Bug Summary

File:src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/clang/lib/CodeGen/CGObjCGNU.cpp
Warning:line 2394, column 36
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGObjCGNU.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangCodeGen/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangCodeGen/../include -I /usr/src/gnu/usr.bin/clang/libclangCodeGen/obj -I /usr/src/gnu/usr.bin/clang/libclangCodeGen/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangCodeGen/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/clang/lib/CodeGen/CGObjCGNU.cpp

/usr/src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/clang/lib/CodeGen/CGObjCGNU.cpp

1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides Objective-C code generation targeting the GNU runtime. The
10// class in this file generates structures used by the GNU Objective-C runtime
11// library. These structures are defined in objc/objc.h and objc/objc-api.h in
12// the GNU runtime distribution.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGObjCRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Basic/FileManager.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/CodeGen/ConstantInitBuilder.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringMap.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Module.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/ConvertUTF.h"
38#include <cctype>
39
40using namespace clang;
41using namespace CodeGen;
42
43namespace {
44
45/// Class that lazily initialises the runtime function. Avoids inserting the
46/// types and the function declaration into a module if they're not used, and
47/// avoids constructing the type more than once if it's used more than once.
48class LazyRuntimeFunction {
49 CodeGenModule *CGM;
50 llvm::FunctionType *FTy;
51 const char *FunctionName;
52 llvm::FunctionCallee Function;
53
54public:
55 /// Constructor leaves this class uninitialized, because it is intended to
56 /// be used as a field in another class and not all of the types that are
57 /// used as arguments will necessarily be available at construction time.
58 LazyRuntimeFunction()
59 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
60
61 /// Initialises the lazy function with the name, return type, and the types
62 /// of the arguments.
63 template <typename... Tys>
64 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
65 Tys *... Types) {
66 CGM = Mod;
67 FunctionName = name;
68 Function = nullptr;
69 if(sizeof...(Tys)) {
70 SmallVector<llvm::Type *, 8> ArgTys({Types...});
71 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
72 }
73 else {
74 FTy = llvm::FunctionType::get(RetTy, None, false);
75 }
76 }
77
78 llvm::FunctionType *getType() { return FTy; }
79
80 /// Overloaded cast operator, allows the class to be implicitly cast to an
81 /// LLVM constant.
82 operator llvm::FunctionCallee() {
83 if (!Function) {
84 if (!FunctionName)
85 return nullptr;
86 Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
87 }
88 return Function;
89 }
90};
91
92
93/// GNU Objective-C runtime code generation. This class implements the parts of
94/// Objective-C support that are specific to the GNU family of runtimes (GCC,
95/// GNUstep and ObjFW).
96class CGObjCGNU : public CGObjCRuntime {
97protected:
98 /// The LLVM module into which output is inserted
99 llvm::Module &TheModule;
100 /// strut objc_super. Used for sending messages to super. This structure
101 /// contains the receiver (object) and the expected class.
102 llvm::StructType *ObjCSuperTy;
103 /// struct objc_super*. The type of the argument to the superclass message
104 /// lookup functions.
105 llvm::PointerType *PtrToObjCSuperTy;
106 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
107 /// SEL is included in a header somewhere, in which case it will be whatever
108 /// type is declared in that header, most likely {i8*, i8*}.
109 llvm::PointerType *SelectorTy;
110 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
111 /// places where it's used
112 llvm::IntegerType *Int8Ty;
113 /// Pointer to i8 - LLVM type of char*, for all of the places where the
114 /// runtime needs to deal with C strings.
115 llvm::PointerType *PtrToInt8Ty;
116 /// struct objc_protocol type
117 llvm::StructType *ProtocolTy;
118 /// Protocol * type.
119 llvm::PointerType *ProtocolPtrTy;
120 /// Instance Method Pointer type. This is a pointer to a function that takes,
121 /// at a minimum, an object and a selector, and is the generic type for
122 /// Objective-C methods. Due to differences between variadic / non-variadic
123 /// calling conventions, it must always be cast to the correct type before
124 /// actually being used.
125 llvm::PointerType *IMPTy;
126 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
127 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
128 /// but if the runtime header declaring it is included then it may be a
129 /// pointer to a structure.
130 llvm::PointerType *IdTy;
131 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
132 /// message lookup function and some GC-related functions.
133 llvm::PointerType *PtrToIdTy;
134 /// The clang type of id. Used when using the clang CGCall infrastructure to
135 /// call Objective-C methods.
136 CanQualType ASTIdTy;
137 /// LLVM type for C int type.
138 llvm::IntegerType *IntTy;
139 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
140 /// used in the code to document the difference between i8* meaning a pointer
141 /// to a C string and i8* meaning a pointer to some opaque type.
142 llvm::PointerType *PtrTy;
143 /// LLVM type for C long type. The runtime uses this in a lot of places where
144 /// it should be using intptr_t, but we can't fix this without breaking
145 /// compatibility with GCC...
146 llvm::IntegerType *LongTy;
147 /// LLVM type for C size_t. Used in various runtime data structures.
148 llvm::IntegerType *SizeTy;
149 /// LLVM type for C intptr_t.
150 llvm::IntegerType *IntPtrTy;
151 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
152 llvm::IntegerType *PtrDiffTy;
153 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
154 /// variables.
155 llvm::PointerType *PtrToIntTy;
156 /// LLVM type for Objective-C BOOL type.
157 llvm::Type *BoolTy;
158 /// 32-bit integer type, to save us needing to look it up every time it's used.
159 llvm::IntegerType *Int32Ty;
160 /// 64-bit integer type, to save us needing to look it up every time it's used.
161 llvm::IntegerType *Int64Ty;
162 /// The type of struct objc_property.
163 llvm::StructType *PropertyMetadataTy;
164 /// Metadata kind used to tie method lookups to message sends. The GNUstep
165 /// runtime provides some LLVM passes that can use this to do things like
166 /// automatic IMP caching and speculative inlining.
167 unsigned msgSendMDKind;
168 /// Does the current target use SEH-based exceptions? False implies
169 /// Itanium-style DWARF unwinding.
170 bool usesSEHExceptions;
171
172 /// Helper to check if we are targeting a specific runtime version or later.
173 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
174 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
175 return (R.getKind() == kind) &&
176 (R.getVersion() >= VersionTuple(major, minor));
177 }
178
179 std::string ManglePublicSymbol(StringRef Name) {
180 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
181 }
182
183 std::string SymbolForProtocol(Twine Name) {
184 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
185 }
186
187 std::string SymbolForProtocolRef(StringRef Name) {
188 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
189 }
190
191
192 /// Helper function that generates a constant string and returns a pointer to
193 /// the start of the string. The result of this function can be used anywhere
194 /// where the C code specifies const char*.
195 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
196 ConstantAddress Array =
197 CGM.GetAddrOfConstantCString(std::string(Str), Name);
198 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
199 Array.getPointer(), Zeros);
200 }
201
202 /// Emits a linkonce_odr string, whose name is the prefix followed by the
203 /// string value. This allows the linker to combine the strings between
204 /// different modules. Used for EH typeinfo names, selector strings, and a
205 /// few other things.
206 llvm::Constant *ExportUniqueString(const std::string &Str,
207 const std::string &prefix,
208 bool Private=false) {
209 std::string name = prefix + Str;
210 auto *ConstStr = TheModule.getGlobalVariable(name);
211 if (!ConstStr) {
212 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
213 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
214 llvm::GlobalValue::LinkOnceODRLinkage, value, name);
215 GV->setComdat(TheModule.getOrInsertComdat(name));
216 if (Private)
217 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
218 ConstStr = GV;
219 }
220 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
221 ConstStr, Zeros);
222 }
223
224 /// Returns a property name and encoding string.
225 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
226 const Decl *Container) {
227 assert(!isRuntime(ObjCRuntime::GNUstep, 2))((void)0);
228 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
229 std::string NameAndAttributes;
230 std::string TypeStr =
231 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
232 NameAndAttributes += '\0';
233 NameAndAttributes += TypeStr.length() + 3;
234 NameAndAttributes += TypeStr;
235 NameAndAttributes += '\0';
236 NameAndAttributes += PD->getNameAsString();
237 return MakeConstantString(NameAndAttributes);
238 }
239 return MakeConstantString(PD->getNameAsString());
240 }
241
242 /// Push the property attributes into two structure fields.
243 void PushPropertyAttributes(ConstantStructBuilder &Fields,
244 const ObjCPropertyDecl *property, bool isSynthesized=true, bool
245 isDynamic=true) {
246 int attrs = property->getPropertyAttributes();
247 // For read-only properties, clear the copy and retain flags
248 if (attrs & ObjCPropertyAttribute::kind_readonly) {
249 attrs &= ~ObjCPropertyAttribute::kind_copy;
250 attrs &= ~ObjCPropertyAttribute::kind_retain;
251 attrs &= ~ObjCPropertyAttribute::kind_weak;
252 attrs &= ~ObjCPropertyAttribute::kind_strong;
253 }
254 // The first flags field has the same attribute values as clang uses internally
255 Fields.addInt(Int8Ty, attrs & 0xff);
256 attrs >>= 8;
257 attrs <<= 2;
258 // For protocol properties, synthesized and dynamic have no meaning, so we
259 // reuse these flags to indicate that this is a protocol property (both set
260 // has no meaning, as a property can't be both synthesized and dynamic)
261 attrs |= isSynthesized ? (1<<0) : 0;
262 attrs |= isDynamic ? (1<<1) : 0;
263 // The second field is the next four fields left shifted by two, with the
264 // low bit set to indicate whether the field is synthesized or dynamic.
265 Fields.addInt(Int8Ty, attrs & 0xff);
266 // Two padding fields
267 Fields.addInt(Int8Ty, 0);
268 Fields.addInt(Int8Ty, 0);
269 }
270
271 virtual llvm::Constant *GenerateCategoryProtocolList(const
272 ObjCCategoryDecl *OCD);
273 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
274 int count) {
275 // int count;
276 Fields.addInt(IntTy, count);
277 // int size; (only in GNUstep v2 ABI.
278 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
279 llvm::DataLayout td(&TheModule);
280 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
281 CGM.getContext().getCharWidth());
282 }
283 // struct objc_property_list *next;
284 Fields.add(NULLPtr);
285 // struct objc_property properties[]
286 return Fields.beginArray(PropertyMetadataTy);
287 }
288 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
289 const ObjCPropertyDecl *property,
290 const Decl *OCD,
291 bool isSynthesized=true, bool
292 isDynamic=true) {
293 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
294 ASTContext &Context = CGM.getContext();
295 Fields.add(MakePropertyEncodingString(property, OCD));
296 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
297 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
298 if (accessor) {
299 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
300 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
301 Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
302 Fields.add(TypeEncoding);
303 } else {
304 Fields.add(NULLPtr);
305 Fields.add(NULLPtr);
306 }
307 };
308 addPropertyMethod(property->getGetterMethodDecl());
309 addPropertyMethod(property->getSetterMethodDecl());
310 Fields.finishAndAddTo(PropertiesArray);
311 }
312
313 /// Ensures that the value has the required type, by inserting a bitcast if
314 /// required. This function lets us avoid inserting bitcasts that are
315 /// redundant.
316 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
317 if (V->getType() == Ty) return V;
318 return B.CreateBitCast(V, Ty);
319 }
320 Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
321 if (V.getType() == Ty) return V;
322 return B.CreateBitCast(V, Ty);
323 }
324
325 // Some zeros used for GEPs in lots of places.
326 llvm::Constant *Zeros[2];
327 /// Null pointer value. Mainly used as a terminator in various arrays.
328 llvm::Constant *NULLPtr;
329 /// LLVM context.
330 llvm::LLVMContext &VMContext;
331
332protected:
333
334 /// Placeholder for the class. Lots of things refer to the class before we've
335 /// actually emitted it. We use this alias as a placeholder, and then replace
336 /// it with a pointer to the class structure before finally emitting the
337 /// module.
338 llvm::GlobalAlias *ClassPtrAlias;
339 /// Placeholder for the metaclass. Lots of things refer to the class before
340 /// we've / actually emitted it. We use this alias as a placeholder, and then
341 /// replace / it with a pointer to the metaclass structure before finally
342 /// emitting the / module.
343 llvm::GlobalAlias *MetaClassPtrAlias;
344 /// All of the classes that have been generated for this compilation units.
345 std::vector<llvm::Constant*> Classes;
346 /// All of the categories that have been generated for this compilation units.
347 std::vector<llvm::Constant*> Categories;
348 /// All of the Objective-C constant strings that have been generated for this
349 /// compilation units.
350 std::vector<llvm::Constant*> ConstantStrings;
351 /// Map from string values to Objective-C constant strings in the output.
352 /// Used to prevent emitting Objective-C strings more than once. This should
353 /// not be required at all - CodeGenModule should manage this list.
354 llvm::StringMap<llvm::Constant*> ObjCStrings;
355 /// All of the protocols that have been declared.
356 llvm::StringMap<llvm::Constant*> ExistingProtocols;
357 /// For each variant of a selector, we store the type encoding and a
358 /// placeholder value. For an untyped selector, the type will be the empty
359 /// string. Selector references are all done via the module's selector table,
360 /// so we create an alias as a placeholder and then replace it with the real
361 /// value later.
362 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
363 /// Type of the selector map. This is roughly equivalent to the structure
364 /// used in the GNUstep runtime, which maintains a list of all of the valid
365 /// types for a selector in a table.
366 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
367 SelectorMap;
368 /// A map from selectors to selector types. This allows us to emit all
369 /// selectors of the same name and type together.
370 SelectorMap SelectorTable;
371
372 /// Selectors related to memory management. When compiling in GC mode, we
373 /// omit these.
374 Selector RetainSel, ReleaseSel, AutoreleaseSel;
375 /// Runtime functions used for memory management in GC mode. Note that clang
376 /// supports code generation for calling these functions, but neither GNU
377 /// runtime actually supports this API properly yet.
378 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
379 WeakAssignFn, GlobalAssignFn;
380
381 typedef std::pair<std::string, std::string> ClassAliasPair;
382 /// All classes that have aliases set for them.
383 std::vector<ClassAliasPair> ClassAliases;
384
385protected:
386 /// Function used for throwing Objective-C exceptions.
387 LazyRuntimeFunction ExceptionThrowFn;
388 /// Function used for rethrowing exceptions, used at the end of \@finally or
389 /// \@synchronize blocks.
390 LazyRuntimeFunction ExceptionReThrowFn;
391 /// Function called when entering a catch function. This is required for
392 /// differentiating Objective-C exceptions and foreign exceptions.
393 LazyRuntimeFunction EnterCatchFn;
394 /// Function called when exiting from a catch block. Used to do exception
395 /// cleanup.
396 LazyRuntimeFunction ExitCatchFn;
397 /// Function called when entering an \@synchronize block. Acquires the lock.
398 LazyRuntimeFunction SyncEnterFn;
399 /// Function called when exiting an \@synchronize block. Releases the lock.
400 LazyRuntimeFunction SyncExitFn;
401
402private:
403 /// Function called if fast enumeration detects that the collection is
404 /// modified during the update.
405 LazyRuntimeFunction EnumerationMutationFn;
406 /// Function for implementing synthesized property getters that return an
407 /// object.
408 LazyRuntimeFunction GetPropertyFn;
409 /// Function for implementing synthesized property setters that return an
410 /// object.
411 LazyRuntimeFunction SetPropertyFn;
412 /// Function used for non-object declared property getters.
413 LazyRuntimeFunction GetStructPropertyFn;
414 /// Function used for non-object declared property setters.
415 LazyRuntimeFunction SetStructPropertyFn;
416
417protected:
418 /// The version of the runtime that this class targets. Must match the
419 /// version in the runtime.
420 int RuntimeVersion;
421 /// The version of the protocol class. Used to differentiate between ObjC1
422 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
423 /// components and can not contain declared properties. We always emit
424 /// Objective-C 2 property structures, but we have to pretend that they're
425 /// Objective-C 1 property structures when targeting the GCC runtime or it
426 /// will abort.
427 const int ProtocolVersion;
428 /// The version of the class ABI. This value is used in the class structure
429 /// and indicates how various fields should be interpreted.
430 const int ClassABIVersion;
431 /// Generates an instance variable list structure. This is a structure
432 /// containing a size and an array of structures containing instance variable
433 /// metadata. This is used purely for introspection in the fragile ABI. In
434 /// the non-fragile ABI, it's used for instance variable fixup.
435 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
436 ArrayRef<llvm::Constant *> IvarTypes,
437 ArrayRef<llvm::Constant *> IvarOffsets,
438 ArrayRef<llvm::Constant *> IvarAlign,
439 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
440
441 /// Generates a method list structure. This is a structure containing a size
442 /// and an array of structures containing method metadata.
443 ///
444 /// This structure is used by both classes and categories, and contains a next
445 /// pointer allowing them to be chained together in a linked list.
446 llvm::Constant *GenerateMethodList(StringRef ClassName,
447 StringRef CategoryName,
448 ArrayRef<const ObjCMethodDecl*> Methods,
449 bool isClassMethodList);
450
451 /// Emits an empty protocol. This is used for \@protocol() where no protocol
452 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
453 /// real protocol.
454 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
455
456 /// Generates a list of property metadata structures. This follows the same
457 /// pattern as method and instance variable metadata lists.
458 llvm::Constant *GeneratePropertyList(const Decl *Container,
459 const ObjCContainerDecl *OCD,
460 bool isClassProperty=false,
461 bool protocolOptionalProperties=false);
462
463 /// Generates a list of referenced protocols. Classes, categories, and
464 /// protocols all use this structure.
465 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
466
467 /// To ensure that all protocols are seen by the runtime, we add a category on
468 /// a class defined in the runtime, declaring no methods, but adopting the
469 /// protocols. This is a horribly ugly hack, but it allows us to collect all
470 /// of the protocols without changing the ABI.
471 void GenerateProtocolHolderCategory();
472
473 /// Generates a class structure.
474 llvm::Constant *GenerateClassStructure(
475 llvm::Constant *MetaClass,
476 llvm::Constant *SuperClass,
477 unsigned info,
478 const char *Name,
479 llvm::Constant *Version,
480 llvm::Constant *InstanceSize,
481 llvm::Constant *IVars,
482 llvm::Constant *Methods,
483 llvm::Constant *Protocols,
484 llvm::Constant *IvarOffsets,
485 llvm::Constant *Properties,
486 llvm::Constant *StrongIvarBitmap,
487 llvm::Constant *WeakIvarBitmap,
488 bool isMeta=false);
489
490 /// Generates a method list. This is used by protocols to define the required
491 /// and optional methods.
492 virtual llvm::Constant *GenerateProtocolMethodList(
493 ArrayRef<const ObjCMethodDecl*> Methods);
494 /// Emits optional and required method lists.
495 template<class T>
496 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
497 llvm::Constant *&Optional) {
498 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
499 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
500 for (const auto *I : Methods)
501 if (I->isOptional())
502 OptionalMethods.push_back(I);
503 else
504 RequiredMethods.push_back(I);
505 Required = GenerateProtocolMethodList(RequiredMethods);
506 Optional = GenerateProtocolMethodList(OptionalMethods);
507 }
508
509 /// Returns a selector with the specified type encoding. An empty string is
510 /// used to return an untyped selector (with the types field set to NULL).
511 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
512 const std::string &TypeEncoding);
513
514 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this
515 /// contains the class and ivar names, in the v2 ABI this contains the type
516 /// encoding as well.
517 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
518 const ObjCIvarDecl *Ivar) {
519 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
520 + '.' + Ivar->getNameAsString();
521 return Name;
522 }
523 /// Returns the variable used to store the offset of an instance variable.
524 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
525 const ObjCIvarDecl *Ivar);
526 /// Emits a reference to a class. This allows the linker to object if there
527 /// is no class of the matching name.
528 void EmitClassRef(const std::string &className);
529
530 /// Emits a pointer to the named class
531 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
532 const std::string &Name, bool isWeak);
533
534 /// Looks up the method for sending a message to the specified object. This
535 /// mechanism differs between the GCC and GNU runtimes, so this method must be
536 /// overridden in subclasses.
537 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
538 llvm::Value *&Receiver,
539 llvm::Value *cmd,
540 llvm::MDNode *node,
541 MessageSendInfo &MSI) = 0;
542
543 /// Looks up the method for sending a message to a superclass. This
544 /// mechanism differs between the GCC and GNU runtimes, so this method must
545 /// be overridden in subclasses.
546 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
547 Address ObjCSuper,
548 llvm::Value *cmd,
549 MessageSendInfo &MSI) = 0;
550
551 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
552 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
553 /// bits set to their values, LSB first, while larger ones are stored in a
554 /// structure of this / form:
555 ///
556 /// struct { int32_t length; int32_t values[length]; };
557 ///
558 /// The values in the array are stored in host-endian format, with the least
559 /// significant bit being assumed to come first in the bitfield. Therefore,
560 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
561 /// while a bitfield / with the 63rd bit set will be 1<<64.
562 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
563
564public:
565 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
566 unsigned protocolClassVersion, unsigned classABI=1);
567
568 ConstantAddress GenerateConstantString(const StringLiteral *) override;
569
570 RValue
571 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
572 QualType ResultType, Selector Sel,
573 llvm::Value *Receiver, const CallArgList &CallArgs,
574 const ObjCInterfaceDecl *Class,
575 const ObjCMethodDecl *Method) override;
576 RValue
577 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
578 QualType ResultType, Selector Sel,
579 const ObjCInterfaceDecl *Class,
580 bool isCategoryImpl, llvm::Value *Receiver,
581 bool IsClassMessage, const CallArgList &CallArgs,
582 const ObjCMethodDecl *Method) override;
583 llvm::Value *GetClass(CodeGenFunction &CGF,
584 const ObjCInterfaceDecl *OID) override;
585 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
586 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
587 llvm::Value *GetSelector(CodeGenFunction &CGF,
588 const ObjCMethodDecl *Method) override;
589 virtual llvm::Constant *GetConstantSelector(Selector Sel,
590 const std::string &TypeEncoding) {
591 llvm_unreachable("Runtime unable to generate constant selector")__builtin_unreachable();
592 }
593 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
594 return GetConstantSelector(M->getSelector(),
595 CGM.getContext().getObjCEncodingForMethodDecl(M));
596 }
597 llvm::Constant *GetEHType(QualType T) override;
598
599 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
600 const ObjCContainerDecl *CD) override;
601 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
602 const ObjCMethodDecl *OMD,
603 const ObjCContainerDecl *CD) override;
604 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
605 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
606 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
607 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
608 const ObjCProtocolDecl *PD) override;
609 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
610
611 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
612
613 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
614 return GenerateProtocolRef(PD);
615 }
616
617 llvm::Function *ModuleInitFunction() override;
618 llvm::FunctionCallee GetPropertyGetFunction() override;
619 llvm::FunctionCallee GetPropertySetFunction() override;
620 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
621 bool copy) override;
622 llvm::FunctionCallee GetSetStructFunction() override;
623 llvm::FunctionCallee GetGetStructFunction() override;
624 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
625 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
626 llvm::FunctionCallee EnumerationMutationFunction() override;
627
628 void EmitTryStmt(CodeGenFunction &CGF,
629 const ObjCAtTryStmt &S) override;
630 void EmitSynchronizedStmt(CodeGenFunction &CGF,
631 const ObjCAtSynchronizedStmt &S) override;
632 void EmitThrowStmt(CodeGenFunction &CGF,
633 const ObjCAtThrowStmt &S,
634 bool ClearInsertionPoint=true) override;
635 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
636 Address AddrWeakObj) override;
637 void EmitObjCWeakAssign(CodeGenFunction &CGF,
638 llvm::Value *src, Address dst) override;
639 void EmitObjCGlobalAssign(CodeGenFunction &CGF,
640 llvm::Value *src, Address dest,
641 bool threadlocal=false) override;
642 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
643 Address dest, llvm::Value *ivarOffset) override;
644 void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
645 llvm::Value *src, Address dest) override;
646 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
647 Address SrcPtr,
648 llvm::Value *Size) override;
649 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
650 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
651 unsigned CVRQualifiers) override;
652 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
653 const ObjCInterfaceDecl *Interface,
654 const ObjCIvarDecl *Ivar) override;
655 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
656 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
657 const CGBlockInfo &blockInfo) override {
658 return NULLPtr;
659 }
660 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
661 const CGBlockInfo &blockInfo) override {
662 return NULLPtr;
663 }
664
665 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
666 return NULLPtr;
667 }
668};
669
670/// Class representing the legacy GCC Objective-C ABI. This is the default when
671/// -fobjc-nonfragile-abi is not specified.
672///
673/// The GCC ABI target actually generates code that is approximately compatible
674/// with the new GNUstep runtime ABI, but refrains from using any features that
675/// would not work with the GCC runtime. For example, clang always generates
676/// the extended form of the class structure, and the extra fields are simply
677/// ignored by GCC libobjc.
678class CGObjCGCC : public CGObjCGNU {
679 /// The GCC ABI message lookup function. Returns an IMP pointing to the
680 /// method implementation for this message.
681 LazyRuntimeFunction MsgLookupFn;
682 /// The GCC ABI superclass message lookup function. Takes a pointer to a
683 /// structure describing the receiver and the class, and a selector as
684 /// arguments. Returns the IMP for the corresponding method.
685 LazyRuntimeFunction MsgLookupSuperFn;
686
687protected:
688 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
689 llvm::Value *cmd, llvm::MDNode *node,
690 MessageSendInfo &MSI) override {
691 CGBuilderTy &Builder = CGF.Builder;
692 llvm::Value *args[] = {
693 EnforceType(Builder, Receiver, IdTy),
694 EnforceType(Builder, cmd, SelectorTy) };
695 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
696 imp->setMetadata(msgSendMDKind, node);
697 return imp;
698 }
699
700 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
701 llvm::Value *cmd, MessageSendInfo &MSI) override {
702 CGBuilderTy &Builder = CGF.Builder;
703 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
704 PtrToObjCSuperTy).getPointer(), cmd};
705 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
706 }
707
708public:
709 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
710 // IMP objc_msg_lookup(id, SEL);
711 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
712 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
713 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
714 PtrToObjCSuperTy, SelectorTy);
715 }
716};
717
718/// Class used when targeting the new GNUstep runtime ABI.
719class CGObjCGNUstep : public CGObjCGNU {
720 /// The slot lookup function. Returns a pointer to a cacheable structure
721 /// that contains (among other things) the IMP.
722 LazyRuntimeFunction SlotLookupFn;
723 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
724 /// a structure describing the receiver and the class, and a selector as
725 /// arguments. Returns the slot for the corresponding method. Superclass
726 /// message lookup rarely changes, so this is a good caching opportunity.
727 LazyRuntimeFunction SlotLookupSuperFn;
728 /// Specialised function for setting atomic retain properties
729 LazyRuntimeFunction SetPropertyAtomic;
730 /// Specialised function for setting atomic copy properties
731 LazyRuntimeFunction SetPropertyAtomicCopy;
732 /// Specialised function for setting nonatomic retain properties
733 LazyRuntimeFunction SetPropertyNonAtomic;
734 /// Specialised function for setting nonatomic copy properties
735 LazyRuntimeFunction SetPropertyNonAtomicCopy;
736 /// Function to perform atomic copies of C++ objects with nontrivial copy
737 /// constructors from Objective-C ivars.
738 LazyRuntimeFunction CxxAtomicObjectGetFn;
739 /// Function to perform atomic copies of C++ objects with nontrivial copy
740 /// constructors to Objective-C ivars.
741 LazyRuntimeFunction CxxAtomicObjectSetFn;
742 /// Type of a slot structure pointer. This is returned by the various
743 /// lookup functions.
744 llvm::Type *SlotTy;
745 /// Type of a slot structure.
746 llvm::Type *SlotStructTy;
747
748 public:
749 llvm::Constant *GetEHType(QualType T) override;
750
751 protected:
752 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
753 llvm::Value *cmd, llvm::MDNode *node,
754 MessageSendInfo &MSI) override {
755 CGBuilderTy &Builder = CGF.Builder;
756 llvm::FunctionCallee LookupFn = SlotLookupFn;
757
758 // Store the receiver on the stack so that we can reload it later
759 Address ReceiverPtr =
760 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
761 Builder.CreateStore(Receiver, ReceiverPtr);
762
763 llvm::Value *self;
764
765 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
766 self = CGF.LoadObjCSelf();
767 } else {
768 self = llvm::ConstantPointerNull::get(IdTy);
769 }
770
771 // The lookup function is guaranteed not to capture the receiver pointer.
772 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
773 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
774
775 llvm::Value *args[] = {
776 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
777 EnforceType(Builder, cmd, SelectorTy),
778 EnforceType(Builder, self, IdTy) };
779 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
780 slot->setOnlyReadsMemory();
781 slot->setMetadata(msgSendMDKind, node);
782
783 // Load the imp from the slot
784 llvm::Value *imp = Builder.CreateAlignedLoad(
785 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
786 CGF.getPointerAlign());
787
788 // The lookup function may have changed the receiver, so make sure we use
789 // the new one.
790 Receiver = Builder.CreateLoad(ReceiverPtr, true);
791 return imp;
792 }
793
794 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
795 llvm::Value *cmd,
796 MessageSendInfo &MSI) override {
797 CGBuilderTy &Builder = CGF.Builder;
798 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
799
800 llvm::CallInst *slot =
801 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
802 slot->setOnlyReadsMemory();
803
804 return Builder.CreateAlignedLoad(
805 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
806 CGF.getPointerAlign());
807 }
808
809 public:
810 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
811 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
812 unsigned ClassABI) :
813 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
814 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
815
816 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
817 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
818 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
819 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
820 SelectorTy, IdTy);
821 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
822 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
823 PtrToObjCSuperTy, SelectorTy);
824 // If we're in ObjC++ mode, then we want to make
825 if (usesSEHExceptions) {
826 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
827 // void objc_exception_rethrow(void)
828 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
829 } else if (CGM.getLangOpts().CPlusPlus) {
830 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
831 // void *__cxa_begin_catch(void *e)
832 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
833 // void __cxa_end_catch(void)
834 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
835 // void _Unwind_Resume_or_Rethrow(void*)
836 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
837 PtrTy);
838 } else if (R.getVersion() >= VersionTuple(1, 7)) {
839 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
840 // id objc_begin_catch(void *e)
841 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
842 // void objc_end_catch(void)
843 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
844 // void _Unwind_Resume_or_Rethrow(void*)
845 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
846 }
847 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
848 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
849 SelectorTy, IdTy, PtrDiffTy);
850 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
851 IdTy, SelectorTy, IdTy, PtrDiffTy);
852 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
853 IdTy, SelectorTy, IdTy, PtrDiffTy);
854 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
855 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
856 // void objc_setCppObjectAtomic(void *dest, const void *src, void
857 // *helper);
858 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
859 PtrTy, PtrTy);
860 // void objc_getCppObjectAtomic(void *dest, const void *src, void
861 // *helper);
862 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
863 PtrTy, PtrTy);
864 }
865
866 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
867 // The optimised functions were added in version 1.7 of the GNUstep
868 // runtime.
869 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((void)0)
870 VersionTuple(1, 7))((void)0);
871 return CxxAtomicObjectGetFn;
872 }
873
874 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
875 // The optimised functions were added in version 1.7 of the GNUstep
876 // runtime.
877 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((void)0)
878 VersionTuple(1, 7))((void)0);
879 return CxxAtomicObjectSetFn;
880 }
881
882 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
883 bool copy) override {
884 // The optimised property functions omit the GC check, and so are not
885 // safe to use in GC mode. The standard functions are fast in GC mode,
886 // so there is less advantage in using them.
887 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC))((void)0);
888 // The optimised functions were added in version 1.7 of the GNUstep
889 // runtime.
890 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((void)0)
891 VersionTuple(1, 7))((void)0);
892
893 if (atomic) {
894 if (copy) return SetPropertyAtomicCopy;
895 return SetPropertyAtomic;
896 }
897
898 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
899 }
900};
901
902/// GNUstep Objective-C ABI version 2 implementation.
903/// This is the ABI that provides a clean break with the legacy GCC ABI and
904/// cleans up a number of things that were added to work around 1980s linkers.
905class CGObjCGNUstep2 : public CGObjCGNUstep {
906 enum SectionKind
907 {
908 SelectorSection = 0,
909 ClassSection,
910 ClassReferenceSection,
911 CategorySection,
912 ProtocolSection,
913 ProtocolReferenceSection,
914 ClassAliasSection,
915 ConstantStringSection
916 };
917 static const char *const SectionsBaseNames[8];
918 static const char *const PECOFFSectionsBaseNames[8];
919 template<SectionKind K>
920 std::string sectionName() {
921 if (CGM.getTriple().isOSBinFormatCOFF()) {
922 std::string name(PECOFFSectionsBaseNames[K]);
923 name += "$m";
924 return name;
925 }
926 return SectionsBaseNames[K];
927 }
928 /// The GCC ABI superclass message lookup function. Takes a pointer to a
929 /// structure describing the receiver and the class, and a selector as
930 /// arguments. Returns the IMP for the corresponding method.
931 LazyRuntimeFunction MsgLookupSuperFn;
932 /// A flag indicating if we've emitted at least one protocol.
933 /// If we haven't, then we need to emit an empty protocol, to ensure that the
934 /// __start__objc_protocols and __stop__objc_protocols sections exist.
935 bool EmittedProtocol = false;
936 /// A flag indicating if we've emitted at least one protocol reference.
937 /// If we haven't, then we need to emit an empty protocol, to ensure that the
938 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
939 /// exist.
940 bool EmittedProtocolRef = false;
941 /// A flag indicating if we've emitted at least one class.
942 /// If we haven't, then we need to emit an empty protocol, to ensure that the
943 /// __start__objc_classes and __stop__objc_classes sections / exist.
944 bool EmittedClass = false;
945 /// Generate the name of a symbol for a reference to a class. Accesses to
946 /// classes should be indirected via this.
947
948 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>>
949 EarlyInitPair;
950 std::vector<EarlyInitPair> EarlyInitList;
951
952 std::string SymbolForClassRef(StringRef Name, bool isWeak) {
953 if (isWeak)
954 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
955 else
956 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
957 }
958 /// Generate the name of a class symbol.
959 std::string SymbolForClass(StringRef Name) {
960 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
961 }
962 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
963 ArrayRef<llvm::Value*> Args) {
964 SmallVector<llvm::Type *,8> Types;
965 for (auto *Arg : Args)
966 Types.push_back(Arg->getType());
967 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
968 false);
969 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
970 B.CreateCall(Fn, Args);
971 }
972
973 ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
974
975 auto Str = SL->getString();
976 CharUnits Align = CGM.getPointerAlign();
977
978 // Look for an existing one
979 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
980 if (old != ObjCStrings.end())
981 return ConstantAddress(old->getValue(), Align);
982
983 bool isNonASCII = SL->containsNonAscii();
984
985 auto LiteralLength = SL->getLength();
986
987 if ((CGM.getTarget().getPointerWidth(0) == 64) &&
988 (LiteralLength < 9) && !isNonASCII) {
989 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit
990 // ASCII characters in the high 56 bits, followed by a 4-bit length and a
991 // 3-bit tag (which is always 4).
992 uint64_t str = 0;
993 // Fill in the characters
994 for (unsigned i=0 ; i<LiteralLength ; i++)
995 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
996 // Fill in the length
997 str |= LiteralLength << 3;
998 // Set the tag
999 str |= 4;
1000 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
1001 llvm::ConstantInt::get(Int64Ty, str), IdTy);
1002 ObjCStrings[Str] = ObjCStr;
1003 return ConstantAddress(ObjCStr, Align);
1004 }
1005
1006 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1007
1008 if (StringClass.empty()) StringClass = "NSConstantString";
1009
1010 std::string Sym = SymbolForClass(StringClass);
1011
1012 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1013
1014 if (!isa) {
1015 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1016 llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1017 if (CGM.getTriple().isOSBinFormatCOFF()) {
1018 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1019 }
1020 } else if (isa->getType() != PtrToIdTy)
1021 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1022
1023 // struct
1024 // {
1025 // Class isa;
1026 // uint32_t flags;
1027 // uint32_t length; // Number of codepoints
1028 // uint32_t size; // Number of bytes
1029 // uint32_t hash;
1030 // const char *data;
1031 // };
1032
1033 ConstantInitBuilder Builder(CGM);
1034 auto Fields = Builder.beginStruct();
1035 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1036 Fields.add(isa);
1037 } else {
1038 Fields.addNullPointer(PtrTy);
1039 }
1040 // For now, all non-ASCII strings are represented as UTF-16. As such, the
1041 // number of bytes is simply double the number of UTF-16 codepoints. In
1042 // ASCII strings, the number of bytes is equal to the number of non-ASCII
1043 // codepoints.
1044 if (isNonASCII) {
1045 unsigned NumU8CodeUnits = Str.size();
1046 // A UTF-16 representation of a unicode string contains at most the same
1047 // number of code units as a UTF-8 representation. Allocate that much
1048 // space, plus one for the final null character.
1049 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1050 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1051 llvm::UTF16 *ToPtr = &ToBuf[0];
1052 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1053 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1054 uint32_t StringLength = ToPtr - &ToBuf[0];
1055 // Add null terminator
1056 *ToPtr = 0;
1057 // Flags: 2 indicates UTF-16 encoding
1058 Fields.addInt(Int32Ty, 2);
1059 // Number of UTF-16 codepoints
1060 Fields.addInt(Int32Ty, StringLength);
1061 // Number of bytes
1062 Fields.addInt(Int32Ty, StringLength * 2);
1063 // Hash. Not currently initialised by the compiler.
1064 Fields.addInt(Int32Ty, 0);
1065 // pointer to the data string.
1066 auto Arr = llvm::makeArrayRef(&ToBuf[0], ToPtr+1);
1067 auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1068 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1069 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1070 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1071 Fields.add(Buffer);
1072 } else {
1073 // Flags: 0 indicates ASCII encoding
1074 Fields.addInt(Int32Ty, 0);
1075 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1076 Fields.addInt(Int32Ty, Str.size());
1077 // Number of bytes
1078 Fields.addInt(Int32Ty, Str.size());
1079 // Hash. Not currently initialised by the compiler.
1080 Fields.addInt(Int32Ty, 0);
1081 // Data pointer
1082 Fields.add(MakeConstantString(Str));
1083 }
1084 std::string StringName;
1085 bool isNamed = !isNonASCII;
1086 if (isNamed) {
1087 StringName = ".objc_str_";
1088 for (int i=0,e=Str.size() ; i<e ; ++i) {
1089 unsigned char c = Str[i];
1090 if (isalnum(c))
1091 StringName += c;
1092 else if (c == ' ')
1093 StringName += '_';
1094 else {
1095 isNamed = false;
1096 break;
1097 }
1098 }
1099 }
1100 llvm::GlobalVariable *ObjCStrGV =
1101 Fields.finishAndCreateGlobal(
1102 isNamed ? StringRef(StringName) : ".objc_string",
1103 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1104 : llvm::GlobalValue::PrivateLinkage);
1105 ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1106 if (isNamed) {
1107 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1108 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1109 }
1110 if (CGM.getTriple().isOSBinFormatCOFF()) {
1111 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0};
1112 EarlyInitList.emplace_back(Sym, v);
1113 }
1114 llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy);
1115 ObjCStrings[Str] = ObjCStr;
1116 ConstantStrings.push_back(ObjCStr);
1117 return ConstantAddress(ObjCStr, Align);
1118 }
1119
1120 void PushProperty(ConstantArrayBuilder &PropertiesArray,
1121 const ObjCPropertyDecl *property,
1122 const Decl *OCD,
1123 bool isSynthesized=true, bool
1124 isDynamic=true) override {
1125 // struct objc_property
1126 // {
1127 // const char *name;
1128 // const char *attributes;
1129 // const char *type;
1130 // SEL getter;
1131 // SEL setter;
1132 // };
1133 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1134 ASTContext &Context = CGM.getContext();
1135 Fields.add(MakeConstantString(property->getNameAsString()));
1136 std::string TypeStr =
1137 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1138 Fields.add(MakeConstantString(TypeStr));
1139 std::string typeStr;
1140 Context.getObjCEncodingForType(property->getType(), typeStr);
1141 Fields.add(MakeConstantString(typeStr));
1142 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1143 if (accessor) {
1144 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1145 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1146 } else {
1147 Fields.add(NULLPtr);
1148 }
1149 };
1150 addPropertyMethod(property->getGetterMethodDecl());
1151 addPropertyMethod(property->getSetterMethodDecl());
1152 Fields.finishAndAddTo(PropertiesArray);
1153 }
1154
1155 llvm::Constant *
1156 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1157 // struct objc_protocol_method_description
1158 // {
1159 // SEL selector;
1160 // const char *types;
1161 // };
1162 llvm::StructType *ObjCMethodDescTy =
1163 llvm::StructType::get(CGM.getLLVMContext(),
1164 { PtrToInt8Ty, PtrToInt8Ty });
1165 ASTContext &Context = CGM.getContext();
1166 ConstantInitBuilder Builder(CGM);
1167 // struct objc_protocol_method_description_list
1168 // {
1169 // int count;
1170 // int size;
1171 // struct objc_protocol_method_description methods[];
1172 // };
1173 auto MethodList = Builder.beginStruct();
1174 // int count;
1175 MethodList.addInt(IntTy, Methods.size());
1176 // int size; // sizeof(struct objc_method_description)
1177 llvm::DataLayout td(&TheModule);
1178 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1179 CGM.getContext().getCharWidth());
1180 // struct objc_method_description[]
1181 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1182 for (auto *M : Methods) {
1183 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1184 Method.add(CGObjCGNU::GetConstantSelector(M));
1185 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1186 Method.finishAndAddTo(MethodArray);
1187 }
1188 MethodArray.finishAndAddTo(MethodList);
1189 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1190 CGM.getPointerAlign());
1191 }
1192 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1193 override {
1194 const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1195 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1196 ReferencedProtocols.end());
1197 SmallVector<llvm::Constant *, 16> Protocols;
1198 for (const auto *PI : RuntimeProtocols)
1199 Protocols.push_back(
1200 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1201 ProtocolPtrTy));
1202 return GenerateProtocolList(Protocols);
1203 }
1204
1205 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1206 llvm::Value *cmd, MessageSendInfo &MSI) override {
1207 // Don't access the slot unless we're trying to cache the result.
1208 CGBuilderTy &Builder = CGF.Builder;
1209 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper,
1210 PtrToObjCSuperTy).getPointer(), cmd};
1211 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1212 }
1213
1214 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1215 std::string SymbolName = SymbolForClassRef(Name, isWeak);
1216 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1217 if (ClassSymbol)
1218 return ClassSymbol;
1219 ClassSymbol = new llvm::GlobalVariable(TheModule,
1220 IdTy, false, llvm::GlobalValue::ExternalLinkage,
1221 nullptr, SymbolName);
1222 // If this is a weak symbol, then we are creating a valid definition for
1223 // the symbol, pointing to a weak definition of the real class pointer. If
1224 // this is not a weak reference, then we are expecting another compilation
1225 // unit to provide the real indirection symbol.
1226 if (isWeak)
1227 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1228 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1229 nullptr, SymbolForClass(Name)));
1230 else {
1231 if (CGM.getTriple().isOSBinFormatCOFF()) {
1232 IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1233 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
1234 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
1235
1236 const ObjCInterfaceDecl *OID = nullptr;
1237 for (const auto *Result : DC->lookup(&II))
1238 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1239 break;
1240
1241 // The first Interface we find may be a @class,
1242 // which should only be treated as the source of
1243 // truth in the absence of a true declaration.
1244 assert(OID && "Failed to find ObjCInterfaceDecl")((void)0);
1245 const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1246 if (OIDDef != nullptr)
1247 OID = OIDDef;
1248
1249 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1250 if (OID->hasAttr<DLLImportAttr>())
1251 Storage = llvm::GlobalValue::DLLImportStorageClass;
1252 else if (OID->hasAttr<DLLExportAttr>())
1253 Storage = llvm::GlobalValue::DLLExportStorageClass;
1254
1255 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1256 }
1257 }
1258 assert(ClassSymbol->getName() == SymbolName)((void)0);
1259 return ClassSymbol;
1260 }
1261 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1262 const std::string &Name,
1263 bool isWeak) override {
1264 return CGF.Builder.CreateLoad(Address(GetClassVar(Name, isWeak),
1265 CGM.getPointerAlign()));
1266 }
1267 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1268 // typedef enum {
1269 // ownership_invalid = 0,
1270 // ownership_strong = 1,
1271 // ownership_weak = 2,
1272 // ownership_unsafe = 3
1273 // } ivar_ownership;
1274 int Flag;
1275 switch (Ownership) {
1276 case Qualifiers::OCL_Strong:
1277 Flag = 1;
1278 break;
1279 case Qualifiers::OCL_Weak:
1280 Flag = 2;
1281 break;
1282 case Qualifiers::OCL_ExplicitNone:
1283 Flag = 3;
1284 break;
1285 case Qualifiers::OCL_None:
1286 case Qualifiers::OCL_Autoreleasing:
1287 assert(Ownership != Qualifiers::OCL_Autoreleasing)((void)0);
1288 Flag = 0;
1289 }
1290 return Flag;
1291 }
1292 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1293 ArrayRef<llvm::Constant *> IvarTypes,
1294 ArrayRef<llvm::Constant *> IvarOffsets,
1295 ArrayRef<llvm::Constant *> IvarAlign,
1296 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1297 llvm_unreachable("Method should not be called!")__builtin_unreachable();
1298 }
1299
1300 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1301 std::string Name = SymbolForProtocol(ProtocolName);
1302 auto *GV = TheModule.getGlobalVariable(Name);
1303 if (!GV) {
1304 // Emit a placeholder symbol.
