File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaDeclCXX.cpp |
Warning: | line 4005, column 8 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file implements semantic analysis for C++ declarations. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "clang/AST/ASTConsumer.h" | |||
14 | #include "clang/AST/ASTContext.h" | |||
15 | #include "clang/AST/ASTLambda.h" | |||
16 | #include "clang/AST/ASTMutationListener.h" | |||
17 | #include "clang/AST/CXXInheritance.h" | |||
18 | #include "clang/AST/CharUnits.h" | |||
19 | #include "clang/AST/ComparisonCategories.h" | |||
20 | #include "clang/AST/EvaluatedExprVisitor.h" | |||
21 | #include "clang/AST/ExprCXX.h" | |||
22 | #include "clang/AST/RecordLayout.h" | |||
23 | #include "clang/AST/RecursiveASTVisitor.h" | |||
24 | #include "clang/AST/StmtVisitor.h" | |||
25 | #include "clang/AST/TypeLoc.h" | |||
26 | #include "clang/AST/TypeOrdering.h" | |||
27 | #include "clang/Basic/AttributeCommonInfo.h" | |||
28 | #include "clang/Basic/PartialDiagnostic.h" | |||
29 | #include "clang/Basic/TargetInfo.h" | |||
30 | #include "clang/Lex/LiteralSupport.h" | |||
31 | #include "clang/Lex/Preprocessor.h" | |||
32 | #include "clang/Sema/CXXFieldCollector.h" | |||
33 | #include "clang/Sema/DeclSpec.h" | |||
34 | #include "clang/Sema/Initialization.h" | |||
35 | #include "clang/Sema/Lookup.h" | |||
36 | #include "clang/Sema/ParsedTemplate.h" | |||
37 | #include "clang/Sema/Scope.h" | |||
38 | #include "clang/Sema/ScopeInfo.h" | |||
39 | #include "clang/Sema/SemaInternal.h" | |||
40 | #include "clang/Sema/Template.h" | |||
41 | #include "llvm/ADT/ScopeExit.h" | |||
42 | #include "llvm/ADT/SmallString.h" | |||
43 | #include "llvm/ADT/STLExtras.h" | |||
44 | #include "llvm/ADT/StringExtras.h" | |||
45 | #include <map> | |||
46 | #include <set> | |||
47 | ||||
48 | using namespace clang; | |||
49 | ||||
50 | //===----------------------------------------------------------------------===// | |||
51 | // CheckDefaultArgumentVisitor | |||
52 | //===----------------------------------------------------------------------===// | |||
53 | ||||
54 | namespace { | |||
55 | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses | |||
56 | /// the default argument of a parameter to determine whether it | |||
57 | /// contains any ill-formed subexpressions. For example, this will | |||
58 | /// diagnose the use of local variables or parameters within the | |||
59 | /// default argument expression. | |||
60 | class CheckDefaultArgumentVisitor | |||
61 | : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { | |||
62 | Sema &S; | |||
63 | const Expr *DefaultArg; | |||
64 | ||||
65 | public: | |||
66 | CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) | |||
67 | : S(S), DefaultArg(DefaultArg) {} | |||
68 | ||||
69 | bool VisitExpr(const Expr *Node); | |||
70 | bool VisitDeclRefExpr(const DeclRefExpr *DRE); | |||
71 | bool VisitCXXThisExpr(const CXXThisExpr *ThisE); | |||
72 | bool VisitLambdaExpr(const LambdaExpr *Lambda); | |||
73 | bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); | |||
74 | }; | |||
75 | ||||
76 | /// VisitExpr - Visit all of the children of this expression. | |||
77 | bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { | |||
78 | bool IsInvalid = false; | |||
79 | for (const Stmt *SubStmt : Node->children()) | |||
80 | IsInvalid |= Visit(SubStmt); | |||
81 | return IsInvalid; | |||
82 | } | |||
83 | ||||
84 | /// VisitDeclRefExpr - Visit a reference to a declaration, to | |||
85 | /// determine whether this declaration can be used in the default | |||
86 | /// argument expression. | |||
87 | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { | |||
88 | const NamedDecl *Decl = DRE->getDecl(); | |||
89 | if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { | |||
90 | // C++ [dcl.fct.default]p9: | |||
91 | // [...] parameters of a function shall not be used in default | |||
92 | // argument expressions, even if they are not evaluated. [...] | |||
93 | // | |||
94 | // C++17 [dcl.fct.default]p9 (by CWG 2082): | |||
95 | // [...] A parameter shall not appear as a potentially-evaluated | |||
96 | // expression in a default argument. [...] | |||
97 | // | |||
98 | if (DRE->isNonOdrUse() != NOUR_Unevaluated) | |||
99 | return S.Diag(DRE->getBeginLoc(), | |||
100 | diag::err_param_default_argument_references_param) | |||
101 | << Param->getDeclName() << DefaultArg->getSourceRange(); | |||
102 | } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) { | |||
103 | // C++ [dcl.fct.default]p7: | |||
104 | // Local variables shall not be used in default argument | |||
105 | // expressions. | |||
106 | // | |||
107 | // C++17 [dcl.fct.default]p7 (by CWG 2082): | |||
108 | // A local variable shall not appear as a potentially-evaluated | |||
109 | // expression in a default argument. | |||
110 | // | |||
111 | // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): | |||
112 | // Note: A local variable cannot be odr-used (6.3) in a default argument. | |||
113 | // | |||
114 | if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse()) | |||
115 | return S.Diag(DRE->getBeginLoc(), | |||
116 | diag::err_param_default_argument_references_local) | |||
117 | << VDecl->getDeclName() << DefaultArg->getSourceRange(); | |||
118 | } | |||
119 | ||||
120 | return false; | |||
121 | } | |||
122 | ||||
123 | /// VisitCXXThisExpr - Visit a C++ "this" expression. | |||
124 | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { | |||
125 | // C++ [dcl.fct.default]p8: | |||
126 | // The keyword this shall not be used in a default argument of a | |||
127 | // member function. | |||
128 | return S.Diag(ThisE->getBeginLoc(), | |||
129 | diag::err_param_default_argument_references_this) | |||
130 | << ThisE->getSourceRange(); | |||
131 | } | |||
132 | ||||
133 | bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( | |||
134 | const PseudoObjectExpr *POE) { | |||
135 | bool Invalid = false; | |||
136 | for (const Expr *E : POE->semantics()) { | |||
137 | // Look through bindings. | |||
138 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { | |||
139 | E = OVE->getSourceExpr(); | |||
140 | assert(E && "pseudo-object binding without source expression?")((void)0); | |||
141 | } | |||
142 | ||||
143 | Invalid |= Visit(E); | |||
144 | } | |||
145 | return Invalid; | |||
146 | } | |||
147 | ||||
148 | bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { | |||
149 | // C++11 [expr.lambda.prim]p13: | |||
150 | // A lambda-expression appearing in a default argument shall not | |||
151 | // implicitly or explicitly capture any entity. | |||
152 | if (Lambda->capture_begin() == Lambda->capture_end()) | |||
153 | return false; | |||
154 | ||||
155 | return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); | |||
156 | } | |||
157 | } // namespace | |||
158 | ||||
159 | void | |||
160 | Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, | |||
161 | const CXXMethodDecl *Method) { | |||
162 | // If we have an MSAny spec already, don't bother. | |||
163 | if (!Method || ComputedEST == EST_MSAny) | |||
164 | return; | |||
165 | ||||
166 | const FunctionProtoType *Proto | |||
167 | = Method->getType()->getAs<FunctionProtoType>(); | |||
168 | Proto = Self->ResolveExceptionSpec(CallLoc, Proto); | |||
169 | if (!Proto) | |||
170 | return; | |||
171 | ||||
172 | ExceptionSpecificationType EST = Proto->getExceptionSpecType(); | |||
173 | ||||
174 | // If we have a throw-all spec at this point, ignore the function. | |||
175 | if (ComputedEST == EST_None) | |||
176 | return; | |||
177 | ||||
178 | if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) | |||
179 | EST = EST_BasicNoexcept; | |||
180 | ||||
181 | switch (EST) { | |||
182 | case EST_Unparsed: | |||
183 | case EST_Uninstantiated: | |||
184 | case EST_Unevaluated: | |||
185 | llvm_unreachable("should not see unresolved exception specs here")__builtin_unreachable(); | |||
186 | ||||
187 | // If this function can throw any exceptions, make a note of that. | |||
188 | case EST_MSAny: | |||
189 | case EST_None: | |||
190 | // FIXME: Whichever we see last of MSAny and None determines our result. | |||
191 | // We should make a consistent, order-independent choice here. | |||
192 | ClearExceptions(); | |||
193 | ComputedEST = EST; | |||
194 | return; | |||
195 | case EST_NoexceptFalse: | |||
196 | ClearExceptions(); | |||
197 | ComputedEST = EST_None; | |||
198 | return; | |||
199 | // FIXME: If the call to this decl is using any of its default arguments, we | |||
200 | // need to search them for potentially-throwing calls. | |||
201 | // If this function has a basic noexcept, it doesn't affect the outcome. | |||
202 | case EST_BasicNoexcept: | |||
203 | case EST_NoexceptTrue: | |||
204 | case EST_NoThrow: | |||
205 | return; | |||
206 | // If we're still at noexcept(true) and there's a throw() callee, | |||
207 | // change to that specification. | |||
208 | case EST_DynamicNone: | |||
209 | if (ComputedEST == EST_BasicNoexcept) | |||
210 | ComputedEST = EST_DynamicNone; | |||
211 | return; | |||
212 | case EST_DependentNoexcept: | |||
213 | llvm_unreachable(__builtin_unreachable() | |||
214 | "should not generate implicit declarations for dependent cases")__builtin_unreachable(); | |||
215 | case EST_Dynamic: | |||
216 | break; | |||
217 | } | |||
218 | assert(EST == EST_Dynamic && "EST case not considered earlier.")((void)0); | |||
219 | assert(ComputedEST != EST_None &&((void)0) | |||
220 | "Shouldn't collect exceptions when throw-all is guaranteed.")((void)0); | |||
221 | ComputedEST = EST_Dynamic; | |||
222 | // Record the exceptions in this function's exception specification. | |||
223 | for (const auto &E : Proto->exceptions()) | |||
224 | if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) | |||
225 | Exceptions.push_back(E); | |||
226 | } | |||
227 | ||||
228 | void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { | |||
229 | if (!S || ComputedEST == EST_MSAny) | |||
230 | return; | |||
231 | ||||
232 | // FIXME: | |||
233 | // | |||
234 | // C++0x [except.spec]p14: | |||
235 | // [An] implicit exception-specification specifies the type-id T if and | |||
236 | // only if T is allowed by the exception-specification of a function directly | |||
237 | // invoked by f's implicit definition; f shall allow all exceptions if any | |||
238 | // function it directly invokes allows all exceptions, and f shall allow no | |||
239 | // exceptions if every function it directly invokes allows no exceptions. | |||
240 | // | |||
241 | // Note in particular that if an implicit exception-specification is generated | |||
242 | // for a function containing a throw-expression, that specification can still | |||
243 | // be noexcept(true). | |||
244 | // | |||
245 | // Note also that 'directly invoked' is not defined in the standard, and there | |||
246 | // is no indication that we should only consider potentially-evaluated calls. | |||
247 | // | |||
248 | // Ultimately we should implement the intent of the standard: the exception | |||
249 | // specification should be the set of exceptions which can be thrown by the | |||
250 | // implicit definition. For now, we assume that any non-nothrow expression can | |||
251 | // throw any exception. | |||
252 | ||||
253 | if (Self->canThrow(S)) | |||
254 | ComputedEST = EST_None; | |||
255 | } | |||
256 | ||||
257 | ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, | |||
258 | SourceLocation EqualLoc) { | |||
259 | if (RequireCompleteType(Param->getLocation(), Param->getType(), | |||
260 | diag::err_typecheck_decl_incomplete_type)) | |||
261 | return true; | |||
262 | ||||
263 | // C++ [dcl.fct.default]p5 | |||
264 | // A default argument expression is implicitly converted (clause | |||
265 | // 4) to the parameter type. The default argument expression has | |||
266 | // the same semantic constraints as the initializer expression in | |||
267 | // a declaration of a variable of the parameter type, using the | |||
268 | // copy-initialization semantics (8.5). | |||
269 | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, | |||
270 | Param); | |||
271 | InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), | |||
272 | EqualLoc); | |||
273 | InitializationSequence InitSeq(*this, Entity, Kind, Arg); | |||
274 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); | |||
275 | if (Result.isInvalid()) | |||
276 | return true; | |||
277 | Arg = Result.getAs<Expr>(); | |||
278 | ||||
279 | CheckCompletedExpr(Arg, EqualLoc); | |||
280 | Arg = MaybeCreateExprWithCleanups(Arg); | |||
281 | ||||
282 | return Arg; | |||
283 | } | |||
284 | ||||
285 | void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, | |||
286 | SourceLocation EqualLoc) { | |||
287 | // Add the default argument to the parameter | |||
288 | Param->setDefaultArg(Arg); | |||
289 | ||||
290 | // We have already instantiated this parameter; provide each of the | |||
291 | // instantiations with the uninstantiated default argument. | |||
292 | UnparsedDefaultArgInstantiationsMap::iterator InstPos | |||
293 | = UnparsedDefaultArgInstantiations.find(Param); | |||
294 | if (InstPos != UnparsedDefaultArgInstantiations.end()) { | |||
295 | for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) | |||
296 | InstPos->second[I]->setUninstantiatedDefaultArg(Arg); | |||
297 | ||||
298 | // We're done tracking this parameter's instantiations. | |||
299 | UnparsedDefaultArgInstantiations.erase(InstPos); | |||
300 | } | |||
301 | } | |||
302 | ||||
303 | /// ActOnParamDefaultArgument - Check whether the default argument | |||
304 | /// provided for a function parameter is well-formed. If so, attach it | |||
305 | /// to the parameter declaration. | |||
306 | void | |||
307 | Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, | |||
308 | Expr *DefaultArg) { | |||
309 | if (!param || !DefaultArg) | |||
310 | return; | |||
311 | ||||
312 | ParmVarDecl *Param = cast<ParmVarDecl>(param); | |||
313 | UnparsedDefaultArgLocs.erase(Param); | |||
314 | ||||
315 | auto Fail = [&] { | |||
316 | Param->setInvalidDecl(); | |||
317 | Param->setDefaultArg(new (Context) OpaqueValueExpr( | |||
318 | EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); | |||
319 | }; | |||
320 | ||||
321 | // Default arguments are only permitted in C++ | |||
322 | if (!getLangOpts().CPlusPlus) { | |||
323 | Diag(EqualLoc, diag::err_param_default_argument) | |||
324 | << DefaultArg->getSourceRange(); | |||
325 | return Fail(); | |||
326 | } | |||
327 | ||||
328 | // Check for unexpanded parameter packs. | |||
329 | if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { | |||
330 | return Fail(); | |||
331 | } | |||
332 | ||||
333 | // C++11 [dcl.fct.default]p3 | |||
334 | // A default argument expression [...] shall not be specified for a | |||
335 | // parameter pack. | |||
336 | if (Param->isParameterPack()) { | |||
337 | Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) | |||
338 | << DefaultArg->getSourceRange(); | |||
339 | // Recover by discarding the default argument. | |||
340 | Param->setDefaultArg(nullptr); | |||
341 | return; | |||
342 | } | |||
343 | ||||
344 | ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); | |||
345 | if (Result.isInvalid()) | |||
346 | return Fail(); | |||
347 | ||||
348 | DefaultArg = Result.getAs<Expr>(); | |||
349 | ||||
350 | // Check that the default argument is well-formed | |||
351 | CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); | |||
352 | if (DefaultArgChecker.Visit(DefaultArg)) | |||
353 | return Fail(); | |||
354 | ||||
355 | SetParamDefaultArgument(Param, DefaultArg, EqualLoc); | |||
356 | } | |||
357 | ||||
358 | /// ActOnParamUnparsedDefaultArgument - We've seen a default | |||
359 | /// argument for a function parameter, but we can't parse it yet | |||
360 | /// because we're inside a class definition. Note that this default | |||
361 | /// argument will be parsed later. | |||
362 | void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, | |||
363 | SourceLocation EqualLoc, | |||
364 | SourceLocation ArgLoc) { | |||
365 | if (!param) | |||
366 | return; | |||
367 | ||||
368 | ParmVarDecl *Param = cast<ParmVarDecl>(param); | |||
369 | Param->setUnparsedDefaultArg(); | |||
370 | UnparsedDefaultArgLocs[Param] = ArgLoc; | |||
371 | } | |||
372 | ||||
373 | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of | |||
374 | /// the default argument for the parameter param failed. | |||
375 | void Sema::ActOnParamDefaultArgumentError(Decl *param, | |||
376 | SourceLocation EqualLoc) { | |||
377 | if (!param) | |||
378 | return; | |||
379 | ||||
380 | ParmVarDecl *Param = cast<ParmVarDecl>(param); | |||
381 | Param->setInvalidDecl(); | |||
382 | UnparsedDefaultArgLocs.erase(Param); | |||
383 | Param->setDefaultArg(new (Context) OpaqueValueExpr( | |||
384 | EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue)); | |||
385 | } | |||
386 | ||||
387 | /// CheckExtraCXXDefaultArguments - Check for any extra default | |||
388 | /// arguments in the declarator, which is not a function declaration | |||
389 | /// or definition and therefore is not permitted to have default | |||
390 | /// arguments. This routine should be invoked for every declarator | |||
391 | /// that is not a function declaration or definition. | |||
392 | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { | |||
393 | // C++ [dcl.fct.default]p3 | |||
394 | // A default argument expression shall be specified only in the | |||
395 | // parameter-declaration-clause of a function declaration or in a | |||
396 | // template-parameter (14.1). It shall not be specified for a | |||
397 | // parameter pack. If it is specified in a | |||
398 | // parameter-declaration-clause, it shall not occur within a | |||
399 | // declarator or abstract-declarator of a parameter-declaration. | |||
400 | bool MightBeFunction = D.isFunctionDeclarationContext(); | |||
401 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | |||
402 | DeclaratorChunk &chunk = D.getTypeObject(i); | |||
403 | if (chunk.Kind == DeclaratorChunk::Function) { | |||
404 | if (MightBeFunction) { | |||
405 | // This is a function declaration. It can have default arguments, but | |||
406 | // keep looking in case its return type is a function type with default | |||
407 | // arguments. | |||
408 | MightBeFunction = false; | |||
409 | continue; | |||
410 | } | |||
411 | for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; | |||
412 | ++argIdx) { | |||
413 | ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); | |||
414 | if (Param->hasUnparsedDefaultArg()) { | |||
415 | std::unique_ptr<CachedTokens> Toks = | |||
416 | std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); | |||
417 | SourceRange SR; | |||
418 | if (Toks->size() > 1) | |||
419 | SR = SourceRange((*Toks)[1].getLocation(), | |||
420 | Toks->back().getLocation()); | |||
421 | else | |||
422 | SR = UnparsedDefaultArgLocs[Param]; | |||
423 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | |||
424 | << SR; | |||
425 | } else if (Param->getDefaultArg()) { | |||
426 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | |||
427 | << Param->getDefaultArg()->getSourceRange(); | |||
428 | Param->setDefaultArg(nullptr); | |||
429 | } | |||
430 | } | |||
431 | } else if (chunk.Kind != DeclaratorChunk::Paren) { | |||
432 | MightBeFunction = false; | |||
433 | } | |||
434 | } | |||
435 | } | |||
436 | ||||
437 | static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { | |||
438 | return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) { | |||
439 | return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); | |||
440 | }); | |||
441 | } | |||
442 | ||||
443 | /// MergeCXXFunctionDecl - Merge two declarations of the same C++ | |||
444 | /// function, once we already know that they have the same | |||
445 | /// type. Subroutine of MergeFunctionDecl. Returns true if there was an | |||
446 | /// error, false otherwise. | |||
447 | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, | |||
448 | Scope *S) { | |||
449 | bool Invalid = false; | |||
450 | ||||
451 | // The declaration context corresponding to the scope is the semantic | |||
452 | // parent, unless this is a local function declaration, in which case | |||
453 | // it is that surrounding function. | |||
454 | DeclContext *ScopeDC = New->isLocalExternDecl() | |||
455 | ? New->getLexicalDeclContext() | |||
456 | : New->getDeclContext(); | |||
457 | ||||
458 | // Find the previous declaration for the purpose of default arguments. | |||
459 | FunctionDecl *PrevForDefaultArgs = Old; | |||
460 | for (/**/; PrevForDefaultArgs; | |||
461 | // Don't bother looking back past the latest decl if this is a local | |||
462 | // extern declaration; nothing else could work. | |||
463 | PrevForDefaultArgs = New->isLocalExternDecl() | |||
464 | ? nullptr | |||
465 | : PrevForDefaultArgs->getPreviousDecl()) { | |||
466 | // Ignore hidden declarations. | |||
467 | if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) | |||
468 | continue; | |||
469 | ||||
470 | if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && | |||
471 | !New->isCXXClassMember()) { | |||
472 | // Ignore default arguments of old decl if they are not in | |||
473 | // the same scope and this is not an out-of-line definition of | |||
474 | // a member function. | |||
475 | continue; | |||
476 | } | |||
477 | ||||
478 | if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { | |||
479 | // If only one of these is a local function declaration, then they are | |||
480 | // declared in different scopes, even though isDeclInScope may think | |||
481 | // they're in the same scope. (If both are local, the scope check is | |||
482 | // sufficient, and if neither is local, then they are in the same scope.) | |||
483 | continue; | |||
484 | } | |||
485 | ||||
486 | // We found the right previous declaration. | |||
487 | break; | |||
488 | } | |||
489 | ||||
490 | // C++ [dcl.fct.default]p4: | |||
491 | // For non-template functions, default arguments can be added in | |||
492 | // later declarations of a function in the same | |||
493 | // scope. Declarations in different scopes have completely | |||
494 | // distinct sets of default arguments. That is, declarations in | |||
495 | // inner scopes do not acquire default arguments from | |||
496 | // declarations in outer scopes, and vice versa. In a given | |||
497 | // function declaration, all parameters subsequent to a | |||
498 | // parameter with a default argument shall have default | |||
499 | // arguments supplied in this or previous declarations. A | |||
500 | // default argument shall not be redefined by a later | |||
501 | // declaration (not even to the same value). | |||
502 | // | |||
503 | // C++ [dcl.fct.default]p6: | |||
504 | // Except for member functions of class templates, the default arguments | |||
505 | // in a member function definition that appears outside of the class | |||
506 | // definition are added to the set of default arguments provided by the | |||
507 | // member function declaration in the class definition. | |||
508 | for (unsigned p = 0, NumParams = PrevForDefaultArgs | |||
509 | ? PrevForDefaultArgs->getNumParams() | |||
510 | : 0; | |||
511 | p < NumParams; ++p) { | |||
512 | ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); | |||
513 | ParmVarDecl *NewParam = New->getParamDecl(p); | |||
514 | ||||
515 | bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; | |||
516 | bool NewParamHasDfl = NewParam->hasDefaultArg(); | |||
517 | ||||
518 | if (OldParamHasDfl && NewParamHasDfl) { | |||
519 | unsigned DiagDefaultParamID = | |||
520 | diag::err_param_default_argument_redefinition; | |||
521 | ||||
522 | // MSVC accepts that default parameters be redefined for member functions | |||
523 | // of template class. The new default parameter's value is ignored. | |||
524 | Invalid = true; | |||
525 | if (getLangOpts().MicrosoftExt) { | |||
526 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); | |||
527 | if (MD && MD->getParent()->getDescribedClassTemplate()) { | |||
528 | // Merge the old default argument into the new parameter. | |||
529 | NewParam->setHasInheritedDefaultArg(); | |||
530 | if (OldParam->hasUninstantiatedDefaultArg()) | |||
531 | NewParam->setUninstantiatedDefaultArg( | |||
532 | OldParam->getUninstantiatedDefaultArg()); | |||
533 | else | |||
534 | NewParam->setDefaultArg(OldParam->getInit()); | |||
535 | DiagDefaultParamID = diag::ext_param_default_argument_redefinition; | |||
536 | Invalid = false; | |||
537 | } | |||
538 | } | |||
539 | ||||
540 | // FIXME: If we knew where the '=' was, we could easily provide a fix-it | |||
541 | // hint here. Alternatively, we could walk the type-source information | |||
542 | // for NewParam to find the last source location in the type... but it | |||
543 | // isn't worth the effort right now. This is the kind of test case that | |||
544 | // is hard to get right: | |||
545 | // int f(int); | |||
546 | // void g(int (*fp)(int) = f); | |||
547 | // void g(int (*fp)(int) = &f); | |||
548 | Diag(NewParam->getLocation(), DiagDefaultParamID) | |||
549 | << NewParam->getDefaultArgRange(); | |||
550 | ||||
551 | // Look for the function declaration where the default argument was | |||
552 | // actually written, which may be a declaration prior to Old. | |||
553 | for (auto Older = PrevForDefaultArgs; | |||
554 | OldParam->hasInheritedDefaultArg(); /**/) { | |||
555 | Older = Older->getPreviousDecl(); | |||
556 | OldParam = Older->getParamDecl(p); | |||
557 | } | |||
558 | ||||
559 | Diag(OldParam->getLocation(), diag::note_previous_definition) | |||
560 | << OldParam->getDefaultArgRange(); | |||
561 | } else if (OldParamHasDfl) { | |||
562 | // Merge the old default argument into the new parameter unless the new | |||
563 | // function is a friend declaration in a template class. In the latter | |||
564 | // case the default arguments will be inherited when the friend | |||
565 | // declaration will be instantiated. | |||
566 | if (New->getFriendObjectKind() == Decl::FOK_None || | |||
567 | !New->getLexicalDeclContext()->isDependentContext()) { | |||
568 | // It's important to use getInit() here; getDefaultArg() | |||
569 | // strips off any top-level ExprWithCleanups. | |||
570 | NewParam->setHasInheritedDefaultArg(); | |||
571 | if (OldParam->hasUnparsedDefaultArg()) | |||
572 | NewParam->setUnparsedDefaultArg(); | |||
573 | else if (OldParam->hasUninstantiatedDefaultArg()) | |||
574 | NewParam->setUninstantiatedDefaultArg( | |||
575 | OldParam->getUninstantiatedDefaultArg()); | |||
576 | else | |||
577 | NewParam->setDefaultArg(OldParam->getInit()); | |||
578 | } | |||
579 | } else if (NewParamHasDfl) { | |||
580 | if (New->getDescribedFunctionTemplate()) { | |||
581 | // Paragraph 4, quoted above, only applies to non-template functions. | |||
582 | Diag(NewParam->getLocation(), | |||
583 | diag::err_param_default_argument_template_redecl) | |||
584 | << NewParam->getDefaultArgRange(); | |||
585 | Diag(PrevForDefaultArgs->getLocation(), | |||
586 | diag::note_template_prev_declaration) | |||
587 | << false; | |||
588 | } else if (New->getTemplateSpecializationKind() | |||
589 | != TSK_ImplicitInstantiation && | |||
590 | New->getTemplateSpecializationKind() != TSK_Undeclared) { | |||
591 | // C++ [temp.expr.spec]p21: | |||
592 | // Default function arguments shall not be specified in a declaration | |||
593 | // or a definition for one of the following explicit specializations: | |||
594 | // - the explicit specialization of a function template; | |||
595 | // - the explicit specialization of a member function template; | |||
596 | // - the explicit specialization of a member function of a class | |||
597 | // template where the class template specialization to which the | |||
598 | // member function specialization belongs is implicitly | |||
599 | // instantiated. | |||
600 | Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) | |||
601 | << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) | |||
602 | << New->getDeclName() | |||
603 | << NewParam->getDefaultArgRange(); | |||
604 | } else if (New->getDeclContext()->isDependentContext()) { | |||
605 | // C++ [dcl.fct.default]p6 (DR217): | |||
606 | // Default arguments for a member function of a class template shall | |||
607 | // be specified on the initial declaration of the member function | |||
608 | // within the class template. | |||
609 | // | |||
610 | // Reading the tea leaves a bit in DR217 and its reference to DR205 | |||
611 | // leads me to the conclusion that one cannot add default function | |||
612 | // arguments for an out-of-line definition of a member function of a | |||
613 | // dependent type. | |||
614 | int WhichKind = 2; | |||
615 | if (CXXRecordDecl *Record | |||
616 | = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { | |||
617 | if (Record->getDescribedClassTemplate()) | |||
618 | WhichKind = 0; | |||
619 | else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) | |||
620 | WhichKind = 1; | |||
621 | else | |||
622 | WhichKind = 2; | |||
623 | } | |||
624 | ||||
625 | Diag(NewParam->getLocation(), | |||
626 | diag::err_param_default_argument_member_template_redecl) | |||
627 | << WhichKind | |||
628 | << NewParam->getDefaultArgRange(); | |||
629 | } | |||
630 | } | |||
631 | } | |||
632 | ||||
633 | // DR1344: If a default argument is added outside a class definition and that | |||
634 | // default argument makes the function a special member function, the program | |||
635 | // is ill-formed. This can only happen for constructors. | |||
636 | if (isa<CXXConstructorDecl>(New) && | |||
637 | New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { | |||
638 | CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), | |||
639 | OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); | |||
640 | if (NewSM != OldSM) { | |||
641 | ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); | |||
642 | assert(NewParam->hasDefaultArg())((void)0); | |||
643 | Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) | |||
644 | << NewParam->getDefaultArgRange() << NewSM; | |||
645 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
646 | } | |||
647 | } | |||
648 | ||||
649 | const FunctionDecl *Def; | |||
650 | // C++11 [dcl.constexpr]p1: If any declaration of a function or function | |||
651 | // template has a constexpr specifier then all its declarations shall | |||
652 | // contain the constexpr specifier. | |||
653 | if (New->getConstexprKind() != Old->getConstexprKind()) { | |||
654 | Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) | |||
655 | << New << static_cast<int>(New->getConstexprKind()) | |||
656 | << static_cast<int>(Old->getConstexprKind()); | |||
657 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
658 | Invalid = true; | |||
659 | } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && | |||
660 | Old->isDefined(Def) && | |||
661 | // If a friend function is inlined but does not have 'inline' | |||
662 | // specifier, it is a definition. Do not report attribute conflict | |||
663 | // in this case, redefinition will be diagnosed later. | |||
664 | (New->isInlineSpecified() || | |||
665 | New->getFriendObjectKind() == Decl::FOK_None)) { | |||
666 | // C++11 [dcl.fcn.spec]p4: | |||
667 | // If the definition of a function appears in a translation unit before its | |||
668 | // first declaration as inline, the program is ill-formed. | |||
669 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; | |||
670 | Diag(Def->getLocation(), diag::note_previous_definition); | |||
671 | Invalid = true; | |||
672 | } | |||
673 | ||||
674 | // C++17 [temp.deduct.guide]p3: | |||
675 | // Two deduction guide declarations in the same translation unit | |||
676 | // for the same class template shall not have equivalent | |||
677 | // parameter-declaration-clauses. | |||
678 | if (isa<CXXDeductionGuideDecl>(New) && | |||
679 | !New->isFunctionTemplateSpecialization() && isVisible(Old)) { | |||
680 | Diag(New->getLocation(), diag::err_deduction_guide_redeclared); | |||
681 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
682 | } | |||
683 | ||||
684 | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default | |||
685 | // argument expression, that declaration shall be a definition and shall be | |||
686 | // the only declaration of the function or function template in the | |||
687 | // translation unit. | |||
688 | if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && | |||
689 | functionDeclHasDefaultArgument(Old)) { | |||
690 | Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); | |||
691 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
692 | Invalid = true; | |||
693 | } | |||
694 | ||||
695 | // C++11 [temp.friend]p4 (DR329): | |||
696 | // When a function is defined in a friend function declaration in a class | |||
697 | // template, the function is instantiated when the function is odr-used. | |||
698 | // The same restrictions on multiple declarations and definitions that | |||
699 | // apply to non-template function declarations and definitions also apply | |||
700 | // to these implicit definitions. | |||
701 | const FunctionDecl *OldDefinition = nullptr; | |||
702 | if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && | |||
703 | Old->isDefined(OldDefinition, true)) | |||
704 | CheckForFunctionRedefinition(New, OldDefinition); | |||
705 | ||||
706 | return Invalid; | |||
707 | } | |||
708 | ||||
709 | NamedDecl * | |||
710 | Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, | |||
711 | MultiTemplateParamsArg TemplateParamLists) { | |||
712 | assert(D.isDecompositionDeclarator())((void)0); | |||
713 | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); | |||
714 | ||||
715 | // The syntax only allows a decomposition declarator as a simple-declaration, | |||
716 | // a for-range-declaration, or a condition in Clang, but we parse it in more | |||
717 | // cases than that. | |||
718 | if (!D.mayHaveDecompositionDeclarator()) { | |||
719 | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) | |||
720 | << Decomp.getSourceRange(); | |||
721 | return nullptr; | |||
722 | } | |||
723 | ||||
724 | if (!TemplateParamLists.empty()) { | |||
725 | // FIXME: There's no rule against this, but there are also no rules that | |||
726 | // would actually make it usable, so we reject it for now. | |||
727 | Diag(TemplateParamLists.front()->getTemplateLoc(), | |||
728 | diag::err_decomp_decl_template); | |||
729 | return nullptr; | |||
730 | } | |||
731 | ||||
732 | Diag(Decomp.getLSquareLoc(), | |||
733 | !getLangOpts().CPlusPlus17 | |||
734 | ? diag::ext_decomp_decl | |||
735 | : D.getContext() == DeclaratorContext::Condition | |||
736 | ? diag::ext_decomp_decl_cond | |||
737 | : diag::warn_cxx14_compat_decomp_decl) | |||
738 | << Decomp.getSourceRange(); | |||
739 | ||||
740 | // The semantic context is always just the current context. | |||
741 | DeclContext *const DC = CurContext; | |||
742 | ||||
743 | // C++17 [dcl.dcl]/8: | |||
744 | // The decl-specifier-seq shall contain only the type-specifier auto | |||
745 | // and cv-qualifiers. | |||
746 | // C++2a [dcl.dcl]/8: | |||
747 | // If decl-specifier-seq contains any decl-specifier other than static, | |||
748 | // thread_local, auto, or cv-qualifiers, the program is ill-formed. | |||
749 | auto &DS = D.getDeclSpec(); | |||
750 | { | |||
751 | SmallVector<StringRef, 8> BadSpecifiers; | |||
752 | SmallVector<SourceLocation, 8> BadSpecifierLocs; | |||
753 | SmallVector<StringRef, 8> CPlusPlus20Specifiers; | |||
754 | SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; | |||
755 | if (auto SCS = DS.getStorageClassSpec()) { | |||
756 | if (SCS == DeclSpec::SCS_static) { | |||
757 | CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); | |||
758 | CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); | |||
759 | } else { | |||
760 | BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); | |||
761 | BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); | |||
762 | } | |||
763 | } | |||
764 | if (auto TSCS = DS.getThreadStorageClassSpec()) { | |||
765 | CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); | |||
766 | CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); | |||
767 | } | |||
768 | if (DS.hasConstexprSpecifier()) { | |||
769 | BadSpecifiers.push_back( | |||
770 | DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); | |||
771 | BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); | |||
772 | } | |||
773 | if (DS.isInlineSpecified()) { | |||
774 | BadSpecifiers.push_back("inline"); | |||
775 | BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); | |||
776 | } | |||
777 | if (!BadSpecifiers.empty()) { | |||
778 | auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); | |||
779 | Err << (int)BadSpecifiers.size() | |||
780 | << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); | |||
781 | // Don't add FixItHints to remove the specifiers; we do still respect | |||
782 | // them when building the underlying variable. | |||
783 | for (auto Loc : BadSpecifierLocs) | |||
784 | Err << SourceRange(Loc, Loc); | |||
785 | } else if (!CPlusPlus20Specifiers.empty()) { | |||
786 | auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), | |||
787 | getLangOpts().CPlusPlus20 | |||
788 | ? diag::warn_cxx17_compat_decomp_decl_spec | |||
789 | : diag::ext_decomp_decl_spec); | |||
790 | Warn << (int)CPlusPlus20Specifiers.size() | |||
791 | << llvm::join(CPlusPlus20Specifiers.begin(), | |||
792 | CPlusPlus20Specifiers.end(), " "); | |||
793 | for (auto Loc : CPlusPlus20SpecifierLocs) | |||
794 | Warn << SourceRange(Loc, Loc); | |||
795 | } | |||
796 | // We can't recover from it being declared as a typedef. | |||
797 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) | |||
798 | return nullptr; | |||
799 | } | |||
800 | ||||
801 | // C++2a [dcl.struct.bind]p1: | |||
802 | // A cv that includes volatile is deprecated | |||
803 | if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && | |||
804 | getLangOpts().CPlusPlus20) | |||
805 | Diag(DS.getVolatileSpecLoc(), | |||
806 | diag::warn_deprecated_volatile_structured_binding); | |||
807 | ||||
808 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
809 | QualType R = TInfo->getType(); | |||
810 | ||||
811 | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | |||
812 | UPPC_DeclarationType)) | |||
813 | D.setInvalidType(); | |||
814 | ||||
815 | // The syntax only allows a single ref-qualifier prior to the decomposition | |||
816 | // declarator. No other declarator chunks are permitted. Also check the type | |||
817 | // specifier here. | |||
818 | if (DS.getTypeSpecType() != DeclSpec::TST_auto || | |||
819 | D.hasGroupingParens() || D.getNumTypeObjects() > 1 || | |||
820 | (D.getNumTypeObjects() == 1 && | |||
821 | D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { | |||
822 | Diag(Decomp.getLSquareLoc(), | |||
823 | (D.hasGroupingParens() || | |||
824 | (D.getNumTypeObjects() && | |||
825 | D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) | |||
826 | ? diag::err_decomp_decl_parens | |||
827 | : diag::err_decomp_decl_type) | |||
828 | << R; | |||
829 | ||||
830 | // In most cases, there's no actual problem with an explicitly-specified | |||
831 | // type, but a function type won't work here, and ActOnVariableDeclarator | |||
832 | // shouldn't be called for such a type. | |||
833 | if (R->isFunctionType()) | |||
834 | D.setInvalidType(); | |||
835 | } | |||
836 | ||||
837 | // Build the BindingDecls. | |||
838 | SmallVector<BindingDecl*, 8> Bindings; | |||
839 | ||||
840 | // Build the BindingDecls. | |||
841 | for (auto &B : D.getDecompositionDeclarator().bindings()) { | |||
842 | // Check for name conflicts. | |||
843 | DeclarationNameInfo NameInfo(B.Name, B.NameLoc); | |||
844 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |||
845 | ForVisibleRedeclaration); | |||
846 | LookupName(Previous, S, | |||
847 | /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); | |||
848 | ||||
849 | // It's not permitted to shadow a template parameter name. | |||
850 | if (Previous.isSingleResult() && | |||
851 | Previous.getFoundDecl()->isTemplateParameter()) { | |||
852 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), | |||
853 | Previous.getFoundDecl()); | |||
854 | Previous.clear(); | |||
855 | } | |||
856 | ||||
857 | auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); | |||
858 | ||||
859 | // Find the shadowed declaration before filtering for scope. | |||
860 | NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() | |||
861 | ? getShadowedDeclaration(BD, Previous) | |||
862 | : nullptr; | |||
863 | ||||
864 | bool ConsiderLinkage = DC->isFunctionOrMethod() && | |||
865 | DS.getStorageClassSpec() == DeclSpec::SCS_extern; | |||
866 | FilterLookupForScope(Previous, DC, S, ConsiderLinkage, | |||
867 | /*AllowInlineNamespace*/false); | |||
868 | ||||
869 | if (!Previous.empty()) { | |||
870 | auto *Old = Previous.getRepresentativeDecl(); | |||
871 | Diag(B.NameLoc, diag::err_redefinition) << B.Name; | |||
872 | Diag(Old->getLocation(), diag::note_previous_definition); | |||
873 | } else if (ShadowedDecl && !D.isRedeclaration()) { | |||
874 | CheckShadow(BD, ShadowedDecl, Previous); | |||
875 | } | |||
876 | PushOnScopeChains(BD, S, true); | |||
877 | Bindings.push_back(BD); | |||
878 | ParsingInitForAutoVars.insert(BD); | |||
879 | } | |||
880 | ||||
881 | // There are no prior lookup results for the variable itself, because it | |||
882 | // is unnamed. | |||
883 | DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, | |||
884 | Decomp.getLSquareLoc()); | |||
885 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |||
886 | ForVisibleRedeclaration); | |||
887 | ||||
888 | // Build the variable that holds the non-decomposed object. | |||
889 | bool AddToScope = true; | |||
890 | NamedDecl *New = | |||
891 | ActOnVariableDeclarator(S, D, DC, TInfo, Previous, | |||
892 | MultiTemplateParamsArg(), AddToScope, Bindings); | |||
893 | if (AddToScope) { | |||
894 | S->AddDecl(New); | |||
895 | CurContext->addHiddenDecl(New); | |||
896 | } | |||
897 | ||||
898 | if (isInOpenMPDeclareTargetContext()) | |||
899 | checkDeclIsAllowedInOpenMPTarget(nullptr, New); | |||
900 | ||||
901 | return New; | |||
902 | } | |||
903 | ||||
904 | static bool checkSimpleDecomposition( | |||
905 | Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, | |||
906 | QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, | |||
907 | llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { | |||
908 | if ((int64_t)Bindings.size() != NumElems) { | |||
909 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | |||
910 | << DecompType << (unsigned)Bindings.size() | |||
911 | << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) | |||
912 | << toString(NumElems, 10) << (NumElems < Bindings.size()); | |||
913 | return true; | |||
914 | } | |||
915 | ||||
916 | unsigned I = 0; | |||
917 | for (auto *B : Bindings) { | |||
918 | SourceLocation Loc = B->getLocation(); | |||
919 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | |||
920 | if (E.isInvalid()) | |||
921 | return true; | |||
922 | E = GetInit(Loc, E.get(), I++); | |||
923 | if (E.isInvalid()) | |||
924 | return true; | |||
925 | B->setBinding(ElemType, E.get()); | |||
926 | } | |||
927 | ||||
928 | return false; | |||
929 | } | |||
930 | ||||
931 | static bool checkArrayLikeDecomposition(Sema &S, | |||
932 | ArrayRef<BindingDecl *> Bindings, | |||
933 | ValueDecl *Src, QualType DecompType, | |||
934 | const llvm::APSInt &NumElems, | |||
935 | QualType ElemType) { | |||
936 | return checkSimpleDecomposition( | |||
937 | S, Bindings, Src, DecompType, NumElems, ElemType, | |||
938 | [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { | |||
939 | ExprResult E = S.ActOnIntegerConstant(Loc, I); | |||
940 | if (E.isInvalid()) | |||
941 | return ExprError(); | |||
942 | return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); | |||
943 | }); | |||
944 | } | |||
945 | ||||
946 | static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | |||
947 | ValueDecl *Src, QualType DecompType, | |||
948 | const ConstantArrayType *CAT) { | |||
949 | return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, | |||
950 | llvm::APSInt(CAT->getSize()), | |||
951 | CAT->getElementType()); | |||
952 | } | |||
953 | ||||
954 | static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | |||
955 | ValueDecl *Src, QualType DecompType, | |||
956 | const VectorType *VT) { | |||
957 | return checkArrayLikeDecomposition( | |||
958 | S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), | |||
959 | S.Context.getQualifiedType(VT->getElementType(), | |||
960 | DecompType.getQualifiers())); | |||
961 | } | |||
962 | ||||
963 | static bool checkComplexDecomposition(Sema &S, | |||
964 | ArrayRef<BindingDecl *> Bindings, | |||
965 | ValueDecl *Src, QualType DecompType, | |||
966 | const ComplexType *CT) { | |||
967 | return checkSimpleDecomposition( | |||
968 | S, Bindings, Src, DecompType, llvm::APSInt::get(2), | |||
969 | S.Context.getQualifiedType(CT->getElementType(), | |||
970 | DecompType.getQualifiers()), | |||
971 | [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { | |||
972 | return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); | |||
973 | }); | |||
974 | } | |||
975 | ||||
976 | static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, | |||
977 | TemplateArgumentListInfo &Args, | |||
978 | const TemplateParameterList *Params) { | |||
979 | SmallString<128> SS; | |||
980 | llvm::raw_svector_ostream OS(SS); | |||
981 | bool First = true; | |||
982 | unsigned I = 0; | |||
983 | for (auto &Arg : Args.arguments()) { | |||
984 | if (!First) | |||
985 | OS << ", "; | |||
986 | Arg.getArgument().print( | |||
987 | PrintingPolicy, OS, | |||
988 | TemplateParameterList::shouldIncludeTypeForArgument(Params, I)); | |||
989 | First = false; | |||
990 | I++; | |||
991 | } | |||
992 | return std::string(OS.str()); | |||
993 | } | |||
994 | ||||
995 | static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, | |||
996 | SourceLocation Loc, StringRef Trait, | |||
997 | TemplateArgumentListInfo &Args, | |||
998 | unsigned DiagID) { | |||
999 | auto DiagnoseMissing = [&] { | |||
1000 | if (DiagID) | |||
1001 | S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), | |||
1002 | Args, /*Params*/ nullptr); | |||
1003 | return true; | |||
1004 | }; | |||
1005 | ||||
1006 | // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. | |||
1007 | NamespaceDecl *Std = S.getStdNamespace(); | |||
1008 | if (!Std) | |||
1009 | return DiagnoseMissing(); | |||
1010 | ||||
1011 | // Look up the trait itself, within namespace std. We can diagnose various | |||
1012 | // problems with this lookup even if we've been asked to not diagnose a | |||
1013 | // missing specialization, because this can only fail if the user has been | |||
1014 | // declaring their own names in namespace std or we don't support the | |||
1015 | // standard library implementation in use. | |||
1016 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), | |||
1017 | Loc, Sema::LookupOrdinaryName); | |||
1018 | if (!S.LookupQualifiedName(Result, Std)) | |||
1019 | return DiagnoseMissing(); | |||
1020 | if (Result.isAmbiguous()) | |||
1021 | return true; | |||
1022 | ||||
1023 | ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); | |||
1024 | if (!TraitTD) { | |||
1025 | Result.suppressDiagnostics(); | |||
1026 | NamedDecl *Found = *Result.begin(); | |||
1027 | S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; | |||
1028 | S.Diag(Found->getLocation(), diag::note_declared_at); | |||
1029 | return true; | |||
1030 | } | |||
1031 | ||||
1032 | // Build the template-id. | |||
1033 | QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); | |||
1034 | if (TraitTy.isNull()) | |||
1035 | return true; | |||
1036 | if (!S.isCompleteType(Loc, TraitTy)) { | |||
1037 | if (DiagID) | |||
1038 | S.RequireCompleteType( | |||
1039 | Loc, TraitTy, DiagID, | |||
1040 | printTemplateArgs(S.Context.getPrintingPolicy(), Args, | |||
1041 | TraitTD->getTemplateParameters())); | |||
1042 | return true; | |||
1043 | } | |||
1044 | ||||
1045 | CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); | |||
1046 | assert(RD && "specialization of class template is not a class?")((void)0); | |||
1047 | ||||
1048 | // Look up the member of the trait type. | |||
1049 | S.LookupQualifiedName(TraitMemberLookup, RD); | |||
1050 | return TraitMemberLookup.isAmbiguous(); | |||
1051 | } | |||
1052 | ||||
1053 | static TemplateArgumentLoc | |||
1054 | getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, | |||
1055 | uint64_t I) { | |||
1056 | TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); | |||
1057 | return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); | |||
1058 | } | |||
1059 | ||||
1060 | static TemplateArgumentLoc | |||
1061 | getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { | |||
1062 | return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); | |||
1063 | } | |||
1064 | ||||
1065 | namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } | |||
1066 | ||||
1067 | static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, | |||
1068 | llvm::APSInt &Size) { | |||
1069 | EnterExpressionEvaluationContext ContextRAII( | |||
1070 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | |||
1071 | ||||
1072 | DeclarationName Value = S.PP.getIdentifierInfo("value"); | |||
1073 | LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); | |||
1074 | ||||
1075 | // Form template argument list for tuple_size<T>. | |||
1076 | TemplateArgumentListInfo Args(Loc, Loc); | |||
1077 | Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); | |||
1078 | ||||
1079 | // If there's no tuple_size specialization or the lookup of 'value' is empty, | |||
1080 | // it's not tuple-like. | |||
1081 | if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || | |||
1082 | R.empty()) | |||
1083 | return IsTupleLike::NotTupleLike; | |||
1084 | ||||
1085 | // If we get this far, we've committed to the tuple interpretation, but | |||
1086 | // we can still fail if there actually isn't a usable ::value. | |||
1087 | ||||
1088 | struct ICEDiagnoser : Sema::VerifyICEDiagnoser { | |||
1089 | LookupResult &R; | |||
1090 | TemplateArgumentListInfo &Args; | |||
1091 | ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) | |||
1092 | : R(R), Args(Args) {} | |||
1093 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, | |||
1094 | SourceLocation Loc) override { | |||
1095 | return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) | |||
1096 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args, | |||
1097 | /*Params*/ nullptr); | |||
1098 | } | |||
1099 | } Diagnoser(R, Args); | |||
1100 | ||||
1101 | ExprResult E = | |||
1102 | S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); | |||
1103 | if (E.isInvalid()) | |||
1104 | return IsTupleLike::Error; | |||
1105 | ||||
1106 | E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); | |||
1107 | if (E.isInvalid()) | |||
1108 | return IsTupleLike::Error; | |||
1109 | ||||
1110 | return IsTupleLike::TupleLike; | |||
1111 | } | |||
1112 | ||||
1113 | /// \return std::tuple_element<I, T>::type. | |||
1114 | static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, | |||
1115 | unsigned I, QualType T) { | |||
1116 | // Form template argument list for tuple_element<I, T>. | |||
1117 | TemplateArgumentListInfo Args(Loc, Loc); | |||
1118 | Args.addArgument( | |||
1119 | getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); | |||
1120 | Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); | |||
1121 | ||||
1122 | DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); | |||
1123 | LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); | |||
1124 | if (lookupStdTypeTraitMember( | |||
1125 | S, R, Loc, "tuple_element", Args, | |||
1126 | diag::err_decomp_decl_std_tuple_element_not_specialized)) | |||
1127 | return QualType(); | |||
1128 | ||||
1129 | auto *TD = R.getAsSingle<TypeDecl>(); | |||
1130 | if (!TD) { | |||
1131 | R.suppressDiagnostics(); | |||
1132 | S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) | |||
1133 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args, | |||
1134 | /*Params*/ nullptr); | |||
1135 | if (!R.empty()) | |||
1136 | S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); | |||
1137 | return QualType(); | |||
1138 | } | |||
1139 | ||||
1140 | return S.Context.getTypeDeclType(TD); | |||
1141 | } | |||
1142 | ||||
1143 | namespace { | |||
1144 | struct InitializingBinding { | |||
1145 | Sema &S; | |||
1146 | InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { | |||
1147 | Sema::CodeSynthesisContext Ctx; | |||
1148 | Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; | |||
1149 | Ctx.PointOfInstantiation = BD->getLocation(); | |||
1150 | Ctx.Entity = BD; | |||
1151 | S.pushCodeSynthesisContext(Ctx); | |||
1152 | } | |||
1153 | ~InitializingBinding() { | |||
1154 | S.popCodeSynthesisContext(); | |||
1155 | } | |||
1156 | }; | |||
1157 | } | |||
1158 | ||||
1159 | static bool checkTupleLikeDecomposition(Sema &S, | |||
1160 | ArrayRef<BindingDecl *> Bindings, | |||
1161 | VarDecl *Src, QualType DecompType, | |||
1162 | const llvm::APSInt &TupleSize) { | |||
1163 | if ((int64_t)Bindings.size() != TupleSize) { | |||
1164 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | |||
1165 | << DecompType << (unsigned)Bindings.size() | |||
1166 | << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) | |||
1167 | << toString(TupleSize, 10) << (TupleSize < Bindings.size()); | |||
1168 | return true; | |||
1169 | } | |||
1170 | ||||
1171 | if (Bindings.empty()) | |||
1172 | return false; | |||
1173 | ||||
1174 | DeclarationName GetDN = S.PP.getIdentifierInfo("get"); | |||
1175 | ||||
1176 | // [dcl.decomp]p3: | |||
1177 | // The unqualified-id get is looked up in the scope of E by class member | |||
1178 | // access lookup ... | |||
1179 | LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); | |||
1180 | bool UseMemberGet = false; | |||
1181 | if (S.isCompleteType(Src->getLocation(), DecompType)) { | |||
1182 | if (auto *RD = DecompType->getAsCXXRecordDecl()) | |||
1183 | S.LookupQualifiedName(MemberGet, RD); | |||
1184 | if (MemberGet.isAmbiguous()) | |||
1185 | return true; | |||
1186 | // ... and if that finds at least one declaration that is a function | |||
1187 | // template whose first template parameter is a non-type parameter ... | |||
1188 | for (NamedDecl *D : MemberGet) { | |||
1189 | if (FunctionTemplateDecl *FTD = | |||
1190 | dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { | |||
1191 | TemplateParameterList *TPL = FTD->getTemplateParameters(); | |||
1192 | if (TPL->size() != 0 && | |||
1193 | isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { | |||
1194 | // ... the initializer is e.get<i>(). | |||
1195 | UseMemberGet = true; | |||
1196 | break; | |||
1197 | } | |||
1198 | } | |||
1199 | } | |||
1200 | } | |||
1201 | ||||
1202 | unsigned I = 0; | |||
1203 | for (auto *B : Bindings) { | |||
1204 | InitializingBinding InitContext(S, B); | |||
1205 | SourceLocation Loc = B->getLocation(); | |||
1206 | ||||
1207 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | |||
1208 | if (E.isInvalid()) | |||
1209 | return true; | |||
1210 | ||||
1211 | // e is an lvalue if the type of the entity is an lvalue reference and | |||
1212 | // an xvalue otherwise | |||
1213 | if (!Src->getType()->isLValueReferenceType()) | |||
1214 | E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, | |||
1215 | E.get(), nullptr, VK_XValue, | |||
1216 | FPOptionsOverride()); | |||
1217 | ||||
1218 | TemplateArgumentListInfo Args(Loc, Loc); | |||
1219 | Args.addArgument( | |||
1220 | getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); | |||
1221 | ||||
1222 | if (UseMemberGet) { | |||
1223 | // if [lookup of member get] finds at least one declaration, the | |||
1224 | // initializer is e.get<i-1>(). | |||
1225 | E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, | |||
1226 | CXXScopeSpec(), SourceLocation(), nullptr, | |||
1227 | MemberGet, &Args, nullptr); | |||
1228 | if (E.isInvalid()) | |||
1229 | return true; | |||
1230 | ||||
1231 | E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); | |||
1232 | } else { | |||
1233 | // Otherwise, the initializer is get<i-1>(e), where get is looked up | |||
1234 | // in the associated namespaces. | |||
1235 | Expr *Get = UnresolvedLookupExpr::Create( | |||
1236 | S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), | |||
1237 | DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, | |||
1238 | UnresolvedSetIterator(), UnresolvedSetIterator()); | |||
1239 | ||||
1240 | Expr *Arg = E.get(); | |||
1241 | E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); | |||
1242 | } | |||
1243 | if (E.isInvalid()) | |||
1244 | return true; | |||
1245 | Expr *Init = E.get(); | |||
1246 | ||||
1247 | // Given the type T designated by std::tuple_element<i - 1, E>::type, | |||
1248 | QualType T = getTupleLikeElementType(S, Loc, I, DecompType); | |||
1249 | if (T.isNull()) | |||
1250 | return true; | |||
1251 | ||||
1252 | // each vi is a variable of type "reference to T" initialized with the | |||
1253 | // initializer, where the reference is an lvalue reference if the | |||
1254 | // initializer is an lvalue and an rvalue reference otherwise | |||
1255 | QualType RefType = | |||
1256 | S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); | |||
1257 | if (RefType.isNull()) | |||
1258 | return true; | |||
1259 | auto *RefVD = VarDecl::Create( | |||
1260 | S.Context, Src->getDeclContext(), Loc, Loc, | |||
1261 | B->getDeclName().getAsIdentifierInfo(), RefType, | |||
1262 | S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); | |||
1263 | RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); | |||
1264 | RefVD->setTSCSpec(Src->getTSCSpec()); | |||
1265 | RefVD->setImplicit(); | |||
1266 | if (Src->isInlineSpecified()) | |||
1267 | RefVD->setInlineSpecified(); | |||
1268 | RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); | |||
1269 | ||||
1270 | InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); | |||
1271 | InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); | |||
1272 | InitializationSequence Seq(S, Entity, Kind, Init); | |||
1273 | E = Seq.Perform(S, Entity, Kind, Init); | |||
1274 | if (E.isInvalid()) | |||
1275 | return true; | |||
1276 | E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); | |||
1277 | if (E.isInvalid()) | |||
1278 | return true; | |||
1279 | RefVD->setInit(E.get()); | |||
1280 | S.CheckCompleteVariableDeclaration(RefVD); | |||
1281 | ||||
1282 | E = S.BuildDeclarationNameExpr(CXXScopeSpec(), | |||
1283 | DeclarationNameInfo(B->getDeclName(), Loc), | |||
1284 | RefVD); | |||
1285 | if (E.isInvalid()) | |||
1286 | return true; | |||
1287 | ||||
1288 | B->setBinding(T, E.get()); | |||
1289 | I++; | |||
1290 | } | |||
1291 | ||||
1292 | return false; | |||
1293 | } | |||
1294 | ||||
1295 | /// Find the base class to decompose in a built-in decomposition of a class type. | |||
1296 | /// This base class search is, unfortunately, not quite like any other that we | |||
1297 | /// perform anywhere else in C++. | |||
1298 | static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, | |||
1299 | const CXXRecordDecl *RD, | |||
1300 | CXXCastPath &BasePath) { | |||
1301 | auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, | |||
1302 | CXXBasePath &Path) { | |||
1303 | return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); | |||
1304 | }; | |||
1305 | ||||
1306 | const CXXRecordDecl *ClassWithFields = nullptr; | |||
1307 | AccessSpecifier AS = AS_public; | |||
1308 | if (RD->hasDirectFields()) | |||
1309 | // [dcl.decomp]p4: | |||
1310 | // Otherwise, all of E's non-static data members shall be public direct | |||
1311 | // members of E ... | |||
1312 | ClassWithFields = RD; | |||
1313 | else { | |||
1314 | // ... or of ... | |||
1315 | CXXBasePaths Paths; | |||
1316 | Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); | |||
1317 | if (!RD->lookupInBases(BaseHasFields, Paths)) { | |||
1318 | // If no classes have fields, just decompose RD itself. (This will work | |||
1319 | // if and only if zero bindings were provided.) | |||
1320 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); | |||
1321 | } | |||
1322 | ||||
1323 | CXXBasePath *BestPath = nullptr; | |||
1324 | for (auto &P : Paths) { | |||
1325 | if (!BestPath) | |||
1326 | BestPath = &P; | |||
1327 | else if (!S.Context.hasSameType(P.back().Base->getType(), | |||
1328 | BestPath->back().Base->getType())) { | |||
1329 | // ... the same ... | |||
1330 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) | |||
1331 | << false << RD << BestPath->back().Base->getType() | |||
1332 | << P.back().Base->getType(); | |||
1333 | return DeclAccessPair(); | |||
1334 | } else if (P.Access < BestPath->Access) { | |||
1335 | BestPath = &P; | |||
1336 | } | |||
1337 | } | |||
1338 | ||||
1339 | // ... unambiguous ... | |||
1340 | QualType BaseType = BestPath->back().Base->getType(); | |||
1341 | if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { | |||
1342 | S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) | |||
1343 | << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); | |||
1344 | return DeclAccessPair(); | |||
1345 | } | |||
1346 | ||||
1347 | // ... [accessible, implied by other rules] base class of E. | |||
1348 | S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), | |||
1349 | *BestPath, diag::err_decomp_decl_inaccessible_base); | |||
1350 | AS = BestPath->Access; | |||
1351 | ||||
1352 | ClassWithFields = BaseType->getAsCXXRecordDecl(); | |||
1353 | S.BuildBasePathArray(Paths, BasePath); | |||
1354 | } | |||
1355 | ||||
1356 | // The above search did not check whether the selected class itself has base | |||
1357 | // classes with fields, so check that now. | |||
1358 | CXXBasePaths Paths; | |||
1359 | if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { | |||
1360 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) | |||
1361 | << (ClassWithFields == RD) << RD << ClassWithFields | |||
1362 | << Paths.front().back().Base->getType(); | |||
1363 | return DeclAccessPair(); | |||
1364 | } | |||
1365 | ||||
1366 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); | |||
1367 | } | |||
1368 | ||||
1369 | static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, | |||
1370 | ValueDecl *Src, QualType DecompType, | |||
1371 | const CXXRecordDecl *OrigRD) { | |||
1372 | if (S.RequireCompleteType(Src->getLocation(), DecompType, | |||
1373 | diag::err_incomplete_type)) | |||
1374 | return true; | |||
1375 | ||||
1376 | CXXCastPath BasePath; | |||
1377 | DeclAccessPair BasePair = | |||
1378 | findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); | |||
1379 | const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); | |||
1380 | if (!RD) | |||
1381 | return true; | |||
1382 | QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), | |||
1383 | DecompType.getQualifiers()); | |||
1384 | ||||
1385 | auto DiagnoseBadNumberOfBindings = [&]() -> bool { | |||
1386 | unsigned NumFields = | |||
1387 | std::count_if(RD->field_begin(), RD->field_end(), | |||
1388 | [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); | |||
1389 | assert(Bindings.size() != NumFields)((void)0); | |||
1390 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) | |||
1391 | << DecompType << (unsigned)Bindings.size() << NumFields << NumFields | |||
1392 | << (NumFields < Bindings.size()); | |||
1393 | return true; | |||
1394 | }; | |||
1395 | ||||
1396 | // all of E's non-static data members shall be [...] well-formed | |||
1397 | // when named as e.name in the context of the structured binding, | |||
1398 | // E shall not have an anonymous union member, ... | |||
1399 | unsigned I = 0; | |||
1400 | for (auto *FD : RD->fields()) { | |||
1401 | if (FD->isUnnamedBitfield()) | |||
1402 | continue; | |||
1403 | ||||
1404 | // All the non-static data members are required to be nameable, so they | |||
1405 | // must all have names. | |||
1406 | if (!FD->getDeclName()) { | |||
1407 | if (RD->isLambda()) { | |||
1408 | S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); | |||
1409 | S.Diag(RD->getLocation(), diag::note_lambda_decl); | |||
1410 | return true; | |||
1411 | } | |||
1412 | ||||
1413 | if (FD->isAnonymousStructOrUnion()) { | |||
1414 | S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) | |||
1415 | << DecompType << FD->getType()->isUnionType(); | |||
1416 | S.Diag(FD->getLocation(), diag::note_declared_at); | |||
1417 | return true; | |||
1418 | } | |||
1419 | ||||
1420 | // FIXME: Are there any other ways we could have an anonymous member? | |||
1421 | } | |||
1422 | ||||
1423 | // We have a real field to bind. | |||
1424 | if (I >= Bindings.size()) | |||
1425 | return DiagnoseBadNumberOfBindings(); | |||
1426 | auto *B = Bindings[I++]; | |||
1427 | SourceLocation Loc = B->getLocation(); | |||
1428 | ||||
1429 | // The field must be accessible in the context of the structured binding. | |||
1430 | // We already checked that the base class is accessible. | |||
1431 | // FIXME: Add 'const' to AccessedEntity's classes so we can remove the | |||
1432 | // const_cast here. | |||
1433 | S.CheckStructuredBindingMemberAccess( | |||
1434 | Loc, const_cast<CXXRecordDecl *>(OrigRD), | |||
1435 | DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( | |||
1436 | BasePair.getAccess(), FD->getAccess()))); | |||
1437 | ||||
1438 | // Initialize the binding to Src.FD. | |||
1439 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); | |||
1440 | if (E.isInvalid()) | |||
1441 | return true; | |||
1442 | E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, | |||
1443 | VK_LValue, &BasePath); | |||
1444 | if (E.isInvalid()) | |||
1445 | return true; | |||
1446 | E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, | |||
1447 | CXXScopeSpec(), FD, | |||
1448 | DeclAccessPair::make(FD, FD->getAccess()), | |||
1449 | DeclarationNameInfo(FD->getDeclName(), Loc)); | |||
1450 | if (E.isInvalid()) | |||
1451 | return true; | |||
1452 | ||||
1453 | // If the type of the member is T, the referenced type is cv T, where cv is | |||
1454 | // the cv-qualification of the decomposition expression. | |||
1455 | // | |||
1456 | // FIXME: We resolve a defect here: if the field is mutable, we do not add | |||
1457 | // 'const' to the type of the field. | |||
1458 | Qualifiers Q = DecompType.getQualifiers(); | |||
1459 | if (FD->isMutable()) | |||
1460 | Q.removeConst(); | |||
1461 | B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); | |||
1462 | } | |||
1463 | ||||
1464 | if (I != Bindings.size()) | |||
1465 | return DiagnoseBadNumberOfBindings(); | |||
1466 | ||||
1467 | return false; | |||
1468 | } | |||
1469 | ||||
1470 | void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { | |||
1471 | QualType DecompType = DD->getType(); | |||
1472 | ||||
1473 | // If the type of the decomposition is dependent, then so is the type of | |||
1474 | // each binding. | |||
1475 | if (DecompType->isDependentType()) { | |||
1476 | for (auto *B : DD->bindings()) | |||
1477 | B->setType(Context.DependentTy); | |||
1478 | return; | |||
1479 | } | |||
1480 | ||||
1481 | DecompType = DecompType.getNonReferenceType(); | |||
1482 | ArrayRef<BindingDecl*> Bindings = DD->bindings(); | |||
1483 | ||||
1484 | // C++1z [dcl.decomp]/2: | |||
1485 | // If E is an array type [...] | |||
1486 | // As an extension, we also support decomposition of built-in complex and | |||
1487 | // vector types. | |||
1488 | if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { | |||
1489 | if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) | |||
1490 | DD->setInvalidDecl(); | |||
1491 | return; | |||
1492 | } | |||
1493 | if (auto *VT = DecompType->getAs<VectorType>()) { | |||
1494 | if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) | |||
1495 | DD->setInvalidDecl(); | |||
1496 | return; | |||
1497 | } | |||
1498 | if (auto *CT = DecompType->getAs<ComplexType>()) { | |||
1499 | if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) | |||
1500 | DD->setInvalidDecl(); | |||
1501 | return; | |||
1502 | } | |||
1503 | ||||
1504 | // C++1z [dcl.decomp]/3: | |||
1505 | // if the expression std::tuple_size<E>::value is a well-formed integral | |||
1506 | // constant expression, [...] | |||
1507 | llvm::APSInt TupleSize(32); | |||
1508 | switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { | |||
1509 | case IsTupleLike::Error: | |||
1510 | DD->setInvalidDecl(); | |||
1511 | return; | |||
1512 | ||||
1513 | case IsTupleLike::TupleLike: | |||
1514 | if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) | |||
1515 | DD->setInvalidDecl(); | |||
1516 | return; | |||
1517 | ||||
1518 | case IsTupleLike::NotTupleLike: | |||
1519 | break; | |||
1520 | } | |||
1521 | ||||
1522 | // C++1z [dcl.dcl]/8: | |||
1523 | // [E shall be of array or non-union class type] | |||
1524 | CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); | |||
1525 | if (!RD || RD->isUnion()) { | |||
1526 | Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) | |||
1527 | << DD << !RD << DecompType; | |||
1528 | DD->setInvalidDecl(); | |||
1529 | return; | |||
1530 | } | |||
1531 | ||||
1532 | // C++1z [dcl.decomp]/4: | |||
1533 | // all of E's non-static data members shall be [...] direct members of | |||
1534 | // E or of the same unambiguous public base class of E, ... | |||
1535 | if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) | |||
1536 | DD->setInvalidDecl(); | |||
1537 | } | |||
1538 | ||||
1539 | /// Merge the exception specifications of two variable declarations. | |||
1540 | /// | |||
1541 | /// This is called when there's a redeclaration of a VarDecl. The function | |||
1542 | /// checks if the redeclaration might have an exception specification and | |||
1543 | /// validates compatibility and merges the specs if necessary. | |||
1544 | void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { | |||
1545 | // Shortcut if exceptions are disabled. | |||
1546 | if (!getLangOpts().CXXExceptions) | |||
1547 | return; | |||
1548 | ||||
1549 | assert(Context.hasSameType(New->getType(), Old->getType()) &&((void)0) | |||
1550 | "Should only be called if types are otherwise the same.")((void)0); | |||
1551 | ||||
1552 | QualType NewType = New->getType(); | |||
1553 | QualType OldType = Old->getType(); | |||
1554 | ||||
1555 | // We're only interested in pointers and references to functions, as well | |||
1556 | // as pointers to member functions. | |||
1557 | if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { | |||
1558 | NewType = R->getPointeeType(); | |||
1559 | OldType = OldType->castAs<ReferenceType>()->getPointeeType(); | |||
1560 | } else if (const PointerType *P = NewType->getAs<PointerType>()) { | |||
1561 | NewType = P->getPointeeType(); | |||
1562 | OldType = OldType->castAs<PointerType>()->getPointeeType(); | |||
1563 | } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { | |||
1564 | NewType = M->getPointeeType(); | |||
1565 | OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); | |||
1566 | } | |||
1567 | ||||
1568 | if (!NewType->isFunctionProtoType()) | |||
1569 | return; | |||
1570 | ||||
1571 | // There's lots of special cases for functions. For function pointers, system | |||
1572 | // libraries are hopefully not as broken so that we don't need these | |||
1573 | // workarounds. | |||
1574 | if (CheckEquivalentExceptionSpec( | |||
1575 | OldType->getAs<FunctionProtoType>(), Old->getLocation(), | |||
1576 | NewType->getAs<FunctionProtoType>(), New->getLocation())) { | |||
1577 | New->setInvalidDecl(); | |||
1578 | } | |||
1579 | } | |||
1580 | ||||
1581 | /// CheckCXXDefaultArguments - Verify that the default arguments for a | |||
1582 | /// function declaration are well-formed according to C++ | |||
1583 | /// [dcl.fct.default]. | |||
1584 | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { | |||
1585 | unsigned NumParams = FD->getNumParams(); | |||
1586 | unsigned ParamIdx = 0; | |||
1587 | ||||
1588 | // This checking doesn't make sense for explicit specializations; their | |||
1589 | // default arguments are determined by the declaration we're specializing, | |||
1590 | // not by FD. | |||
1591 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) | |||
1592 | return; | |||
1593 | if (auto *FTD = FD->getDescribedFunctionTemplate()) | |||
1594 | if (FTD->isMemberSpecialization()) | |||
1595 | return; | |||
1596 | ||||
1597 | // Find first parameter with a default argument | |||
1598 | for (; ParamIdx < NumParams; ++ParamIdx) { | |||
1599 | ParmVarDecl *Param = FD->getParamDecl(ParamIdx); | |||
1600 | if (Param->hasDefaultArg()) | |||
1601 | break; | |||
1602 | } | |||
1603 | ||||
1604 | // C++20 [dcl.fct.default]p4: | |||
1605 | // In a given function declaration, each parameter subsequent to a parameter | |||
1606 | // with a default argument shall have a default argument supplied in this or | |||
1607 | // a previous declaration, unless the parameter was expanded from a | |||
1608 | // parameter pack, or shall be a function parameter pack. | |||
1609 | for (; ParamIdx < NumParams; ++ParamIdx) { | |||
1610 | ParmVarDecl *Param = FD->getParamDecl(ParamIdx); | |||
1611 | if (!Param->hasDefaultArg() && !Param->isParameterPack() && | |||
1612 | !(CurrentInstantiationScope && | |||
1613 | CurrentInstantiationScope->isLocalPackExpansion(Param))) { | |||
1614 | if (Param->isInvalidDecl()) | |||
1615 | /* We already complained about this parameter. */; | |||
1616 | else if (Param->getIdentifier()) | |||
1617 | Diag(Param->getLocation(), | |||
1618 | diag::err_param_default_argument_missing_name) | |||
1619 | << Param->getIdentifier(); | |||
1620 | else | |||
1621 | Diag(Param->getLocation(), | |||
1622 | diag::err_param_default_argument_missing); | |||
1623 | } | |||
1624 | } | |||
1625 | } | |||
1626 | ||||
1627 | /// Check that the given type is a literal type. Issue a diagnostic if not, | |||
1628 | /// if Kind is Diagnose. | |||
1629 | /// \return \c true if a problem has been found (and optionally diagnosed). | |||
1630 | template <typename... Ts> | |||
1631 | static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, | |||
1632 | SourceLocation Loc, QualType T, unsigned DiagID, | |||
1633 | Ts &&...DiagArgs) { | |||
1634 | if (T->isDependentType()) | |||
1635 | return false; | |||
1636 | ||||
1637 | switch (Kind) { | |||
1638 | case Sema::CheckConstexprKind::Diagnose: | |||
1639 | return SemaRef.RequireLiteralType(Loc, T, DiagID, | |||
1640 | std::forward<Ts>(DiagArgs)...); | |||
1641 | ||||
1642 | case Sema::CheckConstexprKind::CheckValid: | |||
1643 | return !T->isLiteralType(SemaRef.Context); | |||
1644 | } | |||
1645 | ||||
1646 | llvm_unreachable("unknown CheckConstexprKind")__builtin_unreachable(); | |||
1647 | } | |||
1648 | ||||
1649 | /// Determine whether a destructor cannot be constexpr due to | |||
1650 | static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, | |||
1651 | const CXXDestructorDecl *DD, | |||
1652 | Sema::CheckConstexprKind Kind) { | |||
1653 | auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { | |||
1654 | const CXXRecordDecl *RD = | |||
1655 | T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); | |||
1656 | if (!RD || RD->hasConstexprDestructor()) | |||
1657 | return true; | |||
1658 | ||||
1659 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1660 | SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) | |||
1661 | << static_cast<int>(DD->getConstexprKind()) << !FD | |||
1662 | << (FD ? FD->getDeclName() : DeclarationName()) << T; | |||
1663 | SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) | |||
1664 | << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; | |||
1665 | } | |||
1666 | return false; | |||
1667 | }; | |||
1668 | ||||
1669 | const CXXRecordDecl *RD = DD->getParent(); | |||
1670 | for (const CXXBaseSpecifier &B : RD->bases()) | |||
1671 | if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) | |||
1672 | return false; | |||
1673 | for (const FieldDecl *FD : RD->fields()) | |||
1674 | if (!Check(FD->getLocation(), FD->getType(), FD)) | |||
1675 | return false; | |||
1676 | return true; | |||
1677 | } | |||
1678 | ||||
1679 | /// Check whether a function's parameter types are all literal types. If so, | |||
1680 | /// return true. If not, produce a suitable diagnostic and return false. | |||
1681 | static bool CheckConstexprParameterTypes(Sema &SemaRef, | |||
1682 | const FunctionDecl *FD, | |||
1683 | Sema::CheckConstexprKind Kind) { | |||
1684 | unsigned ArgIndex = 0; | |||
1685 | const auto *FT = FD->getType()->castAs<FunctionProtoType>(); | |||
1686 | for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), | |||
1687 | e = FT->param_type_end(); | |||
1688 | i != e; ++i, ++ArgIndex) { | |||
1689 | const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); | |||
1690 | SourceLocation ParamLoc = PD->getLocation(); | |||
1691 | if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, | |||
1692 | diag::err_constexpr_non_literal_param, ArgIndex + 1, | |||
1693 | PD->getSourceRange(), isa<CXXConstructorDecl>(FD), | |||
1694 | FD->isConsteval())) | |||
1695 | return false; | |||
1696 | } | |||
1697 | return true; | |||
1698 | } | |||
1699 | ||||
1700 | /// Check whether a function's return type is a literal type. If so, return | |||
1701 | /// true. If not, produce a suitable diagnostic and return false. | |||
1702 | static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, | |||
1703 | Sema::CheckConstexprKind Kind) { | |||
1704 | if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), | |||
1705 | diag::err_constexpr_non_literal_return, | |||
1706 | FD->isConsteval())) | |||
1707 | return false; | |||
1708 | return true; | |||
1709 | } | |||
1710 | ||||
1711 | /// Get diagnostic %select index for tag kind for | |||
1712 | /// record diagnostic message. | |||
1713 | /// WARNING: Indexes apply to particular diagnostics only! | |||
1714 | /// | |||
1715 | /// \returns diagnostic %select index. | |||
1716 | static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { | |||
1717 | switch (Tag) { | |||
1718 | case TTK_Struct: return 0; | |||
1719 | case TTK_Interface: return 1; | |||
1720 | case TTK_Class: return 2; | |||
1721 | default: llvm_unreachable("Invalid tag kind for record diagnostic!")__builtin_unreachable(); | |||
1722 | } | |||
1723 | } | |||
1724 | ||||
1725 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, | |||
1726 | Stmt *Body, | |||
1727 | Sema::CheckConstexprKind Kind); | |||
1728 | ||||
1729 | // Check whether a function declaration satisfies the requirements of a | |||
1730 | // constexpr function definition or a constexpr constructor definition. If so, | |||
1731 | // return true. If not, produce appropriate diagnostics (unless asked not to by | |||
1732 | // Kind) and return false. | |||
1733 | // | |||
1734 | // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. | |||
1735 | bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, | |||
1736 | CheckConstexprKind Kind) { | |||
1737 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | |||
1738 | if (MD && MD->isInstance()) { | |||
1739 | // C++11 [dcl.constexpr]p4: | |||
1740 | // The definition of a constexpr constructor shall satisfy the following | |||
1741 | // constraints: | |||
1742 | // - the class shall not have any virtual base classes; | |||
1743 | // | |||
1744 | // FIXME: This only applies to constructors and destructors, not arbitrary | |||
1745 | // member functions. | |||
1746 | const CXXRecordDecl *RD = MD->getParent(); | |||
1747 | if (RD->getNumVBases()) { | |||
1748 | if (Kind == CheckConstexprKind::CheckValid) | |||
1749 | return false; | |||
1750 | ||||
1751 | Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) | |||
1752 | << isa<CXXConstructorDecl>(NewFD) | |||
1753 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); | |||
1754 | for (const auto &I : RD->vbases()) | |||
1755 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) | |||
1756 | << I.getSourceRange(); | |||
1757 | return false; | |||
1758 | } | |||
1759 | } | |||
1760 | ||||
1761 | if (!isa<CXXConstructorDecl>(NewFD)) { | |||
1762 | // C++11 [dcl.constexpr]p3: | |||
1763 | // The definition of a constexpr function shall satisfy the following | |||
1764 | // constraints: | |||
1765 | // - it shall not be virtual; (removed in C++20) | |||
1766 | const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); | |||
1767 | if (Method && Method->isVirtual()) { | |||
1768 | if (getLangOpts().CPlusPlus20) { | |||
1769 | if (Kind == CheckConstexprKind::Diagnose) | |||
1770 | Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); | |||
1771 | } else { | |||
1772 | if (Kind == CheckConstexprKind::CheckValid) | |||
1773 | return false; | |||
1774 | ||||
1775 | Method = Method->getCanonicalDecl(); | |||
1776 | Diag(Method->getLocation(), diag::err_constexpr_virtual); | |||
1777 | ||||
1778 | // If it's not obvious why this function is virtual, find an overridden | |||
1779 | // function which uses the 'virtual' keyword. | |||
1780 | const CXXMethodDecl *WrittenVirtual = Method; | |||
1781 | while (!WrittenVirtual->isVirtualAsWritten()) | |||
1782 | WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); | |||
1783 | if (WrittenVirtual != Method) | |||
1784 | Diag(WrittenVirtual->getLocation(), | |||
1785 | diag::note_overridden_virtual_function); | |||
1786 | return false; | |||
1787 | } | |||
1788 | } | |||
1789 | ||||
1790 | // - its return type shall be a literal type; | |||
1791 | if (!CheckConstexprReturnType(*this, NewFD, Kind)) | |||
1792 | return false; | |||
1793 | } | |||
1794 | ||||
1795 | if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { | |||
1796 | // A destructor can be constexpr only if the defaulted destructor could be; | |||
1797 | // we don't need to check the members and bases if we already know they all | |||
1798 | // have constexpr destructors. | |||
1799 | if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { | |||
1800 | if (Kind == CheckConstexprKind::CheckValid) | |||
1801 | return false; | |||
1802 | if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) | |||
1803 | return false; | |||
1804 | } | |||
1805 | } | |||
1806 | ||||
1807 | // - each of its parameter types shall be a literal type; | |||
1808 | if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) | |||
1809 | return false; | |||
1810 | ||||
1811 | Stmt *Body = NewFD->getBody(); | |||
1812 | assert(Body &&((void)0) | |||
1813 | "CheckConstexprFunctionDefinition called on function with no body")((void)0); | |||
1814 | return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); | |||
1815 | } | |||
1816 | ||||
1817 | /// Check the given declaration statement is legal within a constexpr function | |||
1818 | /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. | |||
1819 | /// | |||
1820 | /// \return true if the body is OK (maybe only as an extension), false if we | |||
1821 | /// have diagnosed a problem. | |||
1822 | static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, | |||
1823 | DeclStmt *DS, SourceLocation &Cxx1yLoc, | |||
1824 | Sema::CheckConstexprKind Kind) { | |||
1825 | // C++11 [dcl.constexpr]p3 and p4: | |||
1826 | // The definition of a constexpr function(p3) or constructor(p4) [...] shall | |||
1827 | // contain only | |||
1828 | for (const auto *DclIt : DS->decls()) { | |||
1829 | switch (DclIt->getKind()) { | |||
1830 | case Decl::StaticAssert: | |||
1831 | case Decl::Using: | |||
1832 | case Decl::UsingShadow: | |||
1833 | case Decl::UsingDirective: | |||
1834 | case Decl::UnresolvedUsingTypename: | |||
1835 | case Decl::UnresolvedUsingValue: | |||
1836 | case Decl::UsingEnum: | |||
1837 | // - static_assert-declarations | |||
1838 | // - using-declarations, | |||
1839 | // - using-directives, | |||
1840 | // - using-enum-declaration | |||
1841 | continue; | |||
1842 | ||||
1843 | case Decl::Typedef: | |||
1844 | case Decl::TypeAlias: { | |||
1845 | // - typedef declarations and alias-declarations that do not define | |||
1846 | // classes or enumerations, | |||
1847 | const auto *TN = cast<TypedefNameDecl>(DclIt); | |||
1848 | if (TN->getUnderlyingType()->isVariablyModifiedType()) { | |||
1849 | // Don't allow variably-modified types in constexpr functions. | |||
1850 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1851 | TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); | |||
1852 | SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) | |||
1853 | << TL.getSourceRange() << TL.getType() | |||
1854 | << isa<CXXConstructorDecl>(Dcl); | |||
1855 | } | |||
1856 | return false; | |||
1857 | } | |||
1858 | continue; | |||
1859 | } | |||
1860 | ||||
1861 | case Decl::Enum: | |||
1862 | case Decl::CXXRecord: | |||
1863 | // C++1y allows types to be defined, not just declared. | |||
1864 | if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { | |||
1865 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1866 | SemaRef.Diag(DS->getBeginLoc(), | |||
1867 | SemaRef.getLangOpts().CPlusPlus14 | |||
1868 | ? diag::warn_cxx11_compat_constexpr_type_definition | |||
1869 | : diag::ext_constexpr_type_definition) | |||
1870 | << isa<CXXConstructorDecl>(Dcl); | |||
1871 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { | |||
1872 | return false; | |||
1873 | } | |||
1874 | } | |||
1875 | continue; | |||
1876 | ||||
1877 | case Decl::EnumConstant: | |||
1878 | case Decl::IndirectField: | |||
1879 | case Decl::ParmVar: | |||
1880 | // These can only appear with other declarations which are banned in | |||
1881 | // C++11 and permitted in C++1y, so ignore them. | |||
1882 | continue; | |||
1883 | ||||
1884 | case Decl::Var: | |||
1885 | case Decl::Decomposition: { | |||
1886 | // C++1y [dcl.constexpr]p3 allows anything except: | |||
1887 | // a definition of a variable of non-literal type or of static or | |||
1888 | // thread storage duration or [before C++2a] for which no | |||
1889 | // initialization is performed. | |||
1890 | const auto *VD = cast<VarDecl>(DclIt); | |||
1891 | if (VD->isThisDeclarationADefinition()) { | |||
1892 | if (VD->isStaticLocal()) { | |||
1893 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1894 | SemaRef.Diag(VD->getLocation(), | |||
1895 | diag::err_constexpr_local_var_static) | |||
1896 | << isa<CXXConstructorDecl>(Dcl) | |||
1897 | << (VD->getTLSKind() == VarDecl::TLS_Dynamic); | |||
1898 | } | |||
1899 | return false; | |||
1900 | } | |||
1901 | if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), | |||
1902 | diag::err_constexpr_local_var_non_literal_type, | |||
1903 | isa<CXXConstructorDecl>(Dcl))) | |||
1904 | return false; | |||
1905 | if (!VD->getType()->isDependentType() && | |||
1906 | !VD->hasInit() && !VD->isCXXForRangeDecl()) { | |||
1907 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1908 | SemaRef.Diag( | |||
1909 | VD->getLocation(), | |||
1910 | SemaRef.getLangOpts().CPlusPlus20 | |||
1911 | ? diag::warn_cxx17_compat_constexpr_local_var_no_init | |||
1912 | : diag::ext_constexpr_local_var_no_init) | |||
1913 | << isa<CXXConstructorDecl>(Dcl); | |||
1914 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { | |||
1915 | return false; | |||
1916 | } | |||
1917 | continue; | |||
1918 | } | |||
1919 | } | |||
1920 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1921 | SemaRef.Diag(VD->getLocation(), | |||
1922 | SemaRef.getLangOpts().CPlusPlus14 | |||
1923 | ? diag::warn_cxx11_compat_constexpr_local_var | |||
1924 | : diag::ext_constexpr_local_var) | |||
1925 | << isa<CXXConstructorDecl>(Dcl); | |||
1926 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { | |||
1927 | return false; | |||
1928 | } | |||
1929 | continue; | |||
1930 | } | |||
1931 | ||||
1932 | case Decl::NamespaceAlias: | |||
1933 | case Decl::Function: | |||
1934 | // These are disallowed in C++11 and permitted in C++1y. Allow them | |||
1935 | // everywhere as an extension. | |||
1936 | if (!Cxx1yLoc.isValid()) | |||
1937 | Cxx1yLoc = DS->getBeginLoc(); | |||
1938 | continue; | |||
1939 | ||||
1940 | default: | |||
1941 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1942 | SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) | |||
1943 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); | |||
1944 | } | |||
1945 | return false; | |||
1946 | } | |||
1947 | } | |||
1948 | ||||
1949 | return true; | |||
1950 | } | |||
1951 | ||||
1952 | /// Check that the given field is initialized within a constexpr constructor. | |||
1953 | /// | |||
1954 | /// \param Dcl The constexpr constructor being checked. | |||
1955 | /// \param Field The field being checked. This may be a member of an anonymous | |||
1956 | /// struct or union nested within the class being checked. | |||
1957 | /// \param Inits All declarations, including anonymous struct/union members and | |||
1958 | /// indirect members, for which any initialization was provided. | |||
1959 | /// \param Diagnosed Whether we've emitted the error message yet. Used to attach | |||
1960 | /// multiple notes for different members to the same error. | |||
1961 | /// \param Kind Whether we're diagnosing a constructor as written or determining | |||
1962 | /// whether the formal requirements are satisfied. | |||
1963 | /// \return \c false if we're checking for validity and the constructor does | |||
1964 | /// not satisfy the requirements on a constexpr constructor. | |||
1965 | static bool CheckConstexprCtorInitializer(Sema &SemaRef, | |||
1966 | const FunctionDecl *Dcl, | |||
1967 | FieldDecl *Field, | |||
1968 | llvm::SmallSet<Decl*, 16> &Inits, | |||
1969 | bool &Diagnosed, | |||
1970 | Sema::CheckConstexprKind Kind) { | |||
1971 | // In C++20 onwards, there's nothing to check for validity. | |||
1972 | if (Kind == Sema::CheckConstexprKind::CheckValid && | |||
1973 | SemaRef.getLangOpts().CPlusPlus20) | |||
1974 | return true; | |||
1975 | ||||
1976 | if (Field->isInvalidDecl()) | |||
1977 | return true; | |||
1978 | ||||
1979 | if (Field->isUnnamedBitfield()) | |||
1980 | return true; | |||
1981 | ||||
1982 | // Anonymous unions with no variant members and empty anonymous structs do not | |||
1983 | // need to be explicitly initialized. FIXME: Anonymous structs that contain no | |||
1984 | // indirect fields don't need initializing. | |||
1985 | if (Field->isAnonymousStructOrUnion() && | |||
1986 | (Field->getType()->isUnionType() | |||
1987 | ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() | |||
1988 | : Field->getType()->getAsCXXRecordDecl()->isEmpty())) | |||
1989 | return true; | |||
1990 | ||||
1991 | if (!Inits.count(Field)) { | |||
1992 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
1993 | if (!Diagnosed) { | |||
1994 | SemaRef.Diag(Dcl->getLocation(), | |||
1995 | SemaRef.getLangOpts().CPlusPlus20 | |||
1996 | ? diag::warn_cxx17_compat_constexpr_ctor_missing_init | |||
1997 | : diag::ext_constexpr_ctor_missing_init); | |||
1998 | Diagnosed = true; | |||
1999 | } | |||
2000 | SemaRef.Diag(Field->getLocation(), | |||
2001 | diag::note_constexpr_ctor_missing_init); | |||
2002 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { | |||
2003 | return false; | |||
2004 | } | |||
2005 | } else if (Field->isAnonymousStructOrUnion()) { | |||
2006 | const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); | |||
2007 | for (auto *I : RD->fields()) | |||
2008 | // If an anonymous union contains an anonymous struct of which any member | |||
2009 | // is initialized, all members must be initialized. | |||
2010 | if (!RD->isUnion() || Inits.count(I)) | |||
2011 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, | |||
2012 | Kind)) | |||
2013 | return false; | |||
2014 | } | |||
2015 | return true; | |||
2016 | } | |||
2017 | ||||
2018 | /// Check the provided statement is allowed in a constexpr function | |||
2019 | /// definition. | |||
2020 | static bool | |||
2021 | CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, | |||
2022 | SmallVectorImpl<SourceLocation> &ReturnStmts, | |||
2023 | SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, | |||
2024 | Sema::CheckConstexprKind Kind) { | |||
2025 | // - its function-body shall be [...] a compound-statement that contains only | |||
2026 | switch (S->getStmtClass()) { | |||
2027 | case Stmt::NullStmtClass: | |||
2028 | // - null statements, | |||
2029 | return true; | |||
2030 | ||||
2031 | case Stmt::DeclStmtClass: | |||
2032 | // - static_assert-declarations | |||
2033 | // - using-declarations, | |||
2034 | // - using-directives, | |||
2035 | // - typedef declarations and alias-declarations that do not define | |||
2036 | // classes or enumerations, | |||
2037 | if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) | |||
2038 | return false; | |||
2039 | return true; | |||
2040 | ||||
2041 | case Stmt::ReturnStmtClass: | |||
2042 | // - and exactly one return statement; | |||
2043 | if (isa<CXXConstructorDecl>(Dcl)) { | |||
2044 | // C++1y allows return statements in constexpr constructors. | |||
2045 | if (!Cxx1yLoc.isValid()) | |||
2046 | Cxx1yLoc = S->getBeginLoc(); | |||
2047 | return true; | |||
2048 | } | |||
2049 | ||||
2050 | ReturnStmts.push_back(S->getBeginLoc()); | |||
2051 | return true; | |||
2052 | ||||
2053 | case Stmt::CompoundStmtClass: { | |||
2054 | // C++1y allows compound-statements. | |||
2055 | if (!Cxx1yLoc.isValid()) | |||
2056 | Cxx1yLoc = S->getBeginLoc(); | |||
2057 | ||||
2058 | CompoundStmt *CompStmt = cast<CompoundStmt>(S); | |||
2059 | for (auto *BodyIt : CompStmt->body()) { | |||
2060 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, | |||
2061 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2062 | return false; | |||
2063 | } | |||
2064 | return true; | |||
2065 | } | |||
2066 | ||||
2067 | case Stmt::AttributedStmtClass: | |||
2068 | if (!Cxx1yLoc.isValid()) | |||
2069 | Cxx1yLoc = S->getBeginLoc(); | |||
2070 | return true; | |||
2071 | ||||
2072 | case Stmt::IfStmtClass: { | |||
2073 | // C++1y allows if-statements. | |||
2074 | if (!Cxx1yLoc.isValid()) | |||
2075 | Cxx1yLoc = S->getBeginLoc(); | |||
2076 | ||||
2077 | IfStmt *If = cast<IfStmt>(S); | |||
2078 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, | |||
2079 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2080 | return false; | |||
2081 | if (If->getElse() && | |||
2082 | !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, | |||
2083 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2084 | return false; | |||
2085 | return true; | |||
2086 | } | |||
2087 | ||||
2088 | case Stmt::WhileStmtClass: | |||
2089 | case Stmt::DoStmtClass: | |||
2090 | case Stmt::ForStmtClass: | |||
2091 | case Stmt::CXXForRangeStmtClass: | |||
2092 | case Stmt::ContinueStmtClass: | |||
2093 | // C++1y allows all of these. We don't allow them as extensions in C++11, | |||
2094 | // because they don't make sense without variable mutation. | |||
2095 | if (!SemaRef.getLangOpts().CPlusPlus14) | |||
2096 | break; | |||
2097 | if (!Cxx1yLoc.isValid()) | |||
2098 | Cxx1yLoc = S->getBeginLoc(); | |||
2099 | for (Stmt *SubStmt : S->children()) | |||
2100 | if (SubStmt && | |||
2101 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | |||
2102 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2103 | return false; | |||
2104 | return true; | |||
2105 | ||||
2106 | case Stmt::SwitchStmtClass: | |||
2107 | case Stmt::CaseStmtClass: | |||
2108 | case Stmt::DefaultStmtClass: | |||
2109 | case Stmt::BreakStmtClass: | |||
2110 | // C++1y allows switch-statements, and since they don't need variable | |||
2111 | // mutation, we can reasonably allow them in C++11 as an extension. | |||
2112 | if (!Cxx1yLoc.isValid()) | |||
2113 | Cxx1yLoc = S->getBeginLoc(); | |||
2114 | for (Stmt *SubStmt : S->children()) | |||
2115 | if (SubStmt && | |||
2116 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | |||
2117 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2118 | return false; | |||
2119 | return true; | |||
2120 | ||||
2121 | case Stmt::GCCAsmStmtClass: | |||
2122 | case Stmt::MSAsmStmtClass: | |||
2123 | // C++2a allows inline assembly statements. | |||
2124 | case Stmt::CXXTryStmtClass: | |||
2125 | if (Cxx2aLoc.isInvalid()) | |||
2126 | Cxx2aLoc = S->getBeginLoc(); | |||
2127 | for (Stmt *SubStmt : S->children()) { | |||
2128 | if (SubStmt && | |||
2129 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | |||
2130 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2131 | return false; | |||
2132 | } | |||
2133 | return true; | |||
2134 | ||||
2135 | case Stmt::CXXCatchStmtClass: | |||
2136 | // Do not bother checking the language mode (already covered by the | |||
2137 | // try block check). | |||
2138 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, | |||
2139 | cast<CXXCatchStmt>(S)->getHandlerBlock(), | |||
2140 | ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2141 | return false; | |||
2142 | return true; | |||
2143 | ||||
2144 | default: | |||
2145 | if (!isa<Expr>(S)) | |||
2146 | break; | |||
2147 | ||||
2148 | // C++1y allows expression-statements. | |||
2149 | if (!Cxx1yLoc.isValid()) | |||
2150 | Cxx1yLoc = S->getBeginLoc(); | |||
2151 | return true; | |||
2152 | } | |||
2153 | ||||
2154 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
2155 | SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) | |||
2156 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); | |||
2157 | } | |||
2158 | return false; | |||
2159 | } | |||
2160 | ||||
2161 | /// Check the body for the given constexpr function declaration only contains | |||
2162 | /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. | |||
2163 | /// | |||
2164 | /// \return true if the body is OK, false if we have found or diagnosed a | |||
2165 | /// problem. | |||
2166 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, | |||
2167 | Stmt *Body, | |||
2168 | Sema::CheckConstexprKind Kind) { | |||
2169 | SmallVector<SourceLocation, 4> ReturnStmts; | |||
2170 | ||||
2171 | if (isa<CXXTryStmt>(Body)) { | |||
2172 | // C++11 [dcl.constexpr]p3: | |||
2173 | // The definition of a constexpr function shall satisfy the following | |||
2174 | // constraints: [...] | |||
2175 | // - its function-body shall be = delete, = default, or a | |||
2176 | // compound-statement | |||
2177 | // | |||
2178 | // C++11 [dcl.constexpr]p4: | |||
2179 | // In the definition of a constexpr constructor, [...] | |||
2180 | // - its function-body shall not be a function-try-block; | |||
2181 | // | |||
2182 | // This restriction is lifted in C++2a, as long as inner statements also | |||
2183 | // apply the general constexpr rules. | |||
2184 | switch (Kind) { | |||
2185 | case Sema::CheckConstexprKind::CheckValid: | |||
2186 | if (!SemaRef.getLangOpts().CPlusPlus20) | |||
2187 | return false; | |||
2188 | break; | |||
2189 | ||||
2190 | case Sema::CheckConstexprKind::Diagnose: | |||
2191 | SemaRef.Diag(Body->getBeginLoc(), | |||
2192 | !SemaRef.getLangOpts().CPlusPlus20 | |||
2193 | ? diag::ext_constexpr_function_try_block_cxx20 | |||
2194 | : diag::warn_cxx17_compat_constexpr_function_try_block) | |||
2195 | << isa<CXXConstructorDecl>(Dcl); | |||
2196 | break; | |||
2197 | } | |||
2198 | } | |||
2199 | ||||
2200 | // - its function-body shall be [...] a compound-statement that contains only | |||
2201 | // [... list of cases ...] | |||
2202 | // | |||
2203 | // Note that walking the children here is enough to properly check for | |||
2204 | // CompoundStmt and CXXTryStmt body. | |||
2205 | SourceLocation Cxx1yLoc, Cxx2aLoc; | |||
2206 | for (Stmt *SubStmt : Body->children()) { | |||
2207 | if (SubStmt && | |||
2208 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, | |||
2209 | Cxx1yLoc, Cxx2aLoc, Kind)) | |||
2210 | return false; | |||
2211 | } | |||
2212 | ||||
2213 | if (Kind == Sema::CheckConstexprKind::CheckValid) { | |||
2214 | // If this is only valid as an extension, report that we don't satisfy the | |||
2215 | // constraints of the current language. | |||
2216 | if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || | |||
2217 | (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) | |||
2218 | return false; | |||
2219 | } else if (Cxx2aLoc.isValid()) { | |||
2220 | SemaRef.Diag(Cxx2aLoc, | |||
2221 | SemaRef.getLangOpts().CPlusPlus20 | |||
2222 | ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt | |||
2223 | : diag::ext_constexpr_body_invalid_stmt_cxx20) | |||
2224 | << isa<CXXConstructorDecl>(Dcl); | |||
2225 | } else if (Cxx1yLoc.isValid()) { | |||
2226 | SemaRef.Diag(Cxx1yLoc, | |||
2227 | SemaRef.getLangOpts().CPlusPlus14 | |||
2228 | ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt | |||
2229 | : diag::ext_constexpr_body_invalid_stmt) | |||
2230 | << isa<CXXConstructorDecl>(Dcl); | |||
2231 | } | |||
2232 | ||||
2233 | if (const CXXConstructorDecl *Constructor | |||
2234 | = dyn_cast<CXXConstructorDecl>(Dcl)) { | |||
2235 | const CXXRecordDecl *RD = Constructor->getParent(); | |||
2236 | // DR1359: | |||
2237 | // - every non-variant non-static data member and base class sub-object | |||
2238 | // shall be initialized; | |||
2239 | // DR1460: | |||
2240 | // - if the class is a union having variant members, exactly one of them | |||
2241 | // shall be initialized; | |||
2242 | if (RD->isUnion()) { | |||
2243 | if (Constructor->getNumCtorInitializers() == 0 && | |||
2244 | RD->hasVariantMembers()) { | |||
2245 | if (Kind == Sema::CheckConstexprKind::Diagnose) { | |||
2246 | SemaRef.Diag( | |||
2247 | Dcl->getLocation(), | |||
2248 | SemaRef.getLangOpts().CPlusPlus20 | |||
2249 | ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init | |||
2250 | : diag::ext_constexpr_union_ctor_no_init); | |||
2251 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { | |||
2252 | return false; | |||
2253 | } | |||
2254 | } | |||
2255 | } else if (!Constructor->isDependentContext() && | |||
2256 | !Constructor->isDelegatingConstructor()) { | |||
2257 | assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((void)0); | |||
2258 | ||||
2259 | // Skip detailed checking if we have enough initializers, and we would | |||
2260 | // allow at most one initializer per member. | |||
2261 | bool AnyAnonStructUnionMembers = false; | |||
2262 | unsigned Fields = 0; | |||
2263 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), | |||
2264 | E = RD->field_end(); I != E; ++I, ++Fields) { | |||
2265 | if (I->isAnonymousStructOrUnion()) { | |||
2266 | AnyAnonStructUnionMembers = true; | |||
2267 | break; | |||
2268 | } | |||
2269 | } | |||
2270 | // DR1460: | |||
2271 | // - if the class is a union-like class, but is not a union, for each of | |||
2272 | // its anonymous union members having variant members, exactly one of | |||
2273 | // them shall be initialized; | |||
2274 | if (AnyAnonStructUnionMembers || | |||
2275 | Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { | |||
