File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaInit.cpp |
Warning: | line 3913, column 7 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file implements semantic analysis for initializers. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "clang/AST/ASTContext.h" | |||
14 | #include "clang/AST/DeclObjC.h" | |||
15 | #include "clang/AST/ExprCXX.h" | |||
16 | #include "clang/AST/ExprObjC.h" | |||
17 | #include "clang/AST/ExprOpenMP.h" | |||
18 | #include "clang/AST/TypeLoc.h" | |||
19 | #include "clang/Basic/CharInfo.h" | |||
20 | #include "clang/Basic/SourceManager.h" | |||
21 | #include "clang/Basic/TargetInfo.h" | |||
22 | #include "clang/Sema/Designator.h" | |||
23 | #include "clang/Sema/Initialization.h" | |||
24 | #include "clang/Sema/Lookup.h" | |||
25 | #include "clang/Sema/SemaInternal.h" | |||
26 | #include "llvm/ADT/APInt.h" | |||
27 | #include "llvm/ADT/PointerIntPair.h" | |||
28 | #include "llvm/ADT/SmallString.h" | |||
29 | #include "llvm/Support/ErrorHandling.h" | |||
30 | #include "llvm/Support/raw_ostream.h" | |||
31 | ||||
32 | using namespace clang; | |||
33 | ||||
34 | //===----------------------------------------------------------------------===// | |||
35 | // Sema Initialization Checking | |||
36 | //===----------------------------------------------------------------------===// | |||
37 | ||||
38 | /// Check whether T is compatible with a wide character type (wchar_t, | |||
39 | /// char16_t or char32_t). | |||
40 | static bool IsWideCharCompatible(QualType T, ASTContext &Context) { | |||
41 | if (Context.typesAreCompatible(Context.getWideCharType(), T)) | |||
42 | return true; | |||
43 | if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { | |||
44 | return Context.typesAreCompatible(Context.Char16Ty, T) || | |||
45 | Context.typesAreCompatible(Context.Char32Ty, T); | |||
46 | } | |||
47 | return false; | |||
48 | } | |||
49 | ||||
50 | enum StringInitFailureKind { | |||
51 | SIF_None, | |||
52 | SIF_NarrowStringIntoWideChar, | |||
53 | SIF_WideStringIntoChar, | |||
54 | SIF_IncompatWideStringIntoWideChar, | |||
55 | SIF_UTF8StringIntoPlainChar, | |||
56 | SIF_PlainStringIntoUTF8Char, | |||
57 | SIF_Other | |||
58 | }; | |||
59 | ||||
60 | /// Check whether the array of type AT can be initialized by the Init | |||
61 | /// expression by means of string initialization. Returns SIF_None if so, | |||
62 | /// otherwise returns a StringInitFailureKind that describes why the | |||
63 | /// initialization would not work. | |||
64 | static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, | |||
65 | ASTContext &Context) { | |||
66 | if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) | |||
67 | return SIF_Other; | |||
68 | ||||
69 | // See if this is a string literal or @encode. | |||
70 | Init = Init->IgnoreParens(); | |||
71 | ||||
72 | // Handle @encode, which is a narrow string. | |||
73 | if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) | |||
74 | return SIF_None; | |||
75 | ||||
76 | // Otherwise we can only handle string literals. | |||
77 | StringLiteral *SL = dyn_cast<StringLiteral>(Init); | |||
78 | if (!SL) | |||
79 | return SIF_Other; | |||
80 | ||||
81 | const QualType ElemTy = | |||
82 | Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); | |||
83 | ||||
84 | switch (SL->getKind()) { | |||
85 | case StringLiteral::UTF8: | |||
86 | // char8_t array can be initialized with a UTF-8 string. | |||
87 | if (ElemTy->isChar8Type()) | |||
88 | return SIF_None; | |||
89 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
90 | case StringLiteral::Ascii: | |||
91 | // char array can be initialized with a narrow string. | |||
92 | // Only allow char x[] = "foo"; not char x[] = L"foo"; | |||
93 | if (ElemTy->isCharType()) | |||
94 | return (SL->getKind() == StringLiteral::UTF8 && | |||
95 | Context.getLangOpts().Char8) | |||
96 | ? SIF_UTF8StringIntoPlainChar | |||
97 | : SIF_None; | |||
98 | if (ElemTy->isChar8Type()) | |||
99 | return SIF_PlainStringIntoUTF8Char; | |||
100 | if (IsWideCharCompatible(ElemTy, Context)) | |||
101 | return SIF_NarrowStringIntoWideChar; | |||
102 | return SIF_Other; | |||
103 | // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: | |||
104 | // "An array with element type compatible with a qualified or unqualified | |||
105 | // version of wchar_t, char16_t, or char32_t may be initialized by a wide | |||
106 | // string literal with the corresponding encoding prefix (L, u, or U, | |||
107 | // respectively), optionally enclosed in braces. | |||
108 | case StringLiteral::UTF16: | |||
109 | if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) | |||
110 | return SIF_None; | |||
111 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) | |||
112 | return SIF_WideStringIntoChar; | |||
113 | if (IsWideCharCompatible(ElemTy, Context)) | |||
114 | return SIF_IncompatWideStringIntoWideChar; | |||
115 | return SIF_Other; | |||
116 | case StringLiteral::UTF32: | |||
117 | if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) | |||
118 | return SIF_None; | |||
119 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) | |||
120 | return SIF_WideStringIntoChar; | |||
121 | if (IsWideCharCompatible(ElemTy, Context)) | |||
122 | return SIF_IncompatWideStringIntoWideChar; | |||
123 | return SIF_Other; | |||
124 | case StringLiteral::Wide: | |||
125 | if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) | |||
126 | return SIF_None; | |||
127 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) | |||
128 | return SIF_WideStringIntoChar; | |||
129 | if (IsWideCharCompatible(ElemTy, Context)) | |||
130 | return SIF_IncompatWideStringIntoWideChar; | |||
131 | return SIF_Other; | |||
132 | } | |||
133 | ||||
134 | llvm_unreachable("missed a StringLiteral kind?")__builtin_unreachable(); | |||
135 | } | |||
136 | ||||
137 | static StringInitFailureKind IsStringInit(Expr *init, QualType declType, | |||
138 | ASTContext &Context) { | |||
139 | const ArrayType *arrayType = Context.getAsArrayType(declType); | |||
140 | if (!arrayType) | |||
141 | return SIF_Other; | |||
142 | return IsStringInit(init, arrayType, Context); | |||
143 | } | |||
144 | ||||
145 | bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { | |||
146 | return ::IsStringInit(Init, AT, Context) == SIF_None; | |||
147 | } | |||
148 | ||||
149 | /// Update the type of a string literal, including any surrounding parentheses, | |||
150 | /// to match the type of the object which it is initializing. | |||
151 | static void updateStringLiteralType(Expr *E, QualType Ty) { | |||
152 | while (true) { | |||
153 | E->setType(Ty); | |||
154 | E->setValueKind(VK_PRValue); | |||
155 | if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { | |||
156 | break; | |||
157 | } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { | |||
158 | E = PE->getSubExpr(); | |||
159 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | |||
160 | assert(UO->getOpcode() == UO_Extension)((void)0); | |||
161 | E = UO->getSubExpr(); | |||
162 | } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { | |||
163 | E = GSE->getResultExpr(); | |||
164 | } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { | |||
165 | E = CE->getChosenSubExpr(); | |||
166 | } else { | |||
167 | llvm_unreachable("unexpected expr in string literal init")__builtin_unreachable(); | |||
168 | } | |||
169 | } | |||
170 | } | |||
171 | ||||
172 | /// Fix a compound literal initializing an array so it's correctly marked | |||
173 | /// as an rvalue. | |||
174 | static void updateGNUCompoundLiteralRValue(Expr *E) { | |||
175 | while (true) { | |||
176 | E->setValueKind(VK_PRValue); | |||
177 | if (isa<CompoundLiteralExpr>(E)) { | |||
178 | break; | |||
179 | } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { | |||
180 | E = PE->getSubExpr(); | |||
181 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | |||
182 | assert(UO->getOpcode() == UO_Extension)((void)0); | |||
183 | E = UO->getSubExpr(); | |||
184 | } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { | |||
185 | E = GSE->getResultExpr(); | |||
186 | } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { | |||
187 | E = CE->getChosenSubExpr(); | |||
188 | } else { | |||
189 | llvm_unreachable("unexpected expr in array compound literal init")__builtin_unreachable(); | |||
190 | } | |||
191 | } | |||
192 | } | |||
193 | ||||
194 | static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, | |||
195 | Sema &S) { | |||
196 | // Get the length of the string as parsed. | |||
197 | auto *ConstantArrayTy = | |||
198 | cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); | |||
199 | uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); | |||
200 | ||||
201 | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { | |||
202 | // C99 6.7.8p14. We have an array of character type with unknown size | |||
203 | // being initialized to a string literal. | |||
204 | llvm::APInt ConstVal(32, StrLength); | |||
205 | // Return a new array type (C99 6.7.8p22). | |||
206 | DeclT = S.Context.getConstantArrayType(IAT->getElementType(), | |||
207 | ConstVal, nullptr, | |||
208 | ArrayType::Normal, 0); | |||
209 | updateStringLiteralType(Str, DeclT); | |||
210 | return; | |||
211 | } | |||
212 | ||||
213 | const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); | |||
214 | ||||
215 | // We have an array of character type with known size. However, | |||
216 | // the size may be smaller or larger than the string we are initializing. | |||
217 | // FIXME: Avoid truncation for 64-bit length strings. | |||
218 | if (S.getLangOpts().CPlusPlus) { | |||
219 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { | |||
220 | // For Pascal strings it's OK to strip off the terminating null character, | |||
221 | // so the example below is valid: | |||
222 | // | |||
223 | // unsigned char a[2] = "\pa"; | |||
224 | if (SL->isPascal()) | |||
225 | StrLength--; | |||
226 | } | |||
227 | ||||
228 | // [dcl.init.string]p2 | |||
229 | if (StrLength > CAT->getSize().getZExtValue()) | |||
230 | S.Diag(Str->getBeginLoc(), | |||
231 | diag::err_initializer_string_for_char_array_too_long) | |||
232 | << Str->getSourceRange(); | |||
233 | } else { | |||
234 | // C99 6.7.8p14. | |||
235 | if (StrLength-1 > CAT->getSize().getZExtValue()) | |||
236 | S.Diag(Str->getBeginLoc(), | |||
237 | diag::ext_initializer_string_for_char_array_too_long) | |||
238 | << Str->getSourceRange(); | |||
239 | } | |||
240 | ||||
241 | // Set the type to the actual size that we are initializing. If we have | |||
242 | // something like: | |||
243 | // char x[1] = "foo"; | |||
244 | // then this will set the string literal's type to char[1]. | |||
245 | updateStringLiteralType(Str, DeclT); | |||
246 | } | |||
247 | ||||
248 | //===----------------------------------------------------------------------===// | |||
249 | // Semantic checking for initializer lists. | |||
250 | //===----------------------------------------------------------------------===// | |||
251 | ||||
252 | namespace { | |||
253 | ||||
254 | /// Semantic checking for initializer lists. | |||
255 | /// | |||
256 | /// The InitListChecker class contains a set of routines that each | |||
257 | /// handle the initialization of a certain kind of entity, e.g., | |||
258 | /// arrays, vectors, struct/union types, scalars, etc. The | |||
259 | /// InitListChecker itself performs a recursive walk of the subobject | |||
260 | /// structure of the type to be initialized, while stepping through | |||
261 | /// the initializer list one element at a time. The IList and Index | |||
262 | /// parameters to each of the Check* routines contain the active | |||
263 | /// (syntactic) initializer list and the index into that initializer | |||
264 | /// list that represents the current initializer. Each routine is | |||
265 | /// responsible for moving that Index forward as it consumes elements. | |||
266 | /// | |||
267 | /// Each Check* routine also has a StructuredList/StructuredIndex | |||
268 | /// arguments, which contains the current "structured" (semantic) | |||
269 | /// initializer list and the index into that initializer list where we | |||
270 | /// are copying initializers as we map them over to the semantic | |||
271 | /// list. Once we have completed our recursive walk of the subobject | |||
272 | /// structure, we will have constructed a full semantic initializer | |||
273 | /// list. | |||
274 | /// | |||
275 | /// C99 designators cause changes in the initializer list traversal, | |||
276 | /// because they make the initialization "jump" into a specific | |||
277 | /// subobject and then continue the initialization from that | |||
278 | /// point. CheckDesignatedInitializer() recursively steps into the | |||
279 | /// designated subobject and manages backing out the recursion to | |||
280 | /// initialize the subobjects after the one designated. | |||
281 | /// | |||
282 | /// If an initializer list contains any designators, we build a placeholder | |||
283 | /// structured list even in 'verify only' mode, so that we can track which | |||
284 | /// elements need 'empty' initializtion. | |||
285 | class InitListChecker { | |||
286 | Sema &SemaRef; | |||
287 | bool hadError = false; | |||
288 | bool VerifyOnly; // No diagnostics. | |||
289 | bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. | |||
290 | bool InOverloadResolution; | |||
291 | InitListExpr *FullyStructuredList = nullptr; | |||
292 | NoInitExpr *DummyExpr = nullptr; | |||
293 | ||||
294 | NoInitExpr *getDummyInit() { | |||
295 | if (!DummyExpr) | |||
296 | DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); | |||
297 | return DummyExpr; | |||
298 | } | |||
299 | ||||
300 | void CheckImplicitInitList(const InitializedEntity &Entity, | |||
301 | InitListExpr *ParentIList, QualType T, | |||
302 | unsigned &Index, InitListExpr *StructuredList, | |||
303 | unsigned &StructuredIndex); | |||
304 | void CheckExplicitInitList(const InitializedEntity &Entity, | |||
305 | InitListExpr *IList, QualType &T, | |||
306 | InitListExpr *StructuredList, | |||
307 | bool TopLevelObject = false); | |||
308 | void CheckListElementTypes(const InitializedEntity &Entity, | |||
309 | InitListExpr *IList, QualType &DeclType, | |||
310 | bool SubobjectIsDesignatorContext, | |||
311 | unsigned &Index, | |||
312 | InitListExpr *StructuredList, | |||
313 | unsigned &StructuredIndex, | |||
314 | bool TopLevelObject = false); | |||
315 | void CheckSubElementType(const InitializedEntity &Entity, | |||
316 | InitListExpr *IList, QualType ElemType, | |||
317 | unsigned &Index, | |||
318 | InitListExpr *StructuredList, | |||
319 | unsigned &StructuredIndex, | |||
320 | bool DirectlyDesignated = false); | |||
321 | void CheckComplexType(const InitializedEntity &Entity, | |||
322 | InitListExpr *IList, QualType DeclType, | |||
323 | unsigned &Index, | |||
324 | InitListExpr *StructuredList, | |||
325 | unsigned &StructuredIndex); | |||
326 | void CheckScalarType(const InitializedEntity &Entity, | |||
327 | InitListExpr *IList, QualType DeclType, | |||
328 | unsigned &Index, | |||
329 | InitListExpr *StructuredList, | |||
330 | unsigned &StructuredIndex); | |||
331 | void CheckReferenceType(const InitializedEntity &Entity, | |||
332 | InitListExpr *IList, QualType DeclType, | |||
333 | unsigned &Index, | |||
334 | InitListExpr *StructuredList, | |||
335 | unsigned &StructuredIndex); | |||
336 | void CheckVectorType(const InitializedEntity &Entity, | |||
337 | InitListExpr *IList, QualType DeclType, unsigned &Index, | |||
338 | InitListExpr *StructuredList, | |||
339 | unsigned &StructuredIndex); | |||
340 | void CheckStructUnionTypes(const InitializedEntity &Entity, | |||
341 | InitListExpr *IList, QualType DeclType, | |||
342 | CXXRecordDecl::base_class_range Bases, | |||
343 | RecordDecl::field_iterator Field, | |||
344 | bool SubobjectIsDesignatorContext, unsigned &Index, | |||
345 | InitListExpr *StructuredList, | |||
346 | unsigned &StructuredIndex, | |||
347 | bool TopLevelObject = false); | |||
348 | void CheckArrayType(const InitializedEntity &Entity, | |||
349 | InitListExpr *IList, QualType &DeclType, | |||
350 | llvm::APSInt elementIndex, | |||
351 | bool SubobjectIsDesignatorContext, unsigned &Index, | |||
352 | InitListExpr *StructuredList, | |||
353 | unsigned &StructuredIndex); | |||
354 | bool CheckDesignatedInitializer(const InitializedEntity &Entity, | |||
355 | InitListExpr *IList, DesignatedInitExpr *DIE, | |||
356 | unsigned DesigIdx, | |||
357 | QualType &CurrentObjectType, | |||
358 | RecordDecl::field_iterator *NextField, | |||
359 | llvm::APSInt *NextElementIndex, | |||
360 | unsigned &Index, | |||
361 | InitListExpr *StructuredList, | |||
362 | unsigned &StructuredIndex, | |||
363 | bool FinishSubobjectInit, | |||
364 | bool TopLevelObject); | |||
365 | InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, | |||
366 | QualType CurrentObjectType, | |||
367 | InitListExpr *StructuredList, | |||
368 | unsigned StructuredIndex, | |||
369 | SourceRange InitRange, | |||
370 | bool IsFullyOverwritten = false); | |||
371 | void UpdateStructuredListElement(InitListExpr *StructuredList, | |||
372 | unsigned &StructuredIndex, | |||
373 | Expr *expr); | |||
374 | InitListExpr *createInitListExpr(QualType CurrentObjectType, | |||
375 | SourceRange InitRange, | |||
376 | unsigned ExpectedNumInits); | |||
377 | int numArrayElements(QualType DeclType); | |||
378 | int numStructUnionElements(QualType DeclType); | |||
379 | ||||
380 | ExprResult PerformEmptyInit(SourceLocation Loc, | |||
381 | const InitializedEntity &Entity); | |||
382 | ||||
383 | /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. | |||
384 | void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, | |||
385 | bool FullyOverwritten = true) { | |||
386 | // Overriding an initializer via a designator is valid with C99 designated | |||
387 | // initializers, but ill-formed with C++20 designated initializers. | |||
388 | unsigned DiagID = SemaRef.getLangOpts().CPlusPlus | |||
389 | ? diag::ext_initializer_overrides | |||
390 | : diag::warn_initializer_overrides; | |||
391 | ||||
392 | if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { | |||
393 | // In overload resolution, we have to strictly enforce the rules, and so | |||
394 | // don't allow any overriding of prior initializers. This matters for a | |||
395 | // case such as: | |||
396 | // | |||
397 | // union U { int a, b; }; | |||
398 | // struct S { int a, b; }; | |||
399 | // void f(U), f(S); | |||
400 | // | |||
401 | // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For | |||
402 | // consistency, we disallow all overriding of prior initializers in | |||
403 | // overload resolution, not only overriding of union members. | |||
404 | hadError = true; | |||
405 | } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { | |||
406 | // If we'll be keeping around the old initializer but overwriting part of | |||
407 | // the object it initialized, and that object is not trivially | |||
408 | // destructible, this can leak. Don't allow that, not even as an | |||
409 | // extension. | |||
410 | // | |||
411 | // FIXME: It might be reasonable to allow this in cases where the part of | |||
412 | // the initializer that we're overriding has trivial destruction. | |||
413 | DiagID = diag::err_initializer_overrides_destructed; | |||
414 | } else if (!OldInit->getSourceRange().isValid()) { | |||
415 | // We need to check on source range validity because the previous | |||
416 | // initializer does not have to be an explicit initializer. e.g., | |||
417 | // | |||
418 | // struct P { int a, b; }; | |||
419 | // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; | |||
420 | // | |||
421 | // There is an overwrite taking place because the first braced initializer | |||
422 | // list "{ .a = 2 }" already provides value for .p.b (which is zero). | |||
423 | // | |||
424 | // Such overwrites are harmless, so we don't diagnose them. (Note that in | |||
425 | // C++, this cannot be reached unless we've already seen and diagnosed a | |||
426 | // different conformance issue, such as a mixture of designated and | |||
427 | // non-designated initializers or a multi-level designator.) | |||
428 | return; | |||
429 | } | |||
430 | ||||
431 | if (!VerifyOnly) { | |||
432 | SemaRef.Diag(NewInitRange.getBegin(), DiagID) | |||
433 | << NewInitRange << FullyOverwritten << OldInit->getType(); | |||
434 | SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) | |||
435 | << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) | |||
436 | << OldInit->getSourceRange(); | |||
437 | } | |||
438 | } | |||
439 | ||||
440 | // Explanation on the "FillWithNoInit" mode: | |||
441 | // | |||
442 | // Assume we have the following definitions (Case#1): | |||
443 | // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; | |||
444 | // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; | |||
445 | // | |||
446 | // l.lp.x[1][0..1] should not be filled with implicit initializers because the | |||
447 | // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". | |||
448 | // | |||
449 | // But if we have (Case#2): | |||
450 | // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; | |||
451 | // | |||
452 | // l.lp.x[1][0..1] are implicitly initialized and do not use values from the | |||
453 | // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". | |||
454 | // | |||
455 | // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" | |||
456 | // in the InitListExpr, the "holes" in Case#1 are filled not with empty | |||
457 | // initializers but with special "NoInitExpr" place holders, which tells the | |||
458 | // CodeGen not to generate any initializers for these parts. | |||
459 | void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, | |||
460 | const InitializedEntity &ParentEntity, | |||
461 | InitListExpr *ILE, bool &RequiresSecondPass, | |||
462 | bool FillWithNoInit); | |||
463 | void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, | |||
464 | const InitializedEntity &ParentEntity, | |||
465 | InitListExpr *ILE, bool &RequiresSecondPass, | |||
466 | bool FillWithNoInit = false); | |||
467 | void FillInEmptyInitializations(const InitializedEntity &Entity, | |||
468 | InitListExpr *ILE, bool &RequiresSecondPass, | |||
469 | InitListExpr *OuterILE, unsigned OuterIndex, | |||
470 | bool FillWithNoInit = false); | |||
471 | bool CheckFlexibleArrayInit(const InitializedEntity &Entity, | |||
472 | Expr *InitExpr, FieldDecl *Field, | |||
473 | bool TopLevelObject); | |||
474 | void CheckEmptyInitializable(const InitializedEntity &Entity, | |||
475 | SourceLocation Loc); | |||
476 | ||||
477 | public: | |||
478 | InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, | |||
479 | QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, | |||
480 | bool InOverloadResolution = false); | |||
481 | bool HadError() { return hadError; } | |||
482 | ||||
483 | // Retrieves the fully-structured initializer list used for | |||
484 | // semantic analysis and code generation. | |||
485 | InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } | |||
486 | }; | |||
487 | ||||
488 | } // end anonymous namespace | |||
489 | ||||
490 | ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, | |||
491 | const InitializedEntity &Entity) { | |||
492 | InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, | |||
493 | true); | |||
494 | MultiExprArg SubInit; | |||
495 | Expr *InitExpr; | |||
496 | InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); | |||
497 | ||||
498 | // C++ [dcl.init.aggr]p7: | |||
499 | // If there are fewer initializer-clauses in the list than there are | |||
500 | // members in the aggregate, then each member not explicitly initialized | |||
501 | // ... | |||
502 | bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && | |||
503 | Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); | |||
504 | if (EmptyInitList) { | |||
505 | // C++1y / DR1070: | |||
506 | // shall be initialized [...] from an empty initializer list. | |||
507 | // | |||
508 | // We apply the resolution of this DR to C++11 but not C++98, since C++98 | |||
509 | // does not have useful semantics for initialization from an init list. | |||
510 | // We treat this as copy-initialization, because aggregate initialization | |||
511 | // always performs copy-initialization on its elements. | |||
512 | // | |||
513 | // Only do this if we're initializing a class type, to avoid filling in | |||
514 | // the initializer list where possible. | |||
515 | InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) | |||
516 | InitListExpr(SemaRef.Context, Loc, None, Loc); | |||
517 | InitExpr->setType(SemaRef.Context.VoidTy); | |||
518 | SubInit = InitExpr; | |||
519 | Kind = InitializationKind::CreateCopy(Loc, Loc); | |||
520 | } else { | |||
521 | // C++03: | |||
522 | // shall be value-initialized. | |||
523 | } | |||
524 | ||||
525 | InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); | |||
526 | // libstdc++4.6 marks the vector default constructor as explicit in | |||
527 | // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. | |||
528 | // stlport does so too. Look for std::__debug for libstdc++, and for | |||
529 | // std:: for stlport. This is effectively a compiler-side implementation of | |||
530 | // LWG2193. | |||
531 | if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == | |||
532 | InitializationSequence::FK_ExplicitConstructor) { | |||
533 | OverloadCandidateSet::iterator Best; | |||
534 | OverloadingResult O = | |||
535 | InitSeq.getFailedCandidateSet() | |||
536 | .BestViableFunction(SemaRef, Kind.getLocation(), Best); | |||
537 | (void)O; | |||
538 | assert(O == OR_Success && "Inconsistent overload resolution")((void)0); | |||
539 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); | |||
540 | CXXRecordDecl *R = CtorDecl->getParent(); | |||
541 | ||||
542 | if (CtorDecl->getMinRequiredArguments() == 0 && | |||
543 | CtorDecl->isExplicit() && R->getDeclName() && | |||
544 | SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { | |||
545 | bool IsInStd = false; | |||
546 | for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); | |||
547 | ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { | |||
548 | if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) | |||
549 | IsInStd = true; | |||
550 | } | |||
551 | ||||
552 | if (IsInStd && llvm::StringSwitch<bool>(R->getName()) | |||
553 | .Cases("basic_string", "deque", "forward_list", true) | |||
554 | .Cases("list", "map", "multimap", "multiset", true) | |||
555 | .Cases("priority_queue", "queue", "set", "stack", true) | |||
556 | .Cases("unordered_map", "unordered_set", "vector", true) | |||
557 | .Default(false)) { | |||
558 | InitSeq.InitializeFrom( | |||
559 | SemaRef, Entity, | |||
560 | InitializationKind::CreateValue(Loc, Loc, Loc, true), | |||
561 | MultiExprArg(), /*TopLevelOfInitList=*/false, | |||
562 | TreatUnavailableAsInvalid); | |||
563 | // Emit a warning for this. System header warnings aren't shown | |||
564 | // by default, but people working on system headers should see it. | |||
565 | if (!VerifyOnly) { | |||
566 | SemaRef.Diag(CtorDecl->getLocation(), | |||
567 | diag::warn_invalid_initializer_from_system_header); | |||
568 | if (Entity.getKind() == InitializedEntity::EK_Member) | |||
569 | SemaRef.Diag(Entity.getDecl()->getLocation(), | |||
570 | diag::note_used_in_initialization_here); | |||
571 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) | |||
572 | SemaRef.Diag(Loc, diag::note_used_in_initialization_here); | |||
573 | } | |||
574 | } | |||
575 | } | |||
576 | } | |||
577 | if (!InitSeq) { | |||
578 | if (!VerifyOnly) { | |||
579 | InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); | |||
580 | if (Entity.getKind() == InitializedEntity::EK_Member) | |||
581 | SemaRef.Diag(Entity.getDecl()->getLocation(), | |||
582 | diag::note_in_omitted_aggregate_initializer) | |||
583 | << /*field*/1 << Entity.getDecl(); | |||
584 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { | |||
585 | bool IsTrailingArrayNewMember = | |||
586 | Entity.getParent() && | |||
587 | Entity.getParent()->isVariableLengthArrayNew(); | |||
588 | SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) | |||
589 | << (IsTrailingArrayNewMember ? 2 : /*array element*/0) | |||
590 | << Entity.getElementIndex(); | |||
591 | } | |||
592 | } | |||
593 | hadError = true; | |||
594 | return ExprError(); | |||
595 | } | |||
596 | ||||
597 | return VerifyOnly ? ExprResult() | |||
598 | : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); | |||
599 | } | |||
600 | ||||
601 | void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, | |||
602 | SourceLocation Loc) { | |||
603 | // If we're building a fully-structured list, we'll check this at the end | |||
604 | // once we know which elements are actually initialized. Otherwise, we know | |||
605 | // that there are no designators so we can just check now. | |||
606 | if (FullyStructuredList) | |||
607 | return; | |||
608 | PerformEmptyInit(Loc, Entity); | |||
609 | } | |||
610 | ||||
611 | void InitListChecker::FillInEmptyInitForBase( | |||
612 | unsigned Init, const CXXBaseSpecifier &Base, | |||
613 | const InitializedEntity &ParentEntity, InitListExpr *ILE, | |||
614 | bool &RequiresSecondPass, bool FillWithNoInit) { | |||
615 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( | |||
616 | SemaRef.Context, &Base, false, &ParentEntity); | |||
617 | ||||
618 | if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { | |||
619 | ExprResult BaseInit = FillWithNoInit | |||
620 | ? new (SemaRef.Context) NoInitExpr(Base.getType()) | |||
621 | : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); | |||
622 | if (BaseInit.isInvalid()) { | |||
623 | hadError = true; | |||
624 | return; | |||
625 | } | |||
626 | ||||
627 | if (!VerifyOnly) { | |||
628 | assert(Init < ILE->getNumInits() && "should have been expanded")((void)0); | |||
629 | ILE->setInit(Init, BaseInit.getAs<Expr>()); | |||
630 | } | |||
631 | } else if (InitListExpr *InnerILE = | |||
632 | dyn_cast<InitListExpr>(ILE->getInit(Init))) { | |||
633 | FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, | |||
634 | ILE, Init, FillWithNoInit); | |||
635 | } else if (DesignatedInitUpdateExpr *InnerDIUE = | |||
636 | dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { | |||
637 | FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), | |||
638 | RequiresSecondPass, ILE, Init, | |||
639 | /*FillWithNoInit =*/true); | |||
640 | } | |||
641 | } | |||
642 | ||||
643 | void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, | |||
644 | const InitializedEntity &ParentEntity, | |||
645 | InitListExpr *ILE, | |||
646 | bool &RequiresSecondPass, | |||
647 | bool FillWithNoInit) { | |||
648 | SourceLocation Loc = ILE->getEndLoc(); | |||
649 | unsigned NumInits = ILE->getNumInits(); | |||
650 | InitializedEntity MemberEntity | |||
651 | = InitializedEntity::InitializeMember(Field, &ParentEntity); | |||
652 | ||||
653 | if (Init >= NumInits || !ILE->getInit(Init)) { | |||
654 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) | |||
655 | if (!RType->getDecl()->isUnion()) | |||
656 | assert((Init < NumInits || VerifyOnly) &&((void)0) | |||
657 | "This ILE should have been expanded")((void)0); | |||
658 | ||||
659 | if (FillWithNoInit) { | |||
660 | assert(!VerifyOnly && "should not fill with no-init in verify-only mode")((void)0); | |||
661 | Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); | |||
662 | if (Init < NumInits) | |||
663 | ILE->setInit(Init, Filler); | |||
664 | else | |||
665 | ILE->updateInit(SemaRef.Context, Init, Filler); | |||
666 | return; | |||
667 | } | |||
668 | // C++1y [dcl.init.aggr]p7: | |||
669 | // If there are fewer initializer-clauses in the list than there are | |||
670 | // members in the aggregate, then each member not explicitly initialized | |||
671 | // shall be initialized from its brace-or-equal-initializer [...] | |||
672 | if (Field->hasInClassInitializer()) { | |||
673 | if (VerifyOnly) | |||
674 | return; | |||
675 | ||||
676 | ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); | |||
677 | if (DIE.isInvalid()) { | |||
678 | hadError = true; | |||
679 | return; | |||
680 | } | |||
681 | SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); | |||
682 | if (Init < NumInits) | |||
683 | ILE->setInit(Init, DIE.get()); | |||
684 | else { | |||
685 | ILE->updateInit(SemaRef.Context, Init, DIE.get()); | |||
686 | RequiresSecondPass = true; | |||
687 | } | |||
688 | return; | |||
689 | } | |||
690 | ||||
691 | if (Field->getType()->isReferenceType()) { | |||
692 | if (!VerifyOnly) { | |||
693 | // C++ [dcl.init.aggr]p9: | |||
694 | // If an incomplete or empty initializer-list leaves a | |||
695 | // member of reference type uninitialized, the program is | |||
696 | // ill-formed. | |||
697 | SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) | |||
698 | << Field->getType() | |||
699 | << ILE->getSyntacticForm()->getSourceRange(); | |||
700 | SemaRef.Diag(Field->getLocation(), | |||
701 | diag::note_uninit_reference_member); | |||
702 | } | |||
703 | hadError = true; | |||
704 | return; | |||
705 | } | |||
706 | ||||
707 | ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); | |||
708 | if (MemberInit.isInvalid()) { | |||
709 | hadError = true; | |||
710 | return; | |||
711 | } | |||
712 | ||||
713 | if (hadError || VerifyOnly) { | |||
714 | // Do nothing | |||
715 | } else if (Init < NumInits) { | |||
716 | ILE->setInit(Init, MemberInit.getAs<Expr>()); | |||
717 | } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { | |||
718 | // Empty initialization requires a constructor call, so | |||
719 | // extend the initializer list to include the constructor | |||
720 | // call and make a note that we'll need to take another pass | |||
721 | // through the initializer list. | |||
722 | ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); | |||
723 | RequiresSecondPass = true; | |||
724 | } | |||
725 | } else if (InitListExpr *InnerILE | |||
726 | = dyn_cast<InitListExpr>(ILE->getInit(Init))) { | |||
727 | FillInEmptyInitializations(MemberEntity, InnerILE, | |||
728 | RequiresSecondPass, ILE, Init, FillWithNoInit); | |||
729 | } else if (DesignatedInitUpdateExpr *InnerDIUE = | |||
730 | dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { | |||
731 | FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), | |||
732 | RequiresSecondPass, ILE, Init, | |||
733 | /*FillWithNoInit =*/true); | |||
734 | } | |||
735 | } | |||
736 | ||||
737 | /// Recursively replaces NULL values within the given initializer list | |||
738 | /// with expressions that perform value-initialization of the | |||
739 | /// appropriate type, and finish off the InitListExpr formation. | |||
740 | void | |||
741 | InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, | |||
742 | InitListExpr *ILE, | |||
743 | bool &RequiresSecondPass, | |||
744 | InitListExpr *OuterILE, | |||
745 | unsigned OuterIndex, | |||
746 | bool FillWithNoInit) { | |||
