File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaLookup.cpp |
Warning: | line 4193, column 37 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // This file implements name lookup for C, C++, Objective-C, and | ||||
10 | // Objective-C++. | ||||
11 | // | ||||
12 | //===----------------------------------------------------------------------===// | ||||
13 | |||||
14 | #include "clang/AST/ASTContext.h" | ||||
15 | #include "clang/AST/CXXInheritance.h" | ||||
16 | #include "clang/AST/Decl.h" | ||||
17 | #include "clang/AST/DeclCXX.h" | ||||
18 | #include "clang/AST/DeclLookups.h" | ||||
19 | #include "clang/AST/DeclObjC.h" | ||||
20 | #include "clang/AST/DeclTemplate.h" | ||||
21 | #include "clang/AST/Expr.h" | ||||
22 | #include "clang/AST/ExprCXX.h" | ||||
23 | #include "clang/Basic/Builtins.h" | ||||
24 | #include "clang/Basic/FileManager.h" | ||||
25 | #include "clang/Basic/LangOptions.h" | ||||
26 | #include "clang/Lex/HeaderSearch.h" | ||||
27 | #include "clang/Lex/ModuleLoader.h" | ||||
28 | #include "clang/Lex/Preprocessor.h" | ||||
29 | #include "clang/Sema/DeclSpec.h" | ||||
30 | #include "clang/Sema/Lookup.h" | ||||
31 | #include "clang/Sema/Overload.h" | ||||
32 | #include "clang/Sema/Scope.h" | ||||
33 | #include "clang/Sema/ScopeInfo.h" | ||||
34 | #include "clang/Sema/Sema.h" | ||||
35 | #include "clang/Sema/SemaInternal.h" | ||||
36 | #include "clang/Sema/TemplateDeduction.h" | ||||
37 | #include "clang/Sema/TypoCorrection.h" | ||||
38 | #include "llvm/ADT/STLExtras.h" | ||||
39 | #include "llvm/ADT/SmallPtrSet.h" | ||||
40 | #include "llvm/ADT/TinyPtrVector.h" | ||||
41 | #include "llvm/ADT/edit_distance.h" | ||||
42 | #include "llvm/Support/ErrorHandling.h" | ||||
43 | #include <algorithm> | ||||
44 | #include <iterator> | ||||
45 | #include <list> | ||||
46 | #include <set> | ||||
47 | #include <utility> | ||||
48 | #include <vector> | ||||
49 | |||||
50 | #include "OpenCLBuiltins.inc" | ||||
51 | |||||
52 | using namespace clang; | ||||
53 | using namespace sema; | ||||
54 | |||||
55 | namespace { | ||||
56 | class UnqualUsingEntry { | ||||
57 | const DeclContext *Nominated; | ||||
58 | const DeclContext *CommonAncestor; | ||||
59 | |||||
60 | public: | ||||
61 | UnqualUsingEntry(const DeclContext *Nominated, | ||||
62 | const DeclContext *CommonAncestor) | ||||
63 | : Nominated(Nominated), CommonAncestor(CommonAncestor) { | ||||
64 | } | ||||
65 | |||||
66 | const DeclContext *getCommonAncestor() const { | ||||
67 | return CommonAncestor; | ||||
68 | } | ||||
69 | |||||
70 | const DeclContext *getNominatedNamespace() const { | ||||
71 | return Nominated; | ||||
72 | } | ||||
73 | |||||
74 | // Sort by the pointer value of the common ancestor. | ||||
75 | struct Comparator { | ||||
76 | bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { | ||||
77 | return L.getCommonAncestor() < R.getCommonAncestor(); | ||||
78 | } | ||||
79 | |||||
80 | bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { | ||||
81 | return E.getCommonAncestor() < DC; | ||||
82 | } | ||||
83 | |||||
84 | bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { | ||||
85 | return DC < E.getCommonAncestor(); | ||||
86 | } | ||||
87 | }; | ||||
88 | }; | ||||
89 | |||||
90 | /// A collection of using directives, as used by C++ unqualified | ||||
91 | /// lookup. | ||||
92 | class UnqualUsingDirectiveSet { | ||||
93 | Sema &SemaRef; | ||||
94 | |||||
95 | typedef SmallVector<UnqualUsingEntry, 8> ListTy; | ||||
96 | |||||
97 | ListTy list; | ||||
98 | llvm::SmallPtrSet<DeclContext*, 8> visited; | ||||
99 | |||||
100 | public: | ||||
101 | UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} | ||||
102 | |||||
103 | void visitScopeChain(Scope *S, Scope *InnermostFileScope) { | ||||
104 | // C++ [namespace.udir]p1: | ||||
105 | // During unqualified name lookup, the names appear as if they | ||||
106 | // were declared in the nearest enclosing namespace which contains | ||||
107 | // both the using-directive and the nominated namespace. | ||||
108 | DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); | ||||
109 | assert(InnermostFileDC && InnermostFileDC->isFileContext())((void)0); | ||||
110 | |||||
111 | for (; S; S = S->getParent()) { | ||||
112 | // C++ [namespace.udir]p1: | ||||
113 | // A using-directive shall not appear in class scope, but may | ||||
114 | // appear in namespace scope or in block scope. | ||||
115 | DeclContext *Ctx = S->getEntity(); | ||||
116 | if (Ctx && Ctx->isFileContext()) { | ||||
117 | visit(Ctx, Ctx); | ||||
118 | } else if (!Ctx || Ctx->isFunctionOrMethod()) { | ||||
119 | for (auto *I : S->using_directives()) | ||||
120 | if (SemaRef.isVisible(I)) | ||||
121 | visit(I, InnermostFileDC); | ||||
122 | } | ||||
123 | } | ||||
124 | } | ||||
125 | |||||
126 | // Visits a context and collect all of its using directives | ||||
127 | // recursively. Treats all using directives as if they were | ||||
128 | // declared in the context. | ||||
129 | // | ||||
130 | // A given context is only every visited once, so it is important | ||||
131 | // that contexts be visited from the inside out in order to get | ||||
132 | // the effective DCs right. | ||||
133 | void visit(DeclContext *DC, DeclContext *EffectiveDC) { | ||||
134 | if (!visited.insert(DC).second) | ||||
135 | return; | ||||
136 | |||||
137 | addUsingDirectives(DC, EffectiveDC); | ||||
138 | } | ||||
139 | |||||
140 | // Visits a using directive and collects all of its using | ||||
141 | // directives recursively. Treats all using directives as if they | ||||
142 | // were declared in the effective DC. | ||||
143 | void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | ||||
144 | DeclContext *NS = UD->getNominatedNamespace(); | ||||
145 | if (!visited.insert(NS).second) | ||||
146 | return; | ||||
147 | |||||
148 | addUsingDirective(UD, EffectiveDC); | ||||
149 | addUsingDirectives(NS, EffectiveDC); | ||||
150 | } | ||||
151 | |||||
152 | // Adds all the using directives in a context (and those nominated | ||||
153 | // by its using directives, transitively) as if they appeared in | ||||
154 | // the given effective context. | ||||
155 | void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { | ||||
156 | SmallVector<DeclContext*, 4> queue; | ||||
157 | while (true) { | ||||
158 | for (auto UD : DC->using_directives()) { | ||||
159 | DeclContext *NS = UD->getNominatedNamespace(); | ||||
160 | if (SemaRef.isVisible(UD) && visited.insert(NS).second) { | ||||
161 | addUsingDirective(UD, EffectiveDC); | ||||
162 | queue.push_back(NS); | ||||
163 | } | ||||
164 | } | ||||
165 | |||||
166 | if (queue.empty()) | ||||
167 | return; | ||||
168 | |||||
169 | DC = queue.pop_back_val(); | ||||
170 | } | ||||
171 | } | ||||
172 | |||||
173 | // Add a using directive as if it had been declared in the given | ||||
174 | // context. This helps implement C++ [namespace.udir]p3: | ||||
175 | // The using-directive is transitive: if a scope contains a | ||||
176 | // using-directive that nominates a second namespace that itself | ||||
177 | // contains using-directives, the effect is as if the | ||||
178 | // using-directives from the second namespace also appeared in | ||||
179 | // the first. | ||||
180 | void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | ||||
181 | // Find the common ancestor between the effective context and | ||||
182 | // the nominated namespace. | ||||
183 | DeclContext *Common = UD->getNominatedNamespace(); | ||||
184 | while (!Common->Encloses(EffectiveDC)) | ||||
185 | Common = Common->getParent(); | ||||
186 | Common = Common->getPrimaryContext(); | ||||
187 | |||||
188 | list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); | ||||
189 | } | ||||
190 | |||||
191 | void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } | ||||
192 | |||||
193 | typedef ListTy::const_iterator const_iterator; | ||||
194 | |||||
195 | const_iterator begin() const { return list.begin(); } | ||||
196 | const_iterator end() const { return list.end(); } | ||||
197 | |||||
198 | llvm::iterator_range<const_iterator> | ||||
199 | getNamespacesFor(DeclContext *DC) const { | ||||
200 | return llvm::make_range(std::equal_range(begin(), end(), | ||||
201 | DC->getPrimaryContext(), | ||||
202 | UnqualUsingEntry::Comparator())); | ||||
203 | } | ||||
204 | }; | ||||
205 | } // end anonymous namespace | ||||
206 | |||||
207 | // Retrieve the set of identifier namespaces that correspond to a | ||||
208 | // specific kind of name lookup. | ||||
209 | static inline unsigned getIDNS(Sema::LookupNameKind NameKind, | ||||
210 | bool CPlusPlus, | ||||
211 | bool Redeclaration) { | ||||
212 | unsigned IDNS = 0; | ||||
213 | switch (NameKind) { | ||||
214 | case Sema::LookupObjCImplicitSelfParam: | ||||
215 | case Sema::LookupOrdinaryName: | ||||
216 | case Sema::LookupRedeclarationWithLinkage: | ||||
217 | case Sema::LookupLocalFriendName: | ||||
218 | case Sema::LookupDestructorName: | ||||
219 | IDNS = Decl::IDNS_Ordinary; | ||||
220 | if (CPlusPlus) { | ||||
221 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; | ||||
222 | if (Redeclaration) | ||||
223 | IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; | ||||
224 | } | ||||
225 | if (Redeclaration) | ||||
226 | IDNS |= Decl::IDNS_LocalExtern; | ||||
227 | break; | ||||
228 | |||||
229 | case Sema::LookupOperatorName: | ||||
230 | // Operator lookup is its own crazy thing; it is not the same | ||||
231 | // as (e.g.) looking up an operator name for redeclaration. | ||||
232 | assert(!Redeclaration && "cannot do redeclaration operator lookup")((void)0); | ||||
233 | IDNS = Decl::IDNS_NonMemberOperator; | ||||
234 | break; | ||||
235 | |||||
236 | case Sema::LookupTagName: | ||||
237 | if (CPlusPlus) { | ||||
238 | IDNS = Decl::IDNS_Type; | ||||
239 | |||||
240 | // When looking for a redeclaration of a tag name, we add: | ||||
241 | // 1) TagFriend to find undeclared friend decls | ||||
242 | // 2) Namespace because they can't "overload" with tag decls. | ||||
243 | // 3) Tag because it includes class templates, which can't | ||||
244 | // "overload" with tag decls. | ||||
245 | if (Redeclaration) | ||||
246 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; | ||||
247 | } else { | ||||
248 | IDNS = Decl::IDNS_Tag; | ||||
249 | } | ||||
250 | break; | ||||
251 | |||||
252 | case Sema::LookupLabel: | ||||
253 | IDNS = Decl::IDNS_Label; | ||||
254 | break; | ||||
255 | |||||
256 | case Sema::LookupMemberName: | ||||
257 | IDNS = Decl::IDNS_Member; | ||||
258 | if (CPlusPlus) | ||||
259 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; | ||||
260 | break; | ||||
261 | |||||
262 | case Sema::LookupNestedNameSpecifierName: | ||||
263 | IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; | ||||
264 | break; | ||||
265 | |||||
266 | case Sema::LookupNamespaceName: | ||||
267 | IDNS = Decl::IDNS_Namespace; | ||||
268 | break; | ||||
269 | |||||
270 | case Sema::LookupUsingDeclName: | ||||
271 | assert(Redeclaration && "should only be used for redecl lookup")((void)0); | ||||
272 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | | ||||
273 | Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | | ||||
274 | Decl::IDNS_LocalExtern; | ||||
275 | break; | ||||
276 | |||||
277 | case Sema::LookupObjCProtocolName: | ||||
278 | IDNS = Decl::IDNS_ObjCProtocol; | ||||
279 | break; | ||||
280 | |||||
281 | case Sema::LookupOMPReductionName: | ||||
282 | IDNS = Decl::IDNS_OMPReduction; | ||||
283 | break; | ||||
284 | |||||
285 | case Sema::LookupOMPMapperName: | ||||
286 | IDNS = Decl::IDNS_OMPMapper; | ||||
287 | break; | ||||
288 | |||||
289 | case Sema::LookupAnyName: | ||||
290 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | ||||
291 | | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol | ||||
292 | | Decl::IDNS_Type; | ||||
293 | break; | ||||
294 | } | ||||
295 | return IDNS; | ||||
296 | } | ||||
297 | |||||
298 | void LookupResult::configure() { | ||||
299 | IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, | ||||
300 | isForRedeclaration()); | ||||
301 | |||||
302 | // If we're looking for one of the allocation or deallocation | ||||
303 | // operators, make sure that the implicitly-declared new and delete | ||||
304 | // operators can be found. | ||||
305 | switch (NameInfo.getName().getCXXOverloadedOperator()) { | ||||
306 | case OO_New: | ||||
307 | case OO_Delete: | ||||
308 | case OO_Array_New: | ||||
309 | case OO_Array_Delete: | ||||
310 | getSema().DeclareGlobalNewDelete(); | ||||
311 | break; | ||||
312 | |||||
313 | default: | ||||
314 | break; | ||||
315 | } | ||||
316 | |||||
317 | // Compiler builtins are always visible, regardless of where they end | ||||
318 | // up being declared. | ||||
319 | if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { | ||||
320 | if (unsigned BuiltinID = Id->getBuiltinID()) { | ||||
321 | if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | ||||
322 | AllowHidden = true; | ||||
323 | } | ||||
324 | } | ||||
325 | } | ||||
326 | |||||
327 | bool LookupResult::sanity() const { | ||||
328 | // This function is never called by NDEBUG builds. | ||||
329 | assert(ResultKind != NotFound || Decls.size() == 0)((void)0); | ||||
330 | assert(ResultKind != Found || Decls.size() == 1)((void)0); | ||||
331 | assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||((void)0) | ||||
332 | (Decls.size() == 1 &&((void)0) | ||||
333 | isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))((void)0); | ||||
334 | assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())((void)0); | ||||
335 | assert(ResultKind != Ambiguous || Decls.size() > 1 ||((void)0) | ||||
336 | (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||((void)0) | ||||
337 | Ambiguity == AmbiguousBaseSubobjectTypes)))((void)0); | ||||
338 | assert((Paths != nullptr) == (ResultKind == Ambiguous &&((void)0) | ||||
339 | (Ambiguity == AmbiguousBaseSubobjectTypes ||((void)0) | ||||
340 | Ambiguity == AmbiguousBaseSubobjects)))((void)0); | ||||
341 | return true; | ||||
342 | } | ||||
343 | |||||
344 | // Necessary because CXXBasePaths is not complete in Sema.h | ||||
345 | void LookupResult::deletePaths(CXXBasePaths *Paths) { | ||||
346 | delete Paths; | ||||
347 | } | ||||
348 | |||||
349 | /// Get a representative context for a declaration such that two declarations | ||||
350 | /// will have the same context if they were found within the same scope. | ||||
351 | static DeclContext *getContextForScopeMatching(Decl *D) { | ||||
352 | // For function-local declarations, use that function as the context. This | ||||
353 | // doesn't account for scopes within the function; the caller must deal with | ||||
354 | // those. | ||||
355 | DeclContext *DC = D->getLexicalDeclContext(); | ||||
356 | if (DC->isFunctionOrMethod()) | ||||
357 | return DC; | ||||
358 | |||||
359 | // Otherwise, look at the semantic context of the declaration. The | ||||
360 | // declaration must have been found there. | ||||
361 | return D->getDeclContext()->getRedeclContext(); | ||||
362 | } | ||||
363 | |||||
364 | /// Determine whether \p D is a better lookup result than \p Existing, | ||||
365 | /// given that they declare the same entity. | ||||
366 | static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, | ||||
367 | NamedDecl *D, NamedDecl *Existing) { | ||||
368 | // When looking up redeclarations of a using declaration, prefer a using | ||||
369 | // shadow declaration over any other declaration of the same entity. | ||||
370 | if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && | ||||
371 | !isa<UsingShadowDecl>(Existing)) | ||||
372 | return true; | ||||
373 | |||||
374 | auto *DUnderlying = D->getUnderlyingDecl(); | ||||
375 | auto *EUnderlying = Existing->getUnderlyingDecl(); | ||||
376 | |||||
377 | // If they have different underlying declarations, prefer a typedef over the | ||||
378 | // original type (this happens when two type declarations denote the same | ||||
379 | // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef | ||||
380 | // might carry additional semantic information, such as an alignment override. | ||||
381 | // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag | ||||
382 | // declaration over a typedef. Also prefer a tag over a typedef for | ||||
383 | // destructor name lookup because in some contexts we only accept a | ||||
384 | // class-name in a destructor declaration. | ||||
385 | if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { | ||||
386 | assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))((void)0); | ||||
387 | bool HaveTag = isa<TagDecl>(EUnderlying); | ||||
388 | bool WantTag = | ||||
389 | Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; | ||||
390 | return HaveTag != WantTag; | ||||
391 | } | ||||
392 | |||||
393 | // Pick the function with more default arguments. | ||||
394 | // FIXME: In the presence of ambiguous default arguments, we should keep both, | ||||
395 | // so we can diagnose the ambiguity if the default argument is needed. | ||||
396 | // See C++ [over.match.best]p3. | ||||
397 | if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { | ||||
398 | auto *EFD = cast<FunctionDecl>(EUnderlying); | ||||
399 | unsigned DMin = DFD->getMinRequiredArguments(); | ||||
400 | unsigned EMin = EFD->getMinRequiredArguments(); | ||||
401 | // If D has more default arguments, it is preferred. | ||||
402 | if (DMin != EMin) | ||||
403 | return DMin < EMin; | ||||
404 | // FIXME: When we track visibility for default function arguments, check | ||||
405 | // that we pick the declaration with more visible default arguments. | ||||
406 | } | ||||
407 | |||||
408 | // Pick the template with more default template arguments. | ||||
409 | if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { | ||||
410 | auto *ETD = cast<TemplateDecl>(EUnderlying); | ||||
411 | unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); | ||||
412 | unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); | ||||
413 | // If D has more default arguments, it is preferred. Note that default | ||||
414 | // arguments (and their visibility) is monotonically increasing across the | ||||
415 | // redeclaration chain, so this is a quick proxy for "is more recent". | ||||
416 | if (DMin != EMin) | ||||
417 | return DMin < EMin; | ||||
418 | // If D has more *visible* default arguments, it is preferred. Note, an | ||||
419 | // earlier default argument being visible does not imply that a later | ||||
420 | // default argument is visible, so we can't just check the first one. | ||||
421 | for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); | ||||
422 | I != N; ++I) { | ||||
423 | if (!S.hasVisibleDefaultArgument( | ||||
424 | ETD->getTemplateParameters()->getParam(I)) && | ||||
425 | S.hasVisibleDefaultArgument( | ||||
426 | DTD->getTemplateParameters()->getParam(I))) | ||||
427 | return true; | ||||
428 | } | ||||
429 | } | ||||
430 | |||||
431 | // VarDecl can have incomplete array types, prefer the one with more complete | ||||
432 | // array type. | ||||
433 | if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) { | ||||
434 | VarDecl *EVD = cast<VarDecl>(EUnderlying); | ||||
435 | if (EVD->getType()->isIncompleteType() && | ||||
436 | !DVD->getType()->isIncompleteType()) { | ||||
437 | // Prefer the decl with a more complete type if visible. | ||||
438 | return S.isVisible(DVD); | ||||
439 | } | ||||
440 | return false; // Avoid picking up a newer decl, just because it was newer. | ||||
441 | } | ||||
442 | |||||
443 | // For most kinds of declaration, it doesn't really matter which one we pick. | ||||
444 | if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { | ||||
445 | // If the existing declaration is hidden, prefer the new one. Otherwise, | ||||
446 | // keep what we've got. | ||||
447 | return !S.isVisible(Existing); | ||||
448 | } | ||||
449 | |||||
450 | // Pick the newer declaration; it might have a more precise type. | ||||
451 | for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev; | ||||
452 | Prev = Prev->getPreviousDecl()) | ||||
453 | if (Prev == EUnderlying) | ||||
454 | return true; | ||||
455 | return false; | ||||
456 | } | ||||
457 | |||||
458 | /// Determine whether \p D can hide a tag declaration. | ||||
459 | static bool canHideTag(NamedDecl *D) { | ||||
460 | // C++ [basic.scope.declarative]p4: | ||||
461 | // Given a set of declarations in a single declarative region [...] | ||||
462 | // exactly one declaration shall declare a class name or enumeration name | ||||
463 | // that is not a typedef name and the other declarations shall all refer to | ||||
464 | // the same variable, non-static data member, or enumerator, or all refer | ||||
465 | // to functions and function templates; in this case the class name or | ||||
466 | // enumeration name is hidden. | ||||
467 | // C++ [basic.scope.hiding]p2: | ||||
468 | // A class name or enumeration name can be hidden by the name of a | ||||
469 | // variable, data member, function, or enumerator declared in the same | ||||
470 | // scope. | ||||
471 | // An UnresolvedUsingValueDecl always instantiates to one of these. | ||||
472 | D = D->getUnderlyingDecl(); | ||||
473 | return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || | ||||
474 | isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || | ||||
475 | isa<UnresolvedUsingValueDecl>(D); | ||||
476 | } | ||||
477 | |||||
478 | /// Resolves the result kind of this lookup. | ||||
479 | void LookupResult::resolveKind() { | ||||
480 | unsigned N = Decls.size(); | ||||
481 | |||||
482 | // Fast case: no possible ambiguity. | ||||
483 | if (N == 0) { | ||||
484 | assert(ResultKind == NotFound ||((void)0) | ||||
485 | ResultKind == NotFoundInCurrentInstantiation)((void)0); | ||||
486 | return; | ||||
487 | } | ||||
488 | |||||
489 | // If there's a single decl, we need to examine it to decide what | ||||
490 | // kind of lookup this is. | ||||
491 | if (N == 1) { | ||||
492 | NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); | ||||
493 | if (isa<FunctionTemplateDecl>(D)) | ||||
494 | ResultKind = FoundOverloaded; | ||||
495 | else if (isa<UnresolvedUsingValueDecl>(D)) | ||||
496 | ResultKind = FoundUnresolvedValue; | ||||
497 | return; | ||||
498 | } | ||||
499 | |||||
500 | // Don't do any extra resolution if we've already resolved as ambiguous. | ||||
501 | if (ResultKind == Ambiguous) return; | ||||
502 | |||||
503 | llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique; | ||||
504 | llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; | ||||
505 | |||||
506 | bool Ambiguous = false; | ||||
507 | bool HasTag = false, HasFunction = false; | ||||
508 | bool HasFunctionTemplate = false, HasUnresolved = false; | ||||
509 | NamedDecl *HasNonFunction = nullptr; | ||||
510 | |||||
511 | llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions; | ||||
512 | |||||
513 | unsigned UniqueTagIndex = 0; | ||||
514 | |||||
515 | unsigned I = 0; | ||||
516 | while (I < N) { | ||||
517 | NamedDecl *D = Decls[I]->getUnderlyingDecl(); | ||||
518 | D = cast<NamedDecl>(D->getCanonicalDecl()); | ||||
519 | |||||
520 | // Ignore an invalid declaration unless it's the only one left. | ||||
521 | if (D->isInvalidDecl() && !(I == 0 && N == 1)) { | ||||
522 | Decls[I] = Decls[--N]; | ||||
523 | continue; | ||||
524 | } | ||||
525 | |||||
526 | llvm::Optional<unsigned> ExistingI; | ||||
527 | |||||
528 | // Redeclarations of types via typedef can occur both within a scope | ||||
529 | // and, through using declarations and directives, across scopes. There is | ||||
530 | // no ambiguity if they all refer to the same type, so unique based on the | ||||
531 | // canonical type. | ||||
532 | if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) { | ||||
533 | QualType T = getSema().Context.getTypeDeclType(TD); | ||||
534 | auto UniqueResult = UniqueTypes.insert( | ||||
535 | std::make_pair(getSema().Context.getCanonicalType(T), I)); | ||||
536 | if (!UniqueResult.second) { | ||||
537 | // The type is not unique. | ||||
538 | ExistingI = UniqueResult.first->second; | ||||
539 | } | ||||
540 | } | ||||
541 | |||||
542 | // For non-type declarations, check for a prior lookup result naming this | ||||
543 | // canonical declaration. | ||||
544 | if (!ExistingI) { | ||||
545 | auto UniqueResult = Unique.insert(std::make_pair(D, I)); | ||||
546 | if (!UniqueResult.second) { | ||||
547 | // We've seen this entity before. | ||||
548 | ExistingI = UniqueResult.first->second; | ||||
549 | } | ||||
550 | } | ||||
551 | |||||
552 | if (ExistingI) { | ||||
553 | // This is not a unique lookup result. Pick one of the results and | ||||
554 | // discard the other. | ||||
555 | if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], | ||||
556 | Decls[*ExistingI])) | ||||
557 | Decls[*ExistingI] = Decls[I]; | ||||
558 | Decls[I] = Decls[--N]; | ||||
559 | continue; | ||||
560 | } | ||||
561 | |||||
562 | // Otherwise, do some decl type analysis and then continue. | ||||
563 | |||||
564 | if (isa<UnresolvedUsingValueDecl>(D)) { | ||||
565 | HasUnresolved = true; | ||||
566 | } else if (isa<TagDecl>(D)) { | ||||
567 | if (HasTag) | ||||
568 | Ambiguous = true; | ||||
569 | UniqueTagIndex = I; | ||||
570 | HasTag = true; | ||||
571 | } else if (isa<FunctionTemplateDecl>(D)) { | ||||
572 | HasFunction = true; | ||||
573 | HasFunctionTemplate = true; | ||||
574 | } else if (isa<FunctionDecl>(D)) { | ||||
575 | HasFunction = true; | ||||
576 | } else { | ||||
577 | if (HasNonFunction) { | ||||
578 | // If we're about to create an ambiguity between two declarations that | ||||
579 | // are equivalent, but one is an internal linkage declaration from one | ||||
580 | // module and the other is an internal linkage declaration from another | ||||
581 | // module, just skip it. | ||||
582 | if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, | ||||
583 | D)) { | ||||
584 | EquivalentNonFunctions.push_back(D); | ||||
585 | Decls[I] = Decls[--N]; | ||||
586 | continue; | ||||
587 | } | ||||
588 | |||||
589 | Ambiguous = true; | ||||
590 | } | ||||
591 | HasNonFunction = D; | ||||
592 | } | ||||
593 | I++; | ||||
594 | } | ||||
595 | |||||
596 | // C++ [basic.scope.hiding]p2: | ||||
597 | // A class name or enumeration name can be hidden by the name of | ||||
598 | // an object, function, or enumerator declared in the same | ||||
599 | // scope. If a class or enumeration name and an object, function, | ||||
600 | // or enumerator are declared in the same scope (in any order) | ||||
601 | // with the same name, the class or enumeration name is hidden | ||||
602 | // wherever the object, function, or enumerator name is visible. | ||||
603 | // But it's still an error if there are distinct tag types found, | ||||
604 | // even if they're not visible. (ref?) | ||||
605 | if (N > 1 && HideTags && HasTag && !Ambiguous && | ||||
606 | (HasFunction || HasNonFunction || HasUnresolved)) { | ||||
607 | NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1]; | ||||
608 | if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) && | ||||
609 | getContextForScopeMatching(Decls[UniqueTagIndex])->Equals( | ||||
610 | getContextForScopeMatching(OtherDecl)) && | ||||
611 | canHideTag(OtherDecl)) | ||||
612 | Decls[UniqueTagIndex] = Decls[--N]; | ||||
613 | else | ||||
614 | Ambiguous = true; | ||||
615 | } | ||||
616 | |||||
617 | // FIXME: This diagnostic should really be delayed until we're done with | ||||
618 | // the lookup result, in case the ambiguity is resolved by the caller. | ||||
619 | if (!EquivalentNonFunctions.empty() && !Ambiguous) | ||||
620 | getSema().diagnoseEquivalentInternalLinkageDeclarations( | ||||
621 | getNameLoc(), HasNonFunction, EquivalentNonFunctions); | ||||
622 | |||||
623 | Decls.set_size(N); | ||||
624 | |||||
625 | if (HasNonFunction && (HasFunction || HasUnresolved)) | ||||
626 | Ambiguous = true; | ||||
627 | |||||
628 | if (Ambiguous) | ||||
629 | setAmbiguous(LookupResult::AmbiguousReference); | ||||
630 | else if (HasUnresolved) | ||||
631 | ResultKind = LookupResult::FoundUnresolvedValue; | ||||
632 | else if (N > 1 || HasFunctionTemplate) | ||||
633 | ResultKind = LookupResult::FoundOverloaded; | ||||
634 | else | ||||
635 | ResultKind = LookupResult::Found; | ||||
636 | } | ||||
637 | |||||
638 | void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { | ||||
639 | CXXBasePaths::const_paths_iterator I, E; | ||||
640 | for (I = P.begin(), E = P.end(); I != E; ++I) | ||||
641 | for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; | ||||
642 | ++DI) | ||||
643 | addDecl(*DI); | ||||
644 | } | ||||
645 | |||||
646 | void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { | ||||
647 | Paths = new CXXBasePaths; | ||||
648 | Paths->swap(P); | ||||
649 | addDeclsFromBasePaths(*Paths); | ||||
650 | resolveKind(); | ||||
651 | setAmbiguous(AmbiguousBaseSubobjects); | ||||
652 | } | ||||
653 | |||||
654 | void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { | ||||
655 | Paths = new CXXBasePaths; | ||||
656 | Paths->swap(P); | ||||
657 | addDeclsFromBasePaths(*Paths); | ||||
658 | resolveKind(); | ||||
659 | setAmbiguous(AmbiguousBaseSubobjectTypes); | ||||
660 | } | ||||
661 | |||||
662 | void LookupResult::print(raw_ostream &Out) { | ||||
663 | Out << Decls.size() << " result(s)"; | ||||
664 | if (isAmbiguous()) Out << ", ambiguous"; | ||||
665 | if (Paths) Out << ", base paths present"; | ||||
666 | |||||
667 | for (iterator I = begin(), E = end(); I != E; ++I) { | ||||
668 | Out << "\n"; | ||||
669 | (*I)->print(Out, 2); | ||||
670 | } | ||||
671 | } | ||||
672 | |||||
673 | LLVM_DUMP_METHOD__attribute__((noinline)) void LookupResult::dump() { | ||||
674 | llvm::errs() << "lookup results for " << getLookupName().getAsString() | ||||
675 | << ":\n"; | ||||
676 | for (NamedDecl *D : *this) | ||||
677 | D->dump(); | ||||
678 | } | ||||
679 | |||||
680 | /// Diagnose a missing builtin type. | ||||
681 | static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, | ||||
682 | llvm::StringRef Name) { | ||||
683 | S.Diag(SourceLocation(), diag::err_opencl_type_not_found) | ||||
684 | << TypeClass << Name; | ||||
685 | return S.Context.VoidTy; | ||||
686 | } | ||||
687 | |||||
688 | /// Lookup an OpenCL enum type. | ||||
689 | static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { | ||||
690 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), | ||||
691 | Sema::LookupTagName); | ||||
692 | S.LookupName(Result, S.TUScope); | ||||
693 | if (Result.empty()) | ||||
694 | return diagOpenCLBuiltinTypeError(S, "enum", Name); | ||||
695 | EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); | ||||
696 | if (!Decl) | ||||
697 | return diagOpenCLBuiltinTypeError(S, "enum", Name); | ||||
698 | return S.Context.getEnumType(Decl); | ||||
699 | } | ||||
700 | |||||
701 | /// Lookup an OpenCL typedef type. | ||||
702 | static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { | ||||
703 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), | ||||
704 | Sema::LookupOrdinaryName); | ||||
705 | S.LookupName(Result, S.TUScope); | ||||
706 | if (Result.empty()) | ||||
707 | return diagOpenCLBuiltinTypeError(S, "typedef", Name); | ||||
708 | TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); | ||||
709 | if (!Decl) | ||||
710 | return diagOpenCLBuiltinTypeError(S, "typedef", Name); | ||||
711 | return S.Context.getTypedefType(Decl); | ||||
712 | } | ||||
713 | |||||
714 | /// Get the QualType instances of the return type and arguments for an OpenCL | ||||
715 | /// builtin function signature. | ||||
716 | /// \param S (in) The Sema instance. | ||||
717 | /// \param OpenCLBuiltin (in) The signature currently handled. | ||||
718 | /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic | ||||
719 | /// type used as return type or as argument. | ||||
720 | /// Only meaningful for generic types, otherwise equals 1. | ||||
721 | /// \param RetTypes (out) List of the possible return types. | ||||
722 | /// \param ArgTypes (out) List of the possible argument types. For each | ||||
723 | /// argument, ArgTypes contains QualTypes for the Cartesian product | ||||
724 | /// of (vector sizes) x (types) . | ||||
725 | static void GetQualTypesForOpenCLBuiltin( | ||||
726 | Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, | ||||
727 | SmallVector<QualType, 1> &RetTypes, | ||||
728 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { | ||||
729 | // Get the QualType instances of the return types. | ||||
730 | unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; | ||||
731 | OCL2Qual(S, TypeTable[Sig], RetTypes); | ||||
732 | GenTypeMaxCnt = RetTypes.size(); | ||||
733 | |||||
734 | // Get the QualType instances of the arguments. | ||||
735 | // First type is the return type, skip it. | ||||
736 | for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { | ||||
737 | SmallVector<QualType, 1> Ty; | ||||
738 | OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], | ||||
739 | Ty); | ||||
740 | GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; | ||||
741 | ArgTypes.push_back(std::move(Ty)); | ||||
742 | } | ||||
743 | } | ||||
744 | |||||
745 | /// Create a list of the candidate function overloads for an OpenCL builtin | ||||
746 | /// function. | ||||
747 | /// \param Context (in) The ASTContext instance. | ||||
748 | /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic | ||||
749 | /// type used as return type or as argument. | ||||
750 | /// Only meaningful for generic types, otherwise equals 1. | ||||
751 | /// \param FunctionList (out) List of FunctionTypes. | ||||
752 | /// \param RetTypes (in) List of the possible return types. | ||||
753 | /// \param ArgTypes (in) List of the possible types for the arguments. | ||||
754 | static void GetOpenCLBuiltinFctOverloads( | ||||
755 | ASTContext &Context, unsigned GenTypeMaxCnt, | ||||
756 | std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, | ||||
757 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { | ||||
758 | FunctionProtoType::ExtProtoInfo PI( | ||||
759 | Context.getDefaultCallingConvention(false, false, true)); | ||||
760 | PI.Variadic = false; | ||||
761 | |||||
762 | // Do not attempt to create any FunctionTypes if there are no return types, | ||||
763 | // which happens when a type belongs to a disabled extension. | ||||
764 | if (RetTypes.size() == 0) | ||||
765 | return; | ||||
766 | |||||
767 | // Create FunctionTypes for each (gen)type. | ||||
768 | for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { | ||||
769 | SmallVector<QualType, 5> ArgList; | ||||
770 | |||||
771 | for (unsigned A = 0; A < ArgTypes.size(); A++) { | ||||
772 | // Bail out if there is an argument that has no available types. | ||||
773 | if (ArgTypes[A].size() == 0) | ||||
774 | return; | ||||
775 | |||||
776 | // Builtins such as "max" have an "sgentype" argument that represents | ||||
777 | // the corresponding scalar type of a gentype. The number of gentypes | ||||
778 | // must be a multiple of the number of sgentypes. | ||||
779 | assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&((void)0) | ||||
780 | "argument type count not compatible with gentype type count")((void)0); | ||||
781 | unsigned Idx = IGenType % ArgTypes[A].size(); | ||||
782 | ArgList.push_back(ArgTypes[A][Idx]); | ||||
783 | } | ||||
784 | |||||
785 | FunctionList.push_back(Context.getFunctionType( | ||||
786 | RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); | ||||
787 | } | ||||
788 | } | ||||
789 | |||||
790 | /// When trying to resolve a function name, if isOpenCLBuiltin() returns a | ||||
791 | /// non-null <Index, Len> pair, then the name is referencing an OpenCL | ||||
792 | /// builtin function. Add all candidate signatures to the LookUpResult. | ||||
793 | /// | ||||
794 | /// \param S (in) The Sema instance. | ||||
795 | /// \param LR (inout) The LookupResult instance. | ||||
796 | /// \param II (in) The identifier being resolved. | ||||
797 | /// \param FctIndex (in) Starting index in the BuiltinTable. | ||||
798 | /// \param Len (in) The signature list has Len elements. | ||||
799 | static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, | ||||
800 | IdentifierInfo *II, | ||||
801 | const unsigned FctIndex, | ||||
802 | const unsigned Len) { | ||||
803 | // The builtin function declaration uses generic types (gentype). | ||||
804 | bool HasGenType = false; | ||||
805 | |||||
806 | // Maximum number of types contained in a generic type used as return type or | ||||
807 | // as argument. Only meaningful for generic types, otherwise equals 1. | ||||
808 | unsigned GenTypeMaxCnt; | ||||
809 | |||||
810 | ASTContext &Context = S.Context; | ||||
811 | |||||
812 | for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { | ||||
813 | const OpenCLBuiltinStruct &OpenCLBuiltin = | ||||
814 | BuiltinTable[FctIndex + SignatureIndex]; | ||||
815 | |||||
816 | // Ignore this builtin function if it is not available in the currently | ||||
817 | // selected language version. | ||||
818 | if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), | ||||
819 | OpenCLBuiltin.Versions)) | ||||
820 | continue; | ||||
821 | |||||
822 | // Ignore this builtin function if it carries an extension macro that is | ||||
823 | // not defined. This indicates that the extension is not supported by the | ||||
824 | // target, so the builtin function should not be available. | ||||
825 | StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; | ||||
826 | if (!Extensions.empty()) { | ||||
827 | SmallVector<StringRef, 2> ExtVec; | ||||
828 | Extensions.split(ExtVec, " "); | ||||
829 | bool AllExtensionsDefined = true; | ||||
830 | for (StringRef Ext : ExtVec) { | ||||
831 | if (!S.getPreprocessor().isMacroDefined(Ext)) { | ||||
832 | AllExtensionsDefined = false; | ||||
833 | break; | ||||
834 | } | ||||
835 | } | ||||
836 | if (!AllExtensionsDefined) | ||||
837 | continue; | ||||
838 | } | ||||
839 | |||||
840 | SmallVector<QualType, 1> RetTypes; | ||||