1305 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1306 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1307 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1308 }
1309 return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy);
1310 }
1311
1312 /// Existing protocol references.
1313 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1314
1315 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1316 const ObjCProtocolDecl *PD) override {
1317 auto Name = PD->getNameAsString();
1318 auto *&Ref = ExistingProtocolRefs[Name];
1319 if (!Ref) {
1320 auto *&Protocol = ExistingProtocols[Name];
1321 if (!Protocol)
1322 Protocol = GenerateProtocolRef(PD);
1323 std::string RefName = SymbolForProtocolRef(Name);
1324 assert(!TheModule.getGlobalVariable(RefName))((void)0);
1325 // Emit a reference symbol.
1326 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy,
1327 false, llvm::GlobalValue::LinkOnceODRLinkage,
1328 llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName);
1329 GV->setComdat(TheModule.getOrInsertComdat(RefName));
1330 GV->setSection(sectionName<ProtocolReferenceSection>());
1331 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1332 Ref = GV;
1333 }
1334 EmittedProtocolRef = true;
1335 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1336 CGM.getPointerAlign());
1337 }
1338
1339 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1340 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1341 Protocols.size());
1342 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1343 Protocols);
1344 ConstantInitBuilder builder(CGM);
1345 auto ProtocolBuilder = builder.beginStruct();
1346 ProtocolBuilder.addNullPointer(PtrTy);
1347 ProtocolBuilder.addInt(SizeTy, Protocols.size());
1348 ProtocolBuilder.add(ProtocolArray);
1349 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1350 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1351 }
1352
1353 void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1354 // Do nothing - we only emit referenced protocols.
1355 }
1356 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1357 std::string ProtocolName = PD->getNameAsString();
1358 auto *&Protocol = ExistingProtocols[ProtocolName];
1359 if (Protocol)
1360 return Protocol;
1361
1362 EmittedProtocol = true;
1363
1364 auto SymName = SymbolForProtocol(ProtocolName);
1365 auto *OldGV = TheModule.getGlobalVariable(SymName);
1366
1367 // Use the protocol definition, if there is one.
1368 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1369 PD = Def;
1370 else {
1371 // If there is no definition, then create an external linkage symbol and
1372 // hope that someone else fills it in for us (and fail to link if they
1373 // don't).
1374 assert(!OldGV)((void)0);
1375 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1376 /*isConstant*/false,
1377 llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1378 return Protocol;
1379 }
1380
1381 SmallVector<llvm::Constant*, 16> Protocols;
1382 auto RuntimeProtocols =
1383 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1384 for (const auto *PI : RuntimeProtocols)
1385 Protocols.push_back(
1386 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1387 ProtocolPtrTy));
1388 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1389
1390 // Collect information about methods
1391 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1392 llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1393 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1394 OptionalInstanceMethodList);
1395 EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1396 OptionalClassMethodList);
1397
1398 // The isa pointer must be set to a magic number so the runtime knows it's
1399 // the correct layout.
1400 ConstantInitBuilder builder(CGM);
1401 auto ProtocolBuilder = builder.beginStruct();
1402 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1403 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1404 ProtocolBuilder.add(MakeConstantString(ProtocolName));
1405 ProtocolBuilder.add(ProtocolList);
1406 ProtocolBuilder.add(InstanceMethodList);
1407 ProtocolBuilder.add(ClassMethodList);
1408 ProtocolBuilder.add(OptionalInstanceMethodList);
1409 ProtocolBuilder.add(OptionalClassMethodList);
1410 // Required instance properties
1411 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1412 // Optional instance properties
1413 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1414 // Required class properties
1415 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1416 // Optional class properties
1417 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1418
1419 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1420 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1421 GV->setSection(sectionName<ProtocolSection>());
1422 GV->setComdat(TheModule.getOrInsertComdat(SymName));
1423 if (OldGV) {
1424 OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV,
1425 OldGV->getType()));
1426 OldGV->removeFromParent();
1427 GV->setName(SymName);
1428 }
1429 Protocol = GV;
1430 return GV;
1431 }
1432 llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) {
1433 if (Val->getType() == Ty)
1434 return Val;
1435 return llvm::ConstantExpr::getBitCast(Val, Ty);
1436 }
1437 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1438 const std::string &TypeEncoding) override {
1439 return GetConstantSelector(Sel, TypeEncoding);
1440 }
1441 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) {
1442 if (TypeEncoding.empty())
1443 return NULLPtr;
1444 std::string MangledTypes = std::string(TypeEncoding);
1445 std::replace(MangledTypes.begin(), MangledTypes.end(),
1446 '@', '\1');
1447 std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1448 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1449 if (!TypesGlobal) {
1450 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1451 TypeEncoding);
1452 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1453 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1454 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1455 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1456 TypesGlobal = GV;
1457 }
1458 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(),
1459 TypesGlobal, Zeros);
1460 }
1461 llvm::Constant *GetConstantSelector(Selector Sel,
1462 const std::string &TypeEncoding) override {
1463 // @ is used as a special character in symbol names (used for symbol
1464 // versioning), so mangle the name to not include it. Replace it with a
1465 // character that is not a valid type encoding character (and, being
1466 // non-printable, never will be!)
1467 std::string MangledTypes = TypeEncoding;
1468 std::replace(MangledTypes.begin(), MangledTypes.end(),
1469 '@', '\1');
1470 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1471 MangledTypes).str();
1472 if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1473 return EnforceType(GV, SelectorTy);
1474 ConstantInitBuilder builder(CGM);
1475 auto SelBuilder = builder.beginStruct();
1476 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1477 true));
1478 SelBuilder.add(GetTypeString(TypeEncoding));
1479 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1480 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1481 GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1482 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1483 GV->setSection(sectionName<SelectorSection>());
1484 auto *SelVal = EnforceType(GV, SelectorTy);
1485 return SelVal;
1486 }
1487 llvm::StructType *emptyStruct = nullptr;
1488
1489 /// Return pointers to the start and end of a section. On ELF platforms, we
1490 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1491 /// to the start and end of section names, as long as those section names are
1492 /// valid identifiers and the symbols are referenced but not defined. On
1493 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1494 /// by subsections and place everything that we want to reference in a middle
1495 /// subsection and then insert zero-sized symbols in subsections a and z.
1496 std::pair<llvm::Constant*,llvm::Constant*>
1497 GetSectionBounds(StringRef Section) {
1498 if (CGM.getTriple().isOSBinFormatCOFF()) {
1499 if (emptyStruct == nullptr) {
1500 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1501 emptyStruct->setBody({}, /*isPacked*/true);
1502 }
1503 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1504 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1505 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1506 /*isConstant*/false,
1507 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1508 Section);
1509 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1510 Sym->setSection((Section + SecSuffix).str());
1511 Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1512 Section).str()));
1513 Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1514 return Sym;
1515 };
1516 return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1517 }
1518 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1519 /*isConstant*/false,
1520 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1521 Section);
1522 Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1523 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1524 /*isConstant*/false,
1525 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1526 Section);
1527 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1528 return { Start, Stop };
1529 }
1530 CatchTypeInfo getCatchAllTypeInfo() override {
1531 return CGM.getCXXABI().getCatchAllTypeInfo();
1532 }
1533 llvm::Function *ModuleInitFunction() override {
1534 llvm::Function *LoadFunction = llvm::Function::Create(
1535 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1536 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1537 &TheModule);
1538 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1539 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1540
1541 llvm::BasicBlock *EntryBB =
1542 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1543 CGBuilderTy B(CGM, VMContext);
1544 B.SetInsertPoint(EntryBB);
1545 ConstantInitBuilder builder(CGM);
1546 auto InitStructBuilder = builder.beginStruct();
1547 InitStructBuilder.addInt(Int64Ty, 0);
1548 auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1549 for (auto *s : sectionVec) {
1550 auto bounds = GetSectionBounds(s);
1551 InitStructBuilder.add(bounds.first);
1552 InitStructBuilder.add(bounds.second);
1553 }
1554 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1555 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1556 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1557 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1558
1559 CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1560 B.CreateRetVoid();
1561 // Make sure that the optimisers don't delete this function.
1562 CGM.addCompilerUsedGlobal(LoadFunction);
1563 // FIXME: Currently ELF only!
1564 // We have to do this by hand, rather than with @llvm.ctors, so that the
1565 // linker can remove the duplicate invocations.
1566 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1567 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1568 LoadFunction, ".objc_ctor");
1569 // Check that this hasn't been renamed. This shouldn't happen, because
1570 // this function should be called precisely once.
1571 assert(InitVar->getName() == ".objc_ctor")((void)0);
1572 // In Windows, initialisers are sorted by the suffix. XCL is for library
1573 // initialisers, which run before user initialisers. We are running
1574 // Objective-C loads at the end of library load. This means +load methods
1575 // will run before any other static constructors, but that static
1576 // constructors can see a fully initialised Objective-C state.
1577 if (CGM.getTriple().isOSBinFormatCOFF())
1578 InitVar->setSection(".CRT$XCLz");
1579 else
1580 {
1581 if (CGM.getCodeGenOpts().UseInitArray)
1582 InitVar->setSection(".init_array");
1583 else
1584 InitVar->setSection(".ctors");
1585 }
1586 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1587 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1588 CGM.addUsedGlobal(InitVar);
1589 for (auto *C : Categories) {
1590 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1591 Cat->setSection(sectionName<CategorySection>());
1592 CGM.addUsedGlobal(Cat);
1593 }
1594 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1595 StringRef Section) {
1596 auto nullBuilder = builder.beginStruct();
1597 for (auto *F : Init)
1598 nullBuilder.add(F);
1599 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1600 false, llvm::GlobalValue::LinkOnceODRLinkage);
1601 GV->setSection(Section);
1602 GV->setComdat(TheModule.getOrInsertComdat(Name));
1603 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1604 CGM.addUsedGlobal(GV);
1605 return GV;
1606 };
1607 for (auto clsAlias : ClassAliases)
1608 createNullGlobal(std::string(".objc_class_alias") +
1609 clsAlias.second, { MakeConstantString(clsAlias.second),
1610 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1611 // On ELF platforms, add a null value for each special section so that we
1612 // can always guarantee that the _start and _stop symbols will exist and be
1613 // meaningful. This is not required on COFF platforms, where our start and
1614 // stop symbols will create the section.
1615 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1616 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1617 sectionName<SelectorSection>());
1618 if (Categories.empty())
1619 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1620 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1621 sectionName<CategorySection>());
1622 if (!EmittedClass) {
1623 createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1624 sectionName<ClassSection>());
1625 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1626 sectionName<ClassReferenceSection>());
1627 }
1628 if (!EmittedProtocol)
1629 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1630 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1631 NULLPtr}, sectionName<ProtocolSection>());
1632 if (!EmittedProtocolRef)
1633 createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1634 sectionName<ProtocolReferenceSection>());
1635 if (ClassAliases.empty())
1636 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1637 sectionName<ClassAliasSection>());
1638 if (ConstantStrings.empty()) {
1639 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1640 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1641 i32Zero, i32Zero, i32Zero, NULLPtr },
1642 sectionName<ConstantStringSection>());
1643 }
1644 }
1645 ConstantStrings.clear();
1646 Categories.clear();
1647 Classes.clear();
1648
1649 if (EarlyInitList.size() > 0) {
1650 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1651 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1652 &CGM.getModule());
1653 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1654 Init));
1655 for (const auto &lateInit : EarlyInitList) {
1656 auto *global = TheModule.getGlobalVariable(lateInit.first);
1657 if (global) {
1658 llvm::GlobalVariable *GV = lateInit.second.first;
1659 b.CreateAlignedStore(
1660 global,
1661 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second),
1662 CGM.getPointerAlign().getAsAlign());
1663 }
1664 }
1665 b.CreateRetVoid();
1666 // We can't use the normal LLVM global initialisation array, because we
1667 // need to specify that this runs early in library initialisation.
1668 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1669 /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1670 Init, ".objc_early_init_ptr");
1671 InitVar->setSection(".CRT$XCLb");
1672 CGM.addUsedGlobal(InitVar);
1673 }
1674 return nullptr;
1675 }
1676 /// In the v2 ABI, ivar offset variables use the type encoding in their name
1677 /// to trigger linker failures if the types don't match.
1678 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1679 const ObjCIvarDecl *Ivar) override {
1680 std::string TypeEncoding;
1681 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1682 // Prevent the @ from being interpreted as a symbol version.
1683 std::replace(TypeEncoding.begin(), TypeEncoding.end(),
1684 '@', '\1');
1685 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1686 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1687 return Name;
1688 }
1689 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1690 const ObjCInterfaceDecl *Interface,
1691 const ObjCIvarDecl *Ivar) override {
1692 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1693 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1694 if (!IvarOffsetPointer)
1695 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1696 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1697 CharUnits Align = CGM.getIntAlign();
1698 llvm::Value *Offset =
1699 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1700 if (Offset->getType() != PtrDiffTy)
1701 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1702 return Offset;
1703 }
1704 void GenerateClass(const ObjCImplementationDecl *OID) override {
1705 ASTContext &Context = CGM.getContext();
1706 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1707
1708 // Get the class name
1709 ObjCInterfaceDecl *classDecl =
1710 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1711 std::string className = classDecl->getNameAsString();
1712 auto *classNameConstant = MakeConstantString(className);
1713
1714 ConstantInitBuilder builder(CGM);
1715 auto metaclassFields = builder.beginStruct();
1716 // struct objc_class *isa;
1717 metaclassFields.addNullPointer(PtrTy);
1718 // struct objc_class *super_class;
1719 metaclassFields.addNullPointer(PtrTy);
1720 // const char *name;
1721 metaclassFields.add(classNameConstant);
1722 // long version;
1723 metaclassFields.addInt(LongTy, 0);
1724 // unsigned long info;
1725 // objc_class_flag_meta
1726 metaclassFields.addInt(LongTy, 1);
1727 // long instance_size;
1728 // Setting this to zero is consistent with the older ABI, but it might be
1729 // more sensible to set this to sizeof(struct objc_class)
1730 metaclassFields.addInt(LongTy, 0);
1731 // struct objc_ivar_list *ivars;
1732 metaclassFields.addNullPointer(PtrTy);
1733 // struct objc_method_list *methods
1734 // FIXME: Almost identical code is copied and pasted below for the
1735 // class, but refactoring it cleanly requires C++14 generic lambdas.
1736 if (OID->classmeth_begin() == OID->classmeth_end())
1737 metaclassFields.addNullPointer(PtrTy);
1738 else {
1739 SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1740 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1741 OID->classmeth_end());
1742 metaclassFields.addBitCast(
1743 GenerateMethodList(className, "", ClassMethods, true),
1744 PtrTy);
1745 }
1746 // void *dtable;
1747 metaclassFields.addNullPointer(PtrTy);
1748 // IMP cxx_construct;
1749 metaclassFields.addNullPointer(PtrTy);
1750 // IMP cxx_destruct;
1751 metaclassFields.addNullPointer(PtrTy);
1752 // struct objc_class *subclass_list
1753 metaclassFields.addNullPointer(PtrTy);
1754 // struct objc_class *sibling_class
1755 metaclassFields.addNullPointer(PtrTy);
1756 // struct objc_protocol_list *protocols;
1757 metaclassFields.addNullPointer(PtrTy);
1758 // struct reference_list *extra_data;
1759 metaclassFields.addNullPointer(PtrTy);
1760 // long abi_version;
1761 metaclassFields.addInt(LongTy, 0);
1762 // struct objc_property_list *properties
1763 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1764
1765 auto *metaclass = metaclassFields.finishAndCreateGlobal(
1766 ManglePublicSymbol("OBJC_METACLASS_") + className,
1767 CGM.getPointerAlign());
1768
1769 auto classFields = builder.beginStruct();
1770 // struct objc_class *isa;
1771 classFields.add(metaclass);
1772 // struct objc_class *super_class;
1773 // Get the superclass name.
1774 const ObjCInterfaceDecl * SuperClassDecl =
1775 OID->getClassInterface()->getSuperClass();
1776 llvm::Constant *SuperClass = nullptr;
1777 if (SuperClassDecl) {
1778 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1779 SuperClass = TheModule.getNamedGlobal(SuperClassName);
1780 if (!SuperClass)
1781 {
1782 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1783 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1784 if (IsCOFF) {
1785 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1786 if (SuperClassDecl->hasAttr<DLLImportAttr>())
1787 Storage = llvm::GlobalValue::DLLImportStorageClass;
1788 else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1789 Storage = llvm::GlobalValue::DLLExportStorageClass;
1790
1791 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1792 }
1793 }
1794 if (!IsCOFF)
1795 classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy));
1796 else
1797 classFields.addNullPointer(PtrTy);
1798 } else
1799 classFields.addNullPointer(PtrTy);
1800 // const char *name;
1801 classFields.add(classNameConstant);
1802 // long version;
1803 classFields.addInt(LongTy, 0);
1804 // unsigned long info;
1805 // !objc_class_flag_meta
1806 classFields.addInt(LongTy, 0);
1807 // long instance_size;
1808 int superInstanceSize = !SuperClassDecl ? 0 :
1809 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1810 // Instance size is negative for classes that have not yet had their ivar
1811 // layout calculated.
1812 classFields.addInt(LongTy,
1813 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1814 superInstanceSize));
1815
1816 if (classDecl->all_declared_ivar_begin() == nullptr)
1817 classFields.addNullPointer(PtrTy);
1818 else {
1819 int ivar_count = 0;
1820 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1821 IVD = IVD->getNextIvar()) ivar_count++;
1822 llvm::DataLayout td(&TheModule);
1823 // struct objc_ivar_list *ivars;
1824 ConstantInitBuilder b(CGM);
1825 auto ivarListBuilder = b.beginStruct();
1826 // int count;
1827 ivarListBuilder.addInt(IntTy, ivar_count);
1828 // size_t size;
1829 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1830 PtrToInt8Ty,
1831 PtrToInt8Ty,
1832 PtrToInt8Ty,
1833 Int32Ty,
1834 Int32Ty);
1835 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1836 CGM.getContext().getCharWidth());
1837 // struct objc_ivar ivars[]
1838 auto ivarArrayBuilder = ivarListBuilder.beginArray();
1839 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1840 IVD = IVD->getNextIvar()) {
1841 auto ivarTy = IVD->getType();
1842 auto ivarBuilder = ivarArrayBuilder.beginStruct();
1843 // const char *name;
1844 ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1845 // const char *type;
1846 std::string TypeStr;
1847 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1848 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1849 ivarBuilder.add(MakeConstantString(TypeStr));
1850 // int *offset;
1851 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1852 uint64_t Offset = BaseOffset - superInstanceSize;
1853 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1854 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1855 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1856 if (OffsetVar)
1857 OffsetVar->setInitializer(OffsetValue);
1858 else
1859 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1860 false, llvm::GlobalValue::ExternalLinkage,
1861 OffsetValue, OffsetName);
1862 auto ivarVisibility =
1863 (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1864 IVD->getAccessControl() == ObjCIvarDecl::Package ||
1865 classDecl->getVisibility() == HiddenVisibility) ?
1866 llvm::GlobalValue::HiddenVisibility :
1867 llvm::GlobalValue::DefaultVisibility;
1868 OffsetVar->setVisibility(ivarVisibility);
1869 ivarBuilder.add(OffsetVar);
1870 // Ivar size
1871 ivarBuilder.addInt(Int32Ty,
1872 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1873 // Alignment will be stored as a base-2 log of the alignment.
1874 unsigned align =
1875 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1876 // Objects that require more than 2^64-byte alignment should be impossible!
1877 assert(align < 64)((void)0);
1878 // uint32_t flags;
1879 // Bits 0-1 are ownership.
1880 // Bit 2 indicates an extended type encoding
1881 // Bits 3-8 contain log2(aligment)
1882 ivarBuilder.addInt(Int32Ty,
1883 (align << 3) | (1<<2) |
1884 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1885 ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1886 }
1887 ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1888 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1889 CGM.getPointerAlign(), /*constant*/ false,
1890 llvm::GlobalValue::PrivateLinkage);
1891 classFields.add(ivarList);
1892 }
1893 // struct objc_method_list *methods
1894 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1895 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1896 OID->instmeth_end());
1897 for (auto *propImpl : OID->property_impls())
1898 if (propImpl->getPropertyImplementation() ==
1899 ObjCPropertyImplDecl::Synthesize) {
1900 auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1901 if (OMD && OMD->hasBody())
1902 InstanceMethods.push_back(OMD);
1903 };
1904 addIfExists(propImpl->getGetterMethodDecl());
1905 addIfExists(propImpl->getSetterMethodDecl());
1906 }
1907
1908 if (InstanceMethods.size() == 0)
1909 classFields.addNullPointer(PtrTy);
1910 else
1911 classFields.addBitCast(
1912 GenerateMethodList(className, "", InstanceMethods, false),
1913 PtrTy);
1914 // void *dtable;
1915 classFields.addNullPointer(PtrTy);
1916 // IMP cxx_construct;
1917 classFields.addNullPointer(PtrTy);
1918 // IMP cxx_destruct;
1919 classFields.addNullPointer(PtrTy);
1920 // struct objc_class *subclass_list
1921 classFields.addNullPointer(PtrTy);
1922 // struct objc_class *sibling_class
1923 classFields.addNullPointer(PtrTy);
1924 // struct objc_protocol_list *protocols;
1925 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(),
1926 classDecl->protocol_end());
1927 SmallVector<llvm::Constant *, 16> Protocols;
1928 for (const auto *I : RuntimeProtocols)
1929 Protocols.push_back(
1930 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I),
1931 ProtocolPtrTy));
1932 if (Protocols.empty())
1933 classFields.addNullPointer(PtrTy);
1934 else
1935 classFields.add(GenerateProtocolList(Protocols));
1936 // struct reference_list *extra_data;
1937 classFields.addNullPointer(PtrTy);
1938 // long abi_version;
1939 classFields.addInt(LongTy, 0);
1940 // struct objc_property_list *properties
1941 classFields.add(GeneratePropertyList(OID, classDecl));
1942
1943 llvm::GlobalVariable *classStruct =
1944 classFields.finishAndCreateGlobal(SymbolForClass(className),
1945 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1946
1947 auto *classRefSymbol = GetClassVar(className);
1948 classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1949 classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1950
1951 if (IsCOFF) {
1952 // we can't import a class struct.
1953 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1954 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1955 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1956 }
1957
1958 if (SuperClass) {
1959 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1};
1960 EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1961 std::move(v));
1962 }
1963
1964 }
1965
1966
1967 // Resolve the class aliases, if they exist.
1968 // FIXME: Class pointer aliases shouldn't exist!
1969 if (ClassPtrAlias) {
1970 ClassPtrAlias->replaceAllUsesWith(
1971 llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1972 ClassPtrAlias->eraseFromParent();
1973 ClassPtrAlias = nullptr;
1974 }
1975 if (auto Placeholder =
1976 TheModule.getNamedGlobal(SymbolForClass(className)))
1977 if (Placeholder != classStruct) {
1978 Placeholder->replaceAllUsesWith(
1979 llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType()));
1980 Placeholder->eraseFromParent();
1981 classStruct->setName(SymbolForClass(className));
1982 }
1983 if (MetaClassPtrAlias) {
1984 MetaClassPtrAlias->replaceAllUsesWith(
1985 llvm::ConstantExpr::getBitCast(metaclass, IdTy));
1986 MetaClassPtrAlias->eraseFromParent();
1987 MetaClassPtrAlias = nullptr;
1988 }
1989 assert(classStruct->getName() == SymbolForClass(className))((void)0);
1990
1991 auto classInitRef = new llvm::GlobalVariable(TheModule,
1992 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
1993 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
1994 classInitRef->setSection(sectionName<ClassSection>());
1995 CGM.addUsedGlobal(classInitRef);
1996
1997 EmittedClass = true;
1998 }
1999 public:
2000 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
2001 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2002 PtrToObjCSuperTy, SelectorTy);
2003 // struct objc_property
2004 // {
2005 // const char *name;
2006 // const char *attributes;
2007 // const char *type;
2008 // SEL getter;
2009 // SEL setter;
2010 // }
2011 PropertyMetadataTy =
2012 llvm::StructType::get(CGM.getLLVMContext(),
2013 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2014 }
2015
2016};
2017
2018const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2019{
2020"__objc_selectors",
2021"__objc_classes",
2022"__objc_class_refs",
2023"__objc_cats",
2024"__objc_protocols",
2025"__objc_protocol_refs",
2026"__objc_class_aliases",
2027"__objc_constant_string"
2028};
2029
2030const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2031{
2032".objcrt$SEL",
2033".objcrt$CLS",
2034".objcrt$CLR",
2035".objcrt$CAT",
2036".objcrt$PCL",
2037".objcrt$PCR",
2038".objcrt$CAL",
2039".objcrt$STR"
2040};
2041
2042/// Support for the ObjFW runtime.
2043class CGObjCObjFW: public CGObjCGNU {
2044protected:
2045 /// The GCC ABI message lookup function. Returns an IMP pointing to the
2046 /// method implementation for this message.
2047 LazyRuntimeFunction MsgLookupFn;
2048 /// stret lookup function. While this does not seem to make sense at the
2049 /// first look, this is required to call the correct forwarding function.
2050 LazyRuntimeFunction MsgLookupFnSRet;
2051 /// The GCC ABI superclass message lookup function. Takes a pointer to a
2052 /// structure describing the receiver and the class, and a selector as
2053 /// arguments. Returns the IMP for the corresponding method.
2054 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2055
2056 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2057 llvm::Value *cmd, llvm::MDNode *node,
2058 MessageSendInfo &MSI) override {
2059 CGBuilderTy &Builder = CGF.Builder;
2060 llvm::Value *args[] = {
2061 EnforceType(Builder, Receiver, IdTy),
2062 EnforceType(Builder, cmd, SelectorTy) };
2063
2064 llvm::CallBase *imp;
2065 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2066 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2067 else
2068 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2069
2070 imp->setMetadata(msgSendMDKind, node);
2071 return imp;
2072 }
2073
2074 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2075 llvm::Value *cmd, MessageSendInfo &MSI) override {
2076 CGBuilderTy &Builder = CGF.Builder;
2077 llvm::Value *lookupArgs[] = {
2078 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd,
2079 };
2080
2081 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2082 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2083 else
2084 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2085 }
2086
2087 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2088 bool isWeak) override {
2089 if (isWeak)
2090 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2091
2092 EmitClassRef(Name);
2093 std::string SymbolName = "_OBJC_CLASS_" + Name;
2094 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2095 if (!ClassSymbol)
2096 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2097 llvm::GlobalValue::ExternalLinkage,
2098 nullptr, SymbolName);
2099 return ClassSymbol;
2100 }
2101
2102public:
2103 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2104 // IMP objc_msg_lookup(id, SEL);
2105 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2106 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2107 SelectorTy);
2108 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2109 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2110 PtrToObjCSuperTy, SelectorTy);
2111 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2112 PtrToObjCSuperTy, SelectorTy);
2113 }
2114};
2115} // end anonymous namespace
2116
2117/// Emits a reference to a dummy variable which is emitted with each class.
2118/// This ensures that a linker error will be generated when trying to link
2119/// together modules where a referenced class is not defined.
2120void CGObjCGNU::EmitClassRef(const std::string &className) {
2121 std::string symbolRef = "__objc_class_ref_" + className;
2122 // Don't emit two copies of the same symbol
2123 if (TheModule.getGlobalVariable(symbolRef))
2124 return;
2125 std::string symbolName = "__objc_class_name_" + className;
2126 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2127 if (!ClassSymbol) {
2128 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2129 llvm::GlobalValue::ExternalLinkage,
2130 nullptr, symbolName);
2131 }
2132 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2133 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2134}
2135
2136CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2137 unsigned protocolClassVersion, unsigned classABI)
2138 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2139 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2140 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2141 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2142
2143 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2144 usesSEHExceptions =
2145 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2146
2147 CodeGenTypes &Types = CGM.getTypes();
2148 IntTy = cast<llvm::IntegerType>(
2149 Types.ConvertType(CGM.getContext().IntTy));
2150 LongTy = cast<llvm::IntegerType>(
2151 Types.ConvertType(CGM.getContext().LongTy));
2152 SizeTy = cast<llvm::IntegerType>(
2153 Types.ConvertType(CGM.getContext().getSizeType()));
2154 PtrDiffTy = cast<llvm::IntegerType>(
2155 Types.ConvertType(CGM.getContext().getPointerDiffType()));
2156 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2157
2158 Int8Ty = llvm::Type::getInt8Ty(VMContext);
2159 // C string type. Used in lots of places.
2160 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2161 ProtocolPtrTy = llvm::PointerType::getUnqual(
2162 Types.ConvertType(CGM.getContext().getObjCProtoType()));
2163
2164 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2165 Zeros[1] = Zeros[0];
2166 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2167 // Get the selector Type.
2168 QualType selTy = CGM.getContext().getObjCSelType();
2169 if (QualType() == selTy) {
2170 SelectorTy = PtrToInt8Ty;
2171 } else {
2172 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2173 }
2174
2175 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2176 PtrTy = PtrToInt8Ty;
2177
2178 Int32Ty = llvm::Type::getInt32Ty(VMContext);
2179 Int64Ty = llvm::Type::getInt64Ty(VMContext);
2180
2181 IntPtrTy =
2182 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2183
2184 // Object type
2185 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2186 ASTIdTy = CanQualType();
2187 if (UnqualIdTy != QualType()) {
2188 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2189 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2190 } else {
2191 IdTy = PtrToInt8Ty;
2192 }
2193 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2194 ProtocolTy = llvm::StructType::get(IdTy,
2195 PtrToInt8Ty, // name
2196 PtrToInt8Ty, // protocols
2197 PtrToInt8Ty, // instance methods
2198 PtrToInt8Ty, // class methods
2199 PtrToInt8Ty, // optional instance methods
2200 PtrToInt8Ty, // optional class methods
2201 PtrToInt8Ty, // properties
2202 PtrToInt8Ty);// optional properties
2203
2204 // struct objc_property_gsv1
2205 // {
2206 // const char *name;
2207 // char attributes;
2208 // char attributes2;
2209 // char unused1;
2210 // char unused2;
2211 // const char *getter_name;
2212 // const char *getter_types;
2213 // const char *setter_name;
2214 // const char *setter_types;
2215 // }
2216 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2217 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2218 PtrToInt8Ty, PtrToInt8Ty });
2219
2220 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2221 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2222
2223 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2224
2225 // void objc_exception_throw(id);
2226 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2227 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2228 // int objc_sync_enter(id);
2229 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2230 // int objc_sync_exit(id);
2231 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2232
2233 // void objc_enumerationMutation (id)
2234 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2235
2236 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2237 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2238 PtrDiffTy, BoolTy);
2239 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2240 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2241 PtrDiffTy, IdTy, BoolTy, BoolTy);
2242 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2243 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2244 PtrDiffTy, BoolTy, BoolTy);
2245 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2246 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2247 PtrDiffTy, BoolTy, BoolTy);
2248
2249 // IMP type
2250 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2251 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2252 true));
2253
2254 const LangOptions &Opts = CGM.getLangOpts();
2255 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2256 RuntimeVersion = 10;
2257
2258 // Don't bother initialising the GC stuff unless we're compiling in GC mode
2259 if (Opts.getGC() != LangOptions::NonGC) {
2260 // This is a bit of an hack. We should sort this out by having a proper
2261 // CGObjCGNUstep subclass for GC, but we may want to really support the old
2262 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2263 // Get selectors needed in GC mode
2264 RetainSel = GetNullarySelector("retain", CGM.getContext());
2265 ReleaseSel = GetNullarySelector("release", CGM.getContext());
2266 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2267
2268 // Get functions needed in GC mode
2269
2270 // id objc_assign_ivar(id, id, ptrdiff_t);
2271 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2272 // id objc_assign_strongCast (id, id*)
2273 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2274 PtrToIdTy);
2275 // id objc_assign_global(id, id*);
2276 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2277 // id objc_assign_weak(id, id*);
2278 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2279 // id objc_read_weak(id*);
2280 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2281 // void *objc_memmove_collectable(void*, void *, size_t);
2282 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2283 SizeTy);
2284 }
2285}
2286
2287llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2288 const std::string &Name, bool isWeak) {
2289 llvm::Constant *ClassName = MakeConstantString(Name);
2290 // With the incompatible ABI, this will need to be replaced with a direct
2291 // reference to the class symbol. For the compatible nonfragile ABI we are
2292 // still performing this lookup at run time but emitting the symbol for the
2293 // class externally so that we can make the switch later.
2294 //
2295 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2296 // with memoized versions or with static references if it's safe to do so.
2297 if (!isWeak)
2298 EmitClassRef(Name);
2299
2300 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2301 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2302 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2303}
2304
2305// This has to perform the lookup every time, since posing and related
2306// techniques can modify the name -> class mapping.
2307llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2308 const ObjCInterfaceDecl *OID) {
2309 auto *Value =
2310 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2311 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2312 CGM.setGVProperties(ClassSymbol, OID);
2313 return Value;
2314}
2315
2316llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2317 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false);
2318 if (CGM.getTriple().isOSBinFormatCOFF()) {
2319 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2320 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2321 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2322 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2323
2324 const VarDecl *VD = nullptr;
2325 for (const auto *Result : DC->lookup(&II))
2326 if ((VD = dyn_cast<VarDecl>(Result)))
2327 break;
2328
2329 CGM.setGVProperties(ClassSymbol, VD);
2330 }
2331 }
2332 return Value;
2333}
2334
2335llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2336 const std::string &TypeEncoding) {
2337 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2338 llvm::GlobalAlias *SelValue = nullptr;
2339
2340 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2341 e = Types.end() ; i!=e ; i++) {
2342 if (i->first == TypeEncoding) {
2343 SelValue = i->second;
2344 break;
2345 }
2346 }
2347 if (!SelValue) {
2348 SelValue = llvm::GlobalAlias::create(
2349 SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
2350 ".objc_selector_" + Sel.getAsString(), &TheModule);
2351 Types.emplace_back(TypeEncoding, SelValue);
2352 }
2353
2354 return SelValue;
2355}
2356
2357Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2358 llvm::Value *SelValue = GetSelector(CGF, Sel);
2359
2360 // Store it to a temporary. Does this satisfy the semantics of
2361 // GetAddrOfSelector? Hopefully.
2362 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2363 CGF.getPointerAlign());
2364 CGF.Builder.CreateStore(SelValue, tmp);
2365 return tmp;
2366}
2367
2368llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2369 return GetTypedSelector(CGF, Sel, std::string());
2370}
2371
2372llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2373 const ObjCMethodDecl *Method) {
2374 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2375 return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2376}
2377
2378llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2379 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
6
Calling 'Type::isObjCIdType'
10
Returning from 'Type::isObjCIdType'
11
Calling 'Type::isObjCQualifiedIdType'
15
Returning from 'Type::isObjCQualifiedIdType'
16
Taking false branch
2380 // With the old ABI, there was only one kind of catchall, which broke
2381 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
2382 // a pointer indicating object catchalls, and NULL to indicate real
2383 // catchalls
2384 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2385 return MakeConstantString("@id");
2386 } else {
2387 return nullptr;
2388 }
2389 }
2390
2391 // All other types should be Objective-C interface pointer types.
2392 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
17
Assuming the object is not a 'ObjCObjectPointerType'
18
'OPT' initialized to a null pointer value
2393 assert(OPT && "Invalid @catch type.")((void)0);
2394 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
19
Called C++ object pointer is null
2395 assert(IDecl && "Invalid @catch type.")((void)0);
2396 return MakeConstantString(IDecl->getIdentifier()->getName());
2397}
2398
2399llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2400 if (usesSEHExceptions)
1
Assuming field 'usesSEHExceptions' is false
2
Taking false branch
2401 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2402
2403 if (!CGM.getLangOpts().CPlusPlus)
3
Assuming field 'CPlusPlus' is 0
4
Taking true branch
2404 return CGObjCGNU::GetEHType(T);
5
Calling 'CGObjCGNU::GetEHType'
2405
2406 // For Objective-C++, we want to provide the ability to catch both C++ and
2407 // Objective-C objects in the same function.
2408
2409 // There's a particular fixed type info for 'id'.
2410 if (T->isObjCIdType() ||
2411 T->isObjCQualifiedIdType()) {
2412 llvm::Constant *IDEHType =
2413 CGM.getModule().getGlobalVariable("__objc_id_type_info");
2414 if (!IDEHType)
2415 IDEHType =
2416 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2417 false,
2418 llvm::GlobalValue::ExternalLinkage,
2419 nullptr, "__objc_id_type_info");
2420 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
2421 }
2422
2423 const ObjCObjectPointerType *PT =
2424 T->getAs<ObjCObjectPointerType>();
2425 assert(PT && "Invalid @catch type.")((void)0);
2426 const ObjCInterfaceType *IT = PT->getInterfaceType();
2427 assert(IT && "Invalid @catch type.")((void)0);
2428 std::string className =
2429 std::string(IT->getDecl()->getIdentifier()->getName());
2430
2431 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2432
2433 // Return the existing typeinfo if it exists
2434 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
2435 if (typeinfo)
2436 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
2437
2438 // Otherwise create it.
2439
2440 // vtable for gnustep::libobjc::__objc_class_type_info
2441 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
2442 // platform's name mangling.
2443 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2444 auto *Vtable = TheModule.getGlobalVariable(vtableName);
2445 if (!Vtable) {
2446 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2447 llvm::GlobalValue::ExternalLinkage,
2448 nullptr, vtableName);
2449 }
2450 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2451 auto *BVtable = llvm::ConstantExpr::getBitCast(
2452 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
2453 PtrToInt8Ty);
2454
2455 llvm::Constant *typeName =
2456 ExportUniqueString(className, "__objc_eh_typename_");
2457
2458 ConstantInitBuilder builder(CGM);
2459 auto fields = builder.beginStruct();
2460 fields.add(BVtable);
2461 fields.add(typeName);
2462 llvm::Constant *TI =
2463 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2464 CGM.getPointerAlign(),
2465 /*constant*/ false,
2466 llvm::GlobalValue::LinkOnceODRLinkage);
2467 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
2468}
2469
2470/// Generate an NSConstantString object.
2471ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2472
2473 std::string Str = SL->getString().str();
2474 CharUnits Align = CGM.getPointerAlign();
2475
2476 // Look for an existing one
2477 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2478 if (old != ObjCStrings.end())
2479 return ConstantAddress(old->getValue(), Align);
2480
2481 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2482
2483 if (StringClass.empty()) StringClass = "NSConstantString";
2484
2485 std::string Sym = "_OBJC_CLASS_";
2486 Sym += StringClass;
2487
2488 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2489
2490 if (!isa)
2491 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
2492 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
2493 else if (isa->getType() != PtrToIdTy)
2494 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
2495
2496 ConstantInitBuilder Builder(CGM);
2497 auto Fields = Builder.beginStruct();
2498 Fields.add(isa);
2499 Fields.add(MakeConstantString(Str));
2500 Fields.addInt(IntTy, Str.size());
2501 llvm::Constant *ObjCStr =
2502 Fields.finishAndCreateGlobal(".objc_str", Align);
2503 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
2504 ObjCStrings[Str] = ObjCStr;
2505 ConstantStrings.push_back(ObjCStr);
2506 return ConstantAddress(ObjCStr, Align);
2507}
2508
2509///Generates a message send where the super is the receiver. This is a message
2510///send to self with special delivery semantics indicating which class's method
2511///should be called.
2512RValue
2513CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2514 ReturnValueSlot Return,
2515 QualType ResultType,
2516 Selector Sel,
2517 const ObjCInterfaceDecl *Class,
2518 bool isCategoryImpl,
2519 llvm::Value *Receiver,
2520 bool IsClassMessage,
2521 const CallArgList &CallArgs,
2522 const ObjCMethodDecl *Method) {
2523 CGBuilderTy &Builder = CGF.Builder;
2524 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2525 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2526 return RValue::get(EnforceType(Builder, Receiver,
2527 CGM.getTypes().ConvertType(ResultType)));
2528 }
2529 if (Sel == ReleaseSel) {
2530 return RValue::get(nullptr);
2531 }
2532 }
2533
2534 llvm::Value *cmd = GetSelector(CGF, Sel);
2535 CallArgList ActualArgs;
2536
2537 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2538 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2539 ActualArgs.addFrom(CallArgs);
2540
2541 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2542
2543 llvm::Value *ReceiverClass = nullptr;
2544 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2545 if (isV2ABI) {
2546 ReceiverClass = GetClassNamed(CGF,
2547 Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2548 if (IsClassMessage) {
2549 // Load the isa pointer of the superclass is this is a class method.
2550 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2551 llvm::PointerType::getUnqual(IdTy));
2552 ReceiverClass =
2553 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2554 }
2555 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2556 } else {
2557 if (isCategoryImpl) {
2558 llvm::FunctionCallee classLookupFunction = nullptr;
2559 if (IsClassMessage) {
2560 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2561 IdTy, PtrTy, true), "objc_get_meta_class");
2562 } else {
2563 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2564 IdTy, PtrTy, true), "objc_get_class");
2565 }
2566 ReceiverClass = Builder.CreateCall(classLookupFunction,
2567 MakeConstantString(Class->getNameAsString()));
2568 } else {
2569 // Set up global aliases for the metaclass or class pointer if they do not
2570 // already exist. These will are forward-references which will be set to
2571 // pointers to the class and metaclass structure created for the runtime
2572 // load function. To send a message to super, we look up the value of the
2573 // super_class pointer from either the class or metaclass structure.
2574 if (IsClassMessage) {
2575 if (!MetaClassPtrAlias) {
2576 MetaClassPtrAlias = llvm::GlobalAlias::create(
2577 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2578 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2579 }
2580 ReceiverClass = MetaClassPtrAlias;
2581 } else {
2582 if (!ClassPtrAlias) {
2583 ClassPtrAlias = llvm::GlobalAlias::create(
2584 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2585 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2586 }
2587 ReceiverClass = ClassPtrAlias;
2588 }
2589 }
2590 // Cast the pointer to a simplified version of the class structure
2591 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2592 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2593 llvm::PointerType::getUnqual(CastTy));
2594 // Get the superclass pointer
2595 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2596 // Load the superclass pointer
2597 ReceiverClass =
2598 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2599 }
2600 // Construct the structure used to look up the IMP
2601 llvm::StructType *ObjCSuperTy =
2602 llvm::StructType::get(Receiver->getType(), IdTy);
2603
2604 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2605 CGF.getPointerAlign());
2606
2607 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2608 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2609
2610 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
2611
2612 // Get the IMP
2613 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2614 imp = EnforceType(Builder, imp, MSI.MessengerType);
2615
2616 llvm::Metadata *impMD[] = {
2617 llvm::MDString::get(VMContext, Sel.getAsString()),
2618 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2619 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2620 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2621 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2622
2623 CGCallee callee(CGCalleeInfo(), imp);
2624
2625 llvm::CallBase *call;
2626 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2627 call->setMetadata(msgSendMDKind, node);
2628 return msgRet;
2629}
2630
2631/// Generate code for a message send expression.
2632RValue
2633CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2634 ReturnValueSlot Return,
2635 QualType ResultType,
2636 Selector Sel,
2637 llvm::Value *Receiver,
2638 const CallArgList &CallArgs,
2639 const ObjCInterfaceDecl *Class,
2640 const ObjCMethodDecl *Method) {
2641 CGBuilderTy &Builder = CGF.Builder;
2642
2643 // Strip out message sends to retain / release in GC mode
2644 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2645 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2646 return RValue::get(EnforceType(Builder, Receiver,
2647 CGM.getTypes().ConvertType(ResultType)));
2648 }
2649 if (Sel == ReleaseSel) {
2650 return RValue::get(nullptr);
2651 }
2652 }
2653
2654 // If the return type is something that goes in an integer register, the
2655 // runtime will handle 0 returns. For other cases, we fill in the 0 value
2656 // ourselves.
2657 //
2658 // The language spec says the result of this kind of message send is
2659 // undefined, but lots of people seem to have forgotten to read that
2660 // paragraph and insist on sending messages to nil that have structure
2661 // returns. With GCC, this generates a random return value (whatever happens
2662 // to be on the stack / in those registers at the time) on most platforms,
2663 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
2664 // the stack.