747 | assert((ILE->getType() != SemaRef.Context.VoidTy) &&((void)0) | |||
748 | "Should not have void type")((void)0); | |||
749 | ||||
750 | // We don't need to do any checks when just filling NoInitExprs; that can't | |||
751 | // fail. | |||
752 | if (FillWithNoInit && VerifyOnly) | |||
753 | return; | |||
754 | ||||
755 | // If this is a nested initializer list, we might have changed its contents | |||
756 | // (and therefore some of its properties, such as instantiation-dependence) | |||
757 | // while filling it in. Inform the outer initializer list so that its state | |||
758 | // can be updated to match. | |||
759 | // FIXME: We should fully build the inner initializers before constructing | |||
760 | // the outer InitListExpr instead of mutating AST nodes after they have | |||
761 | // been used as subexpressions of other nodes. | |||
762 | struct UpdateOuterILEWithUpdatedInit { | |||
763 | InitListExpr *Outer; | |||
764 | unsigned OuterIndex; | |||
765 | ~UpdateOuterILEWithUpdatedInit() { | |||
766 | if (Outer) | |||
767 | Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); | |||
768 | } | |||
769 | } UpdateOuterRAII = {OuterILE, OuterIndex}; | |||
770 | ||||
771 | // A transparent ILE is not performing aggregate initialization and should | |||
772 | // not be filled in. | |||
773 | if (ILE->isTransparent()) | |||
774 | return; | |||
775 | ||||
776 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { | |||
777 | const RecordDecl *RDecl = RType->getDecl(); | |||
778 | if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) | |||
779 | FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), | |||
780 | Entity, ILE, RequiresSecondPass, FillWithNoInit); | |||
781 | else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && | |||
782 | cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { | |||
783 | for (auto *Field : RDecl->fields()) { | |||
784 | if (Field->hasInClassInitializer()) { | |||
785 | FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, | |||
786 | FillWithNoInit); | |||
787 | break; | |||
788 | } | |||
789 | } | |||
790 | } else { | |||
791 | // The fields beyond ILE->getNumInits() are default initialized, so in | |||
792 | // order to leave them uninitialized, the ILE is expanded and the extra | |||
793 | // fields are then filled with NoInitExpr. | |||
794 | unsigned NumElems = numStructUnionElements(ILE->getType()); | |||
795 | if (RDecl->hasFlexibleArrayMember()) | |||
796 | ++NumElems; | |||
797 | if (!VerifyOnly && ILE->getNumInits() < NumElems) | |||
798 | ILE->resizeInits(SemaRef.Context, NumElems); | |||
799 | ||||
800 | unsigned Init = 0; | |||
801 | ||||
802 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { | |||
803 | for (auto &Base : CXXRD->bases()) { | |||
804 | if (hadError) | |||
805 | return; | |||
806 | ||||
807 | FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, | |||
808 | FillWithNoInit); | |||
809 | ++Init; | |||
810 | } | |||
811 | } | |||
812 | ||||
813 | for (auto *Field : RDecl->fields()) { | |||
814 | if (Field->isUnnamedBitfield()) | |||
815 | continue; | |||
816 | ||||
817 | if (hadError) | |||
818 | return; | |||
819 | ||||
820 | FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, | |||
821 | FillWithNoInit); | |||
822 | if (hadError) | |||
823 | return; | |||
824 | ||||
825 | ++Init; | |||
826 | ||||
827 | // Only look at the first initialization of a union. | |||
828 | if (RDecl->isUnion()) | |||
829 | break; | |||
830 | } | |||
831 | } | |||
832 | ||||
833 | return; | |||
834 | } | |||
835 | ||||
836 | QualType ElementType; | |||
837 | ||||
838 | InitializedEntity ElementEntity = Entity; | |||
839 | unsigned NumInits = ILE->getNumInits(); | |||
840 | unsigned NumElements = NumInits; | |||
841 | if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { | |||
842 | ElementType = AType->getElementType(); | |||
843 | if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) | |||
844 | NumElements = CAType->getSize().getZExtValue(); | |||
845 | // For an array new with an unknown bound, ask for one additional element | |||
846 | // in order to populate the array filler. | |||
847 | if (Entity.isVariableLengthArrayNew()) | |||
848 | ++NumElements; | |||
849 | ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, | |||
850 | 0, Entity); | |||
851 | } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { | |||
852 | ElementType = VType->getElementType(); | |||
853 | NumElements = VType->getNumElements(); | |||
854 | ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, | |||
855 | 0, Entity); | |||
856 | } else | |||
857 | ElementType = ILE->getType(); | |||
858 | ||||
859 | bool SkipEmptyInitChecks = false; | |||
860 | for (unsigned Init = 0; Init != NumElements; ++Init) { | |||
861 | if (hadError) | |||
862 | return; | |||
863 | ||||
864 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || | |||
865 | ElementEntity.getKind() == InitializedEntity::EK_VectorElement) | |||
866 | ElementEntity.setElementIndex(Init); | |||
867 | ||||
868 | if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) | |||
869 | return; | |||
870 | ||||
871 | Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); | |||
872 | if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) | |||
873 | ILE->setInit(Init, ILE->getArrayFiller()); | |||
874 | else if (!InitExpr && !ILE->hasArrayFiller()) { | |||
875 | // In VerifyOnly mode, there's no point performing empty initialization | |||
876 | // more than once. | |||
877 | if (SkipEmptyInitChecks) | |||
878 | continue; | |||
879 | ||||
880 | Expr *Filler = nullptr; | |||
881 | ||||
882 | if (FillWithNoInit) | |||
883 | Filler = new (SemaRef.Context) NoInitExpr(ElementType); | |||
884 | else { | |||
885 | ExprResult ElementInit = | |||
886 | PerformEmptyInit(ILE->getEndLoc(), ElementEntity); | |||
887 | if (ElementInit.isInvalid()) { | |||
888 | hadError = true; | |||
889 | return; | |||
890 | } | |||
891 | ||||
892 | Filler = ElementInit.getAs<Expr>(); | |||
893 | } | |||
894 | ||||
895 | if (hadError) { | |||
896 | // Do nothing | |||
897 | } else if (VerifyOnly) { | |||
898 | SkipEmptyInitChecks = true; | |||
899 | } else if (Init < NumInits) { | |||
900 | // For arrays, just set the expression used for value-initialization | |||
901 | // of the "holes" in the array. | |||
902 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) | |||
903 | ILE->setArrayFiller(Filler); | |||
904 | else | |||
905 | ILE->setInit(Init, Filler); | |||
906 | } else { | |||
907 | // For arrays, just set the expression used for value-initialization | |||
908 | // of the rest of elements and exit. | |||
909 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { | |||
910 | ILE->setArrayFiller(Filler); | |||
911 | return; | |||
912 | } | |||
913 | ||||
914 | if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { | |||
915 | // Empty initialization requires a constructor call, so | |||
916 | // extend the initializer list to include the constructor | |||
917 | // call and make a note that we'll need to take another pass | |||
918 | // through the initializer list. | |||
919 | ILE->updateInit(SemaRef.Context, Init, Filler); | |||
920 | RequiresSecondPass = true; | |||
921 | } | |||
922 | } | |||
923 | } else if (InitListExpr *InnerILE | |||
924 | = dyn_cast_or_null<InitListExpr>(InitExpr)) { | |||
925 | FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, | |||
926 | ILE, Init, FillWithNoInit); | |||
927 | } else if (DesignatedInitUpdateExpr *InnerDIUE = | |||
928 | dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { | |||
929 | FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), | |||
930 | RequiresSecondPass, ILE, Init, | |||
931 | /*FillWithNoInit =*/true); | |||
932 | } | |||
933 | } | |||
934 | } | |||
935 | ||||
936 | static bool hasAnyDesignatedInits(const InitListExpr *IL) { | |||
937 | for (const Stmt *Init : *IL) | |||
938 | if (Init && isa<DesignatedInitExpr>(Init)) | |||
939 | return true; | |||
940 | return false; | |||
941 | } | |||
942 | ||||
943 | InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, | |||
944 | InitListExpr *IL, QualType &T, bool VerifyOnly, | |||
945 | bool TreatUnavailableAsInvalid, | |||
946 | bool InOverloadResolution) | |||
947 | : SemaRef(S), VerifyOnly(VerifyOnly), | |||
948 | TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), | |||
949 | InOverloadResolution(InOverloadResolution) { | |||
950 | if (!VerifyOnly || hasAnyDesignatedInits(IL)) { | |||
951 | FullyStructuredList = | |||
952 | createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); | |||
953 | ||||
954 | // FIXME: Check that IL isn't already the semantic form of some other | |||
955 | // InitListExpr. If it is, we'd create a broken AST. | |||
956 | if (!VerifyOnly) | |||
957 | FullyStructuredList->setSyntacticForm(IL); | |||
958 | } | |||
959 | ||||
960 | CheckExplicitInitList(Entity, IL, T, FullyStructuredList, | |||
961 | /*TopLevelObject=*/true); | |||
962 | ||||
963 | if (!hadError && FullyStructuredList) { | |||
964 | bool RequiresSecondPass = false; | |||
965 | FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, | |||
966 | /*OuterILE=*/nullptr, /*OuterIndex=*/0); | |||
967 | if (RequiresSecondPass && !hadError) | |||
968 | FillInEmptyInitializations(Entity, FullyStructuredList, | |||
969 | RequiresSecondPass, nullptr, 0); | |||
970 | } | |||
971 | if (hadError && FullyStructuredList) | |||
972 | FullyStructuredList->markError(); | |||
973 | } | |||
974 | ||||
975 | int InitListChecker::numArrayElements(QualType DeclType) { | |||
976 | // FIXME: use a proper constant | |||
977 | int maxElements = 0x7FFFFFFF; | |||
978 | if (const ConstantArrayType *CAT = | |||
979 | SemaRef.Context.getAsConstantArrayType(DeclType)) { | |||
980 | maxElements = static_cast<int>(CAT->getSize().getZExtValue()); | |||
981 | } | |||
982 | return maxElements; | |||
983 | } | |||
984 | ||||
985 | int InitListChecker::numStructUnionElements(QualType DeclType) { | |||
986 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); | |||
987 | int InitializableMembers = 0; | |||
988 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) | |||
989 | InitializableMembers += CXXRD->getNumBases(); | |||
990 | for (const auto *Field : structDecl->fields()) | |||
991 | if (!Field->isUnnamedBitfield()) | |||
992 | ++InitializableMembers; | |||
993 | ||||
994 | if (structDecl->isUnion()) | |||
995 | return std::min(InitializableMembers, 1); | |||
996 | return InitializableMembers - structDecl->hasFlexibleArrayMember(); | |||
997 | } | |||
998 | ||||
999 | /// Determine whether Entity is an entity for which it is idiomatic to elide | |||
1000 | /// the braces in aggregate initialization. | |||
1001 | static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { | |||
1002 | // Recursive initialization of the one and only field within an aggregate | |||
1003 | // class is considered idiomatic. This case arises in particular for | |||
1004 | // initialization of std::array, where the C++ standard suggests the idiom of | |||
1005 | // | |||
1006 | // std::array<T, N> arr = {1, 2, 3}; | |||
1007 | // | |||
1008 | // (where std::array is an aggregate struct containing a single array field. | |||
1009 | ||||
1010 | if (!Entity.getParent()) | |||
1011 | return false; | |||
1012 | ||||
1013 | // Allows elide brace initialization for aggregates with empty base. | |||
1014 | if (Entity.getKind() == InitializedEntity::EK_Base) { | |||
1015 | auto *ParentRD = | |||
1016 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); | |||
1017 | CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD); | |||
1018 | return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); | |||
1019 | } | |||
1020 | ||||
1021 | // Allow brace elision if the only subobject is a field. | |||
1022 | if (Entity.getKind() == InitializedEntity::EK_Member) { | |||
1023 | auto *ParentRD = | |||
1024 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); | |||
1025 | if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) { | |||
1026 | if (CXXRD->getNumBases()) { | |||
1027 | return false; | |||
1028 | } | |||
1029 | } | |||
1030 | auto FieldIt = ParentRD->field_begin(); | |||
1031 | assert(FieldIt != ParentRD->field_end() &&((void)0) | |||
1032 | "no fields but have initializer for member?")((void)0); | |||
1033 | return ++FieldIt == ParentRD->field_end(); | |||
1034 | } | |||
1035 | ||||
1036 | return false; | |||
1037 | } | |||
1038 | ||||
1039 | /// Check whether the range of the initializer \p ParentIList from element | |||
1040 | /// \p Index onwards can be used to initialize an object of type \p T. Update | |||
1041 | /// \p Index to indicate how many elements of the list were consumed. | |||
1042 | /// | |||
1043 | /// This also fills in \p StructuredList, from element \p StructuredIndex | |||
1044 | /// onwards, with the fully-braced, desugared form of the initialization. | |||
1045 | void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, | |||
1046 | InitListExpr *ParentIList, | |||
1047 | QualType T, unsigned &Index, | |||
1048 | InitListExpr *StructuredList, | |||
1049 | unsigned &StructuredIndex) { | |||
1050 | int maxElements = 0; | |||
1051 | ||||
1052 | if (T->isArrayType()) | |||
1053 | maxElements = numArrayElements(T); | |||
1054 | else if (T->isRecordType()) | |||
1055 | maxElements = numStructUnionElements(T); | |||
1056 | else if (T->isVectorType()) | |||
1057 | maxElements = T->castAs<VectorType>()->getNumElements(); | |||
1058 | else | |||
1059 | llvm_unreachable("CheckImplicitInitList(): Illegal type")__builtin_unreachable(); | |||
1060 | ||||
1061 | if (maxElements == 0) { | |||
1062 | if (!VerifyOnly) | |||
1063 | SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), | |||
1064 | diag::err_implicit_empty_initializer); | |||
1065 | ++Index; | |||
1066 | hadError = true; | |||
1067 | return; | |||
1068 | } | |||
1069 | ||||
1070 | // Build a structured initializer list corresponding to this subobject. | |||
1071 | InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( | |||
1072 | ParentIList, Index, T, StructuredList, StructuredIndex, | |||
1073 | SourceRange(ParentIList->getInit(Index)->getBeginLoc(), | |||
1074 | ParentIList->getSourceRange().getEnd())); | |||
1075 | unsigned StructuredSubobjectInitIndex = 0; | |||
1076 | ||||
1077 | // Check the element types and build the structural subobject. | |||
1078 | unsigned StartIndex = Index; | |||
1079 | CheckListElementTypes(Entity, ParentIList, T, | |||
1080 | /*SubobjectIsDesignatorContext=*/false, Index, | |||
1081 | StructuredSubobjectInitList, | |||
1082 | StructuredSubobjectInitIndex); | |||
1083 | ||||
1084 | if (StructuredSubobjectInitList) { | |||
1085 | StructuredSubobjectInitList->setType(T); | |||
1086 | ||||
1087 | unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); | |||
1088 | // Update the structured sub-object initializer so that it's ending | |||
1089 | // range corresponds with the end of the last initializer it used. | |||
1090 | if (EndIndex < ParentIList->getNumInits() && | |||
1091 | ParentIList->getInit(EndIndex)) { | |||
1092 | SourceLocation EndLoc | |||
1093 | = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); | |||
1094 | StructuredSubobjectInitList->setRBraceLoc(EndLoc); | |||
1095 | } | |||
1096 | ||||
1097 | // Complain about missing braces. | |||
1098 | if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && | |||
1099 | !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && | |||
1100 | !isIdiomaticBraceElisionEntity(Entity)) { | |||
1101 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), | |||
1102 | diag::warn_missing_braces) | |||
1103 | << StructuredSubobjectInitList->getSourceRange() | |||
1104 | << FixItHint::CreateInsertion( | |||
1105 | StructuredSubobjectInitList->getBeginLoc(), "{") | |||
1106 | << FixItHint::CreateInsertion( | |||
1107 | SemaRef.getLocForEndOfToken( | |||
1108 | StructuredSubobjectInitList->getEndLoc()), | |||
1109 | "}"); | |||
1110 | } | |||
1111 | ||||
1112 | // Warn if this type won't be an aggregate in future versions of C++. | |||
1113 | auto *CXXRD = T->getAsCXXRecordDecl(); | |||
1114 | if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { | |||
1115 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), | |||
1116 | diag::warn_cxx20_compat_aggregate_init_with_ctors) | |||
1117 | << StructuredSubobjectInitList->getSourceRange() << T; | |||
1118 | } | |||
1119 | } | |||
1120 | } | |||
1121 | ||||
1122 | /// Warn that \p Entity was of scalar type and was initialized by a | |||
1123 | /// single-element braced initializer list. | |||
1124 | static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, | |||
1125 | SourceRange Braces) { | |||
1126 | // Don't warn during template instantiation. If the initialization was | |||
1127 | // non-dependent, we warned during the initial parse; otherwise, the | |||
1128 | // type might not be scalar in some uses of the template. | |||
1129 | if (S.inTemplateInstantiation()) | |||
1130 | return; | |||
1131 | ||||
1132 | unsigned DiagID = 0; | |||
1133 | ||||
1134 | switch (Entity.getKind()) { | |||
1135 | case InitializedEntity::EK_VectorElement: | |||
1136 | case InitializedEntity::EK_ComplexElement: | |||
1137 | case InitializedEntity::EK_ArrayElement: | |||
1138 | case InitializedEntity::EK_Parameter: | |||
1139 | case InitializedEntity::EK_Parameter_CF_Audited: | |||
1140 | case InitializedEntity::EK_TemplateParameter: | |||
1141 | case InitializedEntity::EK_Result: | |||
1142 | // Extra braces here are suspicious. | |||
1143 | DiagID = diag::warn_braces_around_init; | |||
1144 | break; | |||
1145 | ||||
1146 | case InitializedEntity::EK_Member: | |||
1147 | // Warn on aggregate initialization but not on ctor init list or | |||
1148 | // default member initializer. | |||
1149 | if (Entity.getParent()) | |||
1150 | DiagID = diag::warn_braces_around_init; | |||
1151 | break; | |||
1152 | ||||
1153 | case InitializedEntity::EK_Variable: | |||
1154 | case InitializedEntity::EK_LambdaCapture: | |||
1155 | // No warning, might be direct-list-initialization. | |||
1156 | // FIXME: Should we warn for copy-list-initialization in these cases? | |||
1157 | break; | |||
1158 | ||||
1159 | case InitializedEntity::EK_New: | |||
1160 | case InitializedEntity::EK_Temporary: | |||
1161 | case InitializedEntity::EK_CompoundLiteralInit: | |||
1162 | // No warning, braces are part of the syntax of the underlying construct. | |||
1163 | break; | |||
1164 | ||||
1165 | case InitializedEntity::EK_RelatedResult: | |||
1166 | // No warning, we already warned when initializing the result. | |||
1167 | break; | |||
1168 | ||||
1169 | case InitializedEntity::EK_Exception: | |||
1170 | case InitializedEntity::EK_Base: | |||
1171 | case InitializedEntity::EK_Delegating: | |||
1172 | case InitializedEntity::EK_BlockElement: | |||
1173 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: | |||
1174 | case InitializedEntity::EK_Binding: | |||
1175 | case InitializedEntity::EK_StmtExprResult: | |||
1176 | llvm_unreachable("unexpected braced scalar init")__builtin_unreachable(); | |||
1177 | } | |||
1178 | ||||
1179 | if (DiagID) { | |||
1180 | S.Diag(Braces.getBegin(), DiagID) | |||
1181 | << Entity.getType()->isSizelessBuiltinType() << Braces | |||
1182 | << FixItHint::CreateRemoval(Braces.getBegin()) | |||
1183 | << FixItHint::CreateRemoval(Braces.getEnd()); | |||
1184 | } | |||
1185 | } | |||
1186 | ||||
1187 | /// Check whether the initializer \p IList (that was written with explicit | |||
1188 | /// braces) can be used to initialize an object of type \p T. | |||
1189 | /// | |||
1190 | /// This also fills in \p StructuredList with the fully-braced, desugared | |||
1191 | /// form of the initialization. | |||
1192 | void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, | |||
1193 | InitListExpr *IList, QualType &T, | |||
1194 | InitListExpr *StructuredList, | |||
1195 | bool TopLevelObject) { | |||
1196 | unsigned Index = 0, StructuredIndex = 0; | |||
1197 | CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, | |||
1198 | Index, StructuredList, StructuredIndex, TopLevelObject); | |||
1199 | if (StructuredList) { | |||
1200 | QualType ExprTy = T; | |||
1201 | if (!ExprTy->isArrayType()) | |||
1202 | ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); | |||
1203 | if (!VerifyOnly) | |||
1204 | IList->setType(ExprTy); | |||
1205 | StructuredList->setType(ExprTy); | |||
1206 | } | |||
1207 | if (hadError) | |||
1208 | return; | |||
1209 | ||||
1210 | // Don't complain for incomplete types, since we'll get an error elsewhere. | |||
1211 | if (Index < IList->getNumInits() && !T->isIncompleteType()) { | |||
1212 | // We have leftover initializers | |||
1213 | bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || | |||
1214 | (SemaRef.getLangOpts().OpenCL && T->isVectorType()); | |||
1215 | hadError = ExtraInitsIsError; | |||
1216 | if (VerifyOnly) { | |||
1217 | return; | |||
1218 | } else if (StructuredIndex == 1 && | |||
1219 | IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == | |||
1220 | SIF_None) { | |||
1221 | unsigned DK = | |||
1222 | ExtraInitsIsError | |||
1223 | ? diag::err_excess_initializers_in_char_array_initializer | |||
1224 | : diag::ext_excess_initializers_in_char_array_initializer; | |||
1225 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) | |||
1226 | << IList->getInit(Index)->getSourceRange(); | |||
1227 | } else if (T->isSizelessBuiltinType()) { | |||
1228 | unsigned DK = ExtraInitsIsError | |||
1229 | ? diag::err_excess_initializers_for_sizeless_type | |||
1230 | : diag::ext_excess_initializers_for_sizeless_type; | |||
1231 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) | |||
1232 | << T << IList->getInit(Index)->getSourceRange(); | |||
1233 | } else { | |||
1234 | int initKind = T->isArrayType() ? 0 : | |||
1235 | T->isVectorType() ? 1 : | |||
1236 | T->isScalarType() ? 2 : | |||
1237 | T->isUnionType() ? 3 : | |||
1238 | 4; | |||
1239 | ||||
1240 | unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers | |||
1241 | : diag::ext_excess_initializers; | |||
1242 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) | |||
1243 | << initKind << IList->getInit(Index)->getSourceRange(); | |||
1244 | } | |||
1245 | } | |||
1246 | ||||
1247 | if (!VerifyOnly) { | |||
1248 | if (T->isScalarType() && IList->getNumInits() == 1 && | |||
1249 | !isa<InitListExpr>(IList->getInit(0))) | |||
1250 | warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); | |||
1251 | ||||
1252 | // Warn if this is a class type that won't be an aggregate in future | |||
1253 | // versions of C++. | |||
1254 | auto *CXXRD = T->getAsCXXRecordDecl(); | |||
1255 | if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { | |||
1256 | // Don't warn if there's an equivalent default constructor that would be | |||
1257 | // used instead. | |||
1258 | bool HasEquivCtor = false; | |||
1259 | if (IList->getNumInits() == 0) { | |||
1260 | auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); | |||
1261 | HasEquivCtor = CD && !CD->isDeleted(); | |||
1262 | } | |||
1263 | ||||
1264 | if (!HasEquivCtor) { | |||
1265 | SemaRef.Diag(IList->getBeginLoc(), | |||
1266 | diag::warn_cxx20_compat_aggregate_init_with_ctors) | |||
1267 | << IList->getSourceRange() << T; | |||
1268 | } | |||
1269 | } | |||
1270 | } | |||
1271 | } | |||
1272 | ||||
1273 | void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, | |||
1274 | InitListExpr *IList, | |||
1275 | QualType &DeclType, | |||
1276 | bool SubobjectIsDesignatorContext, | |||
1277 | unsigned &Index, | |||
1278 | InitListExpr *StructuredList, | |||
1279 | unsigned &StructuredIndex, | |||
1280 | bool TopLevelObject) { | |||
1281 | if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { | |||
1282 | // Explicitly braced initializer for complex type can be real+imaginary | |||
1283 | // parts. | |||
1284 | CheckComplexType(Entity, IList, DeclType, Index, | |||
1285 | StructuredList, StructuredIndex); | |||
1286 | } else if (DeclType->isScalarType()) { | |||
1287 | CheckScalarType(Entity, IList, DeclType, Index, | |||
1288 | StructuredList, StructuredIndex); | |||
1289 | } else if (DeclType->isVectorType()) { | |||
1290 | CheckVectorType(Entity, IList, DeclType, Index, | |||
1291 | StructuredList, StructuredIndex); | |||
1292 | } else if (DeclType->isRecordType()) { | |||
1293 | assert(DeclType->isAggregateType() &&((void)0) | |||
1294 | "non-aggregate records should be handed in CheckSubElementType")((void)0); | |||
1295 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); | |||
1296 | auto Bases = | |||
1297 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), | |||
1298 | CXXRecordDecl::base_class_iterator()); | |||
1299 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) | |||
1300 | Bases = CXXRD->bases(); | |||
1301 | CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), | |||
1302 | SubobjectIsDesignatorContext, Index, StructuredList, | |||
1303 | StructuredIndex, TopLevelObject); | |||
1304 | } else if (DeclType->isArrayType()) { | |||
1305 | llvm::APSInt Zero( | |||
1306 | SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), | |||
1307 | false); | |||
1308 | CheckArrayType(Entity, IList, DeclType, Zero, | |||
1309 | SubobjectIsDesignatorContext, Index, | |||
1310 | StructuredList, StructuredIndex); | |||
1311 | } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { | |||
1312 | // This type is invalid, issue a diagnostic. | |||
1313 | ++Index; | |||
1314 | if (!VerifyOnly) | |||
1315 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) | |||
1316 | << DeclType; | |||
1317 | hadError = true; | |||
1318 | } else if (DeclType->isReferenceType()) { | |||
1319 | CheckReferenceType(Entity, IList, DeclType, Index, | |||
1320 | StructuredList, StructuredIndex); | |||
1321 | } else if (DeclType->isObjCObjectType()) { | |||
1322 | if (!VerifyOnly) | |||
1323 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; | |||
1324 | hadError = true; | |||
1325 | } else if (DeclType->isOCLIntelSubgroupAVCType() || | |||
1326 | DeclType->isSizelessBuiltinType()) { | |||
1327 | // Checks for scalar type are sufficient for these types too. | |||
1328 | CheckScalarType(Entity, IList, DeclType, Index, StructuredList, | |||
1329 | StructuredIndex); | |||
1330 | } else { | |||
1331 | if (!VerifyOnly) | |||
1332 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) | |||
1333 | << DeclType; | |||
1334 | hadError = true; | |||
1335 | } | |||
1336 | } | |||
1337 | ||||
1338 | void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, | |||
1339 | InitListExpr *IList, | |||
1340 | QualType ElemType, | |||
1341 | unsigned &Index, | |||
1342 | InitListExpr *StructuredList, | |||
1343 | unsigned &StructuredIndex, | |||
1344 | bool DirectlyDesignated) { | |||
1345 | Expr *expr = IList->getInit(Index); | |||
1346 | ||||
1347 | if (ElemType->isReferenceType()) | |||
1348 | return CheckReferenceType(Entity, IList, ElemType, Index, | |||
1349 | StructuredList, StructuredIndex); | |||
1350 | ||||
1351 | if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { | |||
1352 | if (SubInitList->getNumInits() == 1 && | |||
1353 | IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == | |||
1354 | SIF_None) { | |||
1355 | // FIXME: It would be more faithful and no less correct to include an | |||
1356 | // InitListExpr in the semantic form of the initializer list in this case. | |||
1357 | expr = SubInitList->getInit(0); | |||
1358 | } | |||
1359 | // Nested aggregate initialization and C++ initialization are handled later. | |||
1360 | } else if (isa<ImplicitValueInitExpr>(expr)) { | |||
1361 | // This happens during template instantiation when we see an InitListExpr | |||
1362 | // that we've already checked once. | |||
1363 | assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((void)0) | |||
1364 | "found implicit initialization for the wrong type")((void)0); | |||
1365 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); | |||
1366 | ++Index; | |||
1367 | return; | |||
1368 | } | |||
1369 | ||||
1370 | if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { | |||
1371 | // C++ [dcl.init.aggr]p2: | |||
1372 | // Each member is copy-initialized from the corresponding | |||
1373 | // initializer-clause. | |||
1374 | ||||
1375 | // FIXME: Better EqualLoc? | |||
1376 | InitializationKind Kind = | |||
1377 | InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); | |||
1378 | ||||
1379 | // Vector elements can be initialized from other vectors in which case | |||
1380 | // we need initialization entity with a type of a vector (and not a vector | |||
1381 | // element!) initializing multiple vector elements. | |||
1382 | auto TmpEntity = | |||
1383 | (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) | |||
1384 | ? InitializedEntity::InitializeTemporary(ElemType) | |||
1385 | : Entity; | |||
1386 | ||||
1387 | InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, | |||
1388 | /*TopLevelOfInitList*/ true); | |||
1389 | ||||
1390 | // C++14 [dcl.init.aggr]p13: | |||
1391 | // If the assignment-expression can initialize a member, the member is | |||
1392 | // initialized. Otherwise [...] brace elision is assumed | |||
1393 | // | |||
1394 | // Brace elision is never performed if the element is not an | |||
1395 | // assignment-expression. | |||
1396 | if (Seq || isa<InitListExpr>(expr)) { | |||
1397 | if (!VerifyOnly) { | |||
1398 | ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); | |||
1399 | if (Result.isInvalid()) | |||
1400 | hadError = true; | |||
1401 | ||||
1402 | UpdateStructuredListElement(StructuredList, StructuredIndex, | |||
1403 | Result.getAs<Expr>()); | |||
1404 | } else if (!Seq) { | |||
1405 | hadError = true; | |||
1406 | } else if (StructuredList) { | |||
1407 | UpdateStructuredListElement(StructuredList, StructuredIndex, | |||
1408 | getDummyInit()); | |||
1409 | } | |||
1410 | ++Index; | |||
1411 | return; | |||
1412 | } | |||
1413 | ||||
1414 | // Fall through for subaggregate initialization | |||
1415 | } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { | |||
1416 | // FIXME: Need to handle atomic aggregate types with implicit init lists. | |||
1417 | return CheckScalarType(Entity, IList, ElemType, Index, | |||
1418 | StructuredList, StructuredIndex); | |||
1419 | } else if (const ArrayType *arrayType = | |||
1420 | SemaRef.Context.getAsArrayType(ElemType)) { | |||
1421 | // arrayType can be incomplete if we're initializing a flexible | |||
1422 | // array member. There's nothing we can do with the completed | |||
1423 | // type here, though. | |||
1424 | ||||
1425 | if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { | |||
1426 | // FIXME: Should we do this checking in verify-only mode? | |||
1427 | if (!VerifyOnly) | |||
1428 | CheckStringInit(expr, ElemType, arrayType, SemaRef); | |||
1429 | if (StructuredList) | |||
1430 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); | |||
1431 | ++Index; | |||
1432 | return; | |||
1433 | } | |||
1434 | ||||
1435 | // Fall through for subaggregate initialization. | |||
1436 | ||||
1437 | } else { | |||
1438 | assert((ElemType->isRecordType() || ElemType->isVectorType() ||((void)0) | |||
1439 | ElemType->isOpenCLSpecificType()) && "Unexpected type")((void)0); | |||
1440 | ||||
1441 | // C99 6.7.8p13: | |||
1442 | // | |||
1443 | // The initializer for a structure or union object that has | |||
1444 | // automatic storage duration shall be either an initializer | |||
1445 | // list as described below, or a single expression that has | |||
1446 | // compatible structure or union type. In the latter case, the | |||
1447 | // initial value of the object, including unnamed members, is | |||
1448 | // that of the expression. | |||
1449 | ExprResult ExprRes = expr; | |||
1450 | if (SemaRef.CheckSingleAssignmentConstraints( | |||
1451 | ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { | |||
1452 | if (ExprRes.isInvalid()) | |||
1453 | hadError = true; | |||
1454 | else { | |||
1455 | ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); | |||
1456 | if (ExprRes.isInvalid()) | |||
1457 | hadError = true; | |||
1458 | } | |||
1459 | UpdateStructuredListElement(StructuredList, StructuredIndex, | |||
1460 | ExprRes.getAs<Expr>()); | |||
1461 | ++Index; | |||
1462 | return; | |||
1463 | } | |||
1464 | ExprRes.get(); | |||
1465 | // Fall through for subaggregate initialization | |||
1466 | } | |||
1467 | ||||
1468 | // C++ [dcl.init.aggr]p12: | |||
1469 | // | |||
1470 | // [...] Otherwise, if the member is itself a non-empty | |||
1471 | // subaggregate, brace elision is assumed and the initializer is | |||
1472 | // considered for the initialization of the first member of | |||
1473 | // the subaggregate. | |||
1474 | // OpenCL vector initializer is handled elsewhere. | |||
1475 | if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || | |||
1476 | ElemType->isAggregateType()) { | |||
1477 | CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, | |||
1478 | StructuredIndex); | |||
1479 | ++StructuredIndex; | |||
1480 | ||||
1481 | // In C++20, brace elision is not permitted for a designated initializer. | |||
1482 | if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { | |||
1483 | if (InOverloadResolution) | |||
1484 | hadError = true; | |||
1485 | if (!VerifyOnly) { | |||
1486 | SemaRef.Diag(expr->getBeginLoc(), | |||
1487 | diag::ext_designated_init_brace_elision) | |||
1488 | << expr->getSourceRange() | |||
1489 | << FixItHint::CreateInsertion(expr->getBeginLoc(), "{") | |||
1490 | << FixItHint::CreateInsertion( | |||
1491 | SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}"); | |||
1492 | } | |||
1493 | } | |||
1494 | } else { | |||
1495 | if (!VerifyOnly) { | |||
1496 | // We cannot initialize this element, so let PerformCopyInitialization | |||
1497 | // produce the appropriate diagnostic. We already checked that this | |||
1498 | // initialization will fail. | |||
1499 | ExprResult Copy = | |||
1500 | SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, | |||
1501 | /*TopLevelOfInitList=*/true); | |||
1502 | (void)Copy; | |||
1503 | assert(Copy.isInvalid() &&((void)0) | |||
1504 | "expected non-aggregate initialization to fail")((void)0); | |||
1505 | } | |||
1506 | hadError = true; | |||
1507 | ++Index; | |||
1508 | ++StructuredIndex; | |||
1509 | } | |||
1510 | } | |||
1511 | ||||
1512 | void InitListChecker::CheckComplexType(const InitializedEntity &Entity, | |||
1513 | InitListExpr *IList, QualType DeclType, | |||
1514 | unsigned &Index, | |||
1515 | InitListExpr *StructuredList, | |||
1516 | unsigned &StructuredIndex) { | |||
1517 | assert(Index == 0 && "Index in explicit init list must be zero")((void)0); | |||
1518 | ||||
1519 | // As an extension, clang supports complex initializers, which initialize | |||
1520 | // a complex number component-wise. When an explicit initializer list for | |||
1521 | // a complex number contains two two initializers, this extension kicks in: | |||
1522 | // it exepcts the initializer list to contain two elements convertible to | |||
1523 | // the element type of the complex type. The first element initializes | |||
