File: | src/usr.bin/lex/dfa.c |
Warning: | line 632, column 8 Branch condition evaluates to a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: dfa.c,v 1.8 2015/11/19 23:20:34 tedu Exp $ */ | |||
2 | ||||
3 | /* dfa - DFA construction routines */ | |||
4 | ||||
5 | /* Copyright (c) 1990 The Regents of the University of California. */ | |||
6 | /* All rights reserved. */ | |||
7 | ||||
8 | /* This code is derived from software contributed to Berkeley by */ | |||
9 | /* Vern Paxson. */ | |||
10 | ||||
11 | /* The United States Government has rights in this work pursuant */ | |||
12 | /* to contract no. DE-AC03-76SF00098 between the United States */ | |||
13 | /* Department of Energy and the University of California. */ | |||
14 | ||||
15 | /* Redistribution and use in source and binary forms, with or without */ | |||
16 | /* modification, are permitted provided that the following conditions */ | |||
17 | /* are met: */ | |||
18 | ||||
19 | /* 1. Redistributions of source code must retain the above copyright */ | |||
20 | /* notice, this list of conditions and the following disclaimer. */ | |||
21 | /* 2. Redistributions in binary form must reproduce the above copyright */ | |||
22 | /* notice, this list of conditions and the following disclaimer in the */ | |||
23 | /* documentation and/or other materials provided with the distribution. */ | |||
24 | ||||
25 | /* Neither the name of the University nor the names of its contributors */ | |||
26 | /* may be used to endorse or promote products derived from this software */ | |||
27 | /* without specific prior written permission. */ | |||
28 | ||||
29 | /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ | |||
30 | /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ | |||
31 | /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ | |||
32 | /* PURPOSE. */ | |||
33 | ||||
34 | #include "flexdef.h" | |||
35 | #include "tables.h" | |||
36 | ||||
37 | /* declare functions that have forward references */ | |||
38 | ||||
39 | void dump_associated_rules PROTO ((FILE *, int))(FILE *, int); | |||
40 | void dump_transitions PROTO ((FILE *, int[]))(FILE *, int[]); | |||
41 | void sympartition PROTO ((int[], int, int[], int[]))(int[], int, int[], int[]); | |||
42 | int symfollowset PROTO ((int[], int, int, int[]))(int[], int, int, int[]); | |||
43 | ||||
44 | ||||
45 | /* check_for_backing_up - check a DFA state for backing up | |||
46 | * | |||
47 | * synopsis | |||
48 | * void check_for_backing_up( int ds, int state[numecs] ); | |||
49 | * | |||
50 | * ds is the number of the state to check and state[] is its out-transitions, | |||
51 | * indexed by equivalence class. | |||
52 | */ | |||
53 | ||||
54 | void check_for_backing_up (ds, state) | |||
55 | int ds; | |||
56 | int state[]; | |||
57 | { | |||
58 | if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */ | |||
59 | ++num_backing_up; | |||
60 | ||||
61 | if (backing_up_report) { | |||
62 | fprintf (backing_up_file, | |||
63 | _("State #%d is non-accepting -\n")"State #%d is non-accepting -\n", ds); | |||
64 | ||||
65 | /* identify the state */ | |||
66 | dump_associated_rules (backing_up_file, ds); | |||
67 | ||||
68 | /* Now identify it further using the out- and | |||
69 | * jam-transitions. | |||
70 | */ | |||
71 | dump_transitions (backing_up_file, state); | |||
72 | ||||
73 | putc ('\n', backing_up_file)(!__isthreaded ? __sputc('\n', backing_up_file) : (putc)('\n' , backing_up_file)); | |||
74 | } | |||
75 | } | |||
76 | } | |||
77 | ||||
78 | ||||
79 | /* check_trailing_context - check to see if NFA state set constitutes | |||
80 | * "dangerous" trailing context | |||
81 | * | |||
82 | * synopsis | |||
83 | * void check_trailing_context( int nfa_states[num_states+1], int num_states, | |||
84 | * int accset[nacc+1], int nacc ); | |||
85 | * | |||
86 | * NOTES | |||
87 | * Trailing context is "dangerous" if both the head and the trailing | |||
88 | * part are of variable size \and/ there's a DFA state which contains | |||
89 | * both an accepting state for the head part of the rule and NFA states | |||
90 | * which occur after the beginning of the trailing context. | |||
91 | * | |||
92 | * When such a rule is matched, it's impossible to tell if having been | |||
93 | * in the DFA state indicates the beginning of the trailing context or | |||
94 | * further-along scanning of the pattern. In these cases, a warning | |||
95 | * message is issued. | |||
96 | * | |||
97 | * nfa_states[1 .. num_states] is the list of NFA states in the DFA. | |||
98 | * accset[1 .. nacc] is the list of accepting numbers for the DFA state. | |||
99 | */ | |||
100 | ||||
101 | void check_trailing_context (nfa_states, num_states, accset, nacc) | |||
102 | int *nfa_states, num_states; | |||
103 | int *accset; | |||
104 | int nacc; | |||
105 | { | |||
106 | int i, j; | |||
107 | ||||
108 | for (i = 1; i <= num_states; ++i) { | |||
109 | int ns = nfa_states[i]; | |||
110 | int type = state_type[ns]; | |||
111 | int ar = assoc_rule[ns]; | |||
112 | ||||
113 | if (type == STATE_NORMAL0x1 || rule_type[ar] != RULE_VARIABLE1) { /* do nothing */ | |||
114 | } | |||
115 | ||||
116 | else if (type == STATE_TRAILING_CONTEXT0x2) { | |||
117 | /* Potential trouble. Scan set of accepting numbers | |||
118 | * for the one marking the end of the "head". We | |||
119 | * assume that this looping will be fairly cheap | |||
120 | * since it's rare that an accepting number set | |||
121 | * is large. | |||
122 | */ | |||
123 | for (j = 1; j <= nacc; ++j) | |||
124 | if (accset[j] & YY_TRAILING_HEAD_MASK0x4000) { | |||
