
976 | static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, | |||
977 | TemplateArgumentListInfo &Args, | |||
978 | const TemplateParameterList *Params) { | |||
979 | SmallString<128> SS; | |||
980 | llvm::raw_svector_ostream OS(SS); | |||
981 | bool First = true; | |||
982 | unsigned I = 0; | |||
983 | for (auto &Arg : Args.arguments()) { | |||
984 | if (!First) | |||
985 | OS << ", "; | |||
986 | Arg.getArgument().print( | |||
987 | PrintingPolicy, OS, | |||
988 | TemplateParameterList::shouldIncludeTypeForArgument(Params, I)); | |||
989 | First = false; | |||
990 | I++; | |||
991 | } | |||
992 | return std::string(OS.str()); | |||
993 | } | |||
994 | ||||
995 | static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, | |||
996 | SourceLocation Loc, StringRef Trait, | |||
997 | TemplateArgumentListInfo &Args, | |||
998 | unsigned DiagID) { | |||
999 | auto DiagnoseMissing = [&] { | |||
1000 | if (DiagID) | |||
1001 | S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), | |||
1002 | Args, /*Params*/ nullptr); | |||
1003 | return true; | |||
1004 | }; | |||
1005 | ||||
1006 | // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. | |||
1007 | NamespaceDecl *Std = S.getStdNamespace(); | |||
1008 | if (!Std) | |||
1009 | return DiagnoseMissing(); | |||
1010 | ||||
1011 | // Look up the trait itself, within namespace std. We can diagnose various | |||
1012 | // problems with this lookup even if we've been asked to not diagnose a | |||
1013 | // missing specialization, because this can only fail if the user has been | |||
1014 | // declaring their own names in namespace std or we don't support the | |||
1015 | // standard library implementation in use. | |||
1016 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), | |||
1017 | Loc, Sema::LookupOrdinaryName); | |||
1018 | if (!S.LookupQualifiedName(Result, Std)) | |||
1019 | return DiagnoseMissing(); | |||
1020 | if (Result.isAmbiguous()) | |||
1021 | return true; | |||
1022 | ||||
1023 | ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); | |||
1024 | if (!TraitTD) { | |||
1025 | Result.suppressDiagnostics(); | |||
1026 | NamedDecl *Found = *Result.begin(); | |||
1027 | S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; | |||
1028 | S.Diag(Found->getLocation(), diag::note_declared_at); | |||
1029 | return true; | |||
1030 | } | |||
1031 | ||||
1032 | // Build the template-id. | |||
1033 | QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); | |||
1034 | if (TraitTy.isNull()) | |||
1035 | return true; | |||
1036 | if (!S.isCompleteType(Loc, TraitTy)) { | |||
1037 | if (DiagID) | |||
1038 | S.RequireCompleteType( | |||
1039 | Loc, TraitTy, DiagID, | |||
1040 | printTemplateArgs(S.Context.getPrintingPolicy(), Args, | |||
1041 | TraitTD->getTemplateParameters())); | |||
1042 | return true; | |||
1043 | } | |||
1044 | ||||
1045 | CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); | |||
1046 | assert(RD && "specialization of class template is not a class?")((void)0); | |||
1047 | ||||
1048 | // Look up the member of the trait type. | |||
1049 | S.LookupQualifiedName(TraitMemberLookup, RD); | |||
1050 | return TraitMemberLookup.isAmbiguous(); | |||
1051 | } | |||
1052 | ||||
1053 | static TemplateArgumentLoc | |||
1054 | getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, | |||
1055 | uint64_t I) { | |||
1056 | TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); | |||
1057 | return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); | |||
1058 | } | |||
1059 | ||||
1060 | static TemplateArgumentLoc | |||
1061 | getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { | |||
1062 | return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); | |||
1063 | } | |||
1064 | ||||
1065 | namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } | |||
1066 | ||||
1067 | static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, | |||
1068 | llvm::APSInt &Size) { | |||
1069 | EnterExpressionEvaluationContext ContextRAII( | |||
1070 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | |||
1071 | ||||
1072 | DeclarationName Value = S.PP.getIdentifierInfo("value"); | |||
1073 | LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); | |||
1074 | ||||
1075 | // Form template argument list for tuple_size<T>. | |||
1076 | TemplateArgumentListInfo Args(Loc, Loc); | |||
1077 | Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); | |||
1078 | ||||
1079 | // If there's no tuple_size specialization or the lookup of 'value' is empty, | |||
1080 | // it's not tuple-like. | |||
1081 | if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || | |||
1082 | R.empty()) | |||
1083 | return IsTupleLike::NotTupleLike; | |||
1084 | ||||
1085 | // If we get this far, we've committed to the tuple interpretation, but | |||
1086 | // we can still fail if there actually isn't a usable ::value. | |||
1087 | ||||
1088 | struct ICEDiagnoser : Sema::VerifyICEDiagnoser { | |||
1089 | LookupResult &R; | |||
1090 | TemplateArgumentListInfo &Args; | |||
1091 | ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) | |||
1092 | : R(R), Args(Args) {} | |||
1093 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, | |||
1094 | SourceLocation Loc) override { | |||
1095 | return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) | |||
1096 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args, | |||
1097 | /*Params*/ nullptr); | |||
1098 | } | |||
1099 | } Diagnoser(R, Args); | |||
1100 | ||||
1101 | ExprResult E = | |||
1102 | S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); | |||
1103 | if (E.isInvalid()) | |||
1104 | return IsTupleLike::Error; | |||
1105 | ||||
1106 | E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); | |||
1107 | if (E.isInvalid()) | |||
1108 | return IsTupleLike::Error; | |||
1109 | ||||
1110 | return IsTupleLike::TupleLike; | |||
1111 | } | |||
1112 | ||||
1113 | /// \return std::tuple_element<I, T>::type. | |||
1114 | static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, | |||
1115 | unsigned I, QualType T) { | |||
1116 | // Form template argument list for tuple_element<I, T>. | |||
1117 | TemplateArgumentListInfo Args(Loc, Loc); | |||
1118 | Args.addArgument( | |||
1119 | getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); | |||
1120 | Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); | |||
1121 | ||||
1122 | DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); | |||
1123 | LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); | |||
1124 | if (lookupStdTypeTraitMember( | |||
1125 | S, R, Loc, "tuple_element", Args, | |||
1126 | diag::err_decomp_decl_std_tuple_element_not_specialized)) | |||
1127 | return QualType(); | |||
1128 | ||||
1129 | auto *TD = R.getAsSingle<TypeDecl>(); | |||
1130 | if (!TD) { | |||
1131 | R.suppressDiagnostics(); | |||
1132 | S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) | |||
1133 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args, | |||
1134 | /*Params*/ nullptr); | |||
1135 | if (!R.empty()) | |||
1136 | S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); | |||
1137 | return QualType(); | |||
1138 | } | |||
1139 | ||||
1140 | return S.Context.getTypeDeclType(TD); | |||
1141 | } | |||
1142 | ||||
1143 | namespace { | |||
1144 | struct InitializingBinding { | |||
1145 | Sema &S; | |||
1146 | InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { | |||
1147 | Sema::CodeSynthesisContext Ctx; | |||
1148 | Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; | |||
1149 | Ctx.PointOfInstantiation = BD->getLocation(); | |||
1150 | Ctx.Entity = BD; | |||
1151 | S.pushCodeSynthesisContext(Ctx); | |||
1152 | } | |||
1153 | ~InitializingBinding() { | |||
1154 | S.popCodeSynthesisContext(); | |||
1155 | } | |||
1156 | }; | |||
1157 | } | |||
1158 | ||||
1159 | static bool checkTupleLikeDecomposition(Sema &S, | |||
1160 | ArrayRef<BindingDecl *> Bindings, | |||
1161 | VarDecl *Src, QualType DecompType, | |||
1162 | const llvm::APSInt &TupleSize) { | |||
1163 | if ((int64_t)Bindings.size() != TupleSize) { | |||
1164 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | |||
1165 | << DecompType << (unsigned)Bindings.size() | |||
1166 | << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) | |||
1167 | << toString(TupleSize, 10) << (TupleSize < Bindings.size()); | |||
1168 | return true; | |||
1169 | } | |||
1170 | ||||
1171 | if (Bindings.empty()) | |||
1172 | return false; | |||
1173 | ||||
1174 | DeclarationName GetDN = S.PP.getIdentifierInfo("get"); | |||
1175 | ||||
1176 | // [dcl.decomp]p3: | |||
1177 | // The unqualified-id get is looked up in the scope of E by class member | |||
1178 | // access lookup ... | |||
1179 | LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); | |||
1180 | bool UseMemberGet = false; | |||
1181 | if (S.isCompleteType(Src->getLocation(), DecompType)) { | |||
1182 | if (auto *RD = DecompType->getAsCXXRecordDecl()) | |||
1183 | S.LookupQualifiedName(MemberGet, RD); | |||
1184 | if (MemberGet.isAmbiguous()) | |||
1185 | return true; | |||
1186 | // ... and if that finds at least one declaration that is a function | |||
1187 | // template whose first template parameter is a non-type parameter ... | |||
1188 | for (NamedDecl *D : MemberGet) { | |||
1189 | if (FunctionTemplateDecl *FTD = | |||
1190 | dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { | |||
1191 | TemplateParameterList *TPL = FTD->getTemplateParameters(); | |||
1192 | if (TPL->size() != 0 && | |||
1193 | isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { | |||
1194 | // ... the initializer is e.get<i>(). | |||
1195 | UseMemberGet = true; | |||
1196 | break; | |||
1197 | } | |||
1198 | } | |||
1199 | } | |||
1200 | } | |||
1201 | ||||
1202 | unsigned I = 0; | |||
1203 | for (auto *B : Bindings) { | |||
1204 | InitializingBinding InitContext(S, B); | |||
1205 | SourceLocation Loc = B->getLocation(); | |||
1206 | ||||
1207 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | |||
1208 | if (E.isInvalid()) | |||
1209 | return true; | |||
1210 | ||||
1211 | // e is an lvalue if the type of the entity is an lvalue reference and | |||
1212 | // an xvalue otherwise | |||
1213 | if (!Src->getType()->isLValueReferenceType()) | |||
1214 | E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, | |||
1215 | E.get(), nullptr, VK_XValue, | |||
1216 | FPOptionsOverride()); | |||
1217 | ||||
1218 | TemplateArgumentListInfo Args(Loc, Loc); | |||
1219 | Args.addArgument( | |||
1220 | getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); | |||
1221 | ||||
1222 | if (UseMemberGet) { | |||
1223 | // if [lookup of member get] finds at least one declaration, the | |||
1224 | // initializer is e.get<i-1>(). | |||
1225 | E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, | |||
1226 | CXXScopeSpec(), SourceLocation(), nullptr, | |||
1227 | MemberGet, &Args, nullptr); | |||
1228 | if (E.isInvalid()) | |||
1229 | return true; | |||
1230 | ||||
1231 | E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); | |||
1232 | } else { | |||
1233 | // Otherwise, the initializer is get<i-1>(e), where get is looked up | |||
1234 | // in the associated namespaces. | |||
1235 | Expr *Get = UnresolvedLookupExpr::Create( | |||
1236 | S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), | |||
1237 | DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, | |||
1238 | UnresolvedSetIterator(), UnresolvedSetIterator()); | |||
1239 | ||||
1240 | Expr *Arg = E.get(); | |||
1241 | E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); | |||
1242 | } | |||
1243 | if (E.isInvalid()) | |||
1244 | return true; | |||
1245 | Expr *Init = E.get(); | |||
1246 | ||||
1247 | // Given the type T designated by std::tuple_element<i - 1, E>::type, | |||
1248 | QualType T = getTupleLikeElementType(S, Loc, I, DecompType); | |||
1249 | if (T.isNull()) | |||
1250 | return true; | |||
1251 | ||||
1252 | // each vi is a variable of type "reference to T" initialized with the | |||
1253 | // initializer, where the reference is an lvalue reference if the | |||
1254 | // initializer is an lvalue and an rvalue reference otherwise | |||
1255 | QualType RefType = | |||
1256 | S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); | |||
1257 | if (RefType.isNull()) | |||
1258 | return true; | |||
1259 | auto *RefVD = VarDecl::Create( | |||
1260 | S.Context, Src->getDeclContext(), Loc, Loc, | |||
1261 | B->getDeclName().getAsIdentifierInfo(), RefType, | |||
1262 | S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); | |||
1263 | RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); | |||
1264 | RefVD->setTSCSpec(Src->getTSCSpec()); | |||
1265 | RefVD->setImplicit(); | |||
1266 | if (Src->isInlineSpecified()) | |||
1267 | RefVD->setInlineSpecified(); | |||
1268 | RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); | |||
1269 | ||||
1270 | InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); | |||
1271 | InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); | |||
1272 | InitializationSequence Seq(S, Entity, Kind, Init); | |||
1273 | E = Seq.Perform(S, Entity, Kind, Init); | |||
1274 | if (E.isInvalid()) | |||
1275 | return true; | |||
1276 | E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); | |||
1277 | if (E.isInvalid()) | |||
1278 | return true; | |||
1279 | RefVD->setInit(E.get()); | |||
1280 | S.CheckCompleteVariableDeclaration(RefVD); | |||
1281 | ||||
1282 | E = S.BuildDeclarationNameExpr(CXXScopeSpec(), | |||
1283 | DeclarationNameInfo(B->getDeclName(), Loc), | |||
1284 | RefVD); | |||
1285 | if (E.isInvalid()) | |||
1286 | return true; | |||
1287 | ||||
1288 | B->setBinding(T, E.get()); | |||
1289 | I++; | |||
1290 | } | |||
1291 | ||||
1292 | return false; | |||
1293 | } | |||
1294 | ||||
1295 | /// Find the base class to decompose in a built-in decomposition of a class type. | |||
1296 | /// This base class search is, unfortunately, not quite like any other that we | |||
1297 | /// perform anywhere else in C++. | |||
1298 | static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, | |||
1299 | const CXXRecordDecl *RD, | |||
1300 | CXXCastPath &BasePath) { | |||
1301 | auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, | |||
1302 | CXXBasePath &Path) { | |||
1303 | return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); | |||
1304 | }; | |||
1305 | ||||
1306 | const CXXRecordDecl *ClassWithFields = nullptr; | |||
1307 | AccessSpecifier AS = AS_public; | |||
1308 | if (RD->hasDirectFields()) | |||
1309 | // [dcl.decomp]p4: | |||
1310 | // Otherwise, all of E's non-static data members shall be public direct | |||
1311 | // members of E ... | |||
1312 | ClassWithFields = RD; | |||
1313 | else { | |||
1314 | // ... or of ... | |||
1315 | CXXBasePaths Paths; | |||
1316 | Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); | |||
1317 | if (!RD->lookupInBases(BaseHasFields, Paths)) { | |||
1318 | // If no classes have fields, just decompose RD itself. (This will work | |||
1319 | // if and only if zero bindings were provided.) | |||
1320 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); | |||
1321 | } | |||
1322 | ||||
1323 | CXXBasePath *BestPath = nullptr; | |||
1324 | for (auto &P : Paths) { | |||
1325 | if (!BestPath) | |||
1326 | BestPath = &P; | |||
1327 | else if (!S.Context.hasSameType(P.back().Base->getType(), | |||
1328 | BestPath->back().Base->getType())) { | |||
1329 | // ... the same ... | |||
1330 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) | |||
1331 | << false << RD << BestPath->back().Base->getType() | |||
1332 | << P.back().Base->getType(); | |||
1333 | return DeclAccessPair(); | |||
1334 | } else if (P.Access < BestPath->Access) { | |||
1335 | BestPath = &P; | |||
1336 | } | |||
1337 | } | |||
1338 | ||||
1339 | // ... unambiguous ... | |||
1340 | QualType BaseType = BestPath->back().Base->getType(); | |||
1341 | if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { | |||
1342 | S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) | |||
1343 | << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); | |||
1344 | return DeclAccessPair(); | |||
1345 | } | |||
1346 | ||||
1347 | // ... [accessible, implied by other rules] base class of E. | |||
1348 | S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), | |||
1349 | *BestPath, diag::err_decomp_decl_inaccessible_base); | |||
1350 | AS = BestPath->Access; | |||
1351 | ||||
1352 | ClassWithFields = BaseType->getAsCXXRecordDecl(); | |||
1353 | S.BuildBasePathArray(Paths, BasePath); | |||
1354 | } | |||
1355 | ||||
1356 | // The above search did not check whether the selected class itself has base | |||
1357 | // classes with fields, so check that now. | |||
1358 | CXXBasePaths Paths; | |||
1359 | if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { | |||
1360 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) | |||
1361 | << (ClassWithFields == RD) << RD << ClassWithFields | |||
1362 | << Paths.front().back().Base->getType(); | |||
1363 | return DeclAccessPair(); | |||
1364 | } | |||
1365 | ||||
1366 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); | |||
1367 | } | |||
1368 | ||||
1369 | static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | |||
1370 | ValueDecl *Src, QualType DecompType, | |||
1371 | const CXXRecordDecl *OrigRD) { | |||
1372 | if (S.RequireCompleteType(Src->getLocation(), DecompType, | |||
1373 | diag::err_incomplete_type)) | |||
1374 | return true; | |||
1375 | ||||
1376 | CXXCastPath BasePath; | |||
1377 | DeclAccessPair BasePair = | |||
1378 | findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); | |||
1379 | const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); | |||
1380 | if (!RD) | |||
1381 | return true; | |||
1382 | QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), | |||
1383 | DecompType.getQualifiers()); | |||
1384 | ||||
1385 | auto DiagnoseBadNumberOfBindings = [&]() -> bool { | |||
1386 | unsigned NumFields = | |||
1387 | std::count_if(RD->field_begin(), RD->field_end(), | |||
1388 | [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); | |||
1389 | assert(Bindings.size() != NumFields)((void)0); | |||
1390 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | |||
1391 | << DecompType << (unsigned)Bindings.size() << NumFields << NumFields | |||
1392 | << (NumFields < Bindings.size()); | |||
1393 | return true; | |||
1394 | }; | |||
1395 | ||||
1396 | // all of E's non-static data members shall be [...] well-formed | |||
1397 | // when named as e.name in the context of the structured binding, | |||
1398 | // E shall not have an anonymous union member, ... | |||
1399 | unsigned I = 0; | |||
1400 | for (auto *FD : RD->fields()) { | |||
1401 | if (FD->isUnnamedBitfield()) | |||
1402 | continue; | |||
1403 | ||||
1404 | // All the non-static data members are required to be nameable, so they | |||
1405 | // must all have names. | |||
1406 | if (!FD->getDeclName()) { | |||
1407 | if (RD->isLambda()) { | |||
1408 | S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); | |||
1409 | S.Diag(RD->getLocation(), diag::note_lambda_decl); | |||
1410 | return true; | |||
1411 | } | |||
1412 | ||||
1413 | if (FD->isAnonymousStructOrUnion()) { | |||
1414 | S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) | |||
1415 | << DecompType << FD->getType()->isUnionType(); | |||
1416 | S.Diag(FD->getLocation(), diag::note_declared_at); | |||
1417 | return true; | |||
1418 | } | |||
1419 | ||||
1420 | // FIXME: Are there any other ways we could have an anonymous member? | |||
1421 | } | |||
1422 | ||||
1423 | // We have a real field to bind. | |||
1424 | if (I >= Bindings.size()) | |||
1425 | return DiagnoseBadNumberOfBindings(); | |||
1426 | auto *B = Bindings[I++]; | |||
1427 | SourceLocation Loc = B->getLocation(); | |||
1428 | ||||
1429 | // The field must be accessible in the context of the structured binding. | |||
1430 | // We already checked that the base class is accessible. | |||
1431 | // FIXME: Add 'const' to AccessedEntity's classes so we can remove the | |||
1432 | // const_cast here. | |||
1433 | S.CheckStructuredBindingMemberAccess( | |||
1434 | Loc, const_cast<CXXRecordDecl *>(OrigRD), | |||
1435 | DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( | |||
1436 | BasePair.getAccess(), FD->getAccess()))); | |||
1437 | ||||
1438 | // Initialize the binding to Src.FD. | |||
1439 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | |||
1440 | if (E.isInvalid()) | |||
1441 | return true; | |||
1442 | E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, | |||
1443 | VK_LValue, &BasePath); | |||
1444 | if (E.isInvalid()) | |||
1445 | return true; | |||
1446 | E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, | |||
1447 | CXXScopeSpec(), FD, | |||
1448 | DeclAccessPair::make(FD, FD->getAccess()), | |||
1449 | DeclarationNameInfo(FD->getDeclName(), Loc)); | |||
1450 | if (E.isInvalid()) | |||
1451 | return true; | |||
1452 | ||||
1453 | // If the type of the member is T, the referenced type is cv T, where cv is | |||
1454 | // the cv-qualification of the decomposition expression. | |||
1455 | // | |||
1456 | // FIXME: We resolve a defect here: if the field is mutable, we do not add | |||
1457 | // 'const' to the type of the field. | |||
1458 | Qualifiers Q = DecompType.getQualifiers(); | |||
1459 | if (FD->isMutable()) | |||
1460 | Q.removeConst(); | |||
1461 | B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); | |||
1462 | } | |||
1463 | ||||
1464 | if (I != Bindings.size()) | |||
1465 | return DiagnoseBadNumberOfBindings(); | |||
1466 | ||||
1467 | return false; | |||
1468 | } | |||
1469 | ||||
1470 | void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { | |||
1471 | QualType DecompType = DD->getType(); | |||
1472 | ||||
1473 | // If the type of the decomposition is dependent, then so is the type of | |||
1474 | // each binding. | |||
1475 | if (DecompType->isDependentType()) { | |||
1476 | for (auto *B : DD->bindings()) | |||
1477 | B->setType(Context.DependentTy); | |||
1478 | return; | |||
1479 | } | |||
1480 | ||||
1481 | DecompType = DecompType.getNonReferenceType(); | |||
1482 | ArrayRef<BindingDecl*> Bindings = DD->bindings(); | |||
1483 | ||||
1484 | // C++1z [dcl.decomp]/2: | |||
1485 | // If E is an array type [...] | |||
1486 | // As an extension, we also support decomposition of built-in complex and | |||
1487 | // vector types. | |||
1488 | if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { | |||
1489 | if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) | |||
1490 | DD->setInvalidDecl(); | |||
1491 | return; | |||
1492 | } | |||
1493 | if (auto *VT = DecompType->getAs<VectorType>()) { | |||
1494 | if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) | |||
1495 | DD->setInvalidDecl(); | |||
1496 | return; | |||
1497 | } | |||
1498 | if (auto *CT = DecompType->getAs<ComplexType>()) { | |||
1499 | if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) | |||
1500 | DD->setInvalidDecl(); | |||
1501 | return; | |||
1502 | } | |||
1503 | ||||
1504 | // C++1z [dcl.decomp]/3: | |||
1505 | // if the expression std::tuple_size<E>::value is a well-formed integral | |||
1506 | // constant expression, [...] | |||
1507 | llvm::APSInt TupleSize(32); | |||
1508 | switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { | |||
1509 | case IsTupleLike::Error: | |||
1510 | DD->setInvalidDecl(); | |||
1511 | return; | |||
1512 | ||||
1513 | case IsTupleLike::TupleLike: | |||
1514 | if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) | |||
1515 | DD->setInvalidDecl(); | |||
1516 | return; | |||
1517 | ||||
1518 | case IsTupleLike::NotTupleLike: | |||
1519 | break; | |||
1520 | } | |||
1521 | ||||
1522 | // C++1z [dcl.dcl]/8: | |||
1523 | // [E shall be of array or non-union class type] | |||
1524 | CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); | |||
1525 | if (!RD || RD->isUnion()) { | |||
1526 | Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) | |||
1527 | << DD << !RD << DecompType; | |||
1528 | DD->setInvalidDecl(); | |||
1529 | return; | |||
1530 | } | |||
1531 | ||||
1532 | // C++1z [dcl.decomp]/4: | |||
1533 | // all of E's non-static data members shall be [...] direct members of | |||
1534 | // E or of the same unambiguous public base class of E, ... | |||
1535 | if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) | |||
1536 | DD->setInvalidDecl(); | |||
1537 | } | |||
1538 | ||||
1539 | /// Merge the exception specifications of two variable declarations. | |||
1540 | /// | |||
1541 | /// This is called when there's a redeclaration of a VarDecl. The function | |||
1542 | /// checks if the redeclaration might have an exception specification and | |||
1543 | /// validates compatibility and merges the specs if necessary. | |||
1544 | void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { | |||
1545 | // Shortcut if exceptions are disabled. | |||
1546 | if (!getLangOpts().CXXExceptions) | |||
1547 | return; | |||
1548 | ||||
1549 | assert(Context.hasSameType(New->getType(), Old->getType()) &&((void)0) | |||
1550 | "Should only be called if types are otherwise the same.")((void)0); | |||
1551 | ||||
1552 | QualType NewType = New->getType(); | |||
1553 | QualType OldType = Old->getType(); | |||
1554 | ||||
1555 | // We're only interested in pointers and references to functions, as well | |||
1556 | // as pointers to member functions. | |||
1557 | if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { | |||
1558 | NewType = R->getPointeeType(); | |||
1559 | OldType = OldType->castAs<ReferenceType>()->getPointeeType(); | |||
1560 | } else if (const PointerType *P = NewType->getAs<PointerType>()) { | |||
1561 | NewType = P->getPointeeType(); | |||
1562 | OldType = OldType->castAs<PointerType>()->getPointeeType(); | |||
1563 | } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { | |||
1564 | NewType = M->getPointeeType(); | |||
1565 | OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); | |||
1566 | } | |||
1567 | ||||
1568 | if (!NewType->isFunctionProtoType()) | |||
1569 | return; | |||
1570 | ||||
1571 | // There's lots of special cases for functions. For function pointers, system | |||
1572 | // libraries are hopefully not as broken so that we don't need these | |||
1573 | // workarounds. | |||
1574 | if (CheckEquivalentExceptionSpec( | |||
1575 | OldType->getAs<FunctionProtoType>(), Old->getLocation(), | |||
1576 | NewType->getAs<FunctionProtoType>(), New->getLocation())) { | |||
1577 | New->setInvalidDecl(); | |||
1578 | } | |||
1579 | } | |||
1580 | ||||
1581 | /// CheckCXXDefaultArguments - Verify that the default arguments for a | |||
1582 | /// function declaration are well-formed according to C++ | |||
1583 | /// [dcl.fct.default]. | |||
1584 | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { | |||
1585 | unsigned NumParams = FD->getNumParams(); | |||
1586 | unsigned ParamIdx = 0; | |||
1587 | ||||
1588 | // This checking doesn't make sense for explicit specializations; their | |||
1589 | // default arguments are determined by the declaration we're specializing, | |||
1590 | // not by FD. | |||
1591 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) | |||
1592 | return; | |||
1593 | if (auto *FTD = FD->getDescribedFunctionTemplate()) | |||
1594 | if (FTD->isMemberSpecialization()) | |||
1595 | return; | |||
1596 | ||||
1597 | // Find first parameter with a default argument | |||
1598 | for (; ParamIdx < NumParams; ++ParamIdx) { | |||
1599 | ParmVarDecl *Param = FD->getParamDecl(ParamIdx); | |||
1600 | if (Param->hasDefaultArg()) | |||
1601 | break; | |||
1602 | } | |||
1603 | ||||
1604 | // C++20 [dcl.fct.default]p4: | |||
1605 | // In a given function declaration, each parameter subsequent to a parameter | |||
1606 | // with a default argument shall have a default argument supplied in this or | |||
1607 | // a previous declaration, unless the parameter was expanded from a | |||
1608 | // parameter pack, or shall be a function parameter pack. | |||
1609 | for (; ParamIdx < NumParams; ++ParamIdx) { | |||
1610 | ParmVarDecl *Param = FD->getParamDecl(ParamIdx); | |||
1611 | if (!Param->hasDefaultArg() && !Param->isParameterPack() && | |||
1612 | !(CurrentInstantiationScope && | |||
1613 | CurrentInstantiationScope->isLocalPackExpansion(Param))) { | |||
1614 | if (Param->isInvalidDecl()) | |||
1615 | /* We already complained about this parameter. */; | |||