1524 | // the real part, and the second element intitializes the imaginary part. | |||
1525 | ||||
1526 | if (IList->getNumInits() != 2) | |||
1527 | return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, | |||
1528 | StructuredIndex); | |||
1529 | ||||
1530 | // This is an extension in C. (The builtin _Complex type does not exist | |||
1531 | // in the C++ standard.) | |||
1532 | if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) | |||
1533 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) | |||
1534 | << IList->getSourceRange(); | |||
1535 | ||||
1536 | // Initialize the complex number. | |||
1537 | QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); | |||
1538 | InitializedEntity ElementEntity = | |||
1539 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); | |||
1540 | ||||
1541 | for (unsigned i = 0; i < 2; ++i) { | |||
1542 | ElementEntity.setElementIndex(Index); | |||
1543 | CheckSubElementType(ElementEntity, IList, elementType, Index, | |||
1544 | StructuredList, StructuredIndex); | |||
1545 | } | |||
1546 | } | |||
1547 | ||||
1548 | void InitListChecker::CheckScalarType(const InitializedEntity &Entity, | |||
1549 | InitListExpr *IList, QualType DeclType, | |||
1550 | unsigned &Index, | |||
1551 | InitListExpr *StructuredList, | |||
1552 | unsigned &StructuredIndex) { | |||
1553 | if (Index >= IList->getNumInits()) { | |||
1554 | if (!VerifyOnly) { | |||
1555 | if (DeclType->isSizelessBuiltinType()) | |||
1556 | SemaRef.Diag(IList->getBeginLoc(), | |||
1557 | SemaRef.getLangOpts().CPlusPlus11 | |||
1558 | ? diag::warn_cxx98_compat_empty_sizeless_initializer | |||
1559 | : diag::err_empty_sizeless_initializer) | |||
1560 | << DeclType << IList->getSourceRange(); | |||
1561 | else | |||
1562 | SemaRef.Diag(IList->getBeginLoc(), | |||
1563 | SemaRef.getLangOpts().CPlusPlus11 | |||
1564 | ? diag::warn_cxx98_compat_empty_scalar_initializer | |||
1565 | : diag::err_empty_scalar_initializer) | |||
1566 | << IList->getSourceRange(); | |||
1567 | } | |||
1568 | hadError = !SemaRef.getLangOpts().CPlusPlus11; | |||
1569 | ++Index; | |||
1570 | ++StructuredIndex; | |||
1571 | return; | |||
1572 | } | |||
1573 | ||||
1574 | Expr *expr = IList->getInit(Index); | |||
1575 | if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { | |||
1576 | // FIXME: This is invalid, and accepting it causes overload resolution | |||
1577 | // to pick the wrong overload in some corner cases. | |||
1578 | if (!VerifyOnly) | |||
1579 | SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) | |||
1580 | << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); | |||
1581 | ||||
1582 | CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, | |||
1583 | StructuredIndex); | |||
1584 | return; | |||
1585 | } else if (isa<DesignatedInitExpr>(expr)) { | |||
1586 | if (!VerifyOnly) | |||
1587 | SemaRef.Diag(expr->getBeginLoc(), | |||
1588 | diag::err_designator_for_scalar_or_sizeless_init) | |||
1589 | << DeclType->isSizelessBuiltinType() << DeclType | |||
1590 | << expr->getSourceRange(); | |||
1591 | hadError = true; | |||
1592 | ++Index; | |||
1593 | ++StructuredIndex; | |||
1594 | return; | |||
1595 | } | |||
1596 | ||||
1597 | ExprResult Result; | |||
1598 | if (VerifyOnly) { | |||
1599 | if (SemaRef.CanPerformCopyInitialization(Entity, expr)) | |||
1600 | Result = getDummyInit(); | |||
1601 | else | |||
1602 | Result = ExprError(); | |||
1603 | } else { | |||
1604 | Result = | |||
1605 | SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, | |||
1606 | /*TopLevelOfInitList=*/true); | |||
1607 | } | |||
1608 | ||||
1609 | Expr *ResultExpr = nullptr; | |||
1610 | ||||
1611 | if (Result.isInvalid()) | |||
1612 | hadError = true; // types weren't compatible. | |||
1613 | else { | |||
1614 | ResultExpr = Result.getAs<Expr>(); | |||
1615 | ||||
1616 | if (ResultExpr != expr && !VerifyOnly) { | |||
1617 | // The type was promoted, update initializer list. | |||
1618 | // FIXME: Why are we updating the syntactic init list? | |||
1619 | IList->setInit(Index, ResultExpr); | |||
1620 | } | |||
1621 | } | |||
1622 | UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); | |||
1623 | ++Index; | |||
1624 | } | |||
1625 | ||||
1626 | void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, | |||
1627 | InitListExpr *IList, QualType DeclType, | |||
1628 | unsigned &Index, | |||
1629 | InitListExpr *StructuredList, | |||
1630 | unsigned &StructuredIndex) { | |||
1631 | if (Index >= IList->getNumInits()) { | |||
1632 | // FIXME: It would be wonderful if we could point at the actual member. In | |||
1633 | // general, it would be useful to pass location information down the stack, | |||
1634 | // so that we know the location (or decl) of the "current object" being | |||
1635 | // initialized. | |||
1636 | if (!VerifyOnly) | |||
1637 | SemaRef.Diag(IList->getBeginLoc(), | |||
1638 | diag::err_init_reference_member_uninitialized) | |||
1639 | << DeclType << IList->getSourceRange(); | |||
1640 | hadError = true; | |||
1641 | ++Index; | |||
1642 | ++StructuredIndex; | |||
1643 | return; | |||
1644 | } | |||
1645 | ||||
1646 | Expr *expr = IList->getInit(Index); | |||
1647 | if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { | |||
1648 | if (!VerifyOnly) | |||
1649 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) | |||
1650 | << DeclType << IList->getSourceRange(); | |||
1651 | hadError = true; | |||
1652 | ++Index; | |||
1653 | ++StructuredIndex; | |||
1654 | return; | |||
1655 | } | |||
1656 | ||||
1657 | ExprResult Result; | |||
1658 | if (VerifyOnly) { | |||
1659 | if (SemaRef.CanPerformCopyInitialization(Entity,expr)) | |||
1660 | Result = getDummyInit(); | |||
1661 | else | |||
1662 | Result = ExprError(); | |||
1663 | } else { | |||
1664 | Result = | |||
1665 | SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, | |||
1666 | /*TopLevelOfInitList=*/true); | |||
1667 | } | |||
1668 | ||||
1669 | if (Result.isInvalid()) | |||
1670 | hadError = true; | |||
1671 | ||||
1672 | expr = Result.getAs<Expr>(); | |||
1673 | // FIXME: Why are we updating the syntactic init list? | |||
1674 | if (!VerifyOnly && expr) | |||
1675 | IList->setInit(Index, expr); | |||
1676 | ||||
1677 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); | |||
1678 | ++Index; | |||
1679 | } | |||
1680 | ||||
1681 | void InitListChecker::CheckVectorType(const InitializedEntity &Entity, | |||
1682 | InitListExpr *IList, QualType DeclType, | |||
1683 | unsigned &Index, | |||
1684 | InitListExpr *StructuredList, | |||
1685 | unsigned &StructuredIndex) { | |||
1686 | const VectorType *VT = DeclType->castAs<VectorType>(); | |||
1687 | unsigned maxElements = VT->getNumElements(); | |||
1688 | unsigned numEltsInit = 0; | |||
1689 | QualType elementType = VT->getElementType(); | |||
1690 | ||||
1691 | if (Index >= IList->getNumInits()) { | |||
1692 | // Make sure the element type can be value-initialized. | |||
1693 | CheckEmptyInitializable( | |||
1694 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), | |||
1695 | IList->getEndLoc()); | |||
1696 | return; | |||
1697 | } | |||
1698 | ||||
1699 | if (!SemaRef.getLangOpts().OpenCL) { | |||
1700 | // If the initializing element is a vector, try to copy-initialize | |||
1701 | // instead of breaking it apart (which is doomed to failure anyway). | |||
1702 | Expr *Init = IList->getInit(Index); | |||
1703 | if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { | |||
1704 | ExprResult Result; | |||
1705 | if (VerifyOnly) { | |||
1706 | if (SemaRef.CanPerformCopyInitialization(Entity, Init)) | |||
1707 | Result = getDummyInit(); | |||
1708 | else | |||
1709 | Result = ExprError(); | |||
1710 | } else { | |||
1711 | Result = | |||
1712 | SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, | |||
1713 | /*TopLevelOfInitList=*/true); | |||
1714 | } | |||
1715 | ||||
1716 | Expr *ResultExpr = nullptr; | |||
1717 | if (Result.isInvalid()) | |||
1718 | hadError = true; // types weren't compatible. | |||
1719 | else { | |||
1720 | ResultExpr = Result.getAs<Expr>(); | |||
1721 | ||||
1722 | if (ResultExpr != Init && !VerifyOnly) { | |||
1723 | // The type was promoted, update initializer list. | |||
1724 | // FIXME: Why are we updating the syntactic init list? | |||
1725 | IList->setInit(Index, ResultExpr); | |||
1726 | } | |||
1727 | } | |||
1728 | UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); | |||
1729 | ++Index; | |||
1730 | return; | |||
1731 | } | |||
1732 | ||||
1733 | InitializedEntity ElementEntity = | |||
1734 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); | |||
1735 | ||||
1736 | for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { | |||
1737 | // Don't attempt to go past the end of the init list | |||
1738 | if (Index >= IList->getNumInits()) { | |||
1739 | CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); | |||
1740 | break; | |||
1741 | } | |||
1742 | ||||
1743 | ElementEntity.setElementIndex(Index); | |||
1744 | CheckSubElementType(ElementEntity, IList, elementType, Index, | |||
1745 | StructuredList, StructuredIndex); | |||
1746 | } | |||
1747 | ||||
1748 | if (VerifyOnly) | |||
1749 | return; | |||
1750 | ||||
1751 | bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); | |||
1752 | const VectorType *T = Entity.getType()->castAs<VectorType>(); | |||
1753 | if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || | |||
1754 | T->getVectorKind() == VectorType::NeonPolyVector)) { | |||
1755 | // The ability to use vector initializer lists is a GNU vector extension | |||
1756 | // and is unrelated to the NEON intrinsics in arm_neon.h. On little | |||
1757 | // endian machines it works fine, however on big endian machines it | |||
1758 | // exhibits surprising behaviour: | |||
1759 | // | |||
1760 | // uint32x2_t x = {42, 64}; | |||
1761 | // return vget_lane_u32(x, 0); // Will return 64. | |||
1762 | // | |||
1763 | // Because of this, explicitly call out that it is non-portable. | |||
1764 | // | |||
1765 | SemaRef.Diag(IList->getBeginLoc(), | |||
1766 | diag::warn_neon_vector_initializer_non_portable); | |||
1767 | ||||
1768 | const char *typeCode; | |||
1769 | unsigned typeSize = SemaRef.Context.getTypeSize(elementType); | |||
1770 | ||||
1771 | if (elementType->isFloatingType()) | |||
1772 | typeCode = "f"; | |||
1773 | else if (elementType->isSignedIntegerType()) | |||
1774 | typeCode = "s"; | |||
1775 | else if (elementType->isUnsignedIntegerType()) | |||
1776 | typeCode = "u"; | |||
1777 | else | |||
1778 | llvm_unreachable("Invalid element type!")__builtin_unreachable(); | |||
1779 | ||||
1780 | SemaRef.Diag(IList->getBeginLoc(), | |||
1781 | SemaRef.Context.getTypeSize(VT) > 64 | |||
1782 | ? diag::note_neon_vector_initializer_non_portable_q | |||
1783 | : diag::note_neon_vector_initializer_non_portable) | |||
1784 | << typeCode << typeSize; | |||
1785 | } | |||
1786 | ||||
1787 | return; | |||
1788 | } | |||
1789 | ||||
1790 | InitializedEntity ElementEntity = | |||
1791 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); | |||
1792 | ||||
1793 | // OpenCL initializers allows vectors to be constructed from vectors. | |||
1794 | for (unsigned i = 0; i < maxElements; ++i) { | |||
1795 | // Don't attempt to go past the end of the init list | |||
1796 | if (Index >= IList->getNumInits()) | |||
1797 | break; | |||
1798 | ||||
1799 | ElementEntity.setElementIndex(Index); | |||
1800 | ||||
1801 | QualType IType = IList->getInit(Index)->getType(); | |||
1802 | if (!IType->isVectorType()) { | |||
1803 | CheckSubElementType(ElementEntity, IList, elementType, Index, | |||
1804 | StructuredList, StructuredIndex); | |||
1805 | ++numEltsInit; | |||
1806 | } else { | |||
1807 | QualType VecType; | |||
1808 | const VectorType *IVT = IType->castAs<VectorType>(); | |||
1809 | unsigned numIElts = IVT->getNumElements(); | |||
1810 | ||||
1811 | if (IType->isExtVectorType()) | |||
1812 | VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); | |||
1813 | else | |||
1814 | VecType = SemaRef.Context.getVectorType(elementType, numIElts, | |||
1815 | IVT->getVectorKind()); | |||
1816 | CheckSubElementType(ElementEntity, IList, VecType, Index, | |||
1817 | StructuredList, StructuredIndex); | |||
1818 | numEltsInit += numIElts; | |||
1819 | } | |||
1820 | } | |||
1821 | ||||
1822 | // OpenCL requires all elements to be initialized. | |||
1823 | if (numEltsInit != maxElements) { | |||
1824 | if (!VerifyOnly) | |||
1825 | SemaRef.Diag(IList->getBeginLoc(), | |||
1826 | diag::err_vector_incorrect_num_initializers) | |||
1827 | << (numEltsInit < maxElements) << maxElements << numEltsInit; | |||
1828 | hadError = true; | |||
1829 | } | |||
1830 | } | |||
1831 | ||||
1832 | /// Check if the type of a class element has an accessible destructor, and marks | |||
1833 | /// it referenced. Returns true if we shouldn't form a reference to the | |||
1834 | /// destructor. | |||
1835 | /// | |||
1836 | /// Aggregate initialization requires a class element's destructor be | |||
1837 | /// accessible per 11.6.1 [dcl.init.aggr]: | |||
1838 | /// | |||
1839 | /// The destructor for each element of class type is potentially invoked | |||
1840 | /// (15.4 [class.dtor]) from the context where the aggregate initialization | |||
1841 | /// occurs. | |||
1842 | static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, | |||
1843 | Sema &SemaRef) { | |||
1844 | auto *CXXRD = ElementType->getAsCXXRecordDecl(); | |||
1845 | if (!CXXRD) | |||
1846 | return false; | |||
1847 | ||||
1848 | CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); | |||
1849 | SemaRef.CheckDestructorAccess(Loc, Destructor, | |||
1850 | SemaRef.PDiag(diag::err_access_dtor_temp) | |||
1851 | << ElementType); | |||
1852 | SemaRef.MarkFunctionReferenced(Loc, Destructor); | |||
1853 | return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); | |||
1854 | } | |||
1855 | ||||
1856 | void InitListChecker::CheckArrayType(const InitializedEntity &Entity, | |||
1857 | InitListExpr *IList, QualType &DeclType, | |||
1858 | llvm::APSInt elementIndex, | |||
1859 | bool SubobjectIsDesignatorContext, | |||
1860 | unsigned &Index, | |||
1861 | InitListExpr *StructuredList, | |||
1862 | unsigned &StructuredIndex) { | |||
1863 | const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); | |||
1864 | ||||
1865 | if (!VerifyOnly) { | |||
1866 | if (checkDestructorReference(arrayType->getElementType(), | |||
1867 | IList->getEndLoc(), SemaRef)) { | |||
1868 | hadError = true; | |||
1869 | return; | |||
1870 | } | |||
1871 | } | |||
1872 | ||||
1873 | // Check for the special-case of initializing an array with a string. | |||
1874 | if (Index < IList->getNumInits()) { | |||
1875 | if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == | |||
1876 | SIF_None) { | |||
1877 | // We place the string literal directly into the resulting | |||
1878 | // initializer list. This is the only place where the structure | |||
1879 | // of the structured initializer list doesn't match exactly, | |||
1880 | // because doing so would involve allocating one character | |||
1881 | // constant for each string. | |||
1882 | // FIXME: Should we do these checks in verify-only mode too? | |||
1883 | if (!VerifyOnly) | |||
1884 | CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); | |||
1885 | if (StructuredList) { | |||
1886 | UpdateStructuredListElement(StructuredList, StructuredIndex, | |||
1887 | IList->getInit(Index)); | |||
1888 | StructuredList->resizeInits(SemaRef.Context, StructuredIndex); | |||
1889 | } | |||
1890 | ++Index; | |||
1891 | return; | |||
1892 | } | |||
1893 | } | |||
1894 | if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { | |||
1895 | // Check for VLAs; in standard C it would be possible to check this | |||
1896 | // earlier, but I don't know where clang accepts VLAs (gcc accepts | |||
1897 | // them in all sorts of strange places). | |||
1898 | if (!VerifyOnly) | |||
1899 | SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), | |||
1900 | diag::err_variable_object_no_init) | |||
1901 | << VAT->getSizeExpr()->getSourceRange(); | |||
1902 | hadError = true; | |||
1903 | ++Index; | |||
1904 | ++StructuredIndex; | |||
1905 | return; | |||
1906 | } | |||
1907 | ||||
1908 | // We might know the maximum number of elements in advance. | |||
1909 | llvm::APSInt maxElements(elementIndex.getBitWidth(), | |||
1910 | elementIndex.isUnsigned()); | |||
1911 | bool maxElementsKnown = false; | |||
1912 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { | |||
1913 | maxElements = CAT->getSize(); | |||
1914 | elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); | |||
1915 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); | |||
1916 | maxElementsKnown = true; | |||
1917 | } | |||
1918 | ||||
1919 | QualType elementType = arrayType->getElementType(); | |||
1920 | while (Index < IList->getNumInits()) { | |||
1921 | Expr *Init = IList->getInit(Index); | |||
1922 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { | |||
1923 | // If we're not the subobject that matches up with the '{' for | |||
1924 | // the designator, we shouldn't be handling the | |||
1925 | // designator. Return immediately. | |||
1926 | if (!SubobjectIsDesignatorContext) | |||
1927 | return; | |||
1928 | ||||
1929 | // Handle this designated initializer. elementIndex will be | |||
1930 | // updated to be the next array element we'll initialize. | |||
1931 | if (CheckDesignatedInitializer(Entity, IList, DIE, 0, | |||
1932 | DeclType, nullptr, &elementIndex, Index, | |||
1933 | StructuredList, StructuredIndex, true, | |||
1934 | false)) { | |||
1935 | hadError = true; | |||
1936 | continue; | |||
1937 | } | |||
1938 | ||||
1939 | if (elementIndex.getBitWidth() > maxElements.getBitWidth()) | |||
1940 | maxElements = maxElements.extend(elementIndex.getBitWidth()); | |||
1941 | else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) | |||
1942 | elementIndex = elementIndex.extend(maxElements.getBitWidth()); | |||
1943 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); | |||
1944 | ||||
1945 | // If the array is of incomplete type, keep track of the number of | |||
1946 | // elements in the initializer. | |||
1947 | if (!maxElementsKnown && elementIndex > maxElements) | |||
1948 | maxElements = elementIndex; | |||
1949 | ||||
1950 | continue; | |||
1951 | } | |||
1952 | ||||
1953 | // If we know the maximum number of elements, and we've already | |||
1954 | // hit it, stop consuming elements in the initializer list. | |||
1955 | if (maxElementsKnown && elementIndex == maxElements) | |||
1956 | break; | |||
1957 | ||||
1958 | InitializedEntity ElementEntity = | |||
1959 | InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, | |||
1960 | Entity); | |||
1961 | // Check this element. | |||
1962 | CheckSubElementType(ElementEntity, IList, elementType, Index, | |||
1963 | StructuredList, StructuredIndex); | |||
1964 | ++elementIndex; | |||
1965 | ||||
1966 | // If the array is of incomplete type, keep track of the number of | |||
1967 | // elements in the initializer. | |||
1968 | if (!maxElementsKnown && elementIndex > maxElements) | |||
1969 | maxElements = elementIndex; | |||
1970 | } | |||
1971 | if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { | |||
1972 | // If this is an incomplete array type, the actual type needs to | |||
1973 | // be calculated here. | |||
1974 | llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); | |||
1975 | if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { | |||
1976 | // Sizing an array implicitly to zero is not allowed by ISO C, | |||
1977 | // but is supported by GNU. | |||
1978 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); | |||
1979 | } | |||
1980 | ||||
1981 | DeclType = SemaRef.Context.getConstantArrayType( | |||
1982 | elementType, maxElements, nullptr, ArrayType::Normal, 0); | |||
1983 | } | |||
1984 | if (!hadError) { | |||
1985 | // If there are any members of the array that get value-initialized, check | |||
1986 | // that is possible. That happens if we know the bound and don't have | |||
1987 | // enough elements, or if we're performing an array new with an unknown | |||
1988 | // bound. | |||
1989 | if ((maxElementsKnown && elementIndex < maxElements) || | |||
1990 | Entity.isVariableLengthArrayNew()) | |||
1991 | CheckEmptyInitializable( | |||
1992 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), | |||
1993 | IList->getEndLoc()); | |||
1994 | } | |||
1995 | } | |||
1996 | ||||
1997 | bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, | |||
1998 | Expr *InitExpr, | |||
1999 | FieldDecl *Field, | |||
2000 | bool TopLevelObject) { | |||
2001 | // Handle GNU flexible array initializers. | |||
2002 | unsigned FlexArrayDiag; | |||
2003 | if (isa<InitListExpr>(InitExpr) && | |||
2004 | cast<InitListExpr>(InitExpr)->getNumInits() == 0) { | |||
2005 | // Empty flexible array init always allowed as an extension | |||
2006 | FlexArrayDiag = diag::ext_flexible_array_init; | |||
2007 | } else if (SemaRef.getLangOpts().CPlusPlus) { | |||
2008 | // Disallow flexible array init in C++; it is not required for gcc | |||
2009 | // compatibility, and it needs work to IRGen correctly in general. | |||
2010 | FlexArrayDiag = diag::err_flexible_array_init; | |||
2011 | } else if (!TopLevelObject) { | |||
2012 | // Disallow flexible array init on non-top-level object | |||
2013 | FlexArrayDiag = diag::err_flexible_array_init; | |||
2014 | } else if (Entity.getKind() != InitializedEntity::EK_Variable) { | |||
2015 | // Disallow flexible array init on anything which is not a variable. | |||
2016 | FlexArrayDiag = diag::err_flexible_array_init; | |||
2017 | } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { | |||
2018 | // Disallow flexible array init on local variables. | |||
2019 | FlexArrayDiag = diag::err_flexible_array_init; | |||
2020 | } else { | |||
2021 | // Allow other cases. | |||
2022 | FlexArrayDiag = diag::ext_flexible_array_init; | |||
2023 | } | |||
2024 | ||||
2025 | if (!VerifyOnly) { | |||
2026 | SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) | |||
2027 | << InitExpr->getBeginLoc(); | |||
2028 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) | |||
2029 | << Field; | |||
2030 | } | |||
2031 | ||||
2032 | return FlexArrayDiag != diag::ext_flexible_array_init; | |||
2033 | } | |||
2034 | ||||
2035 | void InitListChecker::CheckStructUnionTypes( | |||
2036 | const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, | |||
2037 | CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, | |||
2038 | bool SubobjectIsDesignatorContext, unsigned &Index, | |||
2039 | InitListExpr *StructuredList, unsigned &StructuredIndex, | |||
2040 | bool TopLevelObject) { | |||
2041 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); | |||
2042 | ||||
2043 | // If the record is invalid, some of it's members are invalid. To avoid | |||
2044 | // confusion, we forgo checking the intializer for the entire record. | |||
2045 | if (structDecl->isInvalidDecl()) { | |||
2046 | // Assume it was supposed to consume a single initializer. | |||
2047 | ++Index; | |||
2048 | hadError = true; | |||
2049 | return; | |||
2050 | } | |||
2051 | ||||
2052 | if (DeclType->isUnionType() && IList->getNumInits() == 0) { | |||
2053 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); | |||
2054 | ||||
2055 | if (!VerifyOnly) | |||
2056 | for (FieldDecl *FD : RD->fields()) { | |||
2057 | QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); | |||
2058 | if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { | |||
2059 | hadError = true; | |||
2060 | return; | |||
2061 | } | |||
2062 | } | |||
2063 | ||||
2064 | // If there's a default initializer, use it. | |||
2065 | if (isa<CXXRecordDecl>(RD) && | |||
2066 | cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { | |||
2067 | if (!StructuredList) | |||
2068 | return; | |||
2069 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); | |||
2070 | Field != FieldEnd; ++Field) { | |||
2071 | if (Field->hasInClassInitializer()) { | |||
2072 | StructuredList->setInitializedFieldInUnion(*Field); | |||
2073 | // FIXME: Actually build a CXXDefaultInitExpr? | |||
2074 | return; | |||
2075 | } | |||
2076 | } | |||
2077 | } | |||
2078 | ||||
2079 | // Value-initialize the first member of the union that isn't an unnamed | |||
2080 | // bitfield. | |||
2081 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); | |||
2082 | Field != FieldEnd; ++Field) { | |||
2083 | if (!Field->isUnnamedBitfield()) { | |||
2084 | CheckEmptyInitializable( | |||
2085 | InitializedEntity::InitializeMember(*Field, &Entity), | |||
2086 | IList->getEndLoc()); | |||
2087 | if (StructuredList) | |||
2088 | StructuredList->setInitializedFieldInUnion(*Field); | |||
2089 | break; | |||
2090 | } | |||
2091 | } | |||
2092 | return; | |||
2093 | } | |||
2094 | ||||
2095 | bool InitializedSomething = false; | |||
2096 | ||||
2097 | // If we have any base classes, they are initialized prior to the fields. | |||
2098 | for (auto &Base : Bases) { | |||
2099 | Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; | |||
2100 | ||||
2101 | // Designated inits always initialize fields, so if we see one, all | |||
2102 | // remaining base classes have no explicit initializer. | |||
2103 | if (Init && isa<DesignatedInitExpr>(Init)) | |||
2104 | Init = nullptr; | |||
2105 | ||||
2106 | SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); | |||
2107 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( | |||
2108 | SemaRef.Context, &Base, false, &Entity); | |||
2109 | if (Init) { | |||
2110 | CheckSubElementType(BaseEntity, IList, Base.getType(), Index, | |||
2111 | StructuredList, StructuredIndex); | |||
2112 | InitializedSomething = true; | |||
2113 | } else { | |||
2114 | CheckEmptyInitializable(BaseEntity, InitLoc); | |||
2115 | } | |||
2116 | ||||
2117 | if (!VerifyOnly) | |||
2118 | if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { | |||
2119 | hadError = true; | |||
2120 | return; | |||
2121 | } | |||
2122 | } | |||
2123 | ||||
2124 | // If structDecl is a forward declaration, this loop won't do | |||
2125 | // anything except look at designated initializers; That's okay, | |||
2126 | // because an error should get printed out elsewhere. It might be | |||
2127 | // worthwhile to skip over the rest of the initializer, though. | |||
2128 | RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); | |||
2129 | RecordDecl::field_iterator FieldEnd = RD->field_end(); | |||
2130 | bool CheckForMissingFields = | |||
2131 | !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); | |||
2132 | bool HasDesignatedInit = false; | |||
2133 | ||||
2134 | while (Index < IList->getNumInits()) { | |||
2135 | Expr *Init = IList->getInit(Index); | |||
2136 | SourceLocation InitLoc = Init->getBeginLoc(); | |||
2137 | ||||
2138 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { | |||
2139 | // If we're not the subobject that matches up with the '{' for | |||
2140 | // the designator, we shouldn't be handling the | |||
2141 | // designator. Return immediately. | |||
2142 | if (!SubobjectIsDesignatorContext) | |||
2143 | return; | |||
2144 | ||||
2145 | HasDesignatedInit = true; | |||
2146 | ||||
2147 | // Handle this designated initializer. Field will be updated to | |||
2148 | // the next field that we'll be initializing. | |||
2149 | if (CheckDesignatedInitializer(Entity, IList, DIE, 0, | |||
2150 | DeclType, &Field, nullptr, Index, | |||
2151 | StructuredList, StructuredIndex, | |||
2152 | true, TopLevelObject)) | |||
2153 | hadError = true; | |||
2154 | else if (!VerifyOnly) { | |||
2155 | // Find the field named by the designated initializer. | |||
2156 | RecordDecl::field_iterator F = RD->field_begin(); | |||
2157 | while (std::next(F) != Field) | |||
2158 | ++F; | |||
2159 | QualType ET = SemaRef.Context.getBaseElementType(F->getType()); | |||
2160 | if (checkDestructorReference(ET, InitLoc, SemaRef)) { | |||
2161 | hadError = true; | |||
2162 | return; | |||
2163 | } | |||
2164 | } | |||
2165 | ||||
2166 | InitializedSomething = true; | |||
2167 | ||||
2168 | // Disable check for missing fields when designators are used. | |||
2169 | // This matches gcc behaviour. | |||
2170 | CheckForMissingFields = false; | |||
2171 | continue; | |||
2172 | } | |||
2173 | ||||
2174 | if (Field == FieldEnd) { | |||
2175 | // We've run out of fields. We're done. | |||
2176 | break; | |||
2177 | } | |||
2178 | ||||
2179 | // We've already initialized a member of a union. We're done. | |||
2180 | if (InitializedSomething && DeclType->isUnionType()) | |||
2181 | break; | |||
2182 | ||||
2183 | // If we've hit the flexible array member at the end, we're done. | |||
2184 | if (Field->getType()->isIncompleteArrayType()) | |||
2185 | break; | |||
2186 | ||||
2187 | if (Field->isUnnamedBitfield()) { | |||
2188 | // Don't initialize unnamed bitfields, e.g. "int : 20;" | |||
2189 | ++Field; | |||
2190 | continue; | |||
2191 | } | |||
2192 | ||||
2193 | // Make sure we can use this declaration. | |||
2194 | bool InvalidUse; | |||
2195 | if (VerifyOnly) | |||
2196 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); | |||
2197 | else | |||
2198 | InvalidUse = SemaRef.DiagnoseUseOfDecl( | |||
2199 | *Field, IList->getInit(Index)->getBeginLoc()); | |||
2200 | if (InvalidUse) { | |||
2201 | ++Index; | |||
2202 | ++Field; | |||
2203 | hadError = true; | |||
2204 | continue; | |||
2205 | } | |||
2206 | ||||
2207 | if (!VerifyOnly) { | |||
2208 | QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); | |||
2209 | if (checkDestructorReference(ET, InitLoc, SemaRef)) { | |||
2210 | hadError = true; | |||
2211 | return; | |||
2212 | } | |||
2213 | } | |||
2214 | ||||
2215 | InitializedEntity MemberEntity = | |||
2216 | InitializedEntity::InitializeMember(*Field, &Entity); | |||
2217 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, | |||
2218 | StructuredList, StructuredIndex); | |||
2219 | InitializedSomething = true; | |||
2220 | ||||
2221 | if (DeclType->isUnionType() && StructuredList) { | |||
2222 | // Initialize the first field within the union. | |||
2223 | StructuredList->setInitializedFieldInUnion(*Field); | |||
2224 | } | |||
2225 | ||||
2226 | ++Field; | |||
2227 | } | |||
2228 | ||||
2229 | // Emit warnings for missing struct field initializers. | |||
2230 | if (!VerifyOnly && InitializedSomething && CheckForMissingFields && | |||
2231 | Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && | |||
2232 | !DeclType->isUnionType()) { | |||
2233 | // It is possible we have one or more unnamed bitfields remaining. | |||
2234 | // Find first (if any) named field and emit warning. | |||
2235 | for (RecordDecl::field_iterator it = Field, end = RD->field_end(); | |||
2236 | it != end; ++it) { | |||
2237 | if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { | |||
2238 | SemaRef.Diag(IList->getSourceRange().getEnd(), | |||
2239 | diag::warn_missing_field_initializers) << *it; | |||
2240 | break; | |||
2241 | } | |||
2242 | } | |||
2243 | } | |||
2244 | ||||
2245 | // Check that any remaining fields can be value-initialized if we're not | |||
2246 | // building a structured list. (If we are, we'll check this later.) | |||
2247 | if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && | |||
2248 | !Field->getType()->isIncompleteArrayType()) { | |||
2249 | for (; Field != FieldEnd && !hadError; ++Field) { | |||
2250 | if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) | |||
2251 | CheckEmptyInitializable( | |||
2252 | InitializedEntity::InitializeMember(*Field, &Entity), | |||
2253 | IList->getEndLoc()); | |||
2254 | } | |||
2255 | } | |||
2256 | ||||
2257 | // Check that the types of the remaining fields have accessible destructors. | |||
2258 | if (!VerifyOnly) { | |||
2259 | // If the initializer expression has a designated initializer, check the | |||
2260 | // elements for which a designated initializer is not provided too. | |||
2261 | RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() | |||
2262 | : Field; | |||
2263 | for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { | |||
2264 | QualType ET = SemaRef.Context.getBaseElementType(I->getType()); | |||
2265 | if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { | |||
2266 | hadError = true; | |||
2267 | return; | |||
2268 | } | |||
2269 | } | |||
2270 | } | |||
2271 | ||||
2272 | if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || | |||
2273 | Index >= IList->getNumInits()) | |||
2274 | return; | |||
2275 | ||||
2276 | if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, | |||
2277 | TopLevelObject)) { | |||
2278 | hadError = true; | |||
2279 | ++Index; | |||
2280 | return; | |||
2281 | } | |||
2282 | ||||
2283 | InitializedEntity MemberEntity = | |||
2284 | InitializedEntity::InitializeMember(*Field, &Entity); | |||
2285 | ||||
2286 | if (isa<InitListExpr>(IList->getInit(Index))) | |||
2287 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, | |||
2288 | StructuredList, StructuredIndex); | |||
2289 | else | |||
2290 | CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, | |||
2291 | StructuredList, StructuredIndex); | |||
2292 | } | |||
2293 | ||||
2294 | /// Expand a field designator that refers to a member of an | |||
2295 | /// anonymous struct or union into a series of field designators that | |||
2296 | /// refers to the field within the appropriate subobject. | |||
2297 | /// | |||
2298 | static void ExpandAnonymousFieldDesignator(Sema &SemaRef, | |||
2299 | DesignatedInitExpr *DIE, | |||
2300 | unsigned DesigIdx, | |||
2301 | IndirectFieldDecl *IndirectField) { | |||
2302 | typedef DesignatedInitExpr::Designator Designator; | |||
2303 | ||||
2304 | // Build the replacement designators. | |||
2305 | SmallVector<Designator, 4> Replacements; | |||
2306 | for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), | |||
2307 | PE = IndirectField->chain_end(); PI != PE; ++PI) { | |||
2308 | if (PI + 1 == PE) | |||
2309 | Replacements.push_back(Designator((IdentifierInfo *)nullptr, | |||
2310 | DIE->getDesignator(DesigIdx)->getDotLoc(), | |||
2311 | DIE->getDesignator(DesigIdx)->getFieldLoc())); | |||
2312 | else | |||
2313 | Replacements.push_back(Designator((IdentifierInfo *)nullptr, | |||
2314 | SourceLocation(), SourceLocation())); | |||
2315 | assert(isa<FieldDecl>(*PI))((void)0); | |||
2316 | Replacements.back().setField(cast<FieldDecl>(*PI)); | |||
2317 | } | |||
2318 | ||||
2319 | // Expand the current designator into the set of replacement | |||
2320 | // designators, so we have a full subobject path down to where the | |||
2321 | // member of the anonymous struct/union is actually stored. | |||
2322 | DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], | |||
2323 | &Replacements[0] + Replacements.size()); | |||
2324 | } | |||
2325 | ||||
2326 | static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, | |||
2327 | DesignatedInitExpr *DIE) { | |||
2328 | unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; | |||
2329 | SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); | |||
2330 | for (unsigned I = 0; I < NumIndexExprs; ++I) | |||