841 | SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; | ||||
842 | |||||
843 | // Obtain QualType lists for the function signature. | ||||
844 | GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, | ||||
845 | ArgTypes); | ||||
846 | if (GenTypeMaxCnt > 1) { | ||||
847 | HasGenType = true; | ||||
848 | } | ||||
849 | |||||
850 | // Create function overload for each type combination. | ||||
851 | std::vector<QualType> FunctionList; | ||||
852 | GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, | ||||
853 | ArgTypes); | ||||
854 | |||||
855 | SourceLocation Loc = LR.getNameLoc(); | ||||
856 | DeclContext *Parent = Context.getTranslationUnitDecl(); | ||||
857 | FunctionDecl *NewOpenCLBuiltin; | ||||
858 | |||||
859 | for (const auto &FTy : FunctionList) { | ||||
860 | NewOpenCLBuiltin = FunctionDecl::Create( | ||||
861 | Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, | ||||
862 | false, FTy->isFunctionProtoType()); | ||||
863 | NewOpenCLBuiltin->setImplicit(); | ||||
864 | |||||
865 | // Create Decl objects for each parameter, adding them to the | ||||
866 | // FunctionDecl. | ||||
867 | const auto *FP = cast<FunctionProtoType>(FTy); | ||||
868 | SmallVector<ParmVarDecl *, 4> ParmList; | ||||
869 | for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { | ||||
870 | ParmVarDecl *Parm = ParmVarDecl::Create( | ||||
871 | Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), | ||||
872 | nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); | ||||
873 | Parm->setScopeInfo(0, IParm); | ||||
874 | ParmList.push_back(Parm); | ||||
875 | } | ||||
876 | NewOpenCLBuiltin->setParams(ParmList); | ||||
877 | |||||
878 | // Add function attributes. | ||||
879 | if (OpenCLBuiltin.IsPure) | ||||
880 | NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); | ||||
881 | if (OpenCLBuiltin.IsConst) | ||||
882 | NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); | ||||
883 | if (OpenCLBuiltin.IsConv) | ||||
884 | NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); | ||||
885 | |||||
886 | if (!S.getLangOpts().OpenCLCPlusPlus) | ||||
887 | NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); | ||||
888 | |||||
889 | LR.addDecl(NewOpenCLBuiltin); | ||||
890 | } | ||||
891 | } | ||||
892 | |||||
893 | // If we added overloads, need to resolve the lookup result. | ||||
894 | if (Len > 1 || HasGenType) | ||||
895 | LR.resolveKind(); | ||||
896 | } | ||||
897 | |||||
898 | /// Lookup a builtin function, when name lookup would otherwise | ||||
899 | /// fail. | ||||
900 | bool Sema::LookupBuiltin(LookupResult &R) { | ||||
901 | Sema::LookupNameKind NameKind = R.getLookupKind(); | ||||
902 | |||||
903 | // If we didn't find a use of this identifier, and if the identifier | ||||
904 | // corresponds to a compiler builtin, create the decl object for the builtin | ||||
905 | // now, injecting it into translation unit scope, and return it. | ||||
906 | if (NameKind == Sema::LookupOrdinaryName || | ||||
907 | NameKind == Sema::LookupRedeclarationWithLinkage) { | ||||
908 | IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); | ||||
909 | if (II) { | ||||
910 | if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { | ||||
911 | if (II == getASTContext().getMakeIntegerSeqName()) { | ||||
912 | R.addDecl(getASTContext().getMakeIntegerSeqDecl()); | ||||
913 | return true; | ||||
914 | } else if (II == getASTContext().getTypePackElementName()) { | ||||
915 | R.addDecl(getASTContext().getTypePackElementDecl()); | ||||
916 | return true; | ||||
917 | } | ||||
918 | } | ||||
919 | |||||
920 | // Check if this is an OpenCL Builtin, and if so, insert its overloads. | ||||
921 | if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { | ||||
922 | auto Index = isOpenCLBuiltin(II->getName()); | ||||
923 | if (Index.first) { | ||||
924 | InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, | ||||
925 | Index.second); | ||||
926 | return true; | ||||
927 | } | ||||
928 | } | ||||
929 | |||||
930 | // If this is a builtin on this (or all) targets, create the decl. | ||||
931 | if (unsigned BuiltinID = II->getBuiltinID()) { | ||||
932 | // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined | ||||
933 | // library functions like 'malloc'. Instead, we'll just error. | ||||
934 | if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && | ||||
935 | Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | ||||
936 | return false; | ||||
937 | |||||
938 | if (NamedDecl *D = | ||||
939 | LazilyCreateBuiltin(II, BuiltinID, TUScope, | ||||
940 | R.isForRedeclaration(), R.getNameLoc())) { | ||||
941 | R.addDecl(D); | ||||
942 | return true; | ||||
943 | } | ||||
944 | } | ||||
945 | } | ||||
946 | } | ||||
947 | |||||
948 | return false; | ||||
949 | } | ||||
950 | |||||
951 | /// Looks up the declaration of "struct objc_super" and | ||||
952 | /// saves it for later use in building builtin declaration of | ||||
953 | /// objc_msgSendSuper and objc_msgSendSuper_stret. | ||||
954 | static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { | ||||
955 | ASTContext &Context = Sema.Context; | ||||
956 | LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), | ||||
957 | Sema::LookupTagName); | ||||
958 | Sema.LookupName(Result, S); | ||||
959 | if (Result.getResultKind() == LookupResult::Found) | ||||
960 | if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) | ||||
961 | Context.setObjCSuperType(Context.getTagDeclType(TD)); | ||||
962 | } | ||||
963 | |||||
964 | void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { | ||||
965 | if (ID == Builtin::BIobjc_msgSendSuper) | ||||
966 | LookupPredefedObjCSuperType(*this, S); | ||||
967 | } | ||||
968 | |||||
969 | /// Determine whether we can declare a special member function within | ||||
970 | /// the class at this point. | ||||
971 | static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { | ||||
972 | // We need to have a definition for the class. | ||||
973 | if (!Class->getDefinition() || Class->isDependentContext()) | ||||
974 | return false; | ||||
975 | |||||
976 | // We can't be in the middle of defining the class. | ||||
977 | return !Class->isBeingDefined(); | ||||
978 | } | ||||
979 | |||||
980 | void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { | ||||
981 | if (!CanDeclareSpecialMemberFunction(Class)) | ||||
982 | return; | ||||
983 | |||||
984 | // If the default constructor has not yet been declared, do so now. | ||||
985 | if (Class->needsImplicitDefaultConstructor()) | ||||
986 | DeclareImplicitDefaultConstructor(Class); | ||||
987 | |||||
988 | // If the copy constructor has not yet been declared, do so now. | ||||
989 | if (Class->needsImplicitCopyConstructor()) | ||||
990 | DeclareImplicitCopyConstructor(Class); | ||||
991 | |||||
992 | // If the copy assignment operator has not yet been declared, do so now. | ||||
993 | if (Class->needsImplicitCopyAssignment()) | ||||
994 | DeclareImplicitCopyAssignment(Class); | ||||
995 | |||||
996 | if (getLangOpts().CPlusPlus11) { | ||||
997 | // If the move constructor has not yet been declared, do so now. | ||||
998 | if (Class->needsImplicitMoveConstructor()) | ||||
999 | DeclareImplicitMoveConstructor(Class); | ||||
1000 | |||||
1001 | // If the move assignment operator has not yet been declared, do so now. | ||||
1002 | if (Class->needsImplicitMoveAssignment()) | ||||
1003 | DeclareImplicitMoveAssignment(Class); | ||||
1004 | } | ||||
1005 | |||||
1006 | // If the destructor has not yet been declared, do so now. | ||||
1007 | if (Class->needsImplicitDestructor()) | ||||
1008 | DeclareImplicitDestructor(Class); | ||||
1009 | } | ||||
1010 | |||||
1011 | /// Determine whether this is the name of an implicitly-declared | ||||
1012 | /// special member function. | ||||
1013 | static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { | ||||
1014 | switch (Name.getNameKind()) { | ||||
1015 | case DeclarationName::CXXConstructorName: | ||||
1016 | case DeclarationName::CXXDestructorName: | ||||
1017 | return true; | ||||
1018 | |||||
1019 | case DeclarationName::CXXOperatorName: | ||||
1020 | return Name.getCXXOverloadedOperator() == OO_Equal; | ||||
1021 | |||||
1022 | default: | ||||
1023 | break; | ||||
1024 | } | ||||
1025 | |||||
1026 | return false; | ||||
1027 | } | ||||
1028 | |||||
1029 | /// If there are any implicit member functions with the given name | ||||
1030 | /// that need to be declared in the given declaration context, do so. | ||||
1031 | static void DeclareImplicitMemberFunctionsWithName(Sema &S, | ||||
1032 | DeclarationName Name, | ||||
1033 | SourceLocation Loc, | ||||
1034 | const DeclContext *DC) { | ||||
1035 | if (!DC) | ||||
1036 | return; | ||||
1037 | |||||
1038 | switch (Name.getNameKind()) { | ||||
1039 | case DeclarationName::CXXConstructorName: | ||||
1040 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | ||||
1041 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { | ||||
1042 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); | ||||
1043 | if (Record->needsImplicitDefaultConstructor()) | ||||
1044 | S.DeclareImplicitDefaultConstructor(Class); | ||||
1045 | if (Record->needsImplicitCopyConstructor()) | ||||
1046 | S.DeclareImplicitCopyConstructor(Class); | ||||
1047 | if (S.getLangOpts().CPlusPlus11 && | ||||
1048 | Record->needsImplicitMoveConstructor()) | ||||
1049 | S.DeclareImplicitMoveConstructor(Class); | ||||
1050 | } | ||||
1051 | break; | ||||
1052 | |||||
1053 | case DeclarationName::CXXDestructorName: | ||||
1054 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | ||||
1055 | if (Record->getDefinition() && Record->needsImplicitDestructor() && | ||||
1056 | CanDeclareSpecialMemberFunction(Record)) | ||||
1057 | S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); | ||||
1058 | break; | ||||
1059 | |||||
1060 | case DeclarationName::CXXOperatorName: | ||||
1061 | if (Name.getCXXOverloadedOperator() != OO_Equal) | ||||
1062 | break; | ||||
1063 | |||||
1064 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { | ||||
1065 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { | ||||
1066 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); | ||||
1067 | if (Record->needsImplicitCopyAssignment()) | ||||
1068 | S.DeclareImplicitCopyAssignment(Class); | ||||
1069 | if (S.getLangOpts().CPlusPlus11 && | ||||
1070 | Record->needsImplicitMoveAssignment()) | ||||
1071 | S.DeclareImplicitMoveAssignment(Class); | ||||
1072 | } | ||||
1073 | } | ||||
1074 | break; | ||||
1075 | |||||
1076 | case DeclarationName::CXXDeductionGuideName: | ||||
1077 | S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); | ||||
1078 | break; | ||||
1079 | |||||
1080 | default: | ||||
1081 | break; | ||||
1082 | } | ||||
1083 | } | ||||
1084 | |||||
1085 | // Adds all qualifying matches for a name within a decl context to the | ||||
1086 | // given lookup result. Returns true if any matches were found. | ||||
1087 | static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { | ||||
1088 | bool Found = false; | ||||
1089 | |||||
1090 | // Lazily declare C++ special member functions. | ||||
1091 | if (S.getLangOpts().CPlusPlus) | ||||
1092 | DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), | ||||
1093 | DC); | ||||
1094 | |||||
1095 | // Perform lookup into this declaration context. | ||||
1096 | DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); | ||||
1097 | for (NamedDecl *D : DR) { | ||||
1098 | if ((D = R.getAcceptableDecl(D))) { | ||||
1099 | R.addDecl(D); | ||||
1100 | Found = true; | ||||
1101 | } | ||||
1102 | } | ||||
1103 | |||||
1104 | if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) | ||||
1105 | return true; | ||||
1106 | |||||
1107 | if (R.getLookupName().getNameKind() | ||||
1108 | != DeclarationName::CXXConversionFunctionName || | ||||
1109 | R.getLookupName().getCXXNameType()->isDependentType() || | ||||
1110 | !isa<CXXRecordDecl>(DC)) | ||||
1111 | return Found; | ||||
1112 | |||||
1113 | // C++ [temp.mem]p6: | ||||
1114 | // A specialization of a conversion function template is not found by | ||||
1115 | // name lookup. Instead, any conversion function templates visible in the | ||||
1116 | // context of the use are considered. [...] | ||||
1117 | const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | ||||
1118 | if (!Record->isCompleteDefinition()) | ||||
1119 | return Found; | ||||
1120 | |||||
1121 | // For conversion operators, 'operator auto' should only match | ||||
1122 | // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered | ||||
1123 | // as a candidate for template substitution. | ||||
1124 | auto *ContainedDeducedType = | ||||
1125 | R.getLookupName().getCXXNameType()->getContainedDeducedType(); | ||||
1126 | if (R.getLookupName().getNameKind() == | ||||
1127 | DeclarationName::CXXConversionFunctionName && | ||||
1128 | ContainedDeducedType && ContainedDeducedType->isUndeducedType()) | ||||
1129 | return Found; | ||||
1130 | |||||
1131 | for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), | ||||
1132 | UEnd = Record->conversion_end(); U != UEnd; ++U) { | ||||
1133 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); | ||||
1134 | if (!ConvTemplate) | ||||
1135 | continue; | ||||
1136 | |||||
1137 | // When we're performing lookup for the purposes of redeclaration, just | ||||
1138 | // add the conversion function template. When we deduce template | ||||
1139 | // arguments for specializations, we'll end up unifying the return | ||||
1140 | // type of the new declaration with the type of the function template. | ||||
1141 | if (R.isForRedeclaration()) { | ||||
1142 | R.addDecl(ConvTemplate); | ||||
1143 | Found = true; | ||||
1144 | continue; | ||||
1145 | } | ||||
1146 | |||||
1147 | // C++ [temp.mem]p6: | ||||
1148 | // [...] For each such operator, if argument deduction succeeds | ||||
1149 | // (14.9.2.3), the resulting specialization is used as if found by | ||||
1150 | // name lookup. | ||||
1151 | // | ||||
1152 | // When referencing a conversion function for any purpose other than | ||||
1153 | // a redeclaration (such that we'll be building an expression with the | ||||
1154 | // result), perform template argument deduction and place the | ||||
1155 | // specialization into the result set. We do this to avoid forcing all | ||||
1156 | // callers to perform special deduction for conversion functions. | ||||
1157 | TemplateDeductionInfo Info(R.getNameLoc()); | ||||
1158 | FunctionDecl *Specialization = nullptr; | ||||
1159 | |||||
1160 | const FunctionProtoType *ConvProto | ||||
1161 | = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); | ||||
1162 | assert(ConvProto && "Nonsensical conversion function template type")((void)0); | ||||
1163 | |||||
1164 | // Compute the type of the function that we would expect the conversion | ||||
1165 | // function to have, if it were to match the name given. | ||||
1166 | // FIXME: Calling convention! | ||||
1167 | FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); | ||||
1168 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); | ||||
1169 | EPI.ExceptionSpec = EST_None; | ||||
1170 | QualType ExpectedType | ||||
1171 | = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(), | ||||
1172 | None, EPI); | ||||
1173 | |||||
1174 | // Perform template argument deduction against the type that we would | ||||
1175 | // expect the function to have. | ||||
1176 | if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, | ||||
1177 | Specialization, Info) | ||||
1178 | == Sema::TDK_Success) { | ||||
1179 | R.addDecl(Specialization); | ||||
1180 | Found = true; | ||||
1181 | } | ||||
1182 | } | ||||
1183 | |||||
1184 | return Found; | ||||
1185 | } | ||||
1186 | |||||
1187 | // Performs C++ unqualified lookup into the given file context. | ||||
1188 | static bool | ||||
1189 | CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, | ||||
1190 | DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { | ||||
1191 | |||||
1192 | assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")((void)0); | ||||
1193 | |||||
1194 | // Perform direct name lookup into the LookupCtx. | ||||
1195 | bool Found = LookupDirect(S, R, NS); | ||||
1196 | |||||
1197 | // Perform direct name lookup into the namespaces nominated by the | ||||
1198 | // using directives whose common ancestor is this namespace. | ||||
1199 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) | ||||
1200 | if (LookupDirect(S, R, UUE.getNominatedNamespace())) | ||||
1201 | Found = true; | ||||
1202 | |||||
1203 | R.resolveKind(); | ||||
1204 | |||||
1205 | return Found; | ||||
1206 | } | ||||
1207 | |||||
1208 | static bool isNamespaceOrTranslationUnitScope(Scope *S) { | ||||
1209 | if (DeclContext *Ctx = S->getEntity()) | ||||
1210 | return Ctx->isFileContext(); | ||||
1211 | return false; | ||||
1212 | } | ||||
1213 | |||||
1214 | /// Find the outer declaration context from this scope. This indicates the | ||||
1215 | /// context that we should search up to (exclusive) before considering the | ||||
1216 | /// parent of the specified scope. | ||||
1217 | static DeclContext *findOuterContext(Scope *S) { | ||||
1218 | for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) | ||||
1219 | if (DeclContext *DC = OuterS->getLookupEntity()) | ||||
1220 | return DC; | ||||
1221 | return nullptr; | ||||
1222 | } | ||||
1223 | |||||
1224 | namespace { | ||||
1225 | /// An RAII object to specify that we want to find block scope extern | ||||
1226 | /// declarations. | ||||
1227 | struct FindLocalExternScope { | ||||
1228 | FindLocalExternScope(LookupResult &R) | ||||
1229 | : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & | ||||
1230 | Decl::IDNS_LocalExtern) { | ||||
1231 | R.setFindLocalExtern(R.getIdentifierNamespace() & | ||||
1232 | (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); | ||||
1233 | } | ||||
1234 | void restore() { | ||||
1235 | R.setFindLocalExtern(OldFindLocalExtern); | ||||
1236 | } | ||||
1237 | ~FindLocalExternScope() { | ||||
1238 | restore(); | ||||
1239 | } | ||||
1240 | LookupResult &R; | ||||
1241 | bool OldFindLocalExtern; | ||||
1242 | }; | ||||
1243 | } // end anonymous namespace | ||||
1244 | |||||
1245 | bool Sema::CppLookupName(LookupResult &R, Scope *S) { | ||||
1246 | assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")((void)0); | ||||
1247 | |||||
1248 | DeclarationName Name = R.getLookupName(); | ||||
1249 | Sema::LookupNameKind NameKind = R.getLookupKind(); | ||||
1250 | |||||
1251 | // If this is the name of an implicitly-declared special member function, | ||||
1252 | // go through the scope stack to implicitly declare | ||||
1253 | if (isImplicitlyDeclaredMemberFunctionName(Name)) { | ||||
1254 | for (Scope *PreS = S; PreS; PreS = PreS->getParent()) | ||||
1255 | if (DeclContext *DC = PreS->getEntity()) | ||||
1256 | DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); | ||||
1257 | } | ||||
1258 | |||||
1259 | // Implicitly declare member functions with the name we're looking for, if in | ||||
1260 | // fact we are in a scope where it matters. | ||||
1261 | |||||
1262 | Scope *Initial = S; | ||||
1263 | IdentifierResolver::iterator | ||||
1264 | I = IdResolver.begin(Name), | ||||
1265 | IEnd = IdResolver.end(); | ||||
1266 | |||||
1267 | // First we lookup local scope. | ||||
1268 | // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] | ||||
1269 | // ...During unqualified name lookup (3.4.1), the names appear as if | ||||
1270 | // they were declared in the nearest enclosing namespace which contains | ||||
1271 | // both the using-directive and the nominated namespace. | ||||
1272 | // [Note: in this context, "contains" means "contains directly or | ||||
1273 | // indirectly". | ||||
1274 | // | ||||
1275 | // For example: | ||||
1276 | // namespace A { int i; } | ||||
1277 | // void foo() { | ||||
1278 | // int i; | ||||
1279 | // { | ||||
1280 | // using namespace A; | ||||
1281 | // ++i; // finds local 'i', A::i appears at global scope | ||||
1282 | // } | ||||
1283 | // } | ||||
1284 | // | ||||
1285 | UnqualUsingDirectiveSet UDirs(*this); | ||||
1286 | bool VisitedUsingDirectives = false; | ||||
1287 | bool LeftStartingScope = false; | ||||
1288 | |||||
1289 | // When performing a scope lookup, we want to find local extern decls. | ||||
1290 | FindLocalExternScope FindLocals(R); | ||||
1291 | |||||
1292 | for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { | ||||
1293 | bool SearchNamespaceScope = true; | ||||
1294 | // Check whether the IdResolver has anything in this scope. | ||||
1295 | for (; I != IEnd && S->isDeclScope(*I); ++I) { | ||||
1296 | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { | ||||
1297 | if (NameKind == LookupRedeclarationWithLinkage && | ||||
1298 | !(*I)->isTemplateParameter()) { | ||||
1299 | // If it's a template parameter, we still find it, so we can diagnose | ||||
1300 | // the invalid redeclaration. | ||||
1301 | |||||
1302 | // Determine whether this (or a previous) declaration is | ||||
1303 | // out-of-scope. | ||||
1304 | if (!LeftStartingScope && !Initial->isDeclScope(*I)) | ||||
1305 | LeftStartingScope = true; | ||||
1306 | |||||
1307 | // If we found something outside of our starting scope that | ||||
1308 | // does not have linkage, skip it. | ||||
1309 | if (LeftStartingScope && !((*I)->hasLinkage())) { | ||||
1310 | R.setShadowed(); | ||||
1311 | continue; | ||||
1312 | } | ||||
1313 | } else { | ||||
1314 | // We found something in this scope, we should not look at the | ||||
1315 | // namespace scope | ||||
1316 | SearchNamespaceScope = false; | ||||
1317 | } | ||||
1318 | R.addDecl(ND); | ||||
1319 | } | ||||
1320 | } | ||||
1321 | if (!SearchNamespaceScope) { | ||||
1322 | R.resolveKind(); | ||||
1323 | if (S->isClassScope()) | ||||
1324 | if (CXXRecordDecl *Record = | ||||
1325 | dyn_cast_or_null<CXXRecordDecl>(S->getEntity())) | ||||
1326 | R.setNamingClass(Record); | ||||
1327 | return true; | ||||
1328 | } | ||||
1329 | |||||
1330 | if (NameKind == LookupLocalFriendName && !S->isClassScope()) { | ||||
1331 | // C++11 [class.friend]p11: | ||||
1332 | // If a friend declaration appears in a local class and the name | ||||
1333 | // specified is an unqualified name, a prior declaration is | ||||
1334 | // looked up without considering scopes that are outside the | ||||
1335 | // innermost enclosing non-class scope. | ||||
1336 | return false; | ||||
1337 | } | ||||
1338 | |||||
1339 | if (DeclContext *Ctx = S->getLookupEntity()) { | ||||
1340 | DeclContext *OuterCtx = findOuterContext(S); | ||||
1341 | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { | ||||
1342 | // We do not directly look into transparent contexts, since | ||||
1343 | // those entities will be found in the nearest enclosing | ||||
1344 | // non-transparent context. | ||||
1345 | if (Ctx->isTransparentContext()) | ||||
1346 | continue; | ||||
1347 | |||||
1348 | // We do not look directly into function or method contexts, | ||||
1349 | // since all of the local variables and parameters of the | ||||
1350 | // function/method are present within the Scope. | ||||
1351 | if (Ctx->isFunctionOrMethod()) { | ||||
1352 | // If we have an Objective-C instance method, look for ivars | ||||
1353 | // in the corresponding interface. | ||||
1354 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { | ||||
1355 | if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) | ||||
1356 | if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { | ||||
1357 | ObjCInterfaceDecl *ClassDeclared; | ||||
1358 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( | ||||
1359 | Name.getAsIdentifierInfo(), | ||||
1360 | ClassDeclared)) { | ||||
1361 | if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { | ||||
1362 | R.addDecl(ND); | ||||
1363 | R.resolveKind(); | ||||
1364 | return true; | ||||
1365 | } | ||||
1366 | } | ||||
1367 | } | ||||
1368 | } | ||||
1369 | |||||
1370 | continue; | ||||
1371 | } | ||||
1372 | |||||
1373 | // If this is a file context, we need to perform unqualified name | ||||
1374 | // lookup considering using directives. | ||||
1375 | if (Ctx->isFileContext()) { | ||||
1376 | // If we haven't handled using directives yet, do so now. | ||||
1377 | if (!VisitedUsingDirectives) { | ||||
1378 | // Add using directives from this context up to the top level. | ||||
1379 | for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { | ||||
1380 | if (UCtx->isTransparentContext()) | ||||
1381 | continue; | ||||
1382 | |||||
1383 | UDirs.visit(UCtx, UCtx); | ||||
1384 | } | ||||
1385 | |||||
1386 | // Find the innermost file scope, so we can add using directives | ||||
1387 | // from local scopes. | ||||
1388 | Scope *InnermostFileScope = S; | ||||
1389 | while (InnermostFileScope && | ||||
1390 | !isNamespaceOrTranslationUnitScope(InnermostFileScope)) | ||||
1391 | InnermostFileScope = InnermostFileScope->getParent(); | ||||
1392 | UDirs.visitScopeChain(Initial, InnermostFileScope); | ||||
1393 | |||||
1394 | UDirs.done(); | ||||
1395 | |||||
1396 | VisitedUsingDirectives = true; | ||||
1397 | } | ||||
1398 | |||||
1399 | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { | ||||
1400 | R.resolveKind(); | ||||
1401 | return true; | ||||
1402 | } | ||||
1403 | |||||
1404 | continue; | ||||
1405 | } | ||||
1406 | |||||
1407 | // Perform qualified name lookup into this context. | ||||
1408 | // FIXME: In some cases, we know that every name that could be found by | ||||
1409 | // this qualified name lookup will also be on the identifier chain. For | ||||
1410 | // example, inside a class without any base classes, we never need to | ||||
1411 | // perform qualified lookup because all of the members are on top of the | ||||
1412 | // identifier chain. | ||||
1413 | if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) | ||||
1414 | return true; | ||||
1415 | } | ||||
1416 | } | ||||
1417 | } | ||||
1418 | |||||
1419 | // Stop if we ran out of scopes. | ||||
1420 | // FIXME: This really, really shouldn't be happening. | ||||
1421 | if (!S) return false; | ||||
1422 | |||||
1423 | // If we are looking for members, no need to look into global/namespace scope. | ||||
1424 | if (NameKind == LookupMemberName) | ||||
1425 | return false; | ||||
1426 | |||||
1427 | // Collect UsingDirectiveDecls in all scopes, and recursively all | ||||
1428 | // nominated namespaces by those using-directives. | ||||
1429 | // | ||||
1430 | // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we | ||||
1431 | // don't build it for each lookup! | ||||
1432 | if (!VisitedUsingDirectives) { | ||||
1433 | UDirs.visitScopeChain(Initial, S); | ||||
1434 | UDirs.done(); | ||||
1435 | } | ||||
1436 | |||||
1437 | // If we're not performing redeclaration lookup, do not look for local | ||||
1438 | // extern declarations outside of a function scope. | ||||
1439 | if (!R.isForRedeclaration()) | ||||
1440 | FindLocals.restore(); | ||||
1441 | |||||
1442 | // Lookup namespace scope, and global scope. | ||||
1443 | // Unqualified name lookup in C++ requires looking into scopes | ||||
1444 | // that aren't strictly lexical, and therefore we walk through the | ||||
1445 | // context as well as walking through the scopes. | ||||
1446 | for (; S; S = S->getParent()) { | ||||
1447 | // Check whether the IdResolver has anything in this scope. | ||||
1448 | bool Found = false; | ||||
1449 | for (; I != IEnd && S->isDeclScope(*I); ++I) { | ||||
1450 | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { | ||||
1451 | // We found something. Look for anything else in our scope | ||||
1452 | // with this same name and in an acceptable identifier | ||||
1453 | // namespace, so that we can construct an overload set if we | ||||
1454 | // need to. | ||||
1455 | Found = true; | ||||
1456 | R.addDecl(ND); | ||||
1457 | } | ||||
1458 | } | ||||
1459 | |||||
1460 | if (Found && S->isTemplateParamScope()) { | ||||
1461 | R.resolveKind(); | ||||
1462 | return true; | ||||
1463 | } | ||||
1464 | |||||
1465 | DeclContext *Ctx = S->getLookupEntity(); | ||||
1466 | if (Ctx) { | ||||
1467 | DeclContext *OuterCtx = findOuterContext(S); | ||||
1468 | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { | ||||
1469 | // We do not directly look into transparent contexts, since | ||||
1470 | // those entities will be found in the nearest enclosing | ||||
1471 | // non-transparent context. | ||||
1472 | if (Ctx->isTransparentContext()) | ||||
1473 | continue; | ||||
1474 | |||||
1475 | // If we have a context, and it's not a context stashed in the | ||||
1476 | // template parameter scope for an out-of-line definition, also | ||||
1477 | // look into that context. | ||||
1478 | if (!(Found && S->isTemplateParamScope())) { | ||||
1479 | assert(Ctx->isFileContext() &&((void)0) | ||||
1480 | "We should have been looking only at file context here already.")((void)0); | ||||
1481 | |||||
1482 | // Look into context considering using-directives. | ||||
1483 | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) | ||||
1484 | Found = true; | ||||
1485 | } | ||||
1486 | |||||
1487 | if (Found) { | ||||
1488 | R.resolveKind(); | ||||
1489 | return true; | ||||
1490 | } | ||||
1491 | |||||
1492 | if (R.isForRedeclaration() && !Ctx->isTransparentContext()) | ||||
1493 | return false; | ||||
1494 | } | ||||
1495 | } | ||||
1496 | |||||
1497 | if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) | ||||
1498 | return false; | ||||
1499 | } | ||||
1500 | |||||
1501 | return !R.empty(); | ||||
1502 | } | ||||
1503 | |||||
1504 | void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { | ||||
1505 | if (auto *M = getCurrentModule()) | ||||
1506 | Context.mergeDefinitionIntoModule(ND, M); | ||||
1507 | else | ||||
1508 | // We're not building a module; just make the definition visible. | ||||
1509 | ND->setVisibleDespiteOwningModule(); | ||||
1510 | |||||
1511 | // If ND is a template declaration, make the template parameters | ||||
1512 | // visible too. They're not (necessarily) within a mergeable DeclContext. | ||||
1513 | if (auto *TD = dyn_cast<TemplateDecl>(ND)) | ||||
1514 | for (auto *Param : *TD->getTemplateParameters()) | ||||
1515 | makeMergedDefinitionVisible(Param); | ||||
1516 | } | ||||
1517 | |||||
1518 | /// Find the module in which the given declaration was defined. | ||||
1519 | static Module *getDefiningModule(Sema &S, Decl *Entity) { | ||||
1520 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { | ||||
1521 | // If this function was instantiated from a template, the defining module is | ||||
1522 | // the module containing the pattern. | ||||
1523 | if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) | ||||
1524 | Entity = Pattern; | ||||
1525 | } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { | ||||
1526 | if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) | ||||
1527 | Entity = Pattern; | ||||
1528 | } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { | ||||
1529 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) | ||||
1530 | Entity = Pattern; | ||||
1531 | } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { | ||||
1532 | if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) | ||||
1533 | Entity = Pattern; | ||||
1534 | } | ||||
1535 | |||||
1536 | // Walk up to the containing context. That might also have been instantiated | ||||
1537 | // from a template. | ||||
1538 | DeclContext *Context = Entity->getLexicalDeclContext(); | ||||
1539 | if (Context->isFileContext()) | ||||
1540 | return S.getOwningModule(Entity); | ||||
1541 | return getDefiningModule(S, cast<Decl>(Context)); | ||||
1542 | } | ||||
1543 | |||||
1544 | llvm::DenseSet<Module*> &Sema::getLookupModules() { | ||||
1545 | unsigned N = CodeSynthesisContexts.size(); | ||||
1546 | for (unsigned I = CodeSynthesisContextLookupModules.size(); | ||||
1547 | I != N; ++I) { | ||||
1548 | Module *M = CodeSynthesisContexts[I].Entity ? | ||||
1549 | getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : | ||||
1550 | nullptr; | ||||
1551 | if (M && !LookupModulesCache.insert(M).second) | ||||
1552 | M = nullptr; | ||||
1553 | CodeSynthesisContextLookupModules.push_back(M); | ||||
1554 | } | ||||
1555 | return LookupModulesCache; | ||||
1556 | } | ||||
1557 | |||||
1558 | /// Determine whether the module M is part of the current module from the | ||||
1559 | /// perspective of a module-private visibility check. | ||||
1560 | static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) { | ||||
1561 | // If M is the global module fragment of a module that we've not yet finished | ||||
1562 | // parsing, then it must be part of the current module. | ||||
1563 | return M->getTopLevelModuleName() == LangOpts.CurrentModule || | ||||
1564 | (M->Kind == Module::GlobalModuleFragment && !M->Parent); | ||||
1565 | } | ||||
1566 | |||||
1567 | bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) { | ||||
1568 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) | ||||
1569 | if (isModuleVisible(Merged)) | ||||
1570 | return true; | ||||
1571 | return false; | ||||
1572 | } | ||||
1573 | |||||
1574 | bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) { | ||||
1575 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) | ||||
1576 | if (isInCurrentModule(Merged, getLangOpts())) | ||||
1577 | return true; | ||||
1578 | return false; | ||||
1579 | } | ||||
1580 | |||||
1581 | template<typename ParmDecl> | ||||
1582 | static bool | ||||
1583 | hasVisibleDefaultArgument(Sema &S, const ParmDecl *D, | ||||
1584 | llvm::SmallVectorImpl<Module *> *Modules) { | ||||
1585 | if (!D->hasDefaultArgument()) | ||||
1586 | return false; | ||||
1587 | |||||
1588 | while (D) { | ||||
1589 | auto &DefaultArg = D->getDefaultArgStorage(); | ||||
1590 | if (!DefaultArg.isInherited() && S.isVisible(D)) | ||||
1591 | return true; | ||||
1592 | |||||
1593 | if (!DefaultArg.isInherited() && Modules) { | ||||
1594 | auto *NonConstD = const_cast<ParmDecl*>(D); | ||||
1595 | Modules->push_back(S.getOwningModule(NonConstD)); | ||||
1596 | } | ||||
1597 | |||||
1598 | // If there was a previous default argument, maybe its parameter is visible. | ||||
1599 | D = DefaultArg.getInheritedFrom(); | ||||
1600 | } | ||||
1601 | return false; | ||||
1602 | } | ||||
1603 | |||||
1604 | bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, | ||||
1605 | llvm::SmallVectorImpl<Module *> *Modules) { | ||||
1606 | if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) | ||||
1607 | return ::hasVisibleDefaultArgument(*this, P, Modules); | ||||
1608 | if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) | ||||
1609 | return ::hasVisibleDefaultArgument(*this, P, Modules); | ||||
1610 | return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D), | ||||
1611 | Modules); | ||||
1612 | } | ||||
1613 | |||||
1614 | template<typename Filter> | ||||
1615 | static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D, | ||||
1616 | llvm::SmallVectorImpl<Module *> *Modules, | ||||
1617 | Filter F) { | ||||
1618 | bool HasFilteredRedecls = false; | ||||
1619 | |||||
1620 | for (auto *Redecl : D->redecls()) { | ||||
1621 | auto *R = cast<NamedDecl>(Redecl); | ||||
1622 | if (!F(R)) | ||||
1623 | continue; | ||||
1624 | |||||
1625 | if (S.isVisible(R)) | ||||
1626 | return true; | ||||
1627 | |||||
1628 | HasFilteredRedecls = true; | ||||
1629 | |||||
1630 | if (Modules) | ||||
1631 | Modules->push_back(R->getOwningModule()); | ||||
1632 | } | ||||
1633 | |||||
1634 | // Only return false if there is at least one redecl that is not filtered out. | ||||
1635 | if (HasFilteredRedecls) | ||||
1636 | return false; | ||||
1637 | |||||
1638 | return true; | ||||
1639 | } | ||||
1640 | |||||
1641 | bool Sema::hasVisibleExplicitSpecialization( | ||||
1642 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | ||||
1643 | return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) { | ||||
1644 | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) | ||||
1645 | return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | ||||
1646 | if (auto *FD = dyn_cast<FunctionDecl>(D)) | ||||
1647 | return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | ||||
1648 | if (auto *VD = dyn_cast<VarDecl>(D)) | ||||
1649 | return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | ||||
1650 | llvm_unreachable("unknown explicit specialization kind")__builtin_unreachable(); | ||||
1651 | }); | ||||
1652 | } | ||||
1653 | |||||
1654 | bool Sema::hasVisibleMemberSpecialization( | ||||
1655 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | ||||
1656 | assert(isa<CXXRecordDecl>(D->getDeclContext()) &&((void)0) | ||||
1657 | "not a member specialization")((void)0); | ||||
1658 | return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) { | ||||
1659 | // If the specialization is declared at namespace scope, then it's a member | ||||
1660 | // specialization declaration. If it's lexically inside the class | ||||
1661 | // definition then it was instantiated. | ||||
1662 | // | ||||
1663 | // FIXME: This is a hack. There should be a better way to determine this. | ||||
1664 | // FIXME: What about MS-style explicit specializations declared within a | ||||
1665 | // class definition? | ||||
1666 | return D->getLexicalDeclContext()->isFileContext(); | ||||
1667 | }); | ||||
1668 | } | ||||
1669 | |||||
1670 | /// Determine whether a declaration is visible to name lookup. | ||||
1671 | /// | ||||
1672 | /// This routine determines whether the declaration D is visible in the current | ||||
1673 | /// lookup context, taking into account the current template instantiation | ||||
1674 | /// stack. During template instantiation, a declaration is visible if it is | ||||
1675 | /// visible from a module containing any entity on the template instantiation | ||||
1676 | /// path (by instantiating a template, you allow it to see the declarations that | ||||
1677 | /// your module can see, including those later on in your module). | ||||
1678 | bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) { | ||||
1679 | assert(!D->isUnconditionallyVisible() &&((void)0) | ||||
