Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/Instructions.cpp
Warning:line 2576, column 3
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Instructions.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/Instructions.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/Instructions.cpp

1//===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements all of the non-inline methods for the LLVM instruction
10// classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Instructions.h"
15#include "LLVMContextImpl.h"
16#include "llvm/ADT/None.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/IR/Attributes.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/Constant.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/InstrTypes.h"
27#include "llvm/IR/Instruction.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/MDBuilder.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Module.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/Value.h"
36#include "llvm/Support/AtomicOrdering.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/TypeSize.h"
41#include <algorithm>
42#include <cassert>
43#include <cstdint>
44#include <vector>
45
46using namespace llvm;
47
48static cl::opt<bool> DisableI2pP2iOpt(
49 "disable-i2p-p2i-opt", cl::init(false),
50 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51
52//===----------------------------------------------------------------------===//
53// AllocaInst Class
54//===----------------------------------------------------------------------===//
55
56Optional<TypeSize>
57AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
58 TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59 if (isArrayAllocation()) {
60 auto *C = dyn_cast<ConstantInt>(getArraySize());
61 if (!C)
62 return None;
63 assert(!Size.isScalable() && "Array elements cannot have a scalable size")((void)0);
64 Size *= C->getZExtValue();
65 }
66 return Size;
67}
68
69//===----------------------------------------------------------------------===//
70// SelectInst Class
71//===----------------------------------------------------------------------===//
72
73/// areInvalidOperands - Return a string if the specified operands are invalid
74/// for a select operation, otherwise return null.
75const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76 if (Op1->getType() != Op2->getType())
77 return "both values to select must have same type";
78
79 if (Op1->getType()->isTokenTy())
80 return "select values cannot have token type";
81
82 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83 // Vector select.
84 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85 return "vector select condition element type must be i1";
86 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87 if (!ET)
88 return "selected values for vector select must be vectors";
89 if (ET->getElementCount() != VT->getElementCount())
90 return "vector select requires selected vectors to have "
91 "the same vector length as select condition";
92 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93 return "select condition must be i1 or <n x i1>";
94 }
95 return nullptr;
96}
97
98//===----------------------------------------------------------------------===//
99// PHINode Class
100//===----------------------------------------------------------------------===//
101
102PHINode::PHINode(const PHINode &PN)
103 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104 ReservedSpace(PN.getNumOperands()) {
105 allocHungoffUses(PN.getNumOperands());
106 std::copy(PN.op_begin(), PN.op_end(), op_begin());
107 std::copy(PN.block_begin(), PN.block_end(), block_begin());
108 SubclassOptionalData = PN.SubclassOptionalData;
109}
110
111// removeIncomingValue - Remove an incoming value. This is useful if a
112// predecessor basic block is deleted.
113Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114 Value *Removed = getIncomingValue(Idx);
115
116 // Move everything after this operand down.
117 //
118 // FIXME: we could just swap with the end of the list, then erase. However,
119 // clients might not expect this to happen. The code as it is thrashes the
120 // use/def lists, which is kinda lame.
121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123
124 // Nuke the last value.
125 Op<-1>().set(nullptr);
126 setNumHungOffUseOperands(getNumOperands() - 1);
127
128 // If the PHI node is dead, because it has zero entries, nuke it now.
129 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130 // If anyone is using this PHI, make them use a dummy value instead...
131 replaceAllUsesWith(UndefValue::get(getType()));
132 eraseFromParent();
133 }
134 return Removed;
135}
136
137/// growOperands - grow operands - This grows the operand list in response
138/// to a push_back style of operation. This grows the number of ops by 1.5
139/// times.
140///
141void PHINode::growOperands() {
142 unsigned e = getNumOperands();
143 unsigned NumOps = e + e / 2;
144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
145
146 ReservedSpace = NumOps;
147 growHungoffUses(ReservedSpace, /* IsPhi */ true);
148}
149
150/// hasConstantValue - If the specified PHI node always merges together the same
151/// value, return the value, otherwise return null.
152Value *PHINode::hasConstantValue() const {
153 // Exploit the fact that phi nodes always have at least one entry.
154 Value *ConstantValue = getIncomingValue(0);
155 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157 if (ConstantValue != this)
158 return nullptr; // Incoming values not all the same.
159 // The case where the first value is this PHI.
160 ConstantValue = getIncomingValue(i);
161 }
162 if (ConstantValue == this)
163 return UndefValue::get(getType());
164 return ConstantValue;
165}
166
167/// hasConstantOrUndefValue - Whether the specified PHI node always merges
168/// together the same value, assuming that undefs result in the same value as
169/// non-undefs.
170/// Unlike \ref hasConstantValue, this does not return a value because the
171/// unique non-undef incoming value need not dominate the PHI node.
172bool PHINode::hasConstantOrUndefValue() const {
173 Value *ConstantValue = nullptr;
174 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175 Value *Incoming = getIncomingValue(i);
176 if (Incoming != this && !isa<UndefValue>(Incoming)) {
177 if (ConstantValue && ConstantValue != Incoming)
178 return false;
179 ConstantValue = Incoming;
180 }
181 }
182 return true;
183}
184
185//===----------------------------------------------------------------------===//
186// LandingPadInst Implementation
187//===----------------------------------------------------------------------===//
188
189LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190 const Twine &NameStr, Instruction *InsertBefore)
191 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192 init(NumReservedValues, NameStr);
193}
194
195LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196 const Twine &NameStr, BasicBlock *InsertAtEnd)
197 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198 init(NumReservedValues, NameStr);
199}
200
201LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203 LP.getNumOperands()),
204 ReservedSpace(LP.getNumOperands()) {
205 allocHungoffUses(LP.getNumOperands());
206 Use *OL = getOperandList();
207 const Use *InOL = LP.getOperandList();
208 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209 OL[I] = InOL[I];
210
211 setCleanup(LP.isCleanup());
212}
213
214LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215 const Twine &NameStr,
216 Instruction *InsertBefore) {
217 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218}
219
220LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221 const Twine &NameStr,
222 BasicBlock *InsertAtEnd) {
223 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224}
225
226void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227 ReservedSpace = NumReservedValues;
228 setNumHungOffUseOperands(0);
229 allocHungoffUses(ReservedSpace);
230 setName(NameStr);
231 setCleanup(false);
232}
233
234/// growOperands - grow operands - This grows the operand list in response to a
235/// push_back style of operation. This grows the number of ops by 2 times.
236void LandingPadInst::growOperands(unsigned Size) {
237 unsigned e = getNumOperands();
238 if (ReservedSpace >= e + Size) return;
239 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240 growHungoffUses(ReservedSpace);
241}
242
243void LandingPadInst::addClause(Constant *Val) {
244 unsigned OpNo = getNumOperands();
245 growOperands(1);
246 assert(OpNo < ReservedSpace && "Growing didn't work!")((void)0);
247 setNumHungOffUseOperands(getNumOperands() + 1);
248 getOperandList()[OpNo] = Val;
249}
250
251//===----------------------------------------------------------------------===//
252// CallBase Implementation
253//===----------------------------------------------------------------------===//
254
255CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
256 Instruction *InsertPt) {
257 switch (CB->getOpcode()) {
258 case Instruction::Call:
259 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260 case Instruction::Invoke:
261 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262 case Instruction::CallBr:
263 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264 default:
265 llvm_unreachable("Unknown CallBase sub-class!")__builtin_unreachable();
266 }
267}
268
269CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
270 Instruction *InsertPt) {
271 SmallVector<OperandBundleDef, 2> OpDefs;
272 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273 auto ChildOB = CI->getOperandBundleAt(i);
274 if (ChildOB.getTagName() != OpB.getTag())
275 OpDefs.emplace_back(ChildOB);
276 }
277 OpDefs.emplace_back(OpB);
278 return CallBase::Create(CI, OpDefs, InsertPt);
279}
280
281
282Function *CallBase::getCaller() { return getParent()->getParent(); }
283
284unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!")((void)0);
286 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287}
288
289bool CallBase::isIndirectCall() const {
290 const Value *V = getCalledOperand();
291 if (isa<Function>(V) || isa<Constant>(V))
292 return false;
293 return !isInlineAsm();
294}
295
296/// Tests if this call site must be tail call optimized. Only a CallInst can
297/// be tail call optimized.
298bool CallBase::isMustTailCall() const {
299 if (auto *CI = dyn_cast<CallInst>(this))
300 return CI->isMustTailCall();
301 return false;
302}
303
304/// Tests if this call site is marked as a tail call.
305bool CallBase::isTailCall() const {
306 if (auto *CI = dyn_cast<CallInst>(this))
307 return CI->isTailCall();
308 return false;
309}
310
311Intrinsic::ID CallBase::getIntrinsicID() const {
312 if (auto *F = getCalledFunction())
313 return F->getIntrinsicID();
314 return Intrinsic::not_intrinsic;
315}
316
317bool CallBase::isReturnNonNull() const {
318 if (hasRetAttr(Attribute::NonNull))
319 return true;
320
321 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
322 !NullPointerIsDefined(getCaller(),
323 getType()->getPointerAddressSpace()))
324 return true;
325
326 return false;
327}
328
329Value *CallBase::getReturnedArgOperand() const {
330 unsigned Index;
331
332 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
333 return getArgOperand(Index - AttributeList::FirstArgIndex);
334 if (const Function *F = getCalledFunction())
335 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
336 Index)
337 return getArgOperand(Index - AttributeList::FirstArgIndex);
338
339 return nullptr;
340}
341
342/// Determine whether the argument or parameter has the given attribute.
343bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
344 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!")((void)0);
345
346 if (Attrs.hasParamAttribute(ArgNo, Kind))
347 return true;
348 if (const Function *F = getCalledFunction())
349 return F->getAttributes().hasParamAttribute(ArgNo, Kind);
350 return false;
351}
352
353bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
354 if (const Function *F = getCalledFunction())
355 return F->getAttributes().hasFnAttribute(Kind);
356 return false;
357}
358
359bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
360 if (const Function *F = getCalledFunction())
361 return F->getAttributes().hasFnAttribute(Kind);
362 return false;
363}
364
365void CallBase::getOperandBundlesAsDefs(
366 SmallVectorImpl<OperandBundleDef> &Defs) const {
367 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
368 Defs.emplace_back(getOperandBundleAt(i));
369}
370
371CallBase::op_iterator
372CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
373 const unsigned BeginIndex) {
374 auto It = op_begin() + BeginIndex;
375 for (auto &B : Bundles)
376 It = std::copy(B.input_begin(), B.input_end(), It);
377
378 auto *ContextImpl = getContext().pImpl;
379 auto BI = Bundles.begin();
380 unsigned CurrentIndex = BeginIndex;
381
382 for (auto &BOI : bundle_op_infos()) {
383 assert(BI != Bundles.end() && "Incorrect allocation?")((void)0);
384
385 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
386 BOI.Begin = CurrentIndex;
387 BOI.End = CurrentIndex + BI->input_size();
388 CurrentIndex = BOI.End;
389 BI++;
390 }
391
392 assert(BI == Bundles.end() && "Incorrect allocation?")((void)0);
393
394 return It;
395}
396
397CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
398 /// When there isn't many bundles, we do a simple linear search.
399 /// Else fallback to a binary-search that use the fact that bundles usually
400 /// have similar number of argument to get faster convergence.
401 if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
402 for (auto &BOI : bundle_op_infos())
403 if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
404 return BOI;
405
406 llvm_unreachable("Did not find operand bundle for operand!")__builtin_unreachable();
407 }
408
409 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles")((void)0);
410 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&((void)0)
411 OpIdx < std::prev(bundle_op_info_end())->End &&((void)0)
412 "The Idx isn't in the operand bundle")((void)0);
413
414 /// We need a decimal number below and to prevent using floating point numbers
415 /// we use an intergal value multiplied by this constant.
416 constexpr unsigned NumberScaling = 1024;
417
418 bundle_op_iterator Begin = bundle_op_info_begin();
419 bundle_op_iterator End = bundle_op_info_end();
420 bundle_op_iterator Current = Begin;
421
422 while (Begin != End) {
423 unsigned ScaledOperandPerBundle =
424 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
425 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
426 ScaledOperandPerBundle);
427 if (Current >= End)
428 Current = std::prev(End);
429 assert(Current < End && Current >= Begin &&((void)0)
430 "the operand bundle doesn't cover every value in the range")((void)0);
431 if (OpIdx >= Current->Begin && OpIdx < Current->End)
432 break;
433 if (OpIdx >= Current->End)
434 Begin = Current + 1;
435 else
436 End = Current;
437 }
438
439 assert(OpIdx >= Current->Begin && OpIdx < Current->End &&((void)0)
440 "the operand bundle doesn't cover every value in the range")((void)0);
441 return *Current;
442}
443
444CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
445 OperandBundleDef OB,
446 Instruction *InsertPt) {
447 if (CB->getOperandBundle(ID))
448 return CB;
449
450 SmallVector<OperandBundleDef, 1> Bundles;
451 CB->getOperandBundlesAsDefs(Bundles);
452 Bundles.push_back(OB);
453 return Create(CB, Bundles, InsertPt);
454}
455
456CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
457 Instruction *InsertPt) {
458 SmallVector<OperandBundleDef, 1> Bundles;
459 bool CreateNew = false;
460
461 for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
462 auto Bundle = CB->getOperandBundleAt(I);
463 if (Bundle.getTagID() == ID) {
464 CreateNew = true;
465 continue;
466 }
467 Bundles.emplace_back(Bundle);
468 }
469
470 return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
471}
472
473bool CallBase::hasReadingOperandBundles() const {
474 // Implementation note: this is a conservative implementation of operand
475 // bundle semantics, where *any* non-assume operand bundle forces a callsite
476 // to be at least readonly.
477 return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
478}
479
480//===----------------------------------------------------------------------===//
481// CallInst Implementation
482//===----------------------------------------------------------------------===//
483
484void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
485 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
486 this->FTy = FTy;
487 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&((void)0)
488 "NumOperands not set up?")((void)0);
489
490#ifndef NDEBUG1
491 assert((Args.size() == FTy->getNumParams() ||((void)0)
492 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&((void)0)
493 "Calling a function with bad signature!")((void)0);
494
495 for (unsigned i = 0; i != Args.size(); ++i)
496 assert((i >= FTy->getNumParams() ||((void)0)
497 FTy->getParamType(i) == Args[i]->getType()) &&((void)0)
498 "Calling a function with a bad signature!")((void)0);
499#endif
500
501 // Set operands in order of their index to match use-list-order
502 // prediction.
503 llvm::copy(Args, op_begin());
504 setCalledOperand(Func);
505
506 auto It = populateBundleOperandInfos(Bundles, Args.size());
507 (void)It;
508 assert(It + 1 == op_end() && "Should add up!")((void)0);
509
510 setName(NameStr);
511}
512
513void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
514 this->FTy = FTy;
515 assert(getNumOperands() == 1 && "NumOperands not set up?")((void)0);
516 setCalledOperand(Func);
517
518 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature")((void)0);
519
520 setName(NameStr);
521}
522
523CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
524 Instruction *InsertBefore)
525 : CallBase(Ty->getReturnType(), Instruction::Call,
526 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
527 init(Ty, Func, Name);
528}
529
530CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
531 BasicBlock *InsertAtEnd)
532 : CallBase(Ty->getReturnType(), Instruction::Call,
533 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
534 init(Ty, Func, Name);
535}
536
537CallInst::CallInst(const CallInst &CI)
538 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
539 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
540 CI.getNumOperands()) {
541 setTailCallKind(CI.getTailCallKind());
542 setCallingConv(CI.getCallingConv());
543
544 std::copy(CI.op_begin(), CI.op_end(), op_begin());
545 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
546 bundle_op_info_begin());
547 SubclassOptionalData = CI.SubclassOptionalData;
548}
549
550CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
551 Instruction *InsertPt) {
552 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
553
554 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
555 Args, OpB, CI->getName(), InsertPt);
556 NewCI->setTailCallKind(CI->getTailCallKind());
557 NewCI->setCallingConv(CI->getCallingConv());
558 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
559 NewCI->setAttributes(CI->getAttributes());
560 NewCI->setDebugLoc(CI->getDebugLoc());
561 return NewCI;
562}
563
564// Update profile weight for call instruction by scaling it using the ratio
565// of S/T. The meaning of "branch_weights" meta data for call instruction is
566// transfered to represent call count.
567void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
568 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
569 if (ProfileData == nullptr)
570 return;
571
572 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
573 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
574 !ProfDataName->getString().equals("VP")))
575 return;
576
577 if (T == 0) {
578 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "do { } while (false)
579 "div by 0. Ignoring. Likely the function "do { } while (false)
580 << getParent()->getParent()->getName()do { } while (false)
581 << " has 0 entry count, and contains call instructions "do { } while (false)
582 "with non-zero prof info.")do { } while (false);
583 return;
584 }
585
586 MDBuilder MDB(getContext());
587 SmallVector<Metadata *, 3> Vals;
588 Vals.push_back(ProfileData->getOperand(0));
589 APInt APS(128, S), APT(128, T);
590 if (ProfDataName->getString().equals("branch_weights") &&
591 ProfileData->getNumOperands() > 0) {
592 // Using APInt::div may be expensive, but most cases should fit 64 bits.
593 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
594 ->getValue()
595 .getZExtValue());
596 Val *= APS;
597 Vals.push_back(MDB.createConstant(
598 ConstantInt::get(Type::getInt32Ty(getContext()),
599 Val.udiv(APT).getLimitedValue(UINT32_MAX0xffffffffU))));
600 } else if (ProfDataName->getString().equals("VP"))
601 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
602 // The first value is the key of the value profile, which will not change.
603 Vals.push_back(ProfileData->getOperand(i));
604 uint64_t Count =
605 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
606 ->getValue()
607 .getZExtValue();
608 // Don't scale the magic number.
609 if (Count == NOMORE_ICP_MAGICNUM) {
610 Vals.push_back(ProfileData->getOperand(i + 1));
611 continue;
612 }
613 // Using APInt::div may be expensive, but most cases should fit 64 bits.