2331 | IndexExprs[I] = DIE->getSubExpr(I + 1); | |||
2332 | return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), | |||
2333 | IndexExprs, | |||
2334 | DIE->getEqualOrColonLoc(), | |||
2335 | DIE->usesGNUSyntax(), DIE->getInit()); | |||
2336 | } | |||
2337 | ||||
2338 | namespace { | |||
2339 | ||||
2340 | // Callback to only accept typo corrections that are for field members of | |||
2341 | // the given struct or union. | |||
2342 | class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { | |||
2343 | public: | |||
2344 | explicit FieldInitializerValidatorCCC(RecordDecl *RD) | |||
2345 | : Record(RD) {} | |||
2346 | ||||
2347 | bool ValidateCandidate(const TypoCorrection &candidate) override { | |||
2348 | FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); | |||
2349 | return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); | |||
2350 | } | |||
2351 | ||||
2352 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
2353 | return std::make_unique<FieldInitializerValidatorCCC>(*this); | |||
2354 | } | |||
2355 | ||||
2356 | private: | |||
2357 | RecordDecl *Record; | |||
2358 | }; | |||
2359 | ||||
2360 | } // end anonymous namespace | |||
2361 | ||||
2362 | /// Check the well-formedness of a C99 designated initializer. | |||
2363 | /// | |||
2364 | /// Determines whether the designated initializer @p DIE, which | |||
2365 | /// resides at the given @p Index within the initializer list @p | |||
2366 | /// IList, is well-formed for a current object of type @p DeclType | |||
2367 | /// (C99 6.7.8). The actual subobject that this designator refers to | |||
2368 | /// within the current subobject is returned in either | |||
2369 | /// @p NextField or @p NextElementIndex (whichever is appropriate). | |||
2370 | /// | |||
2371 | /// @param IList The initializer list in which this designated | |||
2372 | /// initializer occurs. | |||
2373 | /// | |||
2374 | /// @param DIE The designated initializer expression. | |||
2375 | /// | |||
2376 | /// @param DesigIdx The index of the current designator. | |||
2377 | /// | |||
2378 | /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), | |||
2379 | /// into which the designation in @p DIE should refer. | |||
2380 | /// | |||
2381 | /// @param NextField If non-NULL and the first designator in @p DIE is | |||
2382 | /// a field, this will be set to the field declaration corresponding | |||
2383 | /// to the field named by the designator. On input, this is expected to be | |||
2384 | /// the next field that would be initialized in the absence of designation, | |||
2385 | /// if the complete object being initialized is a struct. | |||
2386 | /// | |||
2387 | /// @param NextElementIndex If non-NULL and the first designator in @p | |||
2388 | /// DIE is an array designator or GNU array-range designator, this | |||
2389 | /// will be set to the last index initialized by this designator. | |||
2390 | /// | |||
2391 | /// @param Index Index into @p IList where the designated initializer | |||
2392 | /// @p DIE occurs. | |||
2393 | /// | |||
2394 | /// @param StructuredList The initializer list expression that | |||
2395 | /// describes all of the subobject initializers in the order they'll | |||
2396 | /// actually be initialized. | |||
2397 | /// | |||
2398 | /// @returns true if there was an error, false otherwise. | |||
2399 | bool | |||
2400 | InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, | |||
2401 | InitListExpr *IList, | |||
2402 | DesignatedInitExpr *DIE, | |||
2403 | unsigned DesigIdx, | |||
2404 | QualType &CurrentObjectType, | |||
2405 | RecordDecl::field_iterator *NextField, | |||
2406 | llvm::APSInt *NextElementIndex, | |||
2407 | unsigned &Index, | |||
2408 | InitListExpr *StructuredList, | |||
2409 | unsigned &StructuredIndex, | |||
2410 | bool FinishSubobjectInit, | |||
2411 | bool TopLevelObject) { | |||
2412 | if (DesigIdx == DIE->size()) { | |||
2413 | // C++20 designated initialization can result in direct-list-initialization | |||
2414 | // of the designated subobject. This is the only way that we can end up | |||
2415 | // performing direct initialization as part of aggregate initialization, so | |||
2416 | // it needs special handling. | |||
2417 | if (DIE->isDirectInit()) { | |||
2418 | Expr *Init = DIE->getInit(); | |||
2419 | assert(isa<InitListExpr>(Init) &&((void)0) | |||
2420 | "designator result in direct non-list initialization?")((void)0); | |||
2421 | InitializationKind Kind = InitializationKind::CreateDirectList( | |||
2422 | DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); | |||
2423 | InitializationSequence Seq(SemaRef, Entity, Kind, Init, | |||
2424 | /*TopLevelOfInitList*/ true); | |||
2425 | if (StructuredList) { | |||
2426 | ExprResult Result = VerifyOnly | |||
2427 | ? getDummyInit() | |||
2428 | : Seq.Perform(SemaRef, Entity, Kind, Init); | |||
2429 | UpdateStructuredListElement(StructuredList, StructuredIndex, | |||
2430 | Result.get()); | |||
2431 | } | |||
2432 | ++Index; | |||
2433 | return !Seq; | |||
2434 | } | |||
2435 | ||||
2436 | // Check the actual initialization for the designated object type. | |||
2437 | bool prevHadError = hadError; | |||
2438 | ||||
2439 | // Temporarily remove the designator expression from the | |||
2440 | // initializer list that the child calls see, so that we don't try | |||
2441 | // to re-process the designator. | |||
2442 | unsigned OldIndex = Index; | |||
2443 | IList->setInit(OldIndex, DIE->getInit()); | |||
2444 | ||||
2445 | CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList, | |||
2446 | StructuredIndex, /*DirectlyDesignated=*/true); | |||
2447 | ||||
2448 | // Restore the designated initializer expression in the syntactic | |||
2449 | // form of the initializer list. | |||
2450 | if (IList->getInit(OldIndex) != DIE->getInit()) | |||
2451 | DIE->setInit(IList->getInit(OldIndex)); | |||
2452 | IList->setInit(OldIndex, DIE); | |||
2453 | ||||
2454 | return hadError && !prevHadError; | |||
2455 | } | |||
2456 | ||||
2457 | DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); | |||
2458 | bool IsFirstDesignator = (DesigIdx == 0); | |||
2459 | if (IsFirstDesignator ? FullyStructuredList : StructuredList) { | |||
2460 | // Determine the structural initializer list that corresponds to the | |||
2461 | // current subobject. | |||
2462 | if (IsFirstDesignator) | |||
2463 | StructuredList = FullyStructuredList; | |||
2464 | else { | |||
2465 | Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? | |||
2466 | StructuredList->getInit(StructuredIndex) : nullptr; | |||
2467 | if (!ExistingInit && StructuredList->hasArrayFiller()) | |||
2468 | ExistingInit = StructuredList->getArrayFiller(); | |||
2469 | ||||
2470 | if (!ExistingInit) | |||
2471 | StructuredList = getStructuredSubobjectInit( | |||
2472 | IList, Index, CurrentObjectType, StructuredList, StructuredIndex, | |||
2473 | SourceRange(D->getBeginLoc(), DIE->getEndLoc())); | |||
2474 | else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) | |||
2475 | StructuredList = Result; | |||
2476 | else { | |||
2477 | // We are creating an initializer list that initializes the | |||
2478 | // subobjects of the current object, but there was already an | |||
2479 | // initialization that completely initialized the current | |||
2480 | // subobject, e.g., by a compound literal: | |||
2481 | // | |||
2482 | // struct X { int a, b; }; | |||
2483 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; | |||
2484 | // | |||
2485 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, | |||
2486 | // designated initializer re-initializes only its current object | |||
2487 | // subobject [0].b. | |||
2488 | diagnoseInitOverride(ExistingInit, | |||
2489 | SourceRange(D->getBeginLoc(), DIE->getEndLoc()), | |||
2490 | /*FullyOverwritten=*/false); | |||
2491 | ||||
2492 | if (!VerifyOnly) { | |||
2493 | if (DesignatedInitUpdateExpr *E = | |||
2494 | dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) | |||
2495 | StructuredList = E->getUpdater(); | |||
2496 | else { | |||
2497 | DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) | |||
2498 | DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), | |||
2499 | ExistingInit, DIE->getEndLoc()); | |||
2500 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); | |||
2501 | StructuredList = DIUE->getUpdater(); | |||
2502 | } | |||
2503 | } else { | |||
2504 | // We don't need to track the structured representation of a | |||
2505 | // designated init update of an already-fully-initialized object in | |||
2506 | // verify-only mode. The only reason we would need the structure is | |||
2507 | // to determine where the uninitialized "holes" are, and in this | |||
2508 | // case, we know there aren't any and we can't introduce any. | |||
2509 | StructuredList = nullptr; | |||
2510 | } | |||
2511 | } | |||
2512 | } | |||
2513 | } | |||
2514 | ||||
2515 | if (D->isFieldDesignator()) { | |||
2516 | // C99 6.7.8p7: | |||
2517 | // | |||
2518 | // If a designator has the form | |||
2519 | // | |||
2520 | // . identifier | |||
2521 | // | |||
2522 | // then the current object (defined below) shall have | |||
2523 | // structure or union type and the identifier shall be the | |||
2524 | // name of a member of that type. | |||
2525 | const RecordType *RT = CurrentObjectType->getAs<RecordType>(); | |||
2526 | if (!RT) { | |||
2527 | SourceLocation Loc = D->getDotLoc(); | |||
2528 | if (Loc.isInvalid()) | |||
2529 | Loc = D->getFieldLoc(); | |||
2530 | if (!VerifyOnly) | |||
2531 | SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) | |||
2532 | << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; | |||
2533 | ++Index; | |||
2534 | return true; | |||
2535 | } | |||
2536 | ||||
2537 | FieldDecl *KnownField = D->getField(); | |||
2538 | if (!KnownField) { | |||
2539 | IdentifierInfo *FieldName = D->getFieldName(); | |||
2540 | DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); | |||
2541 | for (NamedDecl *ND : Lookup) { | |||
2542 | if (auto *FD = dyn_cast<FieldDecl>(ND)) { | |||
2543 | KnownField = FD; | |||
2544 | break; | |||
2545 | } | |||
2546 | if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { | |||
2547 | // In verify mode, don't modify the original. | |||
2548 | if (VerifyOnly) | |||
2549 | DIE = CloneDesignatedInitExpr(SemaRef, DIE); | |||
2550 | ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); | |||
2551 | D = DIE->getDesignator(DesigIdx); | |||
2552 | KnownField = cast<FieldDecl>(*IFD->chain_begin()); | |||
2553 | break; | |||
2554 | } | |||
2555 | } | |||
2556 | if (!KnownField) { | |||
2557 | if (VerifyOnly) { | |||
2558 | ++Index; | |||
2559 | return true; // No typo correction when just trying this out. | |||
2560 | } | |||
2561 | ||||
2562 | // Name lookup found something, but it wasn't a field. | |||
2563 | if (!Lookup.empty()) { | |||
2564 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) | |||
2565 | << FieldName; | |||
2566 | SemaRef.Diag(Lookup.front()->getLocation(), | |||
2567 | diag::note_field_designator_found); | |||
2568 | ++Index; | |||
2569 | return true; | |||
2570 | } | |||
2571 | ||||
2572 | // Name lookup didn't find anything. | |||
2573 | // Determine whether this was a typo for another field name. | |||
2574 | FieldInitializerValidatorCCC CCC(RT->getDecl()); | |||
2575 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( | |||
2576 | DeclarationNameInfo(FieldName, D->getFieldLoc()), | |||
2577 | Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, | |||
2578 | Sema::CTK_ErrorRecovery, RT->getDecl())) { | |||
2579 | SemaRef.diagnoseTypo( | |||
2580 | Corrected, | |||
2581 | SemaRef.PDiag(diag::err_field_designator_unknown_suggest) | |||
2582 | << FieldName << CurrentObjectType); | |||
2583 | KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); | |||
2584 | hadError = true; | |||
2585 | } else { | |||
2586 | // Typo correction didn't find anything. | |||
2587 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) | |||
2588 | << FieldName << CurrentObjectType; | |||
2589 | ++Index; | |||
2590 | return true; | |||
2591 | } | |||
2592 | } | |||
2593 | } | |||
2594 | ||||
2595 | unsigned NumBases = 0; | |||
2596 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) | |||
2597 | NumBases = CXXRD->getNumBases(); | |||
2598 | ||||
2599 | unsigned FieldIndex = NumBases; | |||
2600 | ||||
2601 | for (auto *FI : RT->getDecl()->fields()) { | |||
2602 | if (FI->isUnnamedBitfield()) | |||
2603 | continue; | |||
2604 | if (declaresSameEntity(KnownField, FI)) { | |||
2605 | KnownField = FI; | |||
2606 | break; | |||
2607 | } | |||
2608 | ++FieldIndex; | |||
2609 | } | |||
2610 | ||||
2611 | RecordDecl::field_iterator Field = | |||
2612 | RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); | |||
2613 | ||||
2614 | // All of the fields of a union are located at the same place in | |||
2615 | // the initializer list. | |||
2616 | if (RT->getDecl()->isUnion()) { | |||
2617 | FieldIndex = 0; | |||
2618 | if (StructuredList) { | |||
2619 | FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); | |||
2620 | if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { | |||
2621 | assert(StructuredList->getNumInits() == 1((void)0) | |||
2622 | && "A union should never have more than one initializer!")((void)0); | |||
2623 | ||||
2624 | Expr *ExistingInit = StructuredList->getInit(0); | |||
2625 | if (ExistingInit) { | |||
2626 | // We're about to throw away an initializer, emit warning. | |||
2627 | diagnoseInitOverride( | |||
2628 | ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); | |||
2629 | } | |||
2630 | ||||
2631 | // remove existing initializer | |||
2632 | StructuredList->resizeInits(SemaRef.Context, 0); | |||
2633 | StructuredList->setInitializedFieldInUnion(nullptr); | |||
2634 | } | |||
2635 | ||||
2636 | StructuredList->setInitializedFieldInUnion(*Field); | |||
2637 | } | |||
2638 | } | |||
2639 | ||||
2640 | // Make sure we can use this declaration. | |||
2641 | bool InvalidUse; | |||
2642 | if (VerifyOnly) | |||
2643 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); | |||
2644 | else | |||
2645 | InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); | |||
2646 | if (InvalidUse) { | |||
2647 | ++Index; | |||
2648 | return true; | |||
2649 | } | |||
2650 | ||||
2651 | // C++20 [dcl.init.list]p3: | |||
2652 | // The ordered identifiers in the designators of the designated- | |||
2653 | // initializer-list shall form a subsequence of the ordered identifiers | |||
2654 | // in the direct non-static data members of T. | |||
2655 | // | |||
2656 | // Note that this is not a condition on forming the aggregate | |||
2657 | // initialization, only on actually performing initialization, | |||
2658 | // so it is not checked in VerifyOnly mode. | |||
2659 | // | |||
2660 | // FIXME: This is the only reordering diagnostic we produce, and it only | |||
2661 | // catches cases where we have a top-level field designator that jumps | |||
2662 | // backwards. This is the only such case that is reachable in an | |||
2663 | // otherwise-valid C++20 program, so is the only case that's required for | |||
2664 | // conformance, but for consistency, we should diagnose all the other | |||
2665 | // cases where a designator takes us backwards too. | |||
2666 | if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && | |||
2667 | NextField && | |||
2668 | (*NextField == RT->getDecl()->field_end() || | |||
2669 | (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { | |||
2670 | // Find the field that we just initialized. | |||
2671 | FieldDecl *PrevField = nullptr; | |||
2672 | for (auto FI = RT->getDecl()->field_begin(); | |||
2673 | FI != RT->getDecl()->field_end(); ++FI) { | |||
2674 | if (FI->isUnnamedBitfield()) | |||
2675 | continue; | |||
2676 | if (*NextField != RT->getDecl()->field_end() && | |||
2677 | declaresSameEntity(*FI, **NextField)) | |||
2678 | break; | |||
2679 | PrevField = *FI; | |||
2680 | } | |||
2681 | ||||
2682 | if (PrevField && | |||
2683 | PrevField->getFieldIndex() > KnownField->getFieldIndex()) { | |||
2684 | SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) | |||
2685 | << KnownField << PrevField << DIE->getSourceRange(); | |||
2686 | ||||
2687 | unsigned OldIndex = NumBases + PrevField->getFieldIndex(); | |||
2688 | if (StructuredList && OldIndex <= StructuredList->getNumInits()) { | |||
2689 | if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { | |||
2690 | SemaRef.Diag(PrevInit->getBeginLoc(), | |||
2691 | diag::note_previous_field_init) | |||
2692 | << PrevField << PrevInit->getSourceRange(); | |||
2693 | } | |||
2694 | } | |||
2695 | } | |||
2696 | } | |||
2697 | ||||
2698 | ||||
2699 | // Update the designator with the field declaration. | |||
2700 | if (!VerifyOnly) | |||
2701 | D->setField(*Field); | |||
2702 | ||||
2703 | // Make sure that our non-designated initializer list has space | |||
2704 | // for a subobject corresponding to this field. | |||
2705 | if (StructuredList && FieldIndex >= StructuredList->getNumInits()) | |||
2706 | StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); | |||
2707 | ||||
2708 | // This designator names a flexible array member. | |||
2709 | if (Field->getType()->isIncompleteArrayType()) { | |||
2710 | bool Invalid = false; | |||
2711 | if ((DesigIdx + 1) != DIE->size()) { | |||
2712 | // We can't designate an object within the flexible array | |||
2713 | // member (because GCC doesn't allow it). | |||
2714 | if (!VerifyOnly) { | |||
2715 | DesignatedInitExpr::Designator *NextD | |||
2716 | = DIE->getDesignator(DesigIdx + 1); | |||
2717 | SemaRef.Diag(NextD->getBeginLoc(), | |||
2718 | diag::err_designator_into_flexible_array_member) | |||
2719 | << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); | |||
2720 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) | |||
2721 | << *Field; | |||
2722 | } | |||
2723 | Invalid = true; | |||
2724 | } | |||
2725 | ||||
2726 | if (!hadError && !isa<InitListExpr>(DIE->getInit()) && | |||
2727 | !isa<StringLiteral>(DIE->getInit())) { | |||
2728 | // The initializer is not an initializer list. | |||
2729 | if (!VerifyOnly) { | |||
2730 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), | |||
2731 | diag::err_flexible_array_init_needs_braces) | |||
2732 | << DIE->getInit()->getSourceRange(); | |||
2733 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) | |||
2734 | << *Field; | |||
2735 | } | |||
2736 | Invalid = true; | |||
2737 | } | |||
2738 | ||||
2739 | // Check GNU flexible array initializer. | |||
2740 | if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, | |||
2741 | TopLevelObject)) | |||
2742 | Invalid = true; | |||
2743 | ||||
2744 | if (Invalid) { | |||
2745 | ++Index; | |||
2746 | return true; | |||
2747 | } | |||
2748 | ||||
2749 | // Initialize the array. | |||
2750 | bool prevHadError = hadError; | |||
2751 | unsigned newStructuredIndex = FieldIndex; | |||
2752 | unsigned OldIndex = Index; | |||
2753 | IList->setInit(Index, DIE->getInit()); | |||
2754 | ||||
2755 | InitializedEntity MemberEntity = | |||
2756 | InitializedEntity::InitializeMember(*Field, &Entity); | |||
2757 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, | |||
2758 | StructuredList, newStructuredIndex); | |||
2759 | ||||
2760 | IList->setInit(OldIndex, DIE); | |||
2761 | if (hadError && !prevHadError) { | |||
2762 | ++Field; | |||
2763 | ++FieldIndex; | |||
2764 | if (NextField) | |||
2765 | *NextField = Field; | |||
2766 | StructuredIndex = FieldIndex; | |||
2767 | return true; | |||
2768 | } | |||
2769 | } else { | |||
2770 | // Recurse to check later designated subobjects. | |||
2771 | QualType FieldType = Field->getType(); | |||
2772 | unsigned newStructuredIndex = FieldIndex; | |||
2773 | ||||
2774 | InitializedEntity MemberEntity = | |||
2775 | InitializedEntity::InitializeMember(*Field, &Entity); | |||
2776 | if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, | |||
2777 | FieldType, nullptr, nullptr, Index, | |||
2778 | StructuredList, newStructuredIndex, | |||
2779 | FinishSubobjectInit, false)) | |||
2780 | return true; | |||
2781 | } | |||
2782 | ||||
2783 | // Find the position of the next field to be initialized in this | |||
2784 | // subobject. | |||
2785 | ++Field; | |||
2786 | ++FieldIndex; | |||
2787 | ||||
2788 | // If this the first designator, our caller will continue checking | |||
2789 | // the rest of this struct/class/union subobject. | |||
2790 | if (IsFirstDesignator) { | |||
2791 | if (NextField) | |||
2792 | *NextField = Field; | |||
2793 | StructuredIndex = FieldIndex; | |||
2794 | return false; | |||
2795 | } | |||
2796 | ||||
2797 | if (!FinishSubobjectInit) | |||
2798 | return false; | |||
2799 | ||||
2800 | // We've already initialized something in the union; we're done. | |||
2801 | if (RT->getDecl()->isUnion()) | |||
2802 | return hadError; | |||
2803 | ||||
2804 | // Check the remaining fields within this class/struct/union subobject. | |||
2805 | bool prevHadError = hadError; | |||
2806 | ||||
2807 | auto NoBases = | |||
2808 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), | |||
2809 | CXXRecordDecl::base_class_iterator()); | |||
2810 | CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, | |||
2811 | false, Index, StructuredList, FieldIndex); | |||
2812 | return hadError && !prevHadError; | |||
2813 | } | |||
2814 | ||||
2815 | // C99 6.7.8p6: | |||
2816 | // | |||
2817 | // If a designator has the form | |||
2818 | // | |||
2819 | // [ constant-expression ] | |||
2820 | // | |||
2821 | // then the current object (defined below) shall have array | |||
2822 | // type and the expression shall be an integer constant | |||
2823 | // expression. If the array is of unknown size, any | |||
2824 | // nonnegative value is valid. | |||
2825 | // | |||
2826 | // Additionally, cope with the GNU extension that permits | |||
2827 | // designators of the form | |||
2828 | // | |||
2829 | // [ constant-expression ... constant-expression ] | |||
2830 | const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); | |||
2831 | if (!AT) { | |||
2832 | if (!VerifyOnly) | |||
2833 | SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) | |||
2834 | << CurrentObjectType; | |||
2835 | ++Index; | |||
2836 | return true; | |||
2837 | } | |||
2838 | ||||
2839 | Expr *IndexExpr = nullptr; | |||
2840 | llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; | |||
2841 | if (D->isArrayDesignator()) { | |||
2842 | IndexExpr = DIE->getArrayIndex(*D); | |||
2843 | DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); | |||
2844 | DesignatedEndIndex = DesignatedStartIndex; | |||
2845 | } else { | |||
2846 | assert(D->isArrayRangeDesignator() && "Need array-range designator")((void)0); | |||
2847 | ||||
2848 | DesignatedStartIndex = | |||
2849 | DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); | |||
2850 | DesignatedEndIndex = | |||
2851 | DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); | |||
2852 | IndexExpr = DIE->getArrayRangeEnd(*D); | |||
2853 | ||||
2854 | // Codegen can't handle evaluating array range designators that have side | |||
2855 | // effects, because we replicate the AST value for each initialized element. | |||
2856 | // As such, set the sawArrayRangeDesignator() bit if we initialize multiple | |||
2857 | // elements with something that has a side effect, so codegen can emit an | |||
2858 | // "error unsupported" error instead of miscompiling the app. | |||
2859 | if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& | |||
2860 | DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) | |||
2861 | FullyStructuredList->sawArrayRangeDesignator(); | |||
2862 | } | |||
2863 | ||||
2864 | if (isa<ConstantArrayType>(AT)) { | |||
2865 | llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); | |||
2866 | DesignatedStartIndex | |||
2867 | = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); | |||
2868 | DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); | |||
2869 | DesignatedEndIndex | |||
2870 | = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); | |||
2871 | DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); | |||
2872 | if (DesignatedEndIndex >= MaxElements) { | |||
2873 | if (!VerifyOnly) | |||
2874 | SemaRef.Diag(IndexExpr->getBeginLoc(), | |||
2875 | diag::err_array_designator_too_large) | |||
2876 | << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) | |||
2877 | << IndexExpr->getSourceRange(); | |||
2878 | ++Index; | |||
2879 | return true; | |||
2880 | } | |||
2881 | } else { | |||
2882 | unsigned DesignatedIndexBitWidth = | |||
2883 | ConstantArrayType::getMaxSizeBits(SemaRef.Context); | |||
2884 | DesignatedStartIndex = | |||
2885 | DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); | |||
2886 | DesignatedEndIndex = | |||
2887 | DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); | |||
2888 | DesignatedStartIndex.setIsUnsigned(true); | |||
2889 | DesignatedEndIndex.setIsUnsigned(true); | |||
2890 | } | |||
2891 | ||||
2892 | bool IsStringLiteralInitUpdate = | |||
2893 | StructuredList && StructuredList->isStringLiteralInit(); | |||
2894 | if (IsStringLiteralInitUpdate && VerifyOnly) { | |||
2895 | // We're just verifying an update to a string literal init. We don't need | |||
2896 | // to split the string up into individual characters to do that. | |||
2897 | StructuredList = nullptr; | |||
2898 | } else if (IsStringLiteralInitUpdate) { | |||
2899 | // We're modifying a string literal init; we have to decompose the string | |||
2900 | // so we can modify the individual characters. | |||
2901 | ASTContext &Context = SemaRef.Context; | |||
2902 | Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); | |||
2903 | ||||
2904 | // Compute the character type | |||
2905 | QualType CharTy = AT->getElementType(); | |||
2906 | ||||
2907 | // Compute the type of the integer literals. | |||
2908 | QualType PromotedCharTy = CharTy; | |||
2909 | if (CharTy->isPromotableIntegerType()) | |||
2910 | PromotedCharTy = Context.getPromotedIntegerType(CharTy); | |||
2911 | unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); | |||
2912 | ||||
2913 | if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { | |||
2914 | // Get the length of the string. | |||
2915 | uint64_t StrLen = SL->getLength(); | |||
2916 | if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) | |||
2917 | StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); | |||
2918 | StructuredList->resizeInits(Context, StrLen); | |||
2919 | ||||
2920 | // Build a literal for each character in the string, and put them into | |||
2921 | // the init list. | |||
2922 | for (unsigned i = 0, e = StrLen; i != e; ++i) { | |||
2923 | llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); | |||
2924 | Expr *Init = new (Context) IntegerLiteral( | |||
2925 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); | |||
2926 | if (CharTy != PromotedCharTy) | |||
2927 | Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, | |||
2928 | Init, nullptr, VK_PRValue, | |||
2929 | FPOptionsOverride()); | |||
2930 | StructuredList->updateInit(Context, i, Init); | |||
2931 | } | |||
2932 | } else { | |||
2933 | ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); | |||
2934 | std::string Str; | |||
2935 | Context.getObjCEncodingForType(E->getEncodedType(), Str); | |||
2936 | ||||
2937 | // Get the length of the string. | |||
2938 | uint64_t StrLen = Str.size(); | |||
2939 | if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) | |||
2940 | StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); | |||
2941 | StructuredList->resizeInits(Context, StrLen); | |||
2942 | ||||
2943 | // Build a literal for each character in the string, and put them into | |||
2944 | // the init list. | |||
2945 | for (unsigned i = 0, e = StrLen; i != e; ++i) { | |||
2946 | llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); | |||
2947 | Expr *Init = new (Context) IntegerLiteral( | |||
2948 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); | |||
2949 | if (CharTy != PromotedCharTy) | |||
2950 | Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, | |||
2951 | Init, nullptr, VK_PRValue, | |||
2952 | FPOptionsOverride()); | |||
2953 | StructuredList->updateInit(Context, i, Init); | |||
2954 | } | |||
2955 | } | |||
2956 | } | |||
2957 | ||||
2958 | // Make sure that our non-designated initializer list has space | |||
2959 | // for a subobject corresponding to this array element. | |||
2960 | if (StructuredList && | |||
2961 | DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) | |||
2962 | StructuredList->resizeInits(SemaRef.Context, | |||
2963 | DesignatedEndIndex.getZExtValue() + 1); | |||
2964 | ||||
2965 | // Repeatedly perform subobject initializations in the range | |||
2966 | // [DesignatedStartIndex, DesignatedEndIndex]. | |||
2967 | ||||
2968 | // Move to the next designator | |||
2969 | unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); | |||
2970 | unsigned OldIndex = Index; | |||
2971 | ||||
2972 | InitializedEntity ElementEntity = | |||
2973 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); | |||
2974 | ||||
2975 | while (DesignatedStartIndex <= DesignatedEndIndex) { | |||
2976 | // Recurse to check later designated subobjects. | |||
2977 | QualType ElementType = AT->getElementType(); | |||
2978 | Index = OldIndex; | |||
2979 | ||||
2980 | ElementEntity.setElementIndex(ElementIndex); | |||
2981 | if (CheckDesignatedInitializer( | |||
2982 | ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, | |||
2983 | nullptr, Index, StructuredList, ElementIndex, | |||
2984 | FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), | |||
2985 | false)) | |||
2986 | return true; | |||
2987 | ||||
2988 | // Move to the next index in the array that we'll be initializing. | |||
2989 | ++DesignatedStartIndex; | |||
2990 | ElementIndex = DesignatedStartIndex.getZExtValue(); | |||
2991 | } | |||
2992 | ||||
2993 | // If this the first designator, our caller will continue checking | |||
2994 | // the rest of this array subobject. | |||
2995 | if (IsFirstDesignator) { | |||
2996 | if (NextElementIndex) | |||
2997 | *NextElementIndex = DesignatedStartIndex; | |||
2998 | StructuredIndex = ElementIndex; | |||
2999 | return false; | |||
3000 | } | |||
3001 | ||||
3002 | if (!FinishSubobjectInit) | |||
3003 | return false; | |||
3004 | ||||
3005 | // Check the remaining elements within this array subobject. | |||
3006 | bool prevHadError = hadError; | |||
3007 | CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, | |||
3008 | /*SubobjectIsDesignatorContext=*/false, Index, | |||
3009 | StructuredList, ElementIndex); | |||
3010 | return hadError && !prevHadError; | |||
3011 | } | |||
3012 | ||||
3013 | // Get the structured initializer list for a subobject of type | |||
3014 | // @p CurrentObjectType. | |||
3015 | InitListExpr * | |||
3016 | InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, | |||
3017 | QualType CurrentObjectType, | |||
3018 | InitListExpr *StructuredList, | |||
3019 | unsigned StructuredIndex, | |||
3020 | SourceRange InitRange, | |||
3021 | bool IsFullyOverwritten) { | |||
3022 | if (!StructuredList) | |||
3023 | return nullptr; | |||
3024 | ||||
3025 | Expr *ExistingInit = nullptr; | |||
3026 | if (StructuredIndex < StructuredList->getNumInits()) | |||
3027 | ExistingInit = StructuredList->getInit(StructuredIndex); | |||
3028 | ||||
3029 | if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) | |||
3030 | // There might have already been initializers for subobjects of the current | |||
3031 | // object, but a subsequent initializer list will overwrite the entirety | |||
3032 | // of the current object. (See DR 253 and C99 6.7.8p21). e.g., | |||
3033 | // | |||
3034 | // struct P { char x[6]; }; | |||
3035 | // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; | |||
3036 | // | |||
3037 | // The first designated initializer is ignored, and l.x is just "f". | |||
3038 | if (!IsFullyOverwritten) | |||
3039 | return Result; | |||
3040 | ||||
3041 | if (ExistingInit) { | |||
3042 | // We are creating an initializer list that initializes the | |||
3043 | // subobjects of the current object, but there was already an | |||
3044 | // initialization that completely initialized the current | |||
3045 | // subobject: | |||
3046 | // | |||
3047 | // struct X { int a, b; }; | |||
3048 | // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; | |||
3049 | // | |||
3050 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, | |||
3051 | // designated initializer overwrites the [0].b initializer | |||
3052 | // from the prior initialization. | |||
3053 | // | |||
3054 | // When the existing initializer is an expression rather than an | |||
3055 | // initializer list, we cannot decompose and update it in this way. | |||
3056 | // For example: | |||
3057 | // | |||
3058 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; | |||
3059 | // | |||
3060 | // This case is handled by CheckDesignatedInitializer. | |||
3061 | diagnoseInitOverride(ExistingInit, InitRange); | |||
3062 | } | |||
3063 | ||||
3064 | unsigned ExpectedNumInits = 0; | |||
3065 | if (Index < IList->getNumInits()) { | |||
3066 | if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) | |||
3067 | ExpectedNumInits = Init->getNumInits(); | |||
3068 | else | |||
3069 | ExpectedNumInits = IList->getNumInits() - Index; | |||
3070 | } | |||
3071 | ||||
3072 | InitListExpr *Result = | |||
3073 | createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); | |||
3074 | ||||
3075 | // Link this new initializer list into the structured initializer | |||
3076 | // lists. | |||
3077 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); | |||
3078 | return Result; | |||
3079 | } | |||
3080 | ||||
3081 | InitListExpr * | |||
3082 | InitListChecker::createInitListExpr(QualType CurrentObjectType, | |||
3083 | SourceRange InitRange, | |||
3084 | unsigned ExpectedNumInits) { | |||
3085 | InitListExpr *Result | |||
3086 | = new (SemaRef.Context) InitListExpr(SemaRef.Context, | |||
3087 | InitRange.getBegin(), None, | |||
3088 | InitRange.getEnd()); | |||
3089 | ||||
3090 | QualType ResultType = CurrentObjectType; | |||
3091 | if (!ResultType->isArrayType()) | |||
3092 | ResultType = ResultType.getNonLValueExprType(SemaRef.Context); | |||
3093 | Result->setType(ResultType); | |||
3094 | ||||
3095 | // Pre-allocate storage for the structured initializer list. | |||
3096 | unsigned NumElements = 0; | |||
3097 | ||||
3098 | if (const ArrayType *AType | |||
3099 | = SemaRef.Context.getAsArrayType(CurrentObjectType)) { | |||
3100 | if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { | |||
3101 | NumElements = CAType->getSize().getZExtValue(); | |||
3102 | // Simple heuristic so that we don't allocate a very large | |||
3103 | // initializer with many empty entries at the end. | |||
3104 | if (NumElements > ExpectedNumInits) | |||
3105 | NumElements = 0; | |||
3106 | } | |||
3107 | } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { | |||
3108 | NumElements = VType->getNumElements(); | |||
3109 | } else if (CurrentObjectType->isRecordType()) { | |||