1680 | "should not call this: not in slow case")((void)0); | ||||
1681 | |||||
1682 | Module *DeclModule = SemaRef.getOwningModule(D); | ||||
1683 | assert(DeclModule && "hidden decl has no owning module")((void)0); | ||||
1684 | |||||
1685 | // If the owning module is visible, the decl is visible. | ||||
1686 | if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate())) | ||||
1687 | return true; | ||||
1688 | |||||
1689 | // Determine whether a decl context is a file context for the purpose of | ||||
1690 | // visibility. This looks through some (export and linkage spec) transparent | ||||
1691 | // contexts, but not others (enums). | ||||
1692 | auto IsEffectivelyFileContext = [](const DeclContext *DC) { | ||||
1693 | return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || | ||||
1694 | isa<ExportDecl>(DC); | ||||
1695 | }; | ||||
1696 | |||||
1697 | // If this declaration is not at namespace scope | ||||
1698 | // then it is visible if its lexical parent has a visible definition. | ||||
1699 | DeclContext *DC = D->getLexicalDeclContext(); | ||||
1700 | if (DC && !IsEffectivelyFileContext(DC)) { | ||||
1701 | // For a parameter, check whether our current template declaration's | ||||
1702 | // lexical context is visible, not whether there's some other visible | ||||
1703 | // definition of it, because parameters aren't "within" the definition. | ||||
1704 | // | ||||
1705 | // In C++ we need to check for a visible definition due to ODR merging, | ||||
1706 | // and in C we must not because each declaration of a function gets its own | ||||
1707 | // set of declarations for tags in prototype scope. | ||||
1708 | bool VisibleWithinParent; | ||||
1709 | if (D->isTemplateParameter()) { | ||||
1710 | bool SearchDefinitions = true; | ||||
1711 | if (const auto *DCD = dyn_cast<Decl>(DC)) { | ||||
1712 | if (const auto *TD = DCD->getDescribedTemplate()) { | ||||
1713 | TemplateParameterList *TPL = TD->getTemplateParameters(); | ||||
1714 | auto Index = getDepthAndIndex(D).second; | ||||
1715 | SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; | ||||
1716 | } | ||||
1717 | } | ||||
1718 | if (SearchDefinitions) | ||||
1719 | VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC)); | ||||
1720 | else | ||||
1721 | VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC)); | ||||
1722 | } else if (isa<ParmVarDecl>(D) || | ||||
1723 | (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) | ||||
1724 | VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC)); | ||||
1725 | else if (D->isModulePrivate()) { | ||||
1726 | // A module-private declaration is only visible if an enclosing lexical | ||||
1727 | // parent was merged with another definition in the current module. | ||||
1728 | VisibleWithinParent = false; | ||||
1729 | do { | ||||
1730 | if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { | ||||
1731 | VisibleWithinParent = true; | ||||
1732 | break; | ||||
1733 | } | ||||
1734 | DC = DC->getLexicalParent(); | ||||
1735 | } while (!IsEffectivelyFileContext(DC)); | ||||
1736 | } else { | ||||
1737 | VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC)); | ||||
1738 | } | ||||
1739 | |||||
1740 | if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() && | ||||
1741 | // FIXME: Do something better in this case. | ||||
1742 | !SemaRef.getLangOpts().ModulesLocalVisibility) { | ||||
1743 | // Cache the fact that this declaration is implicitly visible because | ||||
1744 | // its parent has a visible definition. | ||||
1745 | D->setVisibleDespiteOwningModule(); | ||||
1746 | } | ||||
1747 | return VisibleWithinParent; | ||||
1748 | } | ||||
1749 | |||||
1750 | return false; | ||||
1751 | } | ||||
1752 | |||||
1753 | bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { | ||||
1754 | // The module might be ordinarily visible. For a module-private query, that | ||||
1755 | // means it is part of the current module. For any other query, that means it | ||||
1756 | // is in our visible module set. | ||||
1757 | if (ModulePrivate) { | ||||
1758 | if (isInCurrentModule(M, getLangOpts())) | ||||
1759 | return true; | ||||
1760 | } else { | ||||
1761 | if (VisibleModules.isVisible(M)) | ||||
1762 | return true; | ||||
1763 | } | ||||
1764 | |||||
1765 | // Otherwise, it might be visible by virtue of the query being within a | ||||
1766 | // template instantiation or similar that is permitted to look inside M. | ||||
1767 | |||||
1768 | // Find the extra places where we need to look. | ||||
1769 | const auto &LookupModules = getLookupModules(); | ||||
1770 | if (LookupModules.empty()) | ||||
1771 | return false; | ||||
1772 | |||||
1773 | // If our lookup set contains the module, it's visible. | ||||
1774 | if (LookupModules.count(M)) | ||||
1775 | return true; | ||||
1776 | |||||
1777 | // For a module-private query, that's everywhere we get to look. | ||||
1778 | if (ModulePrivate) | ||||
1779 | return false; | ||||
1780 | |||||
1781 | // Check whether M is transitively exported to an import of the lookup set. | ||||
1782 | return llvm::any_of(LookupModules, [&](const Module *LookupM) { | ||||
1783 | return LookupM->isModuleVisible(M); | ||||
1784 | }); | ||||
1785 | } | ||||
1786 | |||||
1787 | bool Sema::isVisibleSlow(const NamedDecl *D) { | ||||
1788 | return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D)); | ||||
1789 | } | ||||
1790 | |||||
1791 | bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { | ||||
1792 | // FIXME: If there are both visible and hidden declarations, we need to take | ||||
1793 | // into account whether redeclaration is possible. Example: | ||||
1794 | // | ||||
1795 | // Non-imported module: | ||||
1796 | // int f(T); // #1 | ||||
1797 | // Some TU: | ||||
1798 | // static int f(U); // #2, not a redeclaration of #1 | ||||
1799 | // int f(T); // #3, finds both, should link with #1 if T != U, but | ||||
1800 | // // with #2 if T == U; neither should be ambiguous. | ||||
1801 | for (auto *D : R) { | ||||
1802 | if (isVisible(D)) | ||||
1803 | return true; | ||||
1804 | assert(D->isExternallyDeclarable() &&((void)0) | ||||
1805 | "should not have hidden, non-externally-declarable result here")((void)0); | ||||
1806 | } | ||||
1807 | |||||
1808 | // This function is called once "New" is essentially complete, but before a | ||||
1809 | // previous declaration is attached. We can't query the linkage of "New" in | ||||
1810 | // general, because attaching the previous declaration can change the | ||||
1811 | // linkage of New to match the previous declaration. | ||||
1812 | // | ||||
1813 | // However, because we've just determined that there is no *visible* prior | ||||
1814 | // declaration, we can compute the linkage here. There are two possibilities: | ||||
1815 | // | ||||
1816 | // * This is not a redeclaration; it's safe to compute the linkage now. | ||||
1817 | // | ||||
1818 | // * This is a redeclaration of a prior declaration that is externally | ||||
1819 | // redeclarable. In that case, the linkage of the declaration is not | ||||
1820 | // changed by attaching the prior declaration, because both are externally | ||||
1821 | // declarable (and thus ExternalLinkage or VisibleNoLinkage). | ||||
1822 | // | ||||
1823 | // FIXME: This is subtle and fragile. | ||||
1824 | return New->isExternallyDeclarable(); | ||||
1825 | } | ||||
1826 | |||||
1827 | /// Retrieve the visible declaration corresponding to D, if any. | ||||
1828 | /// | ||||
1829 | /// This routine determines whether the declaration D is visible in the current | ||||
1830 | /// module, with the current imports. If not, it checks whether any | ||||
1831 | /// redeclaration of D is visible, and if so, returns that declaration. | ||||
1832 | /// | ||||
1833 | /// \returns D, or a visible previous declaration of D, whichever is more recent | ||||
1834 | /// and visible. If no declaration of D is visible, returns null. | ||||
1835 | static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, | ||||
1836 | unsigned IDNS) { | ||||
1837 | assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")((void)0); | ||||
1838 | |||||
1839 | for (auto RD : D->redecls()) { | ||||
1840 | // Don't bother with extra checks if we already know this one isn't visible. | ||||
1841 | if (RD == D) | ||||
1842 | continue; | ||||
1843 | |||||
1844 | auto ND = cast<NamedDecl>(RD); | ||||
1845 | // FIXME: This is wrong in the case where the previous declaration is not | ||||
1846 | // visible in the same scope as D. This needs to be done much more | ||||
1847 | // carefully. | ||||
1848 | if (ND->isInIdentifierNamespace(IDNS) && | ||||
1849 | LookupResult::isVisible(SemaRef, ND)) | ||||
1850 | return ND; | ||||
1851 | } | ||||
1852 | |||||
1853 | return nullptr; | ||||
1854 | } | ||||
1855 | |||||
1856 | bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, | ||||
1857 | llvm::SmallVectorImpl<Module *> *Modules) { | ||||
1858 | assert(!isVisible(D) && "not in slow case")((void)0); | ||||
1859 | return hasVisibleDeclarationImpl(*this, D, Modules, | ||||
1860 | [](const NamedDecl *) { return true; }); | ||||
1861 | } | ||||
1862 | |||||
1863 | NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { | ||||
1864 | if (auto *ND = dyn_cast<NamespaceDecl>(D)) { | ||||
1865 | // Namespaces are a bit of a special case: we expect there to be a lot of | ||||
1866 | // redeclarations of some namespaces, all declarations of a namespace are | ||||
1867 | // essentially interchangeable, all declarations are found by name lookup | ||||
1868 | // if any is, and namespaces are never looked up during template | ||||
1869 | // instantiation. So we benefit from caching the check in this case, and | ||||
1870 | // it is correct to do so. | ||||
1871 | auto *Key = ND->getCanonicalDecl(); | ||||
1872 | if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) | ||||
1873 | return Acceptable; | ||||
1874 | auto *Acceptable = isVisible(getSema(), Key) | ||||
1875 | ? Key | ||||
1876 | : findAcceptableDecl(getSema(), Key, IDNS); | ||||
1877 | if (Acceptable) | ||||
1878 | getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); | ||||
1879 | return Acceptable; | ||||
1880 | } | ||||
1881 | |||||
1882 | return findAcceptableDecl(getSema(), D, IDNS); | ||||
1883 | } | ||||
1884 | |||||
1885 | /// Perform unqualified name lookup starting from a given | ||||
1886 | /// scope. | ||||
1887 | /// | ||||
1888 | /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is | ||||
1889 | /// used to find names within the current scope. For example, 'x' in | ||||
1890 | /// @code | ||||
1891 | /// int x; | ||||
1892 | /// int f() { | ||||
1893 | /// return x; // unqualified name look finds 'x' in the global scope | ||||
1894 | /// } | ||||
1895 | /// @endcode | ||||
1896 | /// | ||||
1897 | /// Different lookup criteria can find different names. For example, a | ||||
1898 | /// particular scope can have both a struct and a function of the same | ||||
1899 | /// name, and each can be found by certain lookup criteria. For more | ||||
1900 | /// information about lookup criteria, see the documentation for the | ||||
1901 | /// class LookupCriteria. | ||||
1902 | /// | ||||
1903 | /// @param S The scope from which unqualified name lookup will | ||||
1904 | /// begin. If the lookup criteria permits, name lookup may also search | ||||
1905 | /// in the parent scopes. | ||||
1906 | /// | ||||
1907 | /// @param [in,out] R Specifies the lookup to perform (e.g., the name to | ||||
1908 | /// look up and the lookup kind), and is updated with the results of lookup | ||||
1909 | /// including zero or more declarations and possibly additional information | ||||
1910 | /// used to diagnose ambiguities. | ||||
1911 | /// | ||||
1912 | /// @returns \c true if lookup succeeded and false otherwise. | ||||
1913 | bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { | ||||
1914 | DeclarationName Name = R.getLookupName(); | ||||
1915 | if (!Name) return false; | ||||
1916 | |||||
1917 | LookupNameKind NameKind = R.getLookupKind(); | ||||
1918 | |||||
1919 | if (!getLangOpts().CPlusPlus) { | ||||
1920 | // Unqualified name lookup in C/Objective-C is purely lexical, so | ||||
1921 | // search in the declarations attached to the name. | ||||
1922 | if (NameKind == Sema::LookupRedeclarationWithLinkage) { | ||||
1923 | // Find the nearest non-transparent declaration scope. | ||||
1924 | while (!(S->getFlags() & Scope::DeclScope) || | ||||
1925 | (S->getEntity() && S->getEntity()->isTransparentContext())) | ||||
1926 | S = S->getParent(); | ||||
1927 | } | ||||
1928 | |||||
1929 | // When performing a scope lookup, we want to find local extern decls. | ||||
1930 | FindLocalExternScope FindLocals(R); | ||||
1931 | |||||
1932 | // Scan up the scope chain looking for a decl that matches this | ||||
1933 | // identifier that is in the appropriate namespace. This search | ||||
1934 | // should not take long, as shadowing of names is uncommon, and | ||||
1935 | // deep shadowing is extremely uncommon. | ||||
1936 | bool LeftStartingScope = false; | ||||
1937 | |||||
1938 | for (IdentifierResolver::iterator I = IdResolver.begin(Name), | ||||
1939 | IEnd = IdResolver.end(); | ||||
1940 | I != IEnd; ++I) | ||||
1941 | if (NamedDecl *D = R.getAcceptableDecl(*I)) { | ||||
1942 | if (NameKind == LookupRedeclarationWithLinkage) { | ||||
1943 | // Determine whether this (or a previous) declaration is | ||||
1944 | // out-of-scope. | ||||
1945 | if (!LeftStartingScope && !S->isDeclScope(*I)) | ||||
1946 | LeftStartingScope = true; | ||||
1947 | |||||
1948 | // If we found something outside of our starting scope that | ||||
1949 | // does not have linkage, skip it. | ||||
1950 | if (LeftStartingScope && !((*I)->hasLinkage())) { | ||||
1951 | R.setShadowed(); | ||||
1952 | continue; | ||||
1953 | } | ||||
1954 | } | ||||
1955 | else if (NameKind == LookupObjCImplicitSelfParam && | ||||
1956 | !isa<ImplicitParamDecl>(*I)) | ||||
1957 | continue; | ||||
1958 | |||||
1959 | R.addDecl(D); | ||||
1960 | |||||
1961 | // Check whether there are any other declarations with the same name | ||||
1962 | // and in the same scope. | ||||
1963 | if (I != IEnd) { | ||||
1964 | // Find the scope in which this declaration was declared (if it | ||||
1965 | // actually exists in a Scope). | ||||
1966 | while (S && !S->isDeclScope(D)) | ||||
1967 | S = S->getParent(); | ||||
1968 | |||||
1969 | // If the scope containing the declaration is the translation unit, | ||||
1970 | // then we'll need to perform our checks based on the matching | ||||
1971 | // DeclContexts rather than matching scopes. | ||||
1972 | if (S && isNamespaceOrTranslationUnitScope(S)) | ||||
1973 | S = nullptr; | ||||
1974 | |||||
1975 | // Compute the DeclContext, if we need it. | ||||
1976 | DeclContext *DC = nullptr; | ||||
1977 | if (!S) | ||||
1978 | DC = (*I)->getDeclContext()->getRedeclContext(); | ||||
1979 | |||||
1980 | IdentifierResolver::iterator LastI = I; | ||||
1981 | for (++LastI; LastI != IEnd; ++LastI) { | ||||
1982 | if (S) { | ||||
1983 | // Match based on scope. | ||||
1984 | if (!S->isDeclScope(*LastI)) | ||||
1985 | break; | ||||
1986 | } else { | ||||
1987 | // Match based on DeclContext. | ||||
1988 | DeclContext *LastDC | ||||
1989 | = (*LastI)->getDeclContext()->getRedeclContext(); | ||||
1990 | if (!LastDC->Equals(DC)) | ||||
1991 | break; | ||||
1992 | } | ||||
1993 | |||||
1994 | // If the declaration is in the right namespace and visible, add it. | ||||
1995 | if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) | ||||
1996 | R.addDecl(LastD); | ||||
1997 | } | ||||
1998 | |||||
1999 | R.resolveKind(); | ||||
2000 | } | ||||
2001 | |||||
2002 | return true; | ||||
2003 | } | ||||
2004 | } else { | ||||
2005 | // Perform C++ unqualified name lookup. | ||||
2006 | if (CppLookupName(R, S)) | ||||
2007 | return true; | ||||
2008 | } | ||||
2009 | |||||
2010 | // If we didn't find a use of this identifier, and if the identifier | ||||
2011 | // corresponds to a compiler builtin, create the decl object for the builtin | ||||
2012 | // now, injecting it into translation unit scope, and return it. | ||||
2013 | if (AllowBuiltinCreation && LookupBuiltin(R)) | ||||
2014 | return true; | ||||
2015 | |||||
2016 | // If we didn't find a use of this identifier, the ExternalSource | ||||
2017 | // may be able to handle the situation. | ||||
2018 | // Note: some lookup failures are expected! | ||||
2019 | // See e.g. R.isForRedeclaration(). | ||||
2020 | return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); | ||||
2021 | } | ||||
2022 | |||||
2023 | /// Perform qualified name lookup in the namespaces nominated by | ||||
2024 | /// using directives by the given context. | ||||
2025 | /// | ||||
2026 | /// C++98 [namespace.qual]p2: | ||||
2027 | /// Given X::m (where X is a user-declared namespace), or given \::m | ||||
2028 | /// (where X is the global namespace), let S be the set of all | ||||
2029 | /// declarations of m in X and in the transitive closure of all | ||||
2030 | /// namespaces nominated by using-directives in X and its used | ||||
2031 | /// namespaces, except that using-directives are ignored in any | ||||
2032 | /// namespace, including X, directly containing one or more | ||||
2033 | /// declarations of m. No namespace is searched more than once in | ||||
2034 | /// the lookup of a name. If S is the empty set, the program is | ||||
2035 | /// ill-formed. Otherwise, if S has exactly one member, or if the | ||||
2036 | /// context of the reference is a using-declaration | ||||
2037 | /// (namespace.udecl), S is the required set of declarations of | ||||
2038 | /// m. Otherwise if the use of m is not one that allows a unique | ||||
2039 | /// declaration to be chosen from S, the program is ill-formed. | ||||
2040 | /// | ||||
2041 | /// C++98 [namespace.qual]p5: | ||||
2042 | /// During the lookup of a qualified namespace member name, if the | ||||
2043 | /// lookup finds more than one declaration of the member, and if one | ||||
2044 | /// declaration introduces a class name or enumeration name and the | ||||
2045 | /// other declarations either introduce the same object, the same | ||||
2046 | /// enumerator or a set of functions, the non-type name hides the | ||||
2047 | /// class or enumeration name if and only if the declarations are | ||||
2048 | /// from the same namespace; otherwise (the declarations are from | ||||
2049 | /// different namespaces), the program is ill-formed. | ||||
2050 | static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, | ||||
2051 | DeclContext *StartDC) { | ||||
2052 | assert(StartDC->isFileContext() && "start context is not a file context")((void)0); | ||||
2053 | |||||
2054 | // We have not yet looked into these namespaces, much less added | ||||
2055 | // their "using-children" to the queue. | ||||
2056 | SmallVector<NamespaceDecl*, 8> Queue; | ||||
2057 | |||||
2058 | // We have at least added all these contexts to the queue. | ||||
2059 | llvm::SmallPtrSet<DeclContext*, 8> Visited; | ||||
2060 | Visited.insert(StartDC); | ||||
2061 | |||||
2062 | // We have already looked into the initial namespace; seed the queue | ||||
2063 | // with its using-children. | ||||
2064 | for (auto *I : StartDC->using_directives()) { | ||||
2065 | NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace(); | ||||
2066 | if (S.isVisible(I) && Visited.insert(ND).second) | ||||
2067 | Queue.push_back(ND); | ||||
2068 | } | ||||
2069 | |||||
2070 | // The easiest way to implement the restriction in [namespace.qual]p5 | ||||
2071 | // is to check whether any of the individual results found a tag | ||||
2072 | // and, if so, to declare an ambiguity if the final result is not | ||||
2073 | // a tag. | ||||
2074 | bool FoundTag = false; | ||||
2075 | bool FoundNonTag = false; | ||||
2076 | |||||
2077 | LookupResult LocalR(LookupResult::Temporary, R); | ||||
2078 | |||||
2079 | bool Found = false; | ||||
2080 | while (!Queue.empty()) { | ||||
2081 | NamespaceDecl *ND = Queue.pop_back_val(); | ||||
2082 | |||||
2083 | // We go through some convolutions here to avoid copying results | ||||
2084 | // between LookupResults. | ||||
2085 | bool UseLocal = !R.empty(); | ||||
2086 | LookupResult &DirectR = UseLocal ? LocalR : R; | ||||
2087 | bool FoundDirect = LookupDirect(S, DirectR, ND); | ||||
2088 | |||||
2089 | if (FoundDirect) { | ||||
2090 | // First do any local hiding. | ||||
2091 | DirectR.resolveKind(); | ||||
2092 | |||||
2093 | // If the local result is a tag, remember that. | ||||
2094 | if (DirectR.isSingleTagDecl()) | ||||
2095 | FoundTag = true; | ||||
2096 | else | ||||
2097 | FoundNonTag = true; | ||||
2098 | |||||
2099 | // Append the local results to the total results if necessary. | ||||
2100 | if (UseLocal) { | ||||
2101 | R.addAllDecls(LocalR); | ||||
2102 | LocalR.clear(); | ||||
2103 | } | ||||
2104 | } | ||||
2105 | |||||
2106 | // If we find names in this namespace, ignore its using directives. | ||||
2107 | if (FoundDirect) { | ||||
2108 | Found = true; | ||||
2109 | continue; | ||||
2110 | } | ||||
2111 | |||||
2112 | for (auto I : ND->using_directives()) { | ||||
2113 | NamespaceDecl *Nom = I->getNominatedNamespace(); | ||||
2114 | if (S.isVisible(I) && Visited.insert(Nom).second) | ||||
2115 | Queue.push_back(Nom); | ||||
2116 | } | ||||
2117 | } | ||||
2118 | |||||
2119 | if (Found) { | ||||
2120 | if (FoundTag && FoundNonTag) | ||||
2121 | R.setAmbiguousQualifiedTagHiding(); | ||||
2122 | else | ||||
2123 | R.resolveKind(); | ||||
2124 | } | ||||
2125 | |||||
2126 | return Found; | ||||
2127 | } | ||||
2128 | |||||
2129 | /// Perform qualified name lookup into a given context. | ||||
2130 | /// | ||||
2131 | /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find | ||||
2132 | /// names when the context of those names is explicit specified, e.g., | ||||
2133 | /// "std::vector" or "x->member", or as part of unqualified name lookup. | ||||
2134 | /// | ||||
2135 | /// Different lookup criteria can find different names. For example, a | ||||
2136 | /// particular scope can have both a struct and a function of the same | ||||
2137 | /// name, and each can be found by certain lookup criteria. For more | ||||
2138 | /// information about lookup criteria, see the documentation for the | ||||
2139 | /// class LookupCriteria. | ||||
2140 | /// | ||||
2141 | /// \param R captures both the lookup criteria and any lookup results found. | ||||
2142 | /// | ||||
2143 | /// \param LookupCtx The context in which qualified name lookup will | ||||
2144 | /// search. If the lookup criteria permits, name lookup may also search | ||||
2145 | /// in the parent contexts or (for C++ classes) base classes. | ||||
2146 | /// | ||||
2147 | /// \param InUnqualifiedLookup true if this is qualified name lookup that | ||||
2148 | /// occurs as part of unqualified name lookup. | ||||
2149 | /// | ||||
2150 | /// \returns true if lookup succeeded, false if it failed. | ||||
2151 | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | ||||
2152 | bool InUnqualifiedLookup) { | ||||
2153 | assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")((void)0); | ||||
2154 | |||||
2155 | if (!R.getLookupName()) | ||||
2156 | return false; | ||||
2157 | |||||
2158 | // Make sure that the declaration context is complete. | ||||
2159 | assert((!isa<TagDecl>(LookupCtx) ||((void)0) | ||||
2160 | LookupCtx->isDependentContext() ||((void)0) | ||||
2161 | cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||((void)0) | ||||
2162 | cast<TagDecl>(LookupCtx)->isBeingDefined()) &&((void)0) | ||||
2163 | "Declaration context must already be complete!")((void)0); | ||||
2164 | |||||
2165 | struct QualifiedLookupInScope { | ||||
2166 | bool oldVal; | ||||
2167 | DeclContext *Context; | ||||
2168 | // Set flag in DeclContext informing debugger that we're looking for qualified name | ||||
2169 | QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) { | ||||
2170 | oldVal = ctx->setUseQualifiedLookup(); | ||||
2171 | } | ||||
2172 | ~QualifiedLookupInScope() { | ||||
2173 | Context->setUseQualifiedLookup(oldVal); | ||||
2174 | } | ||||
2175 | } QL(LookupCtx); | ||||
2176 | |||||
2177 | if (LookupDirect(*this, R, LookupCtx)) { | ||||
2178 | R.resolveKind(); | ||||
2179 | if (isa<CXXRecordDecl>(LookupCtx)) | ||||
2180 | R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); | ||||
2181 | return true; | ||||
2182 | } | ||||
2183 | |||||
2184 | // Don't descend into implied contexts for redeclarations. | ||||
2185 | // C++98 [namespace.qual]p6: | ||||
2186 | // In a declaration for a namespace member in which the | ||||
2187 | // declarator-id is a qualified-id, given that the qualified-id | ||||
2188 | // for the namespace member has the form | ||||
2189 | // nested-name-specifier unqualified-id | ||||
2190 | // the unqualified-id shall name a member of the namespace | ||||
2191 | // designated by the nested-name-specifier. | ||||
2192 | // See also [class.mfct]p5 and [class.static.data]p2. | ||||
2193 | if (R.isForRedeclaration()) | ||||
2194 | return false; | ||||
2195 | |||||
2196 | // If this is a namespace, look it up in the implied namespaces. | ||||
2197 | if (LookupCtx->isFileContext()) | ||||
2198 | return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); | ||||
2199 | |||||
2200 | // If this isn't a C++ class, we aren't allowed to look into base | ||||
2201 | // classes, we're done. | ||||
2202 | CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); | ||||
2203 | if (!LookupRec || !LookupRec->getDefinition()) | ||||
2204 | return false; | ||||
2205 | |||||
2206 | // We're done for lookups that can never succeed for C++ classes. | ||||
2207 | if (R.getLookupKind() == LookupOperatorName || | ||||
2208 | R.getLookupKind() == LookupNamespaceName || | ||||
2209 | R.getLookupKind() == LookupObjCProtocolName || | ||||
2210 | R.getLookupKind() == LookupLabel) | ||||
2211 | return false; | ||||
2212 | |||||
2213 | // If we're performing qualified name lookup into a dependent class, | ||||
2214 | // then we are actually looking into a current instantiation. If we have any | ||||
2215 | // dependent base classes, then we either have to delay lookup until | ||||
2216 | // template instantiation time (at which point all bases will be available) | ||||
2217 | // or we have to fail. | ||||
2218 | if (!InUnqualifiedLookup && LookupRec->isDependentContext() && | ||||
2219 | LookupRec->hasAnyDependentBases()) { | ||||
2220 | R.setNotFoundInCurrentInstantiation(); | ||||
2221 | return false; | ||||
2222 | } | ||||
2223 | |||||
2224 | // Perform lookup into our base classes. | ||||
2225 | |||||
2226 | DeclarationName Name = R.getLookupName(); | ||||
2227 | unsigned IDNS = R.getIdentifierNamespace(); | ||||
2228 | |||||
2229 | // Look for this member in our base classes. | ||||
2230 | auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, | ||||
2231 | CXXBasePath &Path) -> bool { | ||||
2232 | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); | ||||
2233 | // Drop leading non-matching lookup results from the declaration list so | ||||
2234 | // we don't need to consider them again below. | ||||
2235 | for (Path.Decls = BaseRecord->lookup(Name).begin(); | ||||
2236 | Path.Decls != Path.Decls.end(); ++Path.Decls) { | ||||
2237 | if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) | ||||
2238 | return true; | ||||
2239 | } | ||||
2240 | return false; | ||||
2241 | }; | ||||
2242 | |||||
2243 | CXXBasePaths Paths; | ||||
2244 | Paths.setOrigin(LookupRec); | ||||
2245 | if (!LookupRec->lookupInBases(BaseCallback, Paths)) | ||||
2246 | return false; | ||||
2247 | |||||
2248 | R.setNamingClass(LookupRec); | ||||
2249 | |||||
2250 | // C++ [class.member.lookup]p2: | ||||
2251 | // [...] If the resulting set of declarations are not all from | ||||
2252 | // sub-objects of the same type, or the set has a nonstatic member | ||||
2253 | // and includes members from distinct sub-objects, there is an | ||||
2254 | // ambiguity and the program is ill-formed. Otherwise that set is | ||||
2255 | // the result of the lookup. | ||||
2256 | QualType SubobjectType; | ||||
2257 | int SubobjectNumber = 0; | ||||
2258 | AccessSpecifier SubobjectAccess = AS_none; | ||||
2259 | |||||
2260 | // Check whether the given lookup result contains only static members. | ||||
2261 | auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { | ||||
2262 | for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) | ||||
2263 | if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) | ||||
2264 | return false; | ||||
2265 | return true; | ||||
2266 | }; | ||||
2267 | |||||
2268 | bool TemplateNameLookup = R.isTemplateNameLookup(); | ||||
2269 | |||||
2270 | // Determine whether two sets of members contain the same members, as | ||||
2271 | // required by C++ [class.member.lookup]p6. | ||||
2272 | auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, | ||||
2273 | DeclContext::lookup_iterator B) { | ||||
2274 | using Iterator = DeclContextLookupResult::iterator; | ||||
2275 | using Result = const void *; | ||||
2276 | |||||
2277 | auto Next = [&](Iterator &It, Iterator End) -> Result { | ||||
2278 | while (It != End) { | ||||
2279 | NamedDecl *ND = *It++; | ||||
2280 | if (!ND->isInIdentifierNamespace(IDNS)) | ||||
2281 | continue; | ||||
2282 | |||||
2283 | // C++ [temp.local]p3: | ||||
2284 | // A lookup that finds an injected-class-name (10.2) can result in | ||||
2285 | // an ambiguity in certain cases (for example, if it is found in | ||||
2286 | // more than one base class). If all of the injected-class-names | ||||
2287 | // that are found refer to specializations of the same class | ||||
2288 | // template, and if the name is used as a template-name, the | ||||
2289 | // reference refers to the class template itself and not a | ||||
2290 | // specialization thereof, and is not ambiguous. | ||||
2291 | if (TemplateNameLookup) | ||||
2292 | if (auto *TD = getAsTemplateNameDecl(ND)) | ||||
2293 | ND = TD; | ||||
2294 | |||||
2295 | // C++ [class.member.lookup]p3: | ||||
2296 | // type declarations (including injected-class-names) are replaced by | ||||
2297 | // the types they designate | ||||
2298 | if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { | ||||
2299 | QualType T = Context.getTypeDeclType(TD); | ||||
2300 | return T.getCanonicalType().getAsOpaquePtr(); | ||||
2301 | } | ||||
2302 | |||||
2303 | return ND->getUnderlyingDecl()->getCanonicalDecl(); | ||||
2304 | } | ||||
2305 | return nullptr; | ||||
2306 | }; | ||||
2307 | |||||
2308 | // We'll often find the declarations are in the same order. Handle this | ||||
2309 | // case (and the special case of only one declaration) efficiently. | ||||
2310 | Iterator AIt = A, BIt = B, AEnd, BEnd; | ||||
2311 | while (true) { | ||||
2312 | Result AResult = Next(AIt, AEnd); | ||||
2313 | Result BResult = Next(BIt, BEnd); | ||||
2314 | if (!AResult && !BResult) | ||||
2315 | return true; | ||||
2316 | if (!AResult || !BResult) | ||||
2317 | return false; | ||||
2318 | if (AResult != BResult) { | ||||
2319 | // Found a mismatch; carefully check both lists, accounting for the | ||||
2320 | // possibility of declarations appearing more than once. | ||||
2321 | llvm::SmallDenseMap<Result, bool, 32> AResults; | ||||
2322 | for (; AResult; AResult = Next(AIt, AEnd)) | ||||
2323 | AResults.insert({AResult, /*FoundInB*/false}); | ||||
2324 | unsigned Found = 0; | ||||
2325 | for (; BResult; BResult = Next(BIt, BEnd)) { | ||||
2326 | auto It = AResults.find(BResult); | ||||
2327 | if (It == AResults.end()) | ||||
2328 | return false; | ||||
2329 | if (!It->second) { | ||||
2330 | It->second = true; | ||||
2331 | ++Found; | ||||
2332 | } | ||||
2333 | } | ||||
2334 | return AResults.size() == Found; | ||||
2335 | } | ||||
2336 | } | ||||
2337 | }; | ||||
2338 | |||||
2339 | for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); | ||||
2340 | Path != PathEnd; ++Path) { | ||||
2341 | const CXXBasePathElement &PathElement = Path->back(); | ||||
2342 | |||||
2343 | // Pick the best (i.e. most permissive i.e. numerically lowest) access | ||||
2344 | // across all paths. | ||||
2345 | SubobjectAccess = std::min(SubobjectAccess, Path->Access); | ||||
2346 | |||||
2347 | // Determine whether we're looking at a distinct sub-object or not. | ||||
2348 | if (SubobjectType.isNull()) { | ||||
2349 | // This is the first subobject we've looked at. Record its type. | ||||
2350 | SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); | ||||
2351 | SubobjectNumber = PathElement.SubobjectNumber; | ||||
2352 | continue; | ||||
2353 | } | ||||
2354 | |||||
2355 | if (SubobjectType != | ||||
2356 | Context.getCanonicalType(PathElement.Base->getType())) { | ||||
2357 | // We found members of the given name in two subobjects of | ||||
2358 | // different types. If the declaration sets aren't the same, this | ||||
2359 | // lookup is ambiguous. | ||||
2360 | // | ||||
2361 | // FIXME: The language rule says that this applies irrespective of | ||||
2362 | // whether the sets contain only static members. | ||||
2363 | if (HasOnlyStaticMembers(Path->Decls) && | ||||
2364 | HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) | ||||
2365 | continue; | ||||
2366 | |||||
2367 | R.setAmbiguousBaseSubobjectTypes(Paths); | ||||
2368 | return true; | ||||
2369 | } | ||||
2370 | |||||
2371 | // FIXME: This language rule no longer exists. Checking for ambiguous base | ||||
2372 | // subobjects should be done as part of formation of a class member access | ||||
2373 | // expression (when converting the object parameter to the member's type). | ||||
2374 | if (SubobjectNumber != PathElement.SubobjectNumber) { | ||||
2375 | // We have a different subobject of the same type. | ||||
2376 | |||||
2377 | // C++ [class.member.lookup]p5: | ||||
2378 | // A static member, a nested type or an enumerator defined in | ||||
2379 | // a base class T can unambiguously be found even if an object | ||||
2380 | // has more than one base class subobject of type T. | ||||
2381 | if (HasOnlyStaticMembers(Path->Decls)) | ||||
2382 | continue; | ||||
2383 | |||||
2384 | // We have found a nonstatic member name in multiple, distinct | ||||
2385 | // subobjects. Name lookup is ambiguous. | ||||
2386 | R.setAmbiguousBaseSubobjects(Paths); | ||||
2387 | return true; | ||||
2388 | } | ||||
2389 | } | ||||
2390 | |||||
2391 | // Lookup in a base class succeeded; return these results. | ||||
2392 | |||||
2393 | for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); | ||||
2394 | I != E; ++I) { | ||||
2395 | AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, | ||||
2396 | (*I)->getAccess()); | ||||
2397 | if (NamedDecl *ND = R.getAcceptableDecl(*I)) | ||||
2398 | R.addDecl(ND, AS); | ||||
2399 | } | ||||
2400 | R.resolveKind(); | ||||
2401 | return true; | ||||
2402 | } | ||||
2403 | |||||
2404 | /// Performs qualified name lookup or special type of lookup for | ||||
2405 | /// "__super::" scope specifier. | ||||
2406 | /// | ||||
2407 | /// This routine is a convenience overload meant to be called from contexts | ||||
2408 | /// that need to perform a qualified name lookup with an optional C++ scope | ||||
2409 | /// specifier that might require special kind of lookup. | ||||
2410 | /// | ||||
2411 | /// \param R captures both the lookup criteria and any lookup results found. | ||||
2412 | /// | ||||
2413 | /// \param LookupCtx The context in which qualified name lookup will | ||||
2414 | /// search. | ||||
2415 | /// | ||||
2416 | /// \param SS An optional C++ scope-specifier. | ||||
2417 | /// | ||||
2418 | /// \returns true if lookup succeeded, false if it failed. | ||||
2419 | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | ||||
2420 | CXXScopeSpec &SS) { | ||||
2421 | auto *NNS = SS.getScopeRep(); | ||||
2422 | if (NNS && NNS->getKind() == NestedNameSpecifier::Super) | ||||
2423 | return LookupInSuper(R, NNS->getAsRecordDecl()); | ||||
2424 | else | ||||
2425 | |||||
2426 | return LookupQualifiedName(R, LookupCtx); | ||||
2427 | } | ||||
2428 | |||||
2429 | /// Performs name lookup for a name that was parsed in the | ||||
2430 | /// source code, and may contain a C++ scope specifier. | ||||
2431 | /// | ||||
2432 | /// This routine is a convenience routine meant to be called from | ||||
2433 | /// contexts that receive a name and an optional C++ scope specifier | ||||
2434 | /// (e.g., "N::M::x"). It will then perform either qualified or | ||||
2435 | /// unqualified name lookup (with LookupQualifiedName or LookupName, | ||||
2436 | /// respectively) on the given name and return those results. It will | ||||
2437 | /// perform a special type of lookup for "__super::" scope specifier. | ||||
2438 | /// | ||||
2439 | /// @param S The scope from which unqualified name lookup will | ||||
2440 | /// begin. | ||||
2441 | /// | ||||
2442 | /// @param SS An optional C++ scope-specifier, e.g., "::N::M". | ||||
2443 | /// | ||||
2444 | /// @param EnteringContext Indicates whether we are going to enter the | ||||
2445 | /// context of the scope-specifier SS (if present). | ||||
2446 | /// | ||||
2447 | /// @returns True if any decls were found (but possibly ambiguous) | ||||
2448 | bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, | ||||
2449 | bool AllowBuiltinCreation, bool EnteringContext) { | ||||
2450 | if (SS && SS->isInvalid()) { | ||||
2451 | // When the scope specifier is invalid, don't even look for | ||||
2452 | // anything. | ||||
2453 | return false; | ||||
2454 | } | ||||
2455 | |||||
2456 | if (SS && SS->isSet()) { | ||||
2457 | NestedNameSpecifier *NNS = SS->getScopeRep(); | ||||
2458 | if (NNS->getKind() == NestedNameSpecifier::Super) | ||||
2459 | return LookupInSuper(R, NNS->getAsRecordDecl()); | ||||
2460 | |||||
2461 | if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { | ||||
2462 | // We have resolved the scope specifier to a particular declaration | ||||
2463 | // contex, and will perform name lookup in that context. | ||||
2464 | if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) | ||||