614 APInt Val(128, Count);
615 Val *= APS;
616 Vals.push_back(MDB.createConstant(
617 ConstantInt::get(Type::getInt64Ty(getContext()),
618 Val.udiv(APT).getLimitedValue())));
619 }
620 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
621}
622
623/// IsConstantOne - Return true only if val is constant int 1
624static bool IsConstantOne(Value *val) {
625 assert(val && "IsConstantOne does not work with nullptr val")((void)0);
626 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
8
Assuming 'val' is not a 'ConstantInt'
13
Assuming 'val' is not a 'ConstantInt'
627 return CVal
8.1
'CVal' is null
13.1
'CVal' is null
8.1
'CVal' is null
13.1
'CVal' is null
&& CVal->isOne()
;
9
Returning zero, which participates in a condition later
14
Returning zero, which participates in a condition later
628}
629
630static Instruction *createMalloc(Instruction *InsertBefore,
631 BasicBlock *InsertAtEnd, Type *IntPtrTy,
632 Type *AllocTy, Value *AllocSize,
633 Value *ArraySize,
634 ArrayRef<OperandBundleDef> OpB,
635 Function *MallocF, const Twine &Name) {
636 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&((void)0)
637 "createMalloc needs either InsertBefore or InsertAtEnd")((void)0);
638
639 // malloc(type) becomes:
640 // bitcast (i8* malloc(typeSize)) to type*
641 // malloc(type, arraySize) becomes:
642 // bitcast (i8* malloc(typeSize*arraySize)) to type*
643 if (!ArraySize)
3
Assuming 'ArraySize' is non-null
4
Taking false branch
644 ArraySize = ConstantInt::get(IntPtrTy, 1);
645 else if (ArraySize->getType() != IntPtrTy) {
5
Assuming the condition is false
6
Taking false branch
646 if (InsertBefore)
647 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
648 "", InsertBefore);
649 else
650 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
651 "", InsertAtEnd);
652 }
653
654 if (!IsConstantOne(ArraySize)) {
7
Calling 'IsConstantOne'
10
Returning from 'IsConstantOne'
11
Taking true branch
655 if (IsConstantOne(AllocSize)) {
12
Calling 'IsConstantOne'
15
Returning from 'IsConstantOne'
16
Taking false branch
656 AllocSize = ArraySize; // Operand * 1 = Operand
657 } else if (Constant *CO
17.1
'CO' is null
17.1
'CO' is null
= dyn_cast<Constant>(ArraySize)) {
17
Assuming 'ArraySize' is not a 'Constant'
18
Taking false branch
658 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
659 false /*ZExt*/);
660 // Malloc arg is constant product of type size and array size
661 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
662 } else {
663 // Multiply type size by the array size...
664 if (InsertBefore)
19
Assuming 'InsertBefore' is null
20
Taking false branch
665 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
666 "mallocsize", InsertBefore);
667 else
668 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
22
Calling 'BinaryOperator::CreateMul'
669 "mallocsize", InsertAtEnd);
21
Passing null pointer value via 4th parameter 'BB'
670 }
671 }
672
673 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size")((void)0);
674 // Create the call to Malloc.
675 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
676 Module *M = BB->getParent()->getParent();
677 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
678 FunctionCallee MallocFunc = MallocF;
679 if (!MallocFunc)
680 // prototype malloc as "void *malloc(size_t)"
681 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
682 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
683 CallInst *MCall = nullptr;
684 Instruction *Result = nullptr;
685 if (InsertBefore) {
686 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
687 InsertBefore);
688 Result = MCall;
689 if (Result->getType() != AllocPtrType)
690 // Create a cast instruction to convert to the right type...
691 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
692 } else {
693 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
694 Result = MCall;
695 if (Result->getType() != AllocPtrType) {
696 InsertAtEnd->getInstList().push_back(MCall);
697 // Create a cast instruction to convert to the right type...
698 Result = new BitCastInst(MCall, AllocPtrType, Name);
699 }
700 }
701 MCall->setTailCall();
702 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
703 MCall->setCallingConv(F->getCallingConv());
704 if (!F->returnDoesNotAlias())
705 F->setReturnDoesNotAlias();
706 }
707 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type")((void)0);
708
709 return Result;
710}
711
712/// CreateMalloc - Generate the IR for a call to malloc:
713/// 1. Compute the malloc call's argument as the specified type's size,
714/// possibly multiplied by the array size if the array size is not
715/// constant 1.
716/// 2. Call malloc with that argument.
717/// 3. Bitcast the result of the malloc call to the specified type.
718Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
719 Type *IntPtrTy, Type *AllocTy,
720 Value *AllocSize, Value *ArraySize,
721 Function *MallocF,
722 const Twine &Name) {
723 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
724 ArraySize, None, MallocF, Name);
725}
726Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
727 Type *IntPtrTy, Type *AllocTy,
728 Value *AllocSize, Value *ArraySize,
729 ArrayRef<OperandBundleDef> OpB,
730 Function *MallocF,
731 const Twine &Name) {
732 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
1
Passing null pointer value via 2nd parameter 'InsertAtEnd'
2
Calling 'createMalloc'
733 ArraySize, OpB, MallocF, Name);
734}
735
736/// CreateMalloc - Generate the IR for a call to malloc:
737/// 1. Compute the malloc call's argument as the specified type's size,
738/// possibly multiplied by the array size if the array size is not
739/// constant 1.
740/// 2. Call malloc with that argument.
741/// 3. Bitcast the result of the malloc call to the specified type.
742/// Note: This function does not add the bitcast to the basic block, that is the
743/// responsibility of the caller.
744Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
745 Type *IntPtrTy, Type *AllocTy,
746 Value *AllocSize, Value *ArraySize,
747 Function *MallocF, const Twine &Name) {
748 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
749 ArraySize, None, MallocF, Name);
750}
751Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
752 Type *IntPtrTy, Type *AllocTy,
753 Value *AllocSize, Value *ArraySize,
754 ArrayRef<OperandBundleDef> OpB,
755 Function *MallocF, const Twine &Name) {
756 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
757 ArraySize, OpB, MallocF, Name);
758}
759
760static Instruction *createFree(Value *Source,
761 ArrayRef<OperandBundleDef> Bundles,
762 Instruction *InsertBefore,
763 BasicBlock *InsertAtEnd) {
764 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&((void)0)
765 "createFree needs either InsertBefore or InsertAtEnd")((void)0);
766 assert(Source->getType()->isPointerTy() &&((void)0)
767 "Can not free something of nonpointer type!")((void)0);
768
769 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
770 Module *M = BB->getParent()->getParent();
771
772 Type *VoidTy = Type::getVoidTy(M->getContext());
773 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
774 // prototype free as "void free(void*)"
775 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
776 CallInst *Result = nullptr;
777 Value *PtrCast = Source;
778 if (InsertBefore) {
779 if (Source->getType() != IntPtrTy)
780 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
781 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
782 } else {
783 if (Source->getType() != IntPtrTy)
784 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
785 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
786 }
787 Result->setTailCall();
788 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
789 Result->setCallingConv(F->getCallingConv());
790
791 return Result;
792}
793
794/// CreateFree - Generate the IR for a call to the builtin free function.
795Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
796 return createFree(Source, None, InsertBefore, nullptr);
797}
798Instruction *CallInst::CreateFree(Value *Source,
799 ArrayRef<OperandBundleDef> Bundles,
800 Instruction *InsertBefore) {
801 return createFree(Source, Bundles, InsertBefore, nullptr);
802}
803
804/// CreateFree - Generate the IR for a call to the builtin free function.
805/// Note: This function does not add the call to the basic block, that is the
806/// responsibility of the caller.
807Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
808 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
809 assert(FreeCall && "CreateFree did not create a CallInst")((void)0);
810 return FreeCall;
811}
812Instruction *CallInst::CreateFree(Value *Source,
813 ArrayRef<OperandBundleDef> Bundles,
814 BasicBlock *InsertAtEnd) {
815 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
816 assert(FreeCall && "CreateFree did not create a CallInst")((void)0);
817 return FreeCall;
818}
819
820//===----------------------------------------------------------------------===//
821// InvokeInst Implementation
822//===----------------------------------------------------------------------===//
823
824void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
825 BasicBlock *IfException, ArrayRef<Value *> Args,
826 ArrayRef<OperandBundleDef> Bundles,
827 const Twine &NameStr) {
828 this->FTy = FTy;
829
830 assert((int)getNumOperands() ==((void)0)
831 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&((void)0)
832 "NumOperands not set up?")((void)0);
833
834#ifndef NDEBUG1
835 assert(((Args.size() == FTy->getNumParams()) ||((void)0)
836 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&((void)0)
837 "Invoking a function with bad signature")((void)0);
838
839 for (unsigned i = 0, e = Args.size(); i != e; i++)
840 assert((i >= FTy->getNumParams() ||((void)0)
841 FTy->getParamType(i) == Args[i]->getType()) &&((void)0)
842 "Invoking a function with a bad signature!")((void)0);
843#endif
844
845 // Set operands in order of their index to match use-list-order
846 // prediction.
847 llvm::copy(Args, op_begin());
848 setNormalDest(IfNormal);
849 setUnwindDest(IfException);
850 setCalledOperand(Fn);
851
852 auto It = populateBundleOperandInfos(Bundles, Args.size());
853 (void)It;
854 assert(It + 3 == op_end() && "Should add up!")((void)0);
855
856 setName(NameStr);
857}
858
859InvokeInst::InvokeInst(const InvokeInst &II)
860 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
861 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
862 II.getNumOperands()) {
863 setCallingConv(II.getCallingConv());
864 std::copy(II.op_begin(), II.op_end(), op_begin());
865 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
866 bundle_op_info_begin());
867 SubclassOptionalData = II.SubclassOptionalData;
868}
869
870InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
871 Instruction *InsertPt) {
872 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
873
874 auto *NewII = InvokeInst::Create(
875 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
876 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
877 NewII->setCallingConv(II->getCallingConv());
878 NewII->SubclassOptionalData = II->SubclassOptionalData;
879 NewII->setAttributes(II->getAttributes());
880 NewII->setDebugLoc(II->getDebugLoc());
881 return NewII;
882}
883
884LandingPadInst *InvokeInst::getLandingPadInst() const {
885 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
886}
887
888//===----------------------------------------------------------------------===//
889// CallBrInst Implementation
890//===----------------------------------------------------------------------===//
891
892void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
893 ArrayRef<BasicBlock *> IndirectDests,
894 ArrayRef<Value *> Args,
895 ArrayRef<OperandBundleDef> Bundles,
896 const Twine &NameStr) {
897 this->FTy = FTy;
898
899 assert((int)getNumOperands() ==((void)0)
900 ComputeNumOperands(Args.size(), IndirectDests.size(),((void)0)
901 CountBundleInputs(Bundles)) &&((void)0)
902 "NumOperands not set up?")((void)0);
903
904#ifndef NDEBUG1
905 assert(((Args.size() == FTy->getNumParams()) ||((void)0)
906 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&((void)0)
907 "Calling a function with bad signature")((void)0);
908
909 for (unsigned i = 0, e = Args.size(); i != e; i++)
910 assert((i >= FTy->getNumParams() ||((void)0)
911 FTy->getParamType(i) == Args[i]->getType()) &&((void)0)
912 "Calling a function with a bad signature!")((void)0);
913#endif
914
915 // Set operands in order of their index to match use-list-order
916 // prediction.
917 std::copy(Args.begin(), Args.end(), op_begin());
918 NumIndirectDests = IndirectDests.size();
919 setDefaultDest(Fallthrough);
920 for (unsigned i = 0; i != NumIndirectDests; ++i)
921 setIndirectDest(i, IndirectDests[i]);
922 setCalledOperand(Fn);
923
924 auto It = populateBundleOperandInfos(Bundles, Args.size());
925 (void)It;
926 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!")((void)0);
927
928 setName(NameStr);
929}
930
931void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
932 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr")((void)0);
933 if (BasicBlock *OldBB = getIndirectDest(i)) {
934 BlockAddress *Old = BlockAddress::get(OldBB);
935 BlockAddress *New = BlockAddress::get(B);
936 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
937 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
938 setArgOperand(ArgNo, New);
939 }
940}
941
942CallBrInst::CallBrInst(const CallBrInst &CBI)
943 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
944 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
945 CBI.getNumOperands()) {
946 setCallingConv(CBI.getCallingConv());
947 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
948 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
949 bundle_op_info_begin());
950 SubclassOptionalData = CBI.SubclassOptionalData;
951 NumIndirectDests = CBI.NumIndirectDests;
952}
953
954CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
955 Instruction *InsertPt) {
956 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
957
958 auto *NewCBI = CallBrInst::Create(
959 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
960 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
961 NewCBI->setCallingConv(CBI->getCallingConv());
962 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
963 NewCBI->setAttributes(CBI->getAttributes());
964 NewCBI->setDebugLoc(CBI->getDebugLoc());
965 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
966 return NewCBI;
967}
968
969//===----------------------------------------------------------------------===//
970// ReturnInst Implementation
971//===----------------------------------------------------------------------===//
972
973ReturnInst::ReturnInst(const ReturnInst &RI)
974 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
975 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
976 RI.getNumOperands()) {
977 if (RI.getNumOperands())
978 Op<0>() = RI.Op<0>();
979 SubclassOptionalData = RI.SubclassOptionalData;
980}
981
982ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
983 : Instruction(Type::getVoidTy(C), Instruction::Ret,
984 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
985 InsertBefore) {
986 if (retVal)
987 Op<0>() = retVal;
988}
989
990ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
991 : Instruction(Type::getVoidTy(C), Instruction::Ret,
992 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
993 InsertAtEnd) {
994 if (retVal)
995 Op<0>() = retVal;
996}
997
998ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
999 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1000 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1001
1002//===----------------------------------------------------------------------===//
1003// ResumeInst Implementation
1004//===----------------------------------------------------------------------===//
1005
1006ResumeInst::ResumeInst(const ResumeInst &RI)
1007 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1008 OperandTraits<ResumeInst>::op_begin(this), 1) {
1009 Op<0>() = RI.Op<0>();
1010}
1011
1012ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1013 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1014 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1015 Op<0>() = Exn;
1016}
1017
1018ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1019 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1020 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1021 Op<0>() = Exn;
1022}
1023
1024//===----------------------------------------------------------------------===//
1025// CleanupReturnInst Implementation
1026//===----------------------------------------------------------------------===//
1027
1028CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1029 : Instruction(CRI.getType(), Instruction::CleanupRet,
1030 OperandTraits<CleanupReturnInst>::op_end(this) -
1031 CRI.getNumOperands(),
1032 CRI.getNumOperands()) {
1033 setSubclassData<Instruction::OpaqueField>(
1034 CRI.getSubclassData<Instruction::OpaqueField>());
1035 Op<0>() = CRI.Op<0>();
1036 if (CRI.hasUnwindDest())
1037 Op<1>() = CRI.Op<1>();
1038}
1039
1040void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1041 if (UnwindBB)
1042 setSubclassData<UnwindDestField>(true);
1043
1044 Op<0>() = CleanupPad;
1045 if (UnwindBB)
1046 Op<1>() = UnwindBB;
1047}
1048
1049CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1050 unsigned Values, Instruction *InsertBefore)
1051 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1052 Instruction::CleanupRet,
1053 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1054 Values, InsertBefore) {
1055 init(CleanupPad, UnwindBB);
1056}
1057
1058CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1059 unsigned Values, BasicBlock *InsertAtEnd)
1060 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1061 Instruction::CleanupRet,
1062 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1063 Values, InsertAtEnd) {
1064 init(CleanupPad, UnwindBB);
1065}
1066
1067//===----------------------------------------------------------------------===//
1068// CatchReturnInst Implementation
1069//===----------------------------------------------------------------------===//
1070void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1071 Op<0>() = CatchPad;
1072 Op<1>() = BB;
1073}
1074
1075CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1076 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1077 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1078 Op<0>() = CRI.Op<0>();
1079 Op<1>() = CRI.Op<1>();
1080}
1081
1082CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1083 Instruction *InsertBefore)
1084 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1085 OperandTraits<CatchReturnInst>::op_begin(this), 2,
1086 InsertBefore) {
1087 init(CatchPad, BB);
1088}
1089
1090CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1091 BasicBlock *InsertAtEnd)
1092 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1093 OperandTraits<CatchReturnInst>::op_begin(this), 2,
1094 InsertAtEnd) {
1095 init(CatchPad, BB);
1096}
1097
1098//===----------------------------------------------------------------------===//
1099// CatchSwitchInst Implementation
1100//===----------------------------------------------------------------------===//
1101
1102CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1103 unsigned NumReservedValues,
1104 const Twine &NameStr,
1105 Instruction *InsertBefore)
1106 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1107 InsertBefore) {
1108 if (UnwindDest)
1109 ++NumReservedValues;
1110 init(ParentPad, UnwindDest, NumReservedValues + 1);
1111 setName(NameStr);
1112}
1113
1114CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1115 unsigned NumReservedValues,
1116 const Twine &NameStr, BasicBlock *InsertAtEnd)
1117 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1118 InsertAtEnd) {
1119 if (UnwindDest)
1120 ++NumReservedValues;
1121 init(ParentPad, UnwindDest, NumReservedValues + 1);
1122 setName(NameStr);
1123}
1124
1125CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1126 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1127 CSI.getNumOperands()) {
1128 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1129 setNumHungOffUseOperands(ReservedSpace);
1130 Use *OL = getOperandList();
1131 const Use *InOL = CSI.getOperandList();
1132 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1133 OL[I] = InOL[I];
1134}
1135
1136void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1137 unsigned NumReservedValues) {
1138 assert(ParentPad && NumReservedValues)((void)0);
1139
1140 ReservedSpace = NumReservedValues;
1141 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1142 allocHungoffUses(ReservedSpace);
1143
1144 Op<0>() = ParentPad;
1145 if (UnwindDest) {
1146 setSubclassData<UnwindDestField>(true);
1147 setUnwindDest(UnwindDest);
1148 }
1149}
1150
1151/// growOperands - grow operands - This grows the operand list in response to a
1152/// push_back style of operation. This grows the number of ops by 2 times.
1153void CatchSwitchInst::growOperands(unsigned Size) {
1154 unsigned NumOperands = getNumOperands();
1155 assert(NumOperands >= 1)((void)0);
1156 if (ReservedSpace >= NumOperands + Size)
1157 return;
1158 ReservedSpace = (NumOperands + Size / 2) * 2;
1159 growHungoffUses(ReservedSpace);
1160}
1161
1162void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1163 unsigned OpNo = getNumOperands();
1164 growOperands(1);
1165 assert(OpNo < ReservedSpace && "Growing didn't work!")((void)0);
1166 setNumHungOffUseOperands(getNumOperands() + 1);
1167 getOperandList()[OpNo] = Handler;
1168}
1169
1170void CatchSwitchInst::removeHandler(handler_iterator HI) {
1171 // Move all subsequent handlers up one.
1172 Use *EndDst = op_end() - 1;
1173 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1174 *CurDst = *(CurDst + 1);
1175 // Null out the last handler use.
1176 *EndDst = nullptr;
1177
1178 setNumHungOffUseOperands(getNumOperands() - 1);
1179}
1180
1181//===----------------------------------------------------------------------===//
1182// FuncletPadInst Implementation
1183//===----------------------------------------------------------------------===//
1184void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1185 const Twine &NameStr) {
1186 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?")((void)0);
1187 llvm::copy(Args, op_begin());
1188 setParentPad(ParentPad);
1189 setName(NameStr);
1190}
1191
1192FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1193 : Instruction(FPI.getType(), FPI.getOpcode(),
1194 OperandTraits<FuncletPadInst>::op_end(this) -
1195 FPI.getNumOperands(),
1196 FPI.getNumOperands()) {
1197 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1198 setParentPad(FPI.getParentPad());
1199}
1200
1201FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1202 ArrayRef<Value *> Args, unsigned Values,
1203 const Twine &NameStr, Instruction *InsertBefore)
1204 : Instruction(ParentPad->getType(), Op,
1205 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1206 InsertBefore) {
1207 init(ParentPad, Args, NameStr);
1208}
1209
1210FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1211 ArrayRef<Value *> Args, unsigned Values,
1212 const Twine &NameStr, BasicBlock *InsertAtEnd)
1213 : Instruction(ParentPad->getType(), Op,
1214 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1215 InsertAtEnd) {
1216 init(ParentPad, Args, NameStr);
1217}
1218
1219//===----------------------------------------------------------------------===//
1220// UnreachableInst Implementation
1221//===----------------------------------------------------------------------===//
1222
1223UnreachableInst::UnreachableInst(LLVMContext &Context,
1224 Instruction *InsertBefore)
1225 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1226 0, InsertBefore) {}
1227UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1228 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1229 0, InsertAtEnd) {}
1230
1231//===----------------------------------------------------------------------===//
1232// BranchInst Implementation
1233//===----------------------------------------------------------------------===//
1234
1235void BranchInst::AssertOK() {
1236 if (isConditional())
1237 assert(getCondition()->getType()->isIntegerTy(1) &&((void)0)
1238 "May only branch on boolean predicates!")((void)0);
1239}
1240
1241BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1242 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1243 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1244 InsertBefore) {
1245 assert(IfTrue && "Branch destination may not be null!")((void)0);
1246 Op<-1>() = IfTrue;
1247}
1248
1249BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1250 Instruction *InsertBefore)
1251 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1252 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1253 InsertBefore) {
1254 // Assign in order of operand index to make use-list order predictable.