3110 | NumElements = numStructUnionElements(CurrentObjectType); | |||
3111 | } | |||
3112 | ||||
3113 | Result->reserveInits(SemaRef.Context, NumElements); | |||
3114 | ||||
3115 | return Result; | |||
3116 | } | |||
3117 | ||||
3118 | /// Update the initializer at index @p StructuredIndex within the | |||
3119 | /// structured initializer list to the value @p expr. | |||
3120 | void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, | |||
3121 | unsigned &StructuredIndex, | |||
3122 | Expr *expr) { | |||
3123 | // No structured initializer list to update | |||
3124 | if (!StructuredList) | |||
3125 | return; | |||
3126 | ||||
3127 | if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, | |||
3128 | StructuredIndex, expr)) { | |||
3129 | // This initializer overwrites a previous initializer. | |||
3130 | // No need to diagnose when `expr` is nullptr because a more relevant | |||
3131 | // diagnostic has already been issued and this diagnostic is potentially | |||
3132 | // noise. | |||
3133 | if (expr) | |||
3134 | diagnoseInitOverride(PrevInit, expr->getSourceRange()); | |||
3135 | } | |||
3136 | ||||
3137 | ++StructuredIndex; | |||
3138 | } | |||
3139 | ||||
3140 | /// Determine whether we can perform aggregate initialization for the purposes | |||
3141 | /// of overload resolution. | |||
3142 | bool Sema::CanPerformAggregateInitializationForOverloadResolution( | |||
3143 | const InitializedEntity &Entity, InitListExpr *From) { | |||
3144 | QualType Type = Entity.getType(); | |||
3145 | InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, | |||
3146 | /*TreatUnavailableAsInvalid=*/false, | |||
3147 | /*InOverloadResolution=*/true); | |||
3148 | return !Check.HadError(); | |||
3149 | } | |||
3150 | ||||
3151 | /// Check that the given Index expression is a valid array designator | |||
3152 | /// value. This is essentially just a wrapper around | |||
3153 | /// VerifyIntegerConstantExpression that also checks for negative values | |||
3154 | /// and produces a reasonable diagnostic if there is a | |||
3155 | /// failure. Returns the index expression, possibly with an implicit cast | |||
3156 | /// added, on success. If everything went okay, Value will receive the | |||
3157 | /// value of the constant expression. | |||
3158 | static ExprResult | |||
3159 | CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { | |||
3160 | SourceLocation Loc = Index->getBeginLoc(); | |||
3161 | ||||
3162 | // Make sure this is an integer constant expression. | |||
3163 | ExprResult Result = | |||
3164 | S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); | |||
3165 | if (Result.isInvalid()) | |||
3166 | return Result; | |||
3167 | ||||
3168 | if (Value.isSigned() && Value.isNegative()) | |||
3169 | return S.Diag(Loc, diag::err_array_designator_negative) | |||
3170 | << toString(Value, 10) << Index->getSourceRange(); | |||
3171 | ||||
3172 | Value.setIsUnsigned(true); | |||
3173 | return Result; | |||
3174 | } | |||
3175 | ||||
3176 | ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, | |||
3177 | SourceLocation EqualOrColonLoc, | |||
3178 | bool GNUSyntax, | |||
3179 | ExprResult Init) { | |||
3180 | typedef DesignatedInitExpr::Designator ASTDesignator; | |||
3181 | ||||
3182 | bool Invalid = false; | |||
3183 | SmallVector<ASTDesignator, 32> Designators; | |||
3184 | SmallVector<Expr *, 32> InitExpressions; | |||
3185 | ||||
3186 | // Build designators and check array designator expressions. | |||
3187 | for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { | |||
3188 | const Designator &D = Desig.getDesignator(Idx); | |||
3189 | switch (D.getKind()) { | |||
3190 | case Designator::FieldDesignator: | |||
3191 | Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), | |||
3192 | D.getFieldLoc())); | |||
3193 | break; | |||
3194 | ||||
3195 | case Designator::ArrayDesignator: { | |||
3196 | Expr *Index = static_cast<Expr *>(D.getArrayIndex()); | |||
3197 | llvm::APSInt IndexValue; | |||
3198 | if (!Index->isTypeDependent() && !Index->isValueDependent()) | |||
3199 | Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); | |||
3200 | if (!Index) | |||
3201 | Invalid = true; | |||
3202 | else { | |||
3203 | Designators.push_back(ASTDesignator(InitExpressions.size(), | |||
3204 | D.getLBracketLoc(), | |||
3205 | D.getRBracketLoc())); | |||
3206 | InitExpressions.push_back(Index); | |||
3207 | } | |||
3208 | break; | |||
3209 | } | |||
3210 | ||||
3211 | case Designator::ArrayRangeDesignator: { | |||
3212 | Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); | |||
3213 | Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); | |||
3214 | llvm::APSInt StartValue; | |||
3215 | llvm::APSInt EndValue; | |||
3216 | bool StartDependent = StartIndex->isTypeDependent() || | |||
3217 | StartIndex->isValueDependent(); | |||
3218 | bool EndDependent = EndIndex->isTypeDependent() || | |||
3219 | EndIndex->isValueDependent(); | |||
3220 | if (!StartDependent) | |||
3221 | StartIndex = | |||
3222 | CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); | |||
3223 | if (!EndDependent) | |||
3224 | EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); | |||
3225 | ||||
3226 | if (!StartIndex || !EndIndex) | |||
3227 | Invalid = true; | |||
3228 | else { | |||
3229 | // Make sure we're comparing values with the same bit width. | |||
3230 | if (StartDependent || EndDependent) { | |||
3231 | // Nothing to compute. | |||
3232 | } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) | |||
3233 | EndValue = EndValue.extend(StartValue.getBitWidth()); | |||
3234 | else if (StartValue.getBitWidth() < EndValue.getBitWidth()) | |||
3235 | StartValue = StartValue.extend(EndValue.getBitWidth()); | |||
3236 | ||||
3237 | if (!StartDependent && !EndDependent && EndValue < StartValue) { | |||
3238 | Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) | |||
3239 | << toString(StartValue, 10) << toString(EndValue, 10) | |||
3240 | << StartIndex->getSourceRange() << EndIndex->getSourceRange(); | |||
3241 | Invalid = true; | |||
3242 | } else { | |||
3243 | Designators.push_back(ASTDesignator(InitExpressions.size(), | |||
3244 | D.getLBracketLoc(), | |||
3245 | D.getEllipsisLoc(), | |||
3246 | D.getRBracketLoc())); | |||
3247 | InitExpressions.push_back(StartIndex); | |||
3248 | InitExpressions.push_back(EndIndex); | |||
3249 | } | |||
3250 | } | |||
3251 | break; | |||
3252 | } | |||
3253 | } | |||
3254 | } | |||
3255 | ||||
3256 | if (Invalid || Init.isInvalid()) | |||
3257 | return ExprError(); | |||
3258 | ||||
3259 | // Clear out the expressions within the designation. | |||
3260 | Desig.ClearExprs(*this); | |||
3261 | ||||
3262 | return DesignatedInitExpr::Create(Context, Designators, InitExpressions, | |||
3263 | EqualOrColonLoc, GNUSyntax, | |||
3264 | Init.getAs<Expr>()); | |||
3265 | } | |||
3266 | ||||
3267 | //===----------------------------------------------------------------------===// | |||
3268 | // Initialization entity | |||
3269 | //===----------------------------------------------------------------------===// | |||
3270 | ||||
3271 | InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, | |||
3272 | const InitializedEntity &Parent) | |||
3273 | : Parent(&Parent), Index(Index) | |||
3274 | { | |||
3275 | if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { | |||
3276 | Kind = EK_ArrayElement; | |||
3277 | Type = AT->getElementType(); | |||
3278 | } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { | |||
3279 | Kind = EK_VectorElement; | |||
3280 | Type = VT->getElementType(); | |||
3281 | } else { | |||
3282 | const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); | |||
3283 | assert(CT && "Unexpected type")((void)0); | |||
3284 | Kind = EK_ComplexElement; | |||
3285 | Type = CT->getElementType(); | |||
3286 | } | |||
3287 | } | |||
3288 | ||||
3289 | InitializedEntity | |||
3290 | InitializedEntity::InitializeBase(ASTContext &Context, | |||
3291 | const CXXBaseSpecifier *Base, | |||
3292 | bool IsInheritedVirtualBase, | |||
3293 | const InitializedEntity *Parent) { | |||
3294 | InitializedEntity Result; | |||
3295 | Result.Kind = EK_Base; | |||
3296 | Result.Parent = Parent; | |||
3297 | Result.Base = {Base, IsInheritedVirtualBase}; | |||
3298 | Result.Type = Base->getType(); | |||
3299 | return Result; | |||
3300 | } | |||
3301 | ||||
3302 | DeclarationName InitializedEntity::getName() const { | |||
3303 | switch (getKind()) { | |||
3304 | case EK_Parameter: | |||
3305 | case EK_Parameter_CF_Audited: { | |||
3306 | ParmVarDecl *D = Parameter.getPointer(); | |||
3307 | return (D ? D->getDeclName() : DeclarationName()); | |||
3308 | } | |||
3309 | ||||
3310 | case EK_Variable: | |||
3311 | case EK_Member: | |||
3312 | case EK_Binding: | |||
3313 | case EK_TemplateParameter: | |||
3314 | return Variable.VariableOrMember->getDeclName(); | |||
3315 | ||||
3316 | case EK_LambdaCapture: | |||
3317 | return DeclarationName(Capture.VarID); | |||
3318 | ||||
3319 | case EK_Result: | |||
3320 | case EK_StmtExprResult: | |||
3321 | case EK_Exception: | |||
3322 | case EK_New: | |||
3323 | case EK_Temporary: | |||
3324 | case EK_Base: | |||
3325 | case EK_Delegating: | |||
3326 | case EK_ArrayElement: | |||
3327 | case EK_VectorElement: | |||
3328 | case EK_ComplexElement: | |||
3329 | case EK_BlockElement: | |||
3330 | case EK_LambdaToBlockConversionBlockElement: | |||
3331 | case EK_CompoundLiteralInit: | |||
3332 | case EK_RelatedResult: | |||
3333 | return DeclarationName(); | |||
3334 | } | |||
3335 | ||||
3336 | llvm_unreachable("Invalid EntityKind!")__builtin_unreachable(); | |||
3337 | } | |||
3338 | ||||
3339 | ValueDecl *InitializedEntity::getDecl() const { | |||
3340 | switch (getKind()) { | |||
3341 | case EK_Variable: | |||
3342 | case EK_Member: | |||
3343 | case EK_Binding: | |||
3344 | case EK_TemplateParameter: | |||
3345 | return Variable.VariableOrMember; | |||
3346 | ||||
3347 | case EK_Parameter: | |||
3348 | case EK_Parameter_CF_Audited: | |||
3349 | return Parameter.getPointer(); | |||
3350 | ||||
3351 | case EK_Result: | |||
3352 | case EK_StmtExprResult: | |||
3353 | case EK_Exception: | |||
3354 | case EK_New: | |||
3355 | case EK_Temporary: | |||
3356 | case EK_Base: | |||
3357 | case EK_Delegating: | |||
3358 | case EK_ArrayElement: | |||
3359 | case EK_VectorElement: | |||
3360 | case EK_ComplexElement: | |||
3361 | case EK_BlockElement: | |||
3362 | case EK_LambdaToBlockConversionBlockElement: | |||
3363 | case EK_LambdaCapture: | |||
3364 | case EK_CompoundLiteralInit: | |||
3365 | case EK_RelatedResult: | |||
3366 | return nullptr; | |||
3367 | } | |||
3368 | ||||
3369 | llvm_unreachable("Invalid EntityKind!")__builtin_unreachable(); | |||
3370 | } | |||
3371 | ||||
3372 | bool InitializedEntity::allowsNRVO() const { | |||
3373 | switch (getKind()) { | |||
3374 | case EK_Result: | |||
3375 | case EK_Exception: | |||
3376 | return LocAndNRVO.NRVO; | |||
3377 | ||||
3378 | case EK_StmtExprResult: | |||
3379 | case EK_Variable: | |||
3380 | case EK_Parameter: | |||
3381 | case EK_Parameter_CF_Audited: | |||
3382 | case EK_TemplateParameter: | |||
3383 | case EK_Member: | |||
3384 | case EK_Binding: | |||
3385 | case EK_New: | |||
3386 | case EK_Temporary: | |||
3387 | case EK_CompoundLiteralInit: | |||
3388 | case EK_Base: | |||
3389 | case EK_Delegating: | |||
3390 | case EK_ArrayElement: | |||
3391 | case EK_VectorElement: | |||
3392 | case EK_ComplexElement: | |||
3393 | case EK_BlockElement: | |||
3394 | case EK_LambdaToBlockConversionBlockElement: | |||
3395 | case EK_LambdaCapture: | |||
3396 | case EK_RelatedResult: | |||
3397 | break; | |||
3398 | } | |||
3399 | ||||
3400 | return false; | |||
3401 | } | |||
3402 | ||||
3403 | unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { | |||
3404 | assert(getParent() != this)((void)0); | |||
3405 | unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; | |||
3406 | for (unsigned I = 0; I != Depth; ++I) | |||
3407 | OS << "`-"; | |||
3408 | ||||
3409 | switch (getKind()) { | |||
3410 | case EK_Variable: OS << "Variable"; break; | |||
3411 | case EK_Parameter: OS << "Parameter"; break; | |||
3412 | case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; | |||
3413 | break; | |||
3414 | case EK_TemplateParameter: OS << "TemplateParameter"; break; | |||
3415 | case EK_Result: OS << "Result"; break; | |||
3416 | case EK_StmtExprResult: OS << "StmtExprResult"; break; | |||
3417 | case EK_Exception: OS << "Exception"; break; | |||
3418 | case EK_Member: OS << "Member"; break; | |||
3419 | case EK_Binding: OS << "Binding"; break; | |||
3420 | case EK_New: OS << "New"; break; | |||
3421 | case EK_Temporary: OS << "Temporary"; break; | |||
3422 | case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; | |||
3423 | case EK_RelatedResult: OS << "RelatedResult"; break; | |||
3424 | case EK_Base: OS << "Base"; break; | |||
3425 | case EK_Delegating: OS << "Delegating"; break; | |||
3426 | case EK_ArrayElement: OS << "ArrayElement " << Index; break; | |||
3427 | case EK_VectorElement: OS << "VectorElement " << Index; break; | |||
3428 | case EK_ComplexElement: OS << "ComplexElement " << Index; break; | |||
3429 | case EK_BlockElement: OS << "Block"; break; | |||
3430 | case EK_LambdaToBlockConversionBlockElement: | |||
3431 | OS << "Block (lambda)"; | |||
3432 | break; | |||
3433 | case EK_LambdaCapture: | |||
3434 | OS << "LambdaCapture "; | |||
3435 | OS << DeclarationName(Capture.VarID); | |||
3436 | break; | |||
3437 | } | |||
3438 | ||||
3439 | if (auto *D = getDecl()) { | |||
3440 | OS << " "; | |||
3441 | D->printQualifiedName(OS); | |||
3442 | } | |||
3443 | ||||
3444 | OS << " '" << getType().getAsString() << "'\n"; | |||
3445 | ||||
3446 | return Depth + 1; | |||
3447 | } | |||
3448 | ||||
3449 | LLVM_DUMP_METHOD__attribute__((noinline)) void InitializedEntity::dump() const { | |||
3450 | dumpImpl(llvm::errs()); | |||
3451 | } | |||
3452 | ||||
3453 | //===----------------------------------------------------------------------===// | |||
3454 | // Initialization sequence | |||
3455 | //===----------------------------------------------------------------------===// | |||
3456 | ||||
3457 | void InitializationSequence::Step::Destroy() { | |||
3458 | switch (Kind) { | |||
3459 | case SK_ResolveAddressOfOverloadedFunction: | |||
3460 | case SK_CastDerivedToBasePRValue: | |||
3461 | case SK_CastDerivedToBaseXValue: | |||
3462 | case SK_CastDerivedToBaseLValue: | |||
3463 | case SK_BindReference: | |||
3464 | case SK_BindReferenceToTemporary: | |||
3465 | case SK_FinalCopy: | |||
3466 | case SK_ExtraneousCopyToTemporary: | |||
3467 | case SK_UserConversion: | |||
3468 | case SK_QualificationConversionPRValue: | |||
3469 | case SK_QualificationConversionXValue: | |||
3470 | case SK_QualificationConversionLValue: | |||
3471 | case SK_FunctionReferenceConversion: | |||
3472 | case SK_AtomicConversion: | |||
3473 | case SK_ListInitialization: | |||
3474 | case SK_UnwrapInitList: | |||
3475 | case SK_RewrapInitList: | |||
3476 | case SK_ConstructorInitialization: | |||
3477 | case SK_ConstructorInitializationFromList: | |||
3478 | case SK_ZeroInitialization: | |||
3479 | case SK_CAssignment: | |||
3480 | case SK_StringInit: | |||
3481 | case SK_ObjCObjectConversion: | |||
3482 | case SK_ArrayLoopIndex: | |||
3483 | case SK_ArrayLoopInit: | |||
3484 | case SK_ArrayInit: | |||
3485 | case SK_GNUArrayInit: | |||
3486 | case SK_ParenthesizedArrayInit: | |||
3487 | case SK_PassByIndirectCopyRestore: | |||
3488 | case SK_PassByIndirectRestore: | |||
3489 | case SK_ProduceObjCObject: | |||
3490 | case SK_StdInitializerList: | |||
3491 | case SK_StdInitializerListConstructorCall: | |||
3492 | case SK_OCLSamplerInit: | |||
3493 | case SK_OCLZeroOpaqueType: | |||
3494 | break; | |||
3495 | ||||
3496 | case SK_ConversionSequence: | |||
3497 | case SK_ConversionSequenceNoNarrowing: | |||
3498 | delete ICS; | |||
3499 | } | |||
3500 | } | |||
3501 | ||||
3502 | bool InitializationSequence::isDirectReferenceBinding() const { | |||
3503 | // There can be some lvalue adjustments after the SK_BindReference step. | |||
3504 | for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { | |||
3505 | if (I->Kind == SK_BindReference) | |||
3506 | return true; | |||
3507 | if (I->Kind == SK_BindReferenceToTemporary) | |||
3508 | return false; | |||
3509 | } | |||
3510 | return false; | |||
3511 | } | |||
3512 | ||||
3513 | bool InitializationSequence::isAmbiguous() const { | |||
3514 | if (!Failed()) | |||
3515 | return false; | |||
3516 | ||||
3517 | switch (getFailureKind()) { | |||
3518 | case FK_TooManyInitsForReference: | |||
3519 | case FK_ParenthesizedListInitForReference: | |||
3520 | case FK_ArrayNeedsInitList: | |||
3521 | case FK_ArrayNeedsInitListOrStringLiteral: | |||
3522 | case FK_ArrayNeedsInitListOrWideStringLiteral: | |||
3523 | case FK_NarrowStringIntoWideCharArray: | |||
3524 | case FK_WideStringIntoCharArray: | |||
3525 | case FK_IncompatWideStringIntoWideChar: | |||
3526 | case FK_PlainStringIntoUTF8Char: | |||
3527 | case FK_UTF8StringIntoPlainChar: | |||
3528 | case FK_AddressOfOverloadFailed: // FIXME: Could do better | |||
3529 | case FK_NonConstLValueReferenceBindingToTemporary: | |||
3530 | case FK_NonConstLValueReferenceBindingToBitfield: | |||
3531 | case FK_NonConstLValueReferenceBindingToVectorElement: | |||
3532 | case FK_NonConstLValueReferenceBindingToMatrixElement: | |||
3533 | case FK_NonConstLValueReferenceBindingToUnrelated: | |||
3534 | case FK_RValueReferenceBindingToLValue: | |||
3535 | case FK_ReferenceAddrspaceMismatchTemporary: | |||
3536 | case FK_ReferenceInitDropsQualifiers: | |||
3537 | case FK_ReferenceInitFailed: | |||
3538 | case FK_ConversionFailed: | |||
3539 | case FK_ConversionFromPropertyFailed: | |||
3540 | case FK_TooManyInitsForScalar: | |||
3541 | case FK_ParenthesizedListInitForScalar: | |||
3542 | case FK_ReferenceBindingToInitList: | |||
3543 | case FK_InitListBadDestinationType: | |||
3544 | case FK_DefaultInitOfConst: | |||
3545 | case FK_Incomplete: | |||
3546 | case FK_ArrayTypeMismatch: | |||
3547 | case FK_NonConstantArrayInit: | |||
3548 | case FK_ListInitializationFailed: | |||
3549 | case FK_VariableLengthArrayHasInitializer: | |||
3550 | case FK_PlaceholderType: | |||
3551 | case FK_ExplicitConstructor: | |||
3552 | case FK_AddressOfUnaddressableFunction: | |||
3553 | return false; | |||
3554 | ||||
3555 | case FK_ReferenceInitOverloadFailed: | |||
3556 | case FK_UserConversionOverloadFailed: | |||
3557 | case FK_ConstructorOverloadFailed: | |||
3558 | case FK_ListConstructorOverloadFailed: | |||
3559 | return FailedOverloadResult == OR_Ambiguous; | |||
3560 | } | |||
3561 | ||||
3562 | llvm_unreachable("Invalid EntityKind!")__builtin_unreachable(); | |||
3563 | } | |||
3564 | ||||
3565 | bool InitializationSequence::isConstructorInitialization() const { | |||
3566 | return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; | |||
3567 | } | |||
3568 | ||||
3569 | void | |||
3570 | InitializationSequence | |||
3571 | ::AddAddressOverloadResolutionStep(FunctionDecl *Function, | |||
3572 | DeclAccessPair Found, | |||
3573 | bool HadMultipleCandidates) { | |||
3574 | Step S; | |||
3575 | S.Kind = SK_ResolveAddressOfOverloadedFunction; | |||
3576 | S.Type = Function->getType(); | |||
3577 | S.Function.HadMultipleCandidates = HadMultipleCandidates; | |||
3578 | S.Function.Function = Function; | |||
3579 | S.Function.FoundDecl = Found; | |||
3580 | Steps.push_back(S); | |||
3581 | } | |||
3582 | ||||
3583 | void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, | |||
3584 | ExprValueKind VK) { | |||
3585 | Step S; | |||
3586 | switch (VK) { | |||
3587 | case VK_PRValue: | |||
3588 | S.Kind = SK_CastDerivedToBasePRValue; | |||
3589 | break; | |||
3590 | case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; | |||
3591 | case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; | |||
3592 | } | |||
3593 | S.Type = BaseType; | |||
3594 | Steps.push_back(S); | |||
3595 | } | |||
3596 | ||||
3597 | void InitializationSequence::AddReferenceBindingStep(QualType T, | |||
3598 | bool BindingTemporary) { | |||
3599 | Step S; | |||
3600 | S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; | |||
3601 | S.Type = T; | |||
3602 | Steps.push_back(S); | |||
3603 | } | |||
3604 | ||||
3605 | void InitializationSequence::AddFinalCopy(QualType T) { | |||
3606 | Step S; | |||
3607 | S.Kind = SK_FinalCopy; | |||
3608 | S.Type = T; | |||
3609 | Steps.push_back(S); | |||
3610 | } | |||
3611 | ||||
3612 | void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { | |||
3613 | Step S; | |||
3614 | S.Kind = SK_ExtraneousCopyToTemporary; | |||
3615 | S.Type = T; | |||
3616 | Steps.push_back(S); | |||
3617 | } | |||
3618 | ||||
3619 | void | |||
3620 | InitializationSequence::AddUserConversionStep(FunctionDecl *Function, | |||
3621 | DeclAccessPair FoundDecl, | |||
3622 | QualType T, | |||
3623 | bool HadMultipleCandidates) { | |||
3624 | Step S; | |||
3625 | S.Kind = SK_UserConversion; | |||
3626 | S.Type = T; | |||
3627 | S.Function.HadMultipleCandidates = HadMultipleCandidates; | |||
3628 | S.Function.Function = Function; | |||
3629 | S.Function.FoundDecl = FoundDecl; | |||
3630 | Steps.push_back(S); | |||
3631 | } | |||
3632 | ||||
3633 | void InitializationSequence::AddQualificationConversionStep(QualType Ty, | |||
3634 | ExprValueKind VK) { | |||
3635 | Step S; | |||
3636 | S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning | |||
3637 | switch (VK) { | |||
3638 | case VK_PRValue: | |||
3639 | S.Kind = SK_QualificationConversionPRValue; | |||
3640 | break; | |||
3641 | case VK_XValue: | |||
3642 | S.Kind = SK_QualificationConversionXValue; | |||
3643 | break; | |||
3644 | case VK_LValue: | |||
3645 | S.Kind = SK_QualificationConversionLValue; | |||
3646 | break; | |||
3647 | } | |||
3648 | S.Type = Ty; | |||
3649 | Steps.push_back(S); | |||
3650 | } | |||
3651 | ||||
3652 | void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { | |||
3653 | Step S; | |||
3654 | S.Kind = SK_FunctionReferenceConversion; | |||
3655 | S.Type = Ty; | |||
3656 | Steps.push_back(S); | |||
3657 | } | |||
3658 | ||||
3659 | void InitializationSequence::AddAtomicConversionStep(QualType Ty) { | |||
3660 | Step S; | |||
3661 | S.Kind = SK_AtomicConversion; | |||
3662 | S.Type = Ty; | |||
3663 | Steps.push_back(S); | |||
3664 | } | |||
3665 | ||||
3666 | void InitializationSequence::AddConversionSequenceStep( | |||
3667 | const ImplicitConversionSequence &ICS, QualType T, | |||
3668 | bool TopLevelOfInitList) { | |||
3669 | Step S; | |||
3670 | S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing | |||
3671 | : SK_ConversionSequence; | |||
3672 | S.Type = T; | |||
3673 | S.ICS = new ImplicitConversionSequence(ICS); | |||
3674 | Steps.push_back(S); | |||
3675 | } | |||
3676 | ||||
3677 | void InitializationSequence::AddListInitializationStep(QualType T) { | |||
3678 | Step S; | |||
3679 | S.Kind = SK_ListInitialization; | |||
3680 | S.Type = T; | |||
3681 | Steps.push_back(S); | |||
3682 | } | |||
3683 | ||||
3684 | void InitializationSequence::AddConstructorInitializationStep( | |||
3685 | DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, | |||
3686 | bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { | |||
3687 | Step S; | |||
3688 | S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall | |||
3689 | : SK_ConstructorInitializationFromList | |||
3690 | : SK_ConstructorInitialization; | |||
3691 | S.Type = T; | |||
3692 | S.Function.HadMultipleCandidates = HadMultipleCandidates; | |||
3693 | S.Function.Function = Constructor; | |||
3694 | S.Function.FoundDecl = FoundDecl; | |||
3695 | Steps.push_back(S); | |||
3696 | } | |||
3697 | ||||
3698 | void InitializationSequence::AddZeroInitializationStep(QualType T) { | |||
3699 | Step S; | |||
3700 | S.Kind = SK_ZeroInitialization; | |||
3701 | S.Type = T; | |||
3702 | Steps.push_back(S); | |||
3703 | } | |||
3704 | ||||
3705 | void InitializationSequence::AddCAssignmentStep(QualType T) { | |||
3706 | Step S; | |||
3707 | S.Kind = SK_CAssignment; | |||
3708 | S.Type = T; | |||
3709 | Steps.push_back(S); | |||
3710 | } | |||
3711 | ||||
3712 | void InitializationSequence::AddStringInitStep(QualType T) { | |||
3713 | Step S; | |||
3714 | S.Kind = SK_StringInit; | |||
3715 | S.Type = T; | |||
3716 | Steps.push_back(S); | |||
3717 | } | |||
3718 | ||||
3719 | void InitializationSequence::AddObjCObjectConversionStep(QualType T) { | |||
3720 | Step S; | |||
3721 | S.Kind = SK_ObjCObjectConversion; | |||
3722 | S.Type = T; | |||
3723 | Steps.push_back(S); | |||
3724 | } | |||
3725 | ||||
3726 | void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { | |||
3727 | Step S; | |||
3728 | S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; | |||
3729 | S.Type = T; | |||
3730 | Steps.push_back(S); | |||
3731 | } | |||
3732 | ||||
3733 | void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { | |||
3734 | Step S; | |||
3735 | S.Kind = SK_ArrayLoopIndex; | |||
3736 | S.Type = EltT; | |||
3737 | Steps.insert(Steps.begin(), S); | |||
3738 | ||||
3739 | S.Kind = SK_ArrayLoopInit; | |||
3740 | S.Type = T; | |||
3741 | Steps.push_back(S); | |||
3742 | } | |||
3743 | ||||
3744 | void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { | |||
3745 | Step S; | |||
3746 | S.Kind = SK_ParenthesizedArrayInit; | |||
3747 | S.Type = T; | |||
3748 | Steps.push_back(S); | |||
3749 | } | |||
3750 | ||||
3751 | void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, | |||
3752 | bool shouldCopy) { | |||
3753 | Step s; | |||
3754 | s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore | |||
3755 | : SK_PassByIndirectRestore); | |||
3756 | s.Type = type; | |||
3757 | Steps.push_back(s); | |||
3758 | } | |||
3759 | ||||
3760 | void InitializationSequence::AddProduceObjCObjectStep(QualType T) { | |||
3761 | Step S; | |||
3762 | S.Kind = SK_ProduceObjCObject; | |||
3763 | S.Type = T; | |||
3764 | Steps.push_back(S); | |||
3765 | } | |||
3766 | ||||
3767 | void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { | |||
3768 | Step S; | |||
3769 | S.Kind = SK_StdInitializerList; | |||
3770 | S.Type = T; | |||
3771 | Steps.push_back(S); | |||
3772 | } | |||
3773 | ||||
3774 | void InitializationSequence::AddOCLSamplerInitStep(QualType T) { | |||
3775 | Step S; | |||
3776 | S.Kind = SK_OCLSamplerInit; | |||
3777 | S.Type = T; | |||
3778 | Steps.push_back(S); | |||
3779 | } | |||
3780 | ||||
3781 | void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { | |||
3782 | Step S; | |||
3783 | S.Kind = SK_OCLZeroOpaqueType; | |||
3784 | S.Type = T; | |||
3785 | Steps.push_back(S); | |||
3786 | } | |||
3787 | ||||
3788 | void InitializationSequence::RewrapReferenceInitList(QualType T, | |||
3789 | InitListExpr *Syntactic) { | |||
3790 | assert(Syntactic->getNumInits() == 1 &&((void)0) | |||
3791 | "Can only rewrap trivial init lists.")((void)0); | |||
3792 | Step S; | |||
3793 | S.Kind = SK_UnwrapInitList; | |||
3794 | S.Type = Syntactic->getInit(0)->getType(); | |||
3795 | Steps.insert(Steps.begin(), S); | |||
3796 | ||||
3797 | S.Kind = SK_RewrapInitList; | |||
3798 | S.Type = T; | |||
3799 | S.WrappingSyntacticList = Syntactic; | |||
3800 | Steps.push_back(S); | |||
3801 | } | |||
3802 | ||||
3803 | void InitializationSequence::SetOverloadFailure(FailureKind Failure, | |||
3804 | OverloadingResult Result) { | |||
3805 | setSequenceKind(FailedSequence); | |||
3806 | this->Failure = Failure; | |||
3807 | this->FailedOverloadResult = Result; | |||
3808 | } | |||
3809 | ||||
3810 | //===----------------------------------------------------------------------===// | |||
3811 | // Attempt initialization | |||
3812 | //===----------------------------------------------------------------------===// | |||
3813 | ||||
3814 | /// Tries to add a zero initializer. Returns true if that worked. | |||
3815 | static bool | |||
3816 | maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, | |||
3817 | const InitializedEntity &Entity) { | |||
3818 | if (Entity.getKind() != InitializedEntity::EK_Variable) | |||
3819 | return false; | |||
3820 | ||||
3821 | VarDecl *VD = cast<VarDecl>(Entity.getDecl()); | |||
3822 | if (VD->getInit() || VD->getEndLoc().isMacroID()) | |||
3823 | return false; | |||
3824 | ||||
3825 | QualType VariableTy = VD->getType().getCanonicalType(); | |||
3826 | SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); | |||
3827 | std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); | |||
3828 | if (!Init.empty()) { | |||
3829 | Sequence.AddZeroInitializationStep(Entity.getType()); | |||
3830 | Sequence.SetZeroInitializationFixit(Init, Loc); | |||
3831 | return true; | |||
3832 | } | |||
3833 | return false; | |||
3834 | } | |||
3835 | ||||
3836 | static void MaybeProduceObjCObject(Sema &S, | |||
3837 | InitializationSequence &Sequence, | |||
3838 | const InitializedEntity &Entity) { | |||
3839 | if (!S.getLangOpts().ObjCAutoRefCount) return; | |||
3840 | ||||
3841 | /// When initializing a parameter, produce the value if it's marked | |||
3842 | /// __attribute__((ns_consumed)). | |||
3843 | if (Entity.isParameterKind()) { | |||
3844 | if (!Entity.isParameterConsumed()) | |||
3845 | return; | |||
3846 | ||||
3847 | assert(Entity.getType()->isObjCRetainableType() &&((void)0) | |||
3848 | "consuming an object of unretainable type?")((void)0); | |||
3849 | Sequence.AddProduceObjCObjectStep(Entity.getType()); | |||
3850 | ||||
3851 | /// When initializing a return value, if the return type is a | |||
3852 | /// retainable type, then returns need to immediately retain the | |||
3853 | /// object. If an autorelease is required, it will be done at the | |||
3854 | /// last instant. | |||
3855 | } else if (Entity.getKind() == InitializedEntity::EK_Result || | |||
3856 | Entity.getKind() == InitializedEntity::EK_StmtExprResult) { | |||
3857 | if (!Entity.getType()->isObjCRetainableType()) | |||
3858 | return; | |||
3859 | ||||
3860 | Sequence.AddProduceObjCObjectStep(Entity.getType()); | |||
3861 | } | |||
3862 | } | |||
3863 | ||||
3864 | static void TryListInitialization(Sema &S, | |||
3865 | const InitializedEntity &Entity, | |||
3866 | const InitializationKind &Kind, | |||
3867 | InitListExpr *InitList, | |||
3868 | InitializationSequence &Sequence, | |||
3869 | bool TreatUnavailableAsInvalid); | |||
3870 | ||||
3871 | /// When initializing from init list via constructor, handle | |||
3872 | /// initialization of an object of type std::initializer_list<T>. | |||
3873 | /// | |||
3874 | /// \return true if we have handled initialization of an object of type | |||
3875 | /// std::initializer_list<T>, false otherwise. | |||
3876 | static bool TryInitializerListConstruction(Sema &S, | |||
3877 | InitListExpr *List, | |||
3878 | QualType DestType, | |||
3879 | InitializationSequence &Sequence, | |||
3880 | bool TreatUnavailableAsInvalid) { | |||
3881 | QualType E; | |||
3882 | if (!S.isStdInitializerList(DestType, &E)) | |||
3883 | return false; | |||
3884 | ||||
3885 | if (!S.isCompleteType(List->getExprLoc(), E)) { | |||
3886 | Sequence.setIncompleteTypeFailure(E); | |||
3887 | return true; | |||
3888 | } | |||
3889 | ||||
3890 | // Try initializing a temporary array from the init list. | |||
3891 | QualType ArrayType = S.Context.getConstantArrayType( | |||
3892 | E.withConst(), | |||
3893 | llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), | |||
3894 | List->getNumInits()), | |||
3895 | nullptr, clang::ArrayType::Normal, 0); | |||
3896 | InitializedEntity HiddenArray = | |||
3897 | InitializedEntity::InitializeTemporary(ArrayType); | |||
3898 | InitializationKind Kind = InitializationKind::CreateDirectList( | |||
3899 | List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); | |||
3900 | TryListInitialization(S, HiddenArray, Kind, List, Sequence, | |||
3901 | TreatUnavailableAsInvalid); | |||
3902 | if (Sequence) | |||
3903 | Sequence.AddStdInitializerListConstructionStep(DestType); | |||
3904 | return true; | |||
3905 | } | |||
3906 | ||||
3907 | /// Determine if the constructor has the signature of a copy or move | |||
3908 | /// constructor for the type T of the class in which it was found. That is, | |||
3909 | /// determine if its first parameter is of type T or reference to (possibly | |||
3910 | /// cv-qualified) T. | |||
3911 | static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, | |||
3912 | const ConstructorInfo &Info) { | |||
3913 | if (Info.Constructor->getNumParams() == 0) | |||
| ||||
3914 | return false; | |||
3915 | ||||
3916 | QualType ParmT = | |||
3917 | Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); | |||
3918 | QualType ClassT = | |||
3919 | Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); | |||
3920 | ||||
3921 | return Ctx.hasSameUnqualifiedType(ParmT, ClassT); | |||
3922 | } | |||
3923 | ||||
3924 | static OverloadingResult | |||
3925 | ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, | |||
3926 | MultiExprArg Args, | |||
3927 | OverloadCandidateSet &CandidateSet, | |||
3928 | QualType DestType, | |||
3929 | DeclContext::lookup_result Ctors, | |||
3930 | OverloadCandidateSet::iterator &Best, | |||
3931 | bool CopyInitializing, bool AllowExplicit, | |||
3932 | bool OnlyListConstructors, bool IsListInit, | |||
3933 | bool SecondStepOfCopyInit = false) { | |||
3934 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); | |||
3935 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); | |||
3936 | ||||
3937 | for (NamedDecl *D : Ctors) { | |||
3938 | auto Info = getConstructorInfo(D); | |||
3939 | if (!Info.Constructor || Info.Constructor->isInvalidDecl()) | |||
3940 | continue; | |||
3941 | ||||
3942 | if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) | |||
3943 | continue; | |||
3944 | ||||
3945 | // C++11 [over.best.ics]p4: | |||
3946 | // ... and the constructor or user-defined conversion function is a | |||
3947 | // candidate by | |||
3948 | // - 13.3.1.3, when the argument is the temporary in the second step | |||
3949 | // of a class copy-initialization, or | |||
3950 | // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] | |||
3951 | // - the second phase of 13.3.1.7 when the initializer list has exactly | |||
3952 | // one element that is itself an initializer list, and the target is | |||
3953 | // the first parameter of a constructor of class X, and the conversion | |||
3954 | // is to X or reference to (possibly cv-qualified X), | |||
3955 | // user-defined conversion sequences are not considered. | |||
3956 | bool SuppressUserConversions = | |||
3957 | SecondStepOfCopyInit || | |||
3958 | (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && | |||
3959 | hasCopyOrMoveCtorParam(S.Context, Info)); | |||
3960 | ||||
3961 | if (Info.ConstructorTmpl) | |||
3962 | S.AddTemplateOverloadCandidate( | |||
3963 | Info.ConstructorTmpl, Info.FoundDecl, | |||
3964 | /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, | |||
3965 | /*PartialOverloading=*/false, AllowExplicit); | |||
3966 | else { | |||
3967 | // C++ [over.match.copy]p1: | |||