2465 | return false; | ||||
2466 | |||||
2467 | R.setContextRange(SS->getRange()); | ||||
2468 | return LookupQualifiedName(R, DC); | ||||
2469 | } | ||||
2470 | |||||
2471 | // We could not resolve the scope specified to a specific declaration | ||||
2472 | // context, which means that SS refers to an unknown specialization. | ||||
2473 | // Name lookup can't find anything in this case. | ||||
2474 | R.setNotFoundInCurrentInstantiation(); | ||||
2475 | R.setContextRange(SS->getRange()); | ||||
2476 | return false; | ||||
2477 | } | ||||
2478 | |||||
2479 | // Perform unqualified name lookup starting in the given scope. | ||||
2480 | return LookupName(R, S, AllowBuiltinCreation); | ||||
2481 | } | ||||
2482 | |||||
2483 | /// Perform qualified name lookup into all base classes of the given | ||||
2484 | /// class. | ||||
2485 | /// | ||||
2486 | /// \param R captures both the lookup criteria and any lookup results found. | ||||
2487 | /// | ||||
2488 | /// \param Class The context in which qualified name lookup will | ||||
2489 | /// search. Name lookup will search in all base classes merging the results. | ||||
2490 | /// | ||||
2491 | /// @returns True if any decls were found (but possibly ambiguous) | ||||
2492 | bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { | ||||
2493 | // The access-control rules we use here are essentially the rules for | ||||
2494 | // doing a lookup in Class that just magically skipped the direct | ||||
2495 | // members of Class itself. That is, the naming class is Class, and the | ||||
2496 | // access includes the access of the base. | ||||
2497 | for (const auto &BaseSpec : Class->bases()) { | ||||
2498 | CXXRecordDecl *RD = cast<CXXRecordDecl>( | ||||
2499 | BaseSpec.getType()->castAs<RecordType>()->getDecl()); | ||||
2500 | LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); | ||||
2501 | Result.setBaseObjectType(Context.getRecordType(Class)); | ||||
2502 | LookupQualifiedName(Result, RD); | ||||
2503 | |||||
2504 | // Copy the lookup results into the target, merging the base's access into | ||||
2505 | // the path access. | ||||
2506 | for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { | ||||
2507 | R.addDecl(I.getDecl(), | ||||
2508 | CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), | ||||
2509 | I.getAccess())); | ||||
2510 | } | ||||
2511 | |||||
2512 | Result.suppressDiagnostics(); | ||||
2513 | } | ||||
2514 | |||||
2515 | R.resolveKind(); | ||||
2516 | R.setNamingClass(Class); | ||||
2517 | |||||
2518 | return !R.empty(); | ||||
2519 | } | ||||
2520 | |||||
2521 | /// Produce a diagnostic describing the ambiguity that resulted | ||||
2522 | /// from name lookup. | ||||
2523 | /// | ||||
2524 | /// \param Result The result of the ambiguous lookup to be diagnosed. | ||||
2525 | void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { | ||||
2526 | assert(Result.isAmbiguous() && "Lookup result must be ambiguous")((void)0); | ||||
2527 | |||||
2528 | DeclarationName Name = Result.getLookupName(); | ||||
2529 | SourceLocation NameLoc = Result.getNameLoc(); | ||||
2530 | SourceRange LookupRange = Result.getContextRange(); | ||||
2531 | |||||
2532 | switch (Result.getAmbiguityKind()) { | ||||
2533 | case LookupResult::AmbiguousBaseSubobjects: { | ||||
2534 | CXXBasePaths *Paths = Result.getBasePaths(); | ||||
2535 | QualType SubobjectType = Paths->front().back().Base->getType(); | ||||
2536 | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) | ||||
2537 | << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) | ||||
2538 | << LookupRange; | ||||
2539 | |||||
2540 | DeclContext::lookup_iterator Found = Paths->front().Decls; | ||||
2541 | while (isa<CXXMethodDecl>(*Found) && | ||||
2542 | cast<CXXMethodDecl>(*Found)->isStatic()) | ||||
2543 | ++Found; | ||||
2544 | |||||
2545 | Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); | ||||
2546 | break; | ||||
2547 | } | ||||
2548 | |||||
2549 | case LookupResult::AmbiguousBaseSubobjectTypes: { | ||||
2550 | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) | ||||
2551 | << Name << LookupRange; | ||||
2552 | |||||
2553 | CXXBasePaths *Paths = Result.getBasePaths(); | ||||
2554 | std::set<const NamedDecl *> DeclsPrinted; | ||||
2555 | for (CXXBasePaths::paths_iterator Path = Paths->begin(), | ||||
2556 | PathEnd = Paths->end(); | ||||
2557 | Path != PathEnd; ++Path) { | ||||
2558 | const NamedDecl *D = *Path->Decls; | ||||
2559 | if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) | ||||
2560 | continue; | ||||
2561 | if (DeclsPrinted.insert(D).second) { | ||||
2562 | if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) | ||||
2563 | Diag(D->getLocation(), diag::note_ambiguous_member_type_found) | ||||
2564 | << TD->getUnderlyingType(); | ||||
2565 | else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) | ||||
2566 | Diag(D->getLocation(), diag::note_ambiguous_member_type_found) | ||||
2567 | << Context.getTypeDeclType(TD); | ||||
2568 | else | ||||
2569 | Diag(D->getLocation(), diag::note_ambiguous_member_found); | ||||
2570 | } | ||||
2571 | } | ||||
2572 | break; | ||||
2573 | } | ||||
2574 | |||||
2575 | case LookupResult::AmbiguousTagHiding: { | ||||
2576 | Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; | ||||
2577 | |||||
2578 | llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; | ||||
2579 | |||||
2580 | for (auto *D : Result) | ||||
2581 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) { | ||||
2582 | TagDecls.insert(TD); | ||||
2583 | Diag(TD->getLocation(), diag::note_hidden_tag); | ||||
2584 | } | ||||
2585 | |||||
2586 | for (auto *D : Result) | ||||
2587 | if (!isa<TagDecl>(D)) | ||||
2588 | Diag(D->getLocation(), diag::note_hiding_object); | ||||
2589 | |||||
2590 | // For recovery purposes, go ahead and implement the hiding. | ||||
2591 | LookupResult::Filter F = Result.makeFilter(); | ||||
2592 | while (F.hasNext()) { | ||||
2593 | if (TagDecls.count(F.next())) | ||||
2594 | F.erase(); | ||||
2595 | } | ||||
2596 | F.done(); | ||||
2597 | break; | ||||
2598 | } | ||||
2599 | |||||
2600 | case LookupResult::AmbiguousReference: { | ||||
2601 | Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; | ||||
2602 | |||||
2603 | for (auto *D : Result) | ||||
2604 | Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; | ||||
2605 | break; | ||||
2606 | } | ||||
2607 | } | ||||
2608 | } | ||||
2609 | |||||
2610 | namespace { | ||||
2611 | struct AssociatedLookup { | ||||
2612 | AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, | ||||
2613 | Sema::AssociatedNamespaceSet &Namespaces, | ||||
2614 | Sema::AssociatedClassSet &Classes) | ||||
2615 | : S(S), Namespaces(Namespaces), Classes(Classes), | ||||
2616 | InstantiationLoc(InstantiationLoc) { | ||||
2617 | } | ||||
2618 | |||||
2619 | bool addClassTransitive(CXXRecordDecl *RD) { | ||||
2620 | Classes.insert(RD); | ||||
2621 | return ClassesTransitive.insert(RD); | ||||
2622 | } | ||||
2623 | |||||
2624 | Sema &S; | ||||
2625 | Sema::AssociatedNamespaceSet &Namespaces; | ||||
2626 | Sema::AssociatedClassSet &Classes; | ||||
2627 | SourceLocation InstantiationLoc; | ||||
2628 | |||||
2629 | private: | ||||
2630 | Sema::AssociatedClassSet ClassesTransitive; | ||||
2631 | }; | ||||
2632 | } // end anonymous namespace | ||||
2633 | |||||
2634 | static void | ||||
2635 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); | ||||
2636 | |||||
2637 | // Given the declaration context \param Ctx of a class, class template or | ||||
2638 | // enumeration, add the associated namespaces to \param Namespaces as described | ||||
2639 | // in [basic.lookup.argdep]p2. | ||||
2640 | static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, | ||||
2641 | DeclContext *Ctx) { | ||||
2642 | // The exact wording has been changed in C++14 as a result of | ||||
2643 | // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally | ||||
2644 | // to all language versions since it is possible to return a local type | ||||
2645 | // from a lambda in C++11. | ||||
2646 | // | ||||
2647 | // C++14 [basic.lookup.argdep]p2: | ||||
2648 | // If T is a class type [...]. Its associated namespaces are the innermost | ||||
2649 | // enclosing namespaces of its associated classes. [...] | ||||
2650 | // | ||||
2651 | // If T is an enumeration type, its associated namespace is the innermost | ||||
2652 | // enclosing namespace of its declaration. [...] | ||||
2653 | |||||
2654 | // We additionally skip inline namespaces. The innermost non-inline namespace | ||||
2655 | // contains all names of all its nested inline namespaces anyway, so we can | ||||
2656 | // replace the entire inline namespace tree with its root. | ||||
2657 | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) | ||||
2658 | Ctx = Ctx->getParent(); | ||||
2659 | |||||
2660 | Namespaces.insert(Ctx->getPrimaryContext()); | ||||
2661 | } | ||||
2662 | |||||
2663 | // Add the associated classes and namespaces for argument-dependent | ||||
2664 | // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). | ||||
2665 | static void | ||||
2666 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, | ||||
2667 | const TemplateArgument &Arg) { | ||||
2668 | // C++ [basic.lookup.argdep]p2, last bullet: | ||||
2669 | // -- [...] ; | ||||
2670 | switch (Arg.getKind()) { | ||||
2671 | case TemplateArgument::Null: | ||||
2672 | break; | ||||
2673 | |||||
2674 | case TemplateArgument::Type: | ||||
2675 | // [...] the namespaces and classes associated with the types of the | ||||
2676 | // template arguments provided for template type parameters (excluding | ||||
2677 | // template template parameters) | ||||
2678 | addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); | ||||
2679 | break; | ||||
2680 | |||||
2681 | case TemplateArgument::Template: | ||||
2682 | case TemplateArgument::TemplateExpansion: { | ||||
2683 | // [...] the namespaces in which any template template arguments are | ||||
2684 | // defined; and the classes in which any member templates used as | ||||
2685 | // template template arguments are defined. | ||||
2686 | TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); | ||||
2687 | if (ClassTemplateDecl *ClassTemplate | ||||
2688 | = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { | ||||
2689 | DeclContext *Ctx = ClassTemplate->getDeclContext(); | ||||
2690 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
2691 | Result.Classes.insert(EnclosingClass); | ||||
2692 | // Add the associated namespace for this class. | ||||
2693 | CollectEnclosingNamespace(Result.Namespaces, Ctx); | ||||
2694 | } | ||||
2695 | break; | ||||
2696 | } | ||||
2697 | |||||
2698 | case TemplateArgument::Declaration: | ||||
2699 | case TemplateArgument::Integral: | ||||
2700 | case TemplateArgument::Expression: | ||||
2701 | case TemplateArgument::NullPtr: | ||||
2702 | // [Note: non-type template arguments do not contribute to the set of | ||||
2703 | // associated namespaces. ] | ||||
2704 | break; | ||||
2705 | |||||
2706 | case TemplateArgument::Pack: | ||||
2707 | for (const auto &P : Arg.pack_elements()) | ||||
2708 | addAssociatedClassesAndNamespaces(Result, P); | ||||
2709 | break; | ||||
2710 | } | ||||
2711 | } | ||||
2712 | |||||
2713 | // Add the associated classes and namespaces for argument-dependent lookup | ||||
2714 | // with an argument of class type (C++ [basic.lookup.argdep]p2). | ||||
2715 | static void | ||||
2716 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, | ||||
2717 | CXXRecordDecl *Class) { | ||||
2718 | |||||
2719 | // Just silently ignore anything whose name is __va_list_tag. | ||||
2720 | if (Class->getDeclName() == Result.S.VAListTagName) | ||||
2721 | return; | ||||
2722 | |||||
2723 | // C++ [basic.lookup.argdep]p2: | ||||
2724 | // [...] | ||||
2725 | // -- If T is a class type (including unions), its associated | ||||
2726 | // classes are: the class itself; the class of which it is a | ||||
2727 | // member, if any; and its direct and indirect base classes. | ||||
2728 | // Its associated namespaces are the innermost enclosing | ||||
2729 | // namespaces of its associated classes. | ||||
2730 | |||||
2731 | // Add the class of which it is a member, if any. | ||||
2732 | DeclContext *Ctx = Class->getDeclContext(); | ||||
2733 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
2734 | Result.Classes.insert(EnclosingClass); | ||||
2735 | |||||
2736 | // Add the associated namespace for this class. | ||||
2737 | CollectEnclosingNamespace(Result.Namespaces, Ctx); | ||||
2738 | |||||
2739 | // -- If T is a template-id, its associated namespaces and classes are | ||||
2740 | // the namespace in which the template is defined; for member | ||||
2741 | // templates, the member template's class; the namespaces and classes | ||||
2742 | // associated with the types of the template arguments provided for | ||||
2743 | // template type parameters (excluding template template parameters); the | ||||
2744 | // namespaces in which any template template arguments are defined; and | ||||
2745 | // the classes in which any member templates used as template template | ||||
2746 | // arguments are defined. [Note: non-type template arguments do not | ||||
2747 | // contribute to the set of associated namespaces. ] | ||||
2748 | if (ClassTemplateSpecializationDecl *Spec | ||||
2749 | = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { | ||||
2750 | DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); | ||||
2751 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
2752 | Result.Classes.insert(EnclosingClass); | ||||
2753 | // Add the associated namespace for this class. | ||||
2754 | CollectEnclosingNamespace(Result.Namespaces, Ctx); | ||||
2755 | |||||
2756 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | ||||
2757 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | ||||
2758 | addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); | ||||
2759 | } | ||||
2760 | |||||
2761 | // Add the class itself. If we've already transitively visited this class, | ||||
2762 | // we don't need to visit base classes. | ||||
2763 | if (!Result.addClassTransitive(Class)) | ||||
2764 | return; | ||||
2765 | |||||
2766 | // Only recurse into base classes for complete types. | ||||
2767 | if (!Result.S.isCompleteType(Result.InstantiationLoc, | ||||
2768 | Result.S.Context.getRecordType(Class))) | ||||
2769 | return; | ||||
2770 | |||||
2771 | // Add direct and indirect base classes along with their associated | ||||
2772 | // namespaces. | ||||
2773 | SmallVector<CXXRecordDecl *, 32> Bases; | ||||
2774 | Bases.push_back(Class); | ||||
2775 | while (!Bases.empty()) { | ||||
2776 | // Pop this class off the stack. | ||||
2777 | Class = Bases.pop_back_val(); | ||||
2778 | |||||
2779 | // Visit the base classes. | ||||
2780 | for (const auto &Base : Class->bases()) { | ||||
2781 | const RecordType *BaseType = Base.getType()->getAs<RecordType>(); | ||||
2782 | // In dependent contexts, we do ADL twice, and the first time around, | ||||
2783 | // the base type might be a dependent TemplateSpecializationType, or a | ||||
2784 | // TemplateTypeParmType. If that happens, simply ignore it. | ||||
2785 | // FIXME: If we want to support export, we probably need to add the | ||||
2786 | // namespace of the template in a TemplateSpecializationType, or even | ||||
2787 | // the classes and namespaces of known non-dependent arguments. | ||||
2788 | if (!BaseType) | ||||
2789 | continue; | ||||
2790 | CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | ||||
2791 | if (Result.addClassTransitive(BaseDecl)) { | ||||
2792 | // Find the associated namespace for this base class. | ||||
2793 | DeclContext *BaseCtx = BaseDecl->getDeclContext(); | ||||
2794 | CollectEnclosingNamespace(Result.Namespaces, BaseCtx); | ||||
2795 | |||||
2796 | // Make sure we visit the bases of this base class. | ||||
2797 | if (BaseDecl->bases_begin() != BaseDecl->bases_end()) | ||||
2798 | Bases.push_back(BaseDecl); | ||||
2799 | } | ||||
2800 | } | ||||
2801 | } | ||||
2802 | } | ||||
2803 | |||||
2804 | // Add the associated classes and namespaces for | ||||
2805 | // argument-dependent lookup with an argument of type T | ||||
2806 | // (C++ [basic.lookup.koenig]p2). | ||||
2807 | static void | ||||
2808 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { | ||||
2809 | // C++ [basic.lookup.koenig]p2: | ||||
2810 | // | ||||
2811 | // For each argument type T in the function call, there is a set | ||||
2812 | // of zero or more associated namespaces and a set of zero or more | ||||
2813 | // associated classes to be considered. The sets of namespaces and | ||||
2814 | // classes is determined entirely by the types of the function | ||||
2815 | // arguments (and the namespace of any template template | ||||
2816 | // argument). Typedef names and using-declarations used to specify | ||||
2817 | // the types do not contribute to this set. The sets of namespaces | ||||
2818 | // and classes are determined in the following way: | ||||
2819 | |||||
2820 | SmallVector<const Type *, 16> Queue; | ||||
2821 | const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); | ||||
2822 | |||||
2823 | while (true) { | ||||
2824 | switch (T->getTypeClass()) { | ||||
2825 | |||||
2826 | #define TYPE(Class, Base) | ||||
2827 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | ||||
2828 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | ||||
2829 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | ||||
2830 | #define ABSTRACT_TYPE(Class, Base) | ||||
2831 | #include "clang/AST/TypeNodes.inc" | ||||
2832 | // T is canonical. We can also ignore dependent types because | ||||
2833 | // we don't need to do ADL at the definition point, but if we | ||||
2834 | // wanted to implement template export (or if we find some other | ||||
2835 | // use for associated classes and namespaces...) this would be | ||||
2836 | // wrong. | ||||
2837 | break; | ||||
2838 | |||||
2839 | // -- If T is a pointer to U or an array of U, its associated | ||||
2840 | // namespaces and classes are those associated with U. | ||||
2841 | case Type::Pointer: | ||||
2842 | T = cast<PointerType>(T)->getPointeeType().getTypePtr(); | ||||
2843 | continue; | ||||
2844 | case Type::ConstantArray: | ||||
2845 | case Type::IncompleteArray: | ||||
2846 | case Type::VariableArray: | ||||
2847 | T = cast<ArrayType>(T)->getElementType().getTypePtr(); | ||||
2848 | continue; | ||||
2849 | |||||
2850 | // -- If T is a fundamental type, its associated sets of | ||||
2851 | // namespaces and classes are both empty. | ||||
2852 | case Type::Builtin: | ||||
2853 | break; | ||||
2854 | |||||
2855 | // -- If T is a class type (including unions), its associated | ||||
2856 | // classes are: the class itself; the class of which it is | ||||
2857 | // a member, if any; and its direct and indirect base classes. | ||||
2858 | // Its associated namespaces are the innermost enclosing | ||||
2859 | // namespaces of its associated classes. | ||||
2860 | case Type::Record: { | ||||
2861 | CXXRecordDecl *Class = | ||||
2862 | cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); | ||||
2863 | addAssociatedClassesAndNamespaces(Result, Class); | ||||
2864 | break; | ||||
2865 | } | ||||
2866 | |||||
2867 | // -- If T is an enumeration type, its associated namespace | ||||
2868 | // is the innermost enclosing namespace of its declaration. | ||||
2869 | // If it is a class member, its associated class is the | ||||
2870 | // member’s class; else it has no associated class. | ||||
2871 | case Type::Enum: { | ||||
2872 | EnumDecl *Enum = cast<EnumType>(T)->getDecl(); | ||||
2873 | |||||
2874 | DeclContext *Ctx = Enum->getDeclContext(); | ||||
2875 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
2876 | Result.Classes.insert(EnclosingClass); | ||||
2877 | |||||
2878 | // Add the associated namespace for this enumeration. | ||||
2879 | CollectEnclosingNamespace(Result.Namespaces, Ctx); | ||||
2880 | |||||
2881 | break; | ||||
2882 | } | ||||
2883 | |||||
2884 | // -- If T is a function type, its associated namespaces and | ||||
2885 | // classes are those associated with the function parameter | ||||
2886 | // types and those associated with the return type. | ||||
2887 | case Type::FunctionProto: { | ||||
2888 | const FunctionProtoType *Proto = cast<FunctionProtoType>(T); | ||||
2889 | for (const auto &Arg : Proto->param_types()) | ||||
2890 | Queue.push_back(Arg.getTypePtr()); | ||||
2891 | // fallthrough | ||||
2892 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
2893 | } | ||||
2894 | case Type::FunctionNoProto: { | ||||
2895 | const FunctionType *FnType = cast<FunctionType>(T); | ||||
2896 | T = FnType->getReturnType().getTypePtr(); | ||||
2897 | continue; | ||||
2898 | } | ||||
2899 | |||||
2900 | // -- If T is a pointer to a member function of a class X, its | ||||
2901 | // associated namespaces and classes are those associated | ||||
2902 | // with the function parameter types and return type, | ||||
2903 | // together with those associated with X. | ||||
2904 | // | ||||
2905 | // -- If T is a pointer to a data member of class X, its | ||||
2906 | // associated namespaces and classes are those associated | ||||
2907 | // with the member type together with those associated with | ||||
2908 | // X. | ||||
2909 | case Type::MemberPointer: { | ||||
2910 | const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); | ||||
2911 | |||||
2912 | // Queue up the class type into which this points. | ||||
2913 | Queue.push_back(MemberPtr->getClass()); | ||||
2914 | |||||
2915 | // And directly continue with the pointee type. | ||||
2916 | T = MemberPtr->getPointeeType().getTypePtr(); | ||||
2917 | continue; | ||||
2918 | } | ||||
2919 | |||||
2920 | // As an extension, treat this like a normal pointer. | ||||
2921 | case Type::BlockPointer: | ||||
2922 | T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); | ||||
2923 | continue; | ||||
2924 | |||||
2925 | // References aren't covered by the standard, but that's such an | ||||
2926 | // obvious defect that we cover them anyway. | ||||
2927 | case Type::LValueReference: | ||||
2928 | case Type::RValueReference: | ||||
2929 | T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); | ||||
2930 | continue; | ||||
2931 | |||||
2932 | // These are fundamental types. | ||||
2933 | case Type::Vector: | ||||
2934 | case Type::ExtVector: | ||||
2935 | case Type::ConstantMatrix: | ||||
2936 | case Type::Complex: | ||||
2937 | case Type::ExtInt: | ||||
2938 | break; | ||||
2939 | |||||
2940 | // Non-deduced auto types only get here for error cases. | ||||
2941 | case Type::Auto: | ||||
2942 | case Type::DeducedTemplateSpecialization: | ||||
2943 | break; | ||||
2944 | |||||
2945 | // If T is an Objective-C object or interface type, or a pointer to an | ||||
2946 | // object or interface type, the associated namespace is the global | ||||
2947 | // namespace. | ||||
2948 | case Type::ObjCObject: | ||||
2949 | case Type::ObjCInterface: | ||||
2950 | case Type::ObjCObjectPointer: | ||||
2951 | Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); | ||||
2952 | break; | ||||
2953 | |||||
2954 | // Atomic types are just wrappers; use the associations of the | ||||
2955 | // contained type. | ||||
2956 | case Type::Atomic: | ||||
2957 | T = cast<AtomicType>(T)->getValueType().getTypePtr(); | ||||
2958 | continue; | ||||
2959 | case Type::Pipe: | ||||
2960 | T = cast<PipeType>(T)->getElementType().getTypePtr(); | ||||
2961 | continue; | ||||
2962 | } | ||||
2963 | |||||
2964 | if (Queue.empty()) | ||||
2965 | break; | ||||
2966 | T = Queue.pop_back_val(); | ||||
2967 | } | ||||
2968 | } | ||||
2969 | |||||
2970 | /// Find the associated classes and namespaces for | ||||
2971 | /// argument-dependent lookup for a call with the given set of | ||||
2972 | /// arguments. | ||||
2973 | /// | ||||
2974 | /// This routine computes the sets of associated classes and associated | ||||
2975 | /// namespaces searched by argument-dependent lookup | ||||
2976 | /// (C++ [basic.lookup.argdep]) for a given set of arguments. | ||||
2977 | void Sema::FindAssociatedClassesAndNamespaces( | ||||
2978 | SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, | ||||
2979 | AssociatedNamespaceSet &AssociatedNamespaces, | ||||
2980 | AssociatedClassSet &AssociatedClasses) { | ||||
2981 | AssociatedNamespaces.clear(); | ||||
2982 | AssociatedClasses.clear(); | ||||
2983 | |||||
2984 | AssociatedLookup Result(*this, InstantiationLoc, | ||||
2985 | AssociatedNamespaces, AssociatedClasses); | ||||
2986 | |||||
2987 | // C++ [basic.lookup.koenig]p2: | ||||
2988 | // For each argument type T in the function call, there is a set | ||||
2989 | // of zero or more associated namespaces and a set of zero or more | ||||
2990 | // associated classes to be considered. The sets of namespaces and | ||||
2991 | // classes is determined entirely by the types of the function | ||||
2992 | // arguments (and the namespace of any template template | ||||
2993 | // argument). | ||||
2994 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { | ||||
2995 | Expr *Arg = Args[ArgIdx]; | ||||
2996 | |||||
2997 | if (Arg->getType() != Context.OverloadTy) { | ||||
2998 | addAssociatedClassesAndNamespaces(Result, Arg->getType()); | ||||
2999 | continue; | ||||
3000 | } | ||||
3001 | |||||
3002 | // [...] In addition, if the argument is the name or address of a | ||||
3003 | // set of overloaded functions and/or function templates, its | ||||
3004 | // associated classes and namespaces are the union of those | ||||
3005 | // associated with each of the members of the set: the namespace | ||||
3006 | // in which the function or function template is defined and the | ||||
3007 | // classes and namespaces associated with its (non-dependent) | ||||
3008 | // parameter types and return type. | ||||
3009 | OverloadExpr *OE = OverloadExpr::find(Arg).Expression; | ||||
3010 | |||||
3011 | for (const NamedDecl *D : OE->decls()) { | ||||
3012 | // Look through any using declarations to find the underlying function. | ||||
3013 | const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); | ||||
3014 | |||||
3015 | // Add the classes and namespaces associated with the parameter | ||||
3016 | // types and return type of this function. | ||||
3017 | addAssociatedClassesAndNamespaces(Result, FDecl->getType()); | ||||
3018 | } | ||||
3019 | } | ||||
3020 | } | ||||
3021 | |||||
3022 | NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, | ||||
3023 | SourceLocation Loc, | ||||
3024 | LookupNameKind NameKind, | ||||
3025 | RedeclarationKind Redecl) { | ||||
3026 | LookupResult R(*this, Name, Loc, NameKind, Redecl); | ||||
3027 | LookupName(R, S); | ||||
3028 | return R.getAsSingle<NamedDecl>(); | ||||
3029 | } | ||||
3030 | |||||
3031 | /// Find the protocol with the given name, if any. | ||||
3032 | ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, | ||||
3033 | SourceLocation IdLoc, | ||||
3034 | RedeclarationKind Redecl) { | ||||
3035 | Decl *D = LookupSingleName(TUScope, II, IdLoc, | ||||
3036 | LookupObjCProtocolName, Redecl); | ||||
3037 | return cast_or_null<ObjCProtocolDecl>(D); | ||||
3038 | } | ||||
3039 | |||||
3040 | void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, | ||||
3041 | UnresolvedSetImpl &Functions) { | ||||
3042 | // C++ [over.match.oper]p3: | ||||
3043 | // -- The set of non-member candidates is the result of the | ||||
3044 | // unqualified lookup of operator@ in the context of the | ||||
3045 | // expression according to the usual rules for name lookup in | ||||
3046 | // unqualified function calls (3.4.2) except that all member | ||||
3047 | // functions are ignored. | ||||
3048 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | ||||
3049 | LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); | ||||
3050 | LookupName(Operators, S); | ||||
3051 | |||||
3052 | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")((void)0); | ||||
3053 | Functions.append(Operators.begin(), Operators.end()); | ||||
3054 | } | ||||
3055 | |||||
3056 | Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD, | ||||
3057 | CXXSpecialMember SM, | ||||
3058 | bool ConstArg, | ||||
3059 | bool VolatileArg, | ||||
3060 | bool RValueThis, | ||||
3061 | bool ConstThis, | ||||
3062 | bool VolatileThis) { | ||||
3063 | assert(CanDeclareSpecialMemberFunction(RD) &&((void)0) | ||||
3064 | "doing special member lookup into record that isn't fully complete")((void)0); | ||||
3065 | RD = RD->getDefinition(); | ||||
3066 | if (RValueThis || ConstThis || VolatileThis) | ||||
3067 | assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&((void)0) | ||||
3068 | "constructors and destructors always have unqualified lvalue this")((void)0); | ||||
3069 | if (ConstArg || VolatileArg) | ||||
3070 | assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&((void)0) | ||||
3071 | "parameter-less special members can't have qualified arguments")((void)0); | ||||
3072 | |||||
3073 | // FIXME: Get the caller to pass in a location for the lookup. | ||||
3074 | SourceLocation LookupLoc = RD->getLocation(); | ||||
3075 | |||||
3076 | llvm::FoldingSetNodeID ID; | ||||
3077 | ID.AddPointer(RD); | ||||
3078 | ID.AddInteger(SM); | ||||
3079 | ID.AddInteger(ConstArg); | ||||
3080 | ID.AddInteger(VolatileArg); | ||||
3081 | ID.AddInteger(RValueThis); | ||||
3082 | ID.AddInteger(ConstThis); | ||||
3083 | ID.AddInteger(VolatileThis); | ||||
3084 | |||||
3085 | void *InsertPoint; | ||||
3086 | SpecialMemberOverloadResultEntry *Result = | ||||
3087 | SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); | ||||
3088 | |||||
3089 | // This was already cached | ||||
3090 | if (Result) | ||||
3091 | return *Result; | ||||
3092 | |||||
3093 | Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); | ||||
3094 | Result = new (Result) SpecialMemberOverloadResultEntry(ID); | ||||
3095 | SpecialMemberCache.InsertNode(Result, InsertPoint); | ||||
3096 | |||||
3097 | if (SM == CXXDestructor) { | ||||
3098 | if (RD->needsImplicitDestructor()) { | ||||
3099 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
3100 | DeclareImplicitDestructor(RD); | ||||
3101 | }); | ||||
3102 | } | ||||
3103 | CXXDestructorDecl *DD = RD->getDestructor(); | ||||
3104 | Result->setMethod(DD); | ||||
3105 | Result->setKind(DD && !DD->isDeleted() | ||||
3106 | ? SpecialMemberOverloadResult::Success | ||||
3107 | : SpecialMemberOverloadResult::NoMemberOrDeleted); | ||||
3108 | return *Result; | ||||
3109 | } | ||||
3110 | |||||
3111 | // Prepare for overload resolution. Here we construct a synthetic argument | ||||
3112 | // if necessary and make sure that implicit functions are declared. | ||||
3113 | CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); | ||||
3114 | DeclarationName Name; | ||||
3115 | Expr *Arg = nullptr; | ||||
3116 | unsigned NumArgs; | ||||
3117 | |||||
3118 | QualType ArgType = CanTy; | ||||
3119 | ExprValueKind VK = VK_LValue; | ||||
3120 | |||||
3121 | if (SM == CXXDefaultConstructor) { | ||||
3122 | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); | ||||
3123 | NumArgs = 0; | ||||
3124 | if (RD->needsImplicitDefaultConstructor()) { | ||||
3125 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
3126 | DeclareImplicitDefaultConstructor(RD); | ||||
3127 | }); | ||||
3128 | } | ||||
3129 | } else { | ||||
3130 | if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { | ||||
3131 | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); | ||||
3132 | if (RD->needsImplicitCopyConstructor()) { | ||||
3133 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
3134 | DeclareImplicitCopyConstructor(RD); | ||||
3135 | }); | ||||
3136 | } | ||||
3137 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { | ||||
3138 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
3139 | DeclareImplicitMoveConstructor(RD); | ||||
3140 | }); | ||||
3141 | } | ||||
3142 | } else { | ||||
3143 | Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | ||||
3144 | if (RD->needsImplicitCopyAssignment()) { | ||||
3145 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
3146 | DeclareImplicitCopyAssignment(RD); | ||||
3147 | }); | ||||
3148 | } | ||||
3149 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { | ||||
3150 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
3151 | DeclareImplicitMoveAssignment(RD); | ||||
3152 | }); | ||||
3153 | } | ||||
3154 | } | ||||
3155 | |||||
3156 | if (ConstArg) | ||||
3157 | ArgType.addConst(); | ||||
3158 | if (VolatileArg) | ||||
3159 | ArgType.addVolatile(); | ||||
3160 | |||||
3161 | // This isn't /really/ specified by the standard, but it's implied | ||||
3162 | // we should be working from a PRValue in the case of move to ensure | ||||
3163 | // that we prefer to bind to rvalue references, and an LValue in the | ||||
3164 | // case of copy to ensure we don't bind to rvalue references. | ||||
3165 | // Possibly an XValue is actually correct in the case of move, but | ||||
3166 | // there is no semantic difference for class types in this restricted | ||||
3167 | // case. | ||||
3168 | if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) | ||||
3169 | VK = VK_LValue; | ||||
3170 | else | ||||
3171 | VK = VK_PRValue; | ||||
3172 | } | ||||
3173 | |||||
3174 | OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); | ||||
3175 | |||||
3176 | if (SM != CXXDefaultConstructor) { | ||||
3177 | NumArgs = 1; | ||||
3178 | Arg = &FakeArg; | ||||
3179 | } | ||||
3180 | |||||
3181 | // Create the object argument | ||||
3182 | QualType ThisTy = CanTy; | ||||
3183 | if (ConstThis) | ||||
3184 | ThisTy.addConst(); | ||||
3185 | if (VolatileThis) | ||||
3186 | ThisTy.addVolatile(); | ||||
3187 | Expr::Classification Classification = | ||||
3188 | OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) | ||||
3189 | .Classify(Context); | ||||
3190 | |||||
3191 | // Now we perform lookup on the name we computed earlier and do overload | ||||
3192 | // resolution. Lookup is only performed directly into the class since there | ||||
3193 | // will always be a (possibly implicit) declaration to shadow any others. | ||||
3194 | OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); | ||||
3195 | DeclContext::lookup_result R = RD->lookup(Name); | ||||
3196 | |||||
3197 | if (R.empty()) { | ||||
3198 | // We might have no default constructor because we have a lambda's closure | ||||
3199 | // type, rather than because there's some other declared constructor. | ||||
3200 | // Every class has a copy/move constructor, copy/move assignment, and | ||||
3201 | // destructor. | ||||
3202 | assert(SM == CXXDefaultConstructor &&((void)0) | ||||
3203 | "lookup for a constructor or assignment operator was empty")((void)0); | ||||
3204 | Result->setMethod(nullptr); | ||||
3205 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | ||||
3206 | return *Result; | ||||
3207 | } | ||||
3208 | |||||
3209 | // Copy the candidates as our processing of them may load new declarations | ||||
3210 | // from an external source and invalidate lookup_result. | ||||
3211 | SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); | ||||
3212 | |||||
3213 | for (NamedDecl *CandDecl : Candidates) { | ||||
3214 | if (CandDecl->isInvalidDecl()) | ||||
3215 | continue; | ||||
3216 | |||||
3217 | DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); | ||||
3218 | auto CtorInfo = getConstructorInfo(Cand); | ||||
3219 | if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { | ||||
3220 | if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) | ||||
3221 | AddMethodCandidate(M, Cand, RD, ThisTy, Classification, | ||||
3222 | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | ||||
3223 | else if (CtorInfo) | ||||
3224 | AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, | ||||
3225 | llvm::makeArrayRef(&Arg, NumArgs), OCS, | ||||
3226 | /*SuppressUserConversions*/ true); | ||||
3227 | else | ||||
3228 | AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS, | ||||
3229 | /*SuppressUserConversions*/ true); | ||||
3230 | } else if (FunctionTemplateDecl *Tmpl = | ||||
3231 | dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { | ||||
3232 | if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) | ||||
3233 | AddMethodTemplateCandidate( | ||||
3234 | Tmpl, Cand, RD, nullptr, ThisTy, Classification, | ||||
3235 | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | ||||
3236 | else if (CtorInfo) | ||||
3237 | AddTemplateOverloadCandidate( | ||||
3238 | CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr, | ||||
3239 | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | ||||
3240 | else | ||||
3241 | AddTemplateOverloadCandidate( | ||||
3242 | Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | ||||
3243 | } else { | ||||
3244 | assert(isa<UsingDecl>(Cand.getDecl()) &&((void)0) | ||||
3245 | "illegal Kind of operator = Decl")((void)0); | ||||
3246 | } | ||||
3247 | } | ||||
3248 | |||||
3249 | OverloadCandidateSet::iterator Best; | ||||
3250 | switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { | ||||
3251 | case OR_Success: | ||||
3252 | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); | ||||
3253 | Result->setKind(SpecialMemberOverloadResult::Success); | ||||
3254 | break; | ||||
3255 | |||||
3256 | case OR_Deleted: | ||||
3257 | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); | ||||
3258 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | ||||
3259 | break; | ||||
3260 | |||||
3261 | case OR_Ambiguous: | ||||
3262 | Result->setMethod(nullptr); | ||||
3263 | Result->setKind(SpecialMemberOverloadResult::Ambiguous); | ||||
3264 | break; | ||||
3265 | |||||
3266 | case OR_No_Viable_Function: | ||||
3267 | Result->setMethod(nullptr); | ||||
3268 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | ||||
3269 | break; | ||||
3270 | } | ||||
3271 | |||||
3272 | return *Result; | ||||
3273 | } | ||||
3274 | |||||
3275 | /// Look up the default constructor for the given class. | ||||
