File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Utils/LowerSwitch.cpp |
Warning: | line 500, column 33 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // The LowerSwitch transformation rewrites switch instructions with a sequence | ||||
10 | // of branches, which allows targets to get away with not implementing the | ||||
11 | // switch instruction until it is convenient. | ||||
12 | // | ||||
13 | //===----------------------------------------------------------------------===// | ||||
14 | |||||
15 | #include "llvm/Transforms/Utils/LowerSwitch.h" | ||||
16 | #include "llvm/ADT/DenseMap.h" | ||||
17 | #include "llvm/ADT/STLExtras.h" | ||||
18 | #include "llvm/ADT/SmallPtrSet.h" | ||||
19 | #include "llvm/ADT/SmallVector.h" | ||||
20 | #include "llvm/Analysis/AssumptionCache.h" | ||||
21 | #include "llvm/Analysis/LazyValueInfo.h" | ||||
22 | #include "llvm/Analysis/ValueTracking.h" | ||||
23 | #include "llvm/IR/BasicBlock.h" | ||||
24 | #include "llvm/IR/CFG.h" | ||||
25 | #include "llvm/IR/ConstantRange.h" | ||||
26 | #include "llvm/IR/Constants.h" | ||||
27 | #include "llvm/IR/Function.h" | ||||
28 | #include "llvm/IR/InstrTypes.h" | ||||
29 | #include "llvm/IR/Instructions.h" | ||||
30 | #include "llvm/IR/PassManager.h" | ||||
31 | #include "llvm/IR/Value.h" | ||||
32 | #include "llvm/InitializePasses.h" | ||||
33 | #include "llvm/Pass.h" | ||||
34 | #include "llvm/Support/Casting.h" | ||||
35 | #include "llvm/Support/Compiler.h" | ||||
36 | #include "llvm/Support/Debug.h" | ||||
37 | #include "llvm/Support/KnownBits.h" | ||||
38 | #include "llvm/Support/raw_ostream.h" | ||||
39 | #include "llvm/Transforms/Utils.h" | ||||
40 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | ||||
41 | #include <algorithm> | ||||
42 | #include <cassert> | ||||
43 | #include <cstdint> | ||||
44 | #include <iterator> | ||||
45 | #include <limits> | ||||
46 | #include <vector> | ||||
47 | |||||
48 | using namespace llvm; | ||||
49 | |||||
50 | #define DEBUG_TYPE"lower-switch" "lower-switch" | ||||
51 | |||||
52 | namespace { | ||||
53 | |||||
54 | struct IntRange { | ||||
55 | int64_t Low, High; | ||||
56 | }; | ||||
57 | |||||
58 | } // end anonymous namespace | ||||
59 | |||||
60 | namespace { | ||||
61 | // Return true iff R is covered by Ranges. | ||||
62 | bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { | ||||
63 | // Note: Ranges must be sorted, non-overlapping and non-adjacent. | ||||
64 | |||||
65 | // Find the first range whose High field is >= R.High, | ||||
66 | // then check if the Low field is <= R.Low. If so, we | ||||
67 | // have a Range that covers R. | ||||
68 | auto I = llvm::lower_bound( | ||||
69 | Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; }); | ||||
70 | return I != Ranges.end() && I->Low <= R.Low; | ||||
71 | } | ||||
72 | |||||
73 | struct CaseRange { | ||||
74 | ConstantInt *Low; | ||||
75 | ConstantInt *High; | ||||
76 | BasicBlock *BB; | ||||
77 | |||||
78 | CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) | ||||
79 | : Low(low), High(high), BB(bb) {} | ||||
80 | }; | ||||
81 | |||||
82 | using CaseVector = std::vector<CaseRange>; | ||||
83 | using CaseItr = std::vector<CaseRange>::iterator; | ||||
84 | |||||
85 | /// The comparison function for sorting the switch case values in the vector. | ||||
86 | /// WARNING: Case ranges should be disjoint! | ||||
87 | struct CaseCmp { | ||||
88 | bool operator()(const CaseRange &C1, const CaseRange &C2) { | ||||
89 | const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low); | ||||
90 | const ConstantInt *CI2 = cast<const ConstantInt>(C2.High); | ||||
91 | return CI1->getValue().slt(CI2->getValue()); | ||||
92 | } | ||||
93 | }; | ||||
94 | |||||
95 | /// Used for debugging purposes. | ||||
96 | LLVM_ATTRIBUTE_USED__attribute__((__used__)) | ||||
97 | raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { | ||||
98 | O << "["; | ||||
99 | |||||
100 | for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { | ||||
101 | O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; | ||||
102 | if (++B != E) | ||||
103 | O << ", "; | ||||
104 | } | ||||
105 | |||||
106 | return O << "]"; | ||||
107 | } | ||||
108 | |||||
109 | /// Update the first occurrence of the "switch statement" BB in the PHI | ||||
110 | /// node with the "new" BB. The other occurrences will: | ||||
111 | /// | ||||
112 | /// 1) Be updated by subsequent calls to this function. Switch statements may | ||||
113 | /// have more than one outcoming edge into the same BB if they all have the same | ||||
114 | /// value. When the switch statement is converted these incoming edges are now | ||||
115 | /// coming from multiple BBs. | ||||
116 | /// 2) Removed if subsequent incoming values now share the same case, i.e., | ||||
117 | /// multiple outcome edges are condensed into one. This is necessary to keep the | ||||
118 | /// number of phi values equal to the number of branches to SuccBB. | ||||
119 | void FixPhis( | ||||
120 | BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, | ||||
121 | const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) { | ||||
122 | for (BasicBlock::iterator I = SuccBB->begin(), | ||||
123 | IE = SuccBB->getFirstNonPHI()->getIterator(); | ||||
124 | I != IE; ++I) { | ||||
125 | PHINode *PN = cast<PHINode>(I); | ||||
126 | |||||
127 | // Only update the first occurrence. | ||||
128 | unsigned Idx = 0, E = PN->getNumIncomingValues(); | ||||
129 | unsigned LocalNumMergedCases = NumMergedCases; | ||||
130 | for (; Idx != E; ++Idx) { | ||||
131 | if (PN->getIncomingBlock(Idx) == OrigBB) { | ||||
132 | PN->setIncomingBlock(Idx, NewBB); | ||||
133 | break; | ||||
134 | } | ||||
135 | } | ||||
136 | |||||
137 | // Remove additional occurrences coming from condensed cases and keep the | ||||
138 | // number of incoming values equal to the number of branches to SuccBB. | ||||
139 | SmallVector<unsigned, 8> Indices; | ||||
140 | for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) | ||||
141 | if (PN->getIncomingBlock(Idx) == OrigBB) { | ||||
142 | Indices.push_back(Idx); | ||||
143 | LocalNumMergedCases--; | ||||
144 | } | ||||
145 | // Remove incoming values in the reverse order to prevent invalidating | ||||
146 | // *successive* index. | ||||
147 | for (unsigned III : llvm::reverse(Indices)) | ||||
148 | PN->removeIncomingValue(III); | ||||
149 | } | ||||
150 | } | ||||
151 | |||||
152 | /// Create a new leaf block for the binary lookup tree. It checks if the | ||||
153 | /// switch's value == the case's value. If not, then it jumps to the default | ||||
154 | /// branch. At this point in the tree, the value can't be another valid case | ||||
155 | /// value, so the jump to the "default" branch is warranted. | ||||
156 | BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, | ||||
157 | ConstantInt *UpperBound, BasicBlock *OrigBlock, | ||||
158 | BasicBlock *Default) { | ||||
159 | Function *F = OrigBlock->getParent(); | ||||
160 | BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); | ||||
161 | F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); | ||||
162 | |||||
163 | // Emit comparison | ||||
164 | ICmpInst *Comp = nullptr; | ||||
165 | if (Leaf.Low == Leaf.High) { | ||||
166 | // Make the seteq instruction... | ||||
167 | Comp = | ||||
168 | new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); | ||||
169 | } else { | ||||
170 | // Make range comparison | ||||
171 | if (Leaf.Low == LowerBound) { | ||||
172 | // Val >= Min && Val <= Hi --> Val <= Hi | ||||
173 | Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, | ||||
174 | "SwitchLeaf"); | ||||
175 | } else if (Leaf.High == UpperBound) { | ||||
176 | // Val <= Max && Val >= Lo --> Val >= Lo | ||||
177 | Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, | ||||
178 | "SwitchLeaf"); | ||||
179 | } else if (Leaf.Low->isZero()) { | ||||
180 | // Val >= 0 && Val <= Hi --> Val <=u Hi | ||||
181 | Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, | ||||
182 | "SwitchLeaf"); | ||||
183 | } else { | ||||
184 | // Emit V-Lo <=u Hi-Lo | ||||
185 | Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); | ||||
186 | Instruction *Add = BinaryOperator::CreateAdd( | ||||
187 | Val, NegLo, Val->getName() + ".off", NewLeaf); | ||||
188 | Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); | ||||
189 | Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, | ||||
190 | "SwitchLeaf"); | ||||
191 | } | ||||
192 | } | ||||
193 | |||||
194 | // Make the conditional branch... | ||||
195 | BasicBlock *Succ = Leaf.BB; | ||||
196 | BranchInst::Create(Succ, Default, Comp, NewLeaf); | ||||
197 | |||||
198 | // If there were any PHI nodes in this successor, rewrite one entry | ||||
199 | // from OrigBlock to come from NewLeaf. | ||||
200 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { | ||||
201 | PHINode *PN = cast<PHINode>(I); | ||||
202 | // Remove all but one incoming entries from the cluster | ||||
203 | uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue(); | ||||
204 | for (uint64_t j = 0; j < Range; ++j) { | ||||
205 | PN->removeIncomingValue(OrigBlock); | ||||
206 | } | ||||
207 | |||||
208 | int BlockIdx = PN->getBasicBlockIndex(OrigBlock); | ||||
209 | assert(BlockIdx != -1 && "Switch didn't go to this successor??")((void)0); | ||||
210 | PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); | ||||
211 | } | ||||
212 | |||||
213 | return NewLeaf; | ||||
214 | } | ||||
215 | |||||
216 | /// Convert the switch statement into a binary lookup of the case values. | ||||
217 | /// The function recursively builds this tree. LowerBound and UpperBound are | ||||
218 | /// used to keep track of the bounds for Val that have already been checked by | ||||
219 | /// a block emitted by one of the previous calls to switchConvert in the call | ||||
220 | /// stack. | ||||
221 | BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, | ||||
222 | ConstantInt *UpperBound, Value *Val, | ||||
223 | BasicBlock *Predecessor, BasicBlock *OrigBlock, | ||||
224 | BasicBlock *Default, | ||||
225 | const std::vector<IntRange> &UnreachableRanges) { | ||||
226 | assert(LowerBound && UpperBound && "Bounds must be initialized")((void)0); | ||||
227 | unsigned Size = End - Begin; | ||||
228 | |||||
229 | if (Size == 1) { | ||||
230 | // Check if the Case Range is perfectly squeezed in between | ||||
231 | // already checked Upper and Lower bounds. If it is then we can avoid | ||||
232 | // emitting the code that checks if the value actually falls in the range | ||||
233 | // because the bounds already tell us so. | ||||
234 | if (Begin->Low == LowerBound && Begin->High == UpperBound) { | ||||
235 | unsigned NumMergedCases = 0; | ||||
236 | NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue(); | ||||
237 | FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); | ||||
238 | return Begin->BB; | ||||
239 | } | ||||
240 | return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, | ||||
241 | Default); | ||||
242 | } | ||||
243 | |||||
244 | unsigned Mid = Size / 2; | ||||
245 | std::vector<CaseRange> LHS(Begin, Begin + Mid); | ||||
246 | LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n")do { } while (false); | ||||
247 | std::vector<CaseRange> RHS(Begin + Mid, End); | ||||
248 | LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n")do { } while (false); | ||||
249 | |||||
250 | CaseRange &Pivot = *(Begin + Mid); | ||||
251 | LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "do { } while (false) | ||||
252 | << Pivot.High->getValue() << "]\n")do { } while (false); | ||||
253 | |||||
254 | // NewLowerBound here should never be the integer minimal value. | ||||
255 | // This is because it is computed from a case range that is never | ||||
256 | // the smallest, so there is always a case range that has at least | ||||
257 | // a smaller value. | ||||
258 | ConstantInt *NewLowerBound = Pivot.Low; | ||||
259 | |||||
260 | // Because NewLowerBound is never the smallest representable integer | ||||
261 | // it is safe here to subtract one. | ||||
262 | ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), | ||||
263 | NewLowerBound->getValue() - 1); | ||||
264 | |||||
265 | if (!UnreachableRanges.empty()) { | ||||
266 | // Check if the gap between LHS's highest and NewLowerBound is unreachable. | ||||
267 | int64_t GapLow = LHS.back().High->getSExtValue() + 1; | ||||
268 | int64_t GapHigh = NewLowerBound->getSExtValue() - 1; | ||||
269 | IntRange Gap = { GapLow, GapHigh }; | ||||
270 | if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) | ||||
271 | NewUpperBound = LHS.back().High; | ||||
272 | } | ||||
273 | |||||
274 | LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "do { } while (false) | ||||
275 | << NewUpperBound->getSExtValue() << "]\n"do { } while (false) | ||||
276 | << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()do { } while (false) | ||||
277 | << ", " << UpperBound->getSExtValue() << "]\n")do { } while (false); | ||||
278 | |||||
279 | // Create a new node that checks if the value is < pivot. Go to the | ||||
280 | // left branch if it is and right branch if not. | ||||
281 | Function* F = OrigBlock->getParent(); | ||||
282 | BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); | ||||
283 | |||||
284 | ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, | ||||
285 | Val, Pivot.Low, "Pivot"); | ||||
286 | |||||
287 | BasicBlock *LBranch = | ||||
288 | SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, | ||||
289 | NewNode, OrigBlock, Default, UnreachableRanges); | ||||
290 | BasicBlock *RBranch = | ||||
291 | SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, | ||||
292 | NewNode, OrigBlock, Default, UnreachableRanges); | ||||
293 | |||||
294 | F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); | ||||
295 | NewNode->getInstList().push_back(Comp); | ||||
296 | |||||
297 | BranchInst::Create(LBranch, RBranch, Comp, NewNode); | ||||
298 | return NewNode; | ||||
299 | } | ||||
300 | |||||
301 | /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. | ||||
302 | /// \post \p Cases wouldn't contain references to \p SI's default BB. | ||||
303 | /// \returns Number of \p SI's cases that do not reference \p SI's default BB. | ||||
304 | unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { | ||||
305 | unsigned NumSimpleCases = 0; | ||||
306 | |||||
307 | // Start with "simple" cases | ||||
308 | for (auto Case : SI->cases()) { | ||||
309 | if (Case.getCaseSuccessor() == SI->getDefaultDest()) | ||||
310 | continue; | ||||
311 | Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), | ||||