2665 bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
2666 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
2667
2668 llvm::BasicBlock *startBB = nullptr;
2669 llvm::BasicBlock *messageBB = nullptr;
2670 llvm::BasicBlock *continueBB = nullptr;
2671
2672 if (!isPointerSizedReturn) {
2673 startBB = Builder.GetInsertBlock();
2674 messageBB = CGF.createBasicBlock("msgSend");
2675 continueBB = CGF.createBasicBlock("continue");
2676
2677 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2678 llvm::Constant::getNullValue(Receiver->getType()));
2679 Builder.CreateCondBr(isNil, continueBB, messageBB);
2680 CGF.EmitBlock(messageBB);
2681 }
2682
2683 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2684 llvm::Value *cmd;
2685 if (Method)
2686 cmd = GetSelector(CGF, Method);
2687 else
2688 cmd = GetSelector(CGF, Sel);
2689 cmd = EnforceType(Builder, cmd, SelectorTy);
2690 Receiver = EnforceType(Builder, Receiver, IdTy);
2691
2692 llvm::Metadata *impMD[] = {
2693 llvm::MDString::get(VMContext, Sel.getAsString()),
2694 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2695 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2696 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2697 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2698
2699 CallArgList ActualArgs;
2700 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2701 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2702 ActualArgs.addFrom(CallArgs);
2703
2704 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2705
2706 // Get the IMP to call
2707 llvm::Value *imp;
2708
2709 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
2710 // functions. These are not supported on all platforms (or all runtimes on a
2711 // given platform), so we
2712 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2713 case CodeGenOptions::Legacy:
2714 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2715 break;
2716 case CodeGenOptions::Mixed:
2717 case CodeGenOptions::NonLegacy:
2718 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2719 imp =
2720 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2721 "objc_msgSend_fpret")
2722 .getCallee();
2723 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2724 // The actual types here don't matter - we're going to bitcast the
2725 // function anyway
2726 imp =
2727 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2728 "objc_msgSend_stret")
2729 .getCallee();
2730 } else {
2731 imp = CGM.CreateRuntimeFunction(
2732 llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend")
2733 .getCallee();
2734 }
2735 }
2736
2737 // Reset the receiver in case the lookup modified it
2738 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2739
2740 imp = EnforceType(Builder, imp, MSI.MessengerType);
2741
2742 llvm::CallBase *call;
2743 CGCallee callee(CGCalleeInfo(), imp);
2744 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2745 call->setMetadata(msgSendMDKind, node);
2746
2747
2748 if (!isPointerSizedReturn) {
2749 messageBB = CGF.Builder.GetInsertBlock();
2750 CGF.Builder.CreateBr(continueBB);
2751 CGF.EmitBlock(continueBB);
2752 if (msgRet.isScalar()) {
2753 llvm::Value *v = msgRet.getScalarVal();
2754 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2755 phi->addIncoming(v, messageBB);
2756 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
2757 msgRet = RValue::get(phi);
2758 } else if (msgRet.isAggregate()) {
2759 Address v = msgRet.getAggregateAddress();
2760 llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
2761 llvm::Type *RetTy = v.getElementType();
2762 Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
2763 CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
2764 phi->addIncoming(v.getPointer(), messageBB);
2765 phi->addIncoming(NullVal.getPointer(), startBB);
2766 msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
2767 } else /* isComplex() */ {
2768 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2769 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2770 phi->addIncoming(v.first, messageBB);
2771 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2772 startBB);
2773 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2774 phi2->addIncoming(v.second, messageBB);
2775 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2776 startBB);
2777 msgRet = RValue::getComplex(phi, phi2);
2778 }
2779 }
2780 return msgRet;
2781}
2782
2783/// Generates a MethodList. Used in construction of a objc_class and
2784/// objc_category structures.
2785llvm::Constant *CGObjCGNU::
2786GenerateMethodList(StringRef ClassName,
2787 StringRef CategoryName,
2788 ArrayRef<const ObjCMethodDecl*> Methods,
2789 bool isClassMethodList) {
2790 if (Methods.empty())
2791 return NULLPtr;
2792
2793 ConstantInitBuilder Builder(CGM);
2794
2795 auto MethodList = Builder.beginStruct();
2796 MethodList.addNullPointer(CGM.Int8PtrTy);
2797 MethodList.addInt(Int32Ty, Methods.size());
2798
2799 // Get the method structure type.
2800 llvm::StructType *ObjCMethodTy =
2801 llvm::StructType::get(CGM.getLLVMContext(), {
2802 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2803 PtrToInt8Ty, // Method types
2804 IMPTy // Method pointer
2805 });
2806 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2807 if (isV2ABI) {
2808 // size_t size;
2809 llvm::DataLayout td(&TheModule);
2810 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
2811 CGM.getContext().getCharWidth());
2812 ObjCMethodTy =
2813 llvm::StructType::get(CGM.getLLVMContext(), {
2814 IMPTy, // Method pointer
2815 PtrToInt8Ty, // Selector
2816 PtrToInt8Ty // Extended type encoding
2817 });
2818 } else {
2819 ObjCMethodTy =
2820 llvm::StructType::get(CGM.getLLVMContext(), {
2821 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2822 PtrToInt8Ty, // Method types
2823 IMPTy // Method pointer
2824 });
2825 }
2826 auto MethodArray = MethodList.beginArray();
2827 ASTContext &Context = CGM.getContext();
2828 for (const auto *OMD : Methods) {
2829 llvm::Constant *FnPtr =
2830 TheModule.getFunction(getSymbolNameForMethod(OMD));
2831 assert(FnPtr && "Can't generate metadata for method that doesn't exist")((void)0);
2832 auto Method = MethodArray.beginStruct(ObjCMethodTy);
2833 if (isV2ABI) {
2834 Method.addBitCast(FnPtr, IMPTy);
2835 Method.add(GetConstantSelector(OMD->getSelector(),
2836 Context.getObjCEncodingForMethodDecl(OMD)));
2837 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
2838 } else {
2839 Method.add(MakeConstantString(OMD->getSelector().getAsString()));
2840 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
2841 Method.addBitCast(FnPtr, IMPTy);
2842 }
2843 Method.finishAndAddTo(MethodArray);
2844 }
2845 MethodArray.finishAndAddTo(MethodList);
2846
2847 // Create an instance of the structure
2848 return MethodList.finishAndCreateGlobal(".objc_method_list",
2849 CGM.getPointerAlign());
2850}
2851
2852/// Generates an IvarList. Used in construction of a objc_class.
2853llvm::Constant *CGObjCGNU::
2854GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
2855 ArrayRef<llvm::Constant *> IvarTypes,
2856 ArrayRef<llvm::Constant *> IvarOffsets,
2857 ArrayRef<llvm::Constant *> IvarAlign,
2858 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
2859 if (IvarNames.empty())
2860 return NULLPtr;
2861
2862 ConstantInitBuilder Builder(CGM);
2863
2864 // Structure containing array count followed by array.
2865 auto IvarList = Builder.beginStruct();
2866 IvarList.addInt(IntTy, (int)IvarNames.size());
2867
2868 // Get the ivar structure type.
2869 llvm::StructType *ObjCIvarTy =
2870 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
2871
2872 // Array of ivar structures.
2873 auto Ivars = IvarList.beginArray(ObjCIvarTy);
2874 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
2875 auto Ivar = Ivars.beginStruct(ObjCIvarTy);
2876 Ivar.add(IvarNames[i]);
2877 Ivar.add(IvarTypes[i]);
2878 Ivar.add(IvarOffsets[i]);
2879 Ivar.finishAndAddTo(Ivars);
2880 }
2881 Ivars.finishAndAddTo(IvarList);
2882
2883 // Create an instance of the structure
2884 return IvarList.finishAndCreateGlobal(".objc_ivar_list",
2885 CGM.getPointerAlign());
2886}
2887
2888/// Generate a class structure
2889llvm::Constant *CGObjCGNU::GenerateClassStructure(
2890 llvm::Constant *MetaClass,
2891 llvm::Constant *SuperClass,
2892 unsigned info,
2893 const char *Name,
2894 llvm::Constant *Version,
2895 llvm::Constant *InstanceSize,
2896 llvm::Constant *IVars,
2897 llvm::Constant *Methods,
2898 llvm::Constant *Protocols,
2899 llvm::Constant *IvarOffsets,
2900 llvm::Constant *Properties,
2901 llvm::Constant *StrongIvarBitmap,
2902 llvm::Constant *WeakIvarBitmap,
2903 bool isMeta) {
2904 // Set up the class structure
2905 // Note: Several of these are char*s when they should be ids. This is
2906 // because the runtime performs this translation on load.
2907 //
2908 // Fields marked New ABI are part of the GNUstep runtime. We emit them
2909 // anyway; the classes will still work with the GNU runtime, they will just
2910 // be ignored.
2911 llvm::StructType *ClassTy = llvm::StructType::get(
2912 PtrToInt8Ty, // isa
2913 PtrToInt8Ty, // super_class
2914 PtrToInt8Ty, // name
2915 LongTy, // version
2916 LongTy, // info
2917 LongTy, // instance_size
2918 IVars->getType(), // ivars
2919 Methods->getType(), // methods
2920 // These are all filled in by the runtime, so we pretend
2921 PtrTy, // dtable
2922 PtrTy, // subclass_list
2923 PtrTy, // sibling_class
2924 PtrTy, // protocols
2925 PtrTy, // gc_object_type
2926 // New ABI:
2927 LongTy, // abi_version
2928 IvarOffsets->getType(), // ivar_offsets
2929 Properties->getType(), // properties
2930 IntPtrTy, // strong_pointers
2931 IntPtrTy // weak_pointers
2932 );
2933
2934 ConstantInitBuilder Builder(CGM);
2935 auto Elements = Builder.beginStruct(ClassTy);
2936
2937 // Fill in the structure
2938
2939 // isa
2940 Elements.addBitCast(MetaClass, PtrToInt8Ty);
2941 // super_class
2942 Elements.add(SuperClass);
2943 // name
2944 Elements.add(MakeConstantString(Name, ".class_name"));
2945 // version
2946 Elements.addInt(LongTy, 0);
2947 // info
2948 Elements.addInt(LongTy, info);
2949 // instance_size
2950 if (isMeta) {
2951 llvm::DataLayout td(&TheModule);
2952 Elements.addInt(LongTy,
2953 td.getTypeSizeInBits(ClassTy) /
2954 CGM.getContext().getCharWidth());
2955 } else
2956 Elements.add(InstanceSize);
2957 // ivars
2958 Elements.add(IVars);
2959 // methods
2960 Elements.add(Methods);
2961 // These are all filled in by the runtime, so we pretend
2962 // dtable
2963 Elements.add(NULLPtr);
2964 // subclass_list
2965 Elements.add(NULLPtr);
2966 // sibling_class
2967 Elements.add(NULLPtr);
2968 // protocols
2969 Elements.addBitCast(Protocols, PtrTy);
2970 // gc_object_type
2971 Elements.add(NULLPtr);
2972 // abi_version
2973 Elements.addInt(LongTy, ClassABIVersion);
2974 // ivar_offsets
2975 Elements.add(IvarOffsets);
2976 // properties
2977 Elements.add(Properties);
2978 // strong_pointers
2979 Elements.add(StrongIvarBitmap);
2980 // weak_pointers
2981 Elements.add(WeakIvarBitmap);
2982 // Create an instance of the structure
2983 // This is now an externally visible symbol, so that we can speed up class
2984 // messages in the next ABI. We may already have some weak references to
2985 // this, so check and fix them properly.
2986 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
2987 std::string(Name));
2988 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
2989 llvm::Constant *Class =
2990 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
2991 llvm::GlobalValue::ExternalLinkage);
2992 if (ClassRef) {
2993 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
2994 ClassRef->getType()));
2995 ClassRef->removeFromParent();
2996 Class->setName(ClassSym);
2997 }
2998 return Class;
2999}
3000
3001llvm::Constant *CGObjCGNU::
3002GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3003 // Get the method structure type.
3004 llvm::StructType *ObjCMethodDescTy =
3005 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3006 ASTContext &Context = CGM.getContext();
3007 ConstantInitBuilder Builder(CGM);
3008 auto MethodList = Builder.beginStruct();
3009 MethodList.addInt(IntTy, Methods.size());
3010 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3011 for (auto *M : Methods) {
3012 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3013 Method.add(MakeConstantString(M->getSelector().getAsString()));
3014 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3015 Method.finishAndAddTo(MethodArray);
3016 }
3017 MethodArray.finishAndAddTo(MethodList);
3018 return MethodList.finishAndCreateGlobal(".objc_method_list",
3019 CGM.getPointerAlign());
3020}
3021
3022// Create the protocol list structure used in classes, categories and so on
3023llvm::Constant *
3024CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3025
3026 ConstantInitBuilder Builder(CGM);
3027 auto ProtocolList = Builder.beginStruct();
3028 ProtocolList.add(NULLPtr);
3029 ProtocolList.addInt(LongTy, Protocols.size());
3030
3031 auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3032 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3033 iter != endIter ; iter++) {
3034 llvm::Constant *protocol = nullptr;
3035 llvm::StringMap<llvm::Constant*>::iterator value =
3036 ExistingProtocols.find(*iter);
3037 if (value == ExistingProtocols.end()) {
3038 protocol = GenerateEmptyProtocol(*iter);
3039 } else {
3040 protocol = value->getValue();
3041 }
3042 Elements.addBitCast(protocol, PtrToInt8Ty);
3043 }
3044 Elements.finishAndAddTo(ProtocolList);
3045 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3046 CGM.getPointerAlign());
3047}
3048
3049llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3050 const ObjCProtocolDecl *PD) {
3051 auto protocol = GenerateProtocolRef(PD);
3052 llvm::Type *T =
3053 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
3054 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3055}
3056
3057llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3058 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3059 if (!protocol)
3060 GenerateProtocol(PD);
3061 assert(protocol && "Unknown protocol")((void)0);
3062 return protocol;
3063}
3064
3065llvm::Constant *
3066CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3067 llvm::Constant *ProtocolList = GenerateProtocolList({});
3068 llvm::Constant *MethodList = GenerateProtocolMethodList({});
3069 MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty);
3070 // Protocols are objects containing lists of the methods implemented and
3071 // protocols adopted.
3072 ConstantInitBuilder Builder(CGM);
3073 auto Elements = Builder.beginStruct();
3074
3075 // The isa pointer must be set to a magic number so the runtime knows it's
3076 // the correct layout.
3077 Elements.add(llvm::ConstantExpr::getIntToPtr(
3078 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3079
3080 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3081 Elements.add(ProtocolList); /* .protocol_list */
3082 Elements.add(MethodList); /* .instance_methods */
3083 Elements.add(MethodList); /* .class_methods */
3084 Elements.add(MethodList); /* .optional_instance_methods */
3085 Elements.add(MethodList); /* .optional_class_methods */
3086 Elements.add(NULLPtr); /* .properties */
3087 Elements.add(NULLPtr); /* .optional_properties */
3088 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3089 CGM.getPointerAlign());
3090}
3091
3092void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3093 if (PD->isNonRuntimeProtocol())
3094 return;
3095
3096 std::string ProtocolName = PD->getNameAsString();
3097
3098 // Use the protocol definition, if there is one.
3099 if (const ObjCProtocolDecl *Def = PD->getDefinition())
3100 PD = Def;
3101
3102 SmallVector<std::string, 16> Protocols;
3103 for (const auto *PI : PD->protocols())
3104 Protocols.push_back(PI->getNameAsString());
3105 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3106 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3107 for (const auto *I : PD->instance_methods())
3108 if (I->isOptional())
3109 OptionalInstanceMethods.push_back(I);
3110 else
3111 InstanceMethods.push_back(I);
3112 // Collect information about class methods:
3113 SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3114 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3115 for (const auto *I : PD->class_methods())
3116 if (I->isOptional())
3117 OptionalClassMethods.push_back(I);
3118 else
3119 ClassMethods.push_back(I);
3120
3121 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3122 llvm::Constant *InstanceMethodList =
3123 GenerateProtocolMethodList(InstanceMethods);
3124 llvm::Constant *ClassMethodList =
3125 GenerateProtocolMethodList(ClassMethods);
3126 llvm::Constant *OptionalInstanceMethodList =
3127 GenerateProtocolMethodList(OptionalInstanceMethods);
3128 llvm::Constant *OptionalClassMethodList =
3129 GenerateProtocolMethodList(OptionalClassMethods);
3130
3131 // Property metadata: name, attributes, isSynthesized, setter name, setter
3132 // types, getter name, getter types.
3133 // The isSynthesized value is always set to 0 in a protocol. It exists to
3134 // simplify the runtime library by allowing it to use the same data
3135 // structures for protocol metadata everywhere.
3136
3137 llvm::Constant *PropertyList =
3138 GeneratePropertyList(nullptr, PD, false, false);
3139 llvm::Constant *OptionalPropertyList =
3140 GeneratePropertyList(nullptr, PD, false, true);
3141
3142 // Protocols are objects containing lists of the methods implemented and
3143 // protocols adopted.
3144 // The isa pointer must be set to a magic number so the runtime knows it's
3145 // the correct layout.
3146 ConstantInitBuilder Builder(CGM);
3147 auto Elements = Builder.beginStruct();
3148 Elements.add(
3149 llvm::ConstantExpr::getIntToPtr(
3150 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3151 Elements.add(MakeConstantString(ProtocolName));
3152 Elements.add(ProtocolList);
3153 Elements.add(InstanceMethodList);
3154 Elements.add(ClassMethodList);
3155 Elements.add(OptionalInstanceMethodList);
3156 Elements.add(OptionalClassMethodList);
3157 Elements.add(PropertyList);
3158 Elements.add(OptionalPropertyList);
3159 ExistingProtocols[ProtocolName] =
3160 llvm::ConstantExpr::getBitCast(
3161 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()),
3162 IdTy);
3163}
3164void CGObjCGNU::GenerateProtocolHolderCategory() {
3165 // Collect information about instance methods
3166
3167 ConstantInitBuilder Builder(CGM);
3168 auto Elements = Builder.beginStruct();
3169
3170 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3171 const std::string CategoryName = "AnotherHack";
3172 Elements.add(MakeConstantString(CategoryName));
3173 Elements.add(MakeConstantString(ClassName));
3174 // Instance method list
3175 Elements.addBitCast(GenerateMethodList(
3176 ClassName, CategoryName, {}, false), PtrTy);
3177 // Class method list
3178 Elements.addBitCast(GenerateMethodList(
3179 ClassName, CategoryName, {}, true), PtrTy);
3180
3181 // Protocol list
3182 ConstantInitBuilder ProtocolListBuilder(CGM);
3183 auto ProtocolList = ProtocolListBuilder.beginStruct();
3184 ProtocolList.add(NULLPtr);
3185 ProtocolList.addInt(LongTy, ExistingProtocols.size());
3186 auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3187 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3188 iter != endIter ; iter++) {
3189 ProtocolElements.addBitCast(iter->getValue(), PtrTy);
3190 }
3191 ProtocolElements.finishAndAddTo(ProtocolList);
3192 Elements.addBitCast(
3193 ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3194 CGM.getPointerAlign()),
3195 PtrTy);
3196 Categories.push_back(llvm::ConstantExpr::getBitCast(
3197 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()),
3198 PtrTy));
3199}
3200
3201/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3202/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3203/// bits set to their values, LSB first, while larger ones are stored in a
3204/// structure of this / form:
3205///
3206/// struct { int32_t length; int32_t values[length]; };
3207///
3208/// The values in the array are stored in host-endian format, with the least
3209/// significant bit being assumed to come first in the bitfield. Therefore, a
3210/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3211/// bitfield / with the 63rd bit set will be 1<<64.
3212llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3213 int bitCount = bits.size();
3214 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3215 if (bitCount < ptrBits) {
3216 uint64_t val = 1;
3217 for (int i=0 ; i<bitCount ; ++i) {
3218 if (bits[i]) val |= 1ULL<<(i+1);
3219 }
3220 return llvm::ConstantInt::get(IntPtrTy, val);
3221 }
3222 SmallVector<llvm::Constant *, 8> values;
3223 int v=0;
3224 while (v < bitCount) {
3225 int32_t word = 0;
3226 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
3227 if (bits[v]) word |= 1<<i;
3228 v++;
3229 }
3230 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3231 }
3232
3233 ConstantInitBuilder builder(CGM);
3234 auto fields = builder.beginStruct();
3235 fields.addInt(Int32Ty, values.size());
3236 auto array = fields.beginArray();
3237 for (auto v : values) array.add(v);
3238 array.finishAndAddTo(fields);
3239
3240 llvm::Constant *GS =
3241 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3242 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3243 return ptr;
3244}
3245
3246llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3247 ObjCCategoryDecl *OCD) {
3248 const auto &RefPro = OCD->getReferencedProtocols();
3249 const auto RuntimeProtos =
3250 GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3251 SmallVector<std::string, 16> Protocols;
3252 for (const auto *PD : RuntimeProtos)
3253 Protocols.push_back(PD->getNameAsString());
3254 return GenerateProtocolList(Protocols);
3255}
3256
3257void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3258 const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3259 std::string ClassName = Class->getNameAsString();
3260 std::string CategoryName = OCD->getNameAsString();
3261
3262 // Collect the names of referenced protocols
3263 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3264
3265 ConstantInitBuilder Builder(CGM);
3266 auto Elements = Builder.beginStruct();
3267 Elements.add(MakeConstantString(CategoryName));
3268 Elements.add(MakeConstantString(ClassName));
3269 // Instance method list
3270 SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3271 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3272 OCD->instmeth_end());
3273 Elements.addBitCast(
3274 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false),
3275 PtrTy);
3276 // Class method list
3277
3278 SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3279 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3280 OCD->classmeth_end());
3281 Elements.addBitCast(
3282 GenerateMethodList(ClassName, CategoryName, ClassMethods, true),
3283 PtrTy);
3284 // Protocol list
3285 Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy);
3286 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3287 const ObjCCategoryDecl *Category =
3288 Class->FindCategoryDeclaration(OCD->getIdentifier());
3289 if (Category) {
3290 // Instance properties
3291 Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy);
3292 // Class properties
3293 Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy);
3294 } else {
3295 Elements.addNullPointer(PtrTy);
3296 Elements.addNullPointer(PtrTy);
3297 }
3298 }
3299
3300 Categories.push_back(llvm::ConstantExpr::getBitCast(
3301 Elements.finishAndCreateGlobal(
3302 std::string(".objc_category_")+ClassName+CategoryName,
3303 CGM.getPointerAlign()),
3304 PtrTy));
3305}
3306
3307llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3308 const ObjCContainerDecl *OCD,
3309 bool isClassProperty,
3310 bool protocolOptionalProperties) {
3311
3312 SmallVector<const ObjCPropertyDecl *, 16> Properties;
3313 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3314 bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3315 ASTContext &Context = CGM.getContext();
3316
3317 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3318 = [&](const ObjCProtocolDecl *Proto) {
3319 for (const auto *P : Proto->protocols())
3320 collectProtocolProperties(P);
3321 for (const auto *PD : Proto->properties()) {
3322 if (isClassProperty != PD->isClassProperty())
3323 continue;
3324 // Skip any properties that are declared in protocols that this class
3325 // conforms to but are not actually implemented by this class.
3326 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3327 continue;
3328 if (!PropertySet.insert(PD->getIdentifier()).second)
3329 continue;
3330 Properties.push_back(PD);
3331 }
3332 };
3333
3334 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3335 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3336 for (auto *PD : ClassExt->properties()) {
3337 if (isClassProperty != PD->isClassProperty())
3338 continue;
3339 PropertySet.insert(PD->getIdentifier());
3340 Properties.push_back(PD);
3341 }
3342
3343 for (const auto *PD : OCD->properties()) {
3344 if (isClassProperty != PD->isClassProperty())
3345 continue;
3346 // If we're generating a list for a protocol, skip optional / required ones
3347 // when generating the other list.
3348 if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3349 continue;
3350 // Don't emit duplicate metadata for properties that were already in a
3351 // class extension.
3352 if (!PropertySet.insert(PD->getIdentifier()).second)
3353 continue;
3354
3355 Properties.push_back(PD);
3356 }
3357
3358 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3359 for (const auto *P : OID->all_referenced_protocols())
3360 collectProtocolProperties(P);
3361 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3362 for (const auto *P : CD->protocols())
3363 collectProtocolProperties(P);
3364
3365 auto numProperties = Properties.size();
3366
3367 if (numProperties == 0)
3368 return NULLPtr;
3369
3370 ConstantInitBuilder builder(CGM);
3371 auto propertyList = builder.beginStruct();
3372 auto properties = PushPropertyListHeader(propertyList, numProperties);
3373
3374 // Add all of the property methods need adding to the method list and to the
3375 // property metadata list.
3376 for (auto *property : Properties) {
3377 bool isSynthesized = false;
3378 bool isDynamic = false;
3379 if (!isProtocol) {
3380 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3381 if (propertyImpl) {
3382 isSynthesized = (propertyImpl->getPropertyImplementation() ==
3383 ObjCPropertyImplDecl::Synthesize);
3384 isDynamic = (propertyImpl->getPropertyImplementation() ==
3385 ObjCPropertyImplDecl::Dynamic);
3386 }
3387 }
3388 PushProperty(properties, property, Container, isSynthesized, isDynamic);
3389 }
3390 properties.finishAndAddTo(propertyList);
3391
3392 return propertyList.finishAndCreateGlobal(".objc_property_list",
3393 CGM.getPointerAlign());
3394}
3395
3396void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3397 // Get the class declaration for which the alias is specified.
3398 ObjCInterfaceDecl *ClassDecl =
3399 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3400 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3401 OAD->getNameAsString());
3402}
3403
3404void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3405 ASTContext &Context = CGM.getContext();
3406
3407 // Get the superclass name.
3408 const ObjCInterfaceDecl * SuperClassDecl =
3409 OID->getClassInterface()->getSuperClass();
3410 std::string SuperClassName;
3411 if (SuperClassDecl) {
3412 SuperClassName = SuperClassDecl->getNameAsString();
3413 EmitClassRef(SuperClassName);
3414 }
3415
3416 // Get the class name
3417 ObjCInterfaceDecl *ClassDecl =
3418 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3419 std::string ClassName = ClassDecl->getNameAsString();
3420
3421 // Emit the symbol that is used to generate linker errors if this class is
3422 // referenced in other modules but not declared.
3423 std::string classSymbolName = "__objc_class_name_" + ClassName;
3424 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3425 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3426 } else {
3427 new llvm::GlobalVariable(TheModule, LongTy, false,
3428 llvm::GlobalValue::ExternalLinkage,
3429 llvm::ConstantInt::get(LongTy, 0),
3430 classSymbolName);
3431 }
3432
3433 // Get the size of instances.
3434 int instanceSize =
3435 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3436
3437 // Collect information about instance variables.
3438 SmallVector<llvm::Constant*, 16> IvarNames;
3439 SmallVector<llvm::Constant*, 16> IvarTypes;
3440 SmallVector<llvm::Constant*, 16> IvarOffsets;
3441 SmallVector<llvm::Constant*, 16> IvarAligns;
3442 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3443
3444 ConstantInitBuilder IvarOffsetBuilder(CGM);
3445 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3446 SmallVector<bool, 16> WeakIvars;
3447 SmallVector<bool, 16> StrongIvars;
3448
3449 int superInstanceSize = !SuperClassDecl ? 0 :
3450 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3451 // For non-fragile ivars, set the instance size to 0 - {the size of just this
3452 // class}. The runtime will then set this to the correct value on load.
3453 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3454 instanceSize = 0 - (instanceSize - superInstanceSize);
3455 }
3456
3457 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3458 IVD = IVD->getNextIvar()) {
3459 // Store the name
3460 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3461 // Get the type encoding for this ivar
3462 std::string TypeStr;
3463 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3464 IvarTypes.push_back(MakeConstantString(TypeStr));
3465 IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3466 Context.getTypeSize(IVD->getType())));
3467 // Get the offset
3468 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3469 uint64_t Offset = BaseOffset;
3470 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3471 Offset = BaseOffset - superInstanceSize;
3472 }
3473 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3474 // Create the direct offset value
3475 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3476 IVD->getNameAsString();
3477
3478 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3479 if (OffsetVar) {
3480 OffsetVar->setInitializer(OffsetValue);
3481 // If this is the real definition, change its linkage type so that
3482 // different modules will use this one, rather than their private
3483 // copy.
3484 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3485 } else
3486 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3487 false, llvm::GlobalValue::ExternalLinkage,
3488 OffsetValue, OffsetName);
3489 IvarOffsets.push_back(OffsetValue);
3490 IvarOffsetValues.add(OffsetVar);
3491 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3492 IvarOwnership.push_back(lt);
3493 switch (lt) {
3494 case Qualifiers::OCL_Strong:
3495 StrongIvars.push_back(true);
3496 WeakIvars.push_back(false);
3497 break;
3498 case Qualifiers::OCL_Weak:
3499 StrongIvars.push_back(false);
3500 WeakIvars.push_back(true);
3501 break;
3502 default:
3503 StrongIvars.push_back(false);
3504 WeakIvars.push_back(false);
3505 }
3506 }
3507 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3508 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3509 llvm::GlobalVariable *IvarOffsetArray =
3510 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3511 CGM.getPointerAlign());
3512
3513 // Collect information about instance methods
3514 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3515 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3516 OID->instmeth_end());
3517
3518 SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3519 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3520 OID->classmeth_end());
3521
3522 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3523
3524 // Collect the names of referenced protocols
3525 auto RefProtocols = ClassDecl->protocols();
3526 auto RuntimeProtocols =
3527 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3528 SmallVector<std::string, 16> Protocols;
3529 for (const auto *I : RuntimeProtocols)
3530 Protocols.push_back(I->getNameAsString());
3531
3532 // Get the superclass pointer.
3533 llvm::Constant *SuperClass;
3534 if (!SuperClassName.empty()) {
3535 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3536 } else {
3537 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3538 }
3539 // Empty vector used to construct empty method lists
3540 SmallVector<llvm::Constant*, 1> empty;
3541 // Generate the method and instance variable lists
3542 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3543 InstanceMethods, false);
3544 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3545 ClassMethods, true);
3546 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3547 IvarOffsets, IvarAligns, IvarOwnership);
3548 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3549 // we emit a symbol containing the offset for each ivar in the class. This
3550 // allows code compiled for the non-Fragile ABI to inherit from code compiled
3551 // for the legacy ABI, without causing problems. The converse is also
3552 // possible, but causes all ivar accesses to be fragile.
3553
3554 // Offset pointer for getting at the correct field in the ivar list when
3555 // setting up the alias. These are: The base address for the global, the
3556 // ivar array (second field), the ivar in this list (set for each ivar), and
3557 // the offset (third field in ivar structure)
3558 llvm::Type *IndexTy = Int32Ty;
3559 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3560 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3561 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3562
3563 unsigned ivarIndex = 0;
3564 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3565 IVD = IVD->getNextIvar()) {
3566 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3567 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3568 // Get the correct ivar field
3569 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3570 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3571 offsetPointerIndexes);
3572 // Get the existing variable, if one exists.
3573 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3574 if (offset) {
3575 offset->setInitializer(offsetValue);
3576 // If this is the real definition, change its linkage type so that
3577 // different modules will use this one, rather than their private
3578 // copy.
3579 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3580 } else
3581 // Add a new alias if there isn't one already.
3582 new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3583 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3584 ++ivarIndex;
3585 }
3586 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3587
3588 //Generate metaclass for class methods
3589 llvm::Constant *MetaClassStruct = GenerateClassStructure(
3590 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3591 NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3592 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3593 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3594 OID->getClassInterface());
3595
3596 // Generate the class structure
3597 llvm::Constant *ClassStruct = GenerateClassStructure(
3598 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3599 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3600 GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3601 StrongIvarBitmap, WeakIvarBitmap);
3602 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3603 OID->getClassInterface());
3604
3605 // Resolve the class aliases, if they exist.
3606 if (ClassPtrAlias) {
3607 ClassPtrAlias->replaceAllUsesWith(
3608 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
3609 ClassPtrAlias->eraseFromParent();
3610 ClassPtrAlias = nullptr;
3611 }
3612 if (MetaClassPtrAlias) {
3613 MetaClassPtrAlias->replaceAllUsesWith(
3614 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
3615 MetaClassPtrAlias->eraseFromParent();
3616 MetaClassPtrAlias = nullptr;
3617 }
3618
3619 // Add class structure to list to be added to the symtab later
3620 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
3621 Classes.push_back(ClassStruct);
3622}
3623
3624llvm::Function *CGObjCGNU::ModuleInitFunction() {
3625 // Only emit an ObjC load function if no Objective-C stuff has been called
3626 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3627 ExistingProtocols.empty() && SelectorTable.empty())
3628 return nullptr;
3629
3630 // Add all referenced protocols to a category.
3631 GenerateProtocolHolderCategory();
3632
3633 llvm::StructType *selStructTy =
3634 dyn_cast<llvm::StructType>(SelectorTy->getElementType());
3635 llvm::Type *selStructPtrTy = SelectorTy;
3636 if (!selStructTy) {
3637 selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3638 { PtrToInt8Ty, PtrToInt8Ty });
3639 selStructPtrTy = llvm::PointerType::getUnqual(selStructTy);
3640 }
3641
3642 // Generate statics list:
3643 llvm::Constant *statics = NULLPtr;
3644 if (!ConstantStrings.empty()) {
3645 llvm::GlobalVariable *fileStatics = [&] {
3646 ConstantInitBuilder builder(CGM);
3647 auto staticsStruct = builder.beginStruct();
3648
3649 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3650 if (stringClass.empty()) stringClass = "NXConstantString";
3651 staticsStruct.add(MakeConstantString(stringClass,
3652 ".objc_static_class_name"));
3653
3654 auto array = staticsStruct.beginArray();
3655 array.addAll(ConstantStrings);
3656 array.add(NULLPtr);
3657 array.finishAndAddTo(staticsStruct);
3658
3659 return staticsStruct.finishAndCreateGlobal(".objc_statics",
3660 CGM.getPointerAlign());
3661 }();
3662
3663 ConstantInitBuilder builder(CGM);
3664 auto allStaticsArray = builder.beginArray(fileStatics->getType());
3665 allStaticsArray.add(fileStatics);
3666 allStaticsArray.addNullPointer(fileStatics->getType());
3667
3668 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3669 CGM.getPointerAlign());
3670 statics = llvm::ConstantExpr::getBitCast(statics, PtrTy);
3671 }
3672
3673 // Array of classes, categories, and constant objects.
3674
3675 SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3676 unsigned selectorCount;
3677
3678 // Pointer to an array of selectors used in this module.
3679 llvm::GlobalVariable *selectorList = [&] {
3680 ConstantInitBuilder builder(CGM);
3681 auto selectors = builder.beginArray(selStructTy);
3682 auto &table = SelectorTable; // MSVC workaround
3683 std::vector<Selector> allSelectors;
3684 for (auto &entry : table)
3685 allSelectors.push_back(entry.first);
3686 llvm::sort(allSelectors);
3687
3688 for (auto &untypedSel : allSelectors) {
3689 std::string selNameStr = untypedSel.getAsString();
3690 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3691
3692 for (TypedSelector &sel : table[untypedSel]) {
3693 llvm::Constant *selectorTypeEncoding = NULLPtr;
3694 if (!sel.first.empty())
3695 selectorTypeEncoding =
3696 MakeConstantString(sel.first, ".objc_sel_types");
3697
3698 auto selStruct = selectors.beginStruct(selStructTy);
3699 selStruct.add(selName);
3700 selStruct.add(selectorTypeEncoding);
3701 selStruct.finishAndAddTo(selectors);
3702
3703 // Store the selector alias for later replacement
3704 selectorAliases.push_back(sel.second);
3705 }
3706 }
3707
3708 // Remember the number of entries in the selector table.
3709 selectorCount = selectors.size();
3710
3711 // NULL-terminate the selector list. This should not actually be required,
3712 // because the selector list has a length field. Unfortunately, the GCC
3713 // runtime decides to ignore the length field and expects a NULL terminator,
3714 // and GCC cooperates with this by always setting the length to 0.
3715 auto selStruct = selectors.beginStruct(selStructTy);
3716 selStruct.add(NULLPtr);
3717 selStruct.add(NULLPtr);
3718 selStruct.finishAndAddTo(selectors);
3719
3720 return selectors.finishAndCreateGlobal(".objc_selector_list",
3721 CGM.getPointerAlign());
3722 }();
3723
3724 // Now that all of the static selectors exist, create pointers to them.
3725 for (unsigned i = 0; i < selectorCount; ++i) {
3726 llvm::Constant *idxs[] = {
3727 Zeros[0],
3728 llvm::ConstantInt::get(Int32Ty, i)
3729 };
3730 // FIXME: We're generating redundant loads and stores here!
3731 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3732 selectorList->getValueType(), selectorList, idxs);
3733 // If selectors are defined as an opaque type, cast the pointer to this
3734 // type.
3735 selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy);
3736 selectorAliases[i]->replaceAllUsesWith(selPtr);
3737 selectorAliases[i]->eraseFromParent();
3738 }
3739
3740 llvm::GlobalVariable *symtab = [&] {
3741 ConstantInitBuilder builder(CGM);
3742 auto symtab = builder.beginStruct();
3743
3744 // Number of static selectors
3745 symtab.addInt(LongTy, selectorCount);
3746
3747 symtab.addBitCast(selectorList, selStructPtrTy);
3748
3749 // Number of classes defined.
3750 symtab.addInt(CGM.Int16Ty, Classes.size());
3751 // Number of categories defined
3752 symtab.addInt(CGM.Int16Ty, Categories.size());
3753
3754 // Create an array of classes, then categories, then static object instances
3755 auto classList = symtab.beginArray(PtrToInt8Ty);
3756 classList.addAll(Classes);
3757 classList.addAll(Categories);
3758 // NULL-terminated list of static object instances (mainly constant strings)
3759 classList.add(statics);
3760 classList.add(NULLPtr);
3761 classList.finishAndAddTo(symtab);
3762
3763 // Construct the symbol table.
3764 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3765 }();
3766
3767 // The symbol table is contained in a module which has some version-checking
3768 // constants
3769 llvm::Constant *module = [&] {
3770 llvm::Type *moduleEltTys[] = {
3771 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3772 };
3773 llvm::StructType *moduleTy =
3774 llvm::StructType::get(CGM.getLLVMContext(),
3775 makeArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3776
3777 ConstantInitBuilder builder(CGM);
3778 auto module = builder.beginStruct(moduleTy);
3779 // Runtime version, used for ABI compatibility checking.
3780 module.addInt(LongTy, RuntimeVersion);
3781 // sizeof(ModuleTy)
3782 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3783
3784 // The path to the source file where this module was declared
3785 SourceManager &SM = CGM.getContext().getSourceManager();
3786 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
3787 std::string path =
3788 (Twine(mainFile->getDir()->getName()) + "/" + mainFile->getName()).str();
3789 module.add(MakeConstantString(path, ".objc_source_file_name"));
3790 module.add(symtab);
3791
3792 if (RuntimeVersion >= 10) {
3793 switch (CGM.getLangOpts().getGC()) {
3794 case LangOptions::GCOnly:
3795 module.addInt(IntTy, 2);
3796 break;
3797 case LangOptions::NonGC:
3798 if (CGM.getLangOpts().ObjCAutoRefCount)
3799 module.addInt(IntTy, 1);
3800 else
3801 module.addInt(IntTy, 0);
3802 break;
3803 case LangOptions::HybridGC:
3804 module.addInt(IntTy, 1);
3805 break;
3806 }
3807 }
3808
3809 return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3810 }();
3811
3812 // Create the load function calling the runtime entry point with the module
3813 // structure
3814 llvm::Function * LoadFunction = llvm::Function::Create(
3815 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
3816 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
3817 &TheModule);
3818 llvm::BasicBlock *EntryBB =
3819 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
3820 CGBuilderTy Builder(CGM, VMContext);
3821 Builder.SetInsertPoint(EntryBB);
3822
3823 llvm::FunctionType *FT =
3824 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
3825 llvm::FunctionCallee Register =
3826 CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
3827 Builder.CreateCall(Register, module);
3828
3829 if (!ClassAliases.empty()) {
3830 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
3831 llvm::FunctionType *RegisterAliasTy =
3832 llvm::FunctionType::get(Builder.getVoidTy(),
3833 ArgTypes, false);
3834 llvm::Function *RegisterAlias = llvm::Function::Create(
3835 RegisterAliasTy,
3836 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
3837 &TheModule);
3838 llvm::BasicBlock *AliasBB =
3839 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
3840 llvm::BasicBlock *NoAliasBB =
3841 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
3842
3843 // Branch based on whether the runtime provided class_registerAlias_np()
3844 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
3845 llvm::Constant::getNullValue(RegisterAlias->getType()));
3846 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
3847
3848 // The true branch (has alias registration function):
3849 Builder.SetInsertPoint(AliasBB);
3850 // Emit alias registration calls:
3851 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
3852 iter != ClassAliases.end(); ++iter) {
3853 llvm::Constant *TheClass =
3854 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
3855 if (TheClass) {
3856 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
3857 Builder.CreateCall(RegisterAlias,
3858 {TheClass, MakeConstantString(iter->second)});
3859 }
3860 }
3861 // Jump to end:
3862 Builder.CreateBr(NoAliasBB);
3863
3864 // Missing alias registration function, just return from the function:
3865 Builder.SetInsertPoint(NoAliasBB);
3866 }
3867 Builder.CreateRetVoid();
3868
3869 return LoadFunction;
3870}
3871
3872llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
3873 const ObjCContainerDecl *CD) {
3874 CodeGenTypes &Types = CGM.getTypes();
3875 llvm::FunctionType *MethodTy =
3876 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3877 std::string FunctionName = getSymbolNameForMethod(OMD);
3878
3879 llvm::Function *Method
3880 = llvm::Function::Create(MethodTy,
3881 llvm::GlobalValue::InternalLinkage,
3882 FunctionName,
3883 &TheModule);
3884 return Method;
3885}
3886
3887void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
3888 llvm::Function *Fn,
3889 const ObjCMethodDecl *OMD,
3890 const ObjCContainerDecl *CD) {
3891 // GNU runtime doesn't support direct calls at this time
3892}
3893
3894llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
3895 return GetPropertyFn;
3896}
3897
3898llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
3899 return SetPropertyFn;
3900}
3901
3902llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
3903 bool copy) {
3904 return nullptr;
3905}
3906
3907llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
3908 return GetStructPropertyFn;
3909}
3910
3911llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
3912 return SetStructPropertyFn;
3913}
3914
3915llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
3916 return nullptr;
3917}
3918
3919llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
3920 return nullptr;
3921}
3922
3923llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
3924 return EnumerationMutationFn;
3925}
3926
3927void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
3928 const ObjCAtSynchronizedStmt &S) {
3929 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
3930}
3931
3932
3933void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
3934 const ObjCAtTryStmt &S) {
3935 // Unlike the Apple non-fragile runtimes, which also uses
3936 // unwind-based zero cost exceptions, the GNU Objective C runtime's
3937 // EH support isn't a veneer over C++ EH. Instead, exception
3938 // objects are created by objc_exception_throw and destroyed by
3939 // the personality function; this avoids the need for bracketing
3940 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
3941 // (or even _Unwind_DeleteException), but probably doesn't
3942 // interoperate very well with foreign exceptions.
3943 //
3944 // In Objective-C++ mode, we actually emit something equivalent to the C++
3945 // exception handler.
3946 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
3947}
3948
3949void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
3950 const ObjCAtThrowStmt &S,
3951 bool ClearInsertionPoint) {
3952 llvm::Value *ExceptionAsObject;
3953 bool isRethrow = false;
3954
3955 if (const Expr *ThrowExpr = S.getThrowExpr()) {
3956 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
3957 ExceptionAsObject = Exception;
3958 } else {
3959 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&((void)0)
3960 "Unexpected rethrow outside @catch block.")((void)0);
3961 ExceptionAsObject = CGF.ObjCEHValueStack.back();
3962 isRethrow = true;
3963 }
3964 if (isRethrow && usesSEHExceptions) {
3965 // For SEH, ExceptionAsObject may be undef, because the catch handler is
3966 // not passed it for catchalls and so it is not visible to the catch
3967 // funclet. The real thrown object will still be live on the stack at this
3968 // point and will be rethrown. If we are explicitly rethrowing the object
3969 // that was passed into the `@catch` block, then this code path is not
3970 // reached and we will instead call `objc_exception_throw` with an explicit
3971 // argument.
3972 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
3973 Throw->setDoesNotReturn();
3974 }
3975 else {
3976 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
3977 llvm::CallBase *Throw =
3978 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
3979 Throw->setDoesNotReturn();
3980 }
3981 CGF.Builder.CreateUnreachable();
3982 if (ClearInsertionPoint)
3983 CGF.Builder.ClearInsertionPoint();
3984}
3985
3986llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
3987 Address AddrWeakObj) {
3988 CGBuilderTy &B = CGF.Builder;
3989 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
3990 return B.CreateCall(WeakReadFn, AddrWeakObj.getPointer());
3991}
3992
3993void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
3994 llvm::Value *src, Address dst) {
3995 CGBuilderTy &B = CGF.Builder;
3996 src = EnforceType(B, src, IdTy);
3997 dst = EnforceType(B, dst, PtrToIdTy);
3998 B.CreateCall(WeakAssignFn, {src, dst.getPointer()});
3999}
4000
4001void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
4002 llvm::Value *src, Address dst,
4003 bool threadlocal) {
4004 CGBuilderTy &B = CGF.Builder;
4005 src = EnforceType(B, src, IdTy);
4006 dst = EnforceType(B, dst, PtrToIdTy);
4007 // FIXME. Add threadloca assign API
4008 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI")((void)0);
4009 B.CreateCall(GlobalAssignFn, {src, dst.getPointer()});
4010}
4011
4012void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4013 llvm::Value *src, Address dst,
4014 llvm::Value *ivarOffset) {
4015 CGBuilderTy &B = CGF.Builder;
4016 src = EnforceType(B, src, IdTy);
4017 dst = EnforceType(B, dst, IdTy);
4018 B.CreateCall(IvarAssignFn, {src, dst.getPointer(), ivarOffset});
4019}
4020
4021void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4022 llvm::Value *src, Address dst) {
4023 CGBuilderTy &B = CGF.Builder;
4024 src = EnforceType(B, src, IdTy);
4025 dst = EnforceType(B, dst, PtrToIdTy);
4026 B.CreateCall(StrongCastAssignFn, {src, dst.getPointer()});
4027}
4028
4029void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4030 Address DestPtr,
4031 Address SrcPtr,
4032 llvm::Value *Size) {
4033 CGBuilderTy &B = CGF.Builder;
4034 DestPtr = EnforceType(B, DestPtr, PtrTy);
4035 SrcPtr = EnforceType(B, SrcPtr, PtrTy);
4036
4037 B.CreateCall(MemMoveFn, {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
4038}
4039
4040llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4041 const ObjCInterfaceDecl *ID,
4042 const ObjCIvarDecl *Ivar) {
4043 const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4044 // Emit the variable and initialize it with what we think the correct value
4045 // is. This allows code compiled with non-fragile ivars to work correctly
4046 // when linked against code which isn't (most of the time).