125 | line_warning (_"dangerous trailing context" | |||
126 | ("dangerous trailing context")"dangerous trailing context", | |||
127 | rule_linenum[ar]); | |||
128 | return; | |||
129 | } | |||
130 | } | |||
131 | } | |||
132 | } | |||
133 | ||||
134 | ||||
135 | /* dump_associated_rules - list the rules associated with a DFA state | |||
136 | * | |||
137 | * Goes through the set of NFA states associated with the DFA and | |||
138 | * extracts the first MAX_ASSOC_RULES unique rules, sorts them, | |||
139 | * and writes a report to the given file. | |||
140 | */ | |||
141 | ||||
142 | void dump_associated_rules (file, ds) | |||
143 | FILE *file; | |||
144 | int ds; | |||
145 | { | |||
146 | int i, j; | |||
147 | int num_associated_rules = 0; | |||
148 | int rule_set[MAX_ASSOC_RULES100 + 1]; | |||
149 | int *dset = dss[ds]; | |||
150 | int size = dfasiz[ds]; | |||
151 | ||||
152 | for (i = 1; i <= size; ++i) { | |||
153 | int rule_num = rule_linenum[assoc_rule[dset[i]]]; | |||
154 | ||||
155 | for (j = 1; j <= num_associated_rules; ++j) | |||
156 | if (rule_num == rule_set[j]) | |||
157 | break; | |||
158 | ||||
159 | if (j > num_associated_rules) { /* new rule */ | |||
160 | if (num_associated_rules < MAX_ASSOC_RULES100) | |||
161 | rule_set[++num_associated_rules] = | |||
162 | rule_num; | |||
163 | } | |||
164 | } | |||
165 | ||||
166 | qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp); | |||
167 | ||||
168 | fprintf (file, _(" associated rule line numbers:")" associated rule line numbers:"); | |||
169 | ||||
170 | for (i = 1; i <= num_associated_rules; ++i) { | |||
171 | if (i % 8 == 1) | |||
172 | putc ('\n', file)(!__isthreaded ? __sputc('\n', file) : (putc)('\n', file)); | |||
173 | ||||
174 | fprintf (file, "\t%d", rule_set[i]); | |||
175 | } | |||
176 | ||||
177 | putc ('\n', file)(!__isthreaded ? __sputc('\n', file) : (putc)('\n', file)); | |||
178 | } | |||
179 | ||||
180 | ||||
181 | /* dump_transitions - list the transitions associated with a DFA state | |||
182 | * | |||
183 | * synopsis | |||
184 | * dump_transitions( FILE *file, int state[numecs] ); | |||
185 | * | |||
186 | * Goes through the set of out-transitions and lists them in human-readable | |||
187 | * form (i.e., not as equivalence classes); also lists jam transitions | |||
188 | * (i.e., all those which are not out-transitions, plus EOF). The dump | |||
189 | * is done to the given file. | |||
190 | */ | |||
191 | ||||
192 | void dump_transitions (file, state) | |||
193 | FILE *file; | |||
194 | int state[]; | |||
195 | { | |||
196 | int i, ec; | |||
197 | int out_char_set[CSIZE256]; | |||
198 | ||||
199 | for (i = 0; i < csize; ++i) { | |||
200 | ec = ABS (ecgroup[i])((ecgroup[i]) < 0 ? -(ecgroup[i]) : (ecgroup[i])); | |||
201 | out_char_set[i] = state[ec]; | |||
202 | } | |||
203 | ||||
204 | fprintf (file, _(" out-transitions: ")" out-transitions: "); | |||
205 | ||||
206 | list_character_set (file, out_char_set); | |||
207 | ||||
208 | /* now invert the members of the set to get the jam transitions */ | |||
209 | for (i = 0; i < csize; ++i) | |||
210 | out_char_set[i] = !out_char_set[i]; | |||
211 | ||||
212 | fprintf (file, _("\n jam-transitions: EOF ")"\n jam-transitions: EOF "); | |||
213 | ||||
214 | list_character_set (file, out_char_set); | |||
215 | ||||
216 | putc ('\n', file)(!__isthreaded ? __sputc('\n', file) : (putc)('\n', file)); | |||
217 | } | |||
218 | ||||
219 | ||||
220 | /* epsclosure - construct the epsilon closure of a set of ndfa states | |||
221 | * | |||
222 | * synopsis | |||
223 | * int *epsclosure( int t[num_states], int *numstates_addr, | |||
224 | * int accset[num_rules+1], int *nacc_addr, | |||
225 | * int *hashval_addr ); | |||
226 | * | |||
227 | * NOTES | |||
228 | * The epsilon closure is the set of all states reachable by an arbitrary | |||
229 | * number of epsilon transitions, which themselves do not have epsilon | |||
230 | * transitions going out, unioned with the set of states which have non-null | |||
231 | * accepting numbers. t is an array of size numstates of nfa state numbers. | |||
232 | * Upon return, t holds the epsilon closure and *numstates_addr is updated. | |||
233 | * accset holds a list of the accepting numbers, and the size of accset is | |||
234 | * given by *nacc_addr. t may be subjected to reallocation if it is not | |||
235 | * large enough to hold the epsilon closure. | |||
236 | * | |||
237 | * hashval is the hash value for the dfa corresponding to the state set. | |||
238 | */ | |||
239 | ||||
240 | int *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr) | |||
241 | int *t, *ns_addr, accset[], *nacc_addr, *hv_addr; | |||
242 | { | |||
243 | int stkpos, ns, tsp; | |||
244 | int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum; | |||
245 | int stkend, nstate; | |||
246 | static int did_stk_init = false0, *stk; | |||
247 | ||||
248 | #define MARK_STATE(state)do{ trans1[state] = trans1[state] - (maximum_mns+2);} while(0 ) \ | |||
249 | do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE(maximum_mns+2);} while(0) | |||
250 | ||||
251 | #define IS_MARKED(state)(trans1[state] < 0) (trans1[state] < 0) | |||
252 | ||||
253 | #define UNMARK_STATE(state)do{ trans1[state] = trans1[state] + (maximum_mns+2);} while(0 ) \ | |||
254 | do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE(maximum_mns+2);} while(0) | |||
255 | ||||
256 | #define CHECK_ACCEPT(state)do{ nfaccnum = accptnum[state]; if ( nfaccnum != 0 ) accset[++ nacc] = nfaccnum; }while(0) \ | |||
257 | do{ \ | |||
258 | nfaccnum = accptnum[state]; \ | |||