1255 Op<-3>() = Cond;
1256 Op<-2>() = IfFalse;
1257 Op<-1>() = IfTrue;
1258#ifndef NDEBUG1
1259 AssertOK();
1260#endif
1261}
1262
1263BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1264 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1265 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1266 assert(IfTrue && "Branch destination may not be null!")((void)0);
1267 Op<-1>() = IfTrue;
1268}
1269
1270BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1271 BasicBlock *InsertAtEnd)
1272 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1273 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1274 // Assign in order of operand index to make use-list order predictable.
1275 Op<-3>() = Cond;
1276 Op<-2>() = IfFalse;
1277 Op<-1>() = IfTrue;
1278#ifndef NDEBUG1
1279 AssertOK();
1280#endif
1281}
1282
1283BranchInst::BranchInst(const BranchInst &BI)
1284 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1285 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1286 BI.getNumOperands()) {
1287 // Assign in order of operand index to make use-list order predictable.
1288 if (BI.getNumOperands() != 1) {
1289 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!")((void)0);
1290 Op<-3>() = BI.Op<-3>();
1291 Op<-2>() = BI.Op<-2>();
1292 }
1293 Op<-1>() = BI.Op<-1>();
1294 SubclassOptionalData = BI.SubclassOptionalData;
1295}
1296
1297void BranchInst::swapSuccessors() {
1298 assert(isConditional() &&((void)0)
1299 "Cannot swap successors of an unconditional branch")((void)0);
1300 Op<-1>().swap(Op<-2>());
1301
1302 // Update profile metadata if present and it matches our structural
1303 // expectations.
1304 swapProfMetadata();
1305}
1306
1307//===----------------------------------------------------------------------===//
1308// AllocaInst Implementation
1309//===----------------------------------------------------------------------===//
1310
1311static Value *getAISize(LLVMContext &Context, Value *Amt) {
1312 if (!Amt)
1313 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1314 else {
1315 assert(!isa<BasicBlock>(Amt) &&((void)0)
1316 "Passed basic block into allocation size parameter! Use other ctor")((void)0);
1317 assert(Amt->getType()->isIntegerTy() &&((void)0)
1318 "Allocation array size is not an integer!")((void)0);
1319 }
1320 return Amt;
1321}
1322
1323static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1324 assert(BB && "Insertion BB cannot be null when alignment not provided!")((void)0);
1325 assert(BB->getParent() &&((void)0)
1326 "BB must be in a Function when alignment not provided!")((void)0);
1327 const DataLayout &DL = BB->getModule()->getDataLayout();
1328 return DL.getPrefTypeAlign(Ty);
1329}
1330
1331static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1332 assert(I && "Insertion position cannot be null when alignment not provided!")((void)0);
1333 return computeAllocaDefaultAlign(Ty, I->getParent());
1334}
1335
1336AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1337 Instruction *InsertBefore)
1338 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1339
1340AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1341 BasicBlock *InsertAtEnd)
1342 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1343
1344AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1345 const Twine &Name, Instruction *InsertBefore)
1346 : AllocaInst(Ty, AddrSpace, ArraySize,
1347 computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1348 InsertBefore) {}
1349
1350AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1351 const Twine &Name, BasicBlock *InsertAtEnd)
1352 : AllocaInst(Ty, AddrSpace, ArraySize,
1353 computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1354 InsertAtEnd) {}
1355
1356AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1357 Align Align, const Twine &Name,
1358 Instruction *InsertBefore)
1359 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1360 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1361 AllocatedType(Ty) {
1362 setAlignment(Align);
1363 assert(!Ty->isVoidTy() && "Cannot allocate void!")((void)0);
1364 setName(Name);
1365}
1366
1367AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1368 Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1369 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1370 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1371 AllocatedType(Ty) {
1372 setAlignment(Align);
1373 assert(!Ty->isVoidTy() && "Cannot allocate void!")((void)0);
1374 setName(Name);
1375}
1376
1377
1378bool AllocaInst::isArrayAllocation() const {
1379 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1380 return !CI->isOne();
1381 return true;
1382}
1383
1384/// isStaticAlloca - Return true if this alloca is in the entry block of the
1385/// function and is a constant size. If so, the code generator will fold it
1386/// into the prolog/epilog code, so it is basically free.
1387bool AllocaInst::isStaticAlloca() const {
1388 // Must be constant size.
1389 if (!isa<ConstantInt>(getArraySize())) return false;
1390
1391 // Must be in the entry block.
1392 const BasicBlock *Parent = getParent();
1393 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1394}
1395
1396//===----------------------------------------------------------------------===//
1397// LoadInst Implementation
1398//===----------------------------------------------------------------------===//
1399
1400void LoadInst::AssertOK() {
1401 assert(getOperand(0)->getType()->isPointerTy() &&((void)0)
1402 "Ptr must have pointer type.")((void)0);
1403 assert(!(isAtomic() && getAlignment() == 0) &&((void)0)
1404 "Alignment required for atomic load")((void)0);
1405}
1406
1407static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1408 assert(BB && "Insertion BB cannot be null when alignment not provided!")((void)0);
1409 assert(BB->getParent() &&((void)0)
1410 "BB must be in a Function when alignment not provided!")((void)0);
1411 const DataLayout &DL = BB->getModule()->getDataLayout();
1412 return DL.getABITypeAlign(Ty);
1413}
1414
1415static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1416 assert(I && "Insertion position cannot be null when alignment not provided!")((void)0);
1417 return computeLoadStoreDefaultAlign(Ty, I->getParent());
1418}
1419
1420LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1421 Instruction *InsertBef)
1422 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1423
1424LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1425 BasicBlock *InsertAE)
1426 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1427
1428LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1429 Instruction *InsertBef)
1430 : LoadInst(Ty, Ptr, Name, isVolatile,
1431 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1432
1433LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1434 BasicBlock *InsertAE)
1435 : LoadInst(Ty, Ptr, Name, isVolatile,
1436 computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1437
1438LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1439 Align Align, Instruction *InsertBef)
1440 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1441 SyncScope::System, InsertBef) {}
1442
1443LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1444 Align Align, BasicBlock *InsertAE)
1445 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1446 SyncScope::System, InsertAE) {}
1447
1448LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1449 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1450 Instruction *InsertBef)
1451 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1452 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty))((void)0);
1453 setVolatile(isVolatile);
1454 setAlignment(Align);
1455 setAtomic(Order, SSID);
1456 AssertOK();
1457 setName(Name);
1458}
1459
1460LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1461 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1462 BasicBlock *InsertAE)
1463 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1464 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty))((void)0);
1465 setVolatile(isVolatile);
1466 setAlignment(Align);
1467 setAtomic(Order, SSID);
1468 AssertOK();
1469 setName(Name);
1470}
1471
1472//===----------------------------------------------------------------------===//
1473// StoreInst Implementation
1474//===----------------------------------------------------------------------===//
1475
1476void StoreInst::AssertOK() {
1477 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!")((void)0);
1478 assert(getOperand(1)->getType()->isPointerTy() &&((void)0)
1479 "Ptr must have pointer type!")((void)0);
1480 assert(cast<PointerType>(getOperand(1)->getType())((void)0)
1481 ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&((void)0)
1482 "Ptr must be a pointer to Val type!")((void)0);
1483 assert(!(isAtomic() && getAlignment() == 0) &&((void)0)
1484 "Alignment required for atomic store")((void)0);
1485}
1486
1487StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1488 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1489
1490StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1491 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1492
1493StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1494 Instruction *InsertBefore)
1495 : StoreInst(val, addr, isVolatile,
1496 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1497 InsertBefore) {}
1498
1499StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1500 BasicBlock *InsertAtEnd)
1501 : StoreInst(val, addr, isVolatile,
1502 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1503 InsertAtEnd) {}
1504
1505StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1506 Instruction *InsertBefore)
1507 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1508 SyncScope::System, InsertBefore) {}
1509
1510StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1511 BasicBlock *InsertAtEnd)
1512 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1513 SyncScope::System, InsertAtEnd) {}
1514
1515StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1516 AtomicOrdering Order, SyncScope::ID SSID,
1517 Instruction *InsertBefore)
1518 : Instruction(Type::getVoidTy(val->getContext()), Store,
1519 OperandTraits<StoreInst>::op_begin(this),
1520 OperandTraits<StoreInst>::operands(this), InsertBefore) {
1521 Op<0>() = val;
1522 Op<1>() = addr;
1523 setVolatile(isVolatile);
1524 setAlignment(Align);
1525 setAtomic(Order, SSID);
1526 AssertOK();
1527}
1528
1529StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1530 AtomicOrdering Order, SyncScope::ID SSID,
1531 BasicBlock *InsertAtEnd)
1532 : Instruction(Type::getVoidTy(val->getContext()), Store,
1533 OperandTraits<StoreInst>::op_begin(this),
1534 OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1535 Op<0>() = val;
1536 Op<1>() = addr;
1537 setVolatile(isVolatile);
1538 setAlignment(Align);
1539 setAtomic(Order, SSID);
1540 AssertOK();
1541}
1542
1543
1544//===----------------------------------------------------------------------===//
1545// AtomicCmpXchgInst Implementation
1546//===----------------------------------------------------------------------===//
1547
1548void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1549 Align Alignment, AtomicOrdering SuccessOrdering,
1550 AtomicOrdering FailureOrdering,
1551 SyncScope::ID SSID) {
1552 Op<0>() = Ptr;
1553 Op<1>() = Cmp;
1554 Op<2>() = NewVal;
1555 setSuccessOrdering(SuccessOrdering);
1556 setFailureOrdering(FailureOrdering);
1557 setSyncScopeID(SSID);
1558 setAlignment(Alignment);
1559
1560 assert(getOperand(0) && getOperand(1) && getOperand(2) &&((void)0)
1561 "All operands must be non-null!")((void)0);
1562 assert(getOperand(0)->getType()->isPointerTy() &&((void)0)
1563 "Ptr must have pointer type!")((void)0);
1564 assert(cast<PointerType>(getOperand(0)->getType())((void)0)
1565 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&((void)0)
1566 "Ptr must be a pointer to Cmp type!")((void)0);
1567 assert(cast<PointerType>(getOperand(0)->getType())((void)0)
1568 ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&((void)0)
1569 "Ptr must be a pointer to NewVal type!")((void)0);
1570 assert(getOperand(1)->getType() == getOperand(2)->getType() &&((void)0)
1571 "Cmp type and NewVal type must be same!")((void)0);
1572}
1573
1574AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1575 Align Alignment,
1576 AtomicOrdering SuccessOrdering,
1577 AtomicOrdering FailureOrdering,
1578 SyncScope::ID SSID,
1579 Instruction *InsertBefore)
1580 : Instruction(
1581 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1582 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1583 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1584 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1585}
1586
1587AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1588 Align Alignment,
1589 AtomicOrdering SuccessOrdering,
1590 AtomicOrdering FailureOrdering,
1591 SyncScope::ID SSID,
1592 BasicBlock *InsertAtEnd)
1593 : Instruction(
1594 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1595 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1596 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1597 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1598}
1599
1600//===----------------------------------------------------------------------===//
1601// AtomicRMWInst Implementation
1602//===----------------------------------------------------------------------===//
1603
1604void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1605 Align Alignment, AtomicOrdering Ordering,
1606 SyncScope::ID SSID) {
1607 Op<0>() = Ptr;
1608 Op<1>() = Val;
1609 setOperation(Operation);
1610 setOrdering(Ordering);
1611 setSyncScopeID(SSID);
1612 setAlignment(Alignment);
1613
1614 assert(getOperand(0) && getOperand(1) &&((void)0)
1615 "All operands must be non-null!")((void)0);
1616 assert(getOperand(0)->getType()->isPointerTy() &&((void)0)
1617 "Ptr must have pointer type!")((void)0);
1618 assert(cast<PointerType>(getOperand(0)->getType())((void)0)
1619 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&((void)0)
1620 "Ptr must be a pointer to Val type!")((void)0);
1621 assert(Ordering != AtomicOrdering::NotAtomic &&((void)0)
1622 "AtomicRMW instructions must be atomic!")((void)0);
1623}
1624
1625AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1626 Align Alignment, AtomicOrdering Ordering,
1627 SyncScope::ID SSID, Instruction *InsertBefore)
1628 : Instruction(Val->getType(), AtomicRMW,
1629 OperandTraits<AtomicRMWInst>::op_begin(this),
1630 OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1631 Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1632}
1633
1634AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1635 Align Alignment, AtomicOrdering Ordering,
1636 SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1637 : Instruction(Val->getType(), AtomicRMW,
1638 OperandTraits<AtomicRMWInst>::op_begin(this),
1639 OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1640 Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1641}
1642
1643StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1644 switch (Op) {
1645 case AtomicRMWInst::Xchg:
1646 return "xchg";
1647 case AtomicRMWInst::Add:
1648 return "add";
1649 case AtomicRMWInst::Sub:
1650 return "sub";
1651 case AtomicRMWInst::And:
1652 return "and";
1653 case AtomicRMWInst::Nand:
1654 return "nand";
1655 case AtomicRMWInst::Or:
1656 return "or";
1657 case AtomicRMWInst::Xor:
1658 return "xor";
1659 case AtomicRMWInst::Max:
1660 return "max";
1661 case AtomicRMWInst::Min:
1662 return "min";
1663 case AtomicRMWInst::UMax:
1664 return "umax";
1665 case AtomicRMWInst::UMin:
1666 return "umin";
1667 case AtomicRMWInst::FAdd:
1668 return "fadd";
1669 case AtomicRMWInst::FSub:
1670 return "fsub";
1671 case AtomicRMWInst::BAD_BINOP:
1672 return "<invalid operation>";
1673 }
1674
1675 llvm_unreachable("invalid atomicrmw operation")__builtin_unreachable();
1676}
1677
1678//===----------------------------------------------------------------------===//
1679// FenceInst Implementation
1680//===----------------------------------------------------------------------===//
1681
1682FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1683 SyncScope::ID SSID,
1684 Instruction *InsertBefore)
1685 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1686 setOrdering(Ordering);
1687 setSyncScopeID(SSID);
1688}
1689
1690FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1691 SyncScope::ID SSID,
1692 BasicBlock *InsertAtEnd)
1693 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1694 setOrdering(Ordering);
1695 setSyncScopeID(SSID);
1696}
1697
1698//===----------------------------------------------------------------------===//
1699// GetElementPtrInst Implementation
1700//===----------------------------------------------------------------------===//
1701
1702void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1703 const Twine &Name) {
1704 assert(getNumOperands() == 1 + IdxList.size() &&((void)0)
1705 "NumOperands not initialized?")((void)0);
1706 Op<0>() = Ptr;
1707 llvm::copy(IdxList, op_begin() + 1);
1708 setName(Name);
1709}
1710
1711GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1712 : Instruction(GEPI.getType(), GetElementPtr,
1713 OperandTraits<GetElementPtrInst>::op_end(this) -
1714 GEPI.getNumOperands(),
1715 GEPI.getNumOperands()),
1716 SourceElementType(GEPI.SourceElementType),
1717 ResultElementType(GEPI.ResultElementType) {
1718 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1719 SubclassOptionalData = GEPI.SubclassOptionalData;
1720}
1721
1722Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1723 if (auto *Struct = dyn_cast<StructType>(Ty)) {
1724 if (!Struct->indexValid(Idx))
1725 return nullptr;
1726 return Struct->getTypeAtIndex(Idx);
1727 }
1728 if (!Idx->getType()->isIntOrIntVectorTy())
1729 return nullptr;
1730 if (auto *Array = dyn_cast<ArrayType>(Ty))
1731 return Array->getElementType();
1732 if (auto *Vector = dyn_cast<VectorType>(Ty))
1733 return Vector->getElementType();
1734 return nullptr;
1735}
1736
1737Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1738 if (auto *Struct = dyn_cast<StructType>(Ty)) {
1739 if (Idx >= Struct->getNumElements())
1740 return nullptr;
1741 return Struct->getElementType(Idx);
1742 }
1743 if (auto *Array = dyn_cast<ArrayType>(Ty))
1744 return Array->getElementType();
1745 if (auto *Vector = dyn_cast<VectorType>(Ty))
1746 return Vector->getElementType();
1747 return nullptr;
1748}
1749
1750template <typename IndexTy>
1751static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1752 if (IdxList.empty())
1753 return Ty;
1754 for (IndexTy V : IdxList.slice(1)) {
1755 Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1756 if (!Ty)
1757 return Ty;
1758 }
1759 return Ty;
1760}
1761
1762Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1763 return getIndexedTypeInternal(Ty, IdxList);
1764}
1765
1766Type *GetElementPtrInst::getIndexedType(Type *Ty,
1767 ArrayRef<Constant *> IdxList) {
1768 return getIndexedTypeInternal(Ty, IdxList);
1769}
1770
1771Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1772 return getIndexedTypeInternal(Ty, IdxList);
1773}
1774
1775/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1776/// zeros. If so, the result pointer and the first operand have the same
1777/// value, just potentially different types.
1778bool GetElementPtrInst::hasAllZeroIndices() const {
1779 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1780 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1781 if (!CI->isZero()) return false;
1782 } else {
1783 return false;
1784 }
1785 }
1786 return true;
1787}
1788
1789/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1790/// constant integers. If so, the result pointer and the first operand have
1791/// a constant offset between them.
1792bool GetElementPtrInst::hasAllConstantIndices() const {
1793 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1794 if (!isa<ConstantInt>(getOperand(i)))
1795 return false;
1796 }
1797 return true;
1798}
1799
1800void GetElementPtrInst::setIsInBounds(bool B) {
1801 cast<GEPOperator>(this)->setIsInBounds(B);
1802}
1803
1804bool GetElementPtrInst::isInBounds() const {
1805 return cast<GEPOperator>(this)->isInBounds();
1806}
1807
1808bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1809 APInt &Offset) const {
1810 // Delegate to the generic GEPOperator implementation.
1811 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1812}
1813
1814bool GetElementPtrInst::collectOffset(
1815 const DataLayout &DL, unsigned BitWidth,
1816 MapVector<Value *, APInt> &VariableOffsets,
1817 APInt &ConstantOffset) const {
1818 // Delegate to the generic GEPOperator implementation.