1616 | else if (Param->getIdentifier()) | |||
1617 | Diag(Param->getLocation(), | |||
1618 | diag::err_param_default_argument_missing_name) | |||
1619 | << Param->getIdentifier(); | |||
1620 | else | |||
1621 | Diag(Param->getLocation(), | |||
1622 | diag::err_param_default_argument_missing); | |||
1623 | } | |||
1624 | } | |||
1625 | } | |||
1626 | ||||
1627 | /// Check that the given type is a literal type. Issue a diagnostic if not, | |||
1628 | /// if Kind is Diagnose. | |||
1629 | /// \return \c true if a problem has been found (and optionally diagnosed). | |||
1630 | template <typename... Ts> | |||
1631 | static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, | |||
1632 | SourceLocation Loc, QualType T, unsigned DiagID, | |||
1633 | Ts &&...DiagArgs) { | |||
1634 | if (T->isDependentType()) | |||
1635 | return false; | |||
1636 | ||||
1637 | switch (Kind) { | |||
1638 | case Sema::CheckConstexprKind::Diagnose: | |||
1639 | return SemaRef.RequireLiteralType(Loc, T, DiagID, | |||
1640 | std::forward<Ts>(DiagArgs)...); | |||
1641 | ||||
1642 | case Sema::CheckConstexprKind::CheckValid: | |||
1643 | return !T->isLiteralType(SemaRef.Context); | |||
1644 | } | |||
1645 | ||||
1646 | llvm_unreachable("unknown CheckConstexprKind")__builtin_unreachable(); | |||
1647 | } | |||
1648 | ||||
1649 | /// Determine whether a destructor cannot be constexpr due to | |||
1650 | static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, | |||
1651 | const CXXDestructorDecl *DD, | |||
1652 | Sema::CheckConstexprKind Kind) { | |||
1653 | auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { | |||
1654 | const CXXRecordDecl *RD = | |||
1655 | T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); | |||
1656 | if (!RD || RD->hasConstexprDestructor()) | |||
1657 | return true; | |||
1658 | ||||
1659 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1660 | SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) | |||
1661 | << static_cast<int>(DD->getConstexprKind()) << !FD | |||
1662 | << (FD ? FD->getDeclName() : DeclarationName()) << T; | |||
1663 | SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) | |||
1664 | << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; | |||
1665 | } | |||
1666 | return false; | |||
1667 | }; | |||
1668 | ||||
1669 | const CXXRecordDecl *RD = DD->getParent(); | |||
1670 | for (const CXXBaseSpecifier &B : RD->bases()) | |||
1671 | if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) | |||
1672 | return false; | |||
1673 | for (const FieldDecl *FD : RD->fields()) | |||
1674 | if (!Check(FD->getLocation(), FD->getType(), FD)) | |||
1675 | return false; | |||
1676 | return true; | |||
1677 | } | |||
1678 | ||||
1679 | /// Check whether a function's parameter types are all literal types. If so, | |||
1680 | /// return true. If not, produce a suitable diagnostic and return false. | |||
1681 | static bool CheckConstexprParameterTypes(Sema &SemaRef, | |||
1682 | const FunctionDecl *FD, | |||
1683 | Sema::CheckConstexprKind Kind) { | |||
1684 | unsigned ArgIndex = 0; | |||
1685 | const auto *FT = FD->getType()->castAs<FunctionProtoType>(); | |||
1686 | for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), | |||
1687 | e = FT->param_type_end(); | |||
1688 | i != e; ++i, ++ArgIndex) { | |||
1689 | const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); | |||
1690 | SourceLocation ParamLoc = PD->getLocation(); | |||
1691 | if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, | |||
1692 | diag::err_constexpr_non_literal_param, ArgIndex + 1, | |||
1693 | PD->getSourceRange(), isa<CXXConstructorDecl>(FD), | |||
1694 | FD->isConsteval())) | |||
1695 | return false; | |||
1696 | } | |||
1697 | return true; | |||
1698 | } | |||
1699 | ||||
1700 | /// Check whether a function's return type is a literal type. If so, return | |||
1701 | /// true. If not, produce a suitable diagnostic and return false. | |||
1702 | static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, | |||
1703 | Sema::CheckConstexprKind Kind) { | |||
1704 | if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), | |||
1705 | diag::err_constexpr_non_literal_return, | |||
1706 | FD->isConsteval())) | |||
1707 | return false; | |||
1708 | return true; | |||
1709 | } | |||
1710 | ||||
1711 | /// Get diagnostic %select index for tag kind for | |||
1712 | /// record diagnostic message. | |||
1713 | /// WARNING: Indexes apply to particular diagnostics only! | |||
1714 | /// | |||
1715 | /// \returns diagnostic %select index. | |||
1716 | static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { | |||
1717 | switch (Tag) { | |||
1718 | case TTK_Struct: return 0; | |||
1719 | case TTK_Interface: return 1; | |||
1720 | case TTK_Class: return 2; | |||
1721 | default: llvm_unreachable("Invalid tag kind for record diagnostic!")__builtin_unreachable(); | |||
1722 | } | |||
1723 | } | |||
1724 | ||||
1725 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, | |||
1726 | Stmt *Body, | |||
1727 | Sema::CheckConstexprKind Kind); | |||
1728 | ||||
1729 | // Check whether a function declaration satisfies the requirements of a | |||
1730 | // constexpr function definition or a constexpr constructor definition. If so, | |||
1731 | // return true. If not, produce appropriate diagnostics (unless asked not to by | |||
1732 | // Kind) and return false. | |||
1733 | // | |||
1734 | // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. | |||
1735 | bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, | |||
1736 | CheckConstexprKind Kind) { | |||
1737 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | |||
1738 | if (MD && MD->isInstance()) { | |||
1739 | // C++11 [dcl.constexpr]p4: | |||
1740 | // The definition of a constexpr constructor shall satisfy the following | |||
1741 | // constraints: | |||
1742 | // - the class shall not have any virtual base classes; | |||
1743 | // | |||
1744 | // FIXME: This only applies to constructors and destructors, not arbitrary | |||
1745 | // member functions. | |||
1746 | const CXXRecordDecl *RD = MD->getParent(); | |||
1747 | if (RD->getNumVBases()) { | |||
1748 | if (Kind == CheckConstexprKind::CheckValid) | |||
1749 | return false; | |||
1750 | ||||
1751 | Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) | |||
1752 | << isa<CXXConstructorDecl>(NewFD) | |||
1753 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); | |||
1754 | for (const auto &I : RD->vbases()) | |||
1755 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) | |||
1756 | << I.getSourceRange(); | |||
1757 | return false; | |||
1758 | } | |||
1759 | } | |||
1760 | ||||
1761 | if (!isa<CXXConstructorDecl>(NewFD)) { | |||
1762 | // C++11 [dcl.constexpr]p3: | |||
1763 | // The definition of a constexpr function shall satisfy the following | |||
1764 | // constraints: | |||
1765 | // - it shall not be virtual; (removed in C++20) | |||
1766 | const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); | |||
1767 | if (Method && Method->isVirtual()) { | |||
1768 | if (getLangOpts().CPlusPlus20) { | |||
1769 | if (Kind == CheckConstexprKind::Diagnose) | |||
1770 | Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); | |||
1771 | } else { | |||
1772 | if (Kind == CheckConstexprKind::CheckValid) | |||
1773 | return false; | |||
1774 | ||||
1775 | Method = Method->getCanonicalDecl(); | |||
1776 | Diag(Method->getLocation(), diag::err_constexpr_virtual); | |||
1777 | ||||
1778 | // If it's not obvious why this function is virtual, find an overridden | |||
1779 | // function which uses the 'virtual' keyword. | |||
1780 | const CXXMethodDecl *WrittenVirtual = Method; | |||
1781 | while (!WrittenVirtual->isVirtualAsWritten()) | |||
1782 | WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); | |||
1783 | if (WrittenVirtual != Method) | |||
1784 | Diag(WrittenVirtual->getLocation(), | |||
1785 | diag::note_overridden_virtual_function); | |||
1786 | return false; | |||
1787 | } | |||
1788 | } | |||
1789 | ||||
1790 | // - its return type shall be a literal type; | |||
1791 | if (!CheckConstexprReturnType(*this, NewFD, Kind)) | |||
1792 | return false; | |||
1793 | } | |||
1794 | ||||
1795 | if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { | |||
1796 | // A destructor can be constexpr only if the defaulted destructor could be; | |||
1797 | // we don't need to check the members and bases if we already know they all | |||
1798 | // have constexpr destructors. | |||
1799 | if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { | |||
1800 | if (Kind == CheckConstexprKind::CheckValid) | |||
1801 | return false; | |||
1802 | if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) | |||
1803 | return false; | |||
1804 | } | |||
1805 | } | |||
1806 | ||||
1807 | // - each of its parameter types shall be a literal type; | |||
1808 | if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) | |||
1809 | return false; | |||
1810 | ||||
1811 | Stmt *Body = NewFD->getBody(); | |||
1812 | assert(Body &&((void)0) | |||
1813 | "CheckConstexprFunctionDefinition called on function with no body")((void)0); | |||
1814 | return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); | |||
1815 | } | |||
1816 | ||||
1817 | /// Check the given declaration statement is legal within a constexpr function | |||
1818 | /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. | |||
1819 | /// | |||
1820 | /// \return true if the body is OK (maybe only as an extension), false if we | |||
1821 | /// have diagnosed a problem. | |||
1822 | static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, | |||
1823 | DeclStmt *DS, SourceLocation &Cxx1yLoc, | |||
1824 | Sema::CheckConstexprKind Kind) { | |||
1825 | // C++11 [dcl.constexpr]p3 and p4: | |||
1826 | // The definition of a constexpr function(p3) or constructor(p4) [...] shall | |||
1827 | // contain only | |||
1828 | for (const auto *DclIt : DS->decls()) { | |||
1829 | switch (DclIt->getKind()) { | |||
1830 | case Decl::StaticAssert: | |||
1831 | case Decl::Using: | |||
1832 | case Decl::UsingShadow: | |||
1833 | case Decl::UsingDirective: | |||
1834 | case Decl::UnresolvedUsingTypename: | |||
1835 | case Decl::UnresolvedUsingValue: | |||
1836 | case Decl::UsingEnum: | |||
1837 | // - static_assert-declarations | |||
1838 | // - using-declarations, | |||
1839 | // - using-directives, | |||
1840 | // - using-enum-declaration | |||
1841 | continue; | |||
1842 | ||||
1843 | case Decl::Typedef: | |||
1844 | case Decl::TypeAlias: { | |||
1845 | // - typedef declarations and alias-declarations that do not define | |||
1846 | // classes or enumerations, | |||
1847 | const auto *TN = cast<TypedefNameDecl>(DclIt); | |||
1848 | if (TN->getUnderlyingType()->isVariablyModifiedType()) { | |||
1849 | // Don't allow variably-modified types in constexpr functions. | |||
1850 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1851 | TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); | |||
1852 | SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) | |||
1853 | << TL.getSourceRange() << TL.getType() | |||
1854 | << isa<CXXConstructorDecl>(Dcl); | |||
1855 | } | |||
1856 | return false; | |||
1857 | } | |||
1858 | continue; | |||
1859 | } | |||
1860 | ||||
1861 | case Decl::Enum: | |||
1862 | case Decl::CXXRecord: | |||
1863 | // C++1y allows types to be defined, not just declared. | |||
1864 | if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { | |||
1865 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1866 | SemaRef.Diag(DS->getBeginLoc(), | |||
1867 | SemaRef.getLangOpts().CPlusPlus14 | |||
1868 | ? diag::warn_cxx11_compat_constexpr_type_definition | |||
1869 | : diag::ext_constexpr_type_definition) | |||
1870 | << isa<CXXConstructorDecl>(Dcl); | |||
1871 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { | |||
1872 | return false; | |||
1873 | } | |||
1874 | } | |||
1875 | continue; | |||
1876 | ||||
1877 | case Decl::EnumConstant: | |||
1878 | case Decl::IndirectField: | |||
1879 | case Decl::ParmVar: | |||
1880 | // These can only appear with other declarations which are banned in | |||
1881 | // C++11 and permitted in C++1y, so ignore them. | |||
1882 | continue; | |||
1883 | ||||
1884 | case Decl::Var: | |||
1885 | case Decl::Decomposition: { | |||
1886 | // C++1y [dcl.constexpr]p3 allows anything except: | |||
1887 | // a definition of a variable of non-literal type or of static or | |||
1888 | // thread storage duration or [before C++2a] for which no | |||
1889 | // initialization is performed. | |||
1890 | const auto *VD = cast<VarDecl>(DclIt); | |||
1891 | if (VD->isThisDeclarationADefinition()) { | |||
1892 | if (VD->isStaticLocal()) { | |||
1893 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1894 | SemaRef.Diag(VD->getLocation(), | |||
1895 | diag::err_constexpr_local_var_static) | |||
1896 | << isa<CXXConstructorDecl>(Dcl) | |||
1897 | << (VD->getTLSKind() == VarDecl::TLS_Dynamic); | |||
1898 | } | |||
1899 | return false; | |||
1900 | } | |||
1901 | if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), | |||
1902 | diag::err_constexpr_local_var_non_literal_type, | |||
1903 | isa<CXXConstructorDecl>(Dcl))) | |||
1904 | return false; | |||
1905 | if (!VD->getType()->isDependentType() && | |||
1906 | !VD->hasInit() && !VD->isCXXForRangeDecl()) { | |||
1907 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1908 | SemaRef.Diag( | |||
1909 | VD->getLocation(), | |||
1910 | SemaRef.getLangOpts().CPlusPlus20 | |||
1911 | ? diag::warn_cxx17_compat_constexpr_local_var_no_init | |||
1912 | : diag::ext_constexpr_local_var_no_init) | |||
1913 | << isa<CXXConstructorDecl>(Dcl); | |||
1914 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { | |||
1915 | return false; | |||
1916 | } | |||
1917 | continue; | |||
1918 | } | |||
1919 | } | |||
1920 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1921 | SemaRef.Diag(VD->getLocation(), | |||
1922 | SemaRef.getLangOpts().CPlusPlus14 | |||
1923 | ? diag::warn_cxx11_compat_constexpr_local_var | |||
1924 | : diag::ext_constexpr_local_var) | |||
1925 | << isa<CXXConstructorDecl>(Dcl); | |||
1926 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { | |||
1927 | return false; | |||
1928 | } | |||
1929 | continue; | |||
1930 | } | |||
1931 | ||||
1932 | case Decl::NamespaceAlias: | |||
1933 | case Decl::Function: | |||
1934 | // These are disallowed in C++11 and permitted in C++1y. Allow them | |||
1935 | // everywhere as an extension. | |||
1936 | if (!Cxx1yLoc.isValid()) | |||
1937 | Cxx1yLoc = DS->getBeginLoc(); | |||
1938 | continue; | |||
1939 | ||||
1940 | default: | |||
1941 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1942 | SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) | |||
1943 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); | |||
1944 | } | |||
1945 | return false; | |||
1946 | } | |||
1947 | } | |||
1948 | ||||
1949 | return true; | |||
1950 | } | |||
1951 | ||||
1952 | /// Check that the given field is initialized within a constexpr constructor. | |||
1953 | /// | |||
1954 | /// \param Dcl The constexpr constructor being checked. | |||
1955 | /// \param Field The field being checked. This may be a member of an anonymous | |||
1956 | /// struct or union nested within the class being checked. | |||
1957 | /// \param Inits All declarations, including anonymous struct/union members and | |||
1958 | /// indirect members, for which any initialization was provided. | |||
1959 | /// \param Diagnosed Whether we've emitted the error message yet. Used to attach | |||
1960 | /// multiple notes for different members to the same error. | |||
1961 | /// \param Kind Whether we're diagnosing a constructor as written or determining | |||
1962 | /// whether the formal requirements are satisfied. | |||
1963 | /// \return \c false if we're checking for validity and the constructor does | |||
1964 | /// not satisfy the requirements on a constexpr constructor. | |||
1965 | static bool CheckConstexprCtorInitializer(Sema &SemaRef, | |||
1966 | const FunctionDecl *Dcl, | |||
1967 | FieldDecl *Field, | |||
1968 | llvm::SmallSet<Decl*, 16> &Inits, | |||
1969 | bool &Diagnosed, | |||
1970 | Sema::CheckConstexprKind Kind) { | |||
1971 | // In C++20 onwards, there's nothing to check for validity. | |||
1972 | if (Kind == Sema::CheckConstexprKind::CheckValid && | |||
1973 | SemaRef.getLangOpts().CPlusPlus20) | |||
1974 | return true; | |||
1975 | ||||
1976 | if (Field->isInvalidDecl()) | |||
1977 | return true; | |||
1978 | ||||
1979 | if (Field->isUnnamedBitfield()) | |||
1980 | return true; | |||
1981 | ||||
1982 | // Anonymous unions with no variant members and empty anonymous structs do not | |||
1983 | // need to be explicitly initialized. FIXME: Anonymous structs that contain no | |||
1984 | // indirect fields don't need initializing. | |||
1985 | if (Field->isAnonymousStructOrUnion() && | |||
1986 | (Field->getType()->isUnionType() | |||
1987 | ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() | |||
1988 | : Field->getType()->getAsCXXRecordDecl()->isEmpty())) | |||
1989 | return true; | |||
1990 | ||||
1991 | if (!Inits.count(Field)) { | |||
1992 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1993 | if (!Diagnosed) { | |||
1994 | SemaRef.Diag(Dcl->getLocation(), | |||
1995 | SemaRef.getLangOpts().CPlusPlus20 | |||
1996 | ? diag::warn_cxx17_compat_constexpr_ctor_missing_init | |||
1997 | : diag::ext_constexpr_ctor_missing_init); | |||
1998 | Diagnosed = true; | |||
1999 | } | |||
2000 | SemaRef.Diag(Field->getLocation(), | |||
2001 | diag::note_constexpr_ctor_missing_init); | |||
2002 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { | |||
2003 | return false; | |||
2004 | } | |||
2005 | } else if (Field->isAnonymousStructOrUnion()) { | |||
2006 | const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); | |||
2007 | for (auto *I : RD->fields()) | |||
2008 | // If an anonymous union contains an anonymous struct of which any member | |||
2009 | // is initialized, all members must be initialized. | |||
2010 | if (!RD->isUnion() || Inits.count(I)) | |||
2011 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, | |||
2012 | Kind)) | |||
2013 | return false; | |||
2014 | } | |||
2015 | return true; | |||
2016 | } | |||
2017 | ||||
2018 | /// Check the provided statement is allowed in a constexpr function | |||
2019 | /// definition. | |||
2020 | static bool | |||
2021 | CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, | |||
2022 | SmallVectorImpl<SourceLocation> &ReturnStmts, | |||
2023 | SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, | |||
2024 | Sema::CheckConstexprKind Kind) { | |||
2025 | // - its function-body shall be [...] a compound-statement that contains only | |||
2026 | switch (S->getStmtClass()) { | |||
2027 | case Stmt::NullStmtClass: | |||
2028 | // - null statements, | |||
2029 | return true; | |||
2030 | ||||
2031 | case Stmt::DeclStmtClass: | |||
2032 | // - static_assert-declarations | |||
2033 | // - using-declarations, | |||
2034 | // - using-directives, | |||
2035 | // - typedef declarations and alias-declarations that do not define | |||
2036 | // classes or enumerations, | |||
2037 | if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) | |||
2038 | return false; | |||
2039 | return true; | |||
2040 | ||||
2041 | case Stmt::ReturnStmtClass: | |||
2042 | // - and exactly one return statement; | |||
2043 | if (isa<CXXConstructorDecl>(Dcl)) { | |||
2044 | // C++1y allows return statements in constexpr constructors. | |||
2045 | if (!Cxx1yLoc.isValid()) | |||
2046 | Cxx1yLoc = S->getBeginLoc(); | |||
2047 | return true; | |||
2048 | } | |||
2049 | ||||
2050 | ReturnStmts.push_back(S->getBeginLoc()); | |||
2051 | return true; | |||
2052 | ||||
2053 | case Stmt::CompoundStmtClass: { | |||
2054 | // C++1y allows compound-statements. | |||
2055 | if (!Cxx1yLoc.isValid()) | |||
2056 | Cxx1yLoc = S->getBeginLoc(); | |||
2057 | ||||
2058 | CompoundStmt *CompStmt = cast<CompoundStmt>(S); | |||
2059 | for (auto *BodyIt : CompStmt->body()) { | |||
2060 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, | |||
2061 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2062 | return false; | |||
2063 | } | |||
2064 | return true; | |||
2065 | } | |||
2066 | ||||
2067 | case Stmt::AttributedStmtClass: | |||
2068 | if (!Cxx1yLoc.isValid()) | |||
2069 | Cxx1yLoc = S->getBeginLoc(); | |||
2070 | return true; | |||
2071 | ||||
2072 | case Stmt::IfStmtClass: { | |||
2073 | // C++1y allows if-statements. | |||
2074 | if (!Cxx1yLoc.isValid()) | |||
2075 | Cxx1yLoc = S->getBeginLoc(); | |||
2076 | ||||
2077 | IfStmt *If = cast<IfStmt>(S); | |||
2078 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, | |||
2079 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2080 | return false; | |||
2081 | if (If->getElse() && | |||
2082 | !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, | |||
2083 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2084 | return false; | |||
2085 | return true; | |||
2086 | } | |||
2087 | ||||
2088 | case Stmt::WhileStmtClass: | |||
2089 | case Stmt::DoStmtClass: | |||
2090 | case Stmt::ForStmtClass: | |||
2091 | case Stmt::CXXForRangeStmtClass: | |||
2092 | case Stmt::ContinueStmtClass: | |||
2093 | // C++1y allows all of these. We don't allow them as extensions in C++11, | |||
2094 | // because they don't make sense without variable mutation. | |||
2095 | if (!SemaRef.getLangOpts().CPlusPlus14) | |||
2096 | break; | |||
2097 | if (!Cxx1yLoc.isValid()) | |||
2098 | Cxx1yLoc = S->getBeginLoc(); | |||
2099 | for (Stmt *SubStmt : S->children()) | |||
2100 | if (SubStmt && | |||
2101 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | |||
2102 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2103 | return false; | |||
2104 | return true; | |||
2105 | ||||
2106 | case Stmt::SwitchStmtClass: | |||
2107 | case Stmt::CaseStmtClass: | |||
2108 | case Stmt::DefaultStmtClass: | |||
2109 | case Stmt::BreakStmtClass: | |||
2110 | // C++1y allows switch-statements, and since they don't need variable | |||
2111 | // mutation, we can reasonably allow them in C++11 as an extension. | |||
2112 | if (!Cxx1yLoc.isValid()) | |||
2113 | Cxx1yLoc = S->getBeginLoc(); | |||
2114 | for (Stmt *SubStmt : S->children()) | |||
2115 | if (SubStmt && | |||
2116 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | |||
2117 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2118 | return false; | |||
2119 | return true; | |||
2120 | ||||
2121 | case Stmt::GCCAsmStmtClass: | |||
2122 | case Stmt::MSAsmStmtClass: | |||
2123 | // C++2a allows inline assembly statements. | |||
2124 | case Stmt::CXXTryStmtClass: | |||
2125 | if (Cxx2aLoc.isInvalid()) | |||
2126 | Cxx2aLoc = S->getBeginLoc(); | |||
2127 | for (Stmt *SubStmt : S->children()) { | |||
2128 | if (SubStmt && | |||
2129 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | |||
2130 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2131 | return false; | |||
2132 | } | |||
2133 | return true; | |||
2134 | ||||
2135 | case Stmt::CXXCatchStmtClass: | |||
2136 | // Do not bother checking the language mode (already covered by the | |||
2137 | // try block check). | |||
2138 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, | |||
2139 | cast<CXXCatchStmt>(S)->getHandlerBlock(), | |||
2140 | ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2141 | return false; | |||
2142 | return true; | |||
2143 | ||||
2144 | default: | |||
2145 | if (!isa<Expr>(S)) | |||
2146 | break; | |||
2147 | ||||
2148 | // C++1y allows expression-statements. | |||
2149 | if (!Cxx1yLoc.isValid()) | |||
2150 | Cxx1yLoc = S->getBeginLoc(); | |||
2151 | return true; | |||
2152 | } | |||
2153 | ||||
2154 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
2155 | SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) | |||
2156 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); | |||
2157 | } | |||
2158 | return false; | |||
2159 | } | |||
2160 | ||||
2161 | /// Check the body for the given constexpr function declaration only contains | |||
2162 | /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. | |||
2163 | /// | |||
2164 | /// \return true if the body is OK, false if we have found or diagnosed a | |||
2165 | /// problem. | |||
2166 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, | |||
2167 | Stmt *Body, | |||
2168 | Sema::CheckConstexprKind Kind) { | |||
2169 | SmallVector<SourceLocation, 4> ReturnStmts; | |||
2170 | ||||
2171 | if (isa<CXXTryStmt>(Body)) { | |||
2172 | // C++11 [dcl.constexpr]p3: | |||
2173 | // The definition of a constexpr function shall satisfy the following | |||
2174 | // constraints: [...] | |||
2175 | // - its function-body shall be = delete, = default, or a | |||
2176 | // compound-statement | |||
2177 | // | |||
2178 | // C++11 [dcl.constexpr]p4: | |||
2179 | // In the definition of a constexpr constructor, [...] | |||
2180 | // - its function-body shall not be a function-try-block; | |||
2181 | // | |||
2182 | // This restriction is lifted in C++2a, as long as inner statements also | |||
2183 | // apply the general constexpr rules. | |||
2184 | switch (Kind) { | |||
2185 | case Sema::CheckConstexprKind::CheckValid: | |||
2186 | if (!SemaRef.getLangOpts().CPlusPlus20) | |||
2187 | return false; | |||
2188 | break; | |||
2189 | ||||
2190 | case Sema::CheckConstexprKind::Diagnose: | |||
2191 | SemaRef.Diag(Body->getBeginLoc(), | |||
2192 | !SemaRef.getLangOpts().CPlusPlus20 | |||
2193 | ? diag::ext_constexpr_function_try_block_cxx20 | |||
2194 | : diag::warn_cxx17_compat_constexpr_function_try_block) | |||
2195 | << isa<CXXConstructorDecl>(Dcl); | |||
2196 | break; | |||
2197 | } | |||
2198 | } | |||
2199 | ||||
2200 | // - its function-body shall be [...] a compound-statement that contains only | |||
2201 | // [... list of cases ...] | |||
2202 | // | |||
2203 | // Note that walking the children here is enough to properly check for | |||
2204 | // CompoundStmt and CXXTryStmt body. | |||
2205 | SourceLocation Cxx1yLoc, Cxx2aLoc; | |||
2206 | for (Stmt *SubStmt : Body->children()) { | |||
2207 | if (SubStmt && | |||
2208 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | |||
2209 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2210 | return false; | |||
2211 | } | |||
2212 | ||||
2213 | if (Kind == Sema::CheckConstexprKind::CheckValid) { | |||
2214 | // If this is only valid as an extension, report that we don't satisfy the | |||
2215 | // constraints of the current language. | |||
2216 | if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || | |||
2217 | (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) | |||
2218 | return false; | |||
2219 | } else if (Cxx2aLoc.isValid()) { | |||
2220 | SemaRef.Diag(Cxx2aLoc, | |||
2221 | SemaRef.getLangOpts().CPlusPlus20 | |||
2222 | ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt | |||
2223 | : diag::ext_constexpr_body_invalid_stmt_cxx20) | |||
2224 | << isa<CXXConstructorDecl>(Dcl); | |||
2225 | } else if (Cxx1yLoc.isValid()) { | |||
2226 | SemaRef.Diag(Cxx1yLoc, | |||
2227 | SemaRef.getLangOpts().CPlusPlus14 | |||
2228 | ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt | |||
2229 | : diag::ext_constexpr_body_invalid_stmt) | |||
2230 | << isa<CXXConstructorDecl>(Dcl); | |||
2231 | } | |||
2232 | ||||
2233 | if (const CXXConstructorDecl *Constructor | |||
2234 | = dyn_cast<CXXConstructorDecl>(Dcl)) { | |||
2235 | const CXXRecordDecl *RD = Constructor->getParent(); | |||
2236 | // DR1359: | |||
2237 | // - every non-variant non-static data member and base class sub-object | |||
2238 | // shall be initialized; | |||
2239 | // DR1460: | |||
2240 | // - if the class is a union having variant members, exactly one of them | |||
2241 | // shall be initialized; | |||
2242 | if (RD->isUnion()) { | |||
2243 | if (Constructor->getNumCtorInitializers() == 0 && | |||
2244 | RD->hasVariantMembers()) { | |||
2245 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
2246 | SemaRef.Diag( | |||
2247 | Dcl->getLocation(), | |||
2248 | SemaRef.getLangOpts().CPlusPlus20 | |||
2249 | ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init | |||
2250 | : diag::ext_constexpr_union_ctor_no_init); | |||
2251 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { | |||
2252 | return false; | |||
2253 | } | |||
2254 | } | |||
2255 | } else if (!Constructor->isDependentContext() && | |||