259 | if ( nfaccnum != NIL0 ) \ | |||
260 | accset[++nacc] = nfaccnum; \ | |||
261 | }while(0) | |||
262 | ||||
263 | #define DO_REALLOCATION()do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void *) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array( (void *) stk, current_max_dfa_size , sizeof( int ) ); }while(0) \ | |||
264 | do { \ | |||
265 | current_max_dfa_size += MAX_DFA_SIZE_INCREMENT750; \ | |||
266 | ++num_reallocs; \ | |||
267 | t = reallocate_integer_array( t, current_max_dfa_size )(int *) reallocate_array( (void *) t, current_max_dfa_size, sizeof ( int ) ); \ | |||
268 | stk = reallocate_integer_array( stk, current_max_dfa_size )(int *) reallocate_array( (void *) stk, current_max_dfa_size, sizeof( int ) ); \ | |||
269 | }while(0) \ | |||
270 | ||||
271 | #define PUT_ON_STACK(state)do { if ( ++stkend >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); stk[stkend] = state; do{ trans1[state] = trans1[state] - (maximum_mns+2);} while(0); }while(0) \ | |||
272 | do { \ | |||
273 | if ( ++stkend >= current_max_dfa_size ) \do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void *) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array( (void *) stk, current_max_dfa_size , sizeof( int ) ); }while(0) | |||
274 | DO_REALLOCATION()do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void *) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array( (void *) stk, current_max_dfa_size , sizeof( int ) ); }while(0); \ | |||
275 | stk[stkend] = state; \do{ trans1[state] = trans1[state] - (maximum_mns+2);} while(0 ) | |||
276 | MARK_STATE(state)do{ trans1[state] = trans1[state] - (maximum_mns+2);} while(0 ); \ | |||
277 | }while(0) | |||
278 | ||||
279 | #define ADD_STATE(state)do { if ( ++numstates >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); t[numstates] = state; hashval += state; }while(0) \ | |||
280 | do { \ | |||
281 | if ( ++numstates >= current_max_dfa_size ) \do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void *) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array( (void *) stk, current_max_dfa_size , sizeof( int ) ); }while(0) | |||
282 | DO_REALLOCATION()do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void *) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array( (void *) stk, current_max_dfa_size , sizeof( int ) ); }while(0); \ | |||
283 | t[numstates] = state; \ | |||
284 | hashval += state; \ | |||
285 | }while(0) | |||
286 | ||||
287 | #define STACK_STATE(state)do { do { if ( ++stkend >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); stk[stkend] = state; do{ trans1[state] = trans1[state] - (maximum_mns+2);} while(0); }while(0); do{ nfaccnum = accptnum [state]; if ( nfaccnum != 0 ) accset[++nacc] = nfaccnum; }while (0); if ( nfaccnum != 0 || transchar[state] != (256 + 1) ) do { if ( ++numstates >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); t[numstates] = state; hashval += state; }while(0); }while (0) \ | |||
288 | do { \do { if ( ++stkend >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); stk[stkend] = state; do{ trans1[state] = trans1[state] - (maximum_mns+2);} while(0); }while(0) | |||
289 | PUT_ON_STACK(state)do { if ( ++stkend >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); stk[stkend] = state; do{ trans1[state] = trans1[state] - (maximum_mns+2);} while(0); }while(0); \do{ nfaccnum = accptnum[state]; if ( nfaccnum != 0 ) accset[++ nacc] = nfaccnum; }while(0) | |||
290 | CHECK_ACCEPT(state)do{ nfaccnum = accptnum[state]; if ( nfaccnum != 0 ) accset[++ nacc] = nfaccnum; }while(0); \ | |||
291 | if ( nfaccnum != NIL0 || transchar[state] != SYM_EPSILON(256 + 1) ) \do { if ( ++numstates >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); t[numstates] = state; hashval += state; }while(0) | |||
292 | ADD_STATE(state)do { if ( ++numstates >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); t[numstates] = state; hashval += state; }while(0); \ | |||
293 | }while(0) | |||
294 | ||||
295 | ||||
296 | if (!did_stk_init) { | |||
297 | stk = allocate_integer_array (current_max_dfa_size)(int *) allocate_array( current_max_dfa_size, sizeof( int ) ); | |||
298 | did_stk_init = true1; | |||
299 | } | |||
300 | ||||
301 | nacc = stkend = hashval = 0; | |||
302 | ||||
303 | for (nstate = 1; nstate <= numstates; ++nstate) { | |||
304 | ns = t[nstate]; | |||
305 | ||||
306 | /* The state could be marked if we've already pushed it onto | |||
307 | * the stack. | |||
308 | */ | |||
309 | if (!IS_MARKED (ns)(trans1[ns] < 0)) { | |||
310 | PUT_ON_STACK (ns)do { if ( ++stkend >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); stk[stkend] = ns; do{ trans1[ns] = trans1[ns] - (maximum_mns +2);} while(0); }while(0); | |||
311 | CHECK_ACCEPT (ns)do{ nfaccnum = accptnum[ns]; if ( nfaccnum != 0 ) accset[++nacc ] = nfaccnum; }while(0); | |||
312 | hashval += ns; | |||
313 | } | |||
314 | } | |||
315 | ||||
316 | for (stkpos = 1; stkpos <= stkend; ++stkpos) { | |||
317 | ns = stk[stkpos]; | |||
318 | transsym = transchar[ns]; | |||
319 | ||||
320 | if (transsym == SYM_EPSILON(256 + 1)) { | |||
321 | tsp = trans1[ns] + MARKER_DIFFERENCE(maximum_mns+2); | |||
322 | ||||
323 | if (tsp != NO_TRANSITION0) { | |||
324 | if (!IS_MARKED (tsp)(trans1[tsp] < 0)) | |||