3968 | // - When initializing a temporary to be bound to the first parameter | |||
3969 | // of a constructor [for type T] that takes a reference to possibly | |||
3970 | // cv-qualified T as its first argument, called with a single | |||
3971 | // argument in the context of direct-initialization, explicit | |||
3972 | // conversion functions are also considered. | |||
3973 | // FIXME: What if a constructor template instantiates to such a signature? | |||
3974 | bool AllowExplicitConv = AllowExplicit && !CopyInitializing && | |||
3975 | Args.size() == 1 && | |||
3976 | hasCopyOrMoveCtorParam(S.Context, Info); | |||
3977 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, | |||
3978 | CandidateSet, SuppressUserConversions, | |||
3979 | /*PartialOverloading=*/false, AllowExplicit, | |||
3980 | AllowExplicitConv); | |||
3981 | } | |||
3982 | } | |||
3983 | ||||
3984 | // FIXME: Work around a bug in C++17 guaranteed copy elision. | |||
3985 | // | |||
3986 | // When initializing an object of class type T by constructor | |||
3987 | // ([over.match.ctor]) or by list-initialization ([over.match.list]) | |||
3988 | // from a single expression of class type U, conversion functions of | |||
3989 | // U that convert to the non-reference type cv T are candidates. | |||
3990 | // Explicit conversion functions are only candidates during | |||
3991 | // direct-initialization. | |||
3992 | // | |||
3993 | // Note: SecondStepOfCopyInit is only ever true in this case when | |||
3994 | // evaluating whether to produce a C++98 compatibility warning. | |||
3995 | if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && | |||
3996 | !SecondStepOfCopyInit) { | |||
3997 | Expr *Initializer = Args[0]; | |||
3998 | auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); | |||
3999 | if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { | |||
4000 | const auto &Conversions = SourceRD->getVisibleConversionFunctions(); | |||
4001 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
4002 | NamedDecl *D = *I; | |||
4003 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | |||
4004 | D = D->getUnderlyingDecl(); | |||
4005 | ||||
4006 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); | |||
4007 | CXXConversionDecl *Conv; | |||
4008 | if (ConvTemplate) | |||
4009 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
4010 | else | |||
4011 | Conv = cast<CXXConversionDecl>(D); | |||
4012 | ||||
4013 | if (ConvTemplate) | |||
4014 | S.AddTemplateConversionCandidate( | |||
4015 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, | |||
4016 | CandidateSet, AllowExplicit, AllowExplicit, | |||
4017 | /*AllowResultConversion*/ false); | |||
4018 | else | |||
4019 | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, | |||
4020 | DestType, CandidateSet, AllowExplicit, | |||
4021 | AllowExplicit, | |||
4022 | /*AllowResultConversion*/ false); | |||
4023 | } | |||
4024 | } | |||
4025 | } | |||
4026 | ||||
4027 | // Perform overload resolution and return the result. | |||
4028 | return CandidateSet.BestViableFunction(S, DeclLoc, Best); | |||
4029 | } | |||
4030 | ||||
4031 | /// Attempt initialization by constructor (C++ [dcl.init]), which | |||
4032 | /// enumerates the constructors of the initialized entity and performs overload | |||
4033 | /// resolution to select the best. | |||
4034 | /// \param DestType The destination class type. | |||
4035 | /// \param DestArrayType The destination type, which is either DestType or | |||
4036 | /// a (possibly multidimensional) array of DestType. | |||
4037 | /// \param IsListInit Is this list-initialization? | |||
4038 | /// \param IsInitListCopy Is this non-list-initialization resulting from a | |||
4039 | /// list-initialization from {x} where x is the same | |||
4040 | /// type as the entity? | |||
4041 | static void TryConstructorInitialization(Sema &S, | |||
4042 | const InitializedEntity &Entity, | |||
4043 | const InitializationKind &Kind, | |||
4044 | MultiExprArg Args, QualType DestType, | |||
4045 | QualType DestArrayType, | |||
4046 | InitializationSequence &Sequence, | |||
4047 | bool IsListInit = false, | |||
4048 | bool IsInitListCopy = false) { | |||
4049 | assert(((!IsListInit && !IsInitListCopy) ||((void)0) | |||
4050 | (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((void)0) | |||
4051 | "IsListInit/IsInitListCopy must come with a single initializer list "((void)0) | |||
4052 | "argument.")((void)0); | |||
4053 | InitListExpr *ILE = | |||
4054 | (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; | |||
4055 | MultiExprArg UnwrappedArgs = | |||
4056 | ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; | |||
4057 | ||||
4058 | // The type we're constructing needs to be complete. | |||
4059 | if (!S.isCompleteType(Kind.getLocation(), DestType)) { | |||
4060 | Sequence.setIncompleteTypeFailure(DestType); | |||
4061 | return; | |||
4062 | } | |||
4063 | ||||
4064 | // C++17 [dcl.init]p17: | |||
4065 | // - If the initializer expression is a prvalue and the cv-unqualified | |||
4066 | // version of the source type is the same class as the class of the | |||
4067 | // destination, the initializer expression is used to initialize the | |||
4068 | // destination object. | |||
4069 | // Per DR (no number yet), this does not apply when initializing a base | |||
4070 | // class or delegating to another constructor from a mem-initializer. | |||
4071 | // ObjC++: Lambda captured by the block in the lambda to block conversion | |||
4072 | // should avoid copy elision. | |||
4073 | if (S.getLangOpts().CPlusPlus17 && | |||
4074 | Entity.getKind() != InitializedEntity::EK_Base && | |||
4075 | Entity.getKind() != InitializedEntity::EK_Delegating && | |||
4076 | Entity.getKind() != | |||
4077 | InitializedEntity::EK_LambdaToBlockConversionBlockElement && | |||
4078 | UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && | |||
4079 | S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { | |||
4080 | // Convert qualifications if necessary. | |||
4081 | Sequence.AddQualificationConversionStep(DestType, VK_PRValue); | |||
4082 | if (ILE) | |||
4083 | Sequence.RewrapReferenceInitList(DestType, ILE); | |||
4084 | return; | |||
4085 | } | |||
4086 | ||||
4087 | const RecordType *DestRecordType = DestType->getAs<RecordType>(); | |||
4088 | assert(DestRecordType && "Constructor initialization requires record type")((void)0); | |||
4089 | CXXRecordDecl *DestRecordDecl | |||
4090 | = cast<CXXRecordDecl>(DestRecordType->getDecl()); | |||
4091 | ||||
4092 | // Build the candidate set directly in the initialization sequence | |||
4093 | // structure, so that it will persist if we fail. | |||
4094 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); | |||
4095 | ||||
4096 | // Determine whether we are allowed to call explicit constructors or | |||
4097 | // explicit conversion operators. | |||
4098 | bool AllowExplicit = Kind.AllowExplicit() || IsListInit; | |||
4099 | bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; | |||
4100 | ||||
4101 | // - Otherwise, if T is a class type, constructors are considered. The | |||
4102 | // applicable constructors are enumerated, and the best one is chosen | |||
4103 | // through overload resolution. | |||
4104 | DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); | |||
4105 | ||||
4106 | OverloadingResult Result = OR_No_Viable_Function; | |||
4107 | OverloadCandidateSet::iterator Best; | |||
4108 | bool AsInitializerList = false; | |||
4109 | ||||
4110 | // C++11 [over.match.list]p1, per DR1467: | |||
4111 | // When objects of non-aggregate type T are list-initialized, such that | |||
4112 | // 8.5.4 [dcl.init.list] specifies that overload resolution is performed | |||
4113 | // according to the rules in this section, overload resolution selects | |||
4114 | // the constructor in two phases: | |||
4115 | // | |||
4116 | // - Initially, the candidate functions are the initializer-list | |||
4117 | // constructors of the class T and the argument list consists of the | |||
4118 | // initializer list as a single argument. | |||
4119 | if (IsListInit) { | |||
4120 | AsInitializerList = true; | |||
4121 | ||||
4122 | // If the initializer list has no elements and T has a default constructor, | |||
4123 | // the first phase is omitted. | |||
4124 | if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) | |||
4125 | Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, | |||
4126 | CandidateSet, DestType, Ctors, Best, | |||
4127 | CopyInitialization, AllowExplicit, | |||
4128 | /*OnlyListConstructors=*/true, | |||
4129 | IsListInit); | |||
4130 | } | |||
4131 | ||||
4132 | // C++11 [over.match.list]p1: | |||
4133 | // - If no viable initializer-list constructor is found, overload resolution | |||
4134 | // is performed again, where the candidate functions are all the | |||
4135 | // constructors of the class T and the argument list consists of the | |||
4136 | // elements of the initializer list. | |||
4137 | if (Result == OR_No_Viable_Function) { | |||
4138 | AsInitializerList = false; | |||
4139 | Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, | |||
4140 | CandidateSet, DestType, Ctors, Best, | |||
4141 | CopyInitialization, AllowExplicit, | |||
4142 | /*OnlyListConstructors=*/false, | |||
4143 | IsListInit); | |||
4144 | } | |||
4145 | if (Result) { | |||
4146 | Sequence.SetOverloadFailure( | |||
4147 | IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed | |||
4148 | : InitializationSequence::FK_ConstructorOverloadFailed, | |||
4149 | Result); | |||
4150 | ||||
4151 | if (Result != OR_Deleted) | |||
4152 | return; | |||
4153 | } | |||
4154 | ||||
4155 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
4156 | ||||
4157 | // In C++17, ResolveConstructorOverload can select a conversion function | |||
4158 | // instead of a constructor. | |||
4159 | if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { | |||
4160 | // Add the user-defined conversion step that calls the conversion function. | |||
4161 | QualType ConvType = CD->getConversionType(); | |||
4162 | assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&((void)0) | |||
4163 | "should not have selected this conversion function")((void)0); | |||
4164 | Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, | |||
4165 | HadMultipleCandidates); | |||
4166 | if (!S.Context.hasSameType(ConvType, DestType)) | |||
4167 | Sequence.AddQualificationConversionStep(DestType, VK_PRValue); | |||
4168 | if (IsListInit) | |||
4169 | Sequence.RewrapReferenceInitList(Entity.getType(), ILE); | |||
4170 | return; | |||
4171 | } | |||
4172 | ||||
4173 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); | |||
4174 | if (Result != OR_Deleted) { | |||
4175 | // C++11 [dcl.init]p6: | |||
4176 | // If a program calls for the default initialization of an object | |||
4177 | // of a const-qualified type T, T shall be a class type with a | |||
4178 | // user-provided default constructor. | |||
4179 | // C++ core issue 253 proposal: | |||
4180 | // If the implicit default constructor initializes all subobjects, no | |||
4181 | // initializer should be required. | |||
4182 | // The 253 proposal is for example needed to process libstdc++ headers | |||
4183 | // in 5.x. | |||
4184 | if (Kind.getKind() == InitializationKind::IK_Default && | |||
4185 | Entity.getType().isConstQualified()) { | |||
4186 | if (!CtorDecl->getParent()->allowConstDefaultInit()) { | |||
4187 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) | |||
4188 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); | |||
4189 | return; | |||
4190 | } | |||
4191 | } | |||
4192 | ||||
4193 | // C++11 [over.match.list]p1: | |||
4194 | // In copy-list-initialization, if an explicit constructor is chosen, the | |||
4195 | // initializer is ill-formed. | |||
4196 | if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { | |||
4197 | Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); | |||
4198 | return; | |||
4199 | } | |||
4200 | } | |||
4201 | ||||
4202 | // [class.copy.elision]p3: | |||
4203 | // In some copy-initialization contexts, a two-stage overload resolution | |||
4204 | // is performed. | |||
4205 | // If the first overload resolution selects a deleted function, we also | |||
4206 | // need the initialization sequence to decide whether to perform the second | |||
4207 | // overload resolution. | |||
4208 | // For deleted functions in other contexts, there is no need to get the | |||
4209 | // initialization sequence. | |||
4210 | if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) | |||
4211 | return; | |||
4212 | ||||
4213 | // Add the constructor initialization step. Any cv-qualification conversion is | |||
4214 | // subsumed by the initialization. | |||
4215 | Sequence.AddConstructorInitializationStep( | |||
4216 | Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, | |||
4217 | IsListInit | IsInitListCopy, AsInitializerList); | |||
4218 | } | |||
4219 | ||||
4220 | static bool | |||
4221 | ResolveOverloadedFunctionForReferenceBinding(Sema &S, | |||
4222 | Expr *Initializer, | |||
4223 | QualType &SourceType, | |||
4224 | QualType &UnqualifiedSourceType, | |||
4225 | QualType UnqualifiedTargetType, | |||
4226 | InitializationSequence &Sequence) { | |||
4227 | if (S.Context.getCanonicalType(UnqualifiedSourceType) == | |||
4228 | S.Context.OverloadTy) { | |||
4229 | DeclAccessPair Found; | |||
4230 | bool HadMultipleCandidates = false; | |||
4231 | if (FunctionDecl *Fn | |||
4232 | = S.ResolveAddressOfOverloadedFunction(Initializer, | |||
4233 | UnqualifiedTargetType, | |||
4234 | false, Found, | |||
4235 | &HadMultipleCandidates)) { | |||
4236 | Sequence.AddAddressOverloadResolutionStep(Fn, Found, | |||
4237 | HadMultipleCandidates); | |||
4238 | SourceType = Fn->getType(); | |||
4239 | UnqualifiedSourceType = SourceType.getUnqualifiedType(); | |||
4240 | } else if (!UnqualifiedTargetType->isRecordType()) { | |||
4241 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); | |||
4242 | return true; | |||
4243 | } | |||
4244 | } | |||
4245 | return false; | |||
4246 | } | |||
4247 | ||||
4248 | static void TryReferenceInitializationCore(Sema &S, | |||
4249 | const InitializedEntity &Entity, | |||
4250 | const InitializationKind &Kind, | |||
4251 | Expr *Initializer, | |||
4252 | QualType cv1T1, QualType T1, | |||
4253 | Qualifiers T1Quals, | |||
4254 | QualType cv2T2, QualType T2, | |||
4255 | Qualifiers T2Quals, | |||
4256 | InitializationSequence &Sequence); | |||
4257 | ||||
4258 | static void TryValueInitialization(Sema &S, | |||
4259 | const InitializedEntity &Entity, | |||
4260 | const InitializationKind &Kind, | |||
4261 | InitializationSequence &Sequence, | |||
4262 | InitListExpr *InitList = nullptr); | |||
4263 | ||||
4264 | /// Attempt list initialization of a reference. | |||
4265 | static void TryReferenceListInitialization(Sema &S, | |||
4266 | const InitializedEntity &Entity, | |||
4267 | const InitializationKind &Kind, | |||
4268 | InitListExpr *InitList, | |||
4269 | InitializationSequence &Sequence, | |||
4270 | bool TreatUnavailableAsInvalid) { | |||
4271 | // First, catch C++03 where this isn't possible. | |||
4272 | if (!S.getLangOpts().CPlusPlus11) { | |||
4273 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); | |||
4274 | return; | |||
4275 | } | |||
4276 | // Can't reference initialize a compound literal. | |||
4277 | if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { | |||
4278 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); | |||
4279 | return; | |||
4280 | } | |||
4281 | ||||
4282 | QualType DestType = Entity.getType(); | |||
4283 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); | |||
4284 | Qualifiers T1Quals; | |||
4285 | QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); | |||
4286 | ||||
4287 | // Reference initialization via an initializer list works thus: | |||
4288 | // If the initializer list consists of a single element that is | |||
4289 | // reference-related to the referenced type, bind directly to that element | |||
4290 | // (possibly creating temporaries). | |||
4291 | // Otherwise, initialize a temporary with the initializer list and | |||
4292 | // bind to that. | |||
4293 | if (InitList->getNumInits() == 1) { | |||
4294 | Expr *Initializer = InitList->getInit(0); | |||
4295 | QualType cv2T2 = S.getCompletedType(Initializer); | |||
4296 | Qualifiers T2Quals; | |||
4297 | QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); | |||
4298 | ||||
4299 | // If this fails, creating a temporary wouldn't work either. | |||
4300 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, | |||
4301 | T1, Sequence)) | |||
4302 | return; | |||
4303 | ||||
4304 | SourceLocation DeclLoc = Initializer->getBeginLoc(); | |||
4305 | Sema::ReferenceCompareResult RefRelationship | |||
4306 | = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); | |||
4307 | if (RefRelationship >= Sema::Ref_Related) { | |||
4308 | // Try to bind the reference here. | |||
4309 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, | |||
4310 | T1Quals, cv2T2, T2, T2Quals, Sequence); | |||
4311 | if (Sequence) | |||
4312 | Sequence.RewrapReferenceInitList(cv1T1, InitList); | |||
4313 | return; | |||
4314 | } | |||
4315 | ||||
4316 | // Update the initializer if we've resolved an overloaded function. | |||
4317 | if (Sequence.step_begin() != Sequence.step_end()) | |||
4318 | Sequence.RewrapReferenceInitList(cv1T1, InitList); | |||
4319 | } | |||
4320 | // Perform address space compatibility check. | |||
4321 | QualType cv1T1IgnoreAS = cv1T1; | |||
4322 | if (T1Quals.hasAddressSpace()) { | |||
4323 | Qualifiers T2Quals; | |||
4324 | (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); | |||
4325 | if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) { | |||
4326 | Sequence.SetFailed( | |||
4327 | InitializationSequence::FK_ReferenceInitDropsQualifiers); | |||
4328 | return; | |||
4329 | } | |||
4330 | // Ignore address space of reference type at this point and perform address | |||
4331 | // space conversion after the reference binding step. | |||
4332 | cv1T1IgnoreAS = | |||
4333 | S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()); | |||
4334 | } | |||
4335 | // Not reference-related. Create a temporary and bind to that. | |||
4336 | InitializedEntity TempEntity = | |||
4337 | InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); | |||
4338 | ||||
4339 | TryListInitialization(S, TempEntity, Kind, InitList, Sequence, | |||
4340 | TreatUnavailableAsInvalid); | |||
4341 | if (Sequence) { | |||
4342 | if (DestType->isRValueReferenceType() || | |||
4343 | (T1Quals.hasConst() && !T1Quals.hasVolatile())) { | |||
4344 | Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, | |||
4345 | /*BindingTemporary=*/true); | |||
4346 | if (T1Quals.hasAddressSpace()) | |||
4347 | Sequence.AddQualificationConversionStep( | |||
4348 | cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); | |||
4349 | } else | |||
4350 | Sequence.SetFailed( | |||
4351 | InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); | |||
4352 | } | |||
4353 | } | |||
4354 | ||||
4355 | /// Attempt list initialization (C++0x [dcl.init.list]) | |||
4356 | static void TryListInitialization(Sema &S, | |||
4357 | const InitializedEntity &Entity, | |||
4358 | const InitializationKind &Kind, | |||
4359 | InitListExpr *InitList, | |||
4360 | InitializationSequence &Sequence, | |||
4361 | bool TreatUnavailableAsInvalid) { | |||
4362 | QualType DestType = Entity.getType(); | |||
4363 | ||||
4364 | // C++ doesn't allow scalar initialization with more than one argument. | |||
4365 | // But C99 complex numbers are scalars and it makes sense there. | |||
4366 | if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && | |||
4367 | !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { | |||
4368 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); | |||
4369 | return; | |||
4370 | } | |||
4371 | if (DestType->isReferenceType()) { | |||
4372 | TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, | |||
4373 | TreatUnavailableAsInvalid); | |||
4374 | return; | |||
4375 | } | |||
4376 | ||||
4377 | if (DestType->isRecordType() && | |||
4378 | !S.isCompleteType(InitList->getBeginLoc(), DestType)) { | |||
4379 | Sequence.setIncompleteTypeFailure(DestType); | |||
4380 | return; | |||
4381 | } | |||
4382 | ||||
4383 | // C++11 [dcl.init.list]p3, per DR1467: | |||
4384 | // - If T is a class type and the initializer list has a single element of | |||
4385 | // type cv U, where U is T or a class derived from T, the object is | |||
4386 | // initialized from that element (by copy-initialization for | |||
4387 | // copy-list-initialization, or by direct-initialization for | |||
4388 | // direct-list-initialization). | |||
4389 | // - Otherwise, if T is a character array and the initializer list has a | |||
4390 | // single element that is an appropriately-typed string literal | |||
4391 | // (8.5.2 [dcl.init.string]), initialization is performed as described | |||
4392 | // in that section. | |||
4393 | // - Otherwise, if T is an aggregate, [...] (continue below). | |||
4394 | if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { | |||
4395 | if (DestType->isRecordType()) { | |||
4396 | QualType InitType = InitList->getInit(0)->getType(); | |||
4397 | if (S.Context.hasSameUnqualifiedType(InitType, DestType) || | |||
4398 | S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { | |||
4399 | Expr *InitListAsExpr = InitList; | |||
4400 | TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, | |||
4401 | DestType, Sequence, | |||
4402 | /*InitListSyntax*/false, | |||
4403 | /*IsInitListCopy*/true); | |||
4404 | return; | |||
4405 | } | |||
4406 | } | |||
4407 | if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { | |||
4408 | Expr *SubInit[1] = {InitList->getInit(0)}; | |||
4409 | if (!isa<VariableArrayType>(DestAT) && | |||
4410 | IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { | |||
4411 | InitializationKind SubKind = | |||
4412 | Kind.getKind() == InitializationKind::IK_DirectList | |||
4413 | ? InitializationKind::CreateDirect(Kind.getLocation(), | |||
4414 | InitList->getLBraceLoc(), | |||
4415 | InitList->getRBraceLoc()) | |||
4416 | : Kind; | |||
4417 | Sequence.InitializeFrom(S, Entity, SubKind, SubInit, | |||
4418 | /*TopLevelOfInitList*/ true, | |||
4419 | TreatUnavailableAsInvalid); | |||
4420 | ||||
4421 | // TryStringLiteralInitialization() (in InitializeFrom()) will fail if | |||
4422 | // the element is not an appropriately-typed string literal, in which | |||
4423 | // case we should proceed as in C++11 (below). | |||
4424 | if (Sequence) { | |||
4425 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); | |||
4426 | return; | |||
4427 | } | |||
4428 | } | |||
4429 | } | |||
4430 | } | |||
4431 | ||||
4432 | // C++11 [dcl.init.list]p3: | |||
4433 | // - If T is an aggregate, aggregate initialization is performed. | |||
4434 | if ((DestType->isRecordType() && !DestType->isAggregateType()) || | |||
4435 | (S.getLangOpts().CPlusPlus11 && | |||
4436 | S.isStdInitializerList(DestType, nullptr))) { | |||
4437 | if (S.getLangOpts().CPlusPlus11) { | |||
4438 | // - Otherwise, if the initializer list has no elements and T is a | |||
4439 | // class type with a default constructor, the object is | |||
4440 | // value-initialized. | |||
4441 | if (InitList->getNumInits() == 0) { | |||
4442 | CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); | |||
4443 | if (S.LookupDefaultConstructor(RD)) { | |||
4444 | TryValueInitialization(S, Entity, Kind, Sequence, InitList); | |||
4445 | return; | |||
4446 | } | |||
4447 | } | |||
4448 | ||||
4449 | // - Otherwise, if T is a specialization of std::initializer_list<E>, | |||
4450 | // an initializer_list object constructed [...] | |||
4451 | if (TryInitializerListConstruction(S, InitList, DestType, Sequence, | |||
4452 | TreatUnavailableAsInvalid)) | |||
4453 | return; | |||
4454 | ||||
4455 | // - Otherwise, if T is a class type, constructors are considered. | |||
4456 | Expr *InitListAsExpr = InitList; | |||
4457 | TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, | |||
4458 | DestType, Sequence, /*InitListSyntax*/true); | |||
4459 | } else | |||
4460 | Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); | |||
4461 | return; | |||
4462 | } | |||
4463 | ||||
4464 | if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && | |||
4465 | InitList->getNumInits() == 1) { | |||
4466 | Expr *E = InitList->getInit(0); | |||
4467 | ||||
4468 | // - Otherwise, if T is an enumeration with a fixed underlying type, | |||
4469 | // the initializer-list has a single element v, and the initialization | |||
4470 | // is direct-list-initialization, the object is initialized with the | |||
4471 | // value T(v); if a narrowing conversion is required to convert v to | |||
4472 | // the underlying type of T, the program is ill-formed. | |||
4473 | auto *ET = DestType->getAs<EnumType>(); | |||
4474 | if (S.getLangOpts().CPlusPlus17 && | |||
4475 | Kind.getKind() == InitializationKind::IK_DirectList && | |||
4476 | ET && ET->getDecl()->isFixed() && | |||
4477 | !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && | |||
4478 | (E->getType()->isIntegralOrEnumerationType() || | |||
4479 | E->getType()->isFloatingType())) { | |||
4480 | // There are two ways that T(v) can work when T is an enumeration type. | |||
4481 | // If there is either an implicit conversion sequence from v to T or | |||
4482 | // a conversion function that can convert from v to T, then we use that. | |||
4483 | // Otherwise, if v is of integral, enumeration, or floating-point type, | |||
4484 | // it is converted to the enumeration type via its underlying type. | |||
4485 | // There is no overlap possible between these two cases (except when the | |||
4486 | // source value is already of the destination type), and the first | |||
4487 | // case is handled by the general case for single-element lists below. | |||
4488 | ImplicitConversionSequence ICS; | |||
4489 | ICS.setStandard(); | |||
4490 | ICS.Standard.setAsIdentityConversion(); | |||
4491 | if (!E->isPRValue()) | |||
4492 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; | |||
4493 | // If E is of a floating-point type, then the conversion is ill-formed | |||
4494 | // due to narrowing, but go through the motions in order to produce the | |||
4495 | // right diagnostic. | |||
4496 | ICS.Standard.Second = E->getType()->isFloatingType() | |||
4497 | ? ICK_Floating_Integral | |||
4498 | : ICK_Integral_Conversion; | |||
4499 | ICS.Standard.setFromType(E->getType()); | |||
4500 | ICS.Standard.setToType(0, E->getType()); | |||
4501 | ICS.Standard.setToType(1, DestType); | |||
4502 | ICS.Standard.setToType(2, DestType); | |||
4503 | Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), | |||
4504 | /*TopLevelOfInitList*/true); | |||
4505 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); | |||
4506 | return; | |||
4507 | } | |||
4508 | ||||
4509 | // - Otherwise, if the initializer list has a single element of type E | |||
4510 | // [...references are handled above...], the object or reference is | |||
4511 | // initialized from that element (by copy-initialization for | |||
4512 | // copy-list-initialization, or by direct-initialization for | |||
4513 | // direct-list-initialization); if a narrowing conversion is required | |||
4514 | // to convert the element to T, the program is ill-formed. | |||
4515 | // | |||
4516 | // Per core-24034, this is direct-initialization if we were performing | |||
4517 | // direct-list-initialization and copy-initialization otherwise. | |||
4518 | // We can't use InitListChecker for this, because it always performs | |||
4519 | // copy-initialization. This only matters if we might use an 'explicit' | |||
4520 | // conversion operator, or for the special case conversion of nullptr_t to | |||
4521 | // bool, so we only need to handle those cases. | |||
4522 | // | |||
4523 | // FIXME: Why not do this in all cases? | |||
4524 | Expr *Init = InitList->getInit(0); | |||
4525 | if (Init->getType()->isRecordType() || | |||
4526 | (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { | |||
4527 | InitializationKind SubKind = | |||
4528 | Kind.getKind() == InitializationKind::IK_DirectList | |||
4529 | ? InitializationKind::CreateDirect(Kind.getLocation(), | |||
4530 | InitList->getLBraceLoc(), | |||
4531 | InitList->getRBraceLoc()) | |||
4532 | : Kind; | |||
4533 | Expr *SubInit[1] = { Init }; | |||
4534 | Sequence.InitializeFrom(S, Entity, SubKind, SubInit, | |||
4535 | /*TopLevelOfInitList*/true, | |||
4536 | TreatUnavailableAsInvalid); | |||
4537 | if (Sequence) | |||
4538 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); | |||
4539 | return; | |||
4540 | } | |||
4541 | } | |||
4542 | ||||
4543 | InitListChecker CheckInitList(S, Entity, InitList, | |||
4544 | DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); | |||
4545 | if (CheckInitList.HadError()) { | |||
4546 | Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); | |||
4547 | return; | |||
4548 | } | |||
4549 | ||||
4550 | // Add the list initialization step with the built init list. | |||
4551 | Sequence.AddListInitializationStep(DestType); | |||
4552 | } | |||
4553 | ||||
4554 | /// Try a reference initialization that involves calling a conversion | |||
4555 | /// function. | |||
4556 | static OverloadingResult TryRefInitWithConversionFunction( | |||
4557 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, | |||
4558 | Expr *Initializer, bool AllowRValues, bool IsLValueRef, | |||
4559 | InitializationSequence &Sequence) { | |||
4560 | QualType DestType = Entity.getType(); | |||
4561 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); | |||
4562 | QualType T1 = cv1T1.getUnqualifiedType(); | |||
4563 | QualType cv2T2 = Initializer->getType(); | |||
4564 | QualType T2 = cv2T2.getUnqualifiedType(); | |||
4565 | ||||
4566 | assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&((void)0) | |||
4567 | "Must have incompatible references when binding via conversion")((void)0); | |||
4568 | ||||
4569 | // Build the candidate set directly in the initialization sequence | |||
4570 | // structure, so that it will persist if we fail. | |||
4571 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); | |||
4572 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
4573 | ||||
4574 | // Determine whether we are allowed to call explicit conversion operators. | |||
4575 | // Note that none of [over.match.copy], [over.match.conv], nor | |||
4576 | // [over.match.ref] permit an explicit constructor to be chosen when | |||
4577 | // initializing a reference, not even for direct-initialization. | |||
4578 | bool AllowExplicitCtors = false; | |||
4579 | bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); | |||
4580 | ||||
4581 | const RecordType *T1RecordType = nullptr; | |||
4582 | if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && | |||
4583 | S.isCompleteType(Kind.getLocation(), T1)) { | |||
4584 | // The type we're converting to is a class type. Enumerate its constructors | |||
4585 | // to see if there is a suitable conversion. | |||
4586 | CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); | |||
4587 | ||||
4588 | for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { | |||
4589 | auto Info = getConstructorInfo(D); | |||
4590 | if (!Info.Constructor) | |||
4591 | continue; | |||
4592 | ||||
4593 | if (!Info.Constructor->isInvalidDecl() && | |||
4594 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { | |||
4595 | if (Info.ConstructorTmpl) | |||
4596 | S.AddTemplateOverloadCandidate( | |||
4597 | Info.ConstructorTmpl, Info.FoundDecl, | |||
4598 | /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, | |||
4599 | /*SuppressUserConversions=*/true, | |||
4600 | /*PartialOverloading*/ false, AllowExplicitCtors); | |||
4601 | else | |||
4602 | S.AddOverloadCandidate( | |||
4603 | Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, | |||
4604 | /*SuppressUserConversions=*/true, | |||
4605 | /*PartialOverloading*/ false, AllowExplicitCtors); | |||
4606 | } | |||
4607 | } | |||
4608 | } | |||
4609 | if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) | |||
4610 | return OR_No_Viable_Function; | |||
4611 | ||||
4612 | const RecordType *T2RecordType = nullptr; | |||
4613 | if ((T2RecordType = T2->getAs<RecordType>()) && | |||
4614 | S.isCompleteType(Kind.getLocation(), T2)) { | |||
4615 | // The type we're converting from is a class type, enumerate its conversion | |||
4616 | // functions. | |||
4617 | CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); | |||
4618 | ||||
4619 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); | |||
4620 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
4621 | NamedDecl *D = *I; | |||
4622 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | |||
4623 | if (isa<UsingShadowDecl>(D)) | |||
4624 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
4625 | ||||
4626 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); | |||
4627 | CXXConversionDecl *Conv; | |||
4628 | if (ConvTemplate) | |||
4629 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
4630 | else | |||
4631 | Conv = cast<CXXConversionDecl>(D); | |||
4632 | ||||
4633 | // If the conversion function doesn't return a reference type, | |||
4634 | // it can't be considered for this conversion unless we're allowed to | |||
4635 | // consider rvalues. | |||
4636 | // FIXME: Do we need to make sure that we only consider conversion | |||
4637 | // candidates with reference-compatible results? That might be needed to | |||
4638 | // break recursion. | |||
4639 | if ((AllowRValues || | |||
4640 | Conv->getConversionType()->isLValueReferenceType())) { | |||
4641 | if (ConvTemplate) | |||
4642 | S.AddTemplateConversionCandidate( | |||
4643 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, | |||
4644 | CandidateSet, | |||
4645 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); | |||
4646 | else | |||
4647 | S.AddConversionCandidate( | |||
4648 | Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, | |||
4649 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); | |||
4650 | } | |||
4651 | } | |||
4652 | } | |||
4653 | if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) | |||
4654 | return OR_No_Viable_Function; | |||
4655 | ||||
4656 | SourceLocation DeclLoc = Initializer->getBeginLoc(); | |||
4657 | ||||
4658 | // Perform overload resolution. If it fails, return the failed result. | |||
4659 | OverloadCandidateSet::iterator Best; | |||
4660 | if (OverloadingResult Result | |||
4661 | = CandidateSet.BestViableFunction(S, DeclLoc, Best)) | |||
4662 | return Result; | |||
4663 | ||||
4664 | FunctionDecl *Function = Best->Function; | |||
4665 | // This is the overload that will be used for this initialization step if we | |||
4666 | // use this initialization. Mark it as referenced. | |||
4667 | Function->setReferenced(); | |||
4668 | ||||
4669 | // Compute the returned type and value kind of the conversion. | |||
4670 | QualType cv3T3; | |||