4047 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4048 if (!IvarOffsetPointer)
4049 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
4050 llvm::Type::getInt32PtrTy(VMContext), false,
4051 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4052 return IvarOffsetPointer;
4053}
4054
4055LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4056 QualType ObjectTy,
4057 llvm::Value *BaseValue,
4058 const ObjCIvarDecl *Ivar,
4059 unsigned CVRQualifiers) {
4060 const ObjCInterfaceDecl *ID =
4061 ObjectTy->castAs<ObjCObjectType>()->getInterface();
4062 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4063 EmitIvarOffset(CGF, ID, Ivar));
4064}
4065
4066static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
4067 const ObjCInterfaceDecl *OID,
4068 const ObjCIvarDecl *OIVD) {
4069 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4070 next = next->getNextIvar()) {
4071 if (OIVD == next)
4072 return OID;
4073 }
4074
4075 // Otherwise check in the super class.
4076 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4077 return FindIvarInterface(Context, Super, OIVD);
4078
4079 return nullptr;
4080}
4081
4082llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4083 const ObjCInterfaceDecl *Interface,
4084 const ObjCIvarDecl *Ivar) {
4085 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4086 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
4087
4088 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4089 // and ExternalLinkage, so create a reference to the ivar global and rely on
4090 // the definition being created as part of GenerateClass.
4091 if (RuntimeVersion < 10 ||
4092 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4093 return CGF.Builder.CreateZExtOrBitCast(
4094 CGF.Builder.CreateAlignedLoad(
4095 Int32Ty, CGF.Builder.CreateAlignedLoad(
4096 llvm::Type::getInt32PtrTy(VMContext),
4097 ObjCIvarOffsetVariable(Interface, Ivar),
4098 CGF.getPointerAlign(), "ivar"),
4099 CharUnits::fromQuantity(4)),
4100 PtrDiffTy);
4101 std::string name = "__objc_ivar_offset_value_" +
4102 Interface->getNameAsString() +"." + Ivar->getNameAsString();
4103 CharUnits Align = CGM.getIntAlign();
4104 llvm::Value *Offset = TheModule.getGlobalVariable(name);
4105 if (!Offset) {
4106 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4107 false, llvm::GlobalValue::LinkOnceAnyLinkage,
4108 llvm::Constant::getNullValue(IntTy), name);
4109 GV->setAlignment(Align.getAsAlign());
4110 Offset = GV;
4111 }
4112 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4113 if (Offset->getType() != PtrDiffTy)
4114 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4115 return Offset;
4116 }
4117 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4118 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4119}
4120
4121CGObjCRuntime *
4122clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
4123 auto Runtime = CGM.getLangOpts().ObjCRuntime;
4124 switch (Runtime.getKind()) {
4125 case ObjCRuntime::GNUstep:
4126 if (Runtime.getVersion() >= VersionTuple(2, 0))
4127 return new CGObjCGNUstep2(CGM);
4128 return new CGObjCGNUstep(CGM);
4129
4130 case ObjCRuntime::GCC:
4131 return new CGObjCGCC(CGM);
4132
4133 case ObjCRuntime::ObjFW:
4134 return new CGObjCObjFW(CGM);
4135
4136 case ObjCRuntime::FragileMacOSX:
4137 case ObjCRuntime::MacOSX:
4138 case ObjCRuntime::iOS:
4139 case ObjCRuntime::WatchOS:
4140 llvm_unreachable("these runtimes are not GNU runtimes")__builtin_unreachable();
4141 }
4142 llvm_unreachable("bad runtime")__builtin_unreachable();
4143}

/usr/src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0);
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0);
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0);
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((void)0);
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)((void)0);
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)((void)0);
344 assert(!hasObjCLifetime())((void)0);
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((void)0);
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)((void)0);
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)((void)0);
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0);
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0);
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0);
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||((void)0)
463 !hasAddressSpace() || !qs.hasAddressSpace())((void)0);
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((void)0)
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((void)0);
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||((void)0)
467 !hasObjCLifetime() || !qs.hasObjCLifetime())((void)0);
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
490 B == LangAS::sycl_global_host)) ||
491 // Consider pointer size address spaces to be equivalent to default.
492 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
493 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
494 // Default is a superset of SYCL address spaces.
495 (A == LangAS::Default &&
496 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
497 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
498 B == LangAS::sycl_global_host));
499 }
500
501 /// Returns true if the address space in these qualifiers is equal to or
502 /// a superset of the address space in the argument qualifiers.
503 bool isAddressSpaceSupersetOf(Qualifiers other) const {
504 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
505 }
506
507 /// Determines if these qualifiers compatibly include another set.
508 /// Generally this answers the question of whether an object with the other
509 /// qualifiers can be safely used as an object with these qualifiers.
510 bool compatiblyIncludes(Qualifiers other) const {
511 return isAddressSpaceSupersetOf(other) &&
512 // ObjC GC qualifiers can match, be added, or be removed, but can't
513 // be changed.
514 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
515 !other.hasObjCGCAttr()) &&
516 // ObjC lifetime qualifiers must match exactly.
517 getObjCLifetime() == other.getObjCLifetime() &&
518 // CVR qualifiers may subset.
519 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
520 // U qualifier may superset.
521 (!other.hasUnaligned() || hasUnaligned());
522 }
523
524 /// Determines if these qualifiers compatibly include another set of
525 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
526 ///
527 /// One set of Objective-C lifetime qualifiers compatibly includes the other
528 /// if the lifetime qualifiers match, or if both are non-__weak and the
529 /// including set also contains the 'const' qualifier, or both are non-__weak
530 /// and one is None (which can only happen in non-ARC modes).
531 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
532 if (getObjCLifetime() == other.getObjCLifetime())
533 return true;
534
535 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
536 return false;
537
538 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
539 return true;
540
541 return hasConst();
542 }
543
544 /// Determine whether this set of qualifiers is a strict superset of
545 /// another set of qualifiers, not considering qualifier compatibility.
546 bool isStrictSupersetOf(Qualifiers Other) const;
547
548 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
549 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
550
551 explicit operator bool() const { return hasQualifiers(); }
552
553 Qualifiers &operator+=(Qualifiers R) {
554 addQualifiers(R);
555 return *this;
556 }
557
558 // Union two qualifier sets. If an enumerated qualifier appears
559 // in both sets, use the one from the right.
560 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
561 L += R;
562 return L;
563 }
564
565 Qualifiers &operator-=(Qualifiers R) {
566 removeQualifiers(R);
567 return *this;
568 }
569
570 /// Compute the difference between two qualifier sets.
571 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
572 L -= R;
573 return L;
574 }
575
576 std::string getAsString() const;
577 std::string getAsString(const PrintingPolicy &Policy) const;
578
579 static std::string getAddrSpaceAsString(LangAS AS);
580
581 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
582 void print(raw_ostream &OS, const PrintingPolicy &Policy,
583 bool appendSpaceIfNonEmpty = false) const;
584
585 void Profile(llvm::FoldingSetNodeID &ID) const {
586 ID.AddInteger(Mask);
587 }
588
589private:
590 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
591 // |C R V|U|GCAttr|Lifetime|AddressSpace|
592 uint32_t Mask = 0;
593
594 static const uint32_t UMask = 0x8;
595 static const uint32_t UShift = 3;
596 static const uint32_t GCAttrMask = 0x30;
597 static const uint32_t GCAttrShift = 4;
598 static const uint32_t LifetimeMask = 0x1C0;
599 static const uint32_t LifetimeShift = 6;
600 static const uint32_t AddressSpaceMask =
601 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
602 static const uint32_t AddressSpaceShift = 9;
603};
604
605/// A std::pair-like structure for storing a qualified type split
606/// into its local qualifiers and its locally-unqualified type.
607struct SplitQualType {
608 /// The locally-unqualified type.
609 const Type *Ty = nullptr;
610
611 /// The local qualifiers.
612 Qualifiers Quals;
613
614 SplitQualType() = default;
615 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
616
617 SplitQualType getSingleStepDesugaredType() const; // end of this file
618
619 // Make std::tie work.
620 std::pair<const Type *,Qualifiers> asPair() const {
621 return std::pair<const Type *, Qualifiers>(Ty, Quals);
622 }
623
624 friend bool operator==(SplitQualType a, SplitQualType b) {
625 return a.Ty == b.Ty && a.Quals == b.Quals;
626 }
627 friend bool operator!=(SplitQualType a, SplitQualType b) {
628 return a.Ty != b.Ty || a.Quals != b.Quals;
629 }
630};
631
632/// The kind of type we are substituting Objective-C type arguments into.
633///
634/// The kind of substitution affects the replacement of type parameters when
635/// no concrete type information is provided, e.g., when dealing with an
636/// unspecialized type.
637enum class ObjCSubstitutionContext {
638 /// An ordinary type.
639 Ordinary,
640
641 /// The result type of a method or function.
642 Result,
643
644 /// The parameter type of a method or function.
645 Parameter,
646
647 /// The type of a property.
648 Property,
649
650 /// The superclass of a type.
651 Superclass,
652};
653
654/// A (possibly-)qualified type.
655///
656/// For efficiency, we don't store CV-qualified types as nodes on their
657/// own: instead each reference to a type stores the qualifiers. This
658/// greatly reduces the number of nodes we need to allocate for types (for
659/// example we only need one for 'int', 'const int', 'volatile int',
660/// 'const volatile int', etc).
661///
662/// As an added efficiency bonus, instead of making this a pair, we
663/// just store the two bits we care about in the low bits of the
664/// pointer. To handle the packing/unpacking, we make QualType be a
665/// simple wrapper class that acts like a smart pointer. A third bit
666/// indicates whether there are extended qualifiers present, in which
667/// case the pointer points to a special structure.
668class QualType {
669 friend class QualifierCollector;
670
671 // Thankfully, these are efficiently composable.
672 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
673 Qualifiers::FastWidth> Value;
674
675 const ExtQuals *getExtQualsUnsafe() const {
676 return Value.getPointer().get<const ExtQuals*>();
677 }
678
679 const Type *getTypePtrUnsafe() const {
680 return Value.getPointer().get<const Type*>();
681 }
682
683 const ExtQualsTypeCommonBase *getCommonPtr() const {
684 assert(!isNull() && "Cannot retrieve a NULL type pointer")((void)0);
685 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
686 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
687 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
688 }
689
690public:
691 QualType() = default;
692 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
693 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
694
695 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
696 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
697
698 /// Retrieves a pointer to the underlying (unqualified) type.
699 ///
700 /// This function requires that the type not be NULL. If the type might be
701 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
702 const Type *getTypePtr() const;
703
704 const Type *getTypePtrOrNull() const;
705
706 /// Retrieves a pointer to the name of the base type.
707 const IdentifierInfo *getBaseTypeIdentifier() const;
708
709 /// Divides a QualType into its unqualified type and a set of local
710 /// qualifiers.
711 SplitQualType split() const;
712
713 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
714
715 static QualType getFromOpaquePtr(const void *Ptr) {
716 QualType T;
717 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
718 return T;
719 }
720
721 const Type &operator*() const {
722 return *getTypePtr();
723 }
724
725 const Type *operator->() const {
726 return getTypePtr();
727 }
728
729 bool isCanonical() const;
730 bool isCanonicalAsParam() const;
731
732 /// Return true if this QualType doesn't point to a type yet.
733 bool isNull() const {
734 return Value.getPointer().isNull();
735 }
736
737 /// Determine whether this particular QualType instance has the
738 /// "const" qualifier set, without looking through typedefs that may have
739 /// added "const" at a different level.
740 bool isLocalConstQualified() const {
741 return (getLocalFastQualifiers() & Qualifiers::Const);
742 }
743
744 /// Determine whether this type is const-qualified.
745 bool isConstQualified() const;
746
747 /// Determine whether this particular QualType instance has the
748 /// "restrict" qualifier set, without looking through typedefs that may have
749 /// added "restrict" at a different level.
750 bool isLocalRestrictQualified() const {
751 return (getLocalFastQualifiers() & Qualifiers::Restrict);
752 }
753
754 /// Determine whether this type is restrict-qualified.
755 bool isRestrictQualified() const;
756
757 /// Determine whether this particular QualType instance has the
758 /// "volatile" qualifier set, without looking through typedefs that may have
759 /// added "volatile" at a different level.
760 bool isLocalVolatileQualified() const {
761 return (getLocalFastQualifiers() & Qualifiers::Volatile);
762 }
763
764 /// Determine whether this type is volatile-qualified.
765 bool isVolatileQualified() const;
766
767 /// Determine whether this particular QualType instance has any
768 /// qualifiers, without looking through any typedefs that might add
769 /// qualifiers at a different level.
770 bool hasLocalQualifiers() const {
771 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
772 }
773
774 /// Determine whether this type has any qualifiers.
775 bool hasQualifiers() const;
776
777 /// Determine whether this particular QualType instance has any
778 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
779 /// instance.
780 bool hasLocalNonFastQualifiers() const {
781 return Value.getPointer().is<const ExtQuals*>();
782 }
783
784 /// Retrieve the set of qualifiers local to this particular QualType
785 /// instance, not including any qualifiers acquired through typedefs or
786 /// other sugar.
787 Qualifiers getLocalQualifiers() const;
788
789 /// Retrieve the set of qualifiers applied to this type.
790 Qualifiers getQualifiers() const;
791
792 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
793 /// local to this particular QualType instance, not including any qualifiers
794 /// acquired through typedefs or other sugar.
795 unsigned getLocalCVRQualifiers() const {
796 return getLocalFastQualifiers();
797 }
798
799 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
800 /// applied to this type.
801 unsigned getCVRQualifiers() const;
802
803 bool isConstant(const ASTContext& Ctx) const {
804 return QualType::isConstant(*this, Ctx);
805 }
806
807 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
808 bool isPODType(const ASTContext &Context) const;
809
810 /// Return true if this is a POD type according to the rules of the C++98
811 /// standard, regardless of the current compilation's language.
812 bool isCXX98PODType(const ASTContext &Context) const;
813
814 /// Return true if this is a POD type according to the more relaxed rules
815 /// of the C++11 standard, regardless of the current compilation's language.
816 /// (C++0x [basic.types]p9). Note that, unlike
817 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
818 bool isCXX11PODType(const ASTContext &Context) const;
819
820 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
821 bool isTrivialType(const ASTContext &Context) const;
822
823 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
824 bool isTriviallyCopyableType(const ASTContext &Context) const;
825
826
827 /// Returns true if it is a class and it might be dynamic.
828 bool mayBeDynamicClass() const;
829
830 /// Returns true if it is not a class or if the class might not be dynamic.
831 bool mayBeNotDynamicClass() const;
832
833 // Don't promise in the API that anything besides 'const' can be
834 // easily added.
835
836 /// Add the `const` type qualifier to this QualType.
837 void addConst() {
838 addFastQualifiers(Qualifiers::Const);
839 }
840 QualType withConst() const {
841 return withFastQualifiers(Qualifiers::Const);
842 }
843
844 /// Add the `volatile` type qualifier to this QualType.
845 void addVolatile() {
846 addFastQualifiers(Qualifiers::Volatile);
847 }
848 QualType withVolatile() const {
849 return withFastQualifiers(Qualifiers::Volatile);
850 }
851
852 /// Add the `restrict` qualifier to this QualType.
853 void addRestrict() {
854 addFastQualifiers(Qualifiers::Restrict);
855 }
856 QualType withRestrict() const {
857 return withFastQualifiers(Qualifiers::Restrict);
858 }
859
860 QualType withCVRQualifiers(unsigned CVR) const {
861 return withFastQualifiers(CVR);
862 }
863
864 void addFastQualifiers(unsigned TQs) {
865 assert(!(TQs & ~Qualifiers::FastMask)((void)0)
866 && "non-fast qualifier bits set in mask!")((void)0);
867 Value.setInt(Value.getInt() | TQs);
868 }
869
870 void removeLocalConst();
871 void removeLocalVolatile();
872 void removeLocalRestrict();
873 void removeLocalCVRQualifiers(unsigned Mask);
874
875 void removeLocalFastQualifiers() { Value.setInt(0); }
876 void removeLocalFastQualifiers(unsigned Mask) {
877 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((void)0);
878 Value.setInt(Value.getInt() & ~Mask);
879 }
880
881 // Creates a type with the given qualifiers in addition to any
882 // qualifiers already on this type.
883 QualType withFastQualifiers(unsigned TQs) const {
884 QualType T = *this;
885 T.addFastQualifiers(TQs);
886 return T;
887 }
888
889 // Creates a type with exactly the given fast qualifiers, removing
890 // any existing fast qualifiers.
891 QualType withExactLocalFastQualifiers(unsigned TQs) const {
892 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
893 }
894
895 // Removes fast qualifiers, but leaves any extended qualifiers in place.
896 QualType withoutLocalFastQualifiers() const {
897 QualType T = *this;
898 T.removeLocalFastQualifiers();
899 return T;
900 }
901
902 QualType getCanonicalType() const;
903
904 /// Return this type with all of the instance-specific qualifiers
905 /// removed, but without removing any qualifiers that may have been applied
906 /// through typedefs.
907 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
908
909 /// Retrieve the unqualified variant of the given type,
910 /// removing as little sugar as possible.
911 ///
912 /// This routine looks through various kinds of sugar to find the
913 /// least-desugared type that is unqualified. For example, given:
914 ///
915 /// \code
916 /// typedef int Integer;
917 /// typedef const Integer CInteger;
918 /// typedef CInteger DifferenceType;
919 /// \endcode
920 ///
921 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
922 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
923 ///
924 /// The resulting type might still be qualified if it's sugar for an array
925 /// type. To strip qualifiers even from within a sugared array type, use
926 /// ASTContext::getUnqualifiedArrayType.
927 inline QualType getUnqualifiedType() const;
928
929 /// Retrieve the unqualified variant of the given type, removing as little
930 /// sugar as possible.
931 ///
932 /// Like getUnqualifiedType(), but also returns the set of
933 /// qualifiers that were built up.
934 ///
935 /// The resulting type might still be qualified if it's sugar for an array
936 /// type. To strip qualifiers even from within a sugared array type, use
937 /// ASTContext::getUnqualifiedArrayType.
938 inline SplitQualType getSplitUnqualifiedType() const;
939
940 /// Determine whether this type is more qualified than the other
941 /// given type, requiring exact equality for non-CVR qualifiers.
942 bool isMoreQualifiedThan(QualType Other) const;
943
944 /// Determine whether this type is at least as qualified as the other
945 /// given type, requiring exact equality for non-CVR qualifiers.
946 bool isAtLeastAsQualifiedAs(QualType Other) const;
947
948 QualType getNonReferenceType() const;
949
950 /// Determine the type of a (typically non-lvalue) expression with the
951 /// specified result type.
952 ///
953 /// This routine should be used for expressions for which the return type is
954 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
955 /// an lvalue. It removes a top-level reference (since there are no
956 /// expressions of reference type) and deletes top-level cvr-qualifiers
957 /// from non-class types (in C++) or all types (in C).
958 QualType getNonLValueExprType(const ASTContext &Context) const;
959
960 /// Remove an outer pack expansion type (if any) from this type. Used as part
961 /// of converting the type of a declaration to the type of an expression that
962 /// references that expression. It's meaningless for an expression to have a
963 /// pack expansion type.
964 QualType getNonPackExpansionType() const;
965
966 /// Return the specified type with any "sugar" removed from
967 /// the type. This takes off typedefs, typeof's etc. If the outer level of
968 /// the type is already concrete, it returns it unmodified. This is similar
969 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
970 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
971 /// concrete.
972 ///
973 /// Qualifiers are left in place.
974 QualType getDesugaredType(const ASTContext &Context) const {
975 return getDesugaredType(*this, Context);
976 }
977
978 SplitQualType getSplitDesugaredType() const {
979 return getSplitDesugaredType(*this);
980 }
981
982 /// Return the specified type with one level of "sugar" removed from
983 /// the type.
984 ///
985 /// This routine takes off the first typedef, typeof, etc. If the outer level
986 /// of the type is already concrete, it returns it unmodified.
987 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
988 return getSingleStepDesugaredTypeImpl(*this, Context);
989 }
990
991 /// Returns the specified type after dropping any
992 /// outer-level parentheses.
993 QualType IgnoreParens() const {
994 if (isa<ParenType>(*this))
995 return QualType::IgnoreParens(*this);
996 return *this;
997 }
998
999 /// Indicate whether the specified types and qualifiers are identical.
1000 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1001 return LHS.Value == RHS.Value;
1002 }
1003 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1004 return LHS.Value != RHS.Value;
1005 }
1006 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1007 return LHS.Value < RHS.Value;
1008 }
1009
1010 static std::string getAsString(SplitQualType split,
1011 const PrintingPolicy &Policy) {
1012 return getAsString(split.Ty, split.Quals, Policy);
1013 }
1014 static std::string getAsString(const Type *ty, Qualifiers qs,
1015 const PrintingPolicy &Policy);
1016
1017 std::string getAsString() const;
1018 std::string getAsString(const PrintingPolicy &Policy) const;
1019
1020 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1021 const Twine &PlaceHolder = Twine(),
1022 unsigned Indentation = 0) const;
1023
1024 static void print(SplitQualType split, raw_ostream &OS,
1025 const PrintingPolicy &policy, const Twine &PlaceHolder,
1026 unsigned Indentation = 0) {
1027 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1028 }
1029
1030 static void print(const Type *ty, Qualifiers qs,
1031 raw_ostream &OS, const PrintingPolicy &policy,
1032 const Twine &PlaceHolder,
1033 unsigned Indentation = 0);
1034
1035 void getAsStringInternal(std::string &Str,
1036 const PrintingPolicy &Policy) const;
1037
1038 static void getAsStringInternal(SplitQualType split, std::string &out,
1039 const PrintingPolicy &policy) {
1040 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1041 }
1042
1043 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1044 std::string &out,
1045 const PrintingPolicy &policy);
1046
1047 class StreamedQualTypeHelper {
1048 const QualType &T;
1049 const PrintingPolicy &Policy;
1050 const Twine &PlaceHolder;
1051 unsigned Indentation;
1052
1053 public:
1054 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1055 const Twine &PlaceHolder, unsigned Indentation)
1056 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1057 Indentation(Indentation) {}
1058
1059 friend raw_ostream &operator<<(raw_ostream &OS,
1060 const StreamedQualTypeHelper &SQT) {
1061 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1062 return OS;
1063 }
1064 };
1065
1066 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1067 const Twine &PlaceHolder = Twine(),
1068 unsigned Indentation = 0) const {
1069 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1070 }
1071
1072 void dump(const char *s) const;
1073 void dump() const;
1074 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1075
1076 void Profile(llvm::FoldingSetNodeID &ID) const {
1077 ID.AddPointer(getAsOpaquePtr());
1078 }
1079
1080 /// Check if this type has any address space qualifier.
1081 inline bool hasAddressSpace() const;
1082
1083 /// Return the address space of this type.
1084 inline LangAS getAddressSpace() const;
1085
1086 /// Returns true if address space qualifiers overlap with T address space
1087 /// qualifiers.
1088 /// OpenCL C defines conversion rules for pointers to different address spaces
1089 /// and notion of overlapping address spaces.
1090 /// CL1.1 or CL1.2:
1091 /// address spaces overlap iff they are they same.
1092 /// OpenCL C v2.0 s6.5.5 adds:
1093 /// __generic overlaps with any address space except for __constant.
1094 bool isAddressSpaceOverlapping(QualType T) const {
1095 Qualifiers Q = getQualifiers();
1096 Qualifiers TQ = T.getQualifiers();
1097 // Address spaces overlap if at least one of them is a superset of another
1098 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1099 }
1100
1101 /// Returns gc attribute of this type.
1102 inline Qualifiers::GC getObjCGCAttr() const;
1103
1104 /// true when Type is objc's weak.
1105 bool isObjCGCWeak() const {
1106 return getObjCGCAttr() == Qualifiers::Weak;
1107 }
1108
1109 /// true when Type is objc's strong.
1110 bool isObjCGCStrong() const {
1111 return getObjCGCAttr() == Qualifiers::Strong;
1112 }
1113
1114 /// Returns lifetime attribute of this type.
1115 Qualifiers::ObjCLifetime getObjCLifetime() const {
1116 return getQualifiers().getObjCLifetime();
1117 }
1118
1119 bool hasNonTrivialObjCLifetime() const {
1120 return getQualifiers().hasNonTrivialObjCLifetime();
1121 }
1122
1123 bool hasStrongOrWeakObjCLifetime() const {
1124 return getQualifiers().hasStrongOrWeakObjCLifetime();
1125 }
1126
1127 // true when Type is objc's weak and weak is enabled but ARC isn't.
1128 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1129
1130 enum PrimitiveDefaultInitializeKind {
1131 /// The type does not fall into any of the following categories. Note that
1132 /// this case is zero-valued so that values of this enum can be used as a
1133 /// boolean condition for non-triviality.
1134 PDIK_Trivial,
1135
1136 /// The type is an Objective-C retainable pointer type that is qualified
1137 /// with the ARC __strong qualifier.
1138 PDIK_ARCStrong,
1139
1140 /// The type is an Objective-C retainable pointer type that is qualified
1141 /// with the ARC __weak qualifier.
1142 PDIK_ARCWeak,
1143
1144 /// The type is a struct containing a field whose type is not PCK_Trivial.
1145 PDIK_Struct
1146 };
1147
1148 /// Functions to query basic properties of non-trivial C struct types.
1149
1150 /// Check if this is a non-trivial type that would cause a C struct
1151 /// transitively containing this type to be non-trivial to default initialize
1152 /// and return the kind.
1153 PrimitiveDefaultInitializeKind
1154 isNonTrivialToPrimitiveDefaultInitialize() const;
1155
1156 enum PrimitiveCopyKind {
1157 /// The type does not fall into any of the following categories. Note that
1158 /// this case is zero-valued so that values of this enum can be used as a
1159 /// boolean condition for non-triviality.
1160 PCK_Trivial,
1161
1162 /// The type would be trivial except that it is volatile-qualified. Types
1163 /// that fall into one of the other non-trivial cases may additionally be
1164 /// volatile-qualified.
1165 PCK_VolatileTrivial,
1166
1167 /// The type is an Objective-C retainable pointer type that is qualified
1168 /// with the ARC __strong qualifier.
1169 PCK_ARCStrong,
1170
1171 /// The type is an Objective-C retainable pointer type that is qualified
1172 /// with the ARC __weak qualifier.
1173 PCK_ARCWeak,
1174
1175 /// The type is a struct containing a field whose type is neither
1176 /// PCK_Trivial nor PCK_VolatileTrivial.
1177 /// Note that a C++ struct type does not necessarily match this; C++ copying
1178 /// semantics are too complex to express here, in part because they depend
1179 /// on the exact constructor or assignment operator that is chosen by
1180 /// overload resolution to do the copy.
1181 PCK_Struct
1182 };
1183
1184 /// Check if this is a non-trivial type that would cause a C struct
1185 /// transitively containing this type to be non-trivial to copy and return the
1186 /// kind.
1187 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1188
1189 /// Check if this is a non-trivial type that would cause a C struct
1190 /// transitively containing this type to be non-trivial to destructively
1191 /// move and return the kind. Destructive move in this context is a C++-style
1192 /// move in which the source object is placed in a valid but unspecified state
1193 /// after it is moved, as opposed to a truly destructive move in which the
1194 /// source object is placed in an uninitialized state.
1195 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1196
1197 enum DestructionKind {
1198 DK_none,
1199 DK_cxx_destructor,
1200 DK_objc_strong_lifetime,
1201 DK_objc_weak_lifetime,
1202 DK_nontrivial_c_struct
1203 };
1204
1205 /// Returns a nonzero value if objects of this type require
1206 /// non-trivial work to clean up after. Non-zero because it's
1207 /// conceivable that qualifiers (objc_gc(weak)?) could make
1208 /// something require destruction.
1209 DestructionKind isDestructedType() const {
1210 return isDestructedTypeImpl(*this);
1211 }
1212
1213 /// Check if this is or contains a C union that is non-trivial to
1214 /// default-initialize, which is a union that has a member that is non-trivial
1215 /// to default-initialize. If this returns true,
1216 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1217 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1218
1219 /// Check if this is or contains a C union that is non-trivial to destruct,
1220 /// which is a union that has a member that is non-trivial to destruct. If
1221 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1222 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1223
1224 /// Check if this is or contains a C union that is non-trivial to copy, which
1225 /// is a union that has a member that is non-trivial to copy. If this returns
1226 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1227 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1228
1229 /// Determine whether expressions of the given type are forbidden
1230 /// from being lvalues in C.
1231 ///
1232 /// The expression types that are forbidden to be lvalues are:
1233 /// - 'void', but not qualified void
1234 /// - function types
1235 ///
1236 /// The exact rule here is C99 6.3.2.1:
1237 /// An lvalue is an expression with an object type or an incomplete
1238 /// type other than void.
1239 bool isCForbiddenLValueType() const;
1240
1241 /// Substitute type arguments for the Objective-C type parameters used in the
1242 /// subject type.
1243 ///
1244 /// \param ctx ASTContext in which the type exists.
1245 ///
1246 /// \param typeArgs The type arguments that will be substituted for the
1247 /// Objective-C type parameters in the subject type, which are generally
1248 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1249 /// parameters will be replaced with their bounds or id/Class, as appropriate
1250 /// for the context.
1251 ///
1252 /// \param context The context in which the subject type was written.
1253 ///
1254 /// \returns the resulting type.
1255 QualType substObjCTypeArgs(ASTContext &ctx,
1256 ArrayRef<QualType> typeArgs,
1257 ObjCSubstitutionContext context) const;
1258
1259 /// Substitute type arguments from an object type for the Objective-C type
1260 /// parameters used in the subject type.
1261 ///
1262 /// This operation combines the computation of type arguments for
1263 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1264 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1265 /// callers that need to perform a single substitution in isolation.
1266 ///
1267 /// \param objectType The type of the object whose member type we're
1268 /// substituting into. For example, this might be the receiver of a message
1269 /// or the base of a property access.
1270 ///
1271 /// \param dc The declaration context from which the subject type was
1272 /// retrieved, which indicates (for example) which type parameters should
1273 /// be substituted.
1274 ///
1275 /// \param context The context in which the subject type was written.
1276 ///
1277 /// \returns the subject type after replacing all of the Objective-C type
1278 /// parameters with their corresponding arguments.
1279 QualType substObjCMemberType(QualType objectType,
1280 const DeclContext *dc,
1281 ObjCSubstitutionContext context) const;
1282
1283 /// Strip Objective-C "__kindof" types from the given type.
1284 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1285
1286 /// Remove all qualifiers including _Atomic.
1287 QualType getAtomicUnqualifiedType() const;
1288
1289private:
1290 // These methods are implemented in a separate translation unit;
1291 // "static"-ize them to avoid creating temporary QualTypes in the
1292 // caller.
1293 static bool isConstant(QualType T, const ASTContext& Ctx);
1294 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1295 static SplitQualType getSplitDesugaredType(QualType T);
1296 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1297 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1298 const ASTContext &C);
1299 static QualType IgnoreParens(QualType T);
1300 static DestructionKind isDestructedTypeImpl(QualType type);
1301
1302 /// Check if \param RD is or contains a non-trivial C union.
1303 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1304 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1305 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1306};
1307
1308} // namespace clang
1309
1310namespace llvm {
1311
1312/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1313/// to a specific Type class.
1314template<> struct simplify_type< ::clang::QualType> {
1315 using SimpleType = const ::clang::Type *;
1316
1317 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1318 return Val.getTypePtr();
1319 }
1320};
1321
1322// Teach SmallPtrSet that QualType is "basically a pointer".
1323template<>
1324struct PointerLikeTypeTraits<clang::QualType> {
1325 static inline void *getAsVoidPointer(clang::QualType P) {
1326 return P.getAsOpaquePtr();
1327 }
1328
1329 static inline clang::QualType getFromVoidPointer(void *P) {
1330 return clang::QualType::getFromOpaquePtr(P);
1331 }
1332
1333 // Various qualifiers go in low bits.
1334 static constexpr int NumLowBitsAvailable = 0;
1335};
1336
1337} // namespace llvm
1338
1339namespace clang {
1340
1341/// Base class that is common to both the \c ExtQuals and \c Type
1342/// classes, which allows \c QualType to access the common fields between the
1343/// two.
1344class ExtQualsTypeCommonBase {
1345 friend class ExtQuals;
1346 friend class QualType;
1347 friend class Type;
1348
1349 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1350 /// a self-referential pointer (for \c Type).
1351 ///
1352 /// This pointer allows an efficient mapping from a QualType to its
1353 /// underlying type pointer.
1354 const Type *const BaseType;
1355
1356 /// The canonical type of this type. A QualType.
1357 QualType CanonicalType;
1358
1359 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1360 : BaseType(baseType), CanonicalType(canon) {}
1361};
1362
1363/// We can encode up to four bits in the low bits of a
1364/// type pointer, but there are many more type qualifiers that we want
1365/// to be able to apply to an arbitrary type. Therefore we have this
1366/// struct, intended to be heap-allocated and used by QualType to
1367/// store qualifiers.
1368///
1369/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1370/// in three low bits on the QualType pointer; a fourth bit records whether
1371/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1372/// Objective-C GC attributes) are much more rare.
1373class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1374 // NOTE: changing the fast qualifiers should be straightforward as
1375 // long as you don't make 'const' non-fast.
1376 // 1. Qualifiers:
1377 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1378 // Fast qualifiers must occupy the low-order bits.
1379 // b) Update Qualifiers::FastWidth and FastMask.
1380 // 2. QualType:
1381 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1382 // b) Update remove{Volatile,Restrict}, defined near the end of
1383 // this header.
1384 // 3. ASTContext:
1385 // a) Update get{Volatile,Restrict}Type.
1386
1387 /// The immutable set of qualifiers applied by this node. Always contains
1388 /// extended qualifiers.
1389 Qualifiers Quals;
1390
1391 ExtQuals *this_() { return this; }
1392
1393public:
1394 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1395 : ExtQualsTypeCommonBase(baseType,
1396 canon.isNull() ? QualType(this_(), 0) : canon),
1397 Quals(quals) {
1398 assert(Quals.hasNonFastQualifiers()((void)0)
1399 && "ExtQuals created with no fast qualifiers")((void)0);
1400 assert(!Quals.hasFastQualifiers()((void)0)
1401 && "ExtQuals created with fast qualifiers")((void)0);
1402 }
1403
1404 Qualifiers getQualifiers() const { return Quals; }
1405
1406 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1407 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1408
1409 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1410 Qualifiers::ObjCLifetime getObjCLifetime() const {
1411 return Quals.getObjCLifetime();
1412 }
1413
1414 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1415 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1416
1417 const Type *getBaseType() const { return BaseType; }
1418
1419public:
1420 void Profile(llvm::FoldingSetNodeID &ID) const {
1421 Profile(ID, getBaseType(), Quals);
1422 }
1423
1424 static void Profile(llvm::FoldingSetNodeID &ID,
1425 const Type *BaseType,
1426 Qualifiers Quals) {
1427 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((void)0);
1428 ID.AddPointer(BaseType);
1429 Quals.Profile(ID);
1430 }
1431};
1432
1433/// The kind of C++11 ref-qualifier associated with a function type.
1434/// This determines whether a member function's "this" object can be an
1435/// lvalue, rvalue, or neither.
1436enum RefQualifierKind {
1437 /// No ref-qualifier was provided.
1438 RQ_None = 0,
1439
1440 /// An lvalue ref-qualifier was provided (\c &).
1441 RQ_LValue,
1442
1443 /// An rvalue ref-qualifier was provided (\c &&).
1444 RQ_RValue
1445};
1446
1447/// Which keyword(s) were used to create an AutoType.
1448enum class AutoTypeKeyword {
1449 /// auto
1450 Auto,
1451
1452 /// decltype(auto)
1453 DecltypeAuto,
1454
1455 /// __auto_type (GNU extension)
1456 GNUAutoType
1457};
1458
1459/// The base class of the type hierarchy.
1460///
1461/// A central concept with types is that each type always has a canonical
1462/// type. A canonical type is the type with any typedef names stripped out
1463/// of it or the types it references. For example, consider:
1464///
1465/// typedef int foo;
1466/// typedef foo* bar;
1467/// 'int *' 'foo *' 'bar'
1468///
1469/// There will be a Type object created for 'int'. Since int is canonical, its
1470/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1471/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1472/// there is a PointerType that represents 'int*', which, like 'int', is
1473/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1474/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1475/// is also 'int*'.
1476///
1477/// Non-canonical types are useful for emitting diagnostics, without losing
1478/// information about typedefs being used. Canonical types are useful for type
1479/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1480/// about whether something has a particular form (e.g. is a function type),
1481/// because they implicitly, recursively, strip all typedefs out of a type.
1482///
1483/// Types, once created, are immutable.
1484///
1485class alignas(8) Type : public ExtQualsTypeCommonBase {
1486public:
1487 enum TypeClass {
1488#define TYPE(Class, Base) Class,
1489#define LAST_TYPE(Class) TypeLast = Class
1490#define ABSTRACT_TYPE(Class, Base)
1491#include "clang/AST/TypeNodes.inc"
1492 };
1493
1494private:
1495 /// Bitfields required by the Type class.
1496 class TypeBitfields {
1497 friend class Type;
1498 template <class T> friend class TypePropertyCache;
1499
1500 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1501 unsigned TC : 8;
1502
1503 /// Store information on the type dependency.
1504 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1505
1506 /// True if the cache (i.e. the bitfields here starting with
1507 /// 'Cache') is valid.
1508 mutable unsigned CacheValid : 1;
1509
1510 /// Linkage of this type.
1511 mutable unsigned CachedLinkage : 3;
1512
1513 /// Whether this type involves and local or unnamed types.
1514 mutable unsigned CachedLocalOrUnnamed : 1;
1515
1516 /// Whether this type comes from an AST file.
1517 mutable unsigned FromAST : 1;
1518
1519 bool isCacheValid() const {
1520 return CacheValid;
1521 }
1522
1523 Linkage getLinkage() const {
1524 assert(isCacheValid() && "getting linkage from invalid cache")((void)0);
1525 return static_cast<Linkage>(CachedLinkage);
1526 }
1527
1528 bool hasLocalOrUnnamedType() const {
1529 assert(isCacheValid() && "getting linkage from invalid cache")((void)0);
1530 return CachedLocalOrUnnamed;
1531 }
1532 };
1533 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1534
1535protected:
1536 // These classes allow subclasses to somewhat cleanly pack bitfields
1537 // into Type.
1538
1539 class ArrayTypeBitfields {
1540 friend class ArrayType;
1541
1542 unsigned : NumTypeBits;
1543
1544 /// CVR qualifiers from declarations like
1545 /// 'int X[static restrict 4]'. For function parameters only.
1546 unsigned IndexTypeQuals : 3;
1547
1548 /// Storage class qualifiers from declarations like
1549 /// 'int X[static restrict 4]'. For function parameters only.
1550 /// Actually an ArrayType::ArraySizeModifier.
1551 unsigned SizeModifier : 3;
1552 };
1553
1554 class ConstantArrayTypeBitfields {
1555 friend class ConstantArrayType;
1556
1557 unsigned : NumTypeBits + 3 + 3;
1558
1559 /// Whether we have a stored size expression.
1560 unsigned HasStoredSizeExpr : 1;
1561 };
1562
1563 class BuiltinTypeBitfields {
1564 friend class BuiltinType;
1565
1566 unsigned : NumTypeBits;
1567
1568 /// The kind (BuiltinType::Kind) of builtin type this is.
1569 unsigned Kind : 8;
1570 };
1571
1572 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1573 /// Only common bits are stored here. Additional uncommon bits are stored
1574 /// in a trailing object after FunctionProtoType.
1575 class FunctionTypeBitfields {
1576 friend class FunctionProtoType;
1577 friend class FunctionType;
1578
1579 unsigned : NumTypeBits;
1580
1581 /// Extra information which affects how the function is called, like
1582 /// regparm and the calling convention.
1583 unsigned ExtInfo : 13;
1584
1585 /// The ref-qualifier associated with a \c FunctionProtoType.
1586 ///
1587 /// This is a value of type \c RefQualifierKind.
1588 unsigned RefQualifier : 2;
1589
1590 /// Used only by FunctionProtoType, put here to pack with the
1591 /// other bitfields.
1592 /// The qualifiers are part of FunctionProtoType because...
1593 ///
1594 /// C++ 8.3.5p4: The return type, the parameter type list and the
1595 /// cv-qualifier-seq, [...], are part of the function type.
1596 unsigned FastTypeQuals : Qualifiers::FastWidth;
1597 /// Whether this function has extended Qualifiers.
1598 unsigned HasExtQuals : 1;
1599
1600 /// The number of parameters this function has, not counting '...'.
1601 /// According to [implimits] 8 bits should be enough here but this is
1602 /// somewhat easy to exceed with metaprogramming and so we would like to
1603 /// keep NumParams as wide as reasonably possible.
1604 unsigned NumParams : 16;
1605
1606 /// The type of exception specification this function has.
1607 unsigned ExceptionSpecType : 4;
1608
1609 /// Whether this function has extended parameter information.
1610 unsigned HasExtParameterInfos : 1;
1611
1612 /// Whether the function is variadic.
1613 unsigned Variadic : 1;
1614
1615 /// Whether this function has a trailing return type.
1616 unsigned HasTrailingReturn : 1;
1617 };
1618
1619 class ObjCObjectTypeBitfields {
1620 friend class ObjCObjectType;
1621
1622 unsigned : NumTypeBits;
1623
1624 /// The number of type arguments stored directly on this object type.
1625 unsigned NumTypeArgs : 7;
1626
1627 /// The number of protocols stored directly on this object type.
1628 unsigned NumProtocols : 6;
1629
1630 /// Whether this is a "kindof" type.
1631 unsigned IsKindOf : 1;
1632 };
1633
1634 class ReferenceTypeBitfields {
1635 friend class ReferenceType;
1636
1637 unsigned : NumTypeBits;
1638
1639 /// True if the type was originally spelled with an lvalue sigil.
1640 /// This is never true of rvalue references but can also be false
1641 /// on lvalue references because of C++0x [dcl.typedef]p9,
1642 /// as follows:
1643 ///
1644 /// typedef int &ref; // lvalue, spelled lvalue
1645 /// typedef int &&rvref; // rvalue
1646 /// ref &a; // lvalue, inner ref, spelled lvalue
1647 /// ref &&a; // lvalue, inner ref
1648 /// rvref &a; // lvalue, inner ref, spelled lvalue
1649 /// rvref &&a; // rvalue, inner ref
1650 unsigned SpelledAsLValue : 1;
1651
1652 /// True if the inner type is a reference type. This only happens
1653 /// in non-canonical forms.
1654 unsigned InnerRef : 1;
1655 };
1656
1657 class TypeWithKeywordBitfields {
1658 friend class TypeWithKeyword;
1659
1660 unsigned : NumTypeBits;
1661
1662 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1663 unsigned Keyword : 8;
1664 };
1665
1666 enum { NumTypeWithKeywordBits = 8 };
1667
1668 class ElaboratedTypeBitfields {
1669 friend class ElaboratedType;
1670
1671 unsigned : NumTypeBits;
1672 unsigned : NumTypeWithKeywordBits;
1673
1674 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1675 unsigned HasOwnedTagDecl : 1;
1676 };
1677
1678 class VectorTypeBitfields {
1679 friend class VectorType;
1680 friend class DependentVectorType;
1681
1682 unsigned : NumTypeBits;
1683
1684 /// The kind of vector, either a generic vector type or some
1685 /// target-specific vector type such as for AltiVec or Neon.
1686 unsigned VecKind : 3;
1687 /// The number of elements in the vector.
1688 uint32_t NumElements;
1689 };
1690
1691 class AttributedTypeBitfields {
1692 friend class AttributedType;
1693
1694 unsigned : NumTypeBits;
1695
1696 /// An AttributedType::Kind
1697 unsigned AttrKind : 32 - NumTypeBits;
1698 };
1699
1700 class AutoTypeBitfields {
1701 friend class AutoType;
1702
1703 unsigned : NumTypeBits;
1704
1705 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1706 /// or '__auto_type'? AutoTypeKeyword value.
1707 unsigned Keyword : 2;
1708
1709 /// The number of template arguments in the type-constraints, which is
1710 /// expected to be able to hold at least 1024 according to [implimits].
1711 /// However as this limit is somewhat easy to hit with template
1712 /// metaprogramming we'd prefer to keep it as large as possible.
1713 /// At the moment it has been left as a non-bitfield since this type
1714 /// safely fits in 64 bits as an unsigned, so there is no reason to
1715 /// introduce the performance impact of a bitfield.