325 | STACK_STATE (tsp)do { do { if ( ++stkend >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); stk[stkend] = tsp; do{ trans1[tsp] = trans1[tsp] - (maximum_mns +2);} while(0); }while(0); do{ nfaccnum = accptnum[tsp]; if ( nfaccnum != 0 ) accset[++nacc] = nfaccnum; }while(0); if ( nfaccnum != 0 || transchar[tsp] != (256 + 1) ) do { if ( ++numstates >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs ; t = (int *) reallocate_array( (void *) t, current_max_dfa_size , sizeof( int ) ); stk = (int *) reallocate_array( (void *) stk , current_max_dfa_size, sizeof( int ) ); }while(0); t[numstates ] = tsp; hashval += tsp; }while(0); }while(0); | |||
326 | ||||
327 | tsp = trans2[ns]; | |||
328 | ||||
329 | if (tsp != NO_TRANSITION0 | |||
330 | && !IS_MARKED (tsp)(trans1[tsp] < 0)) | |||
331 | STACK_STATE (tsp)do { do { if ( ++stkend >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs; t = (int *) reallocate_array( (void * ) t, current_max_dfa_size, sizeof( int ) ); stk = (int *) reallocate_array ( (void *) stk, current_max_dfa_size, sizeof( int ) ); }while (0); stk[stkend] = tsp; do{ trans1[tsp] = trans1[tsp] - (maximum_mns +2);} while(0); }while(0); do{ nfaccnum = accptnum[tsp]; if ( nfaccnum != 0 ) accset[++nacc] = nfaccnum; }while(0); if ( nfaccnum != 0 || transchar[tsp] != (256 + 1) ) do { if ( ++numstates >= current_max_dfa_size ) do { current_max_dfa_size += 750; ++num_reallocs ; t = (int *) reallocate_array( (void *) t, current_max_dfa_size , sizeof( int ) ); stk = (int *) reallocate_array( (void *) stk , current_max_dfa_size, sizeof( int ) ); }while(0); t[numstates ] = tsp; hashval += tsp; }while(0); }while(0); | |||
332 | } | |||
333 | } | |||
334 | } | |||
335 | ||||
336 | /* Clear out "visit" markers. */ | |||
337 | ||||
338 | for (stkpos = 1; stkpos <= stkend; ++stkpos) { | |||
339 | if (IS_MARKED (stk[stkpos])(trans1[stk[stkpos]] < 0)) | |||
340 | UNMARK_STATE (stk[stkpos])do{ trans1[stk[stkpos]] = trans1[stk[stkpos]] + (maximum_mns+ 2);} while(0); | |||
341 | else | |||
342 | flexfatal (_"consistency check failed in epsclosure()" | |||
343 | ("consistency check failed in epsclosure()")"consistency check failed in epsclosure()"); | |||
344 | } | |||
345 | ||||
346 | *ns_addr = numstates; | |||
347 | *hv_addr = hashval; | |||
348 | *nacc_addr = nacc; | |||
349 | ||||
350 | return t; | |||
351 | } | |||
352 | ||||
353 | ||||
354 | /* increase_max_dfas - increase the maximum number of DFAs */ | |||
355 | ||||
356 | void increase_max_dfas () | |||
357 | { | |||
358 | current_max_dfas += MAX_DFAS_INCREMENT1000; | |||
359 | ||||
360 | ++num_reallocs; | |||
361 | ||||
362 | base = reallocate_integer_array (base, current_max_dfas)(int *) reallocate_array( (void *) base, current_max_dfas, sizeof ( int ) ); | |||
363 | def = reallocate_integer_array (def, current_max_dfas)(int *) reallocate_array( (void *) def, current_max_dfas, sizeof ( int ) ); | |||
364 | dfasiz = reallocate_integer_array (dfasiz, current_max_dfas)(int *) reallocate_array( (void *) dfasiz, current_max_dfas, sizeof ( int ) ); | |||
365 | accsiz = reallocate_integer_array (accsiz, current_max_dfas)(int *) reallocate_array( (void *) accsiz, current_max_dfas, sizeof ( int ) ); | |||
366 | dhash = reallocate_integer_array (dhash, current_max_dfas)(int *) reallocate_array( (void *) dhash, current_max_dfas, sizeof ( int ) ); | |||
367 | dss = reallocate_int_ptr_array (dss, current_max_dfas)(int **) reallocate_array( (void *) dss, current_max_dfas, sizeof ( int * ) ); | |||
368 | dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas)(union dfaacc_union *) reallocate_array( (void *) dfaacc, current_max_dfas , sizeof( union dfaacc_union ) ); | |||
369 | ||||
370 | if (nultrans) | |||
371 | nultrans = | |||
372 | reallocate_integer_array (nultrans,(int *) reallocate_array( (void *) nultrans, current_max_dfas , sizeof( int ) ) | |||
373 | current_max_dfas)(int *) reallocate_array( (void *) nultrans, current_max_dfas , sizeof( int ) ); | |||
374 | } | |||
375 | ||||
376 | ||||
377 | /* ntod - convert an ndfa to a dfa | |||
378 | * | |||
379 | * Creates the dfa corresponding to the ndfa we've constructed. The | |||
380 | * dfa starts out in state #1. | |||
381 | */ | |||
382 | ||||
383 | void ntod () | |||
384 | { | |||
385 | int *accset, ds, nacc, newds; | |||
386 | int sym, hashval, numstates, dsize; | |||
387 | int num_full_table_rows=0; /* used only for -f */ | |||
388 | int *nset, *dset; | |||
389 | int targptr, totaltrans, i, comstate, comfreq, targ; | |||
390 | int symlist[CSIZE256 + 1]; | |||
391 | int num_start_states; | |||
392 | int todo_head, todo_next; | |||
393 | ||||
394 | struct yytbl_data *yynxt_tbl = 0; | |||
395 | flex_int32_t *yynxt_data = 0, yynxt_curr = 0; | |||
396 | ||||
397 | /* Note that the following are indexed by *equivalence classes* | |||
398 | * and not by characters. Since equivalence classes are indexed | |||
399 | * beginning with 1, even if the scanner accepts NUL's, this | |||
400 | * means that (since every character is potentially in its own | |||
401 | * equivalence class) these arrays must have room for indices | |||
402 | * from 1 to CSIZE, so their size must be CSIZE + 1. | |||
403 | */ | |||
404 | int duplist[CSIZE256 + 1], state[CSIZE256 + 1]; | |||
405 | int targfreq[CSIZE256 + 1], targstate[CSIZE256 + 1]; | |||
406 | ||||
407 | /* accset needs to be large enough to hold all of the rules present | |||
408 | * in the input, *plus* their YY_TRAILING_HEAD_MASK variants. | |||
409 | */ | |||
410 | accset = allocate_integer_array ((num_rules + 1) * 2)(int *) allocate_array( (num_rules + 1) * 2, sizeof( int ) ); | |||
411 | nset = allocate_integer_array (current_max_dfa_size)(int *) allocate_array( current_max_dfa_size, sizeof( int ) ); | |||
412 | ||||
413 | /* The "todo" queue is represented by the head, which is the DFA | |||
414 | * state currently being processed, and the "next", which is the | |||