312 | Case.getCaseSuccessor())); | ||||
313 | ++NumSimpleCases; | ||||
314 | } | ||||
315 | |||||
316 | llvm::sort(Cases, CaseCmp()); | ||||
317 | |||||
318 | // Merge case into clusters | ||||
319 | if (Cases.size() >= 2) { | ||||
320 | CaseItr I = Cases.begin(); | ||||
321 | for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { | ||||
322 | int64_t nextValue = J->Low->getSExtValue(); | ||||
323 | int64_t currentValue = I->High->getSExtValue(); | ||||
324 | BasicBlock* nextBB = J->BB; | ||||
325 | BasicBlock* currentBB = I->BB; | ||||
326 | |||||
327 | // If the two neighboring cases go to the same destination, merge them | ||||
328 | // into a single case. | ||||
329 | assert(nextValue > currentValue && "Cases should be strictly ascending")((void)0); | ||||
330 | if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { | ||||
331 | I->High = J->High; | ||||
332 | // FIXME: Combine branch weights. | ||||
333 | } else if (++I != J) { | ||||
334 | *I = *J; | ||||
335 | } | ||||
336 | } | ||||
337 | Cases.erase(std::next(I), Cases.end()); | ||||
338 | } | ||||
339 | |||||
340 | return NumSimpleCases; | ||||
341 | } | ||||
342 | |||||
343 | /// Replace the specified switch instruction with a sequence of chained if-then | ||||
344 | /// insts in a balanced binary search. | ||||
345 | void ProcessSwitchInst(SwitchInst *SI, | ||||
346 | SmallPtrSetImpl<BasicBlock *> &DeleteList, | ||||
347 | AssumptionCache *AC, LazyValueInfo *LVI) { | ||||
348 | BasicBlock *OrigBlock = SI->getParent(); | ||||
349 | Function *F = OrigBlock->getParent(); | ||||
350 | Value *Val = SI->getCondition(); // The value we are switching on... | ||||
351 | BasicBlock* Default = SI->getDefaultDest(); | ||||
352 | |||||
353 | // Don't handle unreachable blocks. If there are successors with phis, this | ||||
354 | // would leave them behind with missing predecessors. | ||||
355 | if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || | ||||
356 | OrigBlock->getSinglePredecessor() == OrigBlock) { | ||||
357 | DeleteList.insert(OrigBlock); | ||||
358 | return; | ||||
359 | } | ||||
360 | |||||
361 | // Prepare cases vector. | ||||
362 | CaseVector Cases; | ||||
363 | const unsigned NumSimpleCases = Clusterify(Cases, SI); | ||||
364 | LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()do { } while (false) | ||||
365 | << ". Total non-default cases: " << NumSimpleCasesdo { } while (false) | ||||
366 | << "\nCase clusters: " << Cases << "\n")do { } while (false); | ||||
367 | |||||
368 | // If there is only the default destination, just branch. | ||||
369 | if (Cases.empty()) { | ||||
370 | BranchInst::Create(Default, OrigBlock); | ||||
371 | // Remove all the references from Default's PHIs to OrigBlock, but one. | ||||
372 | FixPhis(Default, OrigBlock, OrigBlock); | ||||
373 | SI->eraseFromParent(); | ||||
374 | return; | ||||
375 | } | ||||
376 | |||||
377 | ConstantInt *LowerBound = nullptr; | ||||
378 | ConstantInt *UpperBound = nullptr; | ||||
379 | bool DefaultIsUnreachableFromSwitch = false; | ||||
380 | |||||
381 | if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { | ||||
382 | // Make the bounds tightly fitted around the case value range, because we | ||||
383 | // know that the value passed to the switch must be exactly one of the case | ||||
384 | // values. | ||||
385 | LowerBound = Cases.front().Low; | ||||
386 | UpperBound = Cases.back().High; | ||||
387 | DefaultIsUnreachableFromSwitch = true; | ||||
388 | } else { | ||||
389 | // Constraining the range of the value being switched over helps eliminating | ||||
390 | // unreachable BBs and minimizing the number of `add` instructions | ||||
391 | // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after | ||||
392 | // LowerSwitch isn't as good, and also much more expensive in terms of | ||||
393 | // compile time for the following reasons: | ||||
394 | // 1. it processes many kinds of instructions, not just switches; | ||||
395 | // 2. even if limited to icmp instructions only, it will have to process | ||||
396 | // roughly C icmp's per switch, where C is the number of cases in the | ||||
397 | // switch, while LowerSwitch only needs to call LVI once per switch. | ||||
398 | const DataLayout &DL = F->getParent()->getDataLayout(); | ||||
399 | KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); | ||||
400 | // TODO Shouldn't this create a signed range? | ||||
401 | ConstantRange KnownBitsRange = | ||||
402 | ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); | ||||
403 | const ConstantRange LVIRange = LVI->getConstantRange(Val, SI); | ||||
404 | ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); | ||||
405 | // We delegate removal of unreachable non-default cases to other passes. In | ||||
406 | // the unlikely event that some of them survived, we just conservatively | ||||
407 | // maintain the invariant that all the cases lie between the bounds. This | ||||
408 | // may, however, still render the default case effectively unreachable. | ||||
409 | APInt Low = Cases.front().Low->getValue(); | ||||
410 | APInt High = Cases.back().High->getValue(); | ||||
411 | APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); | ||||
412 | APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); | ||||
413 | |||||
414 | LowerBound = ConstantInt::get(SI->getContext(), Min); | ||||
415 | UpperBound = ConstantInt::get(SI->getContext(), Max); | ||||
416 | DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); | ||||
417 | } | ||||
418 | |||||
419 | std::vector<IntRange> UnreachableRanges; | ||||
420 | |||||
421 | if (DefaultIsUnreachableFromSwitch) { | ||||
422 | DenseMap<BasicBlock *, unsigned> Popularity; | ||||
423 | unsigned MaxPop = 0; | ||||
424 | BasicBlock *PopSucc = nullptr; | ||||
425 | |||||
426 | IntRange R = {std::numeric_limits<int64_t>::min(), | ||||
427 | std::numeric_limits<int64_t>::max()}; | ||||
428 | UnreachableRanges.push_back(R); | ||||
429 | for (const auto &I : Cases) { | ||||
430 | int64_t Low = I.Low->getSExtValue(); | ||||
431 | int64_t High = I.High->getSExtValue(); | ||||
432 | |||||
433 | IntRange &LastRange = UnreachableRanges.back(); | ||||
434 | if (LastRange.Low == Low) { | ||||
435 | // There is nothing left of the previous range. | ||||
436 | UnreachableRanges.pop_back(); | ||||
437 | } else { | ||||
438 | // Terminate the previous range. | ||||
439 | assert(Low > LastRange.Low)((void)0); | ||||
440 | LastRange.High = Low - 1; | ||||
441 | } | ||||
442 | if (High != std::numeric_limits<int64_t>::max()) { | ||||
443 | IntRange R = { High + 1, std::numeric_limits<int64_t>::max() }; | ||||
444 | UnreachableRanges.push_back(R); | ||||
445 | } | ||||
446 | |||||
447 | // Count popularity. | ||||
448 | int64_t N = High - Low + 1; | ||||
449 | unsigned &Pop = Popularity[I.BB]; | ||||
450 | if ((Pop += N) > MaxPop) { | ||||
451 | MaxPop = Pop; | ||||
452 | PopSucc = I.BB; | ||||
453 | } | ||||
454 | } | ||||
455 | #ifndef NDEBUG1 | ||||
456 | /* UnreachableRanges should be sorted and the ranges non-adjacent. */ | ||||
457 | for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); | ||||
458 | I != E; ++I) { | ||||
459 | assert(I->Low <= I->High)((void)0); | ||||
460 | auto Next = I + 1; | ||||
461 | if (Next != E) { | ||||
462 | assert(Next->Low > I->High)((void)0); | ||||
463 | } | ||||
464 | } | ||||
465 | #endif | ||||
466 | |||||
467 | // As the default block in the switch is unreachable, update the PHI nodes | ||||
468 | // (remove all of the references to the default block) to reflect this. | ||||
469 | const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; | ||||
470 | for (unsigned I = 0; I < NumDefaultEdges; ++I) | ||||
471 | Default->removePredecessor(OrigBlock); | ||||
472 | |||||
473 | // Use the most popular block as the new default, reducing the number of | ||||
474 | // cases. | ||||
475 | assert(MaxPop > 0 && PopSucc)((void)0); | ||||
476 | Default = PopSucc; | ||||
477 | llvm::erase_if(Cases, | ||||
478 | [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); | ||||
479 | |||||
480 | // If there are no cases left, just branch. | ||||
481 | if (Cases.empty()) { | ||||
482 | BranchInst::Create(Default, OrigBlock); | ||||
483 | SI->eraseFromParent(); | ||||
484 | // As all the cases have been replaced with a single branch, only keep | ||||
485 | // one entry in the PHI nodes. | ||||
486 | for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I) | ||||
487 | PopSucc->removePredecessor(OrigBlock); | ||||
488 | return; | ||||
489 | } | ||||
490 | |||||
491 | // If the condition was a PHI node with the switch block as a predecessor | ||||
492 | // removing predecessors may have caused the condition to be erased. | ||||
493 | // Getting the condition value again here protects against that. | ||||
494 | Val = SI->getCondition(); | ||||
495 | } | ||||
496 | |||||
497 | // Create a new, empty default block so that the new hierarchy of | ||||
498 | // if-then statements go to this and the PHI nodes are happy. | ||||
499 | BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); | ||||
500 | F->getBasicBlockList().insert(Default->getIterator(), NewDefault); | ||||
| |||||
501 | BranchInst::Create(Default, NewDefault); | ||||
502 | |||||
503 | BasicBlock *SwitchBlock = | ||||
504 | SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, | ||||
505 | OrigBlock, OrigBlock, NewDefault, UnreachableRanges); | ||||
506 | |||||
507 | // If there are entries in any PHI nodes for the default edge, make sure | ||||
508 | // to update them as well. | ||||
509 | FixPhis(Default, OrigBlock, NewDefault); | ||||
510 | |||||
511 | // Branch to our shiny new if-then stuff... | ||||
512 | BranchInst::Create(SwitchBlock, OrigBlock); | ||||
513 | |||||
514 | // We are now done with the switch instruction, delete it. | ||||
515 | BasicBlock *OldDefault = SI->getDefaultDest(); | ||||
516 | OrigBlock->getInstList().erase(SI); | ||||
517 | |||||
518 | // If the Default block has no more predecessors just add it to DeleteList. | ||||
519 | if (pred_empty(OldDefault)) | ||||
520 | DeleteList.insert(OldDefault); | ||||
521 | } | ||||
522 | |||||
523 | bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { | ||||
524 | bool Changed = false; | ||||
525 | SmallPtrSet<BasicBlock *, 8> DeleteList; | ||||
526 | |||||
527 | for (Function::iterator I = F.begin(), E = F.end(); I != E;) { | ||||
528 | BasicBlock *Cur = | ||||
529 | &*I++; // Advance over block so we don't traverse new blocks | ||||
530 | |||||
531 | // If the block is a dead Default block that will be deleted later, don't | ||||
532 | // waste time processing it. | ||||
533 | if (DeleteList.count(Cur)) | ||||
534 | continue; | ||||
535 | |||||
536 | if (SwitchInst *SI
| ||||
537 | Changed = true; | ||||
538 | ProcessSwitchInst(SI, DeleteList, AC, LVI); | ||||
539 | } | ||||
540 | } | ||||
541 | |||||
542 | for (BasicBlock *BB : DeleteList) { | ||||
543 | LVI->eraseBlock(BB); | ||||
544 | DeleteDeadBlock(BB); | ||||
545 | } | ||||
546 | |||||
547 | return Changed; | ||||
548 | } | ||||
549 | |||||
550 | /// Replace all SwitchInst instructions with chained branch instructions. | ||||
551 | class LowerSwitchLegacyPass : public FunctionPass { | ||||
552 | public: | ||||
553 | // Pass identification, replacement for typeid | ||||
554 | static char ID; | ||||
555 | |||||
556 | LowerSwitchLegacyPass() : FunctionPass(ID) { | ||||
557 | initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); | ||||
558 | } | ||||
559 | |||||
560 | bool runOnFunction(Function &F) override; | ||||
561 | |||||
562 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
563 | AU.addRequired<LazyValueInfoWrapperPass>(); | ||||
564 | } | ||||
565 | }; | ||||
566 | |||||
567 | } // end anonymous namespace | ||||
568 | |||||
569 | char LowerSwitchLegacyPass::ID = 0; | ||||
570 | |||||
571 | // Publicly exposed interface to pass... | ||||
572 | char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; | ||||
573 | |||||
574 | INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",static void *initializeLowerSwitchLegacyPassPassOnce(PassRegistry &Registry) { | ||||
575 | "Lower SwitchInst's to branches", false, false)static void *initializeLowerSwitchLegacyPassPassOnce(PassRegistry &Registry) { | ||||
576 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | ||||
577 | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)initializeLazyValueInfoWrapperPassPass(Registry); | ||||
578 | INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",PassInfo *PI = new PassInfo( "Lower SwitchInst's to branches" , "lowerswitch", &LowerSwitchLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<LowerSwitchLegacyPass>), false, false) ; Registry.registerPass(*PI, true); return PI; } static llvm:: once_flag InitializeLowerSwitchLegacyPassPassFlag; void llvm:: initializeLowerSwitchLegacyPassPass(PassRegistry &Registry ) { llvm::call_once(InitializeLowerSwitchLegacyPassPassFlag, initializeLowerSwitchLegacyPassPassOnce , std::ref(Registry)); } | ||||
579 | "Lower SwitchInst's to branches", false, false)PassInfo *PI = new PassInfo( "Lower SwitchInst's to branches" , "lowerswitch", &LowerSwitchLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<LowerSwitchLegacyPass>), false, false) ; Registry.registerPass(*PI, true); return PI; } static llvm:: once_flag InitializeLowerSwitchLegacyPassPassFlag; void llvm:: initializeLowerSwitchLegacyPassPass(PassRegistry &Registry ) { llvm::call_once(InitializeLowerSwitchLegacyPassPassFlag, initializeLowerSwitchLegacyPassPassOnce , std::ref(Registry)); } | ||||
580 | |||||
581 | // createLowerSwitchPass - Interface to this file... | ||||
582 | FunctionPass *llvm::createLowerSwitchPass() { | ||||
583 | return new LowerSwitchLegacyPass(); | ||||
584 | } | ||||
585 | |||||
586 | bool LowerSwitchLegacyPass::runOnFunction(Function &F) { | ||||
587 | LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); | ||||
588 | auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); | ||||
589 | AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; | ||||
590 | return LowerSwitch(F, LVI, AC); | ||||
591 | } | ||||
592 | |||||
593 | PreservedAnalyses LowerSwitchPass::run(Function &F, | ||||
594 | FunctionAnalysisManager &AM) { | ||||
595 | LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); | ||||
596 | AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F); | ||||
597 | return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() | ||||
| |||||
598 | : PreservedAnalyses::all(); | ||||
599 | } |