1716 unsigned NumArgs;
1717 };
1718
1719 class SubstTemplateTypeParmPackTypeBitfields {
1720 friend class SubstTemplateTypeParmPackType;
1721
1722 unsigned : NumTypeBits;
1723
1724 /// The number of template arguments in \c Arguments, which is
1725 /// expected to be able to hold at least 1024 according to [implimits].
1726 /// However as this limit is somewhat easy to hit with template
1727 /// metaprogramming we'd prefer to keep it as large as possible.
1728 /// At the moment it has been left as a non-bitfield since this type
1729 /// safely fits in 64 bits as an unsigned, so there is no reason to
1730 /// introduce the performance impact of a bitfield.
1731 unsigned NumArgs;
1732 };
1733
1734 class TemplateSpecializationTypeBitfields {
1735 friend class TemplateSpecializationType;
1736
1737 unsigned : NumTypeBits;
1738
1739 /// Whether this template specialization type is a substituted type alias.
1740 unsigned TypeAlias : 1;
1741
1742 /// The number of template arguments named in this class template
1743 /// specialization, which is expected to be able to hold at least 1024
1744 /// according to [implimits]. However, as this limit is somewhat easy to
1745 /// hit with template metaprogramming we'd prefer to keep it as large
1746 /// as possible. At the moment it has been left as a non-bitfield since
1747 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1748 /// to introduce the performance impact of a bitfield.
1749 unsigned NumArgs;
1750 };
1751
1752 class DependentTemplateSpecializationTypeBitfields {
1753 friend class DependentTemplateSpecializationType;
1754
1755 unsigned : NumTypeBits;
1756 unsigned : NumTypeWithKeywordBits;
1757
1758 /// The number of template arguments named in this class template
1759 /// specialization, which is expected to be able to hold at least 1024
1760 /// according to [implimits]. However, as this limit is somewhat easy to
1761 /// hit with template metaprogramming we'd prefer to keep it as large
1762 /// as possible. At the moment it has been left as a non-bitfield since
1763 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1764 /// to introduce the performance impact of a bitfield.
1765 unsigned NumArgs;
1766 };
1767
1768 class PackExpansionTypeBitfields {
1769 friend class PackExpansionType;
1770
1771 unsigned : NumTypeBits;
1772
1773 /// The number of expansions that this pack expansion will
1774 /// generate when substituted (+1), which is expected to be able to
1775 /// hold at least 1024 according to [implimits]. However, as this limit
1776 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1777 /// keep it as large as possible. At the moment it has been left as a
1778 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1779 /// there is no reason to introduce the performance impact of a bitfield.
1780 ///
1781 /// This field will only have a non-zero value when some of the parameter
1782 /// packs that occur within the pattern have been substituted but others
1783 /// have not.
1784 unsigned NumExpansions;
1785 };
1786
1787 union {
1788 TypeBitfields TypeBits;
1789 ArrayTypeBitfields ArrayTypeBits;
1790 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1791 AttributedTypeBitfields AttributedTypeBits;
1792 AutoTypeBitfields AutoTypeBits;
1793 BuiltinTypeBitfields BuiltinTypeBits;
1794 FunctionTypeBitfields FunctionTypeBits;
1795 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1796 ReferenceTypeBitfields ReferenceTypeBits;
1797 TypeWithKeywordBitfields TypeWithKeywordBits;
1798 ElaboratedTypeBitfields ElaboratedTypeBits;
1799 VectorTypeBitfields VectorTypeBits;
1800 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1801 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1802 DependentTemplateSpecializationTypeBitfields
1803 DependentTemplateSpecializationTypeBits;
1804 PackExpansionTypeBitfields PackExpansionTypeBits;
1805 };
1806
1807private:
1808 template <class T> friend class TypePropertyCache;
1809
1810 /// Set whether this type comes from an AST file.
1811 void setFromAST(bool V = true) const {
1812 TypeBits.FromAST = V;
1813 }
1814
1815protected:
1816 friend class ASTContext;
1817
1818 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1819 : ExtQualsTypeCommonBase(this,
1820 canon.isNull() ? QualType(this_(), 0) : canon) {
1821 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1822 "changing bitfields changed sizeof(Type)!");
1823 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1824 "Insufficient alignment!");
1825 TypeBits.TC = tc;
1826 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1827 TypeBits.CacheValid = false;
1828 TypeBits.CachedLocalOrUnnamed = false;
1829 TypeBits.CachedLinkage = NoLinkage;
1830 TypeBits.FromAST = false;
1831 }
1832
1833 // silence VC++ warning C4355: 'this' : used in base member initializer list
1834 Type *this_() { return this; }
1835
1836 void setDependence(TypeDependence D) {
1837 TypeBits.Dependence = static_cast<unsigned>(D);
1838 }
1839
1840 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1841
1842public:
1843 friend class ASTReader;
1844 friend class ASTWriter;
1845 template <class T> friend class serialization::AbstractTypeReader;
1846 template <class T> friend class serialization::AbstractTypeWriter;
1847
1848 Type(const Type &) = delete;
1849 Type(Type &&) = delete;
1850 Type &operator=(const Type &) = delete;
1851 Type &operator=(Type &&) = delete;
1852
1853 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1854
1855 /// Whether this type comes from an AST file.
1856 bool isFromAST() const { return TypeBits.FromAST; }
1857
1858 /// Whether this type is or contains an unexpanded parameter
1859 /// pack, used to support C++0x variadic templates.
1860 ///
1861 /// A type that contains a parameter pack shall be expanded by the
1862 /// ellipsis operator at some point. For example, the typedef in the
1863 /// following example contains an unexpanded parameter pack 'T':
1864 ///
1865 /// \code
1866 /// template<typename ...T>
1867 /// struct X {
1868 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1869 /// };
1870 /// \endcode
1871 ///
1872 /// Note that this routine does not specify which
1873 bool containsUnexpandedParameterPack() const {
1874 return getDependence() & TypeDependence::UnexpandedPack;
1875 }
1876
1877 /// Determines if this type would be canonical if it had no further
1878 /// qualification.
1879 bool isCanonicalUnqualified() const {
1880 return CanonicalType == QualType(this, 0);
1881 }
1882
1883 /// Pull a single level of sugar off of this locally-unqualified type.
1884 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1885 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1886 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1887
1888 /// As an extension, we classify types as one of "sized" or "sizeless";
1889 /// every type is one or the other. Standard types are all sized;
1890 /// sizeless types are purely an extension.
1891 ///
1892 /// Sizeless types contain data with no specified size, alignment,
1893 /// or layout.
1894 bool isSizelessType() const;
1895 bool isSizelessBuiltinType() const;
1896
1897 /// Determines if this is a sizeless type supported by the
1898 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1899 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1900 bool isVLSTBuiltinType() const;
1901
1902 /// Returns the representative type for the element of an SVE builtin type.
1903 /// This is used to represent fixed-length SVE vectors created with the
1904 /// 'arm_sve_vector_bits' type attribute as VectorType.
1905 QualType getSveEltType(const ASTContext &Ctx) const;
1906
1907 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1908 /// object types, function types, and incomplete types.
1909
1910 /// Return true if this is an incomplete type.
1911 /// A type that can describe objects, but which lacks information needed to
1912 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1913 /// routine will need to determine if the size is actually required.
1914 ///
1915 /// Def If non-null, and the type refers to some kind of declaration
1916 /// that can be completed (such as a C struct, C++ class, or Objective-C
1917 /// class), will be set to the declaration.
1918 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1919
1920 /// Return true if this is an incomplete or object
1921 /// type, in other words, not a function type.
1922 bool isIncompleteOrObjectType() const {
1923 return !isFunctionType();
1924 }
1925
1926 /// Determine whether this type is an object type.
1927 bool isObjectType() const {
1928 // C++ [basic.types]p8:
1929 // An object type is a (possibly cv-qualified) type that is not a
1930 // function type, not a reference type, and not a void type.
1931 return !isReferenceType() && !isFunctionType() && !isVoidType();
1932 }
1933
1934 /// Return true if this is a literal type
1935 /// (C++11 [basic.types]p10)
1936 bool isLiteralType(const ASTContext &Ctx) const;
1937
1938 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1939 bool isStructuralType() const;
1940
1941 /// Test if this type is a standard-layout type.
1942 /// (C++0x [basic.type]p9)
1943 bool isStandardLayoutType() const;
1944
1945 /// Helper methods to distinguish type categories. All type predicates
1946 /// operate on the canonical type, ignoring typedefs and qualifiers.
1947
1948 /// Returns true if the type is a builtin type.
1949 bool isBuiltinType() const;
1950
1951 /// Test for a particular builtin type.
1952 bool isSpecificBuiltinType(unsigned K) const;
1953
1954 /// Test for a type which does not represent an actual type-system type but
1955 /// is instead used as a placeholder for various convenient purposes within
1956 /// Clang. All such types are BuiltinTypes.
1957 bool isPlaceholderType() const;
1958 const BuiltinType *getAsPlaceholderType() const;
1959
1960 /// Test for a specific placeholder type.
1961 bool isSpecificPlaceholderType(unsigned K) const;
1962
1963 /// Test for a placeholder type other than Overload; see
1964 /// BuiltinType::isNonOverloadPlaceholderType.
1965 bool isNonOverloadPlaceholderType() const;
1966
1967 /// isIntegerType() does *not* include complex integers (a GCC extension).
1968 /// isComplexIntegerType() can be used to test for complex integers.
1969 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1970 bool isEnumeralType() const;
1971
1972 /// Determine whether this type is a scoped enumeration type.
1973 bool isScopedEnumeralType() const;
1974 bool isBooleanType() const;
1975 bool isCharType() const;
1976 bool isWideCharType() const;
1977 bool isChar8Type() const;
1978 bool isChar16Type() const;
1979 bool isChar32Type() const;
1980 bool isAnyCharacterType() const;
1981 bool isIntegralType(const ASTContext &Ctx) const;
1982
1983 /// Determine whether this type is an integral or enumeration type.
1984 bool isIntegralOrEnumerationType() const;
1985
1986 /// Determine whether this type is an integral or unscoped enumeration type.
1987 bool isIntegralOrUnscopedEnumerationType() const;
1988 bool isUnscopedEnumerationType() const;
1989
1990 /// Floating point categories.
1991 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1992 /// isComplexType() does *not* include complex integers (a GCC extension).
1993 /// isComplexIntegerType() can be used to test for complex integers.
1994 bool isComplexType() const; // C99 6.2.5p11 (complex)
1995 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1996 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1997 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1998 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1999 bool isBFloat16Type() const;
2000 bool isFloat128Type() const;
2001 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2002 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2003 bool isVoidType() const; // C99 6.2.5p19
2004 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2005 bool isAggregateType() const;
2006 bool isFundamentalType() const;
2007 bool isCompoundType() const;
2008
2009 // Type Predicates: Check to see if this type is structurally the specified
2010 // type, ignoring typedefs and qualifiers.
2011 bool isFunctionType() const;
2012 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2013 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2014 bool isPointerType() const;
2015 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2016 bool isBlockPointerType() const;
2017 bool isVoidPointerType() const;
2018 bool isReferenceType() const;
2019 bool isLValueReferenceType() const;
2020 bool isRValueReferenceType() const;
2021 bool isObjectPointerType() const;
2022 bool isFunctionPointerType() const;
2023 bool isFunctionReferenceType() const;
2024 bool isMemberPointerType() const;
2025 bool isMemberFunctionPointerType() const;
2026 bool isMemberDataPointerType() const;
2027 bool isArrayType() const;
2028 bool isConstantArrayType() const;
2029 bool isIncompleteArrayType() const;
2030 bool isVariableArrayType() const;
2031 bool isDependentSizedArrayType() const;
2032 bool isRecordType() const;
2033 bool isClassType() const;
2034 bool isStructureType() const;
2035 bool isObjCBoxableRecordType() const;
2036 bool isInterfaceType() const;
2037 bool isStructureOrClassType() const;
2038 bool isUnionType() const;
2039 bool isComplexIntegerType() const; // GCC _Complex integer type.
2040 bool isVectorType() const; // GCC vector type.
2041 bool isExtVectorType() const; // Extended vector type.
2042 bool isMatrixType() const; // Matrix type.
2043 bool isConstantMatrixType() const; // Constant matrix type.
2044 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2045 bool isObjCObjectPointerType() const; // pointer to ObjC object
2046 bool isObjCRetainableType() const; // ObjC object or block pointer
2047 bool isObjCLifetimeType() const; // (array of)* retainable type
2048 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2049 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2050 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2051 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2052 // for the common case.
2053 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2054 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2055 bool isObjCQualifiedIdType() const; // id<foo>
2056 bool isObjCQualifiedClassType() const; // Class<foo>
2057 bool isObjCObjectOrInterfaceType() const;
2058 bool isObjCIdType() const; // id
2059 bool isDecltypeType() const;
2060 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2061 /// qualifier?
2062 ///
2063 /// This approximates the answer to the following question: if this
2064 /// translation unit were compiled in ARC, would this type be qualified
2065 /// with __unsafe_unretained?
2066 bool isObjCInertUnsafeUnretainedType() const {
2067 return hasAttr(attr::ObjCInertUnsafeUnretained);
2068 }
2069
2070 /// Whether the type is Objective-C 'id' or a __kindof type of an
2071 /// object type, e.g., __kindof NSView * or __kindof id
2072 /// <NSCopying>.
2073 ///
2074 /// \param bound Will be set to the bound on non-id subtype types,
2075 /// which will be (possibly specialized) Objective-C class type, or
2076 /// null for 'id.
2077 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2078 const ObjCObjectType *&bound) const;
2079
2080 bool isObjCClassType() const; // Class
2081
2082 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2083 /// Class type, e.g., __kindof Class <NSCopying>.
2084 ///
2085 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2086 /// here because Objective-C's type system cannot express "a class
2087 /// object for a subclass of NSFoo".
2088 bool isObjCClassOrClassKindOfType() const;
2089
2090 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2091 bool isObjCSelType() const; // Class
2092 bool isObjCBuiltinType() const; // 'id' or 'Class'
2093 bool isObjCARCBridgableType() const;
2094 bool isCARCBridgableType() const;
2095 bool isTemplateTypeParmType() const; // C++ template type parameter
2096 bool isNullPtrType() const; // C++11 std::nullptr_t
2097 bool isNothrowT() const; // C++ std::nothrow_t
2098 bool isAlignValT() const; // C++17 std::align_val_t
2099 bool isStdByteType() const; // C++17 std::byte
2100 bool isAtomicType() const; // C11 _Atomic()
2101 bool isUndeducedAutoType() const; // C++11 auto or
2102 // C++14 decltype(auto)
2103 bool isTypedefNameType() const; // typedef or alias template
2104
2105#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2106 bool is##Id##Type() const;
2107#include "clang/Basic/OpenCLImageTypes.def"
2108
2109 bool isImageType() const; // Any OpenCL image type
2110
2111 bool isSamplerT() const; // OpenCL sampler_t
2112 bool isEventT() const; // OpenCL event_t
2113 bool isClkEventT() const; // OpenCL clk_event_t
2114 bool isQueueT() const; // OpenCL queue_t
2115 bool isReserveIDT() const; // OpenCL reserve_id_t
2116
2117#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2118 bool is##Id##Type() const;
2119#include "clang/Basic/OpenCLExtensionTypes.def"
2120 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2121 bool isOCLIntelSubgroupAVCType() const;
2122 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2123
2124 bool isPipeType() const; // OpenCL pipe type
2125 bool isExtIntType() const; // Extended Int Type
2126 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2127
2128 /// Determines if this type, which must satisfy
2129 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2130 /// than implicitly __strong.
2131 bool isObjCARCImplicitlyUnretainedType() const;
2132
2133 /// Check if the type is the CUDA device builtin surface type.
2134 bool isCUDADeviceBuiltinSurfaceType() const;
2135 /// Check if the type is the CUDA device builtin texture type.
2136 bool isCUDADeviceBuiltinTextureType() const;
2137
2138 /// Return the implicit lifetime for this type, which must not be dependent.
2139 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2140
2141 enum ScalarTypeKind {
2142 STK_CPointer,
2143 STK_BlockPointer,
2144 STK_ObjCObjectPointer,
2145 STK_MemberPointer,
2146 STK_Bool,
2147 STK_Integral,
2148 STK_Floating,
2149 STK_IntegralComplex,
2150 STK_FloatingComplex,
2151 STK_FixedPoint
2152 };
2153
2154 /// Given that this is a scalar type, classify it.
2155 ScalarTypeKind getScalarTypeKind() const;
2156
2157 TypeDependence getDependence() const {
2158 return static_cast<TypeDependence>(TypeBits.Dependence);
2159 }
2160
2161 /// Whether this type is an error type.
2162 bool containsErrors() const {
2163 return getDependence() & TypeDependence::Error;
2164 }
2165
2166 /// Whether this type is a dependent type, meaning that its definition
2167 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2168 bool isDependentType() const {
2169 return getDependence() & TypeDependence::Dependent;
2170 }
2171
2172 /// Determine whether this type is an instantiation-dependent type,
2173 /// meaning that the type involves a template parameter (even if the
2174 /// definition does not actually depend on the type substituted for that
2175 /// template parameter).
2176 bool isInstantiationDependentType() const {
2177 return getDependence() & TypeDependence::Instantiation;
2178 }
2179
2180 /// Determine whether this type is an undeduced type, meaning that
2181 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2182 /// deduced.
2183 bool isUndeducedType() const;
2184
2185 /// Whether this type is a variably-modified type (C99 6.7.5).
2186 bool isVariablyModifiedType() const {
2187 return getDependence() & TypeDependence::VariablyModified;
2188 }
2189
2190 /// Whether this type involves a variable-length array type
2191 /// with a definite size.
2192 bool hasSizedVLAType() const;
2193
2194 /// Whether this type is or contains a local or unnamed type.
2195 bool hasUnnamedOrLocalType() const;
2196
2197 bool isOverloadableType() const;
2198
2199 /// Determine wither this type is a C++ elaborated-type-specifier.
2200 bool isElaboratedTypeSpecifier() const;
2201
2202 bool canDecayToPointerType() const;
2203
2204 /// Whether this type is represented natively as a pointer. This includes
2205 /// pointers, references, block pointers, and Objective-C interface,
2206 /// qualified id, and qualified interface types, as well as nullptr_t.
2207 bool hasPointerRepresentation() const;
2208
2209 /// Whether this type can represent an objective pointer type for the
2210 /// purpose of GC'ability
2211 bool hasObjCPointerRepresentation() const;
2212
2213 /// Determine whether this type has an integer representation
2214 /// of some sort, e.g., it is an integer type or a vector.
2215 bool hasIntegerRepresentation() const;
2216
2217 /// Determine whether this type has an signed integer representation
2218 /// of some sort, e.g., it is an signed integer type or a vector.
2219 bool hasSignedIntegerRepresentation() const;
2220
2221 /// Determine whether this type has an unsigned integer representation
2222 /// of some sort, e.g., it is an unsigned integer type or a vector.
2223 bool hasUnsignedIntegerRepresentation() const;
2224
2225 /// Determine whether this type has a floating-point representation
2226 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2227 bool hasFloatingRepresentation() const;
2228
2229 // Type Checking Functions: Check to see if this type is structurally the
2230 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2231 // the best type we can.
2232 const RecordType *getAsStructureType() const;
2233 /// NOTE: getAs*ArrayType are methods on ASTContext.
2234 const RecordType *getAsUnionType() const;
2235 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2236 const ObjCObjectType *getAsObjCInterfaceType() const;
2237
2238 // The following is a convenience method that returns an ObjCObjectPointerType
2239 // for object declared using an interface.
2240 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2241 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2242 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2243 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2244
2245 /// Retrieves the CXXRecordDecl that this type refers to, either
2246 /// because the type is a RecordType or because it is the injected-class-name
2247 /// type of a class template or class template partial specialization.
2248 CXXRecordDecl *getAsCXXRecordDecl() const;
2249
2250 /// Retrieves the RecordDecl this type refers to.
2251 RecordDecl *getAsRecordDecl() const;
2252
2253 /// Retrieves the TagDecl that this type refers to, either
2254 /// because the type is a TagType or because it is the injected-class-name
2255 /// type of a class template or class template partial specialization.
2256 TagDecl *getAsTagDecl() const;
2257
2258 /// If this is a pointer or reference to a RecordType, return the
2259 /// CXXRecordDecl that the type refers to.
2260 ///
2261 /// If this is not a pointer or reference, or the type being pointed to does
2262 /// not refer to a CXXRecordDecl, returns NULL.
2263 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2264
2265 /// Get the DeducedType whose type will be deduced for a variable with
2266 /// an initializer of this type. This looks through declarators like pointer
2267 /// types, but not through decltype or typedefs.
2268 DeducedType *getContainedDeducedType() const;
2269
2270 /// Get the AutoType whose type will be deduced for a variable with
2271 /// an initializer of this type. This looks through declarators like pointer
2272 /// types, but not through decltype or typedefs.
2273 AutoType *getContainedAutoType() const {
2274 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2275 }
2276
2277 /// Determine whether this type was written with a leading 'auto'
2278 /// corresponding to a trailing return type (possibly for a nested
2279 /// function type within a pointer to function type or similar).
2280 bool hasAutoForTrailingReturnType() const;
2281
2282 /// Member-template getAs<specific type>'. Look through sugar for
2283 /// an instance of \<specific type>. This scheme will eventually
2284 /// replace the specific getAsXXXX methods above.
2285 ///
2286 /// There are some specializations of this member template listed
2287 /// immediately following this class.
2288 template <typename T> const T *getAs() const;
2289
2290 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2291 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2292 /// This is used when you need to walk over sugar nodes that represent some
2293 /// kind of type adjustment from a type that was written as a \<specific type>
2294 /// to another type that is still canonically a \<specific type>.
2295 template <typename T> const T *getAsAdjusted() const;
2296
2297 /// A variant of getAs<> for array types which silently discards
2298 /// qualifiers from the outermost type.
2299 const ArrayType *getAsArrayTypeUnsafe() const;
2300
2301 /// Member-template castAs<specific type>. Look through sugar for
2302 /// the underlying instance of \<specific type>.
2303 ///
2304 /// This method has the same relationship to getAs<T> as cast<T> has
2305 /// to dyn_cast<T>; which is to say, the underlying type *must*
2306 /// have the intended type, and this method will never return null.
2307 template <typename T> const T *castAs() const;
2308
2309 /// A variant of castAs<> for array type which silently discards
2310 /// qualifiers from the outermost type.
2311 const ArrayType *castAsArrayTypeUnsafe() const;
2312
2313 /// Determine whether this type had the specified attribute applied to it
2314 /// (looking through top-level type sugar).
2315 bool hasAttr(attr::Kind AK) const;
2316
2317 /// Get the base element type of this type, potentially discarding type
2318 /// qualifiers. This should never be used when type qualifiers
2319 /// are meaningful.
2320 const Type *getBaseElementTypeUnsafe() const;
2321
2322 /// If this is an array type, return the element type of the array,
2323 /// potentially with type qualifiers missing.
2324 /// This should never be used when type qualifiers are meaningful.
2325 const Type *getArrayElementTypeNoTypeQual() const;
2326
2327 /// If this is a pointer type, return the pointee type.
2328 /// If this is an array type, return the array element type.
2329 /// This should never be used when type qualifiers are meaningful.
2330 const Type *getPointeeOrArrayElementType() const;
2331
2332 /// If this is a pointer, ObjC object pointer, or block
2333 /// pointer, this returns the respective pointee.
2334 QualType getPointeeType() const;
2335
2336 /// Return the specified type with any "sugar" removed from the type,
2337 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2338 const Type *getUnqualifiedDesugaredType() const;
2339
2340 /// More type predicates useful for type checking/promotion
2341 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2342
2343 /// Return true if this is an integer type that is
2344 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2345 /// or an enum decl which has a signed representation.
2346 bool isSignedIntegerType() const;
2347
2348 /// Return true if this is an integer type that is
2349 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2350 /// or an enum decl which has an unsigned representation.
2351 bool isUnsignedIntegerType() const;
2352
2353 /// Determines whether this is an integer type that is signed or an
2354 /// enumeration types whose underlying type is a signed integer type.
2355 bool isSignedIntegerOrEnumerationType() const;
2356
2357 /// Determines whether this is an integer type that is unsigned or an
2358 /// enumeration types whose underlying type is a unsigned integer type.
2359 bool isUnsignedIntegerOrEnumerationType() const;
2360
2361 /// Return true if this is a fixed point type according to
2362 /// ISO/IEC JTC1 SC22 WG14 N1169.
2363 bool isFixedPointType() const;
2364
2365 /// Return true if this is a fixed point or integer type.
2366 bool isFixedPointOrIntegerType() const;
2367
2368 /// Return true if this is a saturated fixed point type according to
2369 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2370 bool isSaturatedFixedPointType() const;
2371
2372 /// Return true if this is a saturated fixed point type according to
2373 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2374 bool isUnsaturatedFixedPointType() const;
2375
2376 /// Return true if this is a fixed point type that is signed according
2377 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2378 bool isSignedFixedPointType() const;
2379
2380 /// Return true if this is a fixed point type that is unsigned according
2381 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2382 bool isUnsignedFixedPointType() const;
2383
2384 /// Return true if this is not a variable sized type,
2385 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2386 /// incomplete types.
2387 bool isConstantSizeType() const;
2388
2389 /// Returns true if this type can be represented by some
2390 /// set of type specifiers.
2391 bool isSpecifierType() const;
2392
2393 /// Determine the linkage of this type.
2394 Linkage getLinkage() const;
2395
2396 /// Determine the visibility of this type.
2397 Visibility getVisibility() const {
2398 return getLinkageAndVisibility().getVisibility();
2399 }
2400
2401 /// Return true if the visibility was explicitly set is the code.
2402 bool isVisibilityExplicit() const {
2403 return getLinkageAndVisibility().isVisibilityExplicit();
2404 }
2405
2406 /// Determine the linkage and visibility of this type.
2407 LinkageInfo getLinkageAndVisibility() const;
2408
2409 /// True if the computed linkage is valid. Used for consistency
2410 /// checking. Should always return true.
2411 bool isLinkageValid() const;
2412
2413 /// Determine the nullability of the given type.
2414 ///
2415 /// Note that nullability is only captured as sugar within the type
2416 /// system, not as part of the canonical type, so nullability will
2417 /// be lost by canonicalization and desugaring.
2418 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2419
2420 /// Determine whether the given type can have a nullability
2421 /// specifier applied to it, i.e., if it is any kind of pointer type.
2422 ///
2423 /// \param ResultIfUnknown The value to return if we don't yet know whether
2424 /// this type can have nullability because it is dependent.
2425 bool canHaveNullability(bool ResultIfUnknown = true) const;
2426
2427 /// Retrieve the set of substitutions required when accessing a member
2428 /// of the Objective-C receiver type that is declared in the given context.
2429 ///
2430 /// \c *this is the type of the object we're operating on, e.g., the
2431 /// receiver for a message send or the base of a property access, and is
2432 /// expected to be of some object or object pointer type.
2433 ///
2434 /// \param dc The declaration context for which we are building up a
2435 /// substitution mapping, which should be an Objective-C class, extension,
2436 /// category, or method within.
2437 ///
2438 /// \returns an array of type arguments that can be substituted for
2439 /// the type parameters of the given declaration context in any type described
2440 /// within that context, or an empty optional to indicate that no
2441 /// substitution is required.
2442 Optional<ArrayRef<QualType>>
2443 getObjCSubstitutions(const DeclContext *dc) const;
2444
2445 /// Determines if this is an ObjC interface type that may accept type
2446 /// parameters.
2447 bool acceptsObjCTypeParams() const;
2448
2449 const char *getTypeClassName() const;
2450
2451 QualType getCanonicalTypeInternal() const {
2452 return CanonicalType;
2453 }
2454
2455 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2456 void dump() const;
2457 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2458};
2459
2460/// This will check for a TypedefType by removing any existing sugar
2461/// until it reaches a TypedefType or a non-sugared type.
2462template <> const TypedefType *Type::getAs() const;
2463
2464/// This will check for a TemplateSpecializationType by removing any
2465/// existing sugar until it reaches a TemplateSpecializationType or a
2466/// non-sugared type.
2467template <> const TemplateSpecializationType *Type::getAs() const;
2468
2469/// This will check for an AttributedType by removing any existing sugar
2470/// until it reaches an AttributedType or a non-sugared type.
2471template <> const AttributedType *Type::getAs() const;
2472
2473// We can do canonical leaf types faster, because we don't have to
2474// worry about preserving child type decoration.
2475#define TYPE(Class, Base)
2476#define LEAF_TYPE(Class) \
2477template <> inline const Class##Type *Type::getAs() const { \
2478 return dyn_cast<Class##Type>(CanonicalType); \
2479} \
2480template <> inline const Class##Type *Type::castAs() const { \
2481 return cast<Class##Type>(CanonicalType); \
2482}
2483#include "clang/AST/TypeNodes.inc"
2484
2485/// This class is used for builtin types like 'int'. Builtin
2486/// types are always canonical and have a literal name field.
2487class BuiltinType : public Type {
2488public:
2489 enum Kind {
2490// OpenCL image types
2491#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2492#include "clang/Basic/OpenCLImageTypes.def"
2493// OpenCL extension types
2494#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2495#include "clang/Basic/OpenCLExtensionTypes.def"
2496// SVE Types
2497#define SVE_TYPE(Name, Id, SingletonId) Id,
2498#include "clang/Basic/AArch64SVEACLETypes.def"
2499// PPC MMA Types
2500#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2501#include "clang/Basic/PPCTypes.def"
2502// RVV Types
2503#define RVV_TYPE(Name, Id, SingletonId) Id,
2504#include "clang/Basic/RISCVVTypes.def"
2505// All other builtin types
2506#define BUILTIN_TYPE(Id, SingletonId) Id,
2507#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2508#include "clang/AST/BuiltinTypes.def"
2509 };
2510
2511private:
2512 friend class ASTContext; // ASTContext creates these.
2513
2514 BuiltinType(Kind K)
2515 : Type(Builtin, QualType(),
2516 K == Dependent ? TypeDependence::DependentInstantiation
2517 : TypeDependence::None) {
2518 BuiltinTypeBits.Kind = K;
2519 }
2520
2521public:
2522 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2523 StringRef getName(const PrintingPolicy &Policy) const;
2524
2525 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2526 // The StringRef is null-terminated.
2527 StringRef str = getName(Policy);
2528 assert(!str.empty() && str.data()[str.size()] == '\0')((void)0);
2529 return str.data();
2530 }
2531
2532 bool isSugared() const { return false; }
2533 QualType desugar() const { return QualType(this, 0); }
2534
2535 bool isInteger() const {
2536 return getKind() >= Bool && getKind() <= Int128;
2537 }
2538
2539 bool isSignedInteger() const {
2540 return getKind() >= Char_S && getKind() <= Int128;
2541 }
2542
2543 bool isUnsignedInteger() const {
2544 return getKind() >= Bool && getKind() <= UInt128;
2545 }
2546
2547 bool isFloatingPoint() const {
2548 return getKind() >= Half && getKind() <= Float128;
2549 }
2550
2551 /// Determines whether the given kind corresponds to a placeholder type.
2552 static bool isPlaceholderTypeKind(Kind K) {
2553 return K >= Overload;
2554 }
2555
2556 /// Determines whether this type is a placeholder type, i.e. a type
2557 /// which cannot appear in arbitrary positions in a fully-formed
2558 /// expression.
2559 bool isPlaceholderType() const {
2560 return isPlaceholderTypeKind(getKind());
2561 }
2562
2563 /// Determines whether this type is a placeholder type other than
2564 /// Overload. Most placeholder types require only syntactic
2565 /// information about their context in order to be resolved (e.g.
2566 /// whether it is a call expression), which means they can (and
2567 /// should) be resolved in an earlier "phase" of analysis.
2568 /// Overload expressions sometimes pick up further information
2569 /// from their context, like whether the context expects a
2570 /// specific function-pointer type, and so frequently need
2571 /// special treatment.
2572 bool isNonOverloadPlaceholderType() const {
2573 return getKind() > Overload;
2574 }
2575
2576 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2577};
2578
2579/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2580/// types (_Complex float etc) as well as the GCC integer complex extensions.
2581class ComplexType : public Type, public llvm::FoldingSetNode {
2582 friend class ASTContext; // ASTContext creates these.
2583
2584 QualType ElementType;
2585
2586 ComplexType(QualType Element, QualType CanonicalPtr)
2587 : Type(Complex, CanonicalPtr, Element->getDependence()),
2588 ElementType(Element) {}
2589
2590public:
2591 QualType getElementType() const { return ElementType; }
2592
2593 bool isSugared() const { return false; }
2594 QualType desugar() const { return QualType(this, 0); }
2595
2596 void Profile(llvm::FoldingSetNodeID &ID) {
2597 Profile(ID, getElementType());
2598 }
2599
2600 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2601 ID.AddPointer(Element.getAsOpaquePtr());
2602 }
2603
2604 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2605};
2606
2607/// Sugar for parentheses used when specifying types.
2608class ParenType : public Type, public llvm::FoldingSetNode {
2609 friend class ASTContext; // ASTContext creates these.
2610
2611 QualType Inner;
2612
2613 ParenType(QualType InnerType, QualType CanonType)
2614 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2615
2616public:
2617 QualType getInnerType() const { return Inner; }
2618
2619 bool isSugared() const { return true; }
2620 QualType desugar() const { return getInnerType(); }
2621
2622 void Profile(llvm::FoldingSetNodeID &ID) {
2623 Profile(ID, getInnerType());
2624 }
2625
2626 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2627 Inner.Profile(ID);
2628 }
2629
2630 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2631};
2632
2633/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2634class PointerType : public Type, public llvm::FoldingSetNode {
2635 friend class ASTContext; // ASTContext creates these.
2636
2637 QualType PointeeType;
2638
2639 PointerType(QualType Pointee, QualType CanonicalPtr)
2640 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2641 PointeeType(Pointee) {}
2642
2643public:
2644 QualType getPointeeType() const { return PointeeType; }
2645
2646 bool isSugared() const { return false; }
2647 QualType desugar() const { return QualType(this, 0); }
2648
2649 void Profile(llvm::FoldingSetNodeID &ID) {
2650 Profile(ID, getPointeeType());
2651 }
2652
2653 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2654 ID.AddPointer(Pointee.getAsOpaquePtr());
2655 }
2656
2657 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2658};
2659
2660/// Represents a type which was implicitly adjusted by the semantic
2661/// engine for arbitrary reasons. For example, array and function types can
2662/// decay, and function types can have their calling conventions adjusted.
2663class AdjustedType : public Type, public llvm::FoldingSetNode {
2664 QualType OriginalTy;
2665 QualType AdjustedTy;
2666
2667protected:
2668 friend class ASTContext; // ASTContext creates these.
2669
2670 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2671 QualType CanonicalPtr)
2672 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2673 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2674
2675public:
2676 QualType getOriginalType() const { return OriginalTy; }
2677 QualType getAdjustedType() const { return AdjustedTy; }
2678
2679 bool isSugared() const { return true; }
2680 QualType desugar() const { return AdjustedTy; }
2681
2682 void Profile(llvm::FoldingSetNodeID &ID) {
2683 Profile(ID, OriginalTy, AdjustedTy);
2684 }
2685
2686 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2687 ID.AddPointer(Orig.getAsOpaquePtr());
2688 ID.AddPointer(New.getAsOpaquePtr());
2689 }
2690
2691 static bool classof(const Type *T) {
2692 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2693 }
2694};
2695
2696/// Represents a pointer type decayed from an array or function type.
2697class DecayedType : public AdjustedType {
2698 friend class ASTContext; // ASTContext creates these.
2699
2700 inline
2701 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2702
2703public:
2704 QualType getDecayedType() const { return getAdjustedType(); }
2705
2706 inline QualType getPointeeType() const;
2707
2708 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2709};
2710
2711/// Pointer to a block type.
2712/// This type is to represent types syntactically represented as
2713/// "void (^)(int)", etc. Pointee is required to always be a function type.
2714class BlockPointerType : public Type, public llvm::FoldingSetNode {
2715 friend class ASTContext; // ASTContext creates these.
2716
2717 // Block is some kind of pointer type
2718 QualType PointeeType;
2719
2720 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2721 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2722 PointeeType(Pointee) {}
2723
2724public:
2725 // Get the pointee type. Pointee is required to always be a function type.
2726 QualType getPointeeType() const { return PointeeType; }
2727
2728 bool isSugared() const { return false; }
2729 QualType desugar() const { return QualType(this, 0); }
2730
2731 void Profile(llvm::FoldingSetNodeID &ID) {
2732 Profile(ID, getPointeeType());
2733 }
2734
2735 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2736 ID.AddPointer(Pointee.getAsOpaquePtr());
2737 }
2738
2739 static bool classof(const Type *T) {
2740 return T->getTypeClass() == BlockPointer;
2741 }
2742};
2743
2744/// Base for LValueReferenceType and RValueReferenceType
2745class ReferenceType : public Type, public llvm::FoldingSetNode {
2746 QualType PointeeType;
2747
2748protected:
2749 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2750 bool SpelledAsLValue)
2751 : Type(tc, CanonicalRef, Referencee->getDependence()),
2752 PointeeType(Referencee) {
2753 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2754 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2755 }
2756
2757public:
2758 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2759 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2760
2761 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2762
2763 QualType getPointeeType() const {
2764 // FIXME: this might strip inner qualifiers; okay?
2765 const ReferenceType *T = this;
2766 while (T->isInnerRef())
2767 T = T->PointeeType->castAs<ReferenceType>();
2768 return T->PointeeType;
2769 }
2770
2771 void Profile(llvm::FoldingSetNodeID &ID) {
2772 Profile(ID, PointeeType, isSpelledAsLValue());
2773 }
2774
2775 static void Profile(llvm::FoldingSetNodeID &ID,
2776 QualType Referencee,
2777 bool SpelledAsLValue) {
2778 ID.AddPointer(Referencee.getAsOpaquePtr());
2779 ID.AddBoolean(SpelledAsLValue);
2780 }
2781
2782 static bool classof(const Type *T) {
2783 return T->getTypeClass() == LValueReference ||
2784 T->getTypeClass() == RValueReference;
2785 }
2786};
2787
2788/// An lvalue reference type, per C++11 [dcl.ref].
2789class LValueReferenceType : public ReferenceType {
2790 friend class ASTContext; // ASTContext creates these
2791
2792 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2793 bool SpelledAsLValue)
2794 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2795 SpelledAsLValue) {}
2796
2797public:
2798 bool isSugared() const { return false; }
2799 QualType desugar() const { return QualType(this, 0); }
2800
2801 static bool classof(const Type *T) {
2802 return T->getTypeClass() == LValueReference;
2803 }
2804};
2805
2806/// An rvalue reference type, per C++11 [dcl.ref].
2807class RValueReferenceType : public ReferenceType {
2808 friend class ASTContext; // ASTContext creates these
2809
2810 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2811 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2812
2813public:
2814 bool isSugared() const { return false; }
2815 QualType desugar() const { return QualType(this, 0); }
2816
2817 static bool classof(const Type *T) {
2818 return T->getTypeClass() == RValueReference;
2819 }
2820};
2821
2822/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2823///
2824/// This includes both pointers to data members and pointer to member functions.
2825class MemberPointerType : public Type, public llvm::FoldingSetNode {
2826 friend class ASTContext; // ASTContext creates these.
2827
2828 QualType PointeeType;
2829
2830 /// The class of which the pointee is a member. Must ultimately be a
2831 /// RecordType, but could be a typedef or a template parameter too.
2832 const Type *Class;
2833
2834 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2835 : Type(MemberPointer, CanonicalPtr,
2836 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2837 Pointee->getDependence()),
2838 PointeeType(Pointee), Class(Cls) {}
2839
2840public:
2841 QualType getPointeeType() const { return PointeeType; }
2842
2843 /// Returns true if the member type (i.e. the pointee type) is a
2844 /// function type rather than a data-member type.
2845 bool isMemberFunctionPointer() const {
2846 return PointeeType->isFunctionProtoType();
2847 }
2848
2849 /// Returns true if the member type (i.e. the pointee type) is a
2850 /// data type rather than a function type.
2851 bool isMemberDataPointer() const {
2852 return !PointeeType->isFunctionProtoType();
2853 }
2854
2855 const Type *getClass() const { return Class; }
2856 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2857
2858 bool isSugared() const { return false; }
2859 QualType desugar() const { return QualType(this, 0); }
2860
2861 void Profile(llvm::FoldingSetNodeID &ID) {
2862 Profile(ID, getPointeeType(), getClass());
2863 }
2864
2865 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2866 const Type *Class) {
2867 ID.AddPointer(Pointee.getAsOpaquePtr());
2868 ID.AddPointer(Class);
2869 }
2870
2871 static bool classof(const Type *T) {
2872 return T->getTypeClass() == MemberPointer;
2873 }
2874};
2875
2876/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2877class ArrayType : public Type, public llvm::FoldingSetNode {
2878public:
2879 /// Capture whether this is a normal array (e.g. int X[4])
2880 /// an array with a static size (e.g. int X[static 4]), or an array
2881 /// with a star size (e.g. int X[*]).
2882 /// 'static' is only allowed on function parameters.
2883 enum ArraySizeModifier {
2884 Normal, Static, Star
2885 };
2886
2887private:
2888 /// The element type of the array.
2889 QualType ElementType;
2890
2891protected:
2892 friend class ASTContext; // ASTContext creates these.
2893
2894 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2895 unsigned tq, const Expr *sz = nullptr);
2896
2897public:
2898 QualType getElementType() const { return ElementType; }
2899
2900 ArraySizeModifier getSizeModifier() const {
2901 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2902 }
2903
2904 Qualifiers getIndexTypeQualifiers() const {
2905 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2906 }
2907
2908 unsigned getIndexTypeCVRQualifiers() const {
2909 return ArrayTypeBits.IndexTypeQuals;
2910 }
2911
2912 static bool classof(const Type *T) {
2913 return T->getTypeClass() == ConstantArray ||
2914 T->getTypeClass() == VariableArray ||
2915 T->getTypeClass() == IncompleteArray ||
2916 T->getTypeClass() == DependentSizedArray;
2917 }
2918};
2919
2920/// Represents the canonical version of C arrays with a specified constant size.
2921/// For example, the canonical type for 'int A[4 + 4*100]' is a
2922/// ConstantArrayType where the element type is 'int' and the size is 404.
2923class ConstantArrayType final
2924 : public ArrayType,
2925 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2926 friend class ASTContext; // ASTContext creates these.
2927 friend TrailingObjects;
2928
2929 llvm::APInt Size; // Allows us to unique the type.
2930
2931 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2932 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2933 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2934 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2935 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2936 assert(!can.isNull() && "canonical constant array should not have size")((void)0);
2937 *getTrailingObjects<const Expr*>() = sz;
2938 }
2939 }
2940
2941 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2942 return ConstantArrayTypeBits.HasStoredSizeExpr;
2943 }
2944
2945public:
2946 const llvm::APInt &getSize() const { return Size; }
2947 const Expr *getSizeExpr() const {
2948 return ConstantArrayTypeBits.HasStoredSizeExpr
2949 ? *getTrailingObjects<const Expr *>()
2950 : nullptr;
2951 }
2952 bool isSugared() const { return false; }
2953 QualType desugar() const { return QualType(this, 0); }
2954
2955 /// Determine the number of bits required to address a member of
2956 // an array with the given element type and number of elements.
2957 static unsigned getNumAddressingBits(const ASTContext &Context,
2958 QualType ElementType,
2959 const llvm::APInt &NumElements);
2960
2961 /// Determine the maximum number of active bits that an array's size
2962 /// can require, which limits the maximum size of the array.
2963 static unsigned getMaxSizeBits(const ASTContext &Context);
2964
2965 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2966 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2967 getSizeModifier(), getIndexTypeCVRQualifiers());
2968 }
2969
2970 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2971 QualType ET, const llvm::APInt &ArraySize,
2972 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2973 unsigned TypeQuals);
2974
2975 static bool classof(const Type *T) {
2976 return T->getTypeClass() == ConstantArray;
2977 }
2978};
2979
2980/// Represents a C array with an unspecified size. For example 'int A[]' has
2981/// an IncompleteArrayType where the element type is 'int' and the size is
2982/// unspecified.
2983class IncompleteArrayType : public ArrayType {
2984 friend class ASTContext; // ASTContext creates these.
2985
2986 IncompleteArrayType(QualType et, QualType can,
2987 ArraySizeModifier sm, unsigned tq)
2988 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2989
2990public:
2991 friend class StmtIteratorBase;
2992
2993 bool isSugared() const { return false; }
2994 QualType desugar() const { return QualType(this, 0); }
2995
2996 static bool classof(const Type *T) {
2997 return T->getTypeClass() == IncompleteArray;
2998 }
2999
3000 void Profile(llvm::FoldingSetNodeID &ID) {
3001 Profile(ID, getElementType(), getSizeModifier(),
3002 getIndexTypeCVRQualifiers());
3003 }
3004
3005 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3006 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3007 ID.AddPointer(ET.getAsOpaquePtr());
3008 ID.AddInteger(SizeMod);
3009 ID.AddInteger(TypeQuals);
3010 }
3011};
3012
3013/// Represents a C array with a specified size that is not an
3014/// integer-constant-expression. For example, 'int s[x+foo()]'.
3015/// Since the size expression is an arbitrary expression, we store it as such.
3016///
3017/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3018/// should not be: two lexically equivalent variable array types could mean
3019/// different things, for example, these variables do not have the same type
3020/// dynamically:
3021///
3022/// void foo(int x) {
3023/// int Y[x];
3024/// ++x;
3025/// int Z[x];
3026/// }
3027class VariableArrayType : public ArrayType {
3028 friend class ASTContext; // ASTContext creates these.