4671 | if (isa<CXXConversionDecl>(Function)) | |||
4672 | cv3T3 = Function->getReturnType(); | |||
4673 | else | |||
4674 | cv3T3 = T1; | |||
4675 | ||||
4676 | ExprValueKind VK = VK_PRValue; | |||
4677 | if (cv3T3->isLValueReferenceType()) | |||
4678 | VK = VK_LValue; | |||
4679 | else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) | |||
4680 | VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; | |||
4681 | cv3T3 = cv3T3.getNonLValueExprType(S.Context); | |||
4682 | ||||
4683 | // Add the user-defined conversion step. | |||
4684 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
4685 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, | |||
4686 | HadMultipleCandidates); | |||
4687 | ||||
4688 | // Determine whether we'll need to perform derived-to-base adjustments or | |||
4689 | // other conversions. | |||
4690 | Sema::ReferenceConversions RefConv; | |||
4691 | Sema::ReferenceCompareResult NewRefRelationship = | |||
4692 | S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); | |||
4693 | ||||
4694 | // Add the final conversion sequence, if necessary. | |||
4695 | if (NewRefRelationship == Sema::Ref_Incompatible) { | |||
4696 | assert(!isa<CXXConstructorDecl>(Function) &&((void)0) | |||
4697 | "should not have conversion after constructor")((void)0); | |||
4698 | ||||
4699 | ImplicitConversionSequence ICS; | |||
4700 | ICS.setStandard(); | |||
4701 | ICS.Standard = Best->FinalConversion; | |||
4702 | Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); | |||
4703 | ||||
4704 | // Every implicit conversion results in a prvalue, except for a glvalue | |||
4705 | // derived-to-base conversion, which we handle below. | |||
4706 | cv3T3 = ICS.Standard.getToType(2); | |||
4707 | VK = VK_PRValue; | |||
4708 | } | |||
4709 | ||||
4710 | // If the converted initializer is a prvalue, its type T4 is adjusted to | |||
4711 | // type "cv1 T4" and the temporary materialization conversion is applied. | |||
4712 | // | |||
4713 | // We adjust the cv-qualifications to match the reference regardless of | |||
4714 | // whether we have a prvalue so that the AST records the change. In this | |||
4715 | // case, T4 is "cv3 T3". | |||
4716 | QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); | |||
4717 | if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) | |||
4718 | Sequence.AddQualificationConversionStep(cv1T4, VK); | |||
4719 | Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue); | |||
4720 | VK = IsLValueRef ? VK_LValue : VK_XValue; | |||
4721 | ||||
4722 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) | |||
4723 | Sequence.AddDerivedToBaseCastStep(cv1T1, VK); | |||
4724 | else if (RefConv & Sema::ReferenceConversions::ObjC) | |||
4725 | Sequence.AddObjCObjectConversionStep(cv1T1); | |||
4726 | else if (RefConv & Sema::ReferenceConversions::Function) | |||
4727 | Sequence.AddFunctionReferenceConversionStep(cv1T1); | |||
4728 | else if (RefConv & Sema::ReferenceConversions::Qualification) { | |||
4729 | if (!S.Context.hasSameType(cv1T4, cv1T1)) | |||
4730 | Sequence.AddQualificationConversionStep(cv1T1, VK); | |||
4731 | } | |||
4732 | ||||
4733 | return OR_Success; | |||
4734 | } | |||
4735 | ||||
4736 | static void CheckCXX98CompatAccessibleCopy(Sema &S, | |||
4737 | const InitializedEntity &Entity, | |||
4738 | Expr *CurInitExpr); | |||
4739 | ||||
4740 | /// Attempt reference initialization (C++0x [dcl.init.ref]) | |||
4741 | static void TryReferenceInitialization(Sema &S, | |||
4742 | const InitializedEntity &Entity, | |||
4743 | const InitializationKind &Kind, | |||
4744 | Expr *Initializer, | |||
4745 | InitializationSequence &Sequence) { | |||
4746 | QualType DestType = Entity.getType(); | |||
4747 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); | |||
4748 | Qualifiers T1Quals; | |||
4749 | QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); | |||
4750 | QualType cv2T2 = S.getCompletedType(Initializer); | |||
4751 | Qualifiers T2Quals; | |||
4752 | QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); | |||
4753 | ||||
4754 | // If the initializer is the address of an overloaded function, try | |||
4755 | // to resolve the overloaded function. If all goes well, T2 is the | |||
4756 | // type of the resulting function. | |||
4757 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, | |||
4758 | T1, Sequence)) | |||
4759 | return; | |||
4760 | ||||
4761 | // Delegate everything else to a subfunction. | |||
4762 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, | |||
4763 | T1Quals, cv2T2, T2, T2Quals, Sequence); | |||
4764 | } | |||
4765 | ||||
4766 | /// Determine whether an expression is a non-referenceable glvalue (one to | |||
4767 | /// which a reference can never bind). Attempting to bind a reference to | |||
4768 | /// such a glvalue will always create a temporary. | |||
4769 | static bool isNonReferenceableGLValue(Expr *E) { | |||
4770 | return E->refersToBitField() || E->refersToVectorElement() || | |||
4771 | E->refersToMatrixElement(); | |||
4772 | } | |||
4773 | ||||
4774 | /// Reference initialization without resolving overloaded functions. | |||
4775 | /// | |||
4776 | /// We also can get here in C if we call a builtin which is declared as | |||
4777 | /// a function with a parameter of reference type (such as __builtin_va_end()). | |||
4778 | static void TryReferenceInitializationCore(Sema &S, | |||
4779 | const InitializedEntity &Entity, | |||
4780 | const InitializationKind &Kind, | |||
4781 | Expr *Initializer, | |||
4782 | QualType cv1T1, QualType T1, | |||
4783 | Qualifiers T1Quals, | |||
4784 | QualType cv2T2, QualType T2, | |||
4785 | Qualifiers T2Quals, | |||
4786 | InitializationSequence &Sequence) { | |||
4787 | QualType DestType = Entity.getType(); | |||
4788 | SourceLocation DeclLoc = Initializer->getBeginLoc(); | |||
4789 | ||||
4790 | // Compute some basic properties of the types and the initializer. | |||
4791 | bool isLValueRef = DestType->isLValueReferenceType(); | |||
4792 | bool isRValueRef = !isLValueRef; | |||
4793 | Expr::Classification InitCategory = Initializer->Classify(S.Context); | |||
4794 | ||||
4795 | Sema::ReferenceConversions RefConv; | |||
4796 | Sema::ReferenceCompareResult RefRelationship = | |||
4797 | S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); | |||
4798 | ||||
4799 | // C++0x [dcl.init.ref]p5: | |||
4800 | // A reference to type "cv1 T1" is initialized by an expression of type | |||
4801 | // "cv2 T2" as follows: | |||
4802 | // | |||
4803 | // - If the reference is an lvalue reference and the initializer | |||
4804 | // expression | |||
4805 | // Note the analogous bullet points for rvalue refs to functions. Because | |||
4806 | // there are no function rvalues in C++, rvalue refs to functions are treated | |||
4807 | // like lvalue refs. | |||
4808 | OverloadingResult ConvOvlResult = OR_Success; | |||
4809 | bool T1Function = T1->isFunctionType(); | |||
4810 | if (isLValueRef || T1Function) { | |||
4811 | if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && | |||
4812 | (RefRelationship == Sema::Ref_Compatible || | |||
4813 | (Kind.isCStyleOrFunctionalCast() && | |||
4814 | RefRelationship == Sema::Ref_Related))) { | |||
4815 | // - is an lvalue (but is not a bit-field), and "cv1 T1" is | |||
4816 | // reference-compatible with "cv2 T2," or | |||
4817 | if (RefConv & (Sema::ReferenceConversions::DerivedToBase | | |||
4818 | Sema::ReferenceConversions::ObjC)) { | |||
4819 | // If we're converting the pointee, add any qualifiers first; | |||
4820 | // these qualifiers must all be top-level, so just convert to "cv1 T2". | |||
4821 | if (RefConv & (Sema::ReferenceConversions::Qualification)) | |||
4822 | Sequence.AddQualificationConversionStep( | |||
4823 | S.Context.getQualifiedType(T2, T1Quals), | |||
4824 | Initializer->getValueKind()); | |||
4825 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) | |||
4826 | Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); | |||
4827 | else | |||
4828 | Sequence.AddObjCObjectConversionStep(cv1T1); | |||
4829 | } else if (RefConv & Sema::ReferenceConversions::Qualification) { | |||
4830 | // Perform a (possibly multi-level) qualification conversion. | |||
4831 | Sequence.AddQualificationConversionStep(cv1T1, | |||
4832 | Initializer->getValueKind()); | |||
4833 | } else if (RefConv & Sema::ReferenceConversions::Function) { | |||
4834 | Sequence.AddFunctionReferenceConversionStep(cv1T1); | |||
4835 | } | |||
4836 | ||||
4837 | // We only create a temporary here when binding a reference to a | |||
4838 | // bit-field or vector element. Those cases are't supposed to be | |||
4839 | // handled by this bullet, but the outcome is the same either way. | |||
4840 | Sequence.AddReferenceBindingStep(cv1T1, false); | |||
4841 | return; | |||
4842 | } | |||
4843 | ||||
4844 | // - has a class type (i.e., T2 is a class type), where T1 is not | |||
4845 | // reference-related to T2, and can be implicitly converted to an | |||
4846 | // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible | |||
4847 | // with "cv3 T3" (this conversion is selected by enumerating the | |||
4848 | // applicable conversion functions (13.3.1.6) and choosing the best | |||
4849 | // one through overload resolution (13.3)), | |||
4850 | // If we have an rvalue ref to function type here, the rhs must be | |||
4851 | // an rvalue. DR1287 removed the "implicitly" here. | |||
4852 | if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && | |||
4853 | (isLValueRef || InitCategory.isRValue())) { | |||
4854 | if (S.getLangOpts().CPlusPlus) { | |||
4855 | // Try conversion functions only for C++. | |||
4856 | ConvOvlResult = TryRefInitWithConversionFunction( | |||
4857 | S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, | |||
4858 | /*IsLValueRef*/ isLValueRef, Sequence); | |||
4859 | if (ConvOvlResult == OR_Success) | |||
4860 | return; | |||
4861 | if (ConvOvlResult != OR_No_Viable_Function) | |||
4862 | Sequence.SetOverloadFailure( | |||
4863 | InitializationSequence::FK_ReferenceInitOverloadFailed, | |||
4864 | ConvOvlResult); | |||
4865 | } else { | |||
4866 | ConvOvlResult = OR_No_Viable_Function; | |||
4867 | } | |||
4868 | } | |||
4869 | } | |||
4870 | ||||
4871 | // - Otherwise, the reference shall be an lvalue reference to a | |||
4872 | // non-volatile const type (i.e., cv1 shall be const), or the reference | |||
4873 | // shall be an rvalue reference. | |||
4874 | // For address spaces, we interpret this to mean that an addr space | |||
4875 | // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". | |||
4876 | if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && | |||
4877 | T1Quals.isAddressSpaceSupersetOf(T2Quals))) { | |||
4878 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) | |||
4879 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); | |||
4880 | else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) | |||
4881 | Sequence.SetOverloadFailure( | |||
4882 | InitializationSequence::FK_ReferenceInitOverloadFailed, | |||
4883 | ConvOvlResult); | |||
4884 | else if (!InitCategory.isLValue()) | |||
4885 | Sequence.SetFailed( | |||
4886 | T1Quals.isAddressSpaceSupersetOf(T2Quals) | |||
4887 | ? InitializationSequence:: | |||
4888 | FK_NonConstLValueReferenceBindingToTemporary | |||
4889 | : InitializationSequence::FK_ReferenceInitDropsQualifiers); | |||
4890 | else { | |||
4891 | InitializationSequence::FailureKind FK; | |||
4892 | switch (RefRelationship) { | |||
4893 | case Sema::Ref_Compatible: | |||
4894 | if (Initializer->refersToBitField()) | |||
4895 | FK = InitializationSequence:: | |||
4896 | FK_NonConstLValueReferenceBindingToBitfield; | |||
4897 | else if (Initializer->refersToVectorElement()) | |||
4898 | FK = InitializationSequence:: | |||
4899 | FK_NonConstLValueReferenceBindingToVectorElement; | |||
4900 | else if (Initializer->refersToMatrixElement()) | |||
4901 | FK = InitializationSequence:: | |||
4902 | FK_NonConstLValueReferenceBindingToMatrixElement; | |||
4903 | else | |||
4904 | llvm_unreachable("unexpected kind of compatible initializer")__builtin_unreachable(); | |||
4905 | break; | |||
4906 | case Sema::Ref_Related: | |||
4907 | FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; | |||
4908 | break; | |||
4909 | case Sema::Ref_Incompatible: | |||
4910 | FK = InitializationSequence:: | |||
4911 | FK_NonConstLValueReferenceBindingToUnrelated; | |||
4912 | break; | |||
4913 | } | |||
4914 | Sequence.SetFailed(FK); | |||
4915 | } | |||
4916 | return; | |||
4917 | } | |||
4918 | ||||
4919 | // - If the initializer expression | |||
4920 | // - is an | |||
4921 | // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or | |||
4922 | // [1z] rvalue (but not a bit-field) or | |||
4923 | // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" | |||
4924 | // | |||
4925 | // Note: functions are handled above and below rather than here... | |||
4926 | if (!T1Function && | |||
4927 | (RefRelationship == Sema::Ref_Compatible || | |||
4928 | (Kind.isCStyleOrFunctionalCast() && | |||
4929 | RefRelationship == Sema::Ref_Related)) && | |||
4930 | ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || | |||
4931 | (InitCategory.isPRValue() && | |||
4932 | (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || | |||
4933 | T2->isArrayType())))) { | |||
4934 | ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; | |||
4935 | if (InitCategory.isPRValue() && T2->isRecordType()) { | |||
4936 | // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the | |||
4937 | // compiler the freedom to perform a copy here or bind to the | |||
4938 | // object, while C++0x requires that we bind directly to the | |||
4939 | // object. Hence, we always bind to the object without making an | |||
4940 | // extra copy. However, in C++03 requires that we check for the | |||
4941 | // presence of a suitable copy constructor: | |||
4942 | // | |||
4943 | // The constructor that would be used to make the copy shall | |||
4944 | // be callable whether or not the copy is actually done. | |||
4945 | if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) | |||
4946 | Sequence.AddExtraneousCopyToTemporary(cv2T2); | |||
4947 | else if (S.getLangOpts().CPlusPlus11) | |||
4948 | CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); | |||
4949 | } | |||
4950 | ||||
4951 | // C++1z [dcl.init.ref]/5.2.1.2: | |||
4952 | // If the converted initializer is a prvalue, its type T4 is adjusted | |||
4953 | // to type "cv1 T4" and the temporary materialization conversion is | |||
4954 | // applied. | |||
4955 | // Postpone address space conversions to after the temporary materialization | |||
4956 | // conversion to allow creating temporaries in the alloca address space. | |||
4957 | auto T1QualsIgnoreAS = T1Quals; | |||
4958 | auto T2QualsIgnoreAS = T2Quals; | |||
4959 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { | |||
4960 | T1QualsIgnoreAS.removeAddressSpace(); | |||
4961 | T2QualsIgnoreAS.removeAddressSpace(); | |||
4962 | } | |||
4963 | QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); | |||
4964 | if (T1QualsIgnoreAS != T2QualsIgnoreAS) | |||
4965 | Sequence.AddQualificationConversionStep(cv1T4, ValueKind); | |||
4966 | Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue); | |||
4967 | ValueKind = isLValueRef ? VK_LValue : VK_XValue; | |||
4968 | // Add addr space conversion if required. | |||
4969 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { | |||
4970 | auto T4Quals = cv1T4.getQualifiers(); | |||
4971 | T4Quals.addAddressSpace(T1Quals.getAddressSpace()); | |||
4972 | QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); | |||
4973 | Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); | |||
4974 | cv1T4 = cv1T4WithAS; | |||
4975 | } | |||
4976 | ||||
4977 | // In any case, the reference is bound to the resulting glvalue (or to | |||
4978 | // an appropriate base class subobject). | |||
4979 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) | |||
4980 | Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); | |||
4981 | else if (RefConv & Sema::ReferenceConversions::ObjC) | |||
4982 | Sequence.AddObjCObjectConversionStep(cv1T1); | |||
4983 | else if (RefConv & Sema::ReferenceConversions::Qualification) { | |||
4984 | if (!S.Context.hasSameType(cv1T4, cv1T1)) | |||
4985 | Sequence.AddQualificationConversionStep(cv1T1, ValueKind); | |||
4986 | } | |||
4987 | return; | |||
4988 | } | |||
4989 | ||||
4990 | // - has a class type (i.e., T2 is a class type), where T1 is not | |||
4991 | // reference-related to T2, and can be implicitly converted to an | |||
4992 | // xvalue, class prvalue, or function lvalue of type "cv3 T3", | |||
4993 | // where "cv1 T1" is reference-compatible with "cv3 T3", | |||
4994 | // | |||
4995 | // DR1287 removes the "implicitly" here. | |||
4996 | if (T2->isRecordType()) { | |||
4997 | if (RefRelationship == Sema::Ref_Incompatible) { | |||
4998 | ConvOvlResult = TryRefInitWithConversionFunction( | |||
4999 | S, Entity, Kind, Initializer, /*AllowRValues*/ true, | |||
5000 | /*IsLValueRef*/ isLValueRef, Sequence); | |||
5001 | if (ConvOvlResult) | |||
5002 | Sequence.SetOverloadFailure( | |||
5003 | InitializationSequence::FK_ReferenceInitOverloadFailed, | |||
5004 | ConvOvlResult); | |||
5005 | ||||
5006 | return; | |||
5007 | } | |||
5008 | ||||
5009 | if (RefRelationship == Sema::Ref_Compatible && | |||
5010 | isRValueRef && InitCategory.isLValue()) { | |||
5011 | Sequence.SetFailed( | |||
5012 | InitializationSequence::FK_RValueReferenceBindingToLValue); | |||
5013 | return; | |||
5014 | } | |||
5015 | ||||
5016 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); | |||
5017 | return; | |||
5018 | } | |||
5019 | ||||
5020 | // - Otherwise, a temporary of type "cv1 T1" is created and initialized | |||
5021 | // from the initializer expression using the rules for a non-reference | |||
5022 | // copy-initialization (8.5). The reference is then bound to the | |||
5023 | // temporary. [...] | |||
5024 | ||||
5025 | // Ignore address space of reference type at this point and perform address | |||
5026 | // space conversion after the reference binding step. | |||
5027 | QualType cv1T1IgnoreAS = | |||
5028 | T1Quals.hasAddressSpace() | |||
5029 | ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) | |||
5030 | : cv1T1; | |||
5031 | ||||
5032 | InitializedEntity TempEntity = | |||
5033 | InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); | |||
5034 | ||||
5035 | // FIXME: Why do we use an implicit conversion here rather than trying | |||
5036 | // copy-initialization? | |||
5037 | ImplicitConversionSequence ICS | |||
5038 | = S.TryImplicitConversion(Initializer, TempEntity.getType(), | |||
5039 | /*SuppressUserConversions=*/false, | |||
5040 | Sema::AllowedExplicit::None, | |||
5041 | /*FIXME:InOverloadResolution=*/false, | |||
5042 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), | |||
5043 | /*AllowObjCWritebackConversion=*/false); | |||
5044 | ||||
5045 | if (ICS.isBad()) { | |||
5046 | // FIXME: Use the conversion function set stored in ICS to turn | |||
5047 | // this into an overloading ambiguity diagnostic. However, we need | |||
5048 | // to keep that set as an OverloadCandidateSet rather than as some | |||
5049 | // other kind of set. | |||
5050 | if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) | |||
5051 | Sequence.SetOverloadFailure( | |||
5052 | InitializationSequence::FK_ReferenceInitOverloadFailed, | |||
5053 | ConvOvlResult); | |||
5054 | else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) | |||
5055 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); | |||
5056 | else | |||
5057 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); | |||
5058 | return; | |||
5059 | } else { | |||
5060 | Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); | |||
5061 | } | |||
5062 | ||||
5063 | // [...] If T1 is reference-related to T2, cv1 must be the | |||
5064 | // same cv-qualification as, or greater cv-qualification | |||
5065 | // than, cv2; otherwise, the program is ill-formed. | |||
5066 | unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); | |||
5067 | unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); | |||
5068 | if (RefRelationship == Sema::Ref_Related && | |||
5069 | ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || | |||
5070 | !T1Quals.isAddressSpaceSupersetOf(T2Quals))) { | |||
5071 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); | |||
5072 | return; | |||
5073 | } | |||
5074 | ||||
5075 | // [...] If T1 is reference-related to T2 and the reference is an rvalue | |||
5076 | // reference, the initializer expression shall not be an lvalue. | |||
5077 | if (RefRelationship >= Sema::Ref_Related && !isLValueRef && | |||
5078 | InitCategory.isLValue()) { | |||
5079 | Sequence.SetFailed( | |||
5080 | InitializationSequence::FK_RValueReferenceBindingToLValue); | |||
5081 | return; | |||
5082 | } | |||
5083 | ||||
5084 | Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); | |||
5085 | ||||
5086 | if (T1Quals.hasAddressSpace()) { | |||
5087 | if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), | |||
5088 | LangAS::Default)) { | |||
5089 | Sequence.SetFailed( | |||
5090 | InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); | |||
5091 | return; | |||
5092 | } | |||
5093 | Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue | |||
5094 | : VK_XValue); | |||
5095 | } | |||
5096 | } | |||
5097 | ||||
5098 | /// Attempt character array initialization from a string literal | |||
5099 | /// (C++ [dcl.init.string], C99 6.7.8). | |||
5100 | static void TryStringLiteralInitialization(Sema &S, | |||
5101 | const InitializedEntity &Entity, | |||
5102 | const InitializationKind &Kind, | |||
5103 | Expr *Initializer, | |||
5104 | InitializationSequence &Sequence) { | |||
5105 | Sequence.AddStringInitStep(Entity.getType()); | |||
5106 | } | |||
5107 | ||||
5108 | /// Attempt value initialization (C++ [dcl.init]p7). | |||
5109 | static void TryValueInitialization(Sema &S, | |||
5110 | const InitializedEntity &Entity, | |||
5111 | const InitializationKind &Kind, | |||
5112 | InitializationSequence &Sequence, | |||
5113 | InitListExpr *InitList) { | |||
5114 | assert((!InitList || InitList->getNumInits() == 0) &&((void)0) | |||
5115 | "Shouldn't use value-init for non-empty init lists")((void)0); | |||
5116 | ||||
5117 | // C++98 [dcl.init]p5, C++11 [dcl.init]p7: | |||
5118 | // | |||
5119 | // To value-initialize an object of type T means: | |||
5120 | QualType T = Entity.getType(); | |||
5121 | ||||
5122 | // -- if T is an array type, then each element is value-initialized; | |||
5123 | T = S.Context.getBaseElementType(T); | |||
5124 | ||||
5125 | if (const RecordType *RT = T->getAs<RecordType>()) { | |||
5126 | if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { | |||
5127 | bool NeedZeroInitialization = true; | |||
5128 | // C++98: | |||
5129 | // -- if T is a class type (clause 9) with a user-declared constructor | |||
5130 | // (12.1), then the default constructor for T is called (and the | |||
5131 | // initialization is ill-formed if T has no accessible default | |||
5132 | // constructor); | |||
5133 | // C++11: | |||
5134 | // -- if T is a class type (clause 9) with either no default constructor | |||
5135 | // (12.1 [class.ctor]) or a default constructor that is user-provided | |||
5136 | // or deleted, then the object is default-initialized; | |||
5137 | // | |||
5138 | // Note that the C++11 rule is the same as the C++98 rule if there are no | |||
5139 | // defaulted or deleted constructors, so we just use it unconditionally. | |||
5140 | CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); | |||
5141 | if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) | |||
5142 | NeedZeroInitialization = false; | |||
5143 | ||||
5144 | // -- if T is a (possibly cv-qualified) non-union class type without a | |||
5145 | // user-provided or deleted default constructor, then the object is | |||
5146 | // zero-initialized and, if T has a non-trivial default constructor, | |||
5147 | // default-initialized; | |||
5148 | // The 'non-union' here was removed by DR1502. The 'non-trivial default | |||
5149 | // constructor' part was removed by DR1507. | |||
5150 | if (NeedZeroInitialization) | |||
5151 | Sequence.AddZeroInitializationStep(Entity.getType()); | |||
5152 | ||||
5153 | // C++03: | |||
5154 | // -- if T is a non-union class type without a user-declared constructor, | |||
5155 | // then every non-static data member and base class component of T is | |||
5156 | // value-initialized; | |||
5157 | // [...] A program that calls for [...] value-initialization of an | |||
5158 | // entity of reference type is ill-formed. | |||
5159 | // | |||
5160 | // C++11 doesn't need this handling, because value-initialization does not | |||
5161 | // occur recursively there, and the implicit default constructor is | |||
5162 | // defined as deleted in the problematic cases. | |||
5163 | if (!S.getLangOpts().CPlusPlus11 && | |||
5164 | ClassDecl->hasUninitializedReferenceMember()) { | |||
5165 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); | |||
5166 | return; | |||
5167 | } | |||
5168 | ||||
5169 | // If this is list-value-initialization, pass the empty init list on when | |||
5170 | // building the constructor call. This affects the semantics of a few | |||
5171 | // things (such as whether an explicit default constructor can be called). | |||
5172 | Expr *InitListAsExpr = InitList; | |||
5173 | MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); | |||
5174 | bool InitListSyntax = InitList; | |||
5175 | ||||
5176 | // FIXME: Instead of creating a CXXConstructExpr of array type here, | |||
5177 | // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. | |||
5178 | return TryConstructorInitialization( | |||
5179 | S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); | |||
5180 | } | |||
5181 | } | |||
5182 | ||||
5183 | Sequence.AddZeroInitializationStep(Entity.getType()); | |||
5184 | } | |||
5185 | ||||
5186 | /// Attempt default initialization (C++ [dcl.init]p6). | |||
5187 | static void TryDefaultInitialization(Sema &S, | |||
5188 | const InitializedEntity &Entity, | |||
5189 | const InitializationKind &Kind, | |||
5190 | InitializationSequence &Sequence) { | |||
5191 | assert(Kind.getKind() == InitializationKind::IK_Default)((void)0); | |||
5192 | ||||
5193 | // C++ [dcl.init]p6: | |||
5194 | // To default-initialize an object of type T means: | |||
5195 | // - if T is an array type, each element is default-initialized; | |||
5196 | QualType DestType = S.Context.getBaseElementType(Entity.getType()); | |||
5197 | ||||
5198 | // - if T is a (possibly cv-qualified) class type (Clause 9), the default | |||
5199 | // constructor for T is called (and the initialization is ill-formed if | |||
5200 | // T has no accessible default constructor); | |||
5201 | if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { | |||
5202 | TryConstructorInitialization(S, Entity, Kind, None, DestType, | |||
5203 | Entity.getType(), Sequence); | |||
5204 | return; | |||
5205 | } | |||
5206 | ||||
5207 | // - otherwise, no initialization is performed. | |||
5208 | ||||
5209 | // If a program calls for the default initialization of an object of | |||
5210 | // a const-qualified type T, T shall be a class type with a user-provided | |||
5211 | // default constructor. | |||
5212 | if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { | |||
5213 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) | |||
5214 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); | |||
5215 | return; | |||
5216 | } | |||
5217 | ||||
5218 | // If the destination type has a lifetime property, zero-initialize it. | |||
5219 | if (DestType.getQualifiers().hasObjCLifetime()) { | |||
5220 | Sequence.AddZeroInitializationStep(Entity.getType()); | |||
5221 | return; | |||
5222 | } | |||
5223 | } | |||
5224 | ||||
5225 | /// Attempt a user-defined conversion between two types (C++ [dcl.init]), | |||
5226 | /// which enumerates all conversion functions and performs overload resolution | |||
5227 | /// to select the best. | |||
5228 | static void TryUserDefinedConversion(Sema &S, | |||
5229 | QualType DestType, | |||
5230 | const InitializationKind &Kind, | |||
5231 | Expr *Initializer, | |||
5232 | InitializationSequence &Sequence, | |||
5233 | bool TopLevelOfInitList) { | |||
5234 | assert(!DestType->isReferenceType() && "References are handled elsewhere")((void)0); | |||
5235 | QualType SourceType = Initializer->getType(); | |||
5236 | assert((DestType->isRecordType() || SourceType->isRecordType()) &&((void)0) | |||
5237 | "Must have a class type to perform a user-defined conversion")((void)0); | |||
5238 | ||||
5239 | // Build the candidate set directly in the initialization sequence | |||
5240 | // structure, so that it will persist if we fail. | |||
5241 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); | |||
5242 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
5243 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); | |||
5244 | ||||
5245 | // Determine whether we are allowed to call explicit constructors or | |||
5246 | // explicit conversion operators. | |||
5247 | bool AllowExplicit = Kind.AllowExplicit(); | |||
5248 | ||||
5249 | if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { | |||
5250 | // The type we're converting to is a class type. Enumerate its constructors | |||
5251 | // to see if there is a suitable conversion. | |||
5252 | CXXRecordDecl *DestRecordDecl | |||
5253 | = cast<CXXRecordDecl>(DestRecordType->getDecl()); | |||
5254 | ||||
5255 | // Try to complete the type we're converting to. | |||
5256 | if (S.isCompleteType(Kind.getLocation(), DestType)) { | |||
5257 | for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { | |||
5258 | auto Info = getConstructorInfo(D); | |||
5259 | if (!Info.Constructor) | |||
5260 | continue; | |||
5261 | ||||
5262 | if (!Info.Constructor->isInvalidDecl() && | |||
5263 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { | |||
5264 | if (Info.ConstructorTmpl) | |||
5265 | S.AddTemplateOverloadCandidate( | |||
5266 | Info.ConstructorTmpl, Info.FoundDecl, | |||
5267 | /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, | |||
5268 | /*SuppressUserConversions=*/true, | |||
5269 | /*PartialOverloading*/ false, AllowExplicit); | |||
5270 | else | |||
5271 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, | |||
5272 | Initializer, CandidateSet, | |||
5273 | /*SuppressUserConversions=*/true, | |||
5274 | /*PartialOverloading*/ false, AllowExplicit); | |||
5275 | } | |||
5276 | } | |||
5277 | } | |||
5278 | } | |||
5279 | ||||
5280 | SourceLocation DeclLoc = Initializer->getBeginLoc(); | |||
5281 | ||||
5282 | if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { | |||
5283 | // The type we're converting from is a class type, enumerate its conversion | |||
5284 | // functions. | |||
5285 | ||||
5286 | // We can only enumerate the conversion functions for a complete type; if | |||
5287 | // the type isn't complete, simply skip this step. | |||
5288 | if (S.isCompleteType(DeclLoc, SourceType)) { | |||
5289 | CXXRecordDecl *SourceRecordDecl | |||
5290 | = cast<CXXRecordDecl>(SourceRecordType->getDecl()); | |||
5291 | ||||
5292 | const auto &Conversions = | |||
5293 | SourceRecordDecl->getVisibleConversionFunctions(); | |||
5294 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
5295 | NamedDecl *D = *I; | |||
5296 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | |||
5297 | if (isa<UsingShadowDecl>(D)) | |||
5298 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
5299 | ||||
5300 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); | |||
5301 | CXXConversionDecl *Conv; | |||
5302 | if (ConvTemplate) | |||
5303 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
5304 | else | |||
5305 | Conv = cast<CXXConversionDecl>(D); | |||
5306 | ||||
5307 | if (ConvTemplate) | |||
5308 | S.AddTemplateConversionCandidate( | |||
5309 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, | |||
5310 | CandidateSet, AllowExplicit, AllowExplicit); | |||
5311 | else | |||
5312 | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, | |||
5313 | DestType, CandidateSet, AllowExplicit, | |||
5314 | AllowExplicit); | |||
5315 | } | |||
5316 | } | |||
5317 | } | |||
5318 | ||||
5319 | // Perform overload resolution. If it fails, return the failed result. | |||
5320 | OverloadCandidateSet::iterator Best; | |||
5321 | if (OverloadingResult Result | |||
5322 | = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { | |||
5323 | Sequence.SetOverloadFailure( | |||
5324 | InitializationSequence::FK_UserConversionOverloadFailed, Result); | |||
5325 | ||||
5326 | // [class.copy.elision]p3: | |||
5327 | // In some copy-initialization contexts, a two-stage overload resolution | |||
5328 | // is performed. | |||
5329 | // If the first overload resolution selects a deleted function, we also | |||
5330 | // need the initialization sequence to decide whether to perform the second | |||
5331 | // overload resolution. | |||
5332 | if (!(Result == OR_Deleted && | |||
5333 | Kind.getKind() == InitializationKind::IK_Copy)) | |||
5334 | return; | |||
5335 | } | |||
5336 | ||||
5337 | FunctionDecl *Function = Best->Function; | |||
5338 | Function->setReferenced(); | |||
5339 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
5340 | ||||
5341 | if (isa<CXXConstructorDecl>(Function)) { | |||
5342 | // Add the user-defined conversion step. Any cv-qualification conversion is | |||
5343 | // subsumed by the initialization. Per DR5, the created temporary is of the | |||
5344 | // cv-unqualified type of the destination. | |||
5345 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, | |||
5346 | DestType.getUnqualifiedType(), | |||
5347 | HadMultipleCandidates); | |||
5348 | ||||
5349 | // C++14 and before: | |||
5350 | // - if the function is a constructor, the call initializes a temporary | |||
5351 | // of the cv-unqualified version of the destination type. The [...] | |||
5352 | // temporary [...] is then used to direct-initialize, according to the | |||
5353 | // rules above, the object that is the destination of the | |||
5354 | // copy-initialization. | |||
5355 | // Note that this just performs a simple object copy from the temporary. | |||
5356 | // | |||
5357 | // C++17: | |||
5358 | // - if the function is a constructor, the call is a prvalue of the | |||
5359 | // cv-unqualified version of the destination type whose return object | |||
5360 | // is initialized by the constructor. The call is used to | |||
5361 | // direct-initialize, according to the rules above, the object that | |||
5362 | // is the destination of the copy-initialization. | |||
5363 | // Therefore we need to do nothing further. | |||
5364 | // | |||
5365 | // FIXME: Mark this copy as extraneous. | |||
5366 | if (!S.getLangOpts().CPlusPlus17) | |||
5367 | Sequence.AddFinalCopy(DestType); | |||
5368 | else if (DestType.hasQualifiers()) | |||
5369 | Sequence.AddQualificationConversionStep(DestType, VK_PRValue); | |||