1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements a class to represent arbitrary precision |
11 | /// integral constant values and operations on them. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_ADT_APINT_H |
16 | #define LLVM_ADT_APINT_H |
17 | |
18 | #include "llvm/Support/Compiler.h" |
19 | #include "llvm/Support/MathExtras.h" |
20 | #include <cassert> |
21 | #include <climits> |
22 | #include <cstring> |
23 | #include <utility> |
24 | |
25 | namespace llvm { |
26 | class FoldingSetNodeID; |
27 | class StringRef; |
28 | class hash_code; |
29 | class raw_ostream; |
30 | |
31 | template <typename T> class SmallVectorImpl; |
32 | template <typename T> class ArrayRef; |
33 | template <typename T> class Optional; |
34 | template <typename T> struct DenseMapInfo; |
35 | |
36 | class APInt; |
37 | |
38 | inline APInt operator-(APInt); |
39 | |
40 | //===----------------------------------------------------------------------===// |
41 | // APInt Class |
42 | //===----------------------------------------------------------------------===// |
43 | |
44 | /// Class for arbitrary precision integers. |
45 | /// |
46 | /// APInt is a functional replacement for common case unsigned integer type like |
47 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
48 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
49 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
50 | /// and methods to manipulate integer values of any bit-width. It supports both |
51 | /// the typical integer arithmetic and comparison operations as well as bitwise |
52 | /// manipulation. |
53 | /// |
54 | /// The class has several invariants worth noting: |
55 | /// * All bit, byte, and word positions are zero-based. |
56 | /// * Once the bit width is set, it doesn't change except by the Truncate, |
57 | /// SignExtend, or ZeroExtend operations. |
58 | /// * All binary operators must be on APInt instances of the same bit width. |
59 | /// Attempting to use these operators on instances with different bit |
60 | /// widths will yield an assertion. |
61 | /// * The value is stored canonically as an unsigned value. For operations |
62 | /// where it makes a difference, there are both signed and unsigned variants |
63 | /// of the operation. For example, sdiv and udiv. However, because the bit |
64 | /// widths must be the same, operations such as Mul and Add produce the same |
65 | /// results regardless of whether the values are interpreted as signed or |
66 | /// not. |
67 | /// * In general, the class tries to follow the style of computation that LLVM |
68 | /// uses in its IR. This simplifies its use for LLVM. |
69 | /// |
70 | class LLVM_NODISCARD[[clang::warn_unused_result]] APInt { |
71 | public: |
72 | typedef uint64_t WordType; |
73 | |
74 | /// This enum is used to hold the constants we needed for APInt. |
75 | enum : unsigned { |
76 | /// Byte size of a word. |
77 | APINT_WORD_SIZE = sizeof(WordType), |
78 | /// Bits in a word. |
79 | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8 |
80 | }; |
81 | |
82 | enum class Rounding { |
83 | DOWN, |
84 | TOWARD_ZERO, |
85 | UP, |
86 | }; |
87 | |
88 | static constexpr WordType WORDTYPE_MAX = ~WordType(0); |
89 | |
90 | private: |
91 | /// This union is used to store the integer value. When the |
92 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
93 | union { |
94 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
95 | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
96 | } U; |
97 | |
98 | unsigned BitWidth; ///< The number of bits in this APInt. |
99 | |
100 | friend struct DenseMapInfo<APInt>; |
101 | |
102 | friend class APSInt; |
103 | |
104 | /// Fast internal constructor |
105 | /// |
106 | /// This constructor is used only internally for speed of construction of |
107 | /// temporaries. It is unsafe for general use so it is not public. |
108 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { |
109 | U.pVal = val; |
110 | } |
111 | |
112 | /// Determine which word a bit is in. |
113 | /// |
114 | /// \returns the word position for the specified bit position. |
115 | static unsigned whichWord(unsigned bitPosition) { |
116 | return bitPosition / APINT_BITS_PER_WORD; |
117 | } |
118 | |
119 | /// Determine which bit in a word a bit is in. |
120 | /// |
121 | /// \returns the bit position in a word for the specified bit position |
122 | /// in the APInt. |
123 | static unsigned whichBit(unsigned bitPosition) { |
124 | return bitPosition % APINT_BITS_PER_WORD; |
125 | } |
126 | |
127 | /// Get a single bit mask. |
128 | /// |
129 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
130 | /// This method generates and returns a uint64_t (word) mask for a single |
131 | /// bit at a specific bit position. This is used to mask the bit in the |
132 | /// corresponding word. |
133 | static uint64_t maskBit(unsigned bitPosition) { |
134 | return 1ULL << whichBit(bitPosition); |
135 | } |
136 | |
137 | /// Clear unused high order bits |
138 | /// |
139 | /// This method is used internally to clear the top "N" bits in the high order |
140 | /// word that are not used by the APInt. This is needed after the most |
141 | /// significant word is assigned a value to ensure that those bits are |
142 | /// zero'd out. |
143 | APInt &clearUnusedBits() { |
144 | // Compute how many bits are used in the final word |
145 | unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; |
146 | |
147 | // Mask out the high bits. |
148 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
149 | if (isSingleWord()) |
150 | U.VAL &= mask; |
151 | else |
152 | U.pVal[getNumWords() - 1] &= mask; |
153 | return *this; |
154 | } |
155 | |
156 | /// Get the word corresponding to a bit position |
157 | /// \returns the corresponding word for the specified bit position. |
158 | uint64_t getWord(unsigned bitPosition) const { |
159 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
160 | } |
161 | |
162 | /// Utility method to change the bit width of this APInt to new bit width, |
163 | /// allocating and/or deallocating as necessary. There is no guarantee on the |
164 | /// value of any bits upon return. Caller should populate the bits after. |
165 | void reallocate(unsigned NewBitWidth); |
166 | |
167 | /// Convert a char array into an APInt |
168 | /// |
169 | /// \param radix 2, 8, 10, 16, or 36 |
170 | /// Converts a string into a number. The string must be non-empty |
171 | /// and well-formed as a number of the given base. The bit-width |
172 | /// must be sufficient to hold the result. |
173 | /// |
174 | /// This is used by the constructors that take string arguments. |
175 | /// |
176 | /// StringRef::getAsInteger is superficially similar but (1) does |
177 | /// not assume that the string is well-formed and (2) grows the |
178 | /// result to hold the input. |
179 | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
180 | |
181 | /// An internal division function for dividing APInts. |
182 | /// |
183 | /// This is used by the toString method to divide by the radix. It simply |
184 | /// provides a more convenient form of divide for internal use since KnuthDiv |
185 | /// has specific constraints on its inputs. If those constraints are not met |
186 | /// then it provides a simpler form of divide. |
187 | static void divide(const WordType *LHS, unsigned lhsWords, |
188 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
189 | WordType *Remainder); |
190 | |
191 | /// out-of-line slow case for inline constructor |
192 | void initSlowCase(uint64_t val, bool isSigned); |
193 | |
194 | /// shared code between two array constructors |
195 | void initFromArray(ArrayRef<uint64_t> array); |
196 | |
197 | /// out-of-line slow case for inline copy constructor |
198 | void initSlowCase(const APInt &that); |
199 | |
200 | /// out-of-line slow case for shl |
201 | void shlSlowCase(unsigned ShiftAmt); |
202 | |
203 | /// out-of-line slow case for lshr. |
204 | void lshrSlowCase(unsigned ShiftAmt); |
205 | |
206 | /// out-of-line slow case for ashr. |
207 | void ashrSlowCase(unsigned ShiftAmt); |
208 | |
209 | /// out-of-line slow case for operator= |
210 | void AssignSlowCase(const APInt &RHS); |
211 | |
212 | /// out-of-line slow case for operator== |
213 | bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
214 | |
215 | /// out-of-line slow case for countLeadingZeros |
216 | unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
217 | |
218 | /// out-of-line slow case for countLeadingOnes. |
219 | unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
220 | |
221 | /// out-of-line slow case for countTrailingZeros. |
222 | unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
223 | |
224 | /// out-of-line slow case for countTrailingOnes |
225 | unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
226 | |
227 | /// out-of-line slow case for countPopulation |
228 | unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
229 | |
230 | /// out-of-line slow case for intersects. |
231 | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
232 | |
233 | /// out-of-line slow case for isSubsetOf. |
234 | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
235 | |
236 | /// out-of-line slow case for setBits. |
237 | void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
238 | |
239 | /// out-of-line slow case for flipAllBits. |
240 | void flipAllBitsSlowCase(); |
241 | |
242 | /// out-of-line slow case for operator&=. |
243 | void AndAssignSlowCase(const APInt& RHS); |
244 | |
245 | /// out-of-line slow case for operator|=. |
246 | void OrAssignSlowCase(const APInt& RHS); |
247 | |
248 | /// out-of-line slow case for operator^=. |
249 | void XorAssignSlowCase(const APInt& RHS); |
250 | |
251 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
252 | /// to, or greater than RHS. |
253 | int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
254 | |
255 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
256 | /// to, or greater than RHS. |
257 | int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
258 | |
259 | public: |
260 | /// \name Constructors |
261 | /// @{ |
262 | |
263 | /// Create a new APInt of numBits width, initialized as val. |
264 | /// |
265 | /// If isSigned is true then val is treated as if it were a signed value |
266 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
267 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
268 | /// the range of val are zero filled). |
269 | /// |
270 | /// \param numBits the bit width of the constructed APInt |
271 | /// \param val the initial value of the APInt |
272 | /// \param isSigned how to treat signedness of val |
273 | APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
274 | : BitWidth(numBits) { |
275 | assert(BitWidth && "bitwidth too small")((void)0); |
276 | if (isSingleWord()) { |
277 | U.VAL = val; |
278 | clearUnusedBits(); |
279 | } else { |
280 | initSlowCase(val, isSigned); |
281 | } |
282 | } |
283 | |
284 | /// Construct an APInt of numBits width, initialized as bigVal[]. |
285 | /// |
286 | /// Note that bigVal.size() can be smaller or larger than the corresponding |
287 | /// bit width but any extraneous bits will be dropped. |
288 | /// |
289 | /// \param numBits the bit width of the constructed APInt |
290 | /// \param bigVal a sequence of words to form the initial value of the APInt |
291 | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
292 | |
293 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
294 | /// deprecated because this constructor is prone to ambiguity with the |
295 | /// APInt(unsigned, uint64_t, bool) constructor. |
296 | /// |
297 | /// If this overload is ever deleted, care should be taken to prevent calls |
298 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
299 | /// constructor. |
300 | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
301 | |
302 | /// Construct an APInt from a string representation. |
303 | /// |
304 | /// This constructor interprets the string \p str in the given radix. The |
305 | /// interpretation stops when the first character that is not suitable for the |
306 | /// radix is encountered, or the end of the string. Acceptable radix values |
307 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
308 | /// string to require more bits than numBits. |
309 | /// |
310 | /// \param numBits the bit width of the constructed APInt |
311 | /// \param str the string to be interpreted |
312 | /// \param radix the radix to use for the conversion |
313 | APInt(unsigned numBits, StringRef str, uint8_t radix); |
314 | |
315 | /// Simply makes *this a copy of that. |
316 | /// Copy Constructor. |
317 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
318 | if (isSingleWord()) |
319 | U.VAL = that.U.VAL; |
320 | else |
321 | initSlowCase(that); |
322 | } |
323 | |
324 | /// Move Constructor. |
325 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
326 | memcpy(&U, &that.U, sizeof(U)); |
327 | that.BitWidth = 0; |
328 | } |
329 | |
330 | /// Destructor. |
331 | ~APInt() { |
332 | if (needsCleanup()) |
333 | delete[] U.pVal; |
334 | } |
335 | |
336 | /// Default constructor that creates an uninteresting APInt |
337 | /// representing a 1-bit zero value. |
338 | /// |
339 | /// This is useful for object deserialization (pair this with the static |
340 | /// method Read). |
341 | explicit APInt() : BitWidth(1) { U.VAL = 0; } |
342 | |
343 | /// Returns whether this instance allocated memory. |
344 | bool needsCleanup() const { return !isSingleWord(); } |
345 | |
346 | /// Used to insert APInt objects, or objects that contain APInt objects, into |
347 | /// FoldingSets. |
348 | void Profile(FoldingSetNodeID &id) const; |
349 | |
350 | /// @} |
351 | /// \name Value Tests |
352 | /// @{ |
353 | |
354 | /// Determine if this APInt just has one word to store value. |
355 | /// |
356 | /// \returns true if the number of bits <= 64, false otherwise. |
357 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
358 | |
359 | /// Determine sign of this APInt. |
360 | /// |
361 | /// This tests the high bit of this APInt to determine if it is set. |
362 | /// |
363 | /// \returns true if this APInt is negative, false otherwise |
364 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
365 | |
366 | /// Determine if this APInt Value is non-negative (>= 0) |
367 | /// |
368 | /// This tests the high bit of the APInt to determine if it is unset. |
369 | bool isNonNegative() const { return !isNegative(); } |
370 | |
371 | /// Determine if sign bit of this APInt is set. |
372 | /// |
373 | /// This tests the high bit of this APInt to determine if it is set. |
