| File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaLookup.cpp |
| Warning: | line 4193, column 37 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This file implements name lookup for C, C++, Objective-C, and | ||||
| 10 | // Objective-C++. | ||||
| 11 | // | ||||
| 12 | //===----------------------------------------------------------------------===// | ||||
| 13 | |||||
| 14 | #include "clang/AST/ASTContext.h" | ||||
| 15 | #include "clang/AST/CXXInheritance.h" | ||||
| 16 | #include "clang/AST/Decl.h" | ||||
| 17 | #include "clang/AST/DeclCXX.h" | ||||
| 18 | #include "clang/AST/DeclLookups.h" | ||||
| 19 | #include "clang/AST/DeclObjC.h" | ||||
| 20 | #include "clang/AST/DeclTemplate.h" | ||||
| 21 | #include "clang/AST/Expr.h" | ||||
| 22 | #include "clang/AST/ExprCXX.h" | ||||
| 23 | #include "clang/Basic/Builtins.h" | ||||
| 24 | #include "clang/Basic/FileManager.h" | ||||
| 25 | #include "clang/Basic/LangOptions.h" | ||||
| 26 | #include "clang/Lex/HeaderSearch.h" | ||||
| 27 | #include "clang/Lex/ModuleLoader.h" | ||||
| 28 | #include "clang/Lex/Preprocessor.h" | ||||
| 29 | #include "clang/Sema/DeclSpec.h" | ||||
| 30 | #include "clang/Sema/Lookup.h" | ||||
| 31 | #include "clang/Sema/Overload.h" | ||||
| 32 | #include "clang/Sema/Scope.h" | ||||
| 33 | #include "clang/Sema/ScopeInfo.h" | ||||
| 34 | #include "clang/Sema/Sema.h" | ||||
| 35 | #include "clang/Sema/SemaInternal.h" | ||||
| 36 | #include "clang/Sema/TemplateDeduction.h" | ||||
| 37 | #include "clang/Sema/TypoCorrection.h" | ||||
| 38 | #include "llvm/ADT/STLExtras.h" | ||||
| 39 | #include "llvm/ADT/SmallPtrSet.h" | ||||
| 40 | #include "llvm/ADT/TinyPtrVector.h" | ||||
| 41 | #include "llvm/ADT/edit_distance.h" | ||||
| 42 | #include "llvm/Support/ErrorHandling.h" | ||||
| 43 | #include <algorithm> | ||||
| 44 | #include <iterator> | ||||
| 45 | #include <list> | ||||
| 46 | #include <set> | ||||
| 47 | #include <utility> | ||||
| 48 | #include <vector> | ||||
| 49 | |||||
| 50 | #include "OpenCLBuiltins.inc" | ||||
| 51 | |||||
| 52 | using namespace clang; | ||||
| 53 | using namespace sema; | ||||
| 54 | |||||
| 55 | namespace { | ||||
| 56 | class UnqualUsingEntry { | ||||
| 57 | const DeclContext *Nominated; | ||||
| 58 | const DeclContext *CommonAncestor; | ||||
| 59 | |||||
| 60 | public: | ||||
| 61 | UnqualUsingEntry(const DeclContext *Nominated, | ||||
| 62 | const DeclContext *CommonAncestor) | ||||
| 63 | : Nominated(Nominated), CommonAncestor(CommonAncestor) { | ||||
| 64 | } | ||||
| 65 | |||||
| 66 | const DeclContext *getCommonAncestor() const { | ||||
| 67 | return CommonAncestor; | ||||
| 68 | } | ||||
| 69 | |||||
| 70 | const DeclContext *getNominatedNamespace() const { | ||||
| 71 | return Nominated; | ||||
| 72 | } | ||||
| 73 | |||||
| 74 | // Sort by the pointer value of the common ancestor. | ||||
| 75 | struct Comparator { | ||||
| 76 | bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { | ||||
| 77 | return L.getCommonAncestor() < R.getCommonAncestor(); | ||||
| 78 | } | ||||
| 79 | |||||
| 80 | bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { | ||||
| 81 | return E.getCommonAncestor() < DC; | ||||
| 82 | } | ||||
| 83 | |||||
| 84 | bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { | ||||
| 85 | return DC < E.getCommonAncestor(); | ||||
| 86 | } | ||||
| 87 | }; | ||||
| 88 | }; | ||||
| 89 | |||||
| 90 | /// A collection of using directives, as used by C++ unqualified | ||||
| 91 | /// lookup. | ||||
| 92 | class UnqualUsingDirectiveSet { | ||||
| 93 | Sema &SemaRef; | ||||
| 94 | |||||
| 95 | typedef SmallVector<UnqualUsingEntry, 8> ListTy; | ||||
| 96 | |||||
| 97 | ListTy list; | ||||
| 98 | llvm::SmallPtrSet<DeclContext*, 8> visited; | ||||
| 99 | |||||
| 100 | public: | ||||
| 101 | UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} | ||||
| 102 | |||||
| 103 | void visitScopeChain(Scope *S, Scope *InnermostFileScope) { | ||||
| 104 | // C++ [namespace.udir]p1: | ||||
| 105 | // During unqualified name lookup, the names appear as if they | ||||
| 106 | // were declared in the nearest enclosing namespace which contains | ||||
| 107 | // both the using-directive and the nominated namespace. | ||||
| 108 | DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); | ||||
| 109 | assert(InnermostFileDC && InnermostFileDC->isFileContext())((void)0); | ||||
| 110 | |||||
| 111 | for (; S; S = S->getParent()) { | ||||
| 112 | // C++ [namespace.udir]p1: | ||||
| 113 | // A using-directive shall not appear in class scope, but may | ||||
| 114 | // appear in namespace scope or in block scope. | ||||
| 115 | DeclContext *Ctx = S->getEntity(); | ||||
| 116 | if (Ctx && Ctx->isFileContext()) { | ||||
| 117 | visit(Ctx, Ctx); | ||||
| 118 | } else if (!Ctx || Ctx->isFunctionOrMethod()) { | ||||
| 119 | for (auto *I : S->using_directives()) | ||||
| 120 | if (SemaRef.isVisible(I)) | ||||
| 121 | visit(I, InnermostFileDC); | ||||
| 122 | } | ||||
| 123 | } | ||||
| 124 | } | ||||
| 125 | |||||
| 126 | // Visits a context and collect all of its using directives | ||||
| 127 | // recursively. Treats all using directives as if they were | ||||
| 128 | // declared in the context. | ||||
| 129 | // | ||||
| 130 | // A given context is only every visited once, so it is important | ||||
| 131 | // that contexts be visited from the inside out in order to get | ||||
| 132 | // the effective DCs right. | ||||
| 133 | void visit(DeclContext *DC, DeclContext *EffectiveDC) { | ||||
| 134 | if (!visited.insert(DC).second) | ||||
| 135 | return; | ||||
| 136 | |||||
| 137 | addUsingDirectives(DC, EffectiveDC); | ||||
| 138 | } | ||||
| 139 | |||||
| 140 | // Visits a using directive and collects all of its using | ||||
| 141 | // directives recursively. Treats all using directives as if they | ||||
| 142 | // were declared in the effective DC. | ||||
| 143 | void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | ||||
| 144 | DeclContext *NS = UD->getNominatedNamespace(); | ||||
| 145 | if (!visited.insert(NS).second) | ||||
| 146 | return; | ||||
| 147 | |||||
| 148 | addUsingDirective(UD, EffectiveDC); | ||||
| 149 | addUsingDirectives(NS, EffectiveDC); | ||||
| 150 | } | ||||
| 151 | |||||
| 152 | // Adds all the using directives in a context (and those nominated | ||||
| 153 | // by its using directives, transitively) as if they appeared in | ||||
| 154 | // the given effective context. | ||||
| 155 | void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { | ||||
| 156 | SmallVector<DeclContext*, 4> queue; | ||||
| 157 | while (true) { | ||||
| 158 | for (auto UD : DC->using_directives()) { | ||||
| 159 | DeclContext *NS = UD->getNominatedNamespace(); | ||||
| 160 | if (SemaRef.isVisible(UD) && visited.insert(NS).second) { | ||||
| 161 | addUsingDirective(UD, EffectiveDC); | ||||
| 162 | queue.push_back(NS); | ||||
| 163 | } | ||||
| 164 | } | ||||
| 165 | |||||
| 166 | if (queue.empty()) | ||||
| 167 | return; | ||||
| 168 | |||||
| 169 | DC = queue.pop_back_val(); | ||||
| 170 | } | ||||
| 171 | } | ||||
| 172 | |||||
| 173 | // Add a using directive as if it had been declared in the given | ||||
| 174 | // context. This helps implement C++ [namespace.udir]p3: | ||||
| 175 | // The using-directive is transitive: if a scope contains a | ||||
| 176 | // using-directive that nominates a second namespace that itself | ||||
| 177 | // contains using-directives, the effect is as if the | ||||
| 178 | // using-directives from the second namespace also appeared in | ||||
| 179 | // the first. | ||||
| 180 | void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | ||||
| 181 | // Find the common ancestor between the effective context and | ||||
| 182 | // the nominated namespace. | ||||
| 183 | DeclContext *Common = UD->getNominatedNamespace(); | ||||
| 184 | while (!Common->Encloses(EffectiveDC)) | ||||
| 185 | Common = Common->getParent(); | ||||
| 186 | Common = Common->getPrimaryContext(); | ||||
| 187 | |||||
| 188 | list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); | ||||
| 189 | } | ||||
| 190 | |||||
| 191 | void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } | ||||
| 192 | |||||
| 193 | typedef ListTy::const_iterator const_iterator; | ||||
| 194 | |||||
| 195 | const_iterator begin() const { return list.begin(); } | ||||
| 196 | const_iterator end() const { return list.end(); } | ||||
| 197 | |||||
| 198 | llvm::iterator_range<const_iterator> | ||||
| 199 | getNamespacesFor(DeclContext *DC) const { | ||||
| 200 | return llvm::make_range(std::equal_range(begin(), end(), | ||||
| 201 | DC->getPrimaryContext(), | ||||
| 202 | UnqualUsingEntry::Comparator())); | ||||
| 203 | } | ||||
| 204 | }; | ||||
| 205 | } // end anonymous namespace | ||||
| 206 | |||||
| 207 | // Retrieve the set of identifier namespaces that correspond to a | ||||
| 208 | // specific kind of name lookup. | ||||
| 209 | static inline unsigned getIDNS(Sema::LookupNameKind NameKind, | ||||
| 210 | bool CPlusPlus, | ||||
| 211 | bool Redeclaration) { | ||||
| 212 | unsigned IDNS = 0; | ||||
| 213 | switch (NameKind) { | ||||
| 214 | case Sema::LookupObjCImplicitSelfParam: | ||||
| 215 | case Sema::LookupOrdinaryName: | ||||
| 216 | case Sema::LookupRedeclarationWithLinkage: | ||||
| 217 | case Sema::LookupLocalFriendName: | ||||
| 218 | case Sema::LookupDestructorName: | ||||
| 219 | IDNS = Decl::IDNS_Ordinary; | ||||
| 220 | if (CPlusPlus) { | ||||
| 221 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; | ||||
| 222 | if (Redeclaration) | ||||
| 223 | IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; | ||||
| 224 | } | ||||
| 225 | if (Redeclaration) | ||||
| 226 | IDNS |= Decl::IDNS_LocalExtern; | ||||
| 227 | break; | ||||
| 228 | |||||
| 229 | case Sema::LookupOperatorName: | ||||
| 230 | // Operator lookup is its own crazy thing; it is not the same | ||||
| 231 | // as (e.g.) looking up an operator name for redeclaration. | ||||
| 232 | assert(!Redeclaration && "cannot do redeclaration operator lookup")((void)0); | ||||
| 233 | IDNS = Decl::IDNS_NonMemberOperator; | ||||
| 234 | break; | ||||
| 235 | |||||
| 236 | case Sema::LookupTagName: | ||||
| 237 | if (CPlusPlus) { | ||||
| 238 | IDNS = Decl::IDNS_Type; | ||||
| 239 | |||||
| 240 | // When looking for a redeclaration of a tag name, we add: | ||||
| 241 | // 1) TagFriend to find undeclared friend decls | ||||
| 242 | // 2) Namespace because they can't "overload" with tag decls. | ||||
| 243 | // 3) Tag because it includes class templates, which can't | ||||
| 244 | // "overload" with tag decls. | ||||
| 245 | if (Redeclaration) | ||||
| 246 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; | ||||
| 247 | } else { | ||||
| 248 | IDNS = Decl::IDNS_Tag; | ||||
| 249 | } | ||||
| 250 | break; | ||||
| 251 | |||||
| 252 | case Sema::LookupLabel: | ||||
| 253 | IDNS = Decl::IDNS_Label; | ||||
| 254 | break; | ||||
| 255 | |||||
| 256 | case Sema::LookupMemberName: | ||||
| 257 | IDNS = Decl::IDNS_Member; | ||||
| 258 | if (CPlusPlus) | ||||
| 259 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; | ||||
| 260 | break; | ||||
| 261 | |||||
| 262 | case Sema::LookupNestedNameSpecifierName: | ||||
| 263 | IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; | ||||
| 264 | break; | ||||
| 265 | |||||
| 266 | case Sema::LookupNamespaceName: | ||||
| 267 | IDNS = Decl::IDNS_Namespace; | ||||
| 268 | break; | ||||
| 269 | |||||
| 270 | case Sema::LookupUsingDeclName: | ||||
| 271 | assert(Redeclaration && "should only be used for redecl lookup")((void)0); | ||||
| 272 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | | ||||
| 273 | Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | | ||||
| 274 | Decl::IDNS_LocalExtern; | ||||
| 275 | break; | ||||
| 276 | |||||
| 277 | case Sema::LookupObjCProtocolName: | ||||
| 278 | IDNS = Decl::IDNS_ObjCProtocol; | ||||
| 279 | break; | ||||
| 280 | |||||
| 281 | case Sema::LookupOMPReductionName: | ||||
| 282 | IDNS = Decl::IDNS_OMPReduction; | ||||
| 283 | break; | ||||
| 284 | |||||
| 285 | case Sema::LookupOMPMapperName: | ||||
| 286 | IDNS = Decl::IDNS_OMPMapper; | ||||
| 287 | break; | ||||
| 288 | |||||
| 289 | case Sema::LookupAnyName: | ||||
| 290 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | ||||
| 291 | | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol | ||||
| 292 | | Decl::IDNS_Type; | ||||
| 293 | break; | ||||
| 294 | } | ||||
| 295 | return IDNS; | ||||
| 296 | } | ||||
| 297 | |||||
| 298 | void LookupResult::configure() { | ||||
| 299 | IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, | ||||
| 300 | isForRedeclaration()); | ||||
| 301 | |||||
| 302 | // If we're looking for one of the allocation or deallocation | ||||
| 303 | // operators, make sure that the implicitly-declared new and delete | ||||
| 304 | // operators can be found. | ||||
| 305 | switch (NameInfo.getName().getCXXOverloadedOperator()) { | ||||
| 306 | case OO_New: | ||||
| 307 | case OO_Delete: | ||||
| 308 | case OO_Array_New: | ||||
| 309 | case OO_Array_Delete: | ||||
| 310 | getSema().DeclareGlobalNewDelete(); | ||||
| 311 | break; | ||||
| 312 | |||||
| 313 | default: | ||||
| 314 | break; | ||||
| 315 | } | ||||
| 316 | |||||
| 317 | // Compiler builtins are always visible, regardless of where they end | ||||
| 318 | // up being declared. | ||||
| 319 | if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { | ||||
| 320 | if (unsigned BuiltinID = Id->getBuiltinID()) { | ||||
| 321 | if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | ||||
| 322 | AllowHidden = true; | ||||
| 323 | } | ||||
| 324 | } | ||||
| 325 | } | ||||
| 326 | |||||
| 327 | bool LookupResult::sanity() const { | ||||
| 328 | // This function is never called by NDEBUG builds. | ||||
| 329 | assert(ResultKind != NotFound || Decls.size() == 0)((void)0); | ||||
| 330 | assert(ResultKind != Found || Decls.size() == 1)((void)0); | ||||
| 331 | assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||((void)0) | ||||
| 332 | (Decls.size() == 1 &&((void)0) | ||||
| 333 | isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))((void)0); | ||||
| 334 | assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())((void)0); | ||||
| 335 | assert(ResultKind != Ambiguous || Decls.size() > 1 ||((void)0) | ||||
| 336 | (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||((void)0) | ||||
| 337 | Ambiguity == AmbiguousBaseSubobjectTypes)))((void)0); | ||||
| 338 | assert((Paths != nullptr) == (ResultKind == Ambiguous &&((void)0) | ||||
| 339 | (Ambiguity == AmbiguousBaseSubobjectTypes ||((void)0) | ||||
| 340 | Ambiguity == AmbiguousBaseSubobjects)))((void)0); | ||||
| 341 | return true; | ||||
| 342 | } | ||||
| 343 | |||||
| 344 | // Necessary because CXXBasePaths is not complete in Sema.h | ||||
| 345 | void LookupResult::deletePaths(CXXBasePaths *Paths) { | ||||
| 346 | delete Paths; | ||||
| 347 | } | ||||
| 348 | |||||
| 349 | /// Get a representative context for a declaration such that two declarations | ||||
| 350 | /// will have the same context if they were found within the same scope. | ||||
| 351 | static DeclContext *getContextForScopeMatching(Decl *D) { | ||||
| 352 | // For function-local declarations, use that function as the context. This | ||||
| 353 | // doesn't account for scopes within the function; the caller must deal with | ||||
| 354 | // those. | ||||
| 355 | DeclContext *DC = D->getLexicalDeclContext(); | ||||
| 356 | if (DC->isFunctionOrMethod()) | ||||
| 357 | return DC; | ||||
| 358 | |||||
| 359 | // Otherwise, look at the semantic context of the declaration. The | ||||
| 360 | // declaration must have been found there. | ||||
| 361 | return D->getDeclContext()->getRedeclContext(); | ||||
| 362 | } | ||||
| 363 | |||||
| 364 | /// Determine whether \p D is a better lookup result than \p Existing, | ||||
| 365 | /// given that they declare the same entity. | ||||
| 366 | static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, | ||||
| 367 | NamedDecl *D, NamedDecl *Existing) { | ||||
| 368 | // When looking up redeclarations of a using declaration, prefer a using | ||||
| 369 | // shadow declaration over any other declaration of the same entity. | ||||
| 370 | if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && | ||||
| 371 | !isa<UsingShadowDecl>(Existing)) | ||||
| 372 | return true; | ||||
| 373 | |||||
| 374 | auto *DUnderlying = D->getUnderlyingDecl(); | ||||
| 375 | auto *EUnderlying = Existing->getUnderlyingDecl(); | ||||
| 376 | |||||
| 377 | // If they have different underlying declarations, prefer a typedef over the | ||||
| 378 | // original type (this happens when two type declarations denote the same | ||||
| 379 | // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef | ||||
| 380 | // might carry additional semantic information, such as an alignment override. | ||||
| 381 | // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag | ||||
| 382 | // declaration over a typedef. Also prefer a tag over a typedef for | ||||
| 383 | // destructor name lookup because in some contexts we only accept a | ||||
| 384 | // class-name in a destructor declaration. | ||||
| 385 | if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { | ||||
| 386 | assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))((void)0); | ||||
| 387 | bool HaveTag = isa<TagDecl>(EUnderlying); | ||||
| 388 | bool WantTag = | ||||
| 389 | Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; | ||||
| 390 | return HaveTag != WantTag; | ||||
| 391 | } | ||||
| 392 | |||||
| 393 | // Pick the function with more default arguments. | ||||
| 394 | // FIXME: In the presence of ambiguous default arguments, we should keep both, | ||||
| 395 | // so we can diagnose the ambiguity if the default argument is needed. | ||||
| 396 | // See C++ [over.match.best]p3. | ||||
| 397 | if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { | ||||
| 398 | auto *EFD = cast<FunctionDecl>(EUnderlying); | ||||
| 399 | unsigned DMin = DFD->getMinRequiredArguments(); | ||||
| 400 | unsigned EMin = EFD->getMinRequiredArguments(); | ||||
| 401 | // If D has more default arguments, it is preferred. | ||||
| 402 | if (DMin != EMin) | ||||
| 403 | return DMin < EMin; | ||||
| 404 | // FIXME: When we track visibility for default function arguments, check | ||||
| 405 | // that we pick the declaration with more visible default arguments. | ||||
| 406 | } | ||||
| 407 | |||||
| 408 | // Pick the template with more default template arguments. | ||||
| 409 | if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { | ||||
| 410 | auto *ETD = cast<TemplateDecl>(EUnderlying); | ||||
| 411 | unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); | ||||
| 412 | unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); | ||||
| 413 | // If D has more default arguments, it is preferred. Note that default | ||||
| 414 | // arguments (and their visibility) is monotonically increasing across the | ||||
| 415 | // redeclaration chain, so this is a quick proxy for "is more recent". | ||||
| 416 | if (DMin != EMin) | ||||
| 417 | return DMin < EMin; | ||||
| 418 | // If D has more *visible* default arguments, it is preferred. Note, an | ||||
| 419 | // earlier default argument being visible does not imply that a later | ||||
| 420 | // default argument is visible, so we can't just check the first one. | ||||
| 421 | for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); | ||||
| 422 | I != N; ++I) { | ||||
| 423 | if (!S.hasVisibleDefaultArgument( | ||||
| 424 | ETD->getTemplateParameters()->getParam(I)) && | ||||
| 425 | S.hasVisibleDefaultArgument( | ||||
| 426 | DTD->getTemplateParameters()->getParam(I))) | ||||
| 427 | return true; | ||||
| 428 | } | ||||
| 429 | } | ||||
| 430 | |||||
| 431 | // VarDecl can have incomplete array types, prefer the one with more complete | ||||
| 432 | // array type. | ||||
| 433 | if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) { | ||||
| 434 | VarDecl *EVD = cast<VarDecl>(EUnderlying); | ||||
| 435 | if (EVD->getType()->isIncompleteType() && | ||||
| 436 | !DVD->getType()->isIncompleteType()) { | ||||
| 437 | // Prefer the decl with a more complete type if visible. | ||||
| 438 | return S.isVisible(DVD); | ||||
| 439 | } | ||||
| 440 | return false; // Avoid picking up a newer decl, just because it was newer. | ||||
| 441 | } | ||||
| 442 | |||||
| 443 | // For most kinds of declaration, it doesn't really matter which one we pick. | ||||
| 444 | if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { | ||||
| 445 | // If the existing declaration is hidden, prefer the new one. Otherwise, | ||||
| 446 | // keep what we've got. | ||||
| 447 | return !S.isVisible(Existing); | ||||
| 448 | } | ||||
| 449 | |||||
| 450 | // Pick the newer declaration; it might have a more precise type. | ||||
| 451 | for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev; | ||||
| 452 | Prev = Prev->getPreviousDecl()) | ||||
| 453 | if (Prev == EUnderlying) | ||||
| 454 | return true; | ||||
| 455 | return false; | ||||
| 456 | } | ||||
| 457 | |||||
| 458 | /// Determine whether \p D can hide a tag declaration. | ||||
| 459 | static bool canHideTag(NamedDecl *D) { | ||||
| 460 | // C++ [basic.scope.declarative]p4: | ||||
| 461 | // Given a set of declarations in a single declarative region [...] | ||||
| 462 | // exactly one declaration shall declare a class name or enumeration name | ||||
| 463 | // that is not a typedef name and the other declarations shall all refer to | ||||
| 464 | // the same variable, non-static data member, or enumerator, or all refer | ||||
| 465 | // to functions and function templates; in this case the class name or | ||||
| 466 | // enumeration name is hidden. | ||||
| 467 | // C++ [basic.scope.hiding]p2: | ||||
| 468 | // A class name or enumeration name can be hidden by the name of a | ||||
| 469 | // variable, data member, function, or enumerator declared in the same | ||||
| 470 | // scope. | ||||
| 471 | // An UnresolvedUsingValueDecl always instantiates to one of these. | ||||
| 472 | D = D->getUnderlyingDecl(); | ||||
| 473 | return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || | ||||
| 474 | isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || | ||||
| 475 | isa<UnresolvedUsingValueDecl>(D); | ||||
| 476 | } | ||||
| 477 | |||||
| 478 | /// Resolves the result kind of this lookup. | ||||
| 479 | void LookupResult::resolveKind() { | ||||
| 480 | unsigned N = Decls.size(); | ||||
| 481 | |||||
| 482 | // Fast case: no possible ambiguity. | ||||
| 483 | if (N == 0) { | ||||
| 484 | assert(ResultKind == NotFound ||((void)0) | ||||
| 485 | ResultKind == NotFoundInCurrentInstantiation)((void)0); | ||||
| 486 | return; | ||||
| 487 | } | ||||
| 488 | |||||
| 489 | // If there's a single decl, we need to examine it to decide what | ||||
| 490 | // kind of lookup this is. | ||||
| 491 | if (N == 1) { | ||||
| 492 | NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); | ||||
| 493 | if (isa<FunctionTemplateDecl>(D)) | ||||
| 494 | ResultKind = FoundOverloaded; | ||||
| 495 | else if (isa<UnresolvedUsingValueDecl>(D)) | ||||
| 496 | ResultKind = FoundUnresolvedValue; | ||||
| 497 | return; | ||||
| 498 | } | ||||
| 499 | |||||
| 500 | // Don't do any extra resolution if we've already resolved as ambiguous. | ||||
| 501 | if (ResultKind == Ambiguous) return; | ||||
| 502 | |||||
| 503 | llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique; | ||||
| 504 | llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; | ||||
| 505 | |||||
| 506 | bool Ambiguous = false; | ||||
| 507 | bool HasTag = false, HasFunction = false; | ||||
| 508 | bool HasFunctionTemplate = false, HasUnresolved = false; | ||||
| 509 | NamedDecl *HasNonFunction = nullptr; | ||||
| 510 | |||||
| 511 | llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions; | ||||
| 512 | |||||
| 513 | unsigned UniqueTagIndex = 0; | ||||
| 514 | |||||
| 515 | unsigned I = 0; | ||||
| 516 | while (I < N) { | ||||
| 517 | NamedDecl *D = Decls[I]->getUnderlyingDecl(); | ||||
| 518 | D = cast<NamedDecl>(D->getCanonicalDecl()); | ||||
| 519 | |||||
| 520 | // Ignore an invalid declaration unless it's the only one left. | ||||
| 521 | if (D->isInvalidDecl() && !(I == 0 && N == 1)) { | ||||
| 522 | Decls[I] = Decls[--N]; | ||||
| 523 | continue; | ||||
| 524 | } | ||||
| 525 | |||||
| 526 | llvm::Optional<unsigned> ExistingI; | ||||
| 527 | |||||
| 528 | // Redeclarations of types via typedef can occur both within a scope | ||||
| 529 | // and, through using declarations and directives, across scopes. There is | ||||
| 530 | // no ambiguity if they all refer to the same type, so unique based on the | ||||
| 531 | // canonical type. | ||||
| 532 | if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) { | ||||
| 533 | QualType T = getSema().Context.getTypeDeclType(TD); | ||||