2256 | !Constructor->isDelegatingConstructor()) { | |||
2257 | assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((void)0); | |||
2258 | ||||
2259 | // Skip detailed checking if we have enough initializers, and we would | |||
2260 | // allow at most one initializer per member. | |||
2261 | bool AnyAnonStructUnionMembers = false; | |||
2262 | unsigned Fields = 0; | |||
2263 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), | |||
2264 | E = RD->field_end(); I != E; ++I, ++Fields) { | |||
2265 | if (I->isAnonymousStructOrUnion()) { | |||
2266 | AnyAnonStructUnionMembers = true; | |||
2267 | break; | |||
2268 | } | |||
2269 | } | |||
2270 | // DR1460: | |||
2271 | // - if the class is a union-like class, but is not a union, for each of | |||
2272 | // its anonymous union members having variant members, exactly one of | |||
2273 | // them shall be initialized; | |||
2274 | if (AnyAnonStructUnionMembers || | |||
2275 | Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { | |||
2276 | // Check initialization of non-static data members. Base classes are | |||
2277 | // always initialized so do not need to be checked. Dependent bases | |||
2278 | // might not have initializers in the member initializer list. | |||
2279 | llvm::SmallSet<Decl*, 16> Inits; | |||
2280 | for (const auto *I: Constructor->inits()) { | |||
2281 | if (FieldDecl *FD = I->getMember()) | |||
2282 | Inits.insert(FD); | |||
2283 | else if (IndirectFieldDecl *ID = I->getIndirectMember()) | |||
2284 | Inits.insert(ID->chain_begin(), ID->chain_end()); | |||
2285 | } | |||
2286 | ||||
2287 | bool Diagnosed = false; | |||
2288 | for (auto *I : RD->fields()) | |||
2289 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, | |||
2290 | Kind)) | |||
2291 | return false; | |||
2292 | } | |||
2293 | } | |||
2294 | } else { | |||
2295 | if (ReturnStmts.empty()) { | |||
2296 | // C++1y doesn't require constexpr functions to contain a 'return' | |||
2297 | // statement. We still do, unless the return type might be void, because | |||
2298 | // otherwise if there's no return statement, the function cannot | |||
2299 | // be used in a core constant expression. | |||
2300 | bool OK = SemaRef.getLangOpts().CPlusPlus14 && | |||
2301 | (Dcl->getReturnType()->isVoidType() || | |||
2302 | Dcl->getReturnType()->isDependentType()); | |||
2303 | switch (Kind) { | |||
2304 | case Sema::CheckConstexprKind::Diagnose: | |||
2305 | SemaRef.Diag(Dcl->getLocation(), | |||
2306 | OK ? diag::warn_cxx11_compat_constexpr_body_no_return | |||
2307 | : diag::err_constexpr_body_no_return) | |||
2308 | << Dcl->isConsteval(); | |||
2309 | if (!OK) | |||
2310 | return false; | |||
2311 | break; | |||
2312 | ||||
2313 | case Sema::CheckConstexprKind::CheckValid: | |||
2314 | // The formal requirements don't include this rule in C++14, even | |||
2315 | // though the "must be able to produce a constant expression" rules | |||
2316 | // still imply it in some cases. | |||
2317 | if (!SemaRef.getLangOpts().CPlusPlus14) | |||
2318 | return false; | |||
2319 | break; | |||
2320 | } | |||
2321 | } else if (ReturnStmts.size() > 1) { | |||
2322 | switch (Kind) { | |||
2323 | case Sema::CheckConstexprKind::Diagnose: | |||
2324 | SemaRef.Diag( | |||
2325 | ReturnStmts.back(), | |||
2326 | SemaRef.getLangOpts().CPlusPlus14 | |||
2327 | ? diag::warn_cxx11_compat_constexpr_body_multiple_return | |||
2328 | : diag::ext_constexpr_body_multiple_return); | |||
2329 | for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) | |||
2330 | SemaRef.Diag(ReturnStmts[I], | |||
2331 | diag::note_constexpr_body_previous_return); | |||
2332 | break; | |||
2333 | ||||
2334 | case Sema::CheckConstexprKind::CheckValid: | |||
2335 | if (!SemaRef.getLangOpts().CPlusPlus14) | |||
2336 | return false; | |||
2337 | break; | |||
2338 | } | |||
2339 | } | |||
2340 | } | |||
2341 | ||||
2342 | // C++11 [dcl.constexpr]p5: | |||
2343 | // if no function argument values exist such that the function invocation | |||
2344 | // substitution would produce a constant expression, the program is | |||
2345 | // ill-formed; no diagnostic required. | |||
2346 | // C++11 [dcl.constexpr]p3: | |||
2347 | // - every constructor call and implicit conversion used in initializing the | |||
2348 | // return value shall be one of those allowed in a constant expression. | |||
2349 | // C++11 [dcl.constexpr]p4: | |||
2350 | // - every constructor involved in initializing non-static data members and | |||
2351 | // base class sub-objects shall be a constexpr constructor. | |||
2352 | // | |||
2353 | // Note that this rule is distinct from the "requirements for a constexpr | |||
2354 | // function", so is not checked in CheckValid mode. | |||
2355 | SmallVector<PartialDiagnosticAt, 8> Diags; | |||
2356 | if (Kind == Sema::CheckConstexprKind::Diagnose && | |||
2357 | !Expr::isPotentialConstantExpr(Dcl, Diags)) { | |||
2358 | SemaRef.Diag(Dcl->getLocation(), | |||
2359 | diag::ext_constexpr_function_never_constant_expr) | |||
2360 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); | |||
2361 | for (size_t I = 0, N = Diags.size(); I != N; ++I) | |||
2362 | SemaRef.Diag(Diags[I].first, Diags[I].second); | |||
2363 | // Don't return false here: we allow this for compatibility in | |||
2364 | // system headers. | |||
2365 | } | |||
2366 | ||||
2367 | return true; | |||
2368 | } | |||
2369 | ||||
2370 | /// Get the class that is directly named by the current context. This is the | |||
2371 | /// class for which an unqualified-id in this scope could name a constructor | |||
2372 | /// or destructor. | |||
2373 | /// | |||
2374 | /// If the scope specifier denotes a class, this will be that class. | |||
2375 | /// If the scope specifier is empty, this will be the class whose | |||
2376 | /// member-specification we are currently within. Otherwise, there | |||
2377 | /// is no such class. | |||
2378 | CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { | |||
2379 | assert(getLangOpts().CPlusPlus && "No class names in C!")((void)0); | |||
2380 | ||||
2381 | if (SS && SS->isInvalid()) | |||
2382 | return nullptr; | |||
2383 | ||||
2384 | if (SS && SS->isNotEmpty()) { | |||
2385 | DeclContext *DC = computeDeclContext(*SS, true); | |||
2386 | return dyn_cast_or_null<CXXRecordDecl>(DC); | |||
2387 | } | |||
2388 | ||||
2389 | return dyn_cast_or_null<CXXRecordDecl>(CurContext); | |||
2390 | } | |||
2391 | ||||
2392 | /// isCurrentClassName - Determine whether the identifier II is the | |||
2393 | /// name of the class type currently being defined. In the case of | |||
2394 | /// nested classes, this will only return true if II is the name of | |||
2395 | /// the innermost class. | |||
2396 | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, | |||
2397 | const CXXScopeSpec *SS) { | |||
2398 | CXXRecordDecl *CurDecl = getCurrentClass(S, SS); | |||
2399 | return CurDecl && &II == CurDecl->getIdentifier(); | |||
2400 | } | |||
2401 | ||||
2402 | /// Determine whether the identifier II is a typo for the name of | |||
2403 | /// the class type currently being defined. If so, update it to the identifier | |||
2404 | /// that should have been used. | |||
2405 | bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { | |||
2406 | assert(getLangOpts().CPlusPlus && "No class names in C!")((void)0); | |||
2407 | ||||
2408 | if (!getLangOpts().SpellChecking) | |||
2409 | return false; | |||
2410 | ||||
2411 | CXXRecordDecl *CurDecl; | |||
2412 | if (SS && SS->isSet() && !SS->isInvalid()) { | |||
2413 | DeclContext *DC = computeDeclContext(*SS, true); | |||
2414 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); | |||
2415 | } else | |||
2416 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); | |||
2417 | ||||
2418 | if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && | |||
2419 | 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) | |||
2420 | < II->getLength()) { | |||
2421 | II = CurDecl->getIdentifier(); | |||
2422 | return true; | |||
2423 | } | |||
2424 | ||||
2425 | return false; | |||
2426 | } | |||
2427 | ||||
2428 | /// Determine whether the given class is a base class of the given | |||
2429 | /// class, including looking at dependent bases. | |||
2430 | static bool findCircularInheritance(const CXXRecordDecl *Class, | |||
2431 | const CXXRecordDecl *Current) { | |||
2432 | SmallVector<const CXXRecordDecl*, 8> Queue; | |||
2433 | ||||
2434 | Class = Class->getCanonicalDecl(); | |||
2435 | while (true) { | |||
2436 | for (const auto &I : Current->bases()) { | |||
2437 | CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | |||
2438 | if (!Base) | |||
2439 | continue; | |||
2440 | ||||
2441 | Base = Base->getDefinition(); | |||
2442 | if (!Base) | |||
2443 | continue; | |||
2444 | ||||
2445 | if (Base->getCanonicalDecl() == Class) | |||
2446 | return true; | |||
2447 | ||||
2448 | Queue.push_back(Base); | |||
2449 | } | |||
2450 | ||||
2451 | if (Queue.empty()) | |||
2452 | return false; | |||
2453 | ||||
2454 | Current = Queue.pop_back_val(); | |||
2455 | } | |||
2456 | ||||
2457 | return false; | |||
2458 | } | |||
2459 | ||||
2460 | /// Check the validity of a C++ base class specifier. | |||
2461 | /// | |||
2462 | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics | |||
2463 | /// and returns NULL otherwise. | |||
2464 | CXXBaseSpecifier * | |||
2465 | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, | |||
2466 | SourceRange SpecifierRange, | |||
2467 | bool Virtual, AccessSpecifier Access, | |||
2468 | TypeSourceInfo *TInfo, | |||
2469 | SourceLocation EllipsisLoc) { | |||
2470 | QualType BaseType = TInfo->getType(); | |||
2471 | if (BaseType->containsErrors()) { | |||
2472 | // Already emitted a diagnostic when parsing the error type. | |||
2473 | return nullptr; | |||
2474 | } | |||
2475 | // C++ [class.union]p1: | |||
2476 | // A union shall not have base classes. | |||
2477 | if (Class->isUnion()) { | |||
2478 | Diag(Class->getLocation(), diag::err_base_clause_on_union) | |||
2479 | << SpecifierRange; | |||
2480 | return nullptr; | |||
2481 | } | |||
2482 | ||||
2483 | if (EllipsisLoc.isValid() && | |||
2484 | !TInfo->getType()->containsUnexpandedParameterPack()) { | |||
2485 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | |||
2486 | << TInfo->getTypeLoc().getSourceRange(); | |||
2487 | EllipsisLoc = SourceLocation(); | |||
2488 | } | |||
2489 | ||||
2490 | SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); | |||
2491 | ||||
2492 | if (BaseType->isDependentType()) { | |||
2493 | // Make sure that we don't have circular inheritance among our dependent | |||
2494 | // bases. For non-dependent bases, the check for completeness below handles | |||
2495 | // this. | |||
2496 | if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { | |||
2497 | if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || | |||
2498 | ((BaseDecl = BaseDecl->getDefinition()) && | |||
2499 | findCircularInheritance(Class, BaseDecl))) { | |||
2500 | Diag(BaseLoc, diag::err_circular_inheritance) | |||
2501 | << BaseType << Context.getTypeDeclType(Class); | |||
2502 | ||||
2503 | if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) | |||
2504 | Diag(BaseDecl->getLocation(), diag::note_previous_decl) | |||
2505 | << BaseType; | |||
2506 | ||||
2507 | return nullptr; | |||
2508 | } | |||
2509 | } | |||
2510 | ||||
2511 | // Make sure that we don't make an ill-formed AST where the type of the | |||
2512 | // Class is non-dependent and its attached base class specifier is an | |||
2513 | // dependent type, which violates invariants in many clang code paths (e.g. | |||
2514 | // constexpr evaluator). If this case happens (in errory-recovery mode), we | |||
2515 | // explicitly mark the Class decl invalid. The diagnostic was already | |||
2516 | // emitted. | |||
2517 | if (!Class->getTypeForDecl()->isDependentType()) | |||
2518 | Class->setInvalidDecl(); | |||
2519 | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | |||
2520 | Class->getTagKind() == TTK_Class, | |||
2521 | Access, TInfo, EllipsisLoc); | |||
2522 | } | |||
2523 | ||||
2524 | // Base specifiers must be record types. | |||
2525 | if (!BaseType->isRecordType()) { | |||
2526 | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; | |||
2527 | return nullptr; | |||
2528 | } | |||
2529 | ||||
2530 | // C++ [class.union]p1: | |||
2531 | // A union shall not be used as a base class. | |||
2532 | if (BaseType->isUnionType()) { | |||
2533 | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; | |||
2534 | return nullptr; | |||
2535 | } | |||
2536 | ||||
2537 | // For the MS ABI, propagate DLL attributes to base class templates. | |||
2538 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
2539 | if (Attr *ClassAttr = getDLLAttr(Class)) { | |||
2540 | if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( | |||
2541 | BaseType->getAsCXXRecordDecl())) { | |||
2542 | propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, | |||
2543 | BaseLoc); | |||
2544 | } | |||
2545 | } | |||
2546 | } | |||
2547 | ||||
2548 | // C++ [class.derived]p2: | |||
2549 | // The class-name in a base-specifier shall not be an incompletely | |||
2550 | // defined class. | |||
2551 | if (RequireCompleteType(BaseLoc, BaseType, | |||
2552 | diag::err_incomplete_base_class, SpecifierRange)) { | |||
2553 | Class->setInvalidDecl(); | |||
2554 | return nullptr; | |||
2555 | } | |||
2556 | ||||
2557 | // If the base class is polymorphic or isn't empty, the new one is/isn't, too. | |||
2558 | RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); | |||
2559 | assert(BaseDecl && "Record type has no declaration")((void)0); | |||
2560 | BaseDecl = BaseDecl->getDefinition(); | |||
2561 | assert(BaseDecl && "Base type is not incomplete, but has no definition")((void)0); | |||
2562 | CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); | |||
2563 | assert(CXXBaseDecl && "Base type is not a C++ type")((void)0); | |||
2564 | ||||
2565 | // Microsoft docs say: | |||
2566 | // "If a base-class has a code_seg attribute, derived classes must have the | |||
2567 | // same attribute." | |||
2568 | const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); | |||
2569 | const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); | |||
2570 | if ((DerivedCSA || BaseCSA) && | |||
2571 | (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { | |||
2572 | Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); | |||
2573 | Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) | |||
2574 | << CXXBaseDecl; | |||
2575 | return nullptr; | |||
2576 | } | |||
2577 | ||||
2578 | // A class which contains a flexible array member is not suitable for use as a | |||
2579 | // base class: | |||
2580 | // - If the layout determines that a base comes before another base, | |||
2581 | // the flexible array member would index into the subsequent base. | |||
2582 | // - If the layout determines that base comes before the derived class, | |||
2583 | // the flexible array member would index into the derived class. | |||
2584 | if (CXXBaseDecl->hasFlexibleArrayMember()) { | |||
2585 | Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) | |||
2586 | << CXXBaseDecl->getDeclName(); | |||
2587 | return nullptr; | |||
2588 | } | |||
2589 | ||||
2590 | // C++ [class]p3: | |||
2591 | // If a class is marked final and it appears as a base-type-specifier in | |||
2592 | // base-clause, the program is ill-formed. | |||
2593 | if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { | |||
2594 | Diag(BaseLoc, diag::err_class_marked_final_used_as_base) | |||
2595 | << CXXBaseDecl->getDeclName() | |||
2596 | << FA->isSpelledAsSealed(); | |||
2597 | Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) | |||
2598 | << CXXBaseDecl->getDeclName() << FA->getRange(); | |||
2599 | return nullptr; | |||
2600 | } | |||
2601 | ||||
2602 | if (BaseDecl->isInvalidDecl()) | |||
2603 | Class->setInvalidDecl(); | |||
2604 | ||||
2605 | // Create the base specifier. | |||
2606 | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | |||
2607 | Class->getTagKind() == TTK_Class, | |||
2608 | Access, TInfo, EllipsisLoc); | |||
2609 | } | |||
2610 | ||||
2611 | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is | |||
2612 | /// one entry in the base class list of a class specifier, for | |||
2613 | /// example: | |||
2614 | /// class foo : public bar, virtual private baz { | |||
2615 | /// 'public bar' and 'virtual private baz' are each base-specifiers. | |||
2616 | BaseResult | |||
2617 | Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, | |||
2618 | ParsedAttributes &Attributes, | |||
2619 | bool Virtual, AccessSpecifier Access, | |||
2620 | ParsedType basetype, SourceLocation BaseLoc, | |||
2621 | SourceLocation EllipsisLoc) { | |||
2622 | if (!classdecl) | |||
2623 | return true; | |||
2624 | ||||
2625 | AdjustDeclIfTemplate(classdecl); | |||
2626 | CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); | |||
2627 | if (!Class) | |||
2628 | return true; | |||
2629 | ||||
2630 | // We haven't yet attached the base specifiers. | |||
2631 | Class->setIsParsingBaseSpecifiers(); | |||
2632 | ||||
2633 | // We do not support any C++11 attributes on base-specifiers yet. | |||
2634 | // Diagnose any attributes we see. | |||
2635 | for (const ParsedAttr &AL : Attributes) { | |||
2636 | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) | |||
2637 | continue; | |||
2638 | Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute | |||
2639 | ? (unsigned)diag::warn_unknown_attribute_ignored | |||
2640 | : (unsigned)diag::err_base_specifier_attribute) | |||
2641 | << AL << AL.getRange(); | |||
2642 | } | |||
2643 | ||||
2644 | TypeSourceInfo *TInfo = nullptr; | |||
2645 | GetTypeFromParser(basetype, &TInfo); | |||
2646 | ||||
2647 | if (EllipsisLoc.isInvalid() && | |||
2648 | DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, | |||
2649 | UPPC_BaseType)) | |||
2650 | return true; | |||
2651 | ||||
2652 | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, | |||
2653 | Virtual, Access, TInfo, | |||
2654 | EllipsisLoc)) | |||
2655 | return BaseSpec; | |||
2656 | else | |||
2657 | Class->setInvalidDecl(); | |||
2658 | ||||
2659 | return true; | |||
2660 | } | |||
2661 | ||||
2662 | /// Use small set to collect indirect bases. As this is only used | |||
2663 | /// locally, there's no need to abstract the small size parameter. | |||
2664 | typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; | |||
2665 | ||||
2666 | /// Recursively add the bases of Type. Don't add Type itself. | |||
2667 | static void | |||
2668 | NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, | |||
2669 | const QualType &Type) | |||
2670 | { | |||
2671 | // Even though the incoming type is a base, it might not be | |||
2672 | // a class -- it could be a template parm, for instance. | |||
2673 | if (auto Rec = Type->getAs<RecordType>()) { | |||
2674 | auto Decl = Rec->getAsCXXRecordDecl(); | |||
2675 | ||||
2676 | // Iterate over its bases. | |||
2677 | for (const auto &BaseSpec : Decl->bases()) { | |||
2678 | QualType Base = Context.getCanonicalType(BaseSpec.getType()) | |||
2679 | .getUnqualifiedType(); | |||
2680 | if (Set.insert(Base).second) | |||
2681 | // If we've not already seen it, recurse. | |||
2682 | NoteIndirectBases(Context, Set, Base); | |||
2683 | } | |||
2684 | } | |||
2685 | } | |||
2686 | ||||
2687 | /// Performs the actual work of attaching the given base class | |||
2688 | /// specifiers to a C++ class. | |||
2689 | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, | |||
2690 | MutableArrayRef<CXXBaseSpecifier *> Bases) { | |||
2691 | if (Bases.empty()) | |||
2692 | return false; | |||
2693 | ||||
2694 | // Used to keep track of which base types we have already seen, so | |||
2695 | // that we can properly diagnose redundant direct base types. Note | |||
2696 | // that the key is always the unqualified canonical type of the base | |||
2697 | // class. | |||
2698 | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; | |||
2699 | ||||
2700 | // Used to track indirect bases so we can see if a direct base is | |||
2701 | // ambiguous. | |||
2702 | IndirectBaseSet IndirectBaseTypes; | |||
2703 | ||||
2704 | // Copy non-redundant base specifiers into permanent storage. | |||
2705 | unsigned NumGoodBases = 0; | |||
2706 | bool Invalid = false; | |||
2707 | for (unsigned idx = 0; idx < Bases.size(); ++idx) { | |||
2708 | QualType NewBaseType | |||
2709 | = Context.getCanonicalType(Bases[idx]->getType()); | |||
2710 | NewBaseType = NewBaseType.getLocalUnqualifiedType(); | |||
2711 | ||||
2712 | CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; | |||
2713 | if (KnownBase) { | |||
2714 | // C++ [class.mi]p3: | |||
2715 | // A class shall not be specified as a direct base class of a | |||
2716 | // derived class more than once. | |||
2717 | Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) | |||
2718 | << KnownBase->getType() << Bases[idx]->getSourceRange(); | |||
2719 | ||||
2720 | // Delete the duplicate base class specifier; we're going to | |||
2721 | // overwrite its pointer later. | |||
2722 | Context.Deallocate(Bases[idx]); | |||
2723 | ||||
2724 | Invalid = true; | |||
2725 | } else { | |||
2726 | // Okay, add this new base class. | |||
2727 | KnownBase = Bases[idx]; | |||
2728 | Bases[NumGoodBases++] = Bases[idx]; | |||
2729 | ||||
2730 | // Note this base's direct & indirect bases, if there could be ambiguity. | |||
2731 | if (Bases.size() > 1) | |||
2732 | NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); | |||
2733 | ||||
2734 | if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { | |||
2735 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); | |||
2736 | if (Class->isInterface() && | |||
2737 | (!RD->isInterfaceLike() || | |||
2738 | KnownBase->getAccessSpecifier() != AS_public)) { | |||
2739 | // The Microsoft extension __interface does not permit bases that | |||
2740 | // are not themselves public interfaces. | |||
2741 | Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) | |||
2742 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD | |||
2743 | << RD->getSourceRange(); | |||
2744 | Invalid = true; | |||
2745 | } | |||
2746 | if (RD->hasAttr<WeakAttr>()) | |||
2747 | Class->addAttr(WeakAttr::CreateImplicit(Context)); | |||
2748 | } | |||
2749 | } | |||
2750 | } | |||
2751 | ||||
2752 | // Attach the remaining base class specifiers to the derived class. | |||
2753 | Class->setBases(Bases.data(), NumGoodBases); | |||
2754 | ||||
2755 | // Check that the only base classes that are duplicate are virtual. | |||
2756 | for (unsigned idx = 0; idx < NumGoodBases; ++idx) { | |||
2757 | // Check whether this direct base is inaccessible due to ambiguity. | |||
2758 | QualType BaseType = Bases[idx]->getType(); | |||
2759 | ||||
2760 | // Skip all dependent types in templates being used as base specifiers. | |||
2761 | // Checks below assume that the base specifier is a CXXRecord. | |||
2762 | if (BaseType->isDependentType()) | |||
2763 | continue; | |||
2764 | ||||
2765 | CanQualType CanonicalBase = Context.getCanonicalType(BaseType) | |||
2766 | .getUnqualifiedType(); | |||
2767 | ||||
2768 | if (IndirectBaseTypes.count(CanonicalBase)) { | |||
2769 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
2770 | /*DetectVirtual=*/true); | |||
2771 | bool found | |||
2772 | = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); | |||
2773 | assert(found)((void)0); | |||
2774 | (void)found; | |||
2775 | ||||
2776 | if (Paths.isAmbiguous(CanonicalBase)) | |||
2777 | Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) | |||
2778 | << BaseType << getAmbiguousPathsDisplayString(Paths) | |||
2779 | << Bases[idx]->getSourceRange(); | |||
2780 | else | |||
2781 | assert(Bases[idx]->isVirtual())((void)0); | |||
2782 | } | |||
2783 | ||||
2784 | // Delete the base class specifier, since its data has been copied | |||
2785 | // into the CXXRecordDecl. | |||
2786 | Context.Deallocate(Bases[idx]); | |||
2787 | } | |||
2788 | ||||
2789 | return Invalid; | |||
2790 | } | |||
2791 | ||||
2792 | /// ActOnBaseSpecifiers - Attach the given base specifiers to the | |||
2793 | /// class, after checking whether there are any duplicate base | |||
2794 | /// classes. | |||
2795 | void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, | |||
2796 | MutableArrayRef<CXXBaseSpecifier *> Bases) { | |||
2797 | if (!ClassDecl || Bases.empty()) | |||
2798 | return; | |||
2799 | ||||
2800 | AdjustDeclIfTemplate(ClassDecl); | |||
2801 | AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); | |||
2802 | } | |||
2803 | ||||
2804 | /// Determine whether the type \p Derived is a C++ class that is | |||
2805 | /// derived from the type \p Base. | |||
2806 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { | |||
2807 | if (!getLangOpts().CPlusPlus) | |||
2808 | return false; | |||
2809 | ||||
2810 | CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); | |||
2811 | if (!DerivedRD) | |||
2812 | return false; | |||
2813 | ||||
2814 | CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); | |||
2815 | if (!BaseRD) | |||
2816 | return false; | |||
2817 | ||||
2818 | // If either the base or the derived type is invalid, don't try to | |||
2819 | // check whether one is derived from the other. | |||
2820 | if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) | |||
2821 | return false; | |||
2822 | ||||
2823 | // FIXME: In a modules build, do we need the entire path to be visible for us | |||
2824 | // to be able to use the inheritance relationship? | |||
2825 | if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) | |||
2826 | return false; | |||
2827 | ||||
2828 | return DerivedRD->isDerivedFrom(BaseRD); | |||
2829 | } | |||
2830 | ||||
2831 | /// Determine whether the type \p Derived is a C++ class that is | |||
2832 | /// derived from the type \p Base. | |||
2833 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, | |||
2834 | CXXBasePaths &Paths) { | |||
2835 | if (!getLangOpts().CPlusPlus) | |||
2836 | return false; | |||
2837 | ||||
2838 | CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); | |||
2839 | if (!DerivedRD) | |||
2840 | return false; | |||
2841 | ||||
2842 | CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); | |||
2843 | if (!BaseRD) | |||
2844 | return false; | |||
2845 | ||||
2846 | if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) | |||
2847 | return false; | |||
2848 | ||||
2849 | return DerivedRD->isDerivedFrom(BaseRD, Paths); | |||
2850 | } | |||
2851 | ||||
2852 | static void BuildBasePathArray(const CXXBasePath &Path, | |||
2853 | CXXCastPath &BasePathArray) { | |||
2854 | // We first go backward and check if we have a virtual base. | |||
2855 | // FIXME: It would be better if CXXBasePath had the base specifier for | |||
2856 | // the nearest virtual base. | |||
2857 | unsigned Start = 0; | |||
2858 | for (unsigned I = Path.size(); I != 0; --I) { | |||
2859 | if (Path[I - 1].Base->isVirtual()) { | |||
2860 | Start = I - 1; | |||
2861 | break; | |||
2862 | } | |||
2863 | } | |||
2864 | ||||
2865 | // Now add all bases. | |||
2866 | for (unsigned I = Start, E = Path.size(); I != E; ++I) | |||
2867 | BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); | |||
2868 | } | |||
2869 | ||||
2870 | ||||
2871 | void Sema::BuildBasePathArray(const CXXBasePaths &Paths, | |||
2872 | CXXCastPath &BasePathArray) { | |||
2873 | assert(BasePathArray.empty() && "Base path array must be empty!")((void)0); | |||
2874 | assert(Paths.isRecordingPaths() && "Must record paths!")((void)0); | |||
2875 | return ::BuildBasePathArray(Paths.front(), BasePathArray); | |||
2876 | } | |||
2877 | /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base | |||
2878 | /// conversion (where Derived and Base are class types) is | |||
2879 | /// well-formed, meaning that the conversion is unambiguous (and | |||
2880 | /// that all of the base classes are accessible). Returns true | |||
2881 | /// and emits a diagnostic if the code is ill-formed, returns false | |||
2882 | /// otherwise. Loc is the location where this routine should point to | |||
2883 | /// if there is an error, and Range is the source range to highlight | |||
2884 | /// if there is an error. | |||
2885 | /// | |||
2886 | /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the | |||