374 | /// |
375 | /// \returns true if this APInt has its sign bit set, false otherwise. |
376 | bool isSignBitSet() const { return (*this)[BitWidth-1]; } |
377 | |
378 | /// Determine if sign bit of this APInt is clear. |
379 | /// |
380 | /// This tests the high bit of this APInt to determine if it is clear. |
381 | /// |
382 | /// \returns true if this APInt has its sign bit clear, false otherwise. |
383 | bool isSignBitClear() const { return !isSignBitSet(); } |
384 | |
385 | /// Determine if this APInt Value is positive. |
386 | /// |
387 | /// This tests if the value of this APInt is positive (> 0). Note |
388 | /// that 0 is not a positive value. |
389 | /// |
390 | /// \returns true if this APInt is positive. |
391 | bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } |
392 | |
393 | /// Determine if this APInt Value is non-positive (<= 0). |
394 | /// |
395 | /// \returns true if this APInt is non-positive. |
396 | bool isNonPositive() const { return !isStrictlyPositive(); } |
397 | |
398 | /// Determine if all bits are set |
399 | /// |
400 | /// This checks to see if the value has all bits of the APInt are set or not. |
401 | bool isAllOnesValue() const { |
402 | if (isSingleWord()) |
403 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
404 | return countTrailingOnesSlowCase() == BitWidth; |
405 | } |
406 | |
407 | /// Determine if all bits are clear |
408 | /// |
409 | /// This checks to see if the value has all bits of the APInt are clear or |
410 | /// not. |
411 | bool isNullValue() const { return !*this; } |
412 | |
413 | /// Determine if this is a value of 1. |
414 | /// |
415 | /// This checks to see if the value of this APInt is one. |
416 | bool isOneValue() const { |
417 | if (isSingleWord()) |
418 | return U.VAL == 1; |
419 | return countLeadingZerosSlowCase() == BitWidth - 1; |
420 | } |
421 | |
422 | /// Determine if this is the largest unsigned value. |
423 | /// |
424 | /// This checks to see if the value of this APInt is the maximum unsigned |
425 | /// value for the APInt's bit width. |
426 | bool isMaxValue() const { return isAllOnesValue(); } |
427 | |
428 | /// Determine if this is the largest signed value. |
429 | /// |
430 | /// This checks to see if the value of this APInt is the maximum signed |
431 | /// value for the APInt's bit width. |
432 | bool isMaxSignedValue() const { |
433 | if (isSingleWord()) |
434 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
435 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
436 | } |
437 | |
438 | /// Determine if this is the smallest unsigned value. |
439 | /// |
440 | /// This checks to see if the value of this APInt is the minimum unsigned |
441 | /// value for the APInt's bit width. |
442 | bool isMinValue() const { return isNullValue(); } |
443 | |
444 | /// Determine if this is the smallest signed value. |
445 | /// |
446 | /// This checks to see if the value of this APInt is the minimum signed |
447 | /// value for the APInt's bit width. |
448 | bool isMinSignedValue() const { |
449 | if (isSingleWord()) |
450 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
451 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
452 | } |
453 | |
454 | /// Check if this APInt has an N-bits unsigned integer value. |
455 | bool isIntN(unsigned N) const { |
456 | assert(N && "N == 0 ???")((void)0); |
457 | return getActiveBits() <= N; |
458 | } |
459 | |
460 | /// Check if this APInt has an N-bits signed integer value. |
461 | bool isSignedIntN(unsigned N) const { |
462 | assert(N && "N == 0 ???")((void)0); |
463 | return getMinSignedBits() <= N; |
464 | } |
465 | |
466 | /// Check if this APInt's value is a power of two greater than zero. |
467 | /// |
468 | /// \returns true if the argument APInt value is a power of two > 0. |
469 | bool isPowerOf2() const { |
470 | if (isSingleWord()) |
471 | return isPowerOf2_64(U.VAL); |
472 | return countPopulationSlowCase() == 1; |
473 | } |
474 | |
475 | /// Check if the APInt's value is returned by getSignMask. |
476 | /// |
477 | /// \returns true if this is the value returned by getSignMask. |
478 | bool isSignMask() const { return isMinSignedValue(); } |
479 | |
480 | /// Convert APInt to a boolean value. |
481 | /// |
482 | /// This converts the APInt to a boolean value as a test against zero. |
483 | bool getBoolValue() const { return !!*this; } |
484 | |
485 | /// If this value is smaller than the specified limit, return it, otherwise |
486 | /// return the limit value. This causes the value to saturate to the limit. |
487 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX0xffffffffffffffffULL) const { |
488 | return ugt(Limit) ? Limit : getZExtValue(); |
489 | } |
490 | |
491 | /// Check if the APInt consists of a repeated bit pattern. |
492 | /// |
493 | /// e.g. 0x01010101 satisfies isSplat(8). |
494 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
495 | /// width without remainder. |
496 | bool isSplat(unsigned SplatSizeInBits) const; |
497 | |
498 | /// \returns true if this APInt value is a sequence of \param numBits ones |
499 | /// starting at the least significant bit with the remainder zero. |
500 | bool isMask(unsigned numBits) const { |
501 | assert(numBits != 0 && "numBits must be non-zero")((void)0); |
502 | assert(numBits <= BitWidth && "numBits out of range")((void)0); |
503 | if (isSingleWord()) |
504 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
505 | unsigned Ones = countTrailingOnesSlowCase(); |
506 | return (numBits == Ones) && |
507 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
508 | } |
509 | |
510 | /// \returns true if this APInt is a non-empty sequence of ones starting at |
511 | /// the least significant bit with the remainder zero. |
512 | /// Ex. isMask(0x0000FFFFU) == true. |
513 | bool isMask() const { |
514 | if (isSingleWord()) |
515 | return isMask_64(U.VAL); |
516 | unsigned Ones = countTrailingOnesSlowCase(); |
517 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
518 | } |
519 | |
520 | /// Return true if this APInt value contains a sequence of ones with |
521 | /// the remainder zero. |
522 | bool isShiftedMask() const { |
523 | if (isSingleWord()) |
524 | return isShiftedMask_64(U.VAL); |
525 | unsigned Ones = countPopulationSlowCase(); |
526 | unsigned LeadZ = countLeadingZerosSlowCase(); |
527 | return (Ones + LeadZ + countTrailingZeros()) == BitWidth; |
528 | } |
529 | |
530 | /// @} |
531 | /// \name Value Generators |
532 | /// @{ |
533 | |
534 | /// Gets maximum unsigned value of APInt for specific bit width. |
535 | static APInt getMaxValue(unsigned numBits) { |
536 | return getAllOnesValue(numBits); |
537 | } |
538 | |
539 | /// Gets maximum signed value of APInt for a specific bit width. |
540 | static APInt getSignedMaxValue(unsigned numBits) { |
541 | APInt API = getAllOnesValue(numBits); |
542 | API.clearBit(numBits - 1); |
543 | return API; |
544 | } |
545 | |
546 | /// Gets minimum unsigned value of APInt for a specific bit width. |
547 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
548 | |
549 | /// Gets minimum signed value of APInt for a specific bit width. |
550 | static APInt getSignedMinValue(unsigned numBits) { |
551 | APInt API(numBits, 0); |
552 | API.setBit(numBits - 1); |
553 | return API; |
554 | } |
555 | |
556 | /// Get the SignMask for a specific bit width. |
557 | /// |
558 | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
559 | /// readability when we want to get a SignMask. |
560 | static APInt getSignMask(unsigned BitWidth) { |
561 | return getSignedMinValue(BitWidth); |
562 | } |
563 | |
564 | /// Get the all-ones value. |
565 | /// |
566 | /// \returns the all-ones value for an APInt of the specified bit-width. |
567 | static APInt getAllOnesValue(unsigned numBits) { |
568 | return APInt(numBits, WORDTYPE_MAX, true); |
569 | } |
570 | |
571 | /// Get the '0' value. |
572 | /// |
573 | /// \returns the '0' value for an APInt of the specified bit-width. |
574 | static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } |
575 | |
576 | /// Compute an APInt containing numBits highbits from this APInt. |
577 | /// |
578 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
579 | /// the low bits and right shift to the least significant bit. |
580 | /// |
581 | /// \returns the high "numBits" bits of this APInt. |
582 | APInt getHiBits(unsigned numBits) const; |
583 | |
584 | /// Compute an APInt containing numBits lowbits from this APInt. |
585 | /// |
586 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
587 | /// the high bits. |
588 | /// |
589 | /// \returns the low "numBits" bits of this APInt. |
590 | APInt getLoBits(unsigned numBits) const; |
591 | |
592 | /// Return an APInt with exactly one bit set in the result. |
593 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
594 | APInt Res(numBits, 0); |
595 | Res.setBit(BitNo); |
596 | return Res; |
597 | } |
598 | |
599 | /// Get a value with a block of bits set. |
600 | /// |
601 | /// Constructs an APInt value that has a contiguous range of bits set. The |
602 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
603 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
604 | /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than |
605 | /// \p hiBit. |
606 | /// |
607 | /// \param numBits the intended bit width of the result |
608 | /// \param loBit the index of the lowest bit set. |
609 | /// \param hiBit the index of the highest bit set. |
610 | /// |
611 | /// \returns An APInt value with the requested bits set. |
612 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
613 | assert(loBit <= hiBit && "loBit greater than hiBit")((void)0); |
614 | APInt Res(numBits, 0); |
615 | Res.setBits(loBit, hiBit); |
616 | return Res; |
617 | } |
618 | |
619 | /// Wrap version of getBitsSet. |
620 | /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. |
621 | /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, |
622 | /// with parameters (32, 28, 4), you would get 0xF000000F. |
623 | /// If \p hiBit is equal to \p loBit, you would get a result with all bits |
624 | /// set. |
625 | static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, |
626 | unsigned hiBit) { |
627 | APInt Res(numBits, 0); |
628 | Res.setBitsWithWrap(loBit, hiBit); |
629 | return Res; |
630 | } |
631 | |
632 | /// Get a value with upper bits starting at loBit set. |
633 | /// |
634 | /// Constructs an APInt value that has a contiguous range of bits set. The |
635 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
636 | /// bits will be zero. For example, with parameters(32, 12) you would get |
637 | /// 0xFFFFF000. |
638 | /// |
639 | /// \param numBits the intended bit width of the result |
640 | /// \param loBit the index of the lowest bit to set. |
641 | /// |
642 | /// \returns An APInt value with the requested bits set. |
643 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
644 | APInt Res(numBits, 0); |
645 | Res.setBitsFrom(loBit); |
646 | return Res; |
647 | } |
648 | |
649 | /// Get a value with high bits set |
650 | /// |
651 | /// Constructs an APInt value that has the top hiBitsSet bits set. |
652 | /// |
653 | /// \param numBits the bitwidth of the result |
654 | /// \param hiBitsSet the number of high-order bits set in the result. |
655 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
656 | APInt Res(numBits, 0); |
657 | Res.setHighBits(hiBitsSet); |
658 | return Res; |
659 | } |
660 | |
661 | /// Get a value with low bits set |
662 | /// |
663 | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
664 | /// |
665 | /// \param numBits the bitwidth of the result |
666 | /// \param loBitsSet the number of low-order bits set in the result. |
667 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
668 | APInt Res(numBits, 0); |
669 | Res.setLowBits(loBitsSet); |
670 | return Res; |
671 | } |
672 | |
673 | /// Return a value containing V broadcasted over NewLen bits. |
674 | static APInt getSplat(unsigned NewLen, const APInt &V); |
675 | |
676 | /// Determine if two APInts have the same value, after zero-extending |
677 | /// one of them (if needed!) to ensure that the bit-widths match. |
678 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
679 | if (I1.getBitWidth() == I2.getBitWidth()) |
680 | return I1 == I2; |
681 | |
682 | if (I1.getBitWidth() > I2.getBitWidth()) |
683 | return I1 == I2.zext(I1.getBitWidth()); |
684 | |
685 | return I1.zext(I2.getBitWidth()) == I2; |
686 | } |
687 | |
688 | /// Overload to compute a hash_code for an APInt value. |
689 | friend hash_code hash_value(const APInt &Arg); |
690 | |
691 | /// This function returns a pointer to the internal storage of the APInt. |
692 | /// This is useful for writing out the APInt in binary form without any |
693 | /// conversions. |
694 | const uint64_t *getRawData() const { |
695 | if (isSingleWord()) |
696 | return &U.VAL; |
697 | return &U.pVal[0]; |
698 | } |
699 | |
700 | /// @} |
701 | /// \name Unary Operators |
702 | /// @{ |
703 | |
704 | /// Postfix increment operator. |
705 | /// |
706 | /// Increments *this by 1. |
707 | /// |
708 | /// \returns a new APInt value representing the original value of *this. |
709 | const APInt operator++(int) { |
710 | APInt API(*this); |
711 | ++(*this); |
712 | return API; |
713 | } |
714 | |
715 | /// Prefix increment operator. |
716 | /// |
717 | /// \returns *this incremented by one |
718 | APInt &operator++(); |
719 | |
720 | /// Postfix decrement operator. |
721 | /// |
722 | /// Decrements *this by 1. |
723 | /// |
724 | /// \returns a new APInt value representing the original value of *this. |
725 | const APInt operator--(int) { |
726 | APInt API(*this); |
727 | --(*this); |
728 | return API; |
729 | } |
730 | |
731 | /// Prefix decrement operator. |
732 | /// |
733 | /// \returns *this decremented by one. |
734 | APInt &operator--(); |
735 | |
736 | /// Logical negation operator. |
737 | /// |
738 | /// Performs logical negation operation on this APInt. |
739 | /// |
740 | /// \returns true if *this is zero, false otherwise. |
741 | bool operator!() const { |
742 | if (isSingleWord()) |
743 | return U.VAL == 0; |
744 | return countLeadingZerosSlowCase() == BitWidth; |
745 | } |
746 | |
747 | /// @} |
748 | /// \name Assignment Operators |
749 | /// @{ |
750 | |
751 | /// Copy assignment operator. |
752 | /// |
753 | /// \returns *this after assignment of RHS. |
754 | APInt &operator=(const APInt &RHS) { |
755 | // If the bitwidths are the same, we can avoid mucking with memory |
756 | if (isSingleWord() && RHS.isSingleWord()) { |