| 534 | auto UniqueResult = UniqueTypes.insert( | ||||
| 535 | std::make_pair(getSema().Context.getCanonicalType(T), I)); | ||||
| 536 | if (!UniqueResult.second) { | ||||
| 537 | // The type is not unique. | ||||
| 538 | ExistingI = UniqueResult.first->second; | ||||
| 539 | } | ||||
| 540 | } | ||||
| 541 | |||||
| 542 | // For non-type declarations, check for a prior lookup result naming this | ||||
| 543 | // canonical declaration. | ||||
| 544 | if (!ExistingI) { | ||||
| 545 | auto UniqueResult = Unique.insert(std::make_pair(D, I)); | ||||
| 546 | if (!UniqueResult.second) { | ||||
| 547 | // We've seen this entity before. | ||||
| 548 | ExistingI = UniqueResult.first->second; | ||||
| 549 | } | ||||
| 550 | } | ||||
| 551 | |||||
| 552 | if (ExistingI) { | ||||
| 553 | // This is not a unique lookup result. Pick one of the results and | ||||
| 554 | // discard the other. | ||||
| 555 | if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], | ||||
| 556 | Decls[*ExistingI])) | ||||
| 557 | Decls[*ExistingI] = Decls[I]; | ||||
| 558 | Decls[I] = Decls[--N]; | ||||
| 559 | continue; | ||||
| 560 | } | ||||
| 561 | |||||
| 562 | // Otherwise, do some decl type analysis and then continue. | ||||
| 563 | |||||
| 564 | if (isa<UnresolvedUsingValueDecl>(D)) { | ||||
| 565 | HasUnresolved = true; | ||||
| 566 | } else if (isa<TagDecl>(D)) { | ||||
| 567 | if (HasTag) | ||||
| 568 | Ambiguous = true; | ||||
| 569 | UniqueTagIndex = I; | ||||
| 570 | HasTag = true; | ||||
| 571 | } else if (isa<FunctionTemplateDecl>(D)) { | ||||
| 572 | HasFunction = true; | ||||
| 573 | HasFunctionTemplate = true; | ||||
| 574 | } else if (isa<FunctionDecl>(D)) { | ||||
| 575 | HasFunction = true; | ||||
| 576 | } else { | ||||
| 577 | if (HasNonFunction) { | ||||
| 578 | // If we're about to create an ambiguity between two declarations that | ||||
| 579 | // are equivalent, but one is an internal linkage declaration from one | ||||
| 580 | // module and the other is an internal linkage declaration from another | ||||
| 581 | // module, just skip it. | ||||
| 582 | if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, | ||||
| 583 | D)) { | ||||
| 584 | EquivalentNonFunctions.push_back(D); | ||||
| 585 | Decls[I] = Decls[--N]; | ||||
| 586 | continue; | ||||
| 587 | } | ||||
| 588 | |||||
| 589 | Ambiguous = true; | ||||
| 590 | } | ||||
| 591 | HasNonFunction = D; | ||||
| 592 | } | ||||
| 593 | I++; | ||||
| 594 | } | ||||
| 595 | |||||
| 596 | // C++ [basic.scope.hiding]p2: | ||||
| 597 | // A class name or enumeration name can be hidden by the name of | ||||
| 598 | // an object, function, or enumerator declared in the same | ||||
| 599 | // scope. If a class or enumeration name and an object, function, | ||||
| 600 | // or enumerator are declared in the same scope (in any order) | ||||
| 601 | // with the same name, the class or enumeration name is hidden | ||||
| 602 | // wherever the object, function, or enumerator name is visible. | ||||
| 603 | // But it's still an error if there are distinct tag types found, | ||||
| 604 | // even if they're not visible. (ref?) | ||||
| 605 | if (N > 1 && HideTags && HasTag && !Ambiguous && | ||||
| 606 | (HasFunction || HasNonFunction || HasUnresolved)) { | ||||
| 607 | NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1]; | ||||
| 608 | if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) && | ||||
| 609 | getContextForScopeMatching(Decls[UniqueTagIndex])->Equals( | ||||
| 610 | getContextForScopeMatching(OtherDecl)) && | ||||
| 611 | canHideTag(OtherDecl)) | ||||
| 612 | Decls[UniqueTagIndex] = Decls[--N]; | ||||
| 613 | else | ||||
| 614 | Ambiguous = true; | ||||
| 615 | } | ||||
| 616 | |||||
| 617 | // FIXME: This diagnostic should really be delayed until we're done with | ||||
| 618 | // the lookup result, in case the ambiguity is resolved by the caller. | ||||
| 619 | if (!EquivalentNonFunctions.empty() && !Ambiguous) | ||||
| 620 | getSema().diagnoseEquivalentInternalLinkageDeclarations( | ||||
| 621 | getNameLoc(), HasNonFunction, EquivalentNonFunctions); | ||||
| 622 | |||||
| 623 | Decls.set_size(N); | ||||
| 624 | |||||
| 625 | if (HasNonFunction && (HasFunction || HasUnresolved)) | ||||
| 626 | Ambiguous = true; | ||||
| 627 | |||||
| 628 | if (Ambiguous) | ||||
| 629 | setAmbiguous(LookupResult::AmbiguousReference); | ||||
| 630 | else if (HasUnresolved) | ||||
| 631 | ResultKind = LookupResult::FoundUnresolvedValue; | ||||
| 632 | else if (N > 1 || HasFunctionTemplate) | ||||
| 633 | ResultKind = LookupResult::FoundOverloaded; | ||||
| 634 | else | ||||
| 635 | ResultKind = LookupResult::Found; | ||||
| 636 | } | ||||
| 637 | |||||
| 638 | void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { | ||||
| 639 | CXXBasePaths::const_paths_iterator I, E; | ||||
| 640 | for (I = P.begin(), E = P.end(); I != E; ++I) | ||||
| 641 | for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; | ||||
| 642 | ++DI) | ||||
| 643 | addDecl(*DI); | ||||
| 644 | } | ||||
| 645 | |||||
| 646 | void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { | ||||
| 647 | Paths = new CXXBasePaths; | ||||
| 648 | Paths->swap(P); | ||||
| 649 | addDeclsFromBasePaths(*Paths); | ||||
| 650 | resolveKind(); | ||||
| 651 | setAmbiguous(AmbiguousBaseSubobjects); | ||||
| 652 | } | ||||
| 653 | |||||
| 654 | void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { | ||||
| 655 | Paths = new CXXBasePaths; | ||||
| 656 | Paths->swap(P); | ||||
| 657 | addDeclsFromBasePaths(*Paths); | ||||
| 658 | resolveKind(); | ||||
| 659 | setAmbiguous(AmbiguousBaseSubobjectTypes); | ||||
| 660 | } | ||||
| 661 | |||||
| 662 | void LookupResult::print(raw_ostream &Out) { | ||||
| 663 | Out << Decls.size() << " result(s)"; | ||||
| 664 | if (isAmbiguous()) Out << ", ambiguous"; | ||||
| 665 | if (Paths) Out << ", base paths present"; | ||||
| 666 | |||||
| 667 | for (iterator I = begin(), E = end(); I != E; ++I) { | ||||
| 668 | Out << "\n"; | ||||
| 669 | (*I)->print(Out, 2); | ||||
| 670 | } | ||||
| 671 | } | ||||
| 672 | |||||
| 673 | LLVM_DUMP_METHOD__attribute__((noinline)) void LookupResult::dump() { | ||||
| 674 | llvm::errs() << "lookup results for " << getLookupName().getAsString() | ||||
| 675 | << ":\n"; | ||||
| 676 | for (NamedDecl *D : *this) | ||||
| 677 | D->dump(); | ||||
| 678 | } | ||||
| 679 | |||||
| 680 | /// Diagnose a missing builtin type. | ||||
| 681 | static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, | ||||
| 682 | llvm::StringRef Name) { | ||||
| 683 | S.Diag(SourceLocation(), diag::err_opencl_type_not_found) | ||||
| 684 | << TypeClass << Name; | ||||
| 685 | return S.Context.VoidTy; | ||||
| 686 | } | ||||
| 687 | |||||
| 688 | /// Lookup an OpenCL enum type. | ||||
| 689 | static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { | ||||
| 690 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), | ||||
| 691 | Sema::LookupTagName); | ||||
| 692 | S.LookupName(Result, S.TUScope); | ||||
| 693 | if (Result.empty()) | ||||
| 694 | return diagOpenCLBuiltinTypeError(S, "enum", Name); | ||||
| 695 | EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); | ||||
| 696 | if (!Decl) | ||||
| 697 | return diagOpenCLBuiltinTypeError(S, "enum", Name); | ||||
| 698 | return S.Context.getEnumType(Decl); | ||||
| 699 | } | ||||
| 700 | |||||
| 701 | /// Lookup an OpenCL typedef type. | ||||
| 702 | static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { | ||||
| 703 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), | ||||
| 704 | Sema::LookupOrdinaryName); | ||||
| 705 | S.LookupName(Result, S.TUScope); | ||||
| 706 | if (Result.empty()) | ||||
| 707 | return diagOpenCLBuiltinTypeError(S, "typedef", Name); | ||||
| 708 | TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); | ||||
| 709 | if (!Decl) | ||||
| 710 | return diagOpenCLBuiltinTypeError(S, "typedef", Name); | ||||
| 711 | return S.Context.getTypedefType(Decl); | ||||
| 712 | } | ||||
| 713 | |||||
| 714 | /// Get the QualType instances of the return type and arguments for an OpenCL | ||||
| 715 | /// builtin function signature. | ||||
| 716 | /// \param S (in) The Sema instance. | ||||
| 717 | /// \param OpenCLBuiltin (in) The signature currently handled. | ||||
| 718 | /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic | ||||
| 719 | /// type used as return type or as argument. | ||||
| 720 | /// Only meaningful for generic types, otherwise equals 1. | ||||
| 721 | /// \param RetTypes (out) List of the possible return types. | ||||
| 722 | /// \param ArgTypes (out) List of the possible argument types. For each | ||||
| 723 | /// argument, ArgTypes contains QualTypes for the Cartesian product | ||||
| 724 | /// of (vector sizes) x (types) . | ||||
| 725 | static void GetQualTypesForOpenCLBuiltin( | ||||
| 726 | Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, | ||||
| 727 | SmallVector<QualType, 1> &RetTypes, | ||||
| 728 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { | ||||
| 729 | // Get the QualType instances of the return types. | ||||
| 730 | unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; | ||||
| 731 | OCL2Qual(S, TypeTable[Sig], RetTypes); | ||||
| 732 | GenTypeMaxCnt = RetTypes.size(); | ||||
| 733 | |||||
| 734 | // Get the QualType instances of the arguments. | ||||
| 735 | // First type is the return type, skip it. | ||||
| 736 | for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { | ||||
| 737 | SmallVector<QualType, 1> Ty; | ||||
| 738 | OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], | ||||
| 739 | Ty); | ||||
| 740 | GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; | ||||
| 741 | ArgTypes.push_back(std::move(Ty)); | ||||
| 742 | } | ||||
| 743 | } | ||||
| 744 | |||||
| 745 | /// Create a list of the candidate function overloads for an OpenCL builtin | ||||
| 746 | /// function. | ||||
| 747 | /// \param Context (in) The ASTContext instance. | ||||
| 748 | /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic | ||||
| 749 | /// type used as return type or as argument. | ||||
| 750 | /// Only meaningful for generic types, otherwise equals 1. | ||||
| 751 | /// \param FunctionList (out) List of FunctionTypes. | ||||
| 752 | /// \param RetTypes (in) List of the possible return types. | ||||
| 753 | /// \param ArgTypes (in) List of the possible types for the arguments. | ||||
| 754 | static void GetOpenCLBuiltinFctOverloads( | ||||
| 755 | ASTContext &Context, unsigned GenTypeMaxCnt, | ||||
| 756 | std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, | ||||
| 757 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { | ||||
| 758 | FunctionProtoType::ExtProtoInfo PI( | ||||
| 759 | Context.getDefaultCallingConvention(false, false, true)); | ||||
| 760 | PI.Variadic = false; | ||||
| 761 | |||||
| 762 | // Do not attempt to create any FunctionTypes if there are no return types, | ||||
| 763 | // which happens when a type belongs to a disabled extension. | ||||
| 764 | if (RetTypes.size() == 0) | ||||
| 765 | return; | ||||
| 766 | |||||
| 767 | // Create FunctionTypes for each (gen)type. | ||||
| 768 | for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { | ||||
| 769 | SmallVector<QualType, 5> ArgList; | ||||
| 770 | |||||
| 771 | for (unsigned A = 0; A < ArgTypes.size(); A++) { | ||||
| 772 | // Bail out if there is an argument that has no available types. | ||||
| 773 | if (ArgTypes[A].size() == 0) | ||||
| 774 | return; | ||||
| 775 | |||||
| 776 | // Builtins such as "max" have an "sgentype" argument that represents | ||||
| 777 | // the corresponding scalar type of a gentype. The number of gentypes | ||||
| 778 | // must be a multiple of the number of sgentypes. | ||||
| 779 | assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&((void)0) | ||||
| 780 | "argument type count not compatible with gentype type count")((void)0); | ||||
| 781 | unsigned Idx = IGenType % ArgTypes[A].size(); | ||||
| 782 | ArgList.push_back(ArgTypes[A][Idx]); | ||||
| 783 | } | ||||
| 784 | |||||
| 785 | FunctionList.push_back(Context.getFunctionType( | ||||
| 786 | RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); | ||||
| 787 | } | ||||
| 788 | } | ||||
| 789 | |||||
| 790 | /// When trying to resolve a function name, if isOpenCLBuiltin() returns a | ||||
| 791 | /// non-null <Index, Len> pair, then the name is referencing an OpenCL | ||||
| 792 | /// builtin function. Add all candidate signatures to the LookUpResult. | ||||
| 793 | /// | ||||
| 794 | /// \param S (in) The Sema instance. | ||||
| 795 | /// \param LR (inout) The LookupResult instance. | ||||
| 796 | /// \param II (in) The identifier being resolved. | ||||
| 797 | /// \param FctIndex (in) Starting index in the BuiltinTable. | ||||
| 798 | /// \param Len (in) The signature list has Len elements. | ||||
| 799 | static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, | ||||
| 800 | IdentifierInfo *II, | ||||
| 801 | const unsigned FctIndex, | ||||
| 802 | const unsigned Len) { | ||||
| 803 | // The builtin function declaration uses generic types (gentype). | ||||
| 804 | bool HasGenType = false; | ||||
| 805 | |||||
| 806 | // Maximum number of types contained in a generic type used as return type or | ||||
| 807 | // as argument. Only meaningful for generic types, otherwise equals 1. | ||||
| 808 | unsigned GenTypeMaxCnt; | ||||
| 809 | |||||
| 810 | ASTContext &Context = S.Context; | ||||
| 811 | |||||
| 812 | for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { | ||||
| 813 | const OpenCLBuiltinStruct &OpenCLBuiltin = | ||||
| 814 | BuiltinTable[FctIndex + SignatureIndex]; | ||||
| 815 | |||||
| 816 | // Ignore this builtin function if it is not available in the currently | ||||
| 817 | // selected language version. | ||||
| 818 | if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), | ||||
| 819 | OpenCLBuiltin.Versions)) | ||||
| 820 | continue; | ||||
| 821 | |||||
| 822 | // Ignore this builtin function if it carries an extension macro that is | ||||
| 823 | // not defined. This indicates that the extension is not supported by the | ||||
| 824 | // target, so the builtin function should not be available. | ||||
| 825 | StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; | ||||
| 826 | if (!Extensions.empty()) { | ||||
| 827 | SmallVector<StringRef, 2> ExtVec; | ||||
| 828 | Extensions.split(ExtVec, " "); | ||||
| 829 | bool AllExtensionsDefined = true; | ||||
| 830 | for (StringRef Ext : ExtVec) { | ||||
| 831 | if (!S.getPreprocessor().isMacroDefined(Ext)) { | ||||
| 832 | AllExtensionsDefined = false; | ||||
| 833 | break; | ||||
| 834 | } | ||||
| 835 | } | ||||
| 836 | if (!AllExtensionsDefined) | ||||
| 837 | continue; | ||||
| 838 | } | ||||
| 839 | |||||
| 840 | SmallVector<QualType, 1> RetTypes; | ||||
| 841 | SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; | ||||
| 842 | |||||
| 843 | // Obtain QualType lists for the function signature. | ||||
| 844 | GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, | ||||
| 845 | ArgTypes); | ||||
| 846 | if (GenTypeMaxCnt > 1) { | ||||
| 847 | HasGenType = true; | ||||
| 848 | } | ||||
| 849 | |||||
| 850 | // Create function overload for each type combination. | ||||
| 851 | std::vector<QualType> FunctionList; | ||||
| 852 | GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, | ||||
| 853 | ArgTypes); | ||||
| 854 | |||||
| 855 | SourceLocation Loc = LR.getNameLoc(); | ||||
| 856 | DeclContext *Parent = Context.getTranslationUnitDecl(); | ||||
| 857 | FunctionDecl *NewOpenCLBuiltin; | ||||
| 858 | |||||
| 859 | for (const auto &FTy : FunctionList) { | ||||
| 860 | NewOpenCLBuiltin = FunctionDecl::Create( | ||||
| 861 | Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, | ||||
| 862 | false, FTy->isFunctionProtoType()); | ||||
| 863 | NewOpenCLBuiltin->setImplicit(); | ||||
| 864 | |||||
| 865 | // Create Decl objects for each parameter, adding them to the | ||||
| 866 | // FunctionDecl. | ||||
| 867 | const auto *FP = cast<FunctionProtoType>(FTy); | ||||
| 868 | SmallVector<ParmVarDecl *, 4> ParmList; | ||||
| 869 | for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { | ||||
| 870 | ParmVarDecl *Parm = ParmVarDecl::Create( | ||||
| 871 | Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), | ||||
| 872 | nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); | ||||
| 873 | Parm->setScopeInfo(0, IParm); | ||||
| 874 | ParmList.push_back(Parm); | ||||
| 875 | } | ||||
| 876 | NewOpenCLBuiltin->setParams(ParmList); | ||||
| 877 | |||||
| 878 | // Add function attributes. | ||||
| 879 | if (OpenCLBuiltin.IsPure) | ||||
| 880 | NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); | ||||
| 881 | if (OpenCLBuiltin.IsConst) | ||||
| 882 | NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); | ||||
| 883 | if (OpenCLBuiltin.IsConv) | ||||
| 884 | NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); | ||||
| 885 | |||||
| 886 | if (!S.getLangOpts().OpenCLCPlusPlus) | ||||
| 887 | NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); | ||||
| 888 | |||||
| 889 | LR.addDecl(NewOpenCLBuiltin); | ||||
| 890 | } | ||||
| 891 | } | ||||
| 892 | |||||
| 893 | // If we added overloads, need to resolve the lookup result. | ||||
| 894 | if (Len > 1 || HasGenType) | ||||
| 895 | LR.resolveKind(); | ||||
| 896 | } | ||||
| 897 | |||||
| 898 | /// Lookup a builtin function, when name lookup would otherwise | ||||
| 899 | /// fail. | ||||
| 900 | bool Sema::LookupBuiltin(LookupResult &R) { | ||||
| 901 | Sema::LookupNameKind NameKind = R.getLookupKind(); | ||||
| 902 | |||||
| 903 | // If we didn't find a use of this identifier, and if the identifier | ||||
| 904 | // corresponds to a compiler builtin, create the decl object for the builtin | ||||
| 905 | // now, injecting it into translation unit scope, and return it. | ||||
| 906 | if (NameKind == Sema::LookupOrdinaryName || | ||||
| 907 | NameKind == Sema::LookupRedeclarationWithLinkage) { | ||||
| 908 | IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); | ||||
| 909 | if (II) { | ||||
| 910 | if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { | ||||
| 911 | if (II == getASTContext().getMakeIntegerSeqName()) { | ||||
| 912 | R.addDecl(getASTContext().getMakeIntegerSeqDecl()); | ||||
| 913 | return true; | ||||
| 914 | } else if (II == getASTContext().getTypePackElementName()) { | ||||
| 915 | R.addDecl(getASTContext().getTypePackElementDecl()); | ||||
| 916 | return true; | ||||
| 917 | } | ||||
| 918 | } | ||||
| 919 | |||||
| 920 | // Check if this is an OpenCL Builtin, and if so, insert its overloads. | ||||
| 921 | if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { | ||||
| 922 | auto Index = isOpenCLBuiltin(II->getName()); | ||||
| 923 | if (Index.first) { | ||||
| 924 | InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, | ||||
| 925 | Index.second); | ||||
| 926 | return true; | ||||
| 927 | } | ||||
| 928 | } | ||||
| 929 | |||||
| 930 | // If this is a builtin on this (or all) targets, create the decl. | ||||
| 931 | if (unsigned BuiltinID = II->getBuiltinID()) { | ||||
| 932 | // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined | ||||
| 933 | // library functions like 'malloc'. Instead, we'll just error. | ||||
| 934 | if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && | ||||
| 935 | Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | ||||
| 936 | return false; | ||||
| 937 | |||||
| 938 | if (NamedDecl *D = | ||||
| 939 | LazilyCreateBuiltin(II, BuiltinID, TUScope, | ||||
| 940 | R.isForRedeclaration(), R.getNameLoc())) { | ||||
| 941 | R.addDecl(D); | ||||
| 942 | return true; | ||||
| 943 | } | ||||
| 944 | } | ||||
| 945 | } | ||||
| 946 | } | ||||
| 947 | |||||
| 948 | return false; | ||||
| 949 | } | ||||
| 950 | |||||
| 951 | /// Looks up the declaration of "struct objc_super" and | ||||
| 952 | /// saves it for later use in building builtin declaration of | ||||
| 953 | /// objc_msgSendSuper and objc_msgSendSuper_stret. | ||||
| 954 | static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { | ||||
| 955 | ASTContext &Context = Sema.Context; | ||||
| 956 | LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), | ||||
| 957 | Sema::LookupTagName); | ||||
| 958 | Sema.LookupName(Result, S); | ||||
| 959 | if (Result.getResultKind() == LookupResult::Found) | ||||
| 960 | if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) | ||||
| 961 | Context.setObjCSuperType(Context.getTagDeclType(TD)); | ||||
| 962 | } | ||||
| 963 | |||||
| 964 | void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { | ||||
| 965 | if (ID == Builtin::BIobjc_msgSendSuper) | ||||
| 966 | LookupPredefedObjCSuperType(*this, S); | ||||
| 967 | } | ||||
| 968 | |||||
| 969 | /// Determine whether we can declare a special member function within | ||||
| 970 | /// the class at this point. | ||||
| 971 | static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { | ||||
| 972 | // We need to have a definition for the class. | ||||
| 973 | if (!Class->getDefinition() || Class->isDependentContext()) | ||||
| 974 | return false; | ||||
| 975 | |||||
| 976 | // We can't be in the middle of defining the class. | ||||
| 977 | return !Class->isBeingDefined(); | ||||
| 978 | } | ||||
| 979 | |||||
| 980 | void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { | ||||
| 981 | if (!CanDeclareSpecialMemberFunction(Class)) | ||||
| 982 | return; | ||||
| 983 | |||||
| 984 | // If the default constructor has not yet been declared, do so now. | ||||
| 985 | if (Class->needsImplicitDefaultConstructor()) | ||||
| 986 | DeclareImplicitDefaultConstructor(Class); | ||||
| 987 | |||||
| 988 | // If the copy constructor has not yet been declared, do so now. | ||||
| 989 | if (Class->needsImplicitCopyConstructor()) | ||||
| 990 | DeclareImplicitCopyConstructor(Class); | ||||
| 991 | |||||
| 992 | // If the copy assignment operator has not yet been declared, do so now. | ||||
| 993 | if (Class->needsImplicitCopyAssignment()) | ||||
| 994 | DeclareImplicitCopyAssignment(Class); | ||||
| 995 | |||||
| 996 | if (getLangOpts().CPlusPlus11) { | ||||
| 997 | // If the move constructor has not yet been declared, do so now. | ||||
| 998 | if (Class->needsImplicitMoveConstructor()) | ||||
| 999 | DeclareImplicitMoveConstructor(Class); | ||||
| 1000 | |||||
| 1001 | // If the move assignment operator has not yet been declared, do so now. | ||||
| 1002 | if (Class->needsImplicitMoveAssignment()) | ||||
| 1003 | DeclareImplicitMoveAssignment(Class); | ||||
| 1004 | } | ||||
| 1005 | |||||
| 1006 | // If the destructor has not yet been declared, do so now. | ||||
| 1007 | if (Class->needsImplicitDestructor()) | ||||
| 1008 | DeclareImplicitDestructor(Class); | ||||
| 1009 | } | ||||
| 1010 | |||||
| 1011 | /// Determine whether this is the name of an implicitly-declared | ||||
| 1012 | /// special member function. | ||||
| 1013 | static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { | ||||
| 1014 | switch (Name.getNameKind()) { | ||||
| 1015 | case DeclarationName::CXXConstructorName: | ||||
| 1016 | case DeclarationName::CXXDestructorName: | ||||
| 1017 | return true; | ||||
| 1018 | |||||
| 1019 | case DeclarationName::CXXOperatorName: | ||||
| 1020 | return Name.getCXXOverloadedOperator() == OO_Equal; | ||||
| 1021 | |||||
| 1022 | default: | ||||
| 1023 | break; | ||||
| 1024 | } | ||||
| 1025 | |||||
| 1026 | return false; | ||||
| 1027 | } | ||||
| 1028 | |||||
| 1029 | /// If there are any implicit member functions with the given name | ||||
| 1030 | /// that need to be declared in the given declaration context, do so. | ||||
| 1031 | static void DeclareImplicitMemberFunctionsWithName(Sema &S, | ||||
| 1032 | DeclarationName Name, | ||||
| 1033 | SourceLocation Loc, | ||||
| 1034 | const DeclContext *DC) { | ||||
| 1035 | if (!DC) | ||||
| 1036 | return; | ||||
| 1037 | |||||
| 1038 | switch (Name.getNameKind()) { | ||||
| 1039 | case DeclarationName::CXXConstructorName: | ||||
| 1040 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | ||||
| 1041 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { | ||||
| 1042 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); | ||||
| 1043 | if (Record->needsImplicitDefaultConstructor()) | ||||
| 1044 | S.DeclareImplicitDefaultConstructor(Class); | ||||
| 1045 | if (Record->needsImplicitCopyConstructor()) | ||||
| 1046 | S.DeclareImplicitCopyConstructor(Class); | ||||
| 1047 | if (S.getLangOpts().CPlusPlus11 && | ||||
| 1048 | Record->needsImplicitMoveConstructor()) | ||||
| 1049 | S.DeclareImplicitMoveConstructor(Class); | ||||
| 1050 | } | ||||
| 1051 | break; | ||||
| 1052 | |||||
| 1053 | case DeclarationName::CXXDestructorName: | ||||
| 1054 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | ||||
| 1055 | if (Record->getDefinition() && Record->needsImplicitDestructor() && | ||||