1819 return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1820 ConstantOffset);
1821}
1822
1823//===----------------------------------------------------------------------===//
1824// ExtractElementInst Implementation
1825//===----------------------------------------------------------------------===//
1826
1827ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1828 const Twine &Name,
1829 Instruction *InsertBef)
1830 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1831 ExtractElement,
1832 OperandTraits<ExtractElementInst>::op_begin(this),
1833 2, InsertBef) {
1834 assert(isValidOperands(Val, Index) &&((void)0)
1835 "Invalid extractelement instruction operands!")((void)0);
1836 Op<0>() = Val;
1837 Op<1>() = Index;
1838 setName(Name);
1839}
1840
1841ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1842 const Twine &Name,
1843 BasicBlock *InsertAE)
1844 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1845 ExtractElement,
1846 OperandTraits<ExtractElementInst>::op_begin(this),
1847 2, InsertAE) {
1848 assert(isValidOperands(Val, Index) &&((void)0)
1849 "Invalid extractelement instruction operands!")((void)0);
1850
1851 Op<0>() = Val;
1852 Op<1>() = Index;
1853 setName(Name);
1854}
1855
1856bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1857 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1858 return false;
1859 return true;
1860}
1861
1862//===----------------------------------------------------------------------===//
1863// InsertElementInst Implementation
1864//===----------------------------------------------------------------------===//
1865
1866InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1867 const Twine &Name,
1868 Instruction *InsertBef)
1869 : Instruction(Vec->getType(), InsertElement,
1870 OperandTraits<InsertElementInst>::op_begin(this),
1871 3, InsertBef) {
1872 assert(isValidOperands(Vec, Elt, Index) &&((void)0)
1873 "Invalid insertelement instruction operands!")((void)0);
1874 Op<0>() = Vec;
1875 Op<1>() = Elt;
1876 Op<2>() = Index;
1877 setName(Name);
1878}
1879
1880InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1881 const Twine &Name,
1882 BasicBlock *InsertAE)
1883 : Instruction(Vec->getType(), InsertElement,
1884 OperandTraits<InsertElementInst>::op_begin(this),
1885 3, InsertAE) {
1886 assert(isValidOperands(Vec, Elt, Index) &&((void)0)
1887 "Invalid insertelement instruction operands!")((void)0);
1888
1889 Op<0>() = Vec;
1890 Op<1>() = Elt;
1891 Op<2>() = Index;
1892 setName(Name);
1893}
1894
1895bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1896 const Value *Index) {
1897 if (!Vec->getType()->isVectorTy())
1898 return false; // First operand of insertelement must be vector type.
1899
1900 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1901 return false;// Second operand of insertelement must be vector element type.
1902
1903 if (!Index->getType()->isIntegerTy())
1904 return false; // Third operand of insertelement must be i32.
1905 return true;
1906}
1907
1908//===----------------------------------------------------------------------===//
1909// ShuffleVectorInst Implementation
1910//===----------------------------------------------------------------------===//
1911
1912ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1913 const Twine &Name,
1914 Instruction *InsertBefore)
1915 : Instruction(
1916 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1917 cast<VectorType>(Mask->getType())->getElementCount()),
1918 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1919 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1920 assert(isValidOperands(V1, V2, Mask) &&((void)0)
1921 "Invalid shuffle vector instruction operands!")((void)0);
1922
1923 Op<0>() = V1;
1924 Op<1>() = V2;
1925 SmallVector<int, 16> MaskArr;
1926 getShuffleMask(cast<Constant>(Mask), MaskArr);
1927 setShuffleMask(MaskArr);
1928 setName(Name);
1929}
1930
1931ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1932 const Twine &Name, BasicBlock *InsertAtEnd)
1933 : Instruction(
1934 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1935 cast<VectorType>(Mask->getType())->getElementCount()),
1936 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1937 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1938 assert(isValidOperands(V1, V2, Mask) &&((void)0)
1939 "Invalid shuffle vector instruction operands!")((void)0);
1940
1941 Op<0>() = V1;
1942 Op<1>() = V2;
1943 SmallVector<int, 16> MaskArr;
1944 getShuffleMask(cast<Constant>(Mask), MaskArr);
1945 setShuffleMask(MaskArr);
1946 setName(Name);
1947}
1948
1949ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1950 const Twine &Name,
1951 Instruction *InsertBefore)
1952 : Instruction(
1953 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1954 Mask.size(), isa<ScalableVectorType>(V1->getType())),
1955 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1956 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1957 assert(isValidOperands(V1, V2, Mask) &&((void)0)
1958 "Invalid shuffle vector instruction operands!")((void)0);
1959 Op<0>() = V1;
1960 Op<1>() = V2;
1961 setShuffleMask(Mask);
1962 setName(Name);
1963}
1964
1965ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1966 const Twine &Name, BasicBlock *InsertAtEnd)
1967 : Instruction(
1968 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1969 Mask.size(), isa<ScalableVectorType>(V1->getType())),
1970 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1971 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1972 assert(isValidOperands(V1, V2, Mask) &&((void)0)
1973 "Invalid shuffle vector instruction operands!")((void)0);
1974
1975 Op<0>() = V1;
1976 Op<1>() = V2;
1977 setShuffleMask(Mask);
1978 setName(Name);
1979}
1980
1981void ShuffleVectorInst::commute() {
1982 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1983 int NumMaskElts = ShuffleMask.size();
1984 SmallVector<int, 16> NewMask(NumMaskElts);
1985 for (int i = 0; i != NumMaskElts; ++i) {
1986 int MaskElt = getMaskValue(i);
1987 if (MaskElt == UndefMaskElem) {
1988 NewMask[i] = UndefMaskElem;
1989 continue;
1990 }
1991 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask")((void)0);
1992 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1993 NewMask[i] = MaskElt;
1994 }
1995 setShuffleMask(NewMask);
1996 Op<0>().swap(Op<1>());
1997}
1998
1999bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2000 ArrayRef<int> Mask) {
2001 // V1 and V2 must be vectors of the same type.
2002 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2003 return false;
2004
2005 // Make sure the mask elements make sense.
2006 int V1Size =
2007 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2008 for (int Elem : Mask)
2009 if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2010 return false;
2011
2012 if (isa<ScalableVectorType>(V1->getType()))
2013 if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2014 return false;
2015
2016 return true;
2017}
2018
2019bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2020 const Value *Mask) {
2021 // V1 and V2 must be vectors of the same type.
2022 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2023 return false;
2024
2025 // Mask must be vector of i32, and must be the same kind of vector as the
2026 // input vectors
2027 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2028 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2029 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2030 return false;
2031
2032 // Check to see if Mask is valid.
2033 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2034 return true;
2035
2036 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2037 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2038 for (Value *Op : MV->operands()) {
2039 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2040 if (CI->uge(V1Size*2))
2041 return false;
2042 } else if (!isa<UndefValue>(Op)) {
2043 return false;
2044 }
2045 }
2046 return true;
2047 }
2048
2049 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2050 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2051 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2052 i != e; ++i)
2053 if (CDS->getElementAsInteger(i) >= V1Size*2)
2054 return false;
2055 return true;
2056 }
2057
2058 return false;
2059}
2060
2061void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2062 SmallVectorImpl<int> &Result) {
2063 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2064
2065 if (isa<ConstantAggregateZero>(Mask)) {
2066 Result.resize(EC.getKnownMinValue(), 0);
2067 return;
2068 }
2069
2070 Result.reserve(EC.getKnownMinValue());
2071
2072 if (EC.isScalable()) {
2073 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&((void)0)
2074 "Scalable vector shuffle mask must be undef or zeroinitializer")((void)0);
2075 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2076 for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2077 Result.emplace_back(MaskVal);
2078 return;
2079 }
2080
2081 unsigned NumElts = EC.getKnownMinValue();
2082
2083 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2084 for (unsigned i = 0; i != NumElts; ++i)
2085 Result.push_back(CDS->getElementAsInteger(i));
2086 return;
2087 }
2088 for (unsigned i = 0; i != NumElts; ++i) {
2089 Constant *C = Mask->getAggregateElement(i);
2090 Result.push_back(isa<UndefValue>(C) ? -1 :
2091 cast<ConstantInt>(C)->getZExtValue());
2092 }
2093}
2094
2095void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2096 ShuffleMask.assign(Mask.begin(), Mask.end());
2097 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2098}
2099
2100Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2101 Type *ResultTy) {
2102 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2103 if (isa<ScalableVectorType>(ResultTy)) {
2104 assert(is_splat(Mask) && "Unexpected shuffle")((void)0);
2105 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2106 if (Mask[0] == 0)
2107 return Constant::getNullValue(VecTy);
2108 return UndefValue::get(VecTy);
2109 }
2110 SmallVector<Constant *, 16> MaskConst;
2111 for (int Elem : Mask) {
2112 if (Elem == UndefMaskElem)
2113 MaskConst.push_back(UndefValue::get(Int32Ty));
2114 else
2115 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2116 }
2117 return ConstantVector::get(MaskConst);
2118}
2119
2120static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2121 assert(!Mask.empty() && "Shuffle mask must contain elements")((void)0);
2122 bool UsesLHS = false;
2123 bool UsesRHS = false;
2124 for (int I : Mask) {
2125 if (I == -1)
2126 continue;
2127 assert(I >= 0 && I < (NumOpElts * 2) &&((void)0)
2128 "Out-of-bounds shuffle mask element")((void)0);
2129 UsesLHS |= (I < NumOpElts);
2130 UsesRHS |= (I >= NumOpElts);
2131 if (UsesLHS && UsesRHS)
2132 return false;
2133 }
2134 // Allow for degenerate case: completely undef mask means neither source is used.
2135 return UsesLHS || UsesRHS;
2136}
2137
2138bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2139 // We don't have vector operand size information, so assume operands are the
2140 // same size as the mask.
2141 return isSingleSourceMaskImpl(Mask, Mask.size());
2142}
2143
2144static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2145 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2146 return false;
2147 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2148 if (Mask[i] == -1)
2149 continue;
2150 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2151 return false;
2152 }
2153 return true;
2154}
2155
2156bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2157 // We don't have vector operand size information, so assume operands are the
2158 // same size as the mask.
2159 return isIdentityMaskImpl(Mask, Mask.size());
2160}
2161
2162bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2163 if (!isSingleSourceMask(Mask))
2164 return false;
2165 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2166 if (Mask[i] == -1)
2167 continue;
2168 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2169 return false;
2170 }
2171 return true;
2172}
2173
2174bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2175 if (!isSingleSourceMask(Mask))
2176 return false;
2177 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2178 if (Mask[i] == -1)
2179 continue;
2180 if (Mask[i] != 0 && Mask[i] != NumElts)
2181 return false;
2182 }
2183 return true;
2184}
2185
2186bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2187 // Select is differentiated from identity. It requires using both sources.
2188 if (isSingleSourceMask(Mask))
2189 return false;
2190 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2191 if (Mask[i] == -1)
2192 continue;
2193 if (Mask[i] != i && Mask[i] != (NumElts + i))
2194 return false;
2195 }
2196 return true;
2197}
2198
2199bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2200 // Example masks that will return true:
2201 // v1 = <a, b, c, d>
2202 // v2 = <e, f, g, h>
2203 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2204 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2205
2206 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2207 int NumElts = Mask.size();
2208 if (NumElts < 2 || !isPowerOf2_32(NumElts))
2209 return false;
2210
2211 // 2. The first element of the mask must be either a 0 or a 1.
2212 if (Mask[0] != 0 && Mask[0] != 1)
2213 return false;
2214
2215 // 3. The difference between the first 2 elements must be equal to the
2216 // number of elements in the mask.
2217 if ((Mask[1] - Mask[0]) != NumElts)
2218 return false;
2219
2220 // 4. The difference between consecutive even-numbered and odd-numbered
2221 // elements must be equal to 2.
2222 for (int i = 2; i < NumElts; ++i) {
2223 int MaskEltVal = Mask[i];
2224 if (MaskEltVal == -1)
2225 return false;
2226 int MaskEltPrevVal = Mask[i - 2];
2227 if (MaskEltVal - MaskEltPrevVal != 2)
2228 return false;
2229 }
2230 return true;
2231}
2232
2233bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2234 int NumSrcElts, int &Index) {
2235 // Must extract from a single source.
2236 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2237 return false;
2238
2239 // Must be smaller (else this is an Identity shuffle).
2240 if (NumSrcElts <= (int)Mask.size())
2241 return false;
2242
2243 // Find start of extraction, accounting that we may start with an UNDEF.
2244 int SubIndex = -1;
2245 for (int i = 0, e = Mask.size(); i != e; ++i) {
2246 int M = Mask[i];
2247 if (M < 0)
2248 continue;
2249 int Offset = (M % NumSrcElts) - i;
2250 if (0 <= SubIndex && SubIndex != Offset)
2251 return false;
2252 SubIndex = Offset;
2253 }
2254
2255 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2256 Index = SubIndex;
2257 return true;
2258 }
2259 return false;
2260}
2261
2262bool ShuffleVectorInst::isIdentityWithPadding() const {
2263 if (isa<UndefValue>(Op<2>()))
2264 return false;
2265
2266 // FIXME: Not currently possible to express a shuffle mask for a scalable
2267 // vector for this case.
2268 if (isa<ScalableVectorType>(getType()))
2269 return false;
2270
2271 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2272 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2273 if (NumMaskElts <= NumOpElts)
2274 return false;
2275
2276 // The first part of the mask must choose elements from exactly 1 source op.
2277 ArrayRef<int> Mask = getShuffleMask();
2278 if (!isIdentityMaskImpl(Mask, NumOpElts))
2279 return false;
2280
2281 // All extending must be with undef elements.
2282 for (int i = NumOpElts; i < NumMaskElts; ++i)
2283 if (Mask[i] != -1)
2284 return false;
2285
2286 return true;
2287}
2288
2289bool ShuffleVectorInst::isIdentityWithExtract() const {
2290 if (isa<UndefValue>(Op<2>()))
2291 return false;
2292
2293 // FIXME: Not currently possible to express a shuffle mask for a scalable
2294 // vector for this case.
2295 if (isa<ScalableVectorType>(getType()))
2296 return false;
2297
2298 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2299 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2300 if (NumMaskElts >= NumOpElts)
2301 return false;
2302
2303 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2304}
2305
2306bool ShuffleVectorInst::isConcat() const {
2307 // Vector concatenation is differentiated from identity with padding.
2308 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2309 isa<UndefValue>(Op<2>()))
2310 return false;
2311
2312 // FIXME: Not currently possible to express a shuffle mask for a scalable
2313 // vector for this case.
2314 if (isa<ScalableVectorType>(getType()))
2315 return false;
2316
2317 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2318 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2319 if (NumMaskElts != NumOpElts * 2)
2320 return false;
2321
2322 // Use the mask length rather than the operands' vector lengths here. We
2323 // already know that the shuffle returns a vector twice as long as the inputs,
2324 // and neither of the inputs are undef vectors. If the mask picks consecutive
2325 // elements from both inputs, then this is a concatenation of the inputs.
2326 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2327}
2328
2329//===----------------------------------------------------------------------===//
2330// InsertValueInst Class
2331//===----------------------------------------------------------------------===//
2332
2333void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2334 const Twine &Name) {
2335 assert(getNumOperands() == 2 && "NumOperands not initialized?")((void)0);
2336
2337 // There's no fundamental reason why we require at least one index
2338 // (other than weirdness with &*IdxBegin being invalid; see
2339 // getelementptr's init routine for example). But there's no
2340 // present need to support it.
2341 assert(!Idxs.empty() && "InsertValueInst must have at least one index")((void)0);
2342
2343 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==((void)0)
2344 Val->getType() && "Inserted value must match indexed type!")((void)0);
2345 Op<0>() = Agg;
2346 Op<1>() = Val;
2347
2348 Indices.append(Idxs.begin(), Idxs.end());
2349 setName(Name);
2350}
2351
2352InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2353 : Instruction(IVI.getType(), InsertValue,
2354 OperandTraits<InsertValueInst>::op_begin(this), 2),
2355 Indices(IVI.Indices) {
2356 Op<0>() = IVI.getOperand(0);
2357 Op<1>() = IVI.getOperand(1);
2358 SubclassOptionalData = IVI.SubclassOptionalData;
2359}
2360
2361//===----------------------------------------------------------------------===//
2362// ExtractValueInst Class
2363//===----------------------------------------------------------------------===//
2364
2365void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2366 assert(getNumOperands() == 1 && "NumOperands not initialized?")((void)0);
2367
2368 // There's no fundamental reason why we require at least one index.
2369 // But there's no present need to support it.
2370 assert(!Idxs.empty() && "ExtractValueInst must have at least one index")((void)0);
2371
2372 Indices.append(Idxs.begin(), Idxs.end());
2373 setName(Name);
2374}
2375
2376ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2377 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2378 Indices(EVI.Indices) {
2379 SubclassOptionalData = EVI.SubclassOptionalData;
2380}
2381
2382// getIndexedType - Returns the type of the element that would be extracted
2383// with an extractvalue instruction with the specified parameters.
2384//
2385// A null type is returned if the indices are invalid for the specified
2386// pointer type.
2387//
2388Type *ExtractValueInst::getIndexedType(Type *Agg,
2389 ArrayRef<unsigned> Idxs) {
2390 for (unsigned Index : Idxs) {
2391 // We can't use CompositeType::indexValid(Index) here.
2392 // indexValid() always returns true for arrays because getelementptr allows
2393 // out-of-bounds indices. Since we don't allow those for extractvalue and
2394 // insertvalue we need to check array indexing manually.
2395 // Since the only other types we can index into are struct types it's just
2396 // as easy to check those manually as well.
2397 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2398 if (Index >= AT->getNumElements())
2399 return nullptr;
2400 Agg = AT->getElementType();
2401 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2402 if (Index >= ST->getNumElements())
2403 return nullptr;
2404 Agg = ST->getElementType(Index);
2405 } else {
2406 // Not a valid type to index into.
2407 return nullptr;
2408 }
2409 }
2410 return const_cast<Type*>(Agg);
2411}
2412
2413//===----------------------------------------------------------------------===//
2414// UnaryOperator Class
2415//===----------------------------------------------------------------------===//
2416
2417UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2418 Type *Ty, const Twine &Name,
2419 Instruction *InsertBefore)
2420 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2421 Op<0>() = S;
2422 setName(Name);
2423 AssertOK();
2424}
2425
2426UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2427 Type *Ty, const Twine &Name,
2428 BasicBlock *InsertAtEnd)
2429 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2430 Op<0>() = S;
2431 setName(Name);
2432 AssertOK();
2433}
2434
2435UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2436 const Twine &Name,
2437 Instruction *InsertBefore) {
2438 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2439}
2440
2441UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2442 const Twine &Name,
2443 BasicBlock *InsertAtEnd) {
2444 UnaryOperator *Res = Create(Op, S, Name);
2445 InsertAtEnd->getInstList().push_back(Res);
2446 return Res;
2447}
2448
2449void UnaryOperator::AssertOK() {
2450 Value *LHS = getOperand(0);
2451 (void)LHS; // Silence warnings.