3029
3030 /// An assignment-expression. VLA's are only permitted within
3031 /// a function block.
3032 Stmt *SizeExpr;
3033
3034 /// The range spanned by the left and right array brackets.
3035 SourceRange Brackets;
3036
3037 VariableArrayType(QualType et, QualType can, Expr *e,
3038 ArraySizeModifier sm, unsigned tq,
3039 SourceRange brackets)
3040 : ArrayType(VariableArray, et, can, sm, tq, e),
3041 SizeExpr((Stmt*) e), Brackets(brackets) {}
3042
3043public:
3044 friend class StmtIteratorBase;
3045
3046 Expr *getSizeExpr() const {
3047 // We use C-style casts instead of cast<> here because we do not wish
3048 // to have a dependency of Type.h on Stmt.h/Expr.h.
3049 return (Expr*) SizeExpr;
3050 }
3051
3052 SourceRange getBracketsRange() const { return Brackets; }
3053 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3054 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3055
3056 bool isSugared() const { return false; }
3057 QualType desugar() const { return QualType(this, 0); }
3058
3059 static bool classof(const Type *T) {
3060 return T->getTypeClass() == VariableArray;
3061 }
3062
3063 void Profile(llvm::FoldingSetNodeID &ID) {
3064 llvm_unreachable("Cannot unique VariableArrayTypes.")__builtin_unreachable();
3065 }
3066};
3067
3068/// Represents an array type in C++ whose size is a value-dependent expression.
3069///
3070/// For example:
3071/// \code
3072/// template<typename T, int Size>
3073/// class array {
3074/// T data[Size];
3075/// };
3076/// \endcode
3077///
3078/// For these types, we won't actually know what the array bound is
3079/// until template instantiation occurs, at which point this will
3080/// become either a ConstantArrayType or a VariableArrayType.
3081class DependentSizedArrayType : public ArrayType {
3082 friend class ASTContext; // ASTContext creates these.
3083
3084 const ASTContext &Context;
3085
3086 /// An assignment expression that will instantiate to the
3087 /// size of the array.
3088 ///
3089 /// The expression itself might be null, in which case the array
3090 /// type will have its size deduced from an initializer.
3091 Stmt *SizeExpr;
3092
3093 /// The range spanned by the left and right array brackets.
3094 SourceRange Brackets;
3095
3096 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3097 Expr *e, ArraySizeModifier sm, unsigned tq,
3098 SourceRange brackets);
3099
3100public:
3101 friend class StmtIteratorBase;
3102
3103 Expr *getSizeExpr() const {
3104 // We use C-style casts instead of cast<> here because we do not wish
3105 // to have a dependency of Type.h on Stmt.h/Expr.h.
3106 return (Expr*) SizeExpr;
3107 }
3108
3109 SourceRange getBracketsRange() const { return Brackets; }
3110 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3111 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3112
3113 bool isSugared() const { return false; }
3114 QualType desugar() const { return QualType(this, 0); }
3115
3116 static bool classof(const Type *T) {
3117 return T->getTypeClass() == DependentSizedArray;
3118 }
3119
3120 void Profile(llvm::FoldingSetNodeID &ID) {
3121 Profile(ID, Context, getElementType(),
3122 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3123 }
3124
3125 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3126 QualType ET, ArraySizeModifier SizeMod,
3127 unsigned TypeQuals, Expr *E);
3128};
3129
3130/// Represents an extended address space qualifier where the input address space
3131/// value is dependent. Non-dependent address spaces are not represented with a
3132/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3133///
3134/// For example:
3135/// \code
3136/// template<typename T, int AddrSpace>
3137/// class AddressSpace {
3138/// typedef T __attribute__((address_space(AddrSpace))) type;
3139/// }
3140/// \endcode
3141class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3142 friend class ASTContext;
3143
3144 const ASTContext &Context;
3145 Expr *AddrSpaceExpr;
3146 QualType PointeeType;
3147 SourceLocation loc;
3148
3149 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3150 QualType can, Expr *AddrSpaceExpr,
3151 SourceLocation loc);
3152
3153public:
3154 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3155 QualType getPointeeType() const { return PointeeType; }
3156 SourceLocation getAttributeLoc() const { return loc; }
3157
3158 bool isSugared() const { return false; }
3159 QualType desugar() const { return QualType(this, 0); }
3160
3161 static bool classof(const Type *T) {
3162 return T->getTypeClass() == DependentAddressSpace;
3163 }
3164
3165 void Profile(llvm::FoldingSetNodeID &ID) {
3166 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3167 }
3168
3169 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3170 QualType PointeeType, Expr *AddrSpaceExpr);
3171};
3172
3173/// Represents an extended vector type where either the type or size is
3174/// dependent.
3175///
3176/// For example:
3177/// \code
3178/// template<typename T, int Size>
3179/// class vector {
3180/// typedef T __attribute__((ext_vector_type(Size))) type;
3181/// }
3182/// \endcode
3183class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3184 friend class ASTContext;
3185
3186 const ASTContext &Context;
3187 Expr *SizeExpr;
3188
3189 /// The element type of the array.
3190 QualType ElementType;
3191
3192 SourceLocation loc;
3193
3194 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3195 QualType can, Expr *SizeExpr, SourceLocation loc);
3196
3197public:
3198 Expr *getSizeExpr() const { return SizeExpr; }
3199 QualType getElementType() const { return ElementType; }
3200 SourceLocation getAttributeLoc() const { return loc; }
3201
3202 bool isSugared() const { return false; }
3203 QualType desugar() const { return QualType(this, 0); }
3204
3205 static bool classof(const Type *T) {
3206 return T->getTypeClass() == DependentSizedExtVector;
3207 }
3208
3209 void Profile(llvm::FoldingSetNodeID &ID) {
3210 Profile(ID, Context, getElementType(), getSizeExpr());
3211 }
3212
3213 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3214 QualType ElementType, Expr *SizeExpr);
3215};
3216
3217
3218/// Represents a GCC generic vector type. This type is created using
3219/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3220/// bytes; or from an Altivec __vector or vector declaration.
3221/// Since the constructor takes the number of vector elements, the
3222/// client is responsible for converting the size into the number of elements.
3223class VectorType : public Type, public llvm::FoldingSetNode {
3224public:
3225 enum VectorKind {
3226 /// not a target-specific vector type
3227 GenericVector,
3228
3229 /// is AltiVec vector
3230 AltiVecVector,
3231
3232 /// is AltiVec 'vector Pixel'
3233 AltiVecPixel,
3234
3235 /// is AltiVec 'vector bool ...'
3236 AltiVecBool,
3237
3238 /// is ARM Neon vector
3239 NeonVector,
3240
3241 /// is ARM Neon polynomial vector
3242 NeonPolyVector,
3243
3244 /// is AArch64 SVE fixed-length data vector
3245 SveFixedLengthDataVector,
3246
3247 /// is AArch64 SVE fixed-length predicate vector
3248 SveFixedLengthPredicateVector
3249 };
3250
3251protected:
3252 friend class ASTContext; // ASTContext creates these.
3253
3254 /// The element type of the vector.
3255 QualType ElementType;
3256
3257 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3258 VectorKind vecKind);
3259
3260 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3261 QualType canonType, VectorKind vecKind);
3262
3263public:
3264 QualType getElementType() const { return ElementType; }
3265 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3266
3267 bool isSugared() const { return false; }
3268 QualType desugar() const { return QualType(this, 0); }
3269
3270 VectorKind getVectorKind() const {
3271 return VectorKind(VectorTypeBits.VecKind);
3272 }
3273
3274 void Profile(llvm::FoldingSetNodeID &ID) {
3275 Profile(ID, getElementType(), getNumElements(),
3276 getTypeClass(), getVectorKind());
3277 }
3278
3279 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3280 unsigned NumElements, TypeClass TypeClass,
3281 VectorKind VecKind) {
3282 ID.AddPointer(ElementType.getAsOpaquePtr());
3283 ID.AddInteger(NumElements);
3284 ID.AddInteger(TypeClass);
3285 ID.AddInteger(VecKind);
3286 }
3287
3288 static bool classof(const Type *T) {
3289 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3290 }
3291};
3292
3293/// Represents a vector type where either the type or size is dependent.
3294////
3295/// For example:
3296/// \code
3297/// template<typename T, int Size>
3298/// class vector {
3299/// typedef T __attribute__((vector_size(Size))) type;
3300/// }
3301/// \endcode
3302class DependentVectorType : public Type, public llvm::FoldingSetNode {
3303 friend class ASTContext;
3304
3305 const ASTContext &Context;
3306 QualType ElementType;
3307 Expr *SizeExpr;
3308 SourceLocation Loc;
3309
3310 DependentVectorType(const ASTContext &Context, QualType ElementType,
3311 QualType CanonType, Expr *SizeExpr,
3312 SourceLocation Loc, VectorType::VectorKind vecKind);
3313
3314public:
3315 Expr *getSizeExpr() const { return SizeExpr; }
3316 QualType getElementType() const { return ElementType; }
3317 SourceLocation getAttributeLoc() const { return Loc; }
3318 VectorType::VectorKind getVectorKind() const {
3319 return VectorType::VectorKind(VectorTypeBits.VecKind);
3320 }
3321
3322 bool isSugared() const { return false; }
3323 QualType desugar() const { return QualType(this, 0); }
3324
3325 static bool classof(const Type *T) {
3326 return T->getTypeClass() == DependentVector;
3327 }
3328
3329 void Profile(llvm::FoldingSetNodeID &ID) {
3330 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3331 }
3332
3333 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3334 QualType ElementType, const Expr *SizeExpr,
3335 VectorType::VectorKind VecKind);
3336};
3337
3338/// ExtVectorType - Extended vector type. This type is created using
3339/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3340/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3341/// class enables syntactic extensions, like Vector Components for accessing
3342/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3343/// Shading Language).
3344class ExtVectorType : public VectorType {
3345 friend class ASTContext; // ASTContext creates these.
3346
3347 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3348 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3349
3350public:
3351 static int getPointAccessorIdx(char c) {
3352 switch (c) {
3353 default: return -1;
3354 case 'x': case 'r': return 0;
3355 case 'y': case 'g': return 1;
3356 case 'z': case 'b': return 2;
3357 case 'w': case 'a': return 3;
3358 }
3359 }
3360
3361 static int getNumericAccessorIdx(char c) {
3362 switch (c) {
3363 default: return -1;
3364 case '0': return 0;
3365 case '1': return 1;
3366 case '2': return 2;
3367 case '3': return 3;
3368 case '4': return 4;
3369 case '5': return 5;
3370 case '6': return 6;
3371 case '7': return 7;
3372 case '8': return 8;
3373 case '9': return 9;
3374 case 'A':
3375 case 'a': return 10;
3376 case 'B':
3377 case 'b': return 11;
3378 case 'C':
3379 case 'c': return 12;
3380 case 'D':
3381 case 'd': return 13;
3382 case 'E':
3383 case 'e': return 14;
3384 case 'F':
3385 case 'f': return 15;
3386 }
3387 }
3388
3389 static int getAccessorIdx(char c, bool isNumericAccessor) {
3390 if (isNumericAccessor)
3391 return getNumericAccessorIdx(c);
3392 else
3393 return getPointAccessorIdx(c);
3394 }
3395
3396 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3397 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3398 return unsigned(idx-1) < getNumElements();
3399 return false;
3400 }
3401
3402 bool isSugared() const { return false; }
3403 QualType desugar() const { return QualType(this, 0); }
3404
3405 static bool classof(const Type *T) {
3406 return T->getTypeClass() == ExtVector;
3407 }
3408};
3409
3410/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3411/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3412/// number of rows and "columns" specifies the number of columns.
3413class MatrixType : public Type, public llvm::FoldingSetNode {
3414protected:
3415 friend class ASTContext;
3416
3417 /// The element type of the matrix.
3418 QualType ElementType;
3419
3420 MatrixType(QualType ElementTy, QualType CanonElementTy);
3421
3422 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3423 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3424
3425public:
3426 /// Returns type of the elements being stored in the matrix
3427 QualType getElementType() const { return ElementType; }
3428
3429 /// Valid elements types are the following:
3430 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3431 /// and _Bool
3432 /// * the standard floating types float or double
3433 /// * a half-precision floating point type, if one is supported on the target
3434 static bool isValidElementType(QualType T) {
3435 return T->isDependentType() ||
3436 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3437 }
3438
3439 bool isSugared() const { return false; }
3440 QualType desugar() const { return QualType(this, 0); }
3441
3442 static bool classof(const Type *T) {
3443 return T->getTypeClass() == ConstantMatrix ||
3444 T->getTypeClass() == DependentSizedMatrix;
3445 }
3446};
3447
3448/// Represents a concrete matrix type with constant number of rows and columns
3449class ConstantMatrixType final : public MatrixType {
3450protected:
3451 friend class ASTContext;
3452
3453 /// The element type of the matrix.
3454 // FIXME: Appears to be unused? There is also MatrixType::ElementType...
3455 QualType ElementType;
3456
3457 /// Number of rows and columns.
3458 unsigned NumRows;
3459 unsigned NumColumns;
3460
3461 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3462
3463 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3464 unsigned NColumns, QualType CanonElementType);
3465
3466 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3467 unsigned NColumns, QualType CanonElementType);
3468
3469public:
3470 /// Returns the number of rows in the matrix.
3471 unsigned getNumRows() const { return NumRows; }
3472
3473 /// Returns the number of columns in the matrix.
3474 unsigned getNumColumns() const { return NumColumns; }
3475
3476 /// Returns the number of elements required to embed the matrix into a vector.
3477 unsigned getNumElementsFlattened() const {
3478 return getNumRows() * getNumColumns();
3479 }
3480
3481 /// Returns true if \p NumElements is a valid matrix dimension.
3482 static constexpr bool isDimensionValid(size_t NumElements) {
3483 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3484 }
3485
3486 /// Returns the maximum number of elements per dimension.
3487 static constexpr unsigned getMaxElementsPerDimension() {
3488 return MaxElementsPerDimension;
3489 }
3490
3491 void Profile(llvm::FoldingSetNodeID &ID) {
3492 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3493 getTypeClass());
3494 }
3495
3496 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3497 unsigned NumRows, unsigned NumColumns,
3498 TypeClass TypeClass) {
3499 ID.AddPointer(ElementType.getAsOpaquePtr());
3500 ID.AddInteger(NumRows);
3501 ID.AddInteger(NumColumns);
3502 ID.AddInteger(TypeClass);
3503 }
3504
3505 static bool classof(const Type *T) {
3506 return T->getTypeClass() == ConstantMatrix;
3507 }
3508};
3509
3510/// Represents a matrix type where the type and the number of rows and columns
3511/// is dependent on a template.
3512class DependentSizedMatrixType final : public MatrixType {
3513 friend class ASTContext;
3514
3515 const ASTContext &Context;
3516 Expr *RowExpr;
3517 Expr *ColumnExpr;
3518
3519 SourceLocation loc;
3520
3521 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3522 QualType CanonicalType, Expr *RowExpr,
3523 Expr *ColumnExpr, SourceLocation loc);
3524
3525public:
3526 QualType getElementType() const { return ElementType; }
3527 Expr *getRowExpr() const { return RowExpr; }
3528 Expr *getColumnExpr() const { return ColumnExpr; }
3529 SourceLocation getAttributeLoc() const { return loc; }
3530
3531 bool isSugared() const { return false; }
3532 QualType desugar() const { return QualType(this, 0); }
3533
3534 static bool classof(const Type *T) {
3535 return T->getTypeClass() == DependentSizedMatrix;
3536 }
3537
3538 void Profile(llvm::FoldingSetNodeID &ID) {
3539 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3540 }
3541
3542 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3543 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3544};
3545
3546/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3547/// class of FunctionNoProtoType and FunctionProtoType.
3548class FunctionType : public Type {
3549 // The type returned by the function.
3550 QualType ResultType;
3551
3552public:
3553 /// Interesting information about a specific parameter that can't simply
3554 /// be reflected in parameter's type. This is only used by FunctionProtoType
3555 /// but is in FunctionType to make this class available during the
3556 /// specification of the bases of FunctionProtoType.
3557 ///
3558 /// It makes sense to model language features this way when there's some
3559 /// sort of parameter-specific override (such as an attribute) that
3560 /// affects how the function is called. For example, the ARC ns_consumed
3561 /// attribute changes whether a parameter is passed at +0 (the default)
3562 /// or +1 (ns_consumed). This must be reflected in the function type,
3563 /// but isn't really a change to the parameter type.
3564 ///
3565 /// One serious disadvantage of modelling language features this way is
3566 /// that they generally do not work with language features that attempt
3567 /// to destructure types. For example, template argument deduction will
3568 /// not be able to match a parameter declared as
3569 /// T (*)(U)
3570 /// against an argument of type
3571 /// void (*)(__attribute__((ns_consumed)) id)
3572 /// because the substitution of T=void, U=id into the former will
3573 /// not produce the latter.
3574 class ExtParameterInfo {
3575 enum {
3576 ABIMask = 0x0F,
3577 IsConsumed = 0x10,
3578 HasPassObjSize = 0x20,
3579 IsNoEscape = 0x40,
3580 };
3581 unsigned char Data = 0;
3582
3583 public:
3584 ExtParameterInfo() = default;
3585
3586 /// Return the ABI treatment of this parameter.
3587 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3588 ExtParameterInfo withABI(ParameterABI kind) const {
3589 ExtParameterInfo copy = *this;
3590 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3591 return copy;
3592 }
3593
3594 /// Is this parameter considered "consumed" by Objective-C ARC?
3595 /// Consumed parameters must have retainable object type.
3596 bool isConsumed() const { return (Data & IsConsumed); }
3597 ExtParameterInfo withIsConsumed(bool consumed) const {
3598 ExtParameterInfo copy = *this;
3599 if (consumed)
3600 copy.Data |= IsConsumed;
3601 else
3602 copy.Data &= ~IsConsumed;
3603 return copy;
3604 }
3605
3606 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3607 ExtParameterInfo withHasPassObjectSize() const {
3608 ExtParameterInfo Copy = *this;
3609 Copy.Data |= HasPassObjSize;
3610 return Copy;
3611 }
3612
3613 bool isNoEscape() const { return Data & IsNoEscape; }
3614 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3615 ExtParameterInfo Copy = *this;
3616 if (NoEscape)
3617 Copy.Data |= IsNoEscape;
3618 else
3619 Copy.Data &= ~IsNoEscape;
3620 return Copy;
3621 }
3622
3623 unsigned char getOpaqueValue() const { return Data; }
3624 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3625 ExtParameterInfo result;
3626 result.Data = data;
3627 return result;
3628 }
3629
3630 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3631 return lhs.Data == rhs.Data;
3632 }
3633
3634 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3635 return lhs.Data != rhs.Data;
3636 }
3637 };
3638
3639 /// A class which abstracts out some details necessary for
3640 /// making a call.
3641 ///
3642 /// It is not actually used directly for storing this information in
3643 /// a FunctionType, although FunctionType does currently use the
3644 /// same bit-pattern.
3645 ///
3646 // If you add a field (say Foo), other than the obvious places (both,
3647 // constructors, compile failures), what you need to update is
3648 // * Operator==
3649 // * getFoo
3650 // * withFoo
3651 // * functionType. Add Foo, getFoo.
3652 // * ASTContext::getFooType
3653 // * ASTContext::mergeFunctionTypes
3654 // * FunctionNoProtoType::Profile
3655 // * FunctionProtoType::Profile
3656 // * TypePrinter::PrintFunctionProto
3657 // * AST read and write
3658 // * Codegen
3659 class ExtInfo {
3660 friend class FunctionType;
3661
3662 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3663 // adjust the Bits field below, and if you add bits, you'll need to adjust
3664 // Type::FunctionTypeBitfields::ExtInfo as well.
3665
3666 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3667 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3668 //
3669 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3670 enum { CallConvMask = 0x1F };
3671 enum { NoReturnMask = 0x20 };
3672 enum { ProducesResultMask = 0x40 };
3673 enum { NoCallerSavedRegsMask = 0x80 };
3674 enum {
3675 RegParmMask = 0x700,
3676 RegParmOffset = 8
3677 };
3678 enum { NoCfCheckMask = 0x800 };
3679 enum { CmseNSCallMask = 0x1000 };
3680 uint16_t Bits = CC_C;
3681
3682 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3683
3684 public:
3685 // Constructor with no defaults. Use this when you know that you
3686 // have all the elements (when reading an AST file for example).
3687 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3688 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3689 bool cmseNSCall) {
3690 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")((void)0);
3691 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3692 (producesResult ? ProducesResultMask : 0) |
3693 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3694 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3695 (NoCfCheck ? NoCfCheckMask : 0) |
3696 (cmseNSCall ? CmseNSCallMask : 0);
3697 }
3698
3699 // Constructor with all defaults. Use when for example creating a
3700 // function known to use defaults.
3701 ExtInfo() = default;
3702
3703 // Constructor with just the calling convention, which is an important part
3704 // of the canonical type.
3705 ExtInfo(CallingConv CC) : Bits(CC) {}
3706
3707 bool getNoReturn() const { return Bits & NoReturnMask; }
3708 bool getProducesResult() const { return Bits & ProducesResultMask; }
3709 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3710 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3711 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3712 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3713
3714 unsigned getRegParm() const {
3715 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3716 if (RegParm > 0)
3717 --RegParm;
3718 return RegParm;
3719 }
3720
3721 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3722
3723 bool operator==(ExtInfo Other) const {
3724 return Bits == Other.Bits;
3725 }
3726 bool operator!=(ExtInfo Other) const {
3727 return Bits != Other.Bits;
3728 }
3729
3730 // Note that we don't have setters. That is by design, use
3731 // the following with methods instead of mutating these objects.
3732
3733 ExtInfo withNoReturn(bool noReturn) const {
3734 if (noReturn)
3735 return ExtInfo(Bits | NoReturnMask);
3736 else
3737 return ExtInfo(Bits & ~NoReturnMask);
3738 }
3739
3740 ExtInfo withProducesResult(bool producesResult) const {
3741 if (producesResult)
3742 return ExtInfo(Bits | ProducesResultMask);
3743 else
3744 return ExtInfo(Bits & ~ProducesResultMask);
3745 }
3746
3747 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3748 if (cmseNSCall)
3749 return ExtInfo(Bits | CmseNSCallMask);
3750 else
3751 return ExtInfo(Bits & ~CmseNSCallMask);
3752 }
3753
3754 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3755 if (noCallerSavedRegs)
3756 return ExtInfo(Bits | NoCallerSavedRegsMask);
3757 else
3758 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3759 }
3760
3761 ExtInfo withNoCfCheck(bool noCfCheck) const {
3762 if (noCfCheck)
3763 return ExtInfo(Bits | NoCfCheckMask);
3764 else
3765 return ExtInfo(Bits & ~NoCfCheckMask);
3766 }
3767
3768 ExtInfo withRegParm(unsigned RegParm) const {
3769 assert(RegParm < 7 && "Invalid regparm value")((void)0);
3770 return ExtInfo((Bits & ~RegParmMask) |
3771 ((RegParm + 1) << RegParmOffset));
3772 }
3773
3774 ExtInfo withCallingConv(CallingConv cc) const {
3775 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3776 }
3777
3778 void Profile(llvm::FoldingSetNodeID &ID) const {
3779 ID.AddInteger(Bits);
3780 }
3781 };
3782
3783 /// A simple holder for a QualType representing a type in an
3784 /// exception specification. Unfortunately needed by FunctionProtoType
3785 /// because TrailingObjects cannot handle repeated types.
3786 struct ExceptionType { QualType Type; };
3787
3788 /// A simple holder for various uncommon bits which do not fit in
3789 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3790 /// alignment of subsequent objects in TrailingObjects. You must update
3791 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3792 struct alignas(void *) FunctionTypeExtraBitfields {
3793 /// The number of types in the exception specification.
3794 /// A whole unsigned is not needed here and according to
3795 /// [implimits] 8 bits would be enough here.
3796 unsigned NumExceptionType;
3797 };
3798
3799protected:
3800 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3801 TypeDependence Dependence, ExtInfo Info)
3802 : Type(tc, Canonical, Dependence), ResultType(res) {
3803 FunctionTypeBits.ExtInfo = Info.Bits;
3804 }
3805
3806 Qualifiers getFastTypeQuals() const {
3807 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3808 }
3809
3810public:
3811 QualType getReturnType() const { return ResultType; }
3812
3813 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3814 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3815
3816 /// Determine whether this function type includes the GNU noreturn
3817 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3818 /// type.
3819 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3820
3821 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3822 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3823 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3824
3825 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3826 "Const, volatile and restrict are assumed to be a subset of "
3827 "the fast qualifiers.");
3828
3829 bool isConst() const { return getFastTypeQuals().hasConst(); }
3830 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3831 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3832
3833 /// Determine the type of an expression that calls a function of
3834 /// this type.
3835 QualType getCallResultType(const ASTContext &Context) const {
3836 return getReturnType().getNonLValueExprType(Context);
3837 }
3838
3839 static StringRef getNameForCallConv(CallingConv CC);
3840
3841 static bool classof(const Type *T) {
3842 return T->getTypeClass() == FunctionNoProto ||
3843 T->getTypeClass() == FunctionProto;
3844 }
3845};
3846
3847/// Represents a K&R-style 'int foo()' function, which has
3848/// no information available about its arguments.
3849class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3850 friend class ASTContext; // ASTContext creates these.
3851
3852 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3853 : FunctionType(FunctionNoProto, Result, Canonical,
3854 Result->getDependence() &
3855 ~(TypeDependence::DependentInstantiation |
3856 TypeDependence::UnexpandedPack),
3857 Info) {}
3858
3859public:
3860 // No additional state past what FunctionType provides.
3861
3862 bool isSugared() const { return false; }
3863 QualType desugar() const { return QualType(this, 0); }
3864
3865 void Profile(llvm::FoldingSetNodeID &ID) {
3866 Profile(ID, getReturnType(), getExtInfo());
3867 }
3868
3869 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3870 ExtInfo Info) {
3871 Info.Profile(ID);
3872 ID.AddPointer(ResultType.getAsOpaquePtr());
3873 }
3874
3875 static bool classof(const Type *T) {
3876 return T->getTypeClass() == FunctionNoProto;
3877 }
3878};
3879
3880/// Represents a prototype with parameter type info, e.g.
3881/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3882/// parameters, not as having a single void parameter. Such a type can have
3883/// an exception specification, but this specification is not part of the
3884/// canonical type. FunctionProtoType has several trailing objects, some of
3885/// which optional. For more information about the trailing objects see
3886/// the first comment inside FunctionProtoType.
3887class FunctionProtoType final
3888 : public FunctionType,
3889 public llvm::FoldingSetNode,
3890 private llvm::TrailingObjects<
3891 FunctionProtoType, QualType, SourceLocation,
3892 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3893 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3894 friend class ASTContext; // ASTContext creates these.
3895 friend TrailingObjects;
3896
3897 // FunctionProtoType is followed by several trailing objects, some of
3898 // which optional. They are in order:
3899 //
3900 // * An array of getNumParams() QualType holding the parameter types.
3901 // Always present. Note that for the vast majority of FunctionProtoType,
3902 // these will be the only trailing objects.
3903 //
3904 // * Optionally if the function is variadic, the SourceLocation of the
3905 // ellipsis.
3906 //
3907 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3908 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3909 // a single FunctionTypeExtraBitfields. Present if and only if
3910 // hasExtraBitfields() is true.
3911 //
3912 // * Optionally exactly one of:
3913 // * an array of getNumExceptions() ExceptionType,
3914 // * a single Expr *,
3915 // * a pair of FunctionDecl *,
3916 // * a single FunctionDecl *
3917 // used to store information about the various types of exception
3918 // specification. See getExceptionSpecSize for the details.
3919 //
3920 // * Optionally an array of getNumParams() ExtParameterInfo holding
3921 // an ExtParameterInfo for each of the parameters. Present if and
3922 // only if hasExtParameterInfos() is true.
3923 //
3924 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3925 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3926 // if hasExtQualifiers() is true.
3927 //
3928 // The optional FunctionTypeExtraBitfields has to be before the data
3929 // related to the exception specification since it contains the number
3930 // of exception types.
3931 //
3932 // We put the ExtParameterInfos last. If all were equal, it would make
3933 // more sense to put these before the exception specification, because
3934 // it's much easier to skip past them compared to the elaborate switch
3935 // required to skip the exception specification. However, all is not
3936 // equal; ExtParameterInfos are used to model very uncommon features,
3937 // and it's better not to burden the more common paths.
3938
3939public:
3940 /// Holds information about the various types of exception specification.
3941 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3942 /// used to group together the various bits of information about the
3943 /// exception specification.
3944 struct ExceptionSpecInfo {
3945 /// The kind of exception specification this is.
3946 ExceptionSpecificationType Type = EST_None;
3947
3948 /// Explicitly-specified list of exception types.
3949 ArrayRef<QualType> Exceptions;
3950
3951 /// Noexcept expression, if this is a computed noexcept specification.
3952 Expr *NoexceptExpr = nullptr;
3953
3954 /// The function whose exception specification this is, for
3955 /// EST_Unevaluated and EST_Uninstantiated.
3956 FunctionDecl *SourceDecl = nullptr;
3957
3958 /// The function template whose exception specification this is instantiated
3959 /// from, for EST_Uninstantiated.
3960 FunctionDecl *SourceTemplate = nullptr;
3961
3962 ExceptionSpecInfo() = default;
3963
3964 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3965 };
3966
3967 /// Extra information about a function prototype. ExtProtoInfo is not
3968 /// stored as such in FunctionProtoType but is used to group together
3969 /// the various bits of extra information about a function prototype.
3970 struct ExtProtoInfo {
3971 FunctionType::ExtInfo ExtInfo;
3972 bool Variadic : 1;
3973 bool HasTrailingReturn : 1;
3974 Qualifiers TypeQuals;
3975 RefQualifierKind RefQualifier = RQ_None;
3976 ExceptionSpecInfo ExceptionSpec;
3977 const ExtParameterInfo *ExtParameterInfos = nullptr;
3978 SourceLocation EllipsisLoc;
3979
3980 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3981
3982 ExtProtoInfo(CallingConv CC)
3983 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3984
3985 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3986 ExtProtoInfo Result(*this);
3987 Result.ExceptionSpec = ESI;
3988 return Result;
3989 }
3990 };
3991
3992private:
3993 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3994 return getNumParams();
3995 }
3996
3997 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3998 return isVariadic();
3999 }
4000
4001 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4002 return hasExtraBitfields();
4003 }
4004
4005 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4006 return getExceptionSpecSize().NumExceptionType;
4007 }
4008
4009 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4010 return getExceptionSpecSize().NumExprPtr;
4011 }
4012
4013 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4014 return getExceptionSpecSize().NumFunctionDeclPtr;
4015 }
4016
4017 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4018 return hasExtParameterInfos() ? getNumParams() : 0;
4019 }
4020
4021 /// Determine whether there are any argument types that
4022 /// contain an unexpanded parameter pack.
4023 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4024 unsigned numArgs) {
4025 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4026 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4027 return true;
4028
4029 return false;
4030 }
4031
4032 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4033 QualType canonical, const ExtProtoInfo &epi);
4034
4035 /// This struct is returned by getExceptionSpecSize and is used to
4036 /// translate an ExceptionSpecificationType to the number and kind
4037 /// of trailing objects related to the exception specification.
4038 struct ExceptionSpecSizeHolder {
4039 unsigned NumExceptionType;
4040 unsigned NumExprPtr;
4041 unsigned NumFunctionDeclPtr;
4042 };
4043
4044 /// Return the number and kind of trailing objects
4045 /// related to the exception specification.
4046 static ExceptionSpecSizeHolder
4047 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4048 switch (EST) {
4049 case EST_None:
4050 case EST_DynamicNone:
4051 case EST_MSAny:
4052 case EST_BasicNoexcept:
4053 case EST_Unparsed:
4054 case EST_NoThrow:
4055 return {0, 0, 0};
4056
4057 case EST_Dynamic:
4058 return {NumExceptions, 0, 0};
4059
4060 case EST_DependentNoexcept:
4061 case EST_NoexceptFalse:
4062 case EST_NoexceptTrue:
4063 return {0, 1, 0};
4064
4065 case EST_Uninstantiated:
4066 return {0, 0, 2};
4067
4068 case EST_Unevaluated:
4069 return {0, 0, 1};
4070 }
4071 llvm_unreachable("bad exception specification kind")__builtin_unreachable();
4072 }
4073
4074 /// Return the number and kind of trailing objects
4075 /// related to the exception specification.
4076 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4077 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4078 }
4079
4080 /// Whether the trailing FunctionTypeExtraBitfields is present.
4081 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4082 // If the exception spec type is EST_Dynamic then we have > 0 exception
4083 // types and the exact number is stored in FunctionTypeExtraBitfields.
4084 return EST == EST_Dynamic;
4085 }
4086
4087 /// Whether the trailing FunctionTypeExtraBitfields is present.
4088 bool hasExtraBitfields() const {
4089 return hasExtraBitfields(getExceptionSpecType());
4090 }
4091
4092 bool hasExtQualifiers() const {
4093 return FunctionTypeBits.HasExtQuals;
4094 }
4095
4096public:
4097 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4098
4099 QualType getParamType(unsigned i) const {
4100 assert(i < getNumParams() && "invalid parameter index")((void)0);
4101 return param_type_begin()[i];
4102 }
4103
4104 ArrayRef<QualType> getParamTypes() const {
4105 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4106 }
4107
4108 ExtProtoInfo getExtProtoInfo() const {
4109 ExtProtoInfo EPI;
4110 EPI.ExtInfo = getExtInfo();
4111 EPI.Variadic = isVariadic();
4112 EPI.EllipsisLoc = getEllipsisLoc();
4113 EPI.HasTrailingReturn = hasTrailingReturn();
4114 EPI.ExceptionSpec = getExceptionSpecInfo();
4115 EPI.TypeQuals = getMethodQuals();
4116 EPI.RefQualifier = getRefQualifier();
4117 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4118 return EPI;
4119 }
4120
4121 /// Get the kind of exception specification on this function.
4122 ExceptionSpecificationType getExceptionSpecType() const {
4123 return static_cast<ExceptionSpecificationType>(
4124 FunctionTypeBits.ExceptionSpecType);
4125 }
4126
4127 /// Return whether this function has any kind of exception spec.
4128 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4129
4130 /// Return whether this function has a dynamic (throw) exception spec.
4131 bool hasDynamicExceptionSpec() const {
4132 return isDynamicExceptionSpec(getExceptionSpecType());
4133 }
4134
4135 /// Return whether this function has a noexcept exception spec.
4136 bool hasNoexceptExceptionSpec() const {
4137 return isNoexceptExceptionSpec(getExceptionSpecType());
4138 }
4139
4140 /// Return whether this function has a dependent exception spec.
4141 bool hasDependentExceptionSpec() const;
4142
4143 /// Return whether this function has an instantiation-dependent exception
4144 /// spec.
4145 bool hasInstantiationDependentExceptionSpec() const;
4146
4147 /// Return all the available information about this type's exception spec.
4148 ExceptionSpecInfo getExceptionSpecInfo() const {
4149 ExceptionSpecInfo Result;
4150 Result.Type = getExceptionSpecType();
4151 if (Result.Type == EST_Dynamic) {
4152 Result.Exceptions = exceptions();
4153 } else if (isComputedNoexcept(Result.Type)) {
4154 Result.NoexceptExpr = getNoexceptExpr();
4155 } else if (Result.Type == EST_Uninstantiated) {
4156 Result.SourceDecl = getExceptionSpecDecl();
4157 Result.SourceTemplate = getExceptionSpecTemplate();
4158 } else if (Result.Type == EST_Unevaluated) {
4159 Result.SourceDecl = getExceptionSpecDecl();
4160 }
4161 return Result;
4162 }
4163
4164 /// Return the number of types in the exception specification.
4165 unsigned getNumExceptions() const {
4166 return getExceptionSpecType() == EST_Dynamic
4167 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4168 ->NumExceptionType
4169 : 0;
4170 }
4171
4172 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4173 QualType getExceptionType(unsigned i) const {
4174 assert(i < getNumExceptions() && "Invalid exception number!")((void)0);
4175 return exception_begin()[i];
4176 }
4177
4178 /// Return the expression inside noexcept(expression), or a null pointer
4179 /// if there is none (because the exception spec is not of this form).
4180 Expr *getNoexceptExpr() const {
4181 if (!isComputedNoexcept(getExceptionSpecType()))
4182 return nullptr;
4183 return *getTrailingObjects<Expr *>();
4184 }
4185
4186 /// If this function type has an exception specification which hasn't
4187 /// been determined yet (either because it has not been evaluated or because
4188 /// it has not been instantiated), this is the function whose exception
4189 /// specification is represented by this type.
4190 FunctionDecl *getExceptionSpecDecl() const {
4191 if (getExceptionSpecType() != EST_Uninstantiated &&
4192 getExceptionSpecType() != EST_Unevaluated)
4193 return nullptr;
4194 return getTrailingObjects<FunctionDecl *>()[0];
4195 }
4196
4197 /// If this function type has an uninstantiated exception
4198 /// specification, this is the function whose exception specification
4199 /// should be instantiated to find the exception specification for
4200 /// this type.
4201 FunctionDecl *getExceptionSpecTemplate() const {
4202 if (getExceptionSpecType() != EST_Uninstantiated)
4203 return nullptr;
4204 return getTrailingObjects<FunctionDecl *>()[1];
4205 }
4206
4207 /// Determine whether this function type has a non-throwing exception
4208 /// specification.
4209 CanThrowResult canThrow() const;
4210
4211 /// Determine whether this function type has a non-throwing exception
4212 /// specification. If this depends on template arguments, returns
4213 /// \c ResultIfDependent.
4214 bool isNothrow(bool ResultIfDependent = false) const {
4215 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4216 }
4217
4218 /// Whether this function prototype is variadic.
4219 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4220
4221 SourceLocation getEllipsisLoc() const {
4222 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4223 : SourceLocation();
4224 }
4225
4226 /// Determines whether this function prototype contains a
4227 /// parameter pack at the end.
4228 ///
4229 /// A function template whose last parameter is a parameter pack can be
4230 /// called with an arbitrary number of arguments, much like a variadic
4231 /// function.
4232 bool isTemplateVariadic() const;
4233
4234 /// Whether this function prototype has a trailing return type.
4235 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4236
4237 Qualifiers getMethodQuals() const {
4238 if (hasExtQualifiers())
4239 return *getTrailingObjects<Qualifiers>();
4240 else
4241 return getFastTypeQuals();
4242 }
4243
4244 /// Retrieve the ref-qualifier associated with this function type.
4245 RefQualifierKind getRefQualifier() const {
4246 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4247 }
4248
4249 using param_type_iterator = const QualType *;
4250 using param_type_range = llvm::iterator_range<param_type_iterator>;
4251
4252 param_type_range param_types() const {
4253 return param_type_range(param_type_begin(), param_type_end());
4254 }
4255
4256 param_type_iterator param_type_begin() const {
4257 return getTrailingObjects<QualType>();
4258 }
4259
4260 param_type_iterator param_type_end() const {
4261 return param_type_begin() + getNumParams();
4262 }
4263
4264 using exception_iterator = const QualType *;
4265
4266 ArrayRef<QualType> exceptions() const {
4267 return llvm::makeArrayRef(exception_begin(), exception_end());
4268 }
4269
4270 exception_iterator exception_begin() const {
4271 return reinterpret_cast<exception_iterator>(
4272 getTrailingObjects<ExceptionType>());
4273 }
4274
4275 exception_iterator exception_end() const {
4276 return exception_begin() + getNumExceptions();
4277 }
4278
4279 /// Is there any interesting extra information for any of the parameters
4280 /// of this function type?
4281 bool hasExtParameterInfos() const {
4282 return FunctionTypeBits.HasExtParameterInfos;
4283 }
4284
4285 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4286 assert(hasExtParameterInfos())((void)0);
4287 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4288 getNumParams());
4289 }
4290
4291 /// Return a pointer to the beginning of the array of extra parameter
4292 /// information, if present, or else null if none of the parameters
4293 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4294 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4295 if (!hasExtParameterInfos())
4296 return nullptr;
4297 return getTrailingObjects<ExtParameterInfo>();
4298 }
4299
4300 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4301 assert(I < getNumParams() && "parameter index out of range")((void)0);
4302 if (hasExtParameterInfos())
4303 return getTrailingObjects<ExtParameterInfo>()[I];
4304 return ExtParameterInfo();
4305 }
4306
4307 ParameterABI getParameterABI(unsigned I) const {
4308 assert(I < getNumParams() && "parameter index out of range")((void)0);
4309 if (hasExtParameterInfos())
4310 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4311 return ParameterABI::Ordinary;
4312 }
4313
4314 bool isParamConsumed(unsigned I) const {
4315 assert(I < getNumParams() && "parameter index out of range")((void)0);
4316 if (hasExtParameterInfos())
4317 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4318 return false;
4319 }
4320
4321 bool isSugared() const { return false; }
4322 QualType desugar() const { return QualType(this, 0); }
4323
4324 void printExceptionSpecification(raw_ostream &OS,
4325 const PrintingPolicy &Policy) const;
4326
4327 static bool classof(const Type *T) {
4328 return T->getTypeClass() == FunctionProto;
4329 }
4330
4331 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4332 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4333 param_type_iterator ArgTys, unsigned NumArgs,
4334 const ExtProtoInfo &EPI, const ASTContext &Context,
4335 bool Canonical);
4336};
4337
4338/// Represents the dependent type named by a dependently-scoped
4339/// typename using declaration, e.g.
4340/// using typename Base<T>::foo;
4341///
4342/// Template instantiation turns these into the underlying type.
4343class UnresolvedUsingType : public Type {
4344 friend class ASTContext; // ASTContext creates these.
4345
4346 UnresolvedUsingTypenameDecl *Decl;
4347
4348 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4349 : Type(UnresolvedUsing, QualType(),
4350 TypeDependence::DependentInstantiation),
4351 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4352
4353public:
4354 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4355
4356 bool isSugared() const { return false; }
4357 QualType desugar() const { return QualType(this, 0); }
4358
4359 static bool classof(const Type *T) {
4360 return T->getTypeClass() == UnresolvedUsing;
4361 }
4362
4363 void Profile(llvm::FoldingSetNodeID &ID) {
4364 return Profile(ID, Decl);
4365 }
4366
4367 static void Profile(llvm::FoldingSetNodeID &ID,
4368 UnresolvedUsingTypenameDecl *D) {
4369 ID.AddPointer(D);
4370 }
4371};
4372
4373class TypedefType : public Type {
4374 TypedefNameDecl *Decl;
4375
4376private:
4377 friend class ASTContext; // ASTContext creates these.
4378
4379 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4380 QualType can);
4381
4382public:
4383 TypedefNameDecl *getDecl() const { return Decl; }
4384
4385 bool isSugared() const { return true; }
4386 QualType desugar() const;
4387
4388 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4389};
4390
4391/// Sugar type that represents a type that was qualified by a qualifier written
4392/// as a macro invocation.
4393class MacroQualifiedType : public Type {
4394 friend class ASTContext; // ASTContext creates these.
4395
4396 QualType UnderlyingTy;
4397 const IdentifierInfo *MacroII;
4398
4399 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4400 const IdentifierInfo *MacroII)
4401 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4402 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4403 assert(isa<AttributedType>(UnderlyingTy) &&((void)0)
4404 "Expected a macro qualified type to only wrap attributed types.")((void)0);
4405 }
4406
4407public:
4408 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4409 QualType getUnderlyingType() const { return UnderlyingTy; }
4410
4411 /// Return this attributed type's modified type with no qualifiers attached to
4412 /// it.
4413 QualType getModifiedType() const;
4414
4415 bool isSugared() const { return true; }
4416 QualType desugar() const;
4417
4418 static bool classof(const Type *T) {
4419 return T->getTypeClass() == MacroQualified;
4420 }
4421};
4422
4423/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4424class TypeOfExprType : public Type {
4425 Expr *TOExpr;
4426
4427protected:
4428 friend class ASTContext; // ASTContext creates these.
4429
4430 TypeOfExprType(Expr *E, QualType can = QualType());
4431
4432public:
4433 Expr *getUnderlyingExpr() const { return TOExpr; }
4434
4435 /// Remove a single level of sugar.
4436 QualType desugar() const;
4437
4438 /// Returns whether this type directly provides sugar.
4439 bool isSugared() const;
4440
4441 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4442};
4443
4444/// Internal representation of canonical, dependent
4445/// `typeof(expr)` types.
4446///
4447/// This class is used internally by the ASTContext to manage
4448/// canonical, dependent types, only. Clients will only see instances
4449/// of this class via TypeOfExprType nodes.
4450class DependentTypeOfExprType
4451 : public TypeOfExprType, public llvm::FoldingSetNode {
4452 const ASTContext &Context;
4453
4454public:
4455 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4456 : TypeOfExprType(E), Context(Context) {}
4457
4458 void Profile(llvm::FoldingSetNodeID &ID) {
4459 Profile(ID, Context, getUnderlyingExpr());
4460 }
4461
4462 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4463 Expr *E);
4464};
4465
4466/// Represents `typeof(type)`, a GCC extension.
4467class TypeOfType : public Type {
4468 friend class ASTContext; // ASTContext creates these.