415 | * next DFA state number available (not in use). We depend on the | |||
416 | * fact that snstods() returns DFA's \in increasing order/, and thus | |||
417 | * need only know the bounds of the dfas to be processed. | |||
418 | */ | |||
419 | todo_head = todo_next = 0; | |||
420 | ||||
421 | for (i = 0; i <= csize; ++i) { | |||
| ||||
422 | duplist[i] = NIL0; | |||
423 | symlist[i] = false0; | |||
424 | } | |||
425 | ||||
426 | for (i = 0; i <= num_rules; ++i) | |||
427 | accset[i] = NIL0; | |||
428 | ||||
429 | if (trace) { | |||
430 | dumpnfa (scset[1]); | |||
431 | fputs (_("\n\nDFA Dump:\n\n")"\n\nDFA Dump:\n\n", stderr(&__sF[2])); | |||
432 | } | |||
433 | ||||
434 | inittbl (); | |||
435 | ||||
436 | /* Check to see whether we should build a separate table for | |||
437 | * transitions on NUL characters. We don't do this for full-speed | |||
438 | * (-F) scanners, since for them we don't have a simple state | |||
439 | * number lying around with which to index the table. We also | |||
440 | * don't bother doing it for scanners unless (1) NUL is in its own | |||
441 | * equivalence class (indicated by a positive value of | |||
442 | * ecgroup[NUL]), (2) NUL's equivalence class is the last | |||
443 | * equivalence class, and (3) the number of equivalence classes is | |||
444 | * the same as the number of characters. This latter case comes | |||
445 | * about when useecs is false or when it's true but every character | |||
446 | * still manages to land in its own class (unlikely, but it's | |||
447 | * cheap to check for). If all these things are true then the | |||
448 | * character code needed to represent NUL's equivalence class for | |||
449 | * indexing the tables is going to take one more bit than the | |||
450 | * number of characters, and therefore we won't be assured of | |||
451 | * being able to fit it into a YY_CHAR variable. This rules out | |||
452 | * storing the transitions in a compressed table, since the code | |||
453 | * for interpreting them uses a YY_CHAR variable (perhaps it | |||
454 | * should just use an integer, though; this is worth pondering ... | |||
455 | * ###). | |||
456 | * | |||
457 | * Finally, for full tables, we want the number of entries in the | |||
458 | * table to be a power of two so the array references go fast (it | |||
459 | * will just take a shift to compute the major index). If | |||
460 | * encoding NUL's transitions in the table will spoil this, we | |||
461 | * give it its own table (note that this will be the case if we're | |||
462 | * not using equivalence classes). | |||
463 | */ | |||
464 | ||||
465 | /* Note that the test for ecgroup[0] == numecs below accomplishes | |||
466 | * both (1) and (2) above | |||
467 | */ | |||
468 | if (!fullspd && ecgroup[0] == numecs) { | |||
469 | /* NUL is alone in its equivalence class, which is the | |||
470 | * last one. | |||
471 | */ | |||
472 | int use_NUL_table = (numecs == csize); | |||
473 | ||||
474 | if (fulltbl && !use_NUL_table) { | |||
475 | /* We still may want to use the table if numecs | |||
476 | * is a power of 2. | |||
477 | */ | |||
478 | int power_of_two; | |||
479 | ||||
480 | for (power_of_two = 1; power_of_two <= csize; | |||
481 | power_of_two *= 2) | |||
482 | if (numecs == power_of_two) { | |||
483 | use_NUL_table = true1; | |||
484 | break; | |||
485 | } | |||
486 | } | |||
487 | ||||
488 | if (use_NUL_table) | |||
489 | nultrans = | |||
490 | allocate_integer_array (current_max_dfas)(int *) allocate_array( current_max_dfas, sizeof( int ) ); | |||
491 | ||||
492 | /* From now on, nultrans != nil indicates that we're | |||
493 | * saving null transitions for later, separate encoding. | |||
494 | */ | |||
495 | } | |||
496 | ||||
497 | ||||
498 | if (fullspd
| |||
499 | for (i = 0; i <= numecs; ++i) | |||
500 | state[i] = 0; | |||
501 | ||||
502 | place_state (state, 0, 0); | |||
503 | dfaacc[0].dfaacc_state = 0; | |||
504 | } | |||
505 | ||||
506 | else if (fulltbl) { | |||
507 | if (nultrans) | |||
508 | /* We won't be including NUL's transitions in the | |||
509 | * table, so build it for entries from 0 .. numecs - 1. | |||
510 | */ | |||
511 | num_full_table_rows = numecs; | |||
512 | ||||
513 | else | |||
514 | /* Take into account the fact that we'll be including | |||
515 | * the NUL entries in the transition table. Build it | |||
516 | * from 0 .. numecs. | |||
517 | */ | |||
518 | num_full_table_rows = numecs + 1; | |||
519 | ||||
520 | /* Begin generating yy_nxt[][] | |||
521 | * This spans the entire LONG function. | |||
522 | * This table is tricky because we don't know how big it will be. | |||
523 | * So we'll have to realloc() on the way... | |||
524 | * we'll wait until we can calculate yynxt_tbl->td_hilen. | |||
525 | */ | |||
526 | yynxt_tbl = | |||
527 | (struct yytbl_data *) calloc (1, | |||
528 | sizeof (struct | |||
529 | yytbl_data)); | |||
530 | yytbl_data_init (yynxt_tbl, YYTD_ID_NXT); | |||
531 | yynxt_tbl->td_hilen = 1; | |||
532 | yynxt_tbl->td_lolen = num_full_table_rows; | |||
533 | yynxt_tbl->td_data = yynxt_data = | |||
534 | (flex_int32_t *) calloc (yynxt_tbl->td_lolen * | |||
535 | yynxt_tbl->td_hilen, | |||
536 | sizeof (flex_int32_t)); | |||
537 | yynxt_curr = 0; | |||
538 | ||||
539 | buf_prints (&yydmap_buf, | |||
540 | "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n", | |||
541 | long_align ? "flex_int32_t" : "flex_int16_t"); | |||
542 | ||||
543 | /* Unless -Ca, declare it "short" because it's a real | |||
544 | * long-shot that that won't be large enough. | |||