| 1056 | CanDeclareSpecialMemberFunction(Record)) | ||||
| 1057 | S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); | ||||
| 1058 | break; | ||||
| 1059 | |||||
| 1060 | case DeclarationName::CXXOperatorName: | ||||
| 1061 | if (Name.getCXXOverloadedOperator() != OO_Equal) | ||||
| 1062 | break; | ||||
| 1063 | |||||
| 1064 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { | ||||
| 1065 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { | ||||
| 1066 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); | ||||
| 1067 | if (Record->needsImplicitCopyAssignment()) | ||||
| 1068 | S.DeclareImplicitCopyAssignment(Class); | ||||
| 1069 | if (S.getLangOpts().CPlusPlus11 && | ||||
| 1070 | Record->needsImplicitMoveAssignment()) | ||||
| 1071 | S.DeclareImplicitMoveAssignment(Class); | ||||
| 1072 | } | ||||
| 1073 | } | ||||
| 1074 | break; | ||||
| 1075 | |||||
| 1076 | case DeclarationName::CXXDeductionGuideName: | ||||
| 1077 | S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); | ||||
| 1078 | break; | ||||
| 1079 | |||||
| 1080 | default: | ||||
| 1081 | break; | ||||
| 1082 | } | ||||
| 1083 | } | ||||
| 1084 | |||||
| 1085 | // Adds all qualifying matches for a name within a decl context to the | ||||
| 1086 | // given lookup result. Returns true if any matches were found. | ||||
| 1087 | static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { | ||||
| 1088 | bool Found = false; | ||||
| 1089 | |||||
| 1090 | // Lazily declare C++ special member functions. | ||||
| 1091 | if (S.getLangOpts().CPlusPlus) | ||||
| 1092 | DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), | ||||
| 1093 | DC); | ||||
| 1094 | |||||
| 1095 | // Perform lookup into this declaration context. | ||||
| 1096 | DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); | ||||
| 1097 | for (NamedDecl *D : DR) { | ||||
| 1098 | if ((D = R.getAcceptableDecl(D))) { | ||||
| 1099 | R.addDecl(D); | ||||
| 1100 | Found = true; | ||||
| 1101 | } | ||||
| 1102 | } | ||||
| 1103 | |||||
| 1104 | if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) | ||||
| 1105 | return true; | ||||
| 1106 | |||||
| 1107 | if (R.getLookupName().getNameKind() | ||||
| 1108 | != DeclarationName::CXXConversionFunctionName || | ||||
| 1109 | R.getLookupName().getCXXNameType()->isDependentType() || | ||||
| 1110 | !isa<CXXRecordDecl>(DC)) | ||||
| 1111 | return Found; | ||||
| 1112 | |||||
| 1113 | // C++ [temp.mem]p6: | ||||
| 1114 | // A specialization of a conversion function template is not found by | ||||
| 1115 | // name lookup. Instead, any conversion function templates visible in the | ||||
| 1116 | // context of the use are considered. [...] | ||||
| 1117 | const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | ||||
| 1118 | if (!Record->isCompleteDefinition()) | ||||
| 1119 | return Found; | ||||
| 1120 | |||||
| 1121 | // For conversion operators, 'operator auto' should only match | ||||
| 1122 | // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered | ||||
| 1123 | // as a candidate for template substitution. | ||||
| 1124 | auto *ContainedDeducedType = | ||||
| 1125 | R.getLookupName().getCXXNameType()->getContainedDeducedType(); | ||||
| 1126 | if (R.getLookupName().getNameKind() == | ||||
| 1127 | DeclarationName::CXXConversionFunctionName && | ||||
| 1128 | ContainedDeducedType && ContainedDeducedType->isUndeducedType()) | ||||
| 1129 | return Found; | ||||
| 1130 | |||||
| 1131 | for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), | ||||
| 1132 | UEnd = Record->conversion_end(); U != UEnd; ++U) { | ||||
| 1133 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); | ||||
| 1134 | if (!ConvTemplate) | ||||
| 1135 | continue; | ||||
| 1136 | |||||
| 1137 | // When we're performing lookup for the purposes of redeclaration, just | ||||
| 1138 | // add the conversion function template. When we deduce template | ||||
| 1139 | // arguments for specializations, we'll end up unifying the return | ||||
| 1140 | // type of the new declaration with the type of the function template. | ||||
| 1141 | if (R.isForRedeclaration()) { | ||||
| 1142 | R.addDecl(ConvTemplate); | ||||
| 1143 | Found = true; | ||||
| 1144 | continue; | ||||
| 1145 | } | ||||
| 1146 | |||||
| 1147 | // C++ [temp.mem]p6: | ||||
| 1148 | // [...] For each such operator, if argument deduction succeeds | ||||
| 1149 | // (14.9.2.3), the resulting specialization is used as if found by | ||||
| 1150 | // name lookup. | ||||
| 1151 | // | ||||
| 1152 | // When referencing a conversion function for any purpose other than | ||||
| 1153 | // a redeclaration (such that we'll be building an expression with the | ||||
| 1154 | // result), perform template argument deduction and place the | ||||
| 1155 | // specialization into the result set. We do this to avoid forcing all | ||||
| 1156 | // callers to perform special deduction for conversion functions. | ||||
| 1157 | TemplateDeductionInfo Info(R.getNameLoc()); | ||||
| 1158 | FunctionDecl *Specialization = nullptr; | ||||
| 1159 | |||||
| 1160 | const FunctionProtoType *ConvProto | ||||
| 1161 | = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); | ||||
| 1162 | assert(ConvProto && "Nonsensical conversion function template type")((void)0); | ||||
| 1163 | |||||
| 1164 | // Compute the type of the function that we would expect the conversion | ||||
| 1165 | // function to have, if it were to match the name given. | ||||
| 1166 | // FIXME: Calling convention! | ||||
| 1167 | FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); | ||||
| 1168 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); | ||||
| 1169 | EPI.ExceptionSpec = EST_None; | ||||
| 1170 | QualType ExpectedType | ||||
| 1171 | = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(), | ||||
| 1172 | None, EPI); | ||||
| 1173 | |||||
| 1174 | // Perform template argument deduction against the type that we would | ||||
| 1175 | // expect the function to have. | ||||
| 1176 | if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, | ||||
| 1177 | Specialization, Info) | ||||
| 1178 | == Sema::TDK_Success) { | ||||
| 1179 | R.addDecl(Specialization); | ||||
| 1180 | Found = true; | ||||
| 1181 | } | ||||
| 1182 | } | ||||
| 1183 | |||||
| 1184 | return Found; | ||||
| 1185 | } | ||||
| 1186 | |||||
| 1187 | // Performs C++ unqualified lookup into the given file context. | ||||
| 1188 | static bool | ||||
| 1189 | CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, | ||||
| 1190 | DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { | ||||
| 1191 | |||||
| 1192 | assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")((void)0); | ||||
| 1193 | |||||
| 1194 | // Perform direct name lookup into the LookupCtx. | ||||
| 1195 | bool Found = LookupDirect(S, R, NS); | ||||
| 1196 | |||||
| 1197 | // Perform direct name lookup into the namespaces nominated by the | ||||
| 1198 | // using directives whose common ancestor is this namespace. | ||||
| 1199 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) | ||||
| 1200 | if (LookupDirect(S, R, UUE.getNominatedNamespace())) | ||||
| 1201 | Found = true; | ||||
| 1202 | |||||
| 1203 | R.resolveKind(); | ||||
| 1204 | |||||
| 1205 | return Found; | ||||
| 1206 | } | ||||
| 1207 | |||||
| 1208 | static bool isNamespaceOrTranslationUnitScope(Scope *S) { | ||||
| 1209 | if (DeclContext *Ctx = S->getEntity()) | ||||
| 1210 | return Ctx->isFileContext(); | ||||
| 1211 | return false; | ||||
| 1212 | } | ||||
| 1213 | |||||
| 1214 | /// Find the outer declaration context from this scope. This indicates the | ||||
| 1215 | /// context that we should search up to (exclusive) before considering the | ||||
| 1216 | /// parent of the specified scope. | ||||
| 1217 | static DeclContext *findOuterContext(Scope *S) { | ||||
| 1218 | for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) | ||||
| 1219 | if (DeclContext *DC = OuterS->getLookupEntity()) | ||||
| 1220 | return DC; | ||||
| 1221 | return nullptr; | ||||
| 1222 | } | ||||
| 1223 | |||||
| 1224 | namespace { | ||||
| 1225 | /// An RAII object to specify that we want to find block scope extern | ||||
| 1226 | /// declarations. | ||||
| 1227 | struct FindLocalExternScope { | ||||
| 1228 | FindLocalExternScope(LookupResult &R) | ||||
| 1229 | : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & | ||||
| 1230 | Decl::IDNS_LocalExtern) { | ||||
| 1231 | R.setFindLocalExtern(R.getIdentifierNamespace() & | ||||
| 1232 | (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); | ||||
| 1233 | } | ||||
| 1234 | void restore() { | ||||
| 1235 | R.setFindLocalExtern(OldFindLocalExtern); | ||||
| 1236 | } | ||||
| 1237 | ~FindLocalExternScope() { | ||||
| 1238 | restore(); | ||||
| 1239 | } | ||||
| 1240 | LookupResult &R; | ||||
| 1241 | bool OldFindLocalExtern; | ||||
| 1242 | }; | ||||
| 1243 | } // end anonymous namespace | ||||
| 1244 | |||||
| 1245 | bool Sema::CppLookupName(LookupResult &R, Scope *S) { | ||||
| 1246 | assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")((void)0); | ||||
| 1247 | |||||
| 1248 | DeclarationName Name = R.getLookupName(); | ||||
| 1249 | Sema::LookupNameKind NameKind = R.getLookupKind(); | ||||
| 1250 | |||||
| 1251 | // If this is the name of an implicitly-declared special member function, | ||||
| 1252 | // go through the scope stack to implicitly declare | ||||
| 1253 | if (isImplicitlyDeclaredMemberFunctionName(Name)) { | ||||
| 1254 | for (Scope *PreS = S; PreS; PreS = PreS->getParent()) | ||||
| 1255 | if (DeclContext *DC = PreS->getEntity()) | ||||
| 1256 | DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); | ||||
| 1257 | } | ||||
| 1258 | |||||
| 1259 | // Implicitly declare member functions with the name we're looking for, if in | ||||
| 1260 | // fact we are in a scope where it matters. | ||||
| 1261 | |||||
| 1262 | Scope *Initial = S; | ||||
| 1263 | IdentifierResolver::iterator | ||||
| 1264 | I = IdResolver.begin(Name), | ||||
| 1265 | IEnd = IdResolver.end(); | ||||
| 1266 | |||||
| 1267 | // First we lookup local scope. | ||||
| 1268 | // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] | ||||
| 1269 | // ...During unqualified name lookup (3.4.1), the names appear as if | ||||
| 1270 | // they were declared in the nearest enclosing namespace which contains | ||||
| 1271 | // both the using-directive and the nominated namespace. | ||||
| 1272 | // [Note: in this context, "contains" means "contains directly or | ||||
| 1273 | // indirectly". | ||||
| 1274 | // | ||||
| 1275 | // For example: | ||||
| 1276 | // namespace A { int i; } | ||||
| 1277 | // void foo() { | ||||
| 1278 | // int i; | ||||
| 1279 | // { | ||||
| 1280 | // using namespace A; | ||||
| 1281 | // ++i; // finds local 'i', A::i appears at global scope | ||||
| 1282 | // } | ||||
| 1283 | // } | ||||
| 1284 | // | ||||
| 1285 | UnqualUsingDirectiveSet UDirs(*this); | ||||
| 1286 | bool VisitedUsingDirectives = false; | ||||
| 1287 | bool LeftStartingScope = false; | ||||
| 1288 | |||||
| 1289 | // When performing a scope lookup, we want to find local extern decls. | ||||
| 1290 | FindLocalExternScope FindLocals(R); | ||||
| 1291 | |||||
| 1292 | for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { | ||||
| 1293 | bool SearchNamespaceScope = true; | ||||
| 1294 | // Check whether the IdResolver has anything in this scope. | ||||
| 1295 | for (; I != IEnd && S->isDeclScope(*I); ++I) { | ||||
| 1296 | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { | ||||
| 1297 | if (NameKind == LookupRedeclarationWithLinkage && | ||||
| 1298 | !(*I)->isTemplateParameter()) { | ||||
| 1299 | // If it's a template parameter, we still find it, so we can diagnose | ||||
| 1300 | // the invalid redeclaration. | ||||
| 1301 | |||||
| 1302 | // Determine whether this (or a previous) declaration is | ||||
| 1303 | // out-of-scope. | ||||
| 1304 | if (!LeftStartingScope && !Initial->isDeclScope(*I)) | ||||
| 1305 | LeftStartingScope = true; | ||||
| 1306 | |||||
| 1307 | // If we found something outside of our starting scope that | ||||
| 1308 | // does not have linkage, skip it. | ||||
| 1309 | if (LeftStartingScope && !((*I)->hasLinkage())) { | ||||
| 1310 | R.setShadowed(); | ||||
| 1311 | continue; | ||||
| 1312 | } | ||||
| 1313 | } else { | ||||
| 1314 | // We found something in this scope, we should not look at the | ||||
| 1315 | // namespace scope | ||||
| 1316 | SearchNamespaceScope = false; | ||||
| 1317 | } | ||||
| 1318 | R.addDecl(ND); | ||||
| 1319 | } | ||||
| 1320 | } | ||||
| 1321 | if (!SearchNamespaceScope) { | ||||
| 1322 | R.resolveKind(); | ||||
| 1323 | if (S->isClassScope()) | ||||
| 1324 | if (CXXRecordDecl *Record = | ||||
| 1325 | dyn_cast_or_null<CXXRecordDecl>(S->getEntity())) | ||||
| 1326 | R.setNamingClass(Record); | ||||
| 1327 | return true; | ||||
| 1328 | } | ||||
| 1329 | |||||
| 1330 | if (NameKind == LookupLocalFriendName && !S->isClassScope()) { | ||||
| 1331 | // C++11 [class.friend]p11: | ||||
| 1332 | // If a friend declaration appears in a local class and the name | ||||
| 1333 | // specified is an unqualified name, a prior declaration is | ||||
| 1334 | // looked up without considering scopes that are outside the | ||||
| 1335 | // innermost enclosing non-class scope. | ||||
| 1336 | return false; | ||||
| 1337 | } | ||||
| 1338 | |||||
| 1339 | if (DeclContext *Ctx = S->getLookupEntity()) { | ||||
| 1340 | DeclContext *OuterCtx = findOuterContext(S); | ||||
| 1341 | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { | ||||
| 1342 | // We do not directly look into transparent contexts, since | ||||
| 1343 | // those entities will be found in the nearest enclosing | ||||
| 1344 | // non-transparent context. | ||||
| 1345 | if (Ctx->isTransparentContext()) | ||||
| 1346 | continue; | ||||
| 1347 | |||||
| 1348 | // We do not look directly into function or method contexts, | ||||
| 1349 | // since all of the local variables and parameters of the | ||||
| 1350 | // function/method are present within the Scope. | ||||
| 1351 | if (Ctx->isFunctionOrMethod()) { | ||||
| 1352 | // If we have an Objective-C instance method, look for ivars | ||||
| 1353 | // in the corresponding interface. | ||||
| 1354 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { | ||||
| 1355 | if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) | ||||
| 1356 | if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { | ||||
| 1357 | ObjCInterfaceDecl *ClassDeclared; | ||||
| 1358 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( | ||||
| 1359 | Name.getAsIdentifierInfo(), | ||||
| 1360 | ClassDeclared)) { | ||||
| 1361 | if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { | ||||
| 1362 | R.addDecl(ND); | ||||
| 1363 | R.resolveKind(); | ||||
| 1364 | return true; | ||||
| 1365 | } | ||||
| 1366 | } | ||||
| 1367 | } | ||||
| 1368 | } | ||||
| 1369 | |||||
| 1370 | continue; | ||||
| 1371 | } | ||||
| 1372 | |||||
| 1373 | // If this is a file context, we need to perform unqualified name | ||||
| 1374 | // lookup considering using directives. | ||||
| 1375 | if (Ctx->isFileContext()) { | ||||
| 1376 | // If we haven't handled using directives yet, do so now. | ||||
| 1377 | if (!VisitedUsingDirectives) { | ||||
| 1378 | // Add using directives from this context up to the top level. | ||||
| 1379 | for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { | ||||
| 1380 | if (UCtx->isTransparentContext()) | ||||
| 1381 | continue; | ||||
| 1382 | |||||
| 1383 | UDirs.visit(UCtx, UCtx); | ||||
| 1384 | } | ||||
| 1385 | |||||
| 1386 | // Find the innermost file scope, so we can add using directives | ||||
| 1387 | // from local scopes. | ||||
| 1388 | Scope *InnermostFileScope = S; | ||||
| 1389 | while (InnermostFileScope && | ||||
| 1390 | !isNamespaceOrTranslationUnitScope(InnermostFileScope)) | ||||
| 1391 | InnermostFileScope = InnermostFileScope->getParent(); | ||||
| 1392 | UDirs.visitScopeChain(Initial, InnermostFileScope); | ||||
| 1393 | |||||
| 1394 | UDirs.done(); | ||||
| 1395 | |||||
| 1396 | VisitedUsingDirectives = true; | ||||
| 1397 | } | ||||
| 1398 | |||||
| 1399 | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { | ||||
| 1400 | R.resolveKind(); | ||||
| 1401 | return true; | ||||
| 1402 | } | ||||
| 1403 | |||||
| 1404 | continue; | ||||
| 1405 | } | ||||
| 1406 | |||||
| 1407 | // Perform qualified name lookup into this context. | ||||
| 1408 | // FIXME: In some cases, we know that every name that could be found by | ||||
| 1409 | // this qualified name lookup will also be on the identifier chain. For | ||||
| 1410 | // example, inside a class without any base classes, we never need to | ||||
| 1411 | // perform qualified lookup because all of the members are on top of the | ||||
| 1412 | // identifier chain. | ||||
| 1413 | if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) | ||||
| 1414 | return true; | ||||
| 1415 | } | ||||
| 1416 | } | ||||
| 1417 | } | ||||
| 1418 | |||||
| 1419 | // Stop if we ran out of scopes. | ||||
| 1420 | // FIXME: This really, really shouldn't be happening. | ||||
| 1421 | if (!S) return false; | ||||
| 1422 | |||||
| 1423 | // If we are looking for members, no need to look into global/namespace scope. | ||||
| 1424 | if (NameKind == LookupMemberName) | ||||
| 1425 | return false; | ||||
| 1426 | |||||
| 1427 | // Collect UsingDirectiveDecls in all scopes, and recursively all | ||||
| 1428 | // nominated namespaces by those using-directives. | ||||
| 1429 | // | ||||
| 1430 | // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we | ||||
| 1431 | // don't build it for each lookup! | ||||
| 1432 | if (!VisitedUsingDirectives) { | ||||
| 1433 | UDirs.visitScopeChain(Initial, S); | ||||
| 1434 | UDirs.done(); | ||||
| 1435 | } | ||||
| 1436 | |||||
| 1437 | // If we're not performing redeclaration lookup, do not look for local | ||||
| 1438 | // extern declarations outside of a function scope. | ||||
| 1439 | if (!R.isForRedeclaration()) | ||||
| 1440 | FindLocals.restore(); | ||||
| 1441 | |||||
| 1442 | // Lookup namespace scope, and global scope. | ||||
| 1443 | // Unqualified name lookup in C++ requires looking into scopes | ||||
| 1444 | // that aren't strictly lexical, and therefore we walk through the | ||||
| 1445 | // context as well as walking through the scopes. | ||||
| 1446 | for (; S; S = S->getParent()) { | ||||
| 1447 | // Check whether the IdResolver has anything in this scope. | ||||
| 1448 | bool Found = false; | ||||
| 1449 | for (; I != IEnd && S->isDeclScope(*I); ++I) { | ||||
| 1450 | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { | ||||
| 1451 | // We found something. Look for anything else in our scope | ||||
| 1452 | // with this same name and in an acceptable identifier | ||||
| 1453 | // namespace, so that we can construct an overload set if we | ||||
| 1454 | // need to. | ||||
| 1455 | Found = true; | ||||
| 1456 | R.addDecl(ND); | ||||
| 1457 | } | ||||
| 1458 | } | ||||
| 1459 | |||||
| 1460 | if (Found && S->isTemplateParamScope()) { | ||||
| 1461 | R.resolveKind(); | ||||
| 1462 | return true; | ||||
| 1463 | } | ||||
| 1464 | |||||
| 1465 | DeclContext *Ctx = S->getLookupEntity(); | ||||
| 1466 | if (Ctx) { | ||||
| 1467 | DeclContext *OuterCtx = findOuterContext(S); | ||||
| 1468 | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { | ||||
| 1469 | // We do not directly look into transparent contexts, since | ||||
| 1470 | // those entities will be found in the nearest enclosing | ||||
| 1471 | // non-transparent context. | ||||
| 1472 | if (Ctx->isTransparentContext()) | ||||
| 1473 | continue; | ||||
| 1474 | |||||
| 1475 | // If we have a context, and it's not a context stashed in the | ||||
| 1476 | // template parameter scope for an out-of-line definition, also | ||||
| 1477 | // look into that context. | ||||
| 1478 | if (!(Found && S->isTemplateParamScope())) { | ||||
| 1479 | assert(Ctx->isFileContext() &&((void)0) | ||||
| 1480 | "We should have been looking only at file context here already.")((void)0); | ||||
| 1481 | |||||
| 1482 | // Look into context considering using-directives. | ||||
| 1483 | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) | ||||
| 1484 | Found = true; | ||||
| 1485 | } | ||||
| 1486 | |||||
| 1487 | if (Found) { | ||||
| 1488 | R.resolveKind(); | ||||
| 1489 | return true; | ||||
| 1490 | } | ||||
| 1491 | |||||
| 1492 | if (R.isForRedeclaration() && !Ctx->isTransparentContext()) | ||||
| 1493 | return false; | ||||
| 1494 | } | ||||
| 1495 | } | ||||
| 1496 | |||||
| 1497 | if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) | ||||
| 1498 | return false; | ||||
| 1499 | } | ||||
| 1500 | |||||
| 1501 | return !R.empty(); | ||||
| 1502 | } | ||||
| 1503 | |||||
| 1504 | void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { | ||||
| 1505 | if (auto *M = getCurrentModule()) | ||||
| 1506 | Context.mergeDefinitionIntoModule(ND, M); | ||||
| 1507 | else | ||||
| 1508 | // We're not building a module; just make the definition visible. | ||||
| 1509 | ND->setVisibleDespiteOwningModule(); | ||||
| 1510 | |||||
| 1511 | // If ND is a template declaration, make the template parameters | ||||
| 1512 | // visible too. They're not (necessarily) within a mergeable DeclContext. | ||||
| 1513 | if (auto *TD = dyn_cast<TemplateDecl>(ND)) | ||||
| 1514 | for (auto *Param : *TD->getTemplateParameters()) | ||||
| 1515 | makeMergedDefinitionVisible(Param); | ||||
| 1516 | } | ||||
| 1517 | |||||
| 1518 | /// Find the module in which the given declaration was defined. | ||||
| 1519 | static Module *getDefiningModule(Sema &S, Decl *Entity) { | ||||
| 1520 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { | ||||
| 1521 | // If this function was instantiated from a template, the defining module is | ||||
| 1522 | // the module containing the pattern. | ||||
| 1523 | if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) | ||||
| 1524 | Entity = Pattern; | ||||
| 1525 | } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { | ||||
| 1526 | if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) | ||||
| 1527 | Entity = Pattern; | ||||
| 1528 | } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { | ||||
| 1529 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) | ||||
| 1530 | Entity = Pattern; | ||||
| 1531 | } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { | ||||
| 1532 | if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) | ||||
| 1533 | Entity = Pattern; | ||||
| 1534 | } | ||||
| 1535 | |||||
| 1536 | // Walk up to the containing context. That might also have been instantiated | ||||
| 1537 | // from a template. | ||||
| 1538 | DeclContext *Context = Entity->getLexicalDeclContext(); | ||||
| 1539 | if (Context->isFileContext()) | ||||
| 1540 | return S.getOwningModule(Entity); | ||||
| 1541 | return getDefiningModule(S, cast<Decl>(Context)); | ||||
| 1542 | } | ||||
| 1543 | |||||
| 1544 | llvm::DenseSet<Module*> &Sema::getLookupModules() { | ||||
| 1545 | unsigned N = CodeSynthesisContexts.size(); | ||||
| 1546 | for (unsigned I = CodeSynthesisContextLookupModules.size(); | ||||
| 1547 | I != N; ++I) { | ||||
| 1548 | Module *M = CodeSynthesisContexts[I].Entity ? | ||||
| 1549 | getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : | ||||
| 1550 | nullptr; | ||||
| 1551 | if (M && !LookupModulesCache.insert(M).second) | ||||
| 1552 | M = nullptr; | ||||
| 1553 | CodeSynthesisContextLookupModules.push_back(M); | ||||
| 1554 | } | ||||
| 1555 | return LookupModulesCache; | ||||
| 1556 | } | ||||
| 1557 | |||||
| 1558 | /// Determine whether the module M is part of the current module from the | ||||
| 1559 | /// perspective of a module-private visibility check. | ||||
| 1560 | static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) { | ||||
| 1561 | // If M is the global module fragment of a module that we've not yet finished | ||||
| 1562 | // parsing, then it must be part of the current module. | ||||
| 1563 | return M->getTopLevelModuleName() == LangOpts.CurrentModule || | ||||
| 1564 | (M->Kind == Module::GlobalModuleFragment && !M->Parent); | ||||
| 1565 | } | ||||
| 1566 | |||||
| 1567 | bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) { | ||||
| 1568 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) | ||||
| 1569 | if (isModuleVisible(Merged)) | ||||
| 1570 | return true; | ||||
| 1571 | return false; | ||||
| 1572 | } | ||||
| 1573 | |||||
| 1574 | bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) { | ||||
| 1575 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) | ||||
| 1576 | if (isInCurrentModule(Merged, getLangOpts())) | ||||
| 1577 | return true; | ||||
| 1578 | return false; | ||||
| 1579 | } | ||||
| 1580 | |||||
| 1581 | template<typename ParmDecl> | ||||
| 1582 | static bool | ||||
| 1583 | hasVisibleDefaultArgument(Sema &S, const ParmDecl *D, | ||||