2276 | // Check initialization of non-static data members. Base classes are | |||
2277 | // always initialized so do not need to be checked. Dependent bases | |||
2278 | // might not have initializers in the member initializer list. | |||
2279 | llvm::SmallSet<Decl*, 16> Inits; | |||
2280 | for (const auto *I: Constructor->inits()) { | |||
2281 | if (FieldDecl *FD = I->getMember()) | |||
2282 | Inits.insert(FD); | |||
2283 | else if (IndirectFieldDecl *ID = I->getIndirectMember()) | |||
2284 | Inits.insert(ID->chain_begin(), ID->chain_end()); | |||
2285 | } | |||
2286 | ||||
2287 | bool Diagnosed = false; | |||
2288 | for (auto *I : RD->fields()) | |||
2289 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, | |||
2290 | Kind)) | |||
2291 | return false; | |||
2292 | } | |||
2293 | } | |||
2294 | } else { | |||
2295 | if (ReturnStmts.empty()) { | |||
2296 | // C++1y doesn't require constexpr functions to contain a 'return' | |||
2297 | // statement. We still do, unless the return type might be void, because | |||
2298 | // otherwise if there's no return statement, the function cannot | |||
2299 | // be used in a core constant expression. | |||
2300 | bool OK = SemaRef.getLangOpts().CPlusPlus14 && | |||
2301 | (Dcl->getReturnType()->isVoidType() || | |||
2302 | Dcl->getReturnType()->isDependentType()); | |||
2303 | switch (Kind) { | |||
2304 | case Sema::CheckConstexprKind::Diagnose: | |||
2305 | SemaRef.Diag(Dcl->getLocation(), | |||
2306 | OK ? diag::warn_cxx11_compat_constexpr_body_no_return | |||
2307 | : diag::err_constexpr_body_no_return) | |||
2308 | << Dcl->isConsteval(); | |||
2309 | if (!OK) | |||
2310 | return false; | |||
2311 | break; | |||
2312 | ||||
2313 | case Sema::CheckConstexprKind::CheckValid: | |||
2314 | // The formal requirements don't include this rule in C++14, even | |||
2315 | // though the "must be able to produce a constant expression" rules | |||
2316 | // still imply it in some cases. | |||
2317 | if (!SemaRef.getLangOpts().CPlusPlus14) | |||
2318 | return false; | |||
2319 | break; | |||
2320 | } | |||
2321 | } else if (ReturnStmts.size() > 1) { | |||
2322 | switch (Kind) { | |||
2323 | case Sema::CheckConstexprKind::Diagnose: | |||
2324 | SemaRef.Diag( | |||
2325 | ReturnStmts.back(), | |||
2326 | SemaRef.getLangOpts().CPlusPlus14 | |||
2327 | ? diag::warn_cxx11_compat_constexpr_body_multiple_return | |||
2328 | : diag::ext_constexpr_body_multiple_return); | |||
2329 | for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) | |||
2330 | SemaRef.Diag(ReturnStmts[I], | |||
2331 | diag::note_constexpr_body_previous_return); | |||
2332 | break; | |||
2333 | ||||
2334 | case Sema::CheckConstexprKind::CheckValid: | |||
2335 | if (!SemaRef.getLangOpts().CPlusPlus14) | |||
2336 | return false; | |||
2337 | break; | |||
2338 | } | |||
2339 | } | |||
2340 | } | |||
2341 | ||||
2342 | // C++11 [dcl.constexpr]p5: | |||
2343 | // if no function argument values exist such that the function invocation | |||
2344 | // substitution would produce a constant expression, the program is | |||
2345 | // ill-formed; no diagnostic required. | |||
2346 | // C++11 [dcl.constexpr]p3: | |||
2347 | // - every constructor call and implicit conversion used in initializing the | |||
2348 | // return value shall be one of those allowed in a constant expression. | |||
2349 | // C++11 [dcl.constexpr]p4: | |||
2350 | // - every constructor involved in initializing non-static data members and | |||
2351 | // base class sub-objects shall be a constexpr constructor. | |||
2352 | // | |||
2353 | // Note that this rule is distinct from the "requirements for a constexpr | |||
2354 | // function", so is not checked in CheckValid mode. | |||
2355 | SmallVector<PartialDiagnosticAt, 8> Diags; | |||
2356 | if (Kind == Sema::CheckConstexprKind::Diagnose && | |||
2357 | !Expr::isPotentialConstantExpr(Dcl, Diags)) { | |||
2358 | SemaRef.Diag(Dcl->getLocation(), | |||
2359 | diag::ext_constexpr_function_never_constant_expr) | |||
2360 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); | |||
2361 | for (size_t I = 0, N = Diags.size(); I != N; ++I) | |||
2362 | SemaRef.Diag(Diags[I].first, Diags[I].second); | |||
2363 | // Don't return false here: we allow this for compatibility in | |||
2364 | // system headers. | |||
2365 | } | |||
2366 | ||||
2367 | return true; | |||
2368 | } | |||
2369 | ||||
2370 | /// Get the class that is directly named by the current context. This is the | |||
2371 | /// class for which an unqualified-id in this scope could name a constructor | |||
2372 | /// or destructor. | |||
2373 | /// | |||
2374 | /// If the scope specifier denotes a class, this will be that class. | |||
2375 | /// If the scope specifier is empty, this will be the class whose | |||
2376 | /// member-specification we are currently within. Otherwise, there | |||
2377 | /// is no such class. | |||
2378 | CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { | |||
2379 | assert(getLangOpts().CPlusPlus && "No class names in C!")((void)0); | |||
2380 | ||||
2381 | if (SS && SS->isInvalid()) | |||
2382 | return nullptr; | |||
2383 | ||||
2384 | if (SS && SS->isNotEmpty()) { | |||
2385 | DeclContext *DC = computeDeclContext(*SS, true); | |||
2386 | return dyn_cast_or_null<CXXRecordDecl>(DC); | |||
2387 | } | |||
2388 | ||||
2389 | return dyn_cast_or_null<CXXRecordDecl>(CurContext); | |||
2390 | } | |||
2391 | ||||
2392 | /// isCurrentClassName - Determine whether the identifier II is the | |||
2393 | /// name of the class type currently being defined. In the case of | |||
2394 | /// nested classes, this will only return true if II is the name of | |||
2395 | /// the innermost class. | |||
2396 | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, | |||
2397 | const CXXScopeSpec *SS) { | |||
2398 | CXXRecordDecl *CurDecl = getCurrentClass(S, SS); | |||
2399 | return CurDecl && &II == CurDecl->getIdentifier(); | |||
2400 | } | |||
2401 | ||||
2402 | /// Determine whether the identifier II is a typo for the name of | |||
2403 | /// the class type currently being defined. If so, update it to the identifier | |||
2404 | /// that should have been used. | |||
2405 | bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { | |||
2406 | assert(getLangOpts().CPlusPlus && "No class names in C!")((void)0); | |||
2407 | ||||
2408 | if (!getLangOpts().SpellChecking) | |||
2409 | return false; | |||
2410 | ||||
2411 | CXXRecordDecl *CurDecl; | |||
2412 | if (SS && SS->isSet() && !SS->isInvalid()) { | |||
2413 | DeclContext *DC = computeDeclContext(*SS, true); | |||
2414 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); | |||
2415 | } else | |||
2416 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); | |||
2417 | ||||
2418 | if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && | |||
2419 | 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) | |||
2420 | < II->getLength()) { | |||
2421 | II = CurDecl->getIdentifier(); | |||
2422 | return true; | |||
2423 | } | |||
2424 | ||||
2425 | return false; | |||
2426 | } | |||
2427 | ||||
2428 | /// Determine whether the given class is a base class of the given | |||
2429 | /// class, including looking at dependent bases. | |||
2430 | static bool findCircularInheritance(const CXXRecordDecl *Class, | |||
2431 | const CXXRecordDecl *Current) { | |||
2432 | SmallVector<const CXXRecordDecl*, 8> Queue; | |||
2433 | ||||
2434 | Class = Class->getCanonicalDecl(); | |||
2435 | while (true) { | |||
2436 | for (const auto &I : Current->bases()) { | |||
2437 | CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | |||
2438 | if (!Base) | |||
2439 | continue; | |||
2440 | ||||
2441 | Base = Base->getDefinition(); | |||
2442 | if (!Base) | |||
2443 | continue; | |||
2444 | ||||
2445 | if (Base->getCanonicalDecl() == Class) | |||
2446 | return true; | |||
2447 | ||||
2448 | Queue.push_back(Base); | |||
2449 | } | |||
2450 | ||||
2451 | if (Queue.empty()) | |||
2452 | return false; | |||
2453 | ||||
2454 | Current = Queue.pop_back_val(); | |||
2455 | } | |||
2456 | ||||
2457 | return false; | |||
2458 | } | |||
2459 | ||||
2460 | /// Check the validity of a C++ base class specifier. | |||
2461 | /// | |||
2462 | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics | |||
2463 | /// and returns NULL otherwise. | |||
2464 | CXXBaseSpecifier * | |||
2465 | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, | |||
2466 | SourceRange SpecifierRange, | |||
2467 | bool Virtual, AccessSpecifier Access, | |||
2468 | TypeSourceInfo *TInfo, | |||
2469 | SourceLocation EllipsisLoc) { | |||
2470 | QualType BaseType = TInfo->getType(); | |||
2471 | if (BaseType->containsErrors()) { | |||
2472 | // Already emitted a diagnostic when parsing the error type. | |||
2473 | return nullptr; | |||
2474 | } | |||
2475 | // C++ [class.union]p1: | |||
2476 | // A union shall not have base classes. | |||
2477 | if (Class->isUnion()) { | |||
2478 | Diag(Class->getLocation(), diag::err_base_clause_on_union) | |||
2479 | << SpecifierRange; | |||
2480 | return nullptr; | |||
2481 | } | |||
2482 | ||||
2483 | if (EllipsisLoc.isValid() && | |||
2484 | !TInfo->getType()->containsUnexpandedParameterPack()) { | |||
2485 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | |||
2486 | << TInfo->getTypeLoc().getSourceRange(); | |||
2487 | EllipsisLoc = SourceLocation(); | |||
2488 | } | |||
2489 | ||||
2490 | SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); | |||
2491 | ||||
2492 | if (BaseType->isDependentType()) { | |||
2493 | // Make sure that we don't have circular inheritance among our dependent | |||
2494 | // bases. For non-dependent bases, the check for completeness below handles | |||
2495 | // this. | |||
2496 | if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { | |||
2497 | if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || | |||
2498 | ((BaseDecl = BaseDecl->getDefinition()) && | |||
2499 | findCircularInheritance(Class, BaseDecl))) { | |||
2500 | Diag(BaseLoc, diag::err_circular_inheritance) | |||
2501 | << BaseType << Context.getTypeDeclType(Class); | |||
2502 | ||||
2503 | if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) | |||
2504 | Diag(BaseDecl->getLocation(), diag::note_previous_decl) | |||
2505 | << BaseType; | |||
2506 | ||||
2507 | return nullptr; | |||
2508 | } | |||
2509 | } | |||
2510 | ||||
2511 | // Make sure that we don't make an ill-formed AST where the type of the | |||
2512 | // Class is non-dependent and its attached base class specifier is an | |||
2513 | // dependent type, which violates invariants in many clang code paths (e.g. | |||
2514 | // constexpr evaluator). If this case happens (in errory-recovery mode), we | |||
2515 | // explicitly mark the Class decl invalid. The diagnostic was already | |||
2516 | // emitted. | |||
2517 | if (!Class->getTypeForDecl()->isDependentType()) | |||
2518 | Class->setInvalidDecl(); | |||
2519 | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | |||
2520 | Class->getTagKind() == TTK_Class, | |||
2521 | Access, TInfo, EllipsisLoc); | |||
2522 | } | |||
2523 | ||||
2524 | // Base specifiers must be record types. | |||
2525 | if (!BaseType->isRecordType()) { | |||
2526 | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; | |||
2527 | return nullptr; | |||
2528 | } | |||
2529 | ||||
2530 | // C++ [class.union]p1: | |||
2531 | // A union shall not be used as a base class. | |||
2532 | if (BaseType->isUnionType()) { | |||
2533 | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; | |||
2534 | return nullptr; | |||
2535 | } | |||
2536 | ||||
2537 | // For the MS ABI, propagate DLL attributes to base class templates. | |||
2538 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
2539 | if (Attr *ClassAttr = getDLLAttr(Class)) { | |||
2540 | if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( | |||
2541 | BaseType->getAsCXXRecordDecl())) { | |||
2542 | propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, | |||
2543 | BaseLoc); | |||
2544 | } | |||
2545 | } | |||
2546 | } | |||
2547 | ||||
2548 | // C++ [class.derived]p2: | |||
2549 | // The class-name in a base-specifier shall not be an incompletely | |||
2550 | // defined class. | |||
2551 | if (RequireCompleteType(BaseLoc, BaseType, | |||
2552 | diag::err_incomplete_base_class, SpecifierRange)) { | |||
2553 | Class->setInvalidDecl(); | |||
2554 | return nullptr; | |||
2555 | } | |||
2556 | ||||
2557 | // If the base class is polymorphic or isn't empty, the new one is/isn't, too. | |||
2558 | RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); | |||
2559 | assert(BaseDecl && "Record type has no declaration")((void)0); | |||
2560 | BaseDecl = BaseDecl->getDefinition(); | |||
2561 | assert(BaseDecl && "Base type is not incomplete, but has no definition")((void)0); | |||
2562 | CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); | |||
2563 | assert(CXXBaseDecl && "Base type is not a C++ type")((void)0); | |||
2564 | ||||
2565 | // Microsoft docs say: | |||
2566 | // "If a base-class has a code_seg attribute, derived classes must have the | |||
2567 | // same attribute." | |||
2568 | const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); | |||
2569 | const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); | |||
2570 | if ((DerivedCSA || BaseCSA) && | |||
2571 | (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { | |||
2572 | Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); | |||
2573 | Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) | |||
2574 | << CXXBaseDecl; | |||
2575 | return nullptr; | |||
2576 | } | |||
2577 | ||||
2578 | // A class which contains a flexible array member is not suitable for use as a | |||
2579 | // base class: | |||
2580 | // - If the layout determines that a base comes before another base, | |||
2581 | // the flexible array member would index into the subsequent base. | |||
2582 | // - If the layout determines that base comes before the derived class, | |||
2583 | // the flexible array member would index into the derived class. | |||
2584 | if (CXXBaseDecl->hasFlexibleArrayMember()) { | |||
2585 | Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) | |||
2586 | << CXXBaseDecl->getDeclName(); | |||
2587 | return nullptr; | |||
2588 | } | |||
2589 | ||||
2590 | // C++ [class]p3: | |||
2591 | // If a class is marked final and it appears as a base-type-specifier in | |||
2592 | // base-clause, the program is ill-formed. | |||
2593 | if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { | |||
2594 | Diag(BaseLoc, diag::err_class_marked_final_used_as_base) | |||
2595 | << CXXBaseDecl->getDeclName() | |||
2596 | << FA->isSpelledAsSealed(); | |||
2597 | Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) | |||
2598 | << CXXBaseDecl->getDeclName() << FA->getRange(); | |||
2599 | return nullptr; | |||
2600 | } | |||
2601 | ||||
2602 | if (BaseDecl->isInvalidDecl()) | |||
2603 | Class->setInvalidDecl(); | |||
2604 | ||||
2605 | // Create the base specifier. | |||
2606 | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | |||
2607 | Class->getTagKind() == TTK_Class, | |||
2608 | Access, TInfo, EllipsisLoc); | |||
2609 | } | |||
2610 | ||||
2611 | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is | |||
2612 | /// one entry in the base class list of a class specifier, for | |||
2613 | /// example: | |||
2614 | /// class foo : public bar, virtual private baz { | |||
2615 | /// 'public bar' and 'virtual private baz' are each base-specifiers. | |||
2616 | BaseResult | |||
2617 | Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, | |||
2618 | ParsedAttributes &Attributes, | |||
2619 | bool Virtual, AccessSpecifier Access, | |||
2620 | ParsedType basetype, SourceLocation BaseLoc, | |||
2621 | SourceLocation EllipsisLoc) { | |||
2622 | if (!classdecl) | |||
2623 | return true; | |||
2624 | ||||
2625 | AdjustDeclIfTemplate(classdecl); | |||
2626 | CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); | |||
2627 | if (!Class) | |||
2628 | return true; | |||
2629 | ||||
2630 | // We haven't yet attached the base specifiers. | |||
2631 | Class->setIsParsingBaseSpecifiers(); | |||
2632 | ||||
2633 | // We do not support any C++11 attributes on base-specifiers yet. | |||
2634 | // Diagnose any attributes we see. | |||
2635 | for (const ParsedAttr &AL : Attributes) { | |||
2636 | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) | |||
2637 | continue; | |||
2638 | Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute | |||
2639 | ? (unsigned)diag::warn_unknown_attribute_ignored | |||
2640 | : (unsigned)diag::err_base_specifier_attribute) | |||
2641 | << AL << AL.getRange(); | |||
2642 | } | |||
2643 | ||||
2644 | TypeSourceInfo *TInfo = nullptr; | |||
2645 | GetTypeFromParser(basetype, &TInfo); | |||
2646 | ||||
2647 | if (EllipsisLoc.isInvalid() && | |||
2648 | DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, | |||
2649 | UPPC_BaseType)) | |||
2650 | return true; | |||
2651 | ||||
2652 | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, | |||
2653 | Virtual, Access, TInfo, | |||
2654 | EllipsisLoc)) | |||
2655 | return BaseSpec; | |||
2656 | else | |||
2657 | Class->setInvalidDecl(); | |||
2658 | ||||
2659 | return true; | |||
2660 | } | |||
2661 | ||||
2662 | /// Use small set to collect indirect bases. As this is only used | |||
2663 | /// locally, there's no need to abstract the small size parameter. | |||
2664 | typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; | |||
2665 | ||||
2666 | /// Recursively add the bases of Type. Don't add Type itself. | |||
2667 | static void | |||
2668 | NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, | |||
2669 | const QualType &Type) | |||
2670 | { | |||
2671 | // Even though the incoming type is a base, it might not be | |||
2672 | // a class -- it could be a template parm, for instance. | |||
2673 | if (auto Rec = Type->getAs<RecordType>()) { | |||
2674 | auto Decl = Rec->getAsCXXRecordDecl(); | |||
2675 | ||||
2676 | // Iterate over its bases. | |||
2677 | for (const auto &BaseSpec : Decl->bases()) { | |||
2678 | QualType Base = Context.getCanonicalType(BaseSpec.getType()) | |||
2679 | .getUnqualifiedType(); | |||
2680 | if (Set.insert(Base).second) | |||
2681 | // If we've not already seen it, recurse. | |||
2682 | NoteIndirectBases(Context, Set, Base); | |||
2683 | } | |||
2684 | } | |||
2685 | } | |||
2686 | ||||
2687 | /// Performs the actual work of attaching the given base class | |||
2688 | /// specifiers to a C++ class. | |||
2689 | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, | |||
2690 | MutableArrayRef<CXXBaseSpecifier *> Bases) { | |||
2691 | if (Bases.empty()) | |||
2692 | return false; | |||
2693 | ||||
2694 | // Used to keep track of which base types we have already seen, so | |||
2695 | // that we can properly diagnose redundant direct base types. Note | |||
2696 | // that the key is always the unqualified canonical type of the base | |||
2697 | // class. | |||
2698 | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; | |||
2699 | ||||
2700 | // Used to track indirect bases so we can see if a direct base is | |||
2701 | // ambiguous. | |||
2702 | IndirectBaseSet IndirectBaseTypes; | |||
2703 | ||||
2704 | // Copy non-redundant base specifiers into permanent storage. | |||
2705 | unsigned NumGoodBases = 0; | |||
2706 | bool Invalid = false; | |||
2707 | for (unsigned idx = 0; idx < Bases.size(); ++idx) { | |||
2708 | QualType NewBaseType | |||
2709 | = Context.getCanonicalType(Bases[idx]->getType()); | |||
2710 | NewBaseType = NewBaseType.getLocalUnqualifiedType(); | |||
2711 | ||||
2712 | CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; | |||
2713 | if (KnownBase) { | |||
2714 | // C++ [class.mi]p3: | |||
2715 | // A class shall not be specified as a direct base class of a | |||
2716 | // derived class more than once. | |||
2717 | Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) | |||
2718 | << KnownBase->getType() << Bases[idx]->getSourceRange(); | |||
2719 | ||||
2720 | // Delete the duplicate base class specifier; we're going to | |||
2721 | // overwrite its pointer later. | |||
2722 | Context.Deallocate(Bases[idx]); | |||
2723 | ||||
2724 | Invalid = true; | |||
2725 | } else { | |||
2726 | // Okay, add this new base class. | |||
2727 | KnownBase = Bases[idx]; | |||
2728 | Bases[NumGoodBases++] = Bases[idx]; | |||
2729 | ||||
2730 | // Note this base's direct & indirect bases, if there could be ambiguity. | |||
2731 | if (Bases.size() > 1) | |||
2732 | NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); | |||
2733 | ||||
2734 | if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { | |||
2735 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); | |||
2736 | if (Class->isInterface() && | |||
2737 | (!RD->isInterfaceLike() || | |||
2738 | KnownBase->getAccessSpecifier() != AS_public)) { | |||
2739 | // The Microsoft extension __interface does not permit bases that | |||
2740 | // are not themselves public interfaces. | |||
2741 | Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) | |||
2742 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD | |||
2743 | << RD->getSourceRange(); | |||
2744 | Invalid = true; | |||
2745 | } | |||
2746 | if (RD->hasAttr<WeakAttr>()) | |||
2747 | Class->addAttr(WeakAttr::CreateImplicit(Context)); | |||
2748 | } | |||
2749 | } | |||
2750 | } | |||
2751 | ||||
2752 | // Attach the remaining base class specifiers to the derived class. | |||
2753 | Class->setBases(Bases.data(), NumGoodBases); | |||
2754 | ||||
2755 | // Check that the only base classes that are duplicate are virtual. | |||
2756 | for (unsigned idx = 0; idx < NumGoodBases; ++idx) { | |||
2757 | // Check whether this direct base is inaccessible due to ambiguity. | |||
2758 | QualType BaseType = Bases[idx]->getType(); | |||
2759 | ||||
2760 | // Skip all dependent types in templates being used as base specifiers. | |||
2761 | // Checks below assume that the base specifier is a CXXRecord. | |||
2762 | if (BaseType->isDependentType()) | |||
2763 | continue; | |||
2764 | ||||
2765 | CanQualType CanonicalBase = Context.getCanonicalType(BaseType) | |||
2766 | .getUnqualifiedType(); | |||
2767 | ||||
2768 | if (IndirectBaseTypes.count(CanonicalBase)) { | |||
2769 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
2770 | /*DetectVirtual=*/true); | |||
2771 | bool found | |||
2772 | = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); | |||
2773 | assert(found)((void)0); | |||
2774 | (void)found; | |||
2775 | ||||
2776 | if (Paths.isAmbiguous(CanonicalBase)) | |||
2777 | Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) | |||
2778 | << BaseType << getAmbiguousPathsDisplayString(Paths) | |||
2779 | << Bases[idx]->getSourceRange(); | |||
2780 | else | |||
2781 | assert(Bases[idx]->isVirtual())((void)0); | |||
2782 | } | |||
2783 | ||||
2784 | // Delete the base class specifier, since its data has been copied | |||
2785 | // into the CXXRecordDecl. | |||
2786 | Context.Deallocate(Bases[idx]); | |||
2787 | } | |||
2788 | ||||
2789 | return Invalid; | |||
2790 | } | |||
2791 | ||||
2792 | /// ActOnBaseSpecifiers - Attach the given base specifiers to the | |||
2793 | /// class, after checking whether there are any duplicate base | |||
2794 | /// classes. | |||
2795 | void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, | |||
2796 | MutableArrayRef<CXXBaseSpecifier *> Bases) { | |||
2797 | if (!ClassDecl || Bases.empty()) | |||
2798 | return; | |||
2799 | ||||
2800 | AdjustDeclIfTemplate(ClassDecl); | |||
2801 | AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); | |||
2802 | } | |||
2803 | ||||
2804 | /// Determine whether the type \p Derived is a C++ class that is | |||
2805 | /// derived from the type \p Base. | |||
2806 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { | |||
2807 | if (!getLangOpts().CPlusPlus) | |||
2808 | return false; | |||
2809 | ||||
2810 | CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); | |||
2811 | if (!DerivedRD) | |||
2812 | return false; | |||
2813 | ||||
2814 | CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); | |||
2815 | if (!BaseRD) | |||
2816 | return false; | |||
2817 | ||||
2818 | // If either the base or the derived type is invalid, don't try to | |||
2819 | // check whether one is derived from the other. | |||
2820 | if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) | |||
2821 | return false; | |||
2822 | ||||
2823 | // FIXME: In a modules build, do we need the entire path to be visible for us | |||
2824 | // to be able to use the inheritance relationship? | |||
2825 | if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) | |||
2826 | return false; | |||
2827 | ||||
2828 | return DerivedRD->isDerivedFrom(BaseRD); | |||
2829 | } | |||
2830 | ||||
2831 | /// Determine whether the type \p Derived is a C++ class that is | |||
2832 | /// derived from the type \p Base. | |||
2833 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, | |||
2834 | CXXBasePaths &Paths) { | |||
2835 | if (!getLangOpts().CPlusPlus) | |||
2836 | return false; | |||
2837 | ||||
2838 | CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); | |||
2839 | if (!DerivedRD) | |||
2840 | return false; | |||
2841 | ||||
2842 | CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); | |||
2843 | if (!BaseRD) | |||
2844 | return false; | |||
2845 | ||||
2846 | if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) | |||
2847 | return false; | |||
2848 | ||||
2849 | return DerivedRD->isDerivedFrom(BaseRD, Paths); | |||
2850 | } | |||
2851 | ||||
2852 | static void BuildBasePathArray(const CXXBasePath &Path, | |||
2853 | CXXCastPath &BasePathArray) { | |||
2854 | // We first go backward and check if we have a virtual base. | |||
2855 | // FIXME: It would be better if CXXBasePath had the base specifier for | |||
2856 | // the nearest virtual base. | |||
2857 | unsigned Start = 0; | |||
2858 | for (unsigned I = Path.size(); I != 0; --I) { | |||
2859 | if (Path[I - 1].Base->isVirtual()) { | |||
2860 | Start = I - 1; | |||
2861 | break; | |||
2862 | } | |||
2863 | } | |||
2864 | ||||
2865 | // Now add all bases. | |||
2866 | for (unsigned I = Start, E = Path.size(); I != E; ++I) | |||
2867 | BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); | |||
2868 | } | |||
2869 | ||||
2870 | ||||
2871 | void Sema::BuildBasePathArray(const CXXBasePaths &Paths, | |||
2872 | CXXCastPath &BasePathArray) { | |||
2873 | assert(BasePathArray.empty() && "Base path array must be empty!")((void)0); | |||
2874 | assert(Paths.isRecordingPaths() && "Must record paths!")((void)0); | |||
2875 | return ::BuildBasePathArray(Paths.front(), BasePathArray); | |||
2876 | } | |||
2877 | /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base | |||
2878 | /// conversion (where Derived and Base are class types) is | |||
2879 | /// well-formed, meaning that the conversion is unambiguous (and | |||
2880 | /// that all of the base classes are accessible). Returns true | |||
2881 | /// and emits a diagnostic if the code is ill-formed, returns false | |||
2882 | /// otherwise. Loc is the location where this routine should point to | |||
2883 | /// if there is an error, and Range is the source range to highlight | |||
2884 | /// if there is an error. | |||
2885 | /// | |||
2886 | /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the | |||
2887 | /// diagnostic for the respective type of error will be suppressed, but the | |||
2888 | /// check for ill-formed code will still be performed. | |||
2889 | bool | |||
2890 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | |||
2891 | unsigned InaccessibleBaseID, | |||
2892 | unsigned AmbiguousBaseConvID, | |||
2893 | SourceLocation Loc, SourceRange Range, | |||
2894 | DeclarationName Name, | |||
2895 | CXXCastPath *BasePath, | |||
2896 | bool IgnoreAccess) { | |||
2897 | // First, determine whether the path from Derived to Base is | |||
2898 | // ambiguous. This is slightly more expensive than checking whether | |||
2899 | // the Derived to Base conversion exists, because here we need to | |||
2900 | // explore multiple paths to determine if there is an ambiguity. | |||
2901 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
2902 | /*DetectVirtual=*/false); | |||
2903 | bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); | |||
2904 | if (!DerivationOkay) | |||
2905 | return true; | |||
2906 | ||||
2907 | const CXXBasePath *Path = nullptr; | |||
2908 | if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) | |||
2909 | Path = &Paths.front(); | |||
2910 | ||||
2911 | // For MSVC compatibility, check if Derived directly inherits from Base. Clang | |||
2912 | // warns about this hierarchy under -Winaccessible-base, but MSVC allows the | |||
2913 | // user to access such bases. | |||
2914 | if (!Path && getLangOpts().MSVCCompat) { | |||
2915 | for (const CXXBasePath &PossiblePath : Paths) { | |||
2916 | if (PossiblePath.size() == 1) { | |||
2917 | Path = &PossiblePath; | |||
2918 | if (AmbiguousBaseConvID) | |||
2919 | Diag(Loc, diag::ext_ms_ambiguous_direct_base) | |||
2920 | << Base << Derived << Range; | |||
2921 | break; | |||
2922 | } | |||
2923 | } | |||
2924 | } | |||
2925 | ||||
2926 | if (Path) { | |||
2927 | if (!IgnoreAccess) { | |||
2928 | // Check that the base class can be accessed. | |||
2929 | switch ( | |||
2930 | CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { | |||
2931 | case AR_inaccessible: | |||
2932 | return true; | |||
2933 | case AR_accessible: | |||
2934 | case AR_dependent: | |||
2935 | case AR_delayed: | |||
2936 | break; | |||
2937 | } | |||
2938 | } | |||
2939 | ||||
2940 | // Build a base path if necessary. | |||
2941 | if (BasePath) | |||
2942 | ::BuildBasePathArray(*Path, *BasePath); | |||
2943 | return false; | |||
2944 | } | |||
2945 | ||||
2946 | if (AmbiguousBaseConvID) { | |||
2947 | // We know that the derived-to-base conversion is ambiguous, and | |||
2948 | // we're going to produce a diagnostic. Perform the derived-to-base | |||
2949 | // search just one more time to compute all of the possible paths so | |||
2950 | // that we can print them out. This is more expensive than any of | |||
2951 | // the previous derived-to-base checks we've done, but at this point | |||
2952 | // performance isn't as much of an issue. | |||
2953 | Paths.clear(); | |||
2954 | Paths.setRecordingPaths(true); | |||
2955 | bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); | |||
2956 | assert(StillOkay && "Can only be used with a derived-to-base conversion")((void)0); | |||
2957 | (void)StillOkay; | |||
2958 | ||||
2959 | // Build up a textual representation of the ambiguous paths, e.g., | |||
2960 | // D -> B -> A, that will be used to illustrate the ambiguous | |||
2961 | // conversions in the diagnostic. We only print one of the paths | |||
2962 | // to each base class subobject. | |||
2963 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | |||
2964 | ||||
2965 | Diag(Loc, AmbiguousBaseConvID) | |||
2966 | << Derived << Base << PathDisplayStr << Range << Name; | |||
2967 | } | |||
2968 | return true; | |||
2969 | } | |||
2970 | ||||
2971 | bool | |||
2972 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | |||
2973 | SourceLocation Loc, SourceRange Range, | |||
2974 | CXXCastPath *BasePath, | |||
2975 | bool IgnoreAccess) { | |||
2976 | return CheckDerivedToBaseConversion( | |||
2977 | Derived, Base, diag::err_upcast_to_inaccessible_base, | |||
2978 | diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), | |||
2979 | BasePath, IgnoreAccess); | |||
2980 | } | |||
2981 | ||||
2982 | ||||
2983 | /// Builds a string representing ambiguous paths from a | |||
2984 | /// specific derived class to different subobjects of the same base | |||
2985 | /// class. | |||
2986 | /// | |||
2987 | /// This function builds a string that can be used in error messages | |||
2988 | /// to show the different paths that one can take through the | |||
2989 | /// inheritance hierarchy to go from the derived class to different | |||
2990 | /// subobjects of a base class. The result looks something like this: | |||
2991 | /// @code | |||
2992 | /// struct D -> struct B -> struct A | |||
2993 | /// struct D -> struct C -> struct A | |||
2994 | /// @endcode | |||
2995 | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { | |||
2996 | std::string PathDisplayStr; | |||
2997 | std::set<unsigned> DisplayedPaths; | |||
2998 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | |||
2999 | Path != Paths.end(); ++Path) { | |||
3000 | if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { | |||
3001 | // We haven't displayed a path to this particular base | |||
3002 | // class subobject yet. | |||
3003 | PathDisplayStr += "\n "; | |||
3004 | PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); | |||
3005 | for (CXXBasePath::const_iterator Element = Path->begin(); | |||
3006 | Element != Path->end(); ++Element) | |||
3007 | PathDisplayStr += " -> " + Element->Base->getType().getAsString(); | |||
3008 | } | |||
3009 | } | |||
3010 | ||||
3011 | return PathDisplayStr; | |||
3012 | } | |||
3013 | ||||
3014 | //===----------------------------------------------------------------------===// | |||
3015 | // C++ class member Handling | |||
3016 | //===----------------------------------------------------------------------===// | |||
3017 | ||||
3018 | /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. | |||
3019 | bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, | |||
3020 | SourceLocation ColonLoc, | |||
3021 | const ParsedAttributesView &Attrs) { | |||
3022 | assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((void)0); | |||
3023 | AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, | |||
3024 | ASLoc, ColonLoc); | |||
3025 | CurContext->addHiddenDecl(ASDecl); | |||
3026 | return ProcessAccessDeclAttributeList(ASDecl, Attrs); | |||
3027 | } | |||
3028 | ||||
3029 | /// CheckOverrideControl - Check C++11 override control semantics. | |||
3030 | void Sema::CheckOverrideControl(NamedDecl *D) { | |||
3031 | if (D->isInvalidDecl()) | |||
3032 | return; | |||
3033 | ||||
3034 | // We only care about "override" and "final" declarations. | |||
3035 | if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) | |||
3036 | return; | |||
3037 | ||||
3038 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); | |||
3039 | ||||
3040 | // We can't check dependent instance methods. | |||
3041 | if (MD && MD->isInstance() && | |||
3042 | (MD->getParent()->hasAnyDependentBases() || | |||
3043 | MD->getType()->isDependentType())) | |||
3044 | return; | |||
3045 | ||||
3046 | if (MD && !MD->isVirtual()) { | |||
3047 | // If we have a non-virtual method, check if if hides a virtual method. | |||
3048 | // (In that case, it's most likely the method has the wrong type.) | |||
3049 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; | |||
3050 | FindHiddenVirtualMethods(MD, OverloadedMethods); | |||
3051 | ||||
3052 | if (!OverloadedMethods.empty()) { | |||
3053 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { | |||
3054 | Diag(OA->getLocation(), | |||
3055 | diag::override_keyword_hides_virtual_member_function) | |||
3056 | << "override" << (OverloadedMethods.size() > 1); | |||
3057 | } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { | |||
3058 | Diag(FA->getLocation(), | |||
3059 | diag::override_keyword_hides_virtual_member_function) | |||
3060 | << (FA->isSpelledAsSealed() ? "sealed" : "final") | |||
3061 | << (OverloadedMethods.size() > 1); | |||
3062 | } | |||
3063 | NoteHiddenVirtualMethods(MD, OverloadedMethods); | |||
3064 | MD->setInvalidDecl(); | |||
3065 | return; | |||
3066 | } | |||
3067 | // Fall through into the general case diagnostic. | |||
3068 | // FIXME: We might want to attempt typo correction here. | |||
3069 | } | |||
3070 | ||||
3071 | if (!MD || !MD->isVirtual()) { | |||
3072 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { | |||
3073 | Diag(OA->getLocation(), | |||
3074 | diag::override_keyword_only_allowed_on_virtual_member_functions) | |||
3075 | << "override" << FixItHint::CreateRemoval(OA->getLocation()); | |||
3076 | D->dropAttr<OverrideAttr>(); | |||
3077 | } | |||
3078 | if (FinalAttr *FA = D->getAttr<FinalAttr>()) { | |||
3079 | Diag(FA->getLocation(), | |||
3080 | diag::override_keyword_only_allowed_on_virtual_member_functions) | |||
3081 | << (FA->isSpelledAsSealed() ? "sealed" : "final") | |||
3082 | << FixItHint::CreateRemoval(FA->getLocation()); | |||
3083 | D->dropAttr<FinalAttr>(); | |||
3084 | } | |||
3085 | return; | |||
3086 | } | |||
3087 | ||||
3088 | // C++11 [class.virtual]p5: | |||
3089 | // If a function is marked with the virt-specifier override and | |||
3090 | // does not override a member function of a base class, the program is | |||
3091 | // ill-formed. | |||
3092 | bool HasOverriddenMethods = MD->size_overridden_methods() != 0; | |||
3093 | if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) | |||
3094 | Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) | |||
3095 | << MD->getDeclName(); | |||
3096 | } | |||
3097 | ||||
3098 | void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { | |||
3099 | if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) | |||
3100 | return; | |||
3101 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); | |||
3102 | if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) | |||
3103 | return; | |||
3104 | ||||
3105 | SourceLocation Loc = MD->getLocation(); | |||
3106 | SourceLocation SpellingLoc = Loc; | |||
3107 | if (getSourceManager().isMacroArgExpansion(Loc)) | |||
3108 | SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); | |||
3109 | SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); | |||
3110 | if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) | |||
3111 | return; | |||
3112 | ||||
3113 | if (MD->size_overridden_methods() > 0) { | |||
3114 | auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { | |||
3115 | unsigned DiagID = | |||
3116 | Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) | |||
3117 | ? DiagInconsistent | |||
3118 | : DiagSuggest; | |||
3119 | Diag(MD->getLocation(), DiagID) << MD->getDeclName(); | |||
3120 | const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); | |||
3121 | Diag(OMD->getLocation(), diag::note_overridden_virtual_function); | |||
3122 | }; | |||
3123 | if (isa<CXXDestructorDecl>(MD)) | |||
3124 | EmitDiag( | |||
3125 | diag::warn_inconsistent_destructor_marked_not_override_overriding, | |||
3126 | diag::warn_suggest_destructor_marked_not_override_overriding); | |||
3127 | else | |||
3128 | EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, | |||
3129 | diag::warn_suggest_function_marked_not_override_overriding); | |||
3130 | } | |||
3131 | } | |||
3132 | ||||
3133 | /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member | |||
3134 | /// function overrides a virtual member function marked 'final', according to | |||
3135 | /// C++11 [class.virtual]p4. | |||
3136 | bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, | |||
3137 | const CXXMethodDecl *Old) { | |||
3138 | FinalAttr *FA = Old->getAttr<FinalAttr>(); | |||
3139 | if (!FA) | |||
3140 | return false; | |||
3141 | ||||
3142 | Diag(New->getLocation(), diag::err_final_function_overridden) | |||
3143 | << New->getDeclName() | |||
3144 | << FA->isSpelledAsSealed(); | |||
3145 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | |||
3146 | return true; | |||
3147 | } | |||
3148 | ||||
3149 | static bool InitializationHasSideEffects(const FieldDecl &FD) { | |||
3150 | const Type *T = FD.getType()->getBaseElementTypeUnsafe(); | |||
3151 | // FIXME: Destruction of ObjC lifetime types has side-effects. | |||
3152 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | |||
3153 | return !RD->isCompleteDefinition() || | |||
3154 | !RD->hasTrivialDefaultConstructor() || | |||
3155 | !RD->hasTrivialDestructor(); | |||
3156 | return false; | |||
3157 | } | |||
3158 | ||||
3159 | static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { | |||
3160 | ParsedAttributesView::const_iterator Itr = | |||
3161 | llvm::find_if(list, [](const ParsedAttr &AL) { | |||
3162 | return AL.isDeclspecPropertyAttribute(); | |||
3163 | }); | |||
3164 | if (Itr != list.end()) | |||
3165 | return &*Itr; | |||
3166 | return nullptr; | |||
3167 | } | |||
3168 | ||||
3169 | // Check if there is a field shadowing. | |||
3170 | void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, | |||
3171 | DeclarationName FieldName, | |||
3172 | const CXXRecordDecl *RD, | |||
3173 | bool DeclIsField) { | |||
3174 | if (Diags.isIgnored(diag::warn_shadow_field, Loc)) | |||
3175 | return; | |||
3176 | ||||
3177 | // To record a shadowed field in a base | |||
3178 | std::map<CXXRecordDecl*, NamedDecl*> Bases; | |||
3179 | auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, | |||
3180 | CXXBasePath &Path) { | |||
3181 | const auto Base = Specifier->getType()->getAsCXXRecordDecl(); | |||
3182 | // Record an ambiguous path directly | |||
3183 | if (Bases.find(Base) != Bases.end()) | |||
3184 | return true; | |||
3185 | for (const auto Field : Base->lookup(FieldName)) { | |||
3186 | if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && | |||
3187 | Field->getAccess() != AS_private) { | |||
3188 | assert(Field->getAccess() != AS_none)((void)0); | |||
3189 | assert(Bases.find(Base) == Bases.end())((void)0); | |||
3190 | Bases[Base] = Field; | |||
3191 | return true; | |||
3192 | } | |||
3193 | } | |||
3194 | return false; | |||
3195 | }; | |||
3196 | ||||
3197 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
3198 | /*DetectVirtual=*/true); | |||
3199 | if (!RD->lookupInBases(FieldShadowed, Paths)) | |||
3200 | return; | |||
3201 | ||||
3202 | for (const auto &P : Paths) { | |||
3203 | auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); | |||
3204 | auto It = Bases.find(Base); | |||
3205 | // Skip duplicated bases | |||
3206 | if (It == Bases.end()) | |||
3207 | continue; | |||
3208 | auto BaseField = It->second; | |||
3209 | assert(BaseField->getAccess() != AS_private)((void)0); | |||
3210 | if (AS_none != | |||
3211 | CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { | |||
3212 | Diag(Loc, diag::warn_shadow_field) | |||
3213 | << FieldName << RD << Base << DeclIsField; | |||
3214 | Diag(BaseField->getLocation(), diag::note_shadow_field); | |||
3215 | Bases.erase(It); | |||
3216 | } | |||
3217 | } | |||
3218 | } | |||
3219 | ||||
3220 | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member | |||
3221 | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the | |||
3222 | /// bitfield width if there is one, 'InitExpr' specifies the initializer if | |||
3223 | /// one has been parsed, and 'InitStyle' is set if an in-class initializer is | |||
3224 | /// present (but parsing it has been deferred). | |||
3225 | NamedDecl * | |||
3226 | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, | |||
3227 | MultiTemplateParamsArg TemplateParameterLists, | |||
3228 | Expr *BW, const VirtSpecifiers &VS, | |||
3229 | InClassInitStyle InitStyle) { | |||
3230 | const DeclSpec &DS = D.getDeclSpec(); | |||
3231 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | |||
3232 | DeclarationName Name = NameInfo.getName(); | |||
3233 | SourceLocation Loc = NameInfo.getLoc(); | |||
3234 | ||||
3235 | // For anonymous bitfields, the location should point to the type. | |||
3236 | if (Loc.isInvalid()) | |||
3237 | Loc = D.getBeginLoc(); | |||
3238 | ||||
3239 | Expr *BitWidth = static_cast<Expr*>(BW); | |||
3240 | ||||
3241 | assert(isa<CXXRecordDecl>(CurContext))((void)0); | |||
3242 | assert(!DS.isFriendSpecified())((void)0); | |||
3243 | ||||
3244 | bool isFunc = D.isDeclarationOfFunction(); | |||
3245 | const ParsedAttr *MSPropertyAttr = | |||
3246 | getMSPropertyAttr(D.getDeclSpec().getAttributes()); | |||
3247 | ||||
3248 | if (cast<CXXRecordDecl>(CurContext)->isInterface()) { | |||
3249 | // The Microsoft extension __interface only permits public member functions | |||
3250 | // and prohibits constructors, destructors, operators, non-public member | |||
3251 | // functions, static methods and data members. | |||
3252 | unsigned InvalidDecl; | |||
3253 | bool ShowDeclName = true; | |||
3254 | if (!isFunc && | |||
3255 | (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) | |||
3256 | InvalidDecl = 0; | |||
3257 | else if (!isFunc) | |||
3258 | InvalidDecl = 1; | |||
3259 | else if (AS != AS_public) | |||
3260 | InvalidDecl = 2; | |||
3261 | else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) | |||
3262 | InvalidDecl = 3; | |||
3263 | else switch (Name.getNameKind()) { | |||
3264 | case DeclarationName::CXXConstructorName: | |||
3265 | InvalidDecl = 4; | |||
3266 | ShowDeclName = false; | |||
3267 | break; | |||
3268 | ||||
3269 | case DeclarationName::CXXDestructorName: | |||
3270 | InvalidDecl = 5; | |||
3271 | ShowDeclName = false; | |||
3272 | break; | |||
3273 | ||||
3274 | case DeclarationName::CXXOperatorName: | |||
3275 | case DeclarationName::CXXConversionFunctionName: | |||
3276 | InvalidDecl = 6; | |||
3277 | break; | |||
3278 | ||||
3279 | default: | |||
3280 | InvalidDecl = 0; | |||
3281 | break; | |||
3282 | } | |||
3283 | ||||
3284 | if (InvalidDecl) { | |||
3285 | if (ShowDeclName) | |||
3286 | Diag(Loc, diag::err_invalid_member_in_interface) | |||
3287 | << (InvalidDecl-1) << Name; | |||
3288 | else | |||
3289 | Diag(Loc, diag::err_invalid_member_in_interface) | |||
3290 | << (InvalidDecl-1) << ""; | |||
3291 | return nullptr; | |||
3292 | } | |||
3293 | } | |||
3294 | ||||
3295 | // C++ 9.2p6: A member shall not be declared to have automatic storage | |||
3296 | // duration (auto, register) or with the extern storage-class-specifier. | |||
3297 | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class | |||
3298 | // data members and cannot be applied to names declared const or static, | |||
3299 | // and cannot be applied to reference members. | |||
3300 | switch (DS.getStorageClassSpec()) { | |||
3301 | case DeclSpec::SCS_unspecified: | |||
3302 | case DeclSpec::SCS_typedef: | |||
3303 | case DeclSpec::SCS_static: | |||
3304 | break; | |||
3305 | case DeclSpec::SCS_mutable: | |||
3306 | if (isFunc) { | |||
3307 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); | |||
3308 | ||||
3309 | // FIXME: It would be nicer if the keyword was ignored only for this | |||
3310 | // declarator. Otherwise we could get follow-up errors. | |||
3311 | D.getMutableDeclSpec().ClearStorageClassSpecs(); | |||
3312 | } | |||
3313 | break; | |||
3314 | default: | |||
3315 | Diag(DS.getStorageClassSpecLoc(), | |||
3316 | diag::err_storageclass_invalid_for_member); | |||
3317 | D.getMutableDeclSpec().ClearStorageClassSpecs(); | |||
3318 | break; | |||
3319 | } | |||
3320 | ||||
3321 | bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || | |||
3322 | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && | |||
3323 | !isFunc); | |||
3324 | ||||
3325 | if (DS.hasConstexprSpecifier() && isInstField) { | |||
3326 | SemaDiagnosticBuilder B = | |||
3327 | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); | |||
3328 | SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); | |||
3329 | if (InitStyle == ICIS_NoInit) { | |||
3330 | B << 0 << 0; | |||
3331 | if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) | |||
3332 | B << FixItHint::CreateRemoval(ConstexprLoc); | |||
3333 | else { | |||
3334 | B << FixItHint::CreateReplacement(ConstexprLoc, "const"); | |||
3335 | D.getMutableDeclSpec().ClearConstexprSpec(); | |||
3336 | const char *PrevSpec; | |||
3337 | unsigned DiagID; | |||
3338 | bool Failed = D.getMutableDeclSpec().SetTypeQual( | |||
3339 | DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); | |||
3340 | (void)Failed; | |||
3341 | assert(!Failed && "Making a constexpr member const shouldn't fail")((void)0); | |||
3342 | } | |||
3343 | } else { | |||
3344 | B << 1; | |||
3345 | const char *PrevSpec; | |||
3346 | unsigned DiagID; | |||
3347 | if (D.getMutableDeclSpec().SetStorageClassSpec( | |||
3348 | *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, | |||
3349 | Context.getPrintingPolicy())) { | |||
3350 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((void)0) | |||
3351 | "This is the only DeclSpec that should fail to be applied")((void)0); | |||
3352 | B << 1; | |||
3353 | } else { | |||
3354 | B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); | |||
3355 | isInstField = false; | |||
3356 | } | |||
3357 | } | |||
3358 | } | |||
3359 | ||||
3360 | NamedDecl *Member; | |||
3361 | if (isInstField) { | |||
3362 | CXXScopeSpec &SS = D.getCXXScopeSpec(); | |||
3363 | ||||
3364 | // Data members must have identifiers for names. | |||
3365 | if (!Name.isIdentifier()) { | |||
3366 | Diag(Loc, diag::err_bad_variable_name) | |||
3367 | << Name; | |||
3368 | return nullptr; | |||
3369 | } | |||
3370 | ||||
3371 | IdentifierInfo *II = Name.getAsIdentifierInfo(); | |||
3372 | ||||
3373 | // Member field could not be with "template" keyword. | |||
3374 | // So TemplateParameterLists should be empty in this case. | |||
3375 | if (TemplateParameterLists.size()) { | |||
3376 | TemplateParameterList* TemplateParams = TemplateParameterLists[0]; | |||
3377 | if (TemplateParams->size()) { | |||
3378 | // There is no such thing as a member field template. | |||
3379 | Diag(D.getIdentifierLoc(), diag::err_template_member) | |||
3380 | << II | |||
3381 | << SourceRange(TemplateParams->getTemplateLoc(), | |||
3382 | TemplateParams->getRAngleLoc()); | |||
3383 | } else { | |||
3384 | // There is an extraneous 'template<>' for this member. | |||
3385 | Diag(TemplateParams->getTemplateLoc(), | |||
3386 | diag::err_template_member_noparams) | |||
3387 | << II | |||
3388 | << SourceRange(TemplateParams->getTemplateLoc(), | |||
3389 | TemplateParams->getRAngleLoc()); | |||
3390 | } | |||
3391 | return nullptr; | |||
3392 | } | |||
3393 | ||||
3394 | if (SS.isSet() && !SS.isInvalid()) { | |||
3395 | // The user provided a superfluous scope specifier inside a class | |||
3396 | // definition: | |||
3397 | // | |||
3398 | // class X { | |||
3399 | // int X::member; | |||
3400 | // }; | |||
3401 | if (DeclContext *DC = computeDeclContext(SS, false)) | |||
3402 | diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), | |||
3403 | D.getName().getKind() == | |||
3404 | UnqualifiedIdKind::IK_TemplateId); | |||
3405 | else | |||
3406 | Diag(D.getIdentifierLoc(), diag::err_member_qualification) | |||
3407 | << Name << SS.getRange(); | |||
3408 | ||||
3409 | SS.clear(); | |||
3410 | } | |||
3411 | ||||
3412 | if (MSPropertyAttr) { | |||
3413 | Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, | |||
3414 | BitWidth, InitStyle, AS, *MSPropertyAttr); | |||
3415 | if (!Member) | |||
3416 | return nullptr; | |||
3417 | isInstField = false; | |||
3418 | } else { | |||
3419 | Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, | |||
3420 | BitWidth, InitStyle, AS); | |||
3421 | if (!Member) | |||
3422 | return nullptr; | |||
3423 | } | |||
3424 | ||||
3425 | CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); | |||
3426 | } else { | |||
3427 | Member = HandleDeclarator(S, D, TemplateParameterLists); | |||
3428 | if (!Member) | |||
3429 | return nullptr; | |||
3430 | ||||
3431 | // Non-instance-fields can't have a bitfield. | |||
3432 | if (BitWidth) { | |||
3433 | if (Member->isInvalidDecl()) { | |||
3434 | // don't emit another diagnostic. | |||
3435 | } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { | |||
3436 | // C++ 9.6p3: A bit-field shall not be a static member. | |||
3437 | // "static member 'A' cannot be a bit-field" | |||
3438 | Diag(Loc, diag::err_static_not_bitfield) | |||
3439 | << Name << BitWidth->getSourceRange(); | |||
3440 | } else if (isa<TypedefDecl>(Member)) { | |||
3441 | // "typedef member 'x' cannot be a bit-field" | |||
3442 | Diag(Loc, diag::err_typedef_not_bitfield) | |||
3443 | << Name << BitWidth->getSourceRange(); | |||
3444 | } else { | |||
3445 | // A function typedef ("typedef int f(); f a;"). | |||
3446 | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | |||
3447 | Diag(Loc, diag::err_not_integral_type_bitfield) | |||
3448 | << Name << cast<ValueDecl>(Member)->getType() | |||
3449 | << BitWidth->getSourceRange(); | |||
3450 | } | |||
3451 | ||||
3452 | BitWidth = nullptr; | |||
3453 | Member->setInvalidDecl(); | |||
3454 | } | |||
3455 | ||||
3456 | NamedDecl *NonTemplateMember = Member; | |||
3457 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) | |||
3458 | NonTemplateMember = FunTmpl->getTemplatedDecl(); | |||
3459 | else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) | |||
3460 | NonTemplateMember = VarTmpl->getTemplatedDecl(); | |||
3461 | ||||
3462 | Member->setAccess(AS); | |||
3463 | ||||
3464 | // If we have declared a member function template or static data member | |||
3465 | // template, set the access of the templated declaration as well. | |||
3466 | if (NonTemplateMember != Member) | |||
3467 | NonTemplateMember->setAccess(AS); | |||
3468 | ||||
3469 | // C++ [temp.deduct.guide]p3: | |||
3470 | // A deduction guide [...] for a member class template [shall be | |||
3471 | // declared] with the same access [as the template]. | |||
3472 | if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { | |||
3473 | auto *TD = DG->getDeducedTemplate(); | |||
3474 | // Access specifiers are only meaningful if both the template and the | |||
3475 | // deduction guide are from the same scope. | |||
3476 | if (AS != TD->getAccess() && | |||
3477 | TD->getDeclContext()->getRedeclContext()->Equals( | |||
3478 | DG->getDeclContext()->getRedeclContext())) { | |||
3479 | Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); | |||
3480 | Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) | |||
3481 | << TD->getAccess(); | |||
3482 | const AccessSpecDecl *LastAccessSpec = nullptr; | |||
3483 | for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { | |||
3484 | if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) | |||
3485 | LastAccessSpec = AccessSpec; | |||
3486 | } | |||
3487 | assert(LastAccessSpec && "differing access with no access specifier")((void)0); | |||
3488 | Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) | |||
3489 | << AS; | |||
3490 | } | |||
3491 | } | |||
3492 | } | |||
3493 | ||||
3494 | if (VS.isOverrideSpecified()) | |||
3495 | Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), | |||
3496 | AttributeCommonInfo::AS_Keyword)); | |||
3497 | if (VS.isFinalSpecified()) | |||
3498 | Member->addAttr(FinalAttr::Create( | |||
3499 | Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, | |||
3500 | static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); | |||
3501 | ||||
3502 | if (VS.getLastLocation().isValid()) { | |||
3503 | // Update the end location of a method that has a virt-specifiers. | |||
3504 | if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) | |||
3505 | MD->setRangeEnd(VS.getLastLocation()); | |||
3506 | } | |||
3507 | ||||
3508 | CheckOverrideControl(Member); | |||
3509 | ||||
3510 | assert((Name || isInstField) && "No identifier for non-field ?")((void)0); | |||
3511 | ||||
3512 | if (isInstField) { | |||
3513 | FieldDecl *FD = cast<FieldDecl>(Member); | |||
3514 | FieldCollector->Add(FD); | |||
3515 | ||||
3516 | if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { | |||
3517 | // Remember all explicit private FieldDecls that have a name, no side | |||
3518 | // effects and are not part of a dependent type declaration. | |||
3519 | if (!FD->isImplicit() && FD->getDeclName() && | |||
3520 | FD->getAccess() == AS_private && | |||
3521 | !FD->hasAttr<UnusedAttr>() && | |||
3522 | !FD->getParent()->isDependentContext() && | |||
3523 | !InitializationHasSideEffects(*FD)) | |||
3524 | UnusedPrivateFields.insert(FD); | |||
3525 | } | |||
3526 | } | |||
3527 | ||||
3528 | return Member; | |||
3529 | } | |||
3530 | ||||
3531 | namespace { | |||
3532 | class UninitializedFieldVisitor | |||
3533 | : public EvaluatedExprVisitor<UninitializedFieldVisitor> { | |||
3534 | Sema &S; | |||
3535 | // List of Decls to generate a warning on. Also remove Decls that become | |||
3536 | // initialized. | |||
3537 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls; | |||
3538 | // List of base classes of the record. Classes are removed after their | |||
3539 | // initializers. | |||
3540 | llvm::SmallPtrSetImpl<QualType> &BaseClasses; | |||
3541 | // Vector of decls to be removed from the Decl set prior to visiting the | |||
3542 | // nodes. These Decls may have been initialized in the prior initializer. | |||
3543 | llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; | |||
3544 | // If non-null, add a note to the warning pointing back to the constructor. | |||
3545 | const CXXConstructorDecl *Constructor; | |||
3546 | // Variables to hold state when processing an initializer list. When | |||
3547 | // InitList is true, special case initialization of FieldDecls matching | |||
3548 | // InitListFieldDecl. | |||
3549 | bool InitList; | |||
3550 | FieldDecl *InitListFieldDecl; | |||
3551 | llvm::SmallVector<unsigned, 4> InitFieldIndex; | |||
3552 | ||||
3553 | public: | |||
3554 | typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; | |||
3555 | UninitializedFieldVisitor(Sema &S, | |||
3556 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls, | |||
3557 | llvm::SmallPtrSetImpl<QualType> &BaseClasses) | |||
3558 | : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), | |||
3559 | Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} | |||
3560 | ||||
3561 | // Returns true if the use of ME is not an uninitialized use. | |||
3562 | bool IsInitListMemberExprInitialized(MemberExpr *ME, | |||
3563 | bool CheckReferenceOnly) { | |||
3564 | llvm::SmallVector<FieldDecl*, 4> Fields; | |||
3565 | bool ReferenceField = false; | |||
3566 | while (ME) { | |||
3567 | FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); | |||
3568 | if (!FD) | |||
3569 | return false; | |||
3570 | Fields.push_back(FD); | |||
3571 | if (FD->getType()->isReferenceType()) | |||
3572 | ReferenceField = true; | |||
3573 | ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); | |||
3574 | } | |||
3575 | ||||
3576 | // Binding a reference to an uninitialized field is not an | |||
3577 | // uninitialized use. | |||
3578 | if (CheckReferenceOnly && !ReferenceField) | |||
3579 | return true; | |||
3580 | ||||
3581 | llvm::SmallVector<unsigned, 4> UsedFieldIndex; | |||
3582 | // Discard the first field since it is the field decl that is being | |||
3583 | // initialized. | |||
3584 | for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { | |||
3585 | UsedFieldIndex.push_back((*I)->getFieldIndex()); | |||
3586 | } | |||
3587 | ||||
3588 | for (auto UsedIter = UsedFieldIndex.begin(), | |||
3589 | UsedEnd = UsedFieldIndex.end(), | |||
3590 | OrigIter = InitFieldIndex.begin(), | |||
3591 | OrigEnd = InitFieldIndex.end(); | |||
3592 | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { | |||
3593 | if (*UsedIter < *OrigIter) | |||
3594 | return true; | |||
3595 | if (*UsedIter > *OrigIter) | |||
3596 | break; | |||
3597 | } | |||
3598 | ||||
3599 | return false; | |||
3600 | } | |||
3601 | ||||
3602 | void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, | |||
3603 | bool AddressOf) { | |||
3604 | if (isa<EnumConstantDecl>(ME->getMemberDecl())) | |||
3605 | return; | |||
3606 | ||||
3607 | // FieldME is the inner-most MemberExpr that is not an anonymous struct | |||
3608 | // or union. | |||
3609 | MemberExpr *FieldME = ME; | |||
3610 | ||||
3611 | bool AllPODFields = FieldME->getType().isPODType(S.Context); | |||
3612 | ||||
3613 | Expr *Base = ME; | |||
3614 | while (MemberExpr *SubME = | |||
3615 | dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { | |||
3616 | ||||
3617 | if (isa<VarDecl>(SubME->getMemberDecl())) | |||
3618 | return; | |||
3619 | ||||
3620 | if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) | |||
3621 | if (!FD->isAnonymousStructOrUnion()) | |||
3622 | FieldME = SubME; | |||
3623 | ||||
3624 | if (!FieldME->getType().isPODType(S.Context)) | |||
3625 | AllPODFields = false; | |||
3626 | ||||
3627 | Base = SubME->getBase(); | |||
3628 | } | |||
3629 | ||||
3630 | if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { | |||
3631 | Visit(Base); | |||
3632 | return; | |||
3633 | } | |||
3634 | ||||
3635 | if (AddressOf && AllPODFields) | |||
3636 | return; | |||
3637 | ||||
3638 | ValueDecl* FoundVD = FieldME->getMemberDecl(); | |||
3639 | ||||
3640 | if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { | |||
3641 | while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { | |||
3642 | BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); | |||
3643 | } | |||
3644 | ||||
3645 | if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { | |||
3646 | QualType T = BaseCast->getType(); | |||
3647 | if (T->isPointerType() && | |||
3648 | BaseClasses.count(T->getPointeeType())) { | |||
3649 | S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) | |||
3650 | << T->getPointeeType() << FoundVD; | |||
3651 | } | |||
3652 | } | |||
3653 | } | |||
3654 | ||||
3655 | if (!Decls.count(FoundVD)) | |||
3656 | return; | |||
3657 | ||||
3658 | const bool IsReference = FoundVD->getType()->isReferenceType(); | |||
3659 | ||||
3660 | if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { | |||
3661 | // Special checking for initializer lists. | |||
3662 | if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { | |||
3663 | return; | |||
3664 | } | |||
3665 | } else { | |||
3666 | // Prevent double warnings on use of unbounded references. | |||
3667 | if (CheckReferenceOnly && !IsReference) | |||
3668 | return; | |||
3669 | } | |||
3670 | ||||
3671 | unsigned diag = IsReference | |||
3672 | ? diag::warn_reference_field_is_uninit | |||
3673 | : diag::warn_field_is_uninit; | |||
3674 | S.Diag(FieldME->getExprLoc(), diag) << FoundVD; | |||
3675 | if (Constructor) | |||
3676 | S.Diag(Constructor->getLocation(), | |||
3677 | diag::note_uninit_in_this_constructor) | |||
3678 | << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); | |||
3679 | ||||
3680 | } | |||
3681 | ||||
3682 | void HandleValue(Expr *E, bool AddressOf) { | |||
3683 | E = E->IgnoreParens(); | |||
3684 | ||||
3685 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | |||
3686 | HandleMemberExpr(ME, false /*CheckReferenceOnly*/, | |||
3687 | AddressOf /*AddressOf*/); | |||
3688 | return; | |||
3689 | } | |||
3690 | ||||
3691 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { | |||
3692 | Visit(CO->getCond()); | |||
3693 | HandleValue(CO->getTrueExpr(), AddressOf); | |||
3694 | HandleValue(CO->getFalseExpr(), AddressOf); | |||
3695 | return; | |||
3696 | } | |||
3697 | ||||
3698 | if (BinaryConditionalOperator *BCO = | |||
3699 | dyn_cast<BinaryConditionalOperator>(E)) { | |||
3700 | Visit(BCO->getCond()); | |||
3701 | HandleValue(BCO->getFalseExpr(), AddressOf); | |||
3702 | return; | |||
3703 | } | |||
3704 | ||||
3705 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { | |||
3706 | HandleValue(OVE->getSourceExpr(), AddressOf); | |||
3707 | return; | |||
3708 | } | |||
3709 | ||||
3710 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | |||
3711 | switch (BO->getOpcode()) { | |||
3712 | default: | |||
3713 | break; | |||
3714 | case(BO_PtrMemD): | |||
3715 | case(BO_PtrMemI): | |||
3716 | HandleValue(BO->getLHS(), AddressOf); | |||
3717 | Visit(BO->getRHS()); | |||
3718 | return; | |||
3719 | case(BO_Comma): | |||
3720 | Visit(BO->getLHS()); | |||
3721 | HandleValue(BO->getRHS(), AddressOf); | |||
3722 | return; | |||
3723 | } | |||
3724 | } | |||
3725 | ||||
3726 | Visit(E); | |||
3727 | } | |||
3728 | ||||
3729 | void CheckInitListExpr(InitListExpr *ILE) { | |||
3730 | InitFieldIndex.push_back(0); | |||
3731 | for (auto Child : ILE->children()) { | |||
3732 | if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { | |||
3733 | CheckInitListExpr(SubList); | |||
3734 | } else { | |||
3735 | Visit(Child); | |||
3736 | } | |||
3737 | ++InitFieldIndex.back(); | |||
3738 | } | |||
3739 | InitFieldIndex.pop_back(); | |||
3740 | } | |||
3741 | ||||
3742 | void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, | |||
3743 | FieldDecl *Field, const Type *BaseClass) { | |||
3744 | // Remove Decls that may have been initialized in the previous | |||
3745 | // initializer. | |||
3746 | for (ValueDecl* VD : DeclsToRemove) | |||
3747 | Decls.erase(VD); | |||
3748 | DeclsToRemove.clear(); | |||
3749 | ||||
3750 | Constructor = FieldConstructor; | |||
3751 | InitListExpr *ILE = dyn_cast<InitListExpr>(E); | |||
3752 | ||||
3753 | if (ILE && Field) { | |||
3754 | InitList = true; | |||
3755 | InitListFieldDecl = Field; | |||
3756 | InitFieldIndex.clear(); | |||
3757 | CheckInitListExpr(ILE); | |||
3758 | } else { | |||
3759 | InitList = false; | |||
3760 | Visit(E); | |||
3761 | } | |||
3762 | ||||
3763 | if (Field) | |||
3764 | Decls.erase(Field); | |||
3765 | if (BaseClass) | |||
3766 | BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); | |||
3767 | } | |||
3768 | ||||
3769 | void VisitMemberExpr(MemberExpr *ME) { | |||
3770 | // All uses of unbounded reference fields will warn. | |||
3771 | HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); | |||
3772 | } | |||
3773 | ||||
3774 | void VisitImplicitCastExpr(ImplicitCastExpr *E) { | |||
3775 | if (E->getCastKind() == CK_LValueToRValue) { | |||
3776 | HandleValue(E->getSubExpr(), false /*AddressOf*/); | |||
3777 | return; | |||
3778 | } | |||
3779 | ||||
3780 | Inherited::VisitImplicitCastExpr(E); | |||
3781 | } | |||
3782 | ||||
3783 | void VisitCXXConstructExpr(CXXConstructExpr *E) { | |||
3784 | if (E->getConstructor()->isCopyConstructor()) { | |||
3785 | Expr *ArgExpr = E->getArg(0); | |||
3786 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) | |||
3787 | if (ILE->getNumInits() == 1) | |||
3788 | ArgExpr = ILE->getInit(0); | |||
3789 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) | |||
3790 | if (ICE->getCastKind() == CK_NoOp) | |||
3791 | ArgExpr = ICE->getSubExpr(); | |||
3792 | HandleValue(ArgExpr, false /*AddressOf*/); | |||
3793 | return; | |||
3794 | } | |||
3795 | Inherited::VisitCXXConstructExpr(E); | |||
3796 | } | |||
3797 | ||||
3798 | void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { | |||
3799 | Expr *Callee = E->getCallee(); | |||
3800 | if (isa<MemberExpr>(Callee)) { | |||
3801 | HandleValue(Callee, false /*AddressOf*/); | |||
3802 | for (auto Arg : E->arguments()) | |||
3803 | Visit(Arg); | |||
3804 | return; | |||
3805 | } | |||
3806 | ||||
3807 | Inherited::VisitCXXMemberCallExpr(E); | |||
3808 | } | |||
3809 | ||||
3810 | void VisitCallExpr(CallExpr *E) { | |||
3811 | // Treat std::move as a use. | |||
3812 | if (E->isCallToStdMove()) { | |||
3813 | HandleValue(E->getArg(0), /*AddressOf=*/false); | |||
3814 | return; | |||
3815 | } | |||
3816 | ||||
3817 | Inherited::VisitCallExpr(E); | |||
3818 | } | |||
3819 | ||||
3820 | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | |||
3821 | Expr *Callee = E->getCallee(); | |||
3822 | ||||
3823 | if (isa<UnresolvedLookupExpr>(Callee)) | |||
3824 | return Inherited::VisitCXXOperatorCallExpr(E); | |||
3825 | ||||
3826 | Visit(Callee); | |||
3827 | for (auto Arg : E->arguments()) | |||
3828 | HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); | |||
3829 | } | |||
3830 | ||||
3831 | void VisitBinaryOperator(BinaryOperator *E) { | |||
3832 | // If a field assignment is detected, remove the field from the | |||
3833 | // uninitiailized field set. | |||
3834 | if (E->getOpcode() == BO_Assign) | |||
3835 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) | |||
3836 | if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) | |||
3837 | if (!FD->getType()->isReferenceType()) | |||
3838 | DeclsToRemove.push_back(FD); | |||
3839 | ||||
3840 | if (E->isCompoundAssignmentOp()) { | |||
3841 | HandleValue(E->getLHS(), false /*AddressOf*/); | |||
3842 | Visit(E->getRHS()); | |||
3843 | return; | |||
3844 | } | |||
3845 | ||||
3846 | Inherited::VisitBinaryOperator(E); | |||
3847 | } | |||
3848 | ||||
3849 | void VisitUnaryOperator(UnaryOperator *E) { | |||
3850 | if (E->isIncrementDecrementOp()) { | |||
3851 | HandleValue(E->getSubExpr(), false /*AddressOf*/); | |||
3852 | return; | |||
3853 | } | |||
3854 | if (E->getOpcode() == UO_AddrOf) { | |||
3855 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { | |||
3856 | HandleValue(ME->getBase(), true /*AddressOf*/); | |||
3857 | return; | |||
3858 | } | |||
3859 | } | |||
3860 | ||||
3861 | Inherited::VisitUnaryOperator(E); | |||
3862 | } | |||
3863 | }; | |||
3864 | ||||
3865 | // Diagnose value-uses of fields to initialize themselves, e.g. | |||
3866 | // foo(foo) | |||
3867 | // where foo is not also a parameter to the constructor. | |||
3868 | // Also diagnose across field uninitialized use such as | |||
3869 | // x(y), y(x) | |||
3870 | // TODO: implement -Wuninitialized and fold this into that framework. | |||
3871 | static void DiagnoseUninitializedFields( | |||
3872 | Sema &SemaRef, const CXXConstructorDecl *Constructor) { | |||
3873 | ||||
3874 | if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, | |||
3875 | Constructor->getLocation())) { | |||
3876 | return; | |||
3877 | } | |||
3878 | ||||
3879 | if (Constructor->isInvalidDecl()) | |||
3880 | return; | |||
3881 | ||||
3882 | const CXXRecordDecl *RD = Constructor->getParent(); | |||
3883 | ||||
3884 | if (RD->isDependentContext()) | |||
3885 | return; | |||
3886 | ||||
3887 | // Holds fields that are uninitialized. | |||
3888 | llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; | |||
3889 | ||||
3890 | // At the beginning, all fields are uninitialized. | |||
3891 | for (auto *I : RD->decls()) { | |||
3892 | if (auto *FD = dyn_cast<FieldDecl>(I)) { | |||
3893 | UninitializedFields.insert(FD); | |||
3894 | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { | |||
3895 | UninitializedFields.insert(IFD->getAnonField()); | |||
3896 | } | |||
3897 | } | |||
3898 | ||||
3899 | llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; | |||
3900 | for (auto I : RD->bases()) | |||
3901 | UninitializedBaseClasses.insert(I.getType().getCanonicalType()); | |||
3902 | ||||
3903 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) | |||
3904 | return; | |||
3905 | ||||
3906 | UninitializedFieldVisitor UninitializedChecker(SemaRef, | |||
3907 | UninitializedFields, | |||
3908 | UninitializedBaseClasses); | |||
3909 | ||||
3910 | for (const auto *FieldInit : Constructor->inits()) { | |||
3911 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) | |||
3912 | break; | |||
3913 | ||||
3914 | Expr *InitExpr = FieldInit->getInit(); | |||
3915 | if (!InitExpr) | |||
3916 | continue; | |||
3917 | ||||
3918 | if (CXXDefaultInitExpr *Default = | |||
3919 | dyn_cast<CXXDefaultInitExpr>(InitExpr)) { | |||
3920 | InitExpr = Default->getExpr(); | |||
3921 | if (!InitExpr) | |||
3922 | continue; | |||
3923 | // In class initializers will point to the constructor. | |||
3924 | UninitializedChecker.CheckInitializer(InitExpr, Constructor, | |||
3925 | FieldInit->getAnyMember(), | |||
3926 | FieldInit->getBaseClass()); | |||
3927 | } else { | |||
3928 | UninitializedChecker.CheckInitializer(InitExpr, nullptr, | |||
3929 | FieldInit->getAnyMember(), | |||
3930 | FieldInit->getBaseClass()); | |||
3931 | } | |||
3932 | } | |||
3933 | } | |||
3934 | } // namespace | |||
3935 | ||||
3936 | /// Enter a new C++ default initializer scope. After calling this, the | |||
3937 | /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if | |||
3938 | /// parsing or instantiating the initializer failed. | |||
3939 | void Sema::ActOnStartCXXInClassMemberInitializer() { | |||
3940 | // Create a synthetic function scope to represent the call to the constructor | |||
3941 | // that notionally surrounds a use of this initializer. | |||
3942 | PushFunctionScope(); | |||
3943 | } | |||
3944 | ||||
3945 | void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { | |||
3946 | if (!D.isFunctionDeclarator()) | |||
3947 | return; | |||
3948 | auto &FTI = D.getFunctionTypeInfo(); | |||
3949 | if (!FTI.Params) | |||
3950 | return; | |||
3951 | for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, | |||
3952 | FTI.NumParams)) { | |||
3953 | auto *ParamDecl = cast<NamedDecl>(Param.Param); | |||
3954 | if (ParamDecl->getDeclName()) | |||
3955 | PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); | |||
3956 | } | |||
3957 | } | |||
3958 | ||||
3959 | ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { | |||
3960 | return ActOnRequiresClause(ConstraintExpr); | |||
3961 | } | |||
3962 | ||||
3963 | ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { | |||
3964 | if (ConstraintExpr.isInvalid()) | |||
3965 | return ExprError(); | |||
3966 | ||||
3967 | ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); | |||
3968 | if (ConstraintExpr.isInvalid()) | |||
3969 | return ExprError(); | |||
3970 | ||||
3971 | if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), | |||
3972 | UPPC_RequiresClause)) | |||
3973 | return ExprError(); | |||
3974 | ||||
3975 | return ConstraintExpr; | |||
3976 | } | |||
3977 | ||||
3978 | /// This is invoked after parsing an in-class initializer for a | |||
3979 | /// non-static C++ class member, and after instantiating an in-class initializer | |||
3980 | /// in a class template. Such actions are deferred until the class is complete. | |||
3981 | void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, | |||
3982 | SourceLocation InitLoc, | |||
3983 | Expr *InitExpr) { | |||
3984 | // Pop the notional constructor scope we created earlier. | |||
3985 | PopFunctionScopeInfo(nullptr, D); | |||
3986 | ||||
3987 | FieldDecl *FD = dyn_cast<FieldDecl>(D); | |||
| ||||
3988 | assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&((void)0) | |||
3989 | "must set init style when field is created")((void)0); | |||
3990 | ||||
3991 | if (!InitExpr) { | |||
3992 | D->setInvalidDecl(); | |||
3993 | if (FD) | |||
3994 | FD->removeInClassInitializer(); | |||
3995 | return; | |||
3996 | } | |||
3997 | ||||
3998 | if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { | |||
3999 | FD->setInvalidDecl(); | |||
4000 | FD->removeInClassInitializer(); | |||
4001 | return; | |||
4002 | } | |||
4003 | ||||
4004 | ExprResult Init = InitExpr; | |||
4005 | if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { | |||
| ||||
4006 | InitializedEntity Entity = | |||
4007 | InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); | |||
4008 | InitializationKind Kind = | |||
4009 | FD->getInClassInitStyle() == ICIS_ListInit | |||
4010 | ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), | |||
4011 | InitExpr->getBeginLoc(), | |||
4012 | InitExpr->getEndLoc()) | |||
4013 | : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); | |||
4014 | InitializationSequence Seq(*this, Entity, Kind, InitExpr); | |||
4015 | Init = Seq.Perform(*this, Entity, Kind, InitExpr); | |||
4016 | if (Init.isInvalid()) { | |||
4017 | FD->setInvalidDecl(); | |||
4018 | return; | |||
4019 | } | |||
4020 | } | |||
4021 | ||||
4022 | // C++11 [class.base.init]p7: | |||
4023 | // The initialization of each base and member constitutes a | |||
4024 | // full-expression. | |||
4025 | Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); | |||
4026 | if (Init.isInvalid()) { | |||
4027 | FD->setInvalidDecl(); | |||
4028 | return; | |||
4029 | } | |||
4030 | ||||
4031 | InitExpr = Init.get(); | |||
4032 | ||||
4033 | FD->setInClassInitializer(InitExpr); | |||
4034 | } | |||
4035 | ||||
4036 | /// Find the direct and/or virtual base specifiers that | |||
4037 | /// correspond to the given base type, for use in base initialization | |||
4038 | /// within a constructor. | |||
4039 | static bool FindBaseInitializer(Sema &SemaRef, | |||
4040 | CXXRecordDecl *ClassDecl, | |||
4041 | QualType BaseType, | |||
4042 | const CXXBaseSpecifier *&DirectBaseSpec, | |||
4043 | const CXXBaseSpecifier *&VirtualBaseSpec) { | |||
4044 | // First, check for a direct base class. | |||
4045 | DirectBaseSpec = nullptr; | |||
4046 | for (const auto &Base : ClassDecl->bases()) { | |||
4047 | if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { | |||
4048 | // We found a direct base of this type. That's what we're | |||
4049 | // initializing. | |||
4050 | DirectBaseSpec = &Base; | |||
4051 | break; | |||
4052 | } | |||
4053 | } | |||
4054 | ||||
4055 | // Check for a virtual base class. | |||
4056 | // FIXME: We might be able to short-circuit this if we know in advance that | |||
4057 | // there are no virtual bases. | |||
4058 | VirtualBaseSpec = nullptr; | |||
4059 | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { | |||
4060 | // We haven't found a base yet; search the class hierarchy for a | |||
4061 | // virtual base class. | |||
4062 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
4063 | /*DetectVirtual=*/false); | |||
4064 | if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), | |||
4065 | SemaRef.Context.getTypeDeclType(ClassDecl), | |||
4066 | BaseType, Paths)) { | |||
4067 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); | |||
4068 | Path != Paths.end(); ++Path) { | |||
4069 | if (Path->back().Base->isVirtual()) { | |||
4070 | VirtualBaseSpec = Path->back().Base; | |||
4071 | break; | |||
4072 | } | |||
4073 | } | |||
4074 | } | |||
4075 | } | |||
4076 | ||||
4077 | return DirectBaseSpec || VirtualBaseSpec; | |||
4078 | } | |||
4079 | ||||
4080 | /// Handle a C++ member initializer using braced-init-list syntax. | |||
4081 | MemInitResult | |||
4082 | Sema::ActOnMemInitializer(Decl *ConstructorD, | |||
4083 | Scope *S, | |||
4084 | CXXScopeSpec &SS, | |||
4085 | IdentifierInfo *MemberOrBase, | |||
4086 | ParsedType TemplateTypeTy, | |||
4087 | const DeclSpec &DS, | |||
4088 | SourceLocation IdLoc, | |||
4089 | Expr *InitList, | |||
4090 | SourceLocation EllipsisLoc) { | |||
4091 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, | |||
4092 | DS, IdLoc, InitList, | |||
4093 | EllipsisLoc); | |||
4094 | } | |||
4095 | ||||
4096 | /// Handle a C++ member initializer using parentheses syntax. | |||
4097 | MemInitResult | |||
4098 | Sema::ActOnMemInitializer(Decl *ConstructorD, | |||
4099 | Scope *S, | |||
4100 | CXXScopeSpec &SS, | |||
4101 | IdentifierInfo *MemberOrBase, | |||
4102 | ParsedType TemplateTypeTy, | |||
4103 | const DeclSpec &DS, | |||
4104 | SourceLocation IdLoc, | |||
4105 | SourceLocation LParenLoc, | |||
4106 | ArrayRef<Expr *> Args, | |||
4107 | SourceLocation RParenLoc, | |||
4108 | SourceLocation EllipsisLoc) { | |||
4109 | Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); | |||
4110 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, | |||
4111 | DS, IdLoc, List, EllipsisLoc); | |||
4112 | } | |||
4113 | ||||
4114 | namespace { | |||
4115 | ||||
4116 | // Callback to only accept typo corrections that can be a valid C++ member | |||
4117 | // intializer: either a non-static field member or a base class. | |||
4118 | class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { | |||
4119 | public: | |||
4120 | explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) | |||
4121 | : ClassDecl(ClassDecl) {} | |||
4122 | ||||
4123 | bool ValidateCandidate(const TypoCorrection &candidate) override { | |||
4124 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { | |||
4125 | if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) | |||
4126 | return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); | |||
4127 | return isa<TypeDecl>(ND); | |||
4128 | } | |||
4129 | return false; | |||
4130 | } | |||
4131 | ||||
4132 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
4133 | return std::make_unique<MemInitializerValidatorCCC>(*this); | |||
4134 | } | |||
4135 | ||||
4136 | private: | |||
4137 | CXXRecordDecl *ClassDecl; | |||
4138 | }; | |||
4139 | ||||
4140 | } | |||
4141 | ||||
4142 | ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, | |||
4143 | CXXScopeSpec &SS, | |||
4144 | ParsedType TemplateTypeTy, | |||
4145 | IdentifierInfo *MemberOrBase) { | |||
4146 | if (SS.getScopeRep() || TemplateTypeTy) | |||
4147 | return nullptr; | |||
4148 | for (auto *D : ClassDecl->lookup(MemberOrBase)) | |||
4149 | if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) | |||
4150 | return cast<ValueDecl>(D); | |||
4151 | return nullptr; | |||
4152 | } | |||
4153 | ||||
4154 | /// Handle a C++ member initializer. | |||
4155 | MemInitResult | |||
4156 | Sema::BuildMemInitializer(Decl *ConstructorD, | |||
4157 | Scope *S, | |||
4158 | CXXScopeSpec &SS, | |||
4159 | IdentifierInfo *MemberOrBase, | |||
4160 | ParsedType TemplateTypeTy, | |||
4161 | const DeclSpec &DS, | |||
4162 | SourceLocation IdLoc, | |||
4163 | Expr *Init, | |||
4164 | SourceLocation EllipsisLoc) { | |||
4165 | ExprResult Res = CorrectDelayedTyposInExpr(Init); | |||
4166 | if (!Res.isUsable()) | |||
4167 | return true; | |||
4168 | Init = Res.get(); | |||
4169 | ||||
4170 | if (!ConstructorD) | |||
4171 | return true; | |||
4172 | ||||
4173 | AdjustDeclIfTemplate(ConstructorD); | |||
4174 | ||||
4175 | CXXConstructorDecl *Constructor | |||
4176 | = dyn_cast<CXXConstructorDecl>(ConstructorD); | |||
4177 | if (!Constructor) { | |||
4178 | // The user wrote a constructor initializer on a function that is | |||
4179 | // not a C++ constructor. Ignore the error for now, because we may | |||
4180 | // have more member initializers coming; we'll diagnose it just | |||
4181 | // once in ActOnMemInitializers. | |||
4182 | return true; | |||
4183 | } | |||
4184 | ||||
4185 | CXXRecordDecl *ClassDecl = Constructor->getParent(); | |||
4186 | ||||
4187 | // C++ [class.base.init]p2: | |||
4188 | // Names in a mem-initializer-id are looked up in the scope of the | |||
4189 | // constructor's class and, if not found in that scope, are looked | |||
4190 | // up in the scope containing the constructor's definition. | |||
4191 | // [Note: if the constructor's class contains a member with the | |||
4192 | // same name as a direct or virtual base class of the class, a | |||
4193 | // mem-initializer-id naming the member or base class and composed | |||
4194 | // of a single identifier refers to the class member. A | |||
4195 | // mem-initializer-id for the hidden base class may be specified | |||
4196 | // using a qualified name. ] | |||
4197 | ||||
4198 | // Look for a member, first. | |||
4199 | if (ValueDecl *Member = tryLookupCtorInitMemberDecl( | |||
4200 | ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { | |||
4201 | if (EllipsisLoc.isValid()) | |||
4202 | Diag(EllipsisLoc, diag::err_pack_expansion_member_init) | |||
4203 | << MemberOrBase | |||
4204 | << SourceRange(IdLoc, Init->getSourceRange().getEnd()); | |||
4205 | ||||
4206 | return BuildMemberInitializer(Member, Init, IdLoc); | |||
4207 | } | |||
4208 | // It didn't name a member, so see if it names a class. | |||
4209 | QualType BaseType; | |||
4210 | TypeSourceInfo *TInfo = nullptr; | |||
4211 | ||||
4212 | if (TemplateTypeTy) { | |||
4213 | BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); | |||
4214 | if (BaseType.isNull()) | |||
4215 | return true; | |||
4216 | } else if (DS.getTypeSpecType() == TST_decltype) { | |||
4217 | BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); | |||
4218 | } else if (DS.getTypeSpecType() == TST_decltype_auto) { | |||
4219 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); | |||
4220 | return true; | |||
4221 | } else { | |||
4222 | LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); | |||
4223 | LookupParsedName(R, S, &SS); | |||
4224 | ||||
4225 | TypeDecl *TyD = R.getAsSingle<TypeDecl>(); | |||
4226 | if (!TyD) { | |||
4227 | if (R.isAmbiguous()) return true; | |||
4228 | ||||
4229 | // We don't want access-control diagnostics here. | |||
4230 | R.suppressDiagnostics(); | |||
4231 | ||||
4232 | if (SS.isSet() && isDependentScopeSpecifier(SS)) { | |||
4233 | bool NotUnknownSpecialization = false; | |||
4234 | DeclContext *DC = computeDeclContext(SS, false); | |||
4235 | if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) | |||
4236 | NotUnknownSpecialization = !Record->hasAnyDependentBases(); | |||
4237 | ||||
4238 | if (!NotUnknownSpecialization) { | |||
4239 | // When the scope specifier can refer to a member of an unknown | |||
4240 | // specialization, we take it as a type name. | |||
4241 | BaseType = CheckTypenameType(ETK_None, SourceLocation(), | |||
4242 | SS.getWithLocInContext(Context), | |||
4243 | *MemberOrBase, IdLoc); | |||
4244 | if (BaseType.isNull()) | |||
4245 | return true; | |||
4246 | ||||
4247 | TInfo = Context.CreateTypeSourceInfo(BaseType); | |||
4248 | DependentNameTypeLoc TL = | |||
4249 | TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); | |||
4250 | if (!TL.isNull()) { | |||
4251 | TL.setNameLoc(IdLoc); | |||
4252 | TL.setElaboratedKeywordLoc(SourceLocation()); | |||
4253 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
4254 | } | |||
4255 | ||||
4256 | R.clear(); | |||
4257 | R.setLookupName(MemberOrBase); | |||
4258 | } | |||
4259 | } | |||
4260 | ||||
4261 | // If no results were found, try to correct typos. | |||
4262 | TypoCorrection Corr; | |||
4263 | MemInitializerValidatorCCC CCC(ClassDecl); | |||
4264 | if (R.empty() && BaseType.isNull() && | |||
4265 | (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, | |||
4266 | CCC, CTK_ErrorRecovery, ClassDecl))) { | |||
4267 | if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { | |||
4268 | // We have found a non-static data member with a similar | |||
4269 | // name to what was typed; complain and initialize that | |||
4270 | // member. | |||
4271 | diagnoseTypo(Corr, | |||
4272 | PDiag(diag::err_mem_init_not_member_or_class_suggest) | |||
4273 | << MemberOrBase << true); | |||
4274 | return BuildMemberInitializer(Member, Init, IdLoc); | |||
4275 | } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { | |||
4276 | const CXXBaseSpecifier *DirectBaseSpec; | |||
4277 | const CXXBaseSpecifier *VirtualBaseSpec; | |||
4278 | if (FindBaseInitializer(*this, ClassDecl, | |||
4279 | Context.getTypeDeclType(Type), | |||
4280 | DirectBaseSpec, VirtualBaseSpec)) { | |||
4281 | // We have found a direct or virtual base class with a | |||
4282 | // similar name to what was typed; complain and initialize | |||
4283 | // that base class. | |||
4284 | diagnoseTypo(Corr, | |||
4285 | PDiag(diag::err_mem_init_not_member_or_class_suggest) | |||
4286 | << MemberOrBase << false, | |||
4287 | PDiag() /*Suppress note, we provide our own.*/); | |||
4288 | ||||
4289 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec | |||
4290 | : VirtualBaseSpec; | |||
4291 | Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) | |||
4292 | << BaseSpec->getType() << BaseSpec->getSourceRange(); | |||
4293 | ||||
4294 | TyD = Type; | |||
4295 | } | |||
4296 | } | |||
4297 | } | |||
4298 | ||||
4299 | if (!TyD && BaseType.isNull()) { | |||
4300 | Diag(IdLoc, diag::err_mem_init_not_member_or_class) | |||
4301 | << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); | |||
4302 | return true; | |||
4303 | } | |||
4304 | } | |||
4305 | ||||
4306 | if (BaseType.isNull()) { | |||
4307 | BaseType = Context.getTypeDeclType(TyD); | |||
4308 | MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); | |||
4309 | if (SS.isSet()) { | |||
4310 | BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), | |||
4311 | BaseType); | |||
4312 | TInfo = Context.CreateTypeSourceInfo(BaseType); | |||
4313 | ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); | |||
4314 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); | |||
4315 | TL.setElaboratedKeywordLoc(SourceLocation()); | |||
4316 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
4317 | } | |||
4318 | } | |||
4319 | } | |||
4320 | ||||
4321 | if (!TInfo) | |||
4322 | TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); | |||
4323 | ||||
4324 | return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); | |||
4325 | } | |||
4326 | ||||
4327 | MemInitResult | |||
4328 | Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, | |||
4329 | SourceLocation IdLoc) { | |||
4330 | FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); | |||
4331 | IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); | |||
4332 | assert((DirectMember || IndirectMember) &&((void)0) | |||
4333 | "Member must be a FieldDecl or IndirectFieldDecl")((void)0); | |||
4334 | ||||
4335 | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) | |||
4336 | return true; | |||
4337 | ||||
4338 | if (Member->isInvalidDecl()) | |||
4339 | return true; | |||
4340 | ||||
4341 | MultiExprArg Args; | |||
4342 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | |||
4343 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | |||
4344 | } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { | |||
4345 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); | |||
4346 | } else { | |||
4347 | // Template instantiation doesn't reconstruct ParenListExprs for us. | |||
4348 | Args = Init; | |||
4349 | } | |||
4350 | ||||
4351 | SourceRange InitRange = Init->getSourceRange(); | |||
4352 | ||||
4353 | if (Member->getType()->isDependentType() || Init->isTypeDependent()) { | |||
4354 | // Can't check initialization for a member of dependent type or when | |||
4355 | // any of the arguments are type-dependent expressions. | |||
4356 | DiscardCleanupsInEvaluationContext(); | |||
4357 | } else { | |||
4358 | bool InitList = false; | |||
4359 | if (isa<InitListExpr>(Init)) { | |||
4360 | InitList = true; | |||
4361 | Args = Init; | |||
4362 | } | |||
4363 | ||||
4364 | // Initialize the member. | |||
4365 | InitializedEntity MemberEntity = | |||
4366 | DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) | |||
4367 | : InitializedEntity::InitializeMember(IndirectMember, | |||
4368 | nullptr); | |||
4369 | InitializationKind Kind = | |||
4370 | InitList ? InitializationKind::CreateDirectList( | |||
4371 | IdLoc, Init->getBeginLoc(), Init->getEndLoc()) | |||
4372 | : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), | |||
4373 | InitRange.getEnd()); | |||
4374 | ||||
4375 | InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); | |||
4376 | ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, | |||
4377 | nullptr); | |||
4378 | if (MemberInit.isInvalid()) | |||
4379 | return true; | |||
4380 | ||||
4381 | // C++11 [class.base.init]p7: | |||
4382 | // The initialization of each base and member constitutes a | |||
4383 | // full-expression. | |||
4384 | MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), | |||
4385 | /*DiscardedValue*/ false); | |||
4386 | if (MemberInit.isInvalid()) | |||
4387 | return true; | |||
4388 | ||||
4389 | Init = MemberInit.get(); | |||
4390 | } | |||
4391 | ||||
4392 | if (DirectMember) { | |||
4393 | return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, | |||
4394 | InitRange.getBegin(), Init, | |||
4395 | InitRange.getEnd()); | |||
4396 | } else { | |||
4397 | return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, | |||
4398 | InitRange.getBegin(), Init, | |||
4399 | InitRange.getEnd()); | |||
4400 | } | |||
4401 | } | |||
4402 | ||||
4403 | MemInitResult | |||
4404 | Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, | |||
4405 | CXXRecordDecl *ClassDecl) { | |||
4406 | SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); | |||
4407 | if (!LangOpts.CPlusPlus11) | |||
4408 | return Diag(NameLoc, diag::err_delegating_ctor) | |||
4409 | << TInfo->getTypeLoc().getLocalSourceRange(); | |||
4410 | Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); | |||
4411 | ||||
4412 | bool InitList = true; | |||
4413 | MultiExprArg Args = Init; | |||
4414 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | |||
4415 | InitList = false; | |||
4416 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | |||
4417 | } | |||
4418 | ||||
4419 | SourceRange InitRange = Init->getSourceRange(); | |||
4420 | // Initialize the object. | |||
4421 | InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( | |||
4422 | QualType(ClassDecl->getTypeForDecl(), 0)); | |||
4423 | InitializationKind Kind = | |||
4424 | InitList ? InitializationKind::CreateDirectList( | |||
4425 | NameLoc, Init->getBeginLoc(), Init->getEndLoc()) | |||
4426 | : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), | |||
4427 | InitRange.getEnd()); | |||
4428 | InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); | |||
4429 | ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, | |||
4430 | Args, nullptr); | |||
4431 | if (DelegationInit.isInvalid()) | |||
4432 | return true; | |||
4433 | ||||
4434 | assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((void)0) | |||
4435 | "Delegating constructor with no target?")((void)0); | |||
4436 | ||||
4437 | // C++11 [class.base.init]p7: | |||
4438 | // The initialization of each base and member constitutes a | |||
4439 | // full-expression. | |||
4440 | DelegationInit = ActOnFinishFullExpr( | |||
4441 | DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); | |||
4442 | if (DelegationInit.isInvalid()) | |||
4443 | return true; | |||
4444 | ||||
4445 | // If we are in a dependent context, template instantiation will | |||
4446 | // perform this type-checking again. Just save the arguments that we | |||
4447 | // received in a ParenListExpr. | |||
4448 | // FIXME: This isn't quite ideal, since our ASTs don't capture all | |||
4449 | // of the information that we have about the base | |||
4450 | // initializer. However, deconstructing the ASTs is a dicey process, | |||
4451 | // and this approach is far more likely to get the corner cases right. | |||
4452 | if (CurContext->isDependentContext()) | |||
4453 | DelegationInit = Init; | |||
4454 | ||||
4455 | return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), | |||
4456 | DelegationInit.getAs<Expr>(), | |||
4457 | InitRange.getEnd()); | |||
4458 | } | |||
4459 | ||||
4460 | MemInitResult | |||
4461 | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, | |||
4462 | Expr *Init, CXXRecordDecl *ClassDecl, | |||
4463 | SourceLocation EllipsisLoc) { | |||
4464 | SourceLocation BaseLoc | |||
4465 | = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); | |||
4466 | ||||
4467 | if (!BaseType->isDependentType() && !BaseType->isRecordType()) | |||
4468 | return Diag(BaseLoc, diag::err_base_init_does_not_name_class) | |||
4469 | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | |||
4470 | ||||
4471 | // C++ [class.base.init]p2: | |||
4472 | // [...] Unless the mem-initializer-id names a nonstatic data | |||
4473 | // member of the constructor's class or a direct or virtual base | |||
4474 | // of that class, the mem-initializer is ill-formed. A | |||
4475 | // mem-initializer-list can initialize a base class using any | |||
4476 | // name that denotes that base class type. | |||
4477 | bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); | |||
4478 | ||||
4479 | SourceRange InitRange = Init->getSourceRange(); | |||
4480 | if (EllipsisLoc.isValid()) { | |||
4481 | // This is a pack expansion. | |||
4482 | if (!BaseType->containsUnexpandedParameterPack()) { | |||
4483 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | |||
4484 | << SourceRange(BaseLoc, InitRange.getEnd()); | |||
4485 | ||||
4486 | EllipsisLoc = SourceLocation(); | |||
4487 | } | |||
4488 | } else { | |||
4489 | // Check for any unexpanded parameter packs. | |||
4490 | if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) | |||
4491 | return true; | |||
4492 | ||||
4493 | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) | |||
4494 | return true; | |||
4495 | } | |||
4496 | ||||
4497 | // Check for direct and virtual base classes. | |||
4498 | const CXXBaseSpecifier *DirectBaseSpec = nullptr; | |||
4499 | const CXXBaseSpecifier *VirtualBaseSpec = nullptr; | |||
4500 | if (!Dependent) { | |||
4501 | if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), | |||
4502 | BaseType)) | |||
4503 | return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); | |||
4504 | ||||
4505 | FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, | |||
4506 | VirtualBaseSpec); | |||
4507 | ||||
4508 | // C++ [base.class.init]p2: | |||
4509 | // Unless the mem-initializer-id names a nonstatic data member of the | |||
4510 | // constructor's class or a direct or virtual base of that class, the | |||
4511 | // mem-initializer is ill-formed. | |||
4512 | if (!DirectBaseSpec && !VirtualBaseSpec) { | |||
4513 | // If the class has any dependent bases, then it's possible that | |||
4514 | // one of those types will resolve to the same type as | |||
4515 | // BaseType. Therefore, just treat this as a dependent base | |||
4516 | // class initialization. FIXME: Should we try to check the | |||
4517 | // initialization anyway? It seems odd. | |||
4518 | if (ClassDecl->hasAnyDependentBases()) | |||
4519 | Dependent = true; | |||
4520 | else | |||
4521 | return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) | |||
4522 | << BaseType << Context.getTypeDeclType(ClassDecl) | |||
4523 | << BaseTInfo->getTypeLoc().getLocalSourceRange(); | |||
4524 | } | |||
4525 | } | |||
4526 | ||||
4527 | if (Dependent) { | |||
4528 | DiscardCleanupsInEvaluationContext(); | |||
4529 | ||||
4530 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, | |||
4531 | /*IsVirtual=*/false, | |||
4532 | InitRange.getBegin(), Init, | |||
4533 | InitRange.getEnd(), EllipsisLoc); | |||
4534 | } | |||
4535 | ||||
4536 | // C++ [base.class.init]p2: | |||
4537 | // If a mem-initializer-id is ambiguous because it designates both | |||
4538 | // a direct non-virtual base class and an inherited virtual base | |||
4539 | // class, the mem-initializer is ill-formed. | |||
4540 | if (DirectBaseSpec && VirtualBaseSpec) | |||
4541 | return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) | |||
4542 | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | |||
4543 | ||||
4544 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; | |||
4545 | if (!BaseSpec) | |||
4546 | BaseSpec = VirtualBaseSpec; | |||
4547 | ||||
4548 | // Initialize the base. | |||
4549 | bool InitList = true; | |||
4550 | MultiExprArg Args = Init; | |||
4551 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | |||
4552 | InitList = false; | |||
4553 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); | |||
4554 | } | |||
4555 | ||||
4556 | InitializedEntity BaseEntity = | |||
4557 | InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); | |||
4558 | InitializationKind Kind = | |||
4559 | InitList ? InitializationKind::CreateDirectList(BaseLoc) | |||
4560 | : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), | |||
4561 | InitRange.getEnd()); | |||
4562 | InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); | |||
4563 | ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); | |||
4564 | if (BaseInit.isInvalid()) | |||
4565 | return true; | |||
4566 | ||||
4567 | // C++11 [class.base.init]p7: | |||
4568 | // The initialization of each base and member constitutes a | |||
4569 | // full-expression. | |||
4570 | BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), | |||
4571 | /*DiscardedValue*/ false); | |||
4572 | if (BaseInit.isInvalid()) | |||
4573 | return true; | |||
4574 | ||||
4575 | // If we are in a dependent context, template instantiation will | |||
4576 | // perform this type-checking again. Just save the arguments that we | |||
4577 | // received in a ParenListExpr. | |||
4578 | // FIXME: This isn't quite ideal, since our ASTs don't capture all | |||
4579 | // of the information that we have about the base | |||
4580 | // initializer. However, deconstructing the ASTs is a dicey process, | |||
4581 | // and this approach is far more likely to get the corner cases right. | |||
4582 | if (CurContext->isDependentContext()) | |||
4583 | BaseInit = Init; | |||
4584 | ||||
4585 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, | |||
4586 | BaseSpec->isVirtual(), | |||
4587 | InitRange.getBegin(), | |||
4588 | BaseInit.getAs<Expr>(), | |||
4589 | InitRange.getEnd(), EllipsisLoc); | |||
4590 | } | |||
4591 | ||||
4592 | // Create a static_cast\<T&&>(expr). | |||
4593 | static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { | |||
4594 | if (T.isNull()) T = E->getType(); | |||
4595 | QualType TargetType = SemaRef.BuildReferenceType( | |||
4596 | T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); | |||
4597 | SourceLocation ExprLoc = E->getBeginLoc(); | |||
4598 | TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( | |||
4599 | TargetType, ExprLoc); | |||
4600 | ||||
4601 | return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, | |||
4602 | SourceRange(ExprLoc, ExprLoc), | |||
4603 | E->getSourceRange()).get(); | |||
4604 | } | |||
4605 | ||||
4606 | /// ImplicitInitializerKind - How an implicit base or member initializer should | |||
4607 | /// initialize its base or member. | |||
4608 | enum ImplicitInitializerKind { | |||
4609 | IIK_Default, | |||
4610 | IIK_Copy, | |||
4611 | IIK_Move, | |||
4612 | IIK_Inherit | |||
4613 | }; | |||
4614 | ||||
4615 | static bool | |||
4616 | BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | |||
4617 | ImplicitInitializerKind ImplicitInitKind, | |||
4618 | CXXBaseSpecifier *BaseSpec, | |||
4619 | bool IsInheritedVirtualBase, | |||
4620 | CXXCtorInitializer *&CXXBaseInit) { | |||
4621 | InitializedEntity InitEntity | |||
4622 | = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, | |||
4623 | IsInheritedVirtualBase); | |||
4624 | ||||
4625 | ExprResult BaseInit; | |||
4626 | ||||
4627 | switch (ImplicitInitKind) { | |||
4628 | case IIK_Inherit: | |||
4629 | case IIK_Default: { | |||
4630 | InitializationKind InitKind | |||
4631 | = InitializationKind::CreateDefault(Constructor->getLocation()); | |||
4632 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); | |||
4633 | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); | |||
4634 | break; | |||
4635 | } | |||
4636 | ||||
4637 | case IIK_Move: | |||
4638 | case IIK_Copy: { | |||
4639 | bool Moving = ImplicitInitKind == IIK_Move; | |||
4640 | ParmVarDecl *Param = Constructor->getParamDecl(0); | |||
4641 | QualType ParamType = Param->getType().getNonReferenceType(); | |||
4642 | ||||
4643 | Expr *CopyCtorArg = | |||
4644 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), | |||
4645 | SourceLocation(), Param, false, | |||
4646 | Constructor->getLocation(), ParamType, | |||
4647 | VK_LValue, nullptr); | |||
4648 | ||||
4649 | SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); | |||
4650 | ||||
4651 | // Cast to the base class to avoid ambiguities. | |||
4652 | QualType ArgTy = | |||
4653 | SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), | |||
4654 | ParamType.getQualifiers()); | |||
4655 | ||||
4656 | if (Moving) { | |||
4657 | CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); | |||
4658 | } | |||
4659 | ||||
4660 | CXXCastPath BasePath; | |||
4661 | BasePath.push_back(BaseSpec); | |||