2452#ifndef NDEBUG1
2453 switch (getOpcode()) {
2454 case FNeg:
2455 assert(getType() == LHS->getType() &&((void)0)
2456 "Unary operation should return same type as operand!")((void)0);
2457 assert(getType()->isFPOrFPVectorTy() &&((void)0)
2458 "Tried to create a floating-point operation on a "((void)0)
2459 "non-floating-point type!")((void)0);
2460 break;
2461 default: llvm_unreachable("Invalid opcode provided")__builtin_unreachable();
2462 }
2463#endif
2464}
2465
2466//===----------------------------------------------------------------------===//
2467// BinaryOperator Class
2468//===----------------------------------------------------------------------===//
2469
2470BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2471 Type *Ty, const Twine &Name,
2472 Instruction *InsertBefore)
2473 : Instruction(Ty, iType,
2474 OperandTraits<BinaryOperator>::op_begin(this),
2475 OperandTraits<BinaryOperator>::operands(this),
2476 InsertBefore) {
2477 Op<0>() = S1;
2478 Op<1>() = S2;
2479 setName(Name);
2480 AssertOK();
2481}
2482
2483BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2484 Type *Ty, const Twine &Name,
2485 BasicBlock *InsertAtEnd)
2486 : Instruction(Ty, iType,
2487 OperandTraits<BinaryOperator>::op_begin(this),
2488 OperandTraits<BinaryOperator>::operands(this),
2489 InsertAtEnd) {
2490 Op<0>() = S1;
2491 Op<1>() = S2;
2492 setName(Name);
2493 AssertOK();
2494}
2495
2496void BinaryOperator::AssertOK() {
2497 Value *LHS = getOperand(0), *RHS = getOperand(1);
2498 (void)LHS; (void)RHS; // Silence warnings.
2499 assert(LHS->getType() == RHS->getType() &&((void)0)
2500 "Binary operator operand types must match!")((void)0);
2501#ifndef NDEBUG1
2502 switch (getOpcode()) {
2503 case Add: case Sub:
2504 case Mul:
2505 assert(getType() == LHS->getType() &&((void)0)
2506 "Arithmetic operation should return same type as operands!")((void)0);
2507 assert(getType()->isIntOrIntVectorTy() &&((void)0)
2508 "Tried to create an integer operation on a non-integer type!")((void)0);
2509 break;
2510 case FAdd: case FSub:
2511 case FMul:
2512 assert(getType() == LHS->getType() &&((void)0)
2513 "Arithmetic operation should return same type as operands!")((void)0);
2514 assert(getType()->isFPOrFPVectorTy() &&((void)0)
2515 "Tried to create a floating-point operation on a "((void)0)
2516 "non-floating-point type!")((void)0);
2517 break;
2518 case UDiv:
2519 case SDiv:
2520 assert(getType() == LHS->getType() &&((void)0)
2521 "Arithmetic operation should return same type as operands!")((void)0);
2522 assert(getType()->isIntOrIntVectorTy() &&((void)0)
2523 "Incorrect operand type (not integer) for S/UDIV")((void)0);
2524 break;
2525 case FDiv:
2526 assert(getType() == LHS->getType() &&((void)0)
2527 "Arithmetic operation should return same type as operands!")((void)0);
2528 assert(getType()->isFPOrFPVectorTy() &&((void)0)
2529 "Incorrect operand type (not floating point) for FDIV")((void)0);
2530 break;
2531 case URem:
2532 case SRem:
2533 assert(getType() == LHS->getType() &&((void)0)
2534 "Arithmetic operation should return same type as operands!")((void)0);
2535 assert(getType()->isIntOrIntVectorTy() &&((void)0)
2536 "Incorrect operand type (not integer) for S/UREM")((void)0);
2537 break;
2538 case FRem:
2539 assert(getType() == LHS->getType() &&((void)0)
2540 "Arithmetic operation should return same type as operands!")((void)0);
2541 assert(getType()->isFPOrFPVectorTy() &&((void)0)
2542 "Incorrect operand type (not floating point) for FREM")((void)0);
2543 break;
2544 case Shl:
2545 case LShr:
2546 case AShr:
2547 assert(getType() == LHS->getType() &&((void)0)
2548 "Shift operation should return same type as operands!")((void)0);
2549 assert(getType()->isIntOrIntVectorTy() &&((void)0)
2550 "Tried to create a shift operation on a non-integral type!")((void)0);
2551 break;
2552 case And: case Or:
2553 case Xor:
2554 assert(getType() == LHS->getType() &&((void)0)
2555 "Logical operation should return same type as operands!")((void)0);
2556 assert(getType()->isIntOrIntVectorTy() &&((void)0)
2557 "Tried to create a logical operation on a non-integral type!")((void)0);
2558 break;
2559 default: llvm_unreachable("Invalid opcode provided")__builtin_unreachable();
2560 }
2561#endif
2562}
2563
2564BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2565 const Twine &Name,
2566 Instruction *InsertBefore) {
2567 assert(S1->getType() == S2->getType() &&((void)0)
2568 "Cannot create binary operator with two operands of differing type!")((void)0);
2569 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2570}
2571
2572BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2573 const Twine &Name,
2574 BasicBlock *InsertAtEnd) {
2575 BinaryOperator *Res = Create(Op, S1, S2, Name);
2576 InsertAtEnd->getInstList().push_back(Res);
25
Called C++ object pointer is null
2577 return Res;
2578}
2579
2580BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2581 Instruction *InsertBefore) {
2582 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2583 return new BinaryOperator(Instruction::Sub,
2584 zero, Op,
2585 Op->getType(), Name, InsertBefore);
2586}
2587
2588BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2589 BasicBlock *InsertAtEnd) {
2590 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2591 return new BinaryOperator(Instruction::Sub,
2592 zero, Op,
2593 Op->getType(), Name, InsertAtEnd);
2594}
2595
2596BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2597 Instruction *InsertBefore) {
2598 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2599 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2600}
2601
2602BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2603 BasicBlock *InsertAtEnd) {
2604 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2605 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2606}
2607
2608BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2609 Instruction *InsertBefore) {
2610 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2611 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2612}
2613
2614BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2615 BasicBlock *InsertAtEnd) {
2616 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2617 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2618}
2619
2620BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2621 Instruction *InsertBefore) {
2622 Constant *C = Constant::getAllOnesValue(Op->getType());
2623 return new BinaryOperator(Instruction::Xor, Op, C,
2624 Op->getType(), Name, InsertBefore);
2625}
2626
2627BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2628 BasicBlock *InsertAtEnd) {
2629 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2630 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2631 Op->getType(), Name, InsertAtEnd);
2632}
2633
2634// Exchange the two operands to this instruction. This instruction is safe to
2635// use on any binary instruction and does not modify the semantics of the
2636// instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2637// is changed.
2638bool BinaryOperator::swapOperands() {
2639 if (!isCommutative())
2640 return true; // Can't commute operands
2641 Op<0>().swap(Op<1>());
2642 return false;
2643}
2644
2645//===----------------------------------------------------------------------===//
2646// FPMathOperator Class
2647//===----------------------------------------------------------------------===//
2648
2649float FPMathOperator::getFPAccuracy() const {
2650 const MDNode *MD =
2651 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2652 if (!MD)
2653 return 0.0;
2654 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2655 return Accuracy->getValueAPF().convertToFloat();
2656}
2657
2658//===----------------------------------------------------------------------===//
2659// CastInst Class
2660//===----------------------------------------------------------------------===//
2661
2662// Just determine if this cast only deals with integral->integral conversion.
2663bool CastInst::isIntegerCast() const {
2664 switch (getOpcode()) {
2665 default: return false;
2666 case Instruction::ZExt:
2667 case Instruction::SExt:
2668 case Instruction::Trunc:
2669 return true;
2670 case Instruction::BitCast:
2671 return getOperand(0)->getType()->isIntegerTy() &&
2672 getType()->isIntegerTy();
2673 }
2674}
2675
2676bool CastInst::isLosslessCast() const {
2677 // Only BitCast can be lossless, exit fast if we're not BitCast
2678 if (getOpcode() != Instruction::BitCast)
2679 return false;
2680
2681 // Identity cast is always lossless
2682 Type *SrcTy = getOperand(0)->getType();
2683 Type *DstTy = getType();
2684 if (SrcTy == DstTy)
2685 return true;
2686
2687 // Pointer to pointer is always lossless.
2688 if (SrcTy->isPointerTy())
2689 return DstTy->isPointerTy();
2690 return false; // Other types have no identity values
2691}
2692
2693/// This function determines if the CastInst does not require any bits to be
2694/// changed in order to effect the cast. Essentially, it identifies cases where
2695/// no code gen is necessary for the cast, hence the name no-op cast. For
2696/// example, the following are all no-op casts:
2697/// # bitcast i32* %x to i8*
2698/// # bitcast <2 x i32> %x to <4 x i16>
2699/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2700/// Determine if the described cast is a no-op.
2701bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2702 Type *SrcTy,
2703 Type *DestTy,
2704 const DataLayout &DL) {
2705 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition")((void)0);
2706 switch (Opcode) {
2707 default: llvm_unreachable("Invalid CastOp")__builtin_unreachable();
2708 case Instruction::Trunc:
2709 case Instruction::ZExt:
2710 case Instruction::SExt:
2711 case Instruction::FPTrunc:
2712 case Instruction::FPExt:
2713 case Instruction::UIToFP:
2714 case Instruction::SIToFP:
2715 case Instruction::FPToUI:
2716 case Instruction::FPToSI:
2717 case Instruction::AddrSpaceCast:
2718 // TODO: Target informations may give a more accurate answer here.
2719 return false;
2720 case Instruction::BitCast:
2721 return true; // BitCast never modifies bits.
2722 case Instruction::PtrToInt:
2723 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2724 DestTy->getScalarSizeInBits();
2725 case Instruction::IntToPtr:
2726 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2727 SrcTy->getScalarSizeInBits();
2728 }
2729}
2730
2731bool CastInst::isNoopCast(const DataLayout &DL) const {
2732 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2733}
2734
2735/// This function determines if a pair of casts can be eliminated and what
2736/// opcode should be used in the elimination. This assumes that there are two
2737/// instructions like this:
2738/// * %F = firstOpcode SrcTy %x to MidTy
2739/// * %S = secondOpcode MidTy %F to DstTy
2740/// The function returns a resultOpcode so these two casts can be replaced with:
2741/// * %Replacement = resultOpcode %SrcTy %x to DstTy
2742/// If no such cast is permitted, the function returns 0.
2743unsigned CastInst::isEliminableCastPair(
2744 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2745 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2746 Type *DstIntPtrTy) {
2747 // Define the 144 possibilities for these two cast instructions. The values
2748 // in this matrix determine what to do in a given situation and select the
2749 // case in the switch below. The rows correspond to firstOp, the columns
2750 // correspond to secondOp. In looking at the table below, keep in mind
2751 // the following cast properties:
2752 //
2753 // Size Compare Source Destination
2754 // Operator Src ? Size Type Sign Type Sign
2755 // -------- ------------ ------------------- ---------------------
2756 // TRUNC > Integer Any Integral Any
2757 // ZEXT < Integral Unsigned Integer Any
2758 // SEXT < Integral Signed Integer Any
2759 // FPTOUI n/a FloatPt n/a Integral Unsigned
2760 // FPTOSI n/a FloatPt n/a Integral Signed
2761 // UITOFP n/a Integral Unsigned FloatPt n/a
2762 // SITOFP n/a Integral Signed FloatPt n/a
2763 // FPTRUNC > FloatPt n/a FloatPt n/a
2764 // FPEXT < FloatPt n/a FloatPt n/a
2765 // PTRTOINT n/a Pointer n/a Integral Unsigned
2766 // INTTOPTR n/a Integral Unsigned Pointer n/a
2767 // BITCAST = FirstClass n/a FirstClass n/a
2768 // ADDRSPCST n/a Pointer n/a Pointer n/a
2769 //
2770 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2771 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2772 // into "fptoui double to i64", but this loses information about the range
2773 // of the produced value (we no longer know the top-part is all zeros).
2774 // Further this conversion is often much more expensive for typical hardware,
2775 // and causes issues when building libgcc. We disallow fptosi+sext for the
2776 // same reason.
2777 const unsigned numCastOps =
2778 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2779 static const uint8_t CastResults[numCastOps][numCastOps] = {
2780 // T F F U S F F P I B A -+
2781 // R Z S P P I I T P 2 N T S |
2782 // U E E 2 2 2 2 R E I T C C +- secondOp
2783 // N X X U S F F N X N 2 V V |
2784 // C T T I I P P C T T P T T -+
2785 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2786 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2787 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2788 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2789 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2790 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2791 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2792 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2793 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2794 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2795 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2796 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2797 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2798 };
2799
2800 // TODO: This logic could be encoded into the table above and handled in the
2801 // switch below.
2802 // If either of the casts are a bitcast from scalar to vector, disallow the
2803 // merging. However, any pair of bitcasts are allowed.
2804 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2805 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2806 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2807
2808 // Check if any of the casts convert scalars <-> vectors.
2809 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2810 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2811 if (!AreBothBitcasts)
2812 return 0;
2813
2814 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2815 [secondOp-Instruction::CastOpsBegin];
2816 switch (ElimCase) {
2817 case 0:
2818 // Categorically disallowed.
2819 return 0;
2820 case 1:
2821 // Allowed, use first cast's opcode.
2822 return firstOp;
2823 case 2:
2824 // Allowed, use second cast's opcode.
2825 return secondOp;
2826 case 3:
2827 // No-op cast in second op implies firstOp as long as the DestTy
2828 // is integer and we are not converting between a vector and a
2829 // non-vector type.
2830 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2831 return firstOp;
2832 return 0;
2833 case 4:
2834 // No-op cast in second op implies firstOp as long as the DestTy
2835 // is floating point.
2836 if (DstTy->isFloatingPointTy())
2837 return firstOp;
2838 return 0;
2839 case 5:
2840 // No-op cast in first op implies secondOp as long as the SrcTy
2841 // is an integer.
2842 if (SrcTy->isIntegerTy())
2843 return secondOp;
2844 return 0;
2845 case 6:
2846 // No-op cast in first op implies secondOp as long as the SrcTy
2847 // is a floating point.
2848 if (SrcTy->isFloatingPointTy())
2849 return secondOp;
2850 return 0;
2851 case 7: {
2852 // Disable inttoptr/ptrtoint optimization if enabled.
2853 if (DisableI2pP2iOpt)
2854 return 0;
2855
2856 // Cannot simplify if address spaces are different!
2857 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2858 return 0;
2859
2860 unsigned MidSize = MidTy->getScalarSizeInBits();
2861 // We can still fold this without knowing the actual sizes as long we
2862 // know that the intermediate pointer is the largest possible
2863 // pointer size.
2864 // FIXME: Is this always true?
2865 if (MidSize == 64)
2866 return Instruction::BitCast;
2867
2868 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2869 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2870 return 0;
2871 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2872 if (MidSize >= PtrSize)
2873 return Instruction::BitCast;
2874 return 0;
2875 }
2876 case 8: {
2877 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2878 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2879 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2880 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2881 unsigned DstSize = DstTy->getScalarSizeInBits();
2882 if (SrcSize == DstSize)
2883 return Instruction::BitCast;
2884 else if (SrcSize < DstSize)
2885 return firstOp;
2886 return secondOp;
2887 }
2888 case 9:
2889 // zext, sext -> zext, because sext can't sign extend after zext
2890 return Instruction::ZExt;
2891 case 11: {
2892 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2893 if (!MidIntPtrTy)
2894 return 0;
2895 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2896 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2897 unsigned DstSize = DstTy->getScalarSizeInBits();
2898 if (SrcSize <= PtrSize && SrcSize == DstSize)
2899 return Instruction::BitCast;
2900 return 0;
2901 }
2902 case 12:
2903 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2904 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2905 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2906 return Instruction::AddrSpaceCast;
2907 return Instruction::BitCast;
2908 case 13:
2909 // FIXME: this state can be merged with (1), but the following assert
2910 // is useful to check the correcteness of the sequence due to semantic
2911 // change of bitcast.
2912 assert(((void)0)
2913 SrcTy->isPtrOrPtrVectorTy() &&((void)0)
2914 MidTy->isPtrOrPtrVectorTy() &&((void)0)
2915 DstTy->isPtrOrPtrVectorTy() &&((void)0)
2916 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&((void)0)
2917 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&((void)0)
2918 "Illegal addrspacecast, bitcast sequence!")((void)0);
2919 // Allowed, use first cast's opcode
2920 return firstOp;
2921 case 14: {
2922 // bitcast, addrspacecast -> addrspacecast if the element type of
2923 // bitcast's source is the same as that of addrspacecast's destination.
2924 PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
2925 PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
2926 if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
2927 return Instruction::AddrSpaceCast;
2928 return 0;
2929 }
2930 case 15:
2931 // FIXME: this state can be merged with (1), but the following assert
2932 // is useful to check the correcteness of the sequence due to semantic
2933 // change of bitcast.
2934 assert(((void)0)
2935 SrcTy->isIntOrIntVectorTy() &&((void)0)
2936 MidTy->isPtrOrPtrVectorTy() &&((void)0)
2937 DstTy->isPtrOrPtrVectorTy() &&((void)0)
2938 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&((void)0)
2939 "Illegal inttoptr, bitcast sequence!")((void)0);
2940 // Allowed, use first cast's opcode
2941 return firstOp;
2942 case 16:
2943 // FIXME: this state can be merged with (2), but the following assert
2944 // is useful to check the correcteness of the sequence due to semantic
2945 // change of bitcast.
2946 assert(((void)0)
2947 SrcTy->isPtrOrPtrVectorTy() &&((void)0)
2948 MidTy->isPtrOrPtrVectorTy() &&((void)0)
2949 DstTy->isIntOrIntVectorTy() &&((void)0)
2950 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&((void)0)
2951 "Illegal bitcast, ptrtoint sequence!")((void)0);
2952 // Allowed, use second cast's opcode
2953 return secondOp;
2954 case 17:
2955 // (sitofp (zext x)) -> (uitofp x)
2956 return Instruction::UIToFP;
2957 case 99:
2958 // Cast combination can't happen (error in input). This is for all cases
2959 // where the MidTy is not the same for the two cast instructions.