2887 | /// diagnostic for the respective type of error will be suppressed, but the | |||
2888 | /// check for ill-formed code will still be performed. | |||
2889 | bool | |||
2890 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | |||
2891 | unsigned InaccessibleBaseID, | |||
2892 | unsigned AmbiguousBaseConvID, | |||
2893 | SourceLocation Loc, SourceRange Range, | |||
2894 | DeclarationName Name, | |||
2895 | CXXCastPath *BasePath, | |||
2896 | bool IgnoreAccess) { | |||
2897 | // First, determine whether the path from Derived to Base is | |||
2898 | // ambiguous. This is slightly more expensive than checking whether | |||
2899 | // the Derived to Base conversion exists, because here we need to | |||
2900 | // explore multiple paths to determine if there is an ambiguity. | |||
2901 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
2902 | /*DetectVirtual=*/false); | |||
2903 | bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); | |||
2904 | if (!DerivationOkay) | |||
2905 | return true; | |||
2906 | ||||
2907 | const CXXBasePath *Path = nullptr; | |||
2908 | if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) | |||
2909 | Path = &Paths.front(); | |||
2910 | ||||
2911 | // For MSVC compatibility, check if Derived directly inherits from Base. Clang | |||
2912 | // warns about this hierarchy under -Winaccessible-base, but MSVC allows the | |||
2913 | // user to access such bases. | |||
2914 | if (!Path && getLangOpts().MSVCCompat) { | |||
2915 | for (const CXXBasePath &PossiblePath : Paths) { | |||
2916 | if (PossiblePath.size() == 1) { | |||
2917 | Path = &PossiblePath; | |||
2918 | if (AmbiguousBaseConvID) | |||
2919 | Diag(Loc, diag::ext_ms_ambiguous_direct_base) | |||
2920 | << Base << Derived << Range; | |||
2921 | break; | |||
2922 | } | |||
2923 | } | |||
2924 | } | |||
2925 | ||||
2926 | if (Path) { | |||
2927 | if (!IgnoreAccess) { | |||
2928 | // Check that the base class can be accessed. | |||
2929 | switch ( | |||
2930 | CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { | |||
2931 | case AR_inaccessible: | |||
2932 | return true; | |||
2933 | case AR_accessible: | |||
2934 | case AR_dependent: | |||
2935 | case AR_delayed: | |||
2936 | break; | |||
2937 | } | |||
2938 | } | |||
2939 | ||||
2940 | // Build a base path if necessary. | |||
2941 | if (BasePath) | |||
2942 | ::BuildBasePathArray(*Path, *BasePath); | |||
2943 | return false; | |||
2944 | } | |||
2945 | ||||
2946 | if (AmbiguousBaseConvID) { | |||
2947 | // We know that the derived-to-base conversion is ambiguous, and | |||
2948 | // we're going to produce a diagnostic. Perform the derived-to-base | |||
2949 | // search just one more time to compute all of the possible paths so | |||
2950 | // that we can print them out. This is more expensive than any of | |||
2951 | // the previous derived-to-base checks we've done, but at this point | |||
2952 | // performance isn't as much of an issue. | |||
2953 | Paths.clear(); | |||
2954 | Paths.setRecordingPaths(true); | |||
2955 | bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); | |||
2956 | assert(StillOkay && "Can only be used with a derived-to-base conversion")((void)0); | |||
2957 | (void)StillOkay; | |||
2958 | ||||
2959 | // Build up a textual representation of the ambiguous paths, e.g., | |||
2960 | // D -> B -> A, that will be used to illustrate the ambiguous | |||
2961 | // conversions in the diagnostic. We only print one of the paths | |||
2962 | // to each base class subobject. | |||
2963 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | |||
2964 | ||||
2965 | Diag(Loc, AmbiguousBaseConvID) | |||
2966 | << Derived << Base << PathDisplayStr << Range << Name; | |||
2967 | } | |||
2968 | return true; | |||
2969 | } | |||
2970 | ||||
2971 | bool | |||
2972 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | |||
2973 | SourceLocation Loc, SourceRange Range, | |||
2974 | CXXCastPath *BasePath, | |||
2975 | bool IgnoreAccess) { | |||
2976 | return CheckDerivedToBaseConversion( | |||
2977 | Derived, Base, diag::err_upcast_to_inaccessible_base, | |||
2978 | diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), | |||
2979 | BasePath, IgnoreAccess); | |||
2980 | } | |||
2981 | ||||
2982 | ||||
2983 | /// Builds a string representing ambiguous paths from a | |||
2984 | /// specific derived class to different subobjects of the same base | |||
2985 | /// class. | |||
2986 | /// | |||
2987 | /// This function builds a string that can be used in error messages | |||
2988 | /// to show the different paths that one can take through the | |||
2989 | /// inheritance hierarchy to go from the derived class to different | |||
2990 | /// subobjects of a base class. The result looks something like this: | |||
2991 | /// @code | |||
2992 | /// struct D -> struct B -> struct A | |||
2993 | /// struct D -> struct C -> struct A | |||
2994 | /// @endcode | |||
2995 | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { | |||
2996 | std::string PathDisplayStr; | |||
2997 | std::set<unsigned> DisplayedPaths; | |||
2998 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | |||
2999 | Path != Paths.end(); ++Path) { | |||
3000 | if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { | |||
3001 | // We haven't displayed a path to this particular base | |||
3002 | // class subobject yet. | |||
3003 | PathDisplayStr += "\n "; | |||
3004 | PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); | |||
3005 | for (CXXBasePath::const_iterator Element = Path->begin(); | |||
3006 | Element != Path->end(); ++Element) | |||
3007 | PathDisplayStr += " -> " + Element->Base->getType().getAsString(); | |||
3008 | } | |||
3009 | } | |||
3010 | ||||
3011 | return PathDisplayStr; | |||
3012 | } | |||
3013 | ||||
3014 | //===----------------------------------------------------------------------===// | |||
3015 | // C++ class member Handling | |||
3016 | //===----------------------------------------------------------------------===// | |||
3017 | ||||
3018 | /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. | |||
3019 | bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, | |||
3020 | SourceLocation ColonLoc, | |||
3021 | const ParsedAttributesView &Attrs) { | |||
3022 | assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((void)0); | |||
3023 | AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, | |||
3024 | ASLoc, ColonLoc); | |||
3025 | CurContext->addHiddenDecl(ASDecl); | |||
3026 | return ProcessAccessDeclAttributeList(ASDecl, Attrs); | |||
3027 | } | |||
3028 | ||||
3029 | /// CheckOverrideControl - Check C++11 override control semantics. | |||
3030 | void Sema::CheckOverrideControl(NamedDecl *D) { | |||
3031 | if (D->isInvalidDecl()) | |||
3032 | return; | |||
3033 | ||||
3034 | // We only care about "override" and "final" declarations. | |||
3035 | if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) | |||
3036 | return; | |||
3037 | ||||
3038 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); | |||
3039 | ||||
3040 | // We can't check dependent instance methods. | |||
3041 | if (MD && MD->isInstance() && | |||
3042 | (MD->getParent()->hasAnyDependentBases() || | |||
3043 | MD->getType()->isDependentType())) | |||
3044 | return; | |||
3045 | ||||
3046 | if (MD && !MD->isVirtual()) { | |||
3047 | // If we have a non-virtual method, check if if hides a virtual method. | |||
3048 | // (In that case, it's most likely the method has the wrong type.) | |||
3049 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; | |||
3050 | FindHiddenVirtualMethods(MD, OverloadedMethods); | |||
3051 | ||||
3052 | if (!OverloadedMethods.empty()) { | |||
3053 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { | |||
3054 | Diag(OA->getLocation(), | |||
3055 | diag::override_keyword_hides_virtual_member_function) | |||
3056 | << "override" << (OverloadedMethods.size() > 1); | |||
3057 | } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { | |||
3058 | Diag(FA->getLocation(), | |||
3059 | diag::override_keyword_hides_virtual_member_function) | |||
3060 | << (FA->isSpelledAsSealed() ? "sealed" : "final") | |||
3061 | << (OverloadedMethods.size() > 1); | |||
3062 | } | |||
3063 | NoteHiddenVirtualMethods(MD, OverloadedMethods); | |||
3064 | MD->setInvalidDecl(); | |||
3065 | return; | |||
3066 | } | |||
3067 | // Fall through into the general case diagnostic. | |||
3068 | // FIXME: We might want to attempt typo correction here. | |||
3069 | } | |||
3070 | ||||
3071 | if (!MD || !MD->isVirtual()) { | |||
3072 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { | |||
3073 | Diag(OA->getLocation(), | |||
3074 | diag::override_keyword_only_allowed_on_virtual_member_functions) | |||
3075 | << "override" << FixItHint::CreateRemoval(OA->getLocation()); | |||
3076 | D->dropAttr<OverrideAttr>(); | |||
3077 | } | |||
3078 | if (FinalAttr *FA = D->getAttr<FinalAttr>()) { | |||
3079 | Diag(FA->getLocation(), | |||
3080 | diag::override_keyword_only_allowed_on_virtual_member_functions) | |||
3081 | << (FA->isSpelledAsSealed() ? "sealed" : "final") | |||
3082 | << FixItHint::CreateRemoval(FA->getLocation()); | |||
3083 | D->dropAttr<FinalAttr>(); | |||
3084 | } | |||
3085 | return; | |||
3086 | } | |||
3087 | ||||
3088 | // C++11 [class.virtual]p5: | |||
3089 | // If a function is marked with the virt-specifier override and | |||
3090 | // does not override a member function of a base class, the program is | |||
3091 | // ill-formed. | |||
3092 | bool HasOverriddenMethods = MD->size_overridden_methods() != 0; | |||
3093 | if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) | |||
3094 | Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) | |||
3095 | << MD->getDeclName(); | |||
3096 | } | |||
3097 | ||||
3098 | void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { | |||
3099 | if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) | |||
3100 | return; | |||
3101 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); | |||
3102 | if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) | |||
3103 | return; | |||
3104 | ||||
3105 | SourceLocation Loc = MD->getLocation(); | |||
3106 | SourceLocation SpellingLoc = Loc; | |||
3107 | if (getSourceManager().isMacroArgExpansion(Loc)) | |||
3108 | SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); | |||
3109 | SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); | |||
3110 | if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) | |||
3111 | return; | |||
3112 | ||||
3113 | if (MD->size_overridden_methods() > 0) { | |||
3114 | auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { | |||
3115 | unsigned DiagID = | |||
3116 | Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) | |||
3117 | ? DiagInconsistent | |||
3118 | : DiagSuggest; | |||
3119 | Diag(MD->getLocation(), DiagID) << MD->getDeclName(); | |||
3120 | const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); | |||
3121 | Diag(OMD->getLocation(), diag::note_overridden_virtual_function); | |||
3122 | }; | |||
3123 | if (isa<CXXDestructorDecl>(MD)) | |||
3124 | EmitDiag( | |||
3125 | diag::warn_inconsistent_destructor_marked_not_override_overriding, | |||
3126 | diag::warn_suggest_destructor_marked_not_override_overriding); | |||
3127 | else | |||
3128 | EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, | |||
3129 | diag::warn_suggest_function_marked_not_override_overriding); | |||
3130 | } | |||
3131 | } | |||
3132 | ||||
3133 | /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member | |||
3134 | /// function overrides a virtual member function marked 'final', according to | |||
3135 | /// C++11 [class.virtual]p4. | |||
3136 | bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, | |||
3137 | const CXXMethodDecl *Old) { | |||
3138 | FinalAttr *FA = Old->getAttr<FinalAttr>(); | |||
3139 | if (!FA) | |||
3140 | return false; | |||
3141 | ||||
3142 | Diag(New->getLocation(), diag::err_final_function_overridden) | |||
3143 | << New->getDeclName() | |||
3144 | << FA->isSpelledAsSealed(); | |||
3145 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | |||
3146 | return true; | |||
3147 | } | |||
3148 | ||||
3149 | static bool InitializationHasSideEffects(const FieldDecl &FD) { | |||
3150 | const Type *T = FD.getType()->getBaseElementTypeUnsafe(); | |||
3151 | // FIXME: Destruction of ObjC lifetime types has side-effects. | |||
3152 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
3153 | return !RD->isCompleteDefinition() || | |||
3154 | !RD->hasTrivialDefaultConstructor() || | |||
3155 | !RD->hasTrivialDestructor(); | |||
3156 | return false; | |||
3157 | } | |||
3158 | ||||
3159 | static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { | |||
3160 | ParsedAttributesView::const_iterator Itr = | |||
3161 | llvm::find_if(list, [](const ParsedAttr &AL) { | |||
3162 | return AL.isDeclspecPropertyAttribute(); | |||
3163 | }); | |||
3164 | if (Itr != list.end()) | |||
3165 | return &*Itr; | |||
3166 | return nullptr; | |||
3167 | } | |||
3168 | ||||
3169 | // Check if there is a field shadowing. | |||
3170 | void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, | |||
3171 | DeclarationName FieldName, | |||
3172 | const CXXRecordDecl *RD, | |||
3173 | bool DeclIsField) { | |||
3174 | if (Diags.isIgnored(diag::warn_shadow_field, Loc)) | |||
3175 | return; | |||
3176 | ||||
3177 | // To record a shadowed field in a base | |||
3178 | std::map<CXXRecordDecl*, NamedDecl*> Bases; | |||
3179 | auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, | |||
3180 | CXXBasePath &Path) { | |||
3181 | const auto Base = Specifier->getType()->getAsCXXRecordDecl(); | |||
3182 | // Record an ambiguous path directly | |||
3183 | if (Bases.find(Base) != Bases.end()) | |||
3184 | return true; | |||
3185 | for (const auto Field : Base->lookup(FieldName)) { | |||
3186 | if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && | |||
3187 | Field->getAccess() != AS_private) { | |||
3188 | assert(Field->getAccess() != AS_none)((void)0); | |||
3189 | assert(Bases.find(Base) == Bases.end())((void)0); | |||
3190 | Bases[Base] = Field; | |||
3191 | return true; | |||
3192 | } | |||
3193 | } | |||
3194 | return false; | |||
3195 | }; | |||
3196 | ||||
3197 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
3198 | /*DetectVirtual=*/true); | |||
3199 | if (!RD->lookupInBases(FieldShadowed, Paths)) | |||
3200 | return; | |||
3201 | ||||
3202 | for (const auto &P : Paths) { | |||
3203 | auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); | |||
3204 | auto It = Bases.find(Base); | |||
3205 | // Skip duplicated bases | |||
3206 | if (It == Bases.end()) | |||
3207 | continue; | |||
3208 | auto BaseField = It->second; | |||
3209 | assert(BaseField->getAccess() != AS_private)((void)0); | |||
3210 | if (AS_none != | |||
3211 | CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { | |||
3212 | Diag(Loc, diag::warn_shadow_field) | |||
3213 | << FieldName << RD << Base << DeclIsField; | |||
3214 | Diag(BaseField->getLocation(), diag::note_shadow_field); | |||
3215 | Bases.erase(It); | |||
3216 | } | |||
3217 | } | |||
3218 | } | |||
3219 | ||||
3220 | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member | |||
3221 | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the | |||
3222 | /// bitfield width if there is one, 'InitExpr' specifies the initializer if | |||
3223 | /// one has been parsed, and 'InitStyle' is set if an in-class initializer is | |||
3224 | /// present (but parsing it has been deferred). | |||
3225 | NamedDecl * | |||
3226 | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, | |||
3227 | MultiTemplateParamsArg TemplateParameterLists, | |||
3228 | Expr *BW, const VirtSpecifiers &VS, | |||
3229 | InClassInitStyle InitStyle) { | |||
3230 | const DeclSpec &DS = D.getDeclSpec(); | |||
3231 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | |||
3232 | DeclarationName Name = NameInfo.getName(); | |||
3233 | SourceLocation Loc = NameInfo.getLoc(); | |||
3234 | ||||
3235 | // For anonymous bitfields, the location should point to the type. | |||
3236 | if (Loc.isInvalid()) | |||
3237 | Loc = D.getBeginLoc(); | |||
3238 | ||||
3239 | Expr *BitWidth = static_cast<Expr*>(BW); | |||
3240 | ||||
3241 | assert(isa<CXXRecordDecl>(CurContext))((void)0); | |||
3242 | assert(!DS.isFriendSpecified())((void)0); | |||
3243 | ||||
3244 | bool isFunc = D.isDeclarationOfFunction(); | |||
3245 | const ParsedAttr *MSPropertyAttr = | |||
3246 | getMSPropertyAttr(D.getDeclSpec().getAttributes()); | |||
3247 | ||||
3248 | if (cast<CXXRecordDecl>(CurContext)->isInterface()) { | |||
3249 | // The Microsoft extension __interface only permits public member functions | |||
3250 | // and prohibits constructors, destructors, operators, non-public member | |||
3251 | // functions, static methods and data members. | |||
3252 | unsigned InvalidDecl; | |||
3253 | bool ShowDeclName = true; | |||
3254 | if (!isFunc && | |||
3255 | (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) | |||
3256 | InvalidDecl = 0; | |||
3257 | else if (!isFunc) | |||
3258 | InvalidDecl = 1; | |||
3259 | else if (AS != AS_public) | |||
3260 | InvalidDecl = 2; | |||
3261 | else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) | |||
3262 | InvalidDecl = 3; | |||
3263 | else switch (Name.getNameKind()) { | |||
3264 | case DeclarationName::CXXConstructorName: | |||
3265 | InvalidDecl = 4; | |||
3266 | ShowDeclName = false; | |||
3267 | break; | |||
3268 | ||||
3269 | case DeclarationName::CXXDestructorName: | |||
3270 | InvalidDecl = 5; | |||
3271 | ShowDeclName = false; | |||
3272 | break; | |||
3273 | ||||
3274 | case DeclarationName::CXXOperatorName: | |||
3275 | case DeclarationName::CXXConversionFunctionName: | |||
3276 | InvalidDecl = 6; | |||
3277 | break; | |||
3278 | ||||
3279 | default: | |||
3280 | InvalidDecl = 0; | |||
3281 | break; | |||
3282 | } | |||
3283 | ||||
3284 | if (InvalidDecl) { | |||
3285 | if (ShowDeclName) | |||
3286 | Diag(Loc, diag::err_invalid_member_in_interface) | |||
3287 | << (InvalidDecl-1) << Name; | |||
3288 | else | |||
3289 | Diag(Loc, diag::err_invalid_member_in_interface) | |||
3290 | << (InvalidDecl-1) << ""; | |||
3291 | return nullptr; | |||
3292 | } | |||
3293 | } | |||
3294 | ||||
3295 | // C++ 9.2p6: A member shall not be declared to have automatic storage | |||
3296 | // duration (auto, register) or with the extern storage-class-specifier. | |||
3297 | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class | |||
3298 | // data members and cannot be applied to names declared const or static, | |||
3299 | // and cannot be applied to reference members. | |||
3300 | switch (DS.getStorageClassSpec()) { | |||
3301 | case DeclSpec::SCS_unspecified: | |||
3302 | case DeclSpec::SCS_typedef: | |||
3303 | case DeclSpec::SCS_static: | |||
3304 | break; | |||
3305 | case DeclSpec::SCS_mutable: | |||
3306 | if (isFunc) { | |||
3307 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); | |||
3308 | ||||
3309 | // FIXME: It would be nicer if the keyword was ignored only for this | |||
3310 | // declarator. Otherwise we could get follow-up errors. | |||
3311 | D.getMutableDeclSpec().ClearStorageClassSpecs(); | |||
3312 | } | |||
3313 | break; | |||
3314 | default: | |||
3315 | Diag(DS.getStorageClassSpecLoc(), | |||
3316 | diag::err_storageclass_invalid_for_member); | |||
3317 | D.getMutableDeclSpec().ClearStorageClassSpecs(); | |||
3318 | break; | |||
3319 | } | |||
3320 | ||||
3321 | bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || | |||
3322 | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && | |||
3323 | !isFunc); | |||
3324 | ||||
3325 | if (DS.hasConstexprSpecifier() && isInstField) { | |||
3326 | SemaDiagnosticBuilder B = | |||
3327 | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); | |||
3328 | SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); | |||
3329 | if (InitStyle == ICIS_NoInit) { | |||
3330 | B << 0 << 0; | |||
3331 | if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) | |||
3332 | B << FixItHint::CreateRemoval(ConstexprLoc); | |||
3333 | else { | |||
3334 | B << FixItHint::CreateReplacement(ConstexprLoc, "const"); | |||
3335 | D.getMutableDeclSpec().ClearConstexprSpec(); | |||
3336 | const char *PrevSpec; | |||
3337 | unsigned DiagID; | |||
3338 | bool Failed = D.getMutableDeclSpec().SetTypeQual( | |||
3339 | DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); | |||
3340 | (void)Failed; | |||
3341 | assert(!Failed && "Making a constexpr member const shouldn't fail")((void)0); | |||
3342 | } | |||
3343 | } else { | |||
3344 | B << 1; | |||
3345 | const char *PrevSpec; | |||
3346 | unsigned DiagID; | |||
3347 | if (D.getMutableDeclSpec().SetStorageClassSpec( | |||
3348 | *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, | |||
3349 | Context.getPrintingPolicy())) { | |||
3350 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((void)0) | |||
3351 | "This is the only DeclSpec that should fail to be applied")((void)0); | |||
3352 | B << 1; | |||
3353 | } else { | |||
3354 | B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); | |||
3355 | isInstField = false; | |||
3356 | } | |||
3357 | } | |||
3358 | } | |||
3359 | ||||
3360 | NamedDecl *Member; | |||
3361 | if (isInstField) { | |||
3362 | CXXScopeSpec &SS = D.getCXXScopeSpec(); | |||
3363 | ||||
3364 | // Data members must have identifiers for names. | |||
3365 | if (!Name.isIdentifier()) { | |||
3366 | Diag(Loc, diag::err_bad_variable_name) | |||
3367 | << Name; | |||
3368 | return nullptr; | |||
3369 | } | |||
3370 | ||||
3371 | IdentifierInfo *II = Name.getAsIdentifierInfo(); | |||
3372 | ||||
3373 | // Member field could not be with "template" keyword. | |||
3374 | // So TemplateParameterLists should be empty in this case. | |||
3375 | if (TemplateParameterLists.size()) { | |||
3376 | TemplateParameterList* TemplateParams = TemplateParameterLists[0]; | |||
3377 | if (TemplateParams->size()) { | |||
3378 | // There is no such thing as a member field template. | |||
3379 | Diag(D.getIdentifierLoc(), diag::err_template_member) | |||
3380 | << II | |||
3381 | << SourceRange(TemplateParams->getTemplateLoc(), | |||
3382 | TemplateParams->getRAngleLoc()); | |||
3383 | } else { | |||
3384 | // There is an extraneous 'template<>' for this member. | |||
3385 | Diag(TemplateParams->getTemplateLoc(), | |||
3386 | diag::err_template_member_noparams) | |||
3387 | << II | |||
3388 | << SourceRange(TemplateParams->getTemplateLoc(), | |||
3389 | TemplateParams->getRAngleLoc()); | |||
3390 | } | |||
3391 | return nullptr; | |||
3392 | } | |||
3393 | ||||
3394 | if (SS.isSet() && !SS.isInvalid()) { | |||
3395 | // The user provided a superfluous scope specifier inside a class | |||
3396 | // definition: | |||
3397 | // | |||
3398 | // class X { | |||
3399 | // int X::member; | |||
3400 | // }; | |||
3401 | if (DeclContext *DC = computeDeclContext(SS, false)) | |||
3402 | diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), | |||
3403 | D.getName().getKind() == | |||
3404 | UnqualifiedIdKind::IK_TemplateId); | |||
3405 | else | |||
3406 | Diag(D.getIdentifierLoc(), diag::err_member_qualification) | |||
3407 | << Name << SS.getRange(); | |||
3408 | ||||
3409 | SS.clear(); | |||
3410 | } | |||
3411 | ||||
3412 | if (MSPropertyAttr) { | |||
3413 | Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, | |||
3414 | BitWidth, InitStyle, AS, *MSPropertyAttr); | |||
3415 | if (!Member) | |||
3416 | return nullptr; | |||
3417 | isInstField = false; | |||
3418 | } else { | |||
3419 | Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, | |||
3420 | BitWidth, InitStyle, AS); | |||
3421 | if (!Member) | |||
3422 | return nullptr; | |||
3423 | } | |||
3424 | ||||
3425 | CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); | |||
3426 | } else { | |||
3427 | Member = HandleDeclarator(S, D, TemplateParameterLists); | |||
3428 | if (!Member) | |||
3429 | return nullptr; | |||
3430 | ||||
3431 | // Non-instance-fields can't have a bitfield. | |||
3432 | if (BitWidth) { | |||
3433 | if (Member->isInvalidDecl()) { | |||
3434 | // don't emit another diagnostic. | |||
3435 | } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { | |||
3436 | // C++ 9.6p3: A bit-field shall not be a static member. | |||
3437 | // "static member 'A' cannot be a bit-field" | |||
3438 | Diag(Loc, diag::err_static_not_bitfield) | |||
3439 | << Name << BitWidth->getSourceRange(); | |||
3440 | } else if (isa<TypedefDecl>(Member)) { | |||
3441 | // "typedef member 'x' cannot be a bit-field" | |||
3442 | Diag(Loc, diag::err_typedef_not_bitfield) | |||
3443 | << Name << BitWidth->getSourceRange(); | |||
3444 | } else { | |||
3445 | // A function typedef ("typedef int f(); f a;"). | |||
3446 | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | |||
3447 | Diag(Loc, diag::err_not_integral_type_bitfield) | |||
3448 | << Name << cast<ValueDecl>(Member)->getType() | |||
3449 | << BitWidth->getSourceRange(); | |||
3450 | } | |||
3451 | ||||
3452 | BitWidth = nullptr; | |||
3453 | Member->setInvalidDecl(); | |||
3454 | } | |||
3455 | ||||
3456 | NamedDecl *NonTemplateMember = Member; | |||
3457 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) | |||
3458 | NonTemplateMember = FunTmpl->getTemplatedDecl(); | |||
3459 | else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) | |||
3460 | NonTemplateMember = VarTmpl->getTemplatedDecl(); | |||
3461 | ||||
3462 | Member->setAccess(AS); | |||
3463 | ||||
3464 | // If we have declared a member function template or static data member | |||
3465 | // template, set the access of the templated declaration as well. | |||
3466 | if (NonTemplateMember != Member) | |||
3467 | NonTemplateMember->setAccess(AS); | |||
3468 | ||||
3469 | // C++ [temp.deduct.guide]p3: | |||
3470 | // A deduction guide [...] for a member class template [shall be | |||
3471 | // declared] with the same access [as the template]. | |||
3472 | if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { | |||
3473 | auto *TD = DG->getDeducedTemplate(); | |||
3474 | // Access specifiers are only meaningful if both the template and the | |||
3475 | // deduction guide are from the same scope. | |||
3476 | if (AS != TD->getAccess() && | |||
3477 | TD->getDeclContext()->getRedeclContext()->Equals( | |||
3478 | DG->getDeclContext()->getRedeclContext())) { | |||
3479 | Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); | |||
3480 | Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) | |||
3481 | << TD->getAccess(); | |||
3482 | const AccessSpecDecl *LastAccessSpec = nullptr; | |||
3483 | for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { | |||
3484 | if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) | |||
3485 | LastAccessSpec = AccessSpec; | |||
3486 | } | |||
3487 | assert(LastAccessSpec && "differing access with no access specifier")((void)0); | |||
3488 | Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) | |||
3489 | << AS; | |||
3490 | } | |||
3491 | } | |||
3492 | } | |||
3493 | ||||
3494 | if (VS.isOverrideSpecified()) | |||
3495 | Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), | |||
3496 | AttributeCommonInfo::AS_Keyword)); | |||
3497 | if (VS.isFinalSpecified()) | |||
3498 | Member->addAttr(FinalAttr::Create( | |||
3499 | Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, | |||
3500 | static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); | |||
3501 | ||||
3502 | if (VS.getLastLocation().isValid()) { | |||
3503 | // Update the end location of a method that has a virt-specifiers. | |||
3504 | if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) | |||
3505 | MD->setRangeEnd(VS.getLastLocation()); | |||
3506 | } | |||
3507 | ||||
3508 | CheckOverrideControl(Member); | |||
3509 | ||||
3510 | assert((Name || isInstField) && "No identifier for non-field ?")((void)0); | |||
3511 | ||||
3512 | if (isInstField) { | |||
3513 | FieldDecl *FD = cast<FieldDecl>(Member); | |||
3514 | FieldCollector->Add(FD); | |||
3515 | ||||
3516 | if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { | |||
3517 | // Remember all explicit private FieldDecls that have a name, no side | |||
3518 | // effects and are not part of a dependent type declaration. | |||
3519 | if (!FD->isImplicit() && FD->getDeclName() && | |||
3520 | FD->getAccess() == AS_private && | |||
3521 | !FD->hasAttr<UnusedAttr>() && | |||
3522 | !FD->getParent()->isDependentContext() && | |||