757 | U.VAL = RHS.U.VAL; |
758 | BitWidth = RHS.BitWidth; |
759 | return clearUnusedBits(); |
760 | } |
761 | |
762 | AssignSlowCase(RHS); |
763 | return *this; |
764 | } |
765 | |
766 | /// Move assignment operator. |
767 | APInt &operator=(APInt &&that) { |
768 | #ifdef EXPENSIVE_CHECKS |
769 | // Some std::shuffle implementations still do self-assignment. |
770 | if (this == &that) |
771 | return *this; |
772 | #endif |
773 | assert(this != &that && "Self-move not supported")((void)0); |
774 | if (!isSingleWord()) |
775 | delete[] U.pVal; |
776 | |
777 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
778 | // as modified. |
779 | memcpy(&U, &that.U, sizeof(U)); |
780 | |
781 | BitWidth = that.BitWidth; |
782 | that.BitWidth = 0; |
783 | |
784 | return *this; |
785 | } |
786 | |
787 | /// Assignment operator. |
788 | /// |
789 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
790 | /// the bit width, the excess bits are truncated. If the bit width is larger |
791 | /// than 64, the value is zero filled in the unspecified high order bits. |
792 | /// |
793 | /// \returns *this after assignment of RHS value. |
794 | APInt &operator=(uint64_t RHS) { |
795 | if (isSingleWord()) { |
796 | U.VAL = RHS; |
797 | return clearUnusedBits(); |
798 | } |
799 | U.pVal[0] = RHS; |
800 | memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
801 | return *this; |
802 | } |
803 | |
804 | /// Bitwise AND assignment operator. |
805 | /// |
806 | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
807 | /// assigned to *this. |
808 | /// |
809 | /// \returns *this after ANDing with RHS. |
810 | APInt &operator&=(const APInt &RHS) { |
811 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
812 | if (isSingleWord()) |
813 | U.VAL &= RHS.U.VAL; |
814 | else |
815 | AndAssignSlowCase(RHS); |
816 | return *this; |
817 | } |
818 | |
819 | /// Bitwise AND assignment operator. |
820 | /// |
821 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
822 | /// logically zero-extended or truncated to match the bit-width of |
823 | /// the LHS. |
824 | APInt &operator&=(uint64_t RHS) { |
825 | if (isSingleWord()) { |
826 | U.VAL &= RHS; |
827 | return *this; |
828 | } |
829 | U.pVal[0] &= RHS; |
830 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
831 | return *this; |
832 | } |
833 | |
834 | /// Bitwise OR assignment operator. |
835 | /// |
836 | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
837 | /// assigned *this; |
838 | /// |
839 | /// \returns *this after ORing with RHS. |
840 | APInt &operator|=(const APInt &RHS) { |
841 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
842 | if (isSingleWord()) |
843 | U.VAL |= RHS.U.VAL; |
844 | else |
845 | OrAssignSlowCase(RHS); |
846 | return *this; |
847 | } |
848 | |
849 | /// Bitwise OR assignment operator. |
850 | /// |
851 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
852 | /// logically zero-extended or truncated to match the bit-width of |
853 | /// the LHS. |
854 | APInt &operator|=(uint64_t RHS) { |
855 | if (isSingleWord()) { |
856 | U.VAL |= RHS; |
857 | return clearUnusedBits(); |
858 | } |
859 | U.pVal[0] |= RHS; |
860 | return *this; |
861 | } |
862 | |
863 | /// Bitwise XOR assignment operator. |
864 | /// |
865 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
866 | /// assigned to *this. |
867 | /// |
868 | /// \returns *this after XORing with RHS. |
869 | APInt &operator^=(const APInt &RHS) { |
870 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
871 | if (isSingleWord()) |
872 | U.VAL ^= RHS.U.VAL; |
873 | else |
874 | XorAssignSlowCase(RHS); |
875 | return *this; |
876 | } |
877 | |
878 | /// Bitwise XOR assignment operator. |
879 | /// |
880 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
881 | /// logically zero-extended or truncated to match the bit-width of |
882 | /// the LHS. |
883 | APInt &operator^=(uint64_t RHS) { |
884 | if (isSingleWord()) { |
885 | U.VAL ^= RHS; |
886 | return clearUnusedBits(); |
887 | } |
888 | U.pVal[0] ^= RHS; |
889 | return *this; |
890 | } |
891 | |
892 | /// Multiplication assignment operator. |
893 | /// |
894 | /// Multiplies this APInt by RHS and assigns the result to *this. |
895 | /// |
896 | /// \returns *this |
897 | APInt &operator*=(const APInt &RHS); |
898 | APInt &operator*=(uint64_t RHS); |
899 | |
900 | /// Addition assignment operator. |
901 | /// |
902 | /// Adds RHS to *this and assigns the result to *this. |
903 | /// |
904 | /// \returns *this |
905 | APInt &operator+=(const APInt &RHS); |
906 | APInt &operator+=(uint64_t RHS); |
907 | |
908 | /// Subtraction assignment operator. |
909 | /// |
910 | /// Subtracts RHS from *this and assigns the result to *this. |
911 | /// |
912 | /// \returns *this |
913 | APInt &operator-=(const APInt &RHS); |
914 | APInt &operator-=(uint64_t RHS); |
915 | |
916 | /// Left-shift assignment function. |
917 | /// |
918 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
919 | /// |
920 | /// \returns *this after shifting left by ShiftAmt |
921 | APInt &operator<<=(unsigned ShiftAmt) { |
922 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
923 | if (isSingleWord()) { |
924 | if (ShiftAmt == BitWidth) |
925 | U.VAL = 0; |
926 | else |
927 | U.VAL <<= ShiftAmt; |
928 | return clearUnusedBits(); |
929 | } |
930 | shlSlowCase(ShiftAmt); |
931 | return *this; |
932 | } |
933 | |
934 | /// Left-shift assignment function. |
935 | /// |
936 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
937 | /// |
938 | /// \returns *this after shifting left by ShiftAmt |
939 | APInt &operator<<=(const APInt &ShiftAmt); |
940 | |
941 | /// @} |
942 | /// \name Binary Operators |
943 | /// @{ |
944 | |
945 | /// Multiplication operator. |
946 | /// |
947 | /// Multiplies this APInt by RHS and returns the result. |
948 | APInt operator*(const APInt &RHS) const; |
949 | |
950 | /// Left logical shift operator. |
951 | /// |
952 | /// Shifts this APInt left by \p Bits and returns the result. |
953 | APInt operator<<(unsigned Bits) const { return shl(Bits); } |
954 | |
955 | /// Left logical shift operator. |
956 | /// |
957 | /// Shifts this APInt left by \p Bits and returns the result. |
958 | APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
959 | |
960 | /// Arithmetic right-shift function. |
961 | /// |
962 | /// Arithmetic right-shift this APInt by shiftAmt. |
963 | APInt ashr(unsigned ShiftAmt) const { |
964 | APInt R(*this); |
965 | R.ashrInPlace(ShiftAmt); |
966 | return R; |
967 | } |
968 | |
969 | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
970 | void ashrInPlace(unsigned ShiftAmt) { |
971 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
972 | if (isSingleWord()) { |
973 | int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); |
974 | if (ShiftAmt == BitWidth) |
975 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
976 | else |
977 | U.VAL = SExtVAL >> ShiftAmt; |
978 | clearUnusedBits(); |
979 | return; |
980 | } |
981 | ashrSlowCase(ShiftAmt); |
982 | } |
983 | |
984 | /// Logical right-shift function. |
985 | /// |
986 | /// Logical right-shift this APInt by shiftAmt. |
987 | APInt lshr(unsigned shiftAmt) const { |
988 | APInt R(*this); |
989 | R.lshrInPlace(shiftAmt); |
990 | return R; |
991 | } |
992 | |
993 | /// Logical right-shift this APInt by ShiftAmt in place. |
994 | void lshrInPlace(unsigned ShiftAmt) { |
995 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
996 | if (isSingleWord()) { |
997 | if (ShiftAmt == BitWidth) |
998 | U.VAL = 0; |
999 | else |
1000 | U.VAL >>= ShiftAmt; |
1001 | return; |
1002 | } |
1003 | lshrSlowCase(ShiftAmt); |
1004 | } |
1005 | |
1006 | /// Left-shift function. |
1007 | /// |
1008 | /// Left-shift this APInt by shiftAmt. |
1009 | APInt shl(unsigned shiftAmt) const { |
1010 | APInt R(*this); |
1011 | R <<= shiftAmt; |
1012 | return R; |
1013 | } |
1014 | |
1015 | /// Rotate left by rotateAmt. |
1016 | APInt rotl(unsigned rotateAmt) const; |
1017 | |
1018 | /// Rotate right by rotateAmt. |
1019 | APInt rotr(unsigned rotateAmt) const; |
1020 | |
1021 | /// Arithmetic right-shift function. |
1022 | /// |
1023 | /// Arithmetic right-shift this APInt by shiftAmt. |
1024 | APInt ashr(const APInt &ShiftAmt) const { |
1025 | APInt R(*this); |
1026 | R.ashrInPlace(ShiftAmt); |
1027 | return R; |
1028 | } |
1029 | |
1030 | /// Arithmetic right-shift this APInt by shiftAmt in place. |
1031 | void ashrInPlace(const APInt &shiftAmt); |
1032 | |
1033 | /// Logical right-shift function. |
1034 | /// |
1035 | /// Logical right-shift this APInt by shiftAmt. |
1036 | APInt lshr(const APInt &ShiftAmt) const { |
1037 | APInt R(*this); |
1038 | R.lshrInPlace(ShiftAmt); |
1039 | return R; |
1040 | } |
1041 | |
1042 | /// Logical right-shift this APInt by ShiftAmt in place. |
1043 | void lshrInPlace(const APInt &ShiftAmt); |
1044 | |
1045 | /// Left-shift function. |
1046 | /// |
1047 | /// Left-shift this APInt by shiftAmt. |
1048 | APInt shl(const APInt &ShiftAmt) const { |
1049 | APInt R(*this); |
1050 | R <<= ShiftAmt; |
1051 | return R; |
1052 | } |
1053 | |
1054 | /// Rotate left by rotateAmt. |
1055 | APInt rotl(const APInt &rotateAmt) const; |
1056 | |
1057 | /// Rotate right by rotateAmt. |
1058 | APInt rotr(const APInt &rotateAmt) const; |
1059 | |
1060 | /// Unsigned division operation. |
1061 | /// |
1062 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
1063 | /// RHS are treated as unsigned quantities for purposes of this division. |
1064 | /// |
1065 | /// \returns a new APInt value containing the division result, rounded towards |
1066 | /// zero. |
1067 | APInt udiv(const APInt &RHS) const; |
1068 | APInt udiv(uint64_t RHS) const; |
1069 | |
1070 | /// Signed division function for APInt. |
1071 | /// |
1072 | /// Signed divide this APInt by APInt RHS. |
1073 | /// |
1074 | /// The result is rounded towards zero. |
1075 | APInt sdiv(const APInt &RHS) const; |
1076 | APInt sdiv(int64_t RHS) const; |
1077 | |
1078 | /// Unsigned remainder operation. |
1079 | /// |
1080 | /// Perform an unsigned remainder operation on this APInt with RHS being the |
1081 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
1082 | /// of this operation. Note that this is a true remainder operation and not a |
1083 | /// modulo operation because the sign follows the sign of the dividend which |
1084 | /// is *this. |
1085 | /// |
1086 | /// \returns a new APInt value containing the remainder result |
1087 | APInt urem(const APInt &RHS) const; |
1088 | uint64_t urem(uint64_t RHS) const; |
1089 | |
1090 | /// Function for signed remainder operation. |
1091 | /// |
1092 | /// Signed remainder operation on APInt. |
1093 | APInt srem(const APInt &RHS) const; |
1094 | int64_t srem(int64_t RHS) const; |
1095 | |
1096 | /// Dual division/remainder interface. |
1097 | /// |
1098 | /// Sometimes it is convenient to divide two APInt values and obtain both the |
1099 | /// quotient and remainder. This function does both operations in the same |
1100 | /// computation making it a little more efficient. The pair of input arguments |
1101 | /// may overlap with the pair of output arguments. It is safe to call |
1102 | /// udivrem(X, Y, X, Y), for example. |
1103 | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
1104 | APInt &Remainder); |
1105 | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
1106 | uint64_t &Remainder); |
1107 | |
1108 | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
1109 | APInt &Remainder); |
1110 | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
1111 | int64_t &Remainder); |
1112 | |
1113 | // Operations that return overflow indicators. |
1114 | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
1115 | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
1116 | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
1117 | APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
1118 | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
1119 | APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
1120 | APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
1121 | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
1122 | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
1123 | |
1124 | // Operations that saturate |
1125 | APInt sadd_sat(const APInt &RHS) const; |
1126 | APInt uadd_sat(const APInt &RHS) const; |
1127 | APInt ssub_sat(const APInt &RHS) const; |
1128 | APInt usub_sat(const APInt &RHS) const; |
1129 | APInt smul_sat(const APInt &RHS) const; |
1130 | APInt umul_sat(const APInt &RHS) const; |
1131 | APInt sshl_sat(const APInt &RHS) const; |
1132 | APInt ushl_sat(const APInt &RHS) const; |
1133 | |
1134 | /// Array-indexing support. |
1135 | /// |
1136 | /// \returns the bit value at bitPosition |
1137 | bool operator[](unsigned bitPosition) const { |
1138 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((void)0); |
1139 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
1140 | } |
1141 | |
1142 | /// @} |
1143 | /// \name Comparison Operators |
1144 | /// @{ |
1145 | |
1146 | /// Equality operator. |
1147 | /// |
1148 | /// Compares this APInt with RHS for the validity of the equality |
1149 | /// relationship. |
1150 | bool operator==(const APInt &RHS) const { |
1151 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((void)0); |
1152 | if (isSingleWord()) |
1153 | return U.VAL == RHS.U.VAL; |
1154 | return EqualSlowCase(RHS); |
1155 | } |
1156 | |
1157 | /// Equality operator. |
1158 | /// |
1159 | /// Compares this APInt with a uint64_t for the validity of the equality |
1160 | /// relationship. |
1161 | /// |
1162 | /// \returns true if *this == Val |
1163 | bool operator==(uint64_t Val) const { |
1164 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
1165 | } |
1166 | |
1167 | /// Equality comparison. |
1168 | /// |
1169 | /// Compares this APInt with RHS for the validity of the equality |
1170 | /// relationship. |
1171 | /// |
1172 | /// \returns true if *this == Val |
1173 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
1174 | |
1175 | /// Inequality operator. |
1176 | /// |
1177 | /// Compares this APInt with RHS for the validity of the inequality |
1178 | /// relationship. |
1179 | /// |
1180 | /// \returns true if *this != Val |
1181 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
1182 | |
1183 | /// Inequality operator. |
1184 | /// |
1185 | /// Compares this APInt with a uint64_t for the validity of the inequality |
1186 | /// relationship. |
1187 | /// |
1188 | /// \returns true if *this != Val |
1189 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
1190 | |