2960 llvm_unreachable("Invalid Cast Combination")__builtin_unreachable();
2961 default:
2962 llvm_unreachable("Error in CastResults table!!!")__builtin_unreachable();
2963 }
2964}
2965
2966CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2967 const Twine &Name, Instruction *InsertBefore) {
2968 assert(castIsValid(op, S, Ty) && "Invalid cast!")((void)0);
2969 // Construct and return the appropriate CastInst subclass
2970 switch (op) {
2971 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2972 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2973 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2974 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2975 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2976 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2977 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2978 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2979 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2980 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2981 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2982 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2983 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2984 default: llvm_unreachable("Invalid opcode provided")__builtin_unreachable();
2985 }
2986}
2987
2988CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2989 const Twine &Name, BasicBlock *InsertAtEnd) {
2990 assert(castIsValid(op, S, Ty) && "Invalid cast!")((void)0);
2991 // Construct and return the appropriate CastInst subclass
2992 switch (op) {
2993 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2994 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2995 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2996 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2997 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2998 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2999 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
3000 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
3001 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
3002 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
3003 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
3004 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
3005 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3006 default: llvm_unreachable("Invalid opcode provided")__builtin_unreachable();
3007 }
3008}
3009
3010CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3011 const Twine &Name,
3012 Instruction *InsertBefore) {
3013 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3014 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3015 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3016}
3017
3018CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3019 const Twine &Name,
3020 BasicBlock *InsertAtEnd) {
3021 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3022 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3023 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3024}
3025
3026CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3027 const Twine &Name,
3028 Instruction *InsertBefore) {
3029 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3030 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3031 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3032}
3033
3034CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3035 const Twine &Name,
3036 BasicBlock *InsertAtEnd) {
3037 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3038 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3039 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3040}
3041
3042CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3043 const Twine &Name,
3044 Instruction *InsertBefore) {
3045 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3046 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3047 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3048}
3049
3050CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3051 const Twine &Name,
3052 BasicBlock *InsertAtEnd) {
3053 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3054 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3055 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3056}
3057
3058CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3059 const Twine &Name,
3060 BasicBlock *InsertAtEnd) {
3061 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast")((void)0);
3062 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&((void)0)
3063 "Invalid cast")((void)0);
3064 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast")((void)0);
3065 assert((!Ty->isVectorTy() ||((void)0)
3066 cast<VectorType>(Ty)->getElementCount() ==((void)0)
3067 cast<VectorType>(S->getType())->getElementCount()) &&((void)0)
3068 "Invalid cast")((void)0);
3069
3070 if (Ty->isIntOrIntVectorTy())
3071 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3072
3073 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3074}
3075
3076/// Create a BitCast or a PtrToInt cast instruction
3077CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3078 const Twine &Name,
3079 Instruction *InsertBefore) {
3080 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast")((void)0);
3081 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&((void)0)
3082 "Invalid cast")((void)0);
3083 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast")((void)0);
3084 assert((!Ty->isVectorTy() ||((void)0)
3085 cast<VectorType>(Ty)->getElementCount() ==((void)0)
3086 cast<VectorType>(S->getType())->getElementCount()) &&((void)0)
3087 "Invalid cast")((void)0);
3088
3089 if (Ty->isIntOrIntVectorTy())
3090 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3091
3092 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3093}
3094
3095CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3096 Value *S, Type *Ty,
3097 const Twine &Name,
3098 BasicBlock *InsertAtEnd) {
3099 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast")((void)0);
3100 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast")((void)0);
3101
3102 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3103 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3104
3105 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3106}
3107
3108CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3109 Value *S, Type *Ty,
3110 const Twine &Name,
3111 Instruction *InsertBefore) {
3112 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast")((void)0);
3113 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast")((void)0);
3114
3115 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3116 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3117
3118 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3119}
3120
3121CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3122 const Twine &Name,
3123 Instruction *InsertBefore) {
3124 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3125 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3126 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3127 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3128
3129 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3130}
3131
3132CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3133 bool isSigned, const Twine &Name,
3134 Instruction *InsertBefore) {
3135 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&((void)0)
3136 "Invalid integer cast")((void)0);
3137 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3138 unsigned DstBits = Ty->getScalarSizeInBits();
3139 Instruction::CastOps opcode =
3140 (SrcBits == DstBits ? Instruction::BitCast :
3141 (SrcBits > DstBits ? Instruction::Trunc :
3142 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3143 return Create(opcode, C, Ty, Name, InsertBefore);
3144}
3145
3146CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3147 bool isSigned, const Twine &Name,
3148 BasicBlock *InsertAtEnd) {
3149 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&((void)0)
3150 "Invalid cast")((void)0);
3151 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3152 unsigned DstBits = Ty->getScalarSizeInBits();
3153 Instruction::CastOps opcode =
3154 (SrcBits == DstBits ? Instruction::BitCast :
3155 (SrcBits > DstBits ? Instruction::Trunc :
3156 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3157 return Create(opcode, C, Ty, Name, InsertAtEnd);
3158}
3159
3160CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3161 const Twine &Name,
3162 Instruction *InsertBefore) {
3163 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&((void)0)
3164 "Invalid cast")((void)0);
3165 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3166 unsigned DstBits = Ty->getScalarSizeInBits();
3167 Instruction::CastOps opcode =
3168 (SrcBits == DstBits ? Instruction::BitCast :
3169 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3170 return Create(opcode, C, Ty, Name, InsertBefore);
3171}
3172
3173CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3174 const Twine &Name,
3175 BasicBlock *InsertAtEnd) {
3176 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&((void)0)
3177 "Invalid cast")((void)0);
3178 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3179 unsigned DstBits = Ty->getScalarSizeInBits();
3180 Instruction::CastOps opcode =
3181 (SrcBits == DstBits ? Instruction::BitCast :
3182 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3183 return Create(opcode, C, Ty, Name, InsertAtEnd);
3184}
3185
3186bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3187 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3188 return false;
3189
3190 if (SrcTy == DestTy)
3191 return true;
3192
3193 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3194 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3195 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3196 // An element by element cast. Valid if casting the elements is valid.
3197 SrcTy = SrcVecTy->getElementType();
3198 DestTy = DestVecTy->getElementType();
3199 }
3200 }
3201 }
3202
3203 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3204 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3205 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3206 }
3207 }
3208
3209 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3210 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3211
3212 // Could still have vectors of pointers if the number of elements doesn't
3213 // match
3214 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3215 return false;
3216
3217 if (SrcBits != DestBits)
3218 return false;
3219
3220 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3221 return false;
3222
3223 return true;
3224}
3225
3226bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3227 const DataLayout &DL) {
3228 // ptrtoint and inttoptr are not allowed on non-integral pointers
3229 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3230 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3231 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3232 !DL.isNonIntegralPointerType(PtrTy));
3233 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3234 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3235 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3236 !DL.isNonIntegralPointerType(PtrTy));
3237
3238 return isBitCastable(SrcTy, DestTy);
3239}
3240
3241// Provide a way to get a "cast" where the cast opcode is inferred from the
3242// types and size of the operand. This, basically, is a parallel of the
3243// logic in the castIsValid function below. This axiom should hold:
3244// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3245// should not assert in castIsValid. In other words, this produces a "correct"
3246// casting opcode for the arguments passed to it.
3247Instruction::CastOps
3248CastInst::getCastOpcode(
3249 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3250 Type *SrcTy = Src->getType();
3251
3252 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&((void)0)
3253 "Only first class types are castable!")((void)0);
3254
3255 if (SrcTy == DestTy)
3256 return BitCast;
3257
3258 // FIXME: Check address space sizes here
3259 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3260 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3261 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3262 // An element by element cast. Find the appropriate opcode based on the
3263 // element types.
3264 SrcTy = SrcVecTy->getElementType();
3265 DestTy = DestVecTy->getElementType();
3266 }
3267
3268 // Get the bit sizes, we'll need these
3269 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3270 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3271
3272 // Run through the possibilities ...
3273 if (DestTy->isIntegerTy()) { // Casting to integral
3274 if (SrcTy->isIntegerTy()) { // Casting from integral
3275 if (DestBits < SrcBits)
3276 return Trunc; // int -> smaller int
3277 else if (DestBits > SrcBits) { // its an extension
3278 if (SrcIsSigned)
3279 return SExt; // signed -> SEXT
3280 else
3281 return ZExt; // unsigned -> ZEXT
3282 } else {
3283 return BitCast; // Same size, No-op cast
3284 }
3285 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3286 if (DestIsSigned)
3287 return FPToSI; // FP -> sint
3288 else
3289 return FPToUI; // FP -> uint
3290 } else if (SrcTy->isVectorTy()) {
3291 assert(DestBits == SrcBits &&((void)0)
3292 "Casting vector to integer of different width")((void)0);
3293 return BitCast; // Same size, no-op cast
3294 } else {
3295 assert(SrcTy->isPointerTy() &&((void)0)
3296 "Casting from a value that is not first-class type")((void)0);
3297 return PtrToInt; // ptr -> int
3298 }
3299 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3300 if (SrcTy->isIntegerTy()) { // Casting from integral
3301 if (SrcIsSigned)
3302 return SIToFP; // sint -> FP
3303 else
3304 return UIToFP; // uint -> FP
3305 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3306 if (DestBits < SrcBits) {
3307 return FPTrunc; // FP -> smaller FP
3308 } else if (DestBits > SrcBits) {
3309 return FPExt; // FP -> larger FP
3310 } else {
3311 return BitCast; // same size, no-op cast
3312 }
3313 } else if (SrcTy->isVectorTy()) {
3314 assert(DestBits == SrcBits &&((void)0)
3315 "Casting vector to floating point of different width")((void)0);
3316 return BitCast; // same size, no-op cast
3317 }
3318 llvm_unreachable("Casting pointer or non-first class to float")__builtin_unreachable();
3319 } else if (DestTy->isVectorTy()) {
3320 assert(DestBits == SrcBits &&((void)0)
3321 "Illegal cast to vector (wrong type or size)")((void)0);
3322 return BitCast;
3323 } else if (DestTy->isPointerTy()) {
3324 if (SrcTy->isPointerTy()) {
3325 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3326 return AddrSpaceCast;
3327 return BitCast; // ptr -> ptr
3328 } else if (SrcTy->isIntegerTy()) {
3329 return IntToPtr; // int -> ptr
3330 }
3331 llvm_unreachable("Casting pointer to other than pointer or int")__builtin_unreachable();
3332 } else if (DestTy->isX86_MMXTy()) {
3333 if (SrcTy->isVectorTy()) {
3334 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX")((void)0);
3335 return BitCast; // 64-bit vector to MMX
3336 }
3337 llvm_unreachable("Illegal cast to X86_MMX")__builtin_unreachable();
3338 }
3339 llvm_unreachable("Casting to type that is not first-class")__builtin_unreachable();
3340}
3341
3342//===----------------------------------------------------------------------===//
3343// CastInst SubClass Constructors
3344//===----------------------------------------------------------------------===//
3345
3346/// Check that the construction parameters for a CastInst are correct. This
3347/// could be broken out into the separate constructors but it is useful to have
3348/// it in one place and to eliminate the redundant code for getting the sizes
3349/// of the types involved.
3350bool
3351CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3352 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3353 SrcTy->isAggregateType() || DstTy->isAggregateType())
3354 return false;
3355
3356 // Get the size of the types in bits, and whether we are dealing
3357 // with vector types, we'll need this later.
3358 bool SrcIsVec = isa<VectorType>(SrcTy);
3359 bool DstIsVec = isa<VectorType>(DstTy);
3360 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3361 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3362
3363 // If these are vector types, get the lengths of the vectors (using zero for
3364 // scalar types means that checking that vector lengths match also checks that
3365 // scalars are not being converted to vectors or vectors to scalars).
3366 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3367 : ElementCount::getFixed(0);
3368 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3369 : ElementCount::getFixed(0);
3370
3371 // Switch on the opcode provided
3372 switch (op) {
3373 default: return false; // This is an input error
3374 case Instruction::Trunc:
3375 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3376 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3377 case Instruction::ZExt:
3378 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3379 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3380 case Instruction::SExt:
3381 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3382 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3383 case Instruction::FPTrunc:
3384 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3385 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3386 case Instruction::FPExt:
3387 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3388 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3389 case Instruction::UIToFP:
3390 case Instruction::SIToFP:
3391 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3392 SrcEC == DstEC;
3393 case Instruction::FPToUI:
3394 case Instruction::FPToSI:
3395 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3396 SrcEC == DstEC;
3397 case Instruction::PtrToInt:
3398 if (SrcEC != DstEC)
3399 return false;
3400 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3401 case Instruction::IntToPtr:
3402 if (SrcEC != DstEC)
3403 return false;
3404 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3405 case Instruction::BitCast: {
3406 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3407 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3408
3409 // BitCast implies a no-op cast of type only. No bits change.
3410 // However, you can't cast pointers to anything but pointers.
3411 if (!SrcPtrTy != !DstPtrTy)
3412 return false;
3413
3414 // For non-pointer cases, the cast is okay if the source and destination bit
3415 // widths are identical.
3416 if (!SrcPtrTy)
3417 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3418
3419 // If both are pointers then the address spaces must match.
3420 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3421 return false;
3422
3423 // A vector of pointers must have the same number of elements.
3424 if (SrcIsVec && DstIsVec)
3425 return SrcEC == DstEC;
3426 if (SrcIsVec)
3427 return SrcEC == ElementCount::getFixed(1);
3428 if (DstIsVec)
3429 return DstEC == ElementCount::getFixed(1);
3430
3431 return true;
3432 }
3433 case Instruction::AddrSpaceCast: {
3434 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3435 if (!SrcPtrTy)
3436 return false;
3437
3438 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3439 if (!DstPtrTy)
3440 return false;
3441
3442 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3443 return false;
3444
3445 return SrcEC == DstEC;
3446 }
3447 }
3448}
3449
3450TruncInst::TruncInst(
3451 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3452) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3453 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc")((void)0);
3454}
3455
3456TruncInst::TruncInst(
3457 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3458) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3459 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc")((void)0);
3460}
3461
3462ZExtInst::ZExtInst(
3463 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3464) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3465 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt")((void)0);
3466}
3467
3468ZExtInst::ZExtInst(
3469 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3470) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3471 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt")((void)0);
3472}
3473SExtInst::SExtInst(
3474 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3475) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3476 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt")((void)0);
3477}
3478
3479SExtInst::SExtInst(
3480 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3481) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3482 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt")((void)0);
3483}
3484
3485FPTruncInst::FPTruncInst(
3486 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3487) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3488 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc")((void)0);
3489}
3490
3491FPTruncInst::FPTruncInst(
3492 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3493) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3494 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc")((void)0);
3495}
3496
3497FPExtInst::FPExtInst(
3498 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3499) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3500 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt")((void)0);
3501}
3502
3503FPExtInst::FPExtInst(
3504 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3505) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3506 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt")((void)0);
3507}
3508
3509UIToFPInst::UIToFPInst(
3510 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3511) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3512 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP")((void)0);
3513}
3514
3515UIToFPInst::UIToFPInst(
3516 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3517) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3518 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP")((void)0);
3519}
3520
3521SIToFPInst::SIToFPInst(
3522 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3523) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3524 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP")((void)0);
3525}
3526
3527SIToFPInst::SIToFPInst(
3528 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3529) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3530 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP")((void)0);
3531}
3532
3533FPToUIInst::FPToUIInst(
3534 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3535) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3536 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI")((void)0);
3537}
3538
3539FPToUIInst::FPToUIInst(
3540 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3541) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3542 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI")((void)0);
3543}
3544
3545FPToSIInst::FPToSIInst(
3546 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3547) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3548 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI")((void)0);
3549}
3550
3551FPToSIInst::FPToSIInst(
3552 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3553) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3554 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI")((void)0);
3555}
3556
3557PtrToIntInst::PtrToIntInst(
3558 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3559) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3560 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt")((void)0);
3561}
3562
3563PtrToIntInst::PtrToIntInst(
3564 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3565) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3566 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt")((void)0);
3567}
3568
3569IntToPtrInst::IntToPtrInst(
3570 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3571) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3572 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr")((void)0);