3523 | !InitializationHasSideEffects(*FD)) | |||
3524 | UnusedPrivateFields.insert(FD); | |||
3525 | } | |||
3526 | } | |||
3527 | ||||
3528 | return Member; | |||
3529 | } | |||
3530 | ||||
3531 | namespace { | |||
3532 | class UninitializedFieldVisitor | |||
3533 | : public EvaluatedExprVisitor<UninitializedFieldVisitor> { | |||
3534 | Sema &S; | |||
3535 | // List of Decls to generate a warning on. Also remove Decls that become | |||
3536 | // initialized. | |||
3537 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls; | |||
3538 | // List of base classes of the record. Classes are removed after their | |||
3539 | // initializers. | |||
3540 | llvm::SmallPtrSetImpl<QualType> &BaseClasses; | |||
3541 | // Vector of decls to be removed from the Decl set prior to visiting the | |||
3542 | // nodes. These Decls may have been initialized in the prior initializer. | |||
3543 | llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; | |||
3544 | // If non-null, add a note to the warning pointing back to the constructor. | |||
3545 | const CXXConstructorDecl *Constructor; | |||
3546 | // Variables to hold state when processing an initializer list. When | |||
3547 | // InitList is true, special case initialization of FieldDecls matching | |||
3548 | // InitListFieldDecl. | |||
3549 | bool InitList; | |||
3550 | FieldDecl *InitListFieldDecl; | |||
3551 | llvm::SmallVector<unsigned, 4> InitFieldIndex; | |||
3552 | ||||
3553 | public: | |||
3554 | typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; | |||
3555 | UninitializedFieldVisitor(Sema &S, | |||
3556 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls, | |||
3557 | llvm::SmallPtrSetImpl<QualType> &BaseClasses) | |||
3558 | : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), | |||
3559 | Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} | |||
3560 | ||||
3561 | // Returns true if the use of ME is not an uninitialized use. | |||
3562 | bool IsInitListMemberExprInitialized(MemberExpr *ME, | |||
3563 | bool CheckReferenceOnly) { | |||
3564 | llvm::SmallVector<FieldDecl*, 4> Fields; | |||
3565 | bool ReferenceField = false; | |||
3566 | while (ME) { | |||
3567 | FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); | |||
3568 | if (!FD) | |||
3569 | return false; | |||
3570 | Fields.push_back(FD); | |||
3571 | if (FD->getType()->isReferenceType()) | |||
3572 | ReferenceField = true; | |||
3573 | ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); | |||
3574 | } | |||
3575 | ||||
3576 | // Binding a reference to an uninitialized field is not an | |||
3577 | // uninitialized use. | |||
3578 | if (CheckReferenceOnly && !ReferenceField) | |||
3579 | return true; | |||
3580 | ||||
3581 | llvm::SmallVector<unsigned, 4> UsedFieldIndex; | |||
3582 | // Discard the first field since it is the field decl that is being | |||
3583 | // initialized. | |||
3584 | for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { | |||
3585 | UsedFieldIndex.push_back((*I)->getFieldIndex()); | |||
3586 | } | |||
3587 | ||||
3588 | for (auto UsedIter = UsedFieldIndex.begin(), | |||
3589 | UsedEnd = UsedFieldIndex.end(), | |||
3590 | OrigIter = InitFieldIndex.begin(), | |||
3591 | OrigEnd = InitFieldIndex.end(); | |||
3592 | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { | |||
3593 | if (*UsedIter < *OrigIter) | |||
3594 | return true; | |||
3595 | if (*UsedIter > *OrigIter) | |||
3596 | break; | |||
3597 | } | |||
3598 | ||||
3599 | return false; | |||
3600 | } | |||
3601 | ||||
3602 | void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, | |||
3603 | bool AddressOf) { | |||
3604 | if (isa<EnumConstantDecl>(ME->getMemberDecl())) | |||
3605 | return; | |||
3606 | ||||
3607 | // FieldME is the inner-most MemberExpr that is not an anonymous struct | |||
3608 | // or union. | |||
3609 | MemberExpr *FieldME = ME; | |||
3610 | ||||
3611 | bool AllPODFields = FieldME->getType().isPODType(S.Context); | |||
3612 | ||||
3613 | Expr *Base = ME; | |||
3614 | while (MemberExpr *SubME = | |||
3615 | dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { | |||
3616 | ||||
3617 | if (isa<VarDecl>(SubME->getMemberDecl())) | |||
3618 | return; | |||
3619 | ||||
3620 | if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) | |||
3621 | if (!FD->isAnonymousStructOrUnion()) | |||
3622 | FieldME = SubME; | |||
3623 | ||||
3624 | if (!FieldME->getType().isPODType(S.Context)) | |||
3625 | AllPODFields = false; | |||
3626 | ||||
3627 | Base = SubME->getBase(); | |||
3628 | } | |||
3629 | ||||
3630 | if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { | |||
3631 | Visit(Base); | |||
3632 | return; | |||
3633 | } | |||
3634 | ||||
3635 | if (AddressOf && AllPODFields) | |||
3636 | return; | |||
3637 | ||||
3638 | ValueDecl* FoundVD = FieldME->getMemberDecl(); | |||
3639 | ||||
3640 | if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { | |||
3641 | while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { | |||
3642 | BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); | |||
3643 | } | |||
3644 | ||||
3645 | if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { | |||
3646 | QualType T = BaseCast->getType(); | |||
3647 | if (T->isPointerType() && | |||
3648 | BaseClasses.count(T->getPointeeType())) { | |||
3649 | S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) | |||
3650 | << T->getPointeeType() << FoundVD; | |||
3651 | } | |||
3652 | } | |||
3653 | } | |||
3654 | ||||
3655 | if (!Decls.count(FoundVD)) | |||
3656 | return; | |||
3657 | ||||
3658 | const bool IsReference = FoundVD->getType()->isReferenceType(); | |||
3659 | ||||
3660 | if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { | |||
3661 | // Special checking for initializer lists. | |||
3662 | if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { | |||
3663 | return; | |||
3664 | } | |||
3665 | } else { | |||
3666 | // Prevent double warnings on use of unbounded references. | |||
3667 | if (CheckReferenceOnly && !IsReference) | |||
3668 | return; | |||
3669 | } | |||
3670 | ||||
3671 | unsigned diag = IsReference | |||
3672 | ? diag::warn_reference_field_is_uninit | |||
3673 | : diag::warn_field_is_uninit; | |||
3674 | S.Diag(FieldME->getExprLoc(), diag) << FoundVD; | |||
3675 | if (Constructor) | |||
3676 | S.Diag(Constructor->getLocation(), | |||
3677 | diag::note_uninit_in_this_constructor) | |||
3678 | << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); | |||
3679 | ||||
3680 | } | |||
3681 | ||||
3682 | void HandleValue(Expr *E, bool AddressOf) { | |||
3683 | E = E->IgnoreParens(); | |||
3684 | ||||
3685 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | |||
3686 | HandleMemberExpr(ME, false /*CheckReferenceOnly*/, | |||
3687 | AddressOf /*AddressOf*/); | |||
3688 | return; | |||
3689 | } | |||
3690 | ||||
3691 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { | |||
3692 | Visit(CO->getCond()); | |||
3693 | HandleValue(CO->getTrueExpr(), AddressOf); | |||
3694 | HandleValue(CO->getFalseExpr(), AddressOf); | |||
3695 | return; | |||
3696 | } | |||
3697 | ||||
3698 | if (BinaryConditionalOperator *BCO = | |||
3699 | dyn_cast<BinaryConditionalOperator>(E)) { | |||
3700 | Visit(BCO->getCond()); | |||
3701 | HandleValue(BCO->getFalseExpr(), AddressOf); | |||
3702 | return; | |||
3703 | } | |||
3704 | ||||
3705 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { | |||
3706 | HandleValue(OVE->getSourceExpr(), AddressOf); | |||
3707 | return; | |||
3708 | } | |||
3709 | ||||
3710 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | |||
3711 | switch (BO->getOpcode()) { | |||
3712 | default: | |||
3713 | break; | |||
3714 | case(BO_PtrMemD): | |||
3715 | case(BO_PtrMemI): | |||
3716 | HandleValue(BO->getLHS(), AddressOf); | |||
3717 | Visit(BO->getRHS()); | |||
3718 | return; | |||
3719 | case(BO_Comma): | |||
3720 | Visit(BO->getLHS()); | |||
3721 | HandleValue(BO->getRHS(), AddressOf); | |||
3722 | return; | |||
3723 | } | |||
3724 | } | |||
3725 | ||||
3726 | Visit(E); | |||
3727 | } | |||
3728 | ||||
3729 | void CheckInitListExpr(InitListExpr *ILE) { | |||
3730 | InitFieldIndex.push_back(0); | |||
3731 | for (auto Child : ILE->children()) { | |||
3732 | if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { | |||
3733 | CheckInitListExpr(SubList); | |||
3734 | } else { | |||
3735 | Visit(Child); | |||
3736 | } | |||
3737 | ++InitFieldIndex.back(); | |||
3738 | } | |||
3739 | InitFieldIndex.pop_back(); | |||
3740 | } | |||
3741 | ||||
3742 | void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, | |||
3743 | FieldDecl *Field, const Type *BaseClass) { | |||
3744 | // Remove Decls that may have been initialized in the previous | |||
3745 | // initializer. | |||
3746 | for (ValueDecl* VD : DeclsToRemove) | |||
3747 | Decls.erase(VD); | |||
3748 | DeclsToRemove.clear(); | |||
3749 | ||||
3750 | Constructor = FieldConstructor; | |||
3751 | InitListExpr *ILE = dyn_cast<InitListExpr>(E); | |||
3752 | ||||
3753 | if (ILE && Field) { | |||
3754 | InitList = true; | |||
3755 | InitListFieldDecl = Field; | |||
3756 | InitFieldIndex.clear(); | |||
3757 | CheckInitListExpr(ILE); | |||
3758 | } else { | |||
3759 | InitList = false; | |||
3760 | Visit(E); | |||
3761 | } | |||
3762 | ||||
3763 | if (Field) | |||
3764 | Decls.erase(Field); | |||
3765 | if (BaseClass) | |||
3766 | BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); | |||
3767 | } | |||
3768 | ||||
3769 | void VisitMemberExpr(MemberExpr *ME) { | |||
3770 | // All uses of unbounded reference fields will warn. | |||
3771 | HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); | |||
3772 | } | |||
3773 | ||||
3774 | void VisitImplicitCastExpr(ImplicitCastExpr *E) { | |||
3775 | if (E->getCastKind() == CK_LValueToRValue) { | |||
3776 | HandleValue(E->getSubExpr(), false /*AddressOf*/); | |||
3777 | return; | |||
3778 | } | |||
3779 | ||||
3780 | Inherited::VisitImplicitCastExpr(E); | |||
3781 | } | |||
3782 | ||||
3783 | void VisitCXXConstructExpr(CXXConstructExpr *E) { | |||
3784 | if (E->getConstructor()->isCopyConstructor()) { | |||
3785 | Expr *ArgExpr = E->getArg(0); | |||
3786 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) | |||
3787 | if (ILE->getNumInits() == 1) | |||
3788 | ArgExpr = ILE->getInit(0); | |||
3789 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) | |||
3790 | if (ICE->getCastKind() == CK_NoOp) | |||
3791 | ArgExpr = ICE->getSubExpr(); | |||
3792 | HandleValue(ArgExpr, false /*AddressOf*/); | |||
3793 | return; | |||
3794 | } | |||
3795 | Inherited::VisitCXXConstructExpr(E); | |||
3796 | } | |||
3797 | ||||
3798 | void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { | |||
3799 | Expr *Callee = E->getCallee(); | |||
3800 | if (isa<MemberExpr>(Callee)) { | |||
3801 | HandleValue(Callee, false /*AddressOf*/); | |||
3802 | for (auto Arg : E->arguments()) | |||
3803 | Visit(Arg); | |||
3804 | return; | |||
3805 | } | |||
3806 | ||||
3807 | Inherited::VisitCXXMemberCallExpr(E); | |||
3808 | } | |||
3809 | ||||
3810 | void VisitCallExpr(CallExpr *E) { | |||
3811 | // Treat std::move as a use. | |||
3812 | if (E->isCallToStdMove()) { | |||
3813 | HandleValue(E->getArg(0), /*AddressOf=*/false); | |||
3814 | return; | |||
3815 | } | |||
3816 | ||||
3817 | Inherited::VisitCallExpr(E); | |||
3818 | } | |||
3819 | ||||
3820 | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | |||
3821 | Expr *Callee = E->getCallee(); | |||
3822 | ||||
3823 | if (isa<UnresolvedLookupExpr>(Callee)) | |||
3824 | return Inherited::VisitCXXOperatorCallExpr(E); | |||
3825 | ||||
3826 | Visit(Callee); | |||
3827 | for (auto Arg : E->arguments()) | |||
3828 | HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); | |||
3829 | } | |||
3830 | ||||
3831 | void VisitBinaryOperator(BinaryOperator *E) { | |||
3832 | // If a field assignment is detected, remove the field from the | |||
3833 | // uninitiailized field set. | |||
3834 | if (E->getOpcode() == BO_Assign) | |||
3835 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) | |||
3836 | if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) | |||
3837 | if (!FD->getType()->isReferenceType()) | |||
3838 | DeclsToRemove.push_back(FD); | |||
3839 | ||||
3840 | if (E->isCompoundAssignmentOp()) { | |||
3841 | HandleValue(E->getLHS(), false /*AddressOf*/); | |||
3842 | Visit(E->getRHS()); | |||
3843 | return; | |||
3844 | } | |||
3845 | ||||
3846 | Inherited::VisitBinaryOperator(E); | |||
3847 | } | |||
3848 | ||||
3849 | void VisitUnaryOperator(UnaryOperator *E) { | |||
3850 | if (E->isIncrementDecrementOp()) { | |||
3851 | HandleValue(E->getSubExpr(), false /*AddressOf*/); | |||
3852 | return; | |||
3853 | } | |||
3854 | if (E->getOpcode() == UO_AddrOf) { | |||
3855 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { | |||
3856 | HandleValue(ME->getBase(), true /*AddressOf*/); | |||
3857 | return; | |||
3858 | } | |||
3859 | } | |||
3860 | ||||
3861 | Inherited::VisitUnaryOperator(E); | |||
3862 | } | |||
3863 | }; | |||
3864 | ||||
3865 | // Diagnose value-uses of fields to initialize themselves, e.g. | |||
3866 | // foo(foo) | |||
3867 | // where foo is not also a parameter to the constructor. | |||
3868 | // Also diagnose across field uninitialized use such as | |||
3869 | // x(y), y(x) | |||
3870 | // TODO: implement -Wuninitialized and fold this into that framework. | |||
3871 | static void DiagnoseUninitializedFields( | |||
3872 | Sema &SemaRef, const CXXConstructorDecl *Constructor) { | |||
3873 | ||||
3874 | if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, | |||
3875 | Constructor->getLocation())) { | |||
3876 | return; | |||
3877 | } | |||
3878 | ||||
3879 | if (Constructor->isInvalidDecl()) | |||
3880 | return; | |||
3881 | ||||
3882 | const CXXRecordDecl *RD = Constructor->getParent(); | |||
3883 | ||||
3884 | if (RD->isDependentContext()) | |||
3885 | return; | |||
3886 | ||||
3887 | // Holds fields that are uninitialized. | |||
3888 | llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; | |||
3889 | ||||
3890 | // At the beginning, all fields are uninitialized. | |||
3891 | for (auto *I : RD->decls()) { | |||
3892 | if (auto *FD = dyn_cast<FieldDecl>(I)) { | |||
3893 | UninitializedFields.insert(FD); | |||
3894 | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { | |||
3895 | UninitializedFields.insert(IFD->getAnonField()); | |||
3896 | } | |||
3897 | } | |||
3898 | ||||
3899 | llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; | |||
3900 | for (auto I : RD->bases()) | |||
3901 | UninitializedBaseClasses.insert(I.getType().getCanonicalType()); | |||
3902 | ||||
3903 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) | |||
3904 | return; | |||
3905 | ||||
3906 | UninitializedFieldVisitor UninitializedChecker(SemaRef, | |||
3907 | UninitializedFields, | |||
3908 | UninitializedBaseClasses); | |||
3909 | ||||
3910 | for (const auto *FieldInit : Constructor->inits()) { | |||
3911 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) | |||
3912 | break; | |||
3913 | ||||
3914 | Expr *InitExpr = FieldInit->getInit(); | |||
3915 | if (!InitExpr) | |||
3916 | continue; | |||
3917 | ||||
3918 | if (CXXDefaultInitExpr *Default = | |||
3919 | dyn_cast<CXXDefaultInitExpr>(InitExpr)) { | |||
3920 | InitExpr = Default->getExpr(); | |||
3921 | if (!InitExpr) | |||
3922 | continue; | |||
3923 | // In class initializers will point to the constructor. | |||
3924 | UninitializedChecker.CheckInitializer(InitExpr, Constructor, | |||
3925 | FieldInit->getAnyMember(), | |||
3926 | FieldInit->getBaseClass()); | |||
3927 | } else { | |||
3928 | UninitializedChecker.CheckInitializer(InitExpr, nullptr, | |||
3929 | FieldInit->getAnyMember(), | |||
3930 | FieldInit->getBaseClass()); | |||
3931 | } | |||
3932 | } | |||
3933 | } | |||
3934 | } // namespace | |||
3935 | ||||
3936 | /// Enter a new C++ default initializer scope. After calling this, the | |||
3937 | /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if | |||
3938 | /// parsing or instantiating the initializer failed. | |||
3939 | void Sema::ActOnStartCXXInClassMemberInitializer() { | |||
3940 | // Create a synthetic function scope to represent the call to the constructor | |||
3941 | // that notionally surrounds a use of this initializer. | |||
3942 | PushFunctionScope(); | |||
3943 | } | |||
3944 | ||||
3945 | void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { | |||
3946 | if (!D.isFunctionDeclarator()) | |||
3947 | return; | |||
3948 | auto &FTI = D.getFunctionTypeInfo(); | |||
3949 | if (!FTI.Params) | |||
3950 | return; | |||
3951 | for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, | |||
3952 | FTI.NumParams)) { | |||
3953 | auto *ParamDecl = cast<NamedDecl>(Param.Param); | |||
3954 | if (ParamDecl->getDeclName()) | |||
3955 | PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); | |||
3956 | } | |||
3957 | } | |||
3958 | ||||
3959 | ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { | |||
3960 | return ActOnRequiresClause(ConstraintExpr); | |||
3961 | } | |||
3962 | ||||
3963 | ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { | |||
3964 | if (ConstraintExpr.isInvalid()) | |||
3965 | return ExprError(); | |||
3966 | ||||
3967 | ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); | |||
3968 | if (ConstraintExpr.isInvalid()) | |||
3969 | return ExprError(); | |||
3970 | ||||
3971 | if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), | |||
3972 | UPPC_RequiresClause)) | |||
3973 | return ExprError(); | |||
3974 | ||||
3975 | return ConstraintExpr; | |||
3976 | } | |||
3977 | ||||
3978 | /// This is invoked after parsing an in-class initializer for a | |||
3979 | /// non-static C++ class member, and after instantiating an in-class initializer | |||
3980 | /// in a class template. Such actions are deferred until the class is complete. | |||
3981 | void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, | |||
3982 | SourceLocation InitLoc, | |||
3983 | Expr *InitExpr) { | |||
3984 | // Pop the notional constructor scope we created earlier. | |||
3985 | PopFunctionScopeInfo(nullptr, D); | |||
3986 | ||||
3987 | FieldDecl *FD = dyn_cast<FieldDecl>(D); | |||
| ||||
3988 | assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&((void)0) | |||
3989 | "must set init style when field is created")((void)0); | |||
3990 | ||||
3991 | if (!InitExpr) { | |||
3992 | D->setInvalidDecl(); | |||
3993 | if (FD) | |||
3994 | FD->removeInClassInitializer(); | |||
3995 | return; | |||
3996 | } | |||
3997 | ||||
3998 | if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { | |||
3999 | FD->setInvalidDecl(); | |||
4000 | FD->removeInClassInitializer(); | |||
4001 | return; | |||
4002 | } | |||
4003 | ||||
4004 | ExprResult Init = InitExpr; | |||
4005 | if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { | |||
| ||||
4006 | InitializedEntity Entity = | |||
4007 | InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); | |||
4008 | InitializationKind Kind = | |||
4009 | FD->getInClassInitStyle() == ICIS_ListInit | |||
4010 | ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), | |||
4011 | InitExpr->getBeginLoc(), | |||
4012 | InitExpr->getEndLoc()) | |||
4013 | : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); | |||
4014 | InitializationSequence Seq(*this, Entity, Kind, InitExpr); | |||
4015 | Init = Seq.Perform(*this, Entity, Kind, InitExpr); | |||
4016 | if (Init.isInvalid()) { | |||
4017 | FD->setInvalidDecl(); | |||
4018 | return; | |||
4019 | } | |||
4020 | } | |||
4021 | ||||
4022 | // C++11 [class.base.init]p7: | |||
4023 | // The initialization of each base and member constitutes a | |||
4024 | // full-expression. | |||
4025 | Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); | |||
4026 | if (Init.isInvalid()) { | |||
4027 | FD->setInvalidDecl(); | |||
4028 | return; | |||
4029 | } | |||
4030 | ||||
4031 | InitExpr = Init.get(); | |||
4032 | ||||
4033 | FD->setInClassInitializer(InitExpr); | |||
4034 | } | |||
4035 | ||||
4036 | /// Find the direct and/or virtual base specifiers that | |||
4037 | /// correspond to the given base type, for use in base initialization | |||
4038 | /// within a constructor. | |||
4039 | static bool FindBaseInitializer(Sema &SemaRef, | |||
4040 | CXXRecordDecl *ClassDecl, | |||
4041 | QualType BaseType, | |||
4042 | const CXXBaseSpecifier *&DirectBaseSpec, | |||
4043 | const CXXBaseSpecifier *&VirtualBaseSpec) { | |||
4044 | // First, check for a direct base class. | |||
4045 | DirectBaseSpec = nullptr; | |||
4046 | for (const auto &Base : ClassDecl->bases()) { | |||
4047 | if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { | |||
4048 | // We found a direct base of this type. That's what we're | |||
4049 | // initializing. | |||
4050 | DirectBaseSpec = &Base; | |||
4051 | break; | |||
4052 | } | |||
4053 | } | |||
4054 | ||||
4055 | // Check for a virtual base class. | |||
4056 | // FIXME: We might be able to short-circuit this if we know in advance that | |||
4057 | // there are no virtual bases. | |||
4058 | VirtualBaseSpec = nullptr; | |||
4059 | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { | |||
4060 | // We haven't found a base yet; search the class hierarchy for a | |||
4061 | // virtual base class. | |||
4062 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
4063 | /*DetectVirtual=*/false); | |||
4064 | if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), | |||
4065 | SemaRef.Context.getTypeDeclType(ClassDecl), | |||
4066 | BaseType, Paths)) { | |||
4067 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | |||
4068 | Path != Paths.end(); ++Path) { | |||
4069 | if (Path->back().Base->isVirtual()) { | |||
4070 | VirtualBaseSpec = Path->back().Base; | |||
4071 | break; | |||
4072 | } | |||
4073 | } | |||
4074 | } | |||
4075 | } | |||
4076 | ||||
4077 | return DirectBaseSpec || VirtualBaseSpec; | |||
4078 | } | |||
4079 | ||||
4080 | /// Handle a C++ member initializer using braced-init-list syntax. | |||
4081 | MemInitResult | |||
4082 | Sema::ActOnMemInitializer(Decl *ConstructorD, | |||
4083 | Scope *S, | |||
4084 | CXXScopeSpec &SS, | |||
4085 | IdentifierInfo *MemberOrBase, | |||
4086 | ParsedType TemplateTypeTy, | |||
4087 | const DeclSpec &DS, | |||
4088 | SourceLocation IdLoc, | |||
4089 | Expr *InitList, | |||
4090 | SourceLocation EllipsisLoc) { | |||
4091 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, | |||
4092 | DS, IdLoc, InitList, | |||
4093 | EllipsisLoc); | |||
4094 | } | |||
4095 | ||||
4096 | /// Handle a C++ member initializer using parentheses syntax. | |||
4097 | MemInitResult | |||
4098 | Sema::ActOnMemInitializer(Decl *ConstructorD, | |||
4099 | Scope *S, | |||
4100 | CXXScopeSpec &SS, | |||
4101 | IdentifierInfo *MemberOrBase, | |||
4102 | ParsedType TemplateTypeTy, | |||
4103 | const DeclSpec &DS, | |||
4104 | SourceLocation IdLoc, | |||
4105 | SourceLocation LParenLoc, | |||
4106 | ArrayRef<Expr *> Args, | |||
4107 | SourceLocation RParenLoc, | |||
4108 | SourceLocation EllipsisLoc) { | |||
4109 | Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); | |||
4110 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, | |||
4111 | DS, IdLoc, List, EllipsisLoc); | |||
4112 | } | |||
4113 | ||||
4114 | namespace { | |||
4115 | ||||
4116 | // Callback to only accept typo corrections that can be a valid C++ member | |||
4117 | // intializer: either a non-static field member or a base class. | |||
4118 | class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { | |||
4119 | public: | |||
4120 | explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) | |||
4121 | : ClassDecl(ClassDecl) {} | |||
4122 | ||||
4123 | bool ValidateCandidate(const TypoCorrection &candidate) override { | |||
4124 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { | |||
4125 | if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) | |||
4126 | return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); | |||
4127 | return isa<TypeDecl>(ND); | |||
4128 | } | |||
4129 | return false; | |||
4130 | } | |||
4131 | ||||
4132 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
4133 | return std::make_unique<MemInitializerValidatorCCC>(*this); | |||
4134 | } | |||
4135 | ||||
4136 | private: | |||
4137 | CXXRecordDecl *ClassDecl; | |||
4138 | }; | |||
4139 | ||||
4140 | } | |||
4141 | ||||
4142 | ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, | |||
4143 | CXXScopeSpec &SS, | |||
4144 | ParsedType TemplateTypeTy, | |||
4145 | IdentifierInfo *MemberOrBase) { | |||
4146 | if (SS.getScopeRep() || TemplateTypeTy) | |||
4147 | return nullptr; | |||
4148 | for (auto *D : ClassDecl->lookup(MemberOrBase)) | |||
4149 | if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) | |||
4150 | return cast<ValueDecl>(D); | |||
4151 | return nullptr; | |||
4152 | } | |||
4153 | ||||
4154 | /// Handle a C++ member initializer. | |||
4155 | MemInitResult | |||
4156 | Sema::BuildMemInitializer(Decl *ConstructorD, | |||
4157 | Scope *S, | |||
4158 | CXXScopeSpec &SS, | |||
4159 | IdentifierInfo *MemberOrBase, | |||
4160 | ParsedType TemplateTypeTy, | |||
4161 | const DeclSpec &DS, | |||
4162 | SourceLocation IdLoc, | |||
4163 | Expr *Init, | |||
4164 | SourceLocation EllipsisLoc) { | |||
4165 | ExprResult Res = CorrectDelayedTyposInExpr(Init); | |||
4166 | if (!Res.isUsable()) | |||
4167 | return true; | |||
4168 | Init = Res.get(); | |||
4169 | ||||
4170 | if (!ConstructorD) | |||
4171 | return true; | |||
4172 | ||||
4173 | AdjustDeclIfTemplate(ConstructorD); | |||
4174 | ||||
4175 | CXXConstructorDecl *Constructor | |||
4176 | = dyn_cast<CXXConstructorDecl>(ConstructorD); | |||
4177 | if (!Constructor) { | |||
4178 | // The user wrote a constructor initializer on a function that is | |||
4179 | // not a C++ constructor. Ignore the error for now, because we may | |||
4180 | // have more member initializers coming; we'll diagnose it just | |||
4181 | // once in ActOnMemInitializers. | |||
4182 | return true; | |||
4183 | } | |||
4184 | ||||
4185 | CXXRecordDecl *ClassDecl = Constructor->getParent(); | |||
4186 | ||||
4187 | // C++ [class.base.init]p2: | |||
4188 | // Names in a mem-initializer-id are looked up in the scope of the | |||
4189 | // constructor's class and, if not found in that scope, are looked | |||
4190 | // up in the scope containing the constructor's definition. | |||
4191 | // [Note: if the constructor's class contains a member with the | |||
4192 | // same name as a direct or virtual base class of the class, a | |||
4193 | // mem-initializer-id naming the member or base class and composed | |||
4194 | // of a single identifier refers to the class member. A | |||
4195 | // mem-initializer-id for the hidden base class may be specified | |||
4196 | // using a qualified name. ] | |||
4197 | ||||
4198 | // Look for a member, first. | |||
4199 | if (ValueDecl *Member = tryLookupCtorInitMemberDecl( | |||
4200 | ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { | |||
4201 | if (EllipsisLoc.isValid()) | |||
4202 | Diag(EllipsisLoc, diag::err_pack_expansion_member_init) | |||
4203 | << MemberOrBase | |||
4204 | << SourceRange(IdLoc, Init->getSourceRange().getEnd()); | |||
4205 | ||||
4206 | return BuildMemberInitializer(Member, Init, IdLoc); | |||
4207 | } | |||
4208 | // It didn't name a member, so see if it names a class. | |||
4209 | QualType BaseType; | |||
4210 | TypeSourceInfo *TInfo = nullptr; | |||
4211 | ||||
4212 | if (TemplateTypeTy) { | |||
4213 | BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); | |||
4214 | if (BaseType.isNull()) | |||
4215 | return true; | |||
4216 | } else if (DS.getTypeSpecType() == TST_decltype) { | |||
4217 | BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); | |||
4218 | } else if (DS.getTypeSpecType() == TST_decltype_auto) { | |||
4219 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); | |||
4220 | return true; | |||
4221 | } else { | |||
4222 | LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); | |||
4223 | LookupParsedName(R, S, &SS); | |||
4224 | ||||
4225 | TypeDecl *TyD = R.getAsSingle<TypeDecl>(); | |||
4226 | if (!TyD) { | |||
4227 | if (R.isAmbiguous()) return true; | |||
4228 | ||||
4229 | // We don't want access-control diagnostics here. | |||
4230 | R.suppressDiagnostics(); | |||
4231 | ||||
4232 | if (SS.isSet() && isDependentScopeSpecifier(SS)) { | |||
4233 | bool NotUnknownSpecialization = false; | |||