4662 | CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, | |||
4663 | CK_UncheckedDerivedToBase, | |||
4664 | Moving ? VK_XValue : VK_LValue, | |||
4665 | &BasePath).get(); | |||
4666 | ||||
4667 | InitializationKind InitKind | |||
4668 | = InitializationKind::CreateDirect(Constructor->getLocation(), | |||
4669 | SourceLocation(), SourceLocation()); | |||
4670 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); | |||
4671 | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); | |||
4672 | break; | |||
4673 | } | |||
4674 | } | |||
4675 | ||||
4676 | BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); | |||
4677 | if (BaseInit.isInvalid()) | |||
4678 | return true; | |||
4679 | ||||
4680 | CXXBaseInit = | |||
4681 | new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | |||
4682 | SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), | |||
4683 | SourceLocation()), | |||
4684 | BaseSpec->isVirtual(), | |||
4685 | SourceLocation(), | |||
4686 | BaseInit.getAs<Expr>(), | |||
4687 | SourceLocation(), | |||
4688 | SourceLocation()); | |||
4689 | ||||
4690 | return false; | |||
4691 | } | |||
4692 | ||||
4693 | static bool RefersToRValueRef(Expr *MemRef) { | |||
4694 | ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); | |||
4695 | return Referenced->getType()->isRValueReferenceType(); | |||
4696 | } | |||
4697 | ||||
4698 | static bool | |||
4699 | BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | |||
4700 | ImplicitInitializerKind ImplicitInitKind, | |||
4701 | FieldDecl *Field, IndirectFieldDecl *Indirect, | |||
4702 | CXXCtorInitializer *&CXXMemberInit) { | |||
4703 | if (Field->isInvalidDecl()) | |||
4704 | return true; | |||
4705 | ||||
4706 | SourceLocation Loc = Constructor->getLocation(); | |||
4707 | ||||
4708 | if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { | |||
4709 | bool Moving = ImplicitInitKind == IIK_Move; | |||
4710 | ParmVarDecl *Param = Constructor->getParamDecl(0); | |||
4711 | QualType ParamType = Param->getType().getNonReferenceType(); | |||
4712 | ||||
4713 | // Suppress copying zero-width bitfields. | |||
4714 | if (Field->isZeroLengthBitField(SemaRef.Context)) | |||
4715 | return false; | |||
4716 | ||||
4717 | Expr *MemberExprBase = | |||
4718 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), | |||
4719 | SourceLocation(), Param, false, | |||
4720 | Loc, ParamType, VK_LValue, nullptr); | |||
4721 | ||||
4722 | SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); | |||
4723 | ||||
4724 | if (Moving) { | |||
4725 | MemberExprBase = CastForMoving(SemaRef, MemberExprBase); | |||
4726 | } | |||
4727 | ||||
4728 | // Build a reference to this field within the parameter. | |||
4729 | CXXScopeSpec SS; | |||
4730 | LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, | |||
4731 | Sema::LookupMemberName); | |||
4732 | MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) | |||
4733 | : cast<ValueDecl>(Field), AS_public); | |||
4734 | MemberLookup.resolveKind(); | |||
4735 | ExprResult CtorArg | |||
4736 | = SemaRef.BuildMemberReferenceExpr(MemberExprBase, | |||
4737 | ParamType, Loc, | |||
4738 | /*IsArrow=*/false, | |||
4739 | SS, | |||
4740 | /*TemplateKWLoc=*/SourceLocation(), | |||
4741 | /*FirstQualifierInScope=*/nullptr, | |||
4742 | MemberLookup, | |||
4743 | /*TemplateArgs=*/nullptr, | |||
4744 | /*S*/nullptr); | |||
4745 | if (CtorArg.isInvalid()) | |||
4746 | return true; | |||
4747 | ||||
4748 | // C++11 [class.copy]p15: | |||
4749 | // - if a member m has rvalue reference type T&&, it is direct-initialized | |||
4750 | // with static_cast<T&&>(x.m); | |||
4751 | if (RefersToRValueRef(CtorArg.get())) { | |||
4752 | CtorArg = CastForMoving(SemaRef, CtorArg.get()); | |||
4753 | } | |||
4754 | ||||
4755 | InitializedEntity Entity = | |||
4756 | Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, | |||
4757 | /*Implicit*/ true) | |||
4758 | : InitializedEntity::InitializeMember(Field, nullptr, | |||
4759 | /*Implicit*/ true); | |||
4760 | ||||
4761 | // Direct-initialize to use the copy constructor. | |||
4762 | InitializationKind InitKind = | |||
4763 | InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); | |||
4764 | ||||
4765 | Expr *CtorArgE = CtorArg.getAs<Expr>(); | |||
4766 | InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); | |||
4767 | ExprResult MemberInit = | |||
4768 | InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); | |||
4769 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); | |||
4770 | if (MemberInit.isInvalid()) | |||
4771 | return true; | |||
4772 | ||||
4773 | if (Indirect) | |||
4774 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( | |||
4775 | SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); | |||
4776 | else | |||
4777 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( | |||
4778 | SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); | |||
4779 | return false; | |||
4780 | } | |||
4781 | ||||
4782 | assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&((void)0) | |||
4783 | "Unhandled implicit init kind!")((void)0); | |||
4784 | ||||
4785 | QualType FieldBaseElementType = | |||
4786 | SemaRef.Context.getBaseElementType(Field->getType()); | |||
4787 | ||||
4788 | if (FieldBaseElementType->isRecordType()) { | |||
4789 | InitializedEntity InitEntity = | |||
4790 | Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, | |||
4791 | /*Implicit*/ true) | |||
4792 | : InitializedEntity::InitializeMember(Field, nullptr, | |||
4793 | /*Implicit*/ true); | |||
4794 | InitializationKind InitKind = | |||
4795 | InitializationKind::CreateDefault(Loc); | |||
4796 | ||||
4797 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); | |||
4798 | ExprResult MemberInit = | |||
4799 | InitSeq.Perform(SemaRef, InitEntity, InitKind, None); | |||
4800 | ||||
4801 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); | |||
4802 | if (MemberInit.isInvalid()) | |||
4803 | return true; | |||
4804 | ||||
4805 | if (Indirect) | |||
4806 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | |||
4807 | Indirect, Loc, | |||
4808 | Loc, | |||
4809 | MemberInit.get(), | |||
4810 | Loc); | |||
4811 | else | |||
4812 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | |||
4813 | Field, Loc, Loc, | |||
4814 | MemberInit.get(), | |||
4815 | Loc); | |||
4816 | return false; | |||
4817 | } | |||
4818 | ||||
4819 | if (!Field->getParent()->isUnion()) { | |||
4820 | if (FieldBaseElementType->isReferenceType()) { | |||
4821 | SemaRef.Diag(Constructor->getLocation(), | |||
4822 | diag::err_uninitialized_member_in_ctor) | |||
4823 | << (int)Constructor->isImplicit() | |||
4824 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) | |||
4825 | << 0 << Field->getDeclName(); | |||
4826 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | |||
4827 | return true; | |||
4828 | } | |||
4829 | ||||
4830 | if (FieldBaseElementType.isConstQualified()) { | |||
4831 | SemaRef.Diag(Constructor->getLocation(), | |||
4832 | diag::err_uninitialized_member_in_ctor) | |||
4833 | << (int)Constructor->isImplicit() | |||
4834 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) | |||
4835 | << 1 << Field->getDeclName(); | |||
4836 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | |||
4837 | return true; | |||
4838 | } | |||
4839 | } | |||
4840 | ||||
4841 | if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { | |||
4842 | // ARC and Weak: | |||
4843 | // Default-initialize Objective-C pointers to NULL. | |||
4844 | CXXMemberInit | |||
4845 | = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, | |||
4846 | Loc, Loc, | |||
4847 | new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), | |||
4848 | Loc); | |||
4849 | return false; | |||
4850 | } | |||
4851 | ||||
4852 | // Nothing to initialize. | |||
4853 | CXXMemberInit = nullptr; | |||
4854 | return false; | |||
4855 | } | |||
4856 | ||||
4857 | namespace { | |||
4858 | struct BaseAndFieldInfo { | |||
4859 | Sema &S; | |||
4860 | CXXConstructorDecl *Ctor; | |||
4861 | bool AnyErrorsInInits; | |||
4862 | ImplicitInitializerKind IIK; | |||
4863 | llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; | |||
4864 | SmallVector<CXXCtorInitializer*, 8> AllToInit; | |||
4865 | llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; | |||
4866 | ||||
4867 | BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) | |||
4868 | : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { | |||
4869 | bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); | |||
4870 | if (Ctor->getInheritedConstructor()) | |||
4871 | IIK = IIK_Inherit; | |||
4872 | else if (Generated && Ctor->isCopyConstructor()) | |||
4873 | IIK = IIK_Copy; | |||
4874 | else if (Generated && Ctor->isMoveConstructor()) | |||
4875 | IIK = IIK_Move; | |||
4876 | else | |||
4877 | IIK = IIK_Default; | |||
4878 | } | |||
4879 | ||||
4880 | bool isImplicitCopyOrMove() const { | |||
4881 | switch (IIK) { | |||
4882 | case IIK_Copy: | |||
4883 | case IIK_Move: | |||
4884 | return true; | |||
4885 | ||||
4886 | case IIK_Default: | |||
4887 | case IIK_Inherit: | |||
4888 | return false; | |||
4889 | } | |||
4890 | ||||
4891 | llvm_unreachable("Invalid ImplicitInitializerKind!")__builtin_unreachable(); | |||
4892 | } | |||
4893 | ||||
4894 | bool addFieldInitializer(CXXCtorInitializer *Init) { | |||
4895 | AllToInit.push_back(Init); | |||
4896 | ||||
4897 | // Check whether this initializer makes the field "used". | |||
4898 | if (Init->getInit()->HasSideEffects(S.Context)) | |||
4899 | S.UnusedPrivateFields.remove(Init->getAnyMember()); | |||
4900 | ||||
4901 | return false; | |||
4902 | } | |||
4903 | ||||
4904 | bool isInactiveUnionMember(FieldDecl *Field) { | |||
4905 | RecordDecl *Record = Field->getParent(); | |||
4906 | if (!Record->isUnion()) | |||
4907 | return false; | |||
4908 | ||||
4909 | if (FieldDecl *Active = | |||
4910 | ActiveUnionMember.lookup(Record->getCanonicalDecl())) | |||
4911 | return Active != Field->getCanonicalDecl(); | |||
4912 | ||||
4913 | // In an implicit copy or move constructor, ignore any in-class initializer. | |||
4914 | if (isImplicitCopyOrMove()) | |||
4915 | return true; | |||
4916 | ||||
4917 | // If there's no explicit initialization, the field is active only if it | |||
4918 | // has an in-class initializer... | |||
4919 | if (Field->hasInClassInitializer()) | |||
4920 | return false; | |||
4921 | // ... or it's an anonymous struct or union whose class has an in-class | |||
4922 | // initializer. | |||
4923 | if (!Field->isAnonymousStructOrUnion()) | |||
4924 | return true; | |||
4925 | CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); | |||
4926 | return !FieldRD->hasInClassInitializer(); | |||
4927 | } | |||
4928 | ||||
4929 | /// Determine whether the given field is, or is within, a union member | |||
4930 | /// that is inactive (because there was an initializer given for a different | |||
4931 | /// member of the union, or because the union was not initialized at all). | |||
4932 | bool isWithinInactiveUnionMember(FieldDecl *Field, | |||
4933 | IndirectFieldDecl *Indirect) { | |||
4934 | if (!Indirect) | |||
4935 | return isInactiveUnionMember(Field); | |||
4936 | ||||
4937 | for (auto *C : Indirect->chain()) { | |||
4938 | FieldDecl *Field = dyn_cast<FieldDecl>(C); | |||
4939 | if (Field && isInactiveUnionMember(Field)) | |||
4940 | return true; | |||
4941 | } | |||
4942 | return false; | |||
4943 | } | |||
4944 | }; | |||
4945 | } | |||
4946 | ||||
4947 | /// Determine whether the given type is an incomplete or zero-lenfgth | |||
4948 | /// array type. | |||
4949 | static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { | |||
4950 | if (T->isIncompleteArrayType()) | |||
4951 | return true; | |||
4952 | ||||
4953 | while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { | |||
4954 | if (!ArrayT->getSize()) | |||
4955 | return true; | |||
4956 | ||||
4957 | T = ArrayT->getElementType(); | |||
4958 | } | |||
4959 | ||||
4960 | return false; | |||
4961 | } | |||
4962 | ||||
4963 | static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, | |||
4964 | FieldDecl *Field, | |||
4965 | IndirectFieldDecl *Indirect = nullptr) { | |||
4966 | if (Field->isInvalidDecl()) | |||
4967 | return false; | |||
4968 | ||||
4969 | // Overwhelmingly common case: we have a direct initializer for this field. | |||
4970 | if (CXXCtorInitializer *Init = | |||
4971 | Info.AllBaseFields.lookup(Field->getCanonicalDecl())) | |||
4972 | return Info.addFieldInitializer(Init); | |||
4973 | ||||
4974 | // C++11 [class.base.init]p8: | |||
4975 | // if the entity is a non-static data member that has a | |||
4976 | // brace-or-equal-initializer and either | |||
4977 | // -- the constructor's class is a union and no other variant member of that | |||
4978 | // union is designated by a mem-initializer-id or | |||
4979 | // -- the constructor's class is not a union, and, if the entity is a member | |||
4980 | // of an anonymous union, no other member of that union is designated by | |||
4981 | // a mem-initializer-id, | |||
4982 | // the entity is initialized as specified in [dcl.init]. | |||
4983 | // | |||
4984 | // We also apply the same rules to handle anonymous structs within anonymous | |||
4985 | // unions. | |||
4986 | if (Info.isWithinInactiveUnionMember(Field, Indirect)) | |||
4987 | return false; | |||
4988 | ||||
4989 | if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { | |||
4990 | ExprResult DIE = | |||
4991 | SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); | |||
4992 | if (DIE.isInvalid()) | |||
4993 | return true; | |||
4994 | ||||
4995 | auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); | |||
4996 | SemaRef.checkInitializerLifetime(Entity, DIE.get()); | |||
4997 | ||||
4998 | CXXCtorInitializer *Init; | |||
4999 | if (Indirect) | |||
5000 | Init = new (SemaRef.Context) | |||
5001 | CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), | |||
5002 | SourceLocation(), DIE.get(), SourceLocation()); | |||
5003 | else | |||
5004 | Init = new (SemaRef.Context) | |||
5005 | CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), | |||
5006 | SourceLocation(), DIE.get(), SourceLocation()); | |||
5007 | return Info.addFieldInitializer(Init); | |||
5008 | } | |||
5009 | ||||
5010 | // Don't initialize incomplete or zero-length arrays. | |||
5011 | if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) | |||
5012 | return false; | |||
5013 | ||||
5014 | // Don't try to build an implicit initializer if there were semantic | |||
5015 | // errors in any of the initializers (and therefore we might be | |||
5016 | // missing some that the user actually wrote). | |||
5017 | if (Info.AnyErrorsInInits) | |||
5018 | return false; | |||
5019 | ||||
5020 | CXXCtorInitializer *Init = nullptr; | |||
5021 | if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, | |||
5022 | Indirect, Init)) | |||
5023 | return true; | |||
5024 | ||||
5025 | if (!Init) | |||
5026 | return false; | |||
5027 | ||||
5028 | return Info.addFieldInitializer(Init); | |||
5029 | } | |||
5030 | ||||
5031 | bool | |||
5032 | Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, | |||
5033 | CXXCtorInitializer *Initializer) { | |||
5034 | assert(Initializer->isDelegatingInitializer())((void)0); | |||
5035 | Constructor->setNumCtorInitializers(1); | |||
5036 | CXXCtorInitializer **initializer = | |||
5037 | new (Context) CXXCtorInitializer*[1]; | |||
5038 | memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); | |||
5039 | Constructor->setCtorInitializers(initializer); | |||
5040 | ||||
5041 | if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { | |||
5042 | MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); | |||
5043 | DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); | |||
5044 | } | |||
5045 | ||||
5046 | DelegatingCtorDecls.push_back(Constructor); | |||
5047 | ||||
5048 | DiagnoseUninitializedFields(*this, Constructor); | |||
5049 | ||||
5050 | return false; | |||
5051 | } | |||
5052 | ||||
5053 | bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, | |||
5054 | ArrayRef<CXXCtorInitializer *> Initializers) { | |||
5055 | if (Constructor->isDependentContext()) { | |||
5056 | // Just store the initializers as written, they will be checked during | |||
5057 | // instantiation. | |||
5058 | if (!Initializers.empty()) { | |||
5059 | Constructor->setNumCtorInitializers(Initializers.size()); | |||
5060 | CXXCtorInitializer **baseOrMemberInitializers = | |||
5061 | new (Context) CXXCtorInitializer*[Initializers.size()]; | |||
5062 | memcpy(baseOrMemberInitializers, Initializers.data(), | |||
5063 | Initializers.size() * sizeof(CXXCtorInitializer*)); | |||
5064 | Constructor->setCtorInitializers(baseOrMemberInitializers); | |||
5065 | } | |||
5066 | ||||
5067 | // Let template instantiation know whether we had errors. | |||
5068 | if (AnyErrors) | |||
5069 | Constructor->setInvalidDecl(); | |||
5070 | ||||
5071 | return false; | |||
5072 | } | |||
5073 | ||||
5074 | BaseAndFieldInfo Info(*this, Constructor, AnyErrors); | |||
5075 | ||||
5076 | // We need to build the initializer AST according to order of construction | |||
5077 | // and not what user specified in the Initializers list. | |||
5078 | CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); | |||
5079 | if (!ClassDecl) | |||
5080 | return true; | |||
5081 | ||||
5082 | bool HadError = false; | |||
5083 | ||||
5084 | for (unsigned i = 0; i < Initializers.size(); i++) { | |||
5085 | CXXCtorInitializer *Member = Initializers[i]; | |||
5086 | ||||
5087 | if (Member->isBaseInitializer()) | |||
5088 | Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; | |||
5089 | else { | |||
5090 | Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; | |||
5091 | ||||
5092 | if (IndirectFieldDecl *F = Member->getIndirectMember()) { | |||
5093 | for (auto *C : F->chain()) { | |||
5094 | FieldDecl *FD = dyn_cast<FieldDecl>(C); | |||
5095 | if (FD && FD->getParent()->isUnion()) | |||
5096 | Info.ActiveUnionMember.insert(std::make_pair( | |||
5097 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); | |||
5098 | } | |||
5099 | } else if (FieldDecl *FD = Member->getMember()) { | |||
5100 | if (FD->getParent()->isUnion()) | |||
5101 | Info.ActiveUnionMember.insert(std::make_pair( | |||
5102 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); | |||
5103 | } | |||
5104 | } | |||
5105 | } | |||
5106 | ||||
5107 | // Keep track of the direct virtual bases. | |||
5108 | llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; | |||
5109 | for (auto &I : ClassDecl->bases()) { | |||
5110 | if (I.isVirtual()) | |||
5111 | DirectVBases.insert(&I); | |||
5112 | } | |||
5113 | ||||
5114 | // Push virtual bases before others. | |||
5115 | for (auto &VBase : ClassDecl->vbases()) { | |||
5116 | if (CXXCtorInitializer *Value | |||
5117 | = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { | |||
5118 | // [class.base.init]p7, per DR257: | |||
5119 | // A mem-initializer where the mem-initializer-id names a virtual base | |||
5120 | // class is ignored during execution of a constructor of any class that | |||
5121 | // is not the most derived class. | |||
5122 | if (ClassDecl->isAbstract()) { | |||
5123 | // FIXME: Provide a fixit to remove the base specifier. This requires | |||
5124 | // tracking the location of the associated comma for a base specifier. | |||
5125 | Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) | |||
5126 | << VBase.getType() << ClassDecl; | |||
5127 | DiagnoseAbstractType(ClassDecl); | |||
5128 | } | |||
5129 | ||||
5130 | Info.AllToInit.push_back(Value); | |||
5131 | } else if (!AnyErrors && !ClassDecl->isAbstract()) { | |||
5132 | // [class.base.init]p8, per DR257: | |||
5133 | // If a given [...] base class is not named by a mem-initializer-id | |||
5134 | // [...] and the entity is not a virtual base class of an abstract | |||
5135 | // class, then [...] the entity is default-initialized. | |||
5136 | bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); | |||
5137 | CXXCtorInitializer *CXXBaseInit; | |||
5138 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | |||
5139 | &VBase, IsInheritedVirtualBase, | |||
5140 | CXXBaseInit)) { | |||
5141 | HadError = true; | |||
5142 | continue; | |||
5143 | } | |||
5144 | ||||
5145 | Info.AllToInit.push_back(CXXBaseInit); | |||
5146 | } | |||
5147 | } | |||
5148 | ||||
5149 | // Non-virtual bases. | |||
5150 | for (auto &Base : ClassDecl->bases()) { | |||
5151 | // Virtuals are in the virtual base list and already constructed. | |||
5152 | if (Base.isVirtual()) | |||
5153 | continue; | |||
5154 | ||||
5155 | if (CXXCtorInitializer *Value | |||
5156 | = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { | |||
5157 | Info.AllToInit.push_back(Value); | |||
5158 | } else if (!AnyErrors) { | |||
5159 | CXXCtorInitializer *CXXBaseInit; | |||
5160 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | |||
5161 | &Base, /*IsInheritedVirtualBase=*/false, | |||
5162 | CXXBaseInit)) { | |||
5163 | HadError = true; | |||
5164 | continue; | |||
5165 | } | |||
5166 | ||||
5167 | Info.AllToInit.push_back(CXXBaseInit); | |||
5168 | } | |||
5169 | } | |||
5170 | ||||
5171 | // Fields. | |||
5172 | for (auto *Mem : ClassDecl->decls()) { | |||
5173 | if (auto *F = dyn_cast<FieldDecl>(Mem)) { | |||
5174 | // C++ [class.bit]p2: | |||
5175 | // A declaration for a bit-field that omits the identifier declares an | |||
5176 | // unnamed bit-field. Unnamed bit-fields are not members and cannot be | |||
5177 | // initialized. | |||
5178 | if (F->isUnnamedBitfield()) | |||
5179 | continue; | |||
5180 | ||||
5181 | // If we're not generating the implicit copy/move constructor, then we'll | |||
5182 | // handle anonymous struct/union fields based on their individual | |||
5183 | // indirect fields. | |||
5184 | if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) | |||
5185 | continue; | |||
5186 | ||||
5187 | if (CollectFieldInitializer(*this, Info, F)) | |||
5188 | HadError = true; | |||
5189 | continue; | |||
5190 | } | |||
5191 | ||||
5192 | // Beyond this point, we only consider default initialization. | |||
5193 | if (Info.isImplicitCopyOrMove()) | |||
5194 | continue; | |||
5195 | ||||
5196 | if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { | |||
5197 | if (F->getType()->isIncompleteArrayType()) { | |||
5198 | assert(ClassDecl->hasFlexibleArrayMember() &&((void)0) | |||
5199 | "Incomplete array type is not valid")((void)0); | |||
5200 | continue; | |||
5201 | } | |||
5202 | ||||
5203 | // Initialize each field of an anonymous struct individually. | |||
5204 | if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) | |||
5205 | HadError = true; | |||
5206 | ||||
5207 | continue; | |||
5208 | } | |||
5209 | } | |||
5210 | ||||
5211 | unsigned NumInitializers = Info.AllToInit.size(); | |||
5212 | if (NumInitializers > 0) { | |||
5213 | Constructor->setNumCtorInitializers(NumInitializers); | |||
5214 | CXXCtorInitializer **baseOrMemberInitializers = | |||
5215 | new (Context) CXXCtorInitializer*[NumInitializers]; | |||
5216 | memcpy(baseOrMemberInitializers, Info.AllToInit.data(), | |||
5217 | NumInitializers * sizeof(CXXCtorInitializer*)); | |||
5218 | Constructor->setCtorInitializers(baseOrMemberInitializers); | |||
5219 | ||||
5220 | // Constructors implicitly reference the base and member | |||
5221 | // destructors. | |||
5222 | MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), | |||
5223 | Constructor->getParent()); | |||
5224 | } | |||
5225 | ||||
5226 | return HadError; | |||
5227 | } | |||
5228 | ||||
5229 | static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { | |||
5230 | if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { | |||
5231 | const RecordDecl *RD = RT->getDecl(); | |||
5232 | if (RD->isAnonymousStructOrUnion()) { | |||
5233 | for (auto *Field : RD->fields()) | |||
5234 | PopulateKeysForFields(Field, IdealInits); | |||
5235 | return; | |||
5236 | } | |||
5237 | } | |||
5238 | IdealInits.push_back(Field->getCanonicalDecl()); | |||
5239 | } | |||
5240 | ||||
5241 | static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { | |||
5242 | return Context.getCanonicalType(BaseType).getTypePtr(); | |||
5243 | } | |||
5244 | ||||
5245 | static const void *GetKeyForMember(ASTContext &Context, | |||
5246 | CXXCtorInitializer *Member) { | |||
5247 | if (!Member->isAnyMemberInitializer()) | |||
5248 | return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); | |||
5249 | ||||
5250 | return Member->getAnyMember()->getCanonicalDecl(); | |||
5251 | } | |||
5252 | ||||
5253 | static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, | |||
5254 | const CXXCtorInitializer *Previous, | |||
5255 | const CXXCtorInitializer *Current) { | |||
5256 | if (Previous->isAnyMemberInitializer()) | |||
5257 | Diag << 0 << Previous->getAnyMember(); | |||
5258 | else | |||
5259 | Diag << 1 << Previous->getTypeSourceInfo()->getType(); | |||
5260 | ||||
5261 | if (Current->isAnyMemberInitializer()) | |||
5262 | Diag << 0 << Current->getAnyMember(); | |||
5263 | else | |||
5264 | Diag << 1 << Current->getTypeSourceInfo()->getType(); | |||
5265 | } | |||
5266 | ||||
5267 | static void DiagnoseBaseOrMemInitializerOrder( | |||
5268 | Sema &SemaRef, const CXXConstructorDecl *Constructor, | |||
5269 | ArrayRef<CXXCtorInitializer *> Inits) { | |||
5270 | if (Constructor->getDeclContext()->isDependentContext()) | |||
5271 | return; | |||
5272 | ||||
5273 | // Don't check initializers order unless the warning is enabled at the | |||
5274 | // location of at least one initializer. | |||
5275 | bool ShouldCheckOrder = false; | |||
5276 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { | |||
5277 | CXXCtorInitializer *Init = Inits[InitIndex]; | |||
5278 | if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, | |||
5279 | Init->getSourceLocation())) { | |||
5280 | ShouldCheckOrder = true; | |||
5281 | break; | |||
5282 | } | |||
5283 | } | |||
5284 | if (!ShouldCheckOrder) | |||
5285 | return; | |||
5286 | ||||
5287 | // Build the list of bases and members in the order that they'll | |||
5288 | // actually be initialized. The explicit initializers should be in | |||
5289 | // this same order but may be missing things. | |||
5290 | SmallVector<const void*, 32> IdealInitKeys; | |||
5291 | ||||
5292 | const CXXRecordDecl *ClassDecl = Constructor->getParent(); | |||
5293 | ||||
5294 | // 1. Virtual bases. | |||
5295 | for (const auto &VBase : ClassDecl->vbases()) | |||
5296 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); | |||
5297 | ||||
5298 | // 2. Non-virtual bases. | |||
5299 | for (const auto &Base : ClassDecl->bases()) { | |||
5300 | if (Base.isVirtual()) | |||
5301 | continue; | |||
5302 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); | |||
5303 | } | |||
5304 | ||||
5305 | // 3. Direct fields. | |||
5306 | for (auto *Field : ClassDecl->fields()) { | |||
5307 | if (Field->isUnnamedBitfield()) | |||
5308 | continue; | |||
5309 | ||||
5310 | PopulateKeysForFields(Field, IdealInitKeys); | |||
5311 | } | |||
5312 | ||||
5313 | unsigned NumIdealInits = IdealInitKeys.size(); | |||
5314 | unsigned IdealIndex = 0; | |||
5315 | ||||
5316 | // Track initializers that are in an incorrect order for either a warning or | |||
5317 | // note if multiple ones occur. | |||
5318 | SmallVector<unsigned> WarnIndexes; | |||
5319 | // Correlates the index of an initializer in the init-list to the index of | |||
5320 | // the field/base in the class. | |||
5321 | SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; | |||
5322 | ||||
5323 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { | |||
5324 | const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); | |||
5325 | ||||
5326 | // Scan forward to try to find this initializer in the idealized | |||
5327 | // initializers list. | |||
5328 | for (; IdealIndex != NumIdealInits; ++IdealIndex) | |||
5329 | if (InitKey == IdealInitKeys[IdealIndex]) | |||
5330 | break; | |||
5331 | ||||
5332 | // If we didn't find this initializer, it must be because we | |||
5333 | // scanned past it on a previous iteration. That can only | |||
5334 | // happen if we're out of order; emit a warning. | |||
5335 | if (IdealIndex == NumIdealInits && InitIndex) { | |||
5336 | WarnIndexes.push_back(InitIndex); | |||
5337 | ||||
5338 | // Move back to the initializer's location in the ideal list. | |||
5339 | for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) | |||
5340 | if (InitKey == IdealInitKeys[IdealIndex]) | |||
5341 | break; | |||
5342 | ||||
5343 | assert(IdealIndex < NumIdealInits &&((void)0) | |||
5344 | "initializer not found in initializer list")((void)0); | |||
5345 | } | |||
5346 | CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); | |||
5347 | } | |||
5348 | ||||
5349 | if (WarnIndexes.empty()) | |||
5350 | return; | |||
5351 | ||||
5352 | // Sort based on the ideal order, first in the pair. | |||
5353 | llvm::sort(CorrelatedInitOrder, | |||
5354 | [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; }); | |||
5355 | ||||
5356 | // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to | |||
5357 | // emit the diagnostic before we can try adding notes. | |||
5358 | { | |||
5359 | Sema::SemaDiagnosticBuilder D = SemaRef.Diag( | |||
5360 | Inits[WarnIndexes.front() - 1]->getSourceLocation(), | |||
5361 | WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order | |||
5362 | : diag::warn_some_initializers_out_of_order); | |||
5363 | ||||
5364 | for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { | |||
5365 | if (CorrelatedInitOrder[I].second == I) | |||
5366 | continue; | |||
5367 | // Ideally we would be using InsertFromRange here, but clang doesn't | |||
5368 | // appear to handle InsertFromRange correctly when the source range is | |||
5369 | // modified by another fix-it. | |||
5370 | D << FixItHint::CreateReplacement( | |||
5371 | Inits[I]->getSourceRange(), | |||
5372 | Lexer::getSourceText( | |||
5373 | CharSourceRange::getTokenRange( | |||
5374 | Inits[CorrelatedInitOrder[I].second]->getSourceRange()), | |||
5375 | SemaRef.getSourceManager(), SemaRef.getLangOpts())); | |||
5376 | } | |||
5377 | ||||
5378 | // If there is only 1 item out of order, the warning expects the name and | |||
5379 | // type of each being added to it. | |||
5380 | if (WarnIndexes.size() == 1) { | |||
5381 | AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], | |||
5382 | Inits[WarnIndexes.front()]); | |||
5383 | return; | |||
5384 | } | |||
5385 | } | |||
5386 | // More than 1 item to warn, create notes letting the user know which ones | |||
5387 | // are bad. | |||
5388 | for (unsigned WarnIndex : WarnIndexes) { | |||
5389 | const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; | |||
5390 | auto D = SemaRef.Diag(PrevInit->getSourceLocation(), | |||
5391 | diag::note_initializer_out_of_order); | |||
5392 | AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); | |||
5393 | D << PrevInit->getSourceRange(); | |||
5394 | } | |||
5395 | } | |||
5396 | ||||
5397 | namespace { | |||
5398 | bool CheckRedundantInit(Sema &S, | |||
5399 | CXXCtorInitializer *Init, | |||
5400 | CXXCtorInitializer *&PrevInit) { | |||
5401 | if (!PrevInit) { | |||
5402 | PrevInit = Init; | |||
5403 | return false; | |||
5404 | } | |||
5405 | ||||
5406 | if (FieldDecl *Field = Init->getAnyMember()) | |||
5407 | S.Diag(Init->getSourceLocation(), | |||
5408 | diag::err_multiple_mem_initialization) | |||
5409 | << Field->getDeclName() | |||
5410 | << Init->getSourceRange(); | |||
5411 | else { | |||
5412 | const Type *BaseClass = Init->getBaseClass(); | |||
5413 | assert(BaseClass && "neither field nor base")((void)0); | |||
5414 | S.Diag(Init->getSourceLocation(), | |||
5415 | diag::err_multiple_base_initialization) | |||
5416 | << QualType(BaseClass, 0) | |||
5417 | << Init->getSourceRange(); | |||
5418 | } | |||
5419 | S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) | |||
5420 | << 0 << PrevInit->getSourceRange(); | |||
5421 | ||||
5422 | return true; | |||
5423 | } | |||
5424 | ||||
5425 | typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; | |||
5426 | typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; | |||
5427 | ||||
5428 | bool CheckRedundantUnionInit(Sema &S, | |||
5429 | CXXCtorInitializer *Init, | |||
5430 | RedundantUnionMap &Unions) { | |||
5431 | FieldDecl *Field = Init->getAnyMember(); | |||
5432 | RecordDecl *Parent = Field->getParent(); | |||
5433 | NamedDecl *Child = Field; | |||
5434 | ||||
5435 | while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { | |||
5436 | if (Parent->isUnion()) { | |||
5437 | UnionEntry &En = Unions[Parent]; | |||
5438 | if (En.first && En.first != Child) { | |||
5439 | S.Diag(Init->getSourceLocation(), | |||
5440 | diag::err_multiple_mem_union_initialization) | |||
5441 | << Field->getDeclName() | |||
5442 | << Init->getSourceRange(); | |||
5443 | S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) | |||
5444 | << 0 << En.second->getSourceRange(); | |||
5445 | return true; | |||
5446 | } | |||
5447 | if (!En.first) { | |||
5448 | En.first = Child; | |||
5449 | En.second = Init; | |||
5450 | } | |||
5451 | if (!Parent->isAnonymousStructOrUnion()) | |||
5452 | return false; | |||
5453 | } | |||
5454 | ||||
5455 | Child = Parent; | |||
5456 | Parent = cast<RecordDecl>(Parent->getDeclContext()); | |||
5457 | } | |||
5458 | ||||
5459 | return false; | |||
5460 | } | |||
5461 | } // namespace | |||
5462 | ||||
5463 | /// ActOnMemInitializers - Handle the member initializers for a constructor. | |||
5464 | void Sema::ActOnMemInitializers(Decl *ConstructorDecl, | |||
5465 | SourceLocation ColonLoc, | |||
5466 | ArrayRef<CXXCtorInitializer*> MemInits, | |||
5467 | bool AnyErrors) { | |||
5468 | if (!ConstructorDecl) | |||
5469 | return; | |||
5470 | ||||
5471 | AdjustDeclIfTemplate(ConstructorDecl); | |||
5472 | ||||
5473 | CXXConstructorDecl *Constructor | |||
5474 | = dyn_cast<CXXConstructorDecl>(ConstructorDecl); | |||
5475 | ||||
5476 | if (!Constructor) { | |||
5477 | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); | |||
5478 | return; | |||
5479 | } | |||
5480 | ||||
5481 | // Mapping for the duplicate initializers check. | |||
5482 | // For member initializers, this is keyed with a FieldDecl*. | |||
5483 | // For base initializers, this is keyed with a Type*. | |||
5484 | llvm::DenseMap<const void *, CXXCtorInitializer *> Members; | |||
5485 | ||||
5486 | // Mapping for the inconsistent anonymous-union initializers check. | |||
5487 | RedundantUnionMap MemberUnions; | |||
5488 | ||||
5489 | bool HadError = false; | |||
5490 | for (unsigned i = 0; i < MemInits.size(); i++) { | |||
5491 | CXXCtorInitializer *Init = MemInits[i]; | |||
5492 | ||||
5493 | // Set the source order index. | |||
5494 | Init->setSourceOrder(i); | |||
5495 | ||||
5496 | if (Init->isAnyMemberInitializer()) { | |||
5497 | const void *Key = GetKeyForMember(Context, Init); | |||
5498 | if (CheckRedundantInit(*this, Init, Members[Key]) || | |||
5499 | CheckRedundantUnionInit(*this, Init, MemberUnions)) | |||
5500 | HadError = true; | |||
5501 | } else if (Init->isBaseInitializer()) { | |||
5502 | const void *Key = GetKeyForMember(Context, Init); | |||
5503 | if (CheckRedundantInit(*this, Init, Members[Key])) | |||
5504 | HadError = true; | |||
5505 | } else { | |||
5506 | assert(Init->isDelegatingInitializer())((void)0); | |||
5507 | // This must be the only initializer | |||
5508 | if (MemInits.size() != 1) { | |||
5509 | Diag(Init->getSourceLocation(), | |||
5510 | diag::err_delegating_initializer_alone) | |||
5511 | << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); | |||
5512 | // We will treat this as being the only initializer. | |||
5513 | } | |||
5514 | SetDelegatingInitializer(Constructor, MemInits[i]); | |||
5515 | // Return immediately as the initializer is set. | |||
5516 | return; | |||
5517 | } | |||
5518 | } | |||
5519 | ||||
5520 | if (HadError) | |||
5521 | return; | |||
5522 | ||||
5523 | DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); | |||
5524 | ||||
5525 | SetCtorInitializers(Constructor, AnyErrors, MemInits); | |||
5526 | ||||
5527 | DiagnoseUninitializedFields(*this, Constructor); | |||
5528 | } | |||
5529 | ||||
5530 | void | |||
5531 | Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, | |||
5532 | CXXRecordDecl *ClassDecl) { | |||
5533 | // Ignore dependent contexts. Also ignore unions, since their members never | |||
5534 | // have destructors implicitly called. | |||
5535 | if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) | |||
5536 | return; | |||
5537 | ||||
5538 | // FIXME: all the access-control diagnostics are positioned on the | |||
5539 | // field/base declaration. That's probably good; that said, the | |||
5540 | // user might reasonably want to know why the destructor is being | |||
5541 | // emitted, and we currently don't say. | |||
5542 | ||||
5543 | // Non-static data members. | |||
5544 | for (auto *Field : ClassDecl->fields()) { | |||
5545 | if (Field->isInvalidDecl()) | |||
5546 | continue; | |||
5547 | ||||
5548 | // Don't destroy incomplete or zero-length arrays. | |||
5549 | if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) | |||
5550 | continue; | |||
5551 | ||||
5552 | QualType FieldType = Context.getBaseElementType(Field->getType()); | |||
5553 | ||||
5554 | const RecordType* RT = FieldType->getAs<RecordType>(); | |||
5555 | if (!RT) | |||
5556 | continue; | |||
5557 | ||||
5558 | CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | |||
5559 | if (FieldClassDecl->isInvalidDecl()) | |||
5560 | continue; | |||
5561 | if (FieldClassDecl->hasIrrelevantDestructor()) | |||
5562 | continue; | |||
5563 | // The destructor for an implicit anonymous union member is never invoked. | |||
5564 | if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) | |||
5565 | continue; | |||
5566 | ||||
5567 | CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); | |||
5568 | assert(Dtor && "No dtor found for FieldClassDecl!")((void)0); | |||
5569 | CheckDestructorAccess(Field->getLocation(), Dtor, | |||
5570 | PDiag(diag::err_access_dtor_field) | |||
5571 | << Field->getDeclName() | |||
5572 | << FieldType); | |||
5573 | ||||
5574 | MarkFunctionReferenced(Location, Dtor); | |||
5575 | DiagnoseUseOfDecl(Dtor, Location); | |||
5576 | } | |||
5577 | ||||
5578 | // We only potentially invoke the destructors of potentially constructed | |||
5579 | // subobjects. | |||
5580 | bool VisitVirtualBases = !ClassDecl->isAbstract(); | |||
5581 | ||||
5582 | // If the destructor exists and has already been marked used in the MS ABI, | |||
5583 | // then virtual base destructors have already been checked and marked used. | |||
5584 | // Skip checking them again to avoid duplicate diagnostics. | |||
5585 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
5586 | CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); | |||
5587 | if (Dtor && Dtor->isUsed()) | |||
5588 | VisitVirtualBases = false; | |||
5589 | } | |||
5590 | ||||
5591 | llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; | |||
5592 | ||||
5593 | // Bases. | |||
5594 | for (const auto &Base : ClassDecl->bases()) { | |||
5595 | const RecordType *RT = Base.getType()->getAs<RecordType>(); | |||
5596 | if (!RT) | |||
5597 | continue; | |||
5598 | ||||
5599 | // Remember direct virtual bases. | |||
5600 | if (Base.isVirtual()) { | |||
5601 | if (!VisitVirtualBases) | |||
5602 | continue; | |||
5603 | DirectVirtualBases.insert(RT); | |||
5604 | } | |||
5605 | ||||
5606 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | |||
5607 | // If our base class is invalid, we probably can't get its dtor anyway. | |||
5608 | if (BaseClassDecl->isInvalidDecl()) | |||
5609 | continue; | |||
5610 | if (BaseClassDecl->hasIrrelevantDestructor()) | |||
5611 | continue; | |||
5612 | ||||
5613 | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | |||
5614 | assert(Dtor && "No dtor found for BaseClassDecl!")((void)0); | |||
5615 | ||||
5616 | // FIXME: caret should be on the start of the class name | |||
5617 | CheckDestructorAccess(Base.getBeginLoc(), Dtor, | |||
5618 | PDiag(diag::err_access_dtor_base) | |||
5619 | << Base.getType() << Base.getSourceRange(), | |||
5620 | Context.getTypeDeclType(ClassDecl)); | |||
5621 | ||||
5622 | MarkFunctionReferenced(Location, Dtor); | |||
5623 | DiagnoseUseOfDecl(Dtor, Location); | |||
5624 | } | |||
5625 | ||||
5626 | if (VisitVirtualBases) | |||
5627 | MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, | |||
5628 | &DirectVirtualBases); | |||
5629 | } | |||
5630 | ||||
5631 | void Sema::MarkVirtualBaseDestructorsReferenced( | |||
5632 | SourceLocation Location, CXXRecordDecl *ClassDecl, | |||
5633 | llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { | |||
5634 | // Virtual bases. | |||
5635 | for (const auto &VBase : ClassDecl->vbases()) { | |||
5636 | // Bases are always records in a well-formed non-dependent class. | |||
5637 | const RecordType *RT = VBase.getType()->castAs<RecordType>(); | |||
5638 | ||||
5639 | // Ignore already visited direct virtual bases. | |||
5640 | if (DirectVirtualBases && DirectVirtualBases->count(RT)) | |||
5641 | continue; | |||
5642 | ||||
5643 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | |||
5644 | // If our base class is invalid, we probably can't get its dtor anyway. | |||
5645 | if (BaseClassDecl->isInvalidDecl()) | |||
5646 | continue; | |||
5647 | if (BaseClassDecl->hasIrrelevantDestructor()) | |||
5648 | continue; | |||
5649 | ||||
5650 | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | |||
5651 | assert(Dtor && "No dtor found for BaseClassDecl!")((void)0); | |||
5652 | if (CheckDestructorAccess( | |||
5653 | ClassDecl->getLocation(), Dtor, | |||
5654 | PDiag(diag::err_access_dtor_vbase) | |||
5655 | << Context.getTypeDeclType(ClassDecl) << VBase.getType(), | |||
5656 | Context.getTypeDeclType(ClassDecl)) == | |||
5657 | AR_accessible) { | |||
5658 | CheckDerivedToBaseConversion( | |||
5659 | Context.getTypeDeclType(ClassDecl), VBase.getType(), | |||
5660 | diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), | |||
5661 | SourceRange(), DeclarationName(), nullptr); | |||
5662 | } | |||
5663 | ||||
5664 | MarkFunctionReferenced(Location, Dtor); | |||
5665 | DiagnoseUseOfDecl(Dtor, Location); | |||
5666 | } | |||
5667 | } | |||
5668 | ||||
5669 | void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { | |||
5670 | if (!CDtorDecl) | |||
5671 | return; | |||
5672 | ||||
5673 | if (CXXConstructorDecl *Constructor | |||
5674 | = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { | |||
5675 | SetCtorInitializers(Constructor, /*AnyErrors=*/false); | |||
5676 | DiagnoseUninitializedFields(*this, Constructor); | |||
5677 | } | |||
5678 | } | |||
5679 | ||||
5680 | bool Sema::isAbstractType(SourceLocation Loc, QualType T) { | |||
5681 | if (!getLangOpts().CPlusPlus) | |||
5682 | return false; | |||
5683 | ||||
5684 | const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); | |||
5685 | if (!RD) | |||
5686 | return false; | |||
5687 | ||||
5688 | // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a | |||
5689 | // class template specialization here, but doing so breaks a lot of code. | |||
5690 | ||||
5691 | // We can't answer whether something is abstract until it has a | |||
5692 | // definition. If it's currently being defined, we'll walk back | |||
5693 | // over all the declarations when we have a full definition. | |||
5694 | const CXXRecordDecl *Def = RD->getDefinition(); | |||
5695 | if (!Def || Def->isBeingDefined()) | |||
5696 | return false; | |||
5697 | ||||
5698 | return RD->isAbstract(); | |||
5699 | } | |||
5700 | ||||
5701 | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | |||
5702 | TypeDiagnoser &Diagnoser) { | |||
5703 | if (!isAbstractType(Loc, T)) | |||
5704 | return false; | |||
5705 | ||||
5706 | T = Context.getBaseElementType(T); | |||
5707 | Diagnoser.diagnose(*this, Loc, T); | |||
5708 | DiagnoseAbstractType(T->getAsCXXRecordDecl()); | |||
5709 | return true; | |||
5710 | } | |||
5711 | ||||
5712 | void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { | |||
5713 | // Check if we've already emitted the list of pure virtual functions | |||
5714 | // for this class. | |||
5715 | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) | |||
5716 | return; | |||
5717 | ||||
5718 | // If the diagnostic is suppressed, don't emit the notes. We're only | |||
5719 | // going to emit them once, so try to attach them to a diagnostic we're | |||
5720 | // actually going to show. | |||
5721 | if (Diags.isLastDiagnosticIgnored()) | |||
5722 | return; | |||
5723 | ||||
5724 | CXXFinalOverriderMap FinalOverriders; | |||
5725 | RD->getFinalOverriders(FinalOverriders); | |||
5726 | ||||
5727 | // Keep a set of seen pure methods so we won't diagnose the same method | |||
5728 | // more than once. | |||
5729 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; | |||
5730 | ||||
5731 | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | |||
5732 | MEnd = FinalOverriders.end(); | |||
5733 | M != MEnd; | |||
5734 | ++M) { | |||
5735 | for (OverridingMethods::iterator SO = M->second.begin(), | |||
5736 | SOEnd = M->second.end(); | |||
5737 | SO != SOEnd; ++SO) { | |||
5738 | // C++ [class.abstract]p4: | |||
5739 | // A class is abstract if it contains or inherits at least one | |||
5740 | // pure virtual function for which the final overrider is pure | |||
5741 | // virtual. | |||
5742 | ||||
5743 | // | |||
5744 | if (SO->second.size() != 1) | |||
5745 | continue; | |||
5746 | ||||
5747 | if (!SO->second.front().Method->isPure()) | |||
5748 | continue; | |||
5749 | ||||
5750 | if (!SeenPureMethods.insert(SO->second.front().Method).second) | |||
5751 | continue; | |||
5752 | ||||
5753 | Diag(SO->second.front().Method->getLocation(), | |||
5754 | diag::note_pure_virtual_function) | |||
5755 | << SO->second.front().Method->getDeclName() << RD->getDeclName(); | |||
5756 | } | |||
5757 | } | |||
5758 | ||||
5759 | if (!PureVirtualClassDiagSet) | |||
5760 | PureVirtualClassDiagSet.reset(new RecordDeclSetTy); | |||
5761 | PureVirtualClassDiagSet->insert(RD); | |||
5762 | } | |||
5763 | ||||
5764 | namespace { | |||
5765 | struct AbstractUsageInfo { | |||
5766 | Sema &S; | |||
5767 | CXXRecordDecl *Record; | |||
5768 | CanQualType AbstractType; | |||
5769 | bool Invalid; | |||
5770 | ||||
5771 | AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) | |||
5772 | : S(S), Record(Record), | |||
5773 | AbstractType(S.Context.getCanonicalType( | |||
5774 | S.Context.getTypeDeclType(Record))), | |||
5775 | Invalid(false) {} | |||
5776 | ||||
5777 | void DiagnoseAbstractType() { | |||
5778 | if (Invalid) return; | |||
5779 | S.DiagnoseAbstractType(Record); | |||
5780 | Invalid = true; | |||
5781 | } | |||
5782 | ||||
5783 | void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); | |||
5784 | }; | |||
5785 | ||||
5786 | struct CheckAbstractUsage { | |||
5787 | AbstractUsageInfo &Info; | |||
5788 | const NamedDecl *Ctx; | |||
5789 | ||||
5790 | CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) | |||
5791 | : Info(Info), Ctx(Ctx) {} | |||
5792 | ||||
5793 | void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5794 | switch (TL.getTypeLocClass()) { | |||
5795 | #define ABSTRACT_TYPELOC(CLASS, PARENT) | |||
5796 | #define TYPELOC(CLASS, PARENT) \ | |||
5797 | case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; | |||
5798 | #include "clang/AST/TypeLocNodes.def" | |||
5799 | } | |||
5800 | } | |||
5801 | ||||
5802 | void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5803 | Visit(TL.getReturnLoc(), Sema::AbstractReturnType); | |||
5804 | for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { | |||
5805 | if (!TL.getParam(I)) | |||
5806 | continue; | |||
5807 | ||||
5808 | TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); | |||
5809 | if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); | |||
5810 | } | |||
5811 | } | |||
5812 | ||||
5813 | void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5814 | Visit(TL.getElementLoc(), Sema::AbstractArrayType); | |||
5815 | } | |||
5816 | ||||
5817 | void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5818 | // Visit the type parameters from a permissive context. | |||
5819 | for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { | |||
5820 | TemplateArgumentLoc TAL = TL.getArgLoc(I); | |||
5821 | if (TAL.getArgument().getKind() == TemplateArgument::Type) | |||
5822 | if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) | |||
5823 | Visit(TSI->getTypeLoc(), Sema::AbstractNone); | |||
5824 | // TODO: other template argument types? | |||
5825 | } | |||
5826 | } | |||
5827 | ||||
5828 | // Visit pointee types from a permissive context. | |||
5829 | #define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc (), Sema::AbstractNone); } \ | |||
5830 | void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ | |||
5831 | Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ | |||
5832 | } | |||
5833 | CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit (TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5834 | CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5835 | CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel ) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5836 | CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel ) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5837 | CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit (TL.getNextTypeLoc(), Sema::AbstractNone); } | |||
5838 | ||||
5839 | /// Handle all the types we haven't given a more specific | |||
5840 | /// implementation for above. | |||
5841 | void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | |||
5842 | // Every other kind of type that we haven't called out already | |||
5843 | // that has an inner type is either (1) sugar or (2) contains that | |||
5844 | // inner type in some way as a subobject. | |||
5845 | if (TypeLoc Next = TL.getNextTypeLoc()) | |||
5846 | return Visit(Next, Sel); | |||
5847 | ||||
5848 | // If there's no inner type and we're in a permissive context, | |||
5849 | // don't diagnose. | |||
5850 | if (Sel == Sema::AbstractNone) return; | |||
5851 | ||||
5852 | // Check whether the type matches the abstract type. | |||
5853 | QualType T = TL.getType(); | |||
5854 | if (T->isArrayType()) { | |||
5855 | Sel = Sema::AbstractArrayType; | |||
5856 | T = Info.S.Context.getBaseElementType(T); | |||
5857 | } | |||
5858 | CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); | |||
5859 | if (CT != Info.AbstractType) return; | |||
5860 | ||||
5861 | // It matched; do some magic. | |||
5862 | if (Sel == Sema::AbstractArrayType) { | |||
5863 | Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) | |||
5864 | << T << TL.getSourceRange(); | |||
5865 | } else { | |||
5866 | Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) | |||
5867 | << Sel << T << TL.getSourceRange(); | |||
5868 | } | |||
5869 | Info.DiagnoseAbstractType(); | |||
5870 | } | |||
5871 | }; | |||
5872 | ||||
5873 | void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, | |||
5874 | Sema::AbstractDiagSelID Sel) { | |||
5875 | CheckAbstractUsage(*this, D).Visit(TL, Sel); | |||
5876 | } | |||
5877 | ||||
5878 | } | |||
5879 | ||||
5880 | /// Check for invalid uses of an abstract type in a method declaration. | |||
5881 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | |||
5882 | CXXMethodDecl *MD) { | |||
5883 | // No need to do the check on definitions, which require that | |||
5884 | // the return/param types be complete. | |||
5885 | if (MD->doesThisDeclarationHaveABody()) | |||
5886 | return; | |||
5887 | ||||
5888 | // For safety's sake, just ignore it if we don't have type source | |||
5889 | // information. This should never happen for non-implicit methods, | |||
5890 | // but... | |||
5891 | if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) | |||
5892 | Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); | |||
5893 | } | |||
5894 | ||||
5895 | /// Check for invalid uses of an abstract type within a class definition. | |||
5896 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | |||
5897 | CXXRecordDecl *RD) { | |||
5898 | for (auto *D : RD->decls()) { | |||
5899 | if (D->isImplicit()) continue; | |||
5900 | ||||
5901 | // Methods and method templates. | |||
5902 | if (isa<CXXMethodDecl>(D)) { | |||
5903 | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); | |||
5904 | } else if (isa<FunctionTemplateDecl>(D)) { | |||
5905 | FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); | |||
5906 | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); | |||
5907 | ||||
5908 | // Fields and static variables. | |||
5909 | } else if (isa<FieldDecl>(D)) { | |||
5910 | FieldDecl *FD = cast<FieldDecl>(D); | |||
5911 | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) | |||
5912 | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); | |||
5913 | } else if (isa<VarDecl>(D)) { | |||
5914 | VarDecl *VD = cast<VarDecl>(D); | |||
5915 | if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) | |||
5916 | Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); | |||
5917 | ||||
5918 | // Nested classes and class templates. | |||
5919 | } else if (isa<CXXRecordDecl>(D)) { | |||
5920 | CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); | |||
5921 | } else if (isa<ClassTemplateDecl>(D)) { | |||
5922 | CheckAbstractClassUsage(Info, | |||
5923 | cast<ClassTemplateDecl>(D)->getTemplatedDecl()); | |||
5924 | } | |||
5925 | } | |||
5926 | } | |||
5927 | ||||
5928 | static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { | |||
5929 | Attr *ClassAttr = getDLLAttr(Class); | |||
5930 | if (!ClassAttr) | |||
5931 | return; | |||
5932 | ||||
5933 | assert(ClassAttr->getKind() == attr::DLLExport)((void)0); | |||
5934 | ||||
5935 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); | |||
5936 | ||||
5937 | if (TSK == TSK_ExplicitInstantiationDeclaration) | |||
5938 | // Don't go any further if this is just an explicit instantiation | |||
5939 | // declaration. | |||
5940 | return; | |||
5941 | ||||
5942 | // Add a context note to explain how we got to any diagnostics produced below. | |||
5943 | struct MarkingClassDllexported { | |||
5944 | Sema &S; | |||
5945 | MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, | |||
5946 | SourceLocation AttrLoc) | |||
5947 | : S(S) { | |||
5948 | Sema::CodeSynthesisContext Ctx; | |||
5949 | Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; | |||
5950 | Ctx.PointOfInstantiation = AttrLoc; | |||
5951 | Ctx.Entity = Class; | |||
5952 | S.pushCodeSynthesisContext(Ctx); | |||
5953 | } | |||
5954 | ~MarkingClassDllexported() { | |||
5955 | S.popCodeSynthesisContext(); | |||
5956 | } | |||
5957 | } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); | |||
5958 | ||||
5959 | if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) | |||
5960 | S.MarkVTableUsed(Class->getLocation(), Class, true); | |||
5961 | ||||
5962 | for (Decl *Member : Class->decls()) { | |||
5963 | // Defined static variables that are members of an exported base | |||
5964 | // class must be marked export too. | |||
5965 | auto *VD = dyn_cast<VarDecl>(Member); | |||
5966 | if (VD && Member->getAttr<DLLExportAttr>() && | |||
5967 | VD->getStorageClass() == SC_Static && | |||
5968 | TSK == TSK_ImplicitInstantiation) | |||
5969 | S.MarkVariableReferenced(VD->getLocation(), VD); | |||
5970 | ||||
5971 | auto *MD = dyn_cast<CXXMethodDecl>(Member); | |||
5972 | if (!MD) | |||
5973 | continue; | |||
5974 | ||||
5975 | if (Member->getAttr<DLLExportAttr>()) { | |||
5976 | if (MD->isUserProvided()) { | |||
5977 | // Instantiate non-default class member functions ... | |||
5978 | ||||
5979 | // .. except for certain kinds of template specializations. | |||
5980 | if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) | |||
5981 | continue; | |||
5982 | ||||
5983 | S.MarkFunctionReferenced(Class->getLocation(), MD); | |||
5984 | ||||
5985 | // The function will be passed to the consumer when its definition is | |||
5986 | // encountered. | |||
5987 | } else if (MD->isExplicitlyDefaulted()) { | |||
5988 | // Synthesize and instantiate explicitly defaulted methods. | |||
5989 | S.MarkFunctionReferenced(Class->getLocation(), MD); | |||
5990 | ||||
5991 | if (TSK != TSK_ExplicitInstantiationDefinition) { | |||
5992 | // Except for explicit instantiation defs, we will not see the | |||
5993 | // definition again later, so pass it to the consumer now. | |||
5994 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); | |||
5995 | } | |||
5996 | } else if (!MD->isTrivial() || | |||
5997 | MD->isCopyAssignmentOperator() || | |||
5998 | MD->isMoveAssignmentOperator()) { | |||
5999 | // Synthesize and instantiate non-trivial implicit methods, and the copy | |||
6000 | // and move assignment operators. The latter are exported even if they | |||
6001 | // are trivial, because the address of an operator can be taken and | |||
6002 | // should compare equal across libraries. | |||
6003 | S.MarkFunctionReferenced(Class->getLocation(), MD); | |||
6004 | ||||
6005 | // There is no later point when we will see the definition of this | |||
6006 | // function, so pass it to the consumer now. | |||
6007 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); | |||
6008 | } | |||
6009 | } | |||
6010 | } | |||
6011 | } | |||
6012 | ||||
6013 | static void checkForMultipleExportedDefaultConstructors(Sema &S, | |||
6014 | CXXRecordDecl *Class) { | |||
6015 | // Only the MS ABI has default constructor closures, so we don't need to do | |||
6016 | // this semantic checking anywhere else. | |||
6017 | if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) | |||
6018 | return; | |||
6019 | ||||
6020 | CXXConstructorDecl *LastExportedDefaultCtor = nullptr; | |||
6021 | for (Decl *Member : Class->decls()) { | |||
6022 | // Look for exported default constructors. | |||
6023 | auto *CD = dyn_cast<CXXConstructorDecl>(Member); | |||
6024 | if (!CD || !CD->isDefaultConstructor()) | |||
6025 | continue; | |||
6026 | auto *Attr = CD->getAttr<DLLExportAttr>(); | |||
6027 | if (!Attr) | |||
6028 | continue; | |||
6029 | ||||
6030 | // If the class is non-dependent, mark the default arguments as ODR-used so | |||
6031 | // that we can properly codegen the constructor closure. | |||
6032 | if (!Class->isDependentContext()) { | |||
6033 | for (ParmVarDecl *PD : CD->parameters()) { | |||
6034 | (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); | |||
6035 | S.DiscardCleanupsInEvaluationContext(); | |||
6036 | } | |||
6037 | } | |||
6038 | ||||
6039 | if (LastExportedDefaultCtor) { | |||
6040 | S.Diag(LastExportedDefaultCtor->getLocation(), | |||
6041 | diag::err_attribute_dll_ambiguous_default_ctor) | |||
6042 | << Class; | |||
6043 | S.Diag(CD->getLocation(), diag::note_entity_declared_at) | |||
6044 | << CD->getDeclName(); | |||
6045 | return; | |||
6046 | } | |||
6047 | LastExportedDefaultCtor = CD; | |||
6048 | } | |||
6049 | } | |||
6050 | ||||
6051 | static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, | |||
6052 | CXXRecordDecl *Class) { | |||
6053 | bool ErrorReported = false; | |||
6054 | auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, | |||
6055 | ClassTemplateDecl *TD) { | |||
6056 | if (ErrorReported) | |||
6057 | return; | |||
6058 | S.Diag(TD->getLocation(), | |||
6059 | diag::err_cuda_device_builtin_surftex_cls_template) | |||
6060 | << /*surface*/ 0 << TD; | |||
6061 | ErrorReported = true; | |||
6062 | }; | |||
6063 | ||||
6064 | ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); | |||
6065 | if (!TD) { | |||
6066 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); | |||
6067 | if (!SD) { | |||
6068 | S.Diag(Class->getLocation(), | |||
6069 | diag::err_cuda_device_builtin_surftex_ref_decl) | |||
6070 | << /*surface*/ 0 << Class; | |||
6071 | S.Diag(Class->getLocation(), | |||
6072 | diag::note_cuda_device_builtin_surftex_should_be_template_class) | |||
6073 | << Class; | |||
6074 | return; | |||
6075 | } | |||
6076 | TD = SD->getSpecializedTemplate(); | |||
6077 | } | |||
6078 | ||||
6079 | TemplateParameterList *Params = TD->getTemplateParameters(); | |||
6080 | unsigned N = Params->size(); | |||
6081 | ||||
6082 | if (N != 2) { | |||
6083 | reportIllegalClassTemplate(S, TD); | |||
6084 | S.Diag(TD->getLocation(), | |||
6085 | diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) | |||
6086 | << TD << 2; | |||
6087 | } | |||
6088 | if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { | |||
6089 | reportIllegalClassTemplate(S, TD); | |||
6090 | S.Diag(TD->getLocation(), | |||
6091 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6092 | << TD << /*1st*/ 0 << /*type*/ 0; | |||
6093 | } | |||
6094 | if (N > 1) { | |||
6095 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); | |||
6096 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { | |||
6097 | reportIllegalClassTemplate(S, TD); | |||
6098 | S.Diag(TD->getLocation(), | |||
6099 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6100 | << TD << /*2nd*/ 1 << /*integer*/ 1; | |||
6101 | } | |||
6102 | } | |||
6103 | } | |||
6104 | ||||
6105 | static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, | |||
6106 | CXXRecordDecl *Class) { | |||
6107 | bool ErrorReported = false; | |||
6108 | auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, | |||
6109 | ClassTemplateDecl *TD) { | |||
6110 | if (ErrorReported) | |||
6111 | return; | |||
6112 | S.Diag(TD->getLocation(), | |||
6113 | diag::err_cuda_device_builtin_surftex_cls_template) | |||
6114 | << /*texture*/ 1 << TD; | |||
6115 | ErrorReported = true; | |||
6116 | }; | |||
6117 | ||||
6118 | ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); | |||
6119 | if (!TD) { | |||
6120 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); | |||
6121 | if (!SD) { | |||
6122 | S.Diag(Class->getLocation(), | |||
6123 | diag::err_cuda_device_builtin_surftex_ref_decl) | |||
6124 | << /*texture*/ 1 << Class; | |||
6125 | S.Diag(Class->getLocation(), | |||
6126 | diag::note_cuda_device_builtin_surftex_should_be_template_class) | |||
6127 | << Class; | |||
6128 | return; | |||
6129 | } | |||
6130 | TD = SD->getSpecializedTemplate(); | |||
6131 | } | |||
6132 | ||||
6133 | TemplateParameterList *Params = TD->getTemplateParameters(); | |||
6134 | unsigned N = Params->size(); | |||
6135 | ||||
6136 | if (N != 3) { | |||
6137 | reportIllegalClassTemplate(S, TD); | |||
6138 | S.Diag(TD->getLocation(), | |||
6139 | diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) | |||
6140 | << TD << 3; | |||
6141 | } | |||
6142 | if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { | |||
6143 | reportIllegalClassTemplate(S, TD); | |||
6144 | S.Diag(TD->getLocation(), | |||
6145 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6146 | << TD << /*1st*/ 0 << /*type*/ 0; | |||
6147 | } | |||
6148 | if (N > 1) { | |||
6149 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); | |||
6150 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { | |||
6151 | reportIllegalClassTemplate(S, TD); | |||
6152 | S.Diag(TD->getLocation(), | |||
6153 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6154 | << TD << /*2nd*/ 1 << /*integer*/ 1; | |||
6155 | } | |||
6156 | } | |||
6157 | if (N > 2) { | |||
6158 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); | |||
6159 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { | |||
6160 | reportIllegalClassTemplate(S, TD); | |||
6161 | S.Diag(TD->getLocation(), | |||
6162 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) | |||
6163 | << TD << /*3rd*/ 2 << /*integer*/ 1; | |||
6164 | } | |||
6165 | } | |||
6166 | } | |||
6167 | ||||
6168 | void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { | |||
6169 | // Mark any compiler-generated routines with the implicit code_seg attribute. | |||
6170 | for (auto *Method : Class->methods()) { | |||
6171 | if (Method->isUserProvided()) | |||
6172 | continue; | |||
6173 | if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) | |||
6174 | Method->addAttr(A); | |||
6175 | } | |||
6176 | } | |||
6177 | ||||
6178 | /// Check class-level dllimport/dllexport attribute. | |||
6179 | void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { | |||
6180 | Attr *ClassAttr = getDLLAttr(Class); | |||
6181 | ||||
6182 | // MSVC inherits DLL attributes to partial class template specializations. | |||
6183 | if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { | |||
6184 | if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { | |||
6185 | if (Attr *TemplateAttr = | |||
6186 | getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { | |||
6187 | auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); | |||
6188 | A->setInherited(true); | |||
6189 | ClassAttr = A; | |||
6190 | } | |||
6191 | } | |||
6192 | } | |||
6193 | ||||
6194 | if (!ClassAttr) | |||
6195 | return; | |||
6196 | ||||
6197 | if (!Class->isExternallyVisible()) { | |||
6198 | Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) | |||
6199 | << Class << ClassAttr; | |||
6200 | return; | |||
6201 | } | |||
6202 | ||||
6203 | if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && | |||
6204 | !ClassAttr->isInherited()) { | |||
6205 | // Diagnose dll attributes on members of class with dll attribute. | |||
6206 | for (Decl *Member : Class->decls()) { | |||
6207 | if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) | |||
6208 | continue; | |||
6209 | InheritableAttr *MemberAttr = getDLLAttr(Member); | |||
6210 | if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) | |||
6211 | continue; | |||
6212 | ||||
6213 | Diag(MemberAttr->getLocation(), | |||
6214 | diag::err_attribute_dll_member_of_dll_class) | |||
6215 | << MemberAttr << ClassAttr; | |||
6216 | Diag(ClassAttr->getLocation(), diag::note_previous_attribute); | |||
6217 | Member->setInvalidDecl(); | |||
6218 | } | |||
6219 | } | |||
6220 | ||||
6221 | if (Class->getDescribedClassTemplate()) | |||
6222 | // Don't inherit dll attribute until the template is instantiated. | |||
6223 | return; | |||
6224 | ||||
6225 | // The class is either imported or exported. | |||
6226 | const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; | |||
6227 | ||||
6228 | // Check if this was a dllimport attribute propagated from a derived class to | |||
6229 | // a base class template specialization. We don't apply these attributes to | |||
6230 | // static data members. | |||
6231 | const bool PropagatedImport = | |||
6232 | !ClassExported && | |||
6233 | cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); | |||
6234 | ||||
6235 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); | |||
6236 | ||||
6237 | // Ignore explicit dllexport on explicit class template instantiation | |||
6238 | // declarations, except in MinGW mode. | |||
6239 | if (ClassExported && !ClassAttr->isInherited() && | |||
6240 | TSK == TSK_ExplicitInstantiationDeclaration && | |||
6241 | !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { | |||
6242 | Class->dropAttr<DLLExportAttr>(); | |||
6243 | return; | |||
6244 | } | |||
6245 | ||||
6246 | // Force declaration of implicit members so they can inherit the attribute. | |||
6247 | ForceDeclarationOfImplicitMembers(Class); | |||
6248 | ||||
6249 | // FIXME: MSVC's docs say all bases must be exportable, but this doesn't | |||
6250 | // seem to be true in practice? | |||
6251 | ||||
6252 | for (Decl *Member : Class->decls()) { | |||
6253 | VarDecl *VD = dyn_cast<VarDecl>(Member); | |||
6254 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); | |||
6255 | ||||
6256 | // Only methods and static fields inherit the attributes. | |||
6257 | if (!VD && !MD) | |||
6258 | continue; | |||
6259 | ||||
6260 | if (MD) { | |||
6261 | // Don't process deleted methods. | |||
6262 | if (MD->isDeleted()) | |||
6263 | continue; | |||
6264 | ||||
6265 | if (MD->isInlined()) { | |||
6266 | // MinGW does not import or export inline methods. But do it for | |||
6267 | // template instantiations. | |||
6268 | if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && | |||
6269 | TSK != TSK_ExplicitInstantiationDeclaration && | |||
6270 | TSK != TSK_ExplicitInstantiationDefinition) | |||
6271 | continue; | |||
6272 | ||||
6273 | // MSVC versions before 2015 don't export the move assignment operators | |||
6274 | // and move constructor, so don't attempt to import/export them if | |||
6275 | // we have a definition. | |||
6276 | auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); | |||
6277 | if ((MD->isMoveAssignmentOperator() || | |||
6278 | (Ctor && Ctor->isMoveConstructor())) && | |||
6279 | !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) | |||
6280 | continue; | |||
6281 | ||||
6282 | // MSVC2015 doesn't export trivial defaulted x-tor but copy assign | |||
6283 | // operator is exported anyway. | |||
6284 | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && | |||
6285 | (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) | |||
6286 | continue; | |||
6287 | } | |||
6288 | } | |||
6289 | ||||
6290 | // Don't apply dllimport attributes to static data members of class template | |||
6291 | // instantiations when the attribute is propagated from a derived class. | |||
6292 | if (VD && PropagatedImport) | |||
6293 | continue; | |||
6294 | ||||
6295 | if (!cast<NamedDecl>(Member)->isExternallyVisible()) | |||
6296 | continue; | |||
6297 | ||||
6298 | if (!getDLLAttr(Member)) { | |||
6299 | InheritableAttr *NewAttr = nullptr; | |||
6300 | ||||
6301 | // Do not export/import inline function when -fno-dllexport-inlines is | |||
6302 | // passed. But add attribute for later local static var check. | |||
6303 | if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && | |||
6304 | TSK != TSK_ExplicitInstantiationDeclaration && | |||
6305 | TSK != TSK_ExplicitInstantiationDefinition) { | |||
6306 | if (ClassExported) { | |||
6307 | NewAttr = ::new (getASTContext()) | |||
6308 | DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); | |||
6309 | } else { | |||
6310 | NewAttr = ::new (getASTContext()) | |||
6311 | DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); | |||
6312 | } | |||
6313 | } else { | |||
6314 | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); | |||
6315 | } | |||
6316 | ||||
6317 | NewAttr->setInherited(true); | |||
6318 | Member->addAttr(NewAttr); | |||
6319 | ||||
6320 | if (MD) { | |||
6321 | // Propagate DLLAttr to friend re-declarations of MD that have already | |||
6322 | // been constructed. | |||
6323 | for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; | |||
6324 | FD = FD->getPreviousDecl()) { | |||
6325 | if (FD->getFriendObjectKind() == Decl::FOK_None) | |||
6326 | continue; | |||
6327 | assert(!getDLLAttr(FD) &&((void)0) | |||
6328 | "friend re-decl should not already have a DLLAttr")((void)0); | |||
6329 | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); | |||
6330 | NewAttr->setInherited(true); | |||
6331 | FD->addAttr(NewAttr); | |||
6332 | } | |||
6333 | } | |||
6334 | } | |||
6335 | } | |||
6336 | ||||
6337 | if (ClassExported) | |||
6338 | DelayedDllExportClasses.push_back(Class); | |||
6339 | } | |||
6340 | ||||
6341 | /// Perform propagation of DLL attributes from a derived class to a | |||
6342 | /// templated base class for MS compatibility. | |||
6343 | void Sema::propagateDLLAttrToBaseClassTemplate( | |||
6344 | CXXRecordDecl *Class, Attr *ClassAttr, | |||
6345 | ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { | |||
6346 | if (getDLLAttr( | |||
6347 | BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { | |||
6348 | // If the base class template has a DLL attribute, don't try to change it. | |||
6349 | return; | |||
6350 | } | |||
6351 | ||||
6352 | auto TSK = BaseTemplateSpec->getSpecializationKind(); | |||
6353 | if (!getDLLAttr(BaseTemplateSpec) && | |||
6354 | (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || | |||
6355 | TSK == TSK_ImplicitInstantiation)) { | |||
6356 | // The template hasn't been instantiated yet (or it has, but only as an | |||
6357 | // explicit instantiation declaration or implicit instantiation, which means | |||
6358 | // we haven't codegenned any members yet), so propagate the attribute. | |||
6359 | auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); | |||
6360 | NewAttr->setInherited(true); | |||
6361 | BaseTemplateSpec->addAttr(NewAttr); | |||
6362 | ||||
6363 | // If this was an import, mark that we propagated it from a derived class to | |||
6364 | // a base class template specialization. | |||
6365 | if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) | |||
6366 | ImportAttr->setPropagatedToBaseTemplate(); | |||
6367 | ||||
6368 | // If the template is already instantiated, checkDLLAttributeRedeclaration() | |||
6369 | // needs to be run again to work see the new attribute. Otherwise this will | |||
6370 | // get run whenever the template is instantiated. | |||
6371 | if (TSK != TSK_Undeclared) | |||
6372 | checkClassLevelDLLAttribute(BaseTemplateSpec); | |||
6373 | ||||
6374 | return; | |||
6375 | } | |||
6376 | ||||
6377 | if (getDLLAttr(BaseTemplateSpec)) { | |||
6378 | // The template has already been specialized or instantiated with an | |||
6379 | // attribute, explicitly or through propagation. We should not try to change | |||
6380 | // it. | |||
6381 | return; | |||
6382 | } | |||
6383 | ||||
6384 | // The template was previously instantiated or explicitly specialized without | |||
6385 | // a dll attribute, It's too late for us to add an attribute, so warn that | |||
6386 | // this is unsupported. | |||
6387 | Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) | |||
6388 | << BaseTemplateSpec->isExplicitSpecialization(); | |||
6389 | Diag(ClassAttr->getLocation(), diag::note_attribute); | |||
6390 | if (BaseTemplateSpec->isExplicitSpecialization()) { | |||
6391 | Diag(BaseTemplateSpec->getLocation(), | |||
6392 | diag::note_template_class_explicit_specialization_was_here) | |||
6393 | << BaseTemplateSpec; | |||
6394 | } else { | |||
6395 | Diag(BaseTemplateSpec->getPointOfInstantiation(), | |||
6396 | diag::note_template_class_instantiation_was_here) | |||
6397 | << BaseTemplateSpec; | |||
6398 | } | |||
6399 | } | |||
6400 | ||||
6401 | /// Determine the kind of defaulting that would be done for a given function. | |||
6402 | /// | |||
6403 | /// If the function is both a default constructor and a copy / move constructor | |||
6404 | /// (due to having a default argument for the first parameter), this picks | |||
6405 | /// CXXDefaultConstructor. | |||
6406 | /// | |||
6407 | /// FIXME: Check that case is properly handled by all callers. | |||
6408 | Sema::DefaultedFunctionKind | |||
6409 | Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { | |||
6410 | if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | |||
6411 | if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { | |||
6412 | if (Ctor->isDefaultConstructor()) | |||
6413 | return Sema::CXXDefaultConstructor; | |||
6414 | ||||
6415 | if (Ctor->isCopyConstructor()) | |||
6416 | return Sema::CXXCopyConstructor; | |||
6417 | ||||
6418 | if (Ctor->isMoveConstructor()) | |||
6419 | return Sema::CXXMoveConstructor; | |||
6420 | } | |||
6421 | ||||
6422 | if (MD->isCopyAssignmentOperator()) | |||
6423 | return Sema::CXXCopyAssignment; | |||
6424 | ||||
6425 | if (MD->isMoveAssignmentOperator()) | |||
6426 | return Sema::CXXMoveAssignment; | |||
6427 | ||||
6428 | if (isa<CXXDestructorDecl>(FD)) | |||
6429 | return Sema::CXXDestructor; | |||
6430 | } | |||
6431 | ||||
6432 | switch (FD->getDeclName().getCXXOverloadedOperator()) { | |||
6433 | case OO_EqualEqual: | |||
6434 | return DefaultedComparisonKind::Equal; | |||
6435 | ||||
6436 | case OO_ExclaimEqual: | |||
6437 | return DefaultedComparisonKind::NotEqual; | |||
6438 | ||||
6439 | case OO_Spaceship: | |||
6440 | // No point allowing this if <=> doesn't exist in the current language mode. | |||
6441 | if (!getLangOpts().CPlusPlus20) | |||
6442 | break; | |||
6443 | return DefaultedComparisonKind::ThreeWay; | |||
6444 | ||||
6445 | case OO_Less: | |||
6446 | case OO_LessEqual: | |||
6447 | case OO_Greater: | |||
6448 | case OO_GreaterEqual: | |||
6449 | // No point allowing this if <=> doesn't exist in the current language mode. | |||
6450 | if (!getLangOpts().CPlusPlus20) | |||
6451 | break; | |||
6452 | return DefaultedComparisonKind::Relational; | |||
6453 | ||||
6454 | default: | |||
6455 | break; | |||
6456 | } | |||
6457 | ||||
6458 | // Not defaultable. | |||
6459 | return DefaultedFunctionKind(); | |||
6460 | } | |||
6461 | ||||
6462 | static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, | |||
6463 | SourceLocation DefaultLoc) { | |||
6464 | Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); | |||
6465 | if (DFK.isComparison()) | |||
6466 | return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); | |||
6467 | ||||
6468 | switch (DFK.asSpecialMember()) { | |||
6469 | case Sema::CXXDefaultConstructor: | |||
6470 | S.DefineImplicitDefaultConstructor(DefaultLoc, | |||
6471 | cast<CXXConstructorDecl>(FD)); | |||
6472 | break; | |||
6473 | case Sema::CXXCopyConstructor: | |||
6474 | S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); | |||
6475 | break; | |||
6476 | case Sema::CXXCopyAssignment: | |||
6477 | S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); | |||
6478 | break; | |||
6479 | case Sema::CXXDestructor: | |||
6480 | S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); | |||
6481 | break; | |||
6482 | case Sema::CXXMoveConstructor: | |||
6483 | S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); | |||
6484 | break; | |||
6485 | case Sema::CXXMoveAssignment: | |||
6486 | S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); | |||
6487 | break; | |||
6488 | case Sema::CXXInvalid: | |||
6489 | llvm_unreachable("Invalid special member.")__builtin_unreachable(); | |||
6490 | } | |||
6491 | } | |||
6492 | ||||
6493 | /// Determine whether a type is permitted to be passed or returned in | |||
6494 | /// registers, per C++ [class.temporary]p3. | |||
6495 | static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, | |||
6496 | TargetInfo::CallingConvKind CCK) { | |||
6497 | if (D->isDependentType() || D->isInvalidDecl()) | |||
6498 | return false; | |||
6499 | ||||
6500 | // Clang <= 4 used the pre-C++11 rule, which ignores move operations. | |||
6501 | // The PS4 platform ABI follows the behavior of Clang 3.2. | |||
6502 | if (CCK == TargetInfo::CCK_ClangABI4OrPS4) | |||
6503 | return !D->hasNonTrivialDestructorForCall() && | |||
6504 | !D->hasNonTrivialCopyConstructorForCall(); | |||
6505 | ||||
6506 | if (CCK == TargetInfo::CCK_MicrosoftWin64) { | |||
6507 | bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; | |||
6508 | bool DtorIsTrivialForCall = false; | |||
6509 | ||||
6510 | // If a class has at least one non-deleted, trivial copy constructor, it | |||
6511 | // is passed according to the C ABI. Otherwise, it is passed indirectly. | |||
6512 | // | |||
6513 | // Note: This permits classes with non-trivial copy or move ctors to be | |||
6514 | // passed in registers, so long as they *also* have a trivial copy ctor, | |||
6515 | // which is non-conforming. | |||
6516 | if (D->needsImplicitCopyConstructor()) { | |||
6517 | if (!D->defaultedCopyConstructorIsDeleted()) { | |||
6518 | if (D->hasTrivialCopyConstructor()) | |||
6519 | CopyCtorIsTrivial = true; | |||
6520 | if (D->hasTrivialCopyConstructorForCall()) | |||
6521 | CopyCtorIsTrivialForCall = true; | |||
6522 | } | |||
6523 | } else { | |||
6524 | for (const CXXConstructorDecl *CD : D->ctors()) { | |||
6525 | if (CD->isCopyConstructor() && !CD->isDeleted()) { | |||
6526 | if (CD->isTrivial()) | |||
6527 | CopyCtorIsTrivial = true; | |||
6528 | if (CD->isTrivialForCall()) | |||
6529 | CopyCtorIsTrivialForCall = true; | |||
6530 | } | |||
6531 | } | |||
6532 | } | |||
6533 | ||||
6534 | if (D->needsImplicitDestructor()) { | |||
6535 | if (!D->defaultedDestructorIsDeleted() && | |||
6536 | D->hasTrivialDestructorForCall()) | |||
6537 | DtorIsTrivialForCall = true; | |||
6538 | } else if (const auto *DD = D->getDestructor()) { | |||
6539 | if (!DD->isDeleted() && DD->isTrivialForCall()) | |||
6540 | DtorIsTrivialForCall = true; | |||
6541 | } | |||
6542 | ||||
6543 | // If the copy ctor and dtor are both trivial-for-calls, pass direct. | |||
6544 | if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) | |||
6545 | return true; | |||
6546 | ||||
6547 | // If a class has a destructor, we'd really like to pass it indirectly | |||
6548 | // because it allows us to elide copies. Unfortunately, MSVC makes that | |||
6549 | // impossible for small types, which it will pass in a single register or | |||
6550 | // stack slot. Most objects with dtors are large-ish, so handle that early. | |||
6551 | // We can't call out all large objects as being indirect because there are | |||
6552 | // multiple x64 calling conventions and the C++ ABI code shouldn't dictate | |||
6553 | // how we pass large POD types. | |||
6554 | ||||
6555 | // Note: This permits small classes with nontrivial destructors to be | |||
6556 | // passed in registers, which is non-conforming. | |||
6557 | bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); | |||
6558 | uint64_t TypeSize = isAArch64 ? 128 : 64; | |||
6559 | ||||
6560 | if (CopyCtorIsTrivial && | |||
6561 | S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) | |||
6562 | return true; | |||
6563 | return false; | |||
6564 | } | |||
6565 | ||||
6566 | // Per C++ [class.temporary]p3, the relevant condition is: | |||
6567 | // each copy constructor, move constructor, and destructor of X is | |||
6568 | // either trivial or deleted, and X has at least one non-deleted copy | |||
6569 | // or move constructor | |||
6570 | bool HasNonDeletedCopyOrMove = false; | |||
6571 | ||||
6572 | if (D->needsImplicitCopyConstructor() && | |||
6573 | !D->defaultedCopyConstructorIsDeleted()) { | |||
6574 | if (!D->hasTrivialCopyConstructorForCall()) | |||
6575 | return false; | |||
6576 | HasNonDeletedCopyOrMove = true; | |||
6577 | } | |||
6578 | ||||
6579 | if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && | |||
6580 | !D->defaultedMoveConstructorIsDeleted()) { | |||
6581 | if (!D->hasTrivialMoveConstructorForCall()) | |||
6582 | return false; | |||
6583 | HasNonDeletedCopyOrMove = true; | |||
6584 | } | |||
6585 | ||||
6586 | if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && | |||
6587 | !D->hasTrivialDestructorForCall()) | |||
6588 | return false; | |||
6589 | ||||
6590 | for (const CXXMethodDecl *MD : D->methods()) { | |||
6591 | if (MD->isDeleted()) | |||
6592 | continue; | |||
6593 | ||||
6594 | auto *CD = dyn_cast<CXXConstructorDecl>(MD); | |||
6595 | if (CD && CD->isCopyOrMoveConstructor()) | |||
6596 | HasNonDeletedCopyOrMove = true; | |||
6597 | else if (!isa<CXXDestructorDecl>(MD)) | |||
6598 | continue; | |||
6599 | ||||
6600 | if (!MD->isTrivialForCall()) | |||
6601 | return false; | |||
6602 | } | |||
6603 | ||||
6604 | return HasNonDeletedCopyOrMove; | |||
6605 | } | |||
6606 | ||||
6607 | /// Report an error regarding overriding, along with any relevant | |||
6608 | /// overridden methods. | |||
6609 | /// | |||
6610 | /// \param DiagID the primary error to report. | |||
6611 | /// \param MD the overriding method. | |||
6612 | static bool | |||
6613 | ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, | |||
6614 | llvm::function_ref<bool(const CXXMethodDecl *)> Report) { | |||
6615 | bool IssuedDiagnostic = false; | |||
6616 | for (const CXXMethodDecl *O : MD->overridden_methods()) { | |||
6617 | if (Report(O)) { | |||
6618 | if (!IssuedDiagnostic) { | |||
6619 | S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); | |||
6620 | IssuedDiagnostic = true; | |||
6621 | } | |||
6622 | S.Diag(O->getLocation(), diag::note_overridden_virtual_function); | |||
6623 | } | |||
6624 | } | |||
6625 | return IssuedDiagnostic; | |||
6626 | } | |||
6627 | ||||
6628 | /// Perform semantic checks on a class definition that has been | |||
6629 | /// completing, introducing implicitly-declared members, checking for | |||
6630 | /// abstract types, etc. | |||
6631 | /// | |||
6632 | /// \param S The scope in which the class was parsed. Null if we didn't just | |||
6633 | /// parse a class definition. | |||
6634 | /// \param Record The completed class. | |||
6635 | void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { | |||
6636 | if (!Record) | |||
6637 | return; | |||
6638 | ||||
6639 | if (Record->isAbstract() && !Record->isInvalidDecl()) { | |||
6640 | AbstractUsageInfo Info(*this, Record); | |||
6641 | CheckAbstractClassUsage(Info, Record); | |||
6642 | } | |||
6643 | ||||
6644 | // If this is not an aggregate type and has no user-declared constructor, | |||
6645 | // complain about any non-static data members of reference or const scalar | |||
6646 | // type, since they will never get initializers. | |||
6647 | if (!Record->isInvalidDecl() && !Record->isDependentType() && | |||
6648 | !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && | |||
6649 | !Record->isLambda()) { | |||
6650 | bool Complained = false; | |||
6651 | for (const auto *F : Record->fields()) { | |||
6652 | if (F->hasInClassInitializer() || F->isUnnamedBitfield()) | |||
6653 | continue; | |||
6654 | ||||
6655 | if (F->getType()->isReferenceType() || | |||
6656 | (F->getType().isConstQualified() && F->getType()->isScalarType())) { | |||
6657 | if (!Complained) { | |||
6658 | Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) | |||
6659 | << Record->getTagKind() << Record; | |||
6660 | Complained = true; | |||
6661 | } | |||
6662 | ||||
6663 | Diag(F->getLocation(), diag::note_refconst_member_not_initialized) | |||
6664 | << F->getType()->isReferenceType() | |||
6665 | << F->getDeclName(); | |||
6666 | } | |||
6667 | } | |||
6668 | } | |||
6669 | ||||
6670 | if (Record->getIdentifier()) { | |||
6671 | // C++ [class.mem]p13: | |||
6672 | // If T is the name of a class, then each of the following shall have a | |||
6673 | // name different from T: | |||
6674 | // - every member of every anonymous union that is a member of class T. | |||
6675 | // | |||
6676 | // C++ [class.mem]p14: | |||
6677 | // In addition, if class T has a user-declared constructor (12.1), every | |||
6678 | // non-static data member of class T shall have a name different from T. | |||
6679 | DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); | |||
6680 | for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; | |||
6681 | ++I) { | |||
6682 | NamedDecl *D = (*I)->getUnderlyingDecl(); | |||
6683 | if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && | |||
6684 | Record->hasUserDeclaredConstructor()) || | |||
6685 | isa<IndirectFieldDecl>(D)) { | |||
6686 | Diag((*I)->getLocation(), diag::err_member_name_of_class) | |||
6687 | << D->getDeclName(); | |||
6688 | break; | |||
6689 | } | |||
6690 | } | |||
6691 | } | |||
6692 | ||||
6693 | // Warn if the class has virtual methods but non-virtual public destructor. | |||
6694 | if (Record->isPolymorphic() && !Record->isDependentType()) { | |||
6695 | CXXDestructorDecl *dtor = Record->getDestructor(); | |||
6696 | if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && | |||
6697 | !Record->hasAttr<FinalAttr>()) | |||
6698 | Diag(dtor ? dtor->getLocation() : Record->getLocation(), | |||
6699 | diag::warn_non_virtual_dtor) << Context.getRecordType(Record); | |||
6700 | } | |||
6701 | ||||
6702 | if (Record->isAbstract()) { | |||
6703 | if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { | |||
6704 | Diag(Record->getLocation(), diag::warn_abstract_final_class) | |||
6705 | << FA->isSpelledAsSealed(); | |||
6706 | DiagnoseAbstractType(Record); | |||
6707 | } | |||
6708 | } | |||
6709 | ||||
6710 | // Warn if the class has a final destructor but is not itself marked final. | |||
6711 | if (!Record->hasAttr<FinalAttr>()) { | |||
6712 | if (const CXXDestructorDecl *dtor = Record->getDestructor()) { | |||
6713 | if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { | |||
6714 | Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) | |||
6715 | << FA->isSpelledAsSealed() | |||
6716 | << FixItHint::CreateInsertion( | |||
6717 | getLocForEndOfToken(Record->getLocation()), | |||
6718 | (FA->isSpelledAsSealed() ? " sealed" : " final")); | |||
6719 | Diag(Record->getLocation(), | |||
6720 | diag::note_final_dtor_non_final_class_silence) | |||
6721 | << Context.getRecordType(Record) << FA->isSpelledAsSealed(); | |||
6722 | } | |||
6723 | } | |||
6724 | } | |||
6725 | ||||
6726 | // See if trivial_abi has to be dropped. | |||
6727 | if (Record->hasAttr<TrivialABIAttr>()) | |||
6728 | checkIllFormedTrivialABIStruct(*Record); | |||
6729 | ||||
6730 | // Set HasTrivialSpecialMemberForCall if the record has attribute | |||
6731 | // "trivial_abi". | |||
6732 | bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); | |||
6733 | ||||
6734 | if (HasTrivialABI) | |||
6735 | Record->setHasTrivialSpecialMemberForCall(); | |||
6736 | ||||
6737 | // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). | |||
6738 | // We check these last because they can depend on the properties of the | |||
6739 | // primary comparison functions (==, <=>). | |||
6740 | llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; | |||
6741 | ||||
6742 | // Perform checks that can't be done until we know all the properties of a | |||
6743 | // member function (whether it's defaulted, deleted, virtual, overriding, | |||
6744 | // ...). | |||
6745 | auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { | |||
6746 | // A static function cannot override anything. | |||
6747 | if (MD->getStorageClass() == SC_Static) { | |||
6748 | if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, | |||
6749 | [](const CXXMethodDecl *) { return true; })) | |||
6750 | return; | |||
6751 | } | |||
6752 | ||||
6753 | // A deleted function cannot override a non-deleted function and vice | |||
6754 | // versa. | |||
6755 | if (ReportOverrides(*this, | |||
6756 | MD->isDeleted() ? diag::err_deleted_override | |||
6757 | : diag::err_non_deleted_override, | |||
6758 | MD, [&](const CXXMethodDecl *V) { | |||
6759 | return MD->isDeleted() != V->isDeleted(); | |||
6760 | })) { | |||
6761 | if (MD->isDefaulted() && MD->isDeleted()) | |||
6762 | // Explain why this defaulted function was deleted. | |||
6763 | DiagnoseDeletedDefaultedFunction(MD); | |||
6764 | return; | |||
6765 | } | |||
6766 | ||||
6767 | // A consteval function cannot override a non-consteval function and vice | |||
6768 | // versa. | |||
6769 | if (ReportOverrides(*this, | |||
6770 | MD->isConsteval() ? diag::err_consteval_override | |||
6771 | : diag::err_non_consteval_override, | |||
6772 | MD, [&](const CXXMethodDecl *V) { | |||
6773 | return MD->isConsteval() != V->isConsteval(); | |||
6774 | })) { | |||
6775 | if (MD->isDefaulted() && MD->isDeleted()) | |||
6776 | // Explain why this defaulted function was deleted. | |||
6777 | DiagnoseDeletedDefaultedFunction(MD); | |||
6778 | return; | |||
6779 | } | |||
6780 | }; | |||
6781 | ||||
6782 | auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { | |||
6783 | if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) | |||
6784 | return false; | |||
6785 | ||||
6786 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); | |||
6787 | if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || | |||
6788 | DFK.asComparison() == DefaultedComparisonKind::Relational) { | |||
6789 | DefaultedSecondaryComparisons.push_back(FD); | |||
6790 | return true; | |||
6791 | } | |||
6792 | ||||
6793 | CheckExplicitlyDefaultedFunction(S, FD); | |||
6794 | return false; | |||
6795 | }; | |||
6796 | ||||
6797 | auto CompleteMemberFunction = [&](CXXMethodDecl *M) { | |||
6798 | // Check whether the explicitly-defaulted members are valid. | |||
6799 | bool Incomplete = CheckForDefaultedFunction(M); | |||
6800 | ||||
6801 | // Skip the rest of the checks for a member of a dependent class. | |||
6802 | if (Record->isDependentType()) | |||
6803 | return; | |||
6804 | ||||
6805 | // For an explicitly defaulted or deleted special member, we defer | |||
6806 | // determining triviality until the class is complete. That time is now! | |||
6807 | CXXSpecialMember CSM = getSpecialMember(M); | |||
6808 | if (!M->isImplicit() && !M->isUserProvided()) { | |||
6809 | if (CSM != CXXInvalid) { | |||
6810 | M->setTrivial(SpecialMemberIsTrivial(M, CSM)); | |||
6811 | // Inform the class that we've finished declaring this member. | |||
6812 | Record->finishedDefaultedOrDeletedMember(M); | |||
6813 | M->setTrivialForCall( | |||
6814 | HasTrivialABI || | |||
6815 | SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); | |||
6816 | Record->setTrivialForCallFlags(M); | |||
6817 | } | |||
6818 | } | |||
6819 | ||||
6820 | // Set triviality for the purpose of calls if this is a user-provided | |||
6821 | // copy/move constructor or destructor. | |||
6822 | if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || | |||
6823 | CSM == CXXDestructor) && M->isUserProvided()) { | |||
6824 | M->setTrivialForCall(HasTrivialABI); | |||
6825 | Record->setTrivialForCallFlags(M); | |||
6826 | } | |||
6827 | ||||
6828 | if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && | |||
6829 | M->hasAttr<DLLExportAttr>()) { | |||
6830 | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && | |||
6831 | M->isTrivial() && | |||
6832 | (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || | |||
6833 | CSM == CXXDestructor)) | |||
6834 | M->dropAttr<DLLExportAttr>(); | |||
6835 | ||||
6836 | if (M->hasAttr<DLLExportAttr>()) { | |||
6837 | // Define after any fields with in-class initializers have been parsed. | |||
6838 | DelayedDllExportMemberFunctions.push_back(M); | |||
6839 | } | |||
6840 | } | |||
6841 | ||||
6842 | // Define defaulted constexpr virtual functions that override a base class | |||
6843 | // function right away. | |||
6844 | // FIXME: We can defer doing this until the vtable is marked as used. | |||
6845 | if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods()) | |||
6846 | DefineDefaultedFunction(*this, M, M->getLocation()); | |||
6847 | ||||
6848 | if (!Incomplete) | |||
6849 | CheckCompletedMemberFunction(M); | |||
6850 | }; | |||
6851 | ||||
6852 | // Check the destructor before any other member function. We need to | |||
6853 | // determine whether it's trivial in order to determine whether the claas | |||
6854 | // type is a literal type, which is a prerequisite for determining whether | |||
6855 | // other special member functions are valid and whether they're implicitly | |||
6856 | // 'constexpr'. | |||
6857 | if (CXXDestructorDecl *Dtor = Record->getDestructor()) | |||
6858 | CompleteMemberFunction(Dtor); | |||
6859 | ||||
6860 | bool HasMethodWithOverrideControl = false, | |||
6861 | HasOverridingMethodWithoutOverrideControl = false; | |||
6862 | for (auto *D : Record->decls()) { | |||
6863 | if (auto *M = dyn_cast<CXXMethodDecl>(D)) { | |||
6864 | // FIXME: We could do this check for dependent types with non-dependent | |||
6865 | // bases. | |||
6866 | if (!Record->isDependentType()) { | |||
6867 | // See if a method overloads virtual methods in a base | |||
6868 | // class without overriding any. | |||
6869 | if (!M->isStatic()) | |||
6870 | DiagnoseHiddenVirtualMethods(M); | |||
6871 | if (M->hasAttr<OverrideAttr>()) | |||
6872 | HasMethodWithOverrideControl = true; | |||
6873 | else if (M->size_overridden_methods() > 0) | |||
6874 | HasOverridingMethodWithoutOverrideControl = true; | |||
6875 | } | |||
6876 | ||||
6877 | if (!isa<CXXDestructorDecl>(M)) | |||
6878 | CompleteMemberFunction(M); | |||
6879 | } else if (auto *F = dyn_cast<FriendDecl>(D)) { | |||
6880 | CheckForDefaultedFunction( | |||
6881 | dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); | |||
6882 | } | |||
6883 | } | |||
6884 | ||||
6885 | if (HasOverridingMethodWithoutOverrideControl) { | |||
6886 | bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; | |||
6887 | for (auto *M : Record->methods()) | |||
6888 | DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); | |||
6889 | } | |||
6890 | ||||
6891 | // Check the defaulted secondary comparisons after any other member functions. | |||
6892 | for (FunctionDecl *FD : DefaultedSecondaryComparisons) { | |||
6893 | CheckExplicitlyDefaultedFunction(S, FD); | |||
6894 | ||||
6895 | // If this is a member function, we deferred checking it until now. | |||
6896 | if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) | |||
6897 | CheckCompletedMemberFunction(MD); | |||
6898 | } | |||
6899 | ||||
6900 | // ms_struct is a request to use the same ABI rules as MSVC. Check | |||
6901 | // whether this class uses any C++ features that are implemented | |||
6902 | // completely differently in MSVC, and if so, emit a diagnostic. | |||
6903 | // That diagnostic defaults to an error, but we allow projects to | |||
6904 | // map it down to a warning (or ignore it). It's a fairly common | |||
6905 | // practice among users of the ms_struct pragma to mass-annotate | |||
6906 | // headers, sweeping up a bunch of types that the project doesn't | |||
6907 | // really rely on MSVC-compatible layout for. We must therefore | |||
6908 | // support "ms_struct except for C++ stuff" as a secondary ABI. | |||
6909 | // Don't emit this diagnostic if the feature was enabled as a | |||
6910 | // language option (as opposed to via a pragma or attribute), as | |||
6911 | // the option -mms-bitfields otherwise essentially makes it impossible | |||
6912 | // to build C++ code, unless this diagnostic is turned off. | |||
6913 | if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && | |||
6914 | (Record->isPolymorphic() || Record->getNumBases())) { | |||
6915 | Diag(Record->getLocation(), diag::warn_cxx_ms_struct); | |||
6916 | } | |||
6917 | ||||
6918 | checkClassLevelDLLAttribute(Record); | |||
6919 | checkClassLevelCodeSegAttribute(Record); | |||
6920 | ||||
6921 | bool ClangABICompat4 = | |||
6922 | Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; | |||
6923 | TargetInfo::CallingConvKind CCK = | |||
6924 | Context.getTargetInfo().getCallingConvKind(ClangABICompat4); | |||
6925 | bool CanPass = canPassInRegisters(*this, Record, CCK); | |||
6926 | ||||
6927 | // Do not change ArgPassingRestrictions if it has already been set to | |||
6928 | // APK_CanNeverPassInRegs. | |||
6929 | if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) | |||
6930 | Record->setArgPassingRestrictions(CanPass | |||
6931 | ? RecordDecl::APK_CanPassInRegs | |||
6932 | : RecordDecl::APK_CannotPassInRegs); | |||
6933 | ||||
6934 | // If canPassInRegisters returns true despite the record having a non-trivial | |||
6935 | // destructor, the record is destructed in the callee. This happens only when | |||
6936 | // the record or one of its subobjects has a field annotated with trivial_abi | |||
6937 | // or a field qualified with ObjC __strong/__weak. | |||
6938 | if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) | |||
6939 | Record->setParamDestroyedInCallee(true); | |||
6940 | else if (Record->hasNonTrivialDestructor()) | |||
6941 | Record->setParamDestroyedInCallee(CanPass); | |||
6942 | ||||
6943 | if (getLangOpts().ForceEmitVTables) { | |||
6944 | // If we want to emit all the vtables, we need to mark it as used. This | |||
6945 | // is especially required for cases like vtable assumption loads. | |||
6946 | MarkVTableUsed(Record->getInnerLocStart(), Record); | |||
6947 | } | |||
6948 | ||||
6949 | if (getLangOpts().CUDA) { | |||
6950 | if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) | |||
6951 | checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); | |||
6952 | else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) | |||
6953 | checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); | |||
6954 | } | |||
6955 | } | |||
6956 | ||||
6957 | /// Look up the special member function that would be called by a special | |||
6958 | /// member function for a subobject of class type. | |||
6959 | /// | |||
6960 | /// \param Class The class type of the subobject. | |||
6961 | /// \param CSM The kind of special member function. | |||
6962 | /// \param FieldQuals If the subobject is a field, its cv-qualifiers. | |||
6963 | /// \param ConstRHS True if this is a copy operation with a const object | |||
6964 | /// on its RHS, that is, if the argument to the outer special member | |||
6965 | /// function is 'const' and this is not a field marked 'mutable'. | |||
6966 | static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( | |||
6967 | Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, | |||
6968 | unsigned FieldQuals, bool ConstRHS) { | |||
6969 | unsigned LHSQuals = 0; | |||
6970 | if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) | |||
6971 | LHSQuals = FieldQuals; | |||
6972 | ||||
6973 | unsigned RHSQuals = FieldQuals; | |||
6974 | if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) | |||
6975 | RHSQuals = 0; | |||
6976 | else if (ConstRHS) | |||
6977 | RHSQuals |= Qualifiers::Const; | |||
6978 | ||||
6979 | return S.LookupSpecialMember(Class, CSM, | |||
6980 | RHSQuals & Qualifiers::Const, | |||
6981 | RHSQuals & Qualifiers::Volatile, | |||
6982 | false, | |||
6983 | LHSQuals & Qualifiers::Const, | |||
6984 | LHSQuals & Qualifiers::Volatile); | |||
6985 | } | |||
6986 | ||||
6987 | class Sema::InheritedConstructorInfo { | |||
6988 | Sema &S; | |||
6989 | SourceLocation UseLoc; | |||
6990 | ||||
6991 | /// A mapping from the base classes through which the constructor was | |||
6992 | /// inherited to the using shadow declaration in that base class (or a null | |||
6993 | /// pointer if the constructor was declared in that base class). | |||
6994 | llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> | |||
6995 | InheritedFromBases; | |||
6996 | ||||
6997 | public: | |||
6998 | InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, | |||
6999 | ConstructorUsingShadowDecl *Shadow) | |||
7000 | : S(S), UseLoc(UseLoc) { | |||
7001 | bool DiagnosedMultipleConstructedBases = false; | |||
7002 | CXXRecordDecl *ConstructedBase = nullptr; | |||
7003 | BaseUsingDecl *ConstructedBaseIntroducer = nullptr; | |||
7004 | ||||
7005 | // Find the set of such base class subobjects and check that there's a | |||
7006 | // unique constructed subobject. | |||
7007 | for (auto *D : Shadow->redecls()) { | |||
7008 | auto *DShadow = cast<ConstructorUsingShadowDecl>(D); | |||
7009 | auto *DNominatedBase = DShadow->getNominatedBaseClass(); | |||
7010 | auto *DConstructedBase = DShadow->getConstructedBaseClass(); | |||
7011 | ||||
7012 | InheritedFromBases.insert( | |||
7013 | std::make_pair(DNominatedBase->getCanonicalDecl(), | |||
7014 | DShadow->getNominatedBaseClassShadowDecl())); | |||
7015 | if (DShadow->constructsVirtualBase()) | |||
7016 | InheritedFromBases.insert( | |||
7017 | std::make_pair(DConstructedBase->getCanonicalDecl(), | |||