1191 | /// Inequality comparison |
1192 | /// |
1193 | /// Compares this APInt with RHS for the validity of the inequality |
1194 | /// relationship. |
1195 | /// |
1196 | /// \returns true if *this != Val |
1197 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
1198 | |
1199 | /// Unsigned less than comparison |
1200 | /// |
1201 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1202 | /// the validity of the less-than relationship. |
1203 | /// |
1204 | /// \returns true if *this < RHS when both are considered unsigned. |
1205 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
1206 | |
1207 | /// Unsigned less than comparison |
1208 | /// |
1209 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1210 | /// the validity of the less-than relationship. |
1211 | /// |
1212 | /// \returns true if *this < RHS when considered unsigned. |
1213 | bool ult(uint64_t RHS) const { |
1214 | // Only need to check active bits if not a single word. |
1215 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
1216 | } |
1217 | |
1218 | /// Signed less than comparison |
1219 | /// |
1220 | /// Regards both *this and RHS as signed quantities and compares them for |
1221 | /// validity of the less-than relationship. |
1222 | /// |
1223 | /// \returns true if *this < RHS when both are considered signed. |
1224 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
1225 | |
1226 | /// Signed less than comparison |
1227 | /// |
1228 | /// Regards both *this as a signed quantity and compares it with RHS for |
1229 | /// the validity of the less-than relationship. |
1230 | /// |
1231 | /// \returns true if *this < RHS when considered signed. |
1232 | bool slt(int64_t RHS) const { |
1233 | return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() |
1234 | : getSExtValue() < RHS; |
1235 | } |
1236 | |
1237 | /// Unsigned less or equal comparison |
1238 | /// |
1239 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1240 | /// validity of the less-or-equal relationship. |
1241 | /// |
1242 | /// \returns true if *this <= RHS when both are considered unsigned. |
1243 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
1244 | |
1245 | /// Unsigned less or equal comparison |
1246 | /// |
1247 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1248 | /// the validity of the less-or-equal relationship. |
1249 | /// |
1250 | /// \returns true if *this <= RHS when considered unsigned. |
1251 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
1252 | |
1253 | /// Signed less or equal comparison |
1254 | /// |
1255 | /// Regards both *this and RHS as signed quantities and compares them for |
1256 | /// validity of the less-or-equal relationship. |
1257 | /// |
1258 | /// \returns true if *this <= RHS when both are considered signed. |
1259 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
1260 | |
1261 | /// Signed less or equal comparison |
1262 | /// |
1263 | /// Regards both *this as a signed quantity and compares it with RHS for the |
1264 | /// validity of the less-or-equal relationship. |
1265 | /// |
1266 | /// \returns true if *this <= RHS when considered signed. |
1267 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
1268 | |
1269 | /// Unsigned greater than comparison |
1270 | /// |
1271 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1272 | /// the validity of the greater-than relationship. |
1273 | /// |
1274 | /// \returns true if *this > RHS when both are considered unsigned. |
1275 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
1276 | |
1277 | /// Unsigned greater than comparison |
1278 | /// |
1279 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1280 | /// the validity of the greater-than relationship. |
1281 | /// |
1282 | /// \returns true if *this > RHS when considered unsigned. |
1283 | bool ugt(uint64_t RHS) const { |
1284 | // Only need to check active bits if not a single word. |
1285 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
1286 | } |
1287 | |
1288 | /// Signed greater than comparison |
1289 | /// |
1290 | /// Regards both *this and RHS as signed quantities and compares them for the |
1291 | /// validity of the greater-than relationship. |
1292 | /// |
1293 | /// \returns true if *this > RHS when both are considered signed. |
1294 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
1295 | |
1296 | /// Signed greater than comparison |
1297 | /// |
1298 | /// Regards both *this as a signed quantity and compares it with RHS for |
1299 | /// the validity of the greater-than relationship. |
1300 | /// |
1301 | /// \returns true if *this > RHS when considered signed. |
1302 | bool sgt(int64_t RHS) const { |
1303 | return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() |
1304 | : getSExtValue() > RHS; |
1305 | } |
1306 | |
1307 | /// Unsigned greater or equal comparison |
1308 | /// |
1309 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1310 | /// validity of the greater-or-equal relationship. |
1311 | /// |
1312 | /// \returns true if *this >= RHS when both are considered unsigned. |
1313 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
1314 | |
1315 | /// Unsigned greater or equal comparison |
1316 | /// |
1317 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1318 | /// the validity of the greater-or-equal relationship. |
1319 | /// |
1320 | /// \returns true if *this >= RHS when considered unsigned. |
1321 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
1322 | |
1323 | /// Signed greater or equal comparison |
1324 | /// |
1325 | /// Regards both *this and RHS as signed quantities and compares them for |
1326 | /// validity of the greater-or-equal relationship. |
1327 | /// |
1328 | /// \returns true if *this >= RHS when both are considered signed. |
1329 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
1330 | |
1331 | /// Signed greater or equal comparison |
1332 | /// |
1333 | /// Regards both *this as a signed quantity and compares it with RHS for |
1334 | /// the validity of the greater-or-equal relationship. |
1335 | /// |
1336 | /// \returns true if *this >= RHS when considered signed. |
1337 | bool sge(int64_t RHS) const { return !slt(RHS); } |
1338 | |
1339 | /// This operation tests if there are any pairs of corresponding bits |
1340 | /// between this APInt and RHS that are both set. |
1341 | bool intersects(const APInt &RHS) const { |
1342 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
1343 | if (isSingleWord()) |
1344 | return (U.VAL & RHS.U.VAL) != 0; |
1345 | return intersectsSlowCase(RHS); |
1346 | } |
1347 | |
1348 | /// This operation checks that all bits set in this APInt are also set in RHS. |
1349 | bool isSubsetOf(const APInt &RHS) const { |
1350 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
1351 | if (isSingleWord()) |
1352 | return (U.VAL & ~RHS.U.VAL) == 0; |
1353 | return isSubsetOfSlowCase(RHS); |
1354 | } |
1355 | |
1356 | /// @} |
1357 | /// \name Resizing Operators |
1358 | /// @{ |
1359 | |
1360 | /// Truncate to new width. |
1361 | /// |
1362 | /// Truncate the APInt to a specified width. It is an error to specify a width |
1363 | /// that is greater than or equal to the current width. |
1364 | APInt trunc(unsigned width) const; |
1365 | |
1366 | /// Truncate to new width with unsigned saturation. |
1367 | /// |
1368 | /// If the APInt, treated as unsigned integer, can be losslessly truncated to |
1369 | /// the new bitwidth, then return truncated APInt. Else, return max value. |
1370 | APInt truncUSat(unsigned width) const; |
1371 | |
1372 | /// Truncate to new width with signed saturation. |
1373 | /// |
1374 | /// If this APInt, treated as signed integer, can be losslessly truncated to |
1375 | /// the new bitwidth, then return truncated APInt. Else, return either |
1376 | /// signed min value if the APInt was negative, or signed max value. |
1377 | APInt truncSSat(unsigned width) const; |
1378 | |
1379 | /// Sign extend to a new width. |
1380 | /// |
1381 | /// This operation sign extends the APInt to a new width. If the high order |
1382 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
1383 | /// It is an error to specify a width that is less than or equal to the |
1384 | /// current width. |
1385 | APInt sext(unsigned width) const; |
1386 | |
1387 | /// Zero extend to a new width. |
1388 | /// |
1389 | /// This operation zero extends the APInt to a new width. The high order bits |
1390 | /// are filled with 0 bits. It is an error to specify a width that is less |
1391 | /// than or equal to the current width. |
1392 | APInt zext(unsigned width) const; |
1393 | |
1394 | /// Sign extend or truncate to width |
1395 | /// |
1396 | /// Make this APInt have the bit width given by \p width. The value is sign |
1397 | /// extended, truncated, or left alone to make it that width. |
1398 | APInt sextOrTrunc(unsigned width) const; |
1399 | |
1400 | /// Zero extend or truncate to width |
1401 | /// |
1402 | /// Make this APInt have the bit width given by \p width. The value is zero |
1403 | /// extended, truncated, or left alone to make it that width. |
1404 | APInt zextOrTrunc(unsigned width) const; |
1405 | |
1406 | /// Truncate to width |
1407 | /// |
1408 | /// Make this APInt have the bit width given by \p width. The value is |
1409 | /// truncated or left alone to make it that width. |
1410 | APInt truncOrSelf(unsigned width) const; |
1411 | |
1412 | /// Sign extend or truncate to width |
1413 | /// |
1414 | /// Make this APInt have the bit width given by \p width. The value is sign |
1415 | /// extended, or left alone to make it that width. |
1416 | APInt sextOrSelf(unsigned width) const; |
1417 | |
1418 | /// Zero extend or truncate to width |
1419 | /// |
1420 | /// Make this APInt have the bit width given by \p width. The value is zero |
1421 | /// extended, or left alone to make it that width. |
1422 | APInt zextOrSelf(unsigned width) const; |
1423 | |
1424 | /// @} |
1425 | /// \name Bit Manipulation Operators |
1426 | /// @{ |
1427 | |
1428 | /// Set every bit to 1. |
1429 | void setAllBits() { |
1430 | if (isSingleWord()) |
1431 | U.VAL = WORDTYPE_MAX; |
1432 | else |
1433 | // Set all the bits in all the words. |
1434 | memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); |
1435 | // Clear the unused ones |
1436 | clearUnusedBits(); |
1437 | } |
1438 | |
1439 | /// Set a given bit to 1. |
1440 | /// |
1441 | /// Set the given bit to 1 whose position is given as "bitPosition". |
1442 | void setBit(unsigned BitPosition) { |
1443 | assert(BitPosition < BitWidth && "BitPosition out of range")((void)0); |
1444 | WordType Mask = maskBit(BitPosition); |
1445 | if (isSingleWord()) |
1446 | U.VAL |= Mask; |
1447 | else |
1448 | U.pVal[whichWord(BitPosition)] |= Mask; |
1449 | } |
1450 | |
1451 | /// Set the sign bit to 1. |
1452 | void setSignBit() { |
1453 | setBit(BitWidth - 1); |
1454 | } |
1455 | |
1456 | /// Set a given bit to a given value. |
1457 | void setBitVal(unsigned BitPosition, bool BitValue) { |
1458 | if (BitValue) |
1459 | setBit(BitPosition); |
1460 | else |
1461 | clearBit(BitPosition); |
1462 | } |
1463 | |
1464 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1465 | /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls |
1466 | /// setBits when \p loBit < \p hiBit. |
1467 | /// For \p loBit == \p hiBit wrap case, set every bit to 1. |
1468 | void setBitsWithWrap(unsigned loBit, unsigned hiBit) { |
1469 | assert(hiBit <= BitWidth && "hiBit out of range")((void)0); |
1470 | assert(loBit <= BitWidth && "loBit out of range")((void)0); |
1471 | if (loBit < hiBit) { |
1472 | setBits(loBit, hiBit); |
1473 | return; |
1474 | } |
1475 | setLowBits(hiBit); |
1476 | setHighBits(BitWidth - loBit); |
1477 | } |
1478 | |
1479 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1480 | /// This function handles case when \p loBit <= \p hiBit. |
1481 | void setBits(unsigned loBit, unsigned hiBit) { |
1482 | assert(hiBit <= BitWidth && "hiBit out of range")((void)0); |
1483 | assert(loBit <= BitWidth && "loBit out of range")((void)0); |
1484 | assert(loBit <= hiBit && "loBit greater than hiBit")((void)0); |
1485 | if (loBit == hiBit) |
1486 | return; |
1487 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
1488 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
1489 | mask <<= loBit; |
1490 | if (isSingleWord()) |
1491 | U.VAL |= mask; |
1492 | else |
1493 | U.pVal[0] |= mask; |
1494 | } else { |
1495 | setBitsSlowCase(loBit, hiBit); |
1496 | } |
1497 | } |
1498 | |
1499 | /// Set the top bits starting from loBit. |
1500 | void setBitsFrom(unsigned loBit) { |
1501 | return setBits(loBit, BitWidth); |
1502 | } |
1503 | |
1504 | /// Set the bottom loBits bits. |
1505 | void setLowBits(unsigned loBits) { |
1506 | return setBits(0, loBits); |
1507 | } |
1508 | |
1509 | /// Set the top hiBits bits. |
1510 | void setHighBits(unsigned hiBits) { |
1511 | return setBits(BitWidth - hiBits, BitWidth); |
1512 | } |
1513 | |
1514 | /// Set every bit to 0. |
1515 | void clearAllBits() { |
1516 | if (isSingleWord()) |
1517 | U.VAL = 0; |
1518 | else |
1519 | memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); |
1520 | } |
1521 | |
1522 | /// Set a given bit to 0. |
1523 | /// |
1524 | /// Set the given bit to 0 whose position is given as "bitPosition". |
1525 | void clearBit(unsigned BitPosition) { |
1526 | assert(BitPosition < BitWidth && "BitPosition out of range")((void)0); |
1527 | WordType Mask = ~maskBit(BitPosition); |
1528 | if (isSingleWord()) |
1529 | U.VAL &= Mask; |
1530 | else |
1531 | U.pVal[whichWord(BitPosition)] &= Mask; |
1532 | } |
1533 | |
1534 | /// Set bottom loBits bits to 0. |
1535 | void clearLowBits(unsigned loBits) { |
1536 | assert(loBits <= BitWidth && "More bits than bitwidth")((void)0); |
1537 | APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); |
1538 | *this &= Keep; |
1539 | } |
1540 | |
1541 | /// Set the sign bit to 0. |
1542 | void clearSignBit() { |
1543 | clearBit(BitWidth - 1); |
1544 | } |
1545 | |
1546 | /// Toggle every bit to its opposite value. |
1547 | void flipAllBits() { |
1548 | if (isSingleWord()) { |
1549 | U.VAL ^= WORDTYPE_MAX; |
1550 | clearUnusedBits(); |
1551 | } else { |
1552 | flipAllBitsSlowCase(); |
1553 | } |
1554 | } |
1555 | |
1556 | /// Toggles a given bit to its opposite value. |
1557 | /// |
1558 | /// Toggle a given bit to its opposite value whose position is given |
1559 | /// as "bitPosition". |
1560 | void flipBit(unsigned bitPosition); |
1561 | |
1562 | /// Negate this APInt in place. |
1563 | void negate() { |
1564 | flipAllBits(); |
1565 | ++(*this); |
1566 | } |