| 1584 | llvm::SmallVectorImpl<Module *> *Modules) { | ||||
| 1585 | if (!D->hasDefaultArgument()) | ||||
| 1586 | return false; | ||||
| 1587 | |||||
| 1588 | while (D) { | ||||
| 1589 | auto &DefaultArg = D->getDefaultArgStorage(); | ||||
| 1590 | if (!DefaultArg.isInherited() && S.isVisible(D)) | ||||
| 1591 | return true; | ||||
| 1592 | |||||
| 1593 | if (!DefaultArg.isInherited() && Modules) { | ||||
| 1594 | auto *NonConstD = const_cast<ParmDecl*>(D); | ||||
| 1595 | Modules->push_back(S.getOwningModule(NonConstD)); | ||||
| 1596 | } | ||||
| 1597 | |||||
| 1598 | // If there was a previous default argument, maybe its parameter is visible. | ||||
| 1599 | D = DefaultArg.getInheritedFrom(); | ||||
| 1600 | } | ||||
| 1601 | return false; | ||||
| 1602 | } | ||||
| 1603 | |||||
| 1604 | bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, | ||||
| 1605 | llvm::SmallVectorImpl<Module *> *Modules) { | ||||
| 1606 | if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) | ||||
| 1607 | return ::hasVisibleDefaultArgument(*this, P, Modules); | ||||
| 1608 | if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) | ||||
| 1609 | return ::hasVisibleDefaultArgument(*this, P, Modules); | ||||
| 1610 | return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D), | ||||
| 1611 | Modules); | ||||
| 1612 | } | ||||
| 1613 | |||||
| 1614 | template<typename Filter> | ||||
| 1615 | static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D, | ||||
| 1616 | llvm::SmallVectorImpl<Module *> *Modules, | ||||
| 1617 | Filter F) { | ||||
| 1618 | bool HasFilteredRedecls = false; | ||||
| 1619 | |||||
| 1620 | for (auto *Redecl : D->redecls()) { | ||||
| 1621 | auto *R = cast<NamedDecl>(Redecl); | ||||
| 1622 | if (!F(R)) | ||||
| 1623 | continue; | ||||
| 1624 | |||||
| 1625 | if (S.isVisible(R)) | ||||
| 1626 | return true; | ||||
| 1627 | |||||
| 1628 | HasFilteredRedecls = true; | ||||
| 1629 | |||||
| 1630 | if (Modules) | ||||
| 1631 | Modules->push_back(R->getOwningModule()); | ||||
| 1632 | } | ||||
| 1633 | |||||
| 1634 | // Only return false if there is at least one redecl that is not filtered out. | ||||
| 1635 | if (HasFilteredRedecls) | ||||
| 1636 | return false; | ||||
| 1637 | |||||
| 1638 | return true; | ||||
| 1639 | } | ||||
| 1640 | |||||
| 1641 | bool Sema::hasVisibleExplicitSpecialization( | ||||
| 1642 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | ||||
| 1643 | return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) { | ||||
| 1644 | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) | ||||
| 1645 | return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | ||||
| 1646 | if (auto *FD = dyn_cast<FunctionDecl>(D)) | ||||
| 1647 | return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | ||||
| 1648 | if (auto *VD = dyn_cast<VarDecl>(D)) | ||||
| 1649 | return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization; | ||||
| 1650 | llvm_unreachable("unknown explicit specialization kind")__builtin_unreachable(); | ||||
| 1651 | }); | ||||
| 1652 | } | ||||
| 1653 | |||||
| 1654 | bool Sema::hasVisibleMemberSpecialization( | ||||
| 1655 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | ||||
| 1656 | assert(isa<CXXRecordDecl>(D->getDeclContext()) &&((void)0) | ||||
| 1657 | "not a member specialization")((void)0); | ||||
| 1658 | return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) { | ||||
| 1659 | // If the specialization is declared at namespace scope, then it's a member | ||||
| 1660 | // specialization declaration. If it's lexically inside the class | ||||
| 1661 | // definition then it was instantiated. | ||||
| 1662 | // | ||||
| 1663 | // FIXME: This is a hack. There should be a better way to determine this. | ||||
| 1664 | // FIXME: What about MS-style explicit specializations declared within a | ||||
| 1665 | // class definition? | ||||
| 1666 | return D->getLexicalDeclContext()->isFileContext(); | ||||
| 1667 | }); | ||||
| 1668 | } | ||||
| 1669 | |||||
| 1670 | /// Determine whether a declaration is visible to name lookup. | ||||
| 1671 | /// | ||||
| 1672 | /// This routine determines whether the declaration D is visible in the current | ||||
| 1673 | /// lookup context, taking into account the current template instantiation | ||||
| 1674 | /// stack. During template instantiation, a declaration is visible if it is | ||||
| 1675 | /// visible from a module containing any entity on the template instantiation | ||||
| 1676 | /// path (by instantiating a template, you allow it to see the declarations that | ||||
| 1677 | /// your module can see, including those later on in your module). | ||||
| 1678 | bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) { | ||||
| 1679 | assert(!D->isUnconditionallyVisible() &&((void)0) | ||||
| 1680 | "should not call this: not in slow case")((void)0); | ||||
| 1681 | |||||
| 1682 | Module *DeclModule = SemaRef.getOwningModule(D); | ||||
| 1683 | assert(DeclModule && "hidden decl has no owning module")((void)0); | ||||
| 1684 | |||||
| 1685 | // If the owning module is visible, the decl is visible. | ||||
| 1686 | if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate())) | ||||
| 1687 | return true; | ||||
| 1688 | |||||
| 1689 | // Determine whether a decl context is a file context for the purpose of | ||||
| 1690 | // visibility. This looks through some (export and linkage spec) transparent | ||||
| 1691 | // contexts, but not others (enums). | ||||
| 1692 | auto IsEffectivelyFileContext = [](const DeclContext *DC) { | ||||
| 1693 | return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || | ||||
| 1694 | isa<ExportDecl>(DC); | ||||
| 1695 | }; | ||||
| 1696 | |||||
| 1697 | // If this declaration is not at namespace scope | ||||
| 1698 | // then it is visible if its lexical parent has a visible definition. | ||||
| 1699 | DeclContext *DC = D->getLexicalDeclContext(); | ||||
| 1700 | if (DC && !IsEffectivelyFileContext(DC)) { | ||||
| 1701 | // For a parameter, check whether our current template declaration's | ||||
| 1702 | // lexical context is visible, not whether there's some other visible | ||||
| 1703 | // definition of it, because parameters aren't "within" the definition. | ||||
| 1704 | // | ||||
| 1705 | // In C++ we need to check for a visible definition due to ODR merging, | ||||
| 1706 | // and in C we must not because each declaration of a function gets its own | ||||
| 1707 | // set of declarations for tags in prototype scope. | ||||
| 1708 | bool VisibleWithinParent; | ||||
| 1709 | if (D->isTemplateParameter()) { | ||||
| 1710 | bool SearchDefinitions = true; | ||||
| 1711 | if (const auto *DCD = dyn_cast<Decl>(DC)) { | ||||
| 1712 | if (const auto *TD = DCD->getDescribedTemplate()) { | ||||
| 1713 | TemplateParameterList *TPL = TD->getTemplateParameters(); | ||||
| 1714 | auto Index = getDepthAndIndex(D).second; | ||||
| 1715 | SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; | ||||
| 1716 | } | ||||
| 1717 | } | ||||
| 1718 | if (SearchDefinitions) | ||||
| 1719 | VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC)); | ||||
| 1720 | else | ||||
| 1721 | VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC)); | ||||
| 1722 | } else if (isa<ParmVarDecl>(D) || | ||||
| 1723 | (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) | ||||
| 1724 | VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC)); | ||||
| 1725 | else if (D->isModulePrivate()) { | ||||
| 1726 | // A module-private declaration is only visible if an enclosing lexical | ||||
| 1727 | // parent was merged with another definition in the current module. | ||||
| 1728 | VisibleWithinParent = false; | ||||
| 1729 | do { | ||||
| 1730 | if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { | ||||
| 1731 | VisibleWithinParent = true; | ||||
| 1732 | break; | ||||
| 1733 | } | ||||
| 1734 | DC = DC->getLexicalParent(); | ||||
| 1735 | } while (!IsEffectivelyFileContext(DC)); | ||||
| 1736 | } else { | ||||
| 1737 | VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC)); | ||||
| 1738 | } | ||||
| 1739 | |||||
| 1740 | if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() && | ||||
| 1741 | // FIXME: Do something better in this case. | ||||
| 1742 | !SemaRef.getLangOpts().ModulesLocalVisibility) { | ||||
| 1743 | // Cache the fact that this declaration is implicitly visible because | ||||
| 1744 | // its parent has a visible definition. | ||||
| 1745 | D->setVisibleDespiteOwningModule(); | ||||
| 1746 | } | ||||
| 1747 | return VisibleWithinParent; | ||||
| 1748 | } | ||||
| 1749 | |||||
| 1750 | return false; | ||||
| 1751 | } | ||||
| 1752 | |||||
| 1753 | bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { | ||||
| 1754 | // The module might be ordinarily visible. For a module-private query, that | ||||
| 1755 | // means it is part of the current module. For any other query, that means it | ||||
| 1756 | // is in our visible module set. | ||||
| 1757 | if (ModulePrivate) { | ||||
| 1758 | if (isInCurrentModule(M, getLangOpts())) | ||||
| 1759 | return true; | ||||
| 1760 | } else { | ||||
| 1761 | if (VisibleModules.isVisible(M)) | ||||
| 1762 | return true; | ||||
| 1763 | } | ||||
| 1764 | |||||
| 1765 | // Otherwise, it might be visible by virtue of the query being within a | ||||
| 1766 | // template instantiation or similar that is permitted to look inside M. | ||||
| 1767 | |||||
| 1768 | // Find the extra places where we need to look. | ||||
| 1769 | const auto &LookupModules = getLookupModules(); | ||||
| 1770 | if (LookupModules.empty()) | ||||
| 1771 | return false; | ||||
| 1772 | |||||
| 1773 | // If our lookup set contains the module, it's visible. | ||||
| 1774 | if (LookupModules.count(M)) | ||||
| 1775 | return true; | ||||
| 1776 | |||||
| 1777 | // For a module-private query, that's everywhere we get to look. | ||||
| 1778 | if (ModulePrivate) | ||||
| 1779 | return false; | ||||
| 1780 | |||||
| 1781 | // Check whether M is transitively exported to an import of the lookup set. | ||||
| 1782 | return llvm::any_of(LookupModules, [&](const Module *LookupM) { | ||||
| 1783 | return LookupM->isModuleVisible(M); | ||||
| 1784 | }); | ||||
| 1785 | } | ||||
| 1786 | |||||
| 1787 | bool Sema::isVisibleSlow(const NamedDecl *D) { | ||||
| 1788 | return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D)); | ||||
| 1789 | } | ||||
| 1790 | |||||
| 1791 | bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { | ||||
| 1792 | // FIXME: If there are both visible and hidden declarations, we need to take | ||||
| 1793 | // into account whether redeclaration is possible. Example: | ||||
| 1794 | // | ||||
| 1795 | // Non-imported module: | ||||
| 1796 | // int f(T); // #1 | ||||
| 1797 | // Some TU: | ||||
| 1798 | // static int f(U); // #2, not a redeclaration of #1 | ||||
| 1799 | // int f(T); // #3, finds both, should link with #1 if T != U, but | ||||
| 1800 | // // with #2 if T == U; neither should be ambiguous. | ||||
| 1801 | for (auto *D : R) { | ||||
| 1802 | if (isVisible(D)) | ||||
| 1803 | return true; | ||||
| 1804 | assert(D->isExternallyDeclarable() &&((void)0) | ||||
| 1805 | "should not have hidden, non-externally-declarable result here")((void)0); | ||||
| 1806 | } | ||||
| 1807 | |||||
| 1808 | // This function is called once "New" is essentially complete, but before a | ||||
| 1809 | // previous declaration is attached. We can't query the linkage of "New" in | ||||
| 1810 | // general, because attaching the previous declaration can change the | ||||
| 1811 | // linkage of New to match the previous declaration. | ||||
| 1812 | // | ||||
| 1813 | // However, because we've just determined that there is no *visible* prior | ||||
| 1814 | // declaration, we can compute the linkage here. There are two possibilities: | ||||
| 1815 | // | ||||
| 1816 | // * This is not a redeclaration; it's safe to compute the linkage now. | ||||
| 1817 | // | ||||
| 1818 | // * This is a redeclaration of a prior declaration that is externally | ||||
| 1819 | // redeclarable. In that case, the linkage of the declaration is not | ||||
| 1820 | // changed by attaching the prior declaration, because both are externally | ||||
| 1821 | // declarable (and thus ExternalLinkage or VisibleNoLinkage). | ||||
| 1822 | // | ||||
| 1823 | // FIXME: This is subtle and fragile. | ||||
| 1824 | return New->isExternallyDeclarable(); | ||||
| 1825 | } | ||||
| 1826 | |||||
| 1827 | /// Retrieve the visible declaration corresponding to D, if any. | ||||
| 1828 | /// | ||||
| 1829 | /// This routine determines whether the declaration D is visible in the current | ||||
| 1830 | /// module, with the current imports. If not, it checks whether any | ||||
| 1831 | /// redeclaration of D is visible, and if so, returns that declaration. | ||||
| 1832 | /// | ||||
| 1833 | /// \returns D, or a visible previous declaration of D, whichever is more recent | ||||
| 1834 | /// and visible. If no declaration of D is visible, returns null. | ||||
| 1835 | static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, | ||||
| 1836 | unsigned IDNS) { | ||||
| 1837 | assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")((void)0); | ||||
| 1838 | |||||
| 1839 | for (auto RD : D->redecls()) { | ||||
| 1840 | // Don't bother with extra checks if we already know this one isn't visible. | ||||
| 1841 | if (RD == D) | ||||
| 1842 | continue; | ||||
| 1843 | |||||
| 1844 | auto ND = cast<NamedDecl>(RD); | ||||
| 1845 | // FIXME: This is wrong in the case where the previous declaration is not | ||||
| 1846 | // visible in the same scope as D. This needs to be done much more | ||||
| 1847 | // carefully. | ||||
| 1848 | if (ND->isInIdentifierNamespace(IDNS) && | ||||
| 1849 | LookupResult::isVisible(SemaRef, ND)) | ||||
| 1850 | return ND; | ||||
| 1851 | } | ||||
| 1852 | |||||
| 1853 | return nullptr; | ||||
| 1854 | } | ||||
| 1855 | |||||
| 1856 | bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, | ||||
| 1857 | llvm::SmallVectorImpl<Module *> *Modules) { | ||||
| 1858 | assert(!isVisible(D) && "not in slow case")((void)0); | ||||
| 1859 | return hasVisibleDeclarationImpl(*this, D, Modules, | ||||
| 1860 | [](const NamedDecl *) { return true; }); | ||||
| 1861 | } | ||||
| 1862 | |||||
| 1863 | NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { | ||||
| 1864 | if (auto *ND = dyn_cast<NamespaceDecl>(D)) { | ||||
| 1865 | // Namespaces are a bit of a special case: we expect there to be a lot of | ||||
| 1866 | // redeclarations of some namespaces, all declarations of a namespace are | ||||
| 1867 | // essentially interchangeable, all declarations are found by name lookup | ||||
| 1868 | // if any is, and namespaces are never looked up during template | ||||
| 1869 | // instantiation. So we benefit from caching the check in this case, and | ||||
| 1870 | // it is correct to do so. | ||||
| 1871 | auto *Key = ND->getCanonicalDecl(); | ||||
| 1872 | if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) | ||||
| 1873 | return Acceptable; | ||||
| 1874 | auto *Acceptable = isVisible(getSema(), Key) | ||||
| 1875 | ? Key | ||||
| 1876 | : findAcceptableDecl(getSema(), Key, IDNS); | ||||
| 1877 | if (Acceptable) | ||||
| 1878 | getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); | ||||
| 1879 | return Acceptable; | ||||
| 1880 | } | ||||
| 1881 | |||||
| 1882 | return findAcceptableDecl(getSema(), D, IDNS); | ||||
| 1883 | } | ||||
| 1884 | |||||
| 1885 | /// Perform unqualified name lookup starting from a given | ||||
| 1886 | /// scope. | ||||
| 1887 | /// | ||||
| 1888 | /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is | ||||
| 1889 | /// used to find names within the current scope. For example, 'x' in | ||||
| 1890 | /// @code | ||||
| 1891 | /// int x; | ||||
| 1892 | /// int f() { | ||||
| 1893 | /// return x; // unqualified name look finds 'x' in the global scope | ||||
| 1894 | /// } | ||||
| 1895 | /// @endcode | ||||
| 1896 | /// | ||||
| 1897 | /// Different lookup criteria can find different names. For example, a | ||||
| 1898 | /// particular scope can have both a struct and a function of the same | ||||
| 1899 | /// name, and each can be found by certain lookup criteria. For more | ||||
| 1900 | /// information about lookup criteria, see the documentation for the | ||||
| 1901 | /// class LookupCriteria. | ||||
| 1902 | /// | ||||
| 1903 | /// @param S The scope from which unqualified name lookup will | ||||
| 1904 | /// begin. If the lookup criteria permits, name lookup may also search | ||||
| 1905 | /// in the parent scopes. | ||||
| 1906 | /// | ||||
| 1907 | /// @param [in,out] R Specifies the lookup to perform (e.g., the name to | ||||
| 1908 | /// look up and the lookup kind), and is updated with the results of lookup | ||||
| 1909 | /// including zero or more declarations and possibly additional information | ||||
| 1910 | /// used to diagnose ambiguities. | ||||
| 1911 | /// | ||||
| 1912 | /// @returns \c true if lookup succeeded and false otherwise. | ||||
| 1913 | bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { | ||||
| 1914 | DeclarationName Name = R.getLookupName(); | ||||
| 1915 | if (!Name) return false; | ||||
| 1916 | |||||
| 1917 | LookupNameKind NameKind = R.getLookupKind(); | ||||
| 1918 | |||||
| 1919 | if (!getLangOpts().CPlusPlus) { | ||||
| 1920 | // Unqualified name lookup in C/Objective-C is purely lexical, so | ||||
| 1921 | // search in the declarations attached to the name. | ||||
| 1922 | if (NameKind == Sema::LookupRedeclarationWithLinkage) { | ||||
| 1923 | // Find the nearest non-transparent declaration scope. | ||||
| 1924 | while (!(S->getFlags() & Scope::DeclScope) || | ||||
| 1925 | (S->getEntity() && S->getEntity()->isTransparentContext())) | ||||
| 1926 | S = S->getParent(); | ||||
| 1927 | } | ||||
| 1928 | |||||
| 1929 | // When performing a scope lookup, we want to find local extern decls. | ||||
| 1930 | FindLocalExternScope FindLocals(R); | ||||
| 1931 | |||||
| 1932 | // Scan up the scope chain looking for a decl that matches this | ||||
| 1933 | // identifier that is in the appropriate namespace. This search | ||||
| 1934 | // should not take long, as shadowing of names is uncommon, and | ||||
| 1935 | // deep shadowing is extremely uncommon. | ||||
| 1936 | bool LeftStartingScope = false; | ||||
| 1937 | |||||
| 1938 | for (IdentifierResolver::iterator I = IdResolver.begin(Name), | ||||
| 1939 | IEnd = IdResolver.end(); | ||||
| 1940 | I != IEnd; ++I) | ||||
| 1941 | if (NamedDecl *D = R.getAcceptableDecl(*I)) { | ||||
| 1942 | if (NameKind == LookupRedeclarationWithLinkage) { | ||||
| 1943 | // Determine whether this (or a previous) declaration is | ||||
| 1944 | // out-of-scope. | ||||
| 1945 | if (!LeftStartingScope && !S->isDeclScope(*I)) | ||||
| 1946 | LeftStartingScope = true; | ||||
| 1947 | |||||
| 1948 | // If we found something outside of our starting scope that | ||||
| 1949 | // does not have linkage, skip it. | ||||
| 1950 | if (LeftStartingScope && !((*I)->hasLinkage())) { | ||||
| 1951 | R.setShadowed(); | ||||
| 1952 | continue; | ||||
| 1953 | } | ||||
| 1954 | } | ||||
| 1955 | else if (NameKind == LookupObjCImplicitSelfParam && | ||||
| 1956 | !isa<ImplicitParamDecl>(*I)) | ||||
| 1957 | continue; | ||||
| 1958 | |||||
| 1959 | R.addDecl(D); | ||||
| 1960 | |||||
| 1961 | // Check whether there are any other declarations with the same name | ||||
| 1962 | // and in the same scope. | ||||
| 1963 | if (I != IEnd) { | ||||
| 1964 | // Find the scope in which this declaration was declared (if it | ||||
| 1965 | // actually exists in a Scope). | ||||
| 1966 | while (S && !S->isDeclScope(D)) | ||||
| 1967 | S = S->getParent(); | ||||
| 1968 | |||||
| 1969 | // If the scope containing the declaration is the translation unit, | ||||
| 1970 | // then we'll need to perform our checks based on the matching | ||||
| 1971 | // DeclContexts rather than matching scopes. | ||||
| 1972 | if (S && isNamespaceOrTranslationUnitScope(S)) | ||||
| 1973 | S = nullptr; | ||||
| 1974 | |||||
| 1975 | // Compute the DeclContext, if we need it. | ||||
| 1976 | DeclContext *DC = nullptr; | ||||
| 1977 | if (!S) | ||||
| 1978 | DC = (*I)->getDeclContext()->getRedeclContext(); | ||||
| 1979 | |||||
| 1980 | IdentifierResolver::iterator LastI = I; | ||||
| 1981 | for (++LastI; LastI != IEnd; ++LastI) { | ||||
| 1982 | if (S) { | ||||
| 1983 | // Match based on scope. | ||||
| 1984 | if (!S->isDeclScope(*LastI)) | ||||
| 1985 | break; | ||||
| 1986 | } else { | ||||
| 1987 | // Match based on DeclContext. | ||||
| 1988 | DeclContext *LastDC | ||||
| 1989 | = (*LastI)->getDeclContext()->getRedeclContext(); | ||||
| 1990 | if (!LastDC->Equals(DC)) | ||||
| 1991 | break; | ||||
| 1992 | } | ||||
| 1993 | |||||
| 1994 | // If the declaration is in the right namespace and visible, add it. | ||||
| 1995 | if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) | ||||
| 1996 | R.addDecl(LastD); | ||||
| 1997 | } | ||||
| 1998 | |||||
| 1999 | R.resolveKind(); | ||||
| 2000 | } | ||||
| 2001 | |||||
| 2002 | return true; | ||||
| 2003 | } | ||||
| 2004 | } else { | ||||
| 2005 | // Perform C++ unqualified name lookup. | ||||
| 2006 | if (CppLookupName(R, S)) | ||||
| 2007 | return true; | ||||
| 2008 | } | ||||
| 2009 | |||||
| 2010 | // If we didn't find a use of this identifier, and if the identifier | ||||
| 2011 | // corresponds to a compiler builtin, create the decl object for the builtin | ||||
| 2012 | // now, injecting it into translation unit scope, and return it. | ||||
| 2013 | if (AllowBuiltinCreation && LookupBuiltin(R)) | ||||
| 2014 | return true; | ||||
| 2015 | |||||
| 2016 | // If we didn't find a use of this identifier, the ExternalSource | ||||
| 2017 | // may be able to handle the situation. | ||||
| 2018 | // Note: some lookup failures are expected! | ||||
| 2019 | // See e.g. R.isForRedeclaration(). | ||||
| 2020 | return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); | ||||
| 2021 | } | ||||
| 2022 | |||||
| 2023 | /// Perform qualified name lookup in the namespaces nominated by | ||||
| 2024 | /// using directives by the given context. | ||||
| 2025 | /// | ||||
| 2026 | /// C++98 [namespace.qual]p2: | ||||
| 2027 | /// Given X::m (where X is a user-declared namespace), or given \::m | ||||
| 2028 | /// (where X is the global namespace), let S be the set of all | ||||
| 2029 | /// declarations of m in X and in the transitive closure of all | ||||
| 2030 | /// namespaces nominated by using-directives in X and its used | ||||
| 2031 | /// namespaces, except that using-directives are ignored in any | ||||
| 2032 | /// namespace, including X, directly containing one or more | ||||
| 2033 | /// declarations of m. No namespace is searched more than once in | ||||
| 2034 | /// the lookup of a name. If S is the empty set, the program is | ||||
| 2035 | /// ill-formed. Otherwise, if S has exactly one member, or if the | ||||
| 2036 | /// context of the reference is a using-declaration | ||||
| 2037 | /// (namespace.udecl), S is the required set of declarations of | ||||
| 2038 | /// m. Otherwise if the use of m is not one that allows a unique | ||||
| 2039 | /// declaration to be chosen from S, the program is ill-formed. | ||||
| 2040 | /// | ||||
| 2041 | /// C++98 [namespace.qual]p5: | ||||
| 2042 | /// During the lookup of a qualified namespace member name, if the | ||||
| 2043 | /// lookup finds more than one declaration of the member, and if one | ||||
| 2044 | /// declaration introduces a class name or enumeration name and the | ||||
| 2045 | /// other declarations either introduce the same object, the same | ||||
| 2046 | /// enumerator or a set of functions, the non-type name hides the | ||||
| 2047 | /// class or enumeration name if and only if the declarations are | ||||
| 2048 | /// from the same namespace; otherwise (the declarations are from | ||||
| 2049 | /// different namespaces), the program is ill-formed. | ||||
| 2050 | static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, | ||||
| 2051 | DeclContext *StartDC) { | ||||
| 2052 | assert(StartDC->isFileContext() && "start context is not a file context")((void)0); | ||||
| 2053 | |||||
| 2054 | // We have not yet looked into these namespaces, much less added | ||||
| 2055 | // their "using-children" to the queue. | ||||
| 2056 | SmallVector<NamespaceDecl*, 8> Queue; | ||||
| 2057 | |||||
| 2058 | // We have at least added all these contexts to the queue. | ||||
| 2059 | llvm::SmallPtrSet<DeclContext*, 8> Visited; | ||||
| 2060 | Visited.insert(StartDC); | ||||
| 2061 | |||||
| 2062 | // We have already looked into the initial namespace; seed the queue | ||||
| 2063 | // with its using-children. | ||||
| 2064 | for (auto *I : StartDC->using_directives()) { | ||||
| 2065 | NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace(); | ||||