7018 | DShadow->getConstructedBaseClassShadowDecl())); | |||
7019 | else | |||
7020 | assert(DNominatedBase == DConstructedBase)((void)0); | |||
7021 | ||||
7022 | // [class.inhctor.init]p2: | |||
7023 | // If the constructor was inherited from multiple base class subobjects | |||
7024 | // of type B, the program is ill-formed. | |||
7025 | if (!ConstructedBase) { | |||
7026 | ConstructedBase = DConstructedBase; | |||
7027 | ConstructedBaseIntroducer = D->getIntroducer(); | |||
7028 | } else if (ConstructedBase != DConstructedBase && | |||
7029 | !Shadow->isInvalidDecl()) { | |||
7030 | if (!DiagnosedMultipleConstructedBases) { | |||
7031 | S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) | |||
7032 | << Shadow->getTargetDecl(); | |||
7033 | S.Diag(ConstructedBaseIntroducer->getLocation(), | |||
7034 | diag::note_ambiguous_inherited_constructor_using) | |||
7035 | << ConstructedBase; | |||
7036 | DiagnosedMultipleConstructedBases = true; | |||
7037 | } | |||
7038 | S.Diag(D->getIntroducer()->getLocation(), | |||
7039 | diag::note_ambiguous_inherited_constructor_using) | |||
7040 | << DConstructedBase; | |||
7041 | } | |||
7042 | } | |||
7043 | ||||
7044 | if (DiagnosedMultipleConstructedBases) | |||
7045 | Shadow->setInvalidDecl(); | |||
7046 | } | |||
7047 | ||||
7048 | /// Find the constructor to use for inherited construction of a base class, | |||
7049 | /// and whether that base class constructor inherits the constructor from a | |||
7050 | /// virtual base class (in which case it won't actually invoke it). | |||
7051 | std::pair<CXXConstructorDecl *, bool> | |||
7052 | findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { | |||
7053 | auto It = InheritedFromBases.find(Base->getCanonicalDecl()); | |||
7054 | if (It == InheritedFromBases.end()) | |||
7055 | return std::make_pair(nullptr, false); | |||
7056 | ||||
7057 | // This is an intermediary class. | |||
7058 | if (It->second) | |||
7059 | return std::make_pair( | |||
7060 | S.findInheritingConstructor(UseLoc, Ctor, It->second), | |||
7061 | It->second->constructsVirtualBase()); | |||
7062 | ||||
7063 | // This is the base class from which the constructor was inherited. | |||
7064 | return std::make_pair(Ctor, false); | |||
7065 | } | |||
7066 | }; | |||
7067 | ||||
7068 | /// Is the special member function which would be selected to perform the | |||
7069 | /// specified operation on the specified class type a constexpr constructor? | |||
7070 | static bool | |||
7071 | specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, | |||
7072 | Sema::CXXSpecialMember CSM, unsigned Quals, | |||
7073 | bool ConstRHS, | |||
7074 | CXXConstructorDecl *InheritedCtor = nullptr, | |||
7075 | Sema::InheritedConstructorInfo *Inherited = nullptr) { | |||
7076 | // If we're inheriting a constructor, see if we need to call it for this base | |||
7077 | // class. | |||
7078 | if (InheritedCtor) { | |||
7079 | assert(CSM == Sema::CXXDefaultConstructor)((void)0); | |||
7080 | auto BaseCtor = | |||
7081 | Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; | |||
7082 | if (BaseCtor) | |||
7083 | return BaseCtor->isConstexpr(); | |||
7084 | } | |||
7085 | ||||
7086 | if (CSM == Sema::CXXDefaultConstructor) | |||
7087 | return ClassDecl->hasConstexprDefaultConstructor(); | |||
7088 | if (CSM == Sema::CXXDestructor) | |||
7089 | return ClassDecl->hasConstexprDestructor(); | |||
7090 | ||||
7091 | Sema::SpecialMemberOverloadResult SMOR = | |||
7092 | lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); | |||
7093 | if (!SMOR.getMethod()) | |||
7094 | // A constructor we wouldn't select can't be "involved in initializing" | |||
7095 | // anything. | |||
7096 | return true; | |||
7097 | return SMOR.getMethod()->isConstexpr(); | |||
7098 | } | |||
7099 | ||||
7100 | /// Determine whether the specified special member function would be constexpr | |||
7101 | /// if it were implicitly defined. | |||
7102 | static bool defaultedSpecialMemberIsConstexpr( | |||
7103 | Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, | |||
7104 | bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, | |||
7105 | Sema::InheritedConstructorInfo *Inherited = nullptr) { | |||
7106 | if (!S.getLangOpts().CPlusPlus11) | |||
7107 | return false; | |||
7108 | ||||
7109 | // C++11 [dcl.constexpr]p4: | |||
7110 | // In the definition of a constexpr constructor [...] | |||
7111 | bool Ctor = true; | |||
7112 | switch (CSM) { | |||
7113 | case Sema::CXXDefaultConstructor: | |||
7114 | if (Inherited) | |||
7115 | break; | |||
7116 | // Since default constructor lookup is essentially trivial (and cannot | |||
7117 | // involve, for instance, template instantiation), we compute whether a | |||
7118 | // defaulted default constructor is constexpr directly within CXXRecordDecl. | |||
7119 | // | |||
7120 | // This is important for performance; we need to know whether the default | |||
7121 | // constructor is constexpr to determine whether the type is a literal type. | |||
7122 | return ClassDecl->defaultedDefaultConstructorIsConstexpr(); | |||
7123 | ||||
7124 | case Sema::CXXCopyConstructor: | |||
7125 | case Sema::CXXMoveConstructor: | |||
7126 | // For copy or move constructors, we need to perform overload resolution. | |||
7127 | break; | |||
7128 | ||||
7129 | case Sema::CXXCopyAssignment: | |||
7130 | case Sema::CXXMoveAssignment: | |||
7131 | if (!S.getLangOpts().CPlusPlus14) | |||
7132 | return false; | |||
7133 | // In C++1y, we need to perform overload resolution. | |||
7134 | Ctor = false; | |||
7135 | break; | |||
7136 | ||||
7137 | case Sema::CXXDestructor: | |||
7138 | return ClassDecl->defaultedDestructorIsConstexpr(); | |||
7139 | ||||
7140 | case Sema::CXXInvalid: | |||
7141 | return false; | |||
7142 | } | |||
7143 | ||||
7144 | // -- if the class is a non-empty union, or for each non-empty anonymous | |||
7145 | // union member of a non-union class, exactly one non-static data member | |||
7146 | // shall be initialized; [DR1359] | |||
7147 | // | |||
7148 | // If we squint, this is guaranteed, since exactly one non-static data member | |||
7149 | // will be initialized (if the constructor isn't deleted), we just don't know | |||
7150 | // which one. | |||
7151 | if (Ctor && ClassDecl->isUnion()) | |||
7152 | return CSM == Sema::CXXDefaultConstructor | |||
7153 | ? ClassDecl->hasInClassInitializer() || | |||
7154 | !ClassDecl->hasVariantMembers() | |||
7155 | : true; | |||
7156 | ||||
7157 | // -- the class shall not have any virtual base classes; | |||
7158 | if (Ctor && ClassDecl->getNumVBases()) | |||
7159 | return false; | |||
7160 | ||||
7161 | // C++1y [class.copy]p26: | |||
7162 | // -- [the class] is a literal type, and | |||
7163 | if (!Ctor && !ClassDecl->isLiteral()) | |||
7164 | return false; | |||
7165 | ||||
7166 | // -- every constructor involved in initializing [...] base class | |||
7167 | // sub-objects shall be a constexpr constructor; | |||
7168 | // -- the assignment operator selected to copy/move each direct base | |||
7169 | // class is a constexpr function, and | |||
7170 | for (const auto &B : ClassDecl->bases()) { | |||
7171 | const RecordType *BaseType = B.getType()->getAs<RecordType>(); | |||
7172 | if (!BaseType) continue; | |||
7173 | ||||
7174 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | |||
7175 | if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, | |||
7176 | InheritedCtor, Inherited)) | |||
7177 | return false; | |||
7178 | } | |||
7179 | ||||
7180 | // -- every constructor involved in initializing non-static data members | |||
7181 | // [...] shall be a constexpr constructor; | |||
7182 | // -- every non-static data member and base class sub-object shall be | |||
7183 | // initialized | |||
7184 | // -- for each non-static data member of X that is of class type (or array | |||
7185 | // thereof), the assignment operator selected to copy/move that member is | |||
7186 | // a constexpr function | |||
7187 | for (const auto *F : ClassDecl->fields()) { | |||
7188 | if (F->isInvalidDecl()) | |||
7189 | continue; | |||
7190 | if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) | |||
7191 | continue; | |||
7192 | QualType BaseType = S.Context.getBaseElementType(F->getType()); | |||
7193 | if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { | |||
7194 | CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | |||
7195 | if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, | |||
7196 | BaseType.getCVRQualifiers(), | |||
7197 | ConstArg && !F->isMutable())) | |||
7198 | return false; | |||
7199 | } else if (CSM == Sema::CXXDefaultConstructor) { | |||
7200 | return false; | |||
7201 | } | |||
7202 | } | |||
7203 | ||||
7204 | // All OK, it's constexpr! | |||
7205 | return true; | |||
7206 | } | |||
7207 | ||||
7208 | namespace { | |||
7209 | /// RAII object to register a defaulted function as having its exception | |||
7210 | /// specification computed. | |||
7211 | struct ComputingExceptionSpec { | |||
7212 | Sema &S; | |||
7213 | ||||
7214 | ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) | |||
7215 | : S(S) { | |||
7216 | Sema::CodeSynthesisContext Ctx; | |||
7217 | Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; | |||
7218 | Ctx.PointOfInstantiation = Loc; | |||
7219 | Ctx.Entity = FD; | |||
7220 | S.pushCodeSynthesisContext(Ctx); | |||
7221 | } | |||
7222 | ~ComputingExceptionSpec() { | |||
7223 | S.popCodeSynthesisContext(); | |||
7224 | } | |||
7225 | }; | |||
7226 | } | |||
7227 | ||||
7228 | static Sema::ImplicitExceptionSpecification | |||
7229 | ComputeDefaultedSpecialMemberExceptionSpec( | |||
7230 | Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, | |||
7231 | Sema::InheritedConstructorInfo *ICI); | |||
7232 | ||||
7233 | static Sema::ImplicitExceptionSpecification | |||
7234 | ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, | |||
7235 | FunctionDecl *FD, | |||
7236 | Sema::DefaultedComparisonKind DCK); | |||
7237 | ||||
7238 | static Sema::ImplicitExceptionSpecification | |||
7239 | computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { | |||
7240 | auto DFK = S.getDefaultedFunctionKind(FD); | |||
7241 | if (DFK.isSpecialMember()) | |||
7242 | return ComputeDefaultedSpecialMemberExceptionSpec( | |||
7243 | S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); | |||
7244 | if (DFK.isComparison()) | |||
7245 | return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, | |||
7246 | DFK.asComparison()); | |||
7247 | ||||
7248 | auto *CD = cast<CXXConstructorDecl>(FD); | |||
7249 | assert(CD->getInheritedConstructor() &&((void)0) | |||
7250 | "only defaulted functions and inherited constructors have implicit "((void)0) | |||
7251 | "exception specs")((void)0); | |||
7252 | Sema::InheritedConstructorInfo ICI( | |||
7253 | S, Loc, CD->getInheritedConstructor().getShadowDecl()); | |||
7254 | return ComputeDefaultedSpecialMemberExceptionSpec( | |||
7255 | S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); | |||
7256 | } | |||
7257 | ||||
7258 | static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, | |||
7259 | CXXMethodDecl *MD) { | |||
7260 | FunctionProtoType::ExtProtoInfo EPI; | |||
7261 | ||||
7262 | // Build an exception specification pointing back at this member. | |||
7263 | EPI.ExceptionSpec.Type = EST_Unevaluated; | |||
7264 | EPI.ExceptionSpec.SourceDecl = MD; | |||
7265 | ||||
7266 | // Set the calling convention to the default for C++ instance methods. | |||
7267 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv( | |||
7268 | S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, | |||
7269 | /*IsCXXMethod=*/true)); | |||
7270 | return EPI; | |||
7271 | } | |||
7272 | ||||
7273 | void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { | |||
7274 | const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); | |||
7275 | if (FPT->getExceptionSpecType() != EST_Unevaluated) | |||
7276 | return; | |||
7277 | ||||
7278 | // Evaluate the exception specification. | |||
7279 | auto IES = computeImplicitExceptionSpec(*this, Loc, FD); | |||
7280 | auto ESI = IES.getExceptionSpec(); | |||
7281 | ||||
7282 | // Update the type of the special member to use it. | |||
7283 | UpdateExceptionSpec(FD, ESI); | |||
7284 | } | |||
7285 | ||||
7286 | void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { | |||
7287 | assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted")((void)0); | |||
7288 | ||||
7289 | DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); | |||
7290 | if (!DefKind) { | |||
7291 | assert(FD->getDeclContext()->isDependentContext())((void)0); | |||
7292 | return; | |||
7293 | } | |||
7294 | ||||
7295 | if (DefKind.isComparison()) | |||
7296 | UnusedPrivateFields.clear(); | |||
7297 | ||||
7298 | if (DefKind.isSpecialMember() | |||
7299 | ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), | |||
7300 | DefKind.asSpecialMember()) | |||
7301 | : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) | |||
7302 | FD->setInvalidDecl(); | |||
7303 | } | |||
7304 | ||||
7305 | bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, | |||
7306 | CXXSpecialMember CSM) { | |||
7307 | CXXRecordDecl *RD = MD->getParent(); | |||
7308 | ||||
7309 | assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((void)0) | |||
7310 | "not an explicitly-defaulted special member")((void)0); | |||
7311 | ||||
7312 | // Defer all checking for special members of a dependent type. | |||
7313 | if (RD->isDependentType()) | |||
7314 | return false; | |||
7315 | ||||
7316 | // Whether this was the first-declared instance of the constructor. | |||
7317 | // This affects whether we implicitly add an exception spec and constexpr. | |||
7318 | bool First = MD == MD->getCanonicalDecl(); | |||
7319 | ||||
7320 | bool HadError = false; | |||
7321 | ||||
7322 | // C++11 [dcl.fct.def.default]p1: | |||
7323 | // A function that is explicitly defaulted shall | |||
7324 | // -- be a special member function [...] (checked elsewhere), | |||
7325 | // -- have the same type (except for ref-qualifiers, and except that a | |||
7326 | // copy operation can take a non-const reference) as an implicit | |||
7327 | // declaration, and | |||
7328 | // -- not have default arguments. | |||
7329 | // C++2a changes the second bullet to instead delete the function if it's | |||
7330 | // defaulted on its first declaration, unless it's "an assignment operator, | |||
7331 | // and its return type differs or its parameter type is not a reference". | |||
7332 | bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; | |||
7333 | bool ShouldDeleteForTypeMismatch = false; | |||
7334 | unsigned ExpectedParams = 1; | |||
7335 | if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) | |||
7336 | ExpectedParams = 0; | |||
7337 | if (MD->getNumParams() != ExpectedParams) { | |||
7338 | // This checks for default arguments: a copy or move constructor with a | |||
7339 | // default argument is classified as a default constructor, and assignment | |||
7340 | // operations and destructors can't have default arguments. | |||
7341 | Diag(MD->getLocation(), diag::err_defaulted_special_member_params) | |||
7342 | << CSM << MD->getSourceRange(); | |||
7343 | HadError = true; | |||
7344 | } else if (MD->isVariadic()) { | |||
7345 | if (DeleteOnTypeMismatch) | |||
7346 | ShouldDeleteForTypeMismatch = true; | |||
7347 | else { | |||
7348 | Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) | |||
7349 | << CSM << MD->getSourceRange(); | |||
7350 | HadError = true; | |||
7351 | } | |||
7352 | } | |||
7353 | ||||
7354 | const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); | |||
7355 | ||||
7356 | bool CanHaveConstParam = false; | |||
7357 | if (CSM == CXXCopyConstructor) | |||
7358 | CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); | |||
7359 | else if (CSM == CXXCopyAssignment) | |||
7360 | CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); | |||
7361 | ||||
7362 | QualType ReturnType = Context.VoidTy; | |||
7363 | if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { | |||
7364 | // Check for return type matching. | |||
7365 | ReturnType = Type->getReturnType(); | |||
7366 | ||||
7367 | QualType DeclType = Context.getTypeDeclType(RD); | |||
7368 | DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); | |||
7369 | QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); | |||
7370 | ||||
7371 | if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { | |||
7372 | Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) | |||
7373 | << (CSM == CXXMoveAssignment) << ExpectedReturnType; | |||
7374 | HadError = true; | |||
7375 | } | |||
7376 | ||||
7377 | // A defaulted special member cannot have cv-qualifiers. | |||
7378 | if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { | |||
7379 | if (DeleteOnTypeMismatch) | |||
7380 | ShouldDeleteForTypeMismatch = true; | |||
7381 | else { | |||
7382 | Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) | |||
7383 | << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; | |||
7384 | HadError = true; | |||
7385 | } | |||
7386 | } | |||
7387 | } | |||
7388 | ||||
7389 | // Check for parameter type matching. | |||
7390 | QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); | |||
7391 | bool HasConstParam = false; | |||
7392 | if (ExpectedParams && ArgType->isReferenceType()) { | |||
7393 | // Argument must be reference to possibly-const T. | |||
7394 | QualType ReferentType = ArgType->getPointeeType(); | |||
7395 | HasConstParam = ReferentType.isConstQualified(); | |||
7396 | ||||
7397 | if (ReferentType.isVolatileQualified()) { | |||
7398 | if (DeleteOnTypeMismatch) | |||
7399 | ShouldDeleteForTypeMismatch = true; | |||
7400 | else { | |||
7401 | Diag(MD->getLocation(), | |||
7402 | diag::err_defaulted_special_member_volatile_param) << CSM; | |||
7403 | HadError = true; | |||
7404 | } | |||
7405 | } | |||
7406 | ||||
7407 | if (HasConstParam && !CanHaveConstParam) { | |||
7408 | if (DeleteOnTypeMismatch) | |||
7409 | ShouldDeleteForTypeMismatch = true; | |||
7410 | else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { | |||
7411 | Diag(MD->getLocation(), | |||
7412 | diag::err_defaulted_special_member_copy_const_param) | |||
7413 | << (CSM == CXXCopyAssignment); | |||
7414 | // FIXME: Explain why this special member can't be const. | |||
7415 | HadError = true; | |||
7416 | } else { | |||
7417 | Diag(MD->getLocation(), | |||
7418 | diag::err_defaulted_special_member_move_const_param) | |||
7419 | << (CSM == CXXMoveAssignment); | |||
7420 | HadError = true; | |||
7421 | } | |||
7422 | } | |||
7423 | } else if (ExpectedParams) { | |||
7424 | // A copy assignment operator can take its argument by value, but a | |||
7425 | // defaulted one cannot. | |||
7426 | assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((void)0); | |||
7427 | Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); | |||
7428 | HadError = true; | |||
7429 | } | |||
7430 | ||||
7431 | // C++11 [dcl.fct.def.default]p2: | |||
7432 | // An explicitly-defaulted function may be declared constexpr only if it | |||
7433 | // would have been implicitly declared as constexpr, | |||
7434 | // Do not apply this rule to members of class templates, since core issue 1358 | |||
7435 | // makes such functions always instantiate to constexpr functions. For | |||
7436 | // functions which cannot be constexpr (for non-constructors in C++11 and for | |||
7437 | // destructors in C++14 and C++17), this is checked elsewhere. | |||
7438 | // | |||
7439 | // FIXME: This should not apply if the member is deleted. | |||
7440 | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, | |||
7441 | HasConstParam); | |||
7442 | if ((getLangOpts().CPlusPlus20 || | |||
7443 | (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) | |||
7444 | : isa<CXXConstructorDecl>(MD))) && | |||
7445 | MD->isConstexpr() && !Constexpr && | |||
7446 | MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { | |||
7447 | Diag(MD->getBeginLoc(), MD->isConsteval() | |||
7448 | ? diag::err_incorrect_defaulted_consteval | |||
7449 | : diag::err_incorrect_defaulted_constexpr) | |||
7450 | << CSM; | |||
7451 | // FIXME: Explain why the special member can't be constexpr. | |||
7452 | HadError = true; | |||
7453 | } | |||
7454 | ||||
7455 | if (First) { | |||
7456 | // C++2a [dcl.fct.def.default]p3: | |||
7457 | // If a function is explicitly defaulted on its first declaration, it is | |||
7458 | // implicitly considered to be constexpr if the implicit declaration | |||
7459 | // would be. | |||
7460 | MD->setConstexprKind(Constexpr ? (MD->isConsteval() | |||
7461 | ? ConstexprSpecKind::Consteval | |||
7462 | : ConstexprSpecKind::Constexpr) | |||
7463 | : ConstexprSpecKind::Unspecified); | |||
7464 | ||||
7465 | if (!Type->hasExceptionSpec()) { | |||
7466 | // C++2a [except.spec]p3: | |||
7467 | // If a declaration of a function does not have a noexcept-specifier | |||
7468 | // [and] is defaulted on its first declaration, [...] the exception | |||
7469 | // specification is as specified below | |||
7470 | FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); | |||
7471 | EPI.ExceptionSpec.Type = EST_Unevaluated; | |||
7472 | EPI.ExceptionSpec.SourceDecl = MD; | |||
7473 | MD->setType(Context.getFunctionType(ReturnType, | |||
7474 | llvm::makeArrayRef(&ArgType, | |||
7475 | ExpectedParams), | |||
7476 | EPI)); | |||
7477 | } | |||
7478 | } | |||
7479 | ||||
7480 | if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { | |||
7481 | if (First) { | |||
7482 | SetDeclDeleted(MD, MD->getLocation()); | |||
7483 | if (!inTemplateInstantiation() && !HadError) { | |||
7484 | Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; | |||
7485 | if (ShouldDeleteForTypeMismatch) { | |||
7486 | Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; | |||
7487 | } else { | |||
7488 | ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); | |||
7489 | } | |||
7490 | } | |||
7491 | if (ShouldDeleteForTypeMismatch && !HadError) { | |||
7492 | Diag(MD->getLocation(), | |||
7493 | diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; | |||
7494 | } | |||
7495 | } else { | |||
7496 | // C++11 [dcl.fct.def.default]p4: | |||
7497 | // [For a] user-provided explicitly-defaulted function [...] if such a | |||
7498 | // function is implicitly defined as deleted, the program is ill-formed. | |||
7499 | Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; | |||
7500 | assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl")((void)0); | |||
7501 | ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); | |||
7502 | HadError = true; | |||
7503 | } | |||
7504 | } | |||
7505 | ||||
7506 | return HadError; | |||
7507 | } | |||
7508 | ||||
7509 | namespace { | |||
7510 | /// Helper class for building and checking a defaulted comparison. | |||
7511 | /// | |||
7512 | /// Defaulted functions are built in two phases: | |||
7513 | /// | |||
7514 | /// * First, the set of operations that the function will perform are | |||
7515 | /// identified, and some of them are checked. If any of the checked | |||
7516 | /// operations is invalid in certain ways, the comparison function is | |||
7517 | /// defined as deleted and no body is built. | |||
7518 | /// * Then, if the function is not defined as deleted, the body is built. | |||
7519 | /// | |||
7520 | /// This is accomplished by performing two visitation steps over the eventual | |||
7521 | /// body of the function. | |||
7522 | template<typename Derived, typename ResultList, typename Result, | |||
7523 | typename Subobject> | |||
7524 | class DefaultedComparisonVisitor { | |||
7525 | public: | |||
7526 | using DefaultedComparisonKind = Sema::DefaultedComparisonKind; | |||
7527 | ||||
7528 | DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, | |||
7529 | DefaultedComparisonKind DCK) | |||
7530 | : S(S), RD(RD), FD(FD), DCK(DCK) { | |||
7531 | if (auto *Info = FD->getDefaultedFunctionInfo()) { | |||
7532 | // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an | |||
7533 | // UnresolvedSet to avoid this copy. | |||
7534 | Fns.assign(Info->getUnqualifiedLookups().begin(), | |||
7535 | Info->getUnqualifiedLookups().end()); | |||
7536 | } | |||
7537 | } | |||
7538 | ||||
7539 | ResultList visit() { | |||
7540 | // The type of an lvalue naming a parameter of this function. | |||
7541 | QualType ParamLvalType = | |||
7542 | FD->getParamDecl(0)->getType().getNonReferenceType(); | |||
7543 | ||||
7544 | ResultList Results; | |||
7545 | ||||
7546 | switch (DCK) { | |||
7547 | case DefaultedComparisonKind::None: | |||
7548 | llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); | |||
7549 | ||||
7550 | case DefaultedComparisonKind::Equal: | |||
7551 | case DefaultedComparisonKind::ThreeWay: | |||
7552 | getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); | |||
7553 | return Results; | |||
7554 | ||||
7555 | case DefaultedComparisonKind::NotEqual: | |||
7556 | case DefaultedComparisonKind::Relational: | |||
7557 | Results.add(getDerived().visitExpandedSubobject( | |||
7558 | ParamLvalType, getDerived().getCompleteObject())); | |||
7559 | return Results; | |||
7560 | } | |||
7561 | llvm_unreachable("")__builtin_unreachable(); | |||
7562 | } | |||
7563 | ||||
7564 | protected: | |||
7565 | Derived &getDerived() { return static_cast<Derived&>(*this); } | |||
7566 | ||||
7567 | /// Visit the expanded list of subobjects of the given type, as specified in | |||
7568 | /// C++2a [class.compare.default]. | |||
7569 | /// | |||
7570 | /// \return \c true if the ResultList object said we're done, \c false if not. | |||
7571 | bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, | |||
7572 | Qualifiers Quals) { | |||
7573 | // C++2a [class.compare.default]p4: | |||
7574 | // The direct base class subobjects of C | |||
7575 | for (CXXBaseSpecifier &Base : Record->bases()) | |||
7576 | if (Results.add(getDerived().visitSubobject( | |||
7577 | S.Context.getQualifiedType(Base.getType(), Quals), | |||
7578 | getDerived().getBase(&Base)))) | |||
7579 | return true; | |||
7580 | ||||
7581 | // followed by the non-static data members of C | |||
7582 | for (FieldDecl *Field : Record->fields()) { | |||
7583 | // Recursively expand anonymous structs. | |||
7584 | if (Field->isAnonymousStructOrUnion()) { | |||
7585 | if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), | |||
7586 | Quals)) | |||
7587 | return true; | |||
7588 | continue; | |||
7589 | } | |||
7590 | ||||
7591 | // Figure out the type of an lvalue denoting this field. | |||
7592 | Qualifiers FieldQuals = Quals; | |||
7593 | if (Field->isMutable()) | |||
7594 | FieldQuals.removeConst(); | |||
7595 | QualType FieldType = | |||
7596 | S.Context.getQualifiedType(Field->getType(), FieldQuals); | |||
7597 | ||||
7598 | if (Results.add(getDerived().visitSubobject( | |||
7599 | FieldType, getDerived().getField(Field)))) | |||
7600 | return true; | |||
7601 | } | |||
7602 | ||||
7603 | // form a list of subobjects. | |||
7604 | return false; | |||
7605 | } | |||
7606 | ||||
7607 | Result visitSubobject(QualType Type, Subobject Subobj) { | |||
7608 | // In that list, any subobject of array type is recursively expanded | |||
7609 | const ArrayType *AT = S.Context.getAsArrayType(Type); | |||
7610 | if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) | |||
7611 | return getDerived().visitSubobjectArray(CAT->getElementType(), | |||
7612 | CAT->getSize(), Subobj); | |||
7613 | return getDerived().visitExpandedSubobject(Type, Subobj); | |||
7614 | } | |||
7615 | ||||
7616 | Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, | |||
7617 | Subobject Subobj) { | |||
7618 | return getDerived().visitSubobject(Type, Subobj); | |||
7619 | } | |||
7620 | ||||
7621 | protected: | |||
7622 | Sema &S; | |||
7623 | CXXRecordDecl *RD; | |||
7624 | FunctionDecl *FD; | |||
7625 | DefaultedComparisonKind DCK; | |||
7626 | UnresolvedSet<16> Fns; | |||
7627 | }; | |||
7628 | ||||
7629 | /// Information about a defaulted comparison, as determined by | |||
7630 | /// DefaultedComparisonAnalyzer. | |||
7631 | struct DefaultedComparisonInfo { | |||
7632 | bool Deleted = false; | |||
7633 | bool Constexpr = true; | |||
7634 | ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; | |||
7635 | ||||
7636 | static DefaultedComparisonInfo deleted() { | |||
7637 | DefaultedComparisonInfo Deleted; | |||
7638 | Deleted.Deleted = true; | |||
7639 | return Deleted; | |||
7640 | } | |||
7641 | ||||
7642 | bool add(const DefaultedComparisonInfo &R) { | |||
7643 | Deleted |= R.Deleted; | |||
7644 | Constexpr &= R.Constexpr; | |||
7645 | Category = commonComparisonType(Category, R.Category); | |||
7646 | return Deleted; | |||
7647 | } | |||
7648 | }; | |||
7649 | ||||
7650 | /// An element in the expanded list of subobjects of a defaulted comparison, as | |||
7651 | /// specified in C++2a [class.compare.default]p4. | |||
7652 | struct DefaultedComparisonSubobject { | |||
7653 | enum { CompleteObject, Member, Base } Kind; | |||
7654 | NamedDecl *Decl; | |||
7655 | SourceLocation Loc; | |||
7656 | }; | |||
7657 | ||||
7658 | /// A visitor over the notional body of a defaulted comparison that determines | |||
7659 | /// whether that body would be deleted or constexpr. | |||
7660 | class DefaultedComparisonAnalyzer | |||
7661 | : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, | |||
7662 | DefaultedComparisonInfo, | |||
7663 | DefaultedComparisonInfo, | |||
7664 | DefaultedComparisonSubobject> { | |||
7665 | public: | |||
7666 | enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; | |||
7667 | ||||
7668 | private: | |||
7669 | DiagnosticKind Diagnose; | |||
7670 | ||||
7671 | public: | |||
7672 | using Base = DefaultedComparisonVisitor; | |||
7673 | using Result = DefaultedComparisonInfo; | |||
7674 | using Subobject = DefaultedComparisonSubobject; | |||
7675 | ||||
7676 | friend Base; | |||
7677 | ||||
7678 | DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, | |||
7679 | DefaultedComparisonKind DCK, | |||
7680 | DiagnosticKind Diagnose = NoDiagnostics) | |||
7681 | : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} | |||
7682 | ||||
7683 | Result visit() { | |||
7684 | if ((DCK == DefaultedComparisonKind::Equal || | |||
7685 | DCK == DefaultedComparisonKind::ThreeWay) && | |||
7686 | RD->hasVariantMembers()) { | |||
7687 | // C++2a [class.compare.default]p2 [P2002R0]: | |||
7688 | // A defaulted comparison operator function for class C is defined as | |||
7689 | // deleted if [...] C has variant members. | |||
7690 | if (Diagnose == ExplainDeleted) { | |||
7691 | S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) | |||
7692 | << FD << RD->isUnion() << RD; | |||
7693 | } | |||
7694 | return Result::deleted(); | |||
7695 | } | |||
7696 | ||||
7697 | return Base::visit(); | |||
7698 | } | |||
7699 | ||||
7700 | private: | |||
7701 | Subobject getCompleteObject() { | |||
7702 | return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; | |||
7703 | } | |||
7704 | ||||
7705 | Subobject getBase(CXXBaseSpecifier *Base) { | |||
7706 | return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), | |||
7707 | Base->getBaseTypeLoc()}; | |||
7708 | } | |||
7709 | ||||
7710 | Subobject getField(FieldDecl *Field) { | |||
7711 | return Subobject{Subobject::Member, Field, Field->getLocation()}; | |||
7712 | } | |||
7713 | ||||
7714 | Result visitExpandedSubobject(QualType Type, Subobject Subobj) { | |||
7715 | // C++2a [class.compare.default]p2 [P2002R0]: | |||
7716 | // A defaulted <=> or == operator function for class C is defined as | |||
7717 | // deleted if any non-static data member of C is of reference type | |||
7718 | if (Type->isReferenceType()) { | |||
7719 | if (Diagnose == ExplainDeleted) { | |||
7720 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) | |||
7721 | << FD << RD; | |||
7722 | } | |||
7723 | return Result::deleted(); | |||
7724 | } | |||
7725 | ||||
7726 | // [...] Let xi be an lvalue denoting the ith element [...] | |||
7727 | OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); | |||
7728 | Expr *Args[] = {&Xi, &Xi}; | |||
7729 | ||||
7730 | // All operators start by trying to apply that same operator recursively. | |||
7731 | OverloadedOperatorKind OO = FD->getOverloadedOperator(); | |||
7732 | assert(OO != OO_None && "not an overloaded operator!")((void)0); | |||
7733 | return visitBinaryOperator(OO, Args, Subobj); | |||
7734 | } | |||
7735 | ||||
7736 | Result | |||
7737 | visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, | |||
7738 | Subobject Subobj, | |||
7739 | OverloadCandidateSet *SpaceshipCandidates = nullptr) { | |||
7740 | // Note that there is no need to consider rewritten candidates here if | |||
7741 | // we've already found there is no viable 'operator<=>' candidate (and are | |||
7742 | // considering synthesizing a '<=>' from '==' and '<'). | |||
7743 | OverloadCandidateSet CandidateSet( | |||
7744 | FD->getLocation(), OverloadCandidateSet::CSK_Operator, | |||
7745 | OverloadCandidateSet::OperatorRewriteInfo( | |||
7746 | OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); | |||
7747 | ||||
7748 | /// C++2a [class.compare.default]p1 [P2002R0]: | |||
7749 | /// [...] the defaulted function itself is never a candidate for overload | |||
7750 | /// resolution [...] | |||
7751 | CandidateSet.exclude(FD); | |||
7752 | ||||
7753 | if (Args[0]->getType()->isOverloadableType()) | |||
7754 | S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); | |||
7755 | else | |||
7756 | // FIXME: We determine whether this is a valid expression by checking to | |||
7757 | // see if there's a viable builtin operator candidate for it. That isn't | |||
7758 | // really what the rules ask us to do, but should give the right results. | |||
7759 | S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); | |||
7760 | ||||
7761 | Result R; | |||
7762 | ||||
7763 | OverloadCandidateSet::iterator Best; | |||
7764 | switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { | |||
7765 | case OR_Success: { | |||
7766 | // C++2a [class.compare.secondary]p2 [P2002R0]: | |||
7767 | // The operator function [...] is defined as deleted if [...] the | |||
7768 | // candidate selected by overload resolution is not a rewritten | |||
7769 | // candidate. | |||
7770 | if ((DCK == DefaultedComparisonKind::NotEqual || | |||
7771 | DCK == DefaultedComparisonKind::Relational) && | |||
7772 | !Best->RewriteKind) { | |||
7773 | if (Diagnose == ExplainDeleted) { | |||
7774 | S.Diag(Best->Function->getLocation(), | |||
7775 | diag::note_defaulted_comparison_not_rewritten_callee) | |||
7776 | << FD; | |||
7777 | } | |||
7778 | return Result::deleted(); | |||
7779 | } | |||
7780 | ||||
7781 | // Throughout C++2a [class.compare]: if overload resolution does not | |||
7782 | // result in a usable function, the candidate function is defined as | |||
7783 | // deleted. This requires that we selected an accessible function. | |||
7784 | // | |||
7785 | // Note that this only considers the access of the function when named | |||
7786 | // within the type of the subobject, and not the access path for any | |||
7787 | // derived-to-base conversion. | |||
7788 | CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); | |||
7789 | if (ArgClass && Best->FoundDecl.getDecl() && | |||
7790 | Best->FoundDecl.getDecl()->isCXXClassMember()) { | |||
7791 | QualType ObjectType = Subobj.Kind == Subobject::Member | |||
7792 | ? Args[0]->getType() | |||
7793 | : S.Context.getRecordType(RD); | |||
7794 | if (!S.isMemberAccessibleForDeletion( | |||
7795 | ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, | |||
7796 | Diagnose == ExplainDeleted | |||
7797 | ? S.PDiag(diag::note_defaulted_comparison_inaccessible) | |||
7798 | << FD << Subobj.Kind << Subobj.Decl | |||
7799 | : S.PDiag())) | |||
7800 | return Result::deleted(); | |||
7801 | } | |||
7802 | ||||
7803 | bool NeedsDeducing = | |||
7804 | OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); | |||
7805 | ||||
7806 | if (FunctionDecl *BestFD = Best->Function) { | |||
7807 | // C++2a [class.compare.default]p3 [P2002R0]: | |||
7808 | // A defaulted comparison function is constexpr-compatible if | |||
7809 | // [...] no overlod resolution performed [...] results in a | |||
7810 | // non-constexpr function. | |||
7811 | assert(!BestFD->isDeleted() && "wrong overload resolution result")((void)0); | |||
7812 | // If it's not constexpr, explain why not. | |||
7813 | if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { | |||
7814 | if (Subobj.Kind != Subobject::CompleteObject) | |||
7815 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) | |||
7816 | << Subobj.Kind << Subobj.Decl; | |||
7817 | S.Diag(BestFD->getLocation(), | |||
7818 | diag::note_defaulted_comparison_not_constexpr_here); | |||
7819 | // Bail out after explaining; we don't want any more notes. | |||
7820 | return Result::deleted(); | |||
7821 | } | |||
7822 | R.Constexpr &= BestFD->isConstexpr(); | |||
7823 | ||||
7824 | if (NeedsDeducing) { | |||
7825 | // If any callee has an undeduced return type, deduce it now. | |||
7826 | // FIXME: It's not clear how a failure here should be handled. For | |||
7827 | // now, we produce an eager diagnostic, because that is forward | |||
7828 | // compatible with most (all?) other reasonable options. | |||
7829 | if (BestFD->getReturnType()->isUndeducedType() && | |||
7830 | S.DeduceReturnType(BestFD, FD->getLocation(), | |||
7831 | /*Diagnose=*/false)) { | |||
7832 | // Don't produce a duplicate error when asked to explain why the | |||
7833 | // comparison is deleted: we diagnosed that when initially checking | |||
7834 | // the defaulted operator. | |||
7835 | if (Diagnose == NoDiagnostics) { | |||
7836 | S.Diag( | |||
7837 | FD->getLocation(), | |||
7838 | diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) | |||
7839 | << Subobj.Kind << Subobj.Decl; | |||
7840 | S.Diag( | |||
7841 | Subobj.Loc, | |||
7842 | diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) | |||
7843 | << Subobj.Kind << Subobj.Decl; | |||
7844 | S.Diag(BestFD->getLocation(), | |||
7845 | diag::note_defaulted_comparison_cannot_deduce_callee) | |||
7846 | << Subobj.Kind << Subobj.Decl; | |||
7847 | } | |||
7848 | return Result::deleted(); | |||
7849 | } | |||
7850 | auto *Info = S.Context.CompCategories.lookupInfoForType( | |||
7851 | BestFD->getCallResultType()); | |||
7852 | if (!Info) { | |||
7853 | if (Diagnose == ExplainDeleted) { | |||
7854 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) | |||
7855 | << Subobj.Kind << Subobj.Decl | |||
7856 | << BestFD->getCallResultType().withoutLocalFastQualifiers(); | |||
7857 | S.Diag(BestFD->getLocation(), | |||
7858 | diag::note_defaulted_comparison_cannot_deduce_callee) | |||
7859 | << Subobj.Kind << Subobj.Decl; | |||
7860 | } | |||
7861 | return Result::deleted(); | |||
7862 | } | |||
7863 | R.Category = Info->Kind; | |||
7864 | } | |||
7865 | } else { | |||
7866 | QualType T = Best->BuiltinParamTypes[0]; | |||
7867 | assert(T == Best->BuiltinParamTypes[1] &&((void)0) | |||
7868 | "builtin comparison for different types?")((void)0); | |||
7869 | assert(Best->BuiltinParamTypes[2].isNull() &&((void)0) | |||
7870 | "invalid builtin comparison")((void)0); | |||
7871 | ||||
7872 | if (NeedsDeducing) { | |||
7873 | Optional<ComparisonCategoryType> Cat = | |||
7874 | getComparisonCategoryForBuiltinCmp(T); | |||
7875 | assert(Cat && "no category for builtin comparison?")((void)0); | |||
7876 | R.Category = *Cat; | |||
7877 | } | |||
7878 | } | |||
7879 | ||||
7880 | // Note that we might be rewriting to a different operator. That call is | |||
7881 | // not considered until we come to actually build the comparison function. | |||
7882 | break; | |||
7883 | } | |||
7884 | ||||
7885 | case OR_Ambiguous: | |||
7886 | if (Diagnose == ExplainDeleted) { | |||
7887 | unsigned Kind = 0; | |||
7888 | if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) | |||
7889 | Kind = OO == OO_EqualEqual ? 1 : 2; | |||
7890 | CandidateSet.NoteCandidates( | |||
7891 | PartialDiagnosticAt( | |||
7892 | Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) | |||
7893 | << FD << Kind << Subobj.Kind << Subobj.Decl), | |||
7894 | S, OCD_AmbiguousCandidates, Args); | |||
7895 | } | |||
7896 | R = Result::deleted(); | |||
7897 | break; | |||
7898 | ||||
7899 | case OR_Deleted: | |||
7900 | if (Diagnose == ExplainDeleted) { | |||
7901 | if ((DCK == DefaultedComparisonKind::NotEqual || | |||
7902 | DCK == DefaultedComparisonKind::Relational) && | |||
7903 | !Best->RewriteKind) { | |||
7904 | S.Diag(Best->Function->getLocation(), | |||
7905 | diag::note_defaulted_comparison_not_rewritten_callee) | |||
7906 | << FD; | |||
7907 | } else { | |||
7908 | S.Diag(Subobj.Loc, | |||
7909 | diag::note_defaulted_comparison_calls_deleted) | |||
7910 | << FD << Subobj.Kind << Subobj.Decl; | |||
7911 | S.NoteDeletedFunction(Best->Function); | |||
7912 | } | |||
7913 | } | |||
7914 | R = Result::deleted(); | |||
7915 | break; | |||
7916 | ||||
7917 | case OR_No_Viable_Function: | |||
7918 | // If there's no usable candidate, we're done unless we can rewrite a | |||
7919 | // '<=>' in terms of '==' and '<'. | |||
7920 | if (OO == OO_Spaceship && | |||
7921 | S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { | |||
7922 | // For any kind of comparison category return type, we need a usable | |||
7923 | // '==' and a usable '<'. | |||
7924 | if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, | |||
7925 | &CandidateSet))) | |||
7926 | R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); | |||
7927 | break; | |||
7928 | } | |||
7929 | ||||
7930 | if (Diagnose == ExplainDeleted) { | |||
7931 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) | |||
7932 | << FD << Subobj.Kind << Subobj.Decl; | |||
7933 | ||||
7934 | // For a three-way comparison, list both the candidates for the | |||
7935 | // original operator and the candidates for the synthesized operator. | |||
7936 | if (SpaceshipCandidates) { | |||
7937 | SpaceshipCandidates->NoteCandidates( | |||
7938 | S, Args, | |||
7939 | SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, | |||
7940 | Args, FD->getLocation())); | |||
7941 | S.Diag(Subobj.Loc, | |||
7942 | diag::note_defaulted_comparison_no_viable_function_synthesized) | |||
7943 | << (OO == OO_EqualEqual ? 0 : 1); | |||
7944 | } | |||
7945 | ||||
7946 | CandidateSet.NoteCandidates( | |||
7947 | S, Args, | |||
7948 | CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, | |||
7949 | FD->getLocation())); | |||
7950 | } | |||
7951 | R = Result::deleted(); | |||
7952 | break; | |||
7953 | } | |||
7954 | ||||
7955 | return R; | |||
7956 | } | |||
7957 | }; | |||
7958 | ||||
7959 | /// A list of statements. | |||
7960 | struct StmtListResult { | |||
7961 | bool IsInvalid = false; | |||
7962 | llvm::SmallVector<Stmt*, 16> Stmts; | |||
7963 | ||||
7964 | bool add(const StmtResult &S) { | |||
7965 | IsInvalid |= S.isInvalid(); | |||
7966 | if (IsInvalid) | |||
7967 | return true; | |||
7968 | Stmts.push_back(S.get()); | |||
7969 | return false; | |||
7970 | } | |||
7971 | }; | |||
7972 | ||||
7973 | /// A visitor over the notional body of a defaulted comparison that synthesizes | |||
7974 | /// the actual body. | |||
7975 | class DefaultedComparisonSynthesizer | |||
7976 | : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, | |||
7977 | StmtListResult, StmtResult, | |||
7978 | std::pair<ExprResult, ExprResult>> { | |||
7979 | SourceLocation Loc; | |||
7980 | unsigned ArrayDepth = 0; | |||
7981 | ||||
7982 | public: | |||
7983 | using Base = DefaultedComparisonVisitor; | |||
7984 | using ExprPair = std::pair<ExprResult, ExprResult>; | |||
7985 | ||||
7986 | friend Base; | |||
7987 | ||||
7988 | DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, | |||
7989 | DefaultedComparisonKind DCK, | |||
7990 | SourceLocation BodyLoc) | |||
7991 | : Base(S, RD, FD, DCK), Loc(BodyLoc) {} | |||
7992 | ||||
7993 | /// Build a suitable function body for this defaulted comparison operator. | |||
7994 | StmtResult build() { | |||
7995 | Sema::CompoundScopeRAII CompoundScope(S); | |||
7996 | ||||
7997 | StmtListResult Stmts = visit(); | |||
7998 | if (Stmts.IsInvalid) | |||
7999 | return StmtError(); | |||
8000 | ||||
8001 | ExprResult RetVal; | |||
8002 | switch (DCK) { | |||
8003 | case DefaultedComparisonKind::None: | |||
8004 | llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); | |||
8005 | ||||
8006 | case DefaultedComparisonKind::Equal: { | |||
8007 | // C++2a [class.eq]p3: | |||
8008 | // [...] compar[e] the corresponding elements [...] until the first | |||
8009 | // index i where xi == yi yields [...] false. If no such index exists, | |||
8010 | // V is true. Otherwise, V is false. | |||
8011 | // | |||
8012 | // Join the comparisons with '&&'s and return the result. Use a right | |||
8013 | // fold (traversing the conditions right-to-left), because that | |||
8014 | // short-circuits more naturally. | |||
8015 | auto OldStmts = std::move(Stmts.Stmts); | |||
8016 | Stmts.Stmts.clear(); | |||
8017 | ExprResult CmpSoFar; | |||
8018 | // Finish a particular comparison chain. | |||
8019 | auto FinishCmp = [&] { | |||
8020 | if (Expr *Prior = CmpSoFar.get()) { | |||
8021 | // Convert the last expression to 'return ...;' | |||
8022 | if (RetVal.isUnset() && Stmts.Stmts.empty()) | |||
8023 | RetVal = CmpSoFar; | |||
8024 | // Convert any prior comparison to 'if (!(...)) return false;' | |||
8025 | else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) | |||
8026 | return true; | |||
8027 | CmpSoFar = ExprResult(); | |||
8028 | } | |||
8029 | return false; | |||
8030 | }; | |||
8031 | for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { | |||
8032 | Expr *E = dyn_cast<Expr>(EAsStmt); | |||
8033 | if (!E) { | |||
8034 | // Found an array comparison. | |||
8035 | if (FinishCmp() || Stmts.add(EAsStmt)) | |||
8036 | return StmtError(); | |||
8037 | continue; | |||
8038 | } | |||
8039 | ||||
8040 | if (CmpSoFar.isUnset()) { | |||
8041 | CmpSoFar = E; | |||
8042 | continue; | |||
8043 | } | |||
8044 | CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); | |||
8045 | if (CmpSoFar.isInvalid()) | |||
8046 | return StmtError(); | |||
8047 | } | |||
8048 | if (FinishCmp()) | |||
8049 | return StmtError(); | |||
8050 | std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); | |||
8051 | // If no such index exists, V is true. | |||
8052 | if (RetVal.isUnset()) | |||
8053 | RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); | |||
8054 | break; | |||
8055 | } | |||
8056 | ||||
8057 | case DefaultedComparisonKind::ThreeWay: { | |||
8058 | // Per C++2a [class.spaceship]p3, as a fallback add: | |||
8059 | // return static_cast<R>(std::strong_ordering::equal); | |||
8060 | QualType StrongOrdering = S.CheckComparisonCategoryType( | |||
8061 | ComparisonCategoryType::StrongOrdering, Loc, | |||
8062 | Sema::ComparisonCategoryUsage::DefaultedOperator); | |||
8063 | if (StrongOrdering.isNull()) | |||
8064 | return StmtError(); | |||
8065 | VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) | |||
8066 | .getValueInfo(ComparisonCategoryResult::Equal) | |||
8067 | ->VD; | |||
8068 | RetVal = getDecl(EqualVD); | |||
8069 | if (RetVal.isInvalid()) | |||
8070 | return StmtError(); | |||
8071 | RetVal = buildStaticCastToR(RetVal.get()); | |||
8072 | break; | |||
8073 | } | |||
8074 | ||||
8075 | case DefaultedComparisonKind::NotEqual: | |||
8076 | case DefaultedComparisonKind::Relational: | |||
8077 | RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); | |||
8078 | break; | |||
8079 | } | |||
8080 | ||||
8081 | // Build the final return statement. | |||
8082 | if (RetVal.isInvalid()) | |||
8083 | return StmtError(); | |||
8084 | StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); | |||
8085 | if (ReturnStmt.isInvalid()) | |||
8086 | return StmtError(); | |||
8087 | Stmts.Stmts.push_back(ReturnStmt.get()); | |||
8088 | ||||
8089 | return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); | |||
8090 | } | |||
8091 | ||||
8092 | private: | |||
8093 | ExprResult getDecl(ValueDecl *VD) { | |||
8094 | return S.BuildDeclarationNameExpr( | |||
8095 | CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); | |||
8096 | } | |||
8097 | ||||
8098 | ExprResult getParam(unsigned I) { | |||
8099 | ParmVarDecl *PD = FD->getParamDecl(I); | |||
8100 | return getDecl(PD); | |||
8101 | } | |||
8102 | ||||
8103 | ExprPair getCompleteObject() { | |||
8104 | unsigned Param = 0; | |||
8105 | ExprResult LHS; | |||
8106 | if (isa<CXXMethodDecl>(FD)) { | |||
8107 | // LHS is '*this'. | |||
8108 | LHS = S.ActOnCXXThis(Loc); | |||
8109 | if (!LHS.isInvalid()) | |||
8110 | LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); | |||
8111 | } else { | |||
8112 | LHS = getParam(Param++); | |||
8113 | } | |||
8114 | ExprResult RHS = getParam(Param++); | |||
8115 | assert(Param == FD->getNumParams())((void)0); | |||
8116 | return {LHS, RHS}; | |||
8117 | } | |||
8118 | ||||
8119 | ExprPair getBase(CXXBaseSpecifier *Base) { | |||
8120 | ExprPair Obj = getCompleteObject(); | |||
8121 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) | |||
8122 | return {ExprError(), ExprError()}; | |||
8123 | CXXCastPath Path = {Base}; | |||
8124 | return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), | |||
8125 | CK_DerivedToBase, VK_LValue, &Path), | |||
8126 | S.ImpCastExprToType(Obj.second.get(), Base->getType(), | |||
8127 | CK_DerivedToBase, VK_LValue, &Path)}; | |||
8128 | } | |||
8129 | ||||
8130 | ExprPair getField(FieldDecl *Field) { | |||
8131 | ExprPair Obj = getCompleteObject(); | |||
8132 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) | |||
8133 | return {ExprError(), ExprError()}; | |||
8134 | ||||
8135 | DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); | |||
8136 | DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); | |||
8137 | return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, | |||
8138 | CXXScopeSpec(), Field, Found, NameInfo), | |||
8139 | S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, | |||
8140 | CXXScopeSpec(), Field, Found, NameInfo)}; | |||
8141 | } | |||
8142 | ||||
8143 | // FIXME: When expanding a subobject, register a note in the code synthesis | |||
8144 | // stack to say which subobject we're comparing. | |||
8145 | ||||
8146 | StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { | |||
8147 | if (Cond.isInvalid()) | |||
8148 | return StmtError(); | |||
8149 | ||||
8150 | ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); | |||
8151 | if (NotCond.isInvalid()) | |||
8152 | return StmtError(); | |||
8153 | ||||
8154 | ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); | |||
8155 | assert(!False.isInvalid() && "should never fail")((void)0); | |||
8156 | StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); | |||
8157 | if (ReturnFalse.isInvalid()) | |||
8158 | return StmtError(); | |||
8159 | ||||
8160 | return S.ActOnIfStmt(Loc, false, Loc, nullptr, | |||
8161 | S.ActOnCondition(nullptr, Loc, NotCond.get(), | |||
8162 | Sema::ConditionKind::Boolean), | |||
8163 | Loc, ReturnFalse.get(), SourceLocation(), nullptr); | |||
8164 | } | |||
8165 | ||||
8166 | StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, | |||
8167 | ExprPair Subobj) { | |||
8168 | QualType SizeType = S.Context.getSizeType(); | |||
8169 | Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); | |||
8170 | ||||
8171 | // Build 'size_t i$n = 0'. | |||
8172 | IdentifierInfo *IterationVarName = nullptr; | |||
8173 | { | |||
8174 | SmallString<8> Str; | |||
8175 | llvm::raw_svector_ostream OS(Str); | |||
8176 | OS << "i" << ArrayDepth; | |||
8177 | IterationVarName = &S.Context.Idents.get(OS.str()); | |||
8178 | } | |||
8179 | VarDecl *IterationVar = VarDecl::Create( | |||
8180 | S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, | |||
8181 | S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); | |||
8182 | llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); | |||
8183 | IterationVar->setInit( | |||
8184 | IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); | |||
8185 | Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); | |||
8186 | ||||
8187 | auto IterRef = [&] { | |||
8188 | ExprResult Ref = S.BuildDeclarationNameExpr( | |||
8189 | CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), | |||
8190 | IterationVar); | |||
8191 | assert(!Ref.isInvalid() && "can't reference our own variable?")((void)0); | |||
8192 | return Ref.get(); | |||
8193 | }; | |||
8194 | ||||
8195 | // Build 'i$n != Size'. | |||
8196 | ExprResult Cond = S.CreateBuiltinBinOp( | |||
8197 | Loc, BO_NE, IterRef(), | |||
8198 | IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); | |||
8199 | assert(!Cond.isInvalid() && "should never fail")((void)0); | |||
8200 | ||||
8201 | // Build '++i$n'. | |||
8202 | ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); | |||
8203 | assert(!Inc.isInvalid() && "should never fail")((void)0); | |||
8204 | ||||
8205 | // Build 'a[i$n]' and 'b[i$n]'. | |||
8206 | auto Index = [&](ExprResult E) { | |||
8207 | if (E.isInvalid()) | |||
8208 | return ExprError(); | |||
8209 | return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); | |||
8210 | }; | |||
8211 | Subobj.first = Index(Subobj.first); | |||
8212 | Subobj.second = Index(Subobj.second); | |||
8213 | ||||
8214 | // Compare the array elements. | |||
8215 | ++ArrayDepth; | |||
8216 | StmtResult Substmt = visitSubobject(Type, Subobj); | |||
8217 | --ArrayDepth; | |||
8218 | ||||
8219 | if (Substmt.isInvalid()) | |||
8220 | return StmtError(); | |||
8221 | ||||
8222 | // For the inner level of an 'operator==', build 'if (!cmp) return false;'. | |||
8223 | // For outer levels or for an 'operator<=>' we already have a suitable | |||
8224 | // statement that returns as necessary. | |||
8225 | if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { | |||
8226 | assert(DCK == DefaultedComparisonKind::Equal &&((void)0) | |||
8227 | "should have non-expression statement")((void)0); | |||
8228 | Substmt = buildIfNotCondReturnFalse(ElemCmp); | |||
8229 | if (Substmt.isInvalid()) | |||
8230 | return StmtError(); | |||
8231 | } | |||
8232 | ||||
8233 | // Build 'for (...) ...' | |||
8234 | return S.ActOnForStmt(Loc, Loc, Init, | |||
8235 | S.ActOnCondition(nullptr, Loc, Cond.get(), | |||
8236 | Sema::ConditionKind::Boolean), | |||
8237 | S.MakeFullDiscardedValueExpr(Inc.get()), Loc, | |||
8238 | Substmt.get()); | |||
8239 | } | |||
8240 | ||||
8241 | StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { | |||
8242 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) | |||
8243 | return StmtError(); | |||
8244 | ||||
8245 | OverloadedOperatorKind OO = FD->getOverloadedOperator(); | |||
8246 | BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); | |||
8247 | ExprResult Op; | |||
8248 | if (Type->isOverloadableType()) | |||
8249 | Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), | |||
8250 | Obj.second.get(), /*PerformADL=*/true, | |||
8251 | /*AllowRewrittenCandidates=*/true, FD); | |||
8252 | else | |||
8253 | Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); | |||
8254 | if (Op.isInvalid()) | |||
8255 | return StmtError(); | |||
8256 | ||||
8257 | switch (DCK) { | |||
8258 | case DefaultedComparisonKind::None: | |||
8259 | llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); | |||
8260 | ||||
8261 | case DefaultedComparisonKind::Equal: | |||
8262 | // Per C++2a [class.eq]p2, each comparison is individually contextually | |||
8263 | // converted to bool. | |||
8264 | Op = S.PerformContextuallyConvertToBool(Op.get()); | |||
8265 | if (Op.isInvalid()) | |||
8266 | return StmtError(); | |||
8267 | return Op.get(); | |||
8268 | ||||
8269 | case DefaultedComparisonKind::ThreeWay: { | |||
8270 | // Per C++2a [class.spaceship]p3, form: | |||
8271 | // if (R cmp = static_cast<R>(op); cmp != 0) | |||
8272 | // return cmp; | |||
8273 | QualType R = FD->getReturnType(); | |||
8274 | Op = buildStaticCastToR(Op.get()); | |||
8275 | if (Op.isInvalid()) | |||
8276 | return StmtError(); | |||
8277 | ||||
8278 | // R cmp = ...; | |||
8279 | IdentifierInfo *Name = &S.Context.Idents.get("cmp"); | |||
8280 | VarDecl *VD = | |||
8281 | VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, | |||
8282 | S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); | |||
8283 | S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); | |||
8284 | Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); | |||
8285 | ||||
8286 | // cmp != 0 | |||
8287 | ExprResult VDRef = getDecl(VD); | |||
8288 | if (VDRef.isInvalid()) | |||
8289 | return StmtError(); | |||
8290 | llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); | |||
8291 | Expr *Zero = | |||
8292 | IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); | |||
8293 | ExprResult Comp; | |||
8294 | if (VDRef.get()->getType()->isOverloadableType()) | |||
8295 | Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, | |||
8296 | true, FD); | |||
8297 | else | |||
8298 | Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); | |||
8299 | if (Comp.isInvalid()) | |||
8300 | return StmtError(); | |||
8301 | Sema::ConditionResult Cond = S.ActOnCondition( | |||
8302 | nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); | |||
8303 | if (Cond.isInvalid()) | |||
8304 | return StmtError(); | |||
8305 | ||||
8306 | // return cmp; | |||
8307 | VDRef = getDecl(VD); | |||
8308 | if (VDRef.isInvalid()) | |||
8309 | return StmtError(); | |||
8310 | StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); | |||
8311 | if (ReturnStmt.isInvalid()) | |||
8312 | return StmtError(); | |||
8313 | ||||
8314 | // if (...) | |||
8315 | return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, Loc, InitStmt, Cond, Loc, | |||
8316 | ReturnStmt.get(), | |||
8317 | /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); | |||
8318 | } | |||
8319 | ||||
8320 | case DefaultedComparisonKind::NotEqual: | |||
8321 | case DefaultedComparisonKind::Relational: | |||
8322 | // C++2a [class.compare.secondary]p2: | |||
8323 | // Otherwise, the operator function yields x @ y. | |||
8324 | return Op.get(); | |||
8325 | } | |||
8326 | llvm_unreachable("")__builtin_unreachable(); | |||
8327 | } | |||
8328 | ||||
8329 | /// Build "static_cast<R>(E)". | |||
8330 | ExprResult buildStaticCastToR(Expr *E) { | |||
8331 | QualType R = FD->getReturnType(); | |||
8332 | assert(!R->isUndeducedType() && "type should have been deduced already")((void)0); | |||
8333 | ||||
8334 | // Don't bother forming a no-op cast in the common case. | |||
8335 | if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) | |||
8336 | return E; | |||
8337 | return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, | |||
8338 | S.Context.getTrivialTypeSourceInfo(R, Loc), E, | |||
8339 | SourceRange(Loc, Loc), SourceRange(Loc, Loc)); | |||
8340 | } | |||
8341 | }; | |||
8342 | } | |||
8343 | ||||
8344 | /// Perform the unqualified lookups that might be needed to form a defaulted | |||
8345 | /// comparison function for the given operator. | |||
8346 | static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, | |||
8347 | UnresolvedSetImpl &Operators, | |||
8348 | OverloadedOperatorKind Op) { | |||
8349 | auto Lookup = [&](OverloadedOperatorKind OO) { | |||
8350 | Self.LookupOverloadedOperatorName(OO, S, Operators); | |||
8351 | }; | |||
8352 | ||||
8353 | // Every defaulted operator looks up itself. | |||
8354 | Lookup(Op); | |||
8355 | // ... and the rewritten form of itself, if any. | |||
8356 | if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) | |||
8357 | Lookup(ExtraOp); | |||
8358 | ||||
8359 | // For 'operator<=>', we also form a 'cmp != 0' expression, and might | |||
8360 | // synthesize a three-way comparison from '<' and '=='. In a dependent | |||
8361 | // context, we also need to look up '==' in case we implicitly declare a | |||
8362 | // defaulted 'operator=='. | |||
8363 | if (Op == OO_Spaceship) { | |||
8364 | Lookup(OO_ExclaimEqual); | |||
8365 | Lookup(OO_Less); | |||
8366 | Lookup(OO_EqualEqual); | |||
8367 | } | |||
8368 | } | |||
8369 | ||||
8370 | bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, | |||
8371 | DefaultedComparisonKind DCK) { | |||
8372 | assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison")((void)0); | |||
8373 | ||||
8374 | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); | |||
8375 | assert(RD && "defaulted comparison is not defaulted in a class")((void)0); | |||
8376 | ||||
8377 | // Perform any unqualified lookups we're going to need to default this | |||
8378 | // function. | |||
8379 | if (S) { | |||
8380 | UnresolvedSet<32> Operators; | |||
8381 | lookupOperatorsForDefaultedComparison(*this, S, Operators, | |||
8382 | FD->getOverloadedOperator()); | |||
8383 | FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( | |||
8384 | Context, Operators.pairs())); | |||
8385 | } | |||
8386 | ||||
8387 | // C++2a [class.compare.default]p1: | |||
8388 | // A defaulted comparison operator function for some class C shall be a | |||
8389 | // non-template function declared in the member-specification of C that is | |||
8390 | // -- a non-static const member of C having one parameter of type | |||
8391 | // const C&, or | |||
8392 | // -- a friend of C having two parameters of type const C& or two | |||
8393 | // parameters of type C. | |||
8394 | QualType ExpectedParmType1 = Context.getRecordType(RD); | |||
8395 | QualType ExpectedParmType2 = | |||
8396 | Context.getLValueReferenceType(ExpectedParmType1.withConst()); | |||
8397 | if (isa<CXXMethodDecl>(FD)) | |||
8398 | ExpectedParmType1 = ExpectedParmType2; | |||
8399 | for (const ParmVarDecl *Param : FD->parameters()) { | |||
8400 | if (!Param->getType()->isDependentType() && | |||
8401 | !Context.hasSameType(Param->getType(), ExpectedParmType1) && | |||
8402 | !Context.hasSameType(Param->getType(), ExpectedParmType2)) { | |||
8403 | // Don't diagnose an implicit 'operator=='; we will have diagnosed the | |||
8404 | // corresponding defaulted 'operator<=>' already. | |||
8405 | if (!FD->isImplicit()) { | |||
8406 | Diag(FD->getLocation(), diag::err_defaulted_comparison_param) | |||
8407 | << (int)DCK << Param->getType() << ExpectedParmType1 | |||
8408 | << !isa<CXXMethodDecl>(FD) | |||
8409 | << ExpectedParmType2 << Param->getSourceRange(); | |||
8410 | } | |||
8411 | return true; | |||
8412 | } | |||
8413 | } | |||
8414 | if (FD->getNumParams() == 2 && | |||
8415 | !Context.hasSameType(FD->getParamDecl(0)->getType(), | |||
8416 | FD->getParamDecl(1)->getType())) { | |||
8417 | if (!FD->isImplicit()) { | |||
8418 | Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) | |||
8419 | << (int)DCK | |||
8420 | << FD->getParamDecl(0)->getType() | |||
8421 | << FD->getParamDecl(0)->getSourceRange() | |||
8422 | << FD->getParamDecl(1)->getType() | |||
8423 | << FD->getParamDecl(1)->getSourceRange(); | |||
8424 | } | |||
8425 | return true; | |||
8426 | } | |||
8427 | ||||
8428 | // ... non-static const member ... | |||
8429 | if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | |||
8430 | assert(!MD->isStatic() && "comparison function cannot be a static member")((void)0); | |||
8431 | if (!MD->isConst()) { | |||
8432 | SourceLocation InsertLoc; | |||
8433 | if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) | |||
8434 | InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); | |||
8435 | // Don't diagnose an implicit 'operator=='; we will have diagnosed the | |||
8436 | // corresponding defaulted 'operator<=>' already. | |||
8437 | if (!MD->isImplicit()) { | |||
8438 | Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) | |||
8439 | << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); | |||
8440 | } | |||
8441 | ||||
8442 | // Add the 'const' to the type to recover. | |||
8443 | const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); | |||
8444 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | |||
8445 | EPI.TypeQuals.addConst(); | |||
8446 | MD->setType(Context.getFunctionType(FPT->getReturnType(), | |||
8447 | FPT->getParamTypes(), EPI)); | |||
8448 | } | |||
8449 | } else { | |||
8450 | // A non-member function declared in a class must be a friend. | |||
8451 | assert(FD->getFriendObjectKind() && "expected a friend declaration")((void)0); | |||
8452 | } | |||
8453 | ||||
8454 | // C++2a [class.eq]p1, [class.rel]p1: | |||
8455 | // A [defaulted comparison other than <=>] shall have a declared return | |||
8456 | // type bool. | |||
8457 | if (DCK != DefaultedComparisonKind::ThreeWay && | |||
8458 | !FD->getDeclaredReturnType()->isDependentType() && | |||
8459 | !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { | |||
8460 | Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) | |||
8461 | << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy | |||
8462 | << FD->getReturnTypeSourceRange(); | |||
8463 | return true; | |||
8464 | } | |||
8465 | // C++2a [class.spaceship]p2 [P2002R0]: | |||
8466 | // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, | |||
8467 | // R shall not contain a placeholder type. | |||
8468 | if (DCK == DefaultedComparisonKind::ThreeWay && | |||
8469 | FD->getDeclaredReturnType()->getContainedDeducedType() && | |||
8470 | !Context.hasSameType(FD->getDeclaredReturnType(), | |||
8471 | Context.getAutoDeductType())) { | |||
8472 | Diag(FD->getLocation(), | |||
8473 | diag::err_defaulted_comparison_deduced_return_type_not_auto) | |||
8474 | << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy | |||
8475 | << FD->getReturnTypeSourceRange(); | |||
8476 | return true; | |||
8477 | } | |||
8478 | ||||
8479 | // For a defaulted function in a dependent class, defer all remaining checks | |||
8480 | // until instantiation. | |||
8481 | if (RD->isDependentType()) | |||
8482 | return false; | |||
8483 | ||||
8484 | // Determine whether the function should be defined as deleted. | |||
8485 | DefaultedComparisonInfo Info = | |||
8486 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); | |||
8487 | ||||
8488 | bool First = FD == FD->getCanonicalDecl(); | |||
8489 | ||||
8490 | // If we want to delete the function, then do so; there's nothing else to | |||
8491 | // check in that case. | |||
8492 | if (Info.Deleted) { | |||
8493 | if (!First) { | |||
8494 | // C++11 [dcl.fct.def.default]p4: | |||
8495 | // [For a] user-provided explicitly-defaulted function [...] if such a | |||
8496 | // function is implicitly defined as deleted, the program is ill-formed. | |||
8497 | // | |||
8498 | // This is really just a consequence of the general rule that you can | |||
8499 | // only delete a function on its first declaration. | |||
8500 | Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) | |||
8501 | << FD->isImplicit() << (int)DCK; | |||
8502 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, | |||
8503 | DefaultedComparisonAnalyzer::ExplainDeleted) | |||
8504 | .visit(); | |||
8505 | return true; | |||
8506 | } | |||
8507 | ||||
8508 | SetDeclDeleted(FD, FD->getLocation()); | |||
8509 | if (!inTemplateInstantiation() && !FD->isImplicit()) { | |||
8510 | Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) | |||
8511 | << (int)DCK; | |||
8512 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, | |||
8513 | DefaultedComparisonAnalyzer::ExplainDeleted) | |||
8514 | .visit(); | |||
8515 | } | |||
8516 | return false; | |||
8517 | } | |||
8518 | ||||
8519 | // C++2a [class.spaceship]p2: | |||
8520 | // The return type is deduced as the common comparison type of R0, R1, ... | |||
8521 | if (DCK == DefaultedComparisonKind::ThreeWay && | |||
8522 | FD->getDeclaredReturnType()->isUndeducedAutoType()) { | |||
8523 | SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); | |||
8524 | if (RetLoc.isInvalid()) | |||
8525 | RetLoc = FD->getBeginLoc(); | |||
8526 | // FIXME: Should we really care whether we have the complete type and the | |||
8527 | // 'enumerator' constants here? A forward declaration seems sufficient. | |||
8528 | QualType Cat = CheckComparisonCategoryType( | |||
8529 | Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); | |||
8530 | if (Cat.isNull()) | |||
8531 | return true; | |||
8532 | Context.adjustDeducedFunctionResultType( | |||
8533 | FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); | |||
8534 | } | |||
8535 | ||||
8536 | // C++2a [dcl.fct.def.default]p3 [P2002R0]: | |||
8537 | // An explicitly-defaulted function that is not defined as deleted may be | |||
8538 | // declared constexpr or consteval only if it is constexpr-compatible. | |||
8539 | // C++2a [class.compare.default]p3 [P2002R0]: | |||
8540 | // A defaulted comparison function is constexpr-compatible if it satisfies | |||
8541 | // the requirements for a constexpr function [...] | |||
8542 | // The only relevant requirements are that the parameter and return types are | |||
8543 | // literal types. The remaining conditions are checked by the analyzer. | |||
8544 | if (FD->isConstexpr()) { | |||
8545 | if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && | |||
8546 | CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && | |||
8547 | !Info.Constexpr) { | |||
8548 | Diag(FD->getBeginLoc(), | |||
8549 | diag::err_incorrect_defaulted_comparison_constexpr) | |||
8550 | << FD->isImplicit() << (int)DCK << FD->isConsteval(); | |||
8551 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, | |||
8552 | DefaultedComparisonAnalyzer::ExplainConstexpr) | |||
8553 | .visit(); | |||
8554 | } | |||
8555 | } | |||
8556 | ||||
8557 | // C++2a [dcl.fct.def.default]p3 [P2002R0]: | |||
8558 | // If a constexpr-compatible function is explicitly defaulted on its first | |||
8559 | // declaration, it is implicitly considered to be constexpr. | |||
8560 | // FIXME: Only applying this to the first declaration seems problematic, as | |||
8561 | // simple reorderings can affect the meaning of the program. | |||
8562 | if (First && !FD->isConstexpr() && Info.Constexpr) | |||
8563 | FD->setConstexprKind(ConstexprSpecKind::Constexpr); | |||
8564 | ||||
8565 | // C++2a [except.spec]p3: | |||
8566 | // If a declaration of a function does not have a noexcept-specifier | |||
8567 | // [and] is defaulted on its first declaration, [...] the exception | |||
8568 | // specification is as specified below | |||
8569 | if (FD->getExceptionSpecType() == EST_None) { | |||
8570 | auto *FPT = FD->getType()->castAs<FunctionProtoType>(); | |||
8571 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | |||
8572 | EPI.ExceptionSpec.Type = EST_Unevaluated; | |||
8573 | EPI.ExceptionSpec.SourceDecl = FD; | |||
8574 | FD->setType(Context.getFunctionType(FPT->getReturnType(), | |||
8575 | FPT->getParamTypes(), EPI)); | |||
8576 | } | |||
8577 | ||||
8578 | return false; | |||
8579 | } | |||
8580 | ||||
8581 | void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, | |||
8582 | FunctionDecl *Spaceship) { | |||
8583 | Sema::CodeSynthesisContext Ctx; | |||
8584 | Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; | |||
8585 | Ctx.PointOfInstantiation = Spaceship->getEndLoc(); | |||
8586 | Ctx.Entity = Spaceship; | |||
8587 | pushCodeSynthesisContext(Ctx); | |||
8588 | ||||
8589 | if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) | |||
8590 | EqualEqual->setImplicit(); | |||
8591 | ||||
8592 | popCodeSynthesisContext(); | |||
8593 | } | |||
8594 | ||||
8595 | void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, | |||
8596 | DefaultedComparisonKind DCK) { | |||
8597 | assert(FD->isDefaulted() && !FD->isDeleted() &&((void)0) | |||
8598 | !FD->doesThisDeclarationHaveABody())((void)0); | |||
8599 | if (FD->willHaveBody() || FD->isInvalidDecl()) | |||
8600 | return; | |||
8601 | ||||
8602 | SynthesizedFunctionScope Scope(*this, FD); | |||
8603 | ||||
8604 | // Add a context note for diagnostics produced after this point. | |||
8605 | Scope.addContextNote(UseLoc); | |||
8606 | ||||
8607 | { | |||
8608 | // Build and set up the function body. | |||
8609 | CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); | |||
8610 | SourceLocation BodyLoc = | |||
8611 | FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); | |||
8612 | StmtResult Body = | |||
8613 | DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); | |||
8614 | if (Body.isInvalid()) { | |||
8615 | FD->setInvalidDecl(); | |||
8616 | return; | |||
8617 | } | |||
8618 | FD->setBody(Body.get()); | |||
8619 | FD->markUsed(Context); | |||
8620 | } | |||
8621 | ||||
8622 | // The exception specification is needed because we are defining the | |||
8623 | // function. Note that this will reuse the body we just built. | |||
8624 | ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); | |||
8625 | ||||
8626 | if (ASTMutationListener *L = getASTMutationListener()) | |||
8627 | L->CompletedImplicitDefinition(FD); | |||
8628 | } | |||
8629 | ||||
8630 | static Sema::ImplicitExceptionSpecification | |||
8631 | ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, | |||
8632 | FunctionDecl *FD, | |||
8633 | Sema::DefaultedComparisonKind DCK) { | |||
8634 | ComputingExceptionSpec CES(S, FD, Loc); | |||
8635 | Sema::ImplicitExceptionSpecification ExceptSpec(S); | |||
8636 | ||||
8637 | if (FD->isInvalidDecl()) | |||
8638 | return ExceptSpec; | |||
8639 | ||||
8640 | // The common case is that we just defined the comparison function. In that | |||
8641 | // case, just look at whether the body can throw. | |||
8642 | if (FD->hasBody()) { | |||
8643 | ExceptSpec.CalledStmt(FD->getBody()); | |||
8644 | } else { | |||
8645 | // Otherwise, build a body so we can check it. This should ideally only | |||
8646 | // happen when we're not actually marking the function referenced. (This is | |||
8647 | // only really important for efficiency: we don't want to build and throw | |||
8648 | // away bodies for comparison functions more than we strictly need to.) | |||
8649 | ||||
8650 | // Pretend to synthesize the function body in an unevaluated context. | |||
8651 | // Note that we can't actually just go ahead and define the function here: | |||
8652 | // we are not permitted to mark its callees as referenced. | |||
8653 | Sema::SynthesizedFunctionScope Scope(S, FD); | |||
8654 | EnterExpressionEvaluationContext Context( | |||
8655 | S, Sema::ExpressionEvaluationContext::Unevaluated); | |||
8656 | ||||
8657 | CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); | |||
8658 | SourceLocation BodyLoc = | |||
8659 | FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); | |||
8660 | StmtResult Body = | |||
8661 | DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); | |||
8662 | if (!Body.isInvalid()) | |||
8663 | ExceptSpec.CalledStmt(Body.get()); | |||
8664 | ||||
8665 | // FIXME: Can we hold onto this body and just transform it to potentially | |||
8666 | // evaluated when we're asked to define the function rather than rebuilding | |||
8667 | // it? Either that, or we should only build the bits of the body that we | |||
8668 | // need (the expressions, not the statements). | |||
8669 | } | |||
8670 | ||||
8671 | return ExceptSpec; | |||
8672 | } | |||
8673 | ||||
8674 | void Sema::CheckDelayedMemberExceptionSpecs() { | |||
8675 | decltype(DelayedOverridingExceptionSpecChecks) Overriding; | |||
8676 | decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; | |||
8677 | ||||
8678 | std::swap(Overriding, DelayedOverridingExceptionSpecChecks); | |||
8679 | std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); | |||
8680 | ||||
8681 | // Perform any deferred checking of exception specifications for virtual | |||
8682 | // destructors. | |||
8683 | for (auto &Check : Overriding) | |||
8684 | CheckOverridingFunctionExceptionSpec(Check.first, Check.second); | |||
8685 | ||||
8686 | // Perform any deferred checking of exception specifications for befriended | |||
8687 | // special members. | |||
8688 | for (auto &Check : Equivalent) | |||
8689 | CheckEquivalentExceptionSpec(Check.second, Check.first); | |||
8690 | } | |||
8691 | ||||
8692 | namespace { | |||
8693 | /// CRTP base class for visiting operations performed by a special member | |||
8694 | /// function (or inherited constructor). | |||
8695 | template<typename Derived> | |||
8696 | struct SpecialMemberVisitor { | |||
8697 | Sema &S; | |||
8698 | CXXMethodDecl *MD; | |||
8699 | Sema::CXXSpecialMember CSM; | |||
8700 | Sema::InheritedConstructorInfo *ICI; | |||
8701 | ||||
8702 | // Properties of the special member, computed for convenience. | |||
8703 | bool IsConstructor = false, IsAssignment = false, ConstArg = false; | |||
8704 | ||||
8705 | SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, | |||
8706 | Sema::InheritedConstructorInfo *ICI) | |||
8707 | : S(S), MD(MD), CSM(CSM), ICI(ICI) { | |||
8708 | switch (CSM) { | |||
8709 | case Sema::CXXDefaultConstructor: | |||
8710 | case Sema::CXXCopyConstructor: | |||
8711 | case Sema::CXXMoveConstructor: | |||
8712 | IsConstructor = true; | |||
8713 | break; | |||
8714 | case Sema::CXXCopyAssignment: | |||
8715 | case Sema::CXXMoveAssignment: | |||
8716 | IsAssignment = true; | |||
8717 | break; | |||
8718 | case Sema::CXXDestructor: | |||
8719 | break; | |||
8720 | case Sema::CXXInvalid: | |||
8721 | llvm_unreachable("invalid special member kind")__builtin_unreachable(); | |||
8722 | } | |||
8723 | ||||
8724 | if (MD->getNumParams()) { | |||
8725 | if (const ReferenceType *RT = | |||
8726 | MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) | |||
8727 | ConstArg = RT->getPointeeType().isConstQualified(); | |||
8728 | } | |||
8729 | } | |||
8730 | ||||
8731 | Derived &getDerived() { return static_cast<Derived&>(*this); } | |||
8732 | ||||
8733 | /// Is this a "move" special member? | |||
8734 | bool isMove() const { | |||
8735 | return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; | |||
8736 | } | |||
8737 | ||||
8738 | /// Look up the corresponding special member in the given class. | |||
8739 | Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, | |||
8740 | unsigned Quals, bool IsMutable) { | |||
8741 | return lookupCallFromSpecialMember(S, Class, CSM, Quals, | |||
8742 | ConstArg && !IsMutable); | |||
8743 | } | |||
8744 | ||||
8745 | /// Look up the constructor for the specified base class to see if it's | |||
8746 | /// overridden due to this being an inherited constructor. | |||
8747 | Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { | |||
8748 | if (!ICI) | |||
8749 | return {}; | |||
8750 | assert(CSM == Sema::CXXDefaultConstructor)((void)0); | |||
8751 | auto *BaseCtor = | |||
8752 | cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); | |||
8753 | if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) | |||
8754 | return MD; | |||
8755 | return {}; | |||
8756 | } | |||
8757 | ||||
8758 | /// A base or member subobject. | |||
8759 | typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; | |||
8760 | ||||
8761 | /// Get the location to use for a subobject in diagnostics. | |||
8762 | static SourceLocation getSubobjectLoc(Subobject Subobj) { | |||
8763 | // FIXME: For an indirect virtual base, the direct base leading to | |||
8764 | // the indirect virtual base would be a more useful choice. | |||
8765 | if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) | |||
8766 | return B->getBaseTypeLoc(); | |||
8767 | else | |||
8768 | return Subobj.get<FieldDecl*>()->getLocation(); | |||
8769 | } | |||
8770 | ||||
8771 | enum BasesToVisit { | |||
8772 | /// Visit all non-virtual (direct) bases. | |||
8773 | VisitNonVirtualBases, | |||
8774 | /// Visit all direct bases, virtual or not. | |||
8775 | VisitDirectBases, | |||
8776 | /// Visit all non-virtual bases, and all virtual bases if the class | |||
8777 | /// is not abstract. | |||
8778 | VisitPotentiallyConstructedBases, | |||
8779 | /// Visit all direct or virtual bases. | |||
8780 | VisitAllBases | |||
8781 | }; | |||
8782 | ||||
8783 | // Visit the bases and members of the class. | |||
8784 | bool visit(BasesToVisit Bases) { | |||
8785 | CXXRecordDecl *RD = MD->getParent(); | |||
8786 | ||||
8787 | if (Bases == VisitPotentiallyConstructedBases) | |||
8788 | Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; | |||
8789 | ||||
8790 | for (auto &B : RD->bases()) | |||
8791 | if ((Bases == VisitDirectBases || !B.isVirtual()) && | |||
8792 | getDerived().visitBase(&B)) | |||
8793 | return true; | |||
8794 | ||||
8795 | if (Bases == VisitAllBases) | |||
8796 | for (auto &B : RD->vbases()) | |||
8797 | if (getDerived().visitBase(&B)) | |||
8798 | return true; | |||
8799 | ||||
8800 | for (auto *F : RD->fields()) | |||
8801 | if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && | |||
8802 | getDerived().visitField(F)) | |||
8803 | return true; | |||
8804 | ||||
8805 | return false; | |||
8806 | } | |||
8807 | }; | |||
8808 | } | |||
8809 | ||||
8810 | namespace { | |||
8811 | struct SpecialMemberDeletionInfo | |||
8812 | : SpecialMemberVisitor<SpecialMemberDeletionInfo> { | |||
8813 | bool Diagnose; | |||
8814 | ||||
8815 | SourceLocation Loc; | |||
8816 | ||||
8817 | bool AllFieldsAreConst; | |||
8818 | ||||
8819 | SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, | |||
8820 | Sema::CXXSpecialMember CSM, | |||
8821 | Sema::InheritedConstructorInfo *ICI, bool Diagnose) | |||
8822 | : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), | |||
8823 | Loc(MD->getLocation()), AllFieldsAreConst(true) {} | |||
8824 | ||||
8825 | bool inUnion() const { return MD->getParent()->isUnion(); } | |||
8826 | ||||
8827 | Sema::CXXSpecialMember getEffectiveCSM() { | |||
8828 | return ICI ? Sema::CXXInvalid : CSM; | |||
8829 | } | |||
8830 | ||||
8831 | bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); | |||
8832 | ||||
8833 | bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } | |||
8834 | bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } | |||
8835 | ||||
8836 | bool shouldDeleteForBase(CXXBaseSpecifier *Base); | |||
8837 | bool shouldDeleteForField(FieldDecl *FD); | |||
8838 | bool shouldDeleteForAllConstMembers(); | |||
8839 | ||||
8840 | bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, | |||
8841 | unsigned Quals); | |||
8842 | bool shouldDeleteForSubobjectCall(Subobject Subobj, | |||
8843 | Sema::SpecialMemberOverloadResult SMOR, | |||
8844 | bool IsDtorCallInCtor); | |||
8845 | ||||
8846 | bool isAccessible(Subobject Subobj, CXXMethodDecl *D); | |||
8847 | }; | |||
8848 | } | |||
8849 | ||||
8850 | /// Is the given special member inaccessible when used on the given | |||
8851 | /// sub-object. | |||
8852 | bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, | |||
8853 | CXXMethodDecl *target) { | |||
8854 | /// If we're operating on a base class, the object type is the | |||
8855 | /// type of this special member. | |||
8856 | QualType objectTy; | |||
8857 | AccessSpecifier access = target->getAccess(); | |||
8858 | if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { | |||
8859 | objectTy = S.Context.getTypeDeclType(MD->getParent()); | |||
8860 | access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); | |||
8861 | ||||
8862 | // If we're operating on a field, the object type is the type of the field. | |||
8863 | } else { | |||
8864 | objectTy = S.Context.getTypeDeclType(target->getParent()); | |||
8865 | } | |||
8866 | ||||
8867 | return S.isMemberAccessibleForDeletion( | |||
8868 | target->getParent(), DeclAccessPair::make(target, access), objectTy); | |||
8869 | } | |||
8870 | ||||
8871 | /// Check whether we should delete a special member due to the implicit | |||
8872 | /// definition containing a call to a special member of a subobject. | |||
8873 | bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( | |||
8874 | Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, | |||
8875 | bool IsDtorCallInCtor) { | |||
8876 | CXXMethodDecl *Decl = SMOR.getMethod(); | |||
8877 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); | |||
8878 | ||||
8879 | int DiagKind = -1; | |||
8880 | ||||
8881 | if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) | |||
8882 | DiagKind = !Decl ? 0 : 1; | |||
8883 | else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) | |||
8884 | DiagKind = 2; | |||
8885 | else if (!isAccessible(Subobj, Decl)) | |||
8886 | DiagKind = 3; | |||
8887 | else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && | |||
8888 | !Decl->isTrivial()) { | |||
8889 | // A member of a union must have a trivial corresponding special member. | |||
8890 | // As a weird special case, a destructor call from a union's constructor | |||
8891 | // must be accessible and non-deleted, but need not be trivial. Such a | |||
8892 | // destructor is never actually called, but is semantically checked as | |||
8893 | // if it were. | |||
8894 | DiagKind = 4; | |||
8895 | } | |||
8896 | ||||
8897 | if (DiagKind == -1) | |||
8898 | return false; | |||
8899 | ||||
8900 | if (Diagnose) { | |||
8901 | if (Field) { | |||
8902 | S.Diag(Field->getLocation(), | |||
8903 | diag::note_deleted_special_member_class_subobject) | |||
8904 | << getEffectiveCSM() << MD->getParent() << /*IsField*/true | |||
8905 | << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; | |||
8906 | } else { | |||
8907 | CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); | |||
8908 | S.Diag(Base->getBeginLoc(), | |||
8909 | diag::note_deleted_special_member_class_subobject) | |||
8910 | << getEffectiveCSM() << MD->getParent() << /*IsField*/ false | |||
8911 | << Base->getType() << DiagKind << IsDtorCallInCtor | |||
8912 | << /*IsObjCPtr*/false; | |||
8913 | } | |||
8914 | ||||
8915 | if (DiagKind == 1) | |||
8916 | S.NoteDeletedFunction(Decl); | |||
8917 | // FIXME: Explain inaccessibility if DiagKind == 3. | |||
8918 | } | |||
8919 | ||||
8920 | return true; | |||
8921 | } | |||
8922 | ||||
8923 | /// Check whether we should delete a special member function due to having a | |||
8924 | /// direct or virtual base class or non-static data member of class type M. | |||
8925 | bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( | |||
8926 | CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { | |||
8927 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); | |||
8928 | bool IsMutable = Field && Field->isMutable(); | |||
8929 | ||||
8930 | // C++11 [class.ctor]p5: | |||
8931 | // -- any direct or virtual base class, or non-static data member with no | |||
8932 | // brace-or-equal-initializer, has class type M (or array thereof) and | |||
8933 | // either M has no default constructor or overload resolution as applied | |||
8934 | // to M's default constructor results in an ambiguity or in a function | |||
8935 | // that is deleted or inaccessible | |||
8936 | // C++11 [class.copy]p11, C++11 [class.copy]p23: | |||
8937 | // -- a direct or virtual base class B that cannot be copied/moved because | |||
8938 | // overload resolution, as applied to B's corresponding special member, | |||
8939 | // results in an ambiguity or a function that is deleted or inaccessible | |||
8940 | // from the defaulted special member | |||
8941 | // C++11 [class.dtor]p5: | |||
8942 | // -- any direct or virtual base class [...] has a type with a destructor | |||
8943 | // that is deleted or inaccessible | |||
8944 | if (!(CSM == Sema::CXXDefaultConstructor && | |||
8945 | Field && Field->hasInClassInitializer()) && | |||
8946 | shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), | |||
8947 | false)) | |||
8948 | return true; | |||
8949 | ||||
8950 | // C++11 [class.ctor]p5, C++11 [class.copy]p11: | |||
8951 | // -- any direct or virtual base class or non-static data member has a | |||
8952 | // type with a destructor that is deleted or inaccessible | |||
8953 | if (IsConstructor) { | |||
8954 | Sema::SpecialMemberOverloadResult SMOR = | |||
8955 | S.LookupSpecialMember(Class, Sema::CXXDestructor, | |||
8956 | false, false, false, false, false); | |||
8957 | if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) | |||
8958 | return true; | |||
8959 | } | |||
8960 | ||||
8961 | return false; | |||
8962 | } | |||
8963 | ||||
8964 | bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( | |||
8965 | FieldDecl *FD, QualType FieldType) { | |||
8966 | // The defaulted special functions are defined as deleted if this is a variant | |||
8967 | // member with a non-trivial ownership type, e.g., ObjC __strong or __weak | |||
8968 | // type under ARC. | |||
8969 | if (!FieldType.hasNonTrivialObjCLifetime()) | |||
8970 | return false; | |||
8971 | ||||
8972 | // Don't make the defaulted default constructor defined as deleted if the | |||
8973 | // member has an in-class initializer. | |||
8974 | if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) | |||
8975 | return false; | |||
8976 | ||||
8977 | if (Diagnose) { | |||
8978 | auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); | |||
8979 | S.Diag(FD->getLocation(), | |||
8980 | diag::note_deleted_special_member_class_subobject) | |||
8981 | << getEffectiveCSM() << ParentClass << /*IsField*/true | |||
8982 | << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; | |||
8983 | } | |||
8984 | ||||
8985 | return true; | |||
8986 | } | |||
8987 | ||||
8988 | /// Check whether we should delete a special member function due to the class | |||
8989 | /// having a particular direct or virtual base class. | |||
8990 | bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { | |||
8991 | CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); | |||
8992 | // If program is correct, BaseClass cannot be null, but if it is, the error | |||
8993 | // must be reported elsewhere. | |||
8994 | if (!BaseClass) | |||
8995 | return false; | |||
8996 | // If we have an inheriting constructor, check whether we're calling an | |||
8997 | // inherited constructor instead of a default constructor. | |||
8998 | Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); | |||
8999 | if (auto *BaseCtor = SMOR.getMethod()) { | |||
9000 | // Note that we do not check access along this path; other than that, | |||
9001 | // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); | |||
9002 | // FIXME: Check that the base has a usable destructor! Sink this into | |||
9003 | // shouldDeleteForClassSubobject. | |||
9004 | if (BaseCtor->isDeleted() && Diagnose) { | |||
9005 | S.Diag(Base->getBeginLoc(), | |||
9006 | diag::note_deleted_special_member_class_subobject) | |||
9007 | << getEffectiveCSM() << MD->getParent() << /*IsField*/ false | |||
9008 | << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false | |||
9009 | << /*IsObjCPtr*/false; | |||
9010 | S.NoteDeletedFunction(BaseCtor); | |||
9011 | } | |||
9012 | return BaseCtor->isDeleted(); | |||
9013 | } | |||
9014 | return shouldDeleteForClassSubobject(BaseClass, Base, 0); | |||
9015 | } | |||
9016 | ||||
9017 | /// Check whether we should delete a special member function due to the class | |||
9018 | /// having a particular non-static data member. | |||
9019 | bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { | |||
9020 | QualType FieldType = S.Context.getBaseElementType(FD->getType()); | |||
9021 | CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); | |||
9022 | ||||
9023 | if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) | |||
9024 | return true; | |||
9025 | ||||
9026 | if (CSM == Sema::CXXDefaultConstructor) { | |||
9027 | // For a default constructor, all references must be initialized in-class | |||
9028 | // and, if a union, it must have a non-const member. | |||
9029 | if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { | |||
9030 | if (Diagnose) | |||
9031 | S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) | |||
9032 | << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; | |||
9033 | return true; | |||
9034 | } | |||
9035 | // C++11 [class.ctor]p5: any non-variant non-static data member of | |||
9036 | // const-qualified type (or array thereof) with no | |||
9037 | // brace-or-equal-initializer does not have a user-provided default | |||
9038 | // constructor. | |||
9039 | if (!inUnion() && FieldType.isConstQualified() && | |||
9040 | !FD->hasInClassInitializer() && | |||
9041 | (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { | |||
9042 | if (Diagnose) | |||
9043 | S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) | |||
9044 | << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; | |||
9045 | return true; | |||
9046 | } | |||
9047 | ||||
9048 | if (inUnion() && !FieldType.isConstQualified()) | |||
9049 | AllFieldsAreConst = false; | |||
9050 | } else if (CSM == Sema::CXXCopyConstructor) { | |||
9051 | // For a copy constructor, data members must not be of rvalue reference | |||
9052 | // type. | |||
9053 | if (FieldType->isRValueReferenceType()) { | |||
9054 | if (Diagnose) | |||
9055 | S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) | |||
9056 | << MD->getParent() << FD << FieldType; | |||
9057 | return true; | |||
9058 | } | |||
9059 | } else if (IsAssignment) { | |||
9060 | // For an assignment operator, data members must not be of reference type. | |||
9061 | if (FieldType->isReferenceType()) { | |||
9062 | if (Diagnose) | |||
9063 | S.Diag(FD->getLocation(), diag::note_deleted_assign_field) | |||
9064 | << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; | |||
9065 | return true; | |||
9066 | } | |||
9067 | if (!FieldRecord && FieldType.isConstQualified()) { | |||
9068 | // C++11 [class.copy]p23: | |||
9069 | // -- a non-static data member of const non-class type (or array thereof) | |||
9070 | if (Diagnose) | |||
9071 | S.Diag(FD->getLocation(), diag::note_deleted_assign_field) | |||
9072 | << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; | |||
9073 | return true; | |||
9074 | } | |||
9075 | } | |||
9076 | ||||
9077 | if (FieldRecord) { | |||
9078 | // Some additional restrictions exist on the variant members. | |||
9079 | if (!inUnion() && FieldRecord->isUnion() && | |||
9080 | FieldRecord->isAnonymousStructOrUnion()) { | |||
9081 | bool AllVariantFieldsAreConst = true; | |||
9082 | ||||
9083 | // FIXME: Handle anonymous unions declared within anonymous unions. | |||
9084 | for (auto *UI : FieldRecord->fields()) { | |||
9085 | QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); | |||
9086 | ||||
9087 | if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) | |||
9088 | return true; | |||
9089 | ||||
9090 | if (!UnionFieldType.isConstQualified()) | |||
9091 | AllVariantFieldsAreConst = false; | |||
9092 | ||||
9093 | CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); | |||
9094 | if (UnionFieldRecord && | |||
9095 | shouldDeleteForClassSubobject(UnionFieldRecord, UI, | |||
9096 | UnionFieldType.getCVRQualifiers())) | |||
9097 | return true; | |||
9098 | } | |||
9099 | ||||
9100 | // At least one member in each anonymous union must be non-const | |||
9101 | if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && | |||
9102 | !FieldRecord->field_empty()) { | |||
9103 | if (Diagnose) | |||
9104 | S.Diag(FieldRecord->getLocation(), | |||
9105 | diag::note_deleted_default_ctor_all_const) | |||
9106 | << !!ICI << MD->getParent() << /*anonymous union*/1; | |||
9107 | return true; | |||
9108 | } | |||
9109 | ||||
9110 | // Don't check the implicit member of the anonymous union type. | |||
9111 | // This is technically non-conformant, but sanity demands it. | |||
9112 | return false; | |||
9113 | } | |||
9114 | ||||
9115 | if (shouldDeleteForClassSubobject(FieldRecord, FD, | |||
9116 | FieldType.getCVRQualifiers())) | |||
9117 | return true; | |||
9118 | } | |||
9119 | ||||
9120 | return false; | |||
9121 | } | |||
9122 | ||||
9123 | /// C++11 [class.ctor] p5: | |||
9124 | /// A defaulted default constructor for a class X is defined as deleted if | |||
9125 | /// X is a union and all of its variant members are of const-qualified type. | |||
9126 | bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { | |||
9127 | // This is a silly definition, because it gives an empty union a deleted | |||
9128 | // default constructor. Don't do that. | |||
9129 | if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { | |||
9130 | bool AnyFields = false; | |||
9131 | for (auto *F : MD->getParent()->fields()) | |||
9132 | if ((AnyFields = !F->isUnnamedBitfield())) | |||
9133 | break; | |||
9134 | if (!AnyFields) | |||
9135 | return false; | |||
9136 | if (Diagnose) | |||
9137 | S.Diag(MD->getParent()->getLocation(), | |||
9138 | diag::note_deleted_default_ctor_all_const) | |||
9139 | << !!ICI << MD->getParent() << /*not anonymous union*/0; | |||
9140 | return true; | |||
9141 | } | |||
9142 | return false; | |||
9143 | } | |||
9144 | ||||
9145 | /// Determine whether a defaulted special member function should be defined as | |||
9146 | /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, | |||
9147 | /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. | |||
9148 | bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, | |||
9149 | InheritedConstructorInfo *ICI, | |||
9150 | bool Diagnose) { | |||
9151 | if (MD->isInvalidDecl()) | |||
9152 | return false; | |||
9153 | CXXRecordDecl *RD = MD->getParent(); | |||
9154 | assert(!RD->isDependentType() && "do deletion after instantiation")((void)0); | |||
9155 | if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) | |||
9156 | return false; | |||
9157 | ||||
9158 | // C++11 [expr.lambda.prim]p19: | |||
9159 | // The closure type associated with a lambda-expression has a | |||
9160 | // deleted (8.4.3) default constructor and a deleted copy | |||
9161 | // assignment operator. | |||
9162 | // C++2a adds back these operators if the lambda has no lambda-capture. | |||
9163 | if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && | |||
9164 | (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { | |||
9165 | if (Diagnose) | |||
9166 | Diag(RD->getLocation(), diag::note_lambda_decl); | |||
9167 | return true; | |||
9168 | } | |||
9169 | ||||
9170 | // For an anonymous struct or union, the copy and assignment special members | |||
9171 | // will never be used, so skip the check. For an anonymous union declared at | |||
9172 | // namespace scope, the constructor and destructor are used. | |||
9173 | if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && | |||
9174 | RD->isAnonymousStructOrUnion()) | |||
9175 | return false; | |||
9176 | ||||
9177 | // C++11 [class.copy]p7, p18: | |||
9178 | // If the class definition declares a move constructor or move assignment | |||
9179 | // operator, an implicitly declared copy constructor or copy assignment | |||
9180 | // operator is defined as deleted. | |||
9181 | if (MD->isImplicit() && | |||
9182 | (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { | |||
9183 | CXXMethodDecl *UserDeclaredMove = nullptr; | |||
9184 | ||||
9185 | // In Microsoft mode up to MSVC 2013, a user-declared move only causes the | |||
9186 | // deletion of the corresponding copy operation, not both copy operations. | |||
9187 | // MSVC 2015 has adopted the standards conforming behavior. | |||
9188 | bool DeletesOnlyMatchingCopy = | |||
9189 | getLangOpts().MSVCCompat && | |||
9190 | !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); | |||
9191 | ||||
9192 | if (RD->hasUserDeclaredMoveConstructor() && | |||
9193 | (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { | |||
9194 | if (!Diagnose) return true; | |||
9195 | ||||
9196 | // Find any user-declared move constructor. | |||
9197 | for (auto *I : RD->ctors()) { | |||
9198 | if (I->isMoveConstructor()) { | |||
9199 | UserDeclaredMove = I; | |||
9200 | break; | |||
9201 | } | |||
9202 | } | |||
9203 | assert(UserDeclaredMove)((void)0); | |||
9204 | } else if (RD->hasUserDeclaredMoveAssignment() && | |||
9205 | (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { | |||
9206 | if (!Diagnose) return true; | |||
9207 | ||||
9208 | // Find any user-declared move assignment operator. | |||
9209 | for (auto *I : RD->methods()) { | |||
9210 | if (I->isMoveAssignmentOperator()) { | |||
9211 | UserDeclaredMove = I; | |||
9212 | break; | |||
9213 | } | |||
9214 | } | |||
9215 | assert(UserDeclaredMove)((void)0); | |||
9216 | } | |||
9217 | ||||
9218 | if (UserDeclaredMove) { | |||
9219 | Diag(UserDeclaredMove->getLocation(), | |||
9220 | diag::note_deleted_copy_user_declared_move) | |||
9221 | << (CSM == CXXCopyAssignment) << RD | |||
9222 | << UserDeclaredMove->isMoveAssignmentOperator(); | |||
9223 | return true; | |||
9224 | } | |||
9225 | } | |||
9226 | ||||
9227 | // Do access control from the special member function | |||
9228 | ContextRAII MethodContext(*this, MD); | |||
9229 | ||||
9230 | // C++11 [class.dtor]p5: | |||
9231 | // -- for a virtual destructor, lookup of the non-array deallocation function | |||
9232 | // results in an ambiguity or in a function that is deleted or inaccessible | |||
9233 | if (CSM == CXXDestructor && MD->isVirtual()) { | |||
9234 | FunctionDecl *OperatorDelete = nullptr; | |||
9235 | DeclarationName Name = | |||
9236 | Context.DeclarationNames.getCXXOperatorName(OO_Delete); | |||
9237 | if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, | |||
9238 | OperatorDelete, /*Diagnose*/false)) { | |||
9239 | if (Diagnose) | |||
9240 | Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); | |||
9241 | return true; | |||
9242 | } | |||
9243 | } | |||
9244 | ||||
9245 | SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); | |||
9246 | ||||
9247 | // Per DR1611, do not consider virtual bases of constructors of abstract | |||
9248 | // classes, since we are not going to construct them. | |||
9249 | // Per DR1658, do not consider virtual bases of destructors of abstract | |||
9250 | // classes either. | |||
9251 | // Per DR2180, for assignment operators we only assign (and thus only | |||
9252 | // consider) direct bases. | |||
9253 | if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases | |||
9254 | : SMI.VisitPotentiallyConstructedBases)) | |||
9255 | return true; | |||
9256 | ||||
9257 | if (SMI.shouldDeleteForAllConstMembers()) | |||
9258 | return true; | |||
9259 | ||||
9260 | if (getLangOpts().CUDA) { | |||
9261 | // We should delete the special member in CUDA mode if target inference | |||
9262 | // failed. | |||
9263 | // For inherited constructors (non-null ICI), CSM may be passed so that MD | |||
9264 | // is treated as certain special member, which may not reflect what special | |||
9265 | // member MD really is. However inferCUDATargetForImplicitSpecialMember | |||
9266 | // expects CSM to match MD, therefore recalculate CSM. | |||
9267 | assert(ICI || CSM == getSpecialMember(MD))((void)0); | |||
9268 | auto RealCSM = CSM; | |||
9269 | if (ICI) | |||
9270 | RealCSM = getSpecialMember(MD); | |||
9271 | ||||
9272 | return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, | |||
9273 | SMI.ConstArg, Diagnose); | |||
9274 | } | |||
9275 | ||||
9276 | return false; | |||
9277 | } | |||
9278 | ||||
9279 | void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { | |||
9280 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); | |||
9281 | assert(DFK && "not a defaultable function")((void)0); | |||
9282 | assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted")((void)0); | |||