5370 | return; | |||
5371 | } | |||
5372 | ||||
5373 | // Add the user-defined conversion step that calls the conversion function. | |||
5374 | QualType ConvType = Function->getCallResultType(); | |||
5375 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, | |||
5376 | HadMultipleCandidates); | |||
5377 | ||||
5378 | if (ConvType->getAs<RecordType>()) { | |||
5379 | // The call is used to direct-initialize [...] the object that is the | |||
5380 | // destination of the copy-initialization. | |||
5381 | // | |||
5382 | // In C++17, this does not call a constructor if we enter /17.6.1: | |||
5383 | // - If the initializer expression is a prvalue and the cv-unqualified | |||
5384 | // version of the source type is the same as the class of the | |||
5385 | // destination [... do not make an extra copy] | |||
5386 | // | |||
5387 | // FIXME: Mark this copy as extraneous. | |||
5388 | if (!S.getLangOpts().CPlusPlus17 || | |||
5389 | Function->getReturnType()->isReferenceType() || | |||
5390 | !S.Context.hasSameUnqualifiedType(ConvType, DestType)) | |||
5391 | Sequence.AddFinalCopy(DestType); | |||
5392 | else if (!S.Context.hasSameType(ConvType, DestType)) | |||
5393 | Sequence.AddQualificationConversionStep(DestType, VK_PRValue); | |||
5394 | return; | |||
5395 | } | |||
5396 | ||||
5397 | // If the conversion following the call to the conversion function | |||
5398 | // is interesting, add it as a separate step. | |||
5399 | if (Best->FinalConversion.First || Best->FinalConversion.Second || | |||
5400 | Best->FinalConversion.Third) { | |||
5401 | ImplicitConversionSequence ICS; | |||
5402 | ICS.setStandard(); | |||
5403 | ICS.Standard = Best->FinalConversion; | |||
5404 | Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); | |||
5405 | } | |||
5406 | } | |||
5407 | ||||
5408 | /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, | |||
5409 | /// a function with a pointer return type contains a 'return false;' statement. | |||
5410 | /// In C++11, 'false' is not a null pointer, so this breaks the build of any | |||
5411 | /// code using that header. | |||
5412 | /// | |||
5413 | /// Work around this by treating 'return false;' as zero-initializing the result | |||
5414 | /// if it's used in a pointer-returning function in a system header. | |||
5415 | static bool isLibstdcxxPointerReturnFalseHack(Sema &S, | |||
5416 | const InitializedEntity &Entity, | |||
5417 | const Expr *Init) { | |||
5418 | return S.getLangOpts().CPlusPlus11 && | |||
5419 | Entity.getKind() == InitializedEntity::EK_Result && | |||
5420 | Entity.getType()->isPointerType() && | |||
5421 | isa<CXXBoolLiteralExpr>(Init) && | |||
5422 | !cast<CXXBoolLiteralExpr>(Init)->getValue() && | |||
5423 | S.getSourceManager().isInSystemHeader(Init->getExprLoc()); | |||
5424 | } | |||
5425 | ||||
5426 | /// The non-zero enum values here are indexes into diagnostic alternatives. | |||
5427 | enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; | |||
5428 | ||||
5429 | /// Determines whether this expression is an acceptable ICR source. | |||
5430 | static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, | |||
5431 | bool isAddressOf, bool &isWeakAccess) { | |||
5432 | // Skip parens. | |||
5433 | e = e->IgnoreParens(); | |||
5434 | ||||
5435 | // Skip address-of nodes. | |||
5436 | if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { | |||
5437 | if (op->getOpcode() == UO_AddrOf) | |||
5438 | return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, | |||
5439 | isWeakAccess); | |||
5440 | ||||
5441 | // Skip certain casts. | |||
5442 | } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { | |||
5443 | switch (ce->getCastKind()) { | |||
5444 | case CK_Dependent: | |||
5445 | case CK_BitCast: | |||
5446 | case CK_LValueBitCast: | |||
5447 | case CK_NoOp: | |||
5448 | return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); | |||
5449 | ||||
5450 | case CK_ArrayToPointerDecay: | |||
5451 | return IIK_nonscalar; | |||
5452 | ||||
5453 | case CK_NullToPointer: | |||
5454 | return IIK_okay; | |||
5455 | ||||
5456 | default: | |||
5457 | break; | |||
5458 | } | |||
5459 | ||||
5460 | // If we have a declaration reference, it had better be a local variable. | |||
5461 | } else if (isa<DeclRefExpr>(e)) { | |||
5462 | // set isWeakAccess to true, to mean that there will be an implicit | |||
5463 | // load which requires a cleanup. | |||
5464 | if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) | |||
5465 | isWeakAccess = true; | |||
5466 | ||||
5467 | if (!isAddressOf) return IIK_nonlocal; | |||
5468 | ||||
5469 | VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); | |||
5470 | if (!var) return IIK_nonlocal; | |||
5471 | ||||
5472 | return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); | |||
5473 | ||||
5474 | // If we have a conditional operator, check both sides. | |||
5475 | } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { | |||
5476 | if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, | |||
5477 | isWeakAccess)) | |||
5478 | return iik; | |||
5479 | ||||
5480 | return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); | |||
5481 | ||||
5482 | // These are never scalar. | |||
5483 | } else if (isa<ArraySubscriptExpr>(e)) { | |||
5484 | return IIK_nonscalar; | |||
5485 | ||||
5486 | // Otherwise, it needs to be a null pointer constant. | |||
5487 | } else { | |||
5488 | return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) | |||
5489 | ? IIK_okay : IIK_nonlocal); | |||
5490 | } | |||
5491 | ||||
5492 | return IIK_nonlocal; | |||
5493 | } | |||
5494 | ||||
5495 | /// Check whether the given expression is a valid operand for an | |||
5496 | /// indirect copy/restore. | |||
5497 | static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { | |||
5498 | assert(src->isPRValue())((void)0); | |||
5499 | bool isWeakAccess = false; | |||
5500 | InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); | |||
5501 | // If isWeakAccess to true, there will be an implicit | |||
5502 | // load which requires a cleanup. | |||
5503 | if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) | |||
5504 | S.Cleanup.setExprNeedsCleanups(true); | |||
5505 | ||||
5506 | if (iik == IIK_okay) return; | |||
5507 | ||||
5508 | S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) | |||
5509 | << ((unsigned) iik - 1) // shift index into diagnostic explanations | |||
5510 | << src->getSourceRange(); | |||
5511 | } | |||
5512 | ||||
5513 | /// Determine whether we have compatible array types for the | |||
5514 | /// purposes of GNU by-copy array initialization. | |||
5515 | static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, | |||
5516 | const ArrayType *Source) { | |||
5517 | // If the source and destination array types are equivalent, we're | |||
5518 | // done. | |||
5519 | if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) | |||
5520 | return true; | |||
5521 | ||||
5522 | // Make sure that the element types are the same. | |||
5523 | if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) | |||
5524 | return false; | |||
5525 | ||||
5526 | // The only mismatch we allow is when the destination is an | |||
5527 | // incomplete array type and the source is a constant array type. | |||
5528 | return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); | |||
5529 | } | |||
5530 | ||||
5531 | static bool tryObjCWritebackConversion(Sema &S, | |||
5532 | InitializationSequence &Sequence, | |||
5533 | const InitializedEntity &Entity, | |||
5534 | Expr *Initializer) { | |||
5535 | bool ArrayDecay = false; | |||
5536 | QualType ArgType = Initializer->getType(); | |||
5537 | QualType ArgPointee; | |||
5538 | if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { | |||
5539 | ArrayDecay = true; | |||
5540 | ArgPointee = ArgArrayType->getElementType(); | |||
5541 | ArgType = S.Context.getPointerType(ArgPointee); | |||
5542 | } | |||
5543 | ||||
5544 | // Handle write-back conversion. | |||
5545 | QualType ConvertedArgType; | |||
5546 | if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), | |||
5547 | ConvertedArgType)) | |||
5548 | return false; | |||
5549 | ||||
5550 | // We should copy unless we're passing to an argument explicitly | |||
5551 | // marked 'out'. | |||
5552 | bool ShouldCopy = true; | |||
5553 | if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) | |||
5554 | ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); | |||
5555 | ||||
5556 | // Do we need an lvalue conversion? | |||
5557 | if (ArrayDecay || Initializer->isGLValue()) { | |||
5558 | ImplicitConversionSequence ICS; | |||
5559 | ICS.setStandard(); | |||
5560 | ICS.Standard.setAsIdentityConversion(); | |||
5561 | ||||
5562 | QualType ResultType; | |||
5563 | if (ArrayDecay) { | |||
5564 | ICS.Standard.First = ICK_Array_To_Pointer; | |||
5565 | ResultType = S.Context.getPointerType(ArgPointee); | |||
5566 | } else { | |||
5567 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; | |||
5568 | ResultType = Initializer->getType().getNonLValueExprType(S.Context); | |||
5569 | } | |||
5570 | ||||
5571 | Sequence.AddConversionSequenceStep(ICS, ResultType); | |||
5572 | } | |||
5573 | ||||
5574 | Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); | |||
5575 | return true; | |||
5576 | } | |||
5577 | ||||
5578 | static bool TryOCLSamplerInitialization(Sema &S, | |||
5579 | InitializationSequence &Sequence, | |||
5580 | QualType DestType, | |||
5581 | Expr *Initializer) { | |||
5582 | if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || | |||
5583 | (!Initializer->isIntegerConstantExpr(S.Context) && | |||
5584 | !Initializer->getType()->isSamplerT())) | |||
5585 | return false; | |||
5586 | ||||
5587 | Sequence.AddOCLSamplerInitStep(DestType); | |||
5588 | return true; | |||
5589 | } | |||
5590 | ||||
5591 | static bool IsZeroInitializer(Expr *Initializer, Sema &S) { | |||
5592 | return Initializer->isIntegerConstantExpr(S.getASTContext()) && | |||
5593 | (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); | |||
5594 | } | |||
5595 | ||||
5596 | static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, | |||
5597 | InitializationSequence &Sequence, | |||
5598 | QualType DestType, | |||
5599 | Expr *Initializer) { | |||
5600 | if (!S.getLangOpts().OpenCL) | |||
5601 | return false; | |||
5602 | ||||
5603 | // | |||
5604 | // OpenCL 1.2 spec, s6.12.10 | |||
5605 | // | |||
5606 | // The event argument can also be used to associate the | |||
5607 | // async_work_group_copy with a previous async copy allowing | |||
5608 | // an event to be shared by multiple async copies; otherwise | |||
5609 | // event should be zero. | |||
5610 | // | |||
5611 | if (DestType->isEventT() || DestType->isQueueT()) { | |||
5612 | if (!IsZeroInitializer(Initializer, S)) | |||
5613 | return false; | |||
5614 | ||||
5615 | Sequence.AddOCLZeroOpaqueTypeStep(DestType); | |||
5616 | return true; | |||
5617 | } | |||
5618 | ||||
5619 | // We should allow zero initialization for all types defined in the | |||
5620 | // cl_intel_device_side_avc_motion_estimation extension, except | |||
5621 | // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. | |||
5622 | if (S.getOpenCLOptions().isAvailableOption( | |||
5623 | "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) && | |||
5624 | DestType->isOCLIntelSubgroupAVCType()) { | |||
5625 | if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || | |||
5626 | DestType->isOCLIntelSubgroupAVCMceResultType()) | |||
5627 | return false; | |||
5628 | if (!IsZeroInitializer(Initializer, S)) | |||
5629 | return false; | |||
5630 | ||||
5631 | Sequence.AddOCLZeroOpaqueTypeStep(DestType); | |||
5632 | return true; | |||
5633 | } | |||
5634 | ||||
5635 | return false; | |||
5636 | } | |||
5637 | ||||
5638 | InitializationSequence::InitializationSequence( | |||
5639 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, | |||
5640 | MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) | |||
5641 | : FailedOverloadResult(OR_Success), | |||
5642 | FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { | |||
5643 | InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, | |||
5644 | TreatUnavailableAsInvalid); | |||
5645 | } | |||
5646 | ||||
5647 | /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the | |||
5648 | /// address of that function, this returns true. Otherwise, it returns false. | |||
5649 | static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { | |||
5650 | auto *DRE = dyn_cast<DeclRefExpr>(E); | |||
5651 | if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) | |||
5652 | return false; | |||
5653 | ||||
5654 | return !S.checkAddressOfFunctionIsAvailable( | |||
5655 | cast<FunctionDecl>(DRE->getDecl())); | |||
5656 | } | |||
5657 | ||||
5658 | /// Determine whether we can perform an elementwise array copy for this kind | |||
5659 | /// of entity. | |||
5660 | static bool canPerformArrayCopy(const InitializedEntity &Entity) { | |||
5661 | switch (Entity.getKind()) { | |||
5662 | case InitializedEntity::EK_LambdaCapture: | |||
5663 | // C++ [expr.prim.lambda]p24: | |||
5664 | // For array members, the array elements are direct-initialized in | |||
5665 | // increasing subscript order. | |||
5666 | return true; | |||
5667 | ||||
5668 | case InitializedEntity::EK_Variable: | |||
5669 | // C++ [dcl.decomp]p1: | |||
5670 | // [...] each element is copy-initialized or direct-initialized from the | |||
5671 | // corresponding element of the assignment-expression [...] | |||
5672 | return isa<DecompositionDecl>(Entity.getDecl()); | |||
5673 | ||||
5674 | case InitializedEntity::EK_Member: | |||
5675 | // C++ [class.copy.ctor]p14: | |||
5676 | // - if the member is an array, each element is direct-initialized with | |||
5677 | // the corresponding subobject of x | |||
5678 | return Entity.isImplicitMemberInitializer(); | |||
5679 | ||||
5680 | case InitializedEntity::EK_ArrayElement: | |||
5681 | // All the above cases are intended to apply recursively, even though none | |||
5682 | // of them actually say that. | |||
5683 | if (auto *E = Entity.getParent()) | |||
5684 | return canPerformArrayCopy(*E); | |||
5685 | break; | |||
5686 | ||||
5687 | default: | |||
5688 | break; | |||
5689 | } | |||
5690 | ||||
5691 | return false; | |||
5692 | } | |||
5693 | ||||
5694 | void InitializationSequence::InitializeFrom(Sema &S, | |||
5695 | const InitializedEntity &Entity, | |||
5696 | const InitializationKind &Kind, | |||
5697 | MultiExprArg Args, | |||
5698 | bool TopLevelOfInitList, | |||
5699 | bool TreatUnavailableAsInvalid) { | |||
5700 | ASTContext &Context = S.Context; | |||
5701 | ||||
5702 | // Eliminate non-overload placeholder types in the arguments. We | |||
5703 | // need to do this before checking whether types are dependent | |||
5704 | // because lowering a pseudo-object expression might well give us | |||
5705 | // something of dependent type. | |||
5706 | for (unsigned I = 0, E = Args.size(); I != E; ++I) | |||
5707 | if (Args[I]->getType()->isNonOverloadPlaceholderType()) { | |||
5708 | // FIXME: should we be doing this here? | |||
5709 | ExprResult result = S.CheckPlaceholderExpr(Args[I]); | |||
5710 | if (result.isInvalid()) { | |||
5711 | SetFailed(FK_PlaceholderType); | |||
5712 | return; | |||
5713 | } | |||
5714 | Args[I] = result.get(); | |||
5715 | } | |||
5716 | ||||
5717 | // C++0x [dcl.init]p16: | |||
5718 | // The semantics of initializers are as follows. The destination type is | |||
5719 | // the type of the object or reference being initialized and the source | |||
5720 | // type is the type of the initializer expression. The source type is not | |||
5721 | // defined when the initializer is a braced-init-list or when it is a | |||
5722 | // parenthesized list of expressions. | |||
5723 | QualType DestType = Entity.getType(); | |||
5724 | ||||
5725 | if (DestType->isDependentType() || | |||
5726 | Expr::hasAnyTypeDependentArguments(Args)) { | |||
5727 | SequenceKind = DependentSequence; | |||
5728 | return; | |||
5729 | } | |||
5730 | ||||
5731 | // Almost everything is a normal sequence. | |||
5732 | setSequenceKind(NormalSequence); | |||
5733 | ||||
5734 | QualType SourceType; | |||
5735 | Expr *Initializer = nullptr; | |||
5736 | if (Args.size() == 1) { | |||
5737 | Initializer = Args[0]; | |||
5738 | if (S.getLangOpts().ObjC) { | |||
5739 | if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), | |||
5740 | DestType, Initializer->getType(), | |||
5741 | Initializer) || | |||
5742 | S.CheckConversionToObjCLiteral(DestType, Initializer)) | |||
5743 | Args[0] = Initializer; | |||
5744 | } | |||
5745 | if (!isa<InitListExpr>(Initializer)) | |||
5746 | SourceType = Initializer->getType(); | |||
5747 | } | |||
5748 | ||||
5749 | // - If the initializer is a (non-parenthesized) braced-init-list, the | |||
5750 | // object is list-initialized (8.5.4). | |||
5751 | if (Kind.getKind() != InitializationKind::IK_Direct) { | |||
5752 | if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { | |||
5753 | TryListInitialization(S, Entity, Kind, InitList, *this, | |||
5754 | TreatUnavailableAsInvalid); | |||
5755 | return; | |||
5756 | } | |||
5757 | } | |||
5758 | ||||
5759 | // - If the destination type is a reference type, see 8.5.3. | |||
5760 | if (DestType->isReferenceType()) { | |||
5761 | // C++0x [dcl.init.ref]p1: | |||
5762 | // A variable declared to be a T& or T&&, that is, "reference to type T" | |||
5763 | // (8.3.2), shall be initialized by an object, or function, of type T or | |||
5764 | // by an object that can be converted into a T. | |||
5765 | // (Therefore, multiple arguments are not permitted.) | |||
5766 | if (Args.size() != 1) | |||
5767 | SetFailed(FK_TooManyInitsForReference); | |||
5768 | // C++17 [dcl.init.ref]p5: | |||
5769 | // A reference [...] is initialized by an expression [...] as follows: | |||
5770 | // If the initializer is not an expression, presumably we should reject, | |||
5771 | // but the standard fails to actually say so. | |||
5772 | else if (isa<InitListExpr>(Args[0])) | |||
5773 | SetFailed(FK_ParenthesizedListInitForReference); | |||
5774 | else | |||
5775 | TryReferenceInitialization(S, Entity, Kind, Args[0], *this); | |||
5776 | return; | |||
5777 | } | |||
5778 | ||||
5779 | // - If the initializer is (), the object is value-initialized. | |||
5780 | if (Kind.getKind() == InitializationKind::IK_Value || | |||
5781 | (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { | |||
5782 | TryValueInitialization(S, Entity, Kind, *this); | |||
5783 | return; | |||
5784 | } | |||
5785 | ||||
5786 | // Handle default initialization. | |||
5787 | if (Kind.getKind() == InitializationKind::IK_Default) { | |||
5788 | TryDefaultInitialization(S, Entity, Kind, *this); | |||
5789 | return; | |||
5790 | } | |||
5791 | ||||
5792 | // - If the destination type is an array of characters, an array of | |||
5793 | // char16_t, an array of char32_t, or an array of wchar_t, and the | |||
5794 | // initializer is a string literal, see 8.5.2. | |||
5795 | // - Otherwise, if the destination type is an array, the program is | |||
5796 | // ill-formed. | |||
5797 | if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { | |||
5798 | if (Initializer && isa<VariableArrayType>(DestAT)) { | |||
5799 | SetFailed(FK_VariableLengthArrayHasInitializer); | |||
5800 | return; | |||
5801 | } | |||
5802 | ||||
5803 | if (Initializer) { | |||
5804 | switch (IsStringInit(Initializer, DestAT, Context)) { | |||
5805 | case SIF_None: | |||
5806 | TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); | |||
5807 | return; | |||
5808 | case SIF_NarrowStringIntoWideChar: | |||
5809 | SetFailed(FK_NarrowStringIntoWideCharArray); | |||
5810 | return; | |||
5811 | case SIF_WideStringIntoChar: | |||
5812 | SetFailed(FK_WideStringIntoCharArray); | |||
5813 | return; | |||
5814 | case SIF_IncompatWideStringIntoWideChar: | |||
5815 | SetFailed(FK_IncompatWideStringIntoWideChar); | |||
5816 | return; | |||
5817 | case SIF_PlainStringIntoUTF8Char: | |||
5818 | SetFailed(FK_PlainStringIntoUTF8Char); | |||
5819 | return; | |||
5820 | case SIF_UTF8StringIntoPlainChar: | |||
5821 | SetFailed(FK_UTF8StringIntoPlainChar); | |||
5822 | return; | |||
5823 | case SIF_Other: | |||
5824 | break; | |||
5825 | } | |||
5826 | } | |||
5827 | ||||
5828 | // Some kinds of initialization permit an array to be initialized from | |||
5829 | // another array of the same type, and perform elementwise initialization. | |||
5830 | if (Initializer && isa<ConstantArrayType>(DestAT) && | |||
5831 | S.Context.hasSameUnqualifiedType(Initializer->getType(), | |||
5832 | Entity.getType()) && | |||
5833 | canPerformArrayCopy(Entity)) { | |||
5834 | // If source is a prvalue, use it directly. | |||
5835 | if (Initializer->isPRValue()) { | |||
5836 | AddArrayInitStep(DestType, /*IsGNUExtension*/false); | |||
5837 | return; | |||
5838 | } | |||
5839 | ||||
5840 | // Emit element-at-a-time copy loop. | |||
5841 | InitializedEntity Element = | |||
5842 | InitializedEntity::InitializeElement(S.Context, 0, Entity); | |||
5843 | QualType InitEltT = | |||
5844 | Context.getAsArrayType(Initializer->getType())->getElementType(); | |||
5845 | OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, | |||
5846 | Initializer->getValueKind(), | |||
5847 | Initializer->getObjectKind()); | |||
5848 | Expr *OVEAsExpr = &OVE; | |||
5849 | InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, | |||
5850 | TreatUnavailableAsInvalid); | |||
5851 | if (!Failed()) | |||
5852 | AddArrayInitLoopStep(Entity.getType(), InitEltT); | |||
5853 | return; | |||
5854 | } | |||
5855 | ||||
5856 | // Note: as an GNU C extension, we allow initialization of an | |||
5857 | // array from a compound literal that creates an array of the same | |||
5858 | // type, so long as the initializer has no side effects. | |||
5859 | if (!S.getLangOpts().CPlusPlus && Initializer && | |||
5860 | isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && | |||
5861 | Initializer->getType()->isArrayType()) { | |||
5862 | const ArrayType *SourceAT | |||
5863 | = Context.getAsArrayType(Initializer->getType()); | |||
5864 | if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) | |||
5865 | SetFailed(FK_ArrayTypeMismatch); | |||
5866 | else if (Initializer->HasSideEffects(S.Context)) | |||
5867 | SetFailed(FK_NonConstantArrayInit); | |||
5868 | else { | |||
5869 | AddArrayInitStep(DestType, /*IsGNUExtension*/true); | |||
5870 | } | |||
5871 | } | |||
5872 | // Note: as a GNU C++ extension, we allow list-initialization of a | |||
5873 | // class member of array type from a parenthesized initializer list. | |||
5874 | else if (S.getLangOpts().CPlusPlus && | |||
5875 | Entity.getKind() == InitializedEntity::EK_Member && | |||
5876 | Initializer && isa<InitListExpr>(Initializer)) { | |||
5877 | TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), | |||
5878 | *this, TreatUnavailableAsInvalid); | |||
5879 | AddParenthesizedArrayInitStep(DestType); | |||
5880 | } else if (DestAT->getElementType()->isCharType()) | |||
5881 | SetFailed(FK_ArrayNeedsInitListOrStringLiteral); | |||
5882 | else if (IsWideCharCompatible(DestAT->getElementType(), Context)) | |||
5883 | SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); | |||
5884 | else | |||
5885 | SetFailed(FK_ArrayNeedsInitList); | |||
5886 | ||||
5887 | return; | |||
5888 | } | |||
5889 | ||||
5890 | // Determine whether we should consider writeback conversions for | |||
5891 | // Objective-C ARC. | |||
5892 | bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && | |||
5893 | Entity.isParameterKind(); | |||
5894 | ||||
5895 | if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) | |||
5896 | return; | |||
5897 | ||||
5898 | // We're at the end of the line for C: it's either a write-back conversion | |||
5899 | // or it's a C assignment. There's no need to check anything else. | |||
5900 | if (!S.getLangOpts().CPlusPlus) { | |||
5901 | // If allowed, check whether this is an Objective-C writeback conversion. | |||
5902 | if (allowObjCWritebackConversion && | |||
5903 | tryObjCWritebackConversion(S, *this, Entity, Initializer)) { | |||
5904 | return; | |||
5905 | } | |||
5906 | ||||
5907 | if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) | |||
5908 | return; | |||
5909 | ||||
5910 | // Handle initialization in C | |||
5911 | AddCAssignmentStep(DestType); | |||
5912 | MaybeProduceObjCObject(S, *this, Entity); | |||
5913 | return; | |||
5914 | } | |||
5915 | ||||
5916 | assert(S.getLangOpts().CPlusPlus)((void)0); | |||
5917 | ||||
5918 | // - If the destination type is a (possibly cv-qualified) class type: | |||
5919 | if (DestType->isRecordType()) { | |||
5920 | // - If the initialization is direct-initialization, or if it is | |||
5921 | // copy-initialization where the cv-unqualified version of the | |||
5922 | // source type is the same class as, or a derived class of, the | |||
5923 | // class of the destination, constructors are considered. [...] | |||
5924 | if (Kind.getKind() == InitializationKind::IK_Direct || | |||
5925 | (Kind.getKind() == InitializationKind::IK_Copy && | |||
5926 | (Context.hasSameUnqualifiedType(SourceType, DestType) || | |||
5927 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) | |||
5928 | TryConstructorInitialization(S, Entity, Kind, Args, | |||
5929 | DestType, DestType, *this); | |||
5930 | // - Otherwise (i.e., for the remaining copy-initialization cases), | |||
5931 | // user-defined conversion sequences that can convert from the source | |||
5932 | // type to the destination type or (when a conversion function is | |||
5933 | // used) to a derived class thereof are enumerated as described in | |||
5934 | // 13.3.1.4, and the best one is chosen through overload resolution | |||
5935 | // (13.3). | |||
5936 | else | |||
5937 | TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, | |||
5938 | TopLevelOfInitList); | |||
5939 | return; | |||
5940 | } | |||
5941 | ||||
5942 | assert(Args.size() >= 1 && "Zero-argument case handled above")((void)0); | |||
5943 | ||||
5944 | // The remaining cases all need a source type. | |||
5945 | if (Args.size() > 1) { | |||
5946 | SetFailed(FK_TooManyInitsForScalar); | |||
5947 | return; | |||
5948 | } else if (isa<InitListExpr>(Args[0])) { | |||
5949 | SetFailed(FK_ParenthesizedListInitForScalar); | |||
5950 | return; | |||
5951 | } | |||
5952 | ||||
5953 | // - Otherwise, if the source type is a (possibly cv-qualified) class | |||
5954 | // type, conversion functions are considered. | |||
5955 | if (!SourceType.isNull() && SourceType->isRecordType()) { | |||
5956 | // For a conversion to _Atomic(T) from either T or a class type derived | |||
5957 | // from T, initialize the T object then convert to _Atomic type. | |||
5958 | bool NeedAtomicConversion = false; | |||
5959 | if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { | |||
5960 | if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || | |||
5961 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, | |||
5962 | Atomic->getValueType())) { | |||
5963 | DestType = Atomic->getValueType(); | |||
5964 | NeedAtomicConversion = true; | |||
5965 | } | |||
5966 | } | |||
5967 | ||||
5968 | TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, | |||
5969 | TopLevelOfInitList); | |||
5970 | MaybeProduceObjCObject(S, *this, Entity); | |||
5971 | if (!Failed() && NeedAtomicConversion) | |||
5972 | AddAtomicConversionStep(Entity.getType()); | |||
5973 | return; | |||
5974 | } | |||
5975 | ||||
5976 | // - Otherwise, if the initialization is direct-initialization, the source | |||
5977 | // type is std::nullptr_t, and the destination type is bool, the initial | |||
5978 | // value of the object being initialized is false. | |||
5979 | if (!SourceType.isNull() && SourceType->isNullPtrType() && | |||
5980 | DestType->isBooleanType() && | |||
5981 | Kind.getKind() == InitializationKind::IK_Direct) { | |||
5982 | AddConversionSequenceStep( | |||
5983 | ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, | |||
5984 | Initializer->isGLValue()), | |||
5985 | DestType); | |||
5986 | return; | |||
5987 | } | |||
5988 | ||||
5989 | // - Otherwise, the initial value of the object being initialized is the | |||
5990 | // (possibly converted) value of the initializer expression. Standard | |||
5991 | // conversions (Clause 4) will be used, if necessary, to convert the | |||
5992 | // initializer expression to the cv-unqualified version of the | |||
5993 | // destination type; no user-defined conversions are considered. | |||
5994 | ||||
5995 | ImplicitConversionSequence ICS | |||
5996 | = S.TryImplicitConversion(Initializer, DestType, | |||
5997 | /*SuppressUserConversions*/true, | |||
5998 | Sema::AllowedExplicit::None, | |||
5999 | /*InOverloadResolution*/ false, | |||
6000 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), | |||
6001 | allowObjCWritebackConversion); | |||
6002 | ||||
6003 | if (ICS.isStandard() && | |||
6004 | ICS.Standard.Second == ICK_Writeback_Conversion) { | |||
6005 | // Objective-C ARC writeback conversion. | |||
6006 | ||||
6007 | // We should copy unless we're passing to an argument explicitly | |||
6008 | // marked 'out'. | |||
6009 | bool ShouldCopy = true; | |||
6010 | if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) | |||
6011 | ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); | |||
6012 | ||||
6013 | // If there was an lvalue adjustment, add it as a separate conversion. | |||
6014 | if (ICS.Standard.First == ICK_Array_To_Pointer || | |||
6015 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { | |||
6016 | ImplicitConversionSequence LvalueICS; | |||
6017 | LvalueICS.setStandard(); | |||
6018 | LvalueICS.Standard.setAsIdentityConversion(); | |||
6019 | LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); | |||
6020 | LvalueICS.Standard.First = ICS.Standard.First; | |||
6021 | AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); | |||
6022 | } | |||
6023 | ||||
6024 | AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); | |||
6025 | } else if (ICS.isBad()) { | |||
6026 | DeclAccessPair dap; | |||
6027 | if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { | |||
6028 | AddZeroInitializationStep(Entity.getType()); | |||
6029 | } else if (Initializer->getType() == Context.OverloadTy && | |||
6030 | !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, | |||
6031 | false, dap)) | |||
6032 | SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); | |||
6033 | else if (Initializer->getType()->isFunctionType() && | |||
6034 | isExprAnUnaddressableFunction(S, Initializer)) | |||
6035 | SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); | |||
6036 | else | |||
6037 | SetFailed(InitializationSequence::FK_ConversionFailed); | |||
6038 | } else { | |||
6039 | AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); | |||
6040 | ||||
6041 | MaybeProduceObjCObject(S, *this, Entity); | |||
6042 | } | |||
6043 | } | |||
6044 | ||||
6045 | InitializationSequence::~InitializationSequence() { | |||
6046 | for (auto &S : Steps) | |||
6047 | S.Destroy(); | |||
6048 | } | |||
6049 | ||||
6050 | //===----------------------------------------------------------------------===// | |||
6051 | // Perform initialization | |||
6052 | //===----------------------------------------------------------------------===// | |||
6053 | static Sema::AssignmentAction | |||
6054 | getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { | |||
6055 | switch(Entity.getKind()) { | |||
6056 | case InitializedEntity::EK_Variable: | |||
6057 | case InitializedEntity::EK_New: | |||
6058 | case InitializedEntity::EK_Exception: | |||
6059 | case InitializedEntity::EK_Base: | |||
6060 | case InitializedEntity::EK_Delegating: | |||
6061 | return Sema::AA_Initializing; | |||
6062 | ||||
6063 | case InitializedEntity::EK_Parameter: | |||
6064 | if (Entity.getDecl() && | |||
6065 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) | |||
6066 | return Sema::AA_Sending; | |||
6067 | ||||
6068 | return Sema::AA_Passing; | |||
6069 | ||||
6070 | case InitializedEntity::EK_Parameter_CF_Audited: | |||
6071 | if (Entity.getDecl() && | |||
6072 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) | |||
6073 | return Sema::AA_Sending; | |||
6074 | ||||
6075 | return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; | |||
6076 | ||||
6077 | case InitializedEntity::EK_Result: | |||
6078 | case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. | |||
6079 | return Sema::AA_Returning; | |||
6080 | ||||
6081 | case InitializedEntity::EK_Temporary: | |||
6082 | case InitializedEntity::EK_RelatedResult: | |||
6083 | // FIXME: Can we tell apart casting vs. converting? | |||
6084 | return Sema::AA_Casting; | |||
6085 | ||||
6086 | case InitializedEntity::EK_TemplateParameter: | |||
6087 | // This is really initialization, but refer to it as conversion for | |||
6088 | // consistency with CheckConvertedConstantExpression. | |||
6089 | return Sema::AA_Converting; | |||
6090 | ||||
6091 | case InitializedEntity::EK_Member: | |||
6092 | case InitializedEntity::EK_Binding: | |||
6093 | case InitializedEntity::EK_ArrayElement: | |||
6094 | case InitializedEntity::EK_VectorElement: | |||
6095 | case InitializedEntity::EK_ComplexElement: | |||
6096 | case InitializedEntity::EK_BlockElement: | |||
6097 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: | |||
6098 | case InitializedEntity::EK_LambdaCapture: | |||
6099 | case InitializedEntity::EK_CompoundLiteralInit: | |||
6100 | return Sema::AA_Initializing; | |||
6101 | } | |||
6102 | ||||
6103 | llvm_unreachable("Invalid EntityKind!")__builtin_unreachable(); | |||
6104 | } | |||
6105 | ||||
6106 | /// Whether we should bind a created object as a temporary when | |||
6107 | /// initializing the given entity. | |||
6108 | static bool shouldBindAsTemporary(const InitializedEntity &Entity) { | |||
6109 | switch (Entity.getKind()) { | |||
6110 | case InitializedEntity::EK_ArrayElement: | |||
6111 | case InitializedEntity::EK_Member: | |||
6112 | case InitializedEntity::EK_Result: | |||
6113 | case InitializedEntity::EK_StmtExprResult: | |||
6114 | case InitializedEntity::EK_New: | |||
6115 | case InitializedEntity::EK_Variable: | |||
6116 | case InitializedEntity::EK_Base: | |||
6117 | case InitializedEntity::EK_Delegating: | |||
6118 | case InitializedEntity::EK_VectorElement: | |||
6119 | case InitializedEntity::EK_ComplexElement: | |||
6120 | case InitializedEntity::EK_Exception: | |||
6121 | case InitializedEntity::EK_BlockElement: | |||
6122 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: | |||
6123 | case InitializedEntity::EK_LambdaCapture: | |||
6124 | case InitializedEntity::EK_CompoundLiteralInit: | |||
6125 | case InitializedEntity::EK_TemplateParameter: | |||
6126 | return false; | |||
6127 | ||||
6128 | case InitializedEntity::EK_Parameter: | |||
6129 | case InitializedEntity::EK_Parameter_CF_Audited: | |||
6130 | case InitializedEntity::EK_Temporary: | |||
6131 | case InitializedEntity::EK_RelatedResult: | |||
6132 | case InitializedEntity::EK_Binding: | |||
6133 |