4469
4470 QualType TOType;
4471
4472 TypeOfType(QualType T, QualType can)
4473 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4474 assert(!isa<TypedefType>(can) && "Invalid canonical type")((void)0);
4475 }
4476
4477public:
4478 QualType getUnderlyingType() const { return TOType; }
4479
4480 /// Remove a single level of sugar.
4481 QualType desugar() const { return getUnderlyingType(); }
4482
4483 /// Returns whether this type directly provides sugar.
4484 bool isSugared() const { return true; }
4485
4486 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4487};
4488
4489/// Represents the type `decltype(expr)` (C++11).
4490class DecltypeType : public Type {
4491 Expr *E;
4492 QualType UnderlyingType;
4493
4494protected:
4495 friend class ASTContext; // ASTContext creates these.
4496
4497 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4498
4499public:
4500 Expr *getUnderlyingExpr() const { return E; }
4501 QualType getUnderlyingType() const { return UnderlyingType; }
4502
4503 /// Remove a single level of sugar.
4504 QualType desugar() const;
4505
4506 /// Returns whether this type directly provides sugar.
4507 bool isSugared() const;
4508
4509 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4510};
4511
4512/// Internal representation of canonical, dependent
4513/// decltype(expr) types.
4514///
4515/// This class is used internally by the ASTContext to manage
4516/// canonical, dependent types, only. Clients will only see instances
4517/// of this class via DecltypeType nodes.
4518class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4519 const ASTContext &Context;
4520
4521public:
4522 DependentDecltypeType(const ASTContext &Context, Expr *E);
4523
4524 void Profile(llvm::FoldingSetNodeID &ID) {
4525 Profile(ID, Context, getUnderlyingExpr());
4526 }
4527
4528 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4529 Expr *E);
4530};
4531
4532/// A unary type transform, which is a type constructed from another.
4533class UnaryTransformType : public Type {
4534public:
4535 enum UTTKind {
4536 EnumUnderlyingType
4537 };
4538
4539private:
4540 /// The untransformed type.
4541 QualType BaseType;
4542
4543 /// The transformed type if not dependent, otherwise the same as BaseType.
4544 QualType UnderlyingType;
4545
4546 UTTKind UKind;
4547
4548protected:
4549 friend class ASTContext;
4550
4551 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4552 QualType CanonicalTy);
4553
4554public:
4555 bool isSugared() const { return !isDependentType(); }
4556 QualType desugar() const { return UnderlyingType; }
4557
4558 QualType getUnderlyingType() const { return UnderlyingType; }
4559 QualType getBaseType() const { return BaseType; }
4560
4561 UTTKind getUTTKind() const { return UKind; }
4562
4563 static bool classof(const Type *T) {
4564 return T->getTypeClass() == UnaryTransform;
4565 }
4566};
4567
4568/// Internal representation of canonical, dependent
4569/// __underlying_type(type) types.
4570///
4571/// This class is used internally by the ASTContext to manage
4572/// canonical, dependent types, only. Clients will only see instances
4573/// of this class via UnaryTransformType nodes.
4574class DependentUnaryTransformType : public UnaryTransformType,
4575 public llvm::FoldingSetNode {
4576public:
4577 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4578 UTTKind UKind);
4579
4580 void Profile(llvm::FoldingSetNodeID &ID) {
4581 Profile(ID, getBaseType(), getUTTKind());
4582 }
4583
4584 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4585 UTTKind UKind) {
4586 ID.AddPointer(BaseType.getAsOpaquePtr());
4587 ID.AddInteger((unsigned)UKind);
4588 }
4589};
4590
4591class TagType : public Type {
4592 friend class ASTReader;
4593 template <class T> friend class serialization::AbstractTypeReader;
4594
4595 /// Stores the TagDecl associated with this type. The decl may point to any
4596 /// TagDecl that declares the entity.
4597 TagDecl *decl;
4598
4599protected:
4600 TagType(TypeClass TC, const TagDecl *D, QualType can);
4601
4602public:
4603 TagDecl *getDecl() const;
4604
4605 /// Determines whether this type is in the process of being defined.
4606 bool isBeingDefined() const;
4607
4608 static bool classof(const Type *T) {
4609 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4610 }
4611};
4612
4613/// A helper class that allows the use of isa/cast/dyncast
4614/// to detect TagType objects of structs/unions/classes.
4615class RecordType : public TagType {
4616protected:
4617 friend class ASTContext; // ASTContext creates these.
4618
4619 explicit RecordType(const RecordDecl *D)
4620 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4621 explicit RecordType(TypeClass TC, RecordDecl *D)
4622 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4623
4624public:
4625 RecordDecl *getDecl() const {
4626 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4627 }
4628
4629 /// Recursively check all fields in the record for const-ness. If any field
4630 /// is declared const, return true. Otherwise, return false.
4631 bool hasConstFields() const;
4632
4633 bool isSugared() const { return false; }
4634 QualType desugar() const { return QualType(this, 0); }
4635
4636 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4637};
4638
4639/// A helper class that allows the use of isa/cast/dyncast
4640/// to detect TagType objects of enums.
4641class EnumType : public TagType {
4642 friend class ASTContext; // ASTContext creates these.
4643
4644 explicit EnumType(const EnumDecl *D)
4645 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4646
4647public:
4648 EnumDecl *getDecl() const {
4649 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4650 }
4651
4652 bool isSugared() const { return false; }
4653 QualType desugar() const { return QualType(this, 0); }
4654
4655 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4656};
4657
4658/// An attributed type is a type to which a type attribute has been applied.
4659///
4660/// The "modified type" is the fully-sugared type to which the attributed
4661/// type was applied; generally it is not canonically equivalent to the
4662/// attributed type. The "equivalent type" is the minimally-desugared type
4663/// which the type is canonically equivalent to.
4664///
4665/// For example, in the following attributed type:
4666/// int32_t __attribute__((vector_size(16)))
4667/// - the modified type is the TypedefType for int32_t
4668/// - the equivalent type is VectorType(16, int32_t)
4669/// - the canonical type is VectorType(16, int)
4670class AttributedType : public Type, public llvm::FoldingSetNode {
4671public:
4672 using Kind = attr::Kind;
4673
4674private:
4675 friend class ASTContext; // ASTContext creates these
4676
4677 QualType ModifiedType;
4678 QualType EquivalentType;
4679
4680 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4681 QualType equivalent)
4682 : Type(Attributed, canon, equivalent->getDependence()),
4683 ModifiedType(modified), EquivalentType(equivalent) {
4684 AttributedTypeBits.AttrKind = attrKind;
4685 }
4686
4687public:
4688 Kind getAttrKind() const {
4689 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4690 }
4691
4692 QualType getModifiedType() const { return ModifiedType; }
4693 QualType getEquivalentType() const { return EquivalentType; }
4694
4695 bool isSugared() const { return true; }
4696 QualType desugar() const { return getEquivalentType(); }
4697
4698 /// Does this attribute behave like a type qualifier?
4699 ///
4700 /// A type qualifier adjusts a type to provide specialized rules for
4701 /// a specific object, like the standard const and volatile qualifiers.
4702 /// This includes attributes controlling things like nullability,
4703 /// address spaces, and ARC ownership. The value of the object is still
4704 /// largely described by the modified type.
4705 ///
4706 /// In contrast, many type attributes "rewrite" their modified type to
4707 /// produce a fundamentally different type, not necessarily related in any
4708 /// formalizable way to the original type. For example, calling convention
4709 /// and vector attributes are not simple type qualifiers.
4710 ///
4711 /// Type qualifiers are often, but not always, reflected in the canonical
4712 /// type.
4713 bool isQualifier() const;
4714
4715 bool isMSTypeSpec() const;
4716
4717 bool isCallingConv() const;
4718
4719 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4720
4721 /// Retrieve the attribute kind corresponding to the given
4722 /// nullability kind.
4723 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4724 switch (kind) {
4725 case NullabilityKind::NonNull:
4726 return attr::TypeNonNull;
4727
4728 case NullabilityKind::Nullable:
4729 return attr::TypeNullable;
4730
4731 case NullabilityKind::NullableResult:
4732 return attr::TypeNullableResult;
4733
4734 case NullabilityKind::Unspecified:
4735 return attr::TypeNullUnspecified;
4736 }
4737 llvm_unreachable("Unknown nullability kind.")__builtin_unreachable();
4738 }
4739
4740 /// Strip off the top-level nullability annotation on the given
4741 /// type, if it's there.
4742 ///
4743 /// \param T The type to strip. If the type is exactly an
4744 /// AttributedType specifying nullability (without looking through
4745 /// type sugar), the nullability is returned and this type changed
4746 /// to the underlying modified type.
4747 ///
4748 /// \returns the top-level nullability, if present.
4749 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4750
4751 void Profile(llvm::FoldingSetNodeID &ID) {
4752 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4753 }
4754
4755 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4756 QualType modified, QualType equivalent) {
4757 ID.AddInteger(attrKind);
4758 ID.AddPointer(modified.getAsOpaquePtr());
4759 ID.AddPointer(equivalent.getAsOpaquePtr());
4760 }
4761
4762 static bool classof(const Type *T) {
4763 return T->getTypeClass() == Attributed;
4764 }
4765};
4766
4767class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4768 friend class ASTContext; // ASTContext creates these
4769
4770 // Helper data collector for canonical types.
4771 struct CanonicalTTPTInfo {
4772 unsigned Depth : 15;
4773 unsigned ParameterPack : 1;
4774 unsigned Index : 16;
4775 };
4776
4777 union {
4778 // Info for the canonical type.
4779 CanonicalTTPTInfo CanTTPTInfo;
4780
4781 // Info for the non-canonical type.
4782 TemplateTypeParmDecl *TTPDecl;
4783 };
4784
4785 /// Build a non-canonical type.
4786 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4787 : Type(TemplateTypeParm, Canon,
4788 TypeDependence::DependentInstantiation |
4789 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4790 TTPDecl(TTPDecl) {}
4791
4792 /// Build the canonical type.
4793 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4794 : Type(TemplateTypeParm, QualType(this, 0),
4795 TypeDependence::DependentInstantiation |
4796 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4797 CanTTPTInfo.Depth = D;
4798 CanTTPTInfo.Index = I;
4799 CanTTPTInfo.ParameterPack = PP;
4800 }
4801
4802 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4803 QualType Can = getCanonicalTypeInternal();
4804 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4805 }
4806
4807public:
4808 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4809 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4810 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4811
4812 TemplateTypeParmDecl *getDecl() const {
4813 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4814 }
4815
4816 IdentifierInfo *getIdentifier() const;
4817
4818 bool isSugared() const { return false; }
4819 QualType desugar() const { return QualType(this, 0); }
4820
4821 void Profile(llvm::FoldingSetNodeID &ID) {
4822 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4823 }
4824
4825 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4826 unsigned Index, bool ParameterPack,
4827 TemplateTypeParmDecl *TTPDecl) {
4828 ID.AddInteger(Depth);
4829 ID.AddInteger(Index);
4830 ID.AddBoolean(ParameterPack);
4831 ID.AddPointer(TTPDecl);
4832 }
4833
4834 static bool classof(const Type *T) {
4835 return T->getTypeClass() == TemplateTypeParm;
4836 }
4837};
4838
4839/// Represents the result of substituting a type for a template
4840/// type parameter.
4841///
4842/// Within an instantiated template, all template type parameters have
4843/// been replaced with these. They are used solely to record that a
4844/// type was originally written as a template type parameter;
4845/// therefore they are never canonical.
4846class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4847 friend class ASTContext;
4848
4849 // The original type parameter.
4850 const TemplateTypeParmType *Replaced;
4851
4852 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4853 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4854 Replaced(Param) {}
4855
4856public:
4857 /// Gets the template parameter that was substituted for.
4858 const TemplateTypeParmType *getReplacedParameter() const {
4859 return Replaced;
4860 }
4861
4862 /// Gets the type that was substituted for the template
4863 /// parameter.
4864 QualType getReplacementType() const {
4865 return getCanonicalTypeInternal();
4866 }
4867
4868 bool isSugared() const { return true; }
4869 QualType desugar() const { return getReplacementType(); }
4870
4871 void Profile(llvm::FoldingSetNodeID &ID) {
4872 Profile(ID, getReplacedParameter(), getReplacementType());
4873 }
4874
4875 static void Profile(llvm::FoldingSetNodeID &ID,
4876 const TemplateTypeParmType *Replaced,
4877 QualType Replacement) {
4878 ID.AddPointer(Replaced);
4879 ID.AddPointer(Replacement.getAsOpaquePtr());
4880 }
4881
4882 static bool classof(const Type *T) {
4883 return T->getTypeClass() == SubstTemplateTypeParm;
4884 }
4885};
4886
4887/// Represents the result of substituting a set of types for a template
4888/// type parameter pack.
4889///
4890/// When a pack expansion in the source code contains multiple parameter packs
4891/// and those parameter packs correspond to different levels of template
4892/// parameter lists, this type node is used to represent a template type
4893/// parameter pack from an outer level, which has already had its argument pack
4894/// substituted but that still lives within a pack expansion that itself
4895/// could not be instantiated. When actually performing a substitution into
4896/// that pack expansion (e.g., when all template parameters have corresponding
4897/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4898/// at the current pack substitution index.
4899class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4900 friend class ASTContext;
4901
4902 /// The original type parameter.
4903 const TemplateTypeParmType *Replaced;
4904
4905 /// A pointer to the set of template arguments that this
4906 /// parameter pack is instantiated with.
4907 const TemplateArgument *Arguments;
4908
4909 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4910 QualType Canon,
4911 const TemplateArgument &ArgPack);
4912
4913public:
4914 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4915
4916 /// Gets the template parameter that was substituted for.
4917 const TemplateTypeParmType *getReplacedParameter() const {
4918 return Replaced;
4919 }
4920
4921 unsigned getNumArgs() const {
4922 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4923 }
4924
4925 bool isSugared() const { return false; }
4926 QualType desugar() const { return QualType(this, 0); }
4927
4928 TemplateArgument getArgumentPack() const;
4929
4930 void Profile(llvm::FoldingSetNodeID &ID);
4931 static void Profile(llvm::FoldingSetNodeID &ID,
4932 const TemplateTypeParmType *Replaced,
4933 const TemplateArgument &ArgPack);
4934
4935 static bool classof(const Type *T) {
4936 return T->getTypeClass() == SubstTemplateTypeParmPack;
4937 }
4938};
4939
4940/// Common base class for placeholders for types that get replaced by
4941/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4942/// class template types, and constrained type names.
4943///
4944/// These types are usually a placeholder for a deduced type. However, before
4945/// the initializer is attached, or (usually) if the initializer is
4946/// type-dependent, there is no deduced type and the type is canonical. In
4947/// the latter case, it is also a dependent type.
4948class DeducedType : public Type {
4949protected:
4950 DeducedType(TypeClass TC, QualType DeducedAsType,
4951 TypeDependence ExtraDependence)
4952 : Type(TC,
4953 // FIXME: Retain the sugared deduced type?
4954 DeducedAsType.isNull() ? QualType(this, 0)
4955 : DeducedAsType.getCanonicalType(),
4956 ExtraDependence | (DeducedAsType.isNull()
4957 ? TypeDependence::None
4958 : DeducedAsType->getDependence() &
4959 ~TypeDependence::VariablyModified)) {}
4960
4961public:
4962 bool isSugared() const { return !isCanonicalUnqualified(); }
4963 QualType desugar() const { return getCanonicalTypeInternal(); }
4964
4965 /// Get the type deduced for this placeholder type, or null if it's
4966 /// either not been deduced or was deduced to a dependent type.
4967 QualType getDeducedType() const {
4968 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4969 }
4970 bool isDeduced() const {
4971 return !isCanonicalUnqualified() || isDependentType();
4972 }
4973
4974 static bool classof(const Type *T) {
4975 return T->getTypeClass() == Auto ||
4976 T->getTypeClass() == DeducedTemplateSpecialization;
4977 }
4978};
4979
4980/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
4981/// by a type-constraint.
4982class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
4983 friend class ASTContext; // ASTContext creates these
4984
4985 ConceptDecl *TypeConstraintConcept;
4986
4987 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4988 TypeDependence ExtraDependence, ConceptDecl *CD,
4989 ArrayRef<TemplateArgument> TypeConstraintArgs);
4990
4991 const TemplateArgument *getArgBuffer() const {
4992 return reinterpret_cast<const TemplateArgument*>(this+1);
4993 }
4994
4995 TemplateArgument *getArgBuffer() {
4996 return reinterpret_cast<TemplateArgument*>(this+1);
4997 }
4998
4999public:
5000 /// Retrieve the template arguments.
5001 const TemplateArgument *getArgs() const {
5002 return getArgBuffer();
5003 }
5004
5005 /// Retrieve the number of template arguments.
5006 unsigned getNumArgs() const {
5007 return AutoTypeBits.NumArgs;
5008 }
5009
5010 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5011
5012 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5013 return {getArgs(), getNumArgs()};
5014 }
5015
5016 ConceptDecl *getTypeConstraintConcept() const {
5017 return TypeConstraintConcept;
5018 }
5019
5020 bool isConstrained() const {
5021 return TypeConstraintConcept != nullptr;
5022 }
5023
5024 bool isDecltypeAuto() const {
5025 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5026 }
5027
5028 AutoTypeKeyword getKeyword() const {
5029 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5030 }
5031
5032 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5033 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5034 getTypeConstraintConcept(), getTypeConstraintArguments());
5035 }
5036
5037 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5038 QualType Deduced, AutoTypeKeyword Keyword,
5039 bool IsDependent, ConceptDecl *CD,
5040 ArrayRef<TemplateArgument> Arguments);
5041
5042 static bool classof(const Type *T) {
5043 return T->getTypeClass() == Auto;
5044 }
5045};
5046
5047/// Represents a C++17 deduced template specialization type.
5048class DeducedTemplateSpecializationType : public DeducedType,
5049 public llvm::FoldingSetNode {
5050 friend class ASTContext; // ASTContext creates these
5051
5052 /// The name of the template whose arguments will be deduced.
5053 TemplateName Template;
5054
5055 DeducedTemplateSpecializationType(TemplateName Template,
5056 QualType DeducedAsType,
5057 bool IsDeducedAsDependent)
5058 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5059 toTypeDependence(Template.getDependence()) |
5060 (IsDeducedAsDependent
5061 ? TypeDependence::DependentInstantiation
5062 : TypeDependence::None)),
5063 Template(Template) {}
5064
5065public:
5066 /// Retrieve the name of the template that we are deducing.
5067 TemplateName getTemplateName() const { return Template;}
5068
5069 void Profile(llvm::FoldingSetNodeID &ID) {
5070 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5071 }
5072
5073 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5074 QualType Deduced, bool IsDependent) {
5075 Template.Profile(ID);
5076 ID.AddPointer(Deduced.getAsOpaquePtr());
5077 ID.AddBoolean(IsDependent);
5078 }
5079
5080 static bool classof(const Type *T) {
5081 return T->getTypeClass() == DeducedTemplateSpecialization;
5082 }
5083};
5084
5085/// Represents a type template specialization; the template
5086/// must be a class template, a type alias template, or a template
5087/// template parameter. A template which cannot be resolved to one of
5088/// these, e.g. because it is written with a dependent scope
5089/// specifier, is instead represented as a
5090/// @c DependentTemplateSpecializationType.
5091///
5092/// A non-dependent template specialization type is always "sugar",
5093/// typically for a \c RecordType. For example, a class template
5094/// specialization type of \c vector<int> will refer to a tag type for
5095/// the instantiation \c std::vector<int, std::allocator<int>>
5096///
5097/// Template specializations are dependent if either the template or
5098/// any of the template arguments are dependent, in which case the
5099/// type may also be canonical.
5100///
5101/// Instances of this type are allocated with a trailing array of
5102/// TemplateArguments, followed by a QualType representing the
5103/// non-canonical aliased type when the template is a type alias
5104/// template.
5105class alignas(8) TemplateSpecializationType
5106 : public Type,
5107 public llvm::FoldingSetNode {
5108 friend class ASTContext; // ASTContext creates these
5109
5110 /// The name of the template being specialized. This is
5111 /// either a TemplateName::Template (in which case it is a
5112 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5113 /// TypeAliasTemplateDecl*), a
5114 /// TemplateName::SubstTemplateTemplateParmPack, or a
5115 /// TemplateName::SubstTemplateTemplateParm (in which case the
5116 /// replacement must, recursively, be one of these).
5117 TemplateName Template;
5118
5119 TemplateSpecializationType(TemplateName T,
5120 ArrayRef<TemplateArgument> Args,
5121 QualType Canon,
5122 QualType Aliased);
5123
5124public:
5125 /// Determine whether any of the given template arguments are dependent.
5126 ///
5127 /// The converted arguments should be supplied when known; whether an
5128 /// argument is dependent can depend on the conversions performed on it
5129 /// (for example, a 'const int' passed as a template argument might be
5130 /// dependent if the parameter is a reference but non-dependent if the
5131 /// parameter is an int).
5132 ///
5133 /// Note that the \p Args parameter is unused: this is intentional, to remind
5134 /// the caller that they need to pass in the converted arguments, not the
5135 /// specified arguments.
5136 static bool
5137 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5138 ArrayRef<TemplateArgument> Converted);
5139 static bool
5140 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5141 ArrayRef<TemplateArgument> Converted);
5142 static bool anyInstantiationDependentTemplateArguments(
5143 ArrayRef<TemplateArgumentLoc> Args);
5144
5145 /// True if this template specialization type matches a current
5146 /// instantiation in the context in which it is found.
5147 bool isCurrentInstantiation() const {
5148 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5149 }
5150
5151 /// Determine if this template specialization type is for a type alias
5152 /// template that has been substituted.
5153 ///
5154 /// Nearly every template specialization type whose template is an alias
5155 /// template will be substituted. However, this is not the case when
5156 /// the specialization contains a pack expansion but the template alias
5157 /// does not have a corresponding parameter pack, e.g.,
5158 ///
5159 /// \code
5160 /// template<typename T, typename U, typename V> struct S;
5161 /// template<typename T, typename U> using A = S<T, int, U>;
5162 /// template<typename... Ts> struct X {
5163 /// typedef A<Ts...> type; // not a type alias
5164 /// };
5165 /// \endcode
5166 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5167
5168 /// Get the aliased type, if this is a specialization of a type alias
5169 /// template.
5170 QualType getAliasedType() const {
5171 assert(isTypeAlias() && "not a type alias template specialization")((void)0);
5172 return *reinterpret_cast<const QualType*>(end());
5173 }
5174
5175 using iterator = const TemplateArgument *;
5176
5177 iterator begin() const { return getArgs(); }
5178 iterator end() const; // defined inline in TemplateBase.h
5179
5180 /// Retrieve the name of the template that we are specializing.
5181 TemplateName getTemplateName() const { return Template; }
5182
5183 /// Retrieve the template arguments.
5184 const TemplateArgument *getArgs() const {
5185 return reinterpret_cast<const TemplateArgument *>(this + 1);
5186 }
5187
5188 /// Retrieve the number of template arguments.
5189 unsigned getNumArgs() const {
5190 return TemplateSpecializationTypeBits.NumArgs;
5191 }
5192
5193 /// Retrieve a specific template argument as a type.
5194 /// \pre \c isArgType(Arg)
5195 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5196
5197 ArrayRef<TemplateArgument> template_arguments() const {
5198 return {getArgs(), getNumArgs()};
5199 }
5200
5201 bool isSugared() const {
5202 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5203 }
5204
5205 QualType desugar() const {
5206 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5207 }
5208
5209 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5210 Profile(ID, Template, template_arguments(), Ctx);
5211 if (isTypeAlias())
5212 getAliasedType().Profile(ID);
5213 }
5214
5215 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5216 ArrayRef<TemplateArgument> Args,
5217 const ASTContext &Context);
5218
5219 static bool classof(const Type *T) {
5220 return T->getTypeClass() == TemplateSpecialization;
5221 }
5222};
5223
5224/// Print a template argument list, including the '<' and '>'
5225/// enclosing the template arguments.
5226void printTemplateArgumentList(raw_ostream &OS,
5227 ArrayRef<TemplateArgument> Args,
5228 const PrintingPolicy &Policy,
5229 const TemplateParameterList *TPL = nullptr);
5230
5231void printTemplateArgumentList(raw_ostream &OS,
5232 ArrayRef<TemplateArgumentLoc> Args,
5233 const PrintingPolicy &Policy,
5234 const TemplateParameterList *TPL = nullptr);
5235
5236void printTemplateArgumentList(raw_ostream &OS,
5237 const TemplateArgumentListInfo &Args,
5238 const PrintingPolicy &Policy,
5239 const TemplateParameterList *TPL = nullptr);
5240
5241/// The injected class name of a C++ class template or class
5242/// template partial specialization. Used to record that a type was
5243/// spelled with a bare identifier rather than as a template-id; the
5244/// equivalent for non-templated classes is just RecordType.
5245///
5246/// Injected class name types are always dependent. Template
5247/// instantiation turns these into RecordTypes.
5248///
5249/// Injected class name types are always canonical. This works
5250/// because it is impossible to compare an injected class name type
5251/// with the corresponding non-injected template type, for the same
5252/// reason that it is impossible to directly compare template
5253/// parameters from different dependent contexts: injected class name
5254/// types can only occur within the scope of a particular templated
5255/// declaration, and within that scope every template specialization
5256/// will canonicalize to the injected class name (when appropriate
5257/// according to the rules of the language).
5258class InjectedClassNameType : public Type {
5259 friend class ASTContext; // ASTContext creates these.
5260 friend class ASTNodeImporter;
5261 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5262 // currently suitable for AST reading, too much
5263 // interdependencies.
5264 template <class T> friend class serialization::AbstractTypeReader;
5265
5266 CXXRecordDecl *Decl;
5267
5268 /// The template specialization which this type represents.
5269 /// For example, in
5270 /// template <class T> class A { ... };
5271 /// this is A<T>, whereas in
5272 /// template <class X, class Y> class A<B<X,Y> > { ... };
5273 /// this is A<B<X,Y> >.
5274 ///
5275 /// It is always unqualified, always a template specialization type,
5276 /// and always dependent.
5277 QualType InjectedType;
5278
5279 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5280 : Type(InjectedClassName, QualType(),
5281 TypeDependence::DependentInstantiation),
5282 Decl(D), InjectedType(TST) {
5283 assert(isa<TemplateSpecializationType>(TST))((void)0);
5284 assert(!TST.hasQualifiers())((void)0);
5285 assert(TST->isDependentType())((void)0);
5286 }
5287
5288public:
5289 QualType getInjectedSpecializationType() const { return InjectedType; }
5290
5291 const TemplateSpecializationType *getInjectedTST() const {
5292 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5293 }
5294
5295 TemplateName getTemplateName() const {
5296 return getInjectedTST()->getTemplateName();
5297 }
5298
5299 CXXRecordDecl *getDecl() const;
5300
5301 bool isSugared() const { return false; }
5302 QualType desugar() const { return QualType(this, 0); }
5303
5304 static bool classof(const Type *T) {
5305 return T->getTypeClass() == InjectedClassName;
5306 }
5307};
5308
5309/// The kind of a tag type.
5310enum TagTypeKind {
5311 /// The "struct" keyword.
5312 TTK_Struct,
5313
5314 /// The "__interface" keyword.
5315 TTK_Interface,
5316
5317 /// The "union" keyword.
5318 TTK_Union,
5319
5320 /// The "class" keyword.
5321 TTK_Class,
5322
5323 /// The "enum" keyword.
5324 TTK_Enum
5325};
5326
5327/// The elaboration keyword that precedes a qualified type name or
5328/// introduces an elaborated-type-specifier.
5329enum ElaboratedTypeKeyword {
5330 /// The "struct" keyword introduces the elaborated-type-specifier.
5331 ETK_Struct,
5332
5333 /// The "__interface" keyword introduces the elaborated-type-specifier.
5334 ETK_Interface,
5335
5336 /// The "union" keyword introduces the elaborated-type-specifier.
5337 ETK_Union,
5338
5339 /// The "class" keyword introduces the elaborated-type-specifier.
5340 ETK_Class,
5341
5342 /// The "enum" keyword introduces the elaborated-type-specifier.
5343 ETK_Enum,
5344
5345 /// The "typename" keyword precedes the qualified type name, e.g.,
5346 /// \c typename T::type.
5347 ETK_Typename,
5348
5349 /// No keyword precedes the qualified type name.
5350 ETK_None
5351};
5352
5353/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5354/// The keyword in stored in the free bits of the base class.
5355/// Also provides a few static helpers for converting and printing
5356/// elaborated type keyword and tag type kind enumerations.
5357class TypeWithKeyword : public Type {
5358protected:
5359 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5360 QualType Canonical, TypeDependence Dependence)
5361 : Type(tc, Canonical, Dependence) {
5362 TypeWithKeywordBits.Keyword = Keyword;
5363 }
5364
5365public:
5366 ElaboratedTypeKeyword getKeyword() const {
5367 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5368 }
5369
5370 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5371 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5372
5373 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5374 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5375 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5376
5377 /// Converts a TagTypeKind into an elaborated type keyword.
5378 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5379
5380 /// Converts an elaborated type keyword into a TagTypeKind.
5381 /// It is an error to provide an elaborated type keyword
5382 /// which *isn't* a tag kind here.
5383 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5384
5385 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5386
5387 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5388
5389 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5390 return getKeywordName(getKeywordForTagTypeKind(Kind));
5391 }
5392
5393 class CannotCastToThisType {};
5394 static CannotCastToThisType classof(const Type *);
5395};
5396
5397/// Represents a type that was referred to using an elaborated type
5398/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5399/// or both.
5400///
5401/// This type is used to keep track of a type name as written in the
5402/// source code, including tag keywords and any nested-name-specifiers.
5403/// The type itself is always "sugar", used to express what was written
5404/// in the source code but containing no additional semantic information.
5405class ElaboratedType final
5406 : public TypeWithKeyword,
5407 public llvm::FoldingSetNode,
5408 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5409 friend class ASTContext; // ASTContext creates these
5410 friend TrailingObjects;
5411
5412 /// The nested name specifier containing the qualifier.
5413 NestedNameSpecifier *NNS;
5414
5415 /// The type that this qualified name refers to.
5416 QualType NamedType;
5417
5418 /// The (re)declaration of this tag type owned by this occurrence is stored
5419 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5420 /// it, or obtain a null pointer if there is none.
5421
5422 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5423 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5424 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5425 // Any semantic dependence on the qualifier will have
5426 // been incorporated into NamedType. We still need to
5427 // track syntactic (instantiation / error / pack)
5428 // dependence on the qualifier.
5429 NamedType->getDependence() |
5430 (NNS ? toSyntacticDependence(
5431 toTypeDependence(NNS->getDependence()))
5432 : TypeDependence::None)),
5433 NNS(NNS), NamedType(NamedType) {
5434 ElaboratedTypeBits.HasOwnedTagDecl = false;
5435 if (OwnedTagDecl) {
5436 ElaboratedTypeBits.HasOwnedTagDecl = true;
5437 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5438 }
5439 assert(!(Keyword == ETK_None && NNS == nullptr) &&((void)0)
5440 "ElaboratedType cannot have elaborated type keyword "((void)0)
5441 "and name qualifier both null.")((void)0);
5442 }
5443
5444public:
5445 /// Retrieve the qualification on this type.
5446 NestedNameSpecifier *getQualifier() const { return NNS; }
5447
5448 /// Retrieve the type named by the qualified-id.
5449 QualType getNamedType() const { return NamedType; }
5450
5451 /// Remove a single level of sugar.
5452 QualType desugar() const { return getNamedType(); }
5453
5454 /// Returns whether this type directly provides sugar.
5455 bool isSugared() const { return true; }
5456
5457 /// Return the (re)declaration of this type owned by this occurrence of this
5458 /// type, or nullptr if there is none.
5459 TagDecl *getOwnedTagDecl() const {
5460 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5461 : nullptr;
5462 }
5463
5464 void Profile(llvm::FoldingSetNodeID &ID) {
5465 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5466 }
5467
5468 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5469 NestedNameSpecifier *NNS, QualType NamedType,
5470 TagDecl *OwnedTagDecl) {
5471 ID.AddInteger(Keyword);
5472 ID.AddPointer(NNS);
5473 NamedType.Profile(ID);
5474 ID.AddPointer(OwnedTagDecl);
5475 }
5476
5477 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5478};
5479
5480/// Represents a qualified type name for which the type name is
5481/// dependent.
5482///
5483/// DependentNameType represents a class of dependent types that involve a
5484/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5485/// name of a type. The DependentNameType may start with a "typename" (for a
5486/// typename-specifier), "class", "struct", "union", or "enum" (for a
5487/// dependent elaborated-type-specifier), or nothing (in contexts where we
5488/// know that we must be referring to a type, e.g., in a base class specifier).
5489/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5490/// mode, this type is used with non-dependent names to delay name lookup until
5491/// instantiation.
5492class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5493 friend class ASTContext; // ASTContext creates these
5494
5495 /// The nested name specifier containing the qualifier.
5496 NestedNameSpecifier *NNS;
5497
5498 /// The type that this typename specifier refers to.
5499 const IdentifierInfo *Name;
5500
5501 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5502 const IdentifierInfo *Name, QualType CanonType)
5503 : TypeWithKeyword(Keyword, DependentName, CanonType,
5504 TypeDependence::DependentInstantiation |
5505 toTypeDependence(NNS->getDependence())),
5506 NNS(NNS), Name(Name) {}
5507
5508public:
5509 /// Retrieve the qualification on this type.
5510 NestedNameSpecifier *getQualifier() const { return NNS; }
5511
5512 /// Retrieve the type named by the typename specifier as an identifier.
5513 ///
5514 /// This routine will return a non-NULL identifier pointer when the
5515 /// form of the original typename was terminated by an identifier,
5516 /// e.g., "typename T::type".
5517 const IdentifierInfo *getIdentifier() const {
5518 return Name;
5519 }
5520
5521 bool isSugared() const { return false; }
5522 QualType desugar() const { return QualType(this, 0); }
5523
5524 void Profile(llvm::FoldingSetNodeID &ID) {
5525 Profile(ID, getKeyword(), NNS, Name);
5526 }
5527
5528 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5529 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5530 ID.AddInteger(Keyword);
5531 ID.AddPointer(NNS);
5532 ID.AddPointer(Name);
5533 }
5534
5535 static bool classof(const Type *T) {
5536 return T->getTypeClass() == DependentName;
5537 }
5538};
5539
5540/// Represents a template specialization type whose template cannot be
5541/// resolved, e.g.
5542/// A<T>::template B<T>
5543class alignas(8) DependentTemplateSpecializationType
5544 : public TypeWithKeyword,
5545 public llvm::FoldingSetNode {
5546 friend class ASTContext; // ASTContext creates these
5547
5548 /// The nested name specifier containing the qualifier.
5549 NestedNameSpecifier *NNS;
5550
5551 /// The identifier of the template.
5552 const IdentifierInfo *Name;
5553
5554 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5555 NestedNameSpecifier *NNS,
5556 const IdentifierInfo *Name,
5557 ArrayRef<TemplateArgument> Args,
5558 QualType Canon);
5559
5560 const TemplateArgument *getArgBuffer() const {
5561 return reinterpret_cast<const TemplateArgument*>(this+1);
5562 }
5563
5564 TemplateArgument *getArgBuffer() {
5565 return reinterpret_cast<TemplateArgument*>(this+1);
5566 }
5567
5568public:
5569 NestedNameSpecifier *getQualifier() const { return NNS; }
5570 const IdentifierInfo *getIdentifier() const { return Name; }
5571
5572 /// Retrieve the template arguments.
5573 const TemplateArgument *getArgs() const {
5574 return getArgBuffer();
5575 }
5576
5577 /// Retrieve the number of template arguments.
5578 unsigned getNumArgs() const {
5579 return DependentTemplateSpecializationTypeBits.NumArgs;
5580 }
5581
5582 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5583
5584 ArrayRef<TemplateArgument> template_arguments() const {
5585 return {getArgs(), getNumArgs()};
5586 }
5587
5588 using iterator = const TemplateArgument *;
5589
5590 iterator begin() const { return getArgs(); }
5591 iterator end() const; // inline in TemplateBase.h
5592
5593 bool isSugared() const { return false; }
5594 QualType desugar() const { return QualType(this, 0); }
5595
5596 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5597 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5598 }
5599
5600 static void Profile(llvm::FoldingSetNodeID &ID,
5601 const ASTContext &Context,
5602 ElaboratedTypeKeyword Keyword,
5603 NestedNameSpecifier *Qualifier,
5604 const IdentifierInfo *Name,
5605 ArrayRef<TemplateArgument> Args);
5606
5607 static bool classof(const Type *T) {
5608 return T->getTypeClass() == DependentTemplateSpecialization;
5609 }
5610};
5611
5612/// Represents a pack expansion of types.
5613///
5614/// Pack expansions are part of C++11 variadic templates. A pack
5615/// expansion contains a pattern, which itself contains one or more
5616/// "unexpanded" parameter packs. When instantiated, a pack expansion
5617/// produces a series of types, each instantiated from the pattern of
5618/// the expansion, where the Ith instantiation of the pattern uses the
5619/// Ith arguments bound to each of the unexpanded parameter packs. The
5620/// pack expansion is considered to "expand" these unexpanded
5621/// parameter packs.
5622///
5623/// \code
5624/// template<typename ...Types> struct tuple;
5625///
5626/// template<typename ...Types>
5627/// struct tuple_of_references {
5628/// typedef tuple<Types&...> type;
5629/// };
5630/// \endcode
5631///
5632/// Here, the pack expansion \c Types&... is represented via a
5633/// PackExpansionType whose pattern is Types&.
5634class PackExpansionType : public Type, public llvm::FoldingSetNode {
5635 friend class ASTContext; // ASTContext creates these
5636
5637 /// The pattern of the pack expansion.
5638 QualType Pattern;
5639
5640 PackExpansionType(QualType Pattern, QualType Canon,
5641 Optional<unsigned> NumExpansions)
5642 : Type(PackExpansion, Canon,
5643 (Pattern->getDependence() | TypeDependence::Dependent |
5644 TypeDependence::Instantiation) &
5645 ~TypeDependence::UnexpandedPack),
5646 Pattern(Pattern) {
5647 PackExpansionTypeBits.NumExpansions =
5648 NumExpansions ? *NumExpansions + 1 : 0;
5649 }
5650
5651public:
5652 /// Retrieve the pattern of this pack expansion, which is the
5653 /// type that will be repeatedly instantiated when instantiating the
5654 /// pack expansion itself.
5655 QualType getPattern() const { return Pattern; }
5656
5657 /// Retrieve the number of expansions that this pack expansion will
5658 /// generate, if known.
5659 Optional<unsigned> getNumExpansions() const {
5660 if (PackExpansionTypeBits.NumExpansions)
5661 return PackExpansionTypeBits.NumExpansions - 1;
5662 return None;
5663 }
5664
5665 bool isSugared() const { return false; }
5666 QualType desugar() const { return QualType(this, 0); }
5667
5668 void Profile(llvm::FoldingSetNodeID &ID) {
5669 Profile(ID, getPattern(), getNumExpansions());
5670 }
5671
5672 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5673 Optional<unsigned> NumExpansions) {
5674 ID.AddPointer(Pattern.getAsOpaquePtr());
5675 ID.AddBoolean(NumExpansions.hasValue());
5676 if (NumExpansions)
5677 ID.AddInteger(*NumExpansions);
5678 }
5679
5680 static bool classof(const Type *T) {
5681 return T->getTypeClass() == PackExpansion;
5682 }
5683};
5684
5685/// This class wraps the list of protocol qualifiers. For types that can
5686/// take ObjC protocol qualifers, they can subclass this class.
5687template <class T>
5688class ObjCProtocolQualifiers {
5689protected:
5690 ObjCProtocolQualifiers() = default;
5691
5692 ObjCProtocolDecl * const *getProtocolStorage() const {
5693 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5694 }
5695
5696 ObjCProtocolDecl **getProtocolStorage() {
5697 return static_cast<T*>(this)->getProtocolStorageImpl();
5698 }
5699
5700 void setNumProtocols(unsigned N) {
5701 static_cast<T*>(this)->setNumProtocolsImpl(N);
5702 }
5703
5704 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5705 setNumProtocols(protocols.size());
5706 assert(getNumProtocols() == protocols.size() &&((void)0)
5707 "bitfield overflow in protocol count")((void)0);
5708 if (!protocols.empty())
5709 memcpy(getProtocolStorage(), protocols.data(),
5710 protocols.size() * sizeof(ObjCProtocolDecl*));
5711 }
5712
5713public:
5714 using qual_iterator = ObjCProtocolDecl * const *;
5715 using qual_range = llvm::iterator_range<qual_iterator>;
5716
5717 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5718 qual_iterator qual_begin() const { return getProtocolStorage(); }
5719 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5720
5721 bool qual_empty() const { return getNumProtocols() == 0; }
5722
5723 /// Return the number of qualifying protocols in this type, or 0 if
5724 /// there are none.
5725 unsigned getNumProtocols() const {
5726 return static_cast<const T*>(this)->getNumProtocolsImpl();
5727 }
5728
5729 /// Fetch a protocol by index.
5730 ObjCProtocolDecl *getProtocol(unsigned I) const {
5731 assert(I < getNumProtocols() && "Out-of-range protocol access")((void)0);
5732 return qual_begin()[I];
5733 }
5734
5735 /// Retrieve all of the protocol qualifiers.
5736 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5737 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5738 }
5739};
5740
5741/// Represents a type parameter type in Objective C. It can take
5742/// a list of protocols.
5743class ObjCTypeParamType : public Type,
5744 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5745 public llvm::FoldingSetNode {
5746 friend class ASTContext;
5747 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5748
5749 /// The number of protocols stored on this type.
5750 unsigned NumProtocols : 6;
5751
5752 ObjCTypeParamDecl *OTPDecl;
5753
5754 /// The protocols are stored after the ObjCTypeParamType node. In the
5755 /// canonical type, the list of protocols are sorted alphabetically
5756 /// and uniqued.
5757 ObjCProtocolDecl **getProtocolStorageImpl();
5758
5759 /// Return the number of qualifying protocols in this interface type,
5760 /// or 0 if there are none.
5761 unsigned getNumProtocolsImpl() const {
5762 return NumProtocols;
5763 }
5764
5765 void setNumProtocolsImpl(unsigned N) {
5766 NumProtocols = N;
5767 }
5768
5769 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5770 QualType can,
5771 ArrayRef<ObjCProtocolDecl *> protocols);
5772
5773public:
5774 bool isSugared() const { return true; }
5775 QualType desugar() const { return getCanonicalTypeInternal(); }
5776
5777 static bool classof(const Type *T) {
5778 return T->getTypeClass() == ObjCTypeParam;
5779 }
5780
5781 void Profile(llvm::FoldingSetNodeID &ID);
5782 static void Profile(llvm::FoldingSetNodeID &ID,
5783 const ObjCTypeParamDecl *OTPDecl,
5784 QualType CanonicalType,
5785 ArrayRef<ObjCProtocolDecl *> protocols);
5786
5787 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5788};
5789
5790/// Represents a class type in Objective C.
5791///
5792/// Every Objective C type is a combination of a base type, a set of
5793/// type arguments (optional, for parameterized classes) and a list of
5794/// protocols.
5795///
5796/// Given the following declarations:
5797/// \code
5798/// \@class C<T>;
5799/// \@protocol P;
5800/// \endcode
5801///
5802/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5803/// with base C and no protocols.
5804///
5805/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5806/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5807/// protocol list.
5808/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5809/// and protocol list [P].
5810///
5811/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5812/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5813/// and no protocols.
5814///
5815/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5816/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5817/// this should get its own sugar class to better represent the source.
5818class ObjCObjectType : public Type,
5819 public ObjCProtocolQualifiers<ObjCObjectType> {
5820 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5821
5822 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5823 // after the ObjCObjectPointerType node.
5824 // ObjCObjectType.NumProtocols - the number of protocols stored
5825 // after the type arguments of ObjCObjectPointerType node.
5826 //
5827 // These protocols are those written directly on the type. If
5828 // protocol qualifiers ever become additive, the iterators will need
5829 // to get kindof complicated.
5830 //
5831 // In the canonical object type, these are sorted alphabetically
5832 // and uniqued.
5833
5834 /// Either a BuiltinType or an InterfaceType or sugar for either.
5835 QualType BaseType;
5836
5837 /// Cached superclass type.
5838 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5839 CachedSuperClassType;
5840
5841 QualType *getTypeArgStorage();
5842 const QualType *getTypeArgStorage() const {
5843 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5844 }
5845
5846 ObjCProtocolDecl **getProtocolStorageImpl();
5847 /// Return the number of qualifying protocols in this interface type,
5848 /// or 0 if there are none.