4234 | DeclContext *DC = computeDeclContext(SS, false); | |||
4235 | if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) | |||
4236 | NotUnknownSpecialization = !Record->hasAnyDependentBases(); | |||
4237 | ||||
4238 | if (!NotUnknownSpecialization) { | |||
4239 | // When the scope specifier can refer to a member of an unknown | |||
4240 | // specialization, we take it as a type name. | |||
4241 | BaseType = CheckTypenameType(ETK_None, SourceLocation(), | |||
4242 | SS.getWithLocInContext(Context), | |||
4243 | *MemberOrBase, IdLoc); | |||
4244 | if (BaseType.isNull()) | |||
4245 | return true; | |||
4246 | ||||
4247 | TInfo = Context.CreateTypeSourceInfo(BaseType); | |||
4248 | DependentNameTypeLoc TL = | |||
4249 | TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); | |||
4250 | if (!TL.isNull()) { | |||
4251 | TL.setNameLoc(IdLoc); | |||
4252 | TL.setElaboratedKeywordLoc(SourceLocation()); | |||
4253 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
4254 | } | |||
4255 | ||||
4256 | R.clear(); | |||
4257 | R.setLookupName(MemberOrBase); | |||
4258 | } | |||
4259 | } | |||
4260 | ||||
4261 | // If no results were found, try to correct typos. | |||
4262 | TypoCorrection Corr; | |||
4263 | MemInitializerValidatorCCC CCC(ClassDecl); | |||
4264 | if (R.empty() && BaseType.isNull() && | |||
4265 | (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, | |||
4266 | CCC, CTK_ErrorRecovery, ClassDecl))) { | |||
4267 | if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { | |||
4268 | // We have found a non-static data member with a similar | |||
4269 | // name to what was typed; complain and initialize that | |||
4270 | // member. | |||
4271 | diagnoseTypo(Corr, | |||
4272 | PDiag(diag::err_mem_init_not_member_or_class_suggest) | |||
4273 | << MemberOrBase << true); | |||
4274 | return BuildMemberInitializer(Member, Init, IdLoc); | |||
4275 | } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { | |||
4276 | const CXXBaseSpecifier *DirectBaseSpec; | |||
4277 | const CXXBaseSpecifier *VirtualBaseSpec; | |||
4278 | if (FindBaseInitializer(*this, ClassDecl, | |||
4279 | Context.getTypeDeclType(Type), | |||
4280 | DirectBaseSpec, VirtualBaseSpec)) { | |||
4281 | // We have found a direct or virtual base class with a | |||
4282 | // similar name to what was typed; complain and initialize | |||
4283 | // that base class. | |||
4284 | diagnoseTypo(Corr, | |||
4285 | PDiag(diag::err_mem_init_not_member_or_class_suggest) | |||
4286 | << MemberOrBase << false, | |||
4287 | PDiag() /*Suppress note, we provide our own.*/); | |||
4288 | ||||
4289 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec | |||
4290 | : VirtualBaseSpec; | |||
4291 | Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) | |||
4292 | << BaseSpec->getType() << BaseSpec->getSourceRange(); | |||
4293 | ||||
4294 | TyD = Type; | |||
4295 | } | |||
4296 | } | |||
4297 | } | |||
4298 | ||||
4299 | if (!TyD && BaseType.isNull()) { | |||
4300 | Diag(IdLoc, diag::err_mem_init_not_member_or_class) | |||
4301 | << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); | |||
4302 | return true; | |||
4303 | } | |||
4304 | } | |||
4305 | ||||
4306 | if (BaseType.isNull()) { | |||
4307 | BaseType = Context.getTypeDeclType(TyD); | |||
4308 | MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); | |||
4309 | if (SS.isSet()) { | |||
4310 | BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), | |||
4311 | BaseType); | |||
4312 | TInfo = Context.CreateTypeSourceInfo(BaseType); | |||
4313 | ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); | |||
4314 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); | |||
4315 | TL.setElaboratedKeywordLoc(SourceLocation()); | |||
4316 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
4317 | } | |||
4318 | } | |||
4319 | } | |||
4320 | ||||
4321 | if (!TInfo) | |||
4322 | TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); | |||
4323 | ||||
4324 | return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); | |||
4325 | } | |||
4326 | ||||
4327 | MemInitResult | |||
4328 | Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, | |||
4329 | SourceLocation IdLoc) { | |||
4330 | FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); | |||
4331 | IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); | |||
4332 | assert((DirectMember || IndirectMember) &&((void)0) | |||
4333 | "Member must be a FieldDecl or IndirectFieldDecl")((void)0); | |||
4334 | ||||
4335 | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) | |||
4336 | return true; | |||
4337 | ||||
4338 | if (Member->isInvalidDecl()) | |||
4339 | return true; | |||
4340 | ||||
4341 | MultiExprArg Args; | |||
4342 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | |||
4343 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | |||
4344 | } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { | |||
4345 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); | |||
4346 | } else { | |||
4347 | // Template instantiation doesn't reconstruct ParenListExprs for us. | |||
4348 | Args = Init; | |||
4349 | } | |||
4350 | ||||
4351 | SourceRange InitRange = Init->getSourceRange(); | |||
4352 | ||||
4353 | if (Member->getType()->isDependentType() || Init->isTypeDependent()) { | |||
4354 | // Can't check initialization for a member of dependent type or when | |||
4355 | // any of the arguments are type-dependent expressions. | |||
4356 | DiscardCleanupsInEvaluationContext(); | |||
4357 | } else { | |||
4358 | bool InitList = false; | |||
4359 | if (isa<InitListExpr>(Init)) { | |||
4360 | InitList = true; | |||
4361 | Args = Init; | |||
4362 | } | |||
4363 | ||||
4364 | // Initialize the member. | |||
4365 | InitializedEntity MemberEntity = | |||
4366 | DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) | |||
4367 | : InitializedEntity::InitializeMember(IndirectMember, | |||
4368 | nullptr); | |||
4369 | InitializationKind Kind = | |||
4370 | InitList ? InitializationKind::CreateDirectList( | |||
4371 | IdLoc, Init->getBeginLoc(), Init->getEndLoc()) | |||
4372 | : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), | |||
4373 | InitRange.getEnd()); | |||
4374 | ||||
4375 | InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); | |||
4376 | ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, | |||
4377 | nullptr); | |||
4378 | if (MemberInit.isInvalid()) | |||
4379 | return true; | |||
4380 | ||||
4381 | // C++11 [class.base.init]p7: | |||
4382 | // The initialization of each base and member constitutes a | |||
4383 | // full-expression. | |||
4384 | MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), | |||
4385 | /*DiscardedValue*/ false); | |||
4386 | if (MemberInit.isInvalid()) | |||
4387 | return true; | |||
4388 | ||||
4389 | Init = MemberInit.get(); | |||
4390 | } | |||
4391 | ||||
4392 | if (DirectMember) { | |||
4393 | return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, | |||
4394 | InitRange.getBegin(), Init, | |||
4395 | InitRange.getEnd()); | |||
4396 | } else { | |||
4397 | return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, | |||
4398 | InitRange.getBegin(), Init, | |||
4399 | InitRange.getEnd()); | |||
4400 | } | |||
4401 | } | |||
4402 | ||||
4403 | MemInitResult | |||
4404 | Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, | |||
4405 | CXXRecordDecl *ClassDecl) { | |||
4406 | SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); | |||
4407 | if (!LangOpts.CPlusPlus11) | |||
4408 | return Diag(NameLoc, diag::err_delegating_ctor) | |||
4409 | << TInfo->getTypeLoc().getLocalSourceRange(); | |||
4410 | Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); | |||
4411 | ||||
4412 | bool InitList = true; | |||
4413 | MultiExprArg Args = Init; | |||
4414 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | |||
4415 | InitList = false; | |||
4416 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | |||
4417 | } | |||
4418 | ||||
4419 | SourceRange InitRange = Init->getSourceRange(); | |||
4420 | // Initialize the object. | |||
4421 | InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( | |||
4422 | QualType(ClassDecl->getTypeForDecl(), 0)); | |||
4423 | InitializationKind Kind = | |||
4424 | InitList ? InitializationKind::CreateDirectList( | |||
4425 | NameLoc, Init->getBeginLoc(), Init->getEndLoc()) | |||
4426 | : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), | |||
4427 | InitRange.getEnd()); | |||
4428 | InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); | |||
4429 | ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, | |||
4430 | Args, nullptr); | |||
4431 | if (DelegationInit.isInvalid()) | |||
4432 | return true; | |||
4433 | ||||
4434 | assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((void)0) | |||
4435 | "Delegating constructor with no target?")((void)0); | |||
4436 | ||||
4437 | // C++11 [class.base.init]p7: | |||
4438 | // The initialization of each base and member constitutes a | |||
4439 | // full-expression. | |||
4440 | DelegationInit = ActOnFinishFullExpr( | |||
4441 | DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); | |||
4442 | if (DelegationInit.isInvalid()) | |||
4443 | return true; | |||
4444 | ||||
4445 | // If we are in a dependent context, template instantiation will | |||
4446 | // perform this type-checking again. Just save the arguments that we | |||
4447 | // received in a ParenListExpr. | |||
4448 | // FIXME: This isn't quite ideal, since our ASTs don't capture all | |||
4449 | // of the information that we have about the base | |||
4450 | // initializer. However, deconstructing the ASTs is a dicey process, | |||
4451 | // and this approach is far more likely to get the corner cases right. | |||
4452 | if (CurContext->isDependentContext()) | |||
4453 | DelegationInit = Init; | |||
4454 | ||||
4455 | return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), | |||
4456 | DelegationInit.getAs<Expr>(), | |||
4457 | InitRange.getEnd()); | |||
4458 | } | |||
4459 | ||||
4460 | MemInitResult | |||
4461 | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, | |||
4462 | Expr *Init, CXXRecordDecl *ClassDecl, | |||
4463 | SourceLocation EllipsisLoc) { | |||
4464 | SourceLocation BaseLoc | |||
4465 | = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); | |||
4466 | ||||
4467 | if (!BaseType->isDependentType() && !BaseType->isRecordType()) | |||
4468 | return Diag(BaseLoc, diag::err_base_init_does_not_name_class) | |||
4469 | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | |||
4470 | ||||
4471 | // C++ [class.base.init]p2: | |||
4472 | // [...] Unless the mem-initializer-id names a nonstatic data | |||
4473 | // member of the constructor's class or a direct or virtual base | |||
4474 | // of that class, the mem-initializer is ill-formed. A | |||
4475 | // mem-initializer-list can initialize a base class using any | |||
4476 | // name that denotes that base class type. | |||
4477 | bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); | |||
4478 | ||||
4479 | SourceRange InitRange = Init->getSourceRange(); | |||
4480 | if (EllipsisLoc.isValid()) { | |||
4481 | // This is a pack expansion. | |||
4482 | if (!BaseType->containsUnexpandedParameterPack()) { | |||
4483 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | |||
4484 | << SourceRange(BaseLoc, InitRange.getEnd()); | |||
4485 | ||||
4486 | EllipsisLoc = SourceLocation(); | |||
4487 | } | |||
4488 | } else { | |||
4489 | // Check for any unexpanded parameter packs. | |||
4490 | if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) | |||
4491 | return true; | |||
4492 | ||||
4493 | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) | |||
4494 | return true; | |||
4495 | } | |||
4496 | ||||
4497 | // Check for direct and virtual base classes. | |||
4498 | const CXXBaseSpecifier *DirectBaseSpec = nullptr; | |||
4499 | const CXXBaseSpecifier *VirtualBaseSpec = nullptr; | |||
4500 | if (!Dependent) { | |||
4501 | if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), | |||
4502 | BaseType)) | |||
4503 | return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); | |||
4504 | ||||
4505 | FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, | |||
4506 | VirtualBaseSpec); | |||
4507 | ||||
4508 | // C++ [base.class.init]p2: | |||
4509 | // Unless the mem-initializer-id names a nonstatic data member of the | |||
4510 | // constructor's class or a direct or virtual base of that class, the | |||
4511 | // mem-initializer is ill-formed. | |||
4512 | if (!DirectBaseSpec && !VirtualBaseSpec) { | |||
4513 | // If the class has any dependent bases, then it's possible that | |||
4514 | // one of those types will resolve to the same type as | |||
4515 | // BaseType. Therefore, just treat this as a dependent base | |||
4516 | // class initialization. FIXME: Should we try to check the | |||
4517 | // initialization anyway? It seems odd. | |||
4518 | if (ClassDecl->hasAnyDependentBases()) | |||
4519 | Dependent = true; | |||
4520 | else | |||
4521 | return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) | |||
4522 | << BaseType << Context.getTypeDeclType(ClassDecl) | |||
4523 | << BaseTInfo->getTypeLoc().getLocalSourceRange(); | |||
4524 | } | |||
4525 | } | |||
4526 | ||||
4527 | if (Dependent) { | |||
4528 | DiscardCleanupsInEvaluationContext(); | |||
4529 | ||||
4530 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, | |||
4531 | /*IsVirtual=*/false, | |||
4532 | InitRange.getBegin(), Init, | |||
4533 | InitRange.getEnd(), EllipsisLoc); | |||
4534 | } | |||
4535 | ||||
4536 | // C++ [base.class.init]p2: | |||
4537 | // If a mem-initializer-id is ambiguous because it designates both | |||
4538 | // a direct non-virtual base class and an inherited virtual base | |||
4539 | // class, the mem-initializer is ill-formed. | |||
4540 | if (DirectBaseSpec && VirtualBaseSpec) | |||
4541 | return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) | |||
4542 | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | |||
4543 | ||||
4544 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; | |||
4545 | if (!BaseSpec) | |||
4546 | BaseSpec = VirtualBaseSpec; | |||
4547 | ||||
4548 | // Initialize the base. | |||
4549 | bool InitList = true; | |||
4550 | MultiExprArg Args = Init; | |||
4551 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | |||
4552 | InitList = false; | |||
4553 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | |||
4554 | } | |||
4555 | ||||
4556 | InitializedEntity BaseEntity = | |||
4557 | InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); | |||
4558 | InitializationKind Kind = | |||
4559 | InitList ? InitializationKind::CreateDirectList(BaseLoc) | |||
4560 | : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), | |||
4561 | InitRange.getEnd()); | |||
4562 | InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); | |||
4563 | ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); | |||
4564 | if (BaseInit.isInvalid()) | |||
4565 | return true; | |||
4566 | ||||
4567 | // C++11 [class.base.init]p7: | |||
4568 | // The initialization of each base and member constitutes a | |||
4569 | // full-expression. | |||
4570 | BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), | |||
4571 | /*DiscardedValue*/ false); | |||
4572 | if (BaseInit.isInvalid()) | |||
4573 | return true; | |||
4574 | ||||
4575 | // If we are in a dependent context, template instantiation will | |||
4576 | // perform this type-checking again. Just save the arguments that we | |||
4577 | // received in a ParenListExpr. | |||
4578 | // FIXME: This isn't quite ideal, since our ASTs don't capture all | |||
4579 | // of the information that we have about the base | |||
4580 | // initializer. However, deconstructing the ASTs is a dicey process, | |||
4581 | // and this approach is far more likely to get the corner cases right. | |||
4582 | if (CurContext->isDependentContext()) | |||
4583 | BaseInit = Init; | |||
4584 | ||||
4585 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, | |||
4586 | BaseSpec->isVirtual(), | |||
4587 | InitRange.getBegin(), | |||
4588 | BaseInit.getAs<Expr>(), | |||
4589 | InitRange.getEnd(), EllipsisLoc); | |||
4590 | } | |||
4591 | ||||
4592 | // Create a static_cast\<T&&>(expr). | |||
4593 | static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { | |||
4594 | if (T.isNull()) T = E->getType(); | |||
4595 | QualType TargetType = SemaRef.BuildReferenceType( | |||
4596 | T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); | |||
4597 | SourceLocation ExprLoc = E->getBeginLoc(); | |||
4598 | TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( | |||
4599 | TargetType, ExprLoc); | |||
4600 | ||||
4601 | return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, | |||
4602 | SourceRange(ExprLoc, ExprLoc), | |||
4603 | E->getSourceRange()).get(); | |||
4604 | } | |||
4605 | ||||
4606 | /// ImplicitInitializerKind - How an implicit base or member initializer should | |||
4607 | /// initialize its base or member. | |||
4608 | enum ImplicitInitializerKind { | |||
4609 | IIK_Default, | |||
4610 | IIK_Copy, | |||
4611 | IIK_Move, | |||
4612 | IIK_Inherit | |||
4613 | }; | |||
4614 | ||||
4615 | static bool | |||
4616 | BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | |||
4617 | ImplicitInitializerKind ImplicitInitKind, | |||
4618 | CXXBaseSpecifier *BaseSpec, | |||
4619 | bool IsInheritedVirtualBase, | |||
4620 | CXXCtorInitializer *&CXXBaseInit) { | |||
4621 | InitializedEntity InitEntity | |||
4622 | = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, | |||
4623 | IsInheritedVirtualBase); | |||
4624 | ||||
4625 | ExprResult BaseInit; | |||
4626 | ||||
4627 | switch (ImplicitInitKind) { | |||
4628 | case IIK_Inherit: | |||
4629 | case IIK_Default: { | |||
4630 | InitializationKind InitKind | |||
4631 | = InitializationKind::CreateDefault(Constructor->getLocation()); | |||
4632 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); | |||
4633 | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); | |||
4634 | break; | |||
4635 | } | |||
4636 | ||||
4637 | case IIK_Move: | |||
4638 | case IIK_Copy: { | |||
4639 | bool Moving = ImplicitInitKind == IIK_Move; | |||
4640 | ParmVarDecl *Param = Constructor->getParamDecl(0); | |||
4641 | QualType ParamType = Param->getType().getNonReferenceType(); | |||
4642 | ||||
4643 | Expr *CopyCtorArg = | |||
4644 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), | |||
4645 | SourceLocation(), Param, false, | |||
4646 | Constructor->getLocation(), ParamType, | |||
4647 | VK_LValue, nullptr); | |||
4648 | ||||
4649 | SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); | |||
4650 | ||||
4651 | // Cast to the base class to avoid ambiguities. | |||
4652 | QualType ArgTy = | |||
4653 | SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), | |||
4654 | ParamType.getQualifiers()); | |||
4655 | ||||
4656 | if (Moving) { | |||
4657 | CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); | |||
4658 | } | |||
4659 | ||||
4660 | CXXCastPath BasePath; | |||
4661 | BasePath.push_back(BaseSpec); | |||
4662 | CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, | |||
4663 | CK_UncheckedDerivedToBase, | |||
4664 | Moving ? VK_XValue : VK_LValue, | |||
4665 | &BasePath).get(); | |||
4666 | ||||
4667 | InitializationKind InitKind | |||
4668 | = InitializationKind::CreateDirect(Constructor->getLocation(), | |||
4669 | SourceLocation(), SourceLocation()); | |||
4670 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); | |||
4671 | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); | |||
4672 | break; | |||
4673 | } | |||
4674 | } | |||
4675 | ||||
4676 | BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); | |||
4677 | if (BaseInit.isInvalid()) | |||
4678 | return true; | |||
4679 | ||||
4680 | CXXBaseInit = | |||
4681 | new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | |||
4682 | SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), | |||
4683 | SourceLocation()), | |||
4684 | BaseSpec->isVirtual(), | |||
4685 | SourceLocation(), | |||
4686 | BaseInit.getAs<Expr>(), | |||
4687 | SourceLocation(), | |||
4688 | SourceLocation()); | |||
4689 | ||||
4690 | return false; | |||
4691 | } | |||
4692 | ||||
4693 | static bool RefersToRValueRef(Expr *MemRef) { | |||
4694 | ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); | |||
4695 | return Referenced->getType()->isRValueReferenceType(); | |||
4696 | } | |||
4697 | ||||
4698 | static bool | |||
4699 | BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | |||
4700 | ImplicitInitializerKind ImplicitInitKind, | |||
4701 | FieldDecl *Field, IndirectFieldDecl *Indirect, | |||
4702 | CXXCtorInitializer *&CXXMemberInit) { | |||
4703 | if (Field->isInvalidDecl()) | |||
4704 | return true; | |||
4705 | ||||
4706 | SourceLocation Loc = Constructor->getLocation(); | |||
4707 | ||||
4708 | if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { | |||
4709 | bool Moving = ImplicitInitKind == IIK_Move; | |||
4710 | ParmVarDecl *Param = Constructor->getParamDecl(0); | |||
4711 | QualType ParamType = Param->getType().getNonReferenceType(); | |||
4712 | ||||
4713 | // Suppress copying zero-width bitfields. | |||
4714 | if (Field->isZeroLengthBitField(SemaRef.Context)) | |||
4715 | return false; | |||
4716 | ||||
4717 | Expr *MemberExprBase = | |||
4718 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), | |||
4719 | SourceLocation(), Param, false, | |||
4720 | Loc, ParamType, VK_LValue, nullptr); | |||
4721 | ||||
4722 | SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); | |||
4723 | ||||
4724 | if (Moving) { | |||
4725 | MemberExprBase = CastForMoving(SemaRef, MemberExprBase); | |||
4726 | } | |||
4727 | ||||
4728 | // Build a reference to this field within the parameter. | |||
4729 | CXXScopeSpec SS; | |||
4730 | LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, | |||
4731 | Sema::LookupMemberName); | |||
4732 | MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) | |||
4733 | : cast<ValueDecl>(Field), AS_public); | |||
4734 | MemberLookup.resolveKind(); | |||
4735 | ExprResult CtorArg | |||
4736 | = SemaRef.BuildMemberReferenceExpr(MemberExprBase, | |||
4737 | ParamType, Loc, | |||
4738 | /*IsArrow=*/false, | |||
4739 | SS, | |||
4740 | /*TemplateKWLoc=*/SourceLocation(), | |||
4741 | /*FirstQualifierInScope=*/nullptr, | |||
4742 | MemberLookup, | |||
4743 | /*TemplateArgs=*/nullptr, | |||
4744 | /*S*/nullptr); | |||
4745 | if (CtorArg.isInvalid()) | |||
4746 | return true; | |||
4747 | ||||
4748 | // C++11 [class.copy]p15: | |||
4749 | // - if a member m has rvalue reference type T&&, it is direct-initialized | |||
4750 | // with static_cast<T&&>(x.m); | |||
4751 | if (RefersToRValueRef(CtorArg.get())) { | |||
4752 | CtorArg = CastForMoving(SemaRef, CtorArg.get()); | |||
4753 | } | |||
4754 | ||||
4755 | InitializedEntity Entity = | |||
4756 | Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, | |||
4757 | /*Implicit*/ true) | |||
4758 | : InitializedEntity::InitializeMember(Field, nullptr, | |||
4759 | /*Implicit*/ true); | |||
4760 | ||||
4761 | // Direct-initialize to use the copy constructor. | |||
4762 | InitializationKind InitKind = | |||
4763 | InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); | |||
4764 | ||||
4765 | Expr *CtorArgE = CtorArg.getAs<Expr>(); | |||
4766 | InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); | |||
4767 | ExprResult MemberInit = | |||
4768 | InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); | |||
4769 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); | |||
4770 | if (MemberInit.isInvalid()) | |||
4771 | return true; | |||
4772 | ||||
4773 | if (Indirect) | |||
4774 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( | |||
4775 | SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); | |||
4776 | else | |||
4777 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( | |||
4778 | SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); | |||
4779 | return false; | |||
4780 | } | |||
4781 | ||||
4782 | assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&((void)0) | |||
4783 | "Unhandled implicit init kind!")((void)0); | |||
4784 | ||||
4785 | QualType FieldBaseElementType = | |||
4786 | SemaRef.Context.getBaseElementType(Field->getType()); | |||
4787 | ||||
4788 | if (FieldBaseElementType->isRecordType()) { | |||
4789 | InitializedEntity InitEntity = | |||
4790 | Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, | |||
4791 | /*Implicit*/ true) | |||
4792 | : InitializedEntity::InitializeMember(Field, nullptr, | |||
4793 | /*Implicit*/ true); | |||
4794 | InitializationKind InitKind = | |||
4795 | InitializationKind::CreateDefault(Loc); | |||
4796 | ||||
4797 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); | |||
4798 | ExprResult MemberInit = | |||
4799 | InitSeq.Perform(SemaRef, InitEntity, InitKind, None); | |||
4800 | ||||
4801 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); | |||
4802 | if (MemberInit.isInvalid()) | |||
4803 | return true; | |||
4804 | ||||
4805 | if (Indirect) | |||
4806 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | |||
4807 | Indirect, Loc, | |||
4808 | Loc, | |||
4809 | MemberInit.get(), | |||
4810 | Loc); | |||
4811 | else | |||
4812 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | |||
4813 | Field, Loc, Loc, | |||
4814 | MemberInit.get(), | |||
4815 | Loc); | |||
4816 | return false; | |||
4817 | } | |||
4818 | ||||
4819 | if (!Field->getParent()->isUnion()) { | |||
4820 | if (FieldBaseElementType->isReferenceType()) { | |||
4821 | SemaRef.Diag(Constructor->getLocation(), | |||
4822 | diag::err_uninitialized_member_in_ctor) | |||
4823 | << (int)Constructor->isImplicit() | |||
4824 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) | |||
4825 | << 0 << Field->getDeclName(); | |||
4826 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | |||
4827 | return true; | |||
4828 | } | |||
4829 | ||||
4830 | if (FieldBaseElementType.isConstQualified()) { | |||
4831 | SemaRef.Diag(Constructor->getLocation(), | |||
4832 | diag::err_uninitialized_member_in_ctor) | |||
4833 | << (int)Constructor->isImplicit() | |||
4834 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) | |||
4835 | << 1 << Field->getDeclName(); | |||
4836 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | |||
4837 | return true; | |||
4838 | } | |||
4839 | } | |||
4840 | ||||
4841 | if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { | |||
4842 | // ARC and Weak: | |||
4843 | // Default-initialize Objective-C pointers to NULL. | |||
4844 | CXXMemberInit | |||
4845 | = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, | |||
4846 | Loc, Loc, | |||
4847 | new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), | |||
4848 | Loc); | |||
4849 | return false; | |||
4850 | } | |||
4851 | ||||
4852 | // Nothing to initialize. | |||
4853 | CXXMemberInit = nullptr; | |||
4854 | return false; | |||
4855 | } | |||
4856 | ||||
4857 | namespace { | |||
4858 | struct BaseAndFieldInfo { | |||
4859 | Sema &S; | |||
4860 | CXXConstructorDecl *Ctor; | |||
4861 | bool AnyErrorsInInits; | |||
4862 | ImplicitInitializerKind IIK; | |||
4863 | llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; | |||
4864 | SmallVector<CXXCtorInitializer*, 8> AllToInit; | |||
4865 | llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; | |||
4866 | ||||
4867 | BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) | |||
4868 | : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { | |||
4869 | bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); | |||
4870 | if (Ctor->getInheritedConstructor()) | |||
4871 | IIK = IIK_Inherit; | |||
4872 | else if (Generated && Ctor->isCopyConstructor()) | |||
4873 | IIK = IIK_Copy; | |||
4874 | else if (Generated && Ctor->isMoveConstructor()) | |||
4875 | IIK = IIK_Move; | |||
4876 | else | |||
4877 | IIK = IIK_Default; | |||
4878 | } | |||
4879 | ||||
4880 | bool isImplicitCopyOrMove() const { | |||
4881 | switch (IIK) { | |||
4882 | case IIK_Copy: | |||
4883 | case IIK_Move: | |||
4884 | return true; | |||
4885 | ||||
4886 | case IIK_Default: | |||
4887 | case IIK_Inherit: | |||
4888 | return false; | |||
4889 | } | |||
4890 | ||||
4891 | llvm_unreachable("Invalid ImplicitInitializerKind!")__builtin_unreachable(); | |||
4892 | } | |||
4893 | ||||
4894 | bool addFieldInitializer(CXXCtorInitializer *Init) { | |||
4895 | AllToInit.push_back(Init); | |||
4896 | ||||