3276 | CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { | ||||
3277 | SpecialMemberOverloadResult Result = | ||||
3278 | LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, | ||||
3279 | false, false); | ||||
3280 | |||||
3281 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | ||||
3282 | } | ||||
3283 | |||||
3284 | /// Look up the copying constructor for the given class. | ||||
3285 | CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, | ||||
3286 | unsigned Quals) { | ||||
3287 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((void)0) | ||||
3288 | "non-const, non-volatile qualifiers for copy ctor arg")((void)0); | ||||
3289 | SpecialMemberOverloadResult Result = | ||||
3290 | LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, | ||||
3291 | Quals & Qualifiers::Volatile, false, false, false); | ||||
3292 | |||||
3293 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | ||||
3294 | } | ||||
3295 | |||||
3296 | /// Look up the moving constructor for the given class. | ||||
3297 | CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, | ||||
3298 | unsigned Quals) { | ||||
3299 | SpecialMemberOverloadResult Result = | ||||
3300 | LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const, | ||||
3301 | Quals & Qualifiers::Volatile, false, false, false); | ||||
3302 | |||||
3303 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | ||||
3304 | } | ||||
3305 | |||||
3306 | /// Look up the constructors for the given class. | ||||
3307 | DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { | ||||
3308 | // If the implicit constructors have not yet been declared, do so now. | ||||
3309 | if (CanDeclareSpecialMemberFunction(Class)) { | ||||
3310 | runWithSufficientStackSpace(Class->getLocation(), [&] { | ||||
3311 | if (Class->needsImplicitDefaultConstructor()) | ||||
3312 | DeclareImplicitDefaultConstructor(Class); | ||||
3313 | if (Class->needsImplicitCopyConstructor()) | ||||
3314 | DeclareImplicitCopyConstructor(Class); | ||||
3315 | if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) | ||||
3316 | DeclareImplicitMoveConstructor(Class); | ||||
3317 | }); | ||||
3318 | } | ||||
3319 | |||||
3320 | CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); | ||||
3321 | DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); | ||||
3322 | return Class->lookup(Name); | ||||
3323 | } | ||||
3324 | |||||
3325 | /// Look up the copying assignment operator for the given class. | ||||
3326 | CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, | ||||
3327 | unsigned Quals, bool RValueThis, | ||||
3328 | unsigned ThisQuals) { | ||||
3329 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((void)0) | ||||
3330 | "non-const, non-volatile qualifiers for copy assignment arg")((void)0); | ||||
3331 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((void)0) | ||||
3332 | "non-const, non-volatile qualifiers for copy assignment this")((void)0); | ||||
3333 | SpecialMemberOverloadResult Result = | ||||
3334 | LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, | ||||
3335 | Quals & Qualifiers::Volatile, RValueThis, | ||||
3336 | ThisQuals & Qualifiers::Const, | ||||
3337 | ThisQuals & Qualifiers::Volatile); | ||||
3338 | |||||
3339 | return Result.getMethod(); | ||||
3340 | } | ||||
3341 | |||||
3342 | /// Look up the moving assignment operator for the given class. | ||||
3343 | CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, | ||||
3344 | unsigned Quals, | ||||
3345 | bool RValueThis, | ||||
3346 | unsigned ThisQuals) { | ||||
3347 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((void)0) | ||||
3348 | "non-const, non-volatile qualifiers for copy assignment this")((void)0); | ||||
3349 | SpecialMemberOverloadResult Result = | ||||
3350 | LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const, | ||||
3351 | Quals & Qualifiers::Volatile, RValueThis, | ||||
3352 | ThisQuals & Qualifiers::Const, | ||||
3353 | ThisQuals & Qualifiers::Volatile); | ||||
3354 | |||||
3355 | return Result.getMethod(); | ||||
3356 | } | ||||
3357 | |||||
3358 | /// Look for the destructor of the given class. | ||||
3359 | /// | ||||
3360 | /// During semantic analysis, this routine should be used in lieu of | ||||
3361 | /// CXXRecordDecl::getDestructor(). | ||||
3362 | /// | ||||
3363 | /// \returns The destructor for this class. | ||||
3364 | CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { | ||||
3365 | return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor, | ||||
3366 | false, false, false, | ||||
3367 | false, false).getMethod()); | ||||
3368 | } | ||||
3369 | |||||
3370 | /// LookupLiteralOperator - Determine which literal operator should be used for | ||||
3371 | /// a user-defined literal, per C++11 [lex.ext]. | ||||
3372 | /// | ||||
3373 | /// Normal overload resolution is not used to select which literal operator to | ||||
3374 | /// call for a user-defined literal. Look up the provided literal operator name, | ||||
3375 | /// and filter the results to the appropriate set for the given argument types. | ||||
3376 | Sema::LiteralOperatorLookupResult | ||||
3377 | Sema::LookupLiteralOperator(Scope *S, LookupResult &R, | ||||
3378 | ArrayRef<QualType> ArgTys, bool AllowRaw, | ||||
3379 | bool AllowTemplate, bool AllowStringTemplatePack, | ||||
3380 | bool DiagnoseMissing, StringLiteral *StringLit) { | ||||
3381 | LookupName(R, S); | ||||
3382 | assert(R.getResultKind() != LookupResult::Ambiguous &&((void)0) | ||||
3383 | "literal operator lookup can't be ambiguous")((void)0); | ||||
3384 | |||||
3385 | // Filter the lookup results appropriately. | ||||
3386 | LookupResult::Filter F = R.makeFilter(); | ||||
3387 | |||||
3388 | bool AllowCooked = true; | ||||
3389 | bool FoundRaw = false; | ||||
3390 | bool FoundTemplate = false; | ||||
3391 | bool FoundStringTemplatePack = false; | ||||
3392 | bool FoundCooked = false; | ||||
3393 | |||||
3394 | while (F.hasNext()) { | ||||
3395 | Decl *D = F.next(); | ||||
3396 | if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) | ||||
3397 | D = USD->getTargetDecl(); | ||||
3398 | |||||
3399 | // If the declaration we found is invalid, skip it. | ||||
3400 | if (D->isInvalidDecl()) { | ||||
3401 | F.erase(); | ||||
3402 | continue; | ||||
3403 | } | ||||
3404 | |||||
3405 | bool IsRaw = false; | ||||
3406 | bool IsTemplate = false; | ||||
3407 | bool IsStringTemplatePack = false; | ||||
3408 | bool IsCooked = false; | ||||
3409 | |||||
3410 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | ||||
3411 | if (FD->getNumParams() == 1 && | ||||
3412 | FD->getParamDecl(0)->getType()->getAs<PointerType>()) | ||||
3413 | IsRaw = true; | ||||
3414 | else if (FD->getNumParams() == ArgTys.size()) { | ||||
3415 | IsCooked = true; | ||||
3416 | for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { | ||||
3417 | QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); | ||||
3418 | if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { | ||||
3419 | IsCooked = false; | ||||
3420 | break; | ||||
3421 | } | ||||
3422 | } | ||||
3423 | } | ||||
3424 | } | ||||
3425 | if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { | ||||
3426 | TemplateParameterList *Params = FD->getTemplateParameters(); | ||||
3427 | if (Params->size() == 1) { | ||||
3428 | IsTemplate = true; | ||||
3429 | if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { | ||||
3430 | // Implied but not stated: user-defined integer and floating literals | ||||
3431 | // only ever use numeric literal operator templates, not templates | ||||
3432 | // taking a parameter of class type. | ||||
3433 | F.erase(); | ||||
3434 | continue; | ||||
3435 | } | ||||
3436 | |||||
3437 | // A string literal template is only considered if the string literal | ||||
3438 | // is a well-formed template argument for the template parameter. | ||||
3439 | if (StringLit) { | ||||
3440 | SFINAETrap Trap(*this); | ||||
3441 | SmallVector<TemplateArgument, 1> Checked; | ||||
3442 | TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); | ||||
3443 | if (CheckTemplateArgument(Params->getParam(0), Arg, FD, | ||||
3444 | R.getNameLoc(), R.getNameLoc(), 0, | ||||
3445 | Checked) || | ||||
3446 | Trap.hasErrorOccurred()) | ||||
3447 | IsTemplate = false; | ||||
3448 | } | ||||
3449 | } else { | ||||
3450 | IsStringTemplatePack = true; | ||||
3451 | } | ||||
3452 | } | ||||
3453 | |||||
3454 | if (AllowTemplate && StringLit && IsTemplate) { | ||||
3455 | FoundTemplate = true; | ||||
3456 | AllowRaw = false; | ||||
3457 | AllowCooked = false; | ||||
3458 | AllowStringTemplatePack = false; | ||||
3459 | if (FoundRaw || FoundCooked || FoundStringTemplatePack) { | ||||
3460 | F.restart(); | ||||
3461 | FoundRaw = FoundCooked = FoundStringTemplatePack = false; | ||||
3462 | } | ||||
3463 | } else if (AllowCooked && IsCooked) { | ||||
3464 | FoundCooked = true; | ||||
3465 | AllowRaw = false; | ||||
3466 | AllowTemplate = StringLit; | ||||
3467 | AllowStringTemplatePack = false; | ||||
3468 | if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { | ||||
3469 | // Go through again and remove the raw and template decls we've | ||||
3470 | // already found. | ||||
3471 | F.restart(); | ||||
3472 | FoundRaw = FoundTemplate = FoundStringTemplatePack = false; | ||||
3473 | } | ||||
3474 | } else if (AllowRaw && IsRaw) { | ||||
3475 | FoundRaw = true; | ||||
3476 | } else if (AllowTemplate && IsTemplate) { | ||||
3477 | FoundTemplate = true; | ||||
3478 | } else if (AllowStringTemplatePack && IsStringTemplatePack) { | ||||
3479 | FoundStringTemplatePack = true; | ||||
3480 | } else { | ||||
3481 | F.erase(); | ||||
3482 | } | ||||
3483 | } | ||||
3484 | |||||
3485 | F.done(); | ||||
3486 | |||||
3487 | // Per C++20 [lex.ext]p5, we prefer the template form over the non-template | ||||
3488 | // form for string literal operator templates. | ||||
3489 | if (StringLit && FoundTemplate) | ||||
3490 | return LOLR_Template; | ||||
3491 | |||||
3492 | // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching | ||||
3493 | // parameter type, that is used in preference to a raw literal operator | ||||
3494 | // or literal operator template. | ||||
3495 | if (FoundCooked) | ||||
3496 | return LOLR_Cooked; | ||||
3497 | |||||
3498 | // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal | ||||
3499 | // operator template, but not both. | ||||
3500 | if (FoundRaw && FoundTemplate) { | ||||
3501 | Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); | ||||
3502 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | ||||
3503 | NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction()); | ||||
3504 | return LOLR_Error; | ||||
3505 | } | ||||
3506 | |||||
3507 | if (FoundRaw) | ||||
3508 | return LOLR_Raw; | ||||
3509 | |||||
3510 | if (FoundTemplate) | ||||
3511 | return LOLR_Template; | ||||
3512 | |||||
3513 | if (FoundStringTemplatePack) | ||||
3514 | return LOLR_StringTemplatePack; | ||||
3515 | |||||
3516 | // Didn't find anything we could use. | ||||
3517 | if (DiagnoseMissing) { | ||||
3518 | Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) | ||||
3519 | << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] | ||||
3520 | << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw | ||||
3521 | << (AllowTemplate || AllowStringTemplatePack); | ||||
3522 | return LOLR_Error; | ||||
3523 | } | ||||
3524 | |||||
3525 | return LOLR_ErrorNoDiagnostic; | ||||
3526 | } | ||||
3527 | |||||
3528 | void ADLResult::insert(NamedDecl *New) { | ||||
3529 | NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; | ||||
3530 | |||||
3531 | // If we haven't yet seen a decl for this key, or the last decl | ||||
3532 | // was exactly this one, we're done. | ||||
3533 | if (Old == nullptr || Old == New) { | ||||
3534 | Old = New; | ||||
3535 | return; | ||||
3536 | } | ||||
3537 | |||||
3538 | // Otherwise, decide which is a more recent redeclaration. | ||||
3539 | FunctionDecl *OldFD = Old->getAsFunction(); | ||||
3540 | FunctionDecl *NewFD = New->getAsFunction(); | ||||
3541 | |||||
3542 | FunctionDecl *Cursor = NewFD; | ||||
3543 | while (true) { | ||||
3544 | Cursor = Cursor->getPreviousDecl(); | ||||
3545 | |||||
3546 | // If we got to the end without finding OldFD, OldFD is the newer | ||||
3547 | // declaration; leave things as they are. | ||||
3548 | if (!Cursor) return; | ||||
3549 | |||||
3550 | // If we do find OldFD, then NewFD is newer. | ||||
3551 | if (Cursor == OldFD) break; | ||||
3552 | |||||
3553 | // Otherwise, keep looking. | ||||
3554 | } | ||||
3555 | |||||
3556 | Old = New; | ||||
3557 | } | ||||
3558 | |||||
3559 | void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, | ||||
3560 | ArrayRef<Expr *> Args, ADLResult &Result) { | ||||
3561 | // Find all of the associated namespaces and classes based on the | ||||
3562 | // arguments we have. | ||||
3563 | AssociatedNamespaceSet AssociatedNamespaces; | ||||
3564 | AssociatedClassSet AssociatedClasses; | ||||
3565 | FindAssociatedClassesAndNamespaces(Loc, Args, | ||||
3566 | AssociatedNamespaces, | ||||
3567 | AssociatedClasses); | ||||
3568 | |||||
3569 | // C++ [basic.lookup.argdep]p3: | ||||
3570 | // Let X be the lookup set produced by unqualified lookup (3.4.1) | ||||
3571 | // and let Y be the lookup set produced by argument dependent | ||||
3572 | // lookup (defined as follows). If X contains [...] then Y is | ||||
3573 | // empty. Otherwise Y is the set of declarations found in the | ||||
3574 | // namespaces associated with the argument types as described | ||||
3575 | // below. The set of declarations found by the lookup of the name | ||||
3576 | // is the union of X and Y. | ||||
3577 | // | ||||
3578 | // Here, we compute Y and add its members to the overloaded | ||||
3579 | // candidate set. | ||||
3580 | for (auto *NS : AssociatedNamespaces) { | ||||
3581 | // When considering an associated namespace, the lookup is the | ||||
3582 | // same as the lookup performed when the associated namespace is | ||||
3583 | // used as a qualifier (3.4.3.2) except that: | ||||
3584 | // | ||||
3585 | // -- Any using-directives in the associated namespace are | ||||
3586 | // ignored. | ||||
3587 | // | ||||
3588 | // -- Any namespace-scope friend functions declared in | ||||
3589 | // associated classes are visible within their respective | ||||
3590 | // namespaces even if they are not visible during an ordinary | ||||
3591 | // lookup (11.4). | ||||
3592 | DeclContext::lookup_result R = NS->lookup(Name); | ||||
3593 | for (auto *D : R) { | ||||
3594 | auto *Underlying = D; | ||||
3595 | if (auto *USD = dyn_cast<UsingShadowDecl>(D)) | ||||
3596 | Underlying = USD->getTargetDecl(); | ||||
3597 | |||||
3598 | if (!isa<FunctionDecl>(Underlying) && | ||||
3599 | !isa<FunctionTemplateDecl>(Underlying)) | ||||
3600 | continue; | ||||
3601 | |||||
3602 | // The declaration is visible to argument-dependent lookup if either | ||||
3603 | // it's ordinarily visible or declared as a friend in an associated | ||||
3604 | // class. | ||||
3605 | bool Visible = false; | ||||
3606 | for (D = D->getMostRecentDecl(); D; | ||||
3607 | D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { | ||||
3608 | if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { | ||||
3609 | if (isVisible(D)) { | ||||
3610 | Visible = true; | ||||
3611 | break; | ||||
3612 | } | ||||
3613 | } else if (D->getFriendObjectKind()) { | ||||
3614 | auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); | ||||
3615 | if (AssociatedClasses.count(RD) && isVisible(D)) { | ||||
3616 | Visible = true; | ||||
3617 | break; | ||||
3618 | } | ||||
3619 | } | ||||
3620 | } | ||||
3621 | |||||
3622 | // FIXME: Preserve D as the FoundDecl. | ||||
3623 | if (Visible) | ||||
3624 | Result.insert(Underlying); | ||||
3625 | } | ||||
3626 | } | ||||
3627 | } | ||||
3628 | |||||
3629 | //---------------------------------------------------------------------------- | ||||
3630 | // Search for all visible declarations. | ||||
3631 | //---------------------------------------------------------------------------- | ||||
3632 | VisibleDeclConsumer::~VisibleDeclConsumer() { } | ||||
3633 | |||||
3634 | bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } | ||||
3635 | |||||
3636 | namespace { | ||||
3637 | |||||
3638 | class ShadowContextRAII; | ||||
3639 | |||||
3640 | class VisibleDeclsRecord { | ||||
3641 | public: | ||||
3642 | /// An entry in the shadow map, which is optimized to store a | ||||
3643 | /// single declaration (the common case) but can also store a list | ||||
3644 | /// of declarations. | ||||
3645 | typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; | ||||
3646 | |||||
3647 | private: | ||||
3648 | /// A mapping from declaration names to the declarations that have | ||||
3649 | /// this name within a particular scope. | ||||
3650 | typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; | ||||
3651 | |||||
3652 | /// A list of shadow maps, which is used to model name hiding. | ||||
3653 | std::list<ShadowMap> ShadowMaps; | ||||
3654 | |||||
3655 | /// The declaration contexts we have already visited. | ||||
3656 | llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; | ||||
3657 | |||||
3658 | friend class ShadowContextRAII; | ||||
3659 | |||||
3660 | public: | ||||
3661 | /// Determine whether we have already visited this context | ||||
3662 | /// (and, if not, note that we are going to visit that context now). | ||||
3663 | bool visitedContext(DeclContext *Ctx) { | ||||
3664 | return !VisitedContexts.insert(Ctx).second; | ||||
3665 | } | ||||
3666 | |||||
3667 | bool alreadyVisitedContext(DeclContext *Ctx) { | ||||
3668 | return VisitedContexts.count(Ctx); | ||||
3669 | } | ||||
3670 | |||||
3671 | /// Determine whether the given declaration is hidden in the | ||||
3672 | /// current scope. | ||||
3673 | /// | ||||
3674 | /// \returns the declaration that hides the given declaration, or | ||||
3675 | /// NULL if no such declaration exists. | ||||
3676 | NamedDecl *checkHidden(NamedDecl *ND); | ||||
3677 | |||||
3678 | /// Add a declaration to the current shadow map. | ||||
3679 | void add(NamedDecl *ND) { | ||||
3680 | ShadowMaps.back()[ND->getDeclName()].push_back(ND); | ||||
3681 | } | ||||
3682 | }; | ||||
3683 | |||||
3684 | /// RAII object that records when we've entered a shadow context. | ||||
3685 | class ShadowContextRAII { | ||||
3686 | VisibleDeclsRecord &Visible; | ||||
3687 | |||||
3688 | typedef VisibleDeclsRecord::ShadowMap ShadowMap; | ||||
3689 | |||||
3690 | public: | ||||
3691 | ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { | ||||
3692 | Visible.ShadowMaps.emplace_back(); | ||||
3693 | } | ||||
3694 | |||||
3695 | ~ShadowContextRAII() { | ||||
3696 | Visible.ShadowMaps.pop_back(); | ||||
3697 | } | ||||
3698 | }; | ||||
3699 | |||||
3700 | } // end anonymous namespace | ||||
3701 | |||||
3702 | NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { | ||||
3703 | unsigned IDNS = ND->getIdentifierNamespace(); | ||||
3704 | std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); | ||||
3705 | for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); | ||||
3706 | SM != SMEnd; ++SM) { | ||||
3707 | ShadowMap::iterator Pos = SM->find(ND->getDeclName()); | ||||
3708 | if (Pos == SM->end()) | ||||
3709 | continue; | ||||
3710 | |||||
3711 | for (auto *D : Pos->second) { | ||||
3712 | // A tag declaration does not hide a non-tag declaration. | ||||
3713 | if (D->hasTagIdentifierNamespace() && | ||||
3714 | (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | | ||||
3715 | Decl::IDNS_ObjCProtocol))) | ||||
3716 | continue; | ||||
3717 | |||||
3718 | // Protocols are in distinct namespaces from everything else. | ||||
3719 | if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) | ||||
3720 | || (IDNS & Decl::IDNS_ObjCProtocol)) && | ||||
3721 | D->getIdentifierNamespace() != IDNS) | ||||
3722 | continue; | ||||
3723 | |||||
3724 | // Functions and function templates in the same scope overload | ||||
3725 | // rather than hide. FIXME: Look for hiding based on function | ||||
3726 | // signatures! | ||||
3727 | if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && | ||||
3728 | ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && | ||||
3729 | SM == ShadowMaps.rbegin()) | ||||
3730 | continue; | ||||
3731 | |||||
3732 | // A shadow declaration that's created by a resolved using declaration | ||||
3733 | // is not hidden by the same using declaration. | ||||
3734 | if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && | ||||
3735 | cast<UsingShadowDecl>(ND)->getIntroducer() == D) | ||||
3736 | continue; | ||||
3737 | |||||
3738 | // We've found a declaration that hides this one. | ||||
3739 | return D; | ||||
3740 | } | ||||
3741 | } | ||||
3742 | |||||
3743 | return nullptr; | ||||
3744 | } | ||||
3745 | |||||
3746 | namespace { | ||||
3747 | class LookupVisibleHelper { | ||||
3748 | public: | ||||
3749 | LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, | ||||
3750 | bool LoadExternal) | ||||
3751 | : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), | ||||
3752 | LoadExternal(LoadExternal) {} | ||||
3753 | |||||
3754 | void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, | ||||
3755 | bool IncludeGlobalScope) { | ||||
3756 | // Determine the set of using directives available during | ||||
3757 | // unqualified name lookup. | ||||
3758 | Scope *Initial = S; | ||||
3759 | UnqualUsingDirectiveSet UDirs(SemaRef); | ||||
3760 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
3761 | // Find the first namespace or translation-unit scope. | ||||
3762 | while (S && !isNamespaceOrTranslationUnitScope(S)) | ||||
3763 | S = S->getParent(); | ||||
3764 | |||||
3765 | UDirs.visitScopeChain(Initial, S); | ||||
3766 | } | ||||
3767 | UDirs.done(); | ||||
3768 | |||||
3769 | // Look for visible declarations. | ||||
3770 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); | ||||
3771 | Result.setAllowHidden(Consumer.includeHiddenDecls()); | ||||
3772 | if (!IncludeGlobalScope) | ||||
3773 | Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); | ||||
3774 | ShadowContextRAII Shadow(Visited); | ||||
3775 | lookupInScope(Initial, Result, UDirs); | ||||
3776 | } | ||||
3777 | |||||
3778 | void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, | ||||
3779 | Sema::LookupNameKind Kind, bool IncludeGlobalScope) { | ||||
3780 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); | ||||
3781 | Result.setAllowHidden(Consumer.includeHiddenDecls()); | ||||
3782 | if (!IncludeGlobalScope) | ||||
3783 | Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); | ||||
3784 | |||||
3785 | ShadowContextRAII Shadow(Visited); | ||||
3786 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, | ||||
3787 | /*InBaseClass=*/false); | ||||
3788 | } | ||||
3789 | |||||
3790 | private: | ||||
3791 | void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, | ||||
3792 | bool QualifiedNameLookup, bool InBaseClass) { | ||||
3793 | if (!Ctx) | ||||
3794 | return; | ||||
3795 | |||||
3796 | // Make sure we don't visit the same context twice. | ||||
3797 | if (Visited.visitedContext(Ctx->getPrimaryContext())) | ||||
3798 | return; | ||||
3799 | |||||
3800 | Consumer.EnteredContext(Ctx); | ||||
3801 | |||||
3802 | // Outside C++, lookup results for the TU live on identifiers. | ||||
3803 | if (isa<TranslationUnitDecl>(Ctx) && | ||||
3804 | !Result.getSema().getLangOpts().CPlusPlus) { | ||||
3805 | auto &S = Result.getSema(); | ||||
3806 | auto &Idents = S.Context.Idents; | ||||
3807 | |||||
3808 | // Ensure all external identifiers are in the identifier table. | ||||
3809 | if (LoadExternal) | ||||
3810 | if (IdentifierInfoLookup *External = | ||||
3811 | Idents.getExternalIdentifierLookup()) { | ||||
3812 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); | ||||
3813 | for (StringRef Name = Iter->Next(); !Name.empty(); | ||||
3814 | Name = Iter->Next()) | ||||
3815 | Idents.get(Name); | ||||
3816 | } | ||||
3817 | |||||
3818 | // Walk all lookup results in the TU for each identifier. | ||||
3819 | for (const auto &Ident : Idents) { | ||||
3820 | for (auto I = S.IdResolver.begin(Ident.getValue()), | ||||
3821 | E = S.IdResolver.end(); | ||||
3822 | I != E; ++I) { | ||||
3823 | if (S.IdResolver.isDeclInScope(*I, Ctx)) { | ||||
3824 | if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { | ||||
3825 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); | ||||
3826 | Visited.add(ND); | ||||
3827 | } | ||||
3828 | } | ||||
3829 | } | ||||
3830 | } | ||||
3831 | |||||
3832 | return; | ||||
3833 | } | ||||
3834 | |||||
3835 | if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
3836 | Result.getSema().ForceDeclarationOfImplicitMembers(Class); | ||||
3837 | |||||
3838 | llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; | ||||
3839 | // We sometimes skip loading namespace-level results (they tend to be huge). | ||||
3840 | bool Load = LoadExternal || | ||||
3841 | !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); | ||||
3842 | // Enumerate all of the results in this context. | ||||
3843 | for (DeclContextLookupResult R : | ||||
3844 | Load ? Ctx->lookups() | ||||
3845 | : Ctx->noload_lookups(/*PreserveInternalState=*/false)) { | ||||
3846 | for (auto *D : R) { | ||||
3847 | if (auto *ND = Result.getAcceptableDecl(D)) { | ||||
3848 | // Rather than visit immediatelly, we put ND into a vector and visit | ||||
3849 | // all decls, in order, outside of this loop. The reason is that | ||||
3850 | // Consumer.FoundDecl() may invalidate the iterators used in the two | ||||
3851 | // loops above. | ||||
3852 | DeclsToVisit.push_back(ND); | ||||
3853 | } | ||||
3854 | } | ||||
3855 | } | ||||
3856 | |||||
3857 | for (auto *ND : DeclsToVisit) { | ||||
3858 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); | ||||
3859 | Visited.add(ND); | ||||
3860 | } | ||||
3861 | DeclsToVisit.clear(); | ||||
3862 | |||||
3863 | // Traverse using directives for qualified name lookup. | ||||
3864 | if (QualifiedNameLookup) { | ||||
3865 | ShadowContextRAII Shadow(Visited); | ||||
3866 | for (auto I : Ctx->using_directives()) { | ||||
3867 | if (!Result.getSema().isVisible(I)) | ||||
3868 | continue; | ||||
3869 | lookupInDeclContext(I->getNominatedNamespace(), Result, | ||||
3870 | QualifiedNameLookup, InBaseClass); | ||||
3871 | } | ||||
3872 | } | ||||
3873 | |||||
3874 | // Traverse the contexts of inherited C++ classes. | ||||
3875 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { | ||||
3876 | if (!Record->hasDefinition()) | ||||
3877 | return; | ||||
3878 | |||||
3879 | for (const auto &B : Record->bases()) { | ||||
3880 | QualType BaseType = B.getType(); | ||||
3881 | |||||
3882 | RecordDecl *RD; | ||||
3883 | if (BaseType->isDependentType()) { | ||||
3884 | if (!IncludeDependentBases) { | ||||
3885 | // Don't look into dependent bases, because name lookup can't look | ||||
3886 | // there anyway. | ||||
3887 | continue; | ||||
3888 | } | ||||
3889 | const auto *TST = BaseType->getAs<TemplateSpecializationType>(); | ||||
3890 | if (!TST) | ||||
3891 | continue; | ||||
3892 | TemplateName TN = TST->getTemplateName(); | ||||
3893 | const auto *TD = | ||||
3894 | dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); | ||||
3895 | if (!TD) | ||||
3896 | continue; | ||||
3897 | RD = TD->getTemplatedDecl(); | ||||
3898 | } else { | ||||
3899 | const auto *Record = BaseType->getAs<RecordType>(); | ||||
3900 | if (!Record) | ||||
3901 | continue; | ||||
3902 | RD = Record->getDecl(); | ||||
3903 | } | ||||
3904 | |||||
3905 | // FIXME: It would be nice to be able to determine whether referencing | ||||
3906 | // a particular member would be ambiguous. For example, given | ||||
3907 | // | ||||
3908 | // struct A { int member; }; | ||||
3909 | // struct B { int member; }; | ||||
3910 | // struct C : A, B { }; | ||||
3911 | // | ||||
3912 | // void f(C *c) { c->### } | ||||
3913 | // | ||||
3914 | // accessing 'member' would result in an ambiguity. However, we | ||||
3915 | // could be smart enough to qualify the member with the base | ||||
3916 | // class, e.g., | ||||
3917 | // | ||||
3918 | // c->B::member | ||||
3919 | // | ||||
3920 | // or | ||||
3921 | // | ||||
3922 | // c->A::member | ||||
3923 | |||||
3924 | // Find results in this base class (and its bases). | ||||
3925 | ShadowContextRAII Shadow(Visited); | ||||
3926 | lookupInDeclContext(RD, Result, QualifiedNameLookup, | ||||
3927 | /*InBaseClass=*/true); | ||||
3928 | } | ||||
3929 | } | ||||
3930 | |||||
3931 | // Traverse the contexts of Objective-C classes. | ||||
3932 | if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { | ||||
3933 | // Traverse categories. | ||||
3934 | for (auto *Cat : IFace->visible_categories()) { | ||||
3935 | ShadowContextRAII Shadow(Visited); | ||||
3936 | lookupInDeclContext(Cat, Result, QualifiedNameLookup, | ||||
3937 | /*InBaseClass=*/false); | ||||
3938 | } | ||||
3939 | |||||
3940 | // Traverse protocols. | ||||
3941 | for (auto *I : IFace->all_referenced_protocols()) { | ||||
3942 | ShadowContextRAII Shadow(Visited); | ||||
3943 | lookupInDeclContext(I, Result, QualifiedNameLookup, | ||||
3944 | /*InBaseClass=*/false); | ||||
3945 | } | ||||
3946 | |||||
3947 | // Traverse the superclass. | ||||
3948 | if (IFace->getSuperClass()) { | ||||
3949 | ShadowContextRAII Shadow(Visited); | ||||
3950 | lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, | ||||
3951 | /*InBaseClass=*/true); | ||||
3952 | } | ||||
3953 | |||||
3954 | // If there is an implementation, traverse it. We do this to find | ||||
3955 | // synthesized ivars. | ||||
3956 | if (IFace->getImplementation()) { | ||||
3957 | ShadowContextRAII Shadow(Visited); | ||||
3958 | lookupInDeclContext(IFace->getImplementation(), Result, | ||||
3959 | QualifiedNameLookup, InBaseClass); | ||||
3960 | } | ||||
3961 | } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { | ||||
3962 | for (auto *I : Protocol->protocols()) { | ||||
3963 | ShadowContextRAII Shadow(Visited); | ||||
3964 | lookupInDeclContext(I, Result, QualifiedNameLookup, | ||||
3965 | /*InBaseClass=*/false); | ||||
3966 | } | ||||
3967 | } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { | ||||
3968 | for (auto *I : Category->protocols()) { | ||||
3969 | ShadowContextRAII Shadow(Visited); | ||||
3970 | lookupInDeclContext(I, Result, QualifiedNameLookup, | ||||
3971 | /*InBaseClass=*/false); | ||||
3972 | } | ||||
3973 | |||||
3974 | // If there is an implementation, traverse it. | ||||
3975 | if (Category->getImplementation()) { | ||||
3976 | ShadowContextRAII Shadow(Visited); | ||||
3977 | lookupInDeclContext(Category->getImplementation(), Result, | ||||
3978 | QualifiedNameLookup, /*InBaseClass=*/true); | ||||
3979 | } | ||||
3980 | } | ||||
3981 | } | ||||
3982 | |||||
3983 | void lookupInScope(Scope *S, LookupResult &Result, | ||||
3984 | UnqualUsingDirectiveSet &UDirs) { | ||||
3985 | // No clients run in this mode and it's not supported. Please add tests and | ||||
3986 | // remove the assertion if you start relying on it. | ||||
3987 | assert(!IncludeDependentBases && "Unsupported flag for lookupInScope")((void)0); | ||||
3988 | |||||
3989 | if (!S) | ||||
3990 | return; | ||||
3991 | |||||
3992 | if (!S->getEntity() || | ||||
3993 | (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || | ||||
3994 | (S->getEntity())->isFunctionOrMethod()) { | ||||
3995 | FindLocalExternScope FindLocals(Result); | ||||
3996 | // Walk through the declarations in this Scope. The consumer might add new | ||||
3997 | // decls to the scope as part of deserialization, so make a copy first. | ||||
3998 | SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); | ||||
3999 | for (Decl *D : ScopeDecls) { | ||||
4000 | if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) | ||||
4001 | if ((ND = Result.getAcceptableDecl(ND))) { | ||||
4002 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); | ||||
4003 | Visited.add(ND); | ||||
4004 | } | ||||
4005 | } | ||||
4006 | } | ||||
4007 | |||||
4008 | DeclContext *Entity = S->getLookupEntity(); | ||||
4009 | if (Entity) { | ||||
4010 | // Look into this scope's declaration context, along with any of its | ||||
4011 | // parent lookup contexts (e.g., enclosing classes), up to the point | ||||
4012 | // where we hit the context stored in the next outer scope. | ||||
4013 | DeclContext *OuterCtx = findOuterContext(S); | ||||
4014 | |||||
4015 | for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); | ||||
4016 | Ctx = Ctx->getLookupParent()) { | ||||
4017 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { | ||||
4018 | if (Method->isInstanceMethod()) { | ||||
4019 | // For instance methods, look for ivars in the method's interface. | ||||
4020 | LookupResult IvarResult(Result.getSema(), Result.getLookupName(), | ||||
4021 | Result.getNameLoc(), | ||||
4022 | Sema::LookupMemberName); | ||||
4023 | if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { | ||||
4024 | lookupInDeclContext(IFace, IvarResult, | ||||
4025 | /*QualifiedNameLookup=*/false, | ||||
4026 | /*InBaseClass=*/false); | ||||
4027 | } | ||||
4028 | } | ||||
4029 | |||||
4030 | // We've already performed all of the name lookup that we need | ||||
4031 | // to for Objective-C methods; the next context will be the | ||||
4032 | // outer scope. | ||||
4033 | break; | ||||
4034 | } | ||||
4035 | |||||
4036 | if (Ctx->isFunctionOrMethod()) | ||||
4037 | continue; | ||||
4038 | |||||
4039 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, | ||||
4040 | /*InBaseClass=*/false); | ||||
4041 | } | ||||
4042 | } else if (!S->getParent()) { | ||||
4043 | // Look into the translation unit scope. We walk through the translation | ||||
4044 | // unit's declaration context, because the Scope itself won't have all of | ||||
4045 | // the declarations if we loaded a precompiled header. | ||||
4046 | // FIXME: We would like the translation unit's Scope object to point to | ||||
4047 | // the translation unit, so we don't need this special "if" branch. | ||||
4048 | // However, doing so would force the normal C++ name-lookup code to look | ||||
4049 | // into the translation unit decl when the IdentifierInfo chains would | ||||
4050 | // suffice. Once we fix that problem (which is part of a more general | ||||
4051 | // "don't look in DeclContexts unless we have to" optimization), we can | ||||
4052 | // eliminate this. | ||||
4053 | Entity = Result.getSema().Context.getTranslationUnitDecl(); | ||||
4054 | lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, | ||||
4055 | /*InBaseClass=*/false); | ||||
4056 | } | ||||
4057 | |||||
4058 | if (Entity) { | ||||
4059 | // Lookup visible declarations in any namespaces found by using | ||||
4060 | // directives. | ||||
4061 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) | ||||
4062 | lookupInDeclContext( | ||||
4063 | const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, | ||||
4064 | /*QualifiedNameLookup=*/false, | ||||
4065 | /*InBaseClass=*/false); | ||||
4066 | } | ||||
4067 | |||||
4068 | // Lookup names in the parent scope. | ||||
4069 | ShadowContextRAII Shadow(Visited); | ||||
4070 | lookupInScope(S->getParent(), Result, UDirs); | ||||
4071 | } | ||||
4072 | |||||
4073 | private: | ||||
4074 | VisibleDeclsRecord Visited; | ||||
4075 | VisibleDeclConsumer &Consumer; | ||||
4076 | bool IncludeDependentBases; | ||||
4077 | bool LoadExternal; | ||||
4078 | }; | ||||
4079 | } // namespace | ||||
4080 | |||||
4081 | void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, | ||||
4082 | VisibleDeclConsumer &Consumer, | ||||
4083 | bool IncludeGlobalScope, bool LoadExternal) { | ||||
4084 | LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, | ||||
4085 | LoadExternal); | ||||
4086 | H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); | ||||
4087 | } | ||||
4088 | |||||
4089 | void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, | ||||
4090 | VisibleDeclConsumer &Consumer, | ||||
4091 | bool IncludeGlobalScope, | ||||
4092 | bool IncludeDependentBases, bool LoadExternal) { | ||||
4093 | LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); | ||||
4094 | H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); | ||||
4095 | } | ||||
4096 | |||||
4097 | /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. | ||||
4098 | /// If GnuLabelLoc is a valid source location, then this is a definition | ||||
4099 | /// of an __label__ label name, otherwise it is a normal label definition | ||||
4100 | /// or use. | ||||
4101 | LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, | ||||
4102 | SourceLocation GnuLabelLoc) { | ||||
4103 | // Do a lookup to see if we have a label with this name already. | ||||
4104 | NamedDecl *Res = nullptr; | ||||
4105 | |||||
4106 | if (GnuLabelLoc.isValid()) { | ||||
4107 | // Local label definitions always shadow existing labels. | ||||
4108 | Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); | ||||
4109 | Scope *S = CurScope; | ||||
4110 | PushOnScopeChains(Res, S, true); | ||||
4111 | return cast<LabelDecl>(Res); | ||||
4112 | } | ||||
4113 | |||||
4114 | // Not a GNU local label. | ||||
4115 | Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); | ||||
4116 | // If we found a label, check to see if it is in the same context as us. | ||||
4117 | // When in a Block, we don't want to reuse a label in an enclosing function. | ||||
4118 | if (Res && Res->getDeclContext() != CurContext) | ||||
4119 | Res = nullptr; | ||||
4120 | if (!Res) { | ||||
4121 | // If not forward referenced or defined already, create the backing decl. | ||||
4122 | Res = LabelDecl::Create(Context, CurContext, Loc, II); | ||||
4123 | Scope *S = CurScope->getFnParent(); | ||||
4124 | assert(S && "Not in a function?")((void)0); | ||||
4125 | PushOnScopeChains(Res, S, true); | ||||
4126 | } | ||||
4127 | return cast<LabelDecl>(Res); | ||||
4128 | } | ||||
4129 | |||||
4130 | //===----------------------------------------------------------------------===// | ||||
4131 | // Typo correction | ||||