545 | */ | |||
546 | if (gentables) | |||
547 | out_str_dec | |||
548 | ("static yyconst %s yy_nxt[][%d] =\n {\n", | |||
549 | long_align ? "flex_int32_t" : "flex_int16_t", | |||
550 | num_full_table_rows); | |||
551 | else { | |||
552 | out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows); | |||
553 | out_str ("static yyconst %s *yy_nxt =0;\n", | |||
554 | long_align ? "flex_int32_t" : "flex_int16_t"); | |||
555 | } | |||
556 | ||||
557 | ||||
558 | if (gentables) | |||
559 | outn (" {"); | |||
560 | ||||
561 | /* Generate 0 entries for state #0. */ | |||
562 | for (i = 0; i < num_full_table_rows; ++i) { | |||
563 | mk2data (0); | |||
564 | yynxt_data[yynxt_curr++] = 0; | |||
565 | } | |||
566 | ||||
567 | dataflush (); | |||
568 | if (gentables) | |||
569 | outn (" },\n"); | |||
570 | } | |||
571 | ||||
572 | /* Create the first states. */ | |||
573 | ||||
574 | num_start_states = lastsc * 2; | |||
575 | ||||
576 | for (i = 1; i <= num_start_states; ++i) { | |||
577 | numstates = 1; | |||
578 | ||||
579 | /* For each start condition, make one state for the case when | |||
580 | * we're at the beginning of the line (the '^' operator) and | |||
581 | * one for the case when we're not. | |||
582 | */ | |||
583 | if (i % 2 == 1) | |||
584 | nset[numstates] = scset[(i / 2) + 1]; | |||
585 | else | |||
586 | nset[numstates] = | |||
587 | mkbranch (scbol[i / 2], scset[i / 2]); | |||
588 | ||||
589 | nset = epsclosure (nset, &numstates, accset, &nacc, | |||
590 | &hashval); | |||
591 | ||||
592 | if (snstods (nset, numstates, accset, nacc, hashval, &ds)) { | |||
593 | numas += nacc; | |||
594 | totnst += numstates; | |||
595 | ++todo_next; | |||
596 | ||||
597 | if (variable_trailing_context_rules && nacc > 0) | |||
598 | check_trailing_context (nset, numstates, | |||
599 | accset, nacc); | |||
600 | } | |||
601 | } | |||
602 | ||||
603 | if (!fullspd) { | |||
604 | if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state)) | |||
605 | flexfatal (_"could not create unique end-of-buffer state" | |||
606 | ("could not create unique end-of-buffer state")"could not create unique end-of-buffer state"); | |||
607 | ||||
608 | ++numas; | |||
609 | ++num_start_states; | |||
610 | ++todo_next; | |||
611 | } | |||
612 | ||||
613 | ||||
614 | while (todo_head < todo_next) { | |||
615 | targptr = 0; | |||
616 | totaltrans = 0; | |||
617 | ||||
618 | for (i = 1; i <= numecs; ++i) | |||
619 | state[i] = 0; | |||
620 | ||||
621 | ds = ++todo_head; | |||
622 | ||||
623 | dset = dss[ds]; | |||
624 | dsize = dfasiz[ds]; | |||
625 | ||||
626 | if (trace) | |||
627 | fprintf (stderr(&__sF[2]), _("state # %d:\n")"state # %d:\n", ds); | |||
628 | ||||
629 | sympartition (dset, dsize, symlist, duplist); | |||
630 | ||||
631 | for (sym = 1; sym <= numecs; ++sym) { | |||
632 | if (symlist[sym]) { | |||
| ||||
633 | symlist[sym] = 0; | |||
634 | ||||
635 | if (duplist[sym] == NIL0) { | |||
636 | /* Symbol has unique out-transitions. */ | |||
637 | numstates = | |||
638 | symfollowset (dset, dsize, | |||
639 | sym, nset); | |||
640 | nset = epsclosure (nset, | |||
641 | &numstates, | |||
642 | accset, &nacc, | |||
643 | &hashval); | |||
644 | ||||
645 | if (snstods | |||
646 | (nset, numstates, accset, nacc, | |||
647 | hashval, &newds)) { | |||
648 | totnst = totnst + | |||
649 | numstates; | |||
650 | ++todo_next; | |||
651 | numas += nacc; | |||
652 | ||||
653 | if (variable_trailing_context_rules && nacc > 0) | |||
654 | check_trailing_context | |||
655 | (nset, | |||
656 | numstates, | |||
657 | accset, | |||
658 | nacc); | |||
659 | } | |||
660 | ||||
661 | state[sym] = newds; | |||
662 | ||||
663 | if (trace) | |||
664 | fprintf (stderr(&__sF[2]), | |||
665 | "\t%d\t%d\n", sym, | |||
666 | newds); | |||
667 | ||||
668 | targfreq[++targptr] = 1; | |||
669 | targstate[targptr] = newds; | |||
670 | ++numuniq; | |||
671 | } | |||
672 | ||||
673 | else { | |||
674 | /* sym's equivalence class has the same | |||
675 | * transitions as duplist(sym)'s | |||
676 | * equivalence class. | |||
677 | */ | |||
678 | targ = state[duplist[sym]]; | |||
679 | state[sym] = targ; | |||
680 | ||||
681 | if (trace) | |||
682 | fprintf (stderr(&__sF[2]), | |||
683 | "\t%d\t%d\n", sym, | |||
684 | targ); | |||
685 | ||||
686 | /* Update frequency count for | |||
687 | * destination state. | |||
688 | */ | |||
689 | ||||
690 | i = 0; | |||
691 | while (targstate[++i] != targ) ; | |||
692 | ||||
693 | ++targfreq[i]; | |||
694 | ++numdup; | |||
695 | } | |||
696 | ||||
697 | ++totaltrans; | |||
698 | duplist[sym] = NIL0; | |||
699 | } | |||
700 | } | |||
701 | ||||
702 | ||||
703 | numsnpairs += totaltrans; | |||
704 | ||||
705 | if (ds > num_start_states) | |||
706 | check_for_backing_up (ds, state); | |||
707 | ||||
708 | if (nultrans) { | |||
709 | nultrans[ds] = state[NUL_ec]; | |||
710 | state[NUL_ec] = 0; /* remove transition */ | |||
711 | } | |||
712 | ||||
713 | if (fulltbl) { | |||
714 | ||||
715 | /* Each time we hit here, it's another td_hilen, so we realloc. */ | |||
716 | yynxt_tbl->td_hilen++; | |||
717 | yynxt_tbl->td_data = yynxt_data = | |||
718 | (flex_int32_t *) realloc (yynxt_data, | |||
719 | yynxt_tbl->td_hilen * | |||
720 | yynxt_tbl->td_lolen * | |||
721 | sizeof (flex_int32_t)); | |||
722 | ||||
723 | ||||
724 | if (gentables) | |||
725 | outn (" {"); | |||
726 | ||||
727 | /* Supply array's 0-element. */ | |||
728 | if (ds == end_of_buffer_state) { | |||
729 | mk2data (-end_of_buffer_state); | |||
730 | yynxt_data[yynxt_curr++] = | |||
731 | -end_of_buffer_state; | |||
732 | } | |||