4897 | // Check whether this initializer makes the field "used". | |||
4898 | if (Init->getInit()->HasSideEffects(S.Context)) | |||
4899 | S.UnusedPrivateFields.remove(Init->getAnyMember()); | |||
4900 | ||||
4901 | return false; | |||
4902 | } | |||
4903 | ||||
4904 | bool isInactiveUnionMember(FieldDecl *Field) { | |||
4905 | RecordDecl *Record = Field->getParent(); | |||
4906 | if (!Record->isUnion()) | |||
4907 | return false; | |||
4908 | ||||
4909 | if (FieldDecl *Active = | |||
4910 | ActiveUnionMember.lookup(Record->getCanonicalDecl())) | |||
4911 | return Active != Field->getCanonicalDecl(); | |||
4912 | ||||
4913 | // In an implicit copy or move constructor, ignore any in-class initializer. | |||
4914 | if (isImplicitCopyOrMove()) | |||
4915 | return true; | |||
4916 | ||||
4917 | // If there's no explicit initialization, the field is active only if it | |||
4918 | // has an in-class initializer... | |||
4919 | if (Field->hasInClassInitializer()) | |||
4920 | return false; | |||
4921 | // ... or it's an anonymous struct or union whose class has an in-class | |||
4922 | // initializer. | |||
4923 | if (!Field->isAnonymousStructOrUnion()) | |||
4924 | return true; | |||
4925 | CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); | |||
4926 | return !FieldRD->hasInClassInitializer(); | |||
4927 | } | |||
4928 | ||||
4929 | /// Determine whether the given field is, or is within, a union member | |||
4930 | /// that is inactive (because there was an initializer given for a different | |||
4931 | /// member of the union, or because the union was not initialized at all). | |||
4932 | bool isWithinInactiveUnionMember(FieldDecl *Field, | |||
4933 | IndirectFieldDecl *Indirect) { | |||
4934 | if (!Indirect) | |||
4935 | return isInactiveUnionMember(Field); | |||
4936 | ||||
4937 | for (auto *C : Indirect->chain()) { | |||
4938 | FieldDecl *Field = dyn_cast<FieldDecl>(C); | |||
4939 | if (Field && isInactiveUnionMember(Field)) | |||
4940 | return true; | |||
4941 | } | |||
4942 | return false; | |||
4943 | } | |||
4944 | }; | |||
4945 | } | |||
4946 | ||||
4947 | /// Determine whether the given type is an incomplete or zero-lenfgth | |||
4948 | /// array type. | |||
4949 | static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { | |||
4950 | if (T->isIncompleteArrayType()) | |||
4951 | return true; | |||
4952 | ||||
4953 | while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { | |||
4954 | if (!ArrayT->getSize()) | |||
4955 | return true; | |||
4956 | ||||
4957 | T = ArrayT->getElementType(); | |||
4958 | } | |||
4959 | ||||
4960 | return false; | |||
4961 | } | |||
4962 | ||||
4963 | static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, | |||
4964 | FieldDecl *Field, | |||
4965 | IndirectFieldDecl *Indirect = nullptr) { | |||
4966 | if (Field->isInvalidDecl()) | |||
4967 | return false; | |||
4968 | ||||
4969 | // Overwhelmingly common case: we have a direct initializer for this field. | |||
4970 | if (CXXCtorInitializer *Init = | |||
4971 | Info.AllBaseFields.lookup(Field->getCanonicalDecl())) | |||
4972 | return Info.addFieldInitializer(Init); | |||
4973 | ||||
4974 | // C++11 [class.base.init]p8: | |||
4975 | // if the entity is a non-static data member that has a | |||
4976 | // brace-or-equal-initializer and either | |||
4977 | // -- the constructor's class is a union and no other variant member of that | |||
4978 | // union is designated by a mem-initializer-id or | |||
4979 | // -- the constructor's class is not a union, and, if the entity is a member | |||
4980 | // of an anonymous union, no other member of that union is designated by | |||
4981 | // a mem-initializer-id, | |||
4982 | // the entity is initialized as specified in [dcl.init]. | |||
4983 | // | |||
4984 | // We also apply the same rules to handle anonymous structs within anonymous | |||
4985 | // unions. | |||
4986 | if (Info.isWithinInactiveUnionMember(Field, Indirect)) | |||
4987 | return false; | |||
4988 | ||||
4989 | if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { | |||
4990 | ExprResult DIE = | |||
4991 | SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); | |||
4992 | if (DIE.isInvalid()) | |||
4993 | return true; | |||
4994 | ||||
4995 | auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); | |||
4996 | SemaRef.checkInitializerLifetime(Entity, DIE.get()); | |||
4997 | ||||
4998 | CXXCtorInitializer *Init; | |||
4999 | if (Indirect) | |||
5000 | Init = new (SemaRef.Context) | |||
5001 | CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), | |||
5002 | SourceLocation(), DIE.get(), SourceLocation()); | |||
5003 | else | |||
5004 | Init = new (SemaRef.Context) | |||
5005 | CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), | |||
5006 | SourceLocation(), DIE.get(), SourceLocation()); | |||
5007 | return Info.addFieldInitializer(Init); | |||
5008 | } | |||
5009 | ||||
5010 | // Don't initialize incomplete or zero-length arrays. | |||
5011 | if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) | |||
5012 | return false; | |||
5013 | ||||
5014 | // Don't try to build an implicit initializer if there were semantic | |||
5015 | // errors in any of the initializers (and therefore we might be | |||
5016 | // missing some that the user actually wrote). | |||
5017 | if (Info.AnyErrorsInInits) | |||
5018 | return false; | |||
5019 | ||||
5020 | CXXCtorInitializer *Init = nullptr; | |||
5021 | if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, | |||
5022 | Indirect, Init)) | |||
5023 | return true; | |||
5024 | ||||
5025 | if (!Init) | |||
5026 | return false; | |||
5027 | ||||
5028 | return Info.addFieldInitializer(Init); | |||
5029 | } | |||
5030 | ||||
5031 | bool | |||
5032 | Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, | |||
5033 | CXXCtorInitializer *Initializer) { | |||
5034 | assert(Initializer->isDelegatingInitializer())((void)0); | |||
5035 | Constructor->setNumCtorInitializers(1); | |||
5036 | CXXCtorInitializer **initializer = | |||
5037 | new (Context) CXXCtorInitializer*[1]; | |||
5038 | memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); | |||
5039 | Constructor->setCtorInitializers(initializer); | |||
5040 | ||||
5041 | if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { | |||
5042 | MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); | |||
5043 | DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); | |||
5044 | } | |||
5045 | ||||
5046 | DelegatingCtorDecls.push_back(Constructor); | |||
5047 | ||||
5048 | DiagnoseUninitializedFields(*this, Constructor); | |||
5049 | ||||
5050 | return false; | |||
5051 | } | |||
5052 | ||||
5053 | bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, | |||
5054 | ArrayRef<CXXCtorInitializer *> Initializers) { | |||
5055 | if (Constructor->isDependentContext()) { | |||
5056 | // Just store the initializers as written, they will be checked during | |||
5057 | // instantiation. | |||
5058 | if (!Initializers.empty()) { | |||
5059 | Constructor->setNumCtorInitializers(Initializers.size()); | |||
5060 | CXXCtorInitializer **baseOrMemberInitializers = | |||
5061 | new (Context) CXXCtorInitializer*[Initializers.size()]; | |||
5062 | memcpy(baseOrMemberInitializers, Initializers.data(), | |||
5063 | Initializers.size() * sizeof(CXXCtorInitializer*)); | |||
5064 | Constructor->setCtorInitializers(baseOrMemberInitializers); | |||
5065 | } | |||
5066 | ||||
5067 | // Let template instantiation know whether we had errors. | |||
5068 | if (AnyErrors) | |||
5069 | Constructor->setInvalidDecl(); | |||
5070 | ||||
5071 | return false; | |||
5072 | } | |||
5073 | ||||
5074 | BaseAndFieldInfo Info(*this, Constructor, AnyErrors); | |||
5075 | ||||
5076 | // We need to build the initializer AST according to order of construction | |||
5077 | // and not what user specified in the Initializers list. | |||
5078 | CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); | |||
5079 | if (!ClassDecl) | |||
5080 | return true; | |||
5081 | ||||
5082 | bool HadError = false; | |||
5083 | ||||
5084 | for (unsigned i = 0; i < Initializers.size(); i++) { | |||
5085 | CXXCtorInitializer *Member = Initializers[i]; | |||
5086 | ||||
5087 | if (Member->isBaseInitializer()) | |||
5088 | Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; | |||
5089 | else { | |||
5090 | Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; | |||
5091 | ||||
5092 | if (IndirectFieldDecl *F = Member->getIndirectMember()) { | |||
5093 | for (auto *C : F->chain()) { | |||
5094 | FieldDecl *FD = dyn_cast<FieldDecl>(C); | |||
5095 | if (FD && FD->getParent()->isUnion()) | |||
5096 | Info.ActiveUnionMember.insert(std::make_pair( | |||
5097 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); | |||
5098 | } | |||
5099 | } else if (FieldDecl *FD = Member->getMember()) { | |||
5100 | if (FD->getParent()->isUnion()) | |||
5101 | Info.ActiveUnionMember.insert(std::make_pair( | |||
5102 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); | |||
5103 | } | |||
5104 | } | |||
5105 | } | |||
5106 | ||||
5107 | // Keep track of the direct virtual bases. | |||
5108 | llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; | |||
5109 | for (auto &I : ClassDecl->bases()) { | |||
5110 | if (I.isVirtual()) | |||
5111 | DirectVBases.insert(&I); | |||
5112 | } | |||
5113 | ||||
5114 | // Push virtual bases before others. | |||
5115 | for (auto &VBase : ClassDecl->vbases()) { | |||
5116 | if (CXXCtorInitializer *Value | |||
5117 | = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { | |||
5118 | // [class.base.init]p7, per DR257: | |||
5119 | // A mem-initializer where the mem-initializer-id names a virtual base | |||
5120 | // class is ignored during execution of a constructor of any class that | |||
5121 | // is not the most derived class. | |||
5122 | if (ClassDecl->isAbstract()) { | |||
5123 | // FIXME: Provide a fixit to remove the base specifier. This requires | |||
5124 | // tracking the location of the associated comma for a base specifier. | |||
5125 | Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) | |||
5126 | << VBase.getType() << ClassDecl; | |||
5127 | DiagnoseAbstractType(ClassDecl); | |||
5128 | } | |||
5129 | ||||
5130 | Info.AllToInit.push_back(Value); | |||
5131 | } else if (!AnyErrors && !ClassDecl->isAbstract()) { | |||
5132 | // [class.base.init]p8, per DR257: | |||
5133 | // If a given [...] base class is not named by a mem-initializer-id | |||
5134 | // [...] and the entity is not a virtual base class of an abstract | |||
5135 | // class, then [...] the entity is default-initialized. | |||
5136 | bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); | |||
5137 | CXXCtorInitializer *CXXBaseInit; | |||
5138 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | |||
5139 | &VBase, IsInheritedVirtualBase, | |||
5140 | CXXBaseInit)) { | |||
5141 | HadError = true; | |||
5142 | continue; | |||
5143 | } | |||
5144 | ||||
5145 | Info.AllToInit.push_back(CXXBaseInit); | |||
5146 | } | |||
5147 | } | |||
5148 | ||||
5149 | // Non-virtual bases. | |||
5150 | for (auto &Base : ClassDecl->bases()) { | |||
5151 | // Virtuals are in the virtual base list and already constructed. | |||
5152 | if (Base.isVirtual()) | |||
5153 | continue; | |||
5154 | ||||
5155 | if (CXXCtorInitializer *Value | |||
5156 | = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { | |||
5157 | Info.AllToInit.push_back(Value); | |||
5158 | } else if (!AnyErrors) { | |||
5159 | CXXCtorInitializer *CXXBaseInit; | |||
5160 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | |||
5161 | &Base, /*IsInheritedVirtualBase=*/false, | |||
5162 | CXXBaseInit)) { | |||
5163 | HadError = true; | |||
5164 | continue; | |||
5165 | } | |||
5166 | ||||
5167 | Info.AllToInit.push_back(CXXBaseInit); | |||
5168 | } | |||
5169 | } | |||
5170 | ||||
5171 | // Fields. | |||
5172 | for (auto *Mem : ClassDecl->decls()) { | |||
5173 | if (auto *F = dyn_cast<FieldDecl>(Mem)) { | |||
5174 | // C++ [class.bit]p2: | |||
5175 | // A declaration for a bit-field that omits the identifier declares an | |||
5176 | // unnamed bit-field. Unnamed bit-fields are not members and cannot be | |||
5177 | // initialized. | |||
5178 | if (F->isUnnamedBitfield()) | |||
5179 | continue; | |||
5180 | ||||
5181 | // If we're not generating the implicit copy/move constructor, then we'll | |||
5182 | // handle anonymous struct/union fields based on their individual | |||
5183 | // indirect fields. | |||
5184 | if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) | |||
5185 | continue; | |||
5186 | ||||
5187 | if (CollectFieldInitializer(*this, Info, F)) | |||
5188 | HadError = true; | |||
5189 | continue; | |||
5190 | } | |||
5191 | ||||
5192 | // Beyond this point, we only consider default initialization. | |||
5193 | if (Info.isImplicitCopyOrMove()) | |||
5194 | continue; | |||
5195 | ||||
5196 | if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { | |||
5197 | if (F->getType()->isIncompleteArrayType()) { | |||
5198 | assert(ClassDecl->hasFlexibleArrayMember() &&((void)0) | |||
5199 | "Incomplete array type is not valid")((void)0); | |||
5200 | continue; | |||
5201 | } | |||
5202 | ||||
5203 | // Initialize each field of an anonymous struct individually. | |||
5204 | if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) | |||
5205 | HadError = true; | |||
5206 | ||||
5207 | continue; | |||
5208 | } | |||
5209 | } | |||
5210 | ||||
5211 | unsigned NumInitializers = Info.AllToInit.size(); | |||
5212 | if (NumInitializers > 0) { | |||
5213 | Constructor->setNumCtorInitializers(NumInitializers); | |||
5214 | CXXCtorInitializer **baseOrMemberInitializers = | |||
5215 | new (Context) CXXCtorInitializer*[NumInitializers]; | |||
5216 | memcpy(baseOrMemberInitializers, Info.AllToInit.data(), | |||
5217 | NumInitializers * sizeof(CXXCtorInitializer*)); | |||
5218 | Constructor->setCtorInitializers(baseOrMemberInitializers); | |||
5219 | ||||
5220 | // Constructors implicitly reference the base and member | |||
5221 | // destructors. | |||
5222 | MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), | |||
5223 | Constructor->getParent()); | |||
5224 | } | |||
5225 | ||||
5226 | return HadError; | |||
5227 | } | |||
5228 | ||||
5229 | static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { | |||
5230 | if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { | |||
5231 | const RecordDecl *RD = RT->getDecl(); | |||
5232 | if (RD->isAnonymousStructOrUnion()) { | |||
5233 | for (auto *Field : RD->fields()) | |||
5234 | PopulateKeysForFields(Field, IdealInits); | |||
5235 | return; | |||
5236 | } | |||
5237 | } | |||
5238 | IdealInits.push_back(Field->getCanonicalDecl()); | |||
5239 | } | |||
5240 | ||||
5241 | static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { | |||
5242 | return Context.getCanonicalType(BaseType).getTypePtr(); | |||
5243 | } | |||
5244 | ||||
5245 | static const void *GetKeyForMember(ASTContext &Context, | |||
5246 | CXXCtorInitializer *Member) { | |||
5247 | if (!Member->isAnyMemberInitializer()) | |||
5248 | return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); | |||
5249 | ||||
5250 | return Member->getAnyMember()->getCanonicalDecl(); | |||
5251 | } | |||
5252 | ||||
5253 | static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, | |||
5254 | const CXXCtorInitializer *Previous, | |||
5255 | const CXXCtorInitializer *Current) { | |||
5256 | if (Previous->isAnyMemberInitializer()) | |||
5257 | Diag << 0 << Previous->getAnyMember(); | |||
5258 | else | |||
5259 | Diag << 1 << Previous->getTypeSourceInfo()->getType(); | |||
5260 | ||||
5261 | if (Current->isAnyMemberInitializer()) | |||
5262 | Diag << 0 << Current->getAnyMember(); | |||
5263 | else | |||
5264 | Diag << 1 << Current->getTypeSourceInfo()->getType(); | |||
5265 | } | |||
5266 | ||||
5267 | static void DiagnoseBaseOrMemInitializerOrder( | |||
5268 | Sema &SemaRef, const CXXConstructorDecl *Constructor, | |||
5269 | ArrayRef<CXXCtorInitializer *> Inits) { | |||
5270 | if (Constructor->getDeclContext()->isDependentContext()) | |||
5271 | return; | |||
5272 | ||||
5273 | // Don't check initializers order unless the warning is enabled at the | |||
5274 | // location of at least one initializer. | |||
5275 | bool ShouldCheckOrder = false; | |||
5276 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { | |||
5277 | CXXCtorInitializer *Init = Inits[InitIndex]; | |||
5278 | if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, | |||
5279 | Init->getSourceLocation())) { | |||
5280 | ShouldCheckOrder = true; | |||
5281 | break; | |||
5282 | } | |||
5283 | } | |||
5284 | if (!ShouldCheckOrder) | |||
5285 | return; | |||
5286 | ||||
5287 | // Build the list of bases and members in the order that they'll | |||
5288 | // actually be initialized. The explicit initializers should be in | |||
5289 | // this same order but may be missing things. | |||
5290 | SmallVector<const void*, 32> IdealInitKeys; | |||
5291 | ||||
5292 | const CXXRecordDecl *ClassDecl = Constructor->getParent(); | |||
5293 | ||||
5294 | // 1. Virtual bases. | |||
5295 | for (const auto &VBase : ClassDecl->vbases()) | |||
5296 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); | |||
5297 | ||||
5298 | // 2. Non-virtual bases. | |||
5299 | for (const auto &Base : ClassDecl->bases()) { | |||
5300 | if (Base.isVirtual()) | |||
5301 | continue; | |||
5302 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); | |||
5303 | } | |||
5304 | ||||
5305 | // 3. Direct fields. | |||
5306 | for (auto *Field : ClassDecl->fields()) { | |||
5307 | if (Field->isUnnamedBitfield()) | |||
5308 | continue; | |||
5309 | ||||
5310 | PopulateKeysForFields(Field, IdealInitKeys); | |||
5311 | } | |||
5312 | ||||
5313 | unsigned NumIdealInits = IdealInitKeys.size(); | |||
5314 | unsigned IdealIndex = 0; | |||
5315 | ||||
5316 | // Track initializers that are in an incorrect order for either a warning or | |||
5317 | // note if multiple ones occur. | |||
5318 | SmallVector<unsigned> WarnIndexes; | |||
5319 | // Correlates the index of an initializer in the init-list to the index of | |||
5320 | // the field/base in the class. | |||
5321 | SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; | |||
5322 | ||||
5323 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { | |||
5324 | const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); | |||
5325 | ||||
5326 | // Scan forward to try to find this initializer in the idealized | |||
5327 | // initializers list. | |||
5328 | for (; IdealIndex != NumIdealInits; ++IdealIndex) | |||
5329 | if (InitKey == IdealInitKeys[IdealIndex]) | |||
5330 | break; | |||
5331 | ||||
5332 | // If we didn't find this initializer, it must be because we | |||
5333 | // scanned past it on a previous iteration. That can only | |||
5334 | // happen if we're out of order; emit a warning. | |||
5335 | if (IdealIndex == NumIdealInits && InitIndex) { | |||
5336 | WarnIndexes.push_back(InitIndex); | |||
5337 | ||||
5338 | // Move back to the initializer's location in the ideal list. | |||
5339 | for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) | |||
5340 | if (InitKey == IdealInitKeys[IdealIndex]) | |||
5341 | break; | |||
5342 | ||||
5343 | assert(IdealIndex < NumIdealInits &&((void)0) | |||
5344 | "initializer not found in initializer list")((void)0); | |||
5345 | } | |||
5346 | CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); | |||
5347 | } | |||
5348 | ||||
5349 | if (WarnIndexes.empty()) | |||
5350 | return; | |||
5351 | ||||
5352 | // Sort based on the ideal order, first in the pair. | |||
5353 | llvm::sort(CorrelatedInitOrder, | |||
5354 | [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; }); | |||
5355 | ||||
5356 | // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to | |||
5357 | // emit the diagnostic before we can try adding notes. | |||
5358 | { | |||
5359 | Sema::SemaDiagnosticBuilder D = SemaRef.Diag( | |||
5360 | Inits[WarnIndexes.front() - 1]->getSourceLocation(), | |||
5361 | WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order | |||
5362 | : diag::warn_some_initializers_out_of_order); | |||
5363 | ||||
5364 | for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { | |||
5365 | if (CorrelatedInitOrder[I].second == I) | |||
5366 | continue; | |||
5367 | // Ideally we would be using InsertFromRange here, but clang doesn't | |||
5368 | // appear to handle InsertFromRange correctly when the source range is | |||
5369 | // modified by another fix-it. | |||
5370 | D << FixItHint::CreateReplacement( | |||
5371 | Inits[I]->getSourceRange(), | |||
5372 | Lexer::getSourceText( | |||
5373 | CharSourceRange::getTokenRange( | |||
5374 | Inits[CorrelatedInitOrder[I].second]->getSourceRange()), | |||
5375 | SemaRef.getSourceManager(), SemaRef.getLangOpts())); | |||
5376 | } | |||
5377 | ||||
5378 | // If there is only 1 item out of order, the warning expects the name and | |||
5379 | // type of each being added to it. | |||
5380 | if (WarnIndexes.size() == 1) { | |||
5381 | AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], | |||
5382 | Inits[WarnIndexes.front()]); | |||
5383 | return; | |||
5384 | } | |||
5385 | } | |||
5386 | // More than 1 item to warn, create notes letting the user know which ones | |||
5387 | // are bad. | |||
5388 | for (unsigned WarnIndex : WarnIndexes) { | |||
5389 | const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; | |||
5390 | auto D = SemaRef.Diag(PrevInit->getSourceLocation(), | |||
5391 | diag::note_initializer_out_of_order); | |||
5392 | AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); | |||
5393 | D << PrevInit->getSourceRange(); | |||
5394 | } | |||
5395 | } | |||
5396 | ||||
5397 | namespace { | |||
5398 | bool CheckRedundantInit(Sema &S, | |||
5399 | CXXCtorInitializer *Init, | |||
5400 | CXXCtorInitializer *&PrevInit) { | |||
5401 | if (!PrevInit) { | |||
5402 | PrevInit = Init; | |||
5403 | return false; | |||
5404 | } | |||
5405 | ||||
5406 | if (FieldDecl *Field = Init->getAnyMember()) | |||
5407 | S.Diag(Init->getSourceLocation(), | |||
5408 | diag::err_multiple_mem_initialization) | |||
5409 | << Field->getDeclName() | |||
5410 | << Init->getSourceRange(); | |||
5411 | else { | |||
5412 | const Type *BaseClass = Init->getBaseClass(); | |||
5413 | assert(BaseClass && "neither field nor base")((void)0); | |||
5414 | S.Diag(Init->getSourceLocation(), | |||
5415 | diag::err_multiple_base_initialization) | |||
5416 | << QualType(BaseClass, 0) | |||
5417 | << Init->getSourceRange(); | |||
5418 | } | |||
5419 | S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) | |||
5420 | << 0 << PrevInit->getSourceRange(); | |||
5421 | ||||
5422 | return true; | |||
5423 | } | |||
5424 | ||||
5425 | typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; | |||
5426 | typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; | |||
5427 | ||||
5428 | bool CheckRedundantUnionInit(Sema &S, | |||
5429 | CXXCtorInitializer *Init, | |||
5430 | RedundantUnionMap &Unions) { | |||
5431 | FieldDecl *Field = Init->getAnyMember(); | |||
5432 | RecordDecl *Parent = Field->getParent(); | |||
5433 | NamedDecl *Child = Field; | |||
5434 | ||||
5435 | while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { | |||
5436 | if (Parent->isUnion()) { | |||
5437 | UnionEntry &En = Unions[Parent]; | |||
5438 | if (En.first && En.first != Child) { | |||
5439 | S.Diag(Init->getSourceLocation(), | |||
5440 | diag::err_multiple_mem_union_initialization) | |||
5441 | << Field->getDeclName() | |||
5442 | << Init->getSourceRange(); | |||
5443 | S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) | |||
5444 | << 0 << En.second->getSourceRange(); | |||
5445 | return true; | |||
5446 | } | |||
5447 | if (!En.first) { | |||
5448 | En.first = Child; | |||
5449 | En.second = Init; | |||
5450 | } | |||
5451 | if (!Parent->isAnonymousStructOrUnion()) | |||
5452 | return false; | |||
5453 | } | |||
5454 | ||||
5455 | Child = Parent; | |||
5456 | Parent = cast<RecordDecl>(Parent->getDeclContext()); | |||
5457 | } | |||
5458 | ||||
5459 | return false; | |||
5460 | } | |||
5461 | } // namespace | |||
5462 | ||||
5463 | /// ActOnMemInitializers - Handle the member initializers for a constructor. | |||
5464 | void Sema::ActOnMemInitializers(Decl *ConstructorDecl, | |||
5465 | SourceLocation ColonLoc, | |||
5466 | ArrayRef<CXXCtorInitializer*> MemInits, | |||
5467 | bool AnyErrors) { | |||
5468 | if (!ConstructorDecl) | |||
5469 | return; | |||
5470 | ||||
5471 | AdjustDeclIfTemplate(ConstructorDecl); | |||
5472 | ||||
5473 | CXXConstructorDecl *Constructor | |||
5474 | = dyn_cast<CXXConstructorDecl>(ConstructorDecl); | |||
5475 | ||||
5476 | if (!Constructor) { | |||
5477 | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); | |||
5478 | return; | |||
5479 | } | |||
5480 | ||||
5481 | // Mapping for the duplicate initializers check. | |||
5482 | // For member initializers, this is keyed with a FieldDecl*. | |||
5483 | // For base initializers, this is keyed with a Type*. | |||
5484 | llvm::DenseMap<const void *, CXXCtorInitializer *> Members; | |||
5485 | ||||
5486 | // Mapping for the inconsistent anonymous-union initializers check. | |||
5487 | RedundantUnionMap MemberUnions; | |||
5488 | ||||
5489 | bool HadError = false; | |||
5490 | for (unsigned i = 0; i < MemInits.size(); i++) { | |||
5491 | CXXCtorInitializer *Init = MemInits[i]; | |||
5492 | ||||
5493 | // Set the source order index. | |||
5494 | Init->setSourceOrder(i); | |||
5495 | ||||
5496 | if (Init->isAnyMemberInitializer()) { | |||
5497 | const void *Key = GetKeyForMember(Context, Init); | |||
5498 | if (CheckRedundantInit(*this, Init, Members[Key]) || | |||
5499 | CheckRedundantUnionInit(*this, Init, MemberUnions)) | |||
5500 | HadError = true; | |||
5501 | } else if (Init->isBaseInitializer()) { | |||
5502 | const void *Key = GetKeyForMember(Context, Init); | |||
5503 | if (CheckRedundantInit(*this, Init, Members[Key])) | |||
5504 | HadError = true; | |||
5505 | } else { | |||
5506 | assert(Init->isDelegatingInitializer())((void)0); | |||
5507 | // This must be the only initializer | |||
5508 | if (MemInits.size() != 1) { | |||
5509 | Diag(Init->getSourceLocation(), | |||
5510 | diag::err_delegating_initializer_alone) | |||
5511 | << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); | |||
5512 | // We will treat this as being the only initializer. | |||
5513 | } | |||
5514 | SetDelegatingInitializer(Constructor, MemInits[i]); | |||
5515 | // Return immediately as the initializer is set. | |||
5516 | return; | |||
5517 | } | |||
5518 | } | |||
5519 | ||||
5520 | if (HadError) | |||
5521 | return; | |||
5522 | ||||
5523 | DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); | |||
5524 | ||||
5525 | SetCtorInitializers(Constructor, AnyErrors, MemInits); | |||
5526 | ||||
5527 | DiagnoseUninitializedFields(*this, Constructor); | |||
5528 | } | |||
5529 | ||||
5530 | void | |||
5531 | Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, | |||
5532 | CXXRecordDecl *ClassDecl) { | |||
5533 | // Ignore dependent contexts. Also ignore unions, since their members never | |||
5534 | // have destructors implicitly called. | |||
5535 | if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) | |||
5536 | return; | |||
5537 | ||||
5538 | // FIXME: all the access-control diagnostics are positioned on the | |||
5539 | // field/base declaration. That's probably good; that said, the | |||
5540 | // user might reasonably want to know why the destructor is being | |||
5541 | // emitted, and we currently don't say. | |||
5542 | ||||
5543 | // Non-static data members. | |||
5544 | for (auto *Field : ClassDecl->fields()) { | |||
5545 | if (Field->isInvalidDecl()) | |||
5546 | continue; | |||
5547 | ||||
5548 | // Don't destroy incomplete or zero-length arrays. | |||
5549 | if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) | |||
5550 | continue; | |||
5551 | ||||
5552 | QualType FieldType = Context.getBaseElementType(Field->getType()); | |||
5553 | ||||
5554 | const RecordType* RT = FieldType->getAs<RecordType>(); | |||
5555 | if (!RT) | |||
5556 | continue; | |||
5557 | ||||
5558 | CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | |||
5559 | if (FieldClassDecl->isInvalidDecl()) | |||
5560 | continue; | |||
5561 | if (FieldClassDecl->hasIrrelevantDestructor()) | |||
5562 | continue; | |||