| 2066 | if (S.isVisible(I) && Visited.insert(ND).second) | ||||
| 2067 | Queue.push_back(ND); | ||||
| 2068 | } | ||||
| 2069 | |||||
| 2070 | // The easiest way to implement the restriction in [namespace.qual]p5 | ||||
| 2071 | // is to check whether any of the individual results found a tag | ||||
| 2072 | // and, if so, to declare an ambiguity if the final result is not | ||||
| 2073 | // a tag. | ||||
| 2074 | bool FoundTag = false; | ||||
| 2075 | bool FoundNonTag = false; | ||||
| 2076 | |||||
| 2077 | LookupResult LocalR(LookupResult::Temporary, R); | ||||
| 2078 | |||||
| 2079 | bool Found = false; | ||||
| 2080 | while (!Queue.empty()) { | ||||
| 2081 | NamespaceDecl *ND = Queue.pop_back_val(); | ||||
| 2082 | |||||
| 2083 | // We go through some convolutions here to avoid copying results | ||||
| 2084 | // between LookupResults. | ||||
| 2085 | bool UseLocal = !R.empty(); | ||||
| 2086 | LookupResult &DirectR = UseLocal ? LocalR : R; | ||||
| 2087 | bool FoundDirect = LookupDirect(S, DirectR, ND); | ||||
| 2088 | |||||
| 2089 | if (FoundDirect) { | ||||
| 2090 | // First do any local hiding. | ||||
| 2091 | DirectR.resolveKind(); | ||||
| 2092 | |||||
| 2093 | // If the local result is a tag, remember that. | ||||
| 2094 | if (DirectR.isSingleTagDecl()) | ||||
| 2095 | FoundTag = true; | ||||
| 2096 | else | ||||
| 2097 | FoundNonTag = true; | ||||
| 2098 | |||||
| 2099 | // Append the local results to the total results if necessary. | ||||
| 2100 | if (UseLocal) { | ||||
| 2101 | R.addAllDecls(LocalR); | ||||
| 2102 | LocalR.clear(); | ||||
| 2103 | } | ||||
| 2104 | } | ||||
| 2105 | |||||
| 2106 | // If we find names in this namespace, ignore its using directives. | ||||
| 2107 | if (FoundDirect) { | ||||
| 2108 | Found = true; | ||||
| 2109 | continue; | ||||
| 2110 | } | ||||
| 2111 | |||||
| 2112 | for (auto I : ND->using_directives()) { | ||||
| 2113 | NamespaceDecl *Nom = I->getNominatedNamespace(); | ||||
| 2114 | if (S.isVisible(I) && Visited.insert(Nom).second) | ||||
| 2115 | Queue.push_back(Nom); | ||||
| 2116 | } | ||||
| 2117 | } | ||||
| 2118 | |||||
| 2119 | if (Found) { | ||||
| 2120 | if (FoundTag && FoundNonTag) | ||||
| 2121 | R.setAmbiguousQualifiedTagHiding(); | ||||
| 2122 | else | ||||
| 2123 | R.resolveKind(); | ||||
| 2124 | } | ||||
| 2125 | |||||
| 2126 | return Found; | ||||
| 2127 | } | ||||
| 2128 | |||||
| 2129 | /// Perform qualified name lookup into a given context. | ||||
| 2130 | /// | ||||
| 2131 | /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find | ||||
| 2132 | /// names when the context of those names is explicit specified, e.g., | ||||
| 2133 | /// "std::vector" or "x->member", or as part of unqualified name lookup. | ||||
| 2134 | /// | ||||
| 2135 | /// Different lookup criteria can find different names. For example, a | ||||
| 2136 | /// particular scope can have both a struct and a function of the same | ||||
| 2137 | /// name, and each can be found by certain lookup criteria. For more | ||||
| 2138 | /// information about lookup criteria, see the documentation for the | ||||
| 2139 | /// class LookupCriteria. | ||||
| 2140 | /// | ||||
| 2141 | /// \param R captures both the lookup criteria and any lookup results found. | ||||
| 2142 | /// | ||||
| 2143 | /// \param LookupCtx The context in which qualified name lookup will | ||||
| 2144 | /// search. If the lookup criteria permits, name lookup may also search | ||||
| 2145 | /// in the parent contexts or (for C++ classes) base classes. | ||||
| 2146 | /// | ||||
| 2147 | /// \param InUnqualifiedLookup true if this is qualified name lookup that | ||||
| 2148 | /// occurs as part of unqualified name lookup. | ||||
| 2149 | /// | ||||
| 2150 | /// \returns true if lookup succeeded, false if it failed. | ||||
| 2151 | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | ||||
| 2152 | bool InUnqualifiedLookup) { | ||||
| 2153 | assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")((void)0); | ||||
| 2154 | |||||
| 2155 | if (!R.getLookupName()) | ||||
| 2156 | return false; | ||||
| 2157 | |||||
| 2158 | // Make sure that the declaration context is complete. | ||||
| 2159 | assert((!isa<TagDecl>(LookupCtx) ||((void)0) | ||||
| 2160 | LookupCtx->isDependentContext() ||((void)0) | ||||
| 2161 | cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||((void)0) | ||||
| 2162 | cast<TagDecl>(LookupCtx)->isBeingDefined()) &&((void)0) | ||||
| 2163 | "Declaration context must already be complete!")((void)0); | ||||
| 2164 | |||||
| 2165 | struct QualifiedLookupInScope { | ||||
| 2166 | bool oldVal; | ||||
| 2167 | DeclContext *Context; | ||||
| 2168 | // Set flag in DeclContext informing debugger that we're looking for qualified name | ||||
| 2169 | QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) { | ||||
| 2170 | oldVal = ctx->setUseQualifiedLookup(); | ||||
| 2171 | } | ||||
| 2172 | ~QualifiedLookupInScope() { | ||||
| 2173 | Context->setUseQualifiedLookup(oldVal); | ||||
| 2174 | } | ||||
| 2175 | } QL(LookupCtx); | ||||
| 2176 | |||||
| 2177 | if (LookupDirect(*this, R, LookupCtx)) { | ||||
| 2178 | R.resolveKind(); | ||||
| 2179 | if (isa<CXXRecordDecl>(LookupCtx)) | ||||
| 2180 | R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); | ||||
| 2181 | return true; | ||||
| 2182 | } | ||||
| 2183 | |||||
| 2184 | // Don't descend into implied contexts for redeclarations. | ||||
| 2185 | // C++98 [namespace.qual]p6: | ||||
| 2186 | // In a declaration for a namespace member in which the | ||||
| 2187 | // declarator-id is a qualified-id, given that the qualified-id | ||||
| 2188 | // for the namespace member has the form | ||||
| 2189 | // nested-name-specifier unqualified-id | ||||
| 2190 | // the unqualified-id shall name a member of the namespace | ||||
| 2191 | // designated by the nested-name-specifier. | ||||
| 2192 | // See also [class.mfct]p5 and [class.static.data]p2. | ||||
| 2193 | if (R.isForRedeclaration()) | ||||
| 2194 | return false; | ||||
| 2195 | |||||
| 2196 | // If this is a namespace, look it up in the implied namespaces. | ||||
| 2197 | if (LookupCtx->isFileContext()) | ||||
| 2198 | return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); | ||||
| 2199 | |||||
| 2200 | // If this isn't a C++ class, we aren't allowed to look into base | ||||
| 2201 | // classes, we're done. | ||||
| 2202 | CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); | ||||
| 2203 | if (!LookupRec || !LookupRec->getDefinition()) | ||||
| 2204 | return false; | ||||
| 2205 | |||||
| 2206 | // We're done for lookups that can never succeed for C++ classes. | ||||
| 2207 | if (R.getLookupKind() == LookupOperatorName || | ||||
| 2208 | R.getLookupKind() == LookupNamespaceName || | ||||
| 2209 | R.getLookupKind() == LookupObjCProtocolName || | ||||
| 2210 | R.getLookupKind() == LookupLabel) | ||||
| 2211 | return false; | ||||
| 2212 | |||||
| 2213 | // If we're performing qualified name lookup into a dependent class, | ||||
| 2214 | // then we are actually looking into a current instantiation. If we have any | ||||
| 2215 | // dependent base classes, then we either have to delay lookup until | ||||
| 2216 | // template instantiation time (at which point all bases will be available) | ||||
| 2217 | // or we have to fail. | ||||
| 2218 | if (!InUnqualifiedLookup && LookupRec->isDependentContext() && | ||||
| 2219 | LookupRec->hasAnyDependentBases()) { | ||||
| 2220 | R.setNotFoundInCurrentInstantiation(); | ||||
| 2221 | return false; | ||||
| 2222 | } | ||||
| 2223 | |||||
| 2224 | // Perform lookup into our base classes. | ||||
| 2225 | |||||
| 2226 | DeclarationName Name = R.getLookupName(); | ||||
| 2227 | unsigned IDNS = R.getIdentifierNamespace(); | ||||
| 2228 | |||||
| 2229 | // Look for this member in our base classes. | ||||
| 2230 | auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, | ||||
| 2231 | CXXBasePath &Path) -> bool { | ||||
| 2232 | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); | ||||
| 2233 | // Drop leading non-matching lookup results from the declaration list so | ||||
| 2234 | // we don't need to consider them again below. | ||||
| 2235 | for (Path.Decls = BaseRecord->lookup(Name).begin(); | ||||
| 2236 | Path.Decls != Path.Decls.end(); ++Path.Decls) { | ||||
| 2237 | if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) | ||||
| 2238 | return true; | ||||
| 2239 | } | ||||
| 2240 | return false; | ||||
| 2241 | }; | ||||
| 2242 | |||||
| 2243 | CXXBasePaths Paths; | ||||
| 2244 | Paths.setOrigin(LookupRec); | ||||
| 2245 | if (!LookupRec->lookupInBases(BaseCallback, Paths)) | ||||
| 2246 | return false; | ||||
| 2247 | |||||
| 2248 | R.setNamingClass(LookupRec); | ||||
| 2249 | |||||
| 2250 | // C++ [class.member.lookup]p2: | ||||
| 2251 | // [...] If the resulting set of declarations are not all from | ||||
| 2252 | // sub-objects of the same type, or the set has a nonstatic member | ||||
| 2253 | // and includes members from distinct sub-objects, there is an | ||||
| 2254 | // ambiguity and the program is ill-formed. Otherwise that set is | ||||
| 2255 | // the result of the lookup. | ||||
| 2256 | QualType SubobjectType; | ||||
| 2257 | int SubobjectNumber = 0; | ||||
| 2258 | AccessSpecifier SubobjectAccess = AS_none; | ||||
| 2259 | |||||
| 2260 | // Check whether the given lookup result contains only static members. | ||||
| 2261 | auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { | ||||
| 2262 | for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) | ||||
| 2263 | if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) | ||||
| 2264 | return false; | ||||
| 2265 | return true; | ||||
| 2266 | }; | ||||
| 2267 | |||||
| 2268 | bool TemplateNameLookup = R.isTemplateNameLookup(); | ||||
| 2269 | |||||
| 2270 | // Determine whether two sets of members contain the same members, as | ||||
| 2271 | // required by C++ [class.member.lookup]p6. | ||||
| 2272 | auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, | ||||
| 2273 | DeclContext::lookup_iterator B) { | ||||
| 2274 | using Iterator = DeclContextLookupResult::iterator; | ||||
| 2275 | using Result = const void *; | ||||
| 2276 | |||||
| 2277 | auto Next = [&](Iterator &It, Iterator End) -> Result { | ||||
| 2278 | while (It != End) { | ||||
| 2279 | NamedDecl *ND = *It++; | ||||
| 2280 | if (!ND->isInIdentifierNamespace(IDNS)) | ||||
| 2281 | continue; | ||||
| 2282 | |||||
| 2283 | // C++ [temp.local]p3: | ||||
| 2284 | // A lookup that finds an injected-class-name (10.2) can result in | ||||
| 2285 | // an ambiguity in certain cases (for example, if it is found in | ||||
| 2286 | // more than one base class). If all of the injected-class-names | ||||
| 2287 | // that are found refer to specializations of the same class | ||||
| 2288 | // template, and if the name is used as a template-name, the | ||||
| 2289 | // reference refers to the class template itself and not a | ||||
| 2290 | // specialization thereof, and is not ambiguous. | ||||
| 2291 | if (TemplateNameLookup) | ||||
| 2292 | if (auto *TD = getAsTemplateNameDecl(ND)) | ||||
| 2293 | ND = TD; | ||||
| 2294 | |||||
| 2295 | // C++ [class.member.lookup]p3: | ||||
| 2296 | // type declarations (including injected-class-names) are replaced by | ||||
| 2297 | // the types they designate | ||||
| 2298 | if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { | ||||
| 2299 | QualType T = Context.getTypeDeclType(TD); | ||||
| 2300 | return T.getCanonicalType().getAsOpaquePtr(); | ||||
| 2301 | } | ||||
| 2302 | |||||
| 2303 | return ND->getUnderlyingDecl()->getCanonicalDecl(); | ||||
| 2304 | } | ||||
| 2305 | return nullptr; | ||||
| 2306 | }; | ||||
| 2307 | |||||
| 2308 | // We'll often find the declarations are in the same order. Handle this | ||||
| 2309 | // case (and the special case of only one declaration) efficiently. | ||||
| 2310 | Iterator AIt = A, BIt = B, AEnd, BEnd; | ||||
| 2311 | while (true) { | ||||
| 2312 | Result AResult = Next(AIt, AEnd); | ||||
| 2313 | Result BResult = Next(BIt, BEnd); | ||||
| 2314 | if (!AResult && !BResult) | ||||
| 2315 | return true; | ||||
| 2316 | if (!AResult || !BResult) | ||||
| 2317 | return false; | ||||
| 2318 | if (AResult != BResult) { | ||||
| 2319 | // Found a mismatch; carefully check both lists, accounting for the | ||||
| 2320 | // possibility of declarations appearing more than once. | ||||
| 2321 | llvm::SmallDenseMap<Result, bool, 32> AResults; | ||||
| 2322 | for (; AResult; AResult = Next(AIt, AEnd)) | ||||
| 2323 | AResults.insert({AResult, /*FoundInB*/false}); | ||||
| 2324 | unsigned Found = 0; | ||||
| 2325 | for (; BResult; BResult = Next(BIt, BEnd)) { | ||||
| 2326 | auto It = AResults.find(BResult); | ||||
| 2327 | if (It == AResults.end()) | ||||
| 2328 | return false; | ||||
| 2329 | if (!It->second) { | ||||
| 2330 | It->second = true; | ||||
| 2331 | ++Found; | ||||
| 2332 | } | ||||
| 2333 | } | ||||
| 2334 | return AResults.size() == Found; | ||||
| 2335 | } | ||||
| 2336 | } | ||||
| 2337 | }; | ||||
| 2338 | |||||
| 2339 | for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); | ||||
| 2340 | Path != PathEnd; ++Path) { | ||||
| 2341 | const CXXBasePathElement &PathElement = Path->back(); | ||||
| 2342 | |||||
| 2343 | // Pick the best (i.e. most permissive i.e. numerically lowest) access | ||||
| 2344 | // across all paths. | ||||
| 2345 | SubobjectAccess = std::min(SubobjectAccess, Path->Access); | ||||
| 2346 | |||||
| 2347 | // Determine whether we're looking at a distinct sub-object or not. | ||||
| 2348 | if (SubobjectType.isNull()) { | ||||
| 2349 | // This is the first subobject we've looked at. Record its type. | ||||
| 2350 | SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); | ||||
| 2351 | SubobjectNumber = PathElement.SubobjectNumber; | ||||
| 2352 | continue; | ||||
| 2353 | } | ||||
| 2354 | |||||
| 2355 | if (SubobjectType != | ||||
| 2356 | Context.getCanonicalType(PathElement.Base->getType())) { | ||||
| 2357 | // We found members of the given name in two subobjects of | ||||
| 2358 | // different types. If the declaration sets aren't the same, this | ||||
| 2359 | // lookup is ambiguous. | ||||
| 2360 | // | ||||
| 2361 | // FIXME: The language rule says that this applies irrespective of | ||||
| 2362 | // whether the sets contain only static members. | ||||
| 2363 | if (HasOnlyStaticMembers(Path->Decls) && | ||||
| 2364 | HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) | ||||
| 2365 | continue; | ||||
| 2366 | |||||
| 2367 | R.setAmbiguousBaseSubobjectTypes(Paths); | ||||
| 2368 | return true; | ||||
| 2369 | } | ||||
| 2370 | |||||
| 2371 | // FIXME: This language rule no longer exists. Checking for ambiguous base | ||||
| 2372 | // subobjects should be done as part of formation of a class member access | ||||
| 2373 | // expression (when converting the object parameter to the member's type). | ||||
| 2374 | if (SubobjectNumber != PathElement.SubobjectNumber) { | ||||
| 2375 | // We have a different subobject of the same type. | ||||
| 2376 | |||||
| 2377 | // C++ [class.member.lookup]p5: | ||||
| 2378 | // A static member, a nested type or an enumerator defined in | ||||
| 2379 | // a base class T can unambiguously be found even if an object | ||||
| 2380 | // has more than one base class subobject of type T. | ||||
| 2381 | if (HasOnlyStaticMembers(Path->Decls)) | ||||
| 2382 | continue; | ||||
| 2383 | |||||
| 2384 | // We have found a nonstatic member name in multiple, distinct | ||||
| 2385 | // subobjects. Name lookup is ambiguous. | ||||
| 2386 | R.setAmbiguousBaseSubobjects(Paths); | ||||
| 2387 | return true; | ||||
| 2388 | } | ||||
| 2389 | } | ||||
| 2390 | |||||
| 2391 | // Lookup in a base class succeeded; return these results. | ||||
| 2392 | |||||
| 2393 | for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); | ||||
| 2394 | I != E; ++I) { | ||||
| 2395 | AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, | ||||
| 2396 | (*I)->getAccess()); | ||||
| 2397 | if (NamedDecl *ND = R.getAcceptableDecl(*I)) | ||||
| 2398 | R.addDecl(ND, AS); | ||||
| 2399 | } | ||||
| 2400 | R.resolveKind(); | ||||
| 2401 | return true; | ||||
| 2402 | } | ||||
| 2403 | |||||
| 2404 | /// Performs qualified name lookup or special type of lookup for | ||||
| 2405 | /// "__super::" scope specifier. | ||||
| 2406 | /// | ||||
| 2407 | /// This routine is a convenience overload meant to be called from contexts | ||||
| 2408 | /// that need to perform a qualified name lookup with an optional C++ scope | ||||
| 2409 | /// specifier that might require special kind of lookup. | ||||
| 2410 | /// | ||||
| 2411 | /// \param R captures both the lookup criteria and any lookup results found. | ||||
| 2412 | /// | ||||
| 2413 | /// \param LookupCtx The context in which qualified name lookup will | ||||
| 2414 | /// search. | ||||
| 2415 | /// | ||||
| 2416 | /// \param SS An optional C++ scope-specifier. | ||||
| 2417 | /// | ||||
| 2418 | /// \returns true if lookup succeeded, false if it failed. | ||||
| 2419 | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | ||||
| 2420 | CXXScopeSpec &SS) { | ||||
| 2421 | auto *NNS = SS.getScopeRep(); | ||||
| 2422 | if (NNS && NNS->getKind() == NestedNameSpecifier::Super) | ||||
| 2423 | return LookupInSuper(R, NNS->getAsRecordDecl()); | ||||
| 2424 | else | ||||
| 2425 | |||||
| 2426 | return LookupQualifiedName(R, LookupCtx); | ||||
| 2427 | } | ||||
| 2428 | |||||
| 2429 | /// Performs name lookup for a name that was parsed in the | ||||
| 2430 | /// source code, and may contain a C++ scope specifier. | ||||
| 2431 | /// | ||||
| 2432 | /// This routine is a convenience routine meant to be called from | ||||
| 2433 | /// contexts that receive a name and an optional C++ scope specifier | ||||
| 2434 | /// (e.g., "N::M::x"). It will then perform either qualified or | ||||
| 2435 | /// unqualified name lookup (with LookupQualifiedName or LookupName, | ||||
| 2436 | /// respectively) on the given name and return those results. It will | ||||
| 2437 | /// perform a special type of lookup for "__super::" scope specifier. | ||||
| 2438 | /// | ||||
| 2439 | /// @param S The scope from which unqualified name lookup will | ||||
| 2440 | /// begin. | ||||
| 2441 | /// | ||||
| 2442 | /// @param SS An optional C++ scope-specifier, e.g., "::N::M". | ||||
| 2443 | /// | ||||
| 2444 | /// @param EnteringContext Indicates whether we are going to enter the | ||||
| 2445 | /// context of the scope-specifier SS (if present). | ||||
| 2446 | /// | ||||
| 2447 | /// @returns True if any decls were found (but possibly ambiguous) | ||||
| 2448 | bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, | ||||
| 2449 | bool AllowBuiltinCreation, bool EnteringContext) { | ||||
| 2450 | if (SS && SS->isInvalid()) { | ||||
| 2451 | // When the scope specifier is invalid, don't even look for | ||||
| 2452 | // anything. | ||||
| 2453 | return false; | ||||
| 2454 | } | ||||
| 2455 | |||||
| 2456 | if (SS && SS->isSet()) { | ||||
| 2457 | NestedNameSpecifier *NNS = SS->getScopeRep(); | ||||
| 2458 | if (NNS->getKind() == NestedNameSpecifier::Super) | ||||
| 2459 | return LookupInSuper(R, NNS->getAsRecordDecl()); | ||||
| 2460 | |||||
| 2461 | if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { | ||||
| 2462 | // We have resolved the scope specifier to a particular declaration | ||||
| 2463 | // contex, and will perform name lookup in that context. | ||||
| 2464 | if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) | ||||
| 2465 | return false; | ||||
| 2466 | |||||
| 2467 | R.setContextRange(SS->getRange()); | ||||
| 2468 | return LookupQualifiedName(R, DC); | ||||
| 2469 | } | ||||
| 2470 | |||||
| 2471 | // We could not resolve the scope specified to a specific declaration | ||||
| 2472 | // context, which means that SS refers to an unknown specialization. | ||||
| 2473 | // Name lookup can't find anything in this case. | ||||
| 2474 | R.setNotFoundInCurrentInstantiation(); | ||||
| 2475 | R.setContextRange(SS->getRange()); | ||||
| 2476 | return false; | ||||
| 2477 | } | ||||
| 2478 | |||||
| 2479 | // Perform unqualified name lookup starting in the given scope. | ||||
| 2480 | return LookupName(R, S, AllowBuiltinCreation); | ||||
| 2481 | } | ||||
| 2482 | |||||
| 2483 | /// Perform qualified name lookup into all base classes of the given | ||||
| 2484 | /// class. | ||||
| 2485 | /// | ||||
| 2486 | /// \param R captures both the lookup criteria and any lookup results found. | ||||
| 2487 | /// | ||||
| 2488 | /// \param Class The context in which qualified name lookup will | ||||
| 2489 | /// search. Name lookup will search in all base classes merging the results. | ||||
| 2490 | /// | ||||
| 2491 | /// @returns True if any decls were found (but possibly ambiguous) | ||||
| 2492 | bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { | ||||
| 2493 | // The access-control rules we use here are essentially the rules for | ||||
| 2494 | // doing a lookup in Class that just magically skipped the direct | ||||
| 2495 | // members of Class itself. That is, the naming class is Class, and the | ||||
| 2496 | // access includes the access of the base. | ||||
| 2497 | for (const auto &BaseSpec : Class->bases()) { | ||||
| 2498 | CXXRecordDecl *RD = cast<CXXRecordDecl>( | ||||
| 2499 | BaseSpec.getType()->castAs<RecordType>()->getDecl()); | ||||
| 2500 | LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); | ||||
| 2501 | Result.setBaseObjectType(Context.getRecordType(Class)); | ||||
| 2502 | LookupQualifiedName(Result, RD); | ||||
| 2503 | |||||
| 2504 | // Copy the lookup results into the target, merging the base's access into | ||||
| 2505 | // the path access. | ||||
| 2506 | for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { | ||||
| 2507 | R.addDecl(I.getDecl(), | ||||
| 2508 | CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), | ||||
| 2509 | I.getAccess())); | ||||
| 2510 | } | ||||
| 2511 | |||||
| 2512 | Result.suppressDiagnostics(); | ||||
| 2513 | } | ||||
| 2514 | |||||
| 2515 | R.resolveKind(); | ||||
| 2516 | R.setNamingClass(Class); | ||||
| 2517 | |||||
| 2518 | return !R.empty(); | ||||
| 2519 | } | ||||
| 2520 | |||||
| 2521 | /// Produce a diagnostic describing the ambiguity that resulted | ||||
| 2522 | /// from name lookup. | ||||
| 2523 | /// | ||||
| 2524 | /// \param Result The result of the ambiguous lookup to be diagnosed. | ||||
| 2525 | void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { | ||||
| 2526 | assert(Result.isAmbiguous() && "Lookup result must be ambiguous")((void)0); | ||||
| 2527 | |||||
| 2528 | DeclarationName Name = Result.getLookupName(); | ||||
| 2529 | SourceLocation NameLoc = Result.getNameLoc(); | ||||
| 2530 | SourceRange LookupRange = Result.getContextRange(); | ||||
| 2531 | |||||
| 2532 | switch (Result.getAmbiguityKind()) { | ||||
| 2533 | case LookupResult::AmbiguousBaseSubobjects: { | ||||
| 2534 | CXXBasePaths *Paths = Result.getBasePaths(); | ||||
| 2535 | QualType SubobjectType = Paths->front().back().Base->getType(); | ||||
| 2536 | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) | ||||
| 2537 | << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) | ||||
| 2538 | << LookupRange; | ||||
| 2539 | |||||
| 2540 | DeclContext::lookup_iterator Found = Paths->front().Decls; | ||||
| 2541 | while (isa<CXXMethodDecl>(*Found) && | ||||
| 2542 | cast<CXXMethodDecl>(*Found)->isStatic()) | ||||
| 2543 | ++Found; | ||||
| 2544 | |||||
| 2545 | Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); | ||||
| 2546 | break; | ||||
| 2547 | } | ||||
| 2548 | |||||
| 2549 | case LookupResult::AmbiguousBaseSubobjectTypes: { | ||||
| 2550 | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) | ||||
| 2551 | << Name << LookupRange; | ||||
| 2552 | |||||
| 2553 | CXXBasePaths *Paths = Result.getBasePaths(); | ||||
| 2554 | std::set<const NamedDecl *> DeclsPrinted; | ||||
| 2555 | for (CXXBasePaths::paths_iterator Path = Paths->begin(), | ||||
| 2556 | PathEnd = Paths->end(); | ||||
| 2557 | Path != PathEnd; ++Path) { | ||||
| 2558 | const NamedDecl *D = *Path->Decls; | ||||
| 2559 | if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) | ||||
| 2560 | continue; | ||||
| 2561 | if (DeclsPrinted.insert(D).second) { | ||||
| 2562 | if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) | ||||
| 2563 | Diag(D->getLocation(), diag::note_ambiguous_member_type_found) | ||||
| 2564 | << TD->getUnderlyingType(); | ||||
| 2565 | else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) | ||||
| 2566 | Diag(D->getLocation(), diag::note_ambiguous_member_type_found) | ||||
| 2567 | << Context.getTypeDeclType(TD); | ||||
| 2568 | else | ||||
| 2569 | Diag(D->getLocation(), diag::note_ambiguous_member_found); | ||||
| 2570 | } | ||||
| 2571 | } | ||||