733 | else { | |||
734 | mk2data (end_of_buffer_state); | |||
735 | yynxt_data[yynxt_curr++] = | |||
736 | end_of_buffer_state; | |||
737 | } | |||
738 | ||||
739 | for (i = 1; i < num_full_table_rows; ++i) { | |||
740 | /* Jams are marked by negative of state | |||
741 | * number. | |||
742 | */ | |||
743 | mk2data (state[i] ? state[i] : -ds); | |||
744 | yynxt_data[yynxt_curr++] = | |||
745 | state[i] ? state[i] : -ds; | |||
746 | } | |||
747 | ||||
748 | dataflush (); | |||
749 | if (gentables) | |||
750 | outn (" },\n"); | |||
751 | } | |||
752 | ||||
753 | else if (fullspd) | |||
754 | place_state (state, ds, totaltrans); | |||
755 | ||||
756 | else if (ds == end_of_buffer_state) | |||
757 | /* Special case this state to make sure it does what | |||
758 | * it's supposed to, i.e., jam on end-of-buffer. | |||
759 | */ | |||
760 | stack1 (ds, 0, 0, JAMSTATE-32766); | |||
761 | ||||
762 | else { /* normal, compressed state */ | |||
763 | ||||
764 | /* Determine which destination state is the most | |||
765 | * common, and how many transitions to it there are. | |||
766 | */ | |||
767 | ||||
768 | comfreq = 0; | |||
769 | comstate = 0; | |||
770 | ||||
771 | for (i = 1; i <= targptr; ++i) | |||
772 | if (targfreq[i] > comfreq) { | |||
773 | comfreq = targfreq[i]; | |||
774 | comstate = targstate[i]; | |||
775 | } | |||
776 | ||||
777 | bldtbl (state, ds, totaltrans, comstate, comfreq); | |||
778 | } | |||
779 | } | |||
780 | ||||
781 | if (fulltbl) { | |||
782 | dataend (); | |||
783 | if (tablesext) { | |||
784 | yytbl_data_compress (yynxt_tbl); | |||
785 | if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0) | |||
786 | flexerror (_"Could not write yynxt_tbl[][]" | |||
787 | ("Could not write yynxt_tbl[][]")"Could not write yynxt_tbl[][]"); | |||
788 | } | |||
789 | if (yynxt_tbl) { | |||
790 | yytbl_data_destroy (yynxt_tbl); | |||
791 | yynxt_tbl = 0; | |||
792 | } | |||
793 | } | |||
794 | ||||
795 | else if (!fullspd) { | |||
796 | cmptmps (); /* create compressed template entries */ | |||
797 | ||||
798 | /* Create tables for all the states with only one | |||
799 | * out-transition. | |||
800 | */ | |||
801 | while (onesp > 0) { | |||
802 | mk1tbl (onestate[onesp], onesym[onesp], | |||
803 | onenext[onesp], onedef[onesp]); | |||
804 | --onesp; | |||
805 | } | |||
806 | ||||
807 | mkdeftbl (); | |||
808 | } | |||
809 | ||||
810 | free ((void *) accset); | |||
811 | free ((void *) nset); | |||
812 | } | |||
813 | ||||
814 | ||||
815 | /* snstods - converts a set of ndfa states into a dfa state | |||
816 | * | |||
817 | * synopsis | |||
818 | * is_new_state = snstods( int sns[numstates], int numstates, | |||
819 | * int accset[num_rules+1], int nacc, | |||
820 | * int hashval, int *newds_addr ); | |||
821 | * | |||
822 | * On return, the dfa state number is in newds. | |||
823 | */ | |||
824 | ||||
825 | int snstods (sns, numstates, accset, nacc, hashval, newds_addr) | |||
826 | int sns[], numstates, accset[], nacc, hashval, *newds_addr; | |||
827 | { | |||
828 | int didsort = 0; | |||
829 | int i, j; | |||
830 | int newds, *oldsns; | |||
831 | ||||
832 | for (i = 1; i <= lastdfa; ++i) | |||
833 | if (hashval == dhash[i]) { | |||
834 | if (numstates == dfasiz[i]) { | |||
835 | oldsns = dss[i]; | |||
836 | ||||
837 | if (!didsort) { | |||
838 | /* We sort the states in sns so we | |||
839 | * can compare it to oldsns quickly. | |||
840 | */ | |||
841 | qsort (&sns [1], numstates, sizeof (sns [1]), intcmp); | |||
842 | didsort = 1; | |||
843 | } | |||
844 | ||||
845 | for (j = 1; j <= numstates; ++j) | |||
846 | if (sns[j] != oldsns[j]) | |||
847 | break; | |||
848 | ||||
849 | if (j > numstates) { | |||
850 | ++dfaeql; | |||
851 | *newds_addr = i; | |||
852 | return 0; | |||
853 | } | |||
854 | ||||
855 | ++hshcol; | |||
856 | } | |||
857 | ||||
858 | else | |||
859 | ++hshsave; | |||
860 | } | |||
861 | ||||
862 | /* Make a new dfa. */ | |||
863 | ||||
864 | if (++lastdfa >= current_max_dfas) | |||
865 | increase_max_dfas (); | |||
866 | ||||
867 | newds = lastdfa; | |||
868 | ||||
869 | dss[newds] = allocate_integer_array (numstates + 1)(int *) allocate_array( numstates + 1, sizeof( int ) ); | |||
870 | ||||
871 | /* If we haven't already sorted the states in sns, we do so now, | |||
872 | * so that future comparisons with it can be made quickly. | |||
873 | */ | |||
874 | ||||
875 | if (!didsort) | |||
876 | qsort (&sns [1], numstates, sizeof (sns [1]), intcmp); | |||
877 | ||||
878 | for (i = 1; i <= numstates; ++i) | |||
879 | dss[newds][i] = sns[i]; | |||
880 | ||||
881 | dfasiz[newds] = numstates; | |||
882 | dhash[newds] = hashval; | |||
883 | ||||
884 | if (nacc == 0) { | |||
885 | if (reject) | |||
886 | dfaacc[newds].dfaacc_set = (int *) 0; | |||
887 | else | |||
888 | dfaacc[newds].dfaacc_state = 0; | |||
889 | ||||
890 | accsiz[newds] = 0; | |||
891 | } | |||
892 | ||||
893 | else if (reject) { | |||
894 | /* We sort the accepting set in increasing order so the | |||
895 | * disambiguating rule that the first rule listed is considered | |||
896 | * match in the event of ties will work. | |||
897 | */ | |||
898 | ||||
899 | qsort (&accset [1], nacc, sizeof (accset [1]), intcmp); | |||
900 | ||||
901 | dfaacc[newds].dfaacc_set = | |||
902 | allocate_integer_array (nacc + 1)(int *) allocate_array( nacc + 1, sizeof( int ) ); | |||
903 | ||||
904 | /* Save the accepting set for later */ | |||
905 | for (i = 1; i <= nacc; ++i) { | |||
906 | dfaacc[newds].dfaacc_set[i] = accset[i]; | |||
907 | ||||
908 | if (accset[i] <= num_rules) | |||