1567 | |
1568 | /// Insert the bits from a smaller APInt starting at bitPosition. |
1569 | void insertBits(const APInt &SubBits, unsigned bitPosition); |
1570 | void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); |
1571 | |
1572 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
1573 | APInt extractBits(unsigned numBits, unsigned bitPosition) const; |
1574 | uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; |
1575 | |
1576 | /// @} |
1577 | /// \name Value Characterization Functions |
1578 | /// @{ |
1579 | |
1580 | /// Return the number of bits in the APInt. |
1581 | unsigned getBitWidth() const { return BitWidth; } |
1582 | |
1583 | /// Get the number of words. |
1584 | /// |
1585 | /// Here one word's bitwidth equals to that of uint64_t. |
1586 | /// |
1587 | /// \returns the number of words to hold the integer value of this APInt. |
1588 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
1589 | |
1590 | /// Get the number of words. |
1591 | /// |
1592 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
1593 | /// |
1594 | /// \returns the number of words to hold the integer value with a given bit |
1595 | /// width. |
1596 | static unsigned getNumWords(unsigned BitWidth) { |
1597 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
1598 | } |
1599 | |
1600 | /// Compute the number of active bits in the value |
1601 | /// |
1602 | /// This function returns the number of active bits which is defined as the |
1603 | /// bit width minus the number of leading zeros. This is used in several |
1604 | /// computations to see how "wide" the value is. |
1605 | unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } |
1606 | |
1607 | /// Compute the number of active words in the value of this APInt. |
1608 | /// |
1609 | /// This is used in conjunction with getActiveData to extract the raw value of |
1610 | /// the APInt. |
1611 | unsigned getActiveWords() const { |
1612 | unsigned numActiveBits = getActiveBits(); |
1613 | return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
1614 | } |
1615 | |
1616 | /// Get the minimum bit size for this signed APInt |
1617 | /// |
1618 | /// Computes the minimum bit width for this APInt while considering it to be a |
1619 | /// signed (and probably negative) value. If the value is not negative, this |
1620 | /// function returns the same value as getActiveBits()+1. Otherwise, it |
1621 | /// returns the smallest bit width that will retain the negative value. For |
1622 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
1623 | /// for -1, this function will always return 1. |
1624 | unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; } |
1625 | |
1626 | /// Get zero extended value |
1627 | /// |
1628 | /// This method attempts to return the value of this APInt as a zero extended |
1629 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
1630 | /// uint64_t. Otherwise an assertion will result. |
1631 | uint64_t getZExtValue() const { |
1632 | if (isSingleWord()) |
1633 | return U.VAL; |
1634 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((void)0); |
1635 | return U.pVal[0]; |
1636 | } |
1637 | |
1638 | /// Get sign extended value |
1639 | /// |
1640 | /// This method attempts to return the value of this APInt as a sign extended |
1641 | /// int64_t. The bit width must be <= 64 or the value must fit within an |
1642 | /// int64_t. Otherwise an assertion will result. |
1643 | int64_t getSExtValue() const { |
1644 | if (isSingleWord()) |
1645 | return SignExtend64(U.VAL, BitWidth); |
1646 | assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((void)0); |
1647 | return int64_t(U.pVal[0]); |
1648 | } |
1649 | |
1650 | /// Get bits required for string value. |
1651 | /// |
1652 | /// This method determines how many bits are required to hold the APInt |
1653 | /// equivalent of the string given by \p str. |
1654 | static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
1655 | |
1656 | /// The APInt version of the countLeadingZeros functions in |
1657 | /// MathExtras.h. |
1658 | /// |
1659 | /// It counts the number of zeros from the most significant bit to the first |
1660 | /// one bit. |
1661 | /// |
1662 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1663 | /// zeros from the most significant bit to the first one bits. |
1664 | unsigned countLeadingZeros() const { |
1665 | if (isSingleWord()) { |
1666 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
1667 | return llvm::countLeadingZeros(U.VAL) - unusedBits; |
1668 | } |
1669 | return countLeadingZerosSlowCase(); |
1670 | } |
1671 | |
1672 | /// Count the number of leading one bits. |
1673 | /// |
1674 | /// This function is an APInt version of the countLeadingOnes |
1675 | /// functions in MathExtras.h. It counts the number of ones from the most |
1676 | /// significant bit to the first zero bit. |
1677 | /// |
1678 | /// \returns 0 if the high order bit is not set, otherwise returns the number |
1679 | /// of 1 bits from the most significant to the least |
1680 | unsigned countLeadingOnes() const { |
1681 | if (isSingleWord()) |
1682 | return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
1683 | return countLeadingOnesSlowCase(); |
1684 | } |
1685 | |
1686 | /// Computes the number of leading bits of this APInt that are equal to its |
1687 | /// sign bit. |
1688 | unsigned getNumSignBits() const { |
1689 | return isNegative() ? countLeadingOnes() : countLeadingZeros(); |
1690 | } |
1691 | |
1692 | /// Count the number of trailing zero bits. |
1693 | /// |
1694 | /// This function is an APInt version of the countTrailingZeros |
1695 | /// functions in MathExtras.h. It counts the number of zeros from the least |
1696 | /// significant bit to the first set bit. |
1697 | /// |
1698 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1699 | /// zeros from the least significant bit to the first one bit. |
1700 | unsigned countTrailingZeros() const { |
1701 | if (isSingleWord()) { |
1702 | unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL); |
1703 | return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); |
1704 | } |
1705 | return countTrailingZerosSlowCase(); |
1706 | } |
1707 | |
1708 | /// Count the number of trailing one bits. |
1709 | /// |
1710 | /// This function is an APInt version of the countTrailingOnes |
1711 | /// functions in MathExtras.h. It counts the number of ones from the least |
1712 | /// significant bit to the first zero bit. |
1713 | /// |
1714 | /// \returns BitWidth if the value is all ones, otherwise returns the number |
1715 | /// of ones from the least significant bit to the first zero bit. |
1716 | unsigned countTrailingOnes() const { |
1717 | if (isSingleWord()) |
1718 | return llvm::countTrailingOnes(U.VAL); |
1719 | return countTrailingOnesSlowCase(); |
1720 | } |
1721 | |
1722 | /// Count the number of bits set. |
1723 | /// |
1724 | /// This function is an APInt version of the countPopulation functions |
1725 | /// in MathExtras.h. It counts the number of 1 bits in the APInt value. |
1726 | /// |
1727 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
1728 | unsigned countPopulation() const { |
1729 | if (isSingleWord()) |
1730 | return llvm::countPopulation(U.VAL); |
1731 | return countPopulationSlowCase(); |
1732 | } |
1733 | |
1734 | /// @} |
1735 | /// \name Conversion Functions |
1736 | /// @{ |
1737 | void print(raw_ostream &OS, bool isSigned) const; |
1738 | |
1739 | /// Converts an APInt to a string and append it to Str. Str is commonly a |
1740 | /// SmallString. |
1741 | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
1742 | bool formatAsCLiteral = false) const; |
1743 | |
1744 | /// Considers the APInt to be unsigned and converts it into a string in the |
1745 | /// radix given. The radix can be 2, 8, 10 16, or 36. |
1746 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1747 | toString(Str, Radix, false, false); |
1748 | } |
1749 | |
1750 | /// Considers the APInt to be signed and converts it into a string in the |
1751 | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
1752 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1753 | toString(Str, Radix, true, false); |
1754 | } |
1755 | |
1756 | /// \returns a byte-swapped representation of this APInt Value. |
1757 | APInt byteSwap() const; |
1758 | |
1759 | /// \returns the value with the bit representation reversed of this APInt |
1760 | /// Value. |
1761 | APInt reverseBits() const; |
1762 | |
1763 | /// Converts this APInt to a double value. |
1764 | double roundToDouble(bool isSigned) const; |
1765 | |
1766 | /// Converts this unsigned APInt to a double value. |
1767 | double roundToDouble() const { return roundToDouble(false); } |
1768 | |
1769 | /// Converts this signed APInt to a double value. |
1770 | double signedRoundToDouble() const { return roundToDouble(true); } |
1771 | |
1772 | /// Converts APInt bits to a double |
1773 | /// |
1774 | /// The conversion does not do a translation from integer to double, it just |
1775 | /// re-interprets the bits as a double. Note that it is valid to do this on |
1776 | /// any bit width. Exactly 64 bits will be translated. |
1777 | double bitsToDouble() const { |
1778 | return BitsToDouble(getWord(0)); |
1779 | } |
1780 | |
1781 | /// Converts APInt bits to a float |
1782 | /// |
1783 | /// The conversion does not do a translation from integer to float, it just |
1784 | /// re-interprets the bits as a float. Note that it is valid to do this on |
1785 | /// any bit width. Exactly 32 bits will be translated. |
1786 | float bitsToFloat() const { |
1787 | return BitsToFloat(static_cast<uint32_t>(getWord(0))); |
1788 | } |
1789 | |
1790 | /// Converts a double to APInt bits. |
1791 | /// |
1792 | /// The conversion does not do a translation from double to integer, it just |
1793 | /// re-interprets the bits of the double. |
1794 | static APInt doubleToBits(double V) { |
1795 | return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V)); |
1796 | } |
1797 | |
1798 | /// Converts a float to APInt bits. |
1799 | /// |
1800 | /// The conversion does not do a translation from float to integer, it just |
1801 | /// re-interprets the bits of the float. |
1802 | static APInt floatToBits(float V) { |
1803 | return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V)); |
1804 | } |
1805 | |
1806 | /// @} |
1807 | /// \name Mathematics Operations |
1808 | /// @{ |
1809 | |
1810 | /// \returns the floor log base 2 of this APInt. |
1811 | unsigned logBase2() const { return getActiveBits() - 1; } |
1812 | |
1813 | /// \returns the ceil log base 2 of this APInt. |
1814 | unsigned ceilLogBase2() const { |
1815 | APInt temp(*this); |
1816 | --temp; |
1817 | return temp.getActiveBits(); |
1818 | } |
1819 | |
1820 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
1821 | /// |
1822 | /// NOTE: When we have a BitWidth of 1, we define: |
1823 | /// |
1824 | /// log2(0) = UINT32_MAX |
1825 | /// log2(1) = 0 |
1826 | /// |
1827 | /// to get around any mathematical concerns resulting from |
1828 | /// referencing 2 in a space where 2 does no exist. |
1829 | unsigned nearestLogBase2() const { |
1830 | // Special case when we have a bitwidth of 1. If VAL is 1, then we |
1831 | // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to |
1832 | // UINT32_MAX. |
1833 | if (BitWidth == 1) |
1834 | return U.VAL - 1; |
1835 | |
1836 | // Handle the zero case. |
1837 | if (isNullValue()) |
1838 | return UINT32_MAX0xffffffffU; |
1839 | |
1840 | // The non-zero case is handled by computing: |
1841 | // |
1842 | // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. |
1843 | // |
1844 | // where x[i] is referring to the value of the ith bit of x. |
1845 | unsigned lg = logBase2(); |
1846 | return lg + unsigned((*this)[lg - 1]); |
1847 | } |
1848 | |
1849 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
1850 | /// otherwise |
1851 | int32_t exactLogBase2() const { |
1852 | if (!isPowerOf2()) |
1853 | return -1; |
1854 | return logBase2(); |
1855 | } |
1856 | |
1857 | /// Compute the square root |
1858 | APInt sqrt() const; |
1859 | |
1860 | /// Get the absolute value; |
1861 | /// |
1862 | /// If *this is < 0 then return -(*this), otherwise *this; |
1863 | APInt abs() const { |
1864 | if (isNegative()) |
1865 | return -(*this); |
1866 | return *this; |
1867 | } |
1868 | |
1869 | /// \returns the multiplicative inverse for a given modulo. |
1870 | APInt multiplicativeInverse(const APInt &modulo) const; |
1871 | |
1872 | /// @} |
1873 | /// \name Support for division by constant |
1874 | /// @{ |
1875 | |
1876 | /// Calculate the magic number for signed division by a constant. |
1877 | struct ms; |
1878 | ms magic() const; |
1879 | |
1880 | /// Calculate the magic number for unsigned division by a constant. |
1881 | struct mu; |
1882 | mu magicu(unsigned LeadingZeros = 0) const; |
1883 | |
1884 | /// @} |
1885 | /// \name Building-block Operations for APInt and APFloat |
1886 | /// @{ |
1887 | |
1888 | // These building block operations operate on a representation of arbitrary |
1889 | // precision, two's-complement, bignum integer values. They should be |
1890 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
1891 | // generally a pointer to the base of an array of integer parts, representing |
1892 | // an unsigned bignum, and a count of how many parts there are. |
1893 | |
1894 | /// Sets the least significant part of a bignum to the input value, and zeroes |
1895 | /// out higher parts. |
1896 | static void tcSet(WordType *, WordType, unsigned); |
1897 | |
1898 | /// Assign one bignum to another. |
1899 | static void tcAssign(WordType *, const WordType *, unsigned); |
1900 | |
1901 | /// Returns true if a bignum is zero, false otherwise. |
1902 | static bool tcIsZero(const WordType *, unsigned); |
1903 | |
1904 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
1905 | static int tcExtractBit(const WordType *, unsigned bit); |
1906 | |
1907 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
1908 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
1909 | /// significant bit of DST. All high bits above srcBITS in DST are |
1910 | /// zero-filled. |
1911 | static void tcExtract(WordType *, unsigned dstCount, |
1912 | const WordType *, unsigned srcBits, |
1913 | unsigned srcLSB); |
1914 | |
1915 | /// Set the given bit of a bignum. Zero-based. |
1916 | static void tcSetBit(WordType *, unsigned bit); |
1917 | |
1918 | /// Clear the given bit of a bignum. Zero-based. |
1919 | static void tcClearBit(WordType *, unsigned bit); |
1920 | |