3573}
3574
3575IntToPtrInst::IntToPtrInst(
3576 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3577) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3578 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr")((void)0);
3579}
3580
3581BitCastInst::BitCastInst(
3582 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3583) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3584 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast")((void)0);
3585}
3586
3587BitCastInst::BitCastInst(
3588 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3589) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3590 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast")((void)0);
3591}
3592
3593AddrSpaceCastInst::AddrSpaceCastInst(
3594 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3595) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3596 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast")((void)0);
3597}
3598
3599AddrSpaceCastInst::AddrSpaceCastInst(
3600 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3601) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3602 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast")((void)0);
3603}
3604
3605//===----------------------------------------------------------------------===//
3606// CmpInst Classes
3607//===----------------------------------------------------------------------===//
3608
3609CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3610 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3611 Instruction *FlagsSource)
3612 : Instruction(ty, op,
3613 OperandTraits<CmpInst>::op_begin(this),
3614 OperandTraits<CmpInst>::operands(this),
3615 InsertBefore) {
3616 Op<0>() = LHS;
3617 Op<1>() = RHS;
3618 setPredicate((Predicate)predicate);
3619 setName(Name);
3620 if (FlagsSource)
3621 copyIRFlags(FlagsSource);
3622}
3623
3624CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3625 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3626 : Instruction(ty, op,
3627 OperandTraits<CmpInst>::op_begin(this),
3628 OperandTraits<CmpInst>::operands(this),
3629 InsertAtEnd) {
3630 Op<0>() = LHS;
3631 Op<1>() = RHS;
3632 setPredicate((Predicate)predicate);
3633 setName(Name);
3634}
3635
3636CmpInst *
3637CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3638 const Twine &Name, Instruction *InsertBefore) {
3639 if (Op == Instruction::ICmp) {
3640 if (InsertBefore)
3641 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3642 S1, S2, Name);
3643 else
3644 return new ICmpInst(CmpInst::Predicate(predicate),
3645 S1, S2, Name);
3646 }
3647
3648 if (InsertBefore)
3649 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3650 S1, S2, Name);
3651 else
3652 return new FCmpInst(CmpInst::Predicate(predicate),
3653 S1, S2, Name);
3654}
3655
3656CmpInst *
3657CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3658 const Twine &Name, BasicBlock *InsertAtEnd) {
3659 if (Op == Instruction::ICmp) {
3660 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3661 S1, S2, Name);
3662 }
3663 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3664 S1, S2, Name);
3665}
3666
3667void CmpInst::swapOperands() {
3668 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3669 IC->swapOperands();
3670 else
3671 cast<FCmpInst>(this)->swapOperands();
3672}
3673
3674bool CmpInst::isCommutative() const {
3675 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3676 return IC->isCommutative();
3677 return cast<FCmpInst>(this)->isCommutative();
3678}
3679
3680bool CmpInst::isEquality(Predicate P) {
3681 if (ICmpInst::isIntPredicate(P))
3682 return ICmpInst::isEquality(P);
3683 if (FCmpInst::isFPPredicate(P))
3684 return FCmpInst::isEquality(P);
3685 llvm_unreachable("Unsupported predicate kind")__builtin_unreachable();
3686}
3687
3688CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3689 switch (pred) {
3690 default: llvm_unreachable("Unknown cmp predicate!")__builtin_unreachable();
3691 case ICMP_EQ: return ICMP_NE;
3692 case ICMP_NE: return ICMP_EQ;
3693 case ICMP_UGT: return ICMP_ULE;
3694 case ICMP_ULT: return ICMP_UGE;
3695 case ICMP_UGE: return ICMP_ULT;
3696 case ICMP_ULE: return ICMP_UGT;
3697 case ICMP_SGT: return ICMP_SLE;
3698 case ICMP_SLT: return ICMP_SGE;
3699 case ICMP_SGE: return ICMP_SLT;
3700 case ICMP_SLE: return ICMP_SGT;
3701
3702 case FCMP_OEQ: return FCMP_UNE;
3703 case FCMP_ONE: return FCMP_UEQ;
3704 case FCMP_OGT: return FCMP_ULE;
3705 case FCMP_OLT: return FCMP_UGE;
3706 case FCMP_OGE: return FCMP_ULT;
3707 case FCMP_OLE: return FCMP_UGT;
3708 case FCMP_UEQ: return FCMP_ONE;
3709 case FCMP_UNE: return FCMP_OEQ;
3710 case FCMP_UGT: return FCMP_OLE;
3711 case FCMP_ULT: return FCMP_OGE;
3712 case FCMP_UGE: return FCMP_OLT;
3713 case FCMP_ULE: return FCMP_OGT;
3714 case FCMP_ORD: return FCMP_UNO;
3715 case FCMP_UNO: return FCMP_ORD;
3716 case FCMP_TRUE: return FCMP_FALSE;
3717 case FCMP_FALSE: return FCMP_TRUE;
3718 }
3719}
3720
3721StringRef CmpInst::getPredicateName(Predicate Pred) {
3722 switch (Pred) {
3723 default: return "unknown";
3724 case FCmpInst::FCMP_FALSE: return "false";
3725 case FCmpInst::FCMP_OEQ: return "oeq";
3726 case FCmpInst::FCMP_OGT: return "ogt";
3727 case FCmpInst::FCMP_OGE: return "oge";
3728 case FCmpInst::FCMP_OLT: return "olt";
3729 case FCmpInst::FCMP_OLE: return "ole";
3730 case FCmpInst::FCMP_ONE: return "one";
3731 case FCmpInst::FCMP_ORD: return "ord";
3732 case FCmpInst::FCMP_UNO: return "uno";
3733 case FCmpInst::FCMP_UEQ: return "ueq";
3734 case FCmpInst::FCMP_UGT: return "ugt";
3735 case FCmpInst::FCMP_UGE: return "uge";
3736 case FCmpInst::FCMP_ULT: return "ult";
3737 case FCmpInst::FCMP_ULE: return "ule";
3738 case FCmpInst::FCMP_UNE: return "une";
3739 case FCmpInst::FCMP_TRUE: return "true";
3740 case ICmpInst::ICMP_EQ: return "eq";
3741 case ICmpInst::ICMP_NE: return "ne";
3742 case ICmpInst::ICMP_SGT: return "sgt";
3743 case ICmpInst::ICMP_SGE: return "sge";
3744 case ICmpInst::ICMP_SLT: return "slt";
3745 case ICmpInst::ICMP_SLE: return "sle";
3746 case ICmpInst::ICMP_UGT: return "ugt";
3747 case ICmpInst::ICMP_UGE: return "uge";
3748 case ICmpInst::ICMP_ULT: return "ult";
3749 case ICmpInst::ICMP_ULE: return "ule";
3750 }
3751}
3752
3753ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3754 switch (pred) {
3755 default: llvm_unreachable("Unknown icmp predicate!")__builtin_unreachable();
3756 case ICMP_EQ: case ICMP_NE:
3757 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3758 return pred;
3759 case ICMP_UGT: return ICMP_SGT;
3760 case ICMP_ULT: return ICMP_SLT;
3761 case ICMP_UGE: return ICMP_SGE;
3762 case ICMP_ULE: return ICMP_SLE;
3763 }
3764}
3765
3766ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3767 switch (pred) {
3768 default: llvm_unreachable("Unknown icmp predicate!")__builtin_unreachable();
3769 case ICMP_EQ: case ICMP_NE:
3770 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3771 return pred;
3772 case ICMP_SGT: return ICMP_UGT;
3773 case ICMP_SLT: return ICMP_ULT;
3774 case ICMP_SGE: return ICMP_UGE;
3775 case ICMP_SLE: return ICMP_ULE;
3776 }
3777}
3778
3779CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3780 switch (pred) {
3781 default: llvm_unreachable("Unknown cmp predicate!")__builtin_unreachable();
3782 case ICMP_EQ: case ICMP_NE:
3783 return pred;
3784 case ICMP_SGT: return ICMP_SLT;
3785 case ICMP_SLT: return ICMP_SGT;
3786 case ICMP_SGE: return ICMP_SLE;
3787 case ICMP_SLE: return ICMP_SGE;
3788 case ICMP_UGT: return ICMP_ULT;
3789 case ICMP_ULT: return ICMP_UGT;
3790 case ICMP_UGE: return ICMP_ULE;
3791 case ICMP_ULE: return ICMP_UGE;
3792
3793 case FCMP_FALSE: case FCMP_TRUE:
3794 case FCMP_OEQ: case FCMP_ONE:
3795 case FCMP_UEQ: case FCMP_UNE:
3796 case FCMP_ORD: case FCMP_UNO:
3797 return pred;
3798 case FCMP_OGT: return FCMP_OLT;
3799 case FCMP_OLT: return FCMP_OGT;
3800 case FCMP_OGE: return FCMP_OLE;
3801 case FCMP_OLE: return FCMP_OGE;
3802 case FCMP_UGT: return FCMP_ULT;
3803 case FCMP_ULT: return FCMP_UGT;
3804 case FCMP_UGE: return FCMP_ULE;
3805 case FCMP_ULE: return FCMP_UGE;
3806 }
3807}
3808
3809bool CmpInst::isNonStrictPredicate(Predicate pred) {
3810 switch (pred) {
3811 case ICMP_SGE:
3812 case ICMP_SLE:
3813 case ICMP_UGE:
3814 case ICMP_ULE:
3815 case FCMP_OGE:
3816 case FCMP_OLE:
3817 case FCMP_UGE:
3818 case FCMP_ULE:
3819 return true;
3820 default:
3821 return false;
3822 }
3823}
3824
3825bool CmpInst::isStrictPredicate(Predicate pred) {
3826 switch (pred) {
3827 case ICMP_SGT:
3828 case ICMP_SLT:
3829 case ICMP_UGT:
3830 case ICMP_ULT:
3831 case FCMP_OGT:
3832 case FCMP_OLT:
3833 case FCMP_UGT:
3834 case FCMP_ULT:
3835 return true;
3836 default:
3837 return false;
3838 }
3839}
3840
3841CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3842 switch (pred) {
3843 case ICMP_SGE:
3844 return ICMP_SGT;
3845 case ICMP_SLE:
3846 return ICMP_SLT;
3847 case ICMP_UGE:
3848 return ICMP_UGT;
3849 case ICMP_ULE:
3850 return ICMP_ULT;
3851 case FCMP_OGE:
3852 return FCMP_OGT;
3853 case FCMP_OLE:
3854 return FCMP_OLT;
3855 case FCMP_UGE:
3856 return FCMP_UGT;
3857 case FCMP_ULE:
3858 return FCMP_ULT;
3859 default:
3860 return pred;
3861 }
3862}
3863
3864CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3865 switch (pred) {
3866 case ICMP_SGT:
3867 return ICMP_SGE;
3868 case ICMP_SLT:
3869 return ICMP_SLE;
3870 case ICMP_UGT:
3871 return ICMP_UGE;
3872 case ICMP_ULT:
3873 return ICMP_ULE;
3874 case FCMP_OGT:
3875 return FCMP_OGE;
3876 case FCMP_OLT:
3877 return FCMP_OLE;
3878 case FCMP_UGT:
3879 return FCMP_UGE;
3880 case FCMP_ULT:
3881 return FCMP_ULE;
3882 default:
3883 return pred;
3884 }
3885}
3886
3887CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3888 assert(CmpInst::isRelational(pred) && "Call only with relational predicate!")((void)0);
3889
3890 if (isStrictPredicate(pred))
3891 return getNonStrictPredicate(pred);
3892 if (isNonStrictPredicate(pred))
3893 return getStrictPredicate(pred);
3894
3895 llvm_unreachable("Unknown predicate!")__builtin_unreachable();
3896}
3897
3898CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3899 assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!")((void)0);
3900
3901 switch (pred) {
3902 default:
3903 llvm_unreachable("Unknown predicate!")__builtin_unreachable();
3904 case CmpInst::ICMP_ULT:
3905 return CmpInst::ICMP_SLT;
3906 case CmpInst::ICMP_ULE:
3907 return CmpInst::ICMP_SLE;
3908 case CmpInst::ICMP_UGT:
3909 return CmpInst::ICMP_SGT;
3910 case CmpInst::ICMP_UGE:
3911 return CmpInst::ICMP_SGE;
3912 }
3913}
3914
3915CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3916 assert(CmpInst::isSigned(pred) && "Call only with signed predicates!")((void)0);
3917
3918 switch (pred) {
3919 default:
3920 llvm_unreachable("Unknown predicate!")__builtin_unreachable();
3921 case CmpInst::ICMP_SLT:
3922 return CmpInst::ICMP_ULT;
3923 case CmpInst::ICMP_SLE:
3924 return CmpInst::ICMP_ULE;
3925 case CmpInst::ICMP_SGT:
3926 return CmpInst::ICMP_UGT;
3927 case CmpInst::ICMP_SGE:
3928 return CmpInst::ICMP_UGE;
3929 }
3930}
3931
3932bool CmpInst::isUnsigned(Predicate predicate) {
3933 switch (predicate) {
3934 default: return false;
3935 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3936 case ICmpInst::ICMP_UGE: return true;
3937 }
3938}
3939
3940bool CmpInst::isSigned(Predicate predicate) {
3941 switch (predicate) {
3942 default: return false;
3943 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3944 case ICmpInst::ICMP_SGE: return true;
3945 }
3946}
3947
3948CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
3949 assert(CmpInst::isRelational(pred) &&((void)0)
3950 "Call only with non-equality predicates!")((void)0);
3951
3952 if (isSigned(pred))
3953 return getUnsignedPredicate(pred);
3954 if (isUnsigned(pred))
3955 return getSignedPredicate(pred);
3956
3957 llvm_unreachable("Unknown predicate!")__builtin_unreachable();
3958}
3959
3960bool CmpInst::isOrdered(Predicate predicate) {
3961 switch (predicate) {
3962 default: return false;
3963 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3964 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3965 case FCmpInst::FCMP_ORD: return true;
3966 }
3967}
3968
3969bool CmpInst::isUnordered(Predicate predicate) {
3970 switch (predicate) {
3971 default: return false;
3972 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3973 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3974 case FCmpInst::FCMP_UNO: return true;
3975 }
3976}
3977
3978bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3979 switch(predicate) {
3980 default: return false;
3981 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3982 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3983 }
3984}
3985
3986bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3987 switch(predicate) {
3988 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3989 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3990 default: return false;
3991 }
3992}
3993
3994bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3995 // If the predicates match, then we know the first condition implies the
3996 // second is true.
3997 if (Pred1 == Pred2)
3998 return true;
3999
4000 switch (Pred1) {
4001 default:
4002 break;
4003 case ICMP_EQ:
4004 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4005 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4006 Pred2 == ICMP_SLE;
4007 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4008 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4009 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4010 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4011 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4012 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4013 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4014 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4015 }
4016 return false;
4017}
4018
4019bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4020 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4021}
4022
4023//===----------------------------------------------------------------------===//
4024// SwitchInst Implementation
4025//===----------------------------------------------------------------------===//
4026
4027void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4028 assert(Value && Default && NumReserved)((void)0);
4029 ReservedSpace = NumReserved;
4030 setNumHungOffUseOperands(2);
4031 allocHungoffUses(ReservedSpace);
4032
4033 Op<0>() = Value;
4034 Op<1>() = Default;
4035}
4036
4037/// SwitchInst ctor - Create a new switch instruction, specifying a value to
4038/// switch on and a default destination. The number of additional cases can
4039/// be specified here to make memory allocation more efficient. This
4040/// constructor can also autoinsert before another instruction.
4041SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4042 Instruction *InsertBefore)
4043 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4044 nullptr, 0, InsertBefore) {
4045 init(Value, Default, 2+NumCases*2);
4046}
4047
4048/// SwitchInst ctor - Create a new switch instruction, specifying a value to
4049/// switch on and a default destination. The number of additional cases can
4050/// be specified here to make memory allocation more efficient. This
4051/// constructor also autoinserts at the end of the specified BasicBlock.
4052SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4053 BasicBlock *InsertAtEnd)
4054 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4055 nullptr, 0, InsertAtEnd) {
4056 init(Value, Default, 2+NumCases*2);
4057}
4058
4059SwitchInst::SwitchInst(const SwitchInst &SI)
4060 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4061 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4062 setNumHungOffUseOperands(SI.getNumOperands());
4063 Use *OL = getOperandList();
4064 const Use *InOL = SI.getOperandList();
4065 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4066 OL[i] = InOL[i];
4067 OL[i+1] = InOL[i+1];
4068 }
4069 SubclassOptionalData = SI.SubclassOptionalData;
4070}
4071
4072/// addCase - Add an entry to the switch instruction...
4073///
4074void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4075 unsigned NewCaseIdx = getNumCases();
4076 unsigned OpNo = getNumOperands();
4077 if (OpNo+2 > ReservedSpace)
4078 growOperands(); // Get more space!
4079 // Initialize some new operands.
4080 assert(OpNo+1 < ReservedSpace && "Growing didn't work!")((void)0);
4081 setNumHungOffUseOperands(OpNo+2);
4082 CaseHandle Case(this, NewCaseIdx);
4083 Case.setValue(OnVal);
4084 Case.setSuccessor(Dest);
4085}
4086
4087/// removeCase - This method removes the specified case and its successor
4088/// from the switch instruction.
4089SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4090 unsigned idx = I->getCaseIndex();
4091
4092 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!")((void)0);
4093
4094 unsigned NumOps = getNumOperands();
4095 Use *OL = getOperandList();
4096
4097 // Overwrite this case with the end of the list.
4098 if (2 + (idx + 1) * 2 != NumOps) {
4099 OL[2 + idx * 2] = OL[NumOps - 2];
4100 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4101 }
4102
4103 // Nuke the last value.
4104 OL[NumOps-2].set(nullptr);
4105 OL[NumOps-2+1].set(nullptr);
4106 setNumHungOffUseOperands(NumOps-2);
4107
4108 return CaseIt(this, idx);
4109}
4110
4111/// growOperands - grow operands - This grows the operand list in response
4112/// to a push_back style of operation. This grows the number of ops by 3 times.
4113///
4114void SwitchInst::growOperands() {
4115 unsigned e = getNumOperands();
4116 unsigned NumOps = e*3;
4117
4118 ReservedSpace = NumOps;
4119 growHungoffUses(ReservedSpace);
4120}
4121
4122MDNode *
4123SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4124 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4125 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4126 if (MDName->getString() == "branch_weights")
4127 return ProfileData;
4128 return nullptr;
4129}
4130
4131MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4132 assert(Changed && "called only if metadata has changed")((void)0);
4133
4134 if (!Weights)
4135 return nullptr;
4136
4137 assert(SI.getNumSuccessors() == Weights->size() &&((void)0)
4138 "num of prof branch_weights must accord with num of successors")((void)0);
4139
4140 bool AllZeroes =
4141 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4142
4143 if (AllZeroes || Weights.getValue().size() < 2)
4144 return nullptr;
4145
4146 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4147}
4148
4149void SwitchInstProfUpdateWrapper::init() {
4150 MDNode *ProfileData = getProfBranchWeightsMD(SI);
4151 if (!ProfileData)
4152 return;
4153
4154 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4155 llvm_unreachable("number of prof branch_weights metadata operands does "__builtin_unreachable()
4156 "not correspond to number of succesors")__builtin_unreachable();
4157 }
4158
4159 SmallVector<uint32_t, 8> Weights;
4160 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4161 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4162 uint32_t CW = C->getValue().getZExtValue();
4163 Weights.push_back(CW);
4164 }
4165 this->Weights = std::move(Weights);
4166}
4167
4168SwitchInst::CaseIt
4169SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4170 if (Weights) {
4171 assert(SI.getNumSuccessors() == Weights->size() &&((void)0)
4172 "num of prof branch_weights must accord with num of successors")((void)0);
4173 Changed = true;
4174 // Copy the last case to the place of the removed one and shrink.
4175 // This is tightly coupled with the way SwitchInst::removeCase() removes
4176 // the cases in SwitchInst::removeCase(CaseIt).
4177 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4178 Weights.getValue().pop_back();
4179 }
4180 return SI.removeCase(I);
4181}
4182
4183void SwitchInstProfUpdateWrapper::addCase(
4184 ConstantInt *OnVal, BasicBlock *Dest,
4185 SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4186 SI.addCase(OnVal, Dest);
4187
4188 if (!Weights && W && *W) {
4189 Changed = true;
4190 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4191 Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4192 } else if (Weights) {
4193 Changed = true;
4194 Weights.getValue().push_back(W ? *W : 0);
4195 }
4196 if (Weights)
4197 assert(SI.getNumSuccessors() == Weights->size() &&((void)0)
4198 "num of prof branch_weights must accord with num of successors")((void)0);
4199}
4200
4201SymbolTableList<Instruction>::iterator
4202SwitchInstProfUpdateWrapper::eraseFromParent() {
4203 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4204 Changed = false;
4205 if (Weights)
4206 Weights->resize(0);
4207 return SI.eraseFromParent();
4208}
4209
4210SwitchInstProfUpdateWrapper::CaseWeightOpt
4211SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4212 if (!Weights)
4213 return None;
4214 return Weights.getValue()[idx];
4215}
4216
4217void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4218 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4219 if (!W)
4220 return;
4221
4222 if (!Weights && *W)
4223 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4224
4225 if (Weights) {
4226 auto &OldW = Weights.getValue()[idx];
4227 if (*W != OldW) {
4228 Changed = true;
4229 OldW = *W;
4230 }
4231 }
4232}
4233
4234SwitchInstProfUpdateWrapper::CaseWeightOpt
4235SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4236 unsigned idx) {
4237 if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4238 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4239 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4240 ->getValue()
4241 .getZExtValue();
4242
4243 return None;
4244}
4245
4246//===----------------------------------------------------------------------===//
4247// IndirectBrInst Implementation
4248//===----------------------------------------------------------------------===//
4249
4250void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4251 assert(Address && Address->getType()->isPointerTy() &&((void)0)
4252 "Address of indirectbr must be a pointer")((void)0);
4253 ReservedSpace = 1+NumDests;
4254 setNumHungOffUseOperands(1);
4255 allocHungoffUses(ReservedSpace);
4256
4257 Op<0>() = Address;
4258}
4259
4260
4261/// growOperands - grow operands - This grows the operand list in response
4262/// to a push_back style of operation. This grows the number of ops by 2 times.
4263///
4264void IndirectBrInst::growOperands() {
4265 unsigned e = getNumOperands();
4266 unsigned NumOps = e*2;
4267
4268 ReservedSpace = NumOps;
4269 growHungoffUses(ReservedSpace);
4270}
4271
4272IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4273 Instruction *InsertBefore)
4274 : Instruction(Type::getVoidTy(Address->getContext()),
4275 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4276 init(Address, NumCases);
4277}
4278
4279IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4280 BasicBlock *InsertAtEnd)
4281 : Instruction(Type::getVoidTy(Address->getContext()),
4282 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4283 init(Address, NumCases);
4284}
4285
4286IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4287 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4288 nullptr, IBI.getNumOperands()) {
4289 allocHungoffUses(IBI.getNumOperands());
4290 Use *OL = getOperandList();
4291 const Use *InOL = IBI.getOperandList();
4292 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4293 OL[i] = InOL[i];
4294 SubclassOptionalData = IBI.SubclassOptionalData;
4295}
4296
4297/// addDestination - Add a destination.
4298///
4299void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4300 unsigned OpNo = getNumOperands();
4301 if (OpNo+1 > ReservedSpace)
4302 growOperands(); // Get more space!
4303 // Initialize some new operands.
4304 assert(OpNo < ReservedSpace && "Growing didn't work!")((void)0);
4305 setNumHungOffUseOperands(OpNo+1);
4306 getOperandList()[OpNo] = DestBB;
4307}
4308
4309/// removeDestination - This method removes the specified successor from the
4310/// indirectbr instruction.
4311void IndirectBrInst::removeDestination(unsigned idx) {
4312 assert(idx < getNumOperands()-1 && "Successor index out of range!")((void)0);
4313
4314 unsigned NumOps = getNumOperands();
4315 Use *OL = getOperandList();
4316
4317 // Replace this value with the last one.