9283 | ||||
9284 | if (DFK.isSpecialMember()) { | |||
9285 | ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), | |||
9286 | nullptr, /*Diagnose=*/true); | |||
9287 | } else { | |||
9288 | DefaultedComparisonAnalyzer( | |||
9289 | *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, | |||
9290 | DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) | |||
9291 | .visit(); | |||
9292 | } | |||
9293 | } | |||
9294 | ||||
9295 | /// Perform lookup for a special member of the specified kind, and determine | |||
9296 | /// whether it is trivial. If the triviality can be determined without the | |||
9297 | /// lookup, skip it. This is intended for use when determining whether a | |||
9298 | /// special member of a containing object is trivial, and thus does not ever | |||
9299 | /// perform overload resolution for default constructors. | |||
9300 | /// | |||
9301 | /// If \p Selected is not \c NULL, \c *Selected will be filled in with the | |||
9302 | /// member that was most likely to be intended to be trivial, if any. | |||
9303 | /// | |||
9304 | /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to | |||
9305 | /// determine whether the special member is trivial. | |||
9306 | static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, | |||
9307 | Sema::CXXSpecialMember CSM, unsigned Quals, | |||
9308 | bool ConstRHS, | |||
9309 | Sema::TrivialABIHandling TAH, | |||
9310 | CXXMethodDecl **Selected) { | |||
9311 | if (Selected) | |||
9312 | *Selected = nullptr; | |||
9313 | ||||
9314 | switch (CSM) { | |||
9315 | case Sema::CXXInvalid: | |||
9316 | llvm_unreachable("not a special member")__builtin_unreachable(); | |||
9317 | ||||
9318 | case Sema::CXXDefaultConstructor: | |||
9319 | // C++11 [class.ctor]p5: | |||
9320 | // A default constructor is trivial if: | |||
9321 | // - all the [direct subobjects] have trivial default constructors | |||
9322 | // | |||
9323 | // Note, no overload resolution is performed in this case. | |||
9324 | if (RD->hasTrivialDefaultConstructor()) | |||
9325 | return true; | |||
9326 | ||||
9327 | if (Selected) { | |||
9328 | // If there's a default constructor which could have been trivial, dig it | |||
9329 | // out. Otherwise, if there's any user-provided default constructor, point | |||
9330 | // to that as an example of why there's not a trivial one. | |||
9331 | CXXConstructorDecl *DefCtor = nullptr; | |||
9332 | if (RD->needsImplicitDefaultConstructor()) | |||
9333 | S.DeclareImplicitDefaultConstructor(RD); | |||
9334 | for (auto *CI : RD->ctors()) { | |||
9335 | if (!CI->isDefaultConstructor()) | |||
9336 | continue; | |||
9337 | DefCtor = CI; | |||
9338 | if (!DefCtor->isUserProvided()) | |||
9339 | break; | |||
9340 | } | |||
9341 | ||||
9342 | *Selected = DefCtor; | |||
9343 | } | |||
9344 | ||||
9345 | return false; | |||
9346 | ||||
9347 | case Sema::CXXDestructor: | |||
9348 | // C++11 [class.dtor]p5: | |||
9349 | // A destructor is trivial if: | |||
9350 | // - all the direct [subobjects] have trivial destructors | |||
9351 | if (RD->hasTrivialDestructor() || | |||
9352 | (TAH == Sema::TAH_ConsiderTrivialABI && | |||
9353 | RD->hasTrivialDestructorForCall())) | |||
9354 | return true; | |||
9355 | ||||
9356 | if (Selected) { | |||
9357 | if (RD->needsImplicitDestructor()) | |||
9358 | S.DeclareImplicitDestructor(RD); | |||
9359 | *Selected = RD->getDestructor(); | |||
9360 | } | |||
9361 | ||||
9362 | return false; | |||
9363 | ||||
9364 | case Sema::CXXCopyConstructor: | |||
9365 | // C++11 [class.copy]p12: | |||
9366 | // A copy constructor is trivial if: | |||
9367 | // - the constructor selected to copy each direct [subobject] is trivial | |||
9368 | if (RD->hasTrivialCopyConstructor() || | |||
9369 | (TAH == Sema::TAH_ConsiderTrivialABI && | |||
9370 | RD->hasTrivialCopyConstructorForCall())) { | |||
9371 | if (Quals == Qualifiers::Const) | |||
9372 | // We must either select the trivial copy constructor or reach an | |||
9373 | // ambiguity; no need to actually perform overload resolution. | |||
9374 | return true; | |||
9375 | } else if (!Selected) { | |||
9376 | return false; | |||
9377 | } | |||
9378 | // In C++98, we are not supposed to perform overload resolution here, but we | |||
9379 | // treat that as a language defect, as suggested on cxx-abi-dev, to treat | |||
9380 | // cases like B as having a non-trivial copy constructor: | |||
9381 | // struct A { template<typename T> A(T&); }; | |||
9382 | // struct B { mutable A a; }; | |||
9383 | goto NeedOverloadResolution; | |||
9384 | ||||
9385 | case Sema::CXXCopyAssignment: | |||
9386 | // C++11 [class.copy]p25: | |||
9387 | // A copy assignment operator is trivial if: | |||
9388 | // - the assignment operator selected to copy each direct [subobject] is | |||
9389 | // trivial | |||
9390 | if (RD->hasTrivialCopyAssignment()) { | |||
9391 | if (Quals == Qualifiers::Const) | |||
9392 | return true; | |||
9393 | } else if (!Selected) { | |||
9394 | return false; | |||
9395 | } | |||
9396 | // In C++98, we are not supposed to perform overload resolution here, but we | |||
9397 | // treat that as a language defect. | |||
9398 | goto NeedOverloadResolution; | |||
9399 | ||||
9400 | case Sema::CXXMoveConstructor: | |||
9401 | case Sema::CXXMoveAssignment: | |||
9402 | NeedOverloadResolution: | |||
9403 | Sema::SpecialMemberOverloadResult SMOR = | |||
9404 | lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); | |||
9405 | ||||
9406 | // The standard doesn't describe how to behave if the lookup is ambiguous. | |||
9407 | // We treat it as not making the member non-trivial, just like the standard | |||
9408 | // mandates for the default constructor. This should rarely matter, because | |||
9409 | // the member will also be deleted. | |||
9410 | if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) | |||
9411 | return true; | |||
9412 | ||||
9413 | if (!SMOR.getMethod()) { | |||
9414 | assert(SMOR.getKind() ==((void)0) | |||
9415 | Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((void)0); | |||
9416 | return false; | |||
9417 | } | |||
9418 | ||||
9419 | // We deliberately don't check if we found a deleted special member. We're | |||
9420 | // not supposed to! | |||
9421 | if (Selected) | |||
9422 | *Selected = SMOR.getMethod(); | |||
9423 | ||||
9424 | if (TAH == Sema::TAH_ConsiderTrivialABI && | |||
9425 | (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) | |||
9426 | return SMOR.getMethod()->isTrivialForCall(); | |||
9427 | return SMOR.getMethod()->isTrivial(); | |||
9428 | } | |||
9429 | ||||
9430 | llvm_unreachable("unknown special method kind")__builtin_unreachable(); | |||
9431 | } | |||
9432 | ||||
9433 | static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { | |||
9434 | for (auto *CI : RD->ctors()) | |||
9435 | if (!CI->isImplicit()) | |||
9436 | return CI; | |||
9437 | ||||
9438 | // Look for constructor templates. | |||
9439 | typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; | |||
9440 | for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { | |||
9441 | if (CXXConstructorDecl *CD = | |||
9442 | dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) | |||
9443 | return CD; | |||
9444 | } | |||
9445 | ||||
9446 | return nullptr; | |||
9447 | } | |||
9448 | ||||
9449 | /// The kind of subobject we are checking for triviality. The values of this | |||
9450 | /// enumeration are used in diagnostics. | |||
9451 | enum TrivialSubobjectKind { | |||
9452 | /// The subobject is a base class. | |||
9453 | TSK_BaseClass, | |||
9454 | /// The subobject is a non-static data member. | |||
9455 | TSK_Field, | |||
9456 | /// The object is actually the complete object. | |||
9457 | TSK_CompleteObject | |||
9458 | }; | |||
9459 | ||||
9460 | /// Check whether the special member selected for a given type would be trivial. | |||
9461 | static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, | |||
9462 | QualType SubType, bool ConstRHS, | |||
9463 | Sema::CXXSpecialMember CSM, | |||
9464 | TrivialSubobjectKind Kind, | |||
9465 | Sema::TrivialABIHandling TAH, bool Diagnose) { | |||
9466 | CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); | |||
9467 | if (!SubRD) | |||
9468 | return true; | |||
9469 | ||||
9470 | CXXMethodDecl *Selected; | |||
9471 | if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), | |||
9472 | ConstRHS, TAH, Diagnose ? &Selected : nullptr)) | |||
9473 | return true; | |||
9474 | ||||
9475 | if (Diagnose) { | |||
9476 | if (ConstRHS) | |||
9477 | SubType.addConst(); | |||
9478 | ||||
9479 | if (!Selected && CSM == Sema::CXXDefaultConstructor) { | |||
9480 | S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) | |||
9481 | << Kind << SubType.getUnqualifiedType(); | |||
9482 | if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) | |||
9483 | S.Diag(CD->getLocation(), diag::note_user_declared_ctor); | |||
9484 | } else if (!Selected) | |||
9485 | S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) | |||
9486 | << Kind << SubType.getUnqualifiedType() << CSM << SubType; | |||
9487 | else if (Selected->isUserProvided()) { | |||
9488 | if (Kind == TSK_CompleteObject) | |||
9489 | S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) | |||
9490 | << Kind << SubType.getUnqualifiedType() << CSM; | |||
9491 | else { | |||
9492 | S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) | |||
9493 | << Kind << SubType.getUnqualifiedType() << CSM; | |||
9494 | S.Diag(Selected->getLocation(), diag::note_declared_at); | |||
9495 | } | |||
9496 | } else { | |||
9497 | if (Kind != TSK_CompleteObject) | |||
9498 | S.Diag(SubobjLoc, diag::note_nontrivial_subobject) | |||
9499 | << Kind << SubType.getUnqualifiedType() << CSM; | |||
9500 | ||||
9501 | // Explain why the defaulted or deleted special member isn't trivial. | |||
9502 | S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, | |||
9503 | Diagnose); | |||
9504 | } | |||
9505 | } | |||
9506 | ||||
9507 | return false; | |||
9508 | } | |||
9509 | ||||
9510 | /// Check whether the members of a class type allow a special member to be | |||
9511 | /// trivial. | |||
9512 | static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, | |||
9513 | Sema::CXXSpecialMember CSM, | |||
9514 | bool ConstArg, | |||
9515 | Sema::TrivialABIHandling TAH, | |||
9516 | bool Diagnose) { | |||
9517 | for (const auto *FI : RD->fields()) { | |||
9518 | if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) | |||
9519 | continue; | |||
9520 | ||||
9521 | QualType FieldType = S.Context.getBaseElementType(FI->getType()); | |||
9522 | ||||
9523 | // Pretend anonymous struct or union members are members of this class. | |||
9524 | if (FI->isAnonymousStructOrUnion()) { | |||
9525 | if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), | |||
9526 | CSM, ConstArg, TAH, Diagnose)) | |||
9527 | return false; | |||
9528 | continue; | |||
9529 | } | |||
9530 | ||||
9531 | // C++11 [class.ctor]p5: | |||
9532 | // A default constructor is trivial if [...] | |||
9533 | // -- no non-static data member of its class has a | |||
9534 | // brace-or-equal-initializer | |||
9535 | if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { | |||
9536 | if (Diagnose) | |||
9537 | S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) | |||
9538 | << FI; | |||
9539 | return false; | |||
9540 | } | |||
9541 | ||||
9542 | // Objective C ARC 4.3.5: | |||
9543 | // [...] nontrivally ownership-qualified types are [...] not trivially | |||
9544 | // default constructible, copy constructible, move constructible, copy | |||
9545 | // assignable, move assignable, or destructible [...] | |||
9546 | if (FieldType.hasNonTrivialObjCLifetime()) { | |||
9547 | if (Diagnose) | |||
9548 | S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) | |||
9549 | << RD << FieldType.getObjCLifetime(); | |||
9550 | return false; | |||
9551 | } | |||
9552 | ||||
9553 | bool ConstRHS = ConstArg && !FI->isMutable(); | |||
9554 | if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, | |||
9555 | CSM, TSK_Field, TAH, Diagnose)) | |||
9556 | return false; | |||
9557 | } | |||
9558 | ||||
9559 | return true; | |||
9560 | } | |||
9561 | ||||
9562 | /// Diagnose why the specified class does not have a trivial special member of | |||
9563 | /// the given kind. | |||
9564 | void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { | |||
9565 | QualType Ty = Context.getRecordType(RD); | |||
9566 | ||||
9567 | bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); | |||
9568 | checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, | |||
9569 | TSK_CompleteObject, TAH_IgnoreTrivialABI, | |||
9570 | /*Diagnose*/true); | |||
9571 | } | |||
9572 | ||||
9573 | /// Determine whether a defaulted or deleted special member function is trivial, | |||
9574 | /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, | |||
9575 | /// C++11 [class.copy]p25, and C++11 [class.dtor]p5. | |||
9576 | bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, | |||
9577 | TrivialABIHandling TAH, bool Diagnose) { | |||
9578 | assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((void)0); | |||
9579 | ||||
9580 | CXXRecordDecl *RD = MD->getParent(); | |||
9581 | ||||
9582 | bool ConstArg = false; | |||
9583 | ||||
9584 | // C++11 [class.copy]p12, p25: [DR1593] | |||
9585 | // A [special member] is trivial if [...] its parameter-type-list is | |||
9586 | // equivalent to the parameter-type-list of an implicit declaration [...] | |||
9587 | switch (CSM) { | |||
9588 | case CXXDefaultConstructor: | |||
9589 | case CXXDestructor: | |||
9590 | // Trivial default constructors and destructors cannot have parameters. | |||
9591 | break; | |||
9592 | ||||
9593 | case CXXCopyConstructor: | |||
9594 | case CXXCopyAssignment: { | |||
9595 | // Trivial copy operations always have const, non-volatile parameter types. | |||
9596 | ConstArg = true; | |||
9597 | const ParmVarDecl *Param0 = MD->getParamDecl(0); | |||
9598 | const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); | |||
9599 | if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { | |||
9600 | if (Diagnose) | |||
9601 | Diag(Param0->getLocation(), diag::note_nontrivial_param_type) | |||
9602 | << Param0->getSourceRange() << Param0->getType() | |||
9603 | << Context.getLValueReferenceType( | |||
9604 | Context.getRecordType(RD).withConst()); | |||
9605 | return false; | |||
9606 | } | |||
9607 | break; | |||
9608 | } | |||
9609 | ||||
9610 | case CXXMoveConstructor: | |||
9611 | case CXXMoveAssignment: { | |||
9612 | // Trivial move operations always have non-cv-qualified parameters. | |||
9613 | const ParmVarDecl *Param0 = MD->getParamDecl(0); | |||
9614 | const RValueReferenceType *RT = | |||
9615 | Param0->getType()->getAs<RValueReferenceType>(); | |||
9616 | if (!RT || RT->getPointeeType().getCVRQualifiers()) { | |||
9617 | if (Diagnose) | |||
9618 | Diag(Param0->getLocation(), diag::note_nontrivial_param_type) | |||
9619 | << Param0->getSourceRange() << Param0->getType() | |||
9620 | << Context.getRValueReferenceType(Context.getRecordType(RD)); | |||
9621 | return false; | |||
9622 | } | |||
9623 | break; | |||
9624 | } | |||
9625 | ||||
9626 | case CXXInvalid: | |||
9627 | llvm_unreachable("not a special member")__builtin_unreachable(); | |||
9628 | } | |||
9629 | ||||
9630 | if (MD->getMinRequiredArguments() < MD->getNumParams()) { | |||
9631 | if (Diagnose) | |||
9632 | Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), | |||
9633 | diag::note_nontrivial_default_arg) | |||
9634 | << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); | |||
9635 | return false; | |||
9636 | } | |||
9637 | if (MD->isVariadic()) { | |||
9638 | if (Diagnose) | |||
9639 | Diag(MD->getLocation(), diag::note_nontrivial_variadic); | |||
9640 | return false; | |||
9641 | } | |||
9642 | ||||
9643 | // C++11 [class.ctor]p5, C++11 [class.dtor]p5: | |||
9644 | // A copy/move [constructor or assignment operator] is trivial if | |||
9645 | // -- the [member] selected to copy/move each direct base class subobject | |||
9646 | // is trivial | |||
9647 | // | |||
9648 | // C++11 [class.copy]p12, C++11 [class.copy]p25: | |||
9649 | // A [default constructor or destructor] is trivial if | |||
9650 | // -- all the direct base classes have trivial [default constructors or | |||
9651 | // destructors] | |||
9652 | for (const auto &BI : RD->bases()) | |||
9653 | if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), | |||
9654 | ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) | |||
9655 | return false; | |||
9656 | ||||
9657 | // C++11 [class.ctor]p5, C++11 [class.dtor]p5: | |||
9658 | // A copy/move [constructor or assignment operator] for a class X is | |||
9659 | // trivial if | |||
9660 | // -- for each non-static data member of X that is of class type (or array | |||
9661 | // thereof), the constructor selected to copy/move that member is | |||
9662 | // trivial | |||
9663 | // | |||
9664 | // C++11 [class.copy]p12, C++11 [class.copy]p25: | |||
9665 | // A [default constructor or destructor] is trivial if | |||
9666 | // -- for all of the non-static data members of its class that are of class | |||
9667 | // type (or array thereof), each such class has a trivial [default | |||
9668 | // constructor or destructor] | |||
9669 | if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) | |||
9670 | return false; | |||
9671 | ||||
9672 | // C++11 [class.dtor]p5: | |||
9673 | // A destructor is trivial if [...] | |||
9674 | // -- the destructor is not virtual | |||
9675 | if (CSM == CXXDestructor && MD->isVirtual()) { | |||
9676 | if (Diagnose) | |||
9677 | Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; | |||
9678 | return false; | |||
9679 | } | |||
9680 | ||||
9681 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: | |||
9682 | // A [special member] for class X is trivial if [...] | |||
9683 | // -- class X has no virtual functions and no virtual base classes | |||
9684 | if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { | |||
9685 | if (!Diagnose) | |||
9686 | return false; | |||
9687 | ||||
9688 | if (RD->getNumVBases()) { | |||
9689 | // Check for virtual bases. We already know that the corresponding | |||
9690 | // member in all bases is trivial, so vbases must all be direct. | |||
9691 | CXXBaseSpecifier &BS = *RD->vbases_begin(); | |||
9692 | assert(BS.isVirtual())((void)0); | |||
9693 | Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; | |||
9694 | return false; | |||
9695 | } | |||
9696 | ||||
9697 | // Must have a virtual method. | |||
9698 | for (const auto *MI : RD->methods()) { | |||
9699 | if (MI->isVirtual()) { | |||
9700 | SourceLocation MLoc = MI->getBeginLoc(); | |||
9701 | Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; | |||
9702 | return false; | |||
9703 | } | |||
9704 | } | |||
9705 | ||||
9706 | llvm_unreachable("dynamic class with no vbases and no virtual functions")__builtin_unreachable(); | |||
9707 | } | |||
9708 | ||||
9709 | // Looks like it's trivial! | |||
9710 | return true; | |||
9711 | } | |||
9712 | ||||
9713 | namespace { | |||
9714 | struct FindHiddenVirtualMethod { | |||
9715 | Sema *S; | |||
9716 | CXXMethodDecl *Method; | |||
9717 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; | |||
9718 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; | |||
9719 | ||||
9720 | private: | |||
9721 | /// Check whether any most overridden method from MD in Methods | |||
9722 | static bool CheckMostOverridenMethods( | |||
9723 | const CXXMethodDecl *MD, | |||
9724 | const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { | |||
9725 | if (MD->size_overridden_methods() == 0) | |||
9726 | return Methods.count(MD->getCanonicalDecl()); | |||
9727 | for (const CXXMethodDecl *O : MD->overridden_methods()) | |||
9728 | if (CheckMostOverridenMethods(O, Methods)) | |||
9729 | return true; | |||
9730 | return false; | |||
9731 | } | |||
9732 | ||||
9733 | public: | |||
9734 | /// Member lookup function that determines whether a given C++ | |||
9735 | /// method overloads virtual methods in a base class without overriding any, | |||
9736 | /// to be used with CXXRecordDecl::lookupInBases(). | |||
9737 | bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { | |||
9738 | RecordDecl *BaseRecord = | |||
9739 | Specifier->getType()->castAs<RecordType>()->getDecl(); | |||
9740 | ||||
9741 | DeclarationName Name = Method->getDeclName(); | |||
9742 | assert(Name.getNameKind() == DeclarationName::Identifier)((void)0); | |||
9743 | ||||
9744 | bool foundSameNameMethod = false; | |||
9745 | SmallVector<CXXMethodDecl *, 8> overloadedMethods; | |||
9746 | for (Path.Decls = BaseRecord->lookup(Name).begin(); | |||
9747 | Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { | |||
9748 | NamedDecl *D = *Path.Decls; | |||
9749 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | |||
9750 | MD = MD->getCanonicalDecl(); | |||
9751 | foundSameNameMethod = true; | |||
9752 | // Interested only in hidden virtual methods. | |||
9753 | if (!MD->isVirtual()) | |||
9754 | continue; | |||
9755 | // If the method we are checking overrides a method from its base | |||
9756 | // don't warn about the other overloaded methods. Clang deviates from | |||
9757 | // GCC by only diagnosing overloads of inherited virtual functions that | |||
9758 | // do not override any other virtual functions in the base. GCC's | |||
9759 | // -Woverloaded-virtual diagnoses any derived function hiding a virtual | |||
9760 | // function from a base class. These cases may be better served by a | |||
9761 | // warning (not specific to virtual functions) on call sites when the | |||
9762 | // call would select a different function from the base class, were it | |||
9763 | // visible. | |||
9764 | // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. | |||
9765 | if (!S->IsOverload(Method, MD, false)) | |||
9766 | return true; | |||
9767 | // Collect the overload only if its hidden. | |||
9768 | if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) | |||
9769 | overloadedMethods.push_back(MD); | |||
9770 | } | |||
9771 | } | |||
9772 | ||||
9773 | if (foundSameNameMethod) | |||
9774 | OverloadedMethods.append(overloadedMethods.begin(), | |||
9775 | overloadedMethods.end()); | |||
9776 | return foundSameNameMethod; | |||
9777 | } | |||
9778 | }; | |||
9779 | } // end anonymous namespace | |||
9780 | ||||
9781 | /// Add the most overriden methods from MD to Methods | |||
9782 | static void AddMostOverridenMethods(const CXXMethodDecl *MD, | |||
9783 | llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { | |||
9784 | if (MD->size_overridden_methods() == 0) | |||
9785 | Methods.insert(MD->getCanonicalDecl()); | |||
9786 | else | |||
9787 | for (const CXXMethodDecl *O : MD->overridden_methods()) | |||
9788 | AddMostOverridenMethods(O, Methods); | |||
9789 | } | |||
9790 | ||||
9791 | /// Check if a method overloads virtual methods in a base class without | |||
9792 | /// overriding any. | |||
9793 | void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, | |||
9794 | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { | |||
9795 | if (!MD->getDeclName().isIdentifier()) | |||
9796 | return; | |||
9797 | ||||
9798 | CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. | |||
9799 | /*bool RecordPaths=*/false, | |||
9800 | /*bool DetectVirtual=*/false); | |||
9801 | FindHiddenVirtualMethod FHVM; | |||
9802 | FHVM.Method = MD; | |||
9803 | FHVM.S = this; | |||
9804 | ||||
9805 | // Keep the base methods that were overridden or introduced in the subclass | |||
9806 | // by 'using' in a set. A base method not in this set is hidden. | |||
9807 | CXXRecordDecl *DC = MD->getParent(); | |||
9808 | DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); | |||
9809 | for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { | |||
9810 | NamedDecl *ND = *I; | |||
9811 | if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) | |||
9812 | ND = shad->getTargetDecl(); | |||
9813 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) | |||
9814 | AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); | |||
9815 | } | |||
9816 | ||||
9817 | if (DC->lookupInBases(FHVM, Paths)) | |||
9818 | OverloadedMethods = FHVM.OverloadedMethods; | |||
9819 | } | |||
9820 | ||||
9821 | void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, | |||
9822 | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { | |||
9823 | for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { | |||
9824 | CXXMethodDecl *overloadedMD = OverloadedMethods[i]; | |||
9825 | PartialDiagnostic PD = PDiag( | |||
9826 | diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; | |||
9827 | HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); | |||
9828 | Diag(overloadedMD->getLocation(), PD); | |||
9829 | } | |||
9830 | } | |||
9831 | ||||
9832 | /// Diagnose methods which overload virtual methods in a base class | |||
9833 | /// without overriding any. | |||
9834 | void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { | |||
9835 | if (MD->isInvalidDecl()) | |||
9836 | return; | |||
9837 | ||||
9838 | if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) | |||
9839 | return; | |||
9840 | ||||
9841 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; | |||
9842 | FindHiddenVirtualMethods(MD, OverloadedMethods); | |||
9843 | if (!OverloadedMethods.empty()) { | |||
9844 | Diag(MD->getLocation(), diag::warn_overloaded_virtual) | |||
9845 | << MD << (OverloadedMethods.size() > 1); | |||
9846 | ||||
9847 | NoteHiddenVirtualMethods(MD, OverloadedMethods); | |||
9848 | } | |||
9849 | } | |||
9850 | ||||
9851 | void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { | |||
9852 | auto PrintDiagAndRemoveAttr = [&](unsigned N) { | |||
9853 | // No diagnostics if this is a template instantiation. | |||
9854 | if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { | |||
9855 | Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), | |||
9856 | diag::ext_cannot_use_trivial_abi) << &RD; | |||
9857 | Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), | |||
9858 | diag::note_cannot_use_trivial_abi_reason) << &RD << N; | |||
9859 | } | |||
9860 | RD.dropAttr<TrivialABIAttr>(); | |||
9861 | }; | |||
9862 | ||||
9863 | // Ill-formed if the copy and move constructors are deleted. | |||
9864 | auto HasNonDeletedCopyOrMoveConstructor = [&]() { | |||
9865 | // If the type is dependent, then assume it might have | |||
9866 | // implicit copy or move ctor because we won't know yet at this point. | |||
9867 | if (RD.isDependentType()) | |||
9868 | return true; | |||
9869 | if (RD.needsImplicitCopyConstructor() && | |||
9870 | !RD.defaultedCopyConstructorIsDeleted()) | |||
9871 | return true; | |||
9872 | if (RD.needsImplicitMoveConstructor() && | |||
9873 | !RD.defaultedMoveConstructorIsDeleted()) | |||
9874 | return true; | |||
9875 | for (const CXXConstructorDecl *CD : RD.ctors()) | |||
9876 | if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) | |||
9877 | return true; | |||
9878 | return false; | |||
9879 | }; | |||
9880 | ||||
9881 | if (!HasNonDeletedCopyOrMoveConstructor()) { | |||
9882 | PrintDiagAndRemoveAttr(0); | |||
9883 | return; | |||
9884 | } | |||
9885 | ||||
9886 | // Ill-formed if the struct has virtual functions. | |||
9887 | if (RD.isPolymorphic()) { | |||
9888 | PrintDiagAndRemoveAttr(1); | |||
9889 | return; | |||
9890 | } | |||
9891 | ||||
9892 | for (const auto &B : RD.bases()) { | |||
9893 | // Ill-formed if the base class is non-trivial for the purpose of calls or a | |||
9894 | // virtual base. | |||
9895 | if (!B.getType()->isDependentType() && | |||
9896 | !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { | |||
9897 | PrintDiagAndRemoveAttr(2); | |||
9898 | return; | |||
9899 | } | |||
9900 | ||||
9901 | if (B.isVirtual()) { | |||
9902 | PrintDiagAndRemoveAttr(3); | |||
9903 | return; | |||
9904 | } | |||
9905 | } | |||
9906 | ||||
9907 | for (const auto *FD : RD.fields()) { | |||
9908 | // Ill-formed if the field is an ObjectiveC pointer or of a type that is | |||
9909 | // non-trivial for the purpose of calls. | |||
9910 | QualType FT = FD->getType(); | |||
9911 | if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { | |||
9912 | PrintDiagAndRemoveAttr(4); | |||
9913 | return; | |||
9914 | } | |||
9915 | ||||
9916 | if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) | |||
9917 | if (!RT->isDependentType() && | |||
9918 | !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { | |||
9919 | PrintDiagAndRemoveAttr(5); | |||
9920 | return; | |||
9921 | } | |||
9922 | } | |||
9923 | } | |||
9924 | ||||
9925 | void Sema::ActOnFinishCXXMemberSpecification( | |||
9926 | Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, | |||
9927 | SourceLocation RBrac, const ParsedAttributesView &AttrList) { | |||
9928 | if (!TagDecl) | |||
9929 | return; | |||
9930 | ||||
9931 | AdjustDeclIfTemplate(TagDecl); | |||
9932 | ||||
9933 | for (const ParsedAttr &AL : AttrList) { | |||
9934 | if (AL.getKind() != ParsedAttr::AT_Visibility) | |||
9935 | continue; | |||
9936 | AL.setInvalid(); | |||
9937 | Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; | |||
9938 | } | |||
9939 | ||||
9940 | ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( | |||
9941 | // strict aliasing violation! | |||
9942 | reinterpret_cast<Decl**>(FieldCollector->getCurFields()), | |||
9943 | FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); | |||
9944 | ||||
9945 | CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); | |||
9946 | } | |||
9947 | ||||
9948 | /// Find the equality comparison functions that should be implicitly declared | |||
9949 | /// in a given class definition, per C++2a [class.compare.default]p3. | |||
9950 | static void findImplicitlyDeclaredEqualityComparisons( | |||
9951 | ASTContext &Ctx, CXXRecordDecl *RD, | |||
9952 | llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { | |||
9953 | DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); | |||
9954 | if (!RD->lookup(EqEq).empty()) | |||
9955 | // Member operator== explicitly declared: no implicit operator==s. | |||
9956 | return; | |||
9957 | ||||
9958 | // Traverse friends looking for an '==' or a '<=>'. | |||
9959 | for (FriendDecl *Friend : RD->friends()) { | |||
9960 | FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); | |||
9961 | if (!FD) continue; | |||
9962 | ||||
9963 | if (FD->getOverloadedOperator() == OO_EqualEqual) { | |||
9964 | // Friend operator== explicitly declared: no implicit operator==s. | |||
9965 | Spaceships.clear(); | |||
9966 | return; | |||
9967 | } | |||
9968 | ||||
9969 | if (FD->getOverloadedOperator() == OO_Spaceship && | |||
9970 | FD->isExplicitlyDefaulted()) | |||
9971 | Spaceships.push_back(FD); | |||
9972 | } | |||
9973 | ||||
9974 | // Look for members named 'operator<=>'. | |||
9975 | DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); | |||
9976 | for (NamedDecl *ND : RD->lookup(Cmp)) { | |||
9977 | // Note that we could find a non-function here (either a function template | |||
9978 | // or a using-declaration). Neither case results in an implicit | |||
9979 | // 'operator=='. | |||
9980 | if (auto *FD = dyn_cast<FunctionDecl>(ND)) | |||
9981 | if (FD->isExplicitlyDefaulted()) | |||
9982 | Spaceships.push_back(FD); | |||
9983 | } | |||
9984 | } | |||
9985 | ||||
9986 | /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared | |||
9987 | /// special functions, such as the default constructor, copy | |||
9988 | /// constructor, or destructor, to the given C++ class (C++ | |||
9989 | /// [special]p1). This routine can only be executed just before the | |||
9990 | /// definition of the class is complete. | |||
9991 | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { | |||
9992 | // Don't add implicit special members to templated classes. | |||
9993 | // FIXME: This means unqualified lookups for 'operator=' within a class | |||
9994 | // template don't work properly. | |||
9995 | if (!ClassDecl->isDependentType()) { | |||
9996 | if (ClassDecl->needsImplicitDefaultConstructor()) { | |||
9997 | ++getASTContext().NumImplicitDefaultConstructors; | |||
9998 | ||||
9999 | if (ClassDecl->hasInheritedConstructor()) | |||
10000 | DeclareImplicitDefaultConstructor(ClassDecl); | |||
10001 | } | |||
10002 | ||||
10003 | if (ClassDecl->needsImplicitCopyConstructor()) { | |||
10004 | ++getASTContext().NumImplicitCopyConstructors; | |||
10005 | ||||
10006 | // If the properties or semantics of the copy constructor couldn't be | |||
10007 | // determined while the class was being declared, force a declaration | |||
10008 | // of it now. | |||
10009 | if (ClassDecl->needsOverloadResolutionForCopyConstructor() || | |||
10010 | ClassDecl->hasInheritedConstructor()) | |||
10011 | DeclareImplicitCopyConstructor(ClassDecl); | |||
10012 | // For the MS ABI we need to know whether the copy ctor is deleted. A | |||
10013 | // prerequisite for deleting the implicit copy ctor is that the class has | |||
10014 | // a move ctor or move assignment that is either user-declared or whose | |||
10015 | // semantics are inherited from a subobject. FIXME: We should provide a | |||
10016 | // more direct way for CodeGen to ask whether the constructor was deleted. | |||
10017 | else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && | |||
10018 | (ClassDecl->hasUserDeclaredMoveConstructor() || | |||
10019 | ClassDecl->needsOverloadResolutionForMoveConstructor() || | |||
10020 | ClassDecl->hasUserDeclaredMoveAssignment() || | |||
10021 | ClassDecl->needsOverloadResolutionForMoveAssignment())) | |||
10022 | DeclareImplicitCopyConstructor(ClassDecl); | |||
10023 | } | |||
10024 | ||||
10025 | if (getLangOpts().CPlusPlus11 && | |||
10026 | ClassDecl->needsImplicitMoveConstructor()) { | |||
10027 | ++getASTContext().NumImplicitMoveConstructors; | |||
10028 | ||||
10029 | if (ClassDecl->needsOverloadResolutionForMoveConstructor() || | |||
10030 | ClassDecl->hasInheritedConstructor()) | |||
10031 | DeclareImplicitMoveConstructor(ClassDecl); | |||
10032 | } | |||
10033 | ||||
10034 | if (ClassDecl->needsImplicitCopyAssignment()) { | |||
10035 | ++getASTContext().NumImplicitCopyAssignmentOperators; | |||
10036 | ||||
10037 | // If we have a dynamic class, then the copy assignment operator may be | |||
10038 | // virtual, so we have to declare it immediately. This ensures that, e.g., | |||
10039 | // it shows up in the right place in the vtable and that we diagnose | |||
10040 | // problems with the implicit exception specification. | |||
10041 | if (ClassDecl->isDynamicClass() || | |||
10042 | ClassDecl->needsOverloadResolutionForCopyAssignment() || | |||
10043 | ClassDecl->hasInheritedAssignment()) | |||
10044 | DeclareImplicitCopyAssignment(ClassDecl); | |||
10045 | } | |||
10046 | ||||
10047 | if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { | |||
10048 | ++getASTContext().NumImplicitMoveAssignmentOperators; | |||
10049 | ||||
10050 | // Likewise for the move assignment operator. | |||
10051 | if (ClassDecl->isDynamicClass() || | |||
10052 | ClassDecl->needsOverloadResolutionForMoveAssignment() || | |||
10053 | ClassDecl->hasInheritedAssignment()) | |||
10054 | DeclareImplicitMoveAssignment(ClassDecl); | |||
10055 | } | |||
10056 | ||||
10057 | if (ClassDecl->needsImplicitDestructor()) { | |||
10058 | ++getASTContext().NumImplicitDestructors; | |||
10059 | ||||
10060 | // If we have a dynamic class, then the destructor may be virtual, so we | |||
10061 | // have to declare the destructor immediately. This ensures that, e.g., it | |||
10062 | // shows up in the right place in the vtable and that we diagnose problems | |||
10063 | // with the implicit exception specification. | |||
10064 | if (ClassDecl->isDynamicClass() || | |||
10065 | ClassDecl->needsOverloadResolutionForDestructor()) | |||
10066 | DeclareImplicitDestructor(ClassDecl); | |||
10067 | } | |||
10068 | } | |||
10069 | ||||
10070 | // C++2a [class.compare.default]p3: | |||
10071 | // If the member-specification does not explicitly declare any member or | |||
10072 | // friend named operator==, an == operator function is declared implicitly | |||
10073 | // for each defaulted three-way comparison operator function defined in | |||
10074 | // the member-specification | |||
10075 | // FIXME: Consider doing this lazily. | |||
10076 | // We do this during the initial parse for a class template, not during | |||
10077 | // instantiation, so that we can handle unqualified lookups for 'operator==' | |||
10078 | // when parsing the template. | |||
10079 | if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { | |||
10080 | llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; | |||
10081 | findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, | |||
10082 | DefaultedSpaceships); | |||
10083 | for (auto *FD : DefaultedSpaceships) | |||
10084 | DeclareImplicitEqualityComparison(ClassDecl, FD); | |||
10085 | } | |||
10086 | } | |||
10087 | ||||
10088 | unsigned | |||
10089 | Sema::ActOnReenterTemplateScope(Decl *D, | |||
10090 | llvm::function_ref<Scope *()> EnterScope) { | |||
10091 | if (!D) | |||
10092 | return 0; | |||
10093 | AdjustDeclIfTemplate(D); | |||
10094 | ||||
10095 | // In order to get name lookup right, reenter template scopes in order from | |||
10096 | // outermost to innermost. | |||
10097 | SmallVector<TemplateParameterList *, 4> ParameterLists; | |||
10098 | DeclContext *LookupDC = dyn_cast<DeclContext>(D); | |||
10099 | ||||
10100 | if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { | |||
10101 | for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) | |||
10102 | ParameterLists.push_back(DD->getTemplateParameterList(i)); | |||
10103 | ||||
10104 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
10105 | if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) | |||
10106 | ParameterLists.push_back(FTD->getTemplateParameters()); | |||
10107 | } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
10108 | LookupDC = VD->getDeclContext(); | |||
10109 | ||||
10110 | if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) | |||
10111 | ParameterLists.push_back(VTD->getTemplateParameters()); | |||
10112 | else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) | |||
10113 | ParameterLists.push_back(PSD->getTemplateParameters()); | |||
10114 | } | |||
10115 | } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { | |||
10116 | for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) | |||
10117 | ParameterLists.push_back(TD->getTemplateParameterList(i)); | |||
10118 | ||||
10119 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { | |||
10120 | if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) | |||
10121 | ParameterLists.push_back(CTD->getTemplateParameters()); | |||
10122 | else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) | |||
10123 | ParameterLists.push_back(PSD->getTemplateParameters()); | |||
10124 | } | |||
10125 | } | |||
10126 | // FIXME: Alias declarations and concepts. | |||
10127 | ||||
10128 | unsigned Count = 0; | |||
10129 | Scope *InnermostTemplateScope = nullptr; | |||
10130 | for (TemplateParameterList *Params : ParameterLists) { | |||
10131 | // Ignore explicit specializations; they don't contribute to the template | |||
10132 | // depth. | |||
10133 | if (Params->size() == 0) | |||
10134 | continue; | |||
10135 | ||||
10136 | InnermostTemplateScope = EnterScope(); | |||
10137 | for (NamedDecl *Param : *Params) { | |||
10138 | if (Param->getDeclName()) { | |||
10139 | InnermostTemplateScope->AddDecl(Param); | |||
10140 | IdResolver.AddDecl(Param); | |||
10141 | } | |||
10142 | } | |||
10143 | ++Count; | |||
10144 | } | |||
10145 | ||||
10146 | // Associate the new template scopes with the corresponding entities. | |||
10147 | if (InnermostTemplateScope) { | |||
10148 | assert(LookupDC && "no enclosing DeclContext for template lookup")((void)0); | |||
10149 | EnterTemplatedContext(InnermostTemplateScope, LookupDC); | |||
10150 | } | |||
10151 | ||||
10152 | return Count; | |||
10153 | } | |||
10154 | ||||
10155 | void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { | |||
10156 | if (!RecordD) return; | |||
10157 | AdjustDeclIfTemplate(RecordD); | |||
10158 | CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); | |||
10159 | PushDeclContext(S, Record); | |||
10160 | } | |||
10161 | ||||
10162 | void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { | |||
10163 | if (!RecordD) return; | |||
10164 | PopDeclContext(); | |||
10165 | } | |||
10166 | ||||
10167 | /// This is used to implement the constant expression evaluation part of the | |||
10168 | /// attribute enable_if extension. There is nothing in standard C++ which would | |||
10169 | /// require reentering parameters. | |||
10170 | void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { | |||
10171 | if (!Param) | |||
10172 | return; | |||
10173 | ||||
10174 | S->AddDecl(Param); | |||
10175 | if (Param->getDeclName()) | |||
10176 | IdResolver.AddDecl(Param); | |||
10177 | } | |||
10178 | ||||
10179 | /// ActOnStartDelayedCXXMethodDeclaration - We have completed | |||
10180 | /// parsing a top-level (non-nested) C++ class, and we are now | |||
10181 | /// parsing those parts of the given Method declaration that could | |||
10182 | /// not be parsed earlier (C++ [class.mem]p2), such as default | |||
10183 | /// arguments. This action should enter the scope of the given | |||
10184 | /// Method declaration as if we had just parsed the qualified method | |||
10185 | /// name. However, it should not bring the parameters into scope; | |||
10186 | /// that will be performed by ActOnDelayedCXXMethodParameter. | |||
10187 | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { | |||
10188 | } | |||
10189 | ||||
10190 | /// ActOnDelayedCXXMethodParameter - We've already started a delayed | |||
10191 | /// C++ method declaration. We're (re-)introducing the given | |||
10192 | /// function parameter into scope for use in parsing later parts of | |||
10193 | /// the method declaration. For example, we could see an | |||
10194 | /// ActOnParamDefaultArgument event for this parameter. | |||
10195 | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { | |||
10196 | if (!ParamD) | |||
10197 | return; | |||
10198 | ||||
10199 | ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); | |||
10200 | ||||
10201 | S->AddDecl(Param); | |||
10202 | if (Param->getDeclName()) | |||
10203 | IdResolver.AddDecl(Param); | |||
10204 | } | |||
10205 | ||||
10206 | /// ActOnFinishDelayedCXXMethodDeclaration - We have finished | |||
10207 | /// processing the delayed method declaration for Method. The method | |||
10208 | /// declaration is now considered finished. There may be a separate | |||
10209 | /// ActOnStartOfFunctionDef action later (not necessarily | |||
10210 | /// immediately!) for this method, if it was also defined inside the | |||
10211 | /// class body. | |||
10212 | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { | |||
10213 | if (!MethodD) | |||
10214 | return; | |||
10215 | ||||
10216 | AdjustDeclIfTemplate(MethodD); | |||
10217 | ||||
10218 | FunctionDecl *Method = cast<FunctionDecl>(MethodD); | |||
10219 | ||||
10220 | // Now that we have our default arguments, check the constructor | |||
10221 | // again. It could produce additional diagnostics or affect whether | |||
10222 | // the class has implicitly-declared destructors, among other | |||
10223 | // things. | |||
10224 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) | |||
10225 | CheckConstructor(Constructor); | |||
10226 | ||||
10227 | // Check the default arguments, which we may have added. | |||
10228 | if (!Method->isInvalidDecl()) | |||
10229 | CheckCXXDefaultArguments(Method); | |||
10230 | } | |||
10231 | ||||
10232 | // Emit the given diagnostic for each non-address-space qualifier. | |||
10233 | // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. | |||
10234 | static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { | |||
10235 | const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | |||
10236 | if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { | |||
10237 | bool DiagOccured = false; | |||
10238 | FTI.MethodQualifiers->forEachQualifier( | |||
10239 | [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, | |||
10240 | SourceLocation SL) { | |||
10241 | // This diagnostic should be emitted on any qualifier except an addr | |||
10242 | // space qualifier. However, forEachQualifier currently doesn't visit | |||
10243 | // addr space qualifiers, so there's no way to write this condition | |||
10244 | // right now; we just diagnose on everything. | |||
10245 | S.Diag(SL, DiagID) << QualName << SourceRange(SL); | |||
10246 | DiagOccured = true; | |||
10247 | }); | |||
10248 | if (DiagOccured) | |||
10249 | D.setInvalidType(); | |||
10250 | } | |||
10251 | } | |||
10252 | ||||
10253 | /// CheckConstructorDeclarator - Called by ActOnDeclarator to check | |||
10254 | /// the well-formedness of the constructor declarator @p D with type @p | |||
10255 | /// R. If there are any errors in the declarator, this routine will | |||
10256 | /// emit diagnostics and set the invalid bit to true. In any case, the type | |||
10257 | /// will be updated to reflect a well-formed type for the constructor and | |||
10258 | /// returned. | |||
10259 | QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, | |||
10260 | StorageClass &SC) { | |||
10261 | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | |||
10262 | ||||
10263 | // C++ [class.ctor]p3: | |||
10264 | // A constructor shall not be virtual (10.3) or static (9.4). A | |||
10265 | // constructor can be invoked for a const, volatile or const | |||
10266 | // volatile object. A constructor shall not be declared const, | |||
10267 | // volatile, or const volatile (9.3.2). | |||
10268 | if (isVirtual) { | |||
10269 | if (!D.isInvalidType()) | |||
10270 | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | |||
10271 | << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) | |||
10272 | << SourceRange(D.getIdentifierLoc()); | |||
10273 | D.setInvalidType(); | |||
10274 | } | |||
10275 | if (SC == SC_Static) { | |||
10276 | if (!D.isInvalidType()) | |||
10277 | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | |||
10278 | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | |||
10279 | << SourceRange(D.getIdentifierLoc()); | |||
10280 | D.setInvalidType(); | |||
10281 | SC = SC_None; | |||
10282 | } | |||
10283 | ||||
10284 | if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { | |||
10285 | diagnoseIgnoredQualifiers( | |||
10286 | diag::err_constructor_return_type, TypeQuals, SourceLocation(), | |||
10287 | D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), | |||
10288 | D.getDeclSpec().getRestrictSpecLoc(), | |||
10289 | D.getDeclSpec().getAtomicSpecLoc()); | |||
10290 | D.setInvalidType(); | |||
10291 | } | |||
10292 | ||||
10293 | checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); | |||
10294 | ||||
10295 | // C++0x [class.ctor]p4: | |||
10296 | // A constructor shall not be declared with a ref-qualifier. | |||
10297 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | |||
10298 | if (FTI.hasRefQualifier()) { | |||
10299 | Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) | |||
10300 | << FTI.RefQualifierIsLValueRef | |||
10301 | << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); | |||
10302 | D.setInvalidType(); | |||
10303 | } | |||
10304 | ||||
10305 | // Rebuild the function type "R" without any type qualifiers (in | |||
10306 | // case any of the errors above fired) and with "void" as the | |||
10307 | // return type, since constructors don't have return types. | |||
10308 | const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); | |||
10309 | if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) | |||
10310 | return R; | |||
10311 | ||||
10312 | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); | |||
10313 | EPI.TypeQuals = Qualifiers(); | |||
10314 | EPI.RefQualifier = RQ_None; | |||
10315 | ||||
10316 | return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); | |||
10317 | } | |||
10318 | ||||
10319 | /// CheckConstructor - Checks a fully-formed constructor for | |||
10320 | /// well-formedness, issuing any diagnostics required. Returns true if | |||
10321 | /// the constructor declarator is invalid. | |||
10322 | void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { | |||
10323 | CXXRecordDecl *ClassDecl | |||
10324 | = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); | |||
10325 | if (!ClassDecl) | |||
10326 | return Constructor->setInvalidDecl(); | |||
10327 | ||||
10328 | // C++ [class.copy]p3: | |||
10329 | // A declaration of a constructor for a class X is ill-formed if | |||
10330 | // its first parameter is of type (optionally cv-qualified) X and | |||
10331 | // either there are no other parameters or else all other | |||
10332 | // parameters have default arguments. | |||
10333 | if (!Constructor->isInvalidDecl() && | |||
10334 | Constructor->hasOneParamOrDefaultArgs() && | |||
10335 | Constructor->getTemplateSpecializationKind() != | |||
10336 | TSK_ImplicitInstantiation) { | |||
10337 | QualType ParamType = Constructor->getParamDecl(0)->getType(); | |||
10338 | QualType ClassTy = Context.getTagDeclType(ClassDecl); | |||
10339 | if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { | |||
10340 | SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); | |||
10341 | const char *ConstRef | |||
10342 | = Constructor->getParamDecl(0)->getIdentifier() ? "const &" | |||
10343 | : " const &"; | |||
10344 | Diag(ParamLoc, diag::err_constructor_byvalue_arg) | |||
10345 | << FixItHint::CreateInsertion(ParamLoc, ConstRef); | |||
10346 | ||||
10347 | // FIXME: Rather that making the constructor invalid, we should endeavor | |||
10348 | // to fix the type. | |||
10349 | Constructor->setInvalidDecl(); | |||
10350 | } | |||
10351 | } | |||
10352 | } | |||
10353 | ||||
10354 | /// CheckDestructor - Checks a fully-formed destructor definition for | |||
10355 | /// well-formedness, issuing any diagnostics required. Returns true | |||
10356 | /// on error. | |||
10357 | bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { | |||
10358 | CXXRecordDecl *RD = Destructor->getParent(); | |||
10359 | ||||
10360 | if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { | |||
10361 | SourceLocation Loc; | |||
10362 | ||||
10363 | if (!Destructor->isImplicit()) | |||
10364 | Loc = Destructor->getLocation(); | |||
10365 | else | |||
10366 | Loc = RD->getLocation(); | |||
10367 | ||||
10368 | // If we have a virtual destructor, look up the deallocation function | |||
10369 | if (FunctionDecl *OperatorDelete = | |||
10370 | FindDeallocationFunctionForDestructor(Loc, RD)) { | |||
10371 | Expr *ThisArg = nullptr; | |||
10372 | ||||
10373 | // If the notional 'delete this' expression requires a non-trivial | |||
10374 | // conversion from 'this' to the type of a destroying operator delete's | |||
10375 | // first parameter, perform that conversion now. | |||
10376 | if (OperatorDelete->isDestroyingOperatorDelete()) { | |||
10377 | QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); | |||
10378 | if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { | |||
10379 | // C++ [class.dtor]p13: | |||
10380 | // ... as if for the expression 'delete this' appearing in a | |||
10381 | // non-virtual destructor of the destructor's class. | |||
10382 | ContextRAII SwitchContext(*this, Destructor); | |||
10383 | ExprResult This = | |||
10384 | ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); | |||
10385 | assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")((void)0); | |||
10386 | This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); | |||
10387 | if (This.isInvalid()) { | |||
10388 | // FIXME: Register this as a context note so that it comes out | |||
10389 | // in the right order. | |||
10390 | Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); | |||
10391 | return true; | |||
10392 | } | |||
10393 | ThisArg = This.get(); | |||
10394 | } | |||
10395 | } | |||
10396 | ||||
10397 | DiagnoseUseOfDecl(OperatorDelete, Loc); | |||
10398 | MarkFunctionReferenced(Loc, OperatorDelete); | |||
10399 | Destructor->setOperatorDelete(OperatorDelete, ThisArg); | |||
10400 | } | |||
10401 | } | |||
10402 | ||||
10403 | return false; | |||
10404 | } | |||
10405 | ||||
10406 | /// CheckDestructorDeclarator - Called by ActOnDeclarator to check | |||
10407 | /// the well-formednes of the destructor declarator @p D with type @p | |||
10408 | /// R. If there are any errors in the declarator, this routine will | |||
10409 | /// emit diagnostics and set the declarator to invalid. Even if this happens, | |||
10410 | /// will be updated to reflect a well-formed type for the destructor and | |||
10411 | /// returned. | |||
10412 | QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, | |||
10413 | StorageClass& SC) { | |||
10414 | // C++ [class.dtor]p1: | |||
10415 | // [...] A typedef-name that names a class is a class-name | |||
10416 | // (7.1.3); however, a typedef-name that names a class shall not | |||
10417 | // be used as the identifier in the declarator for a destructor | |||
10418 | // declaration. | |||
10419 | QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); | |||
10420 | if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) | |||
10421 | Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) | |||
10422 | << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); | |||
10423 | else if (const TemplateSpecializationType *TST = | |||
10424 | DeclaratorType->getAs<TemplateSpecializationType>()) | |||
10425 | if (TST->isTypeAlias()) | |||
10426 | Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) | |||
10427 | << DeclaratorType << 1; | |||
10428 | ||||
10429 | // C++ [class.dtor]p2: | |||
10430 | // A destructor is used to destroy objects of its class type. A | |||
10431 | // destructor takes no parameters, and no return type can be | |||
10432 | // specified for it (not even void). The address of a destructor | |||
10433 | // shall not be taken. A destructor shall not be static. A | |||
10434 | // destructor can be invoked for a const, volatile or const | |||
10435 | // volatile object. A destructor shall not be declared const, | |||
10436 | // volatile or const volatile (9.3.2). | |||
10437 | if (SC == SC_Static) { | |||
10438 | if (!D.isInvalidType()) | |||
10439 | Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) | |||
10440 | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | |||
10441 | << SourceRange(D.getIdentifierLoc()) | |||
10442 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |||
10443 | ||||
10444 | SC = SC_None; | |||
10445 | } | |||
10446 | if (!D.isInvalidType()) { | |||
10447 | // Destructors don't have return types, but the parser will | |||
10448 | // happily parse something like: | |||
10449 | // | |||
10450 | // class X { | |||
10451 | // float ~X(); | |||
10452 | // }; | |||
10453 | // | |||
10454 | // The return type will be eliminated later. | |||
10455 | if (D.getDeclSpec().hasTypeSpecifier()) | |||
10456 | Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) | |||
10457 | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | |||
10458 | << SourceRange(D.getIdentifierLoc()); | |||
10459 | else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { | |||
10460 | diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, | |||
10461 | SourceLocation(), | |||
10462 | D.getDeclSpec().getConstSpecLoc(), | |||
10463 | D.getDeclSpec().getVolatileSpecLoc(), | |||
10464 | D.getDeclSpec().getRestrictSpecLoc(), | |||
10465 | D.getDeclSpec().getAtomicSpecLoc()); | |||
10466 | D.setInvalidType(); | |||
10467 | } | |||
10468 | } | |||
10469 | ||||
10470 | checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); | |||
10471 | ||||
10472 | // C++0x [class.dtor]p2: | |||
10473 | // A destructor shall not be declared with a ref-qualifier. | |||
10474 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | |||
10475 | if (FTI.hasRefQualifier()) { | |||
10476 | Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) | |||
10477 | << FTI.RefQualifierIsLValueRef | |||
10478 | << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); | |||
10479 | D.setInvalidType(); | |||
10480 | } | |||
10481 | ||||
10482 | // Make sure we don't have any parameters. | |||
10483 | if (FTIHasNonVoidParameters(FTI)) { | |||
10484 | Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); | |||
10485 | ||||
10486 | // Delete the parameters. | |||
10487 | FTI.freeParams(); | |||
10488 | D.setInvalidType(); | |||
10489 | } | |||
10490 | ||||
10491 | // Make sure the destructor isn't variadic. | |||
10492 | if (FTI.isVariadic) { | |||
10493 | Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); | |||
10494 | D.setInvalidType(); | |||
10495 | } | |||
10496 | ||||
10497 | // Rebuild the function type "R" without any type qualifiers or | |||
10498 | // parameters (in case any of the errors above fired) and with | |||
10499 | // "void" as the return type, since destructors don't have return | |||
10500 | // types. | |||
10501 | if (!D.isInvalidType()) | |||
10502 | return R; | |||
10503 | ||||
10504 | const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); | |||
10505 | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); | |||
10506 | EPI.Variadic = false; | |||
10507 | EPI.TypeQuals = Qualifiers(); | |||
10508 | EPI.RefQualifier = RQ_None; | |||
10509 | return Context.getFunctionType(Context.VoidTy, None, EPI); | |||
10510 | } | |||
10511 | ||||
10512 | static void extendLeft(SourceRange &R, SourceRange Before) { | |||
10513 | if (Before.isInvalid()) | |||
10514 | return; | |||
10515 | R.setBegin(Before.getBegin()); | |||
10516 | if (R.getEnd().isInvalid()) | |||
10517 | R.setEnd(Before.getEnd()); | |||
10518 | } | |||
10519 | ||||
10520 | static void extendRight(SourceRange &R, SourceRange After) { | |||
10521 | if (After.isInvalid()) | |||
10522 | return; | |||
10523 | if (R.getBegin().isInvalid()) | |||
10524 | R.setBegin(After.getBegin()); | |||
10525 | R.setEnd(After.getEnd()); | |||
10526 | } | |||
10527 | ||||
10528 | /// CheckConversionDeclarator - Called by ActOnDeclarator to check the | |||
10529 | /// well-formednes of the conversion function declarator @p D with | |||
10530 | /// type @p R. If there are any errors in the declarator, this routine | |||
10531 | /// will emit diagnostics and return true. Otherwise, it will return | |||
10532 | /// false. Either way, the type @p R will be updated to reflect a | |||
10533 | /// well-formed type for the conversion operator. | |||
10534 | void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, | |||
10535 | StorageClass& SC) { | |||
10536 | // C++ [class.conv.fct]p1: | |||
10537 | // Neither parameter types nor return type can be specified. The | |||
10538 | // type of a conversion function (8.3.5) is "function taking no | |||
10539 | // parameter returning conversion-type-id." | |||
10540 | if (SC == SC_Static) { | |||
10541 | if (!D.isInvalidType()) | |||
10542 | Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) | |||
10543 | << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | |||
10544 | << D.getName().getSourceRange(); | |||
10545 | D.setInvalidType(); | |||
10546 | SC = SC_None; | |||
10547 | } | |||
10548 | ||||
10549 | TypeSourceInfo *ConvTSI = nullptr; | |||
10550 | QualType ConvType = | |||
10551 | GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); | |||
10552 | ||||
10553 | const DeclSpec &DS = D.getDeclSpec(); | |||
10554 | if (DS.hasTypeSpecifier() && !D.isInvalidType()) { | |||
10555 | // Conversion functions don't have return types, but the parser will | |||
10556 | // happily parse something like: | |||
10557 | // | |||
10558 | // class X { | |||
10559 | // float operator bool(); | |||
10560 | // }; | |||
10561 | // | |||
10562 | // The return type will be changed later anyway. | |||
10563 | Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) | |||
10564 | << SourceRange(DS.getTypeSpecTypeLoc()) | |||
10565 | << SourceRange(D.getIdentifierLoc()); | |||
10566 | D.setInvalidType(); | |||
10567 | } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { | |||
10568 | // It's also plausible that the user writes type qualifiers in the wrong | |||
10569 | // place, such as: | |||
10570 | // struct S { const operator int(); }; | |||
10571 | // FIXME: we could provide a fixit to move the qualifiers onto the | |||
10572 | // conversion type. | |||
10573 | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) | |||
10574 | << SourceRange(D.getIdentifierLoc()) << 0; | |||
10575 | D.setInvalidType(); | |||
10576 | } | |||
10577 | ||||
10578 | const auto *Proto = R->castAs<FunctionProtoType>(); | |||
10579 | ||||
10580 | // Make sure we don't have any parameters. | |||
10581 | if (Proto->getNumParams() > 0) { | |||
10582 | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); | |||
10583 | ||||
10584 | // Delete the parameters. | |||
10585 | D.getFunctionTypeInfo().freeParams(); | |||
10586 | D.setInvalidType(); | |||
10587 | } else if (Proto->isVariadic()) { | |||
10588 | Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); | |||
10589 | D.setInvalidType(); | |||
10590 | } | |||
10591 | ||||
10592 | // Diagnose "&operator bool()" and other such nonsense. This | |||
10593 | // is actually a gcc extension which we don't support. | |||
10594 | if (Proto->getReturnType() != ConvType) { | |||
10595 | bool NeedsTypedef = false; | |||
10596 | SourceRange Before, After; | |||
10597 | ||||
10598 | // Walk the chunks and extract information on them for our diagnostic. | |||
10599 | bool PastFunctionChunk = false; | |||
10600 | for (auto &Chunk : D.type_objects()) { | |||
10601 | switch (Chunk.Kind) { | |||
10602 | case DeclaratorChunk::Function: | |||
10603 | if (!PastFunctionChunk) { | |||
10604 | if (Chunk.Fun.HasTrailingReturnType) { | |||
10605 | TypeSourceInfo *TRT = nullptr; | |||
10606 | GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); | |||
10607 | if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); | |||
10608 | } | |||
10609 | PastFunctionChunk = true; | |||
10610 | break; | |||
10611 | } | |||
10612 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
10613 | case DeclaratorChunk::Array: | |||
10614 | NeedsTypedef = true; | |||
10615 | extendRight(After, Chunk.getSourceRange()); | |||
10616 | break; | |||
10617 | ||||
10618 | case DeclaratorChunk::Pointer: | |||
10619 | case DeclaratorChunk::BlockPointer: | |||
10620 | case DeclaratorChunk::Reference: | |||
10621 | case DeclaratorChunk::MemberPointer: | |||
10622 | case DeclaratorChunk::Pipe: | |||
10623 | extendLeft(Before, Chunk.getSourceRange()); | |||
10624 | break; | |||
10625 | ||||
10626 | case DeclaratorChunk::Paren: | |||
10627 | extendLeft(Before, Chunk.Loc); | |||
10628 | extendRight(After, Chunk.EndLoc); | |||
10629 | break; | |||
10630 | } | |||
10631 | } | |||
10632 | ||||
10633 | SourceLocation Loc = Before.isValid() ? Before.getBegin() : | |||
10634 | After.isValid() ? After.getBegin() : | |||
10635 | D.getIdentifierLoc(); | |||
10636 | auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); | |||
10637 | DB << Before << After; | |||
10638 | ||||
10639 | if (!NeedsTypedef) { | |||
10640 | DB << /*don't need a typedef*/0; | |||
10641 | ||||
10642 | // If we can provide a correct fix-it hint, do so. | |||
10643 | if (After.isInvalid() && ConvTSI) { | |||
10644 | SourceLocation InsertLoc = | |||
10645 | getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); | |||
10646 | DB << FixItHint::CreateInsertion(InsertLoc, " ") | |||
10647 | << FixItHint::CreateInsertionFromRange( | |||
10648 | InsertLoc, CharSourceRange::getTokenRange(Before)) | |||
10649 | << FixItHint::CreateRemoval(Before); | |||
10650 | } | |||
10651 | } else if (!Proto->getReturnType()->isDependentType()) { | |||
10652 | DB << /*typedef*/1 << Proto->getReturnType(); | |||
10653 | } else if (getLangOpts().CPlusPlus11) { | |||
10654 | DB << /*alias template*/2 << Proto->getReturnType(); | |||
10655 | } else { | |||
10656 | DB << /*might not be fixable*/3; | |||
10657 | } | |||
10658 | ||||
10659 | // Recover by incorporating the other type chunks into the result type. | |||
10660 | // Note, this does *not* change the name of the function. This is compatible | |||
10661 | // with the GCC extension: | |||
10662 | // struct S { &operator int(); } s; | |||
10663 | // int &r = s.operator int(); // ok in GCC | |||
10664 | // S::operator int&() {} // error in GCC, function name is 'operator int'. | |||
10665 | ConvType = Proto->getReturnType(); | |||
10666 | } | |||
10667 | ||||
10668 | // C++ [class.conv.fct]p4: | |||
10669 | // The conversion-type-id shall not represent a function type nor | |||
10670 | // an array type. | |||
10671 | if (ConvType->isArrayType()) { | |||
10672 | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); | |||
10673 | ConvType = Context.getPointerType(ConvType); | |||
10674 | D.setInvalidType(); | |||
10675 | } else if (ConvType->isFunctionType()) { | |||
10676 | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); | |||
10677 | ConvType = Context.getPointerType(ConvType); | |||
10678 | D.setInvalidType(); | |||
10679 | } | |||
10680 | ||||
10681 | // Rebuild the function type "R" without any parameters (in case any | |||
10682 | // of the errors above fired) and with the conversion type as the | |||
10683 | // return type. | |||
10684 | if (D.isInvalidType()) | |||
10685 | R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); | |||
10686 | ||||
10687 | // C++0x explicit conversion operators. | |||
10688 | if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) | |||
10689 | Diag(DS.getExplicitSpecLoc(), | |||
10690 | getLangOpts().CPlusPlus11 | |||
10691 | ? diag::warn_cxx98_compat_explicit_conversion_functions | |||
10692 | : diag::ext_explicit_conversion_functions) | |||
10693 | << SourceRange(DS.getExplicitSpecRange()); | |||
10694 | } | |||
10695 | ||||
10696 | /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete | |||
10697 | /// the declaration of the given C++ conversion function. This routine | |||
10698 | /// is responsible for recording the conversion function in the C++ | |||
10699 | /// class, if possible. | |||
10700 | Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { | |||
10701 | assert(Conversion && "Expected to receive a conversion function declaration")((void)0); | |||
10702 | ||||
10703 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); | |||
10704 | ||||
10705 | // Make sure we aren't redeclaring the conversion function. | |||
10706 | QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); | |||
10707 | // C++ [class.conv.fct]p1: | |||
10708 | // [...] A conversion function is never used to convert a | |||
10709 | // (possibly cv-qualified) object to the (possibly cv-qualified) | |||
10710 | // same object type (or a reference to it), to a (possibly | |||
10711 | // cv-qualified) base class of that type (or a reference to it), | |||
10712 | // or to (possibly cv-qualified) void. | |||
10713 | QualType ClassType | |||
10714 | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | |||
10715 | if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) | |||
10716 | ConvType = ConvTypeRef->getPointeeType(); | |||
10717 | if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && | |||
10718 | Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) | |||
10719 | /* Suppress diagnostics for instantiations. */; | |||
10720 | else if (Conversion->size_overridden_methods() != 0) | |||
10721 | /* Suppress diagnostics for overriding virtual function in a base class. */; | |||
10722 | else if (ConvType->isRecordType()) { | |||
10723 | ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); | |||
10724 | if (ConvType == ClassType) | |||
10725 | Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) | |||
10726 | << ClassType; | |||
10727 | else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) | |||
10728 | Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) | |||
10729 | << ClassType << ConvType; | |||
10730 | } else if (ConvType->isVoidType()) { | |||
10731 | Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) | |||
10732 | << ClassType << ConvType; | |||
10733 | } | |||
10734 | ||||
10735 | if (FunctionTemplateDecl *ConversionTemplate | |||
10736 | = Conversion->getDescribedFunctionTemplate()) | |||
10737 | return ConversionTemplate; | |||
10738 | ||||
10739 | return Conversion; | |||
10740 | } | |||
10741 | ||||
10742 | namespace { | |||
10743 | /// Utility class to accumulate and print a diagnostic listing the invalid | |||
10744 | /// specifier(s) on a declaration. | |||
10745 | struct BadSpecifierDiagnoser { | |||
10746 | BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) | |||
10747 | : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} | |||
10748 | ~BadSpecifierDiagnoser() { | |||
10749 | Diagnostic << Specifiers; | |||
10750 | } | |||
10751 | ||||
10752 | template<typename T> void check(SourceLocation SpecLoc, T Spec) { | |||
10753 | return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); | |||
10754 | } | |||
10755 | void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { | |||
10756 | return check(SpecLoc, | |||
10757 | DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); | |||
10758 | } | |||
10759 | void check(SourceLocation SpecLoc, const char *Spec) { | |||
10760 | if (SpecLoc.isInvalid()) return; | |||
10761 | Diagnostic << SourceRange(SpecLoc, SpecLoc); | |||
10762 | if (!Specifiers.empty()) Specifiers += " "; | |||
10763 | Specifiers += Spec; | |||
10764 | } | |||
10765 | ||||
10766 | Sema &S; | |||
10767 | Sema::SemaDiagnosticBuilder Diagnostic; | |||
10768 | std::string Specifiers; | |||
10769 | }; | |||
10770 | } | |||
10771 | ||||
10772 | /// Check the validity of a declarator that we parsed for a deduction-guide. | |||
10773 | /// These aren't actually declarators in the grammar, so we need to check that | |||
10774 | /// the user didn't specify any pieces that are not part of the deduction-guide | |||
10775 | /// grammar. | |||
10776 | void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, | |||
10777 | StorageClass &SC) { | |||
10778 | TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); | |||
10779 | TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); | |||
10780 | assert(GuidedTemplateDecl && "missing template decl for deduction guide")((void)0); | |||
10781 | ||||
10782 | // C++ [temp.deduct.guide]p3: | |||
10783 | // A deduction-gide shall be declared in the same scope as the | |||
10784 | // corresponding class template. | |||
10785 | if (!CurContext->getRedeclContext()->Equals( | |||
10786 | GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { | |||
10787 | Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) | |||
10788 | << GuidedTemplateDecl; | |||
10789 | Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); | |||
10790 | } | |||
10791 | ||||
10792 | auto &DS = D.getMutableDeclSpec(); | |||
10793 | // We leave 'friend' and 'virtual' to be rejected in the normal way. | |||
10794 | if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || | |||
10795 | DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || | |||
10796 | DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { | |||
10797 | BadSpecifierDiagnoser Diagnoser( | |||
10798 | *this, D.getIdentifierLoc(), | |||
10799 | diag::err_deduction_guide_invalid_specifier); | |||
10800 | ||||
10801 | Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); | |||
10802 | DS.ClearStorageClassSpecs(); | |||
10803 | SC = SC_None; | |||
10804 | ||||
10805 | // 'explicit' is permitted. | |||
10806 | Diagnoser.check(DS.getInlineSpecLoc(), "inline"); | |||
10807 | Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); | |||
10808 | Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); | |||
10809 | DS.ClearConstexprSpec(); | |||
10810 | ||||
10811 | Diagnoser.check(DS.getConstSpecLoc(), "const"); | |||
10812 | Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); | |||
10813 | Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); | |||
10814 | Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); | |||
10815 | Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); | |||
10816 | DS.ClearTypeQualifiers(); | |||
10817 | ||||
10818 | Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); | |||
10819 | Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); | |||
10820 | Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); | |||
10821 | Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); | |||
10822 | DS.ClearTypeSpecType(); | |||
10823 | } | |||
10824 | ||||
10825 | if (D.isInvalidType()) | |||
10826 | return; | |||
10827 | ||||
10828 | // Check the declarator is simple enough. | |||
10829 | bool FoundFunction = false; | |||
10830 | for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { | |||
10831 | if (Chunk.Kind == DeclaratorChunk::Paren) | |||
10832 | continue; | |||
10833 | if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { | |||
10834 | Diag(D.getDeclSpec().getBeginLoc(), | |||
10835 | diag::err_deduction_guide_with_complex_decl) | |||
10836 | << D.getSourceRange(); | |||
10837 | break; | |||
10838 | } | |||
10839 | if (!Chunk.Fun.hasTrailingReturnType()) { | |||
10840 | Diag(D.getName().getBeginLoc(), | |||
10841 | diag::err_deduction_guide_no_trailing_return_type); | |||
10842 | break; | |||
10843 | } | |||
10844 | ||||
10845 | // Check that the return type is written as a specialization of | |||
10846 | // the template specified as the deduction-guide's name. | |||
10847 | ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); | |||
10848 | TypeSourceInfo *TSI = nullptr; | |||
10849 | QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); | |||
10850 | assert(TSI && "deduction guide has valid type but invalid return type?")((void)0); | |||
10851 | bool AcceptableReturnType = false; | |||
10852 | bool MightInstantiateToSpecialization = false; | |||
10853 | if (auto RetTST = | |||
10854 | TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { | |||
10855 | TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); | |||
10856 | bool TemplateMatches = | |||
10857 | Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); | |||
10858 | if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) | |||
10859 | AcceptableReturnType = true; | |||
10860 | else { | |||
10861 | // This could still instantiate to the right type, unless we know it | |||
10862 | // names the wrong class template. | |||
10863 | auto *TD = SpecifiedName.getAsTemplateDecl(); | |||
10864 | MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && | |||
10865 | !TemplateMatches); | |||
10866 | } | |||
10867 | } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { | |||
10868 | MightInstantiateToSpecialization = true; | |||
10869 | } | |||
10870 | ||||
10871 | if (!AcceptableReturnType) { | |||
10872 | Diag(TSI->getTypeLoc().getBeginLoc(), | |||
10873 | diag::err_deduction_guide_bad_trailing_return_type) | |||
10874 | << GuidedTemplate << TSI->getType() | |||
10875 | << MightInstantiateToSpecialization | |||
10876 | << TSI->getTypeLoc().getSourceRange(); | |||
10877 | } | |||
10878 | ||||
10879 | // Keep going to check that we don't have any inner declarator pieces (we | |||
10880 | // could still have a function returning a pointer to a function). | |||
10881 | FoundFunction = true; | |||
10882 | } | |||
10883 | ||||
10884 | if (D.isFunctionDefinition()) | |||
10885 | Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); | |||
10886 | } | |||
10887 | ||||
10888 | //===----------------------------------------------------------------------===// | |||
10889 | // Namespace Handling | |||
10890 | //===----------------------------------------------------------------------===// | |||
10891 | ||||
10892 | /// Diagnose a mismatch in 'inline' qualifiers when a namespace is | |||
10893 | /// reopened. | |||
10894 | static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, | |||
10895 | SourceLocation Loc, | |||
10896 | IdentifierInfo *II, bool *IsInline, | |||
10897 | NamespaceDecl *PrevNS) { | |||
10898 | assert(*IsInline != PrevNS->isInline())((void)0); | |||
10899 | ||||
10900 | if (PrevNS->isInline()) | |||
10901 | // The user probably just forgot the 'inline', so suggest that it | |||
10902 | // be added back. | |||
10903 | S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) | |||
10904 | << FixItHint::CreateInsertion(KeywordLoc, "inline "); | |||
10905 | else | |||
10906 | S.Diag(Loc, diag::err_inline_namespace_mismatch); | |||
10907 | ||||
10908 | S.Diag(PrevNS->getLocation(), diag::note_previous_definition); | |||
10909 | *IsInline = PrevNS->isInline(); | |||
10910 | } | |||
10911 | ||||
10912 | /// ActOnStartNamespaceDef - This is called at the start of a namespace | |||
10913 | /// definition. | |||
10914 | Decl *Sema::ActOnStartNamespaceDef( | |||
10915 | Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, | |||
10916 | SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, | |||
10917 | const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { | |||
10918 | SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; | |||
10919 | // For anonymous namespace, take the location of the left brace. | |||
10920 | SourceLocation Loc = II ? IdentLoc : LBrace; | |||
10921 | bool IsInline = InlineLoc.isValid(); | |||
10922 | bool IsInvalid = false; | |||
10923 | bool IsStd = false; | |||
10924 | bool AddToKnown = false; | |||
10925 | Scope *DeclRegionScope = NamespcScope->getParent(); | |||
10926 | ||||
10927 | NamespaceDecl *PrevNS = nullptr; | |||
10928 | if (II) { | |||
10929 | // C++ [namespace.def]p2: | |||
10930 | // The identifier in an original-namespace-definition shall not | |||
10931 | // have been previously defined in the declarative region in | |||
10932 | // which the original-namespace-definition appears. The | |||
10933 | // identifier in an original-namespace-definition is the name of | |||
10934 | // the namespace. Subsequently in that declarative region, it is | |||
10935 | // treated as an original-namespace-name. | |||
10936 | // | |||
10937 | // Since namespace names are unique in their scope, and we don't | |||
10938 | // look through using directives, just look for any ordinary names | |||
10939 | // as if by qualified name lookup. | |||
10940 | LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, | |||
10941 | ForExternalRedeclaration); | |||
10942 | LookupQualifiedName(R, CurContext->getRedeclContext()); | |||
10943 | NamedDecl *PrevDecl = | |||
10944 | R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; | |||
10945 | PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); | |||
10946 | ||||
10947 | if (PrevNS) { | |||
10948 | // This is an extended namespace definition. | |||
10949 | if (IsInline != PrevNS->isInline()) | |||
10950 | DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, | |||
10951 | &IsInline, PrevNS); | |||
10952 | } else if (PrevDecl) { | |||
10953 | // This is an invalid name redefinition. | |||
10954 | Diag(Loc, diag::err_redefinition_different_kind) | |||
10955 | << II; | |||
10956 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | |||
10957 | IsInvalid = true; | |||
10958 | // Continue on to push Namespc as current DeclContext and return it. | |||
10959 | } else if (II->isStr("std") && | |||
10960 | CurContext->getRedeclContext()->isTranslationUnit()) { | |||
10961 | // This is the first "real" definition of the namespace "std", so update | |||
10962 | // our cache of the "std" namespace to point at this definition. | |||
10963 | PrevNS = getStdNamespace(); | |||
10964 | IsStd = true; | |||
10965 | AddToKnown = !IsInline; | |||
10966 | } else { | |||
10967 | // We've seen this namespace for the first time. | |||
10968 | AddToKnown = !IsInline; | |||
10969 | } | |||
10970 | } else { | |||
10971 | // Anonymous namespaces. | |||
10972 | ||||
10973 | // Determine whether the parent already has an anonymous namespace. | |||
10974 | DeclContext *Parent = CurContext->getRedeclContext(); | |||
10975 | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { | |||
10976 | PrevNS = TU->getAnonymousNamespace(); | |||
10977 | } else { | |||
10978 | NamespaceDecl *ND = cast<NamespaceDecl>(Parent); | |||
10979 | PrevNS = ND->getAnonymousNamespace(); | |||
10980 | } | |||
10981 | ||||
10982 | if (PrevNS && IsInline != PrevNS->isInline()) | |||
10983 | DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, | |||
10984 | &IsInline, PrevNS); | |||
10985 | } | |||
10986 | ||||
10987 | NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, | |||
10988 | StartLoc, Loc, II, PrevNS); | |||
10989 | if (IsInvalid) | |||
10990 | Namespc->setInvalidDecl(); | |||
10991 | ||||
10992 | ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); | |||
10993 | AddPragmaAttributes(DeclRegionScope, Namespc); | |||
10994 | ||||
10995 | // FIXME: Should we be merging attributes? | |||
10996 | if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) | |||
10997 | PushNamespaceVisibilityAttr(Attr, Loc); | |||
10998 | ||||
10999 | if (IsStd) | |||
11000 | StdNamespace = Namespc; | |||
11001 | if (AddToKnown) | |||
11002 | KnownNamespaces[Namespc] = false; | |||
11003 | ||||
11004 | if (II) { | |||
11005 | PushOnScopeChains(Namespc, DeclRegionScope); | |||
11006 | } else { | |||
11007 | // Link the anonymous namespace into its parent. | |||
11008 | DeclContext *Parent = CurContext->getRedeclContext(); | |||
11009 | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { | |||
11010 | TU->setAnonymousNamespace(Namespc); | |||
11011 | } else { | |||
11012 | cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); | |||
11013 | } | |||
11014 | ||||
11015 | CurContext->addDecl(Namespc); | |||
11016 | ||||
11017 | // C++ [namespace.unnamed]p1. An unnamed-namespace-definition | |||
11018 | // behaves as if it were replaced by | |||
11019 | // namespace unique { /* empty body */ } | |||
11020 | // using namespace unique; | |||
11021 | // namespace unique { namespace-body } | |||
11022 | // where all occurrences of 'unique' in a translation unit are | |||
11023 | // replaced by the same identifier and this identifier differs | |||
11024 | // from all other identifiers in the entire program. | |||
11025 | ||||
11026 | // We just create the namespace with an empty name and then add an | |||
11027 | // implicit using declaration, just like the standard suggests. | |||
11028 | // | |||
11029 | // CodeGen enforces the "universally unique" aspect by giving all | |||
11030 | // declarations semantically contained within an anonymous | |||
11031 | // namespace internal linkage. | |||
11032 | ||||
11033 | if (!PrevNS) { | |||
11034 | UD = UsingDirectiveDecl::Create(Context, Parent, | |||
11035 | /* 'using' */ LBrace, | |||
11036 | /* 'namespace' */ SourceLocation(), | |||
11037 | /* qualifier */ NestedNameSpecifierLoc(), | |||
11038 | /* identifier */ SourceLocation(), | |||
11039 | Namespc, | |||
11040 | /* Ancestor */ Parent); | |||
11041 | UD->setImplicit(); | |||
11042 | Parent->addDecl(UD); | |||
11043 | } | |||
11044 | } | |||
11045 | ||||
11046 | ActOnDocumentableDecl(Namespc); | |||
11047 | ||||
11048 | // Although we could have an invalid decl (i.e. the namespace name is a | |||
11049 | // redefinition), push it as current DeclContext and try to continue parsing. | |||
11050 | // FIXME: We should be able to push Namespc here, so that the each DeclContext | |||
11051 | // for the namespace has the declarations that showed up in that particular | |||
11052 | // namespace definition. | |||
11053 | PushDeclContext(NamespcScope, Namespc); | |||
11054 | return Namespc; | |||
11055 | } | |||
11056 | ||||
11057 | /// getNamespaceDecl - Returns the namespace a decl represents. If the decl | |||
11058 | /// is a namespace alias, returns the namespace it points to. | |||
11059 | static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { | |||
11060 | if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) | |||
11061 | return AD->getNamespace(); | |||
11062 | return dyn_cast_or_null<NamespaceDecl>(D); | |||
11063 | } | |||
11064 | ||||
11065 | /// ActOnFinishNamespaceDef - This callback is called after a namespace is | |||
11066 | /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. | |||
11067 | void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { | |||
11068 | NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); | |||
11069 | assert(Namespc && "Invalid parameter, expected NamespaceDecl")((void)0); | |||
11070 | Namespc->setRBraceLoc(RBrace); | |||
11071 | PopDeclContext(); | |||
11072 | if (Namespc->hasAttr<VisibilityAttr>()) | |||
11073 | PopPragmaVisibility(true, RBrace); | |||
11074 | // If this namespace contains an export-declaration, export it now. | |||
11075 | if (DeferredExportedNamespaces.erase(Namespc)) | |||
11076 | Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); | |||
11077 | } | |||
11078 | ||||
11079 | CXXRecordDecl *Sema::getStdBadAlloc() const { | |||
11080 | return cast_or_null<CXXRecordDecl>( | |||
11081 | StdBadAlloc.get(Context.getExternalSource())); | |||
11082 | } | |||
11083 | ||||
11084 | EnumDecl *Sema::getStdAlignValT() const { | |||
11085 | return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); | |||
11086 | } | |||
11087 | ||||
11088 | NamespaceDecl *Sema::getStdNamespace() const { | |||
11089 | return cast_or_null<NamespaceDecl>( | |||
11090 | StdNamespace.get(Context.getExternalSource())); | |||
11091 | } | |||
11092 | ||||
11093 | NamespaceDecl *Sema::lookupStdExperimentalNamespace() { | |||
11094 | if (!StdExperimentalNamespaceCache) { | |||
11095 | if (auto Std = getStdNamespace()) { | |||
11096 | LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), | |||
11097 | SourceLocation(), LookupNamespaceName); | |||
11098 | if (!LookupQualifiedName(Result, Std) || | |||
11099 | !(StdExperimentalNamespaceCache = | |||
11100 | Result.getAsSingle<NamespaceDecl>())) | |||
11101 | Result.suppressDiagnostics(); | |||
11102 | } | |||
11103 | } | |||
11104 | return StdExperimentalNamespaceCache; | |||
11105 | } | |||
11106 | ||||
11107 | namespace { | |||
11108 | ||||
11109 | enum UnsupportedSTLSelect { | |||
11110 | USS_InvalidMember, | |||
11111 | USS_MissingMember, | |||
11112 | USS_NonTrivial, | |||
11113 | USS_Other | |||
11114 | }; | |||
11115 | ||||
11116 | struct InvalidSTLDiagnoser { | |||
11117 | Sema &S; | |||
11118 | SourceLocation Loc; | |||
11119 | QualType TyForDiags; | |||
11120 | ||||
11121 | QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", | |||
11122 | const VarDecl *VD = nullptr) { | |||
11123 | { | |||
11124 | auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) | |||
11125 | << TyForDiags << ((int)Sel); | |||
11126 | if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { | |||
11127 | assert(!Name.empty())((void)0); | |||
11128 | D << Name; | |||
11129 | } | |||
11130 | } | |||
11131 | if (Sel == USS_InvalidMember) { | |||
11132 | S.Diag(VD->getLocation(), diag::note_var_declared_here) | |||
11133 | << VD << VD->getSourceRange(); | |||
11134 | } | |||
11135 | return QualType(); | |||
11136 | } | |||
11137 | }; | |||
11138 | } // namespace | |||
11139 | ||||
11140 | QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, | |||
11141 | SourceLocation Loc, | |||
11142 | ComparisonCategoryUsage Usage) { | |||
11143 | assert(getLangOpts().CPlusPlus &&((void)0) | |||
11144 | "Looking for comparison category type outside of C++.")((void)0); | |||
11145 | ||||
11146 | // Use an elaborated type for diagnostics which has a name containing the | |||
11147 | // prepended 'std' namespace but not any inline namespace names. | |||
11148 | auto TyForDiags = [&](ComparisonCategoryInfo *Info) { | |||
11149 | auto *NNS = | |||
11150 | NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); | |||
11151 | return Context.getElaboratedType(ETK_None, NNS, Info->getType()); | |||
11152 | }; | |||
11153 | ||||
11154 | // Check if we've already successfully checked the comparison category type | |||
11155 | // before. If so, skip checking it again. | |||
11156 | ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); | |||
11157 | if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { | |||
11158 | // The only thing we need to check is that the type has a reachable | |||
11159 | // definition in the current context. | |||
11160 | if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) | |||
11161 | return QualType(); | |||
11162 | ||||
11163 | return Info->getType(); | |||
11164 | } | |||
11165 | ||||
11166 | // If lookup failed | |||
11167 | if (!Info) { | |||
11168 | std::string NameForDiags = "std::"; | |||
11169 | NameForDiags += ComparisonCategories::getCategoryString(Kind); | |||
11170 | Diag(Loc, diag::err_implied_comparison_category_type_not_found) | |||
11171 | << NameForDiags << (int)Usage; | |||
11172 | return QualType(); | |||
11173 | } | |||
11174 | ||||
11175 | assert(Info->Kind == Kind)((void)0); | |||
11176 | assert(Info->Record)((void)0); | |||
11177 | ||||
11178 | // Update the Record decl in case we encountered a forward declaration on our | |||
11179 | // first pass. FIXME: This is a bit of a hack. | |||
11180 | if (Info->Record->hasDefinition()) | |||
11181 | Info->Record = Info->Record->getDefinition(); | |||
11182 | ||||
11183 | if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) | |||
11184 | return QualType(); | |||
11185 | ||||
11186 | InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; | |||
11187 | ||||
11188 | if (!Info->Record->isTriviallyCopyable()) | |||
11189 | return UnsupportedSTLError(USS_NonTrivial); | |||
11190 | ||||
11191 | for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { | |||
11192 | CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); | |||
11193 | // Tolerate empty base classes. | |||
11194 | if (Base->isEmpty()) | |||
11195 | continue; | |||
11196 | // Reject STL implementations which have at least one non-empty base. | |||
11197 | return UnsupportedSTLError(); | |||
11198 | } | |||
11199 | ||||
11200 | // Check that the STL has implemented the types using a single integer field. | |||
11201 | // This expectation allows better codegen for builtin operators. We require: | |||
11202 | // (1) The class has exactly one field. | |||
11203 | // (2) The field is an integral or enumeration type. | |||
11204 | auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); | |||
11205 | if (std::distance(FIt, FEnd) != 1 || | |||
11206 | !FIt->getType()->isIntegralOrEnumerationType()) { | |||
11207 | return UnsupportedSTLError(); | |||
11208 | } | |||
11209 | ||||
11210 | // Build each of the require values and store them in Info. | |||
11211 | for (ComparisonCategoryResult CCR : | |||
11212 | ComparisonCategories::getPossibleResultsForType(Kind)) { | |||
11213 | StringRef MemName = ComparisonCategories::getResultString(CCR); | |||
11214 | ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); | |||
11215 | ||||
11216 | if (!ValInfo) | |||
11217 | return UnsupportedSTLError(USS_MissingMember, MemName); | |||
11218 | ||||
11219 | VarDecl *VD = ValInfo->VD; | |||
11220 | assert(VD && "should not be null!")((void)0); | |||
11221 | ||||
11222 | // Attempt to diagnose reasons why the STL definition of this type | |||
11223 | // might be foobar, including it failing to be a constant expression. | |||
11224 | // TODO Handle more ways the lookup or result can be invalid. | |||
11225 | if (!VD->isStaticDataMember() || | |||
11226 | !VD->isUsableInConstantExpressions(Context)) | |||
11227 | return UnsupportedSTLError(USS_InvalidMember, MemName, VD); | |||
11228 | ||||
11229 | // Attempt to evaluate the var decl as a constant expression and extract | |||
11230 | // the value of its first field as a ICE. If this fails, the STL | |||
11231 | // implementation is not supported. | |||
11232 | if (!ValInfo->hasValidIntValue()) | |||
11233 | return UnsupportedSTLError(); | |||
11234 | ||||
11235 | MarkVariableReferenced(Loc, VD); | |||
11236 | } | |||
11237 | ||||
11238 | // We've successfully built the required types and expressions. Update | |||
11239 | // the cache and return the newly cached value. | |||
11240 | FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; | |||
11241 | return Info->getType(); | |||
11242 | } | |||
11243 | ||||
11244 | /// Retrieve the special "std" namespace, which may require us to | |||
11245 | /// implicitly define the namespace. | |||
11246 | NamespaceDecl *Sema::getOrCreateStdNamespace() { | |||
11247 | if (!StdNamespace) { | |||
11248 | // The "std" namespace has not yet been defined, so build one implicitly. | |||
11249 | StdNamespace = NamespaceDecl::Create(Context, | |||
11250 | Context.getTranslationUnitDecl(), | |||
11251 | /*Inline=*/false, | |||
11252 | SourceLocation(), SourceLocation(), | |||
11253 | &PP.getIdentifierTable().get("std"), | |||
11254 | /*PrevDecl=*/nullptr); | |||
11255 | getStdNamespace()->setImplicit(true); | |||
11256 | } | |||
11257 | ||||
11258 | return getStdNamespace(); | |||
11259 | } | |||
11260 | ||||
11261 | bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { | |||
11262 | assert(getLangOpts().CPlusPlus &&((void)0) | |||
11263 | "Looking for std::initializer_list outside of C++.")((void)0); | |||
11264 | ||||
11265 | // We're looking for implicit instantiations of | |||
11266 | // template <typename E> class std::initializer_list. | |||
11267 | ||||
11268 | if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. | |||
11269 | return false; | |||
11270 | ||||
11271 | ClassTemplateDecl *Template = nullptr; | |||
11272 | const TemplateArgument *Arguments = nullptr; | |||
11273 | ||||
11274 | if (const RecordType *RT = Ty->getAs<RecordType>()) { | |||
11275 | ||||
11276 | ClassTemplateSpecializationDecl *Specialization = | |||
11277 | dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); | |||
11278 | if (!Specialization) | |||
11279 | return false; | |||
11280 | ||||
11281 | Template = Specialization->getSpecializedTemplate(); | |||
11282 | Arguments = Specialization->getTemplateArgs().data(); | |||
11283 | } else if (const TemplateSpecializationType *TST = | |||
11284 | Ty->getAs<TemplateSpecializationType>()) { | |||
11285 | Template = dyn_cast_or_null<ClassTemplateDecl>( | |||
11286 | TST->getTemplateName().getAsTemplateDecl()); | |||
11287 | Arguments = TST->getArgs(); | |||
11288 | } | |||
11289 | if (!Template) | |||
11290 | return false; | |||
11291 | ||||
11292 | if (!StdInitializerList) { | |||
11293 | // Haven't recognized std::initializer_list yet, maybe this is it. | |||
11294 | CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); | |||
11295 | if (TemplateClass->getIdentifier() != | |||
11296 | &PP.getIdentifierTable().get("initializer_list") || | |||
11297 | !getStdNamespace()->InEnclosingNamespaceSetOf( | |||
11298 | TemplateClass->getDeclContext())) | |||
11299 | return false; | |||
11300 | // This is a template called std::initializer_list, but is it the right | |||
11301 | // template? | |||
11302 | TemplateParameterList *Params = Template->getTemplateParameters(); | |||
11303 | if (Params->getMinRequiredArguments() != 1) | |||
11304 | return false; | |||
11305 | if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) | |||
11306 | return false; | |||
11307 | ||||
11308 | // It's the right template. | |||
11309 | StdInitializerList = Template; | |||
11310 | } | |||
11311 | ||||
11312 | if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) | |||
11313 | return false; | |||
11314 | ||||
11315 | // This is an instance of std::initializer_list. Find the argument type. | |||
11316 | if (Element) | |||
11317 | *Element = Arguments[0].getAsType(); | |||
11318 | return true; | |||
11319 | } | |||
11320 | ||||
11321 | static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ | |||
11322 | NamespaceDecl *Std = S.getStdNamespace(); | |||
11323 | if (!Std) { | |||
11324 | S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); | |||
11325 | return nullptr; | |||
11326 | } | |||
11327 | ||||
11328 | LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), | |||
11329 | Loc, Sema::LookupOrdinaryName); | |||
11330 | if (!S.LookupQualifiedName(Result, Std)) { | |||
11331 | S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); | |||
11332 | return nullptr; | |||
11333 | } | |||
11334 | ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); | |||
11335 | if (!Template) { | |||
11336 | Result.suppressDiagnostics(); | |||
11337 | // We found something weird. Complain about the first thing we found. | |||
11338 | NamedDecl *Found = *Result.begin(); | |||
11339 | S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); | |||
11340 | return nullptr; | |||
11341 | } | |||
11342 | ||||
11343 | // We found some template called std::initializer_list. Now verify that it's | |||
11344 | // correct. | |||
11345 | TemplateParameterList *Params = Template->getTemplateParameters(); | |||
11346 | if (Params->getMinRequiredArguments() != 1 || | |||
11347 | !isa<TemplateTypeParmDecl>(Params->getParam(0))) { | |||
11348 | S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); | |||
11349 | return nullptr; | |||
11350 | } | |||
11351 | ||||
11352 | return Template; | |||
11353 | } | |||
11354 | ||||
11355 | QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { | |||
11356 | if (!StdInitializerList) { | |||
11357 | StdInitializerList = LookupStdInitializerList(*this, Loc); | |||
11358 | if (!StdInitializerList) | |||
11359 | return QualType(); | |||
11360 | } | |||
11361 | ||||
11362 | TemplateArgumentListInfo Args(Loc, Loc); | |||
11363 | Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), | |||
11364 | Context.getTrivialTypeSourceInfo(Element, | |||
11365 | Loc))); | |||
11366 | return Context.getCanonicalType( | |||
11367 | CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); | |||
11368 | } | |||
11369 | ||||
11370 | bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { | |||
11371 | // C++ [dcl.init.list]p2: | |||
11372 | // A constructor is an initializer-list constructor if its first parameter | |||
11373 | // is of type std::initializer_list<E> or reference to possibly cv-qualified | |||
11374 | // std::initializer_list<E> for some type E, and either there are no other | |||
11375 | // parameters or else all other parameters have default arguments. | |||
11376 | if (!Ctor->hasOneParamOrDefaultArgs()) | |||
11377 | return false; | |||
11378 | ||||
11379 | QualType ArgType = Ctor->getParamDecl(0)->getType(); | |||
11380 | if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) | |||
11381 | ArgType = RT->getPointeeType().getUnqualifiedType(); | |||
11382 | ||||
11383 | return isStdInitializerList(ArgType, nullptr); | |||
11384 | } | |||
11385 | ||||
11386 | /// Determine whether a using statement is in a context where it will be | |||
11387 | /// apply in all contexts. | |||
11388 | static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { | |||
11389 | switch (CurContext->getDeclKind()) { | |||
11390 | case Decl::TranslationUnit: | |||
11391 | return true; | |||
11392 | case Decl::LinkageSpec: | |||
11393 | return IsUsingDirectiveInToplevelContext(CurContext->getParent()); | |||
11394 | default: | |||
11395 | return false; | |||
11396 | } | |||
11397 | } | |||
11398 | ||||
11399 | namespace { | |||
11400 | ||||
11401 | // Callback to only accept typo corrections that are namespaces. | |||
11402 | class NamespaceValidatorCCC final : public CorrectionCandidateCallback { | |||
11403 | public: | |||
11404 | bool ValidateCandidate(const TypoCorrection &candidate) override { | |||
11405 | if (NamedDecl *ND = candidate.getCorrectionDecl()) | |||
11406 | return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); | |||
11407 | return false; | |||
11408 | } | |||
11409 | ||||
11410 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
11411 | return std::make_unique<NamespaceValidatorCCC>(*this); | |||
11412 | } | |||
11413 | }; | |||
11414 | ||||
11415 | } | |||
11416 | ||||
11417 | static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, | |||
11418 | CXXScopeSpec &SS, | |||
11419 | SourceLocation IdentLoc, | |||
11420 | IdentifierInfo *Ident) { | |||
11421 | R.clear(); | |||
11422 | NamespaceValidatorCCC CCC{}; | |||
11423 | if (TypoCorrection Corrected = | |||
11424 | S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, | |||
11425 | Sema::CTK_ErrorRecovery)) { | |||
11426 | if (DeclContext *DC = S.computeDeclContext(SS, false)) { | |||
11427 | std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); | |||
11428 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | |||
11429 | Ident->getName().equals(CorrectedStr); | |||
11430 | S.diagnoseTypo(Corrected, | |||
11431 | S.PDiag(diag::err_using_directive_member_suggest) | |||
11432 | << Ident << DC << DroppedSpecifier << SS.getRange(), | |||
11433 | S.PDiag(diag::note_namespace_defined_here)); | |||
11434 | } else { | |||
11435 | S.diagnoseTypo(Corrected, | |||
11436 | S.PDiag(diag::err_using_directive_suggest) << Ident, | |||
11437 | S.PDiag(diag::note_namespace_defined_here)); | |||
11438 | } | |||
11439 | R.addDecl(Corrected.getFoundDecl()); | |||
11440 | return true; | |||
11441 | } | |||
11442 | return false; | |||
11443 | } | |||
11444 | ||||
11445 | Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, | |||
11446 | SourceLocation NamespcLoc, CXXScopeSpec &SS, | |||
11447 | SourceLocation IdentLoc, | |||
11448 | IdentifierInfo *NamespcName, | |||
11449 | const ParsedAttributesView &AttrList) { | |||
11450 | assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((void)0); | |||
11451 | assert(NamespcName && "Invalid NamespcName.")((void)0); | |||
11452 | assert(IdentLoc.isValid() && "Invalid NamespceName location.")((void)0); | |||
11453 | ||||
11454 | // This can only happen along a recovery path. | |||
11455 | while (S->isTemplateParamScope()) | |||
11456 | S = S->getParent(); | |||
11457 | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((void)0); | |||
11458 | ||||
11459 | UsingDirectiveDecl *UDir = nullptr; | |||
11460 | NestedNameSpecifier *Qualifier = nullptr; | |||
11461 | if (SS.isSet()) | |||
11462 | Qualifier = SS.getScopeRep(); | |||
11463 | ||||
11464 | // Lookup namespace name. | |||
11465 | LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); | |||
11466 | LookupParsedName(R, S, &SS); | |||
11467 | if (R.isAmbiguous()) | |||
11468 | return nullptr; | |||
11469 | ||||
11470 | if (R.empty()) { | |||
11471 | R.clear(); | |||
11472 | // Allow "using namespace std;" or "using namespace ::std;" even if | |||
11473 | // "std" hasn't been defined yet, for GCC compatibility. | |||
11474 | if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && | |||
11475 | NamespcName->isStr("std")) { | |||
11476 | Diag(IdentLoc, diag::ext_using_undefined_std); | |||
11477 | R.addDecl(getOrCreateStdNamespace()); | |||
11478 | R.resolveKind(); | |||
11479 | } | |||
11480 | // Otherwise, attempt typo correction. | |||