1921 | /// Returns the bit number of the least or most significant set bit of a |
1922 | /// number. If the input number has no bits set -1U is returned. |
1923 | static unsigned tcLSB(const WordType *, unsigned n); |
1924 | static unsigned tcMSB(const WordType *parts, unsigned n); |
1925 | |
1926 | /// Negate a bignum in-place. |
1927 | static void tcNegate(WordType *, unsigned); |
1928 | |
1929 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1930 | static WordType tcAdd(WordType *, const WordType *, |
1931 | WordType carry, unsigned); |
1932 | /// DST += RHS. Returns the carry flag. |
1933 | static WordType tcAddPart(WordType *, WordType, unsigned); |
1934 | |
1935 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1936 | static WordType tcSubtract(WordType *, const WordType *, |
1937 | WordType carry, unsigned); |
1938 | /// DST -= RHS. Returns the carry flag. |
1939 | static WordType tcSubtractPart(WordType *, WordType, unsigned); |
1940 | |
1941 | /// DST += SRC * MULTIPLIER + PART if add is true |
1942 | /// DST = SRC * MULTIPLIER + PART if add is false |
1943 | /// |
1944 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
1945 | /// start at the same point, i.e. DST == SRC. |
1946 | /// |
1947 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
1948 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
1949 | /// result, and if all of the omitted higher parts were zero return zero, |
1950 | /// otherwise overflow occurred and return one. |
1951 | static int tcMultiplyPart(WordType *dst, const WordType *src, |
1952 | WordType multiplier, WordType carry, |
1953 | unsigned srcParts, unsigned dstParts, |
1954 | bool add); |
1955 | |
1956 | /// DST = LHS * RHS, where DST has the same width as the operands and is |
1957 | /// filled with the least significant parts of the result. Returns one if |
1958 | /// overflow occurred, otherwise zero. DST must be disjoint from both |
1959 | /// operands. |
1960 | static int tcMultiply(WordType *, const WordType *, const WordType *, |
1961 | unsigned); |
1962 | |
1963 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
1964 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
1965 | static void tcFullMultiply(WordType *, const WordType *, |
1966 | const WordType *, unsigned, unsigned); |
1967 | |
1968 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
1969 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
1970 | /// REMAINDER to the remainder, return zero. i.e. |
1971 | /// |
1972 | /// OLD_LHS = RHS * LHS + REMAINDER |
1973 | /// |
1974 | /// SCRATCH is a bignum of the same size as the operands and result for use by |
1975 | /// the routine; its contents need not be initialized and are destroyed. LHS, |
1976 | /// REMAINDER and SCRATCH must be distinct. |
1977 | static int tcDivide(WordType *lhs, const WordType *rhs, |
1978 | WordType *remainder, WordType *scratch, |
1979 | unsigned parts); |
1980 | |
1981 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
1982 | /// restrictions on Count. |
1983 | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
1984 | |
1985 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
1986 | /// restrictions on Count. |
1987 | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
1988 | |
1989 | /// The obvious AND, OR and XOR and complement operations. |
1990 | static void tcAnd(WordType *, const WordType *, unsigned); |
1991 | static void tcOr(WordType *, const WordType *, unsigned); |
1992 | static void tcXor(WordType *, const WordType *, unsigned); |
1993 | static void tcComplement(WordType *, unsigned); |
1994 | |
1995 | /// Comparison (unsigned) of two bignums. |
1996 | static int tcCompare(const WordType *, const WordType *, unsigned); |
1997 | |
1998 | /// Increment a bignum in-place. Return the carry flag. |
1999 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
2000 | return tcAddPart(dst, 1, parts); |
2001 | } |
2002 | |
2003 | /// Decrement a bignum in-place. Return the borrow flag. |
2004 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
2005 | return tcSubtractPart(dst, 1, parts); |
2006 | } |
2007 | |
2008 | /// Set the least significant BITS and clear the rest. |
2009 | static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); |
2010 | |
2011 | /// debug method |
2012 | void dump() const; |
2013 | |
2014 | /// @} |
2015 | }; |
2016 | |
2017 | /// Magic data for optimising signed division by a constant. |
2018 | struct APInt::ms { |
2019 | APInt m; ///< magic number |
2020 | unsigned s; ///< shift amount |
2021 | }; |
2022 | |
2023 | /// Magic data for optimising unsigned division by a constant. |
2024 | struct APInt::mu { |
2025 | APInt m; ///< magic number |
2026 | bool a; ///< add indicator |
2027 | unsigned s; ///< shift amount |
2028 | }; |
2029 | |
2030 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
2031 | |
2032 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
2033 | |
2034 | /// Unary bitwise complement operator. |
2035 | /// |
2036 | /// \returns an APInt that is the bitwise complement of \p v. |
2037 | inline APInt operator~(APInt v) { |
2038 | v.flipAllBits(); |
2039 | return v; |
2040 | } |
2041 | |
2042 | inline APInt operator&(APInt a, const APInt &b) { |
2043 | a &= b; |
2044 | return a; |
2045 | } |
2046 | |
2047 | inline APInt operator&(const APInt &a, APInt &&b) { |
2048 | b &= a; |
2049 | return std::move(b); |
2050 | } |
2051 | |
2052 | inline APInt operator&(APInt a, uint64_t RHS) { |
2053 | a &= RHS; |
2054 | return a; |
2055 | } |
2056 | |
2057 | inline APInt operator&(uint64_t LHS, APInt b) { |
2058 | b &= LHS; |
2059 | return b; |
2060 | } |
2061 | |
2062 | inline APInt operator|(APInt a, const APInt &b) { |
2063 | a |= b; |
2064 | return a; |
2065 | } |
2066 | |
2067 | inline APInt operator|(const APInt &a, APInt &&b) { |
2068 | b |= a; |
2069 | return std::move(b); |
2070 | } |
2071 | |
2072 | inline APInt operator|(APInt a, uint64_t RHS) { |
2073 | a |= RHS; |
2074 | return a; |
2075 | } |
2076 | |
2077 | inline APInt operator|(uint64_t LHS, APInt b) { |
2078 | b |= LHS; |
2079 | return b; |
2080 | } |
2081 | |
2082 | inline APInt operator^(APInt a, const APInt &b) { |
2083 | a ^= b; |
2084 | return a; |
2085 | } |
2086 | |
2087 | inline APInt operator^(const APInt &a, APInt &&b) { |
2088 | b ^= a; |
2089 | return std::move(b); |
2090 | } |
2091 | |
2092 | inline APInt operator^(APInt a, uint64_t RHS) { |
2093 | a ^= RHS; |
2094 | return a; |
2095 | } |
2096 | |
2097 | inline APInt operator^(uint64_t LHS, APInt b) { |
2098 | b ^= LHS; |
2099 | return b; |
2100 | } |
2101 | |
2102 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
2103 | I.print(OS, true); |
2104 | return OS; |
2105 | } |
2106 | |
2107 | inline APInt operator-(APInt v) { |
2108 | v.negate(); |
2109 | return v; |
2110 | } |
2111 | |
2112 | inline APInt operator+(APInt a, const APInt &b) { |
2113 | a += b; |
2114 | return a; |
2115 | } |
2116 | |
2117 | inline APInt operator+(const APInt &a, APInt &&b) { |
2118 | b += a; |
2119 | return std::move(b); |
2120 | } |
2121 | |
2122 | inline APInt operator+(APInt a, uint64_t RHS) { |
2123 | a += RHS; |
2124 | return a; |
2125 | } |
2126 | |
2127 | inline APInt operator+(uint64_t LHS, APInt b) { |
2128 | b += LHS; |
2129 | return b; |
2130 | } |
2131 | |
2132 | inline APInt operator-(APInt a, const APInt &b) { |
2133 | a -= b; |
2134 | return a; |
2135 | } |
2136 | |
2137 | inline APInt operator-(const APInt &a, APInt &&b) { |
2138 | b.negate(); |
2139 | b += a; |
2140 | return std::move(b); |
2141 | } |
2142 | |
2143 | inline APInt operator-(APInt a, uint64_t RHS) { |
2144 | a -= RHS; |
2145 | return a; |
2146 | } |
2147 | |
2148 | inline APInt operator-(uint64_t LHS, APInt b) { |
2149 | b.negate(); |
2150 | b += LHS; |
2151 | return b; |
2152 | } |
2153 | |
2154 | inline APInt operator*(APInt a, uint64_t RHS) { |
2155 | a *= RHS; |
2156 | return a; |
2157 | } |
2158 | |
2159 | inline APInt operator*(uint64_t LHS, APInt b) { |
2160 | b *= LHS; |
2161 | return b; |
2162 | } |
2163 | |
2164 | |
2165 | namespace APIntOps { |
2166 | |
2167 | /// Determine the smaller of two APInts considered to be signed. |
2168 | inline const APInt &smin(const APInt &A, const APInt &B) { |
2169 | return A.slt(B) ? A : B; |
2170 | } |
2171 | |
2172 | /// Determine the larger of two APInts considered to be signed. |
2173 | inline const APInt &smax(const APInt &A, const APInt &B) { |
2174 | return A.sgt(B) ? A : B; |
2175 | } |
2176 | |
2177 | /// Determine the smaller of two APInts considered to be unsigned. |
2178 | inline const APInt &umin(const APInt &A, const APInt &B) { |
2179 | return A.ult(B) ? A : B; |
2180 | } |
2181 | |
2182 | /// Determine the larger of two APInts considered to be unsigned. |
2183 | inline const APInt &umax(const APInt &A, const APInt &B) { |
2184 | return A.ugt(B) ? A : B; |
2185 | } |
2186 | |
2187 | /// Compute GCD of two unsigned APInt values. |
2188 | /// |
2189 | /// This function returns the greatest common divisor of the two APInt values |
2190 | /// using Stein's algorithm. |
2191 | /// |
2192 | /// \returns the greatest common divisor of A and B. |
2193 | APInt GreatestCommonDivisor(APInt A, APInt B); |
2194 | |
2195 | /// Converts the given APInt to a double value. |
2196 | /// |
2197 | /// Treats the APInt as an unsigned value for conversion purposes. |
2198 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
2199 | return APIVal.roundToDouble(); |
2200 | } |
2201 | |
2202 | /// Converts the given APInt to a double value. |
2203 | /// |
2204 | /// Treats the APInt as a signed value for conversion purposes. |
2205 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
2206 | return APIVal.signedRoundToDouble(); |
2207 | } |
2208 | |
2209 | /// Converts the given APInt to a float value. |
2210 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
2211 | return float(RoundAPIntToDouble(APIVal)); |
2212 | } |
2213 | |
2214 | /// Converts the given APInt to a float value. |
2215 | /// |
2216 | /// Treats the APInt as a signed value for conversion purposes. |
2217 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
2218 | return float(APIVal.signedRoundToDouble()); |
2219 | } |
2220 | |
2221 | /// Converts the given double value into a APInt. |
2222 | /// |
2223 | /// This function convert a double value to an APInt value. |
2224 | APInt RoundDoubleToAPInt(double Double, unsigned width); |
2225 | |
2226 | /// Converts a float value into a APInt. |
2227 | /// |
2228 | /// Converts a float value into an APInt value. |
2229 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
2230 | return RoundDoubleToAPInt(double(Float), width); |
2231 | } |
2232 | |
2233 | /// Return A unsign-divided by B, rounded by the given rounding mode. |
2234 | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2235 | |
2236 | /// Return A sign-divided by B, rounded by the given rounding mode. |
2237 | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2238 | |
2239 | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
2240 | /// (e.g. 32 for i32). |
2241 | /// This function finds the smallest number n, such that |
2242 | /// (a) n >= 0 and q(n) = 0, or |
2243 | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
2244 | /// integers, belong to two different intervals [Rk, Rk+R), |
2245 | /// where R = 2^BW, and k is an integer. |
2246 | /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
2247 | /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
2248 | /// subtraction (treated as addition of negated numbers) would always |
2249 | /// count as an overflow, but here we want to allow values to decrease |
2250 | /// and increase as long as they are within the same interval. |
2251 | /// Specifically, adding of two negative numbers should not cause an |
2252 | /// overflow (as long as the magnitude does not exceed the bit width). |
2253 | /// On the other hand, given a positive number, adding a negative |
2254 | /// number to it can give a negative result, which would cause the |
2255 | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
2256 | /// treated as a special case of an overflow. |
2257 | /// |
2258 | /// This function returns None if after finding k that minimizes the |
2259 | /// positive solution to q(n) = kR, both solutions are contained between |
2260 | /// two consecutive integers. |
2261 | /// |
2262 | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
2263 | /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
2264 | /// virtue of *signed* overflow. This function will *not* find such an n, |
2265 | /// however it may find a value of n satisfying the inequalities due to |
2266 | /// an *unsigned* overflow (if the values are treated as unsigned). |
2267 | /// To find a solution for a signed overflow, treat it as a problem of |
2268 | /// finding an unsigned overflow with a range with of BW-1. |
2269 | /// |
2270 | /// The returned value may have a different bit width from the input |
2271 | /// coefficients. |
2272 | Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
2273 | unsigned RangeWidth); |
2274 | |
2275 | /// Compare two values, and if they are different, return the position of the |
2276 | /// most significant bit that is different in the values. |
2277 | Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, |
2278 | const APInt &B); |
2279 | |
2280 | } // End of APIntOps namespace |
2281 | |
2282 | // See friend declaration above. This additional declaration is required in |
2283 | // order to compile LLVM with IBM xlC compiler. |
2284 | hash_code hash_value(const APInt &Arg); |
2285 | |
2286 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
2287 | /// with the integer held in IntVal. |
2288 | void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); |
2289 | |
2290 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
2291 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
2292 | void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); |
2293 | |
2294 | /// Provide DenseMapInfo for APInt. |
2295 | template <> struct DenseMapInfo<APInt> { |
2296 | static inline APInt getEmptyKey() { |
2297 | APInt V(nullptr, 0); |
2298 | V.U.VAL = 0; |
2299 | return V; |
2300 | } |
2301 | |
2302 | static inline APInt getTombstoneKey() { |
2303 | APInt V(nullptr, 0); |
2304 | V.U.VAL = 1; |
2305 | return V; |
2306 | } |
2307 | |
2308 | static unsigned getHashValue(const APInt &Key); |
2309 | |
2310 | static bool isEqual(const APInt &LHS, const APInt &RHS) { |
2311 | return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; |
2312 | } |
2313 | }; |
2314 | |
2315 | } // namespace llvm |
2316 | |
2317 | #endif |