4132 | //===----------------------------------------------------------------------===// | ||||
4133 | |||||
4134 | static bool isCandidateViable(CorrectionCandidateCallback &CCC, | ||||
4135 | TypoCorrection &Candidate) { | ||||
4136 | Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); | ||||
4137 | return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; | ||||
4138 | } | ||||
4139 | |||||
4140 | static void LookupPotentialTypoResult(Sema &SemaRef, | ||||
4141 | LookupResult &Res, | ||||
4142 | IdentifierInfo *Name, | ||||
4143 | Scope *S, CXXScopeSpec *SS, | ||||
4144 | DeclContext *MemberContext, | ||||
4145 | bool EnteringContext, | ||||
4146 | bool isObjCIvarLookup, | ||||
4147 | bool FindHidden); | ||||
4148 | |||||
4149 | /// Check whether the declarations found for a typo correction are | ||||
4150 | /// visible. Set the correction's RequiresImport flag to true if none of the | ||||
4151 | /// declarations are visible, false otherwise. | ||||
4152 | static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { | ||||
4153 | TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); | ||||
4154 | |||||
4155 | for (/**/; DI != DE; ++DI) | ||||
4156 | if (!LookupResult::isVisible(SemaRef, *DI)) | ||||
4157 | break; | ||||
4158 | // No filtering needed if all decls are visible. | ||||
4159 | if (DI == DE) { | ||||
4160 | TC.setRequiresImport(false); | ||||
4161 | return; | ||||
4162 | } | ||||
4163 | |||||
4164 | llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); | ||||
4165 | bool AnyVisibleDecls = !NewDecls.empty(); | ||||
4166 | |||||
4167 | for (/**/; DI != DE; ++DI) { | ||||
4168 | if (LookupResult::isVisible(SemaRef, *DI)) { | ||||
4169 | if (!AnyVisibleDecls) { | ||||
4170 | // Found a visible decl, discard all hidden ones. | ||||
4171 | AnyVisibleDecls = true; | ||||
4172 | NewDecls.clear(); | ||||
4173 | } | ||||
4174 | NewDecls.push_back(*DI); | ||||
4175 | } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) | ||||
4176 | NewDecls.push_back(*DI); | ||||
4177 | } | ||||
4178 | |||||
4179 | if (NewDecls.empty()) | ||||
4180 | TC = TypoCorrection(); | ||||
4181 | else { | ||||
4182 | TC.setCorrectionDecls(NewDecls); | ||||
4183 | TC.setRequiresImport(!AnyVisibleDecls); | ||||
4184 | } | ||||
4185 | } | ||||
4186 | |||||
4187 | // Fill the supplied vector with the IdentifierInfo pointers for each piece of | ||||
4188 | // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", | ||||
4189 | // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). | ||||
4190 | static void getNestedNameSpecifierIdentifiers( | ||||
4191 | NestedNameSpecifier *NNS, | ||||
4192 | SmallVectorImpl<const IdentifierInfo*> &Identifiers) { | ||||
4193 | if (NestedNameSpecifier *Prefix = NNS->getPrefix()) | ||||
| |||||
4194 | getNestedNameSpecifierIdentifiers(Prefix, Identifiers); | ||||
4195 | else | ||||
4196 | Identifiers.clear(); | ||||
4197 | |||||
4198 | const IdentifierInfo *II = nullptr; | ||||
4199 | |||||
4200 | switch (NNS->getKind()) { | ||||
4201 | case NestedNameSpecifier::Identifier: | ||||
4202 | II = NNS->getAsIdentifier(); | ||||
4203 | break; | ||||
4204 | |||||
4205 | case NestedNameSpecifier::Namespace: | ||||
4206 | if (NNS->getAsNamespace()->isAnonymousNamespace()) | ||||
4207 | return; | ||||
4208 | II = NNS->getAsNamespace()->getIdentifier(); | ||||
4209 | break; | ||||
4210 | |||||
4211 | case NestedNameSpecifier::NamespaceAlias: | ||||
4212 | II = NNS->getAsNamespaceAlias()->getIdentifier(); | ||||
4213 | break; | ||||
4214 | |||||
4215 | case NestedNameSpecifier::TypeSpecWithTemplate: | ||||
4216 | case NestedNameSpecifier::TypeSpec: | ||||
4217 | II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); | ||||
4218 | break; | ||||
4219 | |||||
4220 | case NestedNameSpecifier::Global: | ||||
4221 | case NestedNameSpecifier::Super: | ||||
4222 | return; | ||||
4223 | } | ||||
4224 | |||||
4225 | if (II) | ||||
4226 | Identifiers.push_back(II); | ||||
4227 | } | ||||
4228 | |||||
4229 | void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, | ||||
4230 | DeclContext *Ctx, bool InBaseClass) { | ||||
4231 | // Don't consider hidden names for typo correction. | ||||
4232 | if (Hiding) | ||||
4233 | return; | ||||
4234 | |||||
4235 | // Only consider entities with identifiers for names, ignoring | ||||
4236 | // special names (constructors, overloaded operators, selectors, | ||||
4237 | // etc.). | ||||
4238 | IdentifierInfo *Name = ND->getIdentifier(); | ||||
4239 | if (!Name) | ||||
4240 | return; | ||||
4241 | |||||
4242 | // Only consider visible declarations and declarations from modules with | ||||
4243 | // names that exactly match. | ||||
4244 | if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) | ||||
4245 | return; | ||||
4246 | |||||
4247 | FoundName(Name->getName()); | ||||
4248 | } | ||||
4249 | |||||
4250 | void TypoCorrectionConsumer::FoundName(StringRef Name) { | ||||
4251 | // Compute the edit distance between the typo and the name of this | ||||
4252 | // entity, and add the identifier to the list of results. | ||||
4253 | addName(Name, nullptr); | ||||
4254 | } | ||||
4255 | |||||
4256 | void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { | ||||
4257 | // Compute the edit distance between the typo and this keyword, | ||||
4258 | // and add the keyword to the list of results. | ||||
4259 | addName(Keyword, nullptr, nullptr, true); | ||||
4260 | } | ||||
4261 | |||||
4262 | void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, | ||||
4263 | NestedNameSpecifier *NNS, bool isKeyword) { | ||||
4264 | // Use a simple length-based heuristic to determine the minimum possible | ||||
4265 | // edit distance. If the minimum isn't good enough, bail out early. | ||||
4266 | StringRef TypoStr = Typo->getName(); | ||||
4267 | unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); | ||||
4268 | if (MinED && TypoStr.size() / MinED < 3) | ||||
4269 | return; | ||||
4270 | |||||
4271 | // Compute an upper bound on the allowable edit distance, so that the | ||||
4272 | // edit-distance algorithm can short-circuit. | ||||
4273 | unsigned UpperBound = (TypoStr.size() + 2) / 3; | ||||
4274 | unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); | ||||
4275 | if (ED > UpperBound) return; | ||||
4276 | |||||
4277 | TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); | ||||
4278 | if (isKeyword) TC.makeKeyword(); | ||||
4279 | TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); | ||||
4280 | addCorrection(TC); | ||||
4281 | } | ||||
4282 | |||||
4283 | static const unsigned MaxTypoDistanceResultSets = 5; | ||||
4284 | |||||
4285 | void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { | ||||
4286 | StringRef TypoStr = Typo->getName(); | ||||
4287 | StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); | ||||
4288 | |||||
4289 | // For very short typos, ignore potential corrections that have a different | ||||
4290 | // base identifier from the typo or which have a normalized edit distance | ||||
4291 | // longer than the typo itself. | ||||
4292 | if (TypoStr.size() < 3 && | ||||
4293 | (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) | ||||
4294 | return; | ||||
4295 | |||||
4296 | // If the correction is resolved but is not viable, ignore it. | ||||
4297 | if (Correction.isResolved()) { | ||||
4298 | checkCorrectionVisibility(SemaRef, Correction); | ||||
4299 | if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) | ||||
4300 | return; | ||||
4301 | } | ||||
4302 | |||||
4303 | TypoResultList &CList = | ||||
4304 | CorrectionResults[Correction.getEditDistance(false)][Name]; | ||||
4305 | |||||
4306 | if (!CList.empty() && !CList.back().isResolved()) | ||||
4307 | CList.pop_back(); | ||||
4308 | if (NamedDecl *NewND = Correction.getCorrectionDecl()) { | ||||
4309 | std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts()); | ||||
4310 | for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end(); | ||||
4311 | RI != RIEnd; ++RI) { | ||||
4312 | // If the Correction refers to a decl already in the result list, | ||||
4313 | // replace the existing result if the string representation of Correction | ||||
4314 | // comes before the current result alphabetically, then stop as there is | ||||
4315 | // nothing more to be done to add Correction to the candidate set. | ||||
4316 | if (RI->getCorrectionDecl() == NewND) { | ||||
4317 | if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts())) | ||||
4318 | *RI = Correction; | ||||
4319 | return; | ||||
4320 | } | ||||
4321 | } | ||||
4322 | } | ||||
4323 | if (CList.empty() || Correction.isResolved()) | ||||
4324 | CList.push_back(Correction); | ||||
4325 | |||||
4326 | while (CorrectionResults.size() > MaxTypoDistanceResultSets) | ||||
4327 | CorrectionResults.erase(std::prev(CorrectionResults.end())); | ||||
4328 | } | ||||
4329 | |||||
4330 | void TypoCorrectionConsumer::addNamespaces( | ||||
4331 | const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { | ||||
4332 | SearchNamespaces = true; | ||||
4333 | |||||
4334 | for (auto KNPair : KnownNamespaces) | ||||
4335 | Namespaces.addNameSpecifier(KNPair.first); | ||||
| |||||
4336 | |||||
4337 | bool SSIsTemplate = false; | ||||
4338 | if (NestedNameSpecifier *NNS = | ||||
4339 | (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { | ||||
4340 | if (const Type *T = NNS->getAsType()) | ||||
4341 | SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; | ||||
4342 | } | ||||
4343 | // Do not transform this into an iterator-based loop. The loop body can | ||||
4344 | // trigger the creation of further types (through lazy deserialization) and | ||||
4345 | // invalid iterators into this list. | ||||
4346 | auto &Types = SemaRef.getASTContext().getTypes(); | ||||
4347 | for (unsigned I = 0; I != Types.size(); ++I) { | ||||
4348 | const auto *TI = Types[I]; | ||||
4349 | if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { | ||||
4350 | CD = CD->getCanonicalDecl(); | ||||
4351 | if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && | ||||
4352 | !CD->isUnion() && CD->getIdentifier() && | ||||
4353 | (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && | ||||
4354 | (CD->isBeingDefined() || CD->isCompleteDefinition())) | ||||
4355 | Namespaces.addNameSpecifier(CD); | ||||
4356 | } | ||||
4357 | } | ||||
4358 | } | ||||
4359 | |||||
4360 | const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { | ||||
4361 | if (++CurrentTCIndex < ValidatedCorrections.size()) | ||||
4362 | return ValidatedCorrections[CurrentTCIndex]; | ||||
4363 | |||||
4364 | CurrentTCIndex = ValidatedCorrections.size(); | ||||
4365 | while (!CorrectionResults.empty()) { | ||||
4366 | auto DI = CorrectionResults.begin(); | ||||
4367 | if (DI->second.empty()) { | ||||
4368 | CorrectionResults.erase(DI); | ||||
4369 | continue; | ||||
4370 | } | ||||
4371 | |||||
4372 | auto RI = DI->second.begin(); | ||||
4373 | if (RI->second.empty()) { | ||||
4374 | DI->second.erase(RI); | ||||
4375 | performQualifiedLookups(); | ||||
4376 | continue; | ||||
4377 | } | ||||
4378 | |||||
4379 | TypoCorrection TC = RI->second.pop_back_val(); | ||||
4380 | if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { | ||||
4381 | ValidatedCorrections.push_back(TC); | ||||
4382 | return ValidatedCorrections[CurrentTCIndex]; | ||||
4383 | } | ||||
4384 | } | ||||
4385 | return ValidatedCorrections[0]; // The empty correction. | ||||
4386 | } | ||||
4387 | |||||
4388 | bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { | ||||
4389 | IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); | ||||
4390 | DeclContext *TempMemberContext = MemberContext; | ||||
4391 | CXXScopeSpec *TempSS = SS.get(); | ||||
4392 | retry_lookup: | ||||
4393 | LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, | ||||
4394 | EnteringContext, | ||||
4395 | CorrectionValidator->IsObjCIvarLookup, | ||||
4396 | Name == Typo && !Candidate.WillReplaceSpecifier()); | ||||
4397 | switch (Result.getResultKind()) { | ||||
4398 | case LookupResult::NotFound: | ||||
4399 | case LookupResult::NotFoundInCurrentInstantiation: | ||||
4400 | case LookupResult::FoundUnresolvedValue: | ||||
4401 | if (TempSS) { | ||||
4402 | // Immediately retry the lookup without the given CXXScopeSpec | ||||
4403 | TempSS = nullptr; | ||||
4404 | Candidate.WillReplaceSpecifier(true); | ||||
4405 | goto retry_lookup; | ||||
4406 | } | ||||
4407 | if (TempMemberContext) { | ||||
4408 | if (SS && !TempSS) | ||||
4409 | TempSS = SS.get(); | ||||
4410 | TempMemberContext = nullptr; | ||||
4411 | goto retry_lookup; | ||||
4412 | } | ||||
4413 | if (SearchNamespaces) | ||||
4414 | QualifiedResults.push_back(Candidate); | ||||
4415 | break; | ||||
4416 | |||||
4417 | case LookupResult::Ambiguous: | ||||
4418 | // We don't deal with ambiguities. | ||||
4419 | break; | ||||
4420 | |||||
4421 | case LookupResult::Found: | ||||
4422 | case LookupResult::FoundOverloaded: | ||||
4423 | // Store all of the Decls for overloaded symbols | ||||
4424 | for (auto *TRD : Result) | ||||
4425 | Candidate.addCorrectionDecl(TRD); | ||||
4426 | checkCorrectionVisibility(SemaRef, Candidate); | ||||
4427 | if (!isCandidateViable(*CorrectionValidator, Candidate)) { | ||||
4428 | if (SearchNamespaces) | ||||
4429 | QualifiedResults.push_back(Candidate); | ||||
4430 | break; | ||||
4431 | } | ||||
4432 | Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); | ||||
4433 | return true; | ||||
4434 | } | ||||
4435 | return false; | ||||
4436 | } | ||||
4437 | |||||
4438 | void TypoCorrectionConsumer::performQualifiedLookups() { | ||||
4439 | unsigned TypoLen = Typo->getName().size(); | ||||
4440 | for (const TypoCorrection &QR : QualifiedResults) { | ||||
4441 | for (const auto &NSI : Namespaces) { | ||||
4442 | DeclContext *Ctx = NSI.DeclCtx; | ||||
4443 | const Type *NSType = NSI.NameSpecifier->getAsType(); | ||||
4444 | |||||
4445 | // If the current NestedNameSpecifier refers to a class and the | ||||
4446 | // current correction candidate is the name of that class, then skip | ||||
4447 | // it as it is unlikely a qualified version of the class' constructor | ||||
4448 | // is an appropriate correction. | ||||
4449 | if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : | ||||
4450 | nullptr) { | ||||
4451 | if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) | ||||
4452 | continue; | ||||
4453 | } | ||||
4454 | |||||
4455 | TypoCorrection TC(QR); | ||||
4456 | TC.ClearCorrectionDecls(); | ||||
4457 | TC.setCorrectionSpecifier(NSI.NameSpecifier); | ||||
4458 | TC.setQualifierDistance(NSI.EditDistance); | ||||
4459 | TC.setCallbackDistance(0); // Reset the callback distance | ||||
4460 | |||||
4461 | // If the current correction candidate and namespace combination are | ||||
4462 | // too far away from the original typo based on the normalized edit | ||||
4463 | // distance, then skip performing a qualified name lookup. | ||||
4464 | unsigned TmpED = TC.getEditDistance(true); | ||||
4465 | if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && | ||||
4466 | TypoLen / TmpED < 3) | ||||
4467 | continue; | ||||
4468 | |||||
4469 | Result.clear(); | ||||
4470 | Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); | ||||
4471 | if (!SemaRef.LookupQualifiedName(Result, Ctx)) | ||||
4472 | continue; | ||||
4473 | |||||
4474 | // Any corrections added below will be validated in subsequent | ||||
4475 | // iterations of the main while() loop over the Consumer's contents. | ||||
4476 | switch (Result.getResultKind()) { | ||||
4477 | case LookupResult::Found: | ||||
4478 | case LookupResult::FoundOverloaded: { | ||||
4479 | if (SS && SS->isValid()) { | ||||
4480 | std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); | ||||
4481 | std::string OldQualified; | ||||
4482 | llvm::raw_string_ostream OldOStream(OldQualified); | ||||
4483 | SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); | ||||
4484 | OldOStream << Typo->getName(); | ||||
4485 | // If correction candidate would be an identical written qualified | ||||
4486 | // identifier, then the existing CXXScopeSpec probably included a | ||||
4487 | // typedef that didn't get accounted for properly. | ||||
4488 | if (OldOStream.str() == NewQualified) | ||||
4489 | break; | ||||
4490 | } | ||||
4491 | for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); | ||||
4492 | TRD != TRDEnd; ++TRD) { | ||||
4493 | if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), | ||||
4494 | NSType ? NSType->getAsCXXRecordDecl() | ||||
4495 | : nullptr, | ||||
4496 | TRD.getPair()) == Sema::AR_accessible) | ||||
4497 | TC.addCorrectionDecl(*TRD); | ||||
4498 | } | ||||
4499 | if (TC.isResolved()) { | ||||
4500 | TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); | ||||
4501 | addCorrection(TC); | ||||
4502 | } | ||||
4503 | break; | ||||
4504 | } | ||||
4505 | case LookupResult::NotFound: | ||||
4506 | case LookupResult::NotFoundInCurrentInstantiation: | ||||
4507 | case LookupResult::Ambiguous: | ||||
4508 | case LookupResult::FoundUnresolvedValue: | ||||
4509 | break; | ||||
4510 | } | ||||
4511 | } | ||||
4512 | } | ||||
4513 | QualifiedResults.clear(); | ||||
4514 | } | ||||
4515 | |||||
4516 | TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( | ||||
4517 | ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) | ||||
4518 | : Context(Context), CurContextChain(buildContextChain(CurContext)) { | ||||
4519 | if (NestedNameSpecifier *NNS = | ||||
4520 | CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { | ||||
4521 | llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); | ||||
4522 | NNS->print(SpecifierOStream, Context.getPrintingPolicy()); | ||||
4523 | |||||
4524 | getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); | ||||
4525 | } | ||||
4526 | // Build the list of identifiers that would be used for an absolute | ||||
4527 | // (from the global context) NestedNameSpecifier referring to the current | ||||
4528 | // context. | ||||
4529 | for (DeclContext *C : llvm::reverse(CurContextChain)) { | ||||
4530 | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) | ||||
4531 | CurContextIdentifiers.push_back(ND->getIdentifier()); | ||||
4532 | } | ||||
4533 | |||||
4534 | // Add the global context as a NestedNameSpecifier | ||||
4535 | SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), | ||||
4536 | NestedNameSpecifier::GlobalSpecifier(Context), 1}; | ||||
4537 | DistanceMap[1].push_back(SI); | ||||
4538 | } | ||||
4539 | |||||
4540 | auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( | ||||
4541 | DeclContext *Start) -> DeclContextList { | ||||
4542 | assert(Start && "Building a context chain from a null context")((void)0); | ||||
4543 | DeclContextList Chain; | ||||
4544 | for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; | ||||
4545 | DC = DC->getLookupParent()) { | ||||
4546 | NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); | ||||
4547 | if (!DC->isInlineNamespace() && !DC->isTransparentContext() && | ||||
4548 | !(ND && ND->isAnonymousNamespace())) | ||||
4549 | Chain.push_back(DC->getPrimaryContext()); | ||||
4550 | } | ||||
4551 | return Chain; | ||||
4552 | } | ||||
4553 | |||||
4554 | unsigned | ||||
4555 | TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( | ||||
4556 | DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { | ||||
4557 | unsigned NumSpecifiers = 0; | ||||
4558 | for (DeclContext *C : llvm::reverse(DeclChain)) { | ||||
4559 | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { | ||||
4560 | NNS = NestedNameSpecifier::Create(Context, NNS, ND); | ||||
4561 | ++NumSpecifiers; | ||||
4562 | } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { | ||||
4563 | NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), | ||||
4564 | RD->getTypeForDecl()); | ||||
4565 | ++NumSpecifiers; | ||||
4566 | } | ||||
4567 | } | ||||
4568 | return NumSpecifiers; | ||||
4569 | } | ||||
4570 | |||||
4571 | void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( | ||||
4572 | DeclContext *Ctx) { | ||||
4573 | NestedNameSpecifier *NNS = nullptr; | ||||
4574 | unsigned NumSpecifiers = 0; | ||||
4575 | DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); | ||||
4576 | DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); | ||||
4577 | |||||
4578 | // Eliminate common elements from the two DeclContext chains. | ||||
4579 | for (DeclContext *C : llvm::reverse(CurContextChain)) { | ||||
4580 | if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) | ||||
4581 | break; | ||||
4582 | NamespaceDeclChain.pop_back(); | ||||
4583 | } | ||||
4584 | |||||
4585 | // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain | ||||
4586 | NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); | ||||
4587 | |||||
4588 | // Add an explicit leading '::' specifier if needed. | ||||
4589 | if (NamespaceDeclChain.empty()) { | ||||
4590 | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. | ||||
4591 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); | ||||
4592 | NumSpecifiers = | ||||
4593 | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); | ||||
4594 | } else if (NamedDecl *ND
| ||||
4595 | dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { | ||||
4596 | IdentifierInfo *Name = ND->getIdentifier(); | ||||
4597 | bool SameNameSpecifier = false; | ||||
4598 | if (std::find(CurNameSpecifierIdentifiers.begin(), | ||||
4599 | CurNameSpecifierIdentifiers.end(), | ||||
4600 | Name) != CurNameSpecifierIdentifiers.end()) { | ||||
4601 | std::string NewNameSpecifier; | ||||
4602 | llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); | ||||
4603 | SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; | ||||
4604 | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); | ||||
4605 | NNS->print(SpecifierOStream, Context.getPrintingPolicy()); | ||||
4606 | SpecifierOStream.flush(); | ||||
4607 | SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; | ||||
4608 | } | ||||
4609 | if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) != | ||||
4610 | CurContextIdentifiers.end()) { | ||||
4611 | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. | ||||
4612 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); | ||||
4613 | NumSpecifiers = | ||||
4614 | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); | ||||
4615 | } | ||||
4616 | } | ||||
4617 | |||||
4618 | // If the built NestedNameSpecifier would be replacing an existing | ||||
4619 | // NestedNameSpecifier, use the number of component identifiers that | ||||
4620 | // would need to be changed as the edit distance instead of the number | ||||
4621 | // of components in the built NestedNameSpecifier. | ||||
4622 | if (NNS && !CurNameSpecifierIdentifiers.empty()) { | ||||
4623 | SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; | ||||
4624 | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); | ||||
4625 | NumSpecifiers = llvm::ComputeEditDistance( | ||||
4626 | llvm::makeArrayRef(CurNameSpecifierIdentifiers), | ||||
4627 | llvm::makeArrayRef(NewNameSpecifierIdentifiers)); | ||||
4628 | } | ||||
4629 | |||||
4630 | SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; | ||||
4631 | DistanceMap[NumSpecifiers].push_back(SI); | ||||
4632 | } | ||||
4633 | |||||
4634 | /// Perform name lookup for a possible result for typo correction. | ||||
4635 | static void LookupPotentialTypoResult(Sema &SemaRef, | ||||
4636 | LookupResult &Res, | ||||
4637 | IdentifierInfo *Name, | ||||
4638 | Scope *S, CXXScopeSpec *SS, | ||||
4639 | DeclContext *MemberContext, | ||||
4640 | bool EnteringContext, | ||||
4641 | bool isObjCIvarLookup, | ||||
4642 | bool FindHidden) { | ||||
4643 | Res.suppressDiagnostics(); | ||||
4644 | Res.clear(); | ||||
4645 | Res.setLookupName(Name); | ||||
4646 | Res.setAllowHidden(FindHidden); | ||||
4647 | if (MemberContext) { | ||||
4648 | if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { | ||||
4649 | if (isObjCIvarLookup) { | ||||
4650 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { | ||||
4651 | Res.addDecl(Ivar); | ||||
4652 | Res.resolveKind(); | ||||
4653 | return; | ||||
4654 | } | ||||
4655 | } | ||||
4656 | |||||
4657 | if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( | ||||
4658 | Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { | ||||
4659 | Res.addDecl(Prop); | ||||
4660 | Res.resolveKind(); | ||||
4661 | return; | ||||
4662 | } | ||||
4663 | } | ||||
4664 | |||||
4665 | SemaRef.LookupQualifiedName(Res, MemberContext); | ||||
4666 | return; | ||||
4667 | } | ||||
4668 | |||||
4669 | SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, | ||||
4670 | EnteringContext); | ||||
4671 | |||||
4672 | // Fake ivar lookup; this should really be part of | ||||
4673 | // LookupParsedName. | ||||
4674 | if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { | ||||
4675 | if (Method->isInstanceMethod() && Method->getClassInterface() && | ||||
4676 | (Res.empty() || | ||||
4677 | (Res.isSingleResult() && | ||||
4678 | Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { | ||||
4679 | if (ObjCIvarDecl *IV | ||||
4680 | = Method->getClassInterface()->lookupInstanceVariable(Name)) { | ||||
4681 | Res.addDecl(IV); | ||||
4682 | Res.resolveKind(); | ||||
4683 | } | ||||
4684 | } | ||||
4685 | } | ||||
4686 | } | ||||
4687 | |||||
4688 | /// Add keywords to the consumer as possible typo corrections. | ||||
4689 | static void AddKeywordsToConsumer(Sema &SemaRef, | ||||
4690 | TypoCorrectionConsumer &Consumer, | ||||
4691 | Scope *S, CorrectionCandidateCallback &CCC, | ||||
4692 | bool AfterNestedNameSpecifier) { | ||||
4693 | if (AfterNestedNameSpecifier) { | ||||
4694 | // For 'X::', we know exactly which keywords can appear next. | ||||
4695 | Consumer.addKeywordResult("template"); | ||||
4696 | if (CCC.WantExpressionKeywords) | ||||
4697 | Consumer.addKeywordResult("operator"); | ||||
4698 | return; | ||||
4699 | } | ||||
4700 | |||||
4701 | if (CCC.WantObjCSuper) | ||||
4702 | Consumer.addKeywordResult("super"); | ||||
4703 | |||||
4704 | if (CCC.WantTypeSpecifiers) { | ||||
4705 | // Add type-specifier keywords to the set of results. | ||||
4706 | static const char *const CTypeSpecs[] = { | ||||
4707 | "char", "const", "double", "enum", "float", "int", "long", "short", | ||||
4708 | "signed", "struct", "union", "unsigned", "void", "volatile", | ||||
4709 | "_Complex", "_Imaginary", | ||||
4710 | // storage-specifiers as well | ||||
4711 | "extern", "inline", "static", "typedef" | ||||
4712 | }; | ||||
4713 | |||||
4714 | const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs); | ||||
4715 | for (unsigned I = 0; I != NumCTypeSpecs; ++I) | ||||
4716 | Consumer.addKeywordResult(CTypeSpecs[I]); | ||||
4717 | |||||
4718 | if (SemaRef.getLangOpts().C99) | ||||
4719 | Consumer.addKeywordResult("restrict"); | ||||
4720 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) | ||||
4721 | Consumer.addKeywordResult("bool"); | ||||
4722 | else if (SemaRef.getLangOpts().C99) | ||||
4723 | Consumer.addKeywordResult("_Bool"); | ||||
4724 | |||||
4725 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
4726 | Consumer.addKeywordResult("class"); | ||||
4727 | Consumer.addKeywordResult("typename"); | ||||
4728 | Consumer.addKeywordResult("wchar_t"); | ||||
4729 | |||||
4730 | if (SemaRef.getLangOpts().CPlusPlus11) { | ||||
4731 | Consumer.addKeywordResult("char16_t"); | ||||
4732 | Consumer.addKeywordResult("char32_t"); | ||||
4733 | Consumer.addKeywordResult("constexpr"); | ||||
4734 | Consumer.addKeywordResult("decltype"); | ||||
4735 | Consumer.addKeywordResult("thread_local"); | ||||
4736 | } | ||||
4737 | } | ||||
4738 | |||||
4739 | if (SemaRef.getLangOpts().GNUKeywords) | ||||
4740 | Consumer.addKeywordResult("typeof"); | ||||
4741 | } else if (CCC.WantFunctionLikeCasts) { | ||||
4742 | static const char *const CastableTypeSpecs[] = { | ||||
4743 | "char", "double", "float", "int", "long", "short", | ||||
4744 | "signed", "unsigned", "void" | ||||
4745 | }; | ||||
4746 | for (auto *kw : CastableTypeSpecs) | ||||
4747 | Consumer.addKeywordResult(kw); | ||||
4748 | } | ||||
4749 | |||||
4750 | if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { | ||||
4751 | Consumer.addKeywordResult("const_cast"); | ||||
4752 | Consumer.addKeywordResult("dynamic_cast"); | ||||
4753 | Consumer.addKeywordResult("reinterpret_cast"); | ||||
4754 | Consumer.addKeywordResult("static_cast"); | ||||
4755 | } | ||||
4756 | |||||
4757 | if (CCC.WantExpressionKeywords) { | ||||
4758 | Consumer.addKeywordResult("sizeof"); | ||||
4759 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { | ||||
4760 | Consumer.addKeywordResult("false"); | ||||
4761 | Consumer.addKeywordResult("true"); | ||||
4762 | } | ||||
4763 | |||||
4764 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
4765 | static const char *const CXXExprs[] = { | ||||
4766 | "delete", "new", "operator", "throw", "typeid" | ||||
4767 | }; | ||||
4768 | const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs); | ||||
4769 | for (unsigned I = 0; I != NumCXXExprs; ++I) | ||||
4770 | Consumer.addKeywordResult(CXXExprs[I]); | ||||
4771 | |||||
4772 | if (isa<CXXMethodDecl>(SemaRef.CurContext) && | ||||
4773 | cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) | ||||
4774 | Consumer.addKeywordResult("this"); | ||||
4775 | |||||
4776 | if (SemaRef.getLangOpts().CPlusPlus11) { | ||||
4777 | Consumer.addKeywordResult("alignof"); | ||||
4778 | Consumer.addKeywordResult("nullptr"); | ||||
4779 | } | ||||
4780 | } | ||||
4781 | |||||
4782 | if (SemaRef.getLangOpts().C11) { | ||||
4783 | // FIXME: We should not suggest _Alignof if the alignof macro | ||||
4784 | // is present. | ||||
4785 | Consumer.addKeywordResult("_Alignof"); | ||||
4786 | } | ||||
4787 | } | ||||
4788 | |||||
4789 | if (CCC.WantRemainingKeywords) { | ||||
4790 | if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { | ||||
4791 | // Statements. | ||||
4792 | static const char *const CStmts[] = { | ||||
4793 | "do", "else", "for", "goto", "if", "return", "switch", "while" }; | ||||
4794 | const unsigned NumCStmts = llvm::array_lengthof(CStmts); | ||||
4795 | for (unsigned I = 0; I != NumCStmts; ++I) | ||||
4796 | Consumer.addKeywordResult(CStmts[I]); | ||||
4797 | |||||
4798 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
4799 | Consumer.addKeywordResult("catch"); | ||||
4800 | Consumer.addKeywordResult("try"); | ||||
4801 | } | ||||
4802 | |||||
4803 | if (S && S->getBreakParent()) | ||||
4804 | Consumer.addKeywordResult("break"); | ||||
4805 | |||||
4806 | if (S && S->getContinueParent()) | ||||
4807 | Consumer.addKeywordResult("continue"); | ||||
4808 | |||||
4809 | if (SemaRef.getCurFunction() && | ||||
4810 | !SemaRef.getCurFunction()->SwitchStack.empty()) { | ||||
4811 | Consumer.addKeywordResult("case"); | ||||
4812 | Consumer.addKeywordResult("default"); | ||||
4813 | } | ||||
4814 | } else { | ||||
4815 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
4816 | Consumer.addKeywordResult("namespace"); | ||||
4817 | Consumer.addKeywordResult("template"); | ||||
4818 | } | ||||
4819 | |||||
4820 | if (S && S->isClassScope()) { | ||||
4821 | Consumer.addKeywordResult("explicit"); | ||||
4822 | Consumer.addKeywordResult("friend"); | ||||
4823 | Consumer.addKeywordResult("mutable"); | ||||
4824 | Consumer.addKeywordResult("private"); | ||||
4825 | Consumer.addKeywordResult("protected"); | ||||
4826 | Consumer.addKeywordResult("public"); | ||||
4827 | Consumer.addKeywordResult("virtual"); | ||||
4828 | } | ||||
4829 | } | ||||
4830 | |||||
4831 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
4832 | Consumer.addKeywordResult("using"); | ||||
4833 | |||||
4834 | if (SemaRef.getLangOpts().CPlusPlus11) | ||||
4835 | Consumer.addKeywordResult("static_assert"); | ||||
4836 | } | ||||
4837 | } | ||||
4838 | } | ||||
4839 | |||||
4840 | std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( | ||||
4841 | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, | ||||
4842 | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, | ||||
4843 | DeclContext *MemberContext, bool EnteringContext, | ||||
4844 | const ObjCObjectPointerType *OPT, bool ErrorRecovery) { | ||||
4845 | |||||
4846 | if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || | ||||
4847 | DisableTypoCorrection) | ||||
4848 | return nullptr; | ||||
4849 | |||||
4850 | // In Microsoft mode, don't perform typo correction in a template member | ||||
4851 | // function dependent context because it interferes with the "lookup into | ||||
4852 | // dependent bases of class templates" feature. | ||||
4853 | if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && | ||||
4854 | isa<CXXMethodDecl>(CurContext)) | ||||
4855 | return nullptr; | ||||
4856 | |||||
4857 | // We only attempt to correct typos for identifiers. | ||||
4858 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | ||||
4859 | if (!Typo) | ||||
4860 | return nullptr; | ||||
4861 | |||||
4862 | // If the scope specifier itself was invalid, don't try to correct | ||||
4863 | // typos. | ||||
4864 | if (SS && SS->isInvalid()) | ||||
4865 | return nullptr; | ||||
4866 | |||||
4867 | // Never try to correct typos during any kind of code synthesis. | ||||
4868 | if (!CodeSynthesisContexts.empty()) | ||||
4869 | return nullptr; | ||||
4870 | |||||
4871 | // Don't try to correct 'super'. | ||||
4872 | if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) | ||||
4873 | return nullptr; | ||||
4874 | |||||
4875 | // Abort if typo correction already failed for this specific typo. | ||||
4876 | IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); | ||||
4877 | if (locs != TypoCorrectionFailures.end() && | ||||
4878 | locs->second.count(TypoName.getLoc())) | ||||
4879 | return nullptr; | ||||
4880 | |||||
4881 | // Don't try to correct the identifier "vector" when in AltiVec mode. | ||||
4882 | // TODO: Figure out why typo correction misbehaves in this case, fix it, and | ||||
4883 | // remove this workaround. | ||||
4884 | if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) | ||||
4885 | return nullptr; | ||||
4886 | |||||
4887 | // Provide a stop gap for files that are just seriously broken. Trying | ||||
4888 | // to correct all typos can turn into a HUGE performance penalty, causing | ||||
4889 | // some files to take minutes to get rejected by the parser. | ||||
4890 | unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; | ||||
4891 | if (Limit && TyposCorrected >= Limit) | ||||
4892 | return nullptr; | ||||
4893 | ++TyposCorrected; | ||||
4894 | |||||
4895 | // If we're handling a missing symbol error, using modules, and the | ||||
4896 | // special search all modules option is used, look for a missing import. | ||||
4897 | if (ErrorRecovery && getLangOpts().Modules && | ||||
4898 | getLangOpts().ModulesSearchAll) { | ||||
4899 | // The following has the side effect of loading the missing module. | ||||
4900 | getModuleLoader().lookupMissingImports(Typo->getName(), | ||||
4901 | TypoName.getBeginLoc()); | ||||
4902 | } | ||||
4903 | |||||
4904 | // Extend the lifetime of the callback. We delayed this until here | ||||
4905 | // to avoid allocations in the hot path (which is where no typo correction | ||||
4906 | // occurs). Note that CorrectionCandidateCallback is polymorphic and | ||||
4907 | // initially stack-allocated. | ||||
4908 | std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); | ||||
4909 | auto Consumer = std::make_unique<TypoCorrectionConsumer>( | ||||
4910 | *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, | ||||
4911 | EnteringContext); | ||||
4912 | |||||
4913 | // Perform name lookup to find visible, similarly-named entities. | ||||
4914 | bool IsUnqualifiedLookup = false; | ||||
4915 | DeclContext *QualifiedDC = MemberContext; | ||||
4916 | if (MemberContext) { | ||||
4917 | LookupVisibleDecls(MemberContext, LookupKind, *Consumer); | ||||
4918 | |||||
4919 | // Look in qualified interfaces. | ||||
4920 | if (OPT) { | ||||
4921 | for (auto *I : OPT->quals()) | ||||
4922 | LookupVisibleDecls(I, LookupKind, *Consumer); | ||||
4923 | } | ||||
4924 | } else if (SS && SS->isSet()) { | ||||
4925 | QualifiedDC = computeDeclContext(*SS, EnteringContext); | ||||
4926 | if (!QualifiedDC) | ||||
4927 | return nullptr; | ||||
4928 | |||||
4929 | LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); | ||||
4930 | } else { | ||||
4931 | IsUnqualifiedLookup = true; | ||||
4932 | } | ||||
4933 | |||||
4934 | // Determine whether we are going to search in the various namespaces for | ||||
4935 | // corrections. | ||||
4936 | bool SearchNamespaces | ||||
4937 | = getLangOpts().CPlusPlus && | ||||
4938 | (IsUnqualifiedLookup || (SS && SS->isSet())); | ||||
4939 | |||||
4940 | if (IsUnqualifiedLookup || SearchNamespaces) { | ||||
4941 | // For unqualified lookup, look through all of the names that we have | ||||
4942 | // seen in this translation unit. | ||||
4943 | // FIXME: Re-add the ability to skip very unlikely potential corrections. | ||||
4944 | for (const auto &I : Context.Idents) | ||||
4945 | Consumer->FoundName(I.getKey()); | ||||
4946 | |||||
4947 | // Walk through identifiers in external identifier sources. | ||||
4948 | // FIXME: Re-add the ability to skip very unlikely potential corrections. | ||||
4949 | if (IdentifierInfoLookup *External | ||||
4950 | = Context.Idents.getExternalIdentifierLookup()) { | ||||
4951 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); | ||||
4952 | do { | ||||
4953 | StringRef Name = Iter->Next(); | ||||
4954 | if (Name.empty()) | ||||
4955 | break; | ||||
4956 | |||||
4957 | Consumer->FoundName(Name); | ||||
4958 | } while (true); | ||||
4959 | } | ||||
4960 | } | ||||
4961 | |||||
4962 | AddKeywordsToConsumer(*this, *Consumer, S, | ||||
4963 | *Consumer->getCorrectionValidator(), | ||||
4964 | SS && SS->isNotEmpty()); | ||||
4965 | |||||
4966 | // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going | ||||
4967 | // to search those namespaces. | ||||
4968 | if (SearchNamespaces) { | ||||
4969 | // Load any externally-known namespaces. | ||||
4970 | if (ExternalSource && !LoadedExternalKnownNamespaces) { | ||||