11481 | else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); | |||
11482 | } | |||
11483 | ||||
11484 | if (!R.empty()) { | |||
11485 | NamedDecl *Named = R.getRepresentativeDecl(); | |||
11486 | NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); | |||
11487 | assert(NS && "expected namespace decl")((void)0); | |||
11488 | ||||
11489 | // The use of a nested name specifier may trigger deprecation warnings. | |||
11490 | DiagnoseUseOfDecl(Named, IdentLoc); | |||
11491 | ||||
11492 | // C++ [namespace.udir]p1: | |||
11493 | // A using-directive specifies that the names in the nominated | |||
11494 | // namespace can be used in the scope in which the | |||
11495 | // using-directive appears after the using-directive. During | |||
11496 | // unqualified name lookup (3.4.1), the names appear as if they | |||
11497 | // were declared in the nearest enclosing namespace which | |||
11498 | // contains both the using-directive and the nominated | |||
11499 | // namespace. [Note: in this context, "contains" means "contains | |||
11500 | // directly or indirectly". ] | |||
11501 | ||||
11502 | // Find enclosing context containing both using-directive and | |||
11503 | // nominated namespace. | |||
11504 | DeclContext *CommonAncestor = NS; | |||
11505 | while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) | |||
11506 | CommonAncestor = CommonAncestor->getParent(); | |||
11507 | ||||
11508 | UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, | |||
11509 | SS.getWithLocInContext(Context), | |||
11510 | IdentLoc, Named, CommonAncestor); | |||
11511 | ||||
11512 | if (IsUsingDirectiveInToplevelContext(CurContext) && | |||
11513 | !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { | |||
11514 | Diag(IdentLoc, diag::warn_using_directive_in_header); | |||
11515 | } | |||
11516 | ||||
11517 | PushUsingDirective(S, UDir); | |||
11518 | } else { | |||
11519 | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | |||
11520 | } | |||
11521 | ||||
11522 | if (UDir) | |||
11523 | ProcessDeclAttributeList(S, UDir, AttrList); | |||
11524 | ||||
11525 | return UDir; | |||
11526 | } | |||
11527 | ||||
11528 | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { | |||
11529 | // If the scope has an associated entity and the using directive is at | |||
11530 | // namespace or translation unit scope, add the UsingDirectiveDecl into | |||
11531 | // its lookup structure so qualified name lookup can find it. | |||
11532 | DeclContext *Ctx = S->getEntity(); | |||
11533 | if (Ctx && !Ctx->isFunctionOrMethod()) | |||
11534 | Ctx->addDecl(UDir); | |||
11535 | else | |||
11536 | // Otherwise, it is at block scope. The using-directives will affect lookup | |||
11537 | // only to the end of the scope. | |||
11538 | S->PushUsingDirective(UDir); | |||
11539 | } | |||
11540 | ||||
11541 | Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, | |||
11542 | SourceLocation UsingLoc, | |||
11543 | SourceLocation TypenameLoc, CXXScopeSpec &SS, | |||
11544 | UnqualifiedId &Name, | |||
11545 | SourceLocation EllipsisLoc, | |||
11546 | const ParsedAttributesView &AttrList) { | |||
11547 | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((void)0); | |||
11548 | ||||
11549 | if (SS.isEmpty()) { | |||
11550 | Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); | |||
11551 | return nullptr; | |||
11552 | } | |||
11553 | ||||
11554 | switch (Name.getKind()) { | |||
11555 | case UnqualifiedIdKind::IK_ImplicitSelfParam: | |||
11556 | case UnqualifiedIdKind::IK_Identifier: | |||
11557 | case UnqualifiedIdKind::IK_OperatorFunctionId: | |||
11558 | case UnqualifiedIdKind::IK_LiteralOperatorId: | |||
11559 | case UnqualifiedIdKind::IK_ConversionFunctionId: | |||
11560 | break; | |||
11561 | ||||
11562 | case UnqualifiedIdKind::IK_ConstructorName: | |||
11563 | case UnqualifiedIdKind::IK_ConstructorTemplateId: | |||
11564 | // C++11 inheriting constructors. | |||
11565 | Diag(Name.getBeginLoc(), | |||
11566 | getLangOpts().CPlusPlus11 | |||
11567 | ? diag::warn_cxx98_compat_using_decl_constructor | |||
11568 | : diag::err_using_decl_constructor) | |||
11569 | << SS.getRange(); | |||
11570 | ||||
11571 | if (getLangOpts().CPlusPlus11) break; | |||
11572 | ||||
11573 | return nullptr; | |||
11574 | ||||
11575 | case UnqualifiedIdKind::IK_DestructorName: | |||
11576 | Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); | |||
11577 | return nullptr; | |||
11578 | ||||
11579 | case UnqualifiedIdKind::IK_TemplateId: | |||
11580 | Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) | |||
11581 | << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); | |||
11582 | return nullptr; | |||
11583 | ||||
11584 | case UnqualifiedIdKind::IK_DeductionGuideName: | |||
11585 | llvm_unreachable("cannot parse qualified deduction guide name")__builtin_unreachable(); | |||
11586 | } | |||
11587 | ||||
11588 | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); | |||
11589 | DeclarationName TargetName = TargetNameInfo.getName(); | |||
11590 | if (!TargetName) | |||
11591 | return nullptr; | |||
11592 | ||||
11593 | // Warn about access declarations. | |||
11594 | if (UsingLoc.isInvalid()) { | |||
11595 | Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 | |||
11596 | ? diag::err_access_decl | |||
11597 | : diag::warn_access_decl_deprecated) | |||
11598 | << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); | |||
11599 | } | |||
11600 | ||||
11601 | if (EllipsisLoc.isInvalid()) { | |||
11602 | if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || | |||
11603 | DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) | |||
11604 | return nullptr; | |||
11605 | } else { | |||
11606 | if (!SS.getScopeRep()->containsUnexpandedParameterPack() && | |||
11607 | !TargetNameInfo.containsUnexpandedParameterPack()) { | |||
11608 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | |||
11609 | << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); | |||
11610 | EllipsisLoc = SourceLocation(); | |||
11611 | } | |||
11612 | } | |||
11613 | ||||
11614 | NamedDecl *UD = | |||
11615 | BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, | |||
11616 | SS, TargetNameInfo, EllipsisLoc, AttrList, | |||
11617 | /*IsInstantiation*/ false, | |||
11618 | AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); | |||
11619 | if (UD) | |||
11620 | PushOnScopeChains(UD, S, /*AddToContext*/ false); | |||
11621 | ||||
11622 | return UD; | |||
11623 | } | |||
11624 | ||||
11625 | Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, | |||
11626 | SourceLocation UsingLoc, | |||
11627 | SourceLocation EnumLoc, | |||
11628 | const DeclSpec &DS) { | |||
11629 | switch (DS.getTypeSpecType()) { | |||
11630 | case DeclSpec::TST_error: | |||
11631 | // This will already have been diagnosed | |||
11632 | return nullptr; | |||
11633 | ||||
11634 | case DeclSpec::TST_enum: | |||
11635 | break; | |||
11636 | ||||
11637 | case DeclSpec::TST_typename: | |||
11638 | Diag(DS.getTypeSpecTypeLoc(), diag::err_using_enum_is_dependent); | |||
11639 | return nullptr; | |||
11640 | ||||
11641 | default: | |||
11642 | llvm_unreachable("unexpected DeclSpec type")__builtin_unreachable(); | |||
11643 | } | |||
11644 | ||||
11645 | // As with enum-decls, we ignore attributes for now. | |||
11646 | auto *Enum = cast<EnumDecl>(DS.getRepAsDecl()); | |||
11647 | if (auto *Def = Enum->getDefinition()) | |||
11648 | Enum = Def; | |||
11649 | ||||
11650 | auto *UD = BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, | |||
11651 | DS.getTypeSpecTypeNameLoc(), Enum); | |||
11652 | if (UD) | |||
11653 | PushOnScopeChains(UD, S, /*AddToContext*/ false); | |||
11654 | ||||
11655 | return UD; | |||
11656 | } | |||
11657 | ||||
11658 | /// Determine whether a using declaration considers the given | |||
11659 | /// declarations as "equivalent", e.g., if they are redeclarations of | |||
11660 | /// the same entity or are both typedefs of the same type. | |||
11661 | static bool | |||
11662 | IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { | |||
11663 | if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) | |||
11664 | return true; | |||
11665 | ||||
11666 | if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) | |||
11667 | if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) | |||
11668 | return Context.hasSameType(TD1->getUnderlyingType(), | |||
11669 | TD2->getUnderlyingType()); | |||
11670 | ||||
11671 | // Two using_if_exists using-declarations are equivalent if both are | |||
11672 | // unresolved. | |||
11673 | if (isa<UnresolvedUsingIfExistsDecl>(D1) && | |||
11674 | isa<UnresolvedUsingIfExistsDecl>(D2)) | |||
11675 | return true; | |||
11676 | ||||
11677 | return false; | |||
11678 | } | |||
11679 | ||||
11680 | ||||
11681 | /// Determines whether to create a using shadow decl for a particular | |||
11682 | /// decl, given the set of decls existing prior to this using lookup. | |||
11683 | bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, | |||
11684 | const LookupResult &Previous, | |||
11685 | UsingShadowDecl *&PrevShadow) { | |||
11686 | // Diagnose finding a decl which is not from a base class of the | |||
11687 | // current class. We do this now because there are cases where this | |||
11688 | // function will silently decide not to build a shadow decl, which | |||
11689 | // will pre-empt further diagnostics. | |||
11690 | // | |||
11691 | // We don't need to do this in C++11 because we do the check once on | |||
11692 | // the qualifier. | |||
11693 | // | |||
11694 | // FIXME: diagnose the following if we care enough: | |||
11695 | // struct A { int foo; }; | |||
11696 | // struct B : A { using A::foo; }; | |||
11697 | // template <class T> struct C : A {}; | |||
11698 | // template <class T> struct D : C<T> { using B::foo; } // <--- | |||
11699 | // This is invalid (during instantiation) in C++03 because B::foo | |||
11700 | // resolves to the using decl in B, which is not a base class of D<T>. | |||
11701 | // We can't diagnose it immediately because C<T> is an unknown | |||
11702 | // specialization. The UsingShadowDecl in D<T> then points directly | |||
11703 | // to A::foo, which will look well-formed when we instantiate. | |||
11704 | // The right solution is to not collapse the shadow-decl chain. | |||
11705 | if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) | |||
11706 | if (auto *Using = dyn_cast<UsingDecl>(BUD)) { | |||
11707 | DeclContext *OrigDC = Orig->getDeclContext(); | |||
11708 | ||||
11709 | // Handle enums and anonymous structs. | |||
11710 | if (isa<EnumDecl>(OrigDC)) | |||
11711 | OrigDC = OrigDC->getParent(); | |||
11712 | CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); | |||
11713 | while (OrigRec->isAnonymousStructOrUnion()) | |||
11714 | OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); | |||
11715 | ||||
11716 | if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { | |||
11717 | if (OrigDC == CurContext) { | |||
11718 | Diag(Using->getLocation(), | |||
11719 | diag::err_using_decl_nested_name_specifier_is_current_class) | |||
11720 | << Using->getQualifierLoc().getSourceRange(); | |||
11721 | Diag(Orig->getLocation(), diag::note_using_decl_target); | |||
11722 | Using->setInvalidDecl(); | |||
11723 | return true; | |||
11724 | } | |||
11725 | ||||
11726 | Diag(Using->getQualifierLoc().getBeginLoc(), | |||
11727 | diag::err_using_decl_nested_name_specifier_is_not_base_class) | |||
11728 | << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) | |||
11729 | << Using->getQualifierLoc().getSourceRange(); | |||
11730 | Diag(Orig->getLocation(), diag::note_using_decl_target); | |||
11731 | Using->setInvalidDecl(); | |||
11732 | return true; | |||
11733 | } | |||
11734 | } | |||
11735 | ||||
11736 | if (Previous.empty()) return false; | |||
11737 | ||||
11738 | NamedDecl *Target = Orig; | |||
11739 | if (isa<UsingShadowDecl>(Target)) | |||
11740 | Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | |||
11741 | ||||
11742 | // If the target happens to be one of the previous declarations, we | |||
11743 | // don't have a conflict. | |||
11744 | // | |||
11745 | // FIXME: but we might be increasing its access, in which case we | |||
11746 | // should redeclare it. | |||
11747 | NamedDecl *NonTag = nullptr, *Tag = nullptr; | |||
11748 | bool FoundEquivalentDecl = false; | |||
11749 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | |||
11750 | I != E; ++I) { | |||
11751 | NamedDecl *D = (*I)->getUnderlyingDecl(); | |||
11752 | // We can have UsingDecls in our Previous results because we use the same | |||
11753 | // LookupResult for checking whether the UsingDecl itself is a valid | |||
11754 | // redeclaration. | |||
11755 | if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) | |||
11756 | continue; | |||
11757 | ||||
11758 | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { | |||
11759 | // C++ [class.mem]p19: | |||
11760 | // If T is the name of a class, then [every named member other than | |||
11761 | // a non-static data member] shall have a name different from T | |||
11762 | if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && | |||
11763 | !isa<IndirectFieldDecl>(Target) && | |||
11764 | !isa<UnresolvedUsingValueDecl>(Target) && | |||
11765 | DiagnoseClassNameShadow( | |||
11766 | CurContext, | |||
11767 | DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) | |||
11768 | return true; | |||
11769 | } | |||
11770 | ||||
11771 | if (IsEquivalentForUsingDecl(Context, D, Target)) { | |||
11772 | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) | |||
11773 | PrevShadow = Shadow; | |||
11774 | FoundEquivalentDecl = true; | |||
11775 | } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { | |||
11776 | // We don't conflict with an existing using shadow decl of an equivalent | |||
11777 | // declaration, but we're not a redeclaration of it. | |||
11778 | FoundEquivalentDecl = true; | |||
11779 | } | |||
11780 | ||||
11781 | if (isVisible(D)) | |||
11782 | (isa<TagDecl>(D) ? Tag : NonTag) = D; | |||
11783 | } | |||
11784 | ||||
11785 | if (FoundEquivalentDecl) | |||
11786 | return false; | |||
11787 | ||||
11788 | // Always emit a diagnostic for a mismatch between an unresolved | |||
11789 | // using_if_exists and a resolved using declaration in either direction. | |||
11790 | if (isa<UnresolvedUsingIfExistsDecl>(Target) != | |||
11791 | (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { | |||
11792 | if (!NonTag && !Tag) | |||
11793 | return false; | |||
11794 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); | |||
11795 | Diag(Target->getLocation(), diag::note_using_decl_target); | |||
11796 | Diag((NonTag ? NonTag : Tag)->getLocation(), | |||
11797 | diag::note_using_decl_conflict); | |||
11798 | BUD->setInvalidDecl(); | |||
11799 | return true; | |||
11800 | } | |||
11801 | ||||
11802 | if (FunctionDecl *FD = Target->getAsFunction()) { | |||
11803 | NamedDecl *OldDecl = nullptr; | |||
11804 | switch (CheckOverload(nullptr, FD, Previous, OldDecl, | |||
11805 | /*IsForUsingDecl*/ true)) { | |||
11806 | case Ovl_Overload: | |||
11807 | return false; | |||
11808 | ||||
11809 | case Ovl_NonFunction: | |||
11810 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); | |||
11811 | break; | |||
11812 | ||||
11813 | // We found a decl with the exact signature. | |||
11814 | case Ovl_Match: | |||
11815 | // If we're in a record, we want to hide the target, so we | |||
11816 | // return true (without a diagnostic) to tell the caller not to | |||
11817 | // build a shadow decl. | |||
11818 | if (CurContext->isRecord()) | |||
11819 | return true; | |||
11820 | ||||
11821 | // If we're not in a record, this is an error. | |||
11822 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); | |||
11823 | break; | |||
11824 | } | |||
11825 | ||||
11826 | Diag(Target->getLocation(), diag::note_using_decl_target); | |||
11827 | Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); | |||
11828 | BUD->setInvalidDecl(); | |||
11829 | return true; | |||
11830 | } | |||
11831 | ||||
11832 | // Target is not a function. | |||
11833 | ||||
11834 | if (isa<TagDecl>(Target)) { | |||
11835 | // No conflict between a tag and a non-tag. | |||
11836 | if (!Tag) return false; | |||
11837 | ||||
11838 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); | |||
11839 | Diag(Target->getLocation(), diag::note_using_decl_target); | |||
11840 | Diag(Tag->getLocation(), diag::note_using_decl_conflict); | |||
11841 | BUD->setInvalidDecl(); | |||
11842 | return true; | |||
11843 | } | |||
11844 | ||||
11845 | // No conflict between a tag and a non-tag. | |||
11846 | if (!NonTag) return false; | |||
11847 | ||||
11848 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); | |||
11849 | Diag(Target->getLocation(), diag::note_using_decl_target); | |||
11850 | Diag(NonTag->getLocation(), diag::note_using_decl_conflict); | |||
11851 | BUD->setInvalidDecl(); | |||
11852 | return true; | |||
11853 | } | |||
11854 | ||||
11855 | /// Determine whether a direct base class is a virtual base class. | |||
11856 | static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { | |||
11857 | if (!Derived->getNumVBases()) | |||
11858 | return false; | |||
11859 | for (auto &B : Derived->bases()) | |||
11860 | if (B.getType()->getAsCXXRecordDecl() == Base) | |||
11861 | return B.isVirtual(); | |||
11862 | llvm_unreachable("not a direct base class")__builtin_unreachable(); | |||
11863 | } | |||
11864 | ||||
11865 | /// Builds a shadow declaration corresponding to a 'using' declaration. | |||
11866 | UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, | |||
11867 | NamedDecl *Orig, | |||
11868 | UsingShadowDecl *PrevDecl) { | |||
11869 | // If we resolved to another shadow declaration, just coalesce them. | |||
11870 | NamedDecl *Target = Orig; | |||
11871 | if (isa<UsingShadowDecl>(Target)) { | |||
11872 | Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | |||
11873 | assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")((void)0); | |||
11874 | } | |||
11875 | ||||
11876 | NamedDecl *NonTemplateTarget = Target; | |||
11877 | if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) | |||
11878 | NonTemplateTarget = TargetTD->getTemplatedDecl(); | |||
11879 | ||||
11880 | UsingShadowDecl *Shadow; | |||
11881 | if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { | |||
11882 | UsingDecl *Using = cast<UsingDecl>(BUD); | |||
11883 | bool IsVirtualBase = | |||
11884 | isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), | |||
11885 | Using->getQualifier()->getAsRecordDecl()); | |||
11886 | Shadow = ConstructorUsingShadowDecl::Create( | |||
11887 | Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); | |||
11888 | } else { | |||
11889 | Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), | |||
11890 | Target->getDeclName(), BUD, Target); | |||
11891 | } | |||
11892 | BUD->addShadowDecl(Shadow); | |||
11893 | ||||
11894 | Shadow->setAccess(BUD->getAccess()); | |||
11895 | if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) | |||
11896 | Shadow->setInvalidDecl(); | |||
11897 | ||||
11898 | Shadow->setPreviousDecl(PrevDecl); | |||
11899 | ||||
11900 | if (S) | |||
11901 | PushOnScopeChains(Shadow, S); | |||
11902 | else | |||
11903 | CurContext->addDecl(Shadow); | |||
11904 | ||||
11905 | ||||
11906 | return Shadow; | |||
11907 | } | |||
11908 | ||||
11909 | /// Hides a using shadow declaration. This is required by the current | |||
11910 | /// using-decl implementation when a resolvable using declaration in a | |||
11911 | /// class is followed by a declaration which would hide or override | |||
11912 | /// one or more of the using decl's targets; for example: | |||
11913 | /// | |||
11914 | /// struct Base { void foo(int); }; | |||
11915 | /// struct Derived : Base { | |||
11916 | /// using Base::foo; | |||
11917 | /// void foo(int); | |||
11918 | /// }; | |||
11919 | /// | |||
11920 | /// The governing language is C++03 [namespace.udecl]p12: | |||
11921 | /// | |||
11922 | /// When a using-declaration brings names from a base class into a | |||
11923 | /// derived class scope, member functions in the derived class | |||
11924 | /// override and/or hide member functions with the same name and | |||
11925 | /// parameter types in a base class (rather than conflicting). | |||
11926 | /// | |||
11927 | /// There are two ways to implement this: | |||
11928 | /// (1) optimistically create shadow decls when they're not hidden | |||
11929 | /// by existing declarations, or | |||
11930 | /// (2) don't create any shadow decls (or at least don't make them | |||
11931 | /// visible) until we've fully parsed/instantiated the class. | |||
11932 | /// The problem with (1) is that we might have to retroactively remove | |||
11933 | /// a shadow decl, which requires several O(n) operations because the | |||
11934 | /// decl structures are (very reasonably) not designed for removal. | |||
11935 | /// (2) avoids this but is very fiddly and phase-dependent. | |||
11936 | void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { | |||
11937 | if (Shadow->getDeclName().getNameKind() == | |||
11938 | DeclarationName::CXXConversionFunctionName) | |||
11939 | cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); | |||
11940 | ||||
11941 | // Remove it from the DeclContext... | |||
11942 | Shadow->getDeclContext()->removeDecl(Shadow); | |||
11943 | ||||
11944 | // ...and the scope, if applicable... | |||
11945 | if (S) { | |||
11946 | S->RemoveDecl(Shadow); | |||
11947 | IdResolver.RemoveDecl(Shadow); | |||
11948 | } | |||
11949 | ||||
11950 | // ...and the using decl. | |||
11951 | Shadow->getIntroducer()->removeShadowDecl(Shadow); | |||
11952 | ||||
11953 | // TODO: complain somehow if Shadow was used. It shouldn't | |||
11954 | // be possible for this to happen, because...? | |||
11955 | } | |||
11956 | ||||
11957 | /// Find the base specifier for a base class with the given type. | |||
11958 | static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, | |||
11959 | QualType DesiredBase, | |||
11960 | bool &AnyDependentBases) { | |||
11961 | // Check whether the named type is a direct base class. | |||
11962 | CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() | |||
11963 | .getUnqualifiedType(); | |||
11964 | for (auto &Base : Derived->bases()) { | |||
11965 | CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); | |||
11966 | if (CanonicalDesiredBase == BaseType) | |||
11967 | return &Base; | |||
11968 | if (BaseType->isDependentType()) | |||
11969 | AnyDependentBases = true; | |||
11970 | } | |||
11971 | return nullptr; | |||
11972 | } | |||
11973 | ||||
11974 | namespace { | |||
11975 | class UsingValidatorCCC final : public CorrectionCandidateCallback { | |||
11976 | public: | |||
11977 | UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, | |||
11978 | NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) | |||
11979 | : HasTypenameKeyword(HasTypenameKeyword), | |||
11980 | IsInstantiation(IsInstantiation), OldNNS(NNS), | |||
11981 | RequireMemberOf(RequireMemberOf) {} | |||
11982 | ||||
11983 | bool ValidateCandidate(const TypoCorrection &Candidate) override { | |||
11984 | NamedDecl *ND = Candidate.getCorrectionDecl(); | |||
11985 | ||||
11986 | // Keywords are not valid here. | |||
11987 | if (!ND || isa<NamespaceDecl>(ND)) | |||
11988 | return false; | |||
11989 | ||||
11990 | // Completely unqualified names are invalid for a 'using' declaration. | |||
11991 | if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) | |||
11992 | return false; | |||
11993 | ||||
11994 | // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would | |||
11995 | // reject. | |||
11996 | ||||
11997 | if (RequireMemberOf) { | |||
11998 | auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); | |||
11999 | if (FoundRecord && FoundRecord->isInjectedClassName()) { | |||
12000 | // No-one ever wants a using-declaration to name an injected-class-name | |||
12001 | // of a base class, unless they're declaring an inheriting constructor. | |||
12002 | ASTContext &Ctx = ND->getASTContext(); | |||
12003 | if (!Ctx.getLangOpts().CPlusPlus11) | |||
12004 | return false; | |||
12005 | QualType FoundType = Ctx.getRecordType(FoundRecord); | |||
12006 | ||||
12007 | // Check that the injected-class-name is named as a member of its own | |||
12008 | // type; we don't want to suggest 'using Derived::Base;', since that | |||
12009 | // means something else. | |||
12010 | NestedNameSpecifier *Specifier = | |||
12011 | Candidate.WillReplaceSpecifier() | |||
12012 | ? Candidate.getCorrectionSpecifier() | |||
12013 | : OldNNS; | |||
12014 | if (!Specifier->getAsType() || | |||
12015 | !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) | |||
12016 | return false; | |||
12017 | ||||
12018 | // Check that this inheriting constructor declaration actually names a | |||
12019 | // direct base class of the current class. | |||
12020 | bool AnyDependentBases = false; | |||
12021 | if (!findDirectBaseWithType(RequireMemberOf, | |||
12022 | Ctx.getRecordType(FoundRecord), | |||
12023 | AnyDependentBases) && | |||
12024 | !AnyDependentBases) | |||
12025 | return false; | |||
12026 | } else { | |||
12027 | auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); | |||
12028 | if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) | |||
12029 | return false; | |||
12030 | ||||
12031 | // FIXME: Check that the base class member is accessible? | |||
12032 | } | |||
12033 | } else { | |||
12034 | auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); | |||
12035 | if (FoundRecord && FoundRecord->isInjectedClassName()) | |||
12036 | return false; | |||
12037 | } | |||
12038 | ||||
12039 | if (isa<TypeDecl>(ND)) | |||
12040 | return HasTypenameKeyword || !IsInstantiation; | |||
12041 | ||||
12042 | return !HasTypenameKeyword; | |||
12043 | } | |||
12044 | ||||
12045 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
12046 | return std::make_unique<UsingValidatorCCC>(*this); | |||
12047 | } | |||
12048 | ||||
12049 | private: | |||
12050 | bool HasTypenameKeyword; | |||
12051 | bool IsInstantiation; | |||
12052 | NestedNameSpecifier *OldNNS; | |||
12053 | CXXRecordDecl *RequireMemberOf; | |||
12054 | }; | |||
12055 | } // end anonymous namespace | |||
12056 | ||||
12057 | /// Remove decls we can't actually see from a lookup being used to declare | |||
12058 | /// shadow using decls. | |||
12059 | /// | |||
12060 | /// \param S - The scope of the potential shadow decl | |||
12061 | /// \param Previous - The lookup of a potential shadow decl's name. | |||
12062 | void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { | |||
12063 | // It is really dumb that we have to do this. | |||
12064 | LookupResult::Filter F = Previous.makeFilter(); | |||
12065 | while (F.hasNext()) { | |||
12066 | NamedDecl *D = F.next(); | |||
12067 | if (!isDeclInScope(D, CurContext, S)) | |||
12068 | F.erase(); | |||
12069 | // If we found a local extern declaration that's not ordinarily visible, | |||
12070 | // and this declaration is being added to a non-block scope, ignore it. | |||
12071 | // We're only checking for scope conflicts here, not also for violations | |||
12072 | // of the linkage rules. | |||
12073 | else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && | |||
12074 | !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) | |||
12075 | F.erase(); | |||
12076 | } | |||
12077 | F.done(); | |||
12078 | } | |||
12079 | ||||
12080 | /// Builds a using declaration. | |||
12081 | /// | |||
12082 | /// \param IsInstantiation - Whether this call arises from an | |||
12083 | /// instantiation of an unresolved using declaration. We treat | |||
12084 | /// the lookup differently for these declarations. | |||
12085 | NamedDecl *Sema::BuildUsingDeclaration( | |||
12086 | Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, | |||
12087 | bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, | |||
12088 | DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, | |||
12089 | const ParsedAttributesView &AttrList, bool IsInstantiation, | |||
12090 | bool IsUsingIfExists) { | |||
12091 | assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((void)0); | |||
12092 | SourceLocation IdentLoc = NameInfo.getLoc(); | |||
12093 | assert(IdentLoc.isValid() && "Invalid TargetName location.")((void)0); | |||
12094 | ||||
12095 | // FIXME: We ignore attributes for now. | |||
12096 | ||||
12097 | // For an inheriting constructor declaration, the name of the using | |||
12098 | // declaration is the name of a constructor in this class, not in the | |||
12099 | // base class. | |||
12100 | DeclarationNameInfo UsingName = NameInfo; | |||
12101 | if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) | |||
12102 | if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) | |||
12103 | UsingName.setName(Context.DeclarationNames.getCXXConstructorName( | |||
12104 | Context.getCanonicalType(Context.getRecordType(RD)))); | |||
12105 | ||||
12106 | // Do the redeclaration lookup in the current scope. | |||
12107 | LookupResult Previous(*this, UsingName, LookupUsingDeclName, | |||
12108 | ForVisibleRedeclaration); | |||
12109 | Previous.setHideTags(false); | |||
12110 | if (S) { | |||
12111 | LookupName(Previous, S); | |||
12112 | ||||
12113 | FilterUsingLookup(S, Previous); | |||
12114 | } else { | |||
12115 | assert(IsInstantiation && "no scope in non-instantiation")((void)0); | |||
12116 | if (CurContext->isRecord()) | |||
12117 | LookupQualifiedName(Previous, CurContext); | |||
12118 | else { | |||
12119 | // No redeclaration check is needed here; in non-member contexts we | |||
12120 | // diagnosed all possible conflicts with other using-declarations when | |||
12121 | // building the template: | |||
12122 | // | |||
12123 | // For a dependent non-type using declaration, the only valid case is | |||
12124 | // if we instantiate to a single enumerator. We check for conflicts | |||
12125 | // between shadow declarations we introduce, and we check in the template | |||
12126 | // definition for conflicts between a non-type using declaration and any | |||
12127 | // other declaration, which together covers all cases. | |||
12128 | // | |||
12129 | // A dependent typename using declaration will never successfully | |||
12130 | // instantiate, since it will always name a class member, so we reject | |||
12131 | // that in the template definition. | |||
12132 | } | |||
12133 | } | |||
12134 | ||||
12135 | // Check for invalid redeclarations. | |||
12136 | if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, | |||
12137 | SS, IdentLoc, Previous)) | |||
12138 | return nullptr; | |||
12139 | ||||
12140 | // 'using_if_exists' doesn't make sense on an inherited constructor. | |||
12141 | if (IsUsingIfExists && UsingName.getName().getNameKind() == | |||
12142 | DeclarationName::CXXConstructorName) { | |||
12143 | Diag(UsingLoc, diag::err_using_if_exists_on_ctor); | |||
12144 | return nullptr; | |||
12145 | } | |||
12146 | ||||
12147 | DeclContext *LookupContext = computeDeclContext(SS); | |||
12148 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); | |||
12149 | if (!LookupContext || EllipsisLoc.isValid()) { | |||
12150 | NamedDecl *D; | |||
12151 | // Dependent scope, or an unexpanded pack | |||
12152 | if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, | |||
12153 | SS, NameInfo, IdentLoc)) | |||
12154 | return nullptr; | |||
12155 | ||||
12156 | if (HasTypenameKeyword) { | |||
12157 | // FIXME: not all declaration name kinds are legal here | |||
12158 | D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, | |||
12159 | UsingLoc, TypenameLoc, | |||
12160 | QualifierLoc, | |||
12161 | IdentLoc, NameInfo.getName(), | |||
12162 | EllipsisLoc); | |||
12163 | } else { | |||
12164 | D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, | |||
12165 | QualifierLoc, NameInfo, EllipsisLoc); | |||
12166 | } | |||
12167 | D->setAccess(AS); | |||
12168 | CurContext->addDecl(D); | |||
12169 | ProcessDeclAttributeList(S, D, AttrList); | |||
12170 | return D; | |||
12171 | } | |||
12172 | ||||
12173 | auto Build = [&](bool Invalid) { | |||
12174 | UsingDecl *UD = | |||
12175 | UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, | |||
12176 | UsingName, HasTypenameKeyword); | |||
12177 | UD->setAccess(AS); | |||
12178 | CurContext->addDecl(UD); | |||
12179 | ProcessDeclAttributeList(S, UD, AttrList); | |||
12180 | UD->setInvalidDecl(Invalid); | |||
12181 | return UD; | |||
12182 | }; | |||
12183 | auto BuildInvalid = [&]{ return Build(true); }; | |||
12184 | auto BuildValid = [&]{ return Build(false); }; | |||
12185 | ||||
12186 | if (RequireCompleteDeclContext(SS, LookupContext)) | |||
12187 | return BuildInvalid(); | |||
12188 | ||||
12189 | // Look up the target name. | |||
12190 | LookupResult R(*this, NameInfo, LookupOrdinaryName); | |||
12191 | ||||
12192 | // Unlike most lookups, we don't always want to hide tag | |||
12193 | // declarations: tag names are visible through the using declaration | |||
12194 | // even if hidden by ordinary names, *except* in a dependent context | |||
12195 | // where it's important for the sanity of two-phase lookup. | |||
12196 | if (!IsInstantiation) | |||
12197 | R.setHideTags(false); | |||
12198 | ||||
12199 | // For the purposes of this lookup, we have a base object type | |||
12200 | // equal to that of the current context. | |||
12201 | if (CurContext->isRecord()) { | |||
12202 | R.setBaseObjectType( | |||
12203 | Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); | |||
12204 | } | |||
12205 | ||||
12206 | LookupQualifiedName(R, LookupContext); | |||
12207 | ||||
12208 | // Validate the context, now we have a lookup | |||
12209 | if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, | |||
12210 | IdentLoc, &R)) | |||
12211 | return nullptr; | |||
12212 | ||||
12213 | if (R.empty() && IsUsingIfExists) | |||
12214 | R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, | |||
12215 | UsingName.getName()), | |||
12216 | AS_public); | |||
12217 | ||||
12218 | // Try to correct typos if possible. If constructor name lookup finds no | |||
12219 | // results, that means the named class has no explicit constructors, and we | |||
12220 | // suppressed declaring implicit ones (probably because it's dependent or | |||
12221 | // invalid). | |||
12222 | if (R.empty() && | |||
12223 | NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { | |||
12224 | // HACK 2017-01-08: Work around an issue with libstdc++'s detection of | |||
12225 | // ::gets. Sometimes it believes that glibc provides a ::gets in cases where | |||
12226 | // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. | |||
12227 | auto *II = NameInfo.getName().getAsIdentifierInfo(); | |||
12228 | if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && | |||
12229 | CurContext->isStdNamespace() && | |||
12230 | isa<TranslationUnitDecl>(LookupContext) && | |||
12231 | getSourceManager().isInSystemHeader(UsingLoc)) | |||
12232 | return nullptr; | |||
12233 | UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), | |||
12234 | dyn_cast<CXXRecordDecl>(CurContext)); | |||
12235 | if (TypoCorrection Corrected = | |||
12236 | CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, | |||
12237 | CTK_ErrorRecovery)) { | |||
12238 | // We reject candidates where DroppedSpecifier == true, hence the | |||
12239 | // literal '0' below. | |||
12240 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) | |||
12241 | << NameInfo.getName() << LookupContext << 0 | |||
12242 | << SS.getRange()); | |||
12243 | ||||
12244 | // If we picked a correction with no attached Decl we can't do anything | |||
12245 | // useful with it, bail out. | |||
12246 | NamedDecl *ND = Corrected.getCorrectionDecl(); | |||
12247 | if (!ND) | |||
12248 | return BuildInvalid(); | |||
12249 | ||||
12250 | // If we corrected to an inheriting constructor, handle it as one. | |||
12251 | auto *RD = dyn_cast<CXXRecordDecl>(ND); | |||
12252 | if (RD && RD->isInjectedClassName()) { | |||
12253 | // The parent of the injected class name is the class itself. | |||
12254 | RD = cast<CXXRecordDecl>(RD->getParent()); | |||
12255 | ||||
12256 | // Fix up the information we'll use to build the using declaration. | |||
12257 | if (Corrected.WillReplaceSpecifier()) { | |||
12258 | NestedNameSpecifierLocBuilder Builder; | |||
12259 | Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), | |||
12260 | QualifierLoc.getSourceRange()); | |||
12261 | QualifierLoc = Builder.getWithLocInContext(Context); | |||
12262 | } | |||
12263 | ||||
12264 | // In this case, the name we introduce is the name of a derived class | |||
12265 | // constructor. | |||
12266 | auto *CurClass = cast<CXXRecordDecl>(CurContext); | |||
12267 | UsingName.setName(Context.DeclarationNames.getCXXConstructorName( | |||
12268 | Context.getCanonicalType(Context.getRecordType(CurClass)))); | |||
12269 | UsingName.setNamedTypeInfo(nullptr); | |||
12270 | for (auto *Ctor : LookupConstructors(RD)) | |||
12271 | R.addDecl(Ctor); | |||
12272 | R.resolveKind(); | |||
12273 | } else { | |||
12274 | // FIXME: Pick up all the declarations if we found an overloaded | |||
12275 | // function. | |||
12276 | UsingName.setName(ND->getDeclName()); | |||
12277 | R.addDecl(ND); | |||
12278 | } | |||
12279 | } else { | |||
12280 | Diag(IdentLoc, diag::err_no_member) | |||
12281 | << NameInfo.getName() << LookupContext << SS.getRange(); | |||
12282 | return BuildInvalid(); | |||
12283 | } | |||
12284 | } | |||
12285 | ||||
12286 | if (R.isAmbiguous()) | |||
12287 | return BuildInvalid(); | |||
12288 | ||||
12289 | if (HasTypenameKeyword) { | |||
12290 | // If we asked for a typename and got a non-type decl, error out. | |||
12291 | if (!R.getAsSingle<TypeDecl>() && | |||
12292 | !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { | |||
12293 | Diag(IdentLoc, diag::err_using_typename_non_type); | |||
12294 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | |||
12295 | Diag((*I)->getUnderlyingDecl()->getLocation(), | |||
12296 | diag::note_using_decl_target); | |||
12297 | return BuildInvalid(); | |||
12298 | } | |||
12299 | } else { | |||
12300 | // If we asked for a non-typename and we got a type, error out, | |||
12301 | // but only if this is an instantiation of an unresolved using | |||
12302 | // decl. Otherwise just silently find the type name. | |||
12303 | if (IsInstantiation && R.getAsSingle<TypeDecl>()) { | |||
12304 | Diag(IdentLoc, diag::err_using_dependent_value_is_type); | |||
12305 | Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); | |||
12306 | return BuildInvalid(); | |||
12307 | } | |||
12308 | } | |||
12309 | ||||
12310 | // C++14 [namespace.udecl]p6: | |||
12311 | // A using-declaration shall not name a namespace. | |||
12312 | if (R.getAsSingle<NamespaceDecl>()) { | |||
12313 | Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) | |||
12314 | << SS.getRange(); | |||
12315 | return BuildInvalid(); | |||
12316 | } | |||
12317 | ||||
12318 | UsingDecl *UD = BuildValid(); | |||
12319 | ||||
12320 | // Some additional rules apply to inheriting constructors. | |||
12321 | if (UsingName.getName().getNameKind() == | |||
12322 | DeclarationName::CXXConstructorName) { | |||
12323 | // Suppress access diagnostics; the access check is instead performed at the | |||
12324 | // point of use for an inheriting constructor. | |||
12325 | R.suppressDiagnostics(); | |||
12326 | if (CheckInheritingConstructorUsingDecl(UD)) | |||
12327 | return UD; | |||
12328 | } | |||
12329 | ||||
12330 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | |||
12331 | UsingShadowDecl *PrevDecl = nullptr; | |||
12332 | if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) | |||
12333 | BuildUsingShadowDecl(S, UD, *I, PrevDecl); | |||
12334 | } | |||
12335 | ||||
12336 | return UD; | |||
12337 | } | |||
12338 | ||||
12339 | NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, | |||
12340 | SourceLocation UsingLoc, | |||
12341 | SourceLocation EnumLoc, | |||
12342 | SourceLocation NameLoc, | |||
12343 | EnumDecl *ED) { | |||
12344 | bool Invalid = false; | |||
12345 | ||||
12346 | if (CurContext->getRedeclContext()->isRecord()) { | |||
12347 | /// In class scope, check if this is a duplicate, for better a diagnostic. | |||
12348 | DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); | |||
12349 | LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, | |||
12350 | ForVisibleRedeclaration); | |||
12351 | ||||
12352 | LookupName(Previous, S); | |||
12353 | ||||
12354 | for (NamedDecl *D : Previous) | |||
12355 | if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) | |||
12356 | if (UED->getEnumDecl() == ED) { | |||
12357 | Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) | |||
12358 | << SourceRange(EnumLoc, NameLoc); | |||
12359 | Diag(D->getLocation(), diag::note_using_enum_decl) << 1; | |||
12360 | Invalid = true; | |||
12361 | break; | |||
12362 | } | |||
12363 | } | |||
12364 | ||||
12365 | if (RequireCompleteEnumDecl(ED, NameLoc)) | |||
12366 | Invalid = true; | |||
12367 | ||||
12368 | UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, | |||
12369 | EnumLoc, NameLoc, ED); | |||
12370 | UD->setAccess(AS); | |||
12371 | CurContext->addDecl(UD); | |||
12372 | ||||
12373 | if (Invalid) { | |||
12374 | UD->setInvalidDecl(); | |||
12375 | return UD; | |||
12376 | } | |||
12377 | ||||
12378 | // Create the shadow decls for each enumerator | |||
12379 | for (EnumConstantDecl *EC : ED->enumerators()) { | |||
12380 | UsingShadowDecl *PrevDecl = nullptr; | |||
12381 | DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); | |||
12382 | LookupResult Previous(*this, DNI, LookupOrdinaryName, | |||
12383 | ForVisibleRedeclaration); | |||
12384 | LookupName(Previous, S); | |||
12385 | FilterUsingLookup(S, Previous); | |||
12386 | ||||
12387 | if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) | |||
12388 | BuildUsingShadowDecl(S, UD, EC, PrevDecl); | |||
12389 | } | |||
12390 | ||||
12391 | return UD; | |||
12392 | } | |||
12393 | ||||
12394 | NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, | |||
12395 | ArrayRef<NamedDecl *> Expansions) { | |||
12396 | assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||((void)0) | |||
12397 | isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||((void)0) | |||
12398 | isa<UsingPackDecl>(InstantiatedFrom))((void)0); | |||
12399 | ||||
12400 | auto *UPD = | |||
12401 | UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); | |||
12402 | UPD->setAccess(InstantiatedFrom->getAccess()); | |||
12403 | CurContext->addDecl(UPD); | |||
12404 | return UPD; | |||
12405 | } | |||
12406 | ||||
12407 | /// Additional checks for a using declaration referring to a constructor name. | |||
12408 | bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { | |||
12409 | assert(!UD->hasTypename() && "expecting a constructor name")((void)0); | |||
12410 | ||||
12411 | const Type *SourceType = UD->getQualifier()->getAsType(); | |||
12412 | assert(SourceType &&((void)0) | |||
12413 | "Using decl naming constructor doesn't have type in scope spec.")((void)0); | |||
12414 | CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); | |||
12415 | ||||
12416 | // Check whether the named type is a direct base class. | |||
12417 | bool AnyDependentBases = false; | |||
12418 | auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), | |||
12419 | AnyDependentBases); | |||
12420 | if (!Base && !AnyDependentBases) { | |||
12421 | Diag(UD->getUsingLoc(), | |||
12422 | diag::err_using_decl_constructor_not_in_direct_base) | |||
12423 | << UD->getNameInfo().getSourceRange() | |||
12424 | << QualType(SourceType, 0) << TargetClass; | |||
12425 | UD->setInvalidDecl(); | |||
12426 | return true; | |||
12427 | } | |||
12428 | ||||
12429 | if (Base) | |||
12430 | Base->setInheritConstructors(); | |||
12431 | ||||
12432 | return false; | |||
12433 | } | |||
12434 | ||||
12435 | /// Checks that the given using declaration is not an invalid | |||
12436 | /// redeclaration. Note that this is checking only for the using decl | |||
12437 | /// itself, not for any ill-formedness among the UsingShadowDecls. | |||
12438 | bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, | |||
12439 | bool HasTypenameKeyword, | |||
12440 | const CXXScopeSpec &SS, | |||
12441 | SourceLocation NameLoc, | |||
12442 | const LookupResult &Prev) { | |||
12443 | NestedNameSpecifier *Qual = SS.getScopeRep(); | |||
12444 | ||||
12445 | // C++03 [namespace.udecl]p8: | |||
12446 | // C++0x [namespace.udecl]p10: | |||
12447 | // A using-declaration is a declaration and can therefore be used | |||
12448 | // repeatedly where (and only where) multiple declarations are | |||
12449 | // allowed. | |||
12450 | // | |||
12451 | // That's in non-member contexts. | |||
12452 | if (!CurContext->getRedeclContext()->isRecord()) { | |||
12453 | // A dependent qualifier outside a class can only ever resolve to an | |||
12454 | // enumeration type. Therefore it conflicts with any other non-type | |||
12455 | // declaration in the same scope. | |||
12456 | // FIXME: How should we check for dependent type-type conflicts at block | |||
12457 | // scope? | |||
12458 | if (Qual->isDependent() && !HasTypenameKeyword) { | |||
12459 | for (auto *D : Prev) { | |||
12460 | if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { | |||
12461 | bool OldCouldBeEnumerator = | |||
12462 | isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); | |||
12463 | Diag(NameLoc, | |||
12464 | OldCouldBeEnumerator ? diag::err_redefinition | |||
12465 | : diag::err_redefinition_different_kind) | |||
12466 | << Prev.getLookupName(); | |||
12467 | Diag(D->getLocation(), diag::note_previous_definition); | |||
12468 | return true; | |||
12469 | } | |||
12470 | } | |||
12471 | } | |||
12472 | return false; | |||
12473 | } | |||
12474 | ||||
12475 | const NestedNameSpecifier *CNNS = | |||
12476 | Context.getCanonicalNestedNameSpecifier(Qual); | |||
12477 | for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { | |||
12478 | NamedDecl *D = *I; | |||
12479 | ||||
12480 | bool DTypename; | |||
12481 | NestedNameSpecifier *DQual; | |||
12482 | if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { | |||
12483 | DTypename = UD->hasTypename(); | |||
12484 | DQual = UD->getQualifier(); | |||
12485 | } else if (UnresolvedUsingValueDecl *UD | |||
12486 | = dyn_cast<UnresolvedUsingValueDecl>(D)) { | |||
12487 | DTypename = false; | |||
12488 | DQual = UD->getQualifier(); | |||
12489 | } else if (UnresolvedUsingTypenameDecl *UD | |||
12490 | = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { | |||
12491 | DTypename = true; | |||
12492 | DQual = UD->getQualifier(); | |||
12493 | } else continue; | |||
12494 | ||||
12495 | // using decls differ if one says 'typename' and the other doesn't. | |||
12496 | // FIXME: non-dependent using decls? | |||
12497 | if (HasTypenameKeyword != DTypename) continue; | |||
12498 | ||||
12499 | // using decls differ if they name different scopes (but note that | |||
12500 | // template instantiation can cause this check to trigger when it | |||
12501 | // didn't before instantiation). | |||
12502 | if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) | |||
12503 | continue; | |||
12504 | ||||
12505 | Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); | |||
12506 | Diag(D->getLocation(), diag::note_using_decl) << 1; | |||
12507 | return true; | |||
12508 | } | |||
12509 | ||||
12510 | return false; | |||
12511 | } | |||
12512 | ||||
12513 | /// Checks that the given nested-name qualifier used in a using decl | |||
12514 | /// in the current context is appropriately related to the current | |||
12515 | /// scope. If an error is found, diagnoses it and returns true. | |||
12516 | /// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the | |||
12517 | /// result of that lookup. UD is likewise nullptr, except when we have an | |||
12518 | /// already-populated UsingDecl whose shadow decls contain the same information | |||
12519 | /// (i.e. we're instantiating a UsingDecl with non-dependent scope). | |||
12520 | bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, | |||
12521 | const CXXScopeSpec &SS, | |||
12522 | const DeclarationNameInfo &NameInfo, | |||
12523 | SourceLocation NameLoc, | |||
12524 | const LookupResult *R, const UsingDecl *UD) { | |||
12525 | DeclContext *NamedContext = computeDeclContext(SS); | |||
12526 | assert(bool(NamedContext) == (R || UD) && !(R && UD) &&((void)0) | |||
12527 | "resolvable context must have exactly one set of decls")((void)0); | |||
12528 | ||||
12529 | // C++ 20 permits using an enumerator that does not have a class-hierarchy | |||
12530 | // relationship. | |||
12531 | bool Cxx20Enumerator = false; | |||
12532 | if (NamedContext) { | |||
12533 | EnumConstantDecl *EC = nullptr; | |||
12534 | if (R) | |||
12535 | EC = R->getAsSingle<EnumConstantDecl>(); | |||
12536 | else if (UD && UD->shadow_size() == 1) | |||
12537 | EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); | |||
12538 | if (EC) | |||
12539 | Cxx20Enumerator = getLangOpts().CPlusPlus20; | |||
12540 | ||||
12541 | if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { | |||
12542 | // C++14 [namespace.udecl]p7: | |||
12543 | // A using-declaration shall not name a scoped enumerator. | |||
12544 | // C++20 p1099 permits enumerators. | |||
12545 | if (EC && R && ED->isScoped()) | |||
12546 | Diag(SS.getBeginLoc(), | |||
12547 | getLangOpts().CPlusPlus20 | |||
12548 | ? diag::warn_cxx17_compat_using_decl_scoped_enumerator | |||
12549 | : diag::ext_using_decl_scoped_enumerator) | |||
12550 | << SS.getRange(); | |||
12551 | ||||
12552 | // We want to consider the scope of the enumerator | |||
12553 | NamedContext = ED->getDeclContext(); | |||
12554 | } | |||
12555 | } | |||
12556 | ||||
12557 | if (!CurContext->isRecord()) { | |||
12558 | // C++03 [namespace.udecl]p3: | |||
12559 | // C++0x [namespace.udecl]p8: | |||
12560 | // A using-declaration for a class member shall be a member-declaration. | |||
12561 | // C++20 [namespace.udecl]p7 | |||
12562 | // ... other than an enumerator ... | |||
12563 | ||||
12564 | // If we weren't able to compute a valid scope, it might validly be a | |||
12565 | // dependent class or enumeration scope. If we have a 'typename' keyword, | |||
12566 | // the scope must resolve to a class type. | |||
12567 | if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() | |||
12568 | : !HasTypename) | |||
12569 | return false; // OK | |||
12570 | ||||
12571 | Diag(NameLoc, | |||
12572 | Cxx20Enumerator | |||
12573 | ? diag::warn_cxx17_compat_using_decl_class_member_enumerator | |||
12574 | : diag::err_using_decl_can_not_refer_to_class_member) | |||
12575 | << SS.getRange(); | |||
12576 | ||||
12577 | if (Cxx20Enumerator) | |||
12578 | return false; // OK | |||
12579 | ||||
12580 | auto *RD = NamedContext | |||
12581 | ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) | |||
12582 | : nullptr; | |||
12583 | if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { | |||
12584 | // See if there's a helpful fixit | |||
12585 | ||||
12586 | if (!R) { | |||
12587 | // We will have already diagnosed the problem on the template | |||
12588 | // definition, Maybe we should do so again? | |||
12589 | } else if (R->getAsSingle<TypeDecl>()) { | |||
12590 | if (getLangOpts().CPlusPlus11) { | |||
12591 | // Convert 'using X::Y;' to 'using Y = X::Y;'. | |||
12592 | Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) | |||
12593 | << 0 // alias declaration | |||
12594 | << FixItHint::CreateInsertion(SS.getBeginLoc(), | |||
12595 | NameInfo.getName().getAsString() + | |||
12596 | " = "); | |||
12597 | } else { | |||
12598 | // Convert 'using X::Y;' to 'typedef X::Y Y;'. | |||
12599 | SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); | |||
12600 | Diag(InsertLoc, diag::note_using_decl_class_member_workaround) | |||
12601 | << 1 // typedef declaration | |||
12602 | << FixItHint::CreateReplacement(UsingLoc, "typedef") | |||
12603 | << FixItHint::CreateInsertion( | |||
12604 | InsertLoc, " " + NameInfo.getName().getAsString()); | |||
12605 | } | |||
12606 | } else if (R->getAsSingle<VarDecl>()) { | |||
12607 | // Don't provide a fixit outside C++11 mode; we don't want to suggest | |||
12608 | // repeating the type of the static data member here. | |||
12609 | FixItHint FixIt; | |||
12610 | if (getLangOpts().CPlusPlus11) { | |||
12611 | // Convert 'using X::Y;' to 'auto &Y = X::Y;'. | |||
12612 | FixIt = FixItHint::CreateReplacement( | |||
12613 | UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); | |||
12614 | } | |||
12615 | ||||
12616 | Diag(UsingLoc, diag::note_using_decl_class_member_workaround) | |||
12617 | << 2 // reference declaration | |||
12618 | << FixIt; | |||
12619 | } else if (R->getAsSingle<EnumConstantDecl>()) { | |||
12620 | // Don't provide a fixit outside C++11 mode; we don't want to suggest | |||
12621 | // repeating the type of the enumeration here, and we can't do so if | |||
12622 | // the type is anonymous. | |||
12623 | FixItHint FixIt; | |||
12624 | if (getLangOpts().CPlusPlus11) { | |||
12625 | // Convert 'using X::Y;' to 'auto &Y = X::Y;'. | |||
12626 | FixIt = FixItHint::CreateReplacement( | |||
12627 | UsingLoc, | |||
12628 | "constexpr auto " + NameInfo.getName().getAsString() + " = "); | |||
12629 | } | |||
12630 | ||||
12631 | Diag(UsingLoc, diag::note_using_decl_class_member_workaround) | |||
12632 | << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable | |||
12633 | << FixIt; | |||
12634 | } | |||
12635 | } | |||
12636 | ||||
12637 | return true; // Fail | |||
12638 | } | |||
12639 | ||||
12640 | // If the named context is dependent, we can't decide much. | |||
12641 | if (!NamedContext) { | |||
12642 | // FIXME: in C++0x, we can diagnose if we can prove that the | |||
12643 | // nested-name-specifier does not refer to a base class, which is | |||
12644 | // still possible in some cases. | |||
12645 | ||||
12646 | // Otherwise we have to conservatively report that things might be | |||
12647 | // okay. | |||
12648 | return false; | |||
12649 | } | |||
12650 | ||||
12651 | // The current scope is a record. | |||
12652 | if (!NamedContext->isRecord()) { | |||
12653 | // Ideally this would point at the last name in the specifier, | |||
12654 | // but we don't have that level of source info. | |||
12655 | Diag(SS.getBeginLoc(), | |||
12656 | Cxx20Enumerator | |||
12657 | ? diag::warn_cxx17_compat_using_decl_non_member_enumerator | |||
12658 | : diag::err_using_decl_nested_name_specifier_is_not_class) | |||
12659 | << SS.getScopeRep() << SS.getRange(); | |||
12660 | ||||
12661 | if (Cxx20Enumerator) | |||
12662 | return false; // OK | |||
12663 | ||||
12664 | return true; | |||
12665 | } | |||
12666 | ||||
12667 | if (!NamedContext->isDependentContext() && | |||
12668 | RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) | |||
12669 | return true; | |||
12670 | ||||
12671 | if (getLangOpts().CPlusPlus11) { | |||
12672 | // C++11 [namespace.udecl]p3: | |||
12673 | // In a using-declaration used as a member-declaration, the | |||
12674 | // nested-name-specifier shall name a base class of the class | |||
12675 | // being defined. | |||
12676 | ||||
12677 | if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( | |||
12678 | cast<CXXRecordDecl>(NamedContext))) { | |||
12679 | ||||
12680 | if (Cxx20Enumerator) { | |||
12681 | Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) | |||
12682 | << SS.getRange(); | |||
12683 | return false; | |||
12684 | } | |||
12685 | ||||
12686 | if (CurContext == NamedContext) { | |||
12687 | Diag(SS.getBeginLoc(), | |||
12688 | diag::err_using_decl_nested_name_specifier_is_current_class) | |||
12689 | << SS.getRange(); | |||
12690 | return !getLangOpts().CPlusPlus20; | |||
12691 | } | |||
12692 | ||||
12693 | if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { | |||
12694 | Diag(SS.getBeginLoc(), | |||
12695 | diag::err_using_decl_nested_name_specifier_is_not_base_class) | |||
12696 | << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) | |||
12697 | << SS.getRange(); | |||
12698 | } | |||
12699 | return true; | |||
12700 | } | |||
12701 | ||||
12702 | return false; | |||
12703 | } | |||
12704 | ||||
12705 | // C++03 [namespace.udecl]p4: | |||
12706 | // A using-declaration used as a member-declaration shall refer | |||
12707 | // to a member of a base class of the class being defined [etc.]. | |||
12708 | ||||
12709 | // Salient point: SS doesn't have to name a base class as long as | |||
12710 | // lookup only finds members from base classes. Therefore we can | |||
12711 | // diagnose here only if we can prove that that can't happen, | |||
12712 | // i.e. if the class hierarchies provably don't intersect. | |||
12713 | ||||
12714 | // TODO: it would be nice if "definitely valid" results were cached | |||
12715 | // in the UsingDecl and UsingShadowDecl so that these checks didn't | |||
12716 | // need to be repeated. | |||
12717 | ||||
12718 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; | |||
12719 | auto Collect = [&Bases](const CXXRecordDecl *Base) { | |||
12720 | Bases.insert(Base); | |||
12721 | return true; | |||
12722 | }; | |||
12723 | ||||
12724 | // Collect all bases. Return false if we find a dependent base. | |||
12725 | if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) | |||
12726 | return false; | |||
12727 | ||||
12728 | // Returns true if the base is dependent or is one of the accumulated base | |||
12729 | // classes. | |||
12730 | auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { | |||
12731 | return !Bases.count(Base); | |||
12732 | }; | |||
12733 | ||||
12734 | // Return false if the class has a dependent base or if it or one | |||
12735 | // of its bases is present in the base set of the current context. | |||
12736 | if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || | |||
12737 | !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) | |||
12738 | return false; | |||
12739 | ||||
12740 | Diag(SS.getRange().getBegin(), | |||
12741 | diag::err_using_decl_nested_name_specifier_is_not_base_class) | |||
12742 | << SS.getScopeRep() | |||
12743 | << cast<CXXRecordDecl>(CurContext) | |||
12744 | << SS.getRange(); | |||
12745 | ||||
12746 | return true; | |||
12747 | } | |||
12748 | ||||
12749 | Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, | |||
12750 | MultiTemplateParamsArg TemplateParamLists, | |||
12751 | SourceLocation UsingLoc, UnqualifiedId &Name, | |||
12752 | const ParsedAttributesView &AttrList, | |||
12753 | TypeResult Type, Decl *DeclFromDeclSpec) { | |||
12754 | // Skip up to the relevant declaration scope. | |||
12755 | while (S->isTemplateParamScope()) | |||
12756 | S = S->getParent(); | |||
12757 | assert((S->getFlags() & Scope::DeclScope) &&((void)0) | |||
12758 | "got alias-declaration outside of declaration scope")((void)0); | |||
12759 | ||||
12760 | if (Type.isInvalid()) | |||
12761 | return nullptr; | |||
12762 | ||||
12763 | bool Invalid = false; | |||
12764 | DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); | |||
12765 | TypeSourceInfo *TInfo = nullptr; | |||
12766 | GetTypeFromParser(Type.get(), &TInfo); | |||
12767 | ||||
12768 | if (DiagnoseClassNameShadow(CurContext, NameInfo)) | |||
12769 | return nullptr; | |||
12770 | ||||
12771 | if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, | |||
12772 | UPPC_DeclarationType)) { | |||
12773 | Invalid = true; | |||
12774 | TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, | |||
12775 | TInfo->getTypeLoc().getBeginLoc()); | |||
12776 | } | |||
12777 | ||||
12778 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |||
12779 | TemplateParamLists.size() | |||
12780 | ? forRedeclarationInCurContext() | |||
12781 | : ForVisibleRedeclaration); | |||
12782 | LookupName(Previous, S); | |||
12783 | ||||
12784 | // Warn about shadowing the name of a template parameter. | |||
12785 | if (Previous.isSingleResult() && | |||
12786 | Previous.getFoundDecl()->isTemplateParameter()) { | |||
12787 | DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); | |||
12788 | Previous.clear(); | |||
12789 | } | |||
12790 | ||||
12791 | assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&((void)0) | |||
12792 | "name in alias declaration must be an identifier")((void)0); | |||
12793 | TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, | |||
12794 | Name.StartLocation, | |||
12795 | Name.Identifier, TInfo); | |||
12796 | ||||
12797 | NewTD->setAccess(AS); | |||
12798 | ||||
12799 | if (Invalid) | |||
12800 | NewTD->setInvalidDecl(); | |||
12801 | ||||
12802 | ProcessDeclAttributeList(S, NewTD, AttrList); | |||
12803 | AddPragmaAttributes(S, NewTD); | |||
12804 | ||||
12805 | CheckTypedefForVariablyModifiedType(S, NewTD); | |||
12806 | Invalid |= NewTD->isInvalidDecl(); | |||
12807 | ||||
12808 | bool Redeclaration = false; | |||
12809 | ||||
12810 | NamedDecl *NewND; | |||
12811 | if (TemplateParamLists.size()) { | |||
12812 | TypeAliasTemplateDecl *OldDecl = nullptr; | |||
12813 | TemplateParameterList *OldTemplateParams = nullptr; | |||
12814 | ||||
12815 | if (TemplateParamLists.size() != 1) { | |||
12816 | Diag(UsingLoc, diag::err_alias_template_extra_headers) | |||
12817 | << SourceRange(TemplateParamLists[1]->getTemplateLoc(), | |||
12818 | TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); | |||
12819 | } | |||
12820 | TemplateParameterList *TemplateParams = TemplateParamLists[0]; | |||
12821 | ||||
12822 | // Check that we can declare a template here. | |||
12823 | if (CheckTemplateDeclScope(S, TemplateParams)) | |||
12824 | return nullptr; | |||
12825 | ||||
12826 | // Only consider previous declarations in the same scope. | |||
12827 | FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, | |||
12828 | /*ExplicitInstantiationOrSpecialization*/false); | |||
12829 | if (!Previous.empty()) { | |||
12830 | Redeclaration = true; | |||
12831 | ||||
12832 | OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); | |||
12833 | if (!OldDecl && !Invalid) { | |||
12834 | Diag(UsingLoc, diag::err_redefinition_different_kind) | |||
12835 | << Name.Identifier; | |||
12836 | ||||
12837 | NamedDecl *OldD = Previous.getRepresentativeDecl(); | |||
12838 | if (OldD->getLocation().isValid()) | |||
12839 | Diag(OldD->getLocation(), diag::note_previous_definition); | |||
12840 | ||||
12841 | Invalid = true; | |||
12842 | } | |||
12843 | ||||
12844 | if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { | |||
12845 | if (TemplateParameterListsAreEqual(TemplateParams, | |||
12846 | OldDecl->getTemplateParameters(), | |||
12847 | /*Complain=*/true, | |||
12848 | TPL_TemplateMatch)) | |||
12849 | OldTemplateParams = | |||
12850 | OldDecl->getMostRecentDecl()->getTemplateParameters(); | |||
12851 | else | |||
12852 | Invalid = true; | |||
12853 | ||||
12854 | TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); | |||
12855 | if (!Invalid && | |||
12856 | !Context.hasSameType(OldTD->getUnderlyingType(), | |||
12857 | NewTD->getUnderlyingType())) { | |||
12858 | // FIXME: The C++0x standard does not clearly say this is ill-formed, | |||
12859 | // but we can't reasonably accept it. | |||
12860 | Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) | |||
12861 | << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); | |||
12862 | if (OldTD->getLocation().isValid()) | |||
12863 | Diag(OldTD->getLocation(), diag::note_previous_definition); | |||
12864 | Invalid = true; | |||
12865 | } | |||
12866 | } | |||
12867 | } | |||
12868 | ||||
12869 | // Merge any previous default template arguments into our parameters, | |||
12870 | // and check the parameter list. | |||
12871 | if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, | |||
12872 | TPC_TypeAliasTemplate)) | |||
12873 | return nullptr; | |||
12874 | ||||
12875 | TypeAliasTemplateDecl *NewDecl = | |||
12876 | TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, | |||
12877 | Name.Identifier, TemplateParams, | |||
12878 | NewTD); | |||
12879 | NewTD->setDescribedAliasTemplate(NewDecl); | |||
12880 | ||||
12881 | NewDecl->setAccess(AS); | |||
12882 | ||||
12883 | if (Invalid) | |||
12884 | NewDecl->setInvalidDecl(); | |||
12885 | else if (OldDecl) { | |||
12886 | NewDecl->setPreviousDecl(OldDecl); | |||
12887 | CheckRedeclarationModuleOwnership(NewDecl, OldDecl); | |||
12888 | } | |||
12889 | ||||
12890 | NewND = NewDecl; | |||
12891 | } else { | |||
12892 | if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { | |||
12893 | setTagNameForLinkagePurposes(TD, NewTD); | |||
12894 | handleTagNumbering(TD, S); | |||
12895 | } | |||
12896 | ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); | |||
12897 | NewND = NewTD; | |||
12898 | } | |||
12899 | ||||
12900 | PushOnScopeChains(NewND, S); | |||
12901 | ActOnDocumentableDecl(NewND); | |||
12902 | return NewND; | |||
12903 | } | |||
12904 | ||||
12905 | Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, | |||
12906 | SourceLocation AliasLoc, | |||
12907 | IdentifierInfo *Alias, CXXScopeSpec &SS, | |||
12908 | SourceLocation IdentLoc, | |||
12909 | IdentifierInfo *Ident) { | |||
12910 | ||||
12911 | // Lookup the namespace name. | |||
12912 | LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); | |||
12913 | LookupParsedName(R, S, &SS); | |||
12914 | ||||
12915 | if (R.isAmbiguous()) | |||
12916 | return nullptr; | |||
12917 | ||||
12918 | if (R.empty()) { | |||
12919 | if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { | |||
12920 | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | |||
12921 | return nullptr; | |||
12922 | } | |||
12923 | } | |||
12924 | assert(!R.isAmbiguous() && !R.empty())((void)0); | |||
12925 | NamedDecl *ND = R.getRepresentativeDecl(); | |||
12926 | ||||
12927 | // Check if we have a previous declaration with the same name. | |||
12928 | LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, | |||
12929 | ForVisibleRedeclaration); | |||
12930 | LookupName(PrevR, S); | |||
12931 | ||||
12932 | // Check we're not shadowing a template parameter. | |||
12933 | if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { | |||
12934 | DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); | |||
12935 | PrevR.clear(); | |||
12936 | } | |||
12937 | ||||
12938 | // Filter out any other lookup result from an enclosing scope. | |||
12939 | FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, | |||
12940 | /*AllowInlineNamespace*/false); | |||
12941 | ||||
12942 | // Find the previous declaration and check that we can redeclare it. | |||
12943 | NamespaceAliasDecl *Prev = nullptr; | |||
12944 | if (PrevR.isSingleResult()) { | |||
12945 | NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); | |||
12946 | if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { | |||
12947 | // We already have an alias with the same name that points to the same | |||
12948 | // namespace; check that it matches. | |||
12949 | if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { | |||
12950 | Prev = AD; | |||
12951 | } else if (isVisible(PrevDecl)) { | |||
12952 | Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) | |||
12953 | << Alias; | |||
12954 | Diag(AD->getLocation(), diag::note_previous_namespace_alias) | |||
12955 | << AD->getNamespace(); | |||
12956 | return nullptr; | |||
12957 | } | |||
12958 | } else if (isVisible(PrevDecl)) { | |||
12959 | unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) | |||
12960 | ? diag::err_redefinition | |||
12961 | : diag::err_redefinition_different_kind; | |||
12962 | Diag(AliasLoc, DiagID) << Alias; | |||
12963 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | |||
12964 | return nullptr; | |||
12965 | } | |||
12966 | } | |||
12967 | ||||
12968 | // The use of a nested name specifier may trigger deprecation warnings. | |||
12969 | DiagnoseUseOfDecl(ND, IdentLoc); | |||
12970 | ||||
12971 | NamespaceAliasDecl *AliasDecl = | |||
12972 | NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, | |||
12973 | Alias, SS.getWithLocInContext(Context), | |||
12974 | IdentLoc, ND); | |||
12975 | if (Prev) | |||
12976 | AliasDecl->setPreviousDecl(Prev); | |||
12977 | ||||
12978 | PushOnScopeChains(AliasDecl, S); | |||
12979 | return AliasDecl; | |||
12980 | } | |||
12981 | ||||
12982 | namespace { | |||
12983 | struct SpecialMemberExceptionSpecInfo | |||
12984 | : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { | |||
12985 | SourceLocation Loc; | |||
12986 | Sema::ImplicitExceptionSpecification ExceptSpec; | |||
12987 | ||||
12988 | SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, | |||
12989 | Sema::CXXSpecialMember CSM, | |||
12990 | Sema::InheritedConstructorInfo *ICI, | |||
12991 | SourceLocation Loc) | |||
12992 | : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} | |||
12993 | ||||
12994 | bool visitBase(CXXBaseSpecifier *Base); | |||
12995 | bool visitField(FieldDecl *FD); | |||
12996 | ||||
12997 | void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, | |||
12998 | unsigned Quals); | |||
12999 | ||||
13000 | void visitSubobjectCall(Subobject Subobj, | |||
13001 | Sema::SpecialMemberOverloadResult SMOR); | |||
13002 | }; | |||
13003 | } | |||
13004 | ||||
13005 | bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { | |||
13006 | auto *RT = Base->getType()->getAs<RecordType>(); | |||
13007 | if (!RT) | |||
13008 | return false; | |||
13009 | ||||
13010 | auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); | |||
13011 | Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); | |||
13012 | if (auto *BaseCtor = SMOR.getMethod()) { | |||
13013 | visitSubobjectCall(Base, BaseCtor); | |||
13014 | return false; | |||
13015 | } | |||
13016 | ||||
13017 | visitClassSubobject(BaseClass, Base, 0); | |||
13018 | return false; | |||
13019 | } | |||
13020 | ||||
13021 | bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { | |||
13022 | if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { | |||
13023 | Expr *E = FD->getInClassInitializer(); | |||
13024 | if (!E) | |||
13025 | // FIXME: It's a little wasteful to build and throw away a | |||
13026 | // CXXDefaultInitExpr here. | |||
13027 | // FIXME: We should have a single context note pointing at Loc, and | |||
13028 | // this location should be MD->getLocation() instead, since that's | |||
13029 | // the location where we actually use the default init expression. | |||
13030 | E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); | |||
13031 | if (E) | |||
13032 | ExceptSpec.CalledExpr(E); | |||
13033 | } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) | |||
13034 | ->getAs<RecordType>()) { | |||
13035 | visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, | |||
13036 | FD->getType().getCVRQualifiers()); | |||
13037 | } | |||
13038 | return false; | |||
13039 | } | |||
13040 | ||||
13041 | void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, | |||
13042 | Subobject Subobj, | |||
13043 | unsigned Quals) { | |||
13044 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); | |||
13045 | bool IsMutable = Field && Field->isMutable(); | |||
13046 | visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); | |||
13047 | } | |||
13048 | ||||
13049 | void SpecialMemberExceptionSpecInfo::visitSubobjectCall( | |||
13050 | Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { | |||
13051 | // Note, if lookup fails, it doesn't matter what exception specification we | |||
13052 | // choose because the special member will be deleted. | |||
13053 | if (CXXMethodDecl *MD = SMOR.getMethod()) | |||
13054 | ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); | |||
13055 | } | |||
13056 | ||||
13057 | bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { | |||
13058 | llvm::APSInt Result; | |||
13059 | ExprResult Converted = CheckConvertedConstantExpression( | |||
13060 | ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); | |||
13061 | ExplicitSpec.setExpr(Converted.get()); | |||
13062 | if (Converted.isUsable() && !Converted.get()->isValueDependent()) { | |||
13063 | ExplicitSpec.setKind(Result.getBoolValue() | |||
13064 | ? ExplicitSpecKind::ResolvedTrue | |||
13065 | : ExplicitSpecKind::ResolvedFalse); | |||
13066 | return true; | |||
13067 | } | |||
13068 | ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); | |||
13069 | return false; | |||
13070 | } | |||
13071 | ||||
13072 | ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { | |||
13073 | ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); | |||
13074 | if (!ExplicitExpr->isTypeDependent()) | |||
13075 | tryResolveExplicitSpecifier(ES); | |||
13076 | return ES; | |||
13077 | } | |||
13078 | ||||
13079 | static Sema::ImplicitExceptionSpecification | |||
13080 | ComputeDefaultedSpecialMemberExceptionSpec( | |||
13081 | Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, | |||
13082 | Sema::InheritedConstructorInfo *ICI) { | |||
13083 | ComputingExceptionSpec CES(S, MD, Loc); | |||
13084 | ||||
13085 | CXXRecordDecl *ClassDecl = MD->getParent(); | |||
13086 | ||||
13087 | // C++ [except.spec]p14: | |||
13088 | // An implicitly declared special member function (Clause 12) shall have an | |||
13089 | // exception-specification. [...] | |||
13090 | SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); | |||
13091 | if (ClassDecl->isInvalidDecl()) | |||
13092 | return Info.ExceptSpec; | |||
13093 | ||||
13094 | // FIXME: If this diagnostic fires, we're probably missing a check for | |||
13095 | // attempting to resolve an exception specification before it's known | |||
13096 | // at a higher level. | |||
13097 | if (S.RequireCompleteType(MD->getLocation(), | |||
13098 | S.Context.getRecordType(ClassDecl), | |||
13099 | diag::err_exception_spec_incomplete_type)) | |||
13100 | return Info.ExceptSpec; | |||
13101 | ||||
13102 | // C++1z [except.spec]p7: | |||
13103 | // [Look for exceptions thrown by] a constructor selected [...] to | |||
13104 | // initialize a potentially constructed subobject, | |||
13105 | // C++1z [except.spec]p8: | |||
13106 | // The exception specification for an implicitly-declared destructor, or a | |||
13107 | // destructor without a noexcept-specifier, is potentially-throwing if and | |||
13108 | // only if any of the destructors for any of its potentially constructed | |||
13109 | // subojects is potentially throwing. | |||
13110 | // FIXME: We respect the first rule but ignore the "potentially constructed" | |||
13111 | // in the second rule to resolve a core issue (no number yet) that would have | |||
13112 | // us reject: | |||
13113 | // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; | |||
13114 | // struct B : A {}; | |||
13115 | // struct C : B { void f(); }; | |||
13116 | // ... due to giving B::~B() a non-throwing exception specification. | |||
13117 | Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases | |||
13118 | : Info.VisitAllBases); | |||
13119 | ||||
13120 | return Info.ExceptSpec; | |||
13121 | } | |||
13122 | ||||
13123 | namespace { | |||
13124 | /// RAII object to register a special member as being currently declared. | |||
13125 | struct DeclaringSpecialMember { | |||
13126 | Sema &S; | |||
13127 | Sema::SpecialMemberDecl D; | |||
13128 | Sema::ContextRAII SavedContext; | |||
13129 | bool WasAlreadyBeingDeclared; | |||
13130 | ||||
13131 | DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) | |||
13132 | : S(S), D(RD, CSM), SavedContext(S, RD) { | |||
13133 | WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; | |||
13134 | if (WasAlreadyBeingDeclared) | |||
13135 | // This almost never happens, but if it does, ensure that our cache | |||
13136 | // doesn't contain a stale result. | |||
13137 | S.SpecialMemberCache.clear(); | |||
13138 | else { | |||
13139 | // Register a note to be produced if we encounter an error while | |||
13140 | // declaring the special member. | |||
13141 | Sema::CodeSynthesisContext Ctx; | |||
13142 | Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; | |||
13143 | // FIXME: We don't have a location to use here. Using the class's | |||
13144 | // location maintains the fiction that we declare all special members | |||
13145 | // with the class, but (1) it's not clear that lying about that helps our | |||
13146 | // users understand what's going on, and (2) there may be outer contexts | |||
13147 | // on the stack (some of which are relevant) and printing them exposes | |||
13148 | // our lies. | |||
13149 | Ctx.PointOfInstantiation = RD->getLocation(); | |||
13150 | Ctx.Entity = RD; | |||
13151 | Ctx.SpecialMember = CSM; | |||
13152 | S.pushCodeSynthesisContext(Ctx); | |||
13153 | } | |||
13154 | } | |||
13155 | ~DeclaringSpecialMember() { | |||
13156 | if (!WasAlreadyBeingDeclared) { | |||
13157 | S.SpecialMembersBeingDeclared.erase(D); | |||
13158 | S.popCodeSynthesisContext(); | |||
13159 | } | |||
13160 | } | |||
13161 | ||||
13162 | /// Are we already trying to declare this special member? | |||
13163 | bool isAlreadyBeingDeclared() const { | |||
13164 | return WasAlreadyBeingDeclared; | |||
13165 | } | |||
13166 | }; | |||
13167 | } | |||
13168 | ||||
13169 | void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { | |||
13170 | // Look up any existing declarations, but don't trigger declaration of all | |||
13171 | // implicit special members with this name. | |||
13172 | DeclarationName Name = FD->getDeclName(); | |||
13173 | LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, | |||
13174 | ForExternalRedeclaration); | |||
13175 | for (auto *D : FD->getParent()->lookup(Name)) | |||
13176 | if (auto *Acceptable = R.getAcceptableDecl(D)) | |||
13177 | R.addDecl(Acceptable); | |||
13178 | R.resolveKind(); | |||
13179 | R.suppressDiagnostics(); | |||
13180 | ||||
13181 | CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false); | |||
13182 | } | |||
13183 | ||||
13184 | void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, | |||
13185 | QualType ResultTy, | |||
13186 | ArrayRef<QualType> Args) { | |||
13187 | // Build an exception specification pointing back at this constructor. | |||
13188 | FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); | |||
13189 | ||||
13190 | LangAS AS = getDefaultCXXMethodAddrSpace(); | |||
13191 | if (AS != LangAS::Default) { | |||
13192 | EPI.TypeQuals.addAddressSpace(AS); | |||
13193 | } | |||
13194 | ||||
13195 | auto QT = Context.getFunctionType(ResultTy, Args, EPI); | |||
13196 | SpecialMem->setType(QT); | |||
13197 | ||||
13198 | // During template instantiation of implicit special member functions we need | |||
13199 | // a reliable TypeSourceInfo for the function prototype in order to allow | |||
13200 | // functions to be substituted. | |||
13201 | if (inTemplateInstantiation() && | |||
13202 | cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) { | |||
13203 | TypeSourceInfo *TSI = | |||
13204 | Context.getTrivialTypeSourceInfo(SpecialMem->getType()); | |||
13205 | SpecialMem->setTypeSourceInfo(TSI); | |||
13206 | } | |||
13207 | } | |||
13208 | ||||
13209 | CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( | |||
13210 | CXXRecordDecl *ClassDecl) { | |||
13211 | // C++ [class.ctor]p5: | |||
13212 | // A default constructor for a class X is a constructor of class X | |||
13213 | // that can be called without an argument. If there is no | |||
13214 | // user-declared constructor for class X, a default constructor is | |||
13215 | // implicitly declared. An implicitly-declared default constructor | |||
13216 | // is an inline public member of its class. | |||
13217 | assert(ClassDecl->needsImplicitDefaultConstructor() &&((void)0) | |||
13218 | "Should not build implicit default constructor!")((void)0); | |||
13219 | ||||
13220 | DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); | |||
13221 | if (DSM.isAlreadyBeingDeclared()) | |||
13222 | return nullptr; | |||
13223 | ||||
13224 | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | |||
13225 | CXXDefaultConstructor, | |||
13226 | false); | |||
13227 | ||||
13228 | // Create the actual constructor declaration. | |||
13229 | CanQualType ClassType | |||
13230 | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | |||
13231 | SourceLocation ClassLoc = ClassDecl->getLocation(); | |||
13232 | DeclarationName Name | |||
13233 | = Context.DeclarationNames.getCXXConstructorName(ClassType); | |||
13234 | DeclarationNameInfo NameInfo(Name, ClassLoc); | |||
13235 | CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( | |||
13236 | Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), | |||
13237 | /*TInfo=*/nullptr, ExplicitSpecifier(), | |||
13238 | /*isInline=*/true, /*isImplicitlyDeclared=*/true, | |||
13239 | Constexpr ? ConstexprSpecKind::Constexpr | |||
13240 | : ConstexprSpecKind::Unspecified); | |||
13241 | DefaultCon->setAccess(AS_public); | |||
13242 | DefaultCon->setDefaulted(); | |||
13243 | ||||
13244 | if (getLangOpts().CUDA) { | |||
13245 | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, | |||
13246 | DefaultCon, | |||
13247 | /* ConstRHS */ false, | |||
13248 | /* Diagnose */ false); | |||
13249 | } | |||
13250 | ||||
13251 | setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); | |||
13252 | ||||
13253 | // We don't need to use SpecialMemberIsTrivial here; triviality for default | |||
13254 | // constructors is easy to compute. | |||
13255 | DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); | |||
13256 | ||||
13257 | // Note that we have declared this constructor. | |||
13258 | ++getASTContext().NumImplicitDefaultConstructorsDeclared; | |||
13259 | ||||
13260 | Scope *S = getScopeForContext(ClassDecl); | |||
13261 | CheckImplicitSpecialMemberDeclaration(S, DefaultCon); | |||
13262 | ||||
13263 | if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) | |||
13264 | SetDeclDeleted(DefaultCon, ClassLoc); | |||
13265 | ||||
13266 | if (S) | |||
13267 | PushOnScopeChains(DefaultCon, S, false); | |||
13268 | ClassDecl->addDecl(DefaultCon); | |||
13269 | ||||
13270 | return DefaultCon; | |||
13271 | } | |||
13272 | ||||
13273 | void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, | |||
13274 | CXXConstructorDecl *Constructor) { | |||
13275 | assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&((void)0) | |||
13276 | !Constructor->doesThisDeclarationHaveABody() &&((void)0) | |||
13277 | !Constructor->isDeleted()) &&((void)0) | |||
13278 | "DefineImplicitDefaultConstructor - call it for implicit default ctor")((void)0); | |||
13279 | if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) | |||
13280 | return; | |||
13281 | ||||
13282 | CXXRecordDecl *ClassDecl = Constructor->getParent(); | |||
13283 | assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")((void)0); | |||
13284 | ||||
13285 | SynthesizedFunctionScope Scope(*this, Constructor); | |||
13286 | ||||
13287 | // The exception specification is needed because we are defining the | |||
13288 | // function. | |||
13289 | ResolveExceptionSpec(CurrentLocation, | |||
13290 | Constructor->getType()->castAs<FunctionProtoType>()); | |||
13291 | MarkVTableUsed(CurrentLocation, ClassDecl); | |||
13292 | ||||
13293 | // Add a context note for diagnostics produced after this point. | |||
13294 | Scope.addContextNote(CurrentLocation); | |||
13295 | ||||
13296 | if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { | |||
13297 | Constructor->setInvalidDecl(); | |||
13298 | return; | |||
13299 | } | |||
13300 | ||||
13301 | SourceLocation Loc = Constructor->getEndLoc().isValid() | |||
13302 | ? Constructor->getEndLoc() | |||
13303 | : Constructor->getLocation(); | |||
13304 | Constructor->setBody(new (Context) CompoundStmt(Loc)); | |||
13305 | Constructor->markUsed(Context); | |||
13306 | ||||
13307 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
13308 | L->CompletedImplicitDefinition(Constructor); | |||
13309 | } | |||
13310 | ||||
13311 | DiagnoseUninitializedFields(*this, Constructor); | |||
13312 | } | |||
13313 | ||||
13314 | void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { | |||
13315 | // Perform any delayed checks on exception specifications. | |||
13316 | CheckDelayedMemberExceptionSpecs(); | |||
13317 | } | |||
13318 | ||||
13319 | /// Find or create the fake constructor we synthesize to model constructing an | |||
13320 | /// object of a derived class via a constructor of a base class. | |||
13321 | CXXConstructorDecl * | |||
13322 | Sema::findInheritingConstructor(SourceLocation Loc, | |||
13323 | CXXConstructorDecl *BaseCtor, | |||
13324 | ConstructorUsingShadowDecl *Shadow) { | |||
13325 | CXXRecordDecl *Derived = Shadow->getParent(); | |||
13326 | SourceLocation UsingLoc = Shadow->getLocation(); | |||
13327 | ||||
13328 | // FIXME: Add a new kind of DeclarationName for an inherited constructor. | |||
13329 | // For now we use the name of the base class constructor as a member of the | |||
13330 | // derived class to indicate a (fake) inherited constructor name. | |||
13331 | DeclarationName Name = BaseCtor->getDeclName(); | |||
13332 | ||||
13333 | // Check to see if we already have a fake constructor for this inherited | |||
13334 | // constructor call. | |||
13335 | for (NamedDecl *Ctor : Derived->lookup(Name)) | |||
13336 | if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) | |||
13337 | ->getInheritedConstructor() | |||
13338 | .getConstructor(), | |||
13339 | BaseCtor)) | |||
13340 | return cast<CXXConstructorDecl>(Ctor); | |||
13341 | ||||
13342 | DeclarationNameInfo NameInfo(Name, UsingLoc); | |||
13343 | TypeSourceInfo *TInfo = | |||
13344 | Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); | |||
13345 | FunctionProtoTypeLoc ProtoLoc = | |||
13346 | TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); | |||
13347 | ||||
13348 | // Check the inherited constructor is valid and find the list of base classes | |||
13349 | // from which it was inherited. | |||
13350 | InheritedConstructorInfo ICI(*this, Loc, Shadow); | |||
13351 | ||||
13352 | bool Constexpr = | |||
13353 | BaseCtor->isConstexpr() && | |||
13354 | defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, | |||
13355 | false, BaseCtor, &ICI); | |||
13356 | ||||
13357 | CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( | |||
13358 | Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, | |||
13359 | BaseCtor->getExplicitSpecifier(), /*isInline=*/true, | |||
13360 | /*isImplicitlyDeclared=*/true, | |||
13361 | Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, | |||
13362 | InheritedConstructor(Shadow, BaseCtor), | |||
13363 | BaseCtor->getTrailingRequiresClause()); | |||
13364 | if (Shadow->isInvalidDecl()) | |||
13365 | DerivedCtor->setInvalidDecl(); | |||
13366 | ||||
13367 | // Build an unevaluated exception specification for this fake constructor. | |||
13368 | const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); | |||
13369 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | |||
13370 | EPI.ExceptionSpec.Type = EST_Unevaluated; | |||
13371 | EPI.ExceptionSpec.SourceDecl = DerivedCtor; | |||
13372 | DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), | |||
13373 | FPT->getParamTypes(), EPI)); | |||
13374 | ||||
13375 | // Build the parameter declarations. | |||
13376 | SmallVector<ParmVarDecl *, 16> ParamDecls; | |||
13377 | for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { | |||
13378 | TypeSourceInfo *TInfo = | |||
13379 | Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); | |||
13380 | ParmVarDecl *PD = ParmVarDecl::Create( | |||
13381 | Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, | |||
13382 | FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); | |||
13383 | PD->setScopeInfo(0, I); | |||
13384 | PD->setImplicit(); | |||
13385 | // Ensure attributes are propagated onto parameters (this matters for | |||
13386 | // format, pass_object_size, ...). | |||
13387 | mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); | |||
13388 | ParamDecls.push_back(PD); | |||
13389 | ProtoLoc.setParam(I, PD); | |||
13390 | } | |||
13391 | ||||
13392 | // Set up the new constructor. | |||
13393 | assert(!BaseCtor->isDeleted() && "should not use deleted constructor")((void)0); | |||
13394 | DerivedCtor->setAccess(BaseCtor->getAccess()); | |||
13395 | DerivedCtor->setParams(ParamDecls); | |||
13396 | Derived->addDecl(DerivedCtor); | |||
13397 | ||||
13398 | if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) | |||
13399 | SetDeclDeleted(DerivedCtor, UsingLoc); | |||
13400 | ||||
13401 | return DerivedCtor; | |||
13402 | } | |||
13403 | ||||
13404 | void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { | |||
13405 | InheritedConstructorInfo ICI(*this, Ctor->getLocation(), | |||
13406 | Ctor->getInheritedConstructor().getShadowDecl()); | |||
13407 | ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, | |||
13408 | /*Diagnose*/true); | |||
13409 | } | |||
13410 | ||||
13411 | void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, | |||
13412 | CXXConstructorDecl *Constructor) { | |||
13413 | CXXRecordDecl *ClassDecl = Constructor->getParent(); | |||
13414 | assert(Constructor->getInheritedConstructor() &&((void)0) | |||
13415 | !Constructor->doesThisDeclarationHaveABody() &&((void)0) | |||
13416 | !Constructor->isDeleted())((void)0); | |||
13417 | if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) | |||
13418 | return; | |||
13419 | ||||
13420 | // Initializations are performed "as if by a defaulted default constructor", | |||
13421 | // so enter the appropriate scope. | |||
13422 | SynthesizedFunctionScope Scope(*this, Constructor); | |||
13423 | ||||
13424 | // The exception specification is needed because we are defining the | |||
13425 | // function. | |||
13426 | ResolveExceptionSpec(CurrentLocation, | |||
13427 | Constructor->getType()->castAs<FunctionProtoType>()); | |||
13428 | MarkVTableUsed(CurrentLocation, ClassDecl); | |||
13429 | ||||
13430 | // Add a context note for diagnostics produced after this point. | |||
13431 | Scope.addContextNote(CurrentLocation); | |||
13432 | ||||
13433 | ConstructorUsingShadowDecl *Shadow = | |||
13434 | Constructor->getInheritedConstructor().getShadowDecl(); | |||
13435 | CXXConstructorDecl *InheritedCtor = | |||
13436 | Constructor->getInheritedConstructor().getConstructor(); | |||
13437 | ||||
13438 | // [class.inhctor.init]p1: | |||
13439 | // initialization proceeds as if a defaulted default constructor is used to | |||
13440 | // initialize the D object and each base class subobject from which the | |||
13441 | // constructor was inherited | |||
13442 | ||||
13443 | InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); | |||
13444 | CXXRecordDecl *RD = Shadow->getParent(); | |||
13445 | SourceLocation InitLoc = Shadow->getLocation(); | |||
13446 | ||||
13447 | // Build explicit initializers for all base classes from which the | |||
13448 | // constructor was inherited. | |||
13449 | SmallVector<CXXCtorInitializer*, 8> Inits; | |||
13450 | for (bool VBase : {false, true}) { | |||
13451 | for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { | |||
13452 | if (B.isVirtual() != VBase) | |||
13453 | continue; | |||
13454 | ||||
13455 | auto *BaseRD = B.getType()->getAsCXXRecordDecl(); | |||
13456 | if (!BaseRD) | |||
13457 | continue; | |||
13458 | ||||
13459 | auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); | |||
13460 | if (!BaseCtor.first) | |||
13461 | continue; | |||
13462 | ||||
13463 | MarkFunctionReferenced(CurrentLocation, BaseCtor.first); | |||
13464 | ExprResult Init = new (Context) CXXInheritedCtorInitExpr( | |||
13465 | InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); | |||
13466 | ||||
13467 | auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); | |||
13468 | Inits.push_back(new (Context) CXXCtorInitializer( | |||
13469 | Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, | |||
13470 | SourceLocation())); | |||
13471 | } | |||
13472 | } | |||
13473 | ||||
13474 | // We now proceed as if for a defaulted default constructor, with the relevant | |||
13475 | // initializers replaced. | |||
13476 | ||||
13477 | if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { | |||
13478 | Constructor->setInvalidDecl(); | |||
13479 | return; | |||
13480 | } | |||
13481 | ||||
13482 | Constructor->setBody(new (Context) CompoundStmt(InitLoc)); | |||
13483 | Constructor->markUsed(Context); | |||
13484 | ||||
13485 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
13486 | L->CompletedImplicitDefinition(Constructor); | |||
13487 | } | |||
13488 | ||||
13489 | DiagnoseUninitializedFields(*this, Constructor); | |||
13490 | } | |||
13491 | ||||
13492 | CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { | |||
13493 | // C++ [class.dtor]p2: | |||
13494 | // If a class has no user-declared destructor, a destructor is | |||
13495 | // declared implicitly. An implicitly-declared destructor is an | |||
13496 | // inline public member of its class. | |||
13497 | assert(ClassDecl->needsImplicitDestructor())((void)0); | |||
13498 | ||||
13499 | DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); | |||
13500 | if (DSM.isAlreadyBeingDeclared()) | |||
13501 | return nullptr; | |||
13502 | ||||
13503 | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | |||
13504 | CXXDestructor, | |||
13505 | false); | |||
13506 | ||||
13507 | // Create the actual destructor declaration. | |||
13508 | CanQualType ClassType | |||
13509 | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | |||
13510 | SourceLocation ClassLoc = ClassDecl->getLocation(); | |||
13511 | DeclarationName Name | |||
13512 | = Context.DeclarationNames.getCXXDestructorName(ClassType); | |||
13513 | DeclarationNameInfo NameInfo(Name, ClassLoc); | |||
13514 | CXXDestructorDecl *Destructor = | |||
13515 | CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, | |||
13516 | QualType(), nullptr, /*isInline=*/true, | |||
13517 | /*isImplicitlyDeclared=*/true, | |||
13518 | Constexpr ? ConstexprSpecKind::Constexpr | |||
13519 | : ConstexprSpecKind::Unspecified); | |||
13520 | Destructor->setAccess(AS_public); | |||
13521 | Destructor->setDefaulted(); | |||
13522 | ||||
13523 | if (getLangOpts().CUDA) { | |||
13524 | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, | |||
13525 | Destructor, | |||
13526 | /* ConstRHS */ false, | |||
13527 | /* Diagnose */ false); | |||
13528 | } | |||
13529 | ||||
13530 | setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); | |||
13531 | ||||
13532 | // We don't need to use SpecialMemberIsTrivial here; triviality for | |||
13533 | // destructors is easy to compute. | |||
13534 | Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); | |||
13535 | Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || | |||
13536 | ClassDecl->hasTrivialDestructorForCall()); | |||
13537 | ||||
13538 | // Note that we have declared this destructor. | |||
13539 | ++getASTContext().NumImplicitDestructorsDeclared; | |||
13540 | ||||
13541 | Scope *S = getScopeForContext(ClassDecl); | |||
13542 | CheckImplicitSpecialMemberDeclaration(S, Destructor); | |||
13543 | ||||
13544 | // We can't check whether an implicit destructor is deleted before we complete | |||
13545 | // the definition of the class, because its validity depends on the alignment | |||
13546 | // of the class. We'll check this from ActOnFields once the class is complete. | |||
13547 | if (ClassDecl->isCompleteDefinition() && | |||
13548 | ShouldDeleteSpecialMember(Destructor, CXXDestructor)) | |||
13549 | SetDeclDeleted(Destructor, ClassLoc); | |||
13550 | ||||
13551 | // Introduce this destructor into its scope. | |||
13552 | if (S) | |||
13553 | PushOnScopeChains(Destructor, S, false); | |||
13554 | ClassDecl->addDecl(Destructor); | |||
13555 | ||||
13556 | return Destructor; | |||
13557 | } | |||
13558 | ||||
13559 | void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, | |||
13560 | CXXDestructorDecl *Destructor) { | |||
13561 | assert((Destructor->isDefaulted() &&((void)0) | |||
13562 | !Destructor->doesThisDeclarationHaveABody() &&((void)0) | |||
13563 | !Destructor->isDeleted()) &&((void)0) | |||
13564 | "DefineImplicitDestructor - call it for implicit default dtor")((void)0); | |||
13565 | if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) | |||
13566 | return; | |||
13567 | ||||
13568 | CXXRecordDecl *ClassDecl = Destructor->getParent(); | |||
13569 | assert(ClassDecl && "DefineImplicitDestructor - invalid destructor")((void)0); | |||
13570 | ||||
13571 | SynthesizedFunctionScope Scope(*this, Destructor); | |||
13572 | ||||
13573 | // The exception specification is needed because we are defining the | |||
13574 | // function. | |||
13575 | ResolveExceptionSpec(CurrentLocation, | |||
13576 | Destructor->getType()->castAs<FunctionProtoType>()); | |||
13577 | MarkVTableUsed(CurrentLocation, ClassDecl); | |||
13578 | ||||
13579 | // Add a context note for diagnostics produced after this point. | |||
13580 | Scope.addContextNote(CurrentLocation); | |||
13581 | ||||
13582 | MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | |||
13583 | Destructor->getParent()); | |||
13584 | ||||
13585 | if (CheckDestructor(Destructor)) { | |||
13586 | Destructor->setInvalidDecl(); | |||
13587 | return; | |||
13588 | } | |||
13589 | ||||
13590 | SourceLocation Loc = Destructor->getEndLoc().isValid() | |||
13591 | ? Destructor->getEndLoc() | |||
13592 | : Destructor->getLocation(); | |||
13593 | Destructor->setBody(new (Context) CompoundStmt(Loc)); | |||
13594 | Destructor->markUsed(Context); | |||
13595 | ||||
13596 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
13597 | L->CompletedImplicitDefinition(Destructor); | |||
13598 | } | |||
13599 | } | |||
13600 | ||||
13601 | void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, | |||
13602 | CXXDestructorDecl *Destructor) { | |||
13603 | if (Destructor->isInvalidDecl()) | |||
13604 | return; | |||
13605 | ||||
13606 | CXXRecordDecl *ClassDecl = Destructor->getParent(); | |||
13607 | assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&((void)0) | |||
13608 | "implicit complete dtors unneeded outside MS ABI")((void)0); | |||
13609 | assert(ClassDecl->getNumVBases() > 0 &&((void)0) | |||
13610 | "complete dtor only exists for classes with vbases")((void)0); | |||
13611 | ||||
13612 | SynthesizedFunctionScope Scope(*this, Destructor); | |||
13613 | ||||
13614 | // Add a context note for diagnostics produced after this point. | |||
13615 | Scope.addContextNote(CurrentLocation); | |||
13616 | ||||
13617 | MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); | |||
13618 | } | |||
13619 | ||||
13620 | /// Perform any semantic analysis which needs to be delayed until all | |||
13621 | /// pending class member declarations have been parsed. | |||
13622 | void Sema::ActOnFinishCXXMemberDecls() { | |||
13623 | // If the context is an invalid C++ class, just suppress these checks. | |||
13624 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { | |||
13625 | if (Record->isInvalidDecl()) { | |||
13626 | DelayedOverridingExceptionSpecChecks.clear(); | |||
13627 | DelayedEquivalentExceptionSpecChecks.clear(); | |||
13628 | return; | |||
13629 | } | |||
13630 | checkForMultipleExportedDefaultConstructors(*this, Record); | |||
13631 | } | |||
13632 | } | |||
13633 | ||||
13634 | void Sema::ActOnFinishCXXNonNestedClass() { | |||
13635 | referenceDLLExportedClassMethods(); | |||
13636 | ||||
13637 | if (!DelayedDllExportMemberFunctions.empty()) { | |||
13638 | SmallVector<CXXMethodDecl*, 4> WorkList; | |||
13639 | std::swap(DelayedDllExportMemberFunctions, WorkList); | |||
13640 | for (CXXMethodDecl *M : WorkList) { | |||
13641 | DefineDefaultedFunction(*this, M, M->getLocation()); | |||
13642 | ||||
13643 | // Pass the method to the consumer to get emitted. This is not necessary | |||
13644 | // for explicit instantiation definitions, as they will get emitted | |||
13645 | // anyway. | |||
13646 | if (M->getParent()->getTemplateSpecializationKind() != | |||
13647 | TSK_ExplicitInstantiationDefinition) | |||
13648 | ActOnFinishInlineFunctionDef(M); | |||
13649 | } | |||
13650 | } | |||
13651 | } | |||
13652 | ||||
13653 | void Sema::referenceDLLExportedClassMethods() { | |||
13654 | if (!DelayedDllExportClasses.empty()) { | |||
13655 | // Calling ReferenceDllExportedMembers might cause the current function to | |||
13656 | // be called again, so use a local copy of DelayedDllExportClasses. | |||
13657 | SmallVector<CXXRecordDecl *, 4> WorkList; | |||
13658 | std::swap(DelayedDllExportClasses, WorkList); | |||
13659 | for (CXXRecordDecl *Class : WorkList) | |||
13660 | ReferenceDllExportedMembers(*this, Class); | |||
13661 | } | |||
13662 | } | |||
13663 | ||||
13664 | void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { | |||
13665 | assert(getLangOpts().CPlusPlus11 &&((void)0) | |||
13666 | "adjusting dtor exception specs was introduced in c++11")((void)0); | |||
13667 | ||||
13668 | if (Destructor->isDependentContext()) | |||
13669 | return; | |||
13670 | ||||
13671 | // C++11 [class.dtor]p3: | |||
13672 | // A declaration of a destructor that does not have an exception- | |||
13673 | // specification is implicitly considered to have the same exception- | |||
13674 | // specification as an implicit declaration. | |||
13675 | const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); | |||
13676 | if (DtorType->hasExceptionSpec()) | |||
13677 | return; | |||
13678 | ||||
13679 | // Replace the destructor's type, building off the existing one. Fortunately, | |||
13680 | // the only thing of interest in the destructor type is its extended info. | |||
13681 | // The return and arguments are fixed. | |||
13682 | FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); | |||
13683 | EPI.ExceptionSpec.Type = EST_Unevaluated; | |||
13684 | EPI.ExceptionSpec.SourceDecl = Destructor; | |||
13685 | Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); | |||
13686 | ||||
13687 | // FIXME: If the destructor has a body that could throw, and the newly created | |||
13688 | // spec doesn't allow exceptions, we should emit a warning, because this | |||
13689 | // change in behavior can break conforming C++03 programs at runtime. | |||
13690 | // However, we don't have a body or an exception specification yet, so it | |||
13691 | // needs to be done somewhere else. | |||
13692 | } | |||
13693 | ||||
13694 | namespace { | |||
13695 | /// An abstract base class for all helper classes used in building the | |||
13696 | // copy/move operators. These classes serve as factory functions and help us | |||
13697 | // avoid using the same Expr* in the AST twice. | |||
13698 | class ExprBuilder { | |||
13699 | ExprBuilder(const ExprBuilder&) = delete; | |||
13700 | ExprBuilder &operator=(const ExprBuilder&) = delete; | |||
13701 | ||||
13702 | protected: | |||
13703 | static Expr *assertNotNull(Expr *E) { | |||
13704 | assert(E && "Expression construction must not fail.")((void)0); | |||
13705 | return E; | |||
13706 | } | |||
13707 | ||||
13708 | public: | |||
13709 | ExprBuilder() {} | |||
13710 | virtual ~ExprBuilder() {} | |||
13711 | ||||