5849 unsigned getNumProtocolsImpl() const {
5850 return ObjCObjectTypeBits.NumProtocols;
5851 }
5852 void setNumProtocolsImpl(unsigned N) {
5853 ObjCObjectTypeBits.NumProtocols = N;
5854 }
5855
5856protected:
5857 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5858
5859 ObjCObjectType(QualType Canonical, QualType Base,
5860 ArrayRef<QualType> typeArgs,
5861 ArrayRef<ObjCProtocolDecl *> protocols,
5862 bool isKindOf);
5863
5864 ObjCObjectType(enum Nonce_ObjCInterface)
5865 : Type(ObjCInterface, QualType(), TypeDependence::None),
5866 BaseType(QualType(this_(), 0)) {
5867 ObjCObjectTypeBits.NumProtocols = 0;
5868 ObjCObjectTypeBits.NumTypeArgs = 0;
5869 ObjCObjectTypeBits.IsKindOf = 0;
5870 }
5871
5872 void computeSuperClassTypeSlow() const;
5873
5874public:
5875 /// Gets the base type of this object type. This is always (possibly
5876 /// sugar for) one of:
5877 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5878 /// user, which is a typedef for an ObjCObjectPointerType)
5879 /// - the 'Class' builtin type (same caveat)
5880 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5881 QualType getBaseType() const { return BaseType; }
5882
5883 bool isObjCId() const {
5884 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5885 }
5886
5887 bool isObjCClass() const {
5888 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5889 }
5890
5891 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5892 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5893 bool isObjCUnqualifiedIdOrClass() const {
5894 if (!qual_empty()) return false;
5895 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5896 return T->getKind() == BuiltinType::ObjCId ||
5897 T->getKind() == BuiltinType::ObjCClass;
5898 return false;
5899 }
5900 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5901 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5902
5903 /// Gets the interface declaration for this object type, if the base type
5904 /// really is an interface.
5905 ObjCInterfaceDecl *getInterface() const;
5906
5907 /// Determine whether this object type is "specialized", meaning
5908 /// that it has type arguments.
5909 bool isSpecialized() const;
5910
5911 /// Determine whether this object type was written with type arguments.
5912 bool isSpecializedAsWritten() const {
5913 return ObjCObjectTypeBits.NumTypeArgs > 0;
5914 }
5915
5916 /// Determine whether this object type is "unspecialized", meaning
5917 /// that it has no type arguments.
5918 bool isUnspecialized() const { return !isSpecialized(); }
5919
5920 /// Determine whether this object type is "unspecialized" as
5921 /// written, meaning that it has no type arguments.
5922 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5923
5924 /// Retrieve the type arguments of this object type (semantically).
5925 ArrayRef<QualType> getTypeArgs() const;
5926
5927 /// Retrieve the type arguments of this object type as they were
5928 /// written.
5929 ArrayRef<QualType> getTypeArgsAsWritten() const {
5930 return llvm::makeArrayRef(getTypeArgStorage(),
5931 ObjCObjectTypeBits.NumTypeArgs);
5932 }
5933
5934 /// Whether this is a "__kindof" type as written.
5935 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5936
5937 /// Whether this ia a "__kindof" type (semantically).
5938 bool isKindOfType() const;
5939
5940 /// Retrieve the type of the superclass of this object type.
5941 ///
5942 /// This operation substitutes any type arguments into the
5943 /// superclass of the current class type, potentially producing a
5944 /// specialization of the superclass type. Produces a null type if
5945 /// there is no superclass.
5946 QualType getSuperClassType() const {
5947 if (!CachedSuperClassType.getInt())
5948 computeSuperClassTypeSlow();
5949
5950 assert(CachedSuperClassType.getInt() && "Superclass not set?")((void)0);
5951 return QualType(CachedSuperClassType.getPointer(), 0);
5952 }
5953
5954 /// Strip off the Objective-C "kindof" type and (with it) any
5955 /// protocol qualifiers.
5956 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5957
5958 bool isSugared() const { return false; }
5959 QualType desugar() const { return QualType(this, 0); }
5960
5961 static bool classof(const Type *T) {
5962 return T->getTypeClass() == ObjCObject ||
5963 T->getTypeClass() == ObjCInterface;
5964 }
5965};
5966
5967/// A class providing a concrete implementation
5968/// of ObjCObjectType, so as to not increase the footprint of
5969/// ObjCInterfaceType. Code outside of ASTContext and the core type
5970/// system should not reference this type.
5971class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5972 friend class ASTContext;
5973
5974 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5975 // will need to be modified.
5976
5977 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5978 ArrayRef<QualType> typeArgs,
5979 ArrayRef<ObjCProtocolDecl *> protocols,
5980 bool isKindOf)
5981 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5982
5983public:
5984 void Profile(llvm::FoldingSetNodeID &ID);
5985 static void Profile(llvm::FoldingSetNodeID &ID,
5986 QualType Base,
5987 ArrayRef<QualType> typeArgs,
5988 ArrayRef<ObjCProtocolDecl *> protocols,
5989 bool isKindOf);
5990};
5991
5992inline QualType *ObjCObjectType::getTypeArgStorage() {
5993 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5994}
5995
5996inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5997 return reinterpret_cast<ObjCProtocolDecl**>(
5998 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5999}
6000
6001inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
6002 return reinterpret_cast<ObjCProtocolDecl**>(
6003 static_cast<ObjCTypeParamType*>(this)+1);
6004}
6005
6006/// Interfaces are the core concept in Objective-C for object oriented design.
6007/// They basically correspond to C++ classes. There are two kinds of interface
6008/// types: normal interfaces like `NSString`, and qualified interfaces, which
6009/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6010///
6011/// ObjCInterfaceType guarantees the following properties when considered
6012/// as a subtype of its superclass, ObjCObjectType:
6013/// - There are no protocol qualifiers. To reinforce this, code which
6014/// tries to invoke the protocol methods via an ObjCInterfaceType will
6015/// fail to compile.
6016/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6017/// T->getBaseType() == QualType(T, 0).
6018class ObjCInterfaceType : public ObjCObjectType {
6019 friend class ASTContext; // ASTContext creates these.
6020 friend class ASTReader;
6021 friend class ObjCInterfaceDecl;
6022 template <class T> friend class serialization::AbstractTypeReader;
6023
6024 mutable ObjCInterfaceDecl *Decl;
6025
6026 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6027 : ObjCObjectType(Nonce_ObjCInterface),
6028 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6029
6030public:
6031 /// Get the declaration of this interface.
6032 ObjCInterfaceDecl *getDecl() const { return Decl; }
6033
6034 bool isSugared() const { return false; }
6035 QualType desugar() const { return QualType(this, 0); }
6036
6037 static bool classof(const Type *T) {
6038 return T->getTypeClass() == ObjCInterface;
6039 }
6040
6041 // Nonsense to "hide" certain members of ObjCObjectType within this
6042 // class. People asking for protocols on an ObjCInterfaceType are
6043 // not going to get what they want: ObjCInterfaceTypes are
6044 // guaranteed to have no protocols.
6045 enum {
6046 qual_iterator,
6047 qual_begin,
6048 qual_end,
6049 getNumProtocols,
6050 getProtocol
6051 };
6052};
6053
6054inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6055 QualType baseType = getBaseType();
6056 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6057 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6058 return T->getDecl();
6059
6060 baseType = ObjT->getBaseType();
6061 }
6062
6063 return nullptr;
6064}
6065
6066/// Represents a pointer to an Objective C object.
6067///
6068/// These are constructed from pointer declarators when the pointee type is
6069/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6070/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6071/// and 'Class<P>' are translated into these.
6072///
6073/// Pointers to pointers to Objective C objects are still PointerTypes;
6074/// only the first level of pointer gets it own type implementation.
6075class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6076 friend class ASTContext; // ASTContext creates these.
6077
6078 QualType PointeeType;
6079
6080 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6081 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6082 PointeeType(Pointee) {}
6083
6084public:
6085 /// Gets the type pointed to by this ObjC pointer.
6086 /// The result will always be an ObjCObjectType or sugar thereof.
6087 QualType getPointeeType() const { return PointeeType; }
6088
6089 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6090 ///
6091 /// This method is equivalent to getPointeeType() except that
6092 /// it discards any typedefs (or other sugar) between this
6093 /// type and the "outermost" object type. So for:
6094 /// \code
6095 /// \@class A; \@protocol P; \@protocol Q;
6096 /// typedef A<P> AP;
6097 /// typedef A A1;
6098 /// typedef A1<P> A1P;
6099 /// typedef A1P<Q> A1PQ;
6100 /// \endcode
6101 /// For 'A*', getObjectType() will return 'A'.
6102 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6103 /// For 'AP*', getObjectType() will return 'A<P>'.
6104 /// For 'A1*', getObjectType() will return 'A'.
6105 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6106 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6107 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6108 /// adding protocols to a protocol-qualified base discards the
6109 /// old qualifiers (for now). But if it didn't, getObjectType()
6110 /// would return 'A1P<Q>' (and we'd have to make iterating over
6111 /// qualifiers more complicated).
6112 const ObjCObjectType *getObjectType() const {
6113 return PointeeType->castAs<ObjCObjectType>();
6114 }
6115
6116 /// If this pointer points to an Objective C
6117 /// \@interface type, gets the type for that interface. Any protocol
6118 /// qualifiers on the interface are ignored.
6119 ///
6120 /// \return null if the base type for this pointer is 'id' or 'Class'
6121 const ObjCInterfaceType *getInterfaceType() const;
6122
6123 /// If this pointer points to an Objective \@interface
6124 /// type, gets the declaration for that interface.
6125 ///
6126 /// \return null if the base type for this pointer is 'id' or 'Class'
6127 ObjCInterfaceDecl *getInterfaceDecl() const {
6128 return getObjectType()->getInterface();
6129 }
6130
6131 /// True if this is equivalent to the 'id' type, i.e. if
6132 /// its object type is the primitive 'id' type with no protocols.
6133 bool isObjCIdType() const {
6134 return getObjectType()->isObjCUnqualifiedId();
6135 }
6136
6137 /// True if this is equivalent to the 'Class' type,
6138 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6139 bool isObjCClassType() const {
6140 return getObjectType()->isObjCUnqualifiedClass();
6141 }
6142
6143 /// True if this is equivalent to the 'id' or 'Class' type,
6144 bool isObjCIdOrClassType() const {
6145 return getObjectType()->isObjCUnqualifiedIdOrClass();
6146 }
6147
6148 /// True if this is equivalent to 'id<P>' for some non-empty set of
6149 /// protocols.
6150 bool isObjCQualifiedIdType() const {
6151 return getObjectType()->isObjCQualifiedId();
6152 }
6153
6154 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6155 /// protocols.
6156 bool isObjCQualifiedClassType() const {
6157 return getObjectType()->isObjCQualifiedClass();
6158 }
6159
6160 /// Whether this is a "__kindof" type.
6161 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6162
6163 /// Whether this type is specialized, meaning that it has type arguments.
6164 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6165
6166 /// Whether this type is specialized, meaning that it has type arguments.
6167 bool isSpecializedAsWritten() const {
6168 return getObjectType()->isSpecializedAsWritten();
6169 }
6170
6171 /// Whether this type is unspecialized, meaning that is has no type arguments.
6172 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6173
6174 /// Determine whether this object type is "unspecialized" as
6175 /// written, meaning that it has no type arguments.
6176 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6177
6178 /// Retrieve the type arguments for this type.
6179 ArrayRef<QualType> getTypeArgs() const {
6180 return getObjectType()->getTypeArgs();
6181 }
6182
6183 /// Retrieve the type arguments for this type.
6184 ArrayRef<QualType> getTypeArgsAsWritten() const {
6185 return getObjectType()->getTypeArgsAsWritten();
6186 }
6187
6188 /// An iterator over the qualifiers on the object type. Provided
6189 /// for convenience. This will always iterate over the full set of
6190 /// protocols on a type, not just those provided directly.
6191 using qual_iterator = ObjCObjectType::qual_iterator;
6192 using qual_range = llvm::iterator_range<qual_iterator>;
6193
6194 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6195
6196 qual_iterator qual_begin() const {
6197 return getObjectType()->qual_begin();
6198 }
6199
6200 qual_iterator qual_end() const {
6201 return getObjectType()->qual_end();
6202 }
6203
6204 bool qual_empty() const { return getObjectType()->qual_empty(); }
6205
6206 /// Return the number of qualifying protocols on the object type.
6207 unsigned getNumProtocols() const {
6208 return getObjectType()->getNumProtocols();
6209 }
6210
6211 /// Retrieve a qualifying protocol by index on the object type.
6212 ObjCProtocolDecl *getProtocol(unsigned I) const {
6213 return getObjectType()->getProtocol(I);
6214 }
6215
6216 bool isSugared() const { return false; }
6217 QualType desugar() const { return QualType(this, 0); }
6218
6219 /// Retrieve the type of the superclass of this object pointer type.
6220 ///
6221 /// This operation substitutes any type arguments into the
6222 /// superclass of the current class type, potentially producing a
6223 /// pointer to a specialization of the superclass type. Produces a
6224 /// null type if there is no superclass.
6225 QualType getSuperClassType() const;
6226
6227 /// Strip off the Objective-C "kindof" type and (with it) any
6228 /// protocol qualifiers.
6229 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6230 const ASTContext &ctx) const;
6231
6232 void Profile(llvm::FoldingSetNodeID &ID) {
6233 Profile(ID, getPointeeType());
6234 }
6235
6236 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6237 ID.AddPointer(T.getAsOpaquePtr());
6238 }
6239
6240 static bool classof(const Type *T) {
6241 return T->getTypeClass() == ObjCObjectPointer;
6242 }
6243};
6244
6245class AtomicType : public Type, public llvm::FoldingSetNode {
6246 friend class ASTContext; // ASTContext creates these.
6247
6248 QualType ValueType;
6249
6250 AtomicType(QualType ValTy, QualType Canonical)
6251 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6252
6253public:
6254 /// Gets the type contained by this atomic type, i.e.
6255 /// the type returned by performing an atomic load of this atomic type.
6256 QualType getValueType() const { return ValueType; }
6257
6258 bool isSugared() const { return false; }
6259 QualType desugar() const { return QualType(this, 0); }
6260
6261 void Profile(llvm::FoldingSetNodeID &ID) {
6262 Profile(ID, getValueType());
6263 }
6264
6265 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6266 ID.AddPointer(T.getAsOpaquePtr());
6267 }
6268
6269 static bool classof(const Type *T) {
6270 return T->getTypeClass() == Atomic;
6271 }
6272};
6273
6274/// PipeType - OpenCL20.
6275class PipeType : public Type, public llvm::FoldingSetNode {
6276 friend class ASTContext; // ASTContext creates these.
6277
6278 QualType ElementType;
6279 bool isRead;
6280
6281 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6282 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6283 ElementType(elemType), isRead(isRead) {}
6284
6285public:
6286 QualType getElementType() const { return ElementType; }
6287
6288 bool isSugared() const { return false; }
6289
6290 QualType desugar() const { return QualType(this, 0); }
6291
6292 void Profile(llvm::FoldingSetNodeID &ID) {
6293 Profile(ID, getElementType(), isReadOnly());
6294 }
6295
6296 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6297 ID.AddPointer(T.getAsOpaquePtr());
6298 ID.AddBoolean(isRead);
6299 }
6300
6301 static bool classof(const Type *T) {
6302 return T->getTypeClass() == Pipe;
6303 }
6304
6305 bool isReadOnly() const { return isRead; }
6306};
6307
6308/// A fixed int type of a specified bitwidth.
6309class ExtIntType final : public Type, public llvm::FoldingSetNode {
6310 friend class ASTContext;
6311 unsigned IsUnsigned : 1;
6312 unsigned NumBits : 24;
6313
6314protected:
6315 ExtIntType(bool isUnsigned, unsigned NumBits);
6316
6317public:
6318 bool isUnsigned() const { return IsUnsigned; }
6319 bool isSigned() const { return !IsUnsigned; }
6320 unsigned getNumBits() const { return NumBits; }
6321
6322 bool isSugared() const { return false; }
6323 QualType desugar() const { return QualType(this, 0); }
6324
6325 void Profile(llvm::FoldingSetNodeID &ID) {
6326 Profile(ID, isUnsigned(), getNumBits());
6327 }
6328
6329 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6330 unsigned NumBits) {
6331 ID.AddBoolean(IsUnsigned);
6332 ID.AddInteger(NumBits);
6333 }
6334
6335 static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; }
6336};
6337
6338class DependentExtIntType final : public Type, public llvm::FoldingSetNode {
6339 friend class ASTContext;
6340 const ASTContext &Context;
6341 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6342
6343protected:
6344 DependentExtIntType(const ASTContext &Context, bool IsUnsigned,
6345 Expr *NumBits);
6346
6347public:
6348 bool isUnsigned() const;
6349 bool isSigned() const { return !isUnsigned(); }
6350 Expr *getNumBitsExpr() const;
6351
6352 bool isSugared() const { return false; }
6353 QualType desugar() const { return QualType(this, 0); }
6354
6355 void Profile(llvm::FoldingSetNodeID &ID) {
6356 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6357 }
6358 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6359 bool IsUnsigned, Expr *NumBitsExpr);
6360
6361 static bool classof(const Type *T) {
6362 return T->getTypeClass() == DependentExtInt;
6363 }
6364};
6365
6366/// A qualifier set is used to build a set of qualifiers.
6367class QualifierCollector : public Qualifiers {
6368public:
6369 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6370
6371 /// Collect any qualifiers on the given type and return an
6372 /// unqualified type. The qualifiers are assumed to be consistent
6373 /// with those already in the type.
6374 const Type *strip(QualType type) {
6375 addFastQualifiers(type.getLocalFastQualifiers());
6376 if (!type.hasLocalNonFastQualifiers())
6377 return type.getTypePtrUnsafe();
6378
6379 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6380 addConsistentQualifiers(extQuals->getQualifiers());
6381 return extQuals->getBaseType();
6382 }
6383
6384 /// Apply the collected qualifiers to the given type.
6385 QualType apply(const ASTContext &Context, QualType QT) const;
6386
6387 /// Apply the collected qualifiers to the given type.
6388 QualType apply(const ASTContext &Context, const Type* T) const;
6389};
6390
6391/// A container of type source information.
6392///
6393/// A client can read the relevant info using TypeLoc wrappers, e.g:
6394/// @code
6395/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6396/// TL.getBeginLoc().print(OS, SrcMgr);
6397/// @endcode
6398class alignas(8) TypeSourceInfo {
6399 // Contains a memory block after the class, used for type source information,
6400 // allocated by ASTContext.
6401 friend class ASTContext;
6402
6403 QualType Ty;
6404
6405 TypeSourceInfo(QualType ty) : Ty(ty) {}
6406
6407public:
6408 /// Return the type wrapped by this type source info.
6409 QualType getType() const { return Ty; }
6410
6411 /// Return the TypeLoc wrapper for the type source info.
6412 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6413
6414 /// Override the type stored in this TypeSourceInfo. Use with caution!
6415 void overrideType(QualType T) { Ty = T; }
6416};
6417
6418// Inline function definitions.
6419
6420inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6421 SplitQualType desugar =
6422 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6423 desugar.Quals.addConsistentQualifiers(Quals);
6424 return desugar;
6425}
6426
6427inline const Type *QualType::getTypePtr() const {
6428 return getCommonPtr()->BaseType;
6429}
6430
6431inline const Type *QualType::getTypePtrOrNull() const {
6432 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6433}
6434
6435inline SplitQualType QualType::split() const {
6436 if (!hasLocalNonFastQualifiers())
6437 return SplitQualType(getTypePtrUnsafe(),
6438 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6439
6440 const ExtQuals *eq = getExtQualsUnsafe();
6441 Qualifiers qs = eq->getQualifiers();
6442 qs.addFastQualifiers(getLocalFastQualifiers());
6443 return SplitQualType(eq->getBaseType(), qs);
6444}
6445
6446inline Qualifiers QualType::getLocalQualifiers() const {
6447 Qualifiers Quals;
6448 if (hasLocalNonFastQualifiers())
6449 Quals = getExtQualsUnsafe()->getQualifiers();
6450 Quals.addFastQualifiers(getLocalFastQualifiers());
6451 return Quals;
6452}
6453
6454inline Qualifiers QualType::getQualifiers() const {
6455 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6456 quals.addFastQualifiers(getLocalFastQualifiers());
6457 return quals;
6458}
6459
6460inline unsigned QualType::getCVRQualifiers() const {
6461 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6462 cvr |= getLocalCVRQualifiers();
6463 return cvr;
6464}
6465
6466inline QualType QualType::getCanonicalType() const {
6467 QualType canon = getCommonPtr()->CanonicalType;
6468 return canon.withFastQualifiers(getLocalFastQualifiers());
6469}
6470
6471inline bool QualType::isCanonical() const {
6472 return getTypePtr()->isCanonicalUnqualified();
6473}
6474
6475inline bool QualType::isCanonicalAsParam() const {
6476 if (!isCanonical()) return false;
6477 if (hasLocalQualifiers()) return false;
6478
6479 const Type *T = getTypePtr();
6480 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6481 return false;
6482
6483 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6484}
6485
6486inline bool QualType::isConstQualified() const {
6487 return isLocalConstQualified() ||
6488 getCommonPtr()->CanonicalType.isLocalConstQualified();
6489}
6490
6491inline bool QualType::isRestrictQualified() const {
6492 return isLocalRestrictQualified() ||
6493 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6494}
6495
6496
6497inline bool QualType::isVolatileQualified() const {
6498 return isLocalVolatileQualified() ||
6499 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6500}
6501
6502inline bool QualType::hasQualifiers() const {
6503 return hasLocalQualifiers() ||
6504 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6505}
6506
6507inline QualType QualType::getUnqualifiedType() const {
6508 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6509 return QualType(getTypePtr(), 0);
6510
6511 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6512}
6513
6514inline SplitQualType QualType::getSplitUnqualifiedType() const {
6515 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6516 return split();
6517
6518 return getSplitUnqualifiedTypeImpl(*this);
6519}
6520
6521inline void QualType::removeLocalConst() {
6522 removeLocalFastQualifiers(Qualifiers::Const);
6523}
6524
6525inline void QualType::removeLocalRestrict() {
6526 removeLocalFastQualifiers(Qualifiers::Restrict);
6527}
6528
6529inline void QualType::removeLocalVolatile() {
6530 removeLocalFastQualifiers(Qualifiers::Volatile);
6531}
6532
6533inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6534 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((void)0);
6535 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6536 "Fast bits differ from CVR bits!");
6537
6538 // Fast path: we don't need to touch the slow qualifiers.
6539 removeLocalFastQualifiers(Mask);
6540}
6541
6542/// Check if this type has any address space qualifier.
6543inline bool QualType::hasAddressSpace() const {
6544 return getQualifiers().hasAddressSpace();
6545}
6546
6547/// Return the address space of this type.
6548inline LangAS QualType::getAddressSpace() const {
6549 return getQualifiers().getAddressSpace();
6550}
6551
6552/// Return the gc attribute of this type.
6553inline Qualifiers::GC QualType::getObjCGCAttr() const {
6554 return getQualifiers().getObjCGCAttr();
6555}
6556
6557inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6558 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6559 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6560 return false;
6561}
6562
6563inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6564 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6565 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6566 return false;
6567}
6568
6569inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6570 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6571 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6572 return false;
6573}
6574
6575inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6576 if (const auto *PT = t.getAs<PointerType>()) {
6577 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6578 return FT->getExtInfo();
6579 } else if (const auto *FT = t.getAs<FunctionType>())
6580 return FT->getExtInfo();
6581
6582 return FunctionType::ExtInfo();
6583}
6584
6585inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6586 return getFunctionExtInfo(*t);
6587}
6588
6589/// Determine whether this type is more
6590/// qualified than the Other type. For example, "const volatile int"
6591/// is more qualified than "const int", "volatile int", and
6592/// "int". However, it is not more qualified than "const volatile
6593/// int".
6594inline bool QualType::isMoreQualifiedThan(QualType other) const {
6595 Qualifiers MyQuals = getQualifiers();
6596 Qualifiers OtherQuals = other.getQualifiers();
6597 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6598}
6599
6600/// Determine whether this type is at last
6601/// as qualified as the Other type. For example, "const volatile
6602/// int" is at least as qualified as "const int", "volatile int",
6603/// "int", and "const volatile int".
6604inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6605 Qualifiers OtherQuals = other.getQualifiers();
6606
6607 // Ignore __unaligned qualifier if this type is a void.
6608 if (getUnqualifiedType()->isVoidType())
6609 OtherQuals.removeUnaligned();
6610
6611 return getQualifiers().compatiblyIncludes(OtherQuals);
6612}
6613
6614/// If Type is a reference type (e.g., const
6615/// int&), returns the type that the reference refers to ("const
6616/// int"). Otherwise, returns the type itself. This routine is used
6617/// throughout Sema to implement C++ 5p6:
6618///
6619/// If an expression initially has the type "reference to T" (8.3.2,
6620/// 8.5.3), the type is adjusted to "T" prior to any further
6621/// analysis, the expression designates the object or function
6622/// denoted by the reference, and the expression is an lvalue.
6623inline QualType QualType::getNonReferenceType() const {
6624 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6625 return RefType->getPointeeType();
6626 else
6627 return *this;
6628}
6629
6630inline bool QualType::isCForbiddenLValueType() const {
6631 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6632 getTypePtr()->isFunctionType());
6633}
6634
6635/// Tests whether the type is categorized as a fundamental type.
6636///
6637/// \returns True for types specified in C++0x [basic.fundamental].
6638inline bool Type::isFundamentalType() const {
6639 return isVoidType() ||
6640 isNullPtrType() ||
6641 // FIXME: It's really annoying that we don't have an
6642 // 'isArithmeticType()' which agrees with the standard definition.
6643 (isArithmeticType() && !isEnumeralType());
6644}
6645
6646/// Tests whether the type is categorized as a compound type.
6647///
6648/// \returns True for types specified in C++0x [basic.compound].
6649inline bool Type::isCompoundType() const {
6650 // C++0x [basic.compound]p1:
6651 // Compound types can be constructed in the following ways:
6652 // -- arrays of objects of a given type [...];
6653 return isArrayType() ||
6654 // -- functions, which have parameters of given types [...];
6655 isFunctionType() ||
6656 // -- pointers to void or objects or functions [...];
6657 isPointerType() ||
6658 // -- references to objects or functions of a given type. [...]
6659 isReferenceType() ||
6660 // -- classes containing a sequence of objects of various types, [...];
6661 isRecordType() ||
6662 // -- unions, which are classes capable of containing objects of different
6663 // types at different times;
6664 isUnionType() ||
6665 // -- enumerations, which comprise a set of named constant values. [...];
6666 isEnumeralType() ||
6667 // -- pointers to non-static class members, [...].
6668 isMemberPointerType();
6669}
6670
6671inline bool Type::isFunctionType() const {
6672 return isa<FunctionType>(CanonicalType);
6673}
6674
6675inline bool Type::isPointerType() const {
6676 return isa<PointerType>(CanonicalType);
6677}
6678
6679inline bool Type::isAnyPointerType() const {
6680 return isPointerType() || isObjCObjectPointerType();
6681}
6682
6683inline bool Type::isBlockPointerType() const {
6684 return isa<BlockPointerType>(CanonicalType);
6685}
6686
6687inline bool Type::isReferenceType() const {
6688 return isa<ReferenceType>(CanonicalType);
6689}
6690
6691inline bool Type::isLValueReferenceType() const {
6692 return isa<LValueReferenceType>(CanonicalType);
6693}
6694
6695inline bool Type::isRValueReferenceType() const {
6696 return isa<RValueReferenceType>(CanonicalType);
6697}
6698
6699inline bool Type::isObjectPointerType() const {
6700 // Note: an "object pointer type" is not the same thing as a pointer to an
6701 // object type; rather, it is a pointer to an object type or a pointer to cv
6702 // void.
6703 if (const auto *T = getAs<PointerType>())
6704 return !T->getPointeeType()->isFunctionType();
6705 else
6706 return false;
6707}
6708
6709inline bool Type::isFunctionPointerType() const {
6710 if (const auto *T = getAs<PointerType>())
6711 return T->getPointeeType()->isFunctionType();
6712 else
6713 return false;
6714}
6715
6716inline bool Type::isFunctionReferenceType() const {
6717 if (const auto *T = getAs<ReferenceType>())
6718 return T->getPointeeType()->isFunctionType();
6719 else
6720 return false;
6721}
6722
6723inline bool Type::isMemberPointerType() const {
6724 return isa<MemberPointerType>(CanonicalType);
6725}
6726
6727inline bool Type::isMemberFunctionPointerType() const {
6728 if (const auto *T = getAs<MemberPointerType>())
6729 return T->isMemberFunctionPointer();
6730 else
6731 return false;
6732}
6733
6734inline bool Type::isMemberDataPointerType() const {
6735 if (const auto *T = getAs<MemberPointerType>())
6736 return T->isMemberDataPointer();
6737 else
6738 return false;
6739}
6740
6741inline bool Type::isArrayType() const {
6742 return isa<ArrayType>(CanonicalType);
6743}
6744
6745inline bool Type::isConstantArrayType() const {
6746 return isa<ConstantArrayType>(CanonicalType);
6747}
6748
6749inline bool Type::isIncompleteArrayType() const {
6750 return isa<IncompleteArrayType>(CanonicalType);
6751}
6752
6753inline bool Type::isVariableArrayType() const {
6754 return isa<VariableArrayType>(CanonicalType);
6755}
6756
6757inline bool Type::isDependentSizedArrayType() const {
6758 return isa<DependentSizedArrayType>(CanonicalType);
6759}
6760
6761inline bool Type::isBuiltinType() const {
6762 return isa<BuiltinType>(CanonicalType);
6763}
6764
6765inline bool Type::isRecordType() const {
6766 return isa<RecordType>(CanonicalType);
6767}
6768
6769inline bool Type::isEnumeralType() const {
6770 return isa<EnumType>(CanonicalType);
6771}
6772
6773inline bool Type::isAnyComplexType() const {
6774 return isa<ComplexType>(CanonicalType);
6775}
6776
6777inline bool Type::isVectorType() const {
6778 return isa<VectorType>(CanonicalType);
6779}
6780
6781inline bool Type::isExtVectorType() const {
6782 return isa<ExtVectorType>(CanonicalType);
6783}
6784
6785inline bool Type::isMatrixType() const {
6786 return isa<MatrixType>(CanonicalType);
6787}
6788
6789inline bool Type::isConstantMatrixType() const {
6790 return isa<ConstantMatrixType>(CanonicalType);
6791}
6792
6793inline bool Type::isDependentAddressSpaceType() const {
6794 return isa<DependentAddressSpaceType>(CanonicalType);
6795}
6796
6797inline bool Type::isObjCObjectPointerType() const {
6798 return isa<ObjCObjectPointerType>(CanonicalType);
6799}
6800
6801inline bool Type::isObjCObjectType() const {
6802 return isa<ObjCObjectType>(CanonicalType);
6803}
6804
6805inline bool Type::isObjCObjectOrInterfaceType() const {
6806 return isa<ObjCInterfaceType>(CanonicalType) ||
6807 isa<ObjCObjectType>(CanonicalType);
6808}
6809
6810inline bool Type::isAtomicType() const {
6811 return isa<AtomicType>(CanonicalType);
6812}
6813
6814inline bool Type::isUndeducedAutoType() const {
6815 return isa<AutoType>(CanonicalType);
6816}
6817
6818inline bool Type::isObjCQualifiedIdType() const {
6819 if (const auto *OPT
12.1
'OPT' is null
12.1
'OPT' is null
= getAs<ObjCObjectPointerType>())
12
Assuming the object is not a 'ObjCObjectPointerType'
13
Taking false branch
6820 return OPT->isObjCQualifiedIdType();
6821 return false;
14
Returning zero, which participates in a condition later
6822}
6823
6824inline bool Type::isObjCQualifiedClassType() const {
6825 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6826 return OPT->isObjCQualifiedClassType();
6827 return false;
6828}
6829
6830inline bool Type::isObjCIdType() const {
6831 if (const auto *OPT
7.1
'OPT' is null
7.1
'OPT' is null
= getAs<ObjCObjectPointerType>())
7
Assuming the object is not a 'ObjCObjectPointerType'
8
Taking false branch
6832 return OPT->isObjCIdType();
6833 return false;
9
Returning zero, which participates in a condition later
6834}
6835
6836inline bool Type::isObjCClassType() const {
6837 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6838 return OPT->isObjCClassType();
6839 return false;
6840}
6841
6842inline bool Type::isObjCSelType() const {
6843 if (const auto *OPT = getAs<PointerType>())
6844 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6845 return false;
6846}
6847
6848inline bool Type::isObjCBuiltinType() const {
6849 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6850}
6851
6852inline bool Type::isDecltypeType() const {
6853 return isa<DecltypeType>(this);
6854}
6855
6856#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6857 inline bool Type::is##Id##Type() const { \
6858 return isSpecificBuiltinType(BuiltinType::Id); \
6859 }
6860#include "clang/Basic/OpenCLImageTypes.def"
6861
6862inline bool Type::isSamplerT() const {
6863 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6864}
6865
6866inline bool Type::isEventT() const {
6867 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6868}
6869
6870inline bool Type::isClkEventT() const {
6871 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6872}
6873
6874inline bool Type::isQueueT() const {
6875 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6876}
6877
6878inline bool Type::isReserveIDT() const {
6879 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6880}
6881
6882inline bool Type::isImageType() const {
6883#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6884 return
6885#include "clang/Basic/OpenCLImageTypes.def"
6886 false; // end boolean or operation
6887}
6888
6889inline bool Type::isPipeType() const {
6890 return isa<PipeType>(CanonicalType);
6891}
6892
6893inline bool Type::isExtIntType() const {
6894 return isa<ExtIntType>(CanonicalType);
6895}
6896
6897#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6898 inline bool Type::is##Id##Type() const { \
6899 return isSpecificBuiltinType(BuiltinType::Id); \
6900 }
6901#include "clang/Basic/OpenCLExtensionTypes.def"
6902
6903inline bool Type::isOCLIntelSubgroupAVCType() const {
6904#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6905 isOCLIntelSubgroupAVC##Id##Type() ||
6906 return
6907#include "clang/Basic/OpenCLExtensionTypes.def"
6908 false; // end of boolean or operation
6909}
6910
6911inline bool Type::isOCLExtOpaqueType() const {
6912#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6913 return
6914#include "clang/Basic/OpenCLExtensionTypes.def"
6915 false; // end of boolean or operation
6916}
6917
6918inline bool Type::isOpenCLSpecificType() const {
6919 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6920 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6921}
6922
6923inline bool Type::isTemplateTypeParmType() const {
6924 return isa<TemplateTypeParmType>(CanonicalType);
6925}
6926
6927inline bool Type::isSpecificBuiltinType(unsigned K) const {
6928 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6929 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6930 }
6931 return false;
6932}
6933
6934inline bool Type::isPlaceholderType() const {
6935 if (const auto *BT = dyn_cast<BuiltinType>(this))
6936 return BT->isPlaceholderType();
6937 return false;
6938}
6939
6940inline const BuiltinType *Type::getAsPlaceholderType() const {
6941 if (const auto *BT = dyn_cast<BuiltinType>(this))
6942 if (BT->isPlaceholderType())
6943 return BT;
6944 return nullptr;
6945}
6946
6947inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6948 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((void)0);
6949 return isSpecificBuiltinType(K);
6950}
6951
6952inline bool Type::isNonOverloadPlaceholderType() const {
6953 if (const auto *BT = dyn_cast<BuiltinType>(this))
6954 return BT->isNonOverloadPlaceholderType();
6955 return false;
6956}
6957
6958inline bool Type::isVoidType() const {
6959 return isSpecificBuiltinType(BuiltinType::Void);
6960}
6961
6962inline bool Type::isHalfType() const {
6963 // FIXME: Should we allow complex __fp16? Probably not.
6964 return isSpecificBuiltinType(BuiltinType::Half);
6965}
6966
6967inline bool Type::isFloat16Type() const {
6968 return isSpecificBuiltinType(BuiltinType::Float16);
6969}
6970
6971inline bool Type::isBFloat16Type() const {
6972 return isSpecificBuiltinType(BuiltinType::BFloat16);
6973}
6974
6975inline bool Type::isFloat128Type() const {
6976 return isSpecificBuiltinType(BuiltinType::Float128);
6977}
6978
6979inline bool Type::isNullPtrType() const {
6980 return isSpecificBuiltinType(BuiltinType::NullPtr);
6981}
6982
6983bool IsEnumDeclComplete(EnumDecl *);
6984bool IsEnumDeclScoped(EnumDecl *);
6985
6986inline bool Type::isIntegerType() const {
6987 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6988 return BT->getKind() >= BuiltinType::Bool &&
6989 BT->getKind() <= BuiltinType::Int128;
6990 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6991 // Incomplete enum types are not treated as integer types.
6992 // FIXME: In C++, enum types are never integer types.
6993 return IsEnumDeclComplete(ET->getDecl()) &&
6994 !IsEnumDeclScoped(ET->getDecl());
6995 }
6996 return isExtIntType();
6997}
6998
6999inline bool Type::isFixedPointType() const {
7000 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7001 return BT->getKind() >= BuiltinType::ShortAccum &&
7002 BT->getKind() <= BuiltinType::SatULongFract;
7003 }
7004 return false;
7005}
7006
7007inline bool Type::isFixedPointOrIntegerType() const {
7008 return isFixedPointType() || isIntegerType();
7009}
7010
7011inline bool Type::isSaturatedFixedPointType() const {
7012 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7013 return BT->getKind() >= BuiltinType::SatShortAccum &&
7014 BT->getKind() <= BuiltinType::SatULongFract;
7015 }
7016 return false;
7017}
7018
7019inline bool Type::isUnsaturatedFixedPointType() const {
7020 return isFixedPointType() && !isSaturatedFixedPointType();
7021}
7022
7023inline bool Type::isSignedFixedPointType() const {
7024 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7025 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7026 BT->getKind() <= BuiltinType::LongAccum) ||
7027 (BT->getKind() >= BuiltinType::ShortFract &&
7028 BT->getKind() <= BuiltinType::LongFract) ||
7029 (BT->getKind() >= BuiltinType::SatShortAccum &&
7030 BT->getKind() <= BuiltinType::SatLongAccum) ||
7031 (BT->getKind() >= BuiltinType::SatShortFract &&
7032 BT->getKind() <= BuiltinType::SatLongFract));
7033 }
7034 return false;
7035}
7036
7037inline bool Type::isUnsignedFixedPointType() const {
7038 return isFixedPointType() && !isSignedFixedPointType();
7039}
7040
7041inline bool Type::isScalarType() const {
7042 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7043 return BT->getKind() > BuiltinType::Void &&
7044 BT->getKind() <= BuiltinType::NullPtr;
7045 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7046 // Enums are scalar types, but only if they are defined. Incomplete enums
7047 // are not treated as scalar types.
7048 return IsEnumDeclComplete(ET->getDecl());
7049 return isa<PointerType>(CanonicalType) ||
7050 isa<BlockPointerType>(CanonicalType) ||
7051 isa<MemberPointerType>(CanonicalType) ||
7052 isa<ComplexType>(CanonicalType) ||
7053 isa<ObjCObjectPointerType>(CanonicalType) ||
7054 isExtIntType();
7055}
7056
7057inline bool Type::isIntegralOrEnumerationType() const {
7058 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7059 return BT->getKind() >= BuiltinType::Bool &&
7060 BT->getKind() <= BuiltinType::Int128;
7061
7062 // Check for a complete enum type; incomplete enum types are not properly an
7063 // enumeration type in the sense required here.
7064 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7065 return IsEnumDeclComplete(ET->getDecl());
7066
7067 return isExtIntType();
7068}
7069
7070inline bool Type::isBooleanType() const {
7071 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7072 return BT->getKind() == BuiltinType::Bool;
7073 return false;
7074}
7075
7076inline bool Type::isUndeducedType() const {
7077 auto *DT = getContainedDeducedType();
7078 return DT && !DT->isDeduced();
7079}
7080
7081/// Determines whether this is a type for which one can define
7082/// an overloaded operator.
7083inline bool Type::isOverloadableType() const {
7084 return isDependentType() || isRecordType() || isEnumeralType();
7085}
7086
7087/// Determines whether this type is written as a typedef-name.
7088inline bool Type::isTypedefNameType() const {
7089 if (getAs<TypedefType>())
7090 return true;
7091 if (auto *TST = getAs<TemplateSpecializationType>())
7092 return TST->isTypeAlias();
7093 return false;
7094}
7095
7096/// Determines whether this type can decay to a pointer type.
7097inline bool Type::canDecayToPointerType() const {
7098 return isFunctionType() || isArrayType();
7099}
7100
7101inline bool Type::hasPointerRepresentation() const {
7102 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7103 isObjCObjectPointerType() || isNullPtrType());
7104}
7105
7106inline bool Type::hasObjCPointerRepresentation() const {
7107 return isObjCObjectPointerType();
7108}
7109
7110inline const Type *Type::getBaseElementTypeUnsafe() const {
7111 const Type *type = this;
7112 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7113 type = arrayType->getElementType().getTypePtr();
7114 return type;
7115}
7116
7117inline const Type *Type::getPointeeOrArrayElementType() const {
7118 const Type *type = this;
7119 if (type->isAnyPointerType())
7120 return type->getPointeeType().getTypePtr();
7121 else if (type->isArrayType())
7122 return type->getBaseElementTypeUnsafe();
7123 return type;
7124}
7125/// Insertion operator for partial diagnostics. This allows sending adress
7126/// spaces into a diagnostic with <<.
7127inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7128 LangAS AS) {
7129 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7130 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7131 return PD;
7132}
7133
7134/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7135/// into a diagnostic with <<.
7136inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7137 Qualifiers Q) {
7138 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7139 DiagnosticsEngine::ArgumentKind::ak_qual);
7140 return PD;
7141}
7142
7143/// Insertion operator for partial diagnostics. This allows sending QualType's
7144/// into a diagnostic with <<.
7145inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7146 QualType T) {
7147 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
7148 DiagnosticsEngine::ak_qualtype);
7149 return PD;
7150}
7151
7152// Helper class template that is used by Type::getAs to ensure that one does
7153// not try to look through a qualified type to get to an array type.
7154template <typename T>
7155using TypeIsArrayType =
7156 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7157 std::is_base_of<ArrayType, T>::value>;
7158
7159// Member-template getAs<specific type>'.
7160template <typename T> const T *Type::getAs() const {
7161 static_assert(!TypeIsArrayType<T>::value,
7162 "ArrayType cannot be used with getAs!");
7163
7164 // If this is directly a T type, return it.
7165 if (const auto *Ty = dyn_cast<T>(this))
7166 return Ty;
7167
7168 // If the canonical form of this type isn't the right kind, reject it.
7169 if (!isa<T>(CanonicalType))
7170 return nullptr;
7171
7172 // If this is a typedef for the type, strip the typedef off without
7173 // losing all typedef information.
7174 return cast<T>(getUnqualifiedDesugaredType());
7175}
7176
7177template <typename T> const T *Type::getAsAdjusted() const {
7178 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7179
7180 // If this is directly a T type, return it.
7181 if (const auto *Ty = dyn_cast<T>(this))
7182 return Ty;
7183
7184 // If the canonical form of this type isn't the right kind, reject it.
7185 if (!isa<T>(CanonicalType))
7186 return nullptr;
7187
7188 // Strip off type adjustments that do not modify the underlying nature of the
7189 // type.
7190 const Type *Ty = this;
7191 while (Ty) {
7192 if (const auto *A = dyn_cast<AttributedType>(Ty))
7193 Ty = A->getModifiedType().getTypePtr();
7194 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7195 Ty = E->desugar().getTypePtr();
7196 else if (const auto *P = dyn_cast<ParenType>(Ty))
7197 Ty = P->desugar().getTypePtr();
7198 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7199 Ty = A->desugar().getTypePtr();
7200 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7201 Ty = M->desugar().getTypePtr();
7202 else
7203 break;
7204 }
7205
7206 // Just because the canonical type is correct does not mean we can use cast<>,
7207 // since we may not have stripped off all the sugar down to the base type.
7208 return dyn_cast<T>(Ty);
7209}
7210
7211inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7212 // If this is directly an array type, return it.
7213 if (const auto *arr = dyn_cast<ArrayType>(this))
7214 return arr;
7215
7216 // If the canonical form of this type isn't the right kind, reject it.
7217 if (!isa<ArrayType>(CanonicalType))
7218 return nullptr;
7219
7220 // If this is a typedef for the type, strip the typedef off without
7221 // losing all typedef information.
7222 return cast<ArrayType>(getUnqualifiedDesugaredType());
7223}
7224
7225template <typename T> const T *Type::castAs() const {
7226 static_assert(!TypeIsArrayType<T>::value,
7227 "ArrayType cannot be used with castAs!");
7228
7229 if (const auto *ty = dyn_cast<T>(this)) return ty;
7230 assert(isa<T>(CanonicalType))((void)0);
7231 return cast<T>(getUnqualifiedDesugaredType());
7232}
7233
7234inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7235 assert(isa<ArrayType>(CanonicalType))((void)0);
7236 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7237 return cast<ArrayType>(getUnqualifiedDesugaredType());
7238}
7239
7240DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7241 QualType CanonicalPtr)
7242 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7243#ifndef NDEBUG1
7244 QualType Adjusted = getAdjustedType();
7245 (void)AttributedType::stripOuterNullability(Adjusted);
7246 assert(isa<PointerType>(Adjusted))((void)0);
7247#endif
7248}
7249
7250QualType DecayedType::getPointeeType() const {
7251 QualType Decayed = getDecayedType();
7252 (void)AttributedType::stripOuterNullability(Decayed);
7253 return cast<PointerType>(Decayed)->getPointeeType();
7254}
7255
7256// Get the decimal string representation of a fixed point type, represented
7257// as a scaled integer.
7258// TODO: At some point, we should change the arguments to instead just accept an
7259// APFixedPoint instead of APSInt and scale.
7260void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7261 unsigned Scale);
7262
7263} // namespace clang
7264
7265#endif // LLVM_CLANG_AST_TYPE_H