4971 | SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; | ||||
4972 | LoadedExternalKnownNamespaces = true; | ||||
4973 | ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); | ||||
4974 | for (auto *N : ExternalKnownNamespaces) | ||||
4975 | KnownNamespaces[N] = true; | ||||
4976 | } | ||||
4977 | |||||
4978 | Consumer->addNamespaces(KnownNamespaces); | ||||
4979 | } | ||||
4980 | |||||
4981 | return Consumer; | ||||
4982 | } | ||||
4983 | |||||
4984 | /// Try to "correct" a typo in the source code by finding | ||||
4985 | /// visible declarations whose names are similar to the name that was | ||||
4986 | /// present in the source code. | ||||
4987 | /// | ||||
4988 | /// \param TypoName the \c DeclarationNameInfo structure that contains | ||||
4989 | /// the name that was present in the source code along with its location. | ||||
4990 | /// | ||||
4991 | /// \param LookupKind the name-lookup criteria used to search for the name. | ||||
4992 | /// | ||||
4993 | /// \param S the scope in which name lookup occurs. | ||||
4994 | /// | ||||
4995 | /// \param SS the nested-name-specifier that precedes the name we're | ||||
4996 | /// looking for, if present. | ||||
4997 | /// | ||||
4998 | /// \param CCC A CorrectionCandidateCallback object that provides further | ||||
4999 | /// validation of typo correction candidates. It also provides flags for | ||||
5000 | /// determining the set of keywords permitted. | ||||
5001 | /// | ||||
5002 | /// \param MemberContext if non-NULL, the context in which to look for | ||||
5003 | /// a member access expression. | ||||
5004 | /// | ||||
5005 | /// \param EnteringContext whether we're entering the context described by | ||||
5006 | /// the nested-name-specifier SS. | ||||
5007 | /// | ||||
5008 | /// \param OPT when non-NULL, the search for visible declarations will | ||||
5009 | /// also walk the protocols in the qualified interfaces of \p OPT. | ||||
5010 | /// | ||||
5011 | /// \returns a \c TypoCorrection containing the corrected name if the typo | ||||
5012 | /// along with information such as the \c NamedDecl where the corrected name | ||||
5013 | /// was declared, and any additional \c NestedNameSpecifier needed to access | ||||
5014 | /// it (C++ only). The \c TypoCorrection is empty if there is no correction. | ||||
5015 | TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, | ||||
5016 | Sema::LookupNameKind LookupKind, | ||||
5017 | Scope *S, CXXScopeSpec *SS, | ||||
5018 | CorrectionCandidateCallback &CCC, | ||||
5019 | CorrectTypoKind Mode, | ||||
5020 | DeclContext *MemberContext, | ||||
5021 | bool EnteringContext, | ||||
5022 | const ObjCObjectPointerType *OPT, | ||||
5023 | bool RecordFailure) { | ||||
5024 | // Always let the ExternalSource have the first chance at correction, even | ||||
5025 | // if we would otherwise have given up. | ||||
5026 | if (ExternalSource) { | ||||
5027 | if (TypoCorrection Correction = | ||||
5028 | ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, | ||||
5029 | MemberContext, EnteringContext, OPT)) | ||||
5030 | return Correction; | ||||
5031 | } | ||||
5032 | |||||
5033 | // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; | ||||
5034 | // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for | ||||
5035 | // some instances of CTC_Unknown, while WantRemainingKeywords is true | ||||
5036 | // for CTC_Unknown but not for CTC_ObjCMessageReceiver. | ||||
5037 | bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; | ||||
5038 | |||||
5039 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | ||||
5040 | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, | ||||
5041 | MemberContext, EnteringContext, | ||||
5042 | OPT, Mode == CTK_ErrorRecovery); | ||||
5043 | |||||
5044 | if (!Consumer) | ||||
5045 | return TypoCorrection(); | ||||
5046 | |||||
5047 | // If we haven't found anything, we're done. | ||||
5048 | if (Consumer->empty()) | ||||
5049 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
5050 | |||||
5051 | // Make sure the best edit distance (prior to adding any namespace qualifiers) | ||||
5052 | // is not more that about a third of the length of the typo's identifier. | ||||
5053 | unsigned ED = Consumer->getBestEditDistance(true); | ||||
5054 | unsigned TypoLen = Typo->getName().size(); | ||||
5055 | if (ED > 0 && TypoLen / ED < 3) | ||||
5056 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
5057 | |||||
5058 | TypoCorrection BestTC = Consumer->getNextCorrection(); | ||||
5059 | TypoCorrection SecondBestTC = Consumer->getNextCorrection(); | ||||
5060 | if (!BestTC) | ||||
5061 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
5062 | |||||
5063 | ED = BestTC.getEditDistance(); | ||||
5064 | |||||
5065 | if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { | ||||
5066 | // If this was an unqualified lookup and we believe the callback | ||||
5067 | // object wouldn't have filtered out possible corrections, note | ||||
5068 | // that no correction was found. | ||||
5069 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
5070 | } | ||||
5071 | |||||
5072 | // If only a single name remains, return that result. | ||||
5073 | if (!SecondBestTC || | ||||
5074 | SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { | ||||
5075 | const TypoCorrection &Result = BestTC; | ||||
5076 | |||||
5077 | // Don't correct to a keyword that's the same as the typo; the keyword | ||||
5078 | // wasn't actually in scope. | ||||
5079 | if (ED == 0 && Result.isKeyword()) | ||||
5080 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
5081 | |||||
5082 | TypoCorrection TC = Result; | ||||
5083 | TC.setCorrectionRange(SS, TypoName); | ||||
5084 | checkCorrectionVisibility(*this, TC); | ||||
5085 | return TC; | ||||
5086 | } else if (SecondBestTC && ObjCMessageReceiver) { | ||||
5087 | // Prefer 'super' when we're completing in a message-receiver | ||||
5088 | // context. | ||||
5089 | |||||
5090 | if (BestTC.getCorrection().getAsString() != "super") { | ||||
5091 | if (SecondBestTC.getCorrection().getAsString() == "super") | ||||
5092 | BestTC = SecondBestTC; | ||||
5093 | else if ((*Consumer)["super"].front().isKeyword()) | ||||
5094 | BestTC = (*Consumer)["super"].front(); | ||||
5095 | } | ||||
5096 | // Don't correct to a keyword that's the same as the typo; the keyword | ||||
5097 | // wasn't actually in scope. | ||||
5098 | if (BestTC.getEditDistance() == 0 || | ||||
5099 | BestTC.getCorrection().getAsString() != "super") | ||||
5100 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
5101 | |||||
5102 | BestTC.setCorrectionRange(SS, TypoName); | ||||
5103 | return BestTC; | ||||
5104 | } | ||||
5105 | |||||
5106 | // Record the failure's location if needed and return an empty correction. If | ||||
5107 | // this was an unqualified lookup and we believe the callback object did not | ||||
5108 | // filter out possible corrections, also cache the failure for the typo. | ||||
5109 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); | ||||
5110 | } | ||||
5111 | |||||
5112 | /// Try to "correct" a typo in the source code by finding | ||||
5113 | /// visible declarations whose names are similar to the name that was | ||||
5114 | /// present in the source code. | ||||
5115 | /// | ||||
5116 | /// \param TypoName the \c DeclarationNameInfo structure that contains | ||||
5117 | /// the name that was present in the source code along with its location. | ||||
5118 | /// | ||||
5119 | /// \param LookupKind the name-lookup criteria used to search for the name. | ||||
5120 | /// | ||||
5121 | /// \param S the scope in which name lookup occurs. | ||||
5122 | /// | ||||
5123 | /// \param SS the nested-name-specifier that precedes the name we're | ||||
5124 | /// looking for, if present. | ||||
5125 | /// | ||||
5126 | /// \param CCC A CorrectionCandidateCallback object that provides further | ||||
5127 | /// validation of typo correction candidates. It also provides flags for | ||||
5128 | /// determining the set of keywords permitted. | ||||
5129 | /// | ||||
5130 | /// \param TDG A TypoDiagnosticGenerator functor that will be used to print | ||||
5131 | /// diagnostics when the actual typo correction is attempted. | ||||
5132 | /// | ||||
5133 | /// \param TRC A TypoRecoveryCallback functor that will be used to build an | ||||
5134 | /// Expr from a typo correction candidate. | ||||
5135 | /// | ||||
5136 | /// \param MemberContext if non-NULL, the context in which to look for | ||||
5137 | /// a member access expression. | ||||
5138 | /// | ||||
5139 | /// \param EnteringContext whether we're entering the context described by | ||||
5140 | /// the nested-name-specifier SS. | ||||
5141 | /// | ||||
5142 | /// \param OPT when non-NULL, the search for visible declarations will | ||||
5143 | /// also walk the protocols in the qualified interfaces of \p OPT. | ||||
5144 | /// | ||||
5145 | /// \returns a new \c TypoExpr that will later be replaced in the AST with an | ||||
5146 | /// Expr representing the result of performing typo correction, or nullptr if | ||||
5147 | /// typo correction is not possible. If nullptr is returned, no diagnostics will | ||||
5148 | /// be emitted and it is the responsibility of the caller to emit any that are | ||||
5149 | /// needed. | ||||
5150 | TypoExpr *Sema::CorrectTypoDelayed( | ||||
5151 | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, | ||||
5152 | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, | ||||
5153 | TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, | ||||
5154 | DeclContext *MemberContext, bool EnteringContext, | ||||
5155 | const ObjCObjectPointerType *OPT) { | ||||
5156 | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, | ||||
5157 | MemberContext, EnteringContext, | ||||
5158 | OPT, Mode == CTK_ErrorRecovery); | ||||
5159 | |||||
5160 | // Give the external sema source a chance to correct the typo. | ||||
5161 | TypoCorrection ExternalTypo; | ||||
5162 | if (ExternalSource && Consumer) { | ||||
5163 | ExternalTypo = ExternalSource->CorrectTypo( | ||||
5164 | TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), | ||||
5165 | MemberContext, EnteringContext, OPT); | ||||
5166 | if (ExternalTypo) | ||||
5167 | Consumer->addCorrection(ExternalTypo); | ||||
5168 | } | ||||
5169 | |||||
5170 | if (!Consumer || Consumer->empty()) | ||||
5171 | return nullptr; | ||||
5172 | |||||
5173 | // Make sure the best edit distance (prior to adding any namespace qualifiers) | ||||
5174 | // is not more that about a third of the length of the typo's identifier. | ||||
5175 | unsigned ED = Consumer->getBestEditDistance(true); | ||||
5176 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | ||||
5177 | if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) | ||||
5178 | return nullptr; | ||||
5179 | ExprEvalContexts.back().NumTypos++; | ||||
5180 | return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), | ||||
5181 | TypoName.getLoc()); | ||||
5182 | } | ||||
5183 | |||||
5184 | void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { | ||||
5185 | if (!CDecl) return; | ||||
5186 | |||||
5187 | if (isKeyword()) | ||||
5188 | CorrectionDecls.clear(); | ||||
5189 | |||||
5190 | CorrectionDecls.push_back(CDecl); | ||||
5191 | |||||
5192 | if (!CorrectionName) | ||||
5193 | CorrectionName = CDecl->getDeclName(); | ||||
5194 | } | ||||
5195 | |||||
5196 | std::string TypoCorrection::getAsString(const LangOptions &LO) const { | ||||
5197 | if (CorrectionNameSpec) { | ||||
5198 | std::string tmpBuffer; | ||||
5199 | llvm::raw_string_ostream PrefixOStream(tmpBuffer); | ||||
5200 | CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); | ||||
5201 | PrefixOStream << CorrectionName; | ||||
5202 | return PrefixOStream.str(); | ||||
5203 | } | ||||
5204 | |||||
5205 | return CorrectionName.getAsString(); | ||||
5206 | } | ||||
5207 | |||||
5208 | bool CorrectionCandidateCallback::ValidateCandidate( | ||||
5209 | const TypoCorrection &candidate) { | ||||
5210 | if (!candidate.isResolved()) | ||||
5211 | return true; | ||||
5212 | |||||
5213 | if (candidate.isKeyword()) | ||||
5214 | return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || | ||||
5215 | WantRemainingKeywords || WantObjCSuper; | ||||
5216 | |||||
5217 | bool HasNonType = false; | ||||
5218 | bool HasStaticMethod = false; | ||||
5219 | bool HasNonStaticMethod = false; | ||||
5220 | for (Decl *D : candidate) { | ||||
5221 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) | ||||
5222 | D = FTD->getTemplatedDecl(); | ||||
5223 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | ||||
5224 | if (Method->isStatic()) | ||||
5225 | HasStaticMethod = true; | ||||
5226 | else | ||||
5227 | HasNonStaticMethod = true; | ||||
5228 | } | ||||
5229 | if (!isa<TypeDecl>(D)) | ||||
5230 | HasNonType = true; | ||||
5231 | } | ||||
5232 | |||||
5233 | if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && | ||||
5234 | !candidate.getCorrectionSpecifier()) | ||||
5235 | return false; | ||||
5236 | |||||
5237 | return WantTypeSpecifiers || HasNonType; | ||||
5238 | } | ||||
5239 | |||||
5240 | FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, | ||||
5241 | bool HasExplicitTemplateArgs, | ||||
5242 | MemberExpr *ME) | ||||
5243 | : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), | ||||
5244 | CurContext(SemaRef.CurContext), MemberFn(ME) { | ||||
5245 | WantTypeSpecifiers = false; | ||||
5246 | WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && | ||||
5247 | !HasExplicitTemplateArgs && NumArgs == 1; | ||||
5248 | WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; | ||||
5249 | WantRemainingKeywords = false; | ||||
5250 | } | ||||
5251 | |||||
5252 | bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { | ||||
5253 | if (!candidate.getCorrectionDecl()) | ||||
5254 | return candidate.isKeyword(); | ||||
5255 | |||||
5256 | for (auto *C : candidate) { | ||||
5257 | FunctionDecl *FD = nullptr; | ||||
5258 | NamedDecl *ND = C->getUnderlyingDecl(); | ||||
5259 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) | ||||
5260 | FD = FTD->getTemplatedDecl(); | ||||
5261 | if (!HasExplicitTemplateArgs && !FD) { | ||||
5262 | if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { | ||||
5263 | // If the Decl is neither a function nor a template function, | ||||
5264 | // determine if it is a pointer or reference to a function. If so, | ||||
5265 | // check against the number of arguments expected for the pointee. | ||||
5266 | QualType ValType = cast<ValueDecl>(ND)->getType(); | ||||
5267 | if (ValType.isNull()) | ||||
5268 | continue; | ||||
5269 | if (ValType->isAnyPointerType() || ValType->isReferenceType()) | ||||
5270 | ValType = ValType->getPointeeType(); | ||||
5271 | if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) | ||||
5272 | if (FPT->getNumParams() == NumArgs) | ||||
5273 | return true; | ||||
5274 | } | ||||
5275 | } | ||||
5276 | |||||
5277 | // A typo for a function-style cast can look like a function call in C++. | ||||
5278 | if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr | ||||
5279 | : isa<TypeDecl>(ND)) && | ||||
5280 | CurContext->getParentASTContext().getLangOpts().CPlusPlus) | ||||
5281 | // Only a class or class template can take two or more arguments. | ||||
5282 | return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); | ||||
5283 | |||||
5284 | // Skip the current candidate if it is not a FunctionDecl or does not accept | ||||
5285 | // the current number of arguments. | ||||
5286 | if (!FD || !(FD->getNumParams() >= NumArgs && | ||||
5287 | FD->getMinRequiredArguments() <= NumArgs)) | ||||
5288 | continue; | ||||
5289 | |||||
5290 | // If the current candidate is a non-static C++ method, skip the candidate | ||||
5291 | // unless the method being corrected--or the current DeclContext, if the | ||||
5292 | // function being corrected is not a method--is a method in the same class | ||||
5293 | // or a descendent class of the candidate's parent class. | ||||
5294 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | ||||
5295 | if (MemberFn || !MD->isStatic()) { | ||||
5296 | CXXMethodDecl *CurMD = | ||||
5297 | MemberFn | ||||
5298 | ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl()) | ||||
5299 | : dyn_cast_or_null<CXXMethodDecl>(CurContext); | ||||
5300 | CXXRecordDecl *CurRD = | ||||
5301 | CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; | ||||
5302 | CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); | ||||
5303 | if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) | ||||
5304 | continue; | ||||
5305 | } | ||||
5306 | } | ||||
5307 | return true; | ||||
5308 | } | ||||
5309 | return false; | ||||
5310 | } | ||||
5311 | |||||
5312 | void Sema::diagnoseTypo(const TypoCorrection &Correction, | ||||
5313 | const PartialDiagnostic &TypoDiag, | ||||
5314 | bool ErrorRecovery) { | ||||
5315 | diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), | ||||
5316 | ErrorRecovery); | ||||
5317 | } | ||||
5318 | |||||
5319 | /// Find which declaration we should import to provide the definition of | ||||
5320 | /// the given declaration. | ||||
5321 | static NamedDecl *getDefinitionToImport(NamedDecl *D) { | ||||
5322 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) | ||||
5323 | return VD->getDefinition(); | ||||
5324 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | ||||
5325 | return FD->getDefinition(); | ||||
5326 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) | ||||
5327 | return TD->getDefinition(); | ||||
5328 | // The first definition for this ObjCInterfaceDecl might be in the TU | ||||
5329 | // and not associated with any module. Use the one we know to be complete | ||||
5330 | // and have just seen in a module. | ||||
5331 | if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) | ||||
5332 | return ID; | ||||
5333 | if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) | ||||
5334 | return PD->getDefinition(); | ||||
5335 | if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) | ||||
5336 | if (NamedDecl *TTD = TD->getTemplatedDecl()) | ||||
5337 | return getDefinitionToImport(TTD); | ||||
5338 | return nullptr; | ||||
5339 | } | ||||
5340 | |||||
5341 | void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, | ||||
5342 | MissingImportKind MIK, bool Recover) { | ||||
5343 | // Suggest importing a module providing the definition of this entity, if | ||||
5344 | // possible. | ||||
5345 | NamedDecl *Def = getDefinitionToImport(Decl); | ||||
5346 | if (!Def) | ||||
5347 | Def = Decl; | ||||
5348 | |||||
5349 | Module *Owner = getOwningModule(Def); | ||||
5350 | assert(Owner && "definition of hidden declaration is not in a module")((void)0); | ||||
5351 | |||||
5352 | llvm::SmallVector<Module*, 8> OwningModules; | ||||
5353 | OwningModules.push_back(Owner); | ||||
5354 | auto Merged = Context.getModulesWithMergedDefinition(Def); | ||||
5355 | OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); | ||||
5356 | |||||
5357 | diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, | ||||
5358 | Recover); | ||||
5359 | } | ||||
5360 | |||||
5361 | /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic | ||||
5362 | /// suggesting the addition of a #include of the specified file. | ||||
5363 | static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E, | ||||
5364 | llvm::StringRef IncludingFile) { | ||||
5365 | bool IsSystem = false; | ||||
5366 | auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( | ||||
5367 | E, IncludingFile, &IsSystem); | ||||
5368 | return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"'); | ||||
5369 | } | ||||
5370 | |||||
5371 | void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl, | ||||
5372 | SourceLocation DeclLoc, | ||||
5373 | ArrayRef<Module *> Modules, | ||||
5374 | MissingImportKind MIK, bool Recover) { | ||||
5375 | assert(!Modules.empty())((void)0); | ||||
5376 | |||||
5377 | auto NotePrevious = [&] { | ||||
5378 | // FIXME: Suppress the note backtrace even under | ||||
5379 | // -fdiagnostics-show-note-include-stack. We don't care how this | ||||
5380 | // declaration was previously reached. | ||||
5381 | Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; | ||||
5382 | }; | ||||
5383 | |||||
5384 | // Weed out duplicates from module list. | ||||
5385 | llvm::SmallVector<Module*, 8> UniqueModules; | ||||
5386 | llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; | ||||
5387 | for (auto *M : Modules) { | ||||
5388 | if (M->Kind == Module::GlobalModuleFragment) | ||||
5389 | continue; | ||||
5390 | if (UniqueModuleSet.insert(M).second) | ||||
5391 | UniqueModules.push_back(M); | ||||
5392 | } | ||||
5393 | |||||
5394 | // Try to find a suitable header-name to #include. | ||||
5395 | std::string HeaderName; | ||||
5396 | if (const FileEntry *Header = | ||||
5397 | PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { | ||||
5398 | if (const FileEntry *FE = | ||||
5399 | SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) | ||||
5400 | HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName()); | ||||
5401 | } | ||||
5402 | |||||
5403 | // If we have a #include we should suggest, or if all definition locations | ||||
5404 | // were in global module fragments, don't suggest an import. | ||||
5405 | if (!HeaderName.empty() || UniqueModules.empty()) { | ||||
5406 | // FIXME: Find a smart place to suggest inserting a #include, and add | ||||
5407 | // a FixItHint there. | ||||
5408 | Diag(UseLoc, diag::err_module_unimported_use_header) | ||||
5409 | << (int)MIK << Decl << !HeaderName.empty() << HeaderName; | ||||
5410 | // Produce a note showing where the entity was declared. | ||||
5411 | NotePrevious(); | ||||
5412 | if (Recover) | ||||
5413 | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); | ||||
5414 | return; | ||||
5415 | } | ||||
5416 | |||||
5417 | Modules = UniqueModules; | ||||
5418 | |||||
5419 | if (Modules.size() > 1) { | ||||
5420 | std::string ModuleList; | ||||
5421 | unsigned N = 0; | ||||
5422 | for (Module *M : Modules) { | ||||
5423 | ModuleList += "\n "; | ||||
5424 | if (++N == 5 && N != Modules.size()) { | ||||
5425 | ModuleList += "[...]"; | ||||
5426 | break; | ||||
5427 | } | ||||
5428 | ModuleList += M->getFullModuleName(); | ||||
5429 | } | ||||
5430 | |||||
5431 | Diag(UseLoc, diag::err_module_unimported_use_multiple) | ||||
5432 | << (int)MIK << Decl << ModuleList; | ||||
5433 | } else { | ||||
5434 | // FIXME: Add a FixItHint that imports the corresponding module. | ||||
5435 | Diag(UseLoc, diag::err_module_unimported_use) | ||||
5436 | << (int)MIK << Decl << Modules[0]->getFullModuleName(); | ||||
5437 | } | ||||
5438 | |||||
5439 | NotePrevious(); | ||||
5440 | |||||
5441 | // Try to recover by implicitly importing this module. | ||||
5442 | if (Recover) | ||||
5443 | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); | ||||
5444 | } | ||||
5445 | |||||
5446 | /// Diagnose a successfully-corrected typo. Separated from the correction | ||||
5447 | /// itself to allow external validation of the result, etc. | ||||
5448 | /// | ||||
5449 | /// \param Correction The result of performing typo correction. | ||||
5450 | /// \param TypoDiag The diagnostic to produce. This will have the corrected | ||||
5451 | /// string added to it (and usually also a fixit). | ||||
5452 | /// \param PrevNote A note to use when indicating the location of the entity to | ||||
5453 | /// which we are correcting. Will have the correction string added to it. | ||||
5454 | /// \param ErrorRecovery If \c true (the default), the caller is going to | ||||
5455 | /// recover from the typo as if the corrected string had been typed. | ||||
5456 | /// In this case, \c PDiag must be an error, and we will attach a fixit | ||||
5457 | /// to it. | ||||
5458 | void Sema::diagnoseTypo(const TypoCorrection &Correction, | ||||
5459 | const PartialDiagnostic &TypoDiag, | ||||
5460 | const PartialDiagnostic &PrevNote, | ||||
5461 | bool ErrorRecovery) { | ||||
5462 | std::string CorrectedStr = Correction.getAsString(getLangOpts()); | ||||
5463 | std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); | ||||
5464 | FixItHint FixTypo = FixItHint::CreateReplacement( | ||||
5465 | Correction.getCorrectionRange(), CorrectedStr); | ||||
5466 | |||||
5467 | // Maybe we're just missing a module import. | ||||
5468 | if (Correction.requiresImport()) { | ||||
5469 | NamedDecl *Decl = Correction.getFoundDecl(); | ||||
5470 | assert(Decl && "import required but no declaration to import")((void)0); | ||||
5471 | |||||
5472 | diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, | ||||
5473 | MissingImportKind::Declaration, ErrorRecovery); | ||||
5474 | return; | ||||
5475 | } | ||||
5476 | |||||
5477 | Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) | ||||
5478 | << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); | ||||
5479 | |||||
5480 | NamedDecl *ChosenDecl = | ||||
5481 | Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); | ||||
5482 | if (PrevNote.getDiagID() && ChosenDecl) | ||||
5483 | Diag(ChosenDecl->getLocation(), PrevNote) | ||||
5484 | << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); | ||||
5485 | |||||
5486 | // Add any extra diagnostics. | ||||
5487 | for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) | ||||
5488 | Diag(Correction.getCorrectionRange().getBegin(), PD); | ||||
5489 | } | ||||
5490 | |||||
5491 | TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, | ||||
5492 | TypoDiagnosticGenerator TDG, | ||||
5493 | TypoRecoveryCallback TRC, | ||||
5494 | SourceLocation TypoLoc) { | ||||
5495 | assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")((void)0); | ||||
5496 | auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); | ||||
5497 | auto &State = DelayedTypos[TE]; | ||||
5498 | State.Consumer = std::move(TCC); | ||||
5499 | State.DiagHandler = std::move(TDG); | ||||
5500 | State.RecoveryHandler = std::move(TRC); | ||||
5501 | if (TE) | ||||
5502 | TypoExprs.push_back(TE); | ||||
5503 | return TE; | ||||
5504 | } | ||||
5505 | |||||
5506 | const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { | ||||
5507 | auto Entry = DelayedTypos.find(TE); | ||||
5508 | assert(Entry != DelayedTypos.end() &&((void)0) | ||||
5509 | "Failed to get the state for a TypoExpr!")((void)0); | ||||
5510 | return Entry->second; | ||||
5511 | } | ||||
5512 | |||||
5513 | void Sema::clearDelayedTypo(TypoExpr *TE) { | ||||
5514 | DelayedTypos.erase(TE); | ||||
5515 | } | ||||
5516 | |||||
5517 | void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { | ||||
5518 | DeclarationNameInfo Name(II, IILoc); | ||||
5519 | LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration); | ||||
5520 | R.suppressDiagnostics(); | ||||
5521 | R.setHideTags(false); | ||||
5522 | LookupName(R, S); | ||||
5523 | R.dump(); | ||||
5524 | } |
1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the SmallVector class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_ADT_SMALLVECTOR_H |
14 | #define LLVM_ADT_SMALLVECTOR_H |
15 | |
16 | #include "llvm/ADT/iterator_range.h" |
17 | #include "llvm/Support/Compiler.h" |
18 | #include "llvm/Support/ErrorHandling.h" |
19 | #include "llvm/Support/MemAlloc.h" |
20 | #include "llvm/Support/type_traits.h" |
21 | #include <algorithm> |
22 | #include <cassert> |
23 | #include <cstddef> |
24 | #include <cstdlib> |
25 | #include <cstring> |
26 | #include <functional> |
27 | #include <initializer_list> |
28 | #include <iterator> |
29 | #include <limits> |
30 | #include <memory> |
31 | #include <new> |
32 | #include <type_traits> |
33 | #include <utility> |
34 | |
35 | namespace llvm { |
36 | |
37 | /// This is all the stuff common to all SmallVectors. |
38 | /// |
39 | /// The template parameter specifies the type which should be used to hold the |
40 | /// Size and Capacity of the SmallVector, so it can be adjusted. |
41 | /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
42 | /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
43 | /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
44 | /// buffering bitcode output - which can exceed 4GB. |
45 | template <class Size_T> class SmallVectorBase { |
46 | protected: |
47 | void *BeginX; |
48 | Size_T Size = 0, Capacity; |
49 | |
50 | /// The maximum value of the Size_T used. |
51 | static constexpr size_t SizeTypeMax() { |
52 | return std::numeric_limits<Size_T>::max(); |
53 | } |
54 | |
55 | SmallVectorBase() = delete; |
56 | SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
57 | : BeginX(FirstEl), Capacity(TotalCapacity) {} |
58 | |
59 | /// This is a helper for \a grow() that's out of line to reduce code |
60 | /// duplication. This function will report a fatal error if it can't grow at |
61 | /// least to \p MinSize. |
62 | void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity); |
63 | |
64 | /// This is an implementation of the grow() method which only works |
65 | /// on POD-like data types and is out of line to reduce code duplication. |
66 | /// This function will report a fatal error if it cannot increase capacity. |
67 | void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
68 | |
69 | public: |
70 | size_t size() const { return Size; } |
71 | size_t capacity() const { return Capacity; } |
72 | |
73 | LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; } |
74 | |
75 | /// Set the array size to \p N, which the current array must have enough |
76 | /// capacity for. |
77 | /// |
78 | /// This does not construct or destroy any elements in the vector. |
79 | /// |
80 | /// Clients can use this in conjunction with capacity() to write past the end |
81 | /// of the buffer when they know that more elements are available, and only |
82 | /// update the size later. This avoids the cost of value initializing elements |
83 | /// which will only be overwritten. |
84 | void set_size(size_t N) { |
85 | assert(N <= capacity())((void)0); |
86 | Size = N; |
87 | } |
88 | }; |
89 | |
90 | template <class T> |
91 | using SmallVectorSizeType = |
92 | typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
93 | uint32_t>::type; |
94 | |
95 | /// Figure out the offset of the first element. |
96 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
97 | alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
98 | SmallVectorBase<SmallVectorSizeType<T>>)]; |
99 | alignas(T) char FirstEl[sizeof(T)]; |
100 | }; |
101 | |
102 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
103 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
104 | /// to avoid unnecessarily requiring T to be complete. |
105 | template <typename T, typename = void> |
106 | class SmallVectorTemplateCommon |
107 | : public SmallVectorBase<SmallVectorSizeType<T>> { |
108 | using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
109 | |
110 | /// Find the address of the first element. For this pointer math to be valid |
111 | /// with small-size of 0 for T with lots of alignment, it's important that |
112 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
113 | void *getFirstEl() const { |
114 | return const_cast<void *>(reinterpret_cast<const void *>( |
115 | reinterpret_cast<const char *>(this) + |
116 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl ))); |
117 | } |
118 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
119 | |
120 | protected: |
121 | SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
122 | |
123 | void grow_pod(size_t MinSize, size_t TSize) { |
124 | Base::grow_pod(getFirstEl(), MinSize, TSize); |
125 | } |
126 | |
127 | /// Return true if this is a smallvector which has not had dynamic |
128 | /// memory allocated for it. |
129 | bool isSmall() const { return this->BeginX == getFirstEl(); } |
130 | |
131 | /// Put this vector in a state of being small. |
132 | void resetToSmall() { |
133 | this->BeginX = getFirstEl(); |
134 | this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
135 | } |
136 | |
137 | /// Return true if V is an internal reference to the given range. |
138 | bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
139 | // Use std::less to avoid UB. |
140 | std::less<> LessThan; |
141 | return !LessThan(V, First) && LessThan(V, Last); |
142 | } |
143 | |
144 | /// Return true if V is an internal reference to this vector. |
145 | bool isReferenceToStorage(const void *V) const { |
146 | return isReferenceToRange(V, this->begin(), this->end()); |
147 | } |
148 | |
149 | /// Return true if First and Last form a valid (possibly empty) range in this |
150 | /// vector's storage. |
151 | bool isRangeInStorage(const void *First, const void *Last) const { |
152 | // Use std::less to avoid UB. |
153 | std::less<> LessThan; |
154 | return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
155 | !LessThan(this->end(), Last); |
156 | } |
157 | |
158 | /// Return true unless Elt will be invalidated by resizing the vector to |
159 | /// NewSize. |
160 | bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
161 | // Past the end. |
162 | if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true)) |
163 | return true; |
164 | |
165 | // Return false if Elt will be destroyed by shrinking. |
166 | if (NewSize <= this->size()) |
167 | return Elt < this->begin() + NewSize; |
168 | |
169 | // Return false if we need to grow. |
170 | return NewSize <= this->capacity(); |
171 | } |
172 | |
173 | /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
174 | void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
175 | assert(isSafeToReferenceAfterResize(Elt, NewSize) &&((void)0) |
176 | "Attempting to reference an element of the vector in an operation "((void)0) |
177 | "that invalidates it")((void)0); |
178 | } |
179 | |
180 | /// Check whether Elt will be invalidated by increasing the size of the |
181 | /// vector by N. |
182 | void assertSafeToAdd(const void *Elt, size_t N = 1) { |
183 | this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
184 | } |
185 | |
186 | /// Check whether any part of the range will be invalidated by clearing. |
187 | void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
188 | if (From == To) |
189 | return; |
190 | this->assertSafeToReferenceAfterResize(From, 0); |
191 | this->assertSafeToReferenceAfterResize(To - 1, 0); |
192 | } |
193 | template < |
194 | class ItTy, |
195 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
196 | bool> = false> |
197 | void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
198 | |
199 | /// Check whether any part of the range will be invalidated by growing. |
200 | void assertSafeToAddRange(const T *From, const T *To) { |
201 | if (From == To) |
202 | return; |
203 | this->assertSafeToAdd(From, To - From); |
204 | this->assertSafeToAdd(To - 1, To - From); |
205 | } |
206 | template < |
207 | class ItTy, |
208 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
209 | bool> = false> |
210 | void assertSafeToAddRange(ItTy, ItTy) {} |
211 | |
212 | /// Reserve enough space to add one element, and return the updated element |
213 | /// pointer in case it was a reference to the storage. |
214 | template <class U> |
215 | static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
216 | size_t N) { |
217 | size_t NewSize = This->size() + N; |
218 | if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true )) |
219 | return &Elt; |
220 | |
221 | bool ReferencesStorage = false; |
222 | int64_t Index = -1; |
223 | if (!U::TakesParamByValue) { |
224 | if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt )), false)) { |
225 | ReferencesStorage = true; |
226 | Index = &Elt - This->begin(); |
227 | } |
228 | } |
229 | This->grow(NewSize); |
230 | return ReferencesStorage ? This->begin() + Index : &Elt; |
231 | } |
232 | |
233 | public: |
234 | using size_type = size_t; |
235 | using difference_type = ptrdiff_t; |
236 | using value_type = T; |
237 | using iterator = T *; |
238 | using const_iterator = const T *; |
239 | |
240 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
241 | using reverse_iterator = std::reverse_iterator<iterator>; |
242 | |
243 | using reference = T &; |
244 | using const_reference = const T &; |
245 | using pointer = T *; |
246 | using const_pointer = const T *; |
247 | |
248 | using Base::capacity; |
249 | using Base::empty; |
250 | using Base::size; |
251 | |
252 | // forward iterator creation methods. |
253 | iterator begin() { return (iterator)this->BeginX; } |
254 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
255 | iterator end() { return begin() + size(); } |
256 | const_iterator end() const { return begin() + size(); } |
257 | |
258 | // reverse iterator creation methods. |
259 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
260 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
261 | reverse_iterator rend() { return reverse_iterator(begin()); } |
262 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
263 | |
264 | size_type size_in_bytes() const { return size() * sizeof(T); } |
265 | size_type max_size() const { |
266 | return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
267 | } |
268 | |
269 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
270 | |
271 | /// Return a pointer to the vector's buffer, even if empty(). |
272 | pointer data() { return pointer(begin()); } |
273 | /// Return a pointer to the vector's buffer, even if empty(). |
274 | const_pointer data() const { return const_pointer(begin()); } |
275 | |
276 | reference operator[](size_type idx) { |
277 | assert(idx < size())((void)0); |
278 | return begin()[idx]; |
279 | } |
280 | const_reference operator[](size_type idx) const { |
281 | assert(idx < size())((void)0); |
282 | return begin()[idx]; |
283 | } |
284 | |
285 | reference front() { |
286 | assert(!empty())((void)0); |
287 | return begin()[0]; |
288 | } |
289 | const_reference front() const { |
290 | assert(!empty())((void)0); |
291 | return begin()[0]; |
292 | } |
293 | |
294 | reference back() { |
295 | assert(!empty())((void)0); |
296 | return end()[-1]; |
297 | } |
298 | const_reference back() const { |
299 | assert(!empty())((void)0); |