13712 | virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; | |||
13713 | }; | |||
13714 | ||||
13715 | class RefBuilder: public ExprBuilder { | |||
13716 | VarDecl *Var; | |||
13717 | QualType VarType; | |||
13718 | ||||
13719 | public: | |||
13720 | Expr *build(Sema &S, SourceLocation Loc) const override { | |||
13721 | return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); | |||
13722 | } | |||
13723 | ||||
13724 | RefBuilder(VarDecl *Var, QualType VarType) | |||
13725 | : Var(Var), VarType(VarType) {} | |||
13726 | }; | |||
13727 | ||||
13728 | class ThisBuilder: public ExprBuilder { | |||
13729 | public: | |||
13730 | Expr *build(Sema &S, SourceLocation Loc) const override { | |||
13731 | return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); | |||
13732 | } | |||
13733 | }; | |||
13734 | ||||
13735 | class CastBuilder: public ExprBuilder { | |||
13736 | const ExprBuilder &Builder; | |||
13737 | QualType Type; | |||
13738 | ExprValueKind Kind; | |||
13739 | const CXXCastPath &Path; | |||
13740 | ||||
13741 | public: | |||
13742 | Expr *build(Sema &S, SourceLocation Loc) const override { | |||
13743 | return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, | |||
13744 | CK_UncheckedDerivedToBase, Kind, | |||
13745 | &Path).get()); | |||
13746 | } | |||
13747 | ||||
13748 | CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, | |||
13749 | const CXXCastPath &Path) | |||
13750 | : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} | |||
13751 | }; | |||
13752 | ||||
13753 | class DerefBuilder: public ExprBuilder { | |||
13754 | const ExprBuilder &Builder; | |||
13755 | ||||
13756 | public: | |||
13757 | Expr *build(Sema &S, SourceLocation Loc) const override { | |||
13758 | return assertNotNull( | |||
13759 | S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); | |||
13760 | } | |||
13761 | ||||
13762 | DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} | |||
13763 | }; | |||
13764 | ||||
13765 | class MemberBuilder: public ExprBuilder { | |||
13766 | const ExprBuilder &Builder; | |||
13767 | QualType Type; | |||
13768 | CXXScopeSpec SS; | |||
13769 | bool IsArrow; | |||
13770 | LookupResult &MemberLookup; | |||
13771 | ||||
13772 | public: | |||
13773 | Expr *build(Sema &S, SourceLocation Loc) const override { | |||
13774 | return assertNotNull(S.BuildMemberReferenceExpr( | |||
13775 | Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), | |||
13776 | nullptr, MemberLookup, nullptr, nullptr).get()); | |||
13777 | } | |||
13778 | ||||
13779 | MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, | |||
13780 | LookupResult &MemberLookup) | |||
13781 | : Builder(Builder), Type(Type), IsArrow(IsArrow), | |||
13782 | MemberLookup(MemberLookup) {} | |||
13783 | }; | |||
13784 | ||||
13785 | class MoveCastBuilder: public ExprBuilder { | |||
13786 | const ExprBuilder &Builder; | |||
13787 | ||||
13788 | public: | |||
13789 | Expr *build(Sema &S, SourceLocation Loc) const override { | |||
13790 | return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); | |||
13791 | } | |||
13792 | ||||
13793 | MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} | |||
13794 | }; | |||
13795 | ||||
13796 | class LvalueConvBuilder: public ExprBuilder { | |||
13797 | const ExprBuilder &Builder; | |||
13798 | ||||
13799 | public: | |||
13800 | Expr *build(Sema &S, SourceLocation Loc) const override { | |||
13801 | return assertNotNull( | |||
13802 | S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); | |||
13803 | } | |||
13804 | ||||
13805 | LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} | |||
13806 | }; | |||
13807 | ||||
13808 | class SubscriptBuilder: public ExprBuilder { | |||
13809 | const ExprBuilder &Base; | |||
13810 | const ExprBuilder &Index; | |||
13811 | ||||
13812 | public: | |||
13813 | Expr *build(Sema &S, SourceLocation Loc) const override { | |||
13814 | return assertNotNull(S.CreateBuiltinArraySubscriptExpr( | |||
13815 | Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); | |||
13816 | } | |||
13817 | ||||
13818 | SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) | |||
13819 | : Base(Base), Index(Index) {} | |||
13820 | }; | |||
13821 | ||||
13822 | } // end anonymous namespace | |||
13823 | ||||
13824 | /// When generating a defaulted copy or move assignment operator, if a field | |||
13825 | /// should be copied with __builtin_memcpy rather than via explicit assignments, | |||
13826 | /// do so. This optimization only applies for arrays of scalars, and for arrays | |||
13827 | /// of class type where the selected copy/move-assignment operator is trivial. | |||
13828 | static StmtResult | |||
13829 | buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, | |||
13830 | const ExprBuilder &ToB, const ExprBuilder &FromB) { | |||
13831 | // Compute the size of the memory buffer to be copied. | |||
13832 | QualType SizeType = S.Context.getSizeType(); | |||
13833 | llvm::APInt Size(S.Context.getTypeSize(SizeType), | |||
13834 | S.Context.getTypeSizeInChars(T).getQuantity()); | |||
13835 | ||||
13836 | // Take the address of the field references for "from" and "to". We | |||
13837 | // directly construct UnaryOperators here because semantic analysis | |||
13838 | // does not permit us to take the address of an xvalue. | |||
13839 | Expr *From = FromB.build(S, Loc); | |||
13840 | From = UnaryOperator::Create( | |||
13841 | S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), | |||
13842 | VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); | |||
13843 | Expr *To = ToB.build(S, Loc); | |||
13844 | To = UnaryOperator::Create( | |||
13845 | S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), | |||
13846 | VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); | |||
13847 | ||||
13848 | const Type *E = T->getBaseElementTypeUnsafe(); | |||
13849 | bool NeedsCollectableMemCpy = | |||
13850 | E->isRecordType() && | |||
13851 | E->castAs<RecordType>()->getDecl()->hasObjectMember(); | |||
13852 | ||||
13853 | // Create a reference to the __builtin_objc_memmove_collectable function | |||
13854 | StringRef MemCpyName = NeedsCollectableMemCpy ? | |||
13855 | "__builtin_objc_memmove_collectable" : | |||
13856 | "__builtin_memcpy"; | |||
13857 | LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, | |||
13858 | Sema::LookupOrdinaryName); | |||
13859 | S.LookupName(R, S.TUScope, true); | |||
13860 | ||||
13861 | FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); | |||
13862 | if (!MemCpy) | |||
13863 | // Something went horribly wrong earlier, and we will have complained | |||
13864 | // about it. | |||
13865 | return StmtError(); | |||
13866 | ||||
13867 | ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, | |||
13868 | VK_PRValue, Loc, nullptr); | |||
13869 | assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")((void)0); | |||
13870 | ||||
13871 | Expr *CallArgs[] = { | |||
13872 | To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) | |||
13873 | }; | |||
13874 | ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), | |||
13875 | Loc, CallArgs, Loc); | |||
13876 | ||||
13877 | assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")((void)0); | |||
13878 | return Call.getAs<Stmt>(); | |||
13879 | } | |||
13880 | ||||
13881 | /// Builds a statement that copies/moves the given entity from \p From to | |||
13882 | /// \c To. | |||
13883 | /// | |||
13884 | /// This routine is used to copy/move the members of a class with an | |||
13885 | /// implicitly-declared copy/move assignment operator. When the entities being | |||
13886 | /// copied are arrays, this routine builds for loops to copy them. | |||
13887 | /// | |||
13888 | /// \param S The Sema object used for type-checking. | |||
13889 | /// | |||
13890 | /// \param Loc The location where the implicit copy/move is being generated. | |||
13891 | /// | |||
13892 | /// \param T The type of the expressions being copied/moved. Both expressions | |||
13893 | /// must have this type. | |||
13894 | /// | |||
13895 | /// \param To The expression we are copying/moving to. | |||
13896 | /// | |||
13897 | /// \param From The expression we are copying/moving from. | |||
13898 | /// | |||
13899 | /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. | |||
13900 | /// Otherwise, it's a non-static member subobject. | |||
13901 | /// | |||
13902 | /// \param Copying Whether we're copying or moving. | |||
13903 | /// | |||
13904 | /// \param Depth Internal parameter recording the depth of the recursion. | |||
13905 | /// | |||
13906 | /// \returns A statement or a loop that copies the expressions, or StmtResult(0) | |||
13907 | /// if a memcpy should be used instead. | |||
13908 | static StmtResult | |||
13909 | buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, | |||
13910 | const ExprBuilder &To, const ExprBuilder &From, | |||
13911 | bool CopyingBaseSubobject, bool Copying, | |||
13912 | unsigned Depth = 0) { | |||
13913 | // C++11 [class.copy]p28: | |||
13914 | // Each subobject is assigned in the manner appropriate to its type: | |||
13915 | // | |||
13916 | // - if the subobject is of class type, as if by a call to operator= with | |||
13917 | // the subobject as the object expression and the corresponding | |||
13918 | // subobject of x as a single function argument (as if by explicit | |||
13919 | // qualification; that is, ignoring any possible virtual overriding | |||
13920 | // functions in more derived classes); | |||
13921 | // | |||
13922 | // C++03 [class.copy]p13: | |||
13923 | // - if the subobject is of class type, the copy assignment operator for | |||
13924 | // the class is used (as if by explicit qualification; that is, | |||
13925 | // ignoring any possible virtual overriding functions in more derived | |||
13926 | // classes); | |||
13927 | if (const RecordType *RecordTy = T->getAs<RecordType>()) { | |||
13928 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | |||
13929 | ||||
13930 | // Look for operator=. | |||
13931 | DeclarationName Name | |||
13932 | = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); | |||
13933 | LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); | |||
13934 | S.LookupQualifiedName(OpLookup, ClassDecl, false); | |||
13935 | ||||
13936 | // Prior to C++11, filter out any result that isn't a copy/move-assignment | |||
13937 | // operator. | |||
13938 | if (!S.getLangOpts().CPlusPlus11) { | |||
13939 | LookupResult::Filter F = OpLookup.makeFilter(); | |||
13940 | while (F.hasNext()) { | |||
13941 | NamedDecl *D = F.next(); | |||
13942 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) | |||
13943 | if (Method->isCopyAssignmentOperator() || | |||
13944 | (!Copying && Method->isMoveAssignmentOperator())) | |||
13945 | continue; | |||
13946 | ||||
13947 | F.erase(); | |||
13948 | } | |||
13949 | F.done(); | |||
13950 | } | |||
13951 | ||||
13952 | // Suppress the protected check (C++ [class.protected]) for each of the | |||
13953 | // assignment operators we found. This strange dance is required when | |||
13954 | // we're assigning via a base classes's copy-assignment operator. To | |||
13955 | // ensure that we're getting the right base class subobject (without | |||
13956 | // ambiguities), we need to cast "this" to that subobject type; to | |||
13957 | // ensure that we don't go through the virtual call mechanism, we need | |||
13958 | // to qualify the operator= name with the base class (see below). However, | |||
13959 | // this means that if the base class has a protected copy assignment | |||
13960 | // operator, the protected member access check will fail. So, we | |||
13961 | // rewrite "protected" access to "public" access in this case, since we | |||
13962 | // know by construction that we're calling from a derived class. | |||
13963 | if (CopyingBaseSubobject) { | |||
13964 | for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); | |||
13965 | L != LEnd; ++L) { | |||
13966 | if (L.getAccess() == AS_protected) | |||
13967 | L.setAccess(AS_public); | |||
13968 | } | |||
13969 | } | |||
13970 | ||||
13971 | // Create the nested-name-specifier that will be used to qualify the | |||
13972 | // reference to operator=; this is required to suppress the virtual | |||
13973 | // call mechanism. | |||
13974 | CXXScopeSpec SS; | |||
13975 | const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); | |||
13976 | SS.MakeTrivial(S.Context, | |||
13977 | NestedNameSpecifier::Create(S.Context, nullptr, false, | |||
13978 | CanonicalT), | |||
13979 | Loc); | |||
13980 | ||||
13981 | // Create the reference to operator=. | |||
13982 | ExprResult OpEqualRef | |||
13983 | = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, | |||
13984 | SS, /*TemplateKWLoc=*/SourceLocation(), | |||
13985 | /*FirstQualifierInScope=*/nullptr, | |||
13986 | OpLookup, | |||
13987 | /*TemplateArgs=*/nullptr, /*S*/nullptr, | |||
13988 | /*SuppressQualifierCheck=*/true); | |||
13989 | if (OpEqualRef.isInvalid()) | |||
13990 | return StmtError(); | |||
13991 | ||||
13992 | // Build the call to the assignment operator. | |||
13993 | ||||
13994 | Expr *FromInst = From.build(S, Loc); | |||
13995 | ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, | |||
13996 | OpEqualRef.getAs<Expr>(), | |||
13997 | Loc, FromInst, Loc); | |||
13998 | if (Call.isInvalid()) | |||
13999 | return StmtError(); | |||
14000 | ||||
14001 | // If we built a call to a trivial 'operator=' while copying an array, | |||
14002 | // bail out. We'll replace the whole shebang with a memcpy. | |||
14003 | CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); | |||
14004 | if (CE && CE->getMethodDecl()->isTrivial() && Depth) | |||
14005 | return StmtResult((Stmt*)nullptr); | |||
14006 | ||||
14007 | // Convert to an expression-statement, and clean up any produced | |||
14008 | // temporaries. | |||
14009 | return S.ActOnExprStmt(Call); | |||
14010 | } | |||
14011 | ||||
14012 | // - if the subobject is of scalar type, the built-in assignment | |||
14013 | // operator is used. | |||
14014 | const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); | |||
14015 | if (!ArrayTy) { | |||
14016 | ExprResult Assignment = S.CreateBuiltinBinOp( | |||
14017 | Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); | |||
14018 | if (Assignment.isInvalid()) | |||
14019 | return StmtError(); | |||
14020 | return S.ActOnExprStmt(Assignment); | |||
14021 | } | |||
14022 | ||||
14023 | // - if the subobject is an array, each element is assigned, in the | |||
14024 | // manner appropriate to the element type; | |||
14025 | ||||
14026 | // Construct a loop over the array bounds, e.g., | |||
14027 | // | |||
14028 | // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) | |||
14029 | // | |||
14030 | // that will copy each of the array elements. | |||
14031 | QualType SizeType = S.Context.getSizeType(); | |||
14032 | ||||
14033 | // Create the iteration variable. | |||
14034 | IdentifierInfo *IterationVarName = nullptr; | |||
14035 | { | |||
14036 | SmallString<8> Str; | |||
14037 | llvm::raw_svector_ostream OS(Str); | |||
14038 | OS << "__i" << Depth; | |||
14039 | IterationVarName = &S.Context.Idents.get(OS.str()); | |||
14040 | } | |||
14041 | VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, | |||
14042 | IterationVarName, SizeType, | |||
14043 | S.Context.getTrivialTypeSourceInfo(SizeType, Loc), | |||
14044 | SC_None); | |||
14045 | ||||
14046 | // Initialize the iteration variable to zero. | |||
14047 | llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); | |||
14048 | IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); | |||
14049 | ||||
14050 | // Creates a reference to the iteration variable. | |||
14051 | RefBuilder IterationVarRef(IterationVar, SizeType); | |||
14052 | LvalueConvBuilder IterationVarRefRVal(IterationVarRef); | |||
14053 | ||||
14054 | // Create the DeclStmt that holds the iteration variable. | |||
14055 | Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); | |||
14056 | ||||
14057 | // Subscript the "from" and "to" expressions with the iteration variable. | |||
14058 | SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); | |||
14059 | MoveCastBuilder FromIndexMove(FromIndexCopy); | |||
14060 | const ExprBuilder *FromIndex; | |||
14061 | if (Copying) | |||
14062 | FromIndex = &FromIndexCopy; | |||
14063 | else | |||
14064 | FromIndex = &FromIndexMove; | |||
14065 | ||||
14066 | SubscriptBuilder ToIndex(To, IterationVarRefRVal); | |||
14067 | ||||
14068 | // Build the copy/move for an individual element of the array. | |||
14069 | StmtResult Copy = | |||
14070 | buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), | |||
14071 | ToIndex, *FromIndex, CopyingBaseSubobject, | |||
14072 | Copying, Depth + 1); | |||
14073 | // Bail out if copying fails or if we determined that we should use memcpy. | |||
14074 | if (Copy.isInvalid() || !Copy.get()) | |||
14075 | return Copy; | |||
14076 | ||||
14077 | // Create the comparison against the array bound. | |||
14078 | llvm::APInt Upper | |||
14079 | = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); | |||
14080 | Expr *Comparison = BinaryOperator::Create( | |||
14081 | S.Context, IterationVarRefRVal.build(S, Loc), | |||
14082 | IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, | |||
14083 | S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, | |||
14084 | S.CurFPFeatureOverrides()); | |||
14085 | ||||
14086 | // Create the pre-increment of the iteration variable. We can determine | |||
14087 | // whether the increment will overflow based on the value of the array | |||
14088 | // bound. | |||
14089 | Expr *Increment = UnaryOperator::Create( | |||
14090 | S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, | |||
14091 | OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); | |||
14092 | ||||
14093 | // Construct the loop that copies all elements of this array. | |||
14094 | return S.ActOnForStmt( | |||
14095 | Loc, Loc, InitStmt, | |||
14096 | S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), | |||
14097 | S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); | |||
14098 | } | |||
14099 | ||||
14100 | static StmtResult | |||
14101 | buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, | |||
14102 | const ExprBuilder &To, const ExprBuilder &From, | |||
14103 | bool CopyingBaseSubobject, bool Copying) { | |||
14104 | // Maybe we should use a memcpy? | |||
14105 | if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && | |||
14106 | T.isTriviallyCopyableType(S.Context)) | |||
14107 | return buildMemcpyForAssignmentOp(S, Loc, T, To, From); | |||
14108 | ||||
14109 | StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, | |||
14110 | CopyingBaseSubobject, | |||
14111 | Copying, 0)); | |||
14112 | ||||
14113 | // If we ended up picking a trivial assignment operator for an array of a | |||
14114 | // non-trivially-copyable class type, just emit a memcpy. | |||
14115 | if (!Result.isInvalid() && !Result.get()) | |||
14116 | return buildMemcpyForAssignmentOp(S, Loc, T, To, From); | |||
14117 | ||||
14118 | return Result; | |||
14119 | } | |||
14120 | ||||
14121 | CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { | |||
14122 | // Note: The following rules are largely analoguous to the copy | |||
14123 | // constructor rules. Note that virtual bases are not taken into account | |||
14124 | // for determining the argument type of the operator. Note also that | |||
14125 | // operators taking an object instead of a reference are allowed. | |||
14126 | assert(ClassDecl->needsImplicitCopyAssignment())((void)0); | |||
14127 | ||||
14128 | DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); | |||
14129 | if (DSM.isAlreadyBeingDeclared()) | |||
14130 | return nullptr; | |||
14131 | ||||
14132 | QualType ArgType = Context.getTypeDeclType(ClassDecl); | |||
14133 | LangAS AS = getDefaultCXXMethodAddrSpace(); | |||
14134 | if (AS != LangAS::Default) | |||
14135 | ArgType = Context.getAddrSpaceQualType(ArgType, AS); | |||
14136 | QualType RetType = Context.getLValueReferenceType(ArgType); | |||
14137 | bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); | |||
14138 | if (Const) | |||
14139 | ArgType = ArgType.withConst(); | |||
14140 | ||||
14141 | ArgType = Context.getLValueReferenceType(ArgType); | |||
14142 | ||||
14143 | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | |||
14144 | CXXCopyAssignment, | |||
14145 | Const); | |||
14146 | ||||
14147 | // An implicitly-declared copy assignment operator is an inline public | |||
14148 | // member of its class. | |||
14149 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | |||
14150 | SourceLocation ClassLoc = ClassDecl->getLocation(); | |||
14151 | DeclarationNameInfo NameInfo(Name, ClassLoc); | |||
14152 | CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( | |||
14153 | Context, ClassDecl, ClassLoc, NameInfo, QualType(), | |||
14154 | /*TInfo=*/nullptr, /*StorageClass=*/SC_None, | |||
14155 | /*isInline=*/true, | |||
14156 | Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, | |||
14157 | SourceLocation()); | |||
14158 | CopyAssignment->setAccess(AS_public); | |||
14159 | CopyAssignment->setDefaulted(); | |||
14160 | CopyAssignment->setImplicit(); | |||
14161 | ||||
14162 | if (getLangOpts().CUDA) { | |||
14163 | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, | |||
14164 | CopyAssignment, | |||
14165 | /* ConstRHS */ Const, | |||
14166 | /* Diagnose */ false); | |||
14167 | } | |||
14168 | ||||
14169 | setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); | |||
14170 | ||||
14171 | // Add the parameter to the operator. | |||
14172 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, | |||
14173 | ClassLoc, ClassLoc, | |||
14174 | /*Id=*/nullptr, ArgType, | |||
14175 | /*TInfo=*/nullptr, SC_None, | |||
14176 | nullptr); | |||
14177 | CopyAssignment->setParams(FromParam); | |||
14178 | ||||
14179 | CopyAssignment->setTrivial( | |||
14180 | ClassDecl->needsOverloadResolutionForCopyAssignment() | |||
14181 | ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) | |||
14182 | : ClassDecl->hasTrivialCopyAssignment()); | |||
14183 | ||||
14184 | // Note that we have added this copy-assignment operator. | |||
14185 | ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; | |||
14186 | ||||
14187 | Scope *S = getScopeForContext(ClassDecl); | |||
14188 | CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); | |||
14189 | ||||
14190 | if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) { | |||
14191 | ClassDecl->setImplicitCopyAssignmentIsDeleted(); | |||
14192 | SetDeclDeleted(CopyAssignment, ClassLoc); | |||
14193 | } | |||
14194 | ||||
14195 | if (S) | |||
14196 | PushOnScopeChains(CopyAssignment, S, false); | |||
14197 | ClassDecl->addDecl(CopyAssignment); | |||
14198 | ||||
14199 | return CopyAssignment; | |||
14200 | } | |||
14201 | ||||
14202 | /// Diagnose an implicit copy operation for a class which is odr-used, but | |||
14203 | /// which is deprecated because the class has a user-declared copy constructor, | |||
14204 | /// copy assignment operator, or destructor. | |||
14205 | static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { | |||
14206 | assert(CopyOp->isImplicit())((void)0); | |||
14207 | ||||
14208 | CXXRecordDecl *RD = CopyOp->getParent(); | |||
14209 | CXXMethodDecl *UserDeclaredOperation = nullptr; | |||
14210 | ||||
14211 | // In Microsoft mode, assignment operations don't affect constructors and | |||
14212 | // vice versa. | |||
14213 | if (RD->hasUserDeclaredDestructor()) { | |||
14214 | UserDeclaredOperation = RD->getDestructor(); | |||
14215 | } else if (!isa<CXXConstructorDecl>(CopyOp) && | |||
14216 | RD->hasUserDeclaredCopyConstructor() && | |||
14217 | !S.getLangOpts().MSVCCompat) { | |||
14218 | // Find any user-declared copy constructor. | |||
14219 | for (auto *I : RD->ctors()) { | |||
14220 | if (I->isCopyConstructor()) { | |||
14221 | UserDeclaredOperation = I; | |||
14222 | break; | |||
14223 | } | |||
14224 | } | |||
14225 | assert(UserDeclaredOperation)((void)0); | |||
14226 | } else if (isa<CXXConstructorDecl>(CopyOp) && | |||
14227 | RD->hasUserDeclaredCopyAssignment() && | |||
14228 | !S.getLangOpts().MSVCCompat) { | |||
14229 | // Find any user-declared move assignment operator. | |||
14230 | for (auto *I : RD->methods()) { | |||
14231 | if (I->isCopyAssignmentOperator()) { | |||
14232 | UserDeclaredOperation = I; | |||
14233 | break; | |||
14234 | } | |||
14235 | } | |||
14236 | assert(UserDeclaredOperation)((void)0); | |||
14237 | } | |||
14238 | ||||
14239 | if (UserDeclaredOperation) { | |||
14240 | bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); | |||
14241 | bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); | |||
14242 | bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); | |||
14243 | unsigned DiagID = | |||
14244 | (UDOIsUserProvided && UDOIsDestructor) | |||
14245 | ? diag::warn_deprecated_copy_with_user_provided_dtor | |||
14246 | : (UDOIsUserProvided && !UDOIsDestructor) | |||
14247 | ? diag::warn_deprecated_copy_with_user_provided_copy | |||
14248 | : (!UDOIsUserProvided && UDOIsDestructor) | |||
14249 | ? diag::warn_deprecated_copy_with_dtor | |||
14250 | : diag::warn_deprecated_copy; | |||
14251 | S.Diag(UserDeclaredOperation->getLocation(), DiagID) | |||
14252 | << RD << IsCopyAssignment; | |||
14253 | } | |||
14254 | } | |||
14255 | ||||
14256 | void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, | |||
14257 | CXXMethodDecl *CopyAssignOperator) { | |||
14258 | assert((CopyAssignOperator->isDefaulted() &&((void)0) | |||
14259 | CopyAssignOperator->isOverloadedOperator() &&((void)0) | |||
14260 | CopyAssignOperator->getOverloadedOperator() == OO_Equal &&((void)0) | |||
14261 | !CopyAssignOperator->doesThisDeclarationHaveABody() &&((void)0) | |||
14262 | !CopyAssignOperator->isDeleted()) &&((void)0) | |||
14263 | "DefineImplicitCopyAssignment called for wrong function")((void)0); | |||
14264 | if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) | |||
14265 | return; | |||
14266 | ||||
14267 | CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); | |||
14268 | if (ClassDecl->isInvalidDecl()) { | |||
14269 | CopyAssignOperator->setInvalidDecl(); | |||
14270 | return; | |||
14271 | } | |||
14272 | ||||
14273 | SynthesizedFunctionScope Scope(*this, CopyAssignOperator); | |||
14274 | ||||
14275 | // The exception specification is needed because we are defining the | |||
14276 | // function. | |||
14277 | ResolveExceptionSpec(CurrentLocation, | |||
14278 | CopyAssignOperator->getType()->castAs<FunctionProtoType>()); | |||
14279 | ||||
14280 | // Add a context note for diagnostics produced after this point. | |||
14281 | Scope.addContextNote(CurrentLocation); | |||
14282 | ||||
14283 | // C++11 [class.copy]p18: | |||
14284 | // The [definition of an implicitly declared copy assignment operator] is | |||
14285 | // deprecated if the class has a user-declared copy constructor or a | |||
14286 | // user-declared destructor. | |||
14287 | if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) | |||
14288 | diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); | |||
14289 | ||||
14290 | // C++0x [class.copy]p30: | |||
14291 | // The implicitly-defined or explicitly-defaulted copy assignment operator | |||
14292 | // for a non-union class X performs memberwise copy assignment of its | |||
14293 | // subobjects. The direct base classes of X are assigned first, in the | |||
14294 | // order of their declaration in the base-specifier-list, and then the | |||
14295 | // immediate non-static data members of X are assigned, in the order in | |||
14296 | // which they were declared in the class definition. | |||
14297 | ||||
14298 | // The statements that form the synthesized function body. | |||
14299 | SmallVector<Stmt*, 8> Statements; | |||
14300 | ||||
14301 | // The parameter for the "other" object, which we are copying from. | |||
14302 | ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); | |||
14303 | Qualifiers OtherQuals = Other->getType().getQualifiers(); | |||
14304 | QualType OtherRefType = Other->getType(); | |||
14305 | if (const LValueReferenceType *OtherRef | |||
14306 | = OtherRefType->getAs<LValueReferenceType>()) { | |||
14307 | OtherRefType = OtherRef->getPointeeType(); | |||
14308 | OtherQuals = OtherRefType.getQualifiers(); | |||
14309 | } | |||
14310 | ||||
14311 | // Our location for everything implicitly-generated. | |||
14312 | SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() | |||
14313 | ? CopyAssignOperator->getEndLoc() | |||
14314 | : CopyAssignOperator->getLocation(); | |||
14315 | ||||
14316 | // Builds a DeclRefExpr for the "other" object. | |||
14317 | RefBuilder OtherRef(Other, OtherRefType); | |||
14318 | ||||
14319 | // Builds the "this" pointer. | |||
14320 | ThisBuilder This; | |||
14321 | ||||
14322 | // Assign base classes. | |||
14323 | bool Invalid = false; | |||
14324 | for (auto &Base : ClassDecl->bases()) { | |||
14325 | // Form the assignment: | |||
14326 | // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); | |||
14327 | QualType BaseType = Base.getType().getUnqualifiedType(); | |||
14328 | if (!BaseType->isRecordType()) { | |||
14329 | Invalid = true; | |||
14330 | continue; | |||
14331 | } | |||
14332 | ||||
14333 | CXXCastPath BasePath; | |||
14334 | BasePath.push_back(&Base); | |||
14335 | ||||
14336 | // Construct the "from" expression, which is an implicit cast to the | |||
14337 | // appropriately-qualified base type. | |||
14338 | CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), | |||
14339 | VK_LValue, BasePath); | |||
14340 | ||||
14341 | // Dereference "this". | |||
14342 | DerefBuilder DerefThis(This); | |||
14343 | CastBuilder To(DerefThis, | |||
14344 | Context.getQualifiedType( | |||
14345 | BaseType, CopyAssignOperator->getMethodQualifiers()), | |||
14346 | VK_LValue, BasePath); | |||
14347 | ||||
14348 | // Build the copy. | |||
14349 | StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, | |||
14350 | To, From, | |||
14351 | /*CopyingBaseSubobject=*/true, | |||
14352 | /*Copying=*/true); | |||
14353 | if (Copy.isInvalid()) { | |||
14354 | CopyAssignOperator->setInvalidDecl(); | |||
14355 | return; | |||
14356 | } | |||
14357 | ||||
14358 | // Success! Record the copy. | |||
14359 | Statements.push_back(Copy.getAs<Expr>()); | |||
14360 | } | |||
14361 | ||||
14362 | // Assign non-static members. | |||
14363 | for (auto *Field : ClassDecl->fields()) { | |||
14364 | // FIXME: We should form some kind of AST representation for the implied | |||
14365 | // memcpy in a union copy operation. | |||
14366 | if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) | |||
14367 | continue; | |||
14368 | ||||
14369 | if (Field->isInvalidDecl()) { | |||
14370 | Invalid = true; | |||
14371 | continue; | |||
14372 | } | |||
14373 | ||||
14374 | // Check for members of reference type; we can't copy those. | |||
14375 | if (Field->getType()->isReferenceType()) { | |||
14376 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | |||
14377 | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | |||
14378 | Diag(Field->getLocation(), diag::note_declared_at); | |||
14379 | Invalid = true; | |||
14380 | continue; | |||
14381 | } | |||
14382 | ||||
14383 | // Check for members of const-qualified, non-class type. | |||
14384 | QualType BaseType = Context.getBaseElementType(Field->getType()); | |||
14385 | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { | |||
14386 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | |||
14387 | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | |||
14388 | Diag(Field->getLocation(), diag::note_declared_at); | |||
14389 | Invalid = true; | |||
14390 | continue; | |||
14391 | } | |||
14392 | ||||
14393 | // Suppress assigning zero-width bitfields. | |||
14394 | if (Field->isZeroLengthBitField(Context)) | |||
14395 | continue; | |||
14396 | ||||
14397 | QualType FieldType = Field->getType().getNonReferenceType(); | |||
14398 | if (FieldType->isIncompleteArrayType()) { | |||
14399 | assert(ClassDecl->hasFlexibleArrayMember() &&((void)0) | |||
14400 | "Incomplete array type is not valid")((void)0); | |||
14401 | continue; | |||
14402 | } | |||
14403 | ||||
14404 | // Build references to the field in the object we're copying from and to. | |||
14405 | CXXScopeSpec SS; // Intentionally empty | |||
14406 | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, | |||
14407 | LookupMemberName); | |||
14408 | MemberLookup.addDecl(Field); | |||
14409 | MemberLookup.resolveKind(); | |||
14410 | ||||
14411 | MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); | |||
14412 | ||||
14413 | MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); | |||
14414 | ||||
14415 | // Build the copy of this field. | |||
14416 | StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, | |||
14417 | To, From, | |||
14418 | /*CopyingBaseSubobject=*/false, | |||
14419 | /*Copying=*/true); | |||
14420 | if (Copy.isInvalid()) { | |||
14421 | CopyAssignOperator->setInvalidDecl(); | |||
14422 | return; | |||
14423 | } | |||
14424 | ||||
14425 | // Success! Record the copy. | |||
14426 | Statements.push_back(Copy.getAs<Stmt>()); | |||
14427 | } | |||
14428 | ||||
14429 | if (!Invalid) { | |||
14430 | // Add a "return *this;" | |||
14431 | ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); | |||
14432 | ||||
14433 | StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); | |||
14434 | if (Return.isInvalid()) | |||
14435 | Invalid = true; | |||
14436 | else | |||
14437 | Statements.push_back(Return.getAs<Stmt>()); | |||
14438 | } | |||
14439 | ||||
14440 | if (Invalid) { | |||
14441 | CopyAssignOperator->setInvalidDecl(); | |||
14442 | return; | |||
14443 | } | |||
14444 | ||||
14445 | StmtResult Body; | |||
14446 | { | |||
14447 | CompoundScopeRAII CompoundScope(*this); | |||
14448 | Body = ActOnCompoundStmt(Loc, Loc, Statements, | |||
14449 | /*isStmtExpr=*/false); | |||
14450 | assert(!Body.isInvalid() && "Compound statement creation cannot fail")((void)0); | |||
14451 | } | |||
14452 | CopyAssignOperator->setBody(Body.getAs<Stmt>()); | |||
14453 | CopyAssignOperator->markUsed(Context); | |||
14454 | ||||
14455 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
14456 | L->CompletedImplicitDefinition(CopyAssignOperator); | |||
14457 | } | |||
14458 | } | |||
14459 | ||||
14460 | CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { | |||
14461 | assert(ClassDecl->needsImplicitMoveAssignment())((void)0); | |||
14462 | ||||
14463 | DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); | |||
14464 | if (DSM.isAlreadyBeingDeclared()) | |||
14465 | return nullptr; | |||
14466 | ||||
14467 | // Note: The following rules are largely analoguous to the move | |||
14468 | // constructor rules. | |||
14469 | ||||
14470 | QualType ArgType = Context.getTypeDeclType(ClassDecl); | |||
14471 | LangAS AS = getDefaultCXXMethodAddrSpace(); | |||
14472 | if (AS != LangAS::Default) | |||
14473 | ArgType = Context.getAddrSpaceQualType(ArgType, AS); | |||
14474 | QualType RetType = Context.getLValueReferenceType(ArgType); | |||
14475 | ArgType = Context.getRValueReferenceType(ArgType); | |||
14476 | ||||
14477 | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | |||
14478 | CXXMoveAssignment, | |||
14479 | false); | |||
14480 | ||||
14481 | // An implicitly-declared move assignment operator is an inline public | |||
14482 | // member of its class. | |||
14483 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | |||
14484 | SourceLocation ClassLoc = ClassDecl->getLocation(); | |||
14485 | DeclarationNameInfo NameInfo(Name, ClassLoc); | |||
14486 | CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( | |||
14487 | Context, ClassDecl, ClassLoc, NameInfo, QualType(), | |||
14488 | /*TInfo=*/nullptr, /*StorageClass=*/SC_None, | |||
14489 | /*isInline=*/true, | |||
14490 | Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, | |||
14491 | SourceLocation()); | |||
14492 | MoveAssignment->setAccess(AS_public); | |||
14493 | MoveAssignment->setDefaulted(); | |||
14494 | MoveAssignment->setImplicit(); | |||
14495 | ||||
14496 | if (getLangOpts().CUDA) { | |||
14497 | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, | |||
14498 | MoveAssignment, | |||
14499 | /* ConstRHS */ false, | |||
14500 | /* Diagnose */ false); | |||
14501 | } | |||
14502 | ||||
14503 | setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); | |||
14504 | ||||
14505 | // Add the parameter to the operator. | |||
14506 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, | |||
14507 | ClassLoc, ClassLoc, | |||
14508 | /*Id=*/nullptr, ArgType, | |||
14509 | /*TInfo=*/nullptr, SC_None, | |||
14510 | nullptr); | |||
14511 | MoveAssignment->setParams(FromParam); | |||
14512 | ||||
14513 | MoveAssignment->setTrivial( | |||
14514 | ClassDecl->needsOverloadResolutionForMoveAssignment() | |||
14515 | ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) | |||
14516 | : ClassDecl->hasTrivialMoveAssignment()); | |||
14517 | ||||
14518 | // Note that we have added this copy-assignment operator. | |||
14519 | ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; | |||
14520 | ||||
14521 | Scope *S = getScopeForContext(ClassDecl); | |||
14522 | CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); | |||
14523 | ||||
14524 | if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { | |||
14525 | ClassDecl->setImplicitMoveAssignmentIsDeleted(); | |||
14526 | SetDeclDeleted(MoveAssignment, ClassLoc); | |||
14527 | } | |||
14528 | ||||
14529 | if (S) | |||
14530 | PushOnScopeChains(MoveAssignment, S, false); | |||
14531 | ClassDecl->addDecl(MoveAssignment); | |||
14532 | ||||
14533 | return MoveAssignment; | |||
14534 | } | |||
14535 | ||||
14536 | /// Check if we're implicitly defining a move assignment operator for a class | |||
14537 | /// with virtual bases. Such a move assignment might move-assign the virtual | |||
14538 | /// base multiple times. | |||
14539 | static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, | |||
14540 | SourceLocation CurrentLocation) { | |||
14541 | assert(!Class->isDependentContext() && "should not define dependent move")((void)0); | |||
14542 | ||||
14543 | // Only a virtual base could get implicitly move-assigned multiple times. | |||
14544 | // Only a non-trivial move assignment can observe this. We only want to | |||
14545 | // diagnose if we implicitly define an assignment operator that assigns | |||
14546 | // two base classes, both of which move-assign the same virtual base. | |||
14547 | if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || | |||
14548 | Class->getNumBases() < 2) | |||
14549 | return; | |||
14550 | ||||
14551 | llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; | |||
14552 | typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; | |||
14553 | VBaseMap VBases; | |||
14554 | ||||
14555 | for (auto &BI : Class->bases()) { | |||
14556 | Worklist.push_back(&BI); | |||
14557 | while (!Worklist.empty()) { | |||
14558 | CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); | |||
14559 | CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); | |||
14560 | ||||
14561 | // If the base has no non-trivial move assignment operators, | |||
14562 | // we don't care about moves from it. | |||
14563 | if (!Base->hasNonTrivialMoveAssignment()) | |||
14564 | continue; | |||
14565 | ||||
14566 | // If there's nothing virtual here, skip it. | |||
14567 | if (!BaseSpec->isVirtual() && !Base->getNumVBases()) | |||
14568 | continue; | |||
14569 | ||||
14570 | // If we're not actually going to call a move assignment for this base, | |||
14571 | // or the selected move assignment is trivial, skip it. | |||
14572 | Sema::SpecialMemberOverloadResult SMOR = | |||
14573 | S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, | |||
14574 | /*ConstArg*/false, /*VolatileArg*/false, | |||
14575 | /*RValueThis*/true, /*ConstThis*/false, | |||
14576 | /*VolatileThis*/false); | |||
14577 | if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || | |||
14578 | !SMOR.getMethod()->isMoveAssignmentOperator()) | |||
14579 | continue; | |||
14580 | ||||
14581 | if (BaseSpec->isVirtual()) { | |||
14582 | // We're going to move-assign this virtual base, and its move | |||
14583 | // assignment operator is not trivial. If this can happen for | |||
14584 | // multiple distinct direct bases of Class, diagnose it. (If it | |||
14585 | // only happens in one base, we'll diagnose it when synthesizing | |||
14586 | // that base class's move assignment operator.) | |||
14587 | CXXBaseSpecifier *&Existing = | |||
14588 | VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) | |||
14589 | .first->second; | |||
14590 | if (Existing && Existing != &BI) { | |||
14591 | S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) | |||
14592 | << Class << Base; | |||
14593 | S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) | |||
14594 | << (Base->getCanonicalDecl() == | |||
14595 | Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) | |||
14596 | << Base << Existing->getType() << Existing->getSourceRange(); | |||
14597 | S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) | |||
14598 | << (Base->getCanonicalDecl() == | |||
14599 | BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) | |||
14600 | << Base << BI.getType() << BaseSpec->getSourceRange(); | |||
14601 | ||||
14602 | // Only diagnose each vbase once. | |||
14603 | Existing = nullptr; | |||
14604 | } | |||
14605 | } else { | |||
14606 | // Only walk over bases that have defaulted move assignment operators. | |||
14607 | // We assume that any user-provided move assignment operator handles | |||
14608 | // the multiple-moves-of-vbase case itself somehow. | |||
14609 | if (!SMOR.getMethod()->isDefaulted()) | |||
14610 | continue; | |||
14611 | ||||
14612 | // We're going to move the base classes of Base. Add them to the list. | |||
14613 | for (auto &BI : Base->bases()) | |||
14614 | Worklist.push_back(&BI); | |||
14615 | } | |||
14616 | } | |||
14617 | } | |||
14618 | } | |||
14619 | ||||
14620 | void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, | |||
14621 | CXXMethodDecl *MoveAssignOperator) { | |||
14622 | assert((MoveAssignOperator->isDefaulted() &&((void)0) | |||
14623 | MoveAssignOperator->isOverloadedOperator() &&((void)0) | |||
14624 | MoveAssignOperator->getOverloadedOperator() == OO_Equal &&((void)0) | |||
14625 | !MoveAssignOperator->doesThisDeclarationHaveABody() &&((void)0) | |||
14626 | !MoveAssignOperator->isDeleted()) &&((void)0) | |||
14627 | "DefineImplicitMoveAssignment called for wrong function")((void)0); | |||
14628 | if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) | |||
14629 | return; | |||
14630 | ||||
14631 | CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); | |||
14632 | if (ClassDecl->isInvalidDecl()) { | |||
14633 | MoveAssignOperator->setInvalidDecl(); | |||
14634 | return; | |||
14635 | } | |||
14636 | ||||
14637 | // C++0x [class.copy]p28: | |||
14638 | // The implicitly-defined or move assignment operator for a non-union class | |||
14639 | // X performs memberwise move assignment of its subobjects. The direct base | |||
14640 | // classes of X are assigned first, in the order of their declaration in the | |||
14641 | // base-specifier-list, and then the immediate non-static data members of X | |||
14642 | // are assigned, in the order in which they were declared in the class | |||
14643 | // definition. | |||
14644 | ||||
14645 | // Issue a warning if our implicit move assignment operator will move | |||
14646 | // from a virtual base more than once. | |||
14647 | checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); | |||
14648 | ||||
14649 | SynthesizedFunctionScope Scope(*this, MoveAssignOperator); | |||
14650 | ||||
14651 | // The exception specification is needed because we are defining the | |||
14652 | // function. | |||
14653 | ResolveExceptionSpec(CurrentLocation, | |||
14654 | MoveAssignOperator->getType()->castAs<FunctionProtoType>()); | |||
14655 | ||||
14656 | // Add a context note for diagnostics produced after this point. | |||
14657 | Scope.addContextNote(CurrentLocation); | |||
14658 | ||||
14659 | // The statements that form the synthesized function body. | |||
14660 | SmallVector<Stmt*, 8> Statements; | |||
14661 | ||||
14662 | // The parameter for the "other" object, which we are move from. | |||
14663 | ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); | |||
14664 | QualType OtherRefType = | |||
14665 | Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); | |||
14666 | ||||
14667 | // Our location for everything implicitly-generated. | |||
14668 | SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() | |||
14669 | ? MoveAssignOperator->getEndLoc() | |||
14670 | : MoveAssignOperator->getLocation(); | |||
14671 | ||||
14672 | // Builds a reference to the "other" object. | |||
14673 | RefBuilder OtherRef(Other, OtherRefType); | |||
14674 | // Cast to rvalue. | |||
14675 | MoveCastBuilder MoveOther(OtherRef); | |||
14676 | ||||
14677 | // Builds the "this" pointer. | |||
14678 | ThisBuilder This; | |||
14679 | ||||
14680 | // Assign base classes. | |||
14681 | bool Invalid = false; | |||
14682 | for (auto &Base : ClassDecl->bases()) { | |||
14683 | // C++11 [class.copy]p28: | |||
14684 | // It is unspecified whether subobjects representing virtual base classes | |||
14685 | // are assigned more than once by the implicitly-defined copy assignment | |||
14686 | // operator. | |||
14687 | // FIXME: Do not assign to a vbase that will be assigned by some other base | |||
14688 | // class. For a move-assignment, this can result in the vbase being moved | |||
14689 | // multiple times. | |||
14690 | ||||
14691 | // Form the assignment: | |||
14692 | // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); | |||
14693 | QualType BaseType = Base.getType().getUnqualifiedType(); | |||
14694 | if (!BaseType->isRecordType()) { | |||
14695 | Invalid = true; | |||
14696 | continue; | |||
14697 | } | |||
14698 | ||||
14699 | CXXCastPath BasePath; | |||
14700 | BasePath.push_back(&Base); | |||
14701 | ||||
14702 | // Construct the "from" expression, which is an implicit cast to the | |||
14703 | // appropriately-qualified base type. | |||
14704 | CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); | |||
14705 | ||||
14706 | // Dereference "this". | |||
14707 | DerefBuilder DerefThis(This); | |||
14708 | ||||
14709 | // Implicitly cast "this" to the appropriately-qualified base type. | |||
14710 | CastBuilder To(DerefThis, | |||
14711 | Context.getQualifiedType( | |||
14712 | BaseType, MoveAssignOperator->getMethodQualifiers()), | |||
14713 | VK_LValue, BasePath); | |||
14714 | ||||
14715 | // Build the move. | |||
14716 | StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, | |||
14717 | To, From, | |||
14718 | /*CopyingBaseSubobject=*/true, | |||
14719 | /*Copying=*/false); | |||
14720 | if (Move.isInvalid()) { | |||
14721 | MoveAssignOperator->setInvalidDecl(); | |||
14722 | return; | |||
14723 | } | |||
14724 | ||||
14725 | // Success! Record the move. | |||
14726 | Statements.push_back(Move.getAs<Expr>()); | |||
14727 | } | |||
14728 | ||||
14729 | // Assign non-static members. | |||
14730 | for (auto *Field : ClassDecl->fields()) { | |||
14731 | // FIXME: We should form some kind of AST representation for the implied | |||
14732 | // memcpy in a union copy operation. | |||
14733 | if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) | |||
14734 | continue; | |||
14735 | ||||
14736 | if (Field->isInvalidDecl()) { | |||
14737 | Invalid = true; | |||
14738 | continue; | |||
14739 | } | |||
14740 | ||||
14741 | // Check for members of reference type; we can't move those. | |||
14742 | if (Field->getType()->isReferenceType()) { | |||
14743 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | |||
14744 | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | |||
14745 | Diag(Field->getLocation(), diag::note_declared_at); | |||
14746 | Invalid = true; | |||
14747 | continue; | |||
14748 | } | |||
14749 | ||||
14750 | // Check for members of const-qualified, non-class type. | |||
14751 | QualType BaseType = Context.getBaseElementType(Field->getType()); | |||
14752 | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { | |||
14753 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | |||
14754 | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | |||
14755 | Diag(Field->getLocation(), diag::note_declared_at); | |||
14756 | Invalid = true; | |||
14757 | continue; | |||
14758 | } | |||
14759 | ||||
14760 | // Suppress assigning zero-width bitfields. | |||
14761 | if (Field->isZeroLengthBitField(Context)) | |||
14762 | continue; | |||
14763 | ||||
14764 | QualType FieldType = Field->getType().getNonReferenceType(); | |||
14765 | if (FieldType->isIncompleteArrayType()) { | |||
14766 | assert(ClassDecl->hasFlexibleArrayMember() &&((void)0) | |||
14767 | "Incomplete array type is not valid")((void)0); | |||
14768 | continue; | |||
14769 | } | |||
14770 | ||||
14771 | // Build references to the field in the object we're copying from and to. | |||
14772 | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, | |||
14773 | LookupMemberName); | |||
14774 | MemberLookup.addDecl(Field); | |||
14775 | MemberLookup.resolveKind(); | |||
14776 | MemberBuilder From(MoveOther, OtherRefType, | |||
14777 | /*IsArrow=*/false, MemberLookup); | |||
14778 | MemberBuilder To(This, getCurrentThisType(), | |||
14779 | /*IsArrow=*/true, MemberLookup); | |||
14780 | ||||
14781 | assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue((void)0) | |||
14782 | "Member reference with rvalue base must be rvalue except for reference "((void)0) | |||
14783 | "members, which aren't allowed for move assignment.")((void)0); | |||
14784 | ||||
14785 | // Build the move of this field. | |||
14786 | StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, | |||
14787 | To, From, | |||
14788 | /*CopyingBaseSubobject=*/false, | |||
14789 | /*Copying=*/false); | |||
14790 | if (Move.isInvalid()) { | |||
14791 | MoveAssignOperator->setInvalidDecl(); | |||
14792 | return; | |||
14793 | } | |||
14794 | ||||
14795 | // Success! Record the copy. | |||
14796 | Statements.push_back(Move.getAs<Stmt>()); | |||
14797 | } | |||
14798 | ||||
14799 | if (!Invalid) { | |||
14800 | // Add a "return *this;" | |||
14801 | ExprResult ThisObj = | |||
14802 | CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); | |||
14803 | ||||
14804 | StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); | |||
14805 | if (Return.isInvalid()) | |||
14806 | Invalid = true; | |||
14807 | else | |||
14808 | Statements.push_back(Return.getAs<Stmt>()); | |||
14809 | } | |||
14810 | ||||
14811 | if (Invalid) { | |||
14812 | MoveAssignOperator->setInvalidDecl(); | |||
14813 | return; | |||
14814 | } | |||
14815 | ||||
14816 | StmtResult Body; | |||
14817 | { | |||
14818 | CompoundScopeRAII CompoundScope(*this); | |||
14819 | Body = ActOnCompoundStmt(Loc, Loc, Statements, | |||
14820 | /*isStmtExpr=*/false); | |||
14821 | assert(!Body.isInvalid() && "Compound statement creation cannot fail")((void)0); | |||
14822 | } | |||
14823 | MoveAssignOperator->setBody(Body.getAs<Stmt>()); | |||
14824 | MoveAssignOperator->markUsed(Context); | |||
14825 | ||||
14826 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
14827 | L->CompletedImplicitDefinition(MoveAssignOperator); | |||
14828 | } | |||
14829 | } | |||
14830 | ||||
14831 | CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( | |||
14832 | CXXRecordDecl *ClassDecl) { | |||
14833 | // C++ [class.copy]p4: | |||
14834 | // If the class definition does not explicitly declare a copy | |||
14835 | // constructor, one is declared implicitly. | |||
14836 | assert(ClassDecl->needsImplicitCopyConstructor())((void)0); | |||
14837 | ||||
14838 | DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); | |||
14839 | if (DSM.isAlreadyBeingDeclared()) | |||
14840 | return nullptr; | |||
14841 | ||||
14842 | QualType ClassType = Context.getTypeDeclType(ClassDecl); | |||
14843 | QualType ArgType = ClassType; | |||
14844 | bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); | |||
14845 | if (Const) | |||
14846 | ArgType = ArgType.withConst(); | |||
14847 | ||||
14848 | LangAS AS = getDefaultCXXMethodAddrSpace(); | |||
14849 | if (AS != LangAS::Default) | |||
14850 | ArgType = Context.getAddrSpaceQualType(ArgType, AS); | |||
14851 | ||||
14852 | ArgType = Context.getLValueReferenceType(ArgType); | |||
14853 | ||||
14854 | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | |||
14855 | CXXCopyConstructor, | |||
14856 | Const); | |||
14857 | ||||
14858 | DeclarationName Name | |||
14859 | = Context.DeclarationNames.getCXXConstructorName( | |||
14860 | Context.getCanonicalType(ClassType)); | |||
14861 | SourceLocation ClassLoc = ClassDecl->getLocation(); | |||
14862 | DeclarationNameInfo NameInfo(Name, ClassLoc); | |||
14863 | ||||
14864 | // An implicitly-declared copy constructor is an inline public | |||
14865 | // member of its class. | |||
14866 | CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( | |||
14867 | Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, | |||
14868 | ExplicitSpecifier(), | |||
14869 | /*isInline=*/true, | |||
14870 | /*isImplicitlyDeclared=*/true, | |||
14871 | Constexpr ? ConstexprSpecKind::Constexpr | |||
14872 | : ConstexprSpecKind::Unspecified); | |||
14873 | CopyConstructor->setAccess(AS_public); | |||
14874 | CopyConstructor->setDefaulted(); | |||
14875 | ||||
14876 | if (getLangOpts().CUDA) { | |||
14877 | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, | |||
14878 | CopyConstructor, | |||
14879 | /* ConstRHS */ Const, | |||
14880 | /* Diagnose */ false); | |||
14881 | } | |||
14882 | ||||
14883 | setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); | |||
14884 | ||||
14885 | // During template instantiation of special member functions we need a | |||
14886 | // reliable TypeSourceInfo for the parameter types in order to allow functions | |||
14887 | // to be substituted. | |||
14888 | TypeSourceInfo *TSI = nullptr; | |||
14889 | if (inTemplateInstantiation() && ClassDecl->isLambda()) | |||
14890 | TSI = Context.getTrivialTypeSourceInfo(ArgType); | |||
14891 | ||||
14892 | // Add the parameter to the constructor. | |||
14893 | ParmVarDecl *FromParam = | |||
14894 | ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, | |||
14895 | /*IdentifierInfo=*/nullptr, ArgType, | |||
14896 | /*TInfo=*/TSI, SC_None, nullptr); | |||
14897 | CopyConstructor->setParams(FromParam); | |||
14898 | ||||
14899 | CopyConstructor->setTrivial( | |||
14900 | ClassDecl->needsOverloadResolutionForCopyConstructor() | |||
14901 | ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) | |||
14902 | : ClassDecl->hasTrivialCopyConstructor()); | |||
14903 | ||||
14904 | CopyConstructor->setTrivialForCall( | |||
14905 | ClassDecl->hasAttr<TrivialABIAttr>() || | |||
14906 | (ClassDecl->needsOverloadResolutionForCopyConstructor() | |||
14907 | ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, | |||
14908 | TAH_ConsiderTrivialABI) | |||
14909 | : ClassDecl->hasTrivialCopyConstructorForCall())); | |||
14910 | ||||
14911 | // Note that we have declared this constructor. | |||
14912 | ++getASTContext().NumImplicitCopyConstructorsDeclared; | |||
14913 | ||||
14914 | Scope *S = getScopeForContext(ClassDecl); | |||
14915 | CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); | |||
14916 | ||||
14917 | if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { | |||
14918 | ClassDecl->setImplicitCopyConstructorIsDeleted(); | |||
14919 | SetDeclDeleted(CopyConstructor, ClassLoc); | |||
14920 | } | |||
14921 | ||||
14922 | if (S) | |||
14923 | PushOnScopeChains(CopyConstructor, S, false); | |||
14924 | ClassDecl->addDecl(CopyConstructor); | |||
14925 | ||||
14926 | return CopyConstructor; | |||
14927 | } | |||
14928 | ||||
14929 | void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, | |||
14930 | CXXConstructorDecl *CopyConstructor) { | |||
14931 | assert((CopyConstructor->isDefaulted() &&((void)0) | |||
14932 | CopyConstructor->isCopyConstructor() &&((void)0) | |||
14933 | !CopyConstructor->doesThisDeclarationHaveABody() &&((void)0) | |||
14934 | !CopyConstructor->isDeleted()) &&((void)0) | |||
14935 | "DefineImplicitCopyConstructor - call it for implicit copy ctor")((void)0); | |||
14936 | if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) | |||
14937 | return; | |||
14938 | ||||
14939 | CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); | |||
14940 | assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")((void)0); | |||
14941 | ||||
14942 | SynthesizedFunctionScope Scope(*this, CopyConstructor); | |||
14943 | ||||
14944 | // The exception specification is needed because we are defining the | |||
14945 | // function. | |||
14946 | ResolveExceptionSpec(CurrentLocation, | |||
14947 | CopyConstructor->getType()->castAs<FunctionProtoType>()); | |||
14948 | MarkVTableUsed(CurrentLocation, ClassDecl); | |||
14949 | ||||
14950 | // Add a context note for diagnostics produced after this point. | |||
14951 | Scope.addContextNote(CurrentLocation); | |||
14952 | ||||
14953 | // C++11 [class.copy]p7: | |||
14954 | // The [definition of an implicitly declared copy constructor] is | |||
14955 | // deprecated if the class has a user-declared copy assignment operator | |||
14956 | // or a user-declared destructor. | |||
14957 | if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) | |||
14958 | diagnoseDeprecatedCopyOperation(*this, CopyConstructor); | |||
14959 | ||||
14960 | if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { | |||
14961 | CopyConstructor->setInvalidDecl(); | |||
14962 | } else { | |||
14963 | SourceLocation Loc = CopyConstructor->getEndLoc().isValid() | |||
14964 | ? CopyConstructor->getEndLoc() | |||
14965 | : CopyConstructor->getLocation(); | |||
14966 | Sema::CompoundScopeRAII CompoundScope(*this); | |||
14967 | CopyConstructor->setBody( | |||
14968 | ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); | |||
14969 | CopyConstructor->markUsed(Context); | |||
14970 | } | |||
14971 | ||||
14972 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
14973 | L->CompletedImplicitDefinition(CopyConstructor); | |||
14974 | } | |||
14975 | } | |||
14976 | ||||
14977 | CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( | |||
14978 | CXXRecordDecl *ClassDecl) { | |||
14979 | assert(ClassDecl->needsImplicitMoveConstructor())((void)0); | |||
14980 | ||||
14981 | DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); | |||
14982 | if (DSM.isAlreadyBeingDeclared()) | |||
14983 | return nullptr; | |||
14984 | ||||
14985 | QualType ClassType = Context.getTypeDeclType(ClassDecl); | |||
14986 | ||||
14987 | QualType ArgType = ClassType; | |||
14988 | LangAS AS = getDefaultCXXMethodAddrSpace(); | |||
14989 | if (AS != LangAS::Default) | |||
14990 | ArgType = Context.getAddrSpaceQualType(ClassType, AS); | |||
14991 | ArgType = Context.getRValueReferenceType(ArgType); | |||
14992 | ||||
14993 | bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, | |||
14994 | CXXMoveConstructor, | |||
14995 | false); | |||
14996 | ||||
14997 | DeclarationName Name | |||
14998 | = Context.DeclarationNames.getCXXConstructorName( | |||
14999 | Context.getCanonicalType(ClassType)); | |||
15000 | SourceLocation ClassLoc = ClassDecl->getLocation(); | |||
15001 | DeclarationNameInfo NameInfo(Name, ClassLoc); | |||
15002 | ||||
15003 | // C++11 [class.copy]p11: | |||
15004 | // An implicitly-declared copy/move constructor is an inline public | |||
15005 | // member of its class. | |||
15006 | CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( | |||
15007 | Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, | |||
15008 | ExplicitSpecifier(), | |||
15009 | /*isInline=*/true, | |||
15010 | /*isImplicitlyDeclared=*/true, | |||
15011 | Constexpr ? ConstexprSpecKind::Constexpr | |||
15012 | : ConstexprSpecKind::Unspecified); | |||
15013 | MoveConstructor->setAccess(AS_public); | |||
15014 | MoveConstructor->setDefaulted(); | |||
15015 | ||||
15016 | if (getLangOpts().CUDA) { | |||
15017 | inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, | |||
15018 | MoveConstructor, | |||
15019 | /* ConstRHS */ false, | |||
15020 | /* Diagnose */ false); | |||
15021 | } | |||
15022 | ||||
15023 | setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); | |||
15024 | ||||
15025 | // Add the parameter to the constructor. | |||
15026 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, | |||
15027 | ClassLoc, ClassLoc, | |||
15028 | /*IdentifierInfo=*/nullptr, | |||
15029 | ArgType, /*TInfo=*/nullptr, | |||
15030 | SC_None, nullptr); | |||
15031 | MoveConstructor->setParams(FromParam); | |||
15032 | ||||
15033 | MoveConstructor->setTrivial( | |||
15034 | ClassDecl->needsOverloadResolutionForMoveConstructor() | |||
15035 | ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) | |||
15036 | : ClassDecl->hasTrivialMoveConstructor()); | |||
15037 | ||||
15038 | MoveConstructor->setTrivialForCall( | |||
15039 | ClassDecl->hasAttr<TrivialABIAttr>() || | |||
15040 | (ClassDecl->needsOverloadResolutionForMoveConstructor() | |||
15041 | ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, | |||
15042 | TAH_ConsiderTrivialABI) | |||
15043 | : ClassDecl->hasTrivialMoveConstructorForCall())); | |||
15044 | ||||
15045 | // Note that we have declared this constructor. | |||
15046 | ++getASTContext().NumImplicitMoveConstructorsDeclared; | |||
15047 | ||||
15048 | Scope *S = getScopeForContext(ClassDecl); | |||
15049 | CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); | |||
15050 | ||||
15051 | if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { | |||
15052 | ClassDecl->setImplicitMoveConstructorIsDeleted(); | |||
15053 | SetDeclDeleted(MoveConstructor, ClassLoc); | |||
15054 | } | |||
15055 | ||||
15056 | if (S) | |||
15057 | PushOnScopeChains(MoveConstructor, S, false); | |||
15058 | ClassDecl->addDecl(MoveConstructor); | |||
15059 | ||||
15060 | return MoveConstructor; | |||
15061 | } | |||
15062 | ||||
15063 | void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, | |||
15064 | CXXConstructorDecl *MoveConstructor) { | |||
15065 | assert((MoveConstructor->isDefaulted() &&((void)0) | |||
15066 | MoveConstructor->isMoveConstructor() &&((void)0) | |||
15067 | !MoveConstructor->doesThisDeclarationHaveABody() &&((void)0) | |||
15068 | !MoveConstructor->isDeleted()) &&((void)0) | |||
15069 | "DefineImplicitMoveConstructor - call it for implicit move ctor")((void)0); | |||
15070 | if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) | |||
15071 | return; | |||
15072 | ||||
15073 | CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); | |||
15074 | assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")((void)0); | |||
15075 | ||||
15076 | SynthesizedFunctionScope Scope(*this, MoveConstructor); | |||
15077 | ||||
15078 | // The exception specification is needed because we are defining the | |||
15079 | // function. | |||
15080 | ResolveExceptionSpec(CurrentLocation, | |||
15081 | MoveConstructor->getType()->castAs<FunctionProtoType>()); | |||
15082 | MarkVTableUsed(CurrentLocation, ClassDecl); | |||
15083 | ||||
15084 | // Add a context note for diagnostics produced after this point. | |||
15085 | Scope.addContextNote(CurrentLocation); | |||
15086 | ||||
15087 | if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { | |||
15088 | MoveConstructor->setInvalidDecl(); | |||
15089 | } else { | |||
15090 | SourceLocation Loc = MoveConstructor->getEndLoc().isValid() | |||
15091 | ? MoveConstructor->getEndLoc() | |||
15092 | : MoveConstructor->getLocation(); | |||
15093 | Sema::CompoundScopeRAII CompoundScope(*this); | |||
15094 | MoveConstructor->setBody(ActOnCompoundStmt( | |||
15095 | Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); | |||
15096 | MoveConstructor->markUsed(Context); | |||
15097 | } | |||
15098 | ||||
15099 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
15100 | L->CompletedImplicitDefinition(MoveConstructor); | |||
15101 | } | |||
15102 | } | |||
15103 | ||||
15104 | bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { | |||
15105 | return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); | |||
15106 | } | |||
15107 | ||||
15108 | void Sema::DefineImplicitLambdaToFunctionPointerConversion( | |||
15109 | SourceLocation CurrentLocation, | |||
15110 | CXXConversionDecl *Conv) { | |||
15111 | SynthesizedFunctionScope Scope(*this, Conv); | |||
15112 | assert(!Conv->getReturnType()->isUndeducedType())((void)0); | |||
15113 | ||||
15114 | QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); | |||
15115 | CallingConv CC = | |||
15116 | ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); | |||
15117 | ||||
15118 | CXXRecordDecl *Lambda = Conv->getParent(); | |||
15119 | FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); | |||
15120 | FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC); | |||
15121 | ||||
15122 | if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { | |||
15123 | CallOp = InstantiateFunctionDeclaration( | |||
15124 | CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); | |||
15125 | if (!CallOp) | |||
15126 | return; | |||
15127 | ||||
15128 | Invoker = InstantiateFunctionDeclaration( | |||
15129 | Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); | |||
15130 | if (!Invoker) | |||
15131 | return; | |||
15132 | } | |||
15133 | ||||
15134 | if (CallOp->isInvalidDecl()) | |||
15135 | return; | |||
15136 | ||||
15137 | // Mark the call operator referenced (and add to pending instantiations | |||
15138 | // if necessary). | |||
15139 | // For both the conversion and static-invoker template specializations | |||
15140 | // we construct their body's in this function, so no need to add them | |||
15141 | // to the PendingInstantiations. | |||
15142 | MarkFunctionReferenced(CurrentLocation, CallOp); | |||
15143 | ||||
15144 | // Fill in the __invoke function with a dummy implementation. IR generation | |||
15145 | // will fill in the actual details. Update its type in case it contained | |||
15146 | // an 'auto'. | |||
15147 | Invoker->markUsed(Context); | |||
15148 | Invoker->setReferenced(); | |||
15149 | Invoker->setType(Conv->getReturnType()->getPointeeType()); | |||
15150 | Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); | |||
15151 | ||||
15152 | // Construct the body of the conversion function { return __invoke; }. | |||
15153 | Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), | |||
15154 | VK_LValue, Conv->getLocation()); | |||
15155 | assert(FunctionRef && "Can't refer to __invoke function?")((void)0); | |||
15156 | Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); | |||
15157 | Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(), | |||
15158 | Conv->getLocation())); | |||
15159 | Conv->markUsed(Context); | |||
15160 | Conv->setReferenced(); | |||
15161 | ||||
15162 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
15163 | L->CompletedImplicitDefinition(Conv); | |||
15164 | L->CompletedImplicitDefinition(Invoker); | |||
15165 | } | |||
15166 | } | |||
15167 | ||||
15168 | ||||
15169 | ||||
15170 | void Sema::DefineImplicitLambdaToBlockPointerConversion( | |||
15171 | SourceLocation CurrentLocation, | |||
15172 | CXXConversionDecl *Conv) | |||
15173 | { | |||
15174 | assert(!Conv->getParent()->isGenericLambda())((void)0); | |||
15175 | ||||
15176 | SynthesizedFunctionScope Scope(*this, Conv); | |||
15177 | ||||
15178 | // Copy-initialize the lambda object as needed to capture it. | |||
15179 | Expr *This = ActOnCXXThis(CurrentLocation).get(); | |||
15180 | Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); | |||
15181 | ||||
15182 | ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, | |||
15183 | Conv->getLocation(), | |||
15184 | Conv, DerefThis); | |||
15185 | ||||
15186 | // If we're not under ARC, make sure we still get the _Block_copy/autorelease | |||
15187 | // behavior. Note that only the general conversion function does this | |||
15188 | // (since it's unusable otherwise); in the case where we inline the | |||
15189 | // block literal, it has block literal lifetime semantics. | |||
15190 | if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) | |||
15191 | BuildBlock = ImplicitCastExpr::Create( | |||
15192 | Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, | |||
15193 | BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); | |||
15194 | ||||
15195 | if (BuildBlock.isInvalid()) { | |||
15196 | Diag(CurrentLocation, diag::note_lambda_to_block_conv); | |||
15197 | Conv->setInvalidDecl(); | |||
15198 | return; | |||
15199 | } | |||
15200 | ||||
15201 | // Create the return statement that returns the block from the conversion | |||
15202 | // function. | |||
15203 | StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); | |||
15204 | if (Return.isInvalid()) { | |||
15205 | Diag(CurrentLocation, diag::note_lambda_to_block_conv); | |||
15206 | Conv->setInvalidDecl(); | |||
15207 | return; | |||
15208 | } | |||
15209 | ||||
15210 | // Set the body of the conversion function. | |||
15211 | Stmt *ReturnS = Return.get(); | |||
15212 | Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(), | |||
15213 | Conv->getLocation())); | |||
15214 | Conv->markUsed(Context); | |||
15215 | ||||
15216 | // We're done; notify the mutation listener, if any. | |||
15217 | if (ASTMutationListener *L = getASTMutationListener()) { | |||
15218 | L->CompletedImplicitDefinition(Conv); | |||
15219 | } | |||
15220 | } | |||
15221 | ||||
15222 | /// Determine whether the given list arguments contains exactly one | |||
15223 | /// "real" (non-default) argument. | |||
15224 | static bool hasOneRealArgument(MultiExprArg Args) { | |||
15225 | switch (Args.size()) { | |||
15226 | case 0: | |||
15227 | return false; | |||
15228 | ||||
15229 | default: | |||
15230 | if (!Args[1]->isDefaultArgument()) | |||
15231 | return false; | |||
15232 | ||||
15233 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
15234 | case 1: | |||
15235 | return !Args[0]->isDefaultArgument(); | |||
15236 | } | |||
15237 | ||||
15238 | return false; | |||
15239 | } | |||
15240 | ||||
15241 | ExprResult | |||
15242 | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | |||
15243 | NamedDecl *FoundDecl, | |||
15244 | CXXConstructorDecl *Constructor, | |||
15245 | MultiExprArg ExprArgs, | |||
15246 | bool HadMultipleCandidates, | |||
15247 | bool IsListInitialization, | |||
15248 | bool IsStdInitListInitialization, | |||
15249 | bool RequiresZeroInit, | |||
15250 | unsigned ConstructKind, | |||
15251 | SourceRange ParenRange) { | |||
15252 | bool Elidable = false; | |||
15253 | ||||
15254 | // C++0x [class.copy]p34: | |||
15255 | // When certain criteria are met, an implementation is allowed to | |||
15256 | // omit the copy/move construction of a class object, even if the | |||
15257 | // copy/move constructor and/or destructor for the object have | |||
15258 | // side effects. [...] | |||
15259 | // - when a temporary class object that has not been bound to a | |||
15260 | // reference (12.2) would be copied/moved to a class object | |||
15261 | // with the same cv-unqualified type, the copy/move operation | |||
15262 | // can be omitted by constructing the temporary object | |||
15263 | // directly into the target of the omitted copy/move | |||
15264 | if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && | |||
15265 | // FIXME: Converting constructors should also be accepted. | |||
15266 | // But to fix this, the logic that digs down into a CXXConstructExpr | |||
15267 | // to find the source object needs to handle it. | |||
15268 | // Right now it assumes the source object is passed directly as the | |||
15269 | // first argument. | |||
15270 | Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { | |||
15271 | Expr *SubExpr = ExprArgs[0]; | |||
15272 | // FIXME: Per above, this is also incorrect if we want to accept | |||
15273 | // converting constructors, as isTemporaryObject will | |||
15274 | // reject temporaries with different type from the | |||
15275 | // CXXRecord itself. | |||
15276 | Elidable = SubExpr->isTemporaryObject( | |||
15277 | Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); | |||
15278 | } | |||
15279 | ||||
15280 | return BuildCXXConstructExpr(ConstructLoc, DeclInitType, | |||
15281 | FoundDecl, Constructor, | |||
15282 | Elidable, ExprArgs, HadMultipleCandidates, | |||
15283 | IsListInitialization, | |||
15284 | IsStdInitListInitialization, RequiresZeroInit, | |||
15285 | ConstructKind, ParenRange); | |||
15286 | } | |||
15287 | ||||
15288 | ExprResult | |||
15289 | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | |||
15290 | NamedDecl *FoundDecl, | |||
15291 | CXXConstructorDecl *Constructor, | |||
15292 | bool Elidable, | |||
15293 | MultiExprArg ExprArgs, | |||
15294 | bool HadMultipleCandidates, | |||
15295 | bool IsListInitialization, | |||
15296 | bool IsStdInitListInitialization, | |||
15297 | bool RequiresZeroInit, | |||
15298 | unsigned ConstructKind, | |||
15299 | SourceRange ParenRange) { | |||
15300 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { | |||
15301 | Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); | |||
15302 | if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) | |||
15303 | return ExprError(); | |||
15304 | } | |||
15305 | ||||
15306 | return BuildCXXConstructExpr( | |||
15307 | ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, | |||
15308 | HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, | |||
15309 | RequiresZeroInit, ConstructKind, ParenRange); | |||
15310 | } | |||
15311 | ||||
15312 | /// BuildCXXConstructExpr - Creates a complete call to a constructor, | |||
15313 | /// including handling of its default argument expressions. | |||
15314 | ExprResult | |||
15315 | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | |||
15316 | CXXConstructorDecl *Constructor, | |||
15317 | bool Elidable, | |||
15318 | MultiExprArg ExprArgs, | |||
15319 | bool HadMultipleCandidates, | |||
15320 | bool IsListInitialization, | |||
15321 | bool IsStdInitListInitialization, | |||
15322 | bool RequiresZeroInit, | |||
15323 | unsigned ConstructKind, | |||
15324 | SourceRange ParenRange) { | |||
15325 | assert(declaresSameEntity(((void)0) | |||
15326 | Constructor->getParent(),((void)0) | |||
15327 | DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&((void)0) | |||
15328 | "given constructor for wrong type")((void)0); | |||
15329 | MarkFunctionReferenced(ConstructLoc, Constructor); | |||
15330 | if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) | |||
15331 | return ExprError(); | |||
15332 | if (getLangOpts().SYCLIsDevice && | |||
15333 | !checkSYCLDeviceFunction(ConstructLoc, Constructor)) | |||
15334 | return ExprError(); | |||
15335 | ||||
15336 | return CheckForImmediateInvocation( | |||
15337 | CXXConstructExpr::Create( | |||
15338 | Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, | |||
15339 | HadMultipleCandidates, IsListInitialization, | |||
15340 | IsStdInitListInitialization, RequiresZeroInit, | |||
15341 | static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), | |||
15342 | ParenRange), | |||
15343 | Constructor); | |||
15344 | } | |||
15345 | ||||
15346 | ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { | |||
15347 | assert(Field->hasInClassInitializer())((void)0); | |||
15348 | ||||
15349 | // If we already have the in-class initializer nothing needs to be done. | |||
15350 | if (Field->getInClassInitializer()) | |||
15351 | return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); | |||
15352 | ||||
15353 | // If we might have already tried and failed to instantiate, don't try again. | |||
15354 | if (Field->isInvalidDecl()) | |||
15355 | return ExprError(); | |||
15356 | ||||
15357 | // Maybe we haven't instantiated the in-class initializer. Go check the | |||
15358 | // pattern FieldDecl to see if it has one. | |||
15359 | CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); | |||
15360 | ||||
15361 | if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { | |||
15362 | CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); | |||
15363 | DeclContext::lookup_result Lookup = | |||
15364 | ClassPattern->lookup(Field->getDeclName()); | |||
15365 | ||||
15366 | FieldDecl *Pattern = nullptr; | |||
15367 | for (auto L : Lookup) { | |||
15368 | if (isa<FieldDecl>(L)) { | |||
15369 | Pattern = cast<FieldDecl>(L); | |||
15370 | break; | |||
15371 | } | |||
15372 | } | |||
15373 | assert(Pattern && "We must have set the Pattern!")((void)0); | |||
15374 | ||||
15375 | if (!Pattern->hasInClassInitializer() || | |||
15376 | InstantiateInClassInitializer(Loc, Field, Pattern, | |||
15377 | getTemplateInstantiationArgs(Field))) { | |||
15378 | // Don't diagnose this again. | |||
15379 | Field->setInvalidDecl(); | |||
15380 | return ExprError(); | |||
15381 | } | |||
15382 | return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); | |||
15383 | } | |||
15384 | ||||
15385 | // DR1351: | |||
15386 | // If the brace-or-equal-initializer of a non-static data member | |||
15387 | // invokes a defaulted default constructor of its class or of an | |||
15388 | // enclosing class in a potentially evaluated subexpression, the | |||
15389 | // program is ill-formed. | |||
15390 | // | |||
15391 | // This resolution is unworkable: the exception specification of the | |||
15392 | // default constructor can be needed in an unevaluated context, in | |||
15393 | // particular, in the operand of a noexcept-expression, and we can be | |||
15394 | // unable to compute an exception specification for an enclosed class. | |||
15395 | // | |||
15396 | // Any attempt to resolve the exception specification of a defaulted default | |||
15397 | // constructor before the initializer is lexically complete will ultimately | |||
15398 | // come here at which point we can diagnose it. | |||
15399 | RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); | |||
15400 | Diag(Loc, diag::err_default_member_initializer_not_yet_parsed) | |||
15401 | << OutermostClass << Field; | |||
15402 | Diag(Field->getEndLoc(), | |||
15403 | diag::note_default_member_initializer_not_yet_parsed); | |||
15404 | // Recover by marking the field invalid, unless we're in a SFINAE context. | |||
15405 | if (!isSFINAEContext()) | |||
15406 | Field->setInvalidDecl(); | |||
15407 | return ExprError(); | |||
15408 | } | |||
15409 | ||||
15410 | void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { | |||
15411 | if (VD->isInvalidDecl()) return; | |||
15412 | // If initializing the variable failed, don't also diagnose problems with | |||
15413 | // the desctructor, they're likely related. | |||
15414 | if (VD->getInit() && VD->getInit()->containsErrors()) | |||
15415 | return; | |||
15416 | ||||
15417 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); | |||
15418 | if (ClassDecl->isInvalidDecl()) return; | |||
15419 | if (ClassDecl->hasIrrelevantDestructor()) return; | |||
15420 | if (ClassDecl->isDependentContext()) return; | |||
15421 | ||||
15422 | if (VD->isNoDestroy(getASTContext())) | |||
15423 | return; | |||
15424 | ||||
15425 | CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); | |||
15426 | ||||
15427 | // If this is an array, we'll require the destructor during initialization, so | |||
15428 | // we can skip over this. We still want to emit exit-time destructor warnings | |||
15429 | // though. | |||
15430 | if (!VD->getType()->isArrayType()) { | |||
15431 | MarkFunctionReferenced(VD->getLocation(), Destructor); | |||
15432 | CheckDestructorAccess(VD->getLocation(), Destructor, | |||
15433 | PDiag(diag::err_access_dtor_var) | |||
15434 | << VD->getDeclName() << VD->getType()); | |||
15435 | DiagnoseUseOfDecl(Destructor, VD->getLocation()); | |||
15436 | } | |||
15437 | ||||
15438 | if (Destructor->isTrivial()) return; | |||
15439 | ||||
15440 | // If the destructor is constexpr, check whether the variable has constant | |||
15441 | // destruction now. | |||
15442 | if (Destructor->isConstexpr()) { | |||
15443 | bool HasConstantInit = false; | |||
15444 | if (VD->getInit() && !VD->getInit()->isValueDependent()) | |||
15445 | HasConstantInit = VD->evaluateValue(); | |||
15446 | SmallVector<PartialDiagnosticAt, 8> Notes; | |||
15447 | if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && | |||
15448 | HasConstantInit) { | |||
15449 | Diag(VD->getLocation(), | |||
15450 | diag::err_constexpr_var_requires_const_destruction) << VD; | |||
15451 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) | |||
15452 | Diag(Notes[I].first, Notes[I].second); | |||
15453 | } | |||
15454 | } | |||
15455 | ||||
15456 | if (!VD->hasGlobalStorage()) return; | |||
15457 | ||||
15458 | // Emit warning for non-trivial dtor in global scope (a real global, | |||
15459 | // class-static, function-static). | |||
15460 | Diag(VD->getLocation(), diag::warn_exit_time_destructor); | |||
15461 | ||||
15462 | // TODO: this should be re-enabled for static locals by !CXAAtExit | |||
15463 | if (!VD->isStaticLocal()) | |||
15464 | Diag(VD->getLocation(), diag::warn_global_destructor); | |||
15465 | } | |||
15466 | ||||
15467 | /// Given a constructor and the set of arguments provided for the | |||
15468 | /// constructor, convert the arguments and add any required default arguments | |||
15469 | /// to form a proper call to this constructor. | |||
15470 | /// | |||
15471 | /// \returns true if an error occurred, false otherwise. | |||
15472 | bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, | |||
15473 | QualType DeclInitType, MultiExprArg ArgsPtr, | |||
15474 | SourceLocation Loc, | |||
15475 | SmallVectorImpl<Expr *> &ConvertedArgs, | |||
15476 | bool AllowExplicit, | |||
15477 | bool IsListInitialization) { | |||
15478 | // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. | |||
15479 | unsigned NumArgs = ArgsPtr.size(); | |||
15480 | Expr **Args = ArgsPtr.data(); | |||
15481 | ||||
15482 | const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); | |||
15483 | unsigned NumParams = Proto->getNumParams(); | |||
15484 | ||||
15485 | // If too few arguments are available, we'll fill in the rest with defaults. | |||
15486 | if (NumArgs < NumParams) | |||
15487 | ConvertedArgs.reserve(NumParams); | |||
15488 | else | |||
15489 | ConvertedArgs.reserve(NumArgs); | |||
15490 | ||||
15491 | VariadicCallType CallType = | |||
15492 | Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; | |||
15493 | SmallVector<Expr *, 8> AllArgs; | |||
15494 | bool Invalid = GatherArgumentsForCall(Loc, Constructor, | |||
15495 | Proto, 0, | |||
15496 | llvm::makeArrayRef(Args, NumArgs), | |||
15497 | AllArgs, | |||
15498 | CallType, AllowExplicit, | |||
15499 | IsListInitialization); | |||
15500 | ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); | |||
15501 | ||||
15502 | DiagnoseSentinelCalls(Constructor, Loc, AllArgs); | |||
15503 | ||||
15504 | CheckConstructorCall(Constructor, DeclInitType, | |||
15505 | llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), | |||
15506 | Proto, Loc); | |||
15507 | ||||
15508 | return Invalid; | |||
15509 | } | |||
15510 | ||||
15511 | static inline bool | |||
15512 | CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, | |||
15513 | const FunctionDecl *FnDecl) { | |||
15514 | const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); | |||
15515 | if (isa<NamespaceDecl>(DC)) { | |||
15516 | return SemaRef.Diag(FnDecl->getLocation(), | |||
15517 | diag::err_operator_new_delete_declared_in_namespace) | |||
15518 | << FnDecl->getDeclName(); | |||
15519 | } | |||
15520 | ||||
15521 | if (isa<TranslationUnitDecl>(DC) && | |||
15522 | FnDecl->getStorageClass() == SC_Static) { | |||
15523 | return SemaRef.Diag(FnDecl->getLocation(), | |||
15524 | diag::err_operator_new_delete_declared_static) | |||
15525 | << FnDecl->getDeclName(); | |||
15526 | } | |||
15527 | ||||
15528 | return false; | |||
15529 | } | |||
15530 | ||||
15531 | static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, | |||
15532 | const PointerType *PtrTy) { | |||
15533 | auto &Ctx = SemaRef.Context; | |||
15534 | Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); | |||
15535 | PtrQuals.removeAddressSpace(); | |||
15536 | return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( | |||
15537 | PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); | |||
15538 | } | |||
15539 | ||||
15540 | static inline bool | |||
15541 | CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, | |||
15542 | CanQualType ExpectedResultType, | |||
15543 | CanQualType ExpectedFirstParamType, | |||
15544 | unsigned DependentParamTypeDiag, | |||
15545 | unsigned InvalidParamTypeDiag) { | |||
15546 | QualType ResultType = | |||
15547 | FnDecl->getType()->castAs<FunctionType>()->getReturnType(); | |||
15548 | ||||
15549 | if (SemaRef.getLangOpts().OpenCLCPlusPlus) { | |||
15550 | // The operator is valid on any address space for OpenCL. | |||
15551 | // Drop address space from actual and expected result types. | |||
15552 | if (const auto *PtrTy = ResultType->getAs<PointerType>()) | |||
15553 | ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); | |||
15554 | ||||
15555 | if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) | |||
15556 | ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); | |||
15557 | } | |||
15558 | ||||
15559 | // Check that the result type is what we expect. | |||
15560 | if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { | |||
15561 | // Reject even if the type is dependent; an operator delete function is | |||
15562 | // required to have a non-dependent result type. | |||
15563 | return SemaRef.Diag( | |||
15564 | FnDecl->getLocation(), | |||
15565 | ResultType->isDependentType() | |||
15566 | ? diag::err_operator_new_delete_dependent_result_type | |||
15567 | : diag::err_operator_new_delete_invalid_result_type) | |||
15568 | << FnDecl->getDeclName() << ExpectedResultType; | |||
15569 | } | |||
15570 | ||||
15571 | // A function template must have at least 2 parameters. | |||
15572 | if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) | |||
15573 | return SemaRef.Diag(FnDecl->getLocation(), | |||
15574 | diag::err_operator_new_delete_template_too_few_parameters) | |||
15575 | << FnDecl->getDeclName(); | |||
15576 | ||||
15577 | // The function decl must have at least 1 parameter. | |||
15578 | if (FnDecl->getNumParams() == 0) | |||
15579 | return SemaRef.Diag(FnDecl->getLocation(), | |||
15580 | diag::err_operator_new_delete_too_few_parameters) | |||
15581 | << FnDecl->getDeclName(); | |||
15582 | ||||
15583 | QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); | |||
15584 | if (SemaRef.getLangOpts().OpenCLCPlusPlus) { | |||
15585 | // The operator is valid on any address space for OpenCL. | |||
15586 | // Drop address space from actual and expected first parameter types. | |||
15587 | if (const auto *PtrTy = | |||
15588 | FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) | |||
15589 | FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); | |||
15590 | ||||
15591 | if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) | |||
15592 | ExpectedFirstParamType = | |||
15593 | RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); | |||
15594 | } | |||
15595 | ||||
15596 | // Check that the first parameter type is what we expect. | |||
15597 | if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != | |||
15598 | ExpectedFirstParamType) { | |||
15599 | // The first parameter type is not allowed to be dependent. As a tentative | |||
15600 | // DR resolution, we allow a dependent parameter type if it is the right | |||
15601 | // type anyway, to allow destroying operator delete in class templates. | |||
15602 | return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() | |||
15603 | ? DependentParamTypeDiag | |||
15604 | : InvalidParamTypeDiag) | |||
15605 | << FnDecl->getDeclName() << ExpectedFirstParamType; | |||
15606 | } | |||
15607 | ||||
15608 | return false; | |||
15609 | } | |||
15610 | ||||
15611 | static bool | |||
15612 | CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { | |||
15613 | // C++ [basic.stc.dynamic.allocation]p1: | |||
15614 | // A program is ill-formed if an allocation function is declared in a | |||
15615 | // namespace scope other than global scope or declared static in global | |||
15616 | // scope. | |||
15617 | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | |||
15618 | return true; | |||
15619 | ||||
15620 | CanQualType SizeTy = | |||
15621 | SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); | |||
15622 | ||||
15623 | // C++ [basic.stc.dynamic.allocation]p1: | |||
15624 | // The return type shall be void*. The first parameter shall have type | |||
15625 | // std::size_t. | |||
15626 | if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, | |||
15627 | SizeTy, | |||
15628 | diag::err_operator_new_dependent_param_type, | |||
15629 | diag::err_operator_new_param_type)) | |||
15630 | return true; | |||
15631 | ||||
15632 | // C++ [basic.stc.dynamic.allocation]p1: | |||
15633 | // The first parameter shall not have an associated default argument. | |||
15634 | if (FnDecl->getParamDecl(0)->hasDefaultArg()) | |||
15635 | return SemaRef.Diag(FnDecl->getLocation(), | |||
15636 | diag::err_operator_new_default_arg) | |||
15637 | << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); | |||
15638 | ||||
15639 | return false; | |||
15640 | } | |||
15641 | ||||
15642 | static bool | |||
15643 | CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { | |||
15644 | // C++ [basic.stc.dynamic.deallocation]p1: | |||
15645 | // A program is ill-formed if deallocation functions are declared in a | |||
15646 | // namespace scope other than global scope or declared static in global | |||
15647 | // scope. | |||
15648 | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | |||
15649 | return true; | |||
15650 | ||||
15651 | auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); | |||
15652 | ||||
15653 | // C++ P0722: | |||
15654 | // Within a class C, the first parameter of a destroying operator delete | |||
15655 | // shall be of type C *. The first parameter of any other deallocation | |||
15656 | // function shall be of type void *. | |||
15657 | CanQualType ExpectedFirstParamType = | |||
15658 | MD && MD->isDestroyingOperatorDelete() | |||
15659 | ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( | |||
15660 | SemaRef.Context.getRecordType(MD->getParent()))) | |||
15661 | : SemaRef.Context.VoidPtrTy; | |||
15662 | ||||
15663 | // C++ [basic.stc.dynamic.deallocation]p2: | |||
15664 | // Each deallocation function shall return void | |||
15665 | if (CheckOperatorNewDeleteTypes( | |||
15666 | SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, | |||
15667 | diag::err_operator_delete_dependent_param_type, | |||
15668 | diag::err_operator_delete_param_type)) | |||
15669 | return true; | |||
15670 | ||||
15671 | // C++ P0722: | |||
15672 | // A destroying operator delete shall be a usual deallocation function. | |||
15673 | if (MD && !MD->getParent()->isDependentContext() && | |||
15674 | MD->isDestroyingOperatorDelete() && | |||
15675 | !SemaRef.isUsualDeallocationFunction(MD)) { | |||
15676 | SemaRef.Diag(MD->getLocation(), | |||
15677 | diag::err_destroying_operator_delete_not_usual); | |||
15678 | return true; | |||
15679 | } | |||
15680 | ||||
15681 | return false; | |||
15682 | } | |||
15683 | ||||
15684 | /// CheckOverloadedOperatorDeclaration - Check whether the declaration | |||
15685 | /// of this overloaded operator is well-formed. If so, returns false; | |||
15686 | /// otherwise, emits appropriate diagnostics and returns true. | |||
15687 | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { | |||
15688 | assert(FnDecl && FnDecl->isOverloadedOperator() &&((void)0) | |||
15689 | "Expected an overloaded operator declaration")((void)0); | |||
15690 | ||||
15691 | OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); | |||
15692 | ||||
15693 | // C++ [over.oper]p5: | |||
15694 | // The allocation and deallocation functions, operator new, | |||
15695 | // operator new[], operator delete and operator delete[], are | |||
15696 | // described completely in 3.7.3. The attributes and restrictions | |||
15697 | // found in the rest of this subclause do not apply to them unless | |||
15698 | // explicitly stated in 3.7.3. | |||
15699 | if (Op == OO_Delete || Op == OO_Array_Delete) | |||
15700 | return CheckOperatorDeleteDeclaration(*this, FnDecl); | |||
15701 | ||||
15702 | if (Op == OO_New || Op == OO_Array_New) | |||
15703 | return CheckOperatorNewDeclaration(*this, FnDecl); | |||
15704 | ||||
15705 | // C++ [over.oper]p6: | |||
15706 | // An operator function shall either be a non-static member | |||
15707 | // function or be a non-member function and have at least one | |||
15708 | // parameter whose type is a class, a reference to a class, an | |||
15709 | // enumeration, or a reference to an enumeration. | |||
15710 | if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { | |||
15711 | if (MethodDecl->isStatic()) | |||
15712 | return Diag(FnDecl->getLocation(), | |||
15713 | diag::err_operator_overload_static) << FnDecl->getDeclName(); | |||
15714 | } else { | |||
15715 | bool ClassOrEnumParam = false; | |||
15716 | for (auto Param : FnDecl->parameters()) { | |||
15717 | QualType ParamType = Param->getType().getNonReferenceType(); | |||
15718 | if (ParamType->isDependentType() || ParamType->isRecordType() || | |||
15719 | ParamType->isEnumeralType()) { | |||
15720 | ClassOrEnumParam = true; | |||
15721 | break; | |||
15722 | } | |||
15723 | } | |||
15724 | ||||
15725 | if (!ClassOrEnumParam) | |||
15726 | return Diag(FnDecl->getLocation(), | |||
15727 | diag::err_operator_overload_needs_class_or_enum) | |||
15728 | << FnDecl->getDeclName(); | |||
15729 | } | |||
15730 | ||||
15731 | // C++ [over.oper]p8: | |||
15732 | // An operator function cannot have default arguments (8.3.6), | |||
15733 | // except where explicitly stated below. | |||
15734 | // | |||
15735 | // Only the function-call operator allows default arguments | |||
15736 | // (C++ [over.call]p1). | |||
15737 | if (Op != OO_Call) { | |||
15738 | for (auto Param : FnDecl->parameters()) { | |||
15739 | if (Param->hasDefaultArg()) | |||
15740 | return Diag(Param->getLocation(), | |||
15741 | diag::err_operator_overload_default_arg) | |||
15742 | << FnDecl->getDeclName() << Param->getDefaultArgRange(); | |||
15743 | } | |||
15744 | } | |||
15745 | ||||
15746 | static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { | |||
15747 | { false, false, false } | |||
15748 | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ | |||
15749 | , { Unary, Binary, MemberOnly } | |||
15750 | #include "clang/Basic/OperatorKinds.def" | |||
15751 | }; | |||
15752 | ||||
15753 | bool CanBeUnaryOperator = OperatorUses[Op][0]; | |||
15754 | bool CanBeBinaryOperator = OperatorUses[Op][1]; | |||
15755 | bool MustBeMemberOperator = OperatorUses[Op][2]; | |||
15756 | ||||
15757 | // C++ [over.oper]p8: | |||
15758 | // [...] Operator functions cannot have more or fewer parameters | |||
15759 | // than the number required for the corresponding operator, as | |||
15760 | // described in the rest of this subclause. | |||
15761 | unsigned NumParams = FnDecl->getNumParams() | |||
15762 | + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); | |||
15763 | if (Op != OO_Call && | |||
15764 | ((NumParams == 1 && !CanBeUnaryOperator) || | |||
15765 | (NumParams == 2 && !CanBeBinaryOperator) || | |||
15766 | (NumParams < 1) || (NumParams > 2))) { | |||
15767 | // We have the wrong number of parameters. | |||
15768 | unsigned ErrorKind; | |||
15769 | if (CanBeUnaryOperator && CanBeBinaryOperator) { | |||
15770 | ErrorKind = 2; // 2 -> unary or binary. | |||
15771 | } else if (CanBeUnaryOperator) { | |||
15772 | ErrorKind = 0; // 0 -> unary | |||
15773 | } else { | |||
15774 | assert(CanBeBinaryOperator &&((void)0) | |||
15775 | "All non-call overloaded operators are unary or binary!")((void)0); | |||
15776 | ErrorKind = 1; // 1 -> binary | |||
15777 | } | |||
15778 | ||||
15779 | return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) | |||
15780 | << FnDecl->getDeclName() << NumParams << ErrorKind; | |||
15781 | } | |||
15782 | ||||
15783 | // Overloaded operators other than operator() cannot be variadic. | |||
15784 | if (Op != OO_Call && | |||
15785 | FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { | |||
15786 | return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) | |||
15787 | << FnDecl->getDeclName(); | |||
15788 | } | |||
15789 | ||||
15790 | // Some operators must be non-static member functions. | |||
15791 | if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { | |||
15792 | return Diag(FnDecl->getLocation(), | |||
15793 | diag::err_operator_overload_must_be_member) | |||
15794 | << FnDecl->getDeclName(); | |||
15795 | } | |||
15796 | ||||
15797 | // C++ [over.inc]p1: | |||
15798 | // The user-defined function called operator++ implements the | |||
15799 | // prefix and postfix ++ operator. If this function is a member | |||
15800 | // function with no parameters, or a non-member function with one | |||
15801 | // parameter of class or enumeration type, it defines the prefix | |||
15802 | // increment operator ++ for objects of that type. If the function | |||
15803 | // is a member function with one parameter (which shall be of type | |||
15804 | // int) or a non-member function with two parameters (the second | |||
15805 | // of which shall be of type int), it defines the postfix | |||
15806 | // increment operator ++ for objects of that type. | |||
15807 | if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { | |||
15808 | ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); | |||
15809 | QualType ParamType = LastParam->getType(); | |||
15810 | ||||
15811 | if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && | |||
15812 | !ParamType->isDependentType()) | |||
15813 | return Diag(LastParam->getLocation(), | |||
15814 | diag::err_operator_overload_post_incdec_must_be_int) | |||
15815 | << LastParam->getType() << (Op == OO_MinusMinus); | |||
15816 | } | |||
15817 | ||||
15818 | return false; | |||
15819 | } | |||
15820 | ||||
15821 | static bool | |||
15822 | checkLiteralOperatorTemplateParameterList(Sema &SemaRef, | |||
15823 | FunctionTemplateDecl *TpDecl) { | |||
15824 | TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); | |||
15825 | ||||
15826 | // Must have one or two template parameters. | |||
15827 | if (TemplateParams->size() == 1) { | |||
15828 | NonTypeTemplateParmDecl *PmDecl = | |||
15829 | dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); | |||
15830 | ||||
15831 | // The template parameter must be a char parameter pack. | |||
15832 | if (PmDecl && PmDecl->isTemplateParameterPack() && | |||
15833 | SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) | |||
15834 | return false; | |||
15835 | ||||
15836 | // C++20 [over.literal]p5: | |||
15837 | // A string literal operator template is a literal operator template | |||
15838 | // whose template-parameter-list comprises a single non-type | |||
15839 | // template-parameter of class type. | |||
15840 | // | |||
15841 | // As a DR resolution, we also allow placeholders for deduced class | |||
15842 | // template specializations. | |||
15843 | if (SemaRef.getLangOpts().CPlusPlus20 && | |||
15844 | !PmDecl->isTemplateParameterPack() && | |||
15845 | (PmDecl->getType()->isRecordType() || | |||
15846 | PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) | |||
15847 | return false; | |||
15848 | } else if (TemplateParams->size() == 2) { | |||
15849 | TemplateTypeParmDecl *PmType = | |||
15850 | dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); | |||
15851 | NonTypeTemplateParmDecl *PmArgs = | |||
15852 | dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); | |||
15853 | ||||
15854 | // The second template parameter must be a parameter pack with the | |||
15855 | // first template parameter as its type. | |||
15856 | if (PmType && PmArgs && !PmType->isTemplateParameterPack() && | |||
15857 | PmArgs->isTemplateParameterPack()) { | |||
15858 | const TemplateTypeParmType *TArgs = | |||
15859 | PmArgs->getType()->getAs<TemplateTypeParmType>(); | |||
15860 | if (TArgs && TArgs->getDepth() == PmType->getDepth() && | |||
15861 | TArgs->getIndex() == PmType->getIndex()) { | |||
15862 | if (!SemaRef.inTemplateInstantiation()) | |||
15863 | SemaRef.Diag(TpDecl->getLocation(), | |||
15864 | diag::ext_string_literal_operator_template); | |||
15865 | return false; | |||
15866 | } | |||
15867 | } | |||
15868 | } | |||
15869 | ||||
15870 | SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), | |||
15871 | diag::err_literal_operator_template) | |||
15872 | << TpDecl->getTemplateParameters()->getSourceRange(); | |||
15873 | return true; | |||
15874 | } | |||
15875 | ||||
15876 | /// CheckLiteralOperatorDeclaration - Check whether the declaration | |||
15877 | /// of this literal operator function is well-formed. If so, returns | |||
15878 | /// false; otherwise, emits appropriate diagnostics and returns true. | |||
15879 | bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { | |||
15880 | if (isa<CXXMethodDecl>(FnDecl)) { | |||
15881 | Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) | |||
15882 | << FnDecl->getDeclName(); | |||
15883 | return true; | |||
15884 | } | |||
15885 | ||||
15886 | if (FnDecl->isExternC()) { | |||
15887 | Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); | |||
15888 | if (const LinkageSpecDecl *LSD = | |||
15889 | FnDecl->getDeclContext()->getExternCContext()) | |||
15890 | Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); | |||
15891 | return true; | |||
15892 | } | |||
15893 | ||||
15894 | // This might be the definition of a literal operator template. | |||
15895 | FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); | |||
15896 | ||||
15897 | // This might be a specialization of a literal operator template. | |||
15898 | if (!TpDecl) | |||
15899 | TpDecl = FnDecl->getPrimaryTemplate(); | |||
15900 | ||||
15901 | // template <char...> type operator "" name() and | |||
15902 | // template <class T, T...> type operator "" name() are the only valid | |||
15903 | // template signatures, and the only valid signatures with no parameters. | |||
15904 | // | |||
15905 | // C++20 also allows template <SomeClass T> type operator "" name(). | |||
15906 | if (TpDecl) { | |||
15907 | if (FnDecl->param_size() != 0) { | |||
15908 | Diag(FnDecl->getLocation(), | |||
15909 | diag::err_literal_operator_template_with_params); | |||
15910 | return true; | |||
15911 | } | |||
15912 | ||||
15913 | if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) | |||
15914 | return true; | |||
15915 | ||||