4318 OL[idx+1] = OL[NumOps-1];
4319
4320 // Nuke the last value.
4321 OL[NumOps-1].set(nullptr);
4322 setNumHungOffUseOperands(NumOps-1);
4323}
4324
4325//===----------------------------------------------------------------------===//
4326// FreezeInst Implementation
4327//===----------------------------------------------------------------------===//
4328
4329FreezeInst::FreezeInst(Value *S,
4330 const Twine &Name, Instruction *InsertBefore)
4331 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4332 setName(Name);
4333}
4334
4335FreezeInst::FreezeInst(Value *S,
4336 const Twine &Name, BasicBlock *InsertAtEnd)
4337 : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4338 setName(Name);
4339}
4340
4341//===----------------------------------------------------------------------===//
4342// cloneImpl() implementations
4343//===----------------------------------------------------------------------===//
4344
4345// Define these methods here so vtables don't get emitted into every translation
4346// unit that uses these classes.
4347
4348GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4349 return new (getNumOperands()) GetElementPtrInst(*this);
4350}
4351
4352UnaryOperator *UnaryOperator::cloneImpl() const {
4353 return Create(getOpcode(), Op<0>());
4354}
4355
4356BinaryOperator *BinaryOperator::cloneImpl() const {
4357 return Create(getOpcode(), Op<0>(), Op<1>());
4358}
4359
4360FCmpInst *FCmpInst::cloneImpl() const {
4361 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4362}
4363
4364ICmpInst *ICmpInst::cloneImpl() const {
4365 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4366}
4367
4368ExtractValueInst *ExtractValueInst::cloneImpl() const {
4369 return new ExtractValueInst(*this);
4370}
4371
4372InsertValueInst *InsertValueInst::cloneImpl() const {
4373 return new InsertValueInst(*this);
4374}
4375
4376AllocaInst *AllocaInst::cloneImpl() const {
4377 AllocaInst *Result =
4378 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4379 getOperand(0), getAlign());
4380 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4381 Result->setSwiftError(isSwiftError());
4382 return Result;
4383}
4384
4385LoadInst *LoadInst::cloneImpl() const {
4386 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4387 getAlign(), getOrdering(), getSyncScopeID());
4388}
4389
4390StoreInst *StoreInst::cloneImpl() const {
4391 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4392 getOrdering(), getSyncScopeID());
4393}
4394
4395AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4396 AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4397 getOperand(0), getOperand(1), getOperand(2), getAlign(),
4398 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4399 Result->setVolatile(isVolatile());
4400 Result->setWeak(isWeak());
4401 return Result;
4402}
4403
4404AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4405 AtomicRMWInst *Result =
4406 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4407 getAlign(), getOrdering(), getSyncScopeID());
4408 Result->setVolatile(isVolatile());
4409 return Result;
4410}
4411
4412FenceInst *FenceInst::cloneImpl() const {
4413 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4414}
4415
4416TruncInst *TruncInst::cloneImpl() const {
4417 return new TruncInst(getOperand(0), getType());
4418}
4419
4420ZExtInst *ZExtInst::cloneImpl() const {
4421 return new ZExtInst(getOperand(0), getType());
4422}
4423
4424SExtInst *SExtInst::cloneImpl() const {
4425 return new SExtInst(getOperand(0), getType());
4426}
4427
4428FPTruncInst *FPTruncInst::cloneImpl() const {
4429 return new FPTruncInst(getOperand(0), getType());
4430}
4431
4432FPExtInst *FPExtInst::cloneImpl() const {
4433 return new FPExtInst(getOperand(0), getType());
4434}
4435
4436UIToFPInst *UIToFPInst::cloneImpl() const {
4437 return new UIToFPInst(getOperand(0), getType());
4438}
4439
4440SIToFPInst *SIToFPInst::cloneImpl() const {
4441 return new SIToFPInst(getOperand(0), getType());
4442}
4443
4444FPToUIInst *FPToUIInst::cloneImpl() const {
4445 return new FPToUIInst(getOperand(0), getType());
4446}
4447
4448FPToSIInst *FPToSIInst::cloneImpl() const {
4449 return new FPToSIInst(getOperand(0), getType());
4450}
4451
4452PtrToIntInst *PtrToIntInst::cloneImpl() const {
4453 return new PtrToIntInst(getOperand(0), getType());
4454}
4455
4456IntToPtrInst *IntToPtrInst::cloneImpl() const {
4457 return new IntToPtrInst(getOperand(0), getType());
4458}
4459
4460BitCastInst *BitCastInst::cloneImpl() const {
4461 return new BitCastInst(getOperand(0), getType());
4462}
4463
4464AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4465 return new AddrSpaceCastInst(getOperand(0), getType());
4466}
4467
4468CallInst *CallInst::cloneImpl() const {
4469 if (hasOperandBundles()) {
4470 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4471 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4472 }
4473 return new(getNumOperands()) CallInst(*this);
4474}
4475
4476SelectInst *SelectInst::cloneImpl() const {
4477 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4478}
4479
4480VAArgInst *VAArgInst::cloneImpl() const {
4481 return new VAArgInst(getOperand(0), getType());
4482}
4483
4484ExtractElementInst *ExtractElementInst::cloneImpl() const {
4485 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4486}
4487
4488InsertElementInst *InsertElementInst::cloneImpl() const {
4489 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4490}
4491
4492ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4493 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4494}
4495
4496PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4497
4498LandingPadInst *LandingPadInst::cloneImpl() const {
4499 return new LandingPadInst(*this);
4500}
4501
4502ReturnInst *ReturnInst::cloneImpl() const {
4503 return new(getNumOperands()) ReturnInst(*this);
4504}
4505
4506BranchInst *BranchInst::cloneImpl() const {
4507 return new(getNumOperands()) BranchInst(*this);
4508}
4509
4510SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4511
4512IndirectBrInst *IndirectBrInst::cloneImpl() const {
4513 return new IndirectBrInst(*this);
4514}
4515
4516InvokeInst *InvokeInst::cloneImpl() const {
4517 if (hasOperandBundles()) {
4518 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4519 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4520 }
4521 return new(getNumOperands()) InvokeInst(*this);
4522}
4523
4524CallBrInst *CallBrInst::cloneImpl() const {
4525 if (hasOperandBundles()) {
4526 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4527 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4528 }
4529 return new (getNumOperands()) CallBrInst(*this);
4530}
4531
4532ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4533
4534CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4535 return new (getNumOperands()) CleanupReturnInst(*this);
4536}
4537
4538CatchReturnInst *CatchReturnInst::cloneImpl() const {
4539 return new (getNumOperands()) CatchReturnInst(*this);
4540}
4541
4542CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4543 return new CatchSwitchInst(*this);
4544}
4545
4546FuncletPadInst *FuncletPadInst::cloneImpl() const {
4547 return new (getNumOperands()) FuncletPadInst(*this);
4548}
4549
4550UnreachableInst *UnreachableInst::cloneImpl() const {
4551 LLVMContext &Context = getContext();
4552 return new UnreachableInst(Context);
4553}
4554
4555FreezeInst *FreezeInst::cloneImpl() const {
4556 return new FreezeInst(getOperand(0));
4557}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/Instruction.def

1//===-- llvm/Instruction.def - File that describes Instructions -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains descriptions of the various LLVM instructions. This is
10// used as a central place for enumerating the different instructions and
11// should eventually be the place to put comments about the instructions.
12//
13//===----------------------------------------------------------------------===//
14
15// NOTE: NO INCLUDE GUARD DESIRED!
16
17// Provide definitions of macros so that users of this file do not have to
18// define everything to use it...
19//
20#ifndef FIRST_TERM_INST
21#define FIRST_TERM_INST(num)
22#endif
23#ifndef HANDLE_TERM_INST
24#ifndef HANDLE_INST
25#define HANDLE_TERM_INST(num, opcode, Class)
26#else
27#define HANDLE_TERM_INST(num, opcode, Class) HANDLE_INST(num, opcode, Class)
28#endif
29#endif
30#ifndef LAST_TERM_INST
31#define LAST_TERM_INST(num)
32#endif
33
34#ifndef FIRST_UNARY_INST
35#define FIRST_UNARY_INST(num)
36#endif
37#ifndef HANDLE_UNARY_INST
38#ifndef HANDLE_INST
39#define HANDLE_UNARY_INST(num, opcode, instclass)
40#else
41#define HANDLE_UNARY_INST(num, opcode, Class) HANDLE_INST(num, opcode, Class)
42#endif
43#endif
44#ifndef LAST_UNARY_INST
45#define LAST_UNARY_INST(num)
46#endif
47
48#ifndef FIRST_BINARY_INST
49#define FIRST_BINARY_INST(num)
50#endif
51#ifndef HANDLE_BINARY_INST
52#ifndef HANDLE_INST
53#define HANDLE_BINARY_INST(num, opcode, instclass)
54#else
55#define HANDLE_BINARY_INST(num, opcode, Class) HANDLE_INST(num, opcode, Class)
56#endif
57#endif
58#ifndef LAST_BINARY_INST
59#define LAST_BINARY_INST(num)
60#endif
61
62#ifndef FIRST_MEMORY_INST
63#define FIRST_MEMORY_INST(num)
64#endif
65#ifndef HANDLE_MEMORY_INST
66#ifndef HANDLE_INST
67#define HANDLE_MEMORY_INST(num, opcode, Class)
68#else
69#define HANDLE_MEMORY_INST(num, opcode, Class) HANDLE_INST(num, opcode, Class)
70#endif
71#endif
72#ifndef LAST_MEMORY_INST
73#define LAST_MEMORY_INST(num)
74#endif
75
76#ifndef FIRST_CAST_INST
77#define FIRST_CAST_INST(num)
78#endif
79#ifndef HANDLE_CAST_INST
80#ifndef HANDLE_INST
81#define HANDLE_CAST_INST(num, opcode, Class)
82#else
83#define HANDLE_CAST_INST(num, opcode, Class) HANDLE_INST(num, opcode, Class)
84#endif
85#endif
86#ifndef LAST_CAST_INST
87#define LAST_CAST_INST(num)
88#endif
89
90#ifndef FIRST_FUNCLETPAD_INST
91#define FIRST_FUNCLETPAD_INST(num)
92#endif
93#ifndef HANDLE_FUNCLETPAD_INST
94#ifndef HANDLE_INST
95#define HANDLE_FUNCLETPAD_INST(num, opcode, Class)
96#else
97#define HANDLE_FUNCLETPAD_INST(num, opcode, Class) HANDLE_INST(num, opcode, Class)
98#endif
99#endif
100#ifndef LAST_FUNCLETPAD_INST
101#define LAST_FUNCLETPAD_INST(num)
102#endif
103
104#ifndef FIRST_OTHER_INST
105#define FIRST_OTHER_INST(num)
106#endif
107#ifndef HANDLE_OTHER_INST
108#ifndef HANDLE_INST
109#define HANDLE_OTHER_INST(num, opcode, Class)
110#else
111#define HANDLE_OTHER_INST(num, opcode, Class) HANDLE_INST(num, opcode, Class)
112#endif
113#endif
114#ifndef LAST_OTHER_INST
115#define LAST_OTHER_INST(num)
116#endif
117
118#ifndef HANDLE_USER_INST
119#define HANDLE_USER_INST(num, opc, Class) HANDLE_OTHER_INST(num, opc, Class)
120#endif
121
122// Terminator Instructions - These instructions are used to terminate a basic
123// block of the program. Every basic block must end with one of these
124// instructions for it to be a well formed basic block.
125//
126 FIRST_TERM_INST ( 1)
127HANDLE_TERM_INST ( 1, Ret , ReturnInst)
128HANDLE_TERM_INST ( 2, Br , BranchInst)
129HANDLE_TERM_INST ( 3, Switch , SwitchInst)
130HANDLE_TERM_INST ( 4, IndirectBr , IndirectBrInst)
131HANDLE_TERM_INST ( 5, Invoke , InvokeInst)
132HANDLE_TERM_INST ( 6, Resume , ResumeInst)
133HANDLE_TERM_INST ( 7, Unreachable , UnreachableInst)
134HANDLE_TERM_INST ( 8, CleanupRet , CleanupReturnInst)
135HANDLE_TERM_INST ( 9, CatchRet , CatchReturnInst)
136HANDLE_TERM_INST (10, CatchSwitch , CatchSwitchInst)
137HANDLE_TERM_INST (11, CallBr , CallBrInst) // A call-site terminator
138 LAST_TERM_INST (11)
139
140// Standard unary operators...
141 FIRST_UNARY_INST(12)
142HANDLE_UNARY_INST(12, FNeg , UnaryOperator)
143 LAST_UNARY_INST(12)
144
145// Standard binary operators...
146 FIRST_BINARY_INST(13)
147HANDLE_BINARY_INST(13, Add , BinaryOperator)
148HANDLE_BINARY_INST(14, FAdd , BinaryOperator)
149HANDLE_BINARY_INST(15, Sub , BinaryOperator)
150HANDLE_BINARY_INST(16, FSub , BinaryOperator)
151HANDLE_BINARY_INST(17, Mul , BinaryOperator)
23
Passing null pointer value via 5th parameter 'InsertAtEnd'
24
Calling 'BinaryOperator::Create'
152HANDLE_BINARY_INST(18, FMul , BinaryOperator)
153HANDLE_BINARY_INST(19, UDiv , BinaryOperator)
154HANDLE_BINARY_INST(20, SDiv , BinaryOperator)
155HANDLE_BINARY_INST(21, FDiv , BinaryOperator)
156HANDLE_BINARY_INST(22, URem , BinaryOperator)
157HANDLE_BINARY_INST(23, SRem , BinaryOperator)
158HANDLE_BINARY_INST(24, FRem , BinaryOperator)
159
160// Logical operators (integer operands)
161HANDLE_BINARY_INST(25, Shl , BinaryOperator) // Shift left (logical)
162HANDLE_BINARY_INST(26, LShr , BinaryOperator) // Shift right (logical)
163HANDLE_BINARY_INST(27, AShr , BinaryOperator) // Shift right (arithmetic)
164HANDLE_BINARY_INST(28, And , BinaryOperator)
165HANDLE_BINARY_INST(29, Or , BinaryOperator)
166HANDLE_BINARY_INST(30, Xor , BinaryOperator)
167 LAST_BINARY_INST(30)
168
169// Memory operators...
170 FIRST_MEMORY_INST(31)
171HANDLE_MEMORY_INST(31, Alloca, AllocaInst) // Stack management
172HANDLE_MEMORY_INST(32, Load , LoadInst ) // Memory manipulation instrs
173HANDLE_MEMORY_INST(33, Store , StoreInst )
174HANDLE_MEMORY_INST(34, GetElementPtr, GetElementPtrInst)
175HANDLE_MEMORY_INST(35, Fence , FenceInst )
176HANDLE_MEMORY_INST(36, AtomicCmpXchg , AtomicCmpXchgInst )
177HANDLE_MEMORY_INST(37, AtomicRMW , AtomicRMWInst )
178 LAST_MEMORY_INST(37)
179
180// Cast operators ...
181// NOTE: The order matters here because CastInst::isEliminableCastPair
182// NOTE: (see Instructions.cpp) encodes a table based on this ordering.
183 FIRST_CAST_INST(38)
184HANDLE_CAST_INST(38, Trunc , TruncInst ) // Truncate integers
185HANDLE_CAST_INST(39, ZExt , ZExtInst ) // Zero extend integers
186HANDLE_CAST_INST(40, SExt , SExtInst ) // Sign extend integers
187HANDLE_CAST_INST(41, FPToUI , FPToUIInst ) // floating point -> UInt
188HANDLE_CAST_INST(42, FPToSI , FPToSIInst ) // floating point -> SInt
189HANDLE_CAST_INST(43, UIToFP , UIToFPInst ) // UInt -> floating point
190HANDLE_CAST_INST(44, SIToFP , SIToFPInst ) // SInt -> floating point
191HANDLE_CAST_INST(45, FPTrunc , FPTruncInst ) // Truncate floating point
192HANDLE_CAST_INST(46, FPExt , FPExtInst ) // Extend floating point
193HANDLE_CAST_INST(47, PtrToInt, PtrToIntInst) // Pointer -> Integer
194HANDLE_CAST_INST(48, IntToPtr, IntToPtrInst) // Integer -> Pointer
195HANDLE_CAST_INST(49, BitCast , BitCastInst ) // Type cast
196HANDLE_CAST_INST(50, AddrSpaceCast, AddrSpaceCastInst) // addrspace cast
197 LAST_CAST_INST(50)
198
199 FIRST_FUNCLETPAD_INST(51)
200HANDLE_FUNCLETPAD_INST(51, CleanupPad, CleanupPadInst)
201HANDLE_FUNCLETPAD_INST(52, CatchPad , CatchPadInst)
202 LAST_FUNCLETPAD_INST(52)
203
204// Other operators...
205 FIRST_OTHER_INST(53)
206HANDLE_OTHER_INST(53, ICmp , ICmpInst ) // Integer comparison instruction
207HANDLE_OTHER_INST(54, FCmp , FCmpInst ) // Floating point comparison instr.
208HANDLE_OTHER_INST(55, PHI , PHINode ) // PHI node instruction
209HANDLE_OTHER_INST(56, Call , CallInst ) // Call a function
210HANDLE_OTHER_INST(57, Select , SelectInst ) // select instruction
211HANDLE_USER_INST (58, UserOp1, Instruction) // May be used internally in a pass
212HANDLE_USER_INST (59, UserOp2, Instruction) // Internal to passes only
213HANDLE_OTHER_INST(60, VAArg , VAArgInst ) // vaarg instruction
214HANDLE_OTHER_INST(61, ExtractElement, ExtractElementInst)// extract from vector
215HANDLE_OTHER_INST(62, InsertElement, InsertElementInst) // insert into vector
216HANDLE_OTHER_INST(63, ShuffleVector, ShuffleVectorInst) // shuffle two vectors.
217HANDLE_OTHER_INST(64, ExtractValue, ExtractValueInst)// extract from aggregate
218HANDLE_OTHER_INST(65, InsertValue, InsertValueInst) // insert into aggregate
219HANDLE_OTHER_INST(66, LandingPad, LandingPadInst) // Landing pad instruction.
220HANDLE_OTHER_INST(67, Freeze, FreezeInst) // Freeze instruction.
221 LAST_OTHER_INST(67)
222
223#undef FIRST_TERM_INST
224#undef HANDLE_TERM_INST
225#undef LAST_TERM_INST
226
227#undef FIRST_UNARY_INST
228#undef HANDLE_UNARY_INST
229#undef LAST_UNARY_INST
230
231#undef FIRST_BINARY_INST
232#undef HANDLE_BINARY_INST
233#undef LAST_BINARY_INST
234
235#undef FIRST_MEMORY_INST
236#undef HANDLE_MEMORY_INST
237#undef LAST_MEMORY_INST
238
239#undef FIRST_CAST_INST
240#undef HANDLE_CAST_INST
241#undef LAST_CAST_INST
242
243#undef FIRST_FUNCLETPAD_INST
244#undef HANDLE_FUNCLETPAD_INST
245#undef LAST_FUNCLETPAD_INST
246
247#undef FIRST_OTHER_INST
248#undef HANDLE_OTHER_INST
249#undef LAST_OTHER_INST
250
251#undef HANDLE_USER_INST
252
253#ifdef HANDLE_INST
254#undef HANDLE_INST
255#endif