| 2572 | break; | ||||
| 2573 | } | ||||
| 2574 | |||||
| 2575 | case LookupResult::AmbiguousTagHiding: { | ||||
| 2576 | Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; | ||||
| 2577 | |||||
| 2578 | llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; | ||||
| 2579 | |||||
| 2580 | for (auto *D : Result) | ||||
| 2581 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) { | ||||
| 2582 | TagDecls.insert(TD); | ||||
| 2583 | Diag(TD->getLocation(), diag::note_hidden_tag); | ||||
| 2584 | } | ||||
| 2585 | |||||
| 2586 | for (auto *D : Result) | ||||
| 2587 | if (!isa<TagDecl>(D)) | ||||
| 2588 | Diag(D->getLocation(), diag::note_hiding_object); | ||||
| 2589 | |||||
| 2590 | // For recovery purposes, go ahead and implement the hiding. | ||||
| 2591 | LookupResult::Filter F = Result.makeFilter(); | ||||
| 2592 | while (F.hasNext()) { | ||||
| 2593 | if (TagDecls.count(F.next())) | ||||
| 2594 | F.erase(); | ||||
| 2595 | } | ||||
| 2596 | F.done(); | ||||
| 2597 | break; | ||||
| 2598 | } | ||||
| 2599 | |||||
| 2600 | case LookupResult::AmbiguousReference: { | ||||
| 2601 | Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; | ||||
| 2602 | |||||
| 2603 | for (auto *D : Result) | ||||
| 2604 | Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; | ||||
| 2605 | break; | ||||
| 2606 | } | ||||
| 2607 | } | ||||
| 2608 | } | ||||
| 2609 | |||||
| 2610 | namespace { | ||||
| 2611 | struct AssociatedLookup { | ||||
| 2612 | AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, | ||||
| 2613 | Sema::AssociatedNamespaceSet &Namespaces, | ||||
| 2614 | Sema::AssociatedClassSet &Classes) | ||||
| 2615 | : S(S), Namespaces(Namespaces), Classes(Classes), | ||||
| 2616 | InstantiationLoc(InstantiationLoc) { | ||||
| 2617 | } | ||||
| 2618 | |||||
| 2619 | bool addClassTransitive(CXXRecordDecl *RD) { | ||||
| 2620 | Classes.insert(RD); | ||||
| 2621 | return ClassesTransitive.insert(RD); | ||||
| 2622 | } | ||||
| 2623 | |||||
| 2624 | Sema &S; | ||||
| 2625 | Sema::AssociatedNamespaceSet &Namespaces; | ||||
| 2626 | Sema::AssociatedClassSet &Classes; | ||||
| 2627 | SourceLocation InstantiationLoc; | ||||
| 2628 | |||||
| 2629 | private: | ||||
| 2630 | Sema::AssociatedClassSet ClassesTransitive; | ||||
| 2631 | }; | ||||
| 2632 | } // end anonymous namespace | ||||
| 2633 | |||||
| 2634 | static void | ||||
| 2635 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); | ||||
| 2636 | |||||
| 2637 | // Given the declaration context \param Ctx of a class, class template or | ||||
| 2638 | // enumeration, add the associated namespaces to \param Namespaces as described | ||||
| 2639 | // in [basic.lookup.argdep]p2. | ||||
| 2640 | static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, | ||||
| 2641 | DeclContext *Ctx) { | ||||
| 2642 | // The exact wording has been changed in C++14 as a result of | ||||
| 2643 | // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally | ||||
| 2644 | // to all language versions since it is possible to return a local type | ||||
| 2645 | // from a lambda in C++11. | ||||
| 2646 | // | ||||
| 2647 | // C++14 [basic.lookup.argdep]p2: | ||||
| 2648 | // If T is a class type [...]. Its associated namespaces are the innermost | ||||
| 2649 | // enclosing namespaces of its associated classes. [...] | ||||
| 2650 | // | ||||
| 2651 | // If T is an enumeration type, its associated namespace is the innermost | ||||
| 2652 | // enclosing namespace of its declaration. [...] | ||||
| 2653 | |||||
| 2654 | // We additionally skip inline namespaces. The innermost non-inline namespace | ||||
| 2655 | // contains all names of all its nested inline namespaces anyway, so we can | ||||
| 2656 | // replace the entire inline namespace tree with its root. | ||||
| 2657 | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) | ||||
| 2658 | Ctx = Ctx->getParent(); | ||||
| 2659 | |||||
| 2660 | Namespaces.insert(Ctx->getPrimaryContext()); | ||||
| 2661 | } | ||||
| 2662 | |||||
| 2663 | // Add the associated classes and namespaces for argument-dependent | ||||
| 2664 | // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). | ||||
| 2665 | static void | ||||
| 2666 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, | ||||
| 2667 | const TemplateArgument &Arg) { | ||||
| 2668 | // C++ [basic.lookup.argdep]p2, last bullet: | ||||
| 2669 | // -- [...] ; | ||||
| 2670 | switch (Arg.getKind()) { | ||||
| 2671 | case TemplateArgument::Null: | ||||
| 2672 | break; | ||||
| 2673 | |||||
| 2674 | case TemplateArgument::Type: | ||||
| 2675 | // [...] the namespaces and classes associated with the types of the | ||||
| 2676 | // template arguments provided for template type parameters (excluding | ||||
| 2677 | // template template parameters) | ||||
| 2678 | addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); | ||||
| 2679 | break; | ||||
| 2680 | |||||
| 2681 | case TemplateArgument::Template: | ||||
| 2682 | case TemplateArgument::TemplateExpansion: { | ||||
| 2683 | // [...] the namespaces in which any template template arguments are | ||||
| 2684 | // defined; and the classes in which any member templates used as | ||||
| 2685 | // template template arguments are defined. | ||||
| 2686 | TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); | ||||
| 2687 | if (ClassTemplateDecl *ClassTemplate | ||||
| 2688 | = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { | ||||
| 2689 | DeclContext *Ctx = ClassTemplate->getDeclContext(); | ||||
| 2690 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
| 2691 | Result.Classes.insert(EnclosingClass); | ||||
| 2692 | // Add the associated namespace for this class. | ||||
| 2693 | CollectEnclosingNamespace(Result.Namespaces, Ctx); | ||||
| 2694 | } | ||||
| 2695 | break; | ||||
| 2696 | } | ||||
| 2697 | |||||
| 2698 | case TemplateArgument::Declaration: | ||||
| 2699 | case TemplateArgument::Integral: | ||||
| 2700 | case TemplateArgument::Expression: | ||||
| 2701 | case TemplateArgument::NullPtr: | ||||
| 2702 | // [Note: non-type template arguments do not contribute to the set of | ||||
| 2703 | // associated namespaces. ] | ||||
| 2704 | break; | ||||
| 2705 | |||||
| 2706 | case TemplateArgument::Pack: | ||||
| 2707 | for (const auto &P : Arg.pack_elements()) | ||||
| 2708 | addAssociatedClassesAndNamespaces(Result, P); | ||||
| 2709 | break; | ||||
| 2710 | } | ||||
| 2711 | } | ||||
| 2712 | |||||
| 2713 | // Add the associated classes and namespaces for argument-dependent lookup | ||||
| 2714 | // with an argument of class type (C++ [basic.lookup.argdep]p2). | ||||
| 2715 | static void | ||||
| 2716 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, | ||||
| 2717 | CXXRecordDecl *Class) { | ||||
| 2718 | |||||
| 2719 | // Just silently ignore anything whose name is __va_list_tag. | ||||
| 2720 | if (Class->getDeclName() == Result.S.VAListTagName) | ||||
| 2721 | return; | ||||
| 2722 | |||||
| 2723 | // C++ [basic.lookup.argdep]p2: | ||||
| 2724 | // [...] | ||||
| 2725 | // -- If T is a class type (including unions), its associated | ||||
| 2726 | // classes are: the class itself; the class of which it is a | ||||
| 2727 | // member, if any; and its direct and indirect base classes. | ||||
| 2728 | // Its associated namespaces are the innermost enclosing | ||||
| 2729 | // namespaces of its associated classes. | ||||
| 2730 | |||||
| 2731 | // Add the class of which it is a member, if any. | ||||
| 2732 | DeclContext *Ctx = Class->getDeclContext(); | ||||
| 2733 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
| 2734 | Result.Classes.insert(EnclosingClass); | ||||
| 2735 | |||||
| 2736 | // Add the associated namespace for this class. | ||||
| 2737 | CollectEnclosingNamespace(Result.Namespaces, Ctx); | ||||
| 2738 | |||||
| 2739 | // -- If T is a template-id, its associated namespaces and classes are | ||||
| 2740 | // the namespace in which the template is defined; for member | ||||
| 2741 | // templates, the member template's class; the namespaces and classes | ||||
| 2742 | // associated with the types of the template arguments provided for | ||||
| 2743 | // template type parameters (excluding template template parameters); the | ||||
| 2744 | // namespaces in which any template template arguments are defined; and | ||||
| 2745 | // the classes in which any member templates used as template template | ||||
| 2746 | // arguments are defined. [Note: non-type template arguments do not | ||||
| 2747 | // contribute to the set of associated namespaces. ] | ||||
| 2748 | if (ClassTemplateSpecializationDecl *Spec | ||||
| 2749 | = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { | ||||
| 2750 | DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); | ||||
| 2751 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
| 2752 | Result.Classes.insert(EnclosingClass); | ||||
| 2753 | // Add the associated namespace for this class. | ||||
| 2754 | CollectEnclosingNamespace(Result.Namespaces, Ctx); | ||||
| 2755 | |||||
| 2756 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | ||||
| 2757 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | ||||
| 2758 | addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); | ||||
| 2759 | } | ||||
| 2760 | |||||
| 2761 | // Add the class itself. If we've already transitively visited this class, | ||||
| 2762 | // we don't need to visit base classes. | ||||
| 2763 | if (!Result.addClassTransitive(Class)) | ||||
| 2764 | return; | ||||
| 2765 | |||||
| 2766 | // Only recurse into base classes for complete types. | ||||
| 2767 | if (!Result.S.isCompleteType(Result.InstantiationLoc, | ||||
| 2768 | Result.S.Context.getRecordType(Class))) | ||||
| 2769 | return; | ||||
| 2770 | |||||
| 2771 | // Add direct and indirect base classes along with their associated | ||||
| 2772 | // namespaces. | ||||
| 2773 | SmallVector<CXXRecordDecl *, 32> Bases; | ||||
| 2774 | Bases.push_back(Class); | ||||
| 2775 | while (!Bases.empty()) { | ||||
| 2776 | // Pop this class off the stack. | ||||
| 2777 | Class = Bases.pop_back_val(); | ||||
| 2778 | |||||
| 2779 | // Visit the base classes. | ||||
| 2780 | for (const auto &Base : Class->bases()) { | ||||
| 2781 | const RecordType *BaseType = Base.getType()->getAs<RecordType>(); | ||||
| 2782 | // In dependent contexts, we do ADL twice, and the first time around, | ||||
| 2783 | // the base type might be a dependent TemplateSpecializationType, or a | ||||
| 2784 | // TemplateTypeParmType. If that happens, simply ignore it. | ||||
| 2785 | // FIXME: If we want to support export, we probably need to add the | ||||
| 2786 | // namespace of the template in a TemplateSpecializationType, or even | ||||
| 2787 | // the classes and namespaces of known non-dependent arguments. | ||||
| 2788 | if (!BaseType) | ||||
| 2789 | continue; | ||||
| 2790 | CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | ||||
| 2791 | if (Result.addClassTransitive(BaseDecl)) { | ||||
| 2792 | // Find the associated namespace for this base class. | ||||
| 2793 | DeclContext *BaseCtx = BaseDecl->getDeclContext(); | ||||
| 2794 | CollectEnclosingNamespace(Result.Namespaces, BaseCtx); | ||||
| 2795 | |||||
| 2796 | // Make sure we visit the bases of this base class. | ||||
| 2797 | if (BaseDecl->bases_begin() != BaseDecl->bases_end()) | ||||
| 2798 | Bases.push_back(BaseDecl); | ||||
| 2799 | } | ||||
| 2800 | } | ||||
| 2801 | } | ||||
| 2802 | } | ||||
| 2803 | |||||
| 2804 | // Add the associated classes and namespaces for | ||||
| 2805 | // argument-dependent lookup with an argument of type T | ||||
| 2806 | // (C++ [basic.lookup.koenig]p2). | ||||
| 2807 | static void | ||||
| 2808 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { | ||||
| 2809 | // C++ [basic.lookup.koenig]p2: | ||||
| 2810 | // | ||||
| 2811 | // For each argument type T in the function call, there is a set | ||||
| 2812 | // of zero or more associated namespaces and a set of zero or more | ||||
| 2813 | // associated classes to be considered. The sets of namespaces and | ||||
| 2814 | // classes is determined entirely by the types of the function | ||||
| 2815 | // arguments (and the namespace of any template template | ||||
| 2816 | // argument). Typedef names and using-declarations used to specify | ||||
| 2817 | // the types do not contribute to this set. The sets of namespaces | ||||
| 2818 | // and classes are determined in the following way: | ||||
| 2819 | |||||
| 2820 | SmallVector<const Type *, 16> Queue; | ||||
| 2821 | const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); | ||||
| 2822 | |||||
| 2823 | while (true) { | ||||
| 2824 | switch (T->getTypeClass()) { | ||||
| 2825 | |||||
| 2826 | #define TYPE(Class, Base) | ||||
| 2827 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | ||||
| 2828 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | ||||
| 2829 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | ||||
| 2830 | #define ABSTRACT_TYPE(Class, Base) | ||||
| 2831 | #include "clang/AST/TypeNodes.inc" | ||||
| 2832 | // T is canonical. We can also ignore dependent types because | ||||
| 2833 | // we don't need to do ADL at the definition point, but if we | ||||
| 2834 | // wanted to implement template export (or if we find some other | ||||
| 2835 | // use for associated classes and namespaces...) this would be | ||||
| 2836 | // wrong. | ||||
| 2837 | break; | ||||
| 2838 | |||||
| 2839 | // -- If T is a pointer to U or an array of U, its associated | ||||
| 2840 | // namespaces and classes are those associated with U. | ||||
| 2841 | case Type::Pointer: | ||||
| 2842 | T = cast<PointerType>(T)->getPointeeType().getTypePtr(); | ||||
| 2843 | continue; | ||||
| 2844 | case Type::ConstantArray: | ||||
| 2845 | case Type::IncompleteArray: | ||||
| 2846 | case Type::VariableArray: | ||||
| 2847 | T = cast<ArrayType>(T)->getElementType().getTypePtr(); | ||||
| 2848 | continue; | ||||
| 2849 | |||||
| 2850 | // -- If T is a fundamental type, its associated sets of | ||||
| 2851 | // namespaces and classes are both empty. | ||||
| 2852 | case Type::Builtin: | ||||
| 2853 | break; | ||||
| 2854 | |||||
| 2855 | // -- If T is a class type (including unions), its associated | ||||
| 2856 | // classes are: the class itself; the class of which it is | ||||
| 2857 | // a member, if any; and its direct and indirect base classes. | ||||
| 2858 | // Its associated namespaces are the innermost enclosing | ||||
| 2859 | // namespaces of its associated classes. | ||||
| 2860 | case Type::Record: { | ||||
| 2861 | CXXRecordDecl *Class = | ||||
| 2862 | cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); | ||||
| 2863 | addAssociatedClassesAndNamespaces(Result, Class); | ||||
| 2864 | break; | ||||
| 2865 | } | ||||
| 2866 | |||||
| 2867 | // -- If T is an enumeration type, its associated namespace | ||||
| 2868 | // is the innermost enclosing namespace of its declaration. | ||||
| 2869 | // If it is a class member, its associated class is the | ||||
| 2870 | // member’s class; else it has no associated class. | ||||
| 2871 | case Type::Enum: { | ||||
| 2872 | EnumDecl *Enum = cast<EnumType>(T)->getDecl(); | ||||
| 2873 | |||||
| 2874 | DeclContext *Ctx = Enum->getDeclContext(); | ||||
| 2875 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
| 2876 | Result.Classes.insert(EnclosingClass); | ||||
| 2877 | |||||
| 2878 | // Add the associated namespace for this enumeration. | ||||
| 2879 | CollectEnclosingNamespace(Result.Namespaces, Ctx); | ||||
| 2880 | |||||
| 2881 | break; | ||||
| 2882 | } | ||||
| 2883 | |||||
| 2884 | // -- If T is a function type, its associated namespaces and | ||||
| 2885 | // classes are those associated with the function parameter | ||||
| 2886 | // types and those associated with the return type. | ||||
| 2887 | case Type::FunctionProto: { | ||||
| 2888 | const FunctionProtoType *Proto = cast<FunctionProtoType>(T); | ||||
| 2889 | for (const auto &Arg : Proto->param_types()) | ||||
| 2890 | Queue.push_back(Arg.getTypePtr()); | ||||
| 2891 | // fallthrough | ||||
| 2892 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
| 2893 | } | ||||
| 2894 | case Type::FunctionNoProto: { | ||||
| 2895 | const FunctionType *FnType = cast<FunctionType>(T); | ||||
| 2896 | T = FnType->getReturnType().getTypePtr(); | ||||
| 2897 | continue; | ||||
| 2898 | } | ||||
| 2899 | |||||
| 2900 | // -- If T is a pointer to a member function of a class X, its | ||||
| 2901 | // associated namespaces and classes are those associated | ||||
| 2902 | // with the function parameter types and return type, | ||||
| 2903 | // together with those associated with X. | ||||
| 2904 | // | ||||
| 2905 | // -- If T is a pointer to a data member of class X, its | ||||
| 2906 | // associated namespaces and classes are those associated | ||||
| 2907 | // with the member type together with those associated with | ||||
| 2908 | // X. | ||||
| 2909 | case Type::MemberPointer: { | ||||
| 2910 | const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); | ||||
| 2911 | |||||
| 2912 | // Queue up the class type into which this points. | ||||
| 2913 | Queue.push_back(MemberPtr->getClass()); | ||||
| 2914 | |||||
| 2915 | // And directly continue with the pointee type. | ||||
| 2916 | T = MemberPtr->getPointeeType().getTypePtr(); | ||||
| 2917 | continue; | ||||
| 2918 | } | ||||
| 2919 | |||||
| 2920 | // As an extension, treat this like a normal pointer. | ||||
| 2921 | case Type::BlockPointer: | ||||
| 2922 | T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); | ||||
| 2923 | continue; | ||||
| 2924 | |||||
| 2925 | // References aren't covered by the standard, but that's such an | ||||
| 2926 | // obvious defect that we cover them anyway. | ||||
| 2927 | case Type::LValueReference: | ||||
| 2928 | case Type::RValueReference: | ||||
| 2929 | T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); | ||||
| 2930 | continue; | ||||
| 2931 | |||||
| 2932 | // These are fundamental types. | ||||
| 2933 | case Type::Vector: | ||||
| 2934 | case Type::ExtVector: | ||||
| 2935 | case Type::ConstantMatrix: | ||||
| 2936 | case Type::Complex: | ||||
| 2937 | case Type::ExtInt: | ||||
| 2938 | break; | ||||
| 2939 | |||||
| 2940 | // Non-deduced auto types only get here for error cases. | ||||
| 2941 | case Type::Auto: | ||||
| 2942 | case Type::DeducedTemplateSpecialization: | ||||
| 2943 | break; | ||||
| 2944 | |||||
| 2945 | // If T is an Objective-C object or interface type, or a pointer to an | ||||
| 2946 | // object or interface type, the associated namespace is the global | ||||
| 2947 | // namespace. | ||||
| 2948 | case Type::ObjCObject: | ||||
| 2949 | case Type::ObjCInterface: | ||||
| 2950 | case Type::ObjCObjectPointer: | ||||
| 2951 | Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); | ||||
| 2952 | break; | ||||
| 2953 | |||||
| 2954 | // Atomic types are just wrappers; use the associations of the | ||||
| 2955 | // contained type. | ||||
| 2956 | case Type::Atomic: | ||||
| 2957 | T = cast<AtomicType>(T)->getValueType().getTypePtr(); | ||||
| 2958 | continue; | ||||
| 2959 | case Type::Pipe: | ||||
| 2960 | T = cast<PipeType>(T)->getElementType().getTypePtr(); | ||||
| 2961 | continue; | ||||
| 2962 | } | ||||
| 2963 | |||||
| 2964 | if (Queue.empty()) | ||||
| 2965 | break; | ||||
| 2966 | T = Queue.pop_back_val(); | ||||
| 2967 | } | ||||
| 2968 | } | ||||
| 2969 | |||||
| 2970 | /// Find the associated classes and namespaces for | ||||
| 2971 | /// argument-dependent lookup for a call with the given set of | ||||
| 2972 | /// arguments. | ||||
| 2973 | /// | ||||
| 2974 | /// This routine computes the sets of associated classes and associated | ||||
| 2975 | /// namespaces searched by argument-dependent lookup | ||||
| 2976 | /// (C++ [basic.lookup.argdep]) for a given set of arguments. | ||||
| 2977 | void Sema::FindAssociatedClassesAndNamespaces( | ||||
| 2978 | SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, | ||||
| 2979 | AssociatedNamespaceSet &AssociatedNamespaces, | ||||
| 2980 | AssociatedClassSet &AssociatedClasses) { | ||||
| 2981 | AssociatedNamespaces.clear(); | ||||
| 2982 | AssociatedClasses.clear(); | ||||
| 2983 | |||||
| 2984 | AssociatedLookup Result(*this, InstantiationLoc, | ||||
| 2985 | AssociatedNamespaces, AssociatedClasses); | ||||
| 2986 | |||||
| 2987 | // C++ [basic.lookup.koenig]p2: | ||||
| 2988 | // For each argument type T in the function call, there is a set | ||||
| 2989 | // of zero or more associated namespaces and a set of zero or more | ||||
| 2990 | // associated classes to be considered. The sets of namespaces and | ||||
| 2991 | // classes is determined entirely by the types of the function | ||||
| 2992 | // arguments (and the namespace of any template template | ||||
| 2993 | // argument). | ||||
| 2994 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { | ||||
| 2995 | Expr *Arg = Args[ArgIdx]; | ||||
| 2996 | |||||
| 2997 | if (Arg->getType() != Context.OverloadTy) { | ||||
| 2998 | addAssociatedClassesAndNamespaces(Result, Arg->getType()); | ||||
| 2999 | continue; | ||||
| 3000 | } | ||||
| 3001 | |||||
| 3002 | // [...] In addition, if the argument is the name or address of a | ||||
| 3003 | // set of overloaded functions and/or function templates, its | ||||
| 3004 | // associated classes and namespaces are the union of those | ||||
| 3005 | // associated with each of the members of the set: the namespace | ||||
| 3006 | // in which the function or function template is defined and the | ||||
| 3007 | // classes and namespaces associated with its (non-dependent) | ||||
| 3008 | // parameter types and return type. | ||||
| 3009 | OverloadExpr *OE = OverloadExpr::find(Arg).Expression; | ||||
| 3010 | |||||
| 3011 | for (const NamedDecl *D : OE->decls()) { | ||||
| 3012 | // Look through any using declarations to find the underlying function. | ||||
| 3013 | const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); | ||||
| 3014 | |||||
| 3015 | // Add the classes and namespaces associated with the parameter | ||||
| 3016 | // types and return type of this function. | ||||
| 3017 | addAssociatedClassesAndNamespaces(Result, FDecl->getType()); | ||||
| 3018 | } | ||||
| 3019 | } | ||||
| 3020 | } | ||||
| 3021 | |||||
| 3022 | NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, | ||||
| 3023 | SourceLocation Loc, | ||||
| 3024 | LookupNameKind NameKind, | ||||
| 3025 | RedeclarationKind Redecl) { | ||||
| 3026 | LookupResult R(*this, Name, Loc, NameKind, Redecl); | ||||
| 3027 | LookupName(R, S); | ||||
| 3028 | return R.getAsSingle<NamedDecl>(); | ||||
| 3029 | } | ||||
| 3030 | |||||
| 3031 | /// Find the protocol with the given name, if any. | ||||
| 3032 | ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, | ||||
| 3033 | SourceLocation IdLoc, | ||||
| 3034 | RedeclarationKind Redecl) { | ||||
| 3035 | Decl *D = LookupSingleName(TUScope, II, IdLoc, | ||||
| 3036 | LookupObjCProtocolName, Redecl); | ||||
| 3037 | return cast_or_null<ObjCProtocolDecl>(D); | ||||
| 3038 | } | ||||
| 3039 | |||||
| 3040 | void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, | ||||
| 3041 | UnresolvedSetImpl &Functions) { | ||||
| 3042 | // C++ [over.match.oper]p3: | ||||
| 3043 | // -- The set of non-member candidates is the result of the | ||||
| 3044 | // unqualified lookup of operator@ in the context of the | ||||
| 3045 | // expression according to the usual rules for name lookup in | ||||
| 3046 | // unqualified function calls (3.4.2) except that all member | ||||
| 3047 | // functions are ignored. | ||||
| 3048 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | ||||
| 3049 | LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); | ||||
| 3050 | LookupName(Operators, S); | ||||
| 3051 | |||||
| 3052 | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")((void)0); | ||||
| 3053 | Functions.append(Operators.begin(), Operators.end()); | ||||
| 3054 | } | ||||
| 3055 | |||||
| 3056 | Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD, | ||||
| 3057 | CXXSpecialMember SM, | ||||
| 3058 | bool ConstArg, | ||||
| 3059 | bool VolatileArg, | ||||
| 3060 | bool RValueThis, | ||||
| 3061 | bool ConstThis, | ||||
| 3062 | bool VolatileThis) { | ||||
| 3063 | assert(CanDeclareSpecialMemberFunction(RD) &&((void)0) | ||||
| 3064 | "doing special member lookup into record that isn't fully complete")((void)0); | ||||
| 3065 | RD = RD->getDefinition(); | ||||
| 3066 | if (RValueThis || ConstThis || VolatileThis) | ||||
| 3067 | assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&((void)0) | ||||
| 3068 | "constructors and destructors always have unqualified lvalue this")((void)0); | ||||
| 3069 | if (ConstArg || VolatileArg) | ||||
| 3070 | assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&((void)0) | ||||
| 3071 | "parameter-less special members can't have qualified arguments")((void)0); | ||||