15916 | } else if (FnDecl->param_size() == 1) { | |||
15917 | const ParmVarDecl *Param = FnDecl->getParamDecl(0); | |||
15918 | ||||
15919 | QualType ParamType = Param->getType().getUnqualifiedType(); | |||
15920 | ||||
15921 | // Only unsigned long long int, long double, any character type, and const | |||
15922 | // char * are allowed as the only parameters. | |||
15923 | if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || | |||
15924 | ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || | |||
15925 | Context.hasSameType(ParamType, Context.CharTy) || | |||
15926 | Context.hasSameType(ParamType, Context.WideCharTy) || | |||
15927 | Context.hasSameType(ParamType, Context.Char8Ty) || | |||
15928 | Context.hasSameType(ParamType, Context.Char16Ty) || | |||
15929 | Context.hasSameType(ParamType, Context.Char32Ty)) { | |||
15930 | } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { | |||
15931 | QualType InnerType = Ptr->getPointeeType(); | |||
15932 | ||||
15933 | // Pointer parameter must be a const char *. | |||
15934 | if (!(Context.hasSameType(InnerType.getUnqualifiedType(), | |||
15935 | Context.CharTy) && | |||
15936 | InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { | |||
15937 | Diag(Param->getSourceRange().getBegin(), | |||
15938 | diag::err_literal_operator_param) | |||
15939 | << ParamType << "'const char *'" << Param->getSourceRange(); | |||
15940 | return true; | |||
15941 | } | |||
15942 | ||||
15943 | } else if (ParamType->isRealFloatingType()) { | |||
15944 | Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) | |||
15945 | << ParamType << Context.LongDoubleTy << Param->getSourceRange(); | |||
15946 | return true; | |||
15947 | ||||
15948 | } else if (ParamType->isIntegerType()) { | |||
15949 | Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) | |||
15950 | << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); | |||
15951 | return true; | |||
15952 | ||||
15953 | } else { | |||
15954 | Diag(Param->getSourceRange().getBegin(), | |||
15955 | diag::err_literal_operator_invalid_param) | |||
15956 | << ParamType << Param->getSourceRange(); | |||
15957 | return true; | |||
15958 | } | |||
15959 | ||||
15960 | } else if (FnDecl->param_size() == 2) { | |||
15961 | FunctionDecl::param_iterator Param = FnDecl->param_begin(); | |||
15962 | ||||
15963 | // First, verify that the first parameter is correct. | |||
15964 | ||||
15965 | QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); | |||
15966 | ||||
15967 | // Two parameter function must have a pointer to const as a | |||
15968 | // first parameter; let's strip those qualifiers. | |||
15969 | const PointerType *PT = FirstParamType->getAs<PointerType>(); | |||
15970 | ||||
15971 | if (!PT) { | |||
15972 | Diag((*Param)->getSourceRange().getBegin(), | |||
15973 | diag::err_literal_operator_param) | |||
15974 | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); | |||
15975 | return true; | |||
15976 | } | |||
15977 | ||||
15978 | QualType PointeeType = PT->getPointeeType(); | |||
15979 | // First parameter must be const | |||
15980 | if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { | |||
15981 | Diag((*Param)->getSourceRange().getBegin(), | |||
15982 | diag::err_literal_operator_param) | |||
15983 | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); | |||
15984 | return true; | |||
15985 | } | |||
15986 | ||||
15987 | QualType InnerType = PointeeType.getUnqualifiedType(); | |||
15988 | // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and | |||
15989 | // const char32_t* are allowed as the first parameter to a two-parameter | |||
15990 | // function | |||
15991 | if (!(Context.hasSameType(InnerType, Context.CharTy) || | |||
15992 | Context.hasSameType(InnerType, Context.WideCharTy) || | |||
15993 | Context.hasSameType(InnerType, Context.Char8Ty) || | |||
15994 | Context.hasSameType(InnerType, Context.Char16Ty) || | |||
15995 | Context.hasSameType(InnerType, Context.Char32Ty))) { | |||
15996 | Diag((*Param)->getSourceRange().getBegin(), | |||
15997 | diag::err_literal_operator_param) | |||
15998 | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); | |||
15999 | return true; | |||
16000 | } | |||
16001 | ||||
16002 | // Move on to the second and final parameter. | |||
16003 | ++Param; | |||
16004 | ||||
16005 | // The second parameter must be a std::size_t. | |||
16006 | QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); | |||
16007 | if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { | |||
16008 | Diag((*Param)->getSourceRange().getBegin(), | |||
16009 | diag::err_literal_operator_param) | |||
16010 | << SecondParamType << Context.getSizeType() | |||
16011 | << (*Param)->getSourceRange(); | |||
16012 | return true; | |||
16013 | } | |||
16014 | } else { | |||
16015 | Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); | |||
16016 | return true; | |||
16017 | } | |||
16018 | ||||
16019 | // Parameters are good. | |||
16020 | ||||
16021 | // A parameter-declaration-clause containing a default argument is not | |||
16022 | // equivalent to any of the permitted forms. | |||
16023 | for (auto Param : FnDecl->parameters()) { | |||
16024 | if (Param->hasDefaultArg()) { | |||
16025 | Diag(Param->getDefaultArgRange().getBegin(), | |||
16026 | diag::err_literal_operator_default_argument) | |||
16027 | << Param->getDefaultArgRange(); | |||
16028 | break; | |||
16029 | } | |||
16030 | } | |||
16031 | ||||
16032 | StringRef LiteralName | |||
16033 | = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); | |||
16034 | if (LiteralName[0] != '_' && | |||
16035 | !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { | |||
16036 | // C++11 [usrlit.suffix]p1: | |||
16037 | // Literal suffix identifiers that do not start with an underscore | |||
16038 | // are reserved for future standardization. | |||
16039 | Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) | |||
16040 | << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); | |||
16041 | } | |||
16042 | ||||
16043 | return false; | |||
16044 | } | |||
16045 | ||||
16046 | /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ | |||
16047 | /// linkage specification, including the language and (if present) | |||
16048 | /// the '{'. ExternLoc is the location of the 'extern', Lang is the | |||
16049 | /// language string literal. LBraceLoc, if valid, provides the location of | |||
16050 | /// the '{' brace. Otherwise, this linkage specification does not | |||
16051 | /// have any braces. | |||
16052 | Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, | |||
16053 | Expr *LangStr, | |||
16054 | SourceLocation LBraceLoc) { | |||
16055 | StringLiteral *Lit = cast<StringLiteral>(LangStr); | |||
16056 | if (!Lit->isAscii()) { | |||
16057 | Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) | |||
16058 | << LangStr->getSourceRange(); | |||
16059 | return nullptr; | |||
16060 | } | |||
16061 | ||||
16062 | StringRef Lang = Lit->getString(); | |||
16063 | LinkageSpecDecl::LanguageIDs Language; | |||
16064 | if (Lang == "C") | |||
16065 | Language = LinkageSpecDecl::lang_c; | |||
16066 | else if (Lang == "C++") | |||
16067 | Language = LinkageSpecDecl::lang_cxx; | |||
16068 | else { | |||
16069 | Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) | |||
16070 | << LangStr->getSourceRange(); | |||
16071 | return nullptr; | |||
16072 | } | |||
16073 | ||||
16074 | // FIXME: Add all the various semantics of linkage specifications | |||
16075 | ||||
16076 | LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, | |||
16077 | LangStr->getExprLoc(), Language, | |||
16078 | LBraceLoc.isValid()); | |||
16079 | CurContext->addDecl(D); | |||
16080 | PushDeclContext(S, D); | |||
16081 | return D; | |||
16082 | } | |||
16083 | ||||
16084 | /// ActOnFinishLinkageSpecification - Complete the definition of | |||
16085 | /// the C++ linkage specification LinkageSpec. If RBraceLoc is | |||
16086 | /// valid, it's the position of the closing '}' brace in a linkage | |||
16087 | /// specification that uses braces. | |||
16088 | Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, | |||
16089 | Decl *LinkageSpec, | |||
16090 | SourceLocation RBraceLoc) { | |||
16091 | if (RBraceLoc.isValid()) { | |||
16092 | LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); | |||
16093 | LSDecl->setRBraceLoc(RBraceLoc); | |||
16094 | } | |||
16095 | PopDeclContext(); | |||
16096 | return LinkageSpec; | |||
16097 | } | |||
16098 | ||||
16099 | Decl *Sema::ActOnEmptyDeclaration(Scope *S, | |||
16100 | const ParsedAttributesView &AttrList, | |||
16101 | SourceLocation SemiLoc) { | |||
16102 | Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); | |||
16103 | // Attribute declarations appertain to empty declaration so we handle | |||
16104 | // them here. | |||
16105 | ProcessDeclAttributeList(S, ED, AttrList); | |||
16106 | ||||
16107 | CurContext->addDecl(ED); | |||
16108 | return ED; | |||
16109 | } | |||
16110 | ||||
16111 | /// Perform semantic analysis for the variable declaration that | |||
16112 | /// occurs within a C++ catch clause, returning the newly-created | |||
16113 | /// variable. | |||
16114 | VarDecl *Sema::BuildExceptionDeclaration(Scope *S, | |||
16115 | TypeSourceInfo *TInfo, | |||
16116 | SourceLocation StartLoc, | |||
16117 | SourceLocation Loc, | |||
16118 | IdentifierInfo *Name) { | |||
16119 | bool Invalid = false; | |||
16120 | QualType ExDeclType = TInfo->getType(); | |||
16121 | ||||
16122 | // Arrays and functions decay. | |||
16123 | if (ExDeclType->isArrayType()) | |||
16124 | ExDeclType = Context.getArrayDecayedType(ExDeclType); | |||
16125 | else if (ExDeclType->isFunctionType()) | |||
16126 | ExDeclType = Context.getPointerType(ExDeclType); | |||
16127 | ||||
16128 | // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. | |||
16129 | // The exception-declaration shall not denote a pointer or reference to an | |||
16130 | // incomplete type, other than [cv] void*. | |||
16131 | // N2844 forbids rvalue references. | |||
16132 | if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { | |||
16133 | Diag(Loc, diag::err_catch_rvalue_ref); | |||
16134 | Invalid = true; | |||
16135 | } | |||
16136 | ||||
16137 | if (ExDeclType->isVariablyModifiedType()) { | |||
16138 | Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; | |||
16139 | Invalid = true; | |||
16140 | } | |||
16141 | ||||
16142 | QualType BaseType = ExDeclType; | |||
16143 | int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference | |||
16144 | unsigned DK = diag::err_catch_incomplete; | |||
16145 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { | |||
16146 | BaseType = Ptr->getPointeeType(); | |||
16147 | Mode = 1; | |||
16148 | DK = diag::err_catch_incomplete_ptr; | |||
16149 | } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { | |||
16150 | // For the purpose of error recovery, we treat rvalue refs like lvalue refs. | |||
16151 | BaseType = Ref->getPointeeType(); | |||
16152 | Mode = 2; | |||
16153 | DK = diag::err_catch_incomplete_ref; | |||
16154 | } | |||
16155 | if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && | |||
16156 | !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) | |||
16157 | Invalid = true; | |||
16158 | ||||
16159 | if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { | |||
16160 | Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; | |||
16161 | Invalid = true; | |||
16162 | } | |||
16163 | ||||
16164 | if (!Invalid && !ExDeclType->isDependentType() && | |||
16165 | RequireNonAbstractType(Loc, ExDeclType, | |||
16166 | diag::err_abstract_type_in_decl, | |||
16167 | AbstractVariableType)) | |||
16168 | Invalid = true; | |||
16169 | ||||
16170 | // Only the non-fragile NeXT runtime currently supports C++ catches | |||
16171 | // of ObjC types, and no runtime supports catching ObjC types by value. | |||
16172 | if (!Invalid && getLangOpts().ObjC) { | |||
16173 | QualType T = ExDeclType; | |||
16174 | if (const ReferenceType *RT = T->getAs<ReferenceType>()) | |||
16175 | T = RT->getPointeeType(); | |||
16176 | ||||
16177 | if (T->isObjCObjectType()) { | |||
16178 | Diag(Loc, diag::err_objc_object_catch); | |||
16179 | Invalid = true; | |||
16180 | } else if (T->isObjCObjectPointerType()) { | |||
16181 | // FIXME: should this be a test for macosx-fragile specifically? | |||
16182 | if (getLangOpts().ObjCRuntime.isFragile()) | |||
16183 | Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); | |||
16184 | } | |||
16185 | } | |||
16186 | ||||
16187 | VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, | |||
16188 | ExDeclType, TInfo, SC_None); | |||
16189 | ExDecl->setExceptionVariable(true); | |||
16190 | ||||
16191 | // In ARC, infer 'retaining' for variables of retainable type. | |||
16192 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) | |||
16193 | Invalid = true; | |||
16194 | ||||
16195 | if (!Invalid && !ExDeclType->isDependentType()) { | |||
16196 | if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { | |||
16197 | // Insulate this from anything else we might currently be parsing. | |||
16198 | EnterExpressionEvaluationContext scope( | |||
16199 | *this, ExpressionEvaluationContext::PotentiallyEvaluated); | |||
16200 | ||||
16201 | // C++ [except.handle]p16: | |||
16202 | // The object declared in an exception-declaration or, if the | |||
16203 | // exception-declaration does not specify a name, a temporary (12.2) is | |||
16204 | // copy-initialized (8.5) from the exception object. [...] | |||
16205 | // The object is destroyed when the handler exits, after the destruction | |||
16206 | // of any automatic objects initialized within the handler. | |||
16207 | // | |||
16208 | // We just pretend to initialize the object with itself, then make sure | |||
16209 | // it can be destroyed later. | |||
16210 | QualType initType = Context.getExceptionObjectType(ExDeclType); | |||
16211 | ||||
16212 | InitializedEntity entity = | |||
16213 | InitializedEntity::InitializeVariable(ExDecl); | |||
16214 | InitializationKind initKind = | |||
16215 | InitializationKind::CreateCopy(Loc, SourceLocation()); | |||
16216 | ||||
16217 | Expr *opaqueValue = | |||
16218 | new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); | |||
16219 | InitializationSequence sequence(*this, entity, initKind, opaqueValue); | |||
16220 | ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); | |||
16221 | if (result.isInvalid()) | |||
16222 | Invalid = true; | |||
16223 | else { | |||
16224 | // If the constructor used was non-trivial, set this as the | |||
16225 | // "initializer". | |||
16226 | CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); | |||
16227 | if (!construct->getConstructor()->isTrivial()) { | |||
16228 | Expr *init = MaybeCreateExprWithCleanups(construct); | |||
16229 | ExDecl->setInit(init); | |||
16230 | } | |||
16231 | ||||
16232 | // And make sure it's destructable. | |||
16233 | FinalizeVarWithDestructor(ExDecl, recordType); | |||
16234 | } | |||
16235 | } | |||
16236 | } | |||
16237 | ||||
16238 | if (Invalid) | |||
16239 | ExDecl->setInvalidDecl(); | |||
16240 | ||||
16241 | return ExDecl; | |||
16242 | } | |||
16243 | ||||
16244 | /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch | |||
16245 | /// handler. | |||
16246 | Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { | |||
16247 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
16248 | bool Invalid = D.isInvalidType(); | |||
16249 | ||||
16250 | // Check for unexpanded parameter packs. | |||
16251 | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | |||
16252 | UPPC_ExceptionType)) { | |||
16253 | TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, | |||
16254 | D.getIdentifierLoc()); | |||
16255 | Invalid = true; | |||
16256 | } | |||
16257 | ||||
16258 | IdentifierInfo *II = D.getIdentifier(); | |||
16259 | if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), | |||
16260 | LookupOrdinaryName, | |||
16261 | ForVisibleRedeclaration)) { | |||
16262 | // The scope should be freshly made just for us. There is just no way | |||
16263 | // it contains any previous declaration, except for function parameters in | |||
16264 | // a function-try-block's catch statement. | |||
16265 | assert(!S->isDeclScope(PrevDecl))((void)0); | |||
16266 | if (isDeclInScope(PrevDecl, CurContext, S)) { | |||
16267 | Diag(D.getIdentifierLoc(), diag::err_redefinition) | |||
16268 | << D.getIdentifier(); | |||
16269 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | |||
16270 | Invalid = true; | |||
16271 | } else if (PrevDecl->isTemplateParameter()) | |||
16272 | // Maybe we will complain about the shadowed template parameter. | |||
16273 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | |||
16274 | } | |||
16275 | ||||
16276 | if (D.getCXXScopeSpec().isSet() && !Invalid) { | |||
16277 | Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) | |||
16278 | << D.getCXXScopeSpec().getRange(); | |||
16279 | Invalid = true; | |||
16280 | } | |||
16281 | ||||
16282 | VarDecl *ExDecl = BuildExceptionDeclaration( | |||
16283 | S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); | |||
16284 | if (Invalid) | |||
16285 | ExDecl->setInvalidDecl(); | |||
16286 | ||||
16287 | // Add the exception declaration into this scope. | |||
16288 | if (II) | |||
16289 | PushOnScopeChains(ExDecl, S); | |||
16290 | else | |||
16291 | CurContext->addDecl(ExDecl); | |||
16292 | ||||
16293 | ProcessDeclAttributes(S, ExDecl, D); | |||
16294 | return ExDecl; | |||
16295 | } | |||
16296 | ||||
16297 | Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, | |||
16298 | Expr *AssertExpr, | |||
16299 | Expr *AssertMessageExpr, | |||
16300 | SourceLocation RParenLoc) { | |||
16301 | StringLiteral *AssertMessage = | |||
16302 | AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; | |||
16303 | ||||
16304 | if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) | |||
16305 | return nullptr; | |||
16306 | ||||
16307 | return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, | |||
16308 | AssertMessage, RParenLoc, false); | |||
16309 | } | |||
16310 | ||||
16311 | Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, | |||
16312 | Expr *AssertExpr, | |||
16313 | StringLiteral *AssertMessage, | |||
16314 | SourceLocation RParenLoc, | |||
16315 | bool Failed) { | |||
16316 | assert(AssertExpr != nullptr && "Expected non-null condition")((void)0); | |||
16317 | if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && | |||
16318 | !Failed) { | |||
16319 | // In a static_assert-declaration, the constant-expression shall be a | |||
16320 | // constant expression that can be contextually converted to bool. | |||
16321 | ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); | |||
16322 | if (Converted.isInvalid()) | |||
16323 | Failed = true; | |||
16324 | ||||
16325 | ExprResult FullAssertExpr = | |||
16326 | ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, | |||
16327 | /*DiscardedValue*/ false, | |||
16328 | /*IsConstexpr*/ true); | |||
16329 | if (FullAssertExpr.isInvalid()) | |||
16330 | Failed = true; | |||
16331 | else | |||
16332 | AssertExpr = FullAssertExpr.get(); | |||
16333 | ||||
16334 | llvm::APSInt Cond; | |||
16335 | if (!Failed && VerifyIntegerConstantExpression( | |||
16336 | AssertExpr, &Cond, | |||
16337 | diag::err_static_assert_expression_is_not_constant) | |||
16338 | .isInvalid()) | |||
16339 | Failed = true; | |||
16340 | ||||
16341 | if (!Failed && !Cond) { | |||
16342 | SmallString<256> MsgBuffer; | |||
16343 | llvm::raw_svector_ostream Msg(MsgBuffer); | |||
16344 | if (AssertMessage) | |||
16345 | AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); | |||
16346 | ||||
16347 | Expr *InnerCond = nullptr; | |||
16348 | std::string InnerCondDescription; | |||
16349 | std::tie(InnerCond, InnerCondDescription) = | |||
16350 | findFailedBooleanCondition(Converted.get()); | |||
16351 | if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { | |||
16352 | // Drill down into concept specialization expressions to see why they | |||
16353 | // weren't satisfied. | |||
16354 | Diag(StaticAssertLoc, diag::err_static_assert_failed) | |||
16355 | << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); | |||
16356 | ConstraintSatisfaction Satisfaction; | |||
16357 | if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) | |||
16358 | DiagnoseUnsatisfiedConstraint(Satisfaction); | |||
16359 | } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) | |||
16360 | && !isa<IntegerLiteral>(InnerCond)) { | |||
16361 | Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) | |||
16362 | << InnerCondDescription << !AssertMessage | |||
16363 | << Msg.str() << InnerCond->getSourceRange(); | |||
16364 | } else { | |||
16365 | Diag(StaticAssertLoc, diag::err_static_assert_failed) | |||
16366 | << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); | |||
16367 | } | |||
16368 | Failed = true; | |||
16369 | } | |||
16370 | } else { | |||
16371 | ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, | |||
16372 | /*DiscardedValue*/false, | |||
16373 | /*IsConstexpr*/true); | |||
16374 | if (FullAssertExpr.isInvalid()) | |||
16375 | Failed = true; | |||
16376 | else | |||
16377 | AssertExpr = FullAssertExpr.get(); | |||
16378 | } | |||
16379 | ||||
16380 | Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, | |||
16381 | AssertExpr, AssertMessage, RParenLoc, | |||
16382 | Failed); | |||
16383 | ||||
16384 | CurContext->addDecl(Decl); | |||
16385 | return Decl; | |||
16386 | } | |||
16387 | ||||
16388 | /// Perform semantic analysis of the given friend type declaration. | |||
16389 | /// | |||
16390 | /// \returns A friend declaration that. | |||
16391 | FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, | |||
16392 | SourceLocation FriendLoc, | |||
16393 | TypeSourceInfo *TSInfo) { | |||
16394 | assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")((void)0); | |||
16395 | ||||
16396 | QualType T = TSInfo->getType(); | |||
16397 | SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); | |||
16398 | ||||
16399 | // C++03 [class.friend]p2: | |||
16400 | // An elaborated-type-specifier shall be used in a friend declaration | |||
16401 | // for a class.* | |||
16402 | // | |||
16403 | // * The class-key of the elaborated-type-specifier is required. | |||
16404 | if (!CodeSynthesisContexts.empty()) { | |||
16405 | // Do not complain about the form of friend template types during any kind | |||
16406 | // of code synthesis. For template instantiation, we will have complained | |||
16407 | // when the template was defined. | |||
16408 | } else { | |||
16409 | if (!T->isElaboratedTypeSpecifier()) { | |||
16410 | // If we evaluated the type to a record type, suggest putting | |||
16411 | // a tag in front. | |||
16412 | if (const RecordType *RT = T->getAs<RecordType>()) { | |||
16413 | RecordDecl *RD = RT->getDecl(); | |||
16414 | ||||
16415 | SmallString<16> InsertionText(" "); | |||
16416 | InsertionText += RD->getKindName(); | |||
16417 | ||||
16418 | Diag(TypeRange.getBegin(), | |||
16419 | getLangOpts().CPlusPlus11 ? | |||
16420 | diag::warn_cxx98_compat_unelaborated_friend_type : | |||
16421 | diag::ext_unelaborated_friend_type) | |||
16422 | << (unsigned) RD->getTagKind() | |||
16423 | << T | |||
16424 | << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), | |||
16425 | InsertionText); | |||
16426 | } else { | |||
16427 | Diag(FriendLoc, | |||
16428 | getLangOpts().CPlusPlus11 ? | |||
16429 | diag::warn_cxx98_compat_nonclass_type_friend : | |||
16430 | diag::ext_nonclass_type_friend) | |||
16431 | << T | |||
16432 | << TypeRange; | |||
16433 | } | |||
16434 | } else if (T->getAs<EnumType>()) { | |||
16435 | Diag(FriendLoc, | |||
16436 | getLangOpts().CPlusPlus11 ? | |||
16437 | diag::warn_cxx98_compat_enum_friend : | |||
16438 | diag::ext_enum_friend) | |||
16439 | << T | |||
16440 | << TypeRange; | |||
16441 | } | |||
16442 | ||||
16443 | // C++11 [class.friend]p3: | |||
16444 | // A friend declaration that does not declare a function shall have one | |||
16445 | // of the following forms: | |||
16446 | // friend elaborated-type-specifier ; | |||
16447 | // friend simple-type-specifier ; | |||
16448 | // friend typename-specifier ; | |||
16449 | if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) | |||
16450 | Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; | |||
16451 | } | |||
16452 | ||||
16453 | // If the type specifier in a friend declaration designates a (possibly | |||
16454 | // cv-qualified) class type, that class is declared as a friend; otherwise, | |||
16455 | // the friend declaration is ignored. | |||
16456 | return FriendDecl::Create(Context, CurContext, | |||
16457 | TSInfo->getTypeLoc().getBeginLoc(), TSInfo, | |||
16458 | FriendLoc); | |||
16459 | } | |||
16460 | ||||
16461 | /// Handle a friend tag declaration where the scope specifier was | |||
16462 | /// templated. | |||
16463 | Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, | |||
16464 | unsigned TagSpec, SourceLocation TagLoc, | |||
16465 | CXXScopeSpec &SS, IdentifierInfo *Name, | |||
16466 | SourceLocation NameLoc, | |||
16467 | const ParsedAttributesView &Attr, | |||
16468 | MultiTemplateParamsArg TempParamLists) { | |||
16469 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | |||
16470 | ||||
16471 | bool IsMemberSpecialization = false; | |||
16472 | bool Invalid = false; | |||
16473 | ||||
16474 | if (TemplateParameterList *TemplateParams = | |||
16475 | MatchTemplateParametersToScopeSpecifier( | |||
16476 | TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, | |||
16477 | IsMemberSpecialization, Invalid)) { | |||
16478 | if (TemplateParams->size() > 0) { | |||
16479 | // This is a declaration of a class template. | |||
16480 | if (Invalid) | |||
16481 | return nullptr; | |||
16482 | ||||
16483 | return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, | |||
16484 | NameLoc, Attr, TemplateParams, AS_public, | |||
16485 | /*ModulePrivateLoc=*/SourceLocation(), | |||
16486 | FriendLoc, TempParamLists.size() - 1, | |||
16487 | TempParamLists.data()).get(); | |||
16488 | } else { | |||
16489 | // The "template<>" header is extraneous. | |||
16490 | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) | |||
16491 | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; | |||
16492 | IsMemberSpecialization = true; | |||
16493 | } | |||
16494 | } | |||
16495 | ||||
16496 | if (Invalid) return nullptr; | |||
16497 | ||||
16498 | bool isAllExplicitSpecializations = true; | |||
16499 | for (unsigned I = TempParamLists.size(); I-- > 0; ) { | |||
16500 | if (TempParamLists[I]->size()) { | |||
16501 | isAllExplicitSpecializations = false; | |||
16502 | break; | |||
16503 | } | |||
16504 | } | |||
16505 | ||||
16506 | // FIXME: don't ignore attributes. | |||
16507 | ||||
16508 | // If it's explicit specializations all the way down, just forget | |||
16509 | // about the template header and build an appropriate non-templated | |||
16510 | // friend. TODO: for source fidelity, remember the headers. | |||
16511 | if (isAllExplicitSpecializations) { | |||
16512 | if (SS.isEmpty()) { | |||
16513 | bool Owned = false; | |||
16514 | bool IsDependent = false; | |||
16515 | return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, | |||
16516 | Attr, AS_public, | |||
16517 | /*ModulePrivateLoc=*/SourceLocation(), | |||
16518 | MultiTemplateParamsArg(), Owned, IsDependent, | |||
16519 | /*ScopedEnumKWLoc=*/SourceLocation(), | |||
16520 | /*ScopedEnumUsesClassTag=*/false, | |||
16521 | /*UnderlyingType=*/TypeResult(), | |||
16522 | /*IsTypeSpecifier=*/false, | |||
16523 | /*IsTemplateParamOrArg=*/false); | |||
16524 | } | |||
16525 | ||||
16526 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); | |||
16527 | ElaboratedTypeKeyword Keyword | |||
16528 | = TypeWithKeyword::getKeywordForTagTypeKind(Kind); | |||
16529 | QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, | |||
16530 | *Name, NameLoc); | |||
16531 | if (T.isNull()) | |||
16532 | return nullptr; | |||
16533 | ||||
16534 | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); | |||
16535 | if (isa<DependentNameType>(T)) { | |||
16536 | DependentNameTypeLoc TL = | |||
16537 | TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); | |||
16538 | TL.setElaboratedKeywordLoc(TagLoc); | |||
16539 | TL.setQualifierLoc(QualifierLoc); | |||
16540 | TL.setNameLoc(NameLoc); | |||
16541 | } else { | |||
16542 | ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); | |||
16543 | TL.setElaboratedKeywordLoc(TagLoc); | |||
16544 | TL.setQualifierLoc(QualifierLoc); | |||
16545 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); | |||
16546 | } | |||
16547 | ||||
16548 | FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, | |||
16549 | TSI, FriendLoc, TempParamLists); | |||
16550 | Friend->setAccess(AS_public); | |||
16551 | CurContext->addDecl(Friend); | |||
16552 | return Friend; | |||
16553 | } | |||
16554 | ||||
16555 | assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")((void)0); | |||
16556 | ||||
16557 | ||||
16558 | ||||
16559 | // Handle the case of a templated-scope friend class. e.g. | |||
16560 | // template <class T> class A<T>::B; | |||
16561 | // FIXME: we don't support these right now. | |||
16562 | Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) | |||
16563 | << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); | |||
16564 | ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); | |||
16565 | QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); | |||
16566 | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); | |||
16567 | DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); | |||
16568 | TL.setElaboratedKeywordLoc(TagLoc); | |||
16569 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
16570 | TL.setNameLoc(NameLoc); | |||
16571 | ||||
16572 | FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, | |||
16573 | TSI, FriendLoc, TempParamLists); | |||
16574 | Friend->setAccess(AS_public); | |||
16575 | Friend->setUnsupportedFriend(true); | |||
16576 | CurContext->addDecl(Friend); | |||
16577 | return Friend; | |||
16578 | } | |||
16579 | ||||
16580 | /// Handle a friend type declaration. This works in tandem with | |||
16581 | /// ActOnTag. | |||
16582 | /// | |||
16583 | /// Notes on friend class templates: | |||
16584 | /// | |||
16585 | /// We generally treat friend class declarations as if they were | |||
16586 | /// declaring a class. So, for example, the elaborated type specifier | |||
16587 | /// in a friend declaration is required to obey the restrictions of a | |||
16588 | /// class-head (i.e. no typedefs in the scope chain), template | |||
16589 | /// parameters are required to match up with simple template-ids, &c. | |||
16590 | /// However, unlike when declaring a template specialization, it's | |||
16591 | /// okay to refer to a template specialization without an empty | |||
16592 | /// template parameter declaration, e.g. | |||
16593 | /// friend class A<T>::B<unsigned>; | |||
16594 | /// We permit this as a special case; if there are any template | |||
16595 | /// parameters present at all, require proper matching, i.e. | |||
16596 | /// template <> template \<class T> friend class A<int>::B; | |||
16597 | Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, | |||
16598 | MultiTemplateParamsArg TempParams) { | |||
16599 | SourceLocation Loc = DS.getBeginLoc(); | |||
16600 | ||||
16601 | assert(DS.isFriendSpecified())((void)0); | |||
16602 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((void)0); | |||
16603 | ||||
16604 | // C++ [class.friend]p3: | |||
16605 | // A friend declaration that does not declare a function shall have one of | |||
16606 | // the following forms: | |||
16607 | // friend elaborated-type-specifier ; | |||
16608 | // friend simple-type-specifier ; | |||
16609 | // friend typename-specifier ; | |||
16610 | // | |||
16611 | // Any declaration with a type qualifier does not have that form. (It's | |||
16612 | // legal to specify a qualified type as a friend, you just can't write the | |||
16613 | // keywords.) | |||
16614 | if (DS.getTypeQualifiers()) { | |||
16615 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | |||
16616 | Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; | |||
16617 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | |||
16618 | Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; | |||
16619 | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) | |||
16620 | Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; | |||
16621 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | |||
16622 | Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; | |||
16623 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | |||
16624 | Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; | |||
16625 | } | |||
16626 | ||||
16627 | // Try to convert the decl specifier to a type. This works for | |||
16628 | // friend templates because ActOnTag never produces a ClassTemplateDecl | |||
16629 | // for a TUK_Friend. | |||
16630 | Declarator TheDeclarator(DS, DeclaratorContext::Member); | |||
16631 | TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); | |||
16632 | QualType T = TSI->getType(); | |||
16633 | if (TheDeclarator.isInvalidType()) | |||
16634 | return nullptr; | |||
16635 | ||||
16636 | if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) | |||
16637 | return nullptr; | |||
16638 | ||||
16639 | // This is definitely an error in C++98. It's probably meant to | |||
16640 | // be forbidden in C++0x, too, but the specification is just | |||
16641 | // poorly written. | |||
16642 | // | |||
16643 | // The problem is with declarations like the following: | |||
16644 | // template <T> friend A<T>::foo; | |||
16645 | // where deciding whether a class C is a friend or not now hinges | |||
16646 | // on whether there exists an instantiation of A that causes | |||
16647 | // 'foo' to equal C. There are restrictions on class-heads | |||
16648 | // (which we declare (by fiat) elaborated friend declarations to | |||
16649 | // be) that makes this tractable. | |||
16650 | // | |||
16651 | // FIXME: handle "template <> friend class A<T>;", which | |||
16652 | // is possibly well-formed? Who even knows? | |||
16653 | if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { | |||
16654 | Diag(Loc, diag::err_tagless_friend_type_template) | |||
16655 | << DS.getSourceRange(); | |||
16656 | return nullptr; | |||
16657 | } | |||
16658 | ||||
16659 | // C++98 [class.friend]p1: A friend of a class is a function | |||
16660 | // or class that is not a member of the class . . . | |||
16661 | // This is fixed in DR77, which just barely didn't make the C++03 | |||
16662 | // deadline. It's also a very silly restriction that seriously | |||
16663 | // affects inner classes and which nobody else seems to implement; | |||
16664 | // thus we never diagnose it, not even in -pedantic. | |||
16665 | // | |||
16666 | // But note that we could warn about it: it's always useless to | |||
16667 | // friend one of your own members (it's not, however, worthless to | |||
16668 | // friend a member of an arbitrary specialization of your template). | |||
16669 | ||||
16670 | Decl *D; | |||
16671 | if (!TempParams.empty()) | |||
16672 | D = FriendTemplateDecl::Create(Context, CurContext, Loc, | |||
16673 | TempParams, | |||
16674 | TSI, | |||
16675 | DS.getFriendSpecLoc()); | |||
16676 | else | |||
16677 | D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); | |||
16678 | ||||
16679 | if (!D) | |||
16680 | return nullptr; | |||
16681 | ||||
16682 | D->setAccess(AS_public); | |||
16683 | CurContext->addDecl(D); | |||
16684 | ||||
16685 | return D; | |||
16686 | } | |||
16687 | ||||
16688 | NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, | |||
16689 | MultiTemplateParamsArg TemplateParams) { | |||
16690 | const DeclSpec &DS = D.getDeclSpec(); | |||
16691 | ||||
16692 | assert(DS.isFriendSpecified())((void)0); | |||
16693 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((void)0); | |||
16694 | ||||
16695 | SourceLocation Loc = D.getIdentifierLoc(); | |||
16696 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
16697 | ||||
16698 | // C++ [class.friend]p1 | |||
16699 | // A friend of a class is a function or class.... | |||
16700 | // Note that this sees through typedefs, which is intended. | |||
16701 | // It *doesn't* see through dependent types, which is correct | |||
16702 | // according to [temp.arg.type]p3: | |||
16703 | // If a declaration acquires a function type through a | |||
16704 | // type dependent on a template-parameter and this causes | |||
16705 | // a declaration that does not use the syntactic form of a | |||
16706 | // function declarator to have a function type, the program | |||
16707 | // is ill-formed. | |||
16708 | if (!TInfo->getType()->isFunctionType()) { | |||
16709 | Diag(Loc, diag::err_unexpected_friend); | |||
16710 | ||||
16711 | // It might be worthwhile to try to recover by creating an | |||
16712 | // appropriate declaration. | |||
16713 | return nullptr; | |||
16714 | } | |||
16715 | ||||
16716 | // C++ [namespace.memdef]p3 | |||
16717 | // - If a friend declaration in a non-local class first declares a | |||
16718 | // class or function, the friend class or function is a member | |||
16719 | // of the innermost enclosing namespace. | |||
16720 | // - The name of the friend is not found by simple name lookup | |||
16721 | // until a matching declaration is provided in that namespace | |||
16722 | // scope (either before or after the class declaration granting | |||
16723 | // friendship). | |||
16724 | // - If a friend function is called, its name may be found by the | |||
16725 | // name lookup that considers functions from namespaces and | |||
16726 | // classes associated with the types of the function arguments. | |||
16727 | // - When looking for a prior declaration of a class or a function | |||
16728 | // declared as a friend, scopes outside the innermost enclosing | |||
16729 | // namespace scope are not considered. | |||
16730 | ||||
16731 | CXXScopeSpec &SS = D.getCXXScopeSpec(); | |||
16732 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | |||
16733 | assert(NameInfo.getName())((void)0); | |||
16734 | ||||
16735 | // Check for unexpanded parameter packs. | |||
16736 | if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || | |||
16737 | DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || | |||
16738 | DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) | |||
16739 | return nullptr; | |||
16740 | ||||
16741 | // The context we found the declaration in, or in which we should | |||
16742 | // create the declaration. | |||
16743 | DeclContext *DC; | |||
16744 | Scope *DCScope = S; | |||
16745 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |||
16746 | ForExternalRedeclaration); | |||
16747 | ||||
16748 | // There are five cases here. | |||
16749 | // - There's no scope specifier and we're in a local class. Only look | |||
16750 | // for functions declared in the immediately-enclosing block scope. | |||
16751 | // We recover from invalid scope qualifiers as if they just weren't there. | |||
16752 | FunctionDecl *FunctionContainingLocalClass = nullptr; | |||
16753 | if ((SS.isInvalid() || !SS.isSet()) && | |||
16754 | (FunctionContainingLocalClass = | |||
16755 | cast<CXXRecordDecl>(CurContext)->isLocalClass())) { | |||
16756 | // C++11 [class.friend]p11: | |||
16757 | // If a friend declaration appears in a local class and the name | |||
16758 | // specified is an unqualified name, a prior declaration is | |||
16759 | // looked up without considering scopes that are outside the | |||
16760 | // innermost enclosing non-class scope. For a friend function | |||
16761 | // declaration, if there is no prior declaration, the program is | |||
16762 | // ill-formed. | |||
16763 | ||||
16764 | // Find the innermost enclosing non-class scope. This is the block | |||
16765 | // scope containing the local class definition (or for a nested class, | |||
16766 | // the outer local class). | |||
16767 | DCScope = S->getFnParent(); | |||
16768 | ||||
16769 | // Look up the function name in the scope. | |||
16770 | Previous.clear(LookupLocalFriendName); | |||
16771 | LookupName(Previous, S, /*AllowBuiltinCreation*/false); | |||
16772 | ||||
16773 | if (!Previous.empty()) { | |||
16774 | // All possible previous declarations must have the same context: | |||
16775 | // either they were declared at block scope or they are members of | |||
16776 | // one of the enclosing local classes. | |||
16777 | DC = Previous.getRepresentativeDecl()->getDeclContext(); | |||
16778 | } else { | |||
16779 | // This is ill-formed, but provide the context that we would have | |||
16780 | // declared the function in, if we were permitted to, for error recovery. | |||
16781 | DC = FunctionContainingLocalClass; | |||
16782 | } | |||
16783 | adjustContextForLocalExternDecl(DC); | |||
16784 | ||||
16785 | // C++ [class.friend]p6: | |||
16786 | // A function can be defined in a friend declaration of a class if and | |||
16787 | // only if the class is a non-local class (9.8), the function name is | |||
16788 | // unqualified, and the function has namespace scope. | |||
16789 | if (D.isFunctionDefinition()) { | |||
16790 | Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); | |||
16791 | } | |||
16792 | ||||
16793 | // - There's no scope specifier, in which case we just go to the | |||
16794 | // appropriate scope and look for a function or function template | |||
16795 | // there as appropriate. | |||
16796 | } else if (SS.isInvalid() || !SS.isSet()) { | |||
16797 | // C++11 [namespace.memdef]p3: | |||
16798 | // If the name in a friend declaration is neither qualified nor | |||
16799 | // a template-id and the declaration is a function or an | |||
16800 | // elaborated-type-specifier, the lookup to determine whether | |||
16801 | // the entity has been previously declared shall not consider | |||
16802 | // any scopes outside the innermost enclosing namespace. | |||
16803 | bool isTemplateId = | |||
16804 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; | |||
16805 | ||||
16806 | // Find the appropriate context according to the above. | |||
16807 | DC = CurContext; | |||
16808 | ||||
16809 | // Skip class contexts. If someone can cite chapter and verse | |||
16810 | // for this behavior, that would be nice --- it's what GCC and | |||
16811 | // EDG do, and it seems like a reasonable intent, but the spec | |||
16812 | // really only says that checks for unqualified existing | |||
16813 | // declarations should stop at the nearest enclosing namespace, | |||
16814 | // not that they should only consider the nearest enclosing | |||
16815 | // namespace. | |||
16816 | while (DC->isRecord()) | |||
16817 | DC = DC->getParent(); | |||
16818 | ||||
16819 | DeclContext *LookupDC = DC; | |||
16820 | while (LookupDC->isTransparentContext()) | |||
16821 | LookupDC = LookupDC->getParent(); | |||
16822 | ||||
16823 | while (true) { | |||
16824 | LookupQualifiedName(Previous, LookupDC); | |||
16825 | ||||
16826 | if (!Previous.empty()) { | |||
16827 | DC = LookupDC; | |||
16828 | break; | |||
16829 | } | |||
16830 | ||||
16831 | if (isTemplateId) { | |||
16832 | if (isa<TranslationUnitDecl>(LookupDC)) break; | |||
16833 | } else { | |||
16834 | if (LookupDC->isFileContext()) break; | |||
16835 | } | |||
16836 | LookupDC = LookupDC->getParent(); | |||
16837 | } | |||
16838 | ||||
16839 | DCScope = getScopeForDeclContext(S, DC); | |||
16840 | ||||
16841 | // - There's a non-dependent scope specifier, in which case we | |||
16842 | // compute it and do a previous lookup there for a function | |||
16843 | // or function template. | |||
16844 | } else if (!SS.getScopeRep()->isDependent()) { | |||
16845 | DC = computeDeclContext(SS); | |||
16846 | if (!DC) return nullptr; | |||
16847 | ||||
16848 | if (RequireCompleteDeclContext(SS, DC)) return nullptr; | |||
16849 | ||||
16850 | LookupQualifiedName(Previous, DC); | |||
16851 | ||||
16852 | // C++ [class.friend]p1: A friend of a class is a function or | |||
16853 | // class that is not a member of the class . . . | |||
16854 | if (DC->Equals(CurContext)) | |||
16855 | Diag(DS.getFriendSpecLoc(), | |||
16856 | getLangOpts().CPlusPlus11 ? | |||
16857 | diag::warn_cxx98_compat_friend_is_member : | |||
16858 | diag::err_friend_is_member); | |||
16859 | ||||
16860 | if (D.isFunctionDefinition()) { | |||
16861 | // C++ [class.friend]p6: | |||
16862 | // A function can be defined in a friend declaration of a class if and | |||
16863 | // only if the class is a non-local class (9.8), the function name is | |||
16864 | // unqualified, and the function has namespace scope. | |||
16865 | // | |||
16866 | // FIXME: We should only do this if the scope specifier names the | |||
16867 | // innermost enclosing namespace; otherwise the fixit changes the | |||
16868 | // meaning of the code. | |||
16869 | SemaDiagnosticBuilder DB | |||
16870 | = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); | |||
16871 | ||||
16872 | DB << SS.getScopeRep(); | |||
16873 | if (DC->isFileContext()) | |||
16874 | DB << FixItHint::CreateRemoval(SS.getRange()); | |||
16875 | SS.clear(); | |||
16876 | } | |||
16877 | ||||
16878 | // - There's a scope specifier that does not match any template | |||
16879 | // parameter lists, in which case we use some arbitrary context, | |||
16880 | // create a method or method template, and wait for instantiation. | |||
16881 | // - There's a scope specifier that does match some template | |||
16882 | // parameter lists, which we don't handle right now. | |||
16883 | } else { | |||
16884 | if (D.isFunctionDefinition()) { | |||
16885 | // C++ [class.friend]p6: | |||
16886 | // A function can be defined in a friend declaration of a class if and | |||
16887 | // only if the class is a non-local class (9.8), the function name is | |||
16888 | // unqualified, and the function has namespace scope. | |||
16889 | Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) | |||
16890 | << SS.getScopeRep(); | |||
16891 | } | |||
16892 | ||||
16893 | DC = CurContext; | |||
16894 | assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")((void)0); | |||
16895 | } | |||
16896 | ||||
16897 | if (!DC->isRecord()) { | |||
16898 | int DiagArg = -1; | |||
16899 | switch (D.getName().getKind()) { | |||
16900 | case UnqualifiedIdKind::IK_ConstructorTemplateId: | |||
16901 | case UnqualifiedIdKind::IK_ConstructorName: | |||
16902 | DiagArg = 0; | |||
16903 | break; | |||
16904 | case UnqualifiedIdKind::IK_DestructorName: | |||
16905 | DiagArg = 1; | |||
16906 | break; | |||
16907 | case UnqualifiedIdKind::IK_ConversionFunctionId: | |||
16908 | DiagArg = 2; | |||
16909 | break; | |||
16910 | case UnqualifiedIdKind::IK_DeductionGuideName: | |||
16911 | DiagArg = 3; | |||
16912 | break; | |||
16913 | case UnqualifiedIdKind::IK_Identifier: | |||
16914 | case UnqualifiedIdKind::IK_ImplicitSelfParam: | |||
16915 | case UnqualifiedIdKind::IK_LiteralOperatorId: | |||
16916 | case UnqualifiedIdKind::IK_OperatorFunctionId: | |||
16917 | case UnqualifiedIdKind::IK_TemplateId: | |||
16918 | break; | |||
16919 | } | |||
16920 | // This implies that it has to be an operator or function. | |||
16921 | if (DiagArg >= 0) { | |||
16922 | Diag(Loc, diag::err_introducing_special_friend) << DiagArg; | |||
16923 | return nullptr; | |||
16924 | } | |||
16925 | } | |||
16926 | ||||
16927 | // FIXME: This is an egregious hack to cope with cases where the scope stack | |||
16928 | // does not contain the declaration context, i.e., in an out-of-line | |||
16929 | // definition of a class. | |||
16930 | Scope FakeDCScope(S, Scope::DeclScope, Diags); | |||
16931 | if (!DCScope) { | |||
16932 | FakeDCScope.setEntity(DC); | |||
16933 | DCScope = &FakeDCScope; | |||
16934 | } | |||
16935 | ||||
16936 | bool AddToScope = true; | |||
16937 | NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, | |||
16938 | TemplateParams, AddToScope); | |||
16939 | if (!ND) return nullptr; | |||
16940 | ||||
16941 | assert(ND->getLexicalDeclContext() == CurContext)((void)0); | |||
16942 | ||||
16943 | // If we performed typo correction, we might have added a scope specifier | |||
16944 | // and changed the decl context. | |||
16945 | DC = ND->getDeclContext(); | |||
16946 | ||||
16947 | // Add the function declaration to the appropriate lookup tables, | |||
16948 | // adjusting the redeclarations list as necessary. We don't | |||
16949 | // want to do this yet if the friending class is dependent. | |||
16950 | // | |||
16951 | // Also update the scope-based lookup if the target context's | |||
16952 | // lookup context is in lexical scope. | |||
16953 | if (!CurContext->isDependentContext()) { | |||
16954 | DC = DC->getRedeclContext(); | |||
16955 | DC->makeDeclVisibleInContext(ND); | |||
16956 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | |||
16957 | PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); | |||
16958 | } | |||
16959 | ||||
16960 | FriendDecl *FrD = FriendDecl::Create(Context, CurContext, | |||
16961 | D.getIdentifierLoc(), ND, | |||
16962 | DS.getFriendSpecLoc()); | |||
16963 | FrD->setAccess(AS_public); | |||
16964 | CurContext->addDecl(FrD); | |||
16965 | ||||
16966 | if (ND->isInvalidDecl()) { | |||
16967 | FrD->setInvalidDecl(); | |||
16968 | } else { | |||
16969 | if (DC->isRecord()) CheckFriendAccess(ND); | |||
16970 | ||||
16971 | FunctionDecl *FD; | |||
16972 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) | |||
16973 | FD = FTD->getTemplatedDecl(); | |||
16974 | else | |||
16975 | FD = cast<FunctionDecl>(ND); | |||
16976 | ||||
16977 | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a | |||
16978 | // default argument expression, that declaration shall be a definition | |||
16979 | // and shall be the only declaration of the function or function | |||
16980 | // template in the translation unit. | |||
16981 | if (functionDeclHasDefaultArgument(FD)) { | |||
16982 | // We can't look at FD->getPreviousDecl() because it may not have been set | |||
16983 | // if we're in a dependent context. If the function is known to be a | |||
16984 | // redeclaration, we will have narrowed Previous down to the right decl. | |||
16985 | if (D.isRedeclaration()) { | |||
16986 | Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); | |||
16987 | Diag(Previous.getRepresentativeDecl()->getLocation(), | |||
16988 | diag::note_previous_declaration); | |||
16989 | } else if (!D.isFunctionDefinition()) | |||
16990 | Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); | |||
16991 | } | |||
16992 | ||||
16993 | // Mark templated-scope function declarations as unsupported. | |||
16994 | if (FD->getNumTemplateParameterLists() && SS.isValid()) { | |||
16995 | Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) | |||
16996 | << SS.getScopeRep() << SS.getRange() | |||
16997 | << cast<CXXRecordDecl>(CurContext); | |||
16998 | FrD->setUnsupportedFriend(true); | |||
16999 | } | |||
17000 | } | |||
17001 | ||||
17002 | warnOnReservedIdentifier(ND); | |||
17003 | ||||
17004 | return ND; | |||
17005 | } | |||
17006 | ||||
17007 | void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { | |||
17008 | AdjustDeclIfTemplate(Dcl); | |||
17009 | ||||
17010 | FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); | |||
17011 | if (!Fn) { | |||
17012 | Diag(DelLoc, diag::err_deleted_non_function); | |||
17013 | return; | |||
17014 | } | |||
17015 | ||||
17016 | // Deleted function does not have a body. | |||
17017 | Fn->setWillHaveBody(false); | |||
17018 | ||||
17019 | if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { | |||
17020 | // Don't consider the implicit declaration we generate for explicit | |||
17021 | // specializations. FIXME: Do not generate these implicit declarations. | |||
17022 | if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || | |||
17023 | Prev->getPreviousDecl()) && | |||
17024 | !Prev->isDefined()) { | |||
17025 | Diag(DelLoc, diag::err_deleted_decl_not_first); | |||
17026 | Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), | |||
17027 | Prev->isImplicit() ? diag::note_previous_implicit_declaration | |||
17028 | : diag::note_previous_declaration); | |||
17029 | // We can't recover from this; the declaration might have already | |||
17030 | // been used. | |||
17031 | Fn->setInvalidDecl(); | |||
17032 | return; | |||
17033 | } | |||
17034 | ||||
17035 | // To maintain the invariant that functions are only deleted on their first | |||
17036 | // declaration, mark the implicitly-instantiated declaration of the | |||
17037 | // explicitly-specialized function as deleted instead of marking the | |||
17038 | // instantiated redeclaration. | |||
17039 | Fn = Fn->getCanonicalDecl(); | |||
17040 | } | |||
17041 | ||||
17042 | // dllimport/dllexport cannot be deleted. | |||
17043 | if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { | |||
17044 | Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; | |||
17045 | Fn->setInvalidDecl(); | |||
17046 | } | |||
17047 | ||||
17048 | // C++11 [basic.start.main]p3: | |||
17049 | // A program that defines main as deleted [...] is ill-formed. | |||
17050 | if (Fn->isMain()) | |||
17051 | Diag(DelLoc, diag::err_deleted_main); | |||
17052 | ||||
17053 | // C++11 [dcl.fct.def.delete]p4: | |||
17054 | // A deleted function is implicitly inline. | |||
17055 | Fn->setImplicitlyInline(); | |||
17056 | Fn->setDeletedAsWritten(); | |||
17057 | } | |||
17058 | ||||
17059 | void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { | |||
17060 | if (!Dcl || Dcl->isInvalidDecl()) | |||
17061 | return; | |||
17062 | ||||
17063 | auto *FD = dyn_cast<FunctionDecl>(Dcl); | |||
17064 | if (!FD) { | |||
17065 | if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { | |||
17066 | if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { | |||
17067 | Diag(DefaultLoc, diag::err_defaulted_comparison_template); | |||
17068 | return; | |||
17069 | } | |||
17070 | } | |||
17071 | ||||
17072 | Diag(DefaultLoc, diag::err_default_special_members) | |||
17073 | << getLangOpts().CPlusPlus20; | |||
17074 | return; | |||
17075 | } | |||
17076 | ||||
17077 | // Reject if this can't possibly be a defaultable function. | |||
17078 | DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); | |||
17079 | if (!DefKind && | |||
17080 | // A dependent function that doesn't locally look defaultable can | |||
17081 | // still instantiate to a defaultable function if it's a constructor | |||
17082 | // or assignment operator. | |||
17083 | (!FD->isDependentContext() || | |||
17084 | (!isa<CXXConstructorDecl>(FD) && | |||
17085 | FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { | |||
17086 | Diag(DefaultLoc, diag::err_default_special_members) | |||
17087 | << getLangOpts().CPlusPlus20; | |||
17088 | return; | |||
17089 | } | |||
17090 | ||||
17091 | if (DefKind.isComparison() && | |||
17092 | !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { | |||
17093 | Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class) | |||
17094 | << (int)DefKind.asComparison(); | |||
17095 | return; | |||
17096 | } | |||
17097 | ||||
17098 | // Issue compatibility warning. We already warned if the operator is | |||
17099 | // 'operator<=>' when parsing the '<=>' token. | |||
17100 | if (DefKind.isComparison() && | |||
17101 | DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { | |||
17102 | Diag(DefaultLoc, getLangOpts().CPlusPlus20 | |||
17103 | ? diag::warn_cxx17_compat_defaulted_comparison | |||
17104 | : diag::ext_defaulted_comparison); | |||
17105 | } | |||
17106 | ||||
17107 | FD->setDefaulted(); | |||
17108 | FD->setExplicitlyDefaulted(); | |||
17109 | ||||
17110 | // Defer checking functions that are defaulted in a dependent context. | |||
17111 | if (FD->isDependentContext()) | |||
17112 | return; | |||
17113 | ||||
17114 | // Unset that we will have a body for this function. We might not, | |||
17115 | // if it turns out to be trivial, and we don't need this marking now | |||
17116 | // that we've marked it as defaulted. | |||
17117 | FD->setWillHaveBody(false); | |||
17118 | ||||
17119 | // If this definition appears within the record, do the checking when | |||
17120 | // the record is complete. This is always the case for a defaulted | |||
17121 | // comparison. | |||
17122 | if (DefKind.isComparison()) | |||
17123 | return; | |||
17124 | auto *MD = cast<CXXMethodDecl>(FD); | |||
17125 | ||||
17126 | const FunctionDecl *Primary = FD; | |||
17127 | if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) | |||
17128 | // Ask the template instantiation pattern that actually had the | |||
17129 | // '= default' on it. | |||
17130 | Primary = Pattern; | |||
17131 | ||||
17132 | // If the method was defaulted on its first declaration, we will have | |||
17133 | // already performed the checking in CheckCompletedCXXClass. Such a | |||
17134 | // declaration doesn't trigger an implicit definition. | |||
17135 | if (Primary->getCanonicalDecl()->isDefaulted()) | |||
17136 | return; | |||
17137 | ||||
17138 | // FIXME: Once we support defining comparisons out of class, check for a | |||
17139 | // defaulted comparison here. | |||
17140 | if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember())) | |||
17141 | MD->setInvalidDecl(); | |||
17142 | else | |||
17143 | DefineDefaultedFunction(*this, MD, DefaultLoc); | |||
17144 | } | |||
17145 | ||||
17146 | static void SearchForReturnInStmt(Sema &Self, Stmt *S) { | |||
17147 | for (Stmt *SubStmt : S->children()) { | |||
17148 | if (!SubStmt) | |||
17149 | continue; | |||
17150 | if (isa<ReturnStmt>(SubStmt)) | |||
17151 | Self.Diag(SubStmt->getBeginLoc(), | |||
17152 | diag::err_return_in_constructor_handler); | |||
17153 | if (!isa<Expr>(SubStmt)) | |||
17154 | SearchForReturnInStmt(Self, SubStmt); | |||
17155 | } | |||
17156 | } | |||
17157 | ||||
17158 | void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { | |||
17159 | for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { | |||
17160 | CXXCatchStmt *Handler = TryBlock->getHandler(I); | |||
17161 | SearchForReturnInStmt(*this, Handler); | |||
17162 | } | |||
17163 | } | |||
17164 | ||||
17165 | bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, | |||
17166 | const CXXMethodDecl *Old) { | |||
17167 | const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); | |||
17168 | const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); | |||
17169 | ||||
17170 | if (OldFT->hasExtParameterInfos()) { | |||
17171 | for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) | |||
17172 | // A parameter of the overriding method should be annotated with noescape | |||
17173 | // if the corresponding parameter of the overridden method is annotated. | |||
17174 | if (OldFT->getExtParameterInfo(I).isNoEscape() && | |||
17175 | !NewFT->getExtParameterInfo(I).isNoEscape()) { | |||
17176 | Diag(New->getParamDecl(I)->getLocation(), | |||
17177 | diag::warn_overriding_method_missing_noescape); | |||
17178 | Diag(Old->getParamDecl(I)->getLocation(), | |||
17179 | diag::note_overridden_marked_noescape); | |||
17180 | } | |||
17181 | } | |||
17182 | ||||
17183 | // Virtual overrides must have the same code_seg. | |||
17184 | const auto *OldCSA = Old->getAttr<CodeSegAttr>(); | |||
17185 | const auto *NewCSA = New->getAttr<CodeSegAttr>(); | |||
17186 | if ((NewCSA || OldCSA) && | |||
17187 | (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { | |||
17188 | Diag(New->getLocation(), diag::err_mismatched_code_seg_override); | |||
17189 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
17190 | return true; | |||
17191 | } | |||
17192 | ||||
17193 | CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); | |||
17194 | ||||
17195 | // If the calling conventions match, everything is fine | |||
17196 | if (NewCC == OldCC) | |||
17197 | return false; | |||
17198 | ||||
17199 | // If the calling conventions mismatch because the new function is static, | |||
17200 | // suppress the calling convention mismatch error; the error about static | |||
17201 | // function override (err_static_overrides_virtual from | |||
17202 | // Sema::CheckFunctionDeclaration) is more clear. | |||
17203 | if (New->getStorageClass() == SC_Static) | |||
17204 | return false; | |||
17205 | ||||
17206 | Diag(New->getLocation(), | |||
17207 | diag::err_conflicting_overriding_cc_attributes) | |||
17208 | << New->getDeclName() << New->getType() << Old->getType(); | |||
17209 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | |||
17210 | return true; | |||
17211 | } | |||
17212 | ||||
17213 | bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, | |||
17214 | const CXXMethodDecl *Old) { | |||
17215 | QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); | |||
17216 | QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); | |||
17217 | ||||
17218 | if (Context.hasSameType(NewTy, OldTy) || | |||
17219 | NewTy->isDependentType() || OldTy->isDependentType()) | |||
17220 | return false; | |||
17221 | ||||
17222 | // Check if the return types are covariant | |||
17223 | QualType NewClassTy, OldClassTy; | |||
17224 | ||||
17225 | /// Both types must be pointers or references to classes. | |||
17226 | if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { | |||
17227 | if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { | |||
17228 | NewClassTy = NewPT->getPointeeType(); | |||
17229 | OldClassTy = OldPT->getPointeeType(); | |||
17230 | } | |||
17231 | } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { | |||
17232 | if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { | |||
17233 | if (NewRT->getTypeClass() == OldRT->getTypeClass()) { | |||
17234 | NewClassTy = NewRT->getPointeeType(); | |||
17235 | OldClassTy = OldRT->getPointeeType(); | |||
17236 | } | |||
17237 | } | |||
17238 | } | |||
17239 | ||||
17240 | // The return types aren't either both pointers or references to a class type. | |||
17241 | if (NewClassTy.isNull()) { | |||
17242 | Diag(New->getLocation(), | |||
17243 | diag::err_different_return_type_for_overriding_virtual_function) | |||
17244 | << New->getDeclName() << NewTy << OldTy | |||
17245 | << New->getReturnTypeSourceRange(); | |||
17246 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | |||
17247 | << Old->getReturnTypeSourceRange(); | |||
17248 | ||||
17249 | return true; | |||
17250 | } | |||
17251 | ||||
17252 | if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { | |||
17253 | // C++14 [class.virtual]p8: | |||
17254 | // If the class type in the covariant return type of D::f differs from | |||
17255 | // that of B::f, the class type in the return type of D::f shall be | |||
17256 | // complete at the point of declaration of D::f or shall be the class | |||
17257 | // type D. | |||
17258 | if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { | |||
17259 | if (!RT->isBeingDefined() && | |||
17260 | RequireCompleteType(New->getLocation(), NewClassTy, | |||
17261 | diag::err_covariant_return_incomplete, | |||
17262 | New->getDeclName())) | |||
17263 | return true; | |||
17264 | } | |||
17265 | ||||
17266 | // Check if the new class derives from the old class. | |||
17267 | if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { | |||
17268 | Diag(New->getLocation(), diag::err_covariant_return_not_derived) | |||
17269 | << New->getDeclName() << NewTy << OldTy | |||
17270 | << New->getReturnTypeSourceRange(); | |||
17271 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | |||
17272 | << Old->getReturnTypeSourceRange(); | |||
17273 | return true; | |||
17274 | } | |||
17275 | ||||
17276 | // Check if we the conversion from derived to base is valid. | |||
17277 | if (CheckDerivedToBaseConversion( | |||
17278 | NewClassTy, OldClassTy, | |||
17279 | diag::err_covariant_return_inaccessible_base, | |||
17280 | diag::err_covariant_return_ambiguous_derived_to_base_conv, | |||
17281 | New->getLocation(), New->getReturnTypeSourceRange(), | |||
17282 | New->getDeclName(), nullptr)) { | |||
17283 | // FIXME: this note won't trigger for delayed access control | |||
17284 | // diagnostics, and it's impossible to get an undelayed error | |||
17285 | // here from access control during the original parse because | |||
17286 | // the ParsingDeclSpec/ParsingDeclarator are still in scope. | |||
17287 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | |||
17288 | << Old->getReturnTypeSourceRange(); | |||
17289 | return true; | |||
17290 | } | |||
17291 | } | |||
17292 | ||||
17293 | // The qualifiers of the return types must be the same. | |||
17294 | if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { | |||
17295 | Diag(New->getLocation(), | |||
17296 | diag::err_covariant_return_type_different_qualifications) | |||
17297 | << New->getDeclName() << NewTy << OldTy | |||
17298 | << New->getReturnTypeSourceRange(); | |||
17299 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | |||
17300 | << Old->getReturnTypeSourceRange(); | |||
17301 | return true; | |||
17302 | } | |||
17303 | ||||
17304 | ||||
17305 | // The new class type must have the same or less qualifiers as the old type. | |||
17306 | if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { | |||
17307 | Diag(New->getLocation(), | |||
17308 | diag::err_covariant_return_type_class_type_more_qualified) | |||
17309 | << New->getDeclName() << NewTy << OldTy | |||
17310 | << New->getReturnTypeSourceRange(); | |||
17311 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) | |||
17312 | << Old->getReturnTypeSourceRange(); | |||
17313 | return true; | |||
17314 | } | |||
17315 | ||||
17316 | return false; | |||
17317 | } | |||
17318 | ||||
17319 | /// Mark the given method pure. | |||
17320 | /// | |||
17321 | /// \param Method the method to be marked pure. | |||
17322 | /// | |||
17323 | /// \param InitRange the source range that covers the "0" initializer. | |||
17324 | bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { | |||
17325 | SourceLocation EndLoc = InitRange.getEnd(); | |||
17326 | if (EndLoc.isValid()) | |||
17327 | Method->setRangeEnd(EndLoc); | |||
17328 | ||||
17329 | if (Method->isVirtual() || Method->getParent()->isDependentContext()) { | |||
17330 | Method->setPure(); | |||
17331 | return false; | |||
17332 | } | |||
17333 | ||||
17334 | if (!Method->isInvalidDecl()) | |||
17335 | Diag(Method->getLocation(), diag::err_non_virtual_pure) | |||
17336 | << Method->getDeclName() << InitRange; | |||
17337 | return true; | |||
17338 | } | |||
17339 | ||||
17340 | void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { | |||
17341 | if (D->getFriendObjectKind()) | |||
17342 | Diag(D->getLocation(), diag::err_pure_friend); | |||
17343 | else if (auto *M = dyn_cast<CXXMethodDecl>(D)) | |||
17344 | CheckPureMethod(M, ZeroLoc); | |||
17345 | else | |||
17346 | Diag(D->getLocation(), diag::err_illegal_initializer); | |||
17347 | } | |||
17348 | ||||
17349 | /// Determine whether the given declaration is a global variable or | |||
17350 | /// static data member. | |||
17351 | static bool isNonlocalVariable(const Decl *D) { | |||
17352 | if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) | |||
17353 | return Var->hasGlobalStorage(); | |||
17354 | ||||
17355 | return false; | |||
17356 | } | |||
17357 | ||||
17358 | /// Invoked when we are about to parse an initializer for the declaration | |||
17359 | /// 'Dcl'. | |||
17360 | /// | |||
17361 | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a | |||
17362 | /// static data member of class X, names should be looked up in the scope of | |||
17363 | /// class X. If the declaration had a scope specifier, a scope will have | |||
17364 | /// been created and passed in for this purpose. Otherwise, S will be null. | |||
17365 | void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { | |||
17366 | // If there is no declaration, there was an error parsing it. | |||
17367 | if (!D || D->isInvalidDecl()) | |||
17368 | return; | |||
17369 | ||||
17370 | // We will always have a nested name specifier here, but this declaration | |||
17371 | // might not be out of line if the specifier names the current namespace: | |||
17372 | // extern int n; | |||
17373 | // int ::n = 0; | |||
17374 | if (S && D->isOutOfLine()) | |||
17375 | EnterDeclaratorContext(S, D->getDeclContext()); | |||
17376 | ||||
17377 | // If we are parsing the initializer for a static data member, push a | |||
17378 | // new expression evaluation context that is associated with this static | |||
17379 | // data member. | |||
17380 | if (isNonlocalVariable(D)) | |||
17381 | PushExpressionEvaluationContext( | |||
17382 | ExpressionEvaluationContext::PotentiallyEvaluated, D); | |||
17383 | } | |||
17384 | ||||
17385 | /// Invoked after we are finished parsing an initializer for the declaration D. | |||
17386 | void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { | |||
17387 | // If there is no declaration, there was an error parsing it. | |||
17388 | if (!D || D->isInvalidDecl()) | |||
17389 | return; | |||
17390 | ||||
17391 | if (isNonlocalVariable(D)) | |||
17392 | PopExpressionEvaluationContext(); | |||
17393 | ||||
17394 | if (S && D->isOutOfLine()) | |||
17395 | ExitDeclaratorContext(S); | |||
17396 | } | |||
17397 | ||||
17398 | /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a | |||
17399 | /// C++ if/switch/while/for statement. | |||
17400 | /// e.g: "if (int x = f()) {...}" | |||
17401 | DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { | |||
17402 | // C++ 6.4p2: | |||
17403 | // The declarator shall not specify a function or an array. | |||
17404 | // The type-specifier-seq shall not contain typedef and shall not declare a | |||
17405 | // new class or enumeration. | |||
17406 | assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&((void)0) | |||
17407 | "Parser allowed 'typedef' as storage class of condition decl.")((void)0); | |||
17408 | ||||
17409 | Decl *Dcl = ActOnDeclarator(S, D); | |||
17410 | if (!Dcl) | |||
17411 | return true; | |||
17412 | ||||
17413 | if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. | |||
17414 | Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) | |||
17415 | << D.getSourceRange(); | |||
17416 | return true; | |||
17417 | } | |||
17418 | ||||
17419 | return Dcl; | |||
17420 | } | |||
17421 | ||||
17422 | void Sema::LoadExternalVTableUses() { | |||
17423 | if (!ExternalSource) | |||
17424 | return; | |||
17425 | ||||
17426 | SmallVector<ExternalVTableUse, 4> VTables; | |||
17427 | ExternalSource->ReadUsedVTables(VTables); | |||
17428 | SmallVector<VTableUse, 4> NewUses; | |||
17429 | for (unsigned I = 0, N = VTables.size(); I != N; ++I) { | |||
17430 | llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos | |||
17431 | = VTablesUsed.find(VTables[I].Record); | |||
17432 | // Even if a definition wasn't required before, it may be required now. | |||
17433 | if (Pos != VTablesUsed.end()) { | |||
17434 | if (!Pos->second && VTables[I].DefinitionRequired) | |||
17435 | Pos->second = true; | |||
17436 | continue; | |||
17437 | } | |||
17438 | ||||
17439 | VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; | |||
17440 | NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); | |||
17441 | } | |||
17442 | ||||
17443 | VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); | |||
17444 | } | |||
17445 | ||||
17446 | void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, | |||
17447 | bool DefinitionRequired) { | |||
17448 | // Ignore any vtable uses in unevaluated operands or for classes that do | |||
17449 | // not have a vtable. | |||
17450 | if (!Class->isDynamicClass() || Class->isDependentContext() || | |||
17451 | CurContext->isDependentContext() || isUnevaluatedContext()) | |||
17452 | return; | |||
17453 | // Do not mark as used if compiling for the device outside of the target | |||
17454 | // region. | |||
17455 | if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice && | |||
17456 | !isInOpenMPDeclareTargetContext() && | |||
17457 | !isInOpenMPTargetExecutionDirective()) { | |||
17458 | if (!DefinitionRequired) | |||
17459 | MarkVirtualMembersReferenced(Loc, Class); | |||
17460 | return; | |||
17461 | } | |||
17462 | ||||
17463 | // Try to insert this class into the map. | |||
17464 | LoadExternalVTableUses(); | |||
17465 | Class = Class->getCanonicalDecl(); | |||
17466 | std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> | |||
17467 | Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); | |||
17468 | if (!Pos.second) { | |||
17469 | // If we already had an entry, check to see if we are promoting this vtable | |||
17470 | // to require a definition. If so, we need to reappend to the VTableUses | |||
17471 | // list, since we may have already processed the first entry. | |||
17472 | if (DefinitionRequired && !Pos.first->second) { | |||
17473 | Pos.first->second = true; | |||
17474 | } else { | |||
17475 | // Otherwise, we can early exit. | |||
17476 | return; | |||
17477 | } | |||
17478 | } else { | |||
17479 | // The Microsoft ABI requires that we perform the destructor body | |||
17480 | // checks (i.e. operator delete() lookup) when the vtable is marked used, as | |||
17481 | // the deleting destructor is emitted with the vtable, not with the | |||
17482 | // destructor definition as in the Itanium ABI. | |||
17483 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
17484 | CXXDestructorDecl *DD = Class->getDestructor(); | |||
17485 | if (DD && DD->isVirtual() && !DD->isDeleted()) { | |||
17486 | if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { | |||
17487 | // If this is an out-of-line declaration, marking it referenced will | |||
17488 | // not do anything. Manually call CheckDestructor to look up operator | |||
17489 | // delete(). | |||
17490 | ContextRAII SavedContext(*this, DD); | |||
17491 | CheckDestructor(DD); | |||
17492 | } else { | |||
17493 | MarkFunctionReferenced(Loc, Class->getDestructor()); | |||
17494 | } | |||
17495 | } | |||
17496 | } | |||
17497 | } | |||
17498 | ||||
17499 | // Local classes need to have their virtual members marked | |||
17500 | // immediately. For all other classes, we mark their virtual members | |||
17501 | // at the end of the translation unit. | |||
17502 | if (Class->isLocalClass()) | |||
17503 | MarkVirtualMembersReferenced(Loc, Class); | |||
17504 | else | |||
17505 | VTableUses.push_back(std::make_pair(Class, Loc)); | |||
17506 | } | |||
17507 | ||||
17508 | bool Sema::DefineUsedVTables() { | |||
17509 | LoadExternalVTableUses(); | |||
17510 | if (VTableUses.empty()) | |||
17511 | return false; | |||
17512 | ||||
17513 | // Note: The VTableUses vector could grow as a result of marking | |||
17514 | // the members of a class as "used", so we check the size each | |||
17515 | // time through the loop and prefer indices (which are stable) to | |||
17516 | // iterators (which are not). | |||
17517 | bool DefinedAnything = false; | |||
17518 | for (unsigned I = 0; I != VTableUses.size(); ++I) { | |||
17519 | CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); | |||
17520 | if (!Class) | |||
17521 | continue; | |||
17522 | TemplateSpecializationKind ClassTSK = | |||
17523 | Class->getTemplateSpecializationKind(); | |||
17524 | ||||
17525 | SourceLocation Loc = VTableUses[I].second; | |||
17526 | ||||
17527 | bool DefineVTable = true; | |||
17528 | ||||
17529 | // If this class has a key function, but that key function is | |||
17530 | // defined in another translation unit, we don't need to emit the | |||
17531 | // vtable even though we're using it. | |||
17532 | const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); | |||
17533 | if (KeyFunction && !KeyFunction->hasBody()) { | |||
17534 | // The key function is in another translation unit. | |||
17535 | DefineVTable = false; | |||
17536 | TemplateSpecializationKind TSK = | |||
17537 | KeyFunction->getTemplateSpecializationKind(); | |||
17538 | assert(TSK != TSK_ExplicitInstantiationDefinition &&((void)0) | |||
17539 | TSK != TSK_ImplicitInstantiation &&((void)0) | |||
17540 | "Instantiations don't have key functions")((void)0); | |||
17541 | (void)TSK; | |||
17542 | } else if (!KeyFunction) { | |||
17543 | // If we have a class with no key function that is the subject | |||
17544 | // of an explicit instantiation declaration, suppress the | |||
17545 | // vtable; it will live with the explicit instantiation | |||
17546 | // definition. | |||
17547 | bool IsExplicitInstantiationDeclaration = | |||
17548 | ClassTSK == TSK_ExplicitInstantiationDeclaration; | |||
17549 | for (auto R : Class->redecls()) { | |||
17550 | TemplateSpecializationKind TSK | |||
17551 | = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); | |||
17552 | if (TSK == TSK_ExplicitInstantiationDeclaration) | |||
17553 | IsExplicitInstantiationDeclaration = true; | |||
17554 | else if (TSK == TSK_ExplicitInstantiationDefinition) { | |||
17555 | IsExplicitInstantiationDeclaration = false; | |||
17556 | break; | |||
17557 | } | |||
17558 | } | |||
17559 | ||||
17560 | if (IsExplicitInstantiationDeclaration) | |||
17561 | DefineVTable = false; | |||
17562 | } | |||
17563 | ||||
17564 | // The exception specifications for all virtual members may be needed even | |||
17565 | // if we are not providing an authoritative form of the vtable in this TU. | |||
17566 | // We may choose to emit it available_externally anyway. | |||
17567 | if (!DefineVTable) { | |||
17568 | MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); | |||
17569 | continue; | |||
17570 | } | |||
17571 | ||||
17572 | // Mark all of the virtual members of this class as referenced, so | |||
17573 | // that we can build a vtable. Then, tell the AST consumer that a | |||
17574 | // vtable for this class is required. | |||
17575 | DefinedAnything = true; | |||
17576 | MarkVirtualMembersReferenced(Loc, Class); | |||
17577 | CXXRecordDecl *Canonical = Class->getCanonicalDecl(); | |||
17578 | if (VTablesUsed[Canonical]) | |||
17579 | Consumer.HandleVTable(Class); | |||
17580 | ||||
17581 | // Warn if we're emitting a weak vtable. The vtable will be weak if there is | |||
17582 | // no key function or the key function is inlined. Don't warn in C++ ABIs | |||
17583 | // that lack key functions, since the user won't be able to make one. | |||
17584 | if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && | |||
17585 | Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) { | |||
17586 | const FunctionDecl *KeyFunctionDef = nullptr; | |||
17587 | if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && | |||
17588 | KeyFunctionDef->isInlined())) { | |||
17589 | Diag(Class->getLocation(), | |||
17590 | ClassTSK == TSK_ExplicitInstantiationDefinition | |||
17591 | ? diag::warn_weak_template_vtable | |||
17592 | : diag::warn_weak_vtable) | |||
17593 | << Class; | |||
17594 | } | |||
17595 | } | |||
17596 | } | |||
17597 | VTableUses.clear(); | |||
17598 | ||||
17599 | return DefinedAnything; | |||
17600 | } | |||
17601 | ||||
17602 | void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, | |||
17603 | const CXXRecordDecl *RD) { | |||
17604 | for (const auto *I : RD->methods()) | |||
17605 | if (I->isVirtual() && !I->isPure()) | |||
17606 | ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); | |||
17607 | } | |||
17608 | ||||
17609 | void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, | |||
17610 | const CXXRecordDecl *RD, | |||
17611 | bool ConstexprOnly) { | |||
17612 | // Mark all functions which will appear in RD's vtable as used. | |||
17613 | CXXFinalOverriderMap FinalOverriders; | |||
17614 | RD->getFinalOverriders(FinalOverriders); | |||
17615 | for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), | |||
17616 | E = FinalOverriders.end(); | |||
17617 | I != E; ++I) { | |||
17618 | for (OverridingMethods::const_iterator OI = I->second.begin(), | |||
17619 | OE = I->second.end(); | |||
17620 | OI != OE; ++OI) { | |||
17621 | assert(OI->second.size() > 0 && "no final overrider")((void)0); | |||
17622 | CXXMethodDecl *Overrider = OI->second.front().Method; | |||
17623 | ||||
17624 | // C++ [basic.def.odr]p2: | |||
17625 | // [...] A virtual member function is used if it is not pure. [...] | |||
17626 | if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) | |||
17627 | MarkFunctionReferenced(Loc, Overrider); | |||
17628 | } | |||
17629 | } | |||
17630 | ||||
17631 | // Only classes that have virtual bases need a VTT. | |||
17632 | if (RD->getNumVBases() == 0) | |||
17633 | return; | |||
17634 | ||||
17635 | for (const auto &I : RD->bases()) { | |||
17636 | const auto *Base = | |||
17637 | cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); | |||
17638 | if (Base->getNumVBases() == 0) | |||
17639 | continue; | |||
17640 | MarkVirtualMembersReferenced(Loc, Base); | |||
17641 | } | |||
17642 | } | |||
17643 | ||||
17644 | /// SetIvarInitializers - This routine builds initialization ASTs for the | |||
17645 | /// Objective-C implementation whose ivars need be initialized. | |||
17646 | void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { | |||
17647 | if (!getLangOpts().CPlusPlus) | |||
17648 | return; | |||
17649 | if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { | |||
17650 | SmallVector<ObjCIvarDecl*, 8> ivars; | |||
17651 | CollectIvarsToConstructOrDestruct(OID, ivars); | |||
17652 | if (ivars.empty()) | |||
17653 | return; | |||
17654 | SmallVector<CXXCtorInitializer*, 32> AllToInit; | |||
17655 | for (unsigned i = 0; i < ivars.size(); i++) { | |||
17656 | FieldDecl *Field = ivars[i]; | |||
17657 | if (Field->isInvalidDecl()) | |||
17658 | continue; | |||
17659 | ||||
17660 | CXXCtorInitializer *Member; | |||
17661 | InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); | |||
17662 | InitializationKind InitKind = | |||
17663 | InitializationKind::CreateDefault(ObjCImplementation->getLocation()); | |||
17664 | ||||
17665 | InitializationSequence InitSeq(*this, InitEntity, InitKind, None); | |||
17666 | ExprResult MemberInit = | |||
17667 | InitSeq.Perform(*this, InitEntity, InitKind, None); | |||
17668 | MemberInit = MaybeCreateExprWithCleanups(MemberInit); | |||
17669 | // Note, MemberInit could actually come back empty if no initialization | |||
17670 | // is required (e.g., because it would call a trivial default constructor) | |||
17671 | if (!MemberInit.get() || MemberInit.isInvalid()) | |||
17672 | continue; | |||
17673 | ||||
17674 | Member = | |||
17675 | new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), | |||
17676 | SourceLocation(), | |||
17677 | MemberInit.getAs<Expr>(), | |||
17678 | SourceLocation()); | |||
17679 | AllToInit.push_back(Member); | |||
17680 | ||||
17681 | // Be sure that the destructor is accessible and is marked as referenced. | |||
17682 | if (const RecordType *RecordTy = | |||
17683 | Context.getBaseElementType(Field->getType()) | |||
17684 | ->getAs<RecordType>()) { | |||
17685 | CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | |||
17686 | if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { | |||
17687 | MarkFunctionReferenced(Field->getLocation(), Destructor); | |||
17688 | CheckDestructorAccess(Field->getLocation(), Destructor, | |||
17689 | PDiag(diag::err_access_dtor_ivar) | |||
17690 | << Context.getBaseElementType(Field->getType())); | |||
17691 | } | |||
17692 | } | |||
17693 | } | |||
17694 | ObjCImplementation->setIvarInitializers(Context, | |||
17695 | AllToInit.data(), AllToInit.size()); | |||
17696 | } | |||
17697 | } | |||
17698 | ||||
17699 | static | |||
17700 | void DelegatingCycleHelper(CXXConstructorDecl* Ctor, | |||
17701 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, | |||
17702 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, | |||
17703 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, | |||
17704 | Sema &S) { | |||
17705 | if (Ctor->isInvalidDecl()) | |||
17706 | return; | |||
17707 | ||||
17708 | CXXConstructorDecl *Target = Ctor->getTargetConstructor(); | |||
17709 | ||||
17710 | // Target may not be determinable yet, for instance if this is a dependent | |||
17711 | // call in an uninstantiated template. | |||
17712 | if (Target) { | |||
17713 | const FunctionDecl *FNTarget = nullptr; | |||
17714 | (void)Target->hasBody(FNTarget); | |||
17715 | Target = const_cast<CXXConstructorDecl*>( | |||
17716 | cast_or_null<CXXConstructorDecl>(FNTarget)); | |||
17717 | } | |||
17718 | ||||
17719 | CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), | |||
17720 | // Avoid dereferencing a null pointer here. | |||
17721 | *TCanonical = Target? Target->getCanonicalDecl() : nullptr; | |||
17722 | ||||
17723 | if (!Current.insert(Canonical).second) | |||
17724 | return; | |||
17725 | ||||
17726 | // We know that beyond here, we aren't chaining into a cycle. | |||
17727 | if (!Target || !Target->isDelegatingConstructor() || | |||
17728 | Target->isInvalidDecl() || Valid.count(TCanonical)) { | |||
17729 | Valid.insert(Current.begin(), Current.end()); | |||
17730 | Current.clear(); | |||
17731 | // We've hit a cycle. | |||
17732 | } else if (TCanonical == Canonical || Invalid.count(TCanonical) || | |||
17733 | Current.count(TCanonical)) { | |||
17734 | // If we haven't diagnosed this cycle yet, do so now. | |||
17735 | if (!Invalid.count(TCanonical)) { | |||
17736 | S.Diag((*Ctor->init_begin())->getSourceLocation(), | |||
17737 | diag::warn_delegating_ctor_cycle) | |||
17738 | << Ctor; | |||
17739 | ||||
17740 | // Don't add a note for a function delegating directly to itself. | |||
17741 | if (TCanonical != Canonical) | |||
17742 | S.Diag(Target->getLocation(), diag::note_it_delegates_to); | |||
17743 | ||||
17744 | CXXConstructorDecl *C = Target; | |||
17745 | while (C->getCanonicalDecl() != Canonical) { | |||
17746 | const FunctionDecl *FNTarget = nullptr; | |||
17747 | (void)C->getTargetConstructor()->hasBody(FNTarget); | |||
17748 | assert(FNTarget && "Ctor cycle through bodiless function")((void)0); | |||
17749 | ||||
17750 | C = const_cast<CXXConstructorDecl*>( | |||
17751 | cast<CXXConstructorDecl>(FNTarget)); | |||
17752 | S.Diag(C->getLocation(), diag::note_which_delegates_to); | |||
17753 | } | |||
17754 | } | |||
17755 | ||||
17756 | Invalid.insert(Current.begin(), Current.end()); | |||
17757 | Current.clear(); | |||
17758 | } else { | |||
17759 | DelegatingCycleHelper(Target, Valid, Invalid, Current, S); | |||
17760 | } | |||
17761 | } | |||
17762 | ||||
17763 | ||||
17764 | void Sema::CheckDelegatingCtorCycles() { | |||
17765 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; | |||
17766 | ||||
17767 | for (DelegatingCtorDeclsType::iterator | |||
17768 | I = DelegatingCtorDecls.begin(ExternalSource), | |||
17769 | E = DelegatingCtorDecls.end(); | |||
17770 | I != E; ++I) | |||
17771 | DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); | |||
17772 | ||||
17773 | for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) | |||
17774 | (*CI)->setInvalidDecl(); | |||
17775 | } | |||
17776 | ||||
17777 | namespace { | |||
17778 | /// AST visitor that finds references to the 'this' expression. | |||
17779 | class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { | |||
17780 | Sema &S; | |||
17781 | ||||
17782 | public: | |||
17783 | explicit FindCXXThisExpr(Sema &S) : S(S) { } | |||
17784 | ||||
17785 | bool VisitCXXThisExpr(CXXThisExpr *E) { | |||
17786 | S.Diag(E->getLocation(), diag::err_this_static_member_func) | |||
17787 | << E->isImplicit(); | |||
17788 | return false; | |||
17789 | } | |||
17790 | }; | |||
17791 | } | |||
17792 | ||||
17793 | bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { | |||
17794 | TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); | |||
17795 | if (!TSInfo) | |||
17796 | return false; | |||
17797 | ||||
17798 | TypeLoc TL = TSInfo->getTypeLoc(); | |||
17799 | FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); | |||
17800 | if (!ProtoTL) | |||
17801 | return false; | |||
17802 | ||||
17803 | // C++11 [expr.prim.general]p3: | |||
17804 | // [The expression this] shall not appear before the optional | |||
17805 | // cv-qualifier-seq and it shall not appear within the declaration of a | |||
17806 | // static member function (although its type and value category are defined | |||
17807 | // within a static member function as they are within a non-static member | |||
17808 | // function). [ Note: this is because declaration matching does not occur | |||
17809 | // until the complete declarator is known. - end note ] | |||
17810 | const FunctionProtoType *Proto = ProtoTL.getTypePtr(); | |||
17811 | FindCXXThisExpr Finder(*this); | |||
17812 | ||||
17813 | // If the return type came after the cv-qualifier-seq, check it now. | |||
17814 | if (Proto->hasTrailingReturn() && | |||
17815 | !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) | |||
17816 | return true; | |||
17817 | ||||
17818 | // Check the exception specification. | |||
17819 | if (checkThisInStaticMemberFunctionExceptionSpec(Method)) | |||
17820 | return true; | |||
17821 | ||||
17822 | // Check the trailing requires clause | |||
17823 | if (Expr *E = Method->getTrailingRequiresClause()) | |||
17824 | if (!Finder.TraverseStmt(E)) | |||
17825 | return true; | |||
17826 | ||||
17827 | return checkThisInStaticMemberFunctionAttributes(Method); | |||
17828 | } | |||
17829 | ||||
17830 | bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { | |||
17831 | TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); | |||
17832 | if (!TSInfo) | |||
17833 | return false; | |||
17834 | ||||
17835 | TypeLoc TL = TSInfo->getTypeLoc(); | |||
17836 | FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); | |||
17837 | if (!ProtoTL) | |||
17838 | return false; | |||
17839 | ||||
17840 | const FunctionProtoType *Proto = ProtoTL.getTypePtr(); | |||
17841 | FindCXXThisExpr Finder(*this); | |||
17842 | ||||
17843 | switch (Proto->getExceptionSpecType()) { | |||
17844 | case EST_Unparsed: | |||
17845 | case EST_Uninstantiated: | |||
17846 | case EST_Unevaluated: | |||
17847 | case EST_BasicNoexcept: | |||
17848 | case EST_NoThrow: | |||
17849 | case EST_DynamicNone: | |||
17850 | case EST_MSAny: | |||
17851 | case EST_None: | |||
17852 | break; | |||
17853 | ||||
17854 | case EST_DependentNoexcept: | |||
17855 | case EST_NoexceptFalse: | |||
17856 | case EST_NoexceptTrue: | |||
17857 | if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) | |||
17858 | return true; | |||
17859 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
17860 | ||||
17861 | case EST_Dynamic: | |||
17862 | for (const auto &E : Proto->exceptions()) { | |||
17863 | if (!Finder.TraverseType(E)) | |||
17864 | return true; | |||
17865 | } | |||
17866 | break; | |||
17867 | } | |||
17868 | ||||
17869 | return false; | |||
17870 | } | |||
17871 | ||||
17872 | bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { | |||
17873 | FindCXXThisExpr Finder(*this); | |||
17874 | ||||
17875 | // Check attributes. | |||
17876 | for (const auto *A : Method->attrs()) { | |||
17877 | // FIXME: This should be emitted by tblgen. | |||
17878 | Expr *Arg = nullptr; | |||
17879 | ArrayRef<Expr *> Args; | |||
17880 | if (const auto *G = dyn_cast<GuardedByAttr>(A)) | |||
17881 | Arg = G->getArg(); | |||
17882 | else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) | |||
17883 | Arg = G->getArg(); | |||
17884 | else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) | |||
17885 | Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); | |||
17886 | else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) | |||
17887 | Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); | |||
17888 | else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { | |||
17889 | Arg = ETLF->getSuccessValue(); | |||
17890 | Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); | |||
17891 | } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { | |||
17892 | Arg = STLF->getSuccessValue(); | |||
17893 | Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); | |||
17894 | } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) | |||
17895 | Arg = LR->getArg(); | |||
17896 | else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) | |||
17897 | Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); | |||
17898 | else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) | |||
17899 | Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); | |||
17900 | else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) | |||
17901 | Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); | |||
17902 | else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) | |||
17903 | Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); | |||
17904 | else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) | |||
17905 | Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); | |||
17906 | ||||
17907 | if (Arg && !Finder.TraverseStmt(Arg)) | |||
17908 | return true; | |||
17909 | ||||
17910 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { | |||
17911 | if (!Finder.TraverseStmt(Args[I])) | |||
17912 | return true; | |||
17913 | } | |||
17914 | } | |||
17915 | ||||
17916 | return false; | |||
17917 | } | |||
17918 | ||||
17919 | void Sema::checkExceptionSpecification( | |||
17920 | bool IsTopLevel, ExceptionSpecificationType EST, | |||
17921 | ArrayRef<ParsedType> DynamicExceptions, | |||
17922 | ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, | |||
17923 | SmallVectorImpl<QualType> &Exceptions, | |||
17924 | FunctionProtoType::ExceptionSpecInfo &ESI) { | |||
17925 | Exceptions.clear(); | |||
17926 | ESI.Type = EST; | |||
17927 | if (EST == EST_Dynamic) { | |||
17928 | Exceptions.reserve(DynamicExceptions.size()); | |||
17929 | for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { | |||
17930 | // FIXME: Preserve type source info. | |||
17931 | QualType ET = GetTypeFromParser(DynamicExceptions[ei]); | |||
17932 | ||||
17933 | if (IsTopLevel) { | |||
17934 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; | |||
17935 | collectUnexpandedParameterPacks(ET, Unexpanded); | |||
17936 | if (!Unexpanded.empty()) { | |||
17937 | DiagnoseUnexpandedParameterPacks( | |||
17938 | DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, | |||
17939 | Unexpanded); | |||
17940 | continue; | |||
17941 | } | |||
17942 | } | |||
17943 | ||||
17944 | // Check that the type is valid for an exception spec, and | |||
17945 | // drop it if not. | |||
17946 | if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) | |||
17947 | Exceptions.push_back(ET); | |||
17948 | } | |||
17949 | ESI.Exceptions = Exceptions; | |||
17950 | return; | |||
17951 | } | |||
17952 | ||||
17953 | if (isComputedNoexcept(EST)) { | |||
17954 | assert((NoexceptExpr->isTypeDependent() ||((void)0) | |||
17955 | NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==((void)0) | |||
17956 | Context.BoolTy) &&((void)0) | |||
17957 | "Parser should have made sure that the expression is boolean")((void)0); | |||
17958 | if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { | |||
17959 | ESI.Type = EST_BasicNoexcept; | |||
17960 | return; | |||
17961 | } | |||
17962 | ||||
17963 | ESI.NoexceptExpr = NoexceptExpr; | |||
17964 | return; | |||
17965 | } | |||
17966 | } | |||
17967 | ||||
17968 | void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, | |||
17969 | ExceptionSpecificationType EST, | |||
17970 | SourceRange SpecificationRange, | |||
17971 | ArrayRef<ParsedType> DynamicExceptions, | |||
17972 | ArrayRef<SourceRange> DynamicExceptionRanges, | |||
17973 | Expr *NoexceptExpr) { | |||
17974 | if (!MethodD) | |||
17975 | return; | |||
17976 | ||||
17977 | // Dig out the method we're referring to. | |||
17978 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) | |||
17979 | MethodD = FunTmpl->getTemplatedDecl(); | |||
17980 | ||||
17981 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); | |||
17982 | if (!Method) | |||
17983 | return; | |||
17984 | ||||
17985 | // Check the exception specification. | |||
17986 | llvm::SmallVector<QualType, 4> Exceptions; | |||
17987 | FunctionProtoType::ExceptionSpecInfo ESI; | |||
17988 | checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, | |||
17989 | DynamicExceptionRanges, NoexceptExpr, Exceptions, | |||
17990 | ESI); | |||
17991 | ||||
17992 | // Update the exception specification on the function type. | |||
17993 | Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); | |||
17994 | ||||
17995 | if (Method->isStatic()) | |||
17996 | checkThisInStaticMemberFunctionExceptionSpec(Method); | |||
17997 | ||||
17998 | if (Method->isVirtual()) { | |||
17999 | // Check overrides, which we previously had to delay. | |||
18000 | for (const CXXMethodDecl *O : Method->overridden_methods()) | |||
18001 | CheckOverridingFunctionExceptionSpec(Method, O); | |||
18002 | } | |||
18003 | } | |||
18004 | ||||
18005 | /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. | |||
18006 | /// | |||
18007 | MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, | |||
18008 | SourceLocation DeclStart, Declarator &D, | |||
18009 | Expr *BitWidth, | |||
18010 | InClassInitStyle InitStyle, | |||
18011 | AccessSpecifier AS, | |||
18012 | const ParsedAttr &MSPropertyAttr) { | |||
18013 | IdentifierInfo *II = D.getIdentifier(); | |||
18014 | if (!II) { | |||
18015 | Diag(DeclStart, diag::err_anonymous_property); | |||
18016 | return nullptr; | |||
18017 | } | |||
18018 | SourceLocation Loc = D.getIdentifierLoc(); | |||
18019 | ||||
18020 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
18021 | QualType T = TInfo->getType(); | |||
18022 | if (getLangOpts().CPlusPlus) { | |||
18023 | CheckExtraCXXDefaultArguments(D); | |||
18024 | ||||
18025 | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | |||
18026 | UPPC_DataMemberType)) { | |||
18027 | D.setInvalidType(); | |||
18028 | T = Context.IntTy; | |||
18029 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | |||
18030 | } | |||
18031 | } | |||
18032 | ||||
18033 | DiagnoseFunctionSpecifiers(D.getDeclSpec()); | |||
18034 | ||||
18035 | if (D.getDeclSpec().isInlineSpecified()) | |||
18036 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | |||
18037 | << getLangOpts().CPlusPlus17; | |||
18038 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) | |||
18039 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |||
18040 | diag::err_invalid_thread) | |||
18041 | << DeclSpec::getSpecifierName(TSCS); | |||
18042 | ||||
18043 | // Check to see if this name was declared as a member previously | |||
18044 | NamedDecl *PrevDecl = nullptr; | |||
18045 | LookupResult Previous(*this, II, Loc, LookupMemberName, | |||
18046 | ForVisibleRedeclaration); | |||
18047 | LookupName(Previous, S); | |||
18048 | switch (Previous.getResultKind()) { | |||
18049 | case LookupResult::Found: | |||
18050 | case LookupResult::FoundUnresolvedValue: | |||
18051 | PrevDecl = Previous.getAsSingle<NamedDecl>(); | |||
18052 | break; | |||
18053 | ||||
18054 | case LookupResult::FoundOverloaded: | |||
18055 | PrevDecl = Previous.getRepresentativeDecl(); | |||
18056 | break; | |||
18057 | ||||
18058 | case LookupResult::NotFound: | |||
18059 | case LookupResult::NotFoundInCurrentInstantiation: | |||
18060 | case LookupResult::Ambiguous: | |||
18061 | break; | |||
18062 | } | |||
18063 | ||||
18064 | if (PrevDecl && PrevDecl->isTemplateParameter()) { | |||
18065 | // Maybe we will complain about the shadowed template parameter. | |||
18066 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | |||
18067 | // Just pretend that we didn't see the previous declaration. | |||
18068 | PrevDecl = nullptr; | |||
18069 | } | |||
18070 | ||||
18071 | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) | |||
18072 | PrevDecl = nullptr; | |||
18073 | ||||
18074 | SourceLocation TSSL = D.getBeginLoc(); | |||
18075 | MSPropertyDecl *NewPD = | |||
18076 | MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, | |||
18077 | MSPropertyAttr.getPropertyDataGetter(), | |||
18078 | MSPropertyAttr.getPropertyDataSetter()); | |||
18079 | ProcessDeclAttributes(TUScope, NewPD, D); | |||
18080 | NewPD->setAccess(AS); | |||
18081 | ||||
18082 | if (NewPD->isInvalidDecl()) | |||
18083 | Record->setInvalidDecl(); | |||
18084 | ||||
18085 | if (D.getDeclSpec().isModulePrivateSpecified()) | |||
18086 | NewPD->setModulePrivate(); | |||
18087 | ||||
18088 | if (NewPD->isInvalidDecl() && PrevDecl) { | |||
18089 | // Don't introduce NewFD into scope; there's already something | |||
18090 | // with the same name in the same scope. | |||
18091 | } else if (II) { | |||
18092 | PushOnScopeChains(NewPD, S); | |||
18093 | } else | |||
18094 | Record->addDecl(NewPD); | |||
18095 | ||||
18096 | return NewPD; | |||
18097 | } | |||
18098 | ||||
18099 | void Sema::ActOnStartFunctionDeclarationDeclarator( | |||
18100 | Declarator &Declarator, unsigned TemplateParameterDepth) { | |||
18101 | auto &Info = InventedParameterInfos.emplace_back(); | |||
18102 | TemplateParameterList *ExplicitParams = nullptr; | |||
18103 | ArrayRef<TemplateParameterList *> ExplicitLists = | |||
18104 | Declarator.getTemplateParameterLists(); | |||
18105 | if (!ExplicitLists.empty()) { | |||
18106 | bool IsMemberSpecialization, IsInvalid; | |||
18107 | ExplicitParams = MatchTemplateParametersToScopeSpecifier( | |||
18108 | Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), | |||
18109 | Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, | |||
18110 | ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, | |||
18111 | /*SuppressDiagnostic=*/true); | |||
18112 | } | |||
18113 | if (ExplicitParams) { | |||
18114 | Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); | |||
18115 | for (NamedDecl *Param : *ExplicitParams) | |||
18116 | Info.TemplateParams.push_back(Param); | |||
18117 | Info.NumExplicitTemplateParams = ExplicitParams->size(); | |||
18118 | } else { | |||
18119 | Info.AutoTemplateParameterDepth = TemplateParameterDepth; | |||
18120 | Info.NumExplicitTemplateParams = 0; | |||
18121 | } | |||
18122 | } | |||
18123 | ||||
18124 | void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { | |||
18125 | auto &FSI = InventedParameterInfos.back(); | |||
18126 | if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { | |||
18127 | if (FSI.NumExplicitTemplateParams != 0) { | |||
18128 | TemplateParameterList *ExplicitParams = | |||
18129 | Declarator.getTemplateParameterLists().back(); | |||
18130 | Declarator.setInventedTemplateParameterList( | |||
18131 | TemplateParameterList::Create( | |||
18132 | Context, ExplicitParams->getTemplateLoc(), | |||
18133 | ExplicitParams->getLAngleLoc(), FSI.TemplateParams, | |||
18134 | ExplicitParams->getRAngleLoc(), | |||
18135 | ExplicitParams->getRequiresClause())); | |||
18136 | } else { | |||
18137 | Declarator.setInventedTemplateParameterList( | |||
18138 | TemplateParameterList::Create( | |||
18139 | Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, | |||
18140 | SourceLocation(), /*RequiresClause=*/nullptr)); | |||
18141 | } | |||
18142 | } | |||
18143 | InventedParameterInfos.pop_back(); | |||
18144 | } |