300 | return end()[-1]; |
301 | } |
302 | }; |
303 | |
304 | /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
305 | /// method implementations that are designed to work with non-trivial T's. |
306 | /// |
307 | /// We approximate is_trivially_copyable with trivial move/copy construction and |
308 | /// trivial destruction. While the standard doesn't specify that you're allowed |
309 | /// copy these types with memcpy, there is no way for the type to observe this. |
310 | /// This catches the important case of std::pair<POD, POD>, which is not |
311 | /// trivially assignable. |
312 | template <typename T, bool = (is_trivially_copy_constructible<T>::value) && |
313 | (is_trivially_move_constructible<T>::value) && |
314 | std::is_trivially_destructible<T>::value> |
315 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
316 | friend class SmallVectorTemplateCommon<T>; |
317 | |
318 | protected: |
319 | static constexpr bool TakesParamByValue = false; |
320 | using ValueParamT = const T &; |
321 | |
322 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
323 | |
324 | static void destroy_range(T *S, T *E) { |
325 | while (S != E) { |
326 | --E; |
327 | E->~T(); |
328 | } |
329 | } |
330 | |
331 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
332 | /// constructing elements as needed. |
333 | template<typename It1, typename It2> |
334 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
335 | std::uninitialized_copy(std::make_move_iterator(I), |
336 | std::make_move_iterator(E), Dest); |
337 | } |
338 | |
339 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
340 | /// constructing elements as needed. |
341 | template<typename It1, typename It2> |
342 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
343 | std::uninitialized_copy(I, E, Dest); |
344 | } |
345 | |
346 | /// Grow the allocated memory (without initializing new elements), doubling |
347 | /// the size of the allocated memory. Guarantees space for at least one more |
348 | /// element, or MinSize more elements if specified. |
349 | void grow(size_t MinSize = 0); |
350 | |
351 | /// Create a new allocation big enough for \p MinSize and pass back its size |
352 | /// in \p NewCapacity. This is the first section of \a grow(). |
353 | T *mallocForGrow(size_t MinSize, size_t &NewCapacity) { |
354 | return static_cast<T *>( |
355 | SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
356 | MinSize, sizeof(T), NewCapacity)); |
357 | } |
358 | |
359 | /// Move existing elements over to the new allocation \p NewElts, the middle |
360 | /// section of \a grow(). |
361 | void moveElementsForGrow(T *NewElts); |
362 | |
363 | /// Transfer ownership of the allocation, finishing up \a grow(). |
364 | void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
365 | |
366 | /// Reserve enough space to add one element, and return the updated element |
367 | /// pointer in case it was a reference to the storage. |
368 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
369 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
370 | } |
371 | |
372 | /// Reserve enough space to add one element, and return the updated element |
373 | /// pointer in case it was a reference to the storage. |
374 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
375 | return const_cast<T *>( |
376 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
377 | } |
378 | |
379 | static T &&forward_value_param(T &&V) { return std::move(V); } |
380 | static const T &forward_value_param(const T &V) { return V; } |
381 | |
382 | void growAndAssign(size_t NumElts, const T &Elt) { |
383 | // Grow manually in case Elt is an internal reference. |
384 | size_t NewCapacity; |
385 | T *NewElts = mallocForGrow(NumElts, NewCapacity); |
386 | std::uninitialized_fill_n(NewElts, NumElts, Elt); |
387 | this->destroy_range(this->begin(), this->end()); |
388 | takeAllocationForGrow(NewElts, NewCapacity); |
389 | this->set_size(NumElts); |
390 | } |
391 | |
392 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
393 | // Grow manually in case one of Args is an internal reference. |
394 | size_t NewCapacity; |
395 | T *NewElts = mallocForGrow(0, NewCapacity); |
396 | ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
397 | moveElementsForGrow(NewElts); |
398 | takeAllocationForGrow(NewElts, NewCapacity); |
399 | this->set_size(this->size() + 1); |
400 | return this->back(); |
401 | } |
402 | |
403 | public: |
404 | void push_back(const T &Elt) { |
405 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
406 | ::new ((void *)this->end()) T(*EltPtr); |
407 | this->set_size(this->size() + 1); |
408 | } |
409 | |
410 | void push_back(T &&Elt) { |
411 | T *EltPtr = reserveForParamAndGetAddress(Elt); |
412 | ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
413 | this->set_size(this->size() + 1); |
414 | } |
415 | |
416 | void pop_back() { |
417 | this->set_size(this->size() - 1); |
418 | this->end()->~T(); |
419 | } |
420 | }; |
421 | |
422 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
423 | template <typename T, bool TriviallyCopyable> |
424 | void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
425 | size_t NewCapacity; |
426 | T *NewElts = mallocForGrow(MinSize, NewCapacity); |
427 | moveElementsForGrow(NewElts); |
428 | takeAllocationForGrow(NewElts, NewCapacity); |
429 | } |
430 | |
431 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
432 | template <typename T, bool TriviallyCopyable> |
433 | void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
434 | T *NewElts) { |
435 | // Move the elements over. |
436 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
437 | |
438 | // Destroy the original elements. |
439 | destroy_range(this->begin(), this->end()); |
440 | } |
441 | |
442 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
443 | template <typename T, bool TriviallyCopyable> |
444 | void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
445 | T *NewElts, size_t NewCapacity) { |
446 | // If this wasn't grown from the inline copy, deallocate the old space. |
447 | if (!this->isSmall()) |
448 | free(this->begin()); |
449 | |
450 | this->BeginX = NewElts; |
451 | this->Capacity = NewCapacity; |
452 | } |
453 | |
454 | /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
455 | /// method implementations that are designed to work with trivially copyable |
456 | /// T's. This allows using memcpy in place of copy/move construction and |
457 | /// skipping destruction. |
458 | template <typename T> |
459 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
460 | friend class SmallVectorTemplateCommon<T>; |
461 | |
462 | protected: |
463 | /// True if it's cheap enough to take parameters by value. Doing so avoids |
464 | /// overhead related to mitigations for reference invalidation. |
465 | static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
466 | |
467 | /// Either const T& or T, depending on whether it's cheap enough to take |
468 | /// parameters by value. |
469 | using ValueParamT = |
470 | typename std::conditional<TakesParamByValue, T, const T &>::type; |
471 | |
472 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
473 | |
474 | // No need to do a destroy loop for POD's. |
475 | static void destroy_range(T *, T *) {} |
476 | |
477 | /// Move the range [I, E) onto the uninitialized memory |
478 | /// starting with "Dest", constructing elements into it as needed. |
479 | template<typename It1, typename It2> |
480 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
481 | // Just do a copy. |
482 | uninitialized_copy(I, E, Dest); |
483 | } |
484 | |
485 | /// Copy the range [I, E) onto the uninitialized memory |
486 | /// starting with "Dest", constructing elements into it as needed. |
487 | template<typename It1, typename It2> |
488 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
489 | // Arbitrary iterator types; just use the basic implementation. |
490 | std::uninitialized_copy(I, E, Dest); |
491 | } |
492 | |
493 | /// Copy the range [I, E) onto the uninitialized memory |
494 | /// starting with "Dest", constructing elements into it as needed. |
495 | template <typename T1, typename T2> |
496 | static void uninitialized_copy( |
497 | T1 *I, T1 *E, T2 *Dest, |
498 | std::enable_if_t<std::is_same<typename std::remove_const<T1>::type, |
499 | T2>::value> * = nullptr) { |
500 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
501 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
502 | // use memcpy here. Note that I and E are iterators and thus might be |
503 | // invalid for memcpy if they are equal. |
504 | if (I != E) |
505 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
506 | } |
507 | |
508 | /// Double the size of the allocated memory, guaranteeing space for at |
509 | /// least one more element or MinSize if specified. |
510 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
511 | |
512 | /// Reserve enough space to add one element, and return the updated element |
513 | /// pointer in case it was a reference to the storage. |
514 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
515 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
516 | } |
517 | |
518 | /// Reserve enough space to add one element, and return the updated element |
519 | /// pointer in case it was a reference to the storage. |
520 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
521 | return const_cast<T *>( |
522 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
523 | } |
524 | |
525 | /// Copy \p V or return a reference, depending on \a ValueParamT. |
526 | static ValueParamT forward_value_param(ValueParamT V) { return V; } |
527 | |
528 | void growAndAssign(size_t NumElts, T Elt) { |
529 | // Elt has been copied in case it's an internal reference, side-stepping |
530 | // reference invalidation problems without losing the realloc optimization. |
531 | this->set_size(0); |
532 | this->grow(NumElts); |
533 | std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
534 | this->set_size(NumElts); |
535 | } |
536 | |
537 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
538 | // Use push_back with a copy in case Args has an internal reference, |
539 | // side-stepping reference invalidation problems without losing the realloc |
540 | // optimization. |
541 | push_back(T(std::forward<ArgTypes>(Args)...)); |
542 | return this->back(); |
543 | } |
544 | |
545 | public: |
546 | void push_back(ValueParamT Elt) { |
547 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
548 | memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
549 | this->set_size(this->size() + 1); |
550 | } |
551 | |
552 | void pop_back() { this->set_size(this->size() - 1); } |
553 | }; |
554 | |
555 | /// This class consists of common code factored out of the SmallVector class to |
556 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
557 | template <typename T> |
558 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
559 | using SuperClass = SmallVectorTemplateBase<T>; |
560 | |
561 | public: |
562 | using iterator = typename SuperClass::iterator; |
563 | using const_iterator = typename SuperClass::const_iterator; |
564 | using reference = typename SuperClass::reference; |
565 | using size_type = typename SuperClass::size_type; |
566 | |
567 | protected: |
568 | using SmallVectorTemplateBase<T>::TakesParamByValue; |
569 | using ValueParamT = typename SuperClass::ValueParamT; |
570 | |
571 | // Default ctor - Initialize to empty. |
572 | explicit SmallVectorImpl(unsigned N) |
573 | : SmallVectorTemplateBase<T>(N) {} |
574 | |
575 | public: |
576 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
577 | |
578 | ~SmallVectorImpl() { |
579 | // Subclass has already destructed this vector's elements. |
580 | // If this wasn't grown from the inline copy, deallocate the old space. |
581 | if (!this->isSmall()) |
582 | free(this->begin()); |
583 | } |
584 | |
585 | void clear() { |
586 | this->destroy_range(this->begin(), this->end()); |
587 | this->Size = 0; |
588 | } |
589 | |
590 | private: |
591 | template <bool ForOverwrite> void resizeImpl(size_type N) { |
592 | if (N < this->size()) { |
593 | this->pop_back_n(this->size() - N); |
594 | } else if (N > this->size()) { |
595 | this->reserve(N); |
596 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
597 | if (ForOverwrite) |
598 | new (&*I) T; |
599 | else |
600 | new (&*I) T(); |
601 | this->set_size(N); |
602 | } |
603 | } |
604 | |
605 | public: |
606 | void resize(size_type N) { resizeImpl<false>(N); } |
607 | |
608 | /// Like resize, but \ref T is POD, the new values won't be initialized. |
609 | void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
610 | |
611 | void resize(size_type N, ValueParamT NV) { |
612 | if (N == this->size()) |
613 | return; |
614 | |
615 | if (N < this->size()) { |
616 | this->pop_back_n(this->size() - N); |
617 | return; |
618 | } |
619 | |
620 | // N > this->size(). Defer to append. |
621 | this->append(N - this->size(), NV); |
622 | } |
623 | |
624 | void reserve(size_type N) { |
625 | if (this->capacity() < N) |
626 | this->grow(N); |
627 | } |
628 | |
629 | void pop_back_n(size_type NumItems) { |
630 | assert(this->size() >= NumItems)((void)0); |
631 | this->destroy_range(this->end() - NumItems, this->end()); |
632 | this->set_size(this->size() - NumItems); |
633 | } |
634 | |
635 | LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() { |
636 | T Result = ::std::move(this->back()); |
637 | this->pop_back(); |
638 | return Result; |
639 | } |
640 | |
641 | void swap(SmallVectorImpl &RHS); |
642 | |
643 | /// Add the specified range to the end of the SmallVector. |
644 | template <typename in_iter, |
645 | typename = std::enable_if_t<std::is_convertible< |
646 | typename std::iterator_traits<in_iter>::iterator_category, |
647 | std::input_iterator_tag>::value>> |
648 | void append(in_iter in_start, in_iter in_end) { |
649 | this->assertSafeToAddRange(in_start, in_end); |
650 | size_type NumInputs = std::distance(in_start, in_end); |
651 | this->reserve(this->size() + NumInputs); |
652 | this->uninitialized_copy(in_start, in_end, this->end()); |
653 | this->set_size(this->size() + NumInputs); |
654 | } |
655 | |
656 | /// Append \p NumInputs copies of \p Elt to the end. |
657 | void append(size_type NumInputs, ValueParamT Elt) { |
658 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
659 | std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
660 | this->set_size(this->size() + NumInputs); |
661 | } |
662 | |
663 | void append(std::initializer_list<T> IL) { |
664 | append(IL.begin(), IL.end()); |
665 | } |
666 | |
667 | void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
668 | |
669 | void assign(size_type NumElts, ValueParamT Elt) { |
670 | // Note that Elt could be an internal reference. |
671 | if (NumElts > this->capacity()) { |
672 | this->growAndAssign(NumElts, Elt); |
673 | return; |
674 | } |
675 | |
676 | // Assign over existing elements. |
677 | std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
678 | if (NumElts > this->size()) |
679 | std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
680 | else if (NumElts < this->size()) |
681 | this->destroy_range(this->begin() + NumElts, this->end()); |
682 | this->set_size(NumElts); |
683 | } |
684 | |
685 | // FIXME: Consider assigning over existing elements, rather than clearing & |
686 | // re-initializing them - for all assign(...) variants. |
687 | |
688 | template <typename in_iter, |
689 | typename = std::enable_if_t<std::is_convertible< |
690 | typename std::iterator_traits<in_iter>::iterator_category, |
691 | std::input_iterator_tag>::value>> |
692 | void assign(in_iter in_start, in_iter in_end) { |
693 | this->assertSafeToReferenceAfterClear(in_start, in_end); |
694 | clear(); |
695 | append(in_start, in_end); |
696 | } |
697 | |
698 | void assign(std::initializer_list<T> IL) { |
699 | clear(); |
700 | append(IL); |
701 | } |
702 | |
703 | void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
704 | |
705 | iterator erase(const_iterator CI) { |
706 | // Just cast away constness because this is a non-const member function. |
707 | iterator I = const_cast<iterator>(CI); |
708 | |
709 | assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")((void)0); |
710 | |
711 | iterator N = I; |
712 | // Shift all elts down one. |
713 | std::move(I+1, this->end(), I); |
714 | // Drop the last elt. |
715 | this->pop_back(); |
716 | return(N); |
717 | } |
718 | |
719 | iterator erase(const_iterator CS, const_iterator CE) { |
720 | // Just cast away constness because this is a non-const member function. |
721 | iterator S = const_cast<iterator>(CS); |
722 | iterator E = const_cast<iterator>(CE); |
723 | |
724 | assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")((void)0); |
725 | |
726 | iterator N = S; |
727 | // Shift all elts down. |
728 | iterator I = std::move(E, this->end(), S); |
729 | // Drop the last elts. |
730 | this->destroy_range(I, this->end()); |
731 | this->set_size(I - this->begin()); |
732 | return(N); |
733 | } |
734 | |
735 | private: |
736 | template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
737 | // Callers ensure that ArgType is derived from T. |
738 | static_assert( |
739 | std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
740 | T>::value, |
741 | "ArgType must be derived from T!"); |
742 | |
743 | if (I == this->end()) { // Important special case for empty vector. |
744 | this->push_back(::std::forward<ArgType>(Elt)); |
745 | return this->end()-1; |
746 | } |
747 | |
748 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
749 | |
750 | // Grow if necessary. |
751 | size_t Index = I - this->begin(); |
752 | std::remove_reference_t<ArgType> *EltPtr = |
753 | this->reserveForParamAndGetAddress(Elt); |
754 | I = this->begin() + Index; |
755 | |
756 | ::new ((void*) this->end()) T(::std::move(this->back())); |
757 | // Push everything else over. |
758 | std::move_backward(I, this->end()-1, this->end()); |
759 | this->set_size(this->size() + 1); |
760 | |
761 | // If we just moved the element we're inserting, be sure to update |
762 | // the reference (never happens if TakesParamByValue). |
763 | static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
764 | "ArgType must be 'T' when taking by value!"); |
765 | if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
766 | ++EltPtr; |
767 | |
768 | *I = ::std::forward<ArgType>(*EltPtr); |
769 | return I; |
770 | } |
771 | |
772 | public: |
773 | iterator insert(iterator I, T &&Elt) { |
774 | return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
775 | } |
776 | |
777 | iterator insert(iterator I, const T &Elt) { |
778 | return insert_one_impl(I, this->forward_value_param(Elt)); |
779 | } |
780 | |
781 | iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
782 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
783 | size_t InsertElt = I - this->begin(); |
784 | |
785 | if (I == this->end()) { // Important special case for empty vector. |
786 | append(NumToInsert, Elt); |
787 | return this->begin()+InsertElt; |
788 | } |
789 | |
790 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
791 | |
792 | // Ensure there is enough space, and get the (maybe updated) address of |
793 | // Elt. |
794 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
795 | |
796 | // Uninvalidate the iterator. |
797 | I = this->begin()+InsertElt; |
798 | |
799 | // If there are more elements between the insertion point and the end of the |
800 | // range than there are being inserted, we can use a simple approach to |
801 | // insertion. Since we already reserved space, we know that this won't |
802 | // reallocate the vector. |
803 | if (size_t(this->end()-I) >= NumToInsert) { |
804 | T *OldEnd = this->end(); |
805 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
806 | std::move_iterator<iterator>(this->end())); |
807 | |
808 | // Copy the existing elements that get replaced. |
809 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
810 | |
811 | // If we just moved the element we're inserting, be sure to update |
812 | // the reference (never happens if TakesParamByValue). |
813 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
814 | EltPtr += NumToInsert; |
815 | |
816 | std::fill_n(I, NumToInsert, *EltPtr); |
817 | return I; |
818 | } |
819 | |
820 | // Otherwise, we're inserting more elements than exist already, and we're |
821 | // not inserting at the end. |
822 | |
823 | // Move over the elements that we're about to overwrite. |
824 | T *OldEnd = this->end(); |
825 | this->set_size(this->size() + NumToInsert); |
826 | size_t NumOverwritten = OldEnd-I; |
827 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
828 | |
829 | // If we just moved the element we're inserting, be sure to update |
830 | // the reference (never happens if TakesParamByValue). |
831 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
832 | EltPtr += NumToInsert; |
833 | |
834 | // Replace the overwritten part. |
835 | std::fill_n(I, NumOverwritten, *EltPtr); |
836 | |
837 | // Insert the non-overwritten middle part. |
838 | std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
839 | return I; |
840 | } |
841 | |
842 | template <typename ItTy, |
843 | typename = std::enable_if_t<std::is_convertible< |
844 | typename std::iterator_traits<ItTy>::iterator_category, |
845 | std::input_iterator_tag>::value>> |
846 | iterator insert(iterator I, ItTy From, ItTy To) { |
847 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
848 | size_t InsertElt = I - this->begin(); |
849 | |
850 | if (I == this->end()) { // Important special case for empty vector. |
851 | append(From, To); |
852 | return this->begin()+InsertElt; |
853 | } |
854 | |
855 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
856 | |
857 | // Check that the reserve that follows doesn't invalidate the iterators. |
858 | this->assertSafeToAddRange(From, To); |
859 | |
860 | size_t NumToInsert = std::distance(From, To); |
861 | |
862 | // Ensure there is enough space. |
863 | reserve(this->size() + NumToInsert); |
864 | |
865 | // Uninvalidate the iterator. |
866 | I = this->begin()+InsertElt; |
867 | |
868 | // If there are more elements between the insertion point and the end of the |
869 | // range than there are being inserted, we can use a simple approach to |
870 | // insertion. Since we already reserved space, we know that this won't |
871 | // reallocate the vector. |
872 | if (size_t(this->end()-I) >= NumToInsert) { |
873 | T *OldEnd = this->end(); |
874 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
875 | std::move_iterator<iterator>(this->end())); |
876 | |
877 | // Copy the existing elements that get replaced. |
878 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
879 | |
880 | std::copy(From, To, I); |
881 | return I; |
882 | } |
883 | |
884 | // Otherwise, we're inserting more elements than exist already, and we're |
885 | // not inserting at the end. |
886 | |
887 | // Move over the elements that we're about to overwrite. |
888 | T *OldEnd = this->end(); |
889 | this->set_size(this->size() + NumToInsert); |
890 | size_t NumOverwritten = OldEnd-I; |
891 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
892 | |
893 | // Replace the overwritten part. |
894 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
895 | *J = *From; |
896 | ++J; ++From; |
897 | } |
898 | |
899 | // Insert the non-overwritten middle part. |
900 | this->uninitialized_copy(From, To, OldEnd); |
901 | return I; |
902 | } |
903 | |
904 | void insert(iterator I, std::initializer_list<T> IL) { |
905 | insert(I, IL.begin(), IL.end()); |
906 | } |
907 | |
908 | template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
909 | if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity ()), false)) |
910 | return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
911 | |
912 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
913 | this->set_size(this->size() + 1); |
914 | return this->back(); |
915 | } |
916 | |
917 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
918 | |
919 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
920 | |
921 | bool operator==(const SmallVectorImpl &RHS) const { |
922 | if (this->size() != RHS.size()) return false; |
923 | return std::equal(this->begin(), this->end(), RHS.begin()); |
924 | } |
925 | bool operator!=(const SmallVectorImpl &RHS) const { |
926 | return !(*this == RHS); |
927 | } |
928 | |
929 | bool operator<(const SmallVectorImpl &RHS) const { |
930 | return std::lexicographical_compare(this->begin(), this->end(), |
931 | RHS.begin(), RHS.end()); |
932 | } |
933 | }; |
934 | |
935 | template <typename T> |
936 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
937 | if (this == &RHS) return; |
938 | |
939 | // We can only avoid copying elements if neither vector is small. |
940 | if (!this->isSmall() && !RHS.isSmall()) { |
941 | std::swap(this->BeginX, RHS.BeginX); |
942 | std::swap(this->Size, RHS.Size); |
943 | std::swap(this->Capacity, RHS.Capacity); |
944 | return; |
945 | } |
946 | this->reserve(RHS.size()); |
947 | RHS.reserve(this->size()); |
948 | |
949 | // Swap the shared elements. |
950 | size_t NumShared = this->size(); |
951 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
952 | for (size_type i = 0; i != NumShared; ++i) |
953 | std::swap((*this)[i], RHS[i]); |
954 | |
955 | // Copy over the extra elts. |
956 | if (this->size() > RHS.size()) { |
957 | size_t EltDiff = this->size() - RHS.size(); |
958 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
959 | RHS.set_size(RHS.size() + EltDiff); |
960 | this->destroy_range(this->begin()+NumShared, this->end()); |
961 | this->set_size(NumShared); |
962 | } else if (RHS.size() > this->size()) { |
963 | size_t EltDiff = RHS.size() - this->size(); |
964 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
965 | this->set_size(this->size() + EltDiff); |
966 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
967 | RHS.set_size(NumShared); |
968 | } |
969 | } |
970 | |
971 | template <typename T> |
972 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
973 | operator=(const SmallVectorImpl<T> &RHS) { |
974 | // Avoid self-assignment. |
975 | if (this == &RHS) return *this; |
976 | |
977 | // If we already have sufficient space, assign the common elements, then |
978 | // destroy any excess. |
979 | size_t RHSSize = RHS.size(); |
980 | size_t CurSize = this->size(); |
981 | if (CurSize >= RHSSize) { |
982 | // Assign common elements. |
983 | iterator NewEnd; |
984 | if (RHSSize) |
985 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
986 | else |
987 | NewEnd = this->begin(); |
988 | |
989 | // Destroy excess elements. |
990 | this->destroy_range(NewEnd, this->end()); |
991 | |
992 | // Trim. |
993 | this->set_size(RHSSize); |
994 | return *this; |
995 | } |
996 | |
997 | // If we have to grow to have enough elements, destroy the current elements. |
998 | // This allows us to avoid copying them during the grow. |
999 | // FIXME: don't do this if they're efficiently moveable. |
1000 | if (this->capacity() < RHSSize) { |
1001 | // Destroy current elements. |
1002 | this->clear(); |
1003 | CurSize = 0; |
1004 | this->grow(RHSSize); |
1005 | } else if (CurSize) { |
1006 | // Otherwise, use assignment for the already-constructed elements. |
1007 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
1008 | } |
1009 | |
1010 | // Copy construct the new elements in place. |
1011 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
1012 | this->begin()+CurSize); |
1013 | |
1014 | // Set end. |
1015 | this->set_size(RHSSize); |
1016 | return *this; |
1017 | } |
1018 | |
1019 | template <typename T> |
1020 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
1021 | // Avoid self-assignment. |
1022 | if (this == &RHS) return *this; |
1023 | |
1024 | // If the RHS isn't small, clear this vector and then steal its buffer. |
1025 | if (!RHS.isSmall()) { |
1026 | this->destroy_range(this->begin(), this->end()); |
1027 | if (!this->isSmall()) free(this->begin()); |
1028 | this->BeginX = RHS.BeginX; |
1029 | this->Size = RHS.Size; |
1030 | this->Capacity = RHS.Capacity; |
1031 | RHS.resetToSmall(); |
1032 | return *this; |
1033 | } |
1034 | |
1035 | // If we already have sufficient space, assign the common elements, then |
1036 | // destroy any excess. |
1037 | size_t RHSSize = RHS.size(); |
1038 | size_t CurSize = this->size(); |
1039 | if (CurSize >= RHSSize) { |
1040 | // Assign common elements. |
1041 | iterator NewEnd = this->begin(); |
1042 | if (RHSSize) |
1043 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
1044 | |
1045 | // Destroy excess elements and trim the bounds. |
1046 | this->destroy_range(NewEnd, this->end()); |
1047 | this->set_size(RHSSize); |
1048 | |
1049 | // Clear the RHS. |
1050 | RHS.clear(); |
1051 | |
1052 | return *this; |
1053 | } |
1054 | |
1055 | // If we have to grow to have enough elements, destroy the current elements. |
1056 | // This allows us to avoid copying them during the grow. |
1057 | // FIXME: this may not actually make any sense if we can efficiently move |
1058 | // elements. |
1059 | if (this->capacity() < RHSSize) { |
1060 | // Destroy current elements. |
1061 | this->clear(); |
1062 | CurSize = 0; |
1063 | this->grow(RHSSize); |
1064 | } else if (CurSize) { |
1065 | // Otherwise, use assignment for the already-constructed elements. |
1066 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
1067 | } |
1068 | |
1069 | // Move-construct the new elements in place. |
1070 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
1071 | this->begin()+CurSize); |
1072 | |
1073 | // Set end. |
1074 | this->set_size(RHSSize); |
1075 | |
1076 | RHS.clear(); |
1077 | return *this; |
1078 | } |
1079 | |
1080 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
1081 | /// to avoid allocating unnecessary storage. |
1082 | template <typename T, unsigned N> |
1083 | struct SmallVectorStorage { |
1084 | alignas(T) char InlineElts[N * sizeof(T)]; |
1085 | }; |
1086 | |
1087 | /// We need the storage to be properly aligned even for small-size of 0 so that |
1088 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
1089 | /// well-defined. |
1090 | template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
1091 | |
1092 | /// Forward declaration of SmallVector so that |
1093 | /// calculateSmallVectorDefaultInlinedElements can reference |
1094 | /// `sizeof(SmallVector<T, 0>)`. |
1095 | template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector; |
1096 | |
1097 | /// Helper class for calculating the default number of inline elements for |
1098 | /// `SmallVector<T>`. |
1099 | /// |
1100 | /// This should be migrated to a constexpr function when our minimum |
1101 | /// compiler support is enough for multi-statement constexpr functions. |
1102 | template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
1103 | // Parameter controlling the default number of inlined elements |
1104 | // for `SmallVector<T>`. |
1105 | // |
1106 | // The default number of inlined elements ensures that |
1107 | // 1. There is at least one inlined element. |
1108 | // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
1109 | // it contradicts 1. |
1110 | static constexpr size_t kPreferredSmallVectorSizeof = 64; |
1111 | |
1112 | // static_assert that sizeof(T) is not "too big". |
1113 | // |
1114 | // Because our policy guarantees at least one inlined element, it is possible |
1115 | // for an arbitrarily large inlined element to allocate an arbitrarily large |
1116 | // amount of inline storage. We generally consider it an antipattern for a |
1117 | // SmallVector to allocate an excessive amount of inline storage, so we want |
1118 | // to call attention to these cases and make sure that users are making an |
1119 | // intentional decision if they request a lot of inline storage. |
1120 | // |
1121 | // We want this assertion to trigger in pathological cases, but otherwise |
1122 | // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
1123 | // larger than kPreferredSmallVectorSizeof (otherwise, |
1124 | // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
1125 | // pattern seems useful in practice). |
1126 | // |
1127 | // One wrinkle is that this assertion is in theory non-portable, since |
1128 | // sizeof(T) is in general platform-dependent. However, we don't expect this |
1129 | // to be much of an issue, because most LLVM development happens on 64-bit |
1130 | // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
1131 | // 32-bit hosts, dodging the issue. The reverse situation, where development |
1132 | // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
1133 | // 64-bit host, is expected to be very rare. |
1134 | static_assert( |
1135 | sizeof(T) <= 256, |
1136 | "You are trying to use a default number of inlined elements for " |
1137 | "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
1138 | "explicit number of inlined elements with `SmallVector<T, N>` to make " |
1139 | "sure you really want that much inline storage."); |
1140 | |
1141 | // Discount the size of the header itself when calculating the maximum inline |
1142 | // bytes. |
1143 | static constexpr size_t PreferredInlineBytes = |
1144 | kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
1145 | static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
1146 | static constexpr size_t value = |
1147 | NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
1148 | }; |
1149 | |
1150 | /// This is a 'vector' (really, a variable-sized array), optimized |
1151 | /// for the case when the array is small. It contains some number of elements |
1152 | /// in-place, which allows it to avoid heap allocation when the actual number of |
1153 | /// elements is below that threshold. This allows normal "small" cases to be |
1154 | /// fast without losing generality for large inputs. |
1155 | /// |
1156 | /// \note |
1157 | /// In the absence of a well-motivated choice for the number of inlined |
1158 | /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
1159 | /// omitting the \p N). This will choose a default number of inlined elements |
1160 | /// reasonable for allocation on the stack (for example, trying to keep \c |
1161 | /// sizeof(SmallVector<T>) around 64 bytes). |
1162 | /// |
1163 | /// \warning This does not attempt to be exception safe. |
1164 | /// |
1165 | /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
1166 | template <typename T, |
1167 | unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
1168 | class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>, |
1169 | SmallVectorStorage<T, N> { |
1170 | public: |
1171 | SmallVector() : SmallVectorImpl<T>(N) {} |
1172 | |
1173 | ~SmallVector() { |
1174 | // Destroy the constructed elements in the vector. |
1175 | this->destroy_range(this->begin(), this->end()); |
1176 | } |
1177 | |
1178 | explicit SmallVector(size_t Size, const T &Value = T()) |
1179 | : SmallVectorImpl<T>(N) { |
1180 | this->assign(Size, Value); |
1181 | } |
1182 | |
1183 | template <typename ItTy, |
1184 | typename = std::enable_if_t<std::is_convertible< |
1185 | typename std::iterator_traits<ItTy>::iterator_category, |
1186 | std::input_iterator_tag>::value>> |
1187 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
1188 | this->append(S, E); |
1189 | } |
1190 | |
1191 | template <typename RangeTy> |
1192 | explicit SmallVector(const iterator_range<RangeTy> &R) |
1193 | : SmallVectorImpl<T>(N) { |
1194 | this->append(R.begin(), R.end()); |
1195 | } |
1196 | |
1197 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
1198 | this->assign(IL); |
1199 | } |
1200 | |
1201 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
1202 | if (!RHS.empty()) |
1203 | SmallVectorImpl<T>::operator=(RHS); |
1204 | } |
1205 | |
1206 | SmallVector &operator=(const SmallVector &RHS) { |
1207 | SmallVectorImpl<T>::operator=(RHS); |
1208 | return *this; |
1209 | } |
1210 | |
1211 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
1212 | if (!RHS.empty()) |
1213 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1214 | } |
1215 | |
1216 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
1217 | if (!RHS.empty()) |
1218 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1219 | } |
1220 | |
1221 | SmallVector &operator=(SmallVector &&RHS) { |
1222 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1223 | return *this; |
1224 | } |
1225 | |
1226 | SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
1227 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1228 | return *this; |
1229 | } |
1230 | |
1231 | SmallVector &operator=(std::initializer_list<T> IL) { |
1232 | this->assign(IL); |
1233 | return *this; |
1234 | } |
1235 | }; |
1236 | |
1237 | template <typename T, unsigned N> |
1238 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
1239 | return X.capacity_in_bytes(); |
1240 | } |
1241 | |
1242 | /// Given a range of type R, iterate the entire range and return a |
1243 | /// SmallVector with elements of the vector. This is useful, for example, |
1244 | /// when you want to iterate a range and then sort the results. |
1245 | template <unsigned Size, typename R> |
1246 | SmallVector<typename std::remove_const<typename std::remove_reference< |
1247 | decltype(*std::begin(std::declval<R &>()))>::type>::type, |
1248 | Size> |
1249 | to_vector(R &&Range) { |
1250 | return {std::begin(Range), std::end(Range)}; |
1251 | } |
1252 | |
1253 | } // end namespace llvm |
1254 | |
1255 | namespace std { |
1256 | |
1257 | /// Implement std::swap in terms of SmallVector swap. |
1258 | template<typename T> |
1259 | inline void |
1260 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
1261 | LHS.swap(RHS); |
1262 | } |
1263 | |
1264 | /// Implement std::swap in terms of SmallVector swap. |
1265 | template<typename T, unsigned N> |
1266 | inline void |
1267 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
1268 | LHS.swap(RHS); |
1269 | } |
1270 | |
1271 | } // end namespace std |
1272 | |
1273 | #endif // LLVM_ADT_SMALLVECTOR_H |