909 | /* Who knows, perhaps a REJECT can yield | |||
910 | * this rule. | |||
911 | */ | |||
912 | rule_useful[accset[i]] = true1; | |||
913 | } | |||
914 | ||||
915 | accsiz[newds] = nacc; | |||
916 | } | |||
917 | ||||
918 | else { | |||
919 | /* Find lowest numbered rule so the disambiguating rule | |||
920 | * will work. | |||
921 | */ | |||
922 | j = num_rules + 1; | |||
923 | ||||
924 | for (i = 1; i <= nacc; ++i) | |||
925 | if (accset[i] < j) | |||
926 | j = accset[i]; | |||
927 | ||||
928 | dfaacc[newds].dfaacc_state = j; | |||
929 | ||||
930 | if (j <= num_rules) | |||
931 | rule_useful[j] = true1; | |||
932 | } | |||
933 | ||||
934 | *newds_addr = newds; | |||
935 | ||||
936 | return 1; | |||
937 | } | |||
938 | ||||
939 | ||||
940 | /* symfollowset - follow the symbol transitions one step | |||
941 | * | |||
942 | * synopsis | |||
943 | * numstates = symfollowset( int ds[current_max_dfa_size], int dsize, | |||
944 | * int transsym, int nset[current_max_dfa_size] ); | |||
945 | */ | |||
946 | ||||
947 | int symfollowset (ds, dsize, transsym, nset) | |||
948 | int ds[], dsize, transsym, nset[]; | |||
949 | { | |||
950 | int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist; | |||
951 | ||||
952 | numstates = 0; | |||
953 | ||||
954 | for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */ | |||
955 | ns = ds[i]; | |||
956 | sym = transchar[ns]; | |||
957 | tsp = trans1[ns]; | |||
958 | ||||
959 | if (sym < 0) { /* it's a character class */ | |||
960 | sym = -sym; | |||
961 | ccllist = cclmap[sym]; | |||
962 | lenccl = ccllen[sym]; | |||
963 | ||||
964 | if (cclng[sym]) { | |||
965 | for (j = 0; j < lenccl; ++j) { | |||
966 | /* Loop through negated character | |||
967 | * class. | |||
968 | */ | |||
969 | ch = ccltbl[ccllist + j]; | |||
970 | ||||
971 | if (ch == 0) | |||
972 | ch = NUL_ec; | |||
973 | ||||
974 | if (ch > transsym) | |||
975 | /* Transsym isn't in negated | |||
976 | * ccl. | |||
977 | */ | |||
978 | break; | |||
979 | ||||
980 | else if (ch == transsym) | |||
981 | /* next 2 */ | |||
982 | goto bottom; | |||
983 | } | |||
984 | ||||
985 | /* Didn't find transsym in ccl. */ | |||
986 | nset[++numstates] = tsp; | |||
987 | } | |||
988 | ||||
989 | else | |||
990 | for (j = 0; j < lenccl; ++j) { | |||
991 | ch = ccltbl[ccllist + j]; | |||
992 | ||||
993 | if (ch == 0) | |||
994 | ch = NUL_ec; | |||
995 | ||||
996 | if (ch > transsym) | |||
997 | break; | |||
998 | else if (ch == transsym) { | |||
999 | nset[++numstates] = tsp; | |||
1000 | break; | |||
1001 | } | |||
1002 | } | |||
1003 | } | |||
1004 | ||||
1005 | else if (sym == SYM_EPSILON(256 + 1)) { /* do nothing */ | |||
1006 | } | |||
1007 | ||||
1008 | else if (ABS (ecgroup[sym])((ecgroup[sym]) < 0 ? -(ecgroup[sym]) : (ecgroup[sym])) == transsym) | |||
1009 | nset[++numstates] = tsp; | |||
1010 | ||||
1011 | bottom:; | |||
1012 | } | |||
1013 | ||||
1014 | return numstates; | |||
1015 | } | |||
1016 | ||||
1017 | ||||
1018 | /* sympartition - partition characters with same out-transitions | |||
1019 | * | |||
1020 | * synopsis | |||
1021 | * sympartition( int ds[current_max_dfa_size], int numstates, | |||
1022 | * int symlist[numecs], int duplist[numecs] ); | |||
1023 | */ | |||
1024 | ||||
1025 | void sympartition (ds, numstates, symlist, duplist) | |||
1026 | int ds[], numstates; | |||
1027 | int symlist[], duplist[]; | |||
1028 | { | |||
1029 | int tch, i, j, k, ns, dupfwd[CSIZE256 + 1], lenccl, cclp, ich; | |||
1030 | ||||
1031 | /* Partitioning is done by creating equivalence classes for those | |||
1032 | * characters which have out-transitions from the given state. Thus | |||
1033 | * we are really creating equivalence classes of equivalence classes. | |||
1034 | */ | |||
1035 | ||||
1036 | for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */ | |||
1037 | duplist[i] = i - 1; | |||
1038 | dupfwd[i] = i + 1; | |||
1039 | } | |||
1040 | ||||
1041 | duplist[1] = NIL0; | |||
1042 | dupfwd[numecs] = NIL0; | |||
1043 | ||||
1044 | for (i = 1; i <= numstates; ++i) { | |||
1045 | ns = ds[i]; | |||
1046 | tch = transchar[ns]; | |||
1047 | ||||
1048 | if (tch != SYM_EPSILON(256 + 1)) { | |||
1049 | if (tch < -lastccl || tch >= csize) { | |||
1050 | flexfatal (_"bad transition character detected in sympartition()" | |||
1051 | ("bad transition character detected in sympartition()")"bad transition character detected in sympartition()"); | |||
1052 | } | |||
1053 | ||||
1054 | if (tch >= 0) { /* character transition */ | |||
1055 | int ec = ecgroup[tch]; | |||
1056 | ||||
1057 | mkechar (ec, dupfwd, duplist); | |||
1058 | symlist[ec] = 1; | |||
1059 | } | |||
1060 | ||||
1061 | else { /* character class */ | |||
1062 | tch = -tch; | |||
1063 | ||||
1064 | lenccl = ccllen[tch]; | |||
1065 | cclp = cclmap[tch]; | |||
1066 | mkeccl (ccltbl + cclp, lenccl, dupfwd, | |||
1067 | duplist, numecs, NUL_ec); | |||
1068 | ||||
1069 | if (cclng[tch]) { | |||
1070 | j = 0; | |||
1071 | ||||
1072 | for (k = 0; k < lenccl; ++k) { | |||
1073 | ich = ccltbl[cclp + k]; | |||
1074 | ||||
1075 | if (ich == 0) | |||
1076 | ich = NUL_ec; | |||
1077 | ||||
1078 | for (++j; j < ich; ++j) | |||
1079 | symlist[j] = 1; | |||
1080 | } | |||
1081 | ||||
1082 | for (++j; j <= numecs; ++j) | |||
1083 | symlist[j] = 1; | |||
1084 | } | |||
1085 | ||||
1086 | else | |||
1087 | for (k = 0; k < lenccl; ++k) { | |||
1088 | ich = ccltbl[cclp + k]; | |||
1089 | ||||
1090 | if (ich == 0) | |||
1091 | ich = NUL_ec; | |||
1092 | ||||
1093 | symlist[ich] = 1; | |||
1094 | } | |||
1095 | } | |||
1096 | } | |||
1097 | } | |||
1098 | } |