5563 | // The destructor for an implicit anonymous union member is never invoked. | |||
5564 | if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) | |||
5565 | continue; | |||
5566 | ||||
5567 | CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); | |||
5568 | assert(Dtor && "No dtor found for FieldClassDecl!")((void)0); | |||
5569 | CheckDestructorAccess(Field->getLocation(), Dtor, | |||
5570 | PDiag(diag::err_access_dtor_field) | |||
5571 | << Field->getDeclName() | |||
5572 | << FieldType); | |||
5573 | ||||
5574 | MarkFunctionReferenced(Location, Dtor); | |||
5575 | DiagnoseUseOfDecl(Dtor, Location); | |||
5576 | } | |||
5577 | ||||
5578 | // We only potentially invoke the destructors of potentially constructed | |||
5579 | // subobjects. | |||
5580 | bool VisitVirtualBases = !ClassDecl->isAbstract(); | |||
5581 | ||||
5582 | // If the destructor exists and has already been marked used in the MS ABI, | |||
5583 | // then virtual base destructors have already been checked and marked used. | |||
5584 | // Skip checking them again to avoid duplicate diagnostics. | |||
5585 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
5586 | CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); | |||
5587 | if (Dtor && Dtor->isUsed()) | |||
5588 | VisitVirtualBases = false; | |||
5589 | } | |||
5590 | ||||
5591 | llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; | |||
5592 | ||||
5593 | // Bases. | |||
5594 | for (const auto &Base : ClassDecl->bases()) { | |||
5595 | const RecordType *RT = Base.getType()->getAs<RecordType>(); | |||
5596 | if (!RT) | |||
5597 | continue; | |||
5598 | ||||
5599 | // Remember direct virtual bases. | |||
5600 | if (Base.isVirtual()) { | |||
5601 | if (!VisitVirtualBases) | |||
5602 | continue; | |||
5603 | DirectVirtualBases.insert(RT); | |||
5604 | } | |||
5605 | ||||
5606 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | |||
5607 | // If our base class is invalid, we probably can't get its dtor anyway. | |||
5608 | if (BaseClassDecl->isInvalidDecl()) | |||
5609 | continue; | |||
5610 | if (BaseClassDecl->hasIrrelevantDestructor()) | |||
5611 | continue; | |||
5612 | ||||
5613 | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | |||
5614 | assert(Dtor && "No dtor found for BaseClassDecl!")((void)0); | |||
5615 | ||||
5616 | // FIXME: caret should be on the start of the class name | |||
5617 | CheckDestructorAccess(Base.getBeginLoc(), Dtor, | |||
5618 | PDiag(diag::err_access_dtor_base) | |||
5619 | << Base.getType() << Base.getSourceRange(), | |||
5620 | Context.getTypeDeclType(ClassDecl)); | |||
5621 | ||||
5622 | MarkFunctionReferenced(Location, Dtor); | |||
5623 | DiagnoseUseOfDecl(Dtor, Location); | |||
5624 | } | |||
5625 | ||||
5626 | if (VisitVirtualBases) | |||
5627 | MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, | |||
5628 | &DirectVirtualBases); | |||
5629 | } | |||
5630 | ||||
5631 | void Sema::MarkVirtualBaseDestructorsReferenced( | |||
5632 | SourceLocation Location, CXXRecordDecl *ClassDecl, | |||
5633 | llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { | |||
5634 | // Virtual bases. | |||
5635 | for (const auto &VBase : ClassDecl->vbases()) { | |||
5636 | // Bases are always records in a well-formed non-dependent class. | |||
5637 | const RecordType *RT = VBase.getType()->castAs<RecordType>(); | |||
5638 | ||||
5639 | // Ignore already visited direct virtual bases. | |||
5640 | if (DirectVirtualBases && DirectVirtualBases->count(RT)) | |||
5641 | continue; | |||
5642 | ||||
5643 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | |||
5644 | // If our base class is invalid, we probably can't get its dtor anyway. | |||
5645 | if (BaseClassDecl->isInvalidDecl()) | |||
5646 | continue; | |||
5647 | if (BaseClassDecl->hasIrrelevantDestructor()) | |||
5648 | continue; | |||
5649 | ||||
5650 | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | |||
5651 | assert(Dtor && "No dtor found for BaseClassDecl!")((void)0); | |||
5652 | if (CheckDestructorAccess( | |||
5653 | ClassDecl->getLocation(), Dtor, | |||
5654 | PDiag(diag::err_access_dtor_vbase) | |||
5655 | << Context.getTypeDeclType(ClassDecl) << VBase.getType(), | |||
5656 | Context.getTypeDeclType(ClassDecl)) == | |||
5657 | AR_accessible) { | |||
5658 | CheckDerivedToBaseConversion( | |||
5659 | Context.getTypeDeclType(ClassDecl), VBase.getType(), | |||
5660 | diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), | |||
5661 | SourceRange(), DeclarationName(), nullptr); | |||
5662 | } | |||
5663 | ||||
5664 | MarkFunctionReferenced(Location, Dtor); | |||
5665 | DiagnoseUseOfDecl(Dtor, Location); | |||
5666 | } | |||
5667 | } | |||
5668 | ||||
5669 | void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { | |||
5670 | if (!CDtorDecl) | |||
5671 | return; | |||
5672 | ||||
5673 | if (CXXConstructorDecl *Constructor | |||
5674 | = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { | |||
5675 | SetCtorInitializers(Constructor, /*AnyErrors=*/false); | |||
5676 | DiagnoseUninitializedFields(*this, Constructor); | |||
5677 | } | |||
5678 | } | |||
5679 | ||||
5680 | bool Sema::isAbstractType(SourceLocation Loc, QualType T) { | |||
5681 | if (!getLangOpts().CPlusPlus) | |||
5682 | return false; | |||
5683 | ||||
5684 | const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); | |||
5685 | if (!RD) | |||
5686 | return false; | |||
5687 | ||||
5688 | // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a | |||
5689 | // class template specialization here, but doing so breaks a lot of code. | |||
5690 | ||||
5691 | // We can't answer whether something is abstract until it has a | |||
5692 | // definition. If it's currently being defined, we'll walk back | |||
5693 | // over all the declarations when we have a full definition. | |||
5694 | const CXXRecordDecl *Def = RD->getDefinition(); | |||
5695 | if (!Def || Def->isBeingDefined()) | |||
5696 | return false; | |||
5697 | ||||
5698 | return RD->isAbstract(); | |||
5699 | } | |||
5700 | ||||
5701 | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | |||
5702 | TypeDiagnoser &Diagnoser) { | |||
5703 | if (!isAbstractType(Loc, T)) | |||
5704 | return false; | |||
5705 | ||||
5706 | T = Context.getBaseElementType(T); | |||
5707 | Diagnoser.diagnose(*this, Loc, T); | |||
5708 | DiagnoseAbstractType(T->getAsCXXRecordDecl()); | |||
5709 | return true; | |||
5710 | } | |||
5711 | ||||
5712 | void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { | |||
5713 | // Check if we've already emitted the list of pure virtual functions | |||
5714 | // for this class. | |||
5715 | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) | |||
5716 | return; | |||
5717 | ||||
5718 | // If the diagnostic is suppressed, don't emit the notes. We're only | |||
5719 | // going to emit them once, so try to attach them to a diagnostic we're | |||
5720 | // actually going to show. | |||
5721 | if (Diags.isLastDiagnosticIgnored()) | |||
5722 | return; | |||
5723 | ||||
5724 | CXXFinalOverriderMap FinalOverriders; | |||
5725 | RD->getFinalOverriders(FinalOverriders); | |||
5726 | ||||
5727 | // Keep a set of seen pure methods so we won't diagnose the same method | |||
5728 | // more than once. | |||
5729 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; | |||
5730 | ||||
5731 | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | |||
5732 | MEnd = FinalOverriders.end(); | |||
5733 | M != MEnd; | |||
5734 | ++M) { | |||
5735 | for (OverridingMethods::iterator SO = M->second.begin(), | |||
5736 | SOEnd = M->second.end(); | |||
5737 | SO != SOEnd; ++SO) { | |||
5738 | // C++ [class.abstract]p4: | |||
5739 | // A class is abstract if it contains or inherits at least one | |||
5740 | // pure virtual function for which the final overrider is pure | |||
5741 | // virtual. | |||
5742 | ||||
5743 | // | |||
5744 | if (SO->second.size() != 1) | |||
5745 | continue; | |||
5746 | ||||
5747 | if (!SO->second.front().Method->isPure()) | |||
5748 | continue; | |||
5749 | ||||
5750 | if (!SeenPureMethods.insert(SO->second.front().Method).second) | |||
5751 | continue; | |||
5752 | ||||
5753 | Diag(SO->second.front().Method->getLocation(), | |||
5754 | diag::note_pure_virtual_function) | |||
5755 | << SO->second.front().Method->getDeclName() << RD->getDeclName(); | |||
5756 | } | |||
5757 | } | |||
5758 | ||||
5759 | if (!PureVirtualClassDiagSet) | |||
5760 | PureVirtualClassDiagSet.reset(new RecordDeclSetTy); | |||
5761 | PureVirtualClassDiagSet->insert(RD); | |||
5762 | } | |||
5763 | ||||
5764 | namespace { | |||
5765 | struct AbstractUsageInfo { | |||
5766 | Sema &S; | |||
5767 | CXXRecordDecl *Record; | |||
5768 | CanQualType AbstractType; | |||
5769 | bool Invalid; | |||
5770 | ||||
5771 | AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) | |||
5772 | : S(S), Record(Record), | |||
5773 | AbstractType(S.Context.getCanonicalType( | |||
5774 | S.Context.getTypeDeclType(Record))), | |||
5775 | Invalid(false) {} | |||
5776 | ||||
5777 | void DiagnoseAbstractType() { | |||
5778 | if (Invalid) return; | |||
5779 | S.DiagnoseAbstractType(Record); | |||
5780 | Invalid = true; | |||
5781 | } | |||
5782 | ||||
5783 | void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); | |||
5784 | }; | |||
5785 | ||||
5786 | struct CheckAbstractUsage { | |||
5787 | AbstractUsageInfo &Info; | |||
5788 | const NamedDecl *Ctx; | |||
5789 | ||||
5790 | CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) | |||
5791 | : Info(Info), Ctx(Ctx) {} | |||
5792 | ||||
5793 | void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5794 | switch (TL.getTypeLocClass()) { | |||
5795 | #define ABSTRACT_TYPELOC(CLASS, PARENT) | |||
5796 | #define TYPELOC(CLASS, PARENT) \ | |||
5797 | case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; | |||
5798 | #include "clang/AST/TypeLocNodes.def" | |||
5799 | } | |||
5800 | } | |||
5801 | ||||
5802 | void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5803 | Visit(TL.getReturnLoc(), Sema::AbstractReturnType); | |||
5804 | for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { | |||
5805 | if (!TL.getParam(I)) | |||
5806 | continue; | |||
5807 | ||||
5808 | TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); | |||
5809 | if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); | |||
5810 | } | |||
5811 | } | |||
5812 | ||||
5813 | void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5814 | Visit(TL.getElementLoc(), Sema::AbstractArrayType); | |||
5815 | } | |||
5816 | ||||
5817 | void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5818 | // Visit the type parameters from a permissive context. | |||
5819 | for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { | |||
5820 | TemplateArgumentLoc TAL = TL.getArgLoc(I); | |||
5821 | if (TAL.getArgument().getKind() == TemplateArgument::Type) | |||
5822 | if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) | |||
5823 | Visit(TSI->getTypeLoc(), Sema::AbstractNone); | |||
5824 | // TODO: other template argument types? | |||
5825 | } | |||
5826 | } | |||
5827 | ||||
5828 | // Visit pointee types from a permissive context. | |||
5829 | #define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc (), Sema::AbstractNone); } \ | |||
5830 | void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ | |||
5831 | Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ | |||
5832 | } | |||
5833 | CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit (TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5834 | CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5835 | CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel ) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5836 | CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel ) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5837 | CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit (TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5838 | ||||
5839 | /// Handle all the types we haven't given a more specific | |||
5840 | /// implementation for above. | |||
5841 | void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5842 | // Every other kind of type that we haven't called out already | |||
5843 | // that has an inner type is either (1) sugar or (2) contains that | |||
5844 | // inner type in some way as a subobject. | |||
5845 | if (TypeLoc Next = TL.getNextTypeLoc()) | |||
5846 | return Visit(Next, Sel); | |||
5847 | ||||
5848 | // If there's no inner type and we're in a permissive context, | |||
5849 | // don't diagnose. | |||
5850 | if (Sel == Sema::AbstractNone) return; | |||
5851 | ||||
5852 | // Check whether the type matches the abstract type. | |||
5853 | QualType T = TL.getType(); | |||
5854 | if (T->isArrayType()) { | |||
5855 | Sel = Sema::AbstractArrayType; | |||
5856 | T = Info.S.Context.getBaseElementType(T); | |||
5857 | } | |||
5858 | CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); | |||
5859 | if (CT != Info.AbstractType) return; | |||
5860 | ||||
5861 | // It matched; do some magic. | |||
5862 | if (Sel == Sema::AbstractArrayType) { | |||
5863 | Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) | |||
5864 | << T << TL.getSourceRange(); | |||
5865 | } else { | |||
5866 | Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) | |||
5867 | << Sel << T << TL.getSourceRange(); | |||
5868 | } | |||
5869 | Info.DiagnoseAbstractType(); | |||
5870 | } | |||
5871 | }; | |||
5872 | ||||
5873 | void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, | |||
5874 | Sema::AbstractDiagSelID Sel) { | |||
5875 | CheckAbstractUsage(*this, D).Visit(TL, Sel); | |||
5876 | } | |||
5877 | ||||
5878 | } | |||
5879 | ||||
5880 | /// Check for invalid uses of an abstract type in a method declaration. | |||
5881 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | |||
5882 | CXXMethodDecl *MD) { | |||
5883 | // No need to do the check on definitions, which require that | |||
5884 | // the return/param types be complete. | |||
5885 | if (MD->doesThisDeclarationHaveABody()) | |||
5886 | return; | |||
5887 | ||||
5888 | // For safety's sake, just ignore it if we don't have type source | |||
5889 | // information. This should never happen for non-implicit methods, | |||
5890 | // but... | |||
5891 | if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) | |||
5892 | Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); | |||
5893 | } | |||
5894 | ||||
5895 | /// Check for invalid uses of an abstract type within a class definition. | |||
5896 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | |||
5897 | CXXRecordDecl *RD) { | |||
5898 | for (auto *D : RD->decls()) { | |||
5899 | if (D->isImplicit()) continue; | |||
5900 | ||||
5901 | // Methods and method templates. | |||
5902 | if (isa<CXXMethodDecl>(D)) { | |||
5903 | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); | |||
5904 | } else if (isa<FunctionTemplateDecl>(D)) { | |||
5905 | FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); | |||
5906 | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); | |||
5907 | ||||
5908 | // Fields and static variables. | |||
5909 | } else if (isa<FieldDecl>(D)) { | |||
5910 | FieldDecl *FD = cast<FieldDecl>(D); | |||
5911 | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) | |||
5912 | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); | |||
5913 | } else if (isa<VarDecl>(D)) { | |||
5914 | VarDecl *VD = cast<VarDecl>(D); | |||
5915 | if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) | |||
5916 | Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); | |||
5917 | ||||
5918 | // Nested classes and class templates. | |||
5919 | } else if (isa<CXXRecordDecl>(D)) { | |||
5920 | CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); | |||
5921 | } else if (isa<ClassTemplateDecl>(D)) { | |||
5922 | CheckAbstractClassUsage(Info, | |||
5923 | cast<ClassTemplateDecl>(D)->getTemplatedDecl()); | |||
5924 | } | |||
5925 | } | |||
5926 | } | |||
5927 | ||||
5928 | static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { | |||
5929 | Attr *ClassAttr = getDLLAttr(Class); | |||
5930 | if (!ClassAttr) | |||
5931 | return; | |||
5932 | ||||
5933 | assert(ClassAttr->getKind() == attr::DLLExport)((void)0); | |||
5934 | ||||
5935 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); | |||
5936 | ||||
5937 | if (TSK == TSK_ExplicitInstantiationDeclaration) | |||
5938 | // Don't go any further if this is just an explicit instantiation | |||
5939 | // declaration. | |||
5940 | return; | |||
5941 | ||||
5942 | // Add a context note to explain how we got to any diagnostics produced below. | |||
5943 | struct MarkingClassDllexported { | |||
5944 | Sema &S; | |||
5945 | MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, | |||
5946 | SourceLocation AttrLoc) | |||
5947 | : S(S) { | |||
5948 | Sema::CodeSynthesisContext Ctx; | |||
5949 | Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; | |||
5950 | Ctx.PointOfInstantiation = AttrLoc; | |||
5951 | Ctx.Entity = Class; | |||
5952 | S.pushCodeSynthesisContext(Ctx); | |||
5953 | } | |||
5954 | ~MarkingClassDllexported() { | |||
5955 | S.popCodeSynthesisContext(); | |||
5956 | } | |||
5957 | } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); | |||
5958 | ||||
5959 | if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) | |||
5960 | S.MarkVTableUsed(Class->getLocation(), Class, true); | |||
5961 | ||||
5962 | for (Decl *Member : Class->decls()) { | |||
5963 | // Defined static variables that are members of an exported base | |||
5964 | // class must be marked export too. | |||
5965 | auto *VD = dyn_cast<VarDecl>(Member); | |||
5966 | if (VD && Member->getAttr<DLLExportAttr>() && | |||
5967 | VD->getStorageClass() == SC_Static && | |||
5968 | TSK == TSK_ImplicitInstantiation) | |||
5969 | S.MarkVariableReferenced(VD->getLocation(), VD); | |||
5970 | ||||
5971 | auto *MD = dyn_cast<CXXMethodDecl>(Member); | |||
5972 | if (!MD) | |||
5973 | continue; | |||
5974 | ||||
5975 | if (Member->getAttr<DLLExportAttr>()) { | |||
5976 | if (MD->isUserProvided()) { | |||
5977 | // Instantiate non-default class member functions ... | |||
5978 | ||||
5979 | // .. except for certain kinds of template specializations. | |||
5980 | if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) | |||
5981 | continue; | |||
5982 | ||||
5983 | S.MarkFunctionReferenced(Class->getLocation(), MD); | |||
5984 | ||||
5985 | // The function will be passed to the consumer when its definition is | |||
5986 | // encountered. | |||
5987 | } else if (MD->isExplicitlyDefaulted()) { | |||
5988 | // Synthesize and instantiate explicitly defaulted methods. | |||
5989 | S.MarkFunctionReferenced(Class->getLocation(), MD); | |||
5990 | ||||
5991 | if (TSK != TSK_ExplicitInstantiationDefinition) { | |||
5992 | // Except for explicit instantiation defs, we will not see the | |||
5993 | // definition again later, so pass it to the consumer now. | |||
5994 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); | |||
5995 | } | |||
5996 | } else if (!MD->isTrivial() || | |||
5997 | MD->isCopyAssignmentOperator() || | |||
5998 | MD->isMoveAssignmentOperator()) { | |||
5999 | // Synthesize and instantiate non-trivial implicit methods, and the copy | |||
6000 | // and move assignment operators. The latter are exported even if they | |||
6001 | // are trivial, because the address of an operator can be taken and | |||
6002 | // should compare equal across libraries. | |||
6003 | S.MarkFunctionReferenced(Class->getLocation(), MD); | |||
6004 | ||||
6005 | // There is no later point when we will see the definition of this | |||
6006 | // function, so pass it to the consumer now. | |||
6007 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); | |||
6008 | } | |||
6009 | } | |||
6010 | } | |||
6011 | } | |||
6012 | ||||
6013 | static void checkForMultipleExportedDefaultConstructors(Sema &S, | |||
6014 | CXXRecordDecl *Class) { | |||
6015 | // Only the MS ABI has default constructor closures, so we don't need to do | |||
6016 | // this semantic checking anywhere else. | |||
6017 | if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) | |||
6018 | return; | |||
6019 | ||||
6020 | CXXConstructorDecl *LastExportedDefaultCtor = nullptr; | |||
6021 | for (Decl *Member : Class->decls()) { | |||
6022 | // Look for exported default constructors. | |||
6023 | auto *CD = dyn_cast<CXXConstructorDecl>(Member); | |||
6024 | if (!CD || !CD->isDefaultConstructor()) | |||
6025 | continue; | |||
6026 | auto *Attr = CD->getAttr<DLLExportAttr>(); | |||
6027 | if (!Attr) | |||
6028 | continue; | |||
6029 | ||||
6030 | // If the class is non-dependent, mark the default arguments as ODR-used so | |||
6031 | // that we can properly codegen the constructor closure. | |||
6032 | if (!Class->isDependentContext()) { | |||
6033 | for (ParmVarDecl *PD : CD->parameters()) { | |||
6034 | (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); | |||
6035 | S.DiscardCleanupsInEvaluationContext(); | |||
6036 | } | |||
6037 | } | |||
6038 | ||||
6039 | if (LastExportedDefaultCtor) { | |||
6040 | S.Diag(LastExportedDefaultCtor->getLocation(), | |||
6041 | diag::err_attribute_dll_ambiguous_default_ctor) | |||
6042 | << Class; | |||
6043 | S.Diag(CD->getLocation(), diag::note_entity_declared_at) | |||
6044 | << CD->getDeclName(); | |||
6045 | return; | |||
6046 | } | |||
6047 | LastExportedDefaultCtor = CD; | |||
6048 | } | |||
6049 | } | |||
6050 | ||||
6051 | static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, | |||
6052 | CXXRecordDecl *Class) { | |||
6053 | bool ErrorReported = false; | |||
6054 | auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, | |||
6055 | ClassTemplateDecl *TD) { | |||
6056 | if (ErrorReported) | |||
6057 | return; | |||
6058 | S.Diag(TD->getLocation(), | |||
6059 | diag::err_cuda_device_builtin_surftex_cls_template) | |||
6060 | << /*surface*/ 0 << TD; | |||
6061 | ErrorReported = true; | |||
6062 | }; | |||
6063 | ||||
6064 | ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); | |||
6065 | if (!TD) { | |||
6066 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); | |||
6067 | if (!SD) { | |||
6068 | S.Diag(Class->getLocation(), | |||
6069 | diag::err_cuda_device_builtin_surftex_ref_decl) | |||
6070 | << /*surface*/ 0 << Class; | |||
6071 | S.Diag(Class->getLocation(), | |||
6072 | diag::note_cuda_device_builtin_surftex_should_be_template_class) | |||
6073 | << Class; | |||
6074 | return; | |||
6075 | } | |||
6076 | TD = SD->getSpecializedTemplate(); | |||
6077 | } | |||
6078 | ||||
6079 | TemplateParameterList *Params = TD->getTemplateParameters(); | |||
6080 | unsigned N = Params->size(); | |||
6081 | ||||
6082 | if (N != 2) { | |||
6083 | reportIllegalClassTemplate(S, TD); | |||
6084 | S.Diag(TD->getLocation(), | |||
6085 | diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) | |||
6086 | << TD << 2; | |||
6087 | } | |||
6088 | if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { | |||
6089 | reportIllegalClassTemplate(S, TD); | |||
6090 | S.Diag(TD->getLocation(), | |||
6091 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6092 | << TD << /*1st*/ 0 << /*type*/ 0; | |||
6093 | } | |||
6094 | if (N > 1) { | |||
6095 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); | |||
6096 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { | |||
6097 | reportIllegalClassTemplate(S, TD); | |||
6098 | S.Diag(TD->getLocation(), | |||
6099 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6100 | << TD << /*2nd*/ 1 << /*integer*/ 1; | |||
6101 | } | |||
6102 | } | |||
6103 | } | |||
6104 | ||||
6105 | static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, | |||
6106 | CXXRecordDecl *Class) { | |||
6107 | bool ErrorReported = false; | |||
6108 | auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, | |||
6109 | ClassTemplateDecl *TD) { | |||
6110 | if (ErrorReported) | |||
6111 | return; | |||
6112 | S.Diag(TD->getLocation(), | |||
6113 | diag::err_cuda_device_builtin_surftex_cls_template) | |||
6114 | << /*texture*/ 1 << TD; | |||
6115 | ErrorReported = true; | |||
6116 | }; | |||
6117 | ||||
6118 | ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); | |||
6119 | if (!TD) { | |||
6120 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); | |||
6121 | if (!SD) { | |||
6122 | S.Diag(Class->getLocation(), | |||
6123 | diag::err_cuda_device_builtin_surftex_ref_decl) | |||
6124 | << /*texture*/ 1 << Class; | |||
6125 | S.Diag(Class->getLocation(), | |||
6126 | diag::note_cuda_device_builtin_surftex_should_be_template_class) | |||
6127 | << Class; | |||
6128 | return; | |||
6129 | } | |||
6130 | TD = SD->getSpecializedTemplate(); | |||
6131 | } | |||
6132 | ||||
6133 | TemplateParameterList *Params = TD->getTemplateParameters(); | |||
6134 | unsigned N = Params->size(); | |||
6135 | ||||
6136 | if (N != 3) { | |||
6137 | reportIllegalClassTemplate(S, TD); | |||
6138 | S.Diag(TD->getLocation(), | |||
6139 | diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) | |||
6140 | << TD << 3; | |||
6141 | } | |||
6142 | if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { | |||
6143 | reportIllegalClassTemplate(S, TD); | |||
6144 | S.Diag(TD->getLocation(), | |||
6145 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6146 | << TD << /*1st*/ 0 << /*type*/ 0; | |||
6147 | } | |||
6148 | if (N > 1) { | |||
6149 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); | |||
6150 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { | |||
6151 | reportIllegalClassTemplate(S, TD); | |||
6152 | S.Diag(TD->getLocation(), | |||
6153 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6154 | << TD << /*2nd*/ 1 << /*integer*/ 1; | |||
6155 | } | |||
6156 | } | |||
6157 | if (N > 2) { | |||
6158 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); | |||
6159 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { | |||
6160 | reportIllegalClassTemplate(S, TD); | |||
6161 | S.Diag(TD->getLocation(), | |||
6162 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6163 | << TD << /*3rd*/ 2 << /*integer*/ 1; | |||
6164 | } | |||
6165 | } | |||
6166 | } | |||
6167 | ||||
6168 | void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { | |||
6169 | // Mark any compiler-generated routines with the implicit code_seg attribute. | |||
6170 | for (auto *Method : Class->methods()) { | |||
6171 | if (Method->isUserProvided()) | |||
6172 | continue; | |||
6173 | if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) | |||
6174 | Method->addAttr(A); | |||
6175 | } | |||
6176 | } | |||
6177 | ||||
6178 | /// Check class-level dllimport/dllexport attribute. | |||
6179 | void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { | |||
6180 | Attr *ClassAttr = getDLLAttr(Class); | |||
6181 | ||||
6182 | // MSVC inherits DLL attributes to partial class template specializations. | |||
6183 | if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { | |||
6184 | if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { | |||
6185 | if (Attr *TemplateAttr = | |||
6186 | getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { | |||
6187 | auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); | |||
6188 | A->setInherited(true); | |||
6189 | ClassAttr = A; | |||
6190 | } | |||
6191 | } | |||
6192 | } | |||
6193 | ||||
6194 | if (!ClassAttr) | |||
6195 | return; | |||
6196 | ||||
6197 | if (!Class->isExternallyVisible()) { | |||
6198 | Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) | |||
6199 | << Class << ClassAttr; | |||
6200 | return; | |||
6201 | } | |||
6202 | ||||
6203 | if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && | |||
6204 | !ClassAttr->isInherited()) { | |||
6205 | // Diagnose dll attributes on members of class with dll attribute. | |||
6206 | for (Decl *Member : Class->decls()) { | |||
6207 | if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) | |||
6208 | continue; | |||
6209 | InheritableAttr *MemberAttr = getDLLAttr(Member); | |||
6210 | if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) | |||
6211 | continue; | |||
6212 | ||||
6213 | Diag(MemberAttr->getLocation(), | |||
6214 | diag::err_attribute_dll_member_of_dll_class) | |||
6215 | << MemberAttr << ClassAttr; | |||
6216 | Diag(ClassAttr->getLocation(), diag::note_previous_attribute); | |||
6217 | Member->setInvalidDecl(); | |||
6218 | } | |||
6219 | } | |||
6220 | ||||
6221 | if (Class->getDescribedClassTemplate()) | |||
6222 | // Don |