| 3072 | |||||
| 3073 | // FIXME: Get the caller to pass in a location for the lookup. | ||||
| 3074 | SourceLocation LookupLoc = RD->getLocation(); | ||||
| 3075 | |||||
| 3076 | llvm::FoldingSetNodeID ID; | ||||
| 3077 | ID.AddPointer(RD); | ||||
| 3078 | ID.AddInteger(SM); | ||||
| 3079 | ID.AddInteger(ConstArg); | ||||
| 3080 | ID.AddInteger(VolatileArg); | ||||
| 3081 | ID.AddInteger(RValueThis); | ||||
| 3082 | ID.AddInteger(ConstThis); | ||||
| 3083 | ID.AddInteger(VolatileThis); | ||||
| 3084 | |||||
| 3085 | void *InsertPoint; | ||||
| 3086 | SpecialMemberOverloadResultEntry *Result = | ||||
| 3087 | SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); | ||||
| 3088 | |||||
| 3089 | // This was already cached | ||||
| 3090 | if (Result) | ||||
| 3091 | return *Result; | ||||
| 3092 | |||||
| 3093 | Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); | ||||
| 3094 | Result = new (Result) SpecialMemberOverloadResultEntry(ID); | ||||
| 3095 | SpecialMemberCache.InsertNode(Result, InsertPoint); | ||||
| 3096 | |||||
| 3097 | if (SM == CXXDestructor) { | ||||
| 3098 | if (RD->needsImplicitDestructor()) { | ||||
| 3099 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
| 3100 | DeclareImplicitDestructor(RD); | ||||
| 3101 | }); | ||||
| 3102 | } | ||||
| 3103 | CXXDestructorDecl *DD = RD->getDestructor(); | ||||
| 3104 | Result->setMethod(DD); | ||||
| 3105 | Result->setKind(DD && !DD->isDeleted() | ||||
| 3106 | ? SpecialMemberOverloadResult::Success | ||||
| 3107 | : SpecialMemberOverloadResult::NoMemberOrDeleted); | ||||
| 3108 | return *Result; | ||||
| 3109 | } | ||||
| 3110 | |||||
| 3111 | // Prepare for overload resolution. Here we construct a synthetic argument | ||||
| 3112 | // if necessary and make sure that implicit functions are declared. | ||||
| 3113 | CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); | ||||
| 3114 | DeclarationName Name; | ||||
| 3115 | Expr *Arg = nullptr; | ||||
| 3116 | unsigned NumArgs; | ||||
| 3117 | |||||
| 3118 | QualType ArgType = CanTy; | ||||
| 3119 | ExprValueKind VK = VK_LValue; | ||||
| 3120 | |||||
| 3121 | if (SM == CXXDefaultConstructor) { | ||||
| 3122 | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); | ||||
| 3123 | NumArgs = 0; | ||||
| 3124 | if (RD->needsImplicitDefaultConstructor()) { | ||||
| 3125 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
| 3126 | DeclareImplicitDefaultConstructor(RD); | ||||
| 3127 | }); | ||||
| 3128 | } | ||||
| 3129 | } else { | ||||
| 3130 | if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { | ||||
| 3131 | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); | ||||
| 3132 | if (RD->needsImplicitCopyConstructor()) { | ||||
| 3133 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
| 3134 | DeclareImplicitCopyConstructor(RD); | ||||
| 3135 | }); | ||||
| 3136 | } | ||||
| 3137 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { | ||||
| 3138 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
| 3139 | DeclareImplicitMoveConstructor(RD); | ||||
| 3140 | }); | ||||
| 3141 | } | ||||
| 3142 | } else { | ||||
| 3143 | Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | ||||
| 3144 | if (RD->needsImplicitCopyAssignment()) { | ||||
| 3145 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
| 3146 | DeclareImplicitCopyAssignment(RD); | ||||
| 3147 | }); | ||||
| 3148 | } | ||||
| 3149 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { | ||||
| 3150 | runWithSufficientStackSpace(RD->getLocation(), [&] { | ||||
| 3151 | DeclareImplicitMoveAssignment(RD); | ||||
| 3152 | }); | ||||
| 3153 | } | ||||
| 3154 | } | ||||
| 3155 | |||||
| 3156 | if (ConstArg) | ||||
| 3157 | ArgType.addConst(); | ||||
| 3158 | if (VolatileArg) | ||||
| 3159 | ArgType.addVolatile(); | ||||
| 3160 | |||||
| 3161 | // This isn't /really/ specified by the standard, but it's implied | ||||
| 3162 | // we should be working from a PRValue in the case of move to ensure | ||||
| 3163 | // that we prefer to bind to rvalue references, and an LValue in the | ||||
| 3164 | // case of copy to ensure we don't bind to rvalue references. | ||||
| 3165 | // Possibly an XValue is actually correct in the case of move, but | ||||
| 3166 | // there is no semantic difference for class types in this restricted | ||||
| 3167 | // case. | ||||
| 3168 | if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) | ||||
| 3169 | VK = VK_LValue; | ||||
| 3170 | else | ||||
| 3171 | VK = VK_PRValue; | ||||
| 3172 | } | ||||
| 3173 | |||||
| 3174 | OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); | ||||
| 3175 | |||||
| 3176 | if (SM != CXXDefaultConstructor) { | ||||
| 3177 | NumArgs = 1; | ||||
| 3178 | Arg = &FakeArg; | ||||
| 3179 | } | ||||
| 3180 | |||||
| 3181 | // Create the object argument | ||||
| 3182 | QualType ThisTy = CanTy; | ||||
| 3183 | if (ConstThis) | ||||
| 3184 | ThisTy.addConst(); | ||||
| 3185 | if (VolatileThis) | ||||
| 3186 | ThisTy.addVolatile(); | ||||
| 3187 | Expr::Classification Classification = | ||||
| 3188 | OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) | ||||
| 3189 | .Classify(Context); | ||||
| 3190 | |||||
| 3191 | // Now we perform lookup on the name we computed earlier and do overload | ||||
| 3192 | // resolution. Lookup is only performed directly into the class since there | ||||
| 3193 | // will always be a (possibly implicit) declaration to shadow any others. | ||||
| 3194 | OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); | ||||
| 3195 | DeclContext::lookup_result R = RD->lookup(Name); | ||||
| 3196 | |||||
| 3197 | if (R.empty()) { | ||||
| 3198 | // We might have no default constructor because we have a lambda's closure | ||||
| 3199 | // type, rather than because there's some other declared constructor. | ||||
| 3200 | // Every class has a copy/move constructor, copy/move assignment, and | ||||
| 3201 | // destructor. | ||||
| 3202 | assert(SM == CXXDefaultConstructor &&((void)0) | ||||
| 3203 | "lookup for a constructor or assignment operator was empty")((void)0); | ||||
| 3204 | Result->setMethod(nullptr); | ||||
| 3205 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | ||||
| 3206 | return *Result; | ||||
| 3207 | } | ||||
| 3208 | |||||
| 3209 | // Copy the candidates as our processing of them may load new declarations | ||||
| 3210 | // from an external source and invalidate lookup_result. | ||||
| 3211 | SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); | ||||
| 3212 | |||||
| 3213 | for (NamedDecl *CandDecl : Candidates) { | ||||
| 3214 | if (CandDecl->isInvalidDecl()) | ||||
| 3215 | continue; | ||||
| 3216 | |||||
| 3217 | DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); | ||||
| 3218 | auto CtorInfo = getConstructorInfo(Cand); | ||||
| 3219 | if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { | ||||
| 3220 | if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) | ||||
| 3221 | AddMethodCandidate(M, Cand, RD, ThisTy, Classification, | ||||
| 3222 | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | ||||
| 3223 | else if (CtorInfo) | ||||
| 3224 | AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, | ||||
| 3225 | llvm::makeArrayRef(&Arg, NumArgs), OCS, | ||||
| 3226 | /*SuppressUserConversions*/ true); | ||||
| 3227 | else | ||||
| 3228 | AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS, | ||||
| 3229 | /*SuppressUserConversions*/ true); | ||||
| 3230 | } else if (FunctionTemplateDecl *Tmpl = | ||||
| 3231 | dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { | ||||
| 3232 | if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) | ||||
| 3233 | AddMethodTemplateCandidate( | ||||
| 3234 | Tmpl, Cand, RD, nullptr, ThisTy, Classification, | ||||
| 3235 | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | ||||
| 3236 | else if (CtorInfo) | ||||
| 3237 | AddTemplateOverloadCandidate( | ||||
| 3238 | CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr, | ||||
| 3239 | llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | ||||
| 3240 | else | ||||
| 3241 | AddTemplateOverloadCandidate( | ||||
| 3242 | Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true); | ||||
| 3243 | } else { | ||||
| 3244 | assert(isa<UsingDecl>(Cand.getDecl()) &&((void)0) | ||||
| 3245 | "illegal Kind of operator = Decl")((void)0); | ||||
| 3246 | } | ||||
| 3247 | } | ||||
| 3248 | |||||
| 3249 | OverloadCandidateSet::iterator Best; | ||||
| 3250 | switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { | ||||
| 3251 | case OR_Success: | ||||
| 3252 | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); | ||||
| 3253 | Result->setKind(SpecialMemberOverloadResult::Success); | ||||
| 3254 | break; | ||||
| 3255 | |||||
| 3256 | case OR_Deleted: | ||||
| 3257 | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); | ||||
| 3258 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | ||||
| 3259 | break; | ||||
| 3260 | |||||
| 3261 | case OR_Ambiguous: | ||||
| 3262 | Result->setMethod(nullptr); | ||||
| 3263 | Result->setKind(SpecialMemberOverloadResult::Ambiguous); | ||||
| 3264 | break; | ||||
| 3265 | |||||
| 3266 | case OR_No_Viable_Function: | ||||
| 3267 | Result->setMethod(nullptr); | ||||
| 3268 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | ||||
| 3269 | break; | ||||
| 3270 | } | ||||
| 3271 | |||||
| 3272 | return *Result; | ||||
| 3273 | } | ||||
| 3274 | |||||
| 3275 | /// Look up the default constructor for the given class. | ||||
| 3276 | CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { | ||||
| 3277 | SpecialMemberOverloadResult Result = | ||||
| 3278 | LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, | ||||
| 3279 | false, false); | ||||
| 3280 | |||||
| 3281 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | ||||
| 3282 | } | ||||
| 3283 | |||||
| 3284 | /// Look up the copying constructor for the given class. | ||||
| 3285 | CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, | ||||
| 3286 | unsigned Quals) { | ||||
| 3287 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((void)0) | ||||
| 3288 | "non-const, non-volatile qualifiers for copy ctor arg")((void)0); | ||||
| 3289 | SpecialMemberOverloadResult Result = | ||||
| 3290 | LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, | ||||
| 3291 | Quals & Qualifiers::Volatile, false, false, false); | ||||
| 3292 | |||||
| 3293 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | ||||
| 3294 | } | ||||
| 3295 | |||||
| 3296 | /// Look up the moving constructor for the given class. | ||||
| 3297 | CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, | ||||
| 3298 | unsigned Quals) { | ||||
| 3299 | SpecialMemberOverloadResult Result = | ||||
| 3300 | LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const, | ||||
| 3301 | Quals & Qualifiers::Volatile, false, false, false); | ||||
| 3302 | |||||
| 3303 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | ||||
| 3304 | } | ||||
| 3305 | |||||
| 3306 | /// Look up the constructors for the given class. | ||||
| 3307 | DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { | ||||
| 3308 | // If the implicit constructors have not yet been declared, do so now. | ||||
| 3309 | if (CanDeclareSpecialMemberFunction(Class)) { | ||||
| 3310 | runWithSufficientStackSpace(Class->getLocation(), [&] { | ||||
| 3311 | if (Class->needsImplicitDefaultConstructor()) | ||||
| 3312 | DeclareImplicitDefaultConstructor(Class); | ||||
| 3313 | if (Class->needsImplicitCopyConstructor()) | ||||
| 3314 | DeclareImplicitCopyConstructor(Class); | ||||
| 3315 | if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) | ||||
| 3316 | DeclareImplicitMoveConstructor(Class); | ||||
| 3317 | }); | ||||
| 3318 | } | ||||
| 3319 | |||||
| 3320 | CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); | ||||
| 3321 | DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); | ||||
| 3322 | return Class->lookup(Name); | ||||
| 3323 | } | ||||
| 3324 | |||||
| 3325 | /// Look up the copying assignment operator for the given class. | ||||
| 3326 | CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, | ||||
| 3327 | unsigned Quals, bool RValueThis, | ||||
| 3328 | unsigned ThisQuals) { | ||||
| 3329 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((void)0) | ||||
| 3330 | "non-const, non-volatile qualifiers for copy assignment arg")((void)0); | ||||
| 3331 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((void)0) | ||||
| 3332 | "non-const, non-volatile qualifiers for copy assignment this")((void)0); | ||||
| 3333 | SpecialMemberOverloadResult Result = | ||||
| 3334 | LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, | ||||
| 3335 | Quals & Qualifiers::Volatile, RValueThis, | ||||
| 3336 | ThisQuals & Qualifiers::Const, | ||||
| 3337 | ThisQuals & Qualifiers::Volatile); | ||||
| 3338 | |||||
| 3339 | return Result.getMethod(); | ||||
| 3340 | } | ||||
| 3341 | |||||
| 3342 | /// Look up the moving assignment operator for the given class. | ||||
| 3343 | CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, | ||||
| 3344 | unsigned Quals, | ||||
| 3345 | bool RValueThis, | ||||
| 3346 | unsigned ThisQuals) { | ||||
| 3347 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((void)0) | ||||
| 3348 | "non-const, non-volatile qualifiers for copy assignment this")((void)0); | ||||
| 3349 | SpecialMemberOverloadResult Result = | ||||
| 3350 | LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const, | ||||
| 3351 | Quals & Qualifiers::Volatile, RValueThis, | ||||
| 3352 | ThisQuals & Qualifiers::Const, | ||||
| 3353 | ThisQuals & Qualifiers::Volatile); | ||||
| 3354 | |||||
| 3355 | return Result.getMethod(); | ||||
| 3356 | } | ||||
| 3357 | |||||
| 3358 | /// Look for the destructor of the given class. | ||||
| 3359 | /// | ||||
| 3360 | /// During semantic analysis, this routine should be used in lieu of | ||||
| 3361 | /// CXXRecordDecl::getDestructor(). | ||||
| 3362 | /// | ||||
| 3363 | /// \returns The destructor for this class. | ||||
| 3364 | CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { | ||||
| 3365 | return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor, | ||||
| 3366 | false, false, false, | ||||
| 3367 | false, false).getMethod()); | ||||
| 3368 | } | ||||
| 3369 | |||||
| 3370 | /// LookupLiteralOperator - Determine which literal operator should be used for | ||||
| 3371 | /// a user-defined literal, per C++11 [lex.ext]. | ||||
| 3372 | /// | ||||
| 3373 | /// Normal overload resolution is not used to select which literal operator to | ||||
| 3374 | /// call for a user-defined literal. Look up the provided literal operator name, | ||||
| 3375 | /// and filter the results to the appropriate set for the given argument types. | ||||
| 3376 | Sema::LiteralOperatorLookupResult | ||||
| 3377 | Sema::LookupLiteralOperator(Scope *S, LookupResult &R, | ||||
| 3378 | ArrayRef<QualType> ArgTys, bool AllowRaw, | ||||
| 3379 | bool AllowTemplate, bool AllowStringTemplatePack, | ||||
| 3380 | bool DiagnoseMissing, StringLiteral *StringLit) { | ||||
| 3381 | LookupName(R, S); | ||||
| 3382 | assert(R.getResultKind() != LookupResult::Ambiguous &&((void)0) | ||||
| 3383 | "literal operator lookup can't be ambiguous")((void)0); | ||||
| 3384 | |||||
| 3385 | // Filter the lookup results appropriately. | ||||
| 3386 | LookupResult::Filter F = R.makeFilter(); | ||||
| 3387 | |||||
| 3388 | bool AllowCooked = true; | ||||
| 3389 | bool FoundRaw = false; | ||||
| 3390 | bool FoundTemplate = false; | ||||
| 3391 | bool FoundStringTemplatePack = false; | ||||
| 3392 | bool FoundCooked = false; | ||||
| 3393 | |||||
| 3394 | while (F.hasNext()) { | ||||
| 3395 | Decl *D = F.next(); | ||||
| 3396 | if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) | ||||
| 3397 | D = USD->getTargetDecl(); | ||||
| 3398 | |||||
| 3399 | // If the declaration we found is invalid, skip it. | ||||
| 3400 | if (D->isInvalidDecl()) { | ||||
| 3401 | F.erase(); | ||||
| 3402 | continue; | ||||
| 3403 | } | ||||
| 3404 | |||||
| 3405 | bool IsRaw = false; | ||||
| 3406 | bool IsTemplate = false; | ||||
| 3407 | bool IsStringTemplatePack = false; | ||||
| 3408 | bool IsCooked = false; | ||||
| 3409 | |||||
| 3410 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | ||||
| 3411 | if (FD->getNumParams() == 1 && | ||||
| 3412 | FD->getParamDecl(0)->getType()->getAs<PointerType>()) | ||||
| 3413 | IsRaw = true; | ||||
| 3414 | else if (FD->getNumParams() == ArgTys.size()) { | ||||
| 3415 | IsCooked = true; | ||||
| 3416 | for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { | ||||
| 3417 | QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); | ||||
| 3418 | if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { | ||||
| 3419 | IsCooked = false; | ||||
| 3420 | break; | ||||
| 3421 | } | ||||
| 3422 | } | ||||
| 3423 | } | ||||
| 3424 | } | ||||
| 3425 | if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { | ||||
| 3426 | TemplateParameterList *Params = FD->getTemplateParameters(); | ||||
| 3427 | if (Params->size() == 1) { | ||||
| 3428 | IsTemplate = true; | ||||
| 3429 | if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { | ||||
| 3430 | // Implied but not stated: user-defined integer and floating literals | ||||
| 3431 | // only ever use numeric literal operator templates, not templates | ||||
| 3432 | // taking a parameter of class type. | ||||
| 3433 | F.erase(); | ||||
| 3434 | continue; | ||||
| 3435 | } | ||||
| 3436 | |||||
| 3437 | // A string literal template is only considered if the string literal | ||||
| 3438 | // is a well-formed template argument for the template parameter. | ||||
| 3439 | if (StringLit) { | ||||
| 3440 | SFINAETrap Trap(*this); | ||||
| 3441 | SmallVector<TemplateArgument, 1> Checked; | ||||
| 3442 | TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); | ||||
| 3443 | if (CheckTemplateArgument(Params->getParam(0), Arg, FD, | ||||
| 3444 | R.getNameLoc(), R.getNameLoc(), 0, | ||||
| 3445 | Checked) || | ||||
| 3446 | Trap.hasErrorOccurred()) | ||||
| 3447 | IsTemplate = false; | ||||
| 3448 | } | ||||
| 3449 | } else { | ||||
| 3450 | IsStringTemplatePack = true; | ||||
| 3451 | } | ||||
| 3452 | } | ||||
| 3453 | |||||
| 3454 | if (AllowTemplate && StringLit && IsTemplate) { | ||||
| 3455 | FoundTemplate = true; | ||||
| 3456 | AllowRaw = false; | ||||
| 3457 | AllowCooked = false; | ||||
| 3458 | AllowStringTemplatePack = false; | ||||
| 3459 | if (FoundRaw || FoundCooked || FoundStringTemplatePack) { | ||||
| 3460 | F.restart(); | ||||
| 3461 | FoundRaw = FoundCooked = FoundStringTemplatePack = false; | ||||
| 3462 | } | ||||
| 3463 | } else if (AllowCooked && IsCooked) { | ||||
| 3464 | FoundCooked = true; | ||||
| 3465 | AllowRaw = false; | ||||
| 3466 | AllowTemplate = StringLit; | ||||
| 3467 | AllowStringTemplatePack = false; | ||||
| 3468 | if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { | ||||
| 3469 | // Go through again and remove the raw and template decls we've | ||||
| 3470 | // already found. | ||||
| 3471 | F.restart(); | ||||
| 3472 | FoundRaw = FoundTemplate = FoundStringTemplatePack = false; | ||||
| 3473 | } | ||||
| 3474 | } else if (AllowRaw && IsRaw) { | ||||
| 3475 | FoundRaw = true; | ||||
| 3476 | } else if (AllowTemplate && IsTemplate) { | ||||
| 3477 | FoundTemplate = true; | ||||
| 3478 | } else if (AllowStringTemplatePack && IsStringTemplatePack) { | ||||
| 3479 | FoundStringTemplatePack = true; | ||||
| 3480 | } else { | ||||
| 3481 | F.erase(); | ||||
| 3482 | } | ||||
| 3483 | } | ||||
| 3484 | |||||
| 3485 | F.done(); | ||||
| 3486 | |||||
| 3487 | // Per C++20 [lex.ext]p5, we prefer the template form over the non-template | ||||
| 3488 | // form for string literal operator templates. | ||||
| 3489 | if (StringLit && FoundTemplate) | ||||
| 3490 | return LOLR_Template; | ||||
| 3491 | |||||
| 3492 | // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching | ||||
| 3493 | // parameter type, that is used in preference to a raw literal operator | ||||
| 3494 | // or literal operator template. | ||||
| 3495 | if (FoundCooked) | ||||
| 3496 | return LOLR_Cooked; | ||||
| 3497 | |||||
| 3498 | // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal | ||||
| 3499 | // operator template, but not both. | ||||
| 3500 | if (FoundRaw && FoundTemplate) { | ||||
| 3501 | Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); | ||||
| 3502 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | ||||
| 3503 | NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction()); | ||||
| 3504 | return LOLR_Error; | ||||
| 3505 | } | ||||
| 3506 | |||||
| 3507 | if (FoundRaw) | ||||
| 3508 | return LOLR_Raw; | ||||
| 3509 | |||||
| 3510 | if (FoundTemplate) | ||||
| 3511 | return LOLR_Template; | ||||
| 3512 | |||||
| 3513 | if (FoundStringTemplatePack) | ||||
| 3514 | return LOLR_StringTemplatePack; | ||||
| 3515 | |||||
| 3516 | // Didn't find anything we could use. | ||||
| 3517 | if (DiagnoseMissing) { | ||||
| 3518 | Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) | ||||
| 3519 | << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] | ||||
| 3520 | << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw | ||||
| 3521 | << (AllowTemplate || AllowStringTemplatePack); | ||||
| 3522 | return LOLR_Error; | ||||
| 3523 | } | ||||
| 3524 | |||||
| 3525 | return LOLR_ErrorNoDiagnostic; | ||||
| 3526 | } | ||||
| 3527 | |||||
| 3528 | void ADLResult::insert(NamedDecl *New) { | ||||
| 3529 | NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; | ||||
| 3530 | |||||
| 3531 | // If we haven't yet seen a decl for this key, or the last decl | ||||
| 3532 | // was exactly this one, we're done. | ||||
| 3533 | if (Old == nullptr || Old == New) { | ||||
| 3534 | Old = New; | ||||
| 3535 | return; | ||||
| 3536 | } | ||||
| 3537 | |||||
| 3538 | // Otherwise, decide which is a more recent redeclaration. | ||||
| 3539 | FunctionDecl *OldFD = Old->getAsFunction(); | ||||
| 3540 | FunctionDecl *NewFD = New->getAsFunction(); | ||||
| 3541 | |||||
| 3542 | FunctionDecl *Cursor = NewFD; | ||||
| 3543 | while (true) { | ||||
| 3544 | Cursor = Cursor->getPreviousDecl(); | ||||
| 3545 | |||||
| 3546 | // If we got to the end without finding OldFD, OldFD is the newer | ||||
| 3547 | // declaration; leave things as they are. | ||||
| 3548 | if (!Cursor) return; | ||||
| 3549 | |||||
| 3550 | // If we do find OldFD, then NewFD is newer. | ||||
| 3551 | if (Cursor == OldFD) break; | ||||
| 3552 | |||||
| 3553 | // Otherwise, keep looking. | ||||
| 3554 | } | ||||
| 3555 | |||||
| 3556 | Old = New; | ||||
| 3557 | } | ||||
| 3558 | |||||
| 3559 | void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, | ||||
| 3560 | ArrayRef<Expr *> Args, ADLResult &Result) { | ||||
| 3561 | // Find all of the associated namespaces and classes based on the | ||||
| 3562 | // arguments we have. | ||||
| 3563 | AssociatedNamespaceSet AssociatedNamespaces; | ||||
| 3564 | AssociatedClassSet AssociatedClasses; | ||||
| 3565 | FindAssociatedClassesAndNamespaces(Loc, Args, | ||||
| 3566 | AssociatedNamespaces, | ||||
| 3567 | AssociatedClasses); | ||||
| 3568 | |||||
| 3569 | // C++ [basic.lookup.argdep]p3: | ||||
| 3570 | // Let X be the lookup set produced by unqualified lookup (3.4.1) | ||||
| 3571 | // and let Y be the lookup set produced by argument dependent | ||||
| 3572 | // lookup (defined as follows). If X contains [...] then Y is | ||||
| 3573 | // empty. Otherwise Y is the set of declarations found in the | ||||
| 3574 | // namespaces associated with the argument types as described | ||||
| 3575 | // below. The set of declarations found by the lookup of the name | ||||
| 3576 | // is the union of X and Y. | ||||
| 3577 | // | ||||
| 3578 | // Here, we compute Y and add its members to the overloaded | ||||
| 3579 | // candidate set. | ||||
| 3580 | for (auto *NS : AssociatedNamespaces) { | ||||
| 3581 | // When considering an associated namespace, the lookup is the | ||||
| 3582 | // same as the lookup performed when the associated namespace is | ||||
| 3583 | // used as a qualifier (3.4.3.2) except that: | ||||
| 3584 | // | ||||
| 3585 | // -- Any using-directives in the associated namespace are | ||||
| 3586 | // ignored. | ||||
| 3587 | // | ||||
| 3588 | // -- Any namespace-scope friend functions declared in | ||||
| 3589 | // associated classes are visible within their respective | ||||
| 3590 | // namespaces even if they are not visible during an ordinary | ||||
| 3591 | // lookup (11.4). | ||||
| 3592 | DeclContext::lookup_result R = NS->lookup(Name); | ||||
| 3593 | for (auto *D : R) { | ||||
| 3594 | auto *Underlying = D; | ||||
| 3595 | if (auto *USD = dyn_cast<UsingShadowDecl>(D)) | ||||
| 3596 | Underlying = USD->getTargetDecl(); | ||||
| 3597 | |||||
| 3598 | if (!isa<FunctionDecl>(Underlying) && | ||||
| 3599 | !isa<FunctionTemplateDecl>(Underlying)) | ||||
| 3600 | continue; | ||||
| 3601 | |||||
| 3602 | // The declaration is visible to argument-dependent lookup if either | ||||
| 3603 | // it's ordinarily visible or declared as a friend in an associated | ||||
| 3604 | // class. | ||||
| 3605 | bool Visible = false; | ||||
| 3606 | for (D = D->getMostRecentDecl(); D; | ||||
| 3607 | D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { | ||||
| 3608 | if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { | ||||
| 3609 | if (isVisible(D)) { | ||||
| 3610 | Visible = true; | ||||
| 3611 | break; | ||||
| 3612 | } | ||||
| 3613 | } else if (D->getFriendObjectKind()) { | ||||
| 3614 | auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); | ||||
| 3615 | if (AssociatedClasses.count(RD) && isVisible(D)) { | ||||
| 3616 | Visible = true; | ||||
| 3617 | break; | ||||
| 3618 | } | ||||
| 3619 | } | ||||
| 3620 | } | ||||
| 3621 | |||||
| 3622 | // FIXME: Preserve D as the FoundDecl. | ||||
| 3623 | if (Visible) | ||||
| 3624 | Result.insert(Underlying); | ||||
| 3625 | } | ||||
| 3626 | } | ||||
| 3627 | } | ||||
| 3628 | |||||
| 3629 | //---------------------------------------------------------------------------- | ||||
| 3630 | // Search for all visible declarations. | ||||
| 3631 | //---------------------------------------------------------------------------- | ||||
| 3632 | VisibleDeclConsumer::~VisibleDeclConsumer() { } | ||||
| 3633 | |||||
| 3634 | bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } | ||||
| 3635 | |||||
| 3636 | namespace { | ||||
| 3637 | |||||
| 3638 | class ShadowContextRAII; | ||||
| 3639 | |||||
| 3640 | class VisibleDeclsRecord { | ||||
| 3641 | public: | ||||
| 3642 | /// An entry in the shadow map, which is optimized to store a | ||||
| 3643 | /// single declaration (the common case) but can also store a list | ||||
| 3644 | /// of declarations. | ||||
| 3645 | typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; | ||||
| 3646 | |||||
| 3647 | private: | ||||
| 3648 | /// A mapping from declaration names to the declarations that have | ||||
| 3649 | /// this name within a particular scope. | ||||
| 3650 | typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; | ||||
| 3651 | |||||
| 3652 | /// A list of shadow maps, which is used to model name hiding. | ||||
| 3653 | std::list<ShadowMap> ShadowMaps; | ||||
| 3654 | |||||
| 3655 | /// The declaration contexts we have already visited. | ||||
| 3656 | llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; | ||||
| 3657 | |||||
| 3658 | friend class ShadowContextRAII; | ||||
| 3659 | |||||
| 3660 | public: | ||||
| 3661 | /// Determine whether we have already visited this context | ||||
| 3662 | /// (and, if not, note that we are going to visit that context now). | ||||
| 3663 | bool visitedContext(DeclContext *Ctx) { | ||||
| 3664 | return !VisitedContexts.insert(Ctx).second; | ||||
| 3665 | } | ||||
| 3666 | |||||
| 3667 | bool alreadyVisitedContext(DeclContext *Ctx) { | ||||
| 3668 | return VisitedContexts.count(Ctx); | ||||
| 3669 | } | ||||
| 3670 | |||||
| 3671 | /// Determine whether the given declaration is hidden in the | ||||
| 3672 | /// current scope. | ||||
| 3673 | /// | ||||
| 3674 | /// \returns the declaration that hides the given declaration, or | ||||
| 3675 | /// NULL if no such declaration exists. | ||||
| 3676 | NamedDecl *checkHidden(NamedDecl *ND); | ||||
| 3677 | |||||
| 3678 | /// Add a declaration to the current shadow map. | ||||
| 3679 | void add(NamedDecl *ND) { | ||||
| 3680 | ShadowMaps.back()[ND->getDeclName()].push_back(ND); | ||||
| 3681 | } | ||||
| 3682 | }; | ||||
| 3683 | |||||
| 3684 | /// RAII object that records when we've entered a shadow context. | ||||
| 3685 | class ShadowContextRAII { | ||||
| 3686 | VisibleDeclsRecord &Visible; | ||||
| 3687 | |||||
| 3688 | typedef VisibleDeclsRecord::ShadowMap ShadowMap; | ||||
| 3689 | |||||
| 3690 | public: | ||||
| 3691 | ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { | ||||
| 3692 | Visible.ShadowMaps.emplace_back(); | ||||
| 3693 | } | ||||
| 3694 | |||||
| 3695 | ~ShadowContextRAII() { | ||||
| 3696 | Visible.ShadowMaps.pop_back(); | ||||
| 3697 | } | ||||
| 3698 | }; | ||||
| 3699 | |||||
| 3700 | } // end anonymous namespace | ||||
| 3701 | |||||
| 3702 | NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { | ||||
| 3703 | unsigned IDNS = ND->getIdentifierNamespace(); | ||||
| 3704 | std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); | ||||
| 3705 | for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); | ||||
| 3706 | SM != SMEnd; ++SM) { | ||||
| 3707 | ShadowMap::iterator Pos = SM->find(ND->getDeclName()); | ||||
| 3708 | if (Pos == SM->end()) | ||||
| 3709 | continue; | ||||
| 3710 | |||||
| 3711 | for (auto *D : Pos->second) { | ||||
| 3712 | // A tag declaration does not hide a non-tag declaration. | ||||
| 3713 | if (D->hasTagIdentifierNamespace() && | ||||
| 3714 | (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | | ||||
| 3715 | Decl::IDNS_ObjCProtocol))) | ||||
| 3716 | continue; | ||||
| 3717 | |||||
| 3718 | // Protocols are in distinct namespaces from everything else. | ||||
| 3719 | if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) | ||||
| 3720 | || (IDNS & Decl::IDNS_ObjCProtocol)) && | ||||
| 3721 | D->getIdentifierNamespace() != IDNS) | ||||
| 3722 | continue; | ||||
| 3723 | |||||
| 3724 | // Functions and function templates in the same scope overload | ||||
| 3725 | // rather than hide. FIXME: Look for hiding based on function | ||||
| 3726 | // signatures! | ||||
| 3727 | if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && | ||||
| 3728 | ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && | ||||
| 3729 | SM == ShadowMaps.rbegin()) | ||||
| 3730 | continue; | ||||
| 3731 | |||||
| 3732 | // A shadow declaration that's created by a resolved using declaration | ||||
| 3733 | // is not hidden by the same using declaration. | ||||
| 3734 | if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && | ||||
| 3735 | cast<UsingShadowDecl>(ND)->getIntroducer() == D) | ||||
| 3736 | continue; | ||||
| 3737 | |||||
| 3738 | // We've found a declaration that hides this one. | ||||
| 3739 | return D; | ||||
| 3740 | } | ||||
| 3741 | } | ||||
| 3742 | |||||
| 3743 | return nullptr; | ||||
| 3744 | } | ||||
| 3745 | |||||
| 3746 | namespace { | ||||
| 3747 | class LookupVisibleHelper { | ||||
| 3748 | public: | ||||
| 3749 | LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, | ||||
| 3750 | bool LoadExternal) | ||||
| 3751 | : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), | ||||
| 3752 | LoadExternal(LoadExternal) {} | ||||
| 3753 | |||||
| 3754 | void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, | ||||
| 3755 | bool IncludeGlobalScope) { | ||||
| 3756 | // Determine the set of using directives available during | ||||
| 3757 | // unqualified name lookup. | ||||
| 3758 | Scope *Initial = S; | ||||
| 3759 | UnqualUsingDirectiveSet UDirs(SemaRef); | ||||
| 3760 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
| 3761 | // Find the first namespace or translation-unit scope. | ||||
| 3762 | while (S && !isNamespaceOrTranslationUnitScope(S)) | ||||
| 3763 | S = S->getParent(); | ||||
| 3764 | |||||
| 3765 | UDirs.visitScopeChain(Initial, S); | ||||
| 3766 | } | ||||
| 3767 | UDirs.done(); | ||||
| 3768 | |||||
| 3769 | // Look for visible declarations. | ||||
| 3770 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); | ||||
| 3771 | Result.setAllowHidden(Consumer.includeHiddenDecls()); | ||||
| 3772 | if (!IncludeGlobalScope) | ||||
| 3773 | Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); | ||||
| 3774 | ShadowContextRAII Shadow(Visited); | ||||
| 3775 | lookupInScope(Initial, Result, UDirs); | ||||
| 3776 | } | ||||
| 3777 | |||||
| 3778 | void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, | ||||
| 3779 | Sema::LookupNameKind Kind, bool IncludeGlobalScope) { | ||||
| 3780 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); | ||||
| 3781 | Result.setAllowHidden(Consumer.includeHiddenDecls()); | ||||
| 3782 | if (!IncludeGlobalScope) | ||||
| 3783 | Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); | ||||
| 3784 | |||||
| 3785 | ShadowContextRAII Shadow(Visited); | ||||
| 3786 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, | ||||
| 3787 | /*InBaseClass=*/false); | ||||
| 3788 | } | ||||
| 3789 | |||||
| 3790 | private: | ||||
| 3791 | void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, | ||||
| 3792 | bool QualifiedNameLookup, bool InBaseClass) { | ||||
| 3793 | if (!Ctx) | ||||
| 3794 | return; | ||||
| 3795 | |||||
| 3796 | // Make sure we don't visit the same context twice. | ||||
| 3797 | if (Visited.visitedContext(Ctx->getPrimaryContext())) | ||||
| 3798 | return; | ||||
| 3799 | |||||
| 3800 | Consumer.EnteredContext(Ctx); | ||||
| 3801 | |||||
| 3802 | // Outside C++, lookup results for the TU live on identifiers. | ||||
| 3803 | if (isa<TranslationUnitDecl>(Ctx) && | ||||
| 3804 | !Result.getSema().getLangOpts().CPlusPlus) { | ||||
| 3805 | auto &S = Result.getSema(); | ||||
| 3806 | auto &Idents = S.Context.Idents; | ||||
| 3807 | |||||
| 3808 | // Ensure all external identifiers are in the identifier table. | ||||
| 3809 | if (LoadExternal) | ||||
| 3810 | if (IdentifierInfoLookup *External = | ||||
| 3811 | Idents.getExternalIdentifierLookup()) { | ||||
| 3812 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); | ||||
| 3813 | for (StringRef Name = Iter->Next(); !Name.empty(); | ||||
| 3814 | Name = Iter->Next()) | ||||
| 3815 | Idents.get(Name); | ||||
| 3816 | } | ||||
| 3817 | |||||
| 3818 | // Walk all lookup results in the TU for each identifier. | ||||
| 3819 | for (const auto &Ident : Idents) { | ||||
| 3820 | for (auto I = S.IdResolver.begin(Ident.getValue()), | ||||
| 3821 | E = S.IdResolver.end(); | ||||
| 3822 | I != E; ++I) { | ||||
| 3823 | if (S.IdResolver.isDeclInScope(*I, Ctx)) { | ||||
| 3824 | if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { | ||||
| 3825 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); | ||||
| 3826 | Visited.add(ND); | ||||
| 3827 | } | ||||
| 3828 | } | ||||
| 3829 | } | ||||
| 3830 | } | ||||
| 3831 | |||||
| 3832 | return; | ||||
| 3833 | } | ||||
| 3834 | |||||
| 3835 | if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) | ||||
| 3836 | Result.getSema().ForceDeclarationOfImplicitMembers(Class); | ||||
| 3837 | |||||
| 3838 | llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; | ||||
| 3839 | // We sometimes skip loading namespace-level results (they tend to be huge). | ||||
| 3840 | bool Load = LoadExternal || | ||||
| 3841 | !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); | ||||
| 3842 | // Enumerate all of the results in this context. | ||||
| 3843 | for (DeclContextLookupResult R : | ||||
| 3844 | Load ? Ctx->lookups() | ||||
| 3845 | : Ctx->noload_lookups(/*PreserveInternalState=*/false)) { | ||||
| 3846 | for (auto *D : R) { | ||||
| 3847 | if (auto *ND = Result.getAcceptableDecl(D)) { | ||||
| 3848 | // Rather than visit immediatelly, we put ND into a vector and visit | ||||
| 3849 | // all decls, in order, outside of this loop. The reason is that | ||||
| 3850 | // Consumer.FoundDecl() may invalidate the iterators used in the two | ||||
| 3851 | // loops above. | ||||
| 3852 | DeclsToVisit.push_back(ND); | ||||
| 3853 | } | ||||
| 3854 | } | ||||
| 3855 | } | ||||
| 3856 | |||||
| 3857 | for (auto *ND : DeclsToVisit) { | ||||
| 3858 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); | ||||
| 3859 | Visited.add(ND); | ||||
| 3860 | } | ||||
| 3861 | DeclsToVisit.clear(); | ||||
| 3862 | |||||
| 3863 | // Traverse using directives for qualified name lookup. | ||||
| 3864 | if (QualifiedNameLookup) { | ||||
| 3865 | ShadowContextRAII Shadow(Visited); | ||||
| 3866 | for (auto I : Ctx->using_directives()) { | ||||
| 3867 | if (!Result.getSema().isVisible(I)) | ||||
| 3868 | continue; | ||||
| 3869 | lookupInDeclContext(I->getNominatedNamespace(), Result, | ||||
| 3870 | QualifiedNameLookup, InBaseClass); | ||||
| 3871 | } | ||||
| 3872 | } | ||||
| 3873 | |||||
| 3874 | // Traverse the contexts of inherited C++ classes. | ||||
| 3875 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { | ||||
| 3876 | if (!Record->hasDefinition()) | ||||
| 3877 | return; | ||||
| 3878 | |||||
| 3879 | for (const auto &B : Record->bases()) { | ||||
| 3880 | QualType BaseType = B.getType(); | ||||
| 3881 | |||||
| 3882 | RecordDecl *RD; | ||||
| 3883 | if (BaseType->isDependentType()) { | ||||
| 3884 | if (!IncludeDependentBases) { | ||||
| 3885 | // Don't look into dependent bases, because name lookup can't look | ||||
| 3886 | // there anyway. | ||||
| 3887 | continue; | ||||
| 3888 | } | ||||
| 3889 | const auto *TST = BaseType->getAs<TemplateSpecializationType>(); | ||||
| 3890 | if (!TST) | ||||
| 3891 | continue; | ||||
| 3892 | TemplateName TN = TST->getTemplateName(); | ||||
| 3893 | const auto *TD = | ||||
| 3894 | dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); | ||||
| 3895 | if (!TD) | ||||
| 3896 | continue; | ||||
| 3897 | RD = TD->getTemplatedDecl(); | ||||
| 3898 | } else { | ||||
| 3899 | const auto *Record = BaseType->getAs<RecordType>(); | ||||
| 3900 | if (!Record) | ||||
| 3901 | continue; | ||||
| 3902 | RD = Record->getDecl(); | ||||
| 3903 | } | ||||
| 3904 | |||||
| 3905 | // FIXME: It would be nice to be able to determine whether referencing | ||||
| 3906 | // a particular member would be ambiguous. For example, given | ||||
| 3907 | // | ||||
| 3908 | // struct A { int member; }; | ||||
| 3909 | // struct B { int member; }; | ||||
| 3910 | // struct C : A, B { }; | ||||
| 3911 | // | ||||
| 3912 | // void f(C *c) { c->### } | ||||
| 3913 | // | ||||
| 3914 | // accessing 'member' would result in an ambiguity. However, we | ||||
| 3915 | // could be smart enough to qualify the member with the base | ||||
| 3916 | // class, e.g., | ||||
| 3917 | // | ||||
| 3918 | // c->B::member | ||||
| 3919 | // | ||||
| 3920 | // or | ||||
| 3921 | // | ||||
| 3922 | // c->A::member | ||||
| 3923 | |||||
| 3924 | // Find results in this base class (and its bases). | ||||
| 3925 | ShadowContextRAII Shadow(Visited); | ||||
| 3926 | lookupInDeclContext(RD, Result, QualifiedNameLookup, | ||||
| 3927 | /*InBaseClass=*/true); | ||||
| 3928 | } | ||||
| 3929 | } | ||||
| 3930 | |||||
| 3931 | // Traverse the contexts of Objective-C classes. | ||||
| 3932 | if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { | ||||
| 3933 | // Traverse categories. | ||||
| 3934 | for (auto *Cat : IFace->visible_categories()) { | ||||
| 3935 | ShadowContextRAII Shadow(Visited); | ||||
| 3936 | lookupInDeclContext(Cat, Result, QualifiedNameLookup, | ||||
| 3937 | /*InBaseClass=*/false); | ||||
| 3938 | } | ||||
| 3939 | |||||
| 3940 | // Traverse protocols. | ||||
| 3941 | for (auto *I : IFace->all_referenced_protocols()) { | ||||
| 3942 | ShadowContextRAII Shadow(Visited); | ||||
| 3943 | lookupInDeclContext(I, Result, QualifiedNameLookup, | ||||
| 3944 | /*InBaseClass=*/false); | ||||
| 3945 | } | ||||
| 3946 | |||||
| 3947 | // Traverse the superclass. | ||||
| 3948 | if (IFace->getSuperClass()) { | ||||
| 3949 | ShadowContextRAII Shadow(Visited); | ||||
| 3950 | lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, | ||||
| 3951 | /*InBaseClass=*/true); | ||||
| 3952 | } | ||||
| 3953 | |||||
| 3954 | // If there is an implementation, traverse it. We do this to find | ||||
| 3955 | // synthesized ivars. | ||||
| 3956 | if (IFace->getImplementation()) { | ||||
| 3957 | ShadowContextRAII Shadow(Visited); | ||||
| 3958 | lookupInDeclContext(IFace->getImplementation(), Result, | ||||
| 3959 | QualifiedNameLookup, InBaseClass); | ||||
| 3960 | } | ||||
| 3961 | } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { | ||||
| 3962 | for (auto *I : Protocol->protocols()) { | ||||
| 3963 | ShadowContextRAII Shadow(Visited); | ||||
| 3964 | lookupInDeclContext(I, Result, QualifiedNameLookup, | ||||
| 3965 | /*InBaseClass=*/false); | ||||
| 3966 | } | ||||
| 3967 | } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { | ||||
| 3968 | for (auto *I : Category->protocols()) { | ||||
| 3969 | ShadowContextRAII Shadow(Visited); | ||||
| 3970 | lookupInDeclContext(I, Result, QualifiedNameLookup, | ||||
| 3971 | /*InBaseClass=*/false); | ||||
| 3972 | } | ||||
| 3973 | |||||
| 3974 | // If there is an implementation, traverse it. | ||||
| 3975 | if (Category->getImplementation()) { | ||||
| 3976 | ShadowContextRAII Shadow(Visited); | ||||
| 3977 | lookupInDeclContext(Category->getImplementation(), Result, | ||||
| 3978 | QualifiedNameLookup, /*InBaseClass=*/true); | ||||
| 3979 | } | ||||
| 3980 | } | ||||
| 3981 | } | ||||
| 3982 | |||||
| 3983 | void lookupInScope(Scope *S, LookupResult &Result, | ||||
| 3984 | UnqualUsingDirectiveSet &UDirs) { | ||||
| 3985 | // No clients run in this mode and it's not supported. Please add tests and | ||||
| 3986 | // remove the assertion if you start relying on it. | ||||
| 3987 | assert(!IncludeDependentBases && "Unsupported flag for lookupInScope")((void)0); | ||||
| 3988 | |||||
| 3989 | if (!S) | ||||
| 3990 | return; | ||||
| 3991 | |||||
| 3992 | if (!S->getEntity() || | ||||
| 3993 | (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || | ||||
| 3994 | (S->getEntity())->isFunctionOrMethod()) { | ||||
| 3995 | FindLocalExternScope FindLocals(Result); | ||||
| 3996 | // Walk through the declarations in this Scope. The consumer might add new | ||||
| 3997 | // decls to the scope as part of deserialization, so make a copy first. | ||||
| 3998 | SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); | ||||
| 3999 | for (Decl *D : ScopeDecls) { | ||||
| 4000 | if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) | ||||
| 4001 | if ((ND = Result.getAcceptableDecl(ND))) { | ||||
| 4002 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); | ||||
| 4003 | Visited.add(ND); | ||||
| 4004 | } | ||||
| 4005 | } | ||||
| 4006 | } | ||||
| 4007 | |||||
| 4008 | DeclContext *Entity = S->getLookupEntity(); | ||||
| 4009 | if (Entity) { | ||||
| 4010 | // Look into this scope's declaration context, along with any of its | ||||
| 4011 | // parent lookup contexts (e.g., enclosing classes), up to the point | ||||
| 4012 | // where we hit the context stored in the next outer scope. | ||||
| 4013 | DeclContext *OuterCtx = findOuterContext(S); | ||||
| 4014 | |||||
| 4015 | for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); | ||||
| 4016 | Ctx = Ctx->getLookupParent()) { | ||||
| 4017 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { | ||||
| 4018 | if (Method->isInstanceMethod()) { | ||||
| 4019 | // For instance methods, look for ivars in the method's interface. | ||||
| 4020 | LookupResult IvarResult(Result.getSema(), Result.getLookupName(), | ||||
| 4021 | Result.getNameLoc(), | ||||
| 4022 | Sema::LookupMemberName); | ||||
| 4023 | if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { | ||||
| 4024 | lookupInDeclContext(IFace, IvarResult, | ||||
| 4025 | /*QualifiedNameLookup=*/false, | ||||
| 4026 | /*InBaseClass=*/false); | ||||
| 4027 | } | ||||
| 4028 | } | ||||
| 4029 | |||||
| 4030 | // We've already performed all of the name lookup that we need | ||||
| 4031 | // to for Objective-C methods; the next context will be the | ||||
| 4032 | // outer scope. | ||||
| 4033 | break; | ||||
| 4034 | } | ||||
| 4035 | |||||
| 4036 | if (Ctx->isFunctionOrMethod()) | ||||
| 4037 | continue; | ||||
| 4038 | |||||
| 4039 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, | ||||
| 4040 | /*InBaseClass=*/false); | ||||
| 4041 | } | ||||
| 4042 | } else if (!S->getParent()) { | ||||
| 4043 | // Look into the translation unit scope. We walk through the translation | ||||
| 4044 | // unit's declaration context, because the Scope itself won't have all of | ||||
| 4045 | // the declarations if we loaded a precompiled header. | ||||
| 4046 | // FIXME: We would like the translation unit's Scope object to point to | ||||
| 4047 | // the translation unit, so we don't need this special "if" branch. | ||||
| 4048 | // However, doing so would force the normal C++ name-lookup code to look | ||||
| 4049 | // into the translation unit decl when the IdentifierInfo chains would | ||||
| 4050 | // suffice. Once we fix that problem (which is part of a more general | ||||
| 4051 | // "don't look in DeclContexts unless we have to" optimization), we can | ||||
| 4052 | // eliminate this. | ||||
| 4053 | Entity = Result.getSema().Context.getTranslationUnitDecl(); | ||||
| 4054 | lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, | ||||
| 4055 | /*InBaseClass=*/false); | ||||
| 4056 | } | ||||
| 4057 | |||||
| 4058 | if (Entity) { | ||||
| 4059 | // Lookup visible declarations in any namespaces found by using | ||||
| 4060 | // directives. | ||||
| 4061 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) | ||||
| 4062 | lookupInDeclContext( | ||||
| 4063 | const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, | ||||
| 4064 | /*QualifiedNameLookup=*/false, | ||||
| 4065 | /*InBaseClass=*/false); | ||||
| 4066 | } | ||||
| 4067 | |||||
| 4068 | // Lookup names in the parent scope. | ||||
| 4069 | ShadowContextRAII Shadow(Visited); | ||||
| 4070 | lookupInScope(S->getParent(), Result, UDirs); | ||||
| 4071 | } | ||||
| 4072 | |||||
| 4073 | private: | ||||
| 4074 | VisibleDeclsRecord Visited; | ||||
| 4075 | VisibleDeclConsumer &Consumer; | ||||
| 4076 | bool IncludeDependentBases; | ||||
| 4077 | bool LoadExternal; | ||||
| 4078 | }; | ||||
| 4079 | } // namespace | ||||
| 4080 | |||||
| 4081 | void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, | ||||
| 4082 | VisibleDeclConsumer &Consumer, | ||||
| 4083 | bool IncludeGlobalScope, bool LoadExternal) { | ||||
| 4084 | LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, | ||||
| 4085 | LoadExternal); | ||||
| 4086 | H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); | ||||
| 4087 | } | ||||
| 4088 | |||||
| 4089 | void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, | ||||
| 4090 | VisibleDeclConsumer &Consumer, | ||||
| 4091 | bool IncludeGlobalScope, | ||||
| 4092 | bool IncludeDependentBases, bool LoadExternal) { | ||||
| 4093 | LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); | ||||
| 4094 | H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); | ||||
| 4095 | } | ||||
| 4096 | |||||
| 4097 | /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. | ||||
| 4098 | /// If GnuLabelLoc is a valid source location, then this is a definition | ||||
| 4099 | /// of an __label__ label name, otherwise it is a normal label definition | ||||
| 4100 | /// or use. | ||||
| 4101 | LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, | ||||
| 4102 | SourceLocation GnuLabelLoc) { | ||||
| 4103 | // Do a lookup to see if we have a label with this name already. | ||||
| 4104 | NamedDecl *Res = nullptr; | ||||
| 4105 | |||||
| 4106 | if (GnuLabelLoc.isValid()) { | ||||
| 4107 | // Local label definitions always shadow existing labels. | ||||
| 4108 | Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); | ||||
| 4109 | Scope *S = CurScope; | ||||
| 4110 | PushOnScopeChains(Res, S, true); | ||||
| 4111 | return cast<LabelDecl>(Res); | ||||
| 4112 | } | ||||
| 4113 | |||||
| 4114 | // Not a GNU local label. | ||||
| 4115 | Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); | ||||
| 4116 | // If we found a label, check to see if it is in the same context as us. | ||||
| 4117 | // When in a Block, we don't want to reuse a label in an enclosing function. | ||||
| 4118 | if (Res && Res->getDeclContext() != CurContext) | ||||
| 4119 | Res = nullptr; | ||||
| 4120 | if (!Res) { | ||||
| 4121 | // If not forward referenced or defined already, create the backing decl. | ||||
| 4122 | Res = LabelDecl::Create(Context, CurContext, Loc, II); | ||||
| 4123 | Scope *S = CurScope->getFnParent(); | ||||
| 4124 | assert(S && "Not in a function?")((void)0); | ||||
| 4125 | PushOnScopeChains(Res, S, true); | ||||
| 4126 | } | ||||
| 4127 | return cast<LabelDecl>(Res); | ||||
| 4128 | } | ||||
| 4129 | |||||
| 4130 | //===----------------------------------------------------------------------===// | ||||
| 4131 | // Typo correction | ||||
| 4132 | //===----------------------------------------------------------------------===// | ||||
| 4133 | |||||
| 4134 | static bool isCandidateViable(CorrectionCandidateCallback &CCC, | ||||
| 4135 | TypoCorrection &Candidate) { | ||||
| 4136 | Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); | ||||
| 4137 | return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; | ||||
| 4138 | } | ||||
| 4139 | |||||
| 4140 | static void LookupPotentialTypoResult(Sema &SemaRef, | ||||
| 4141 | LookupResult &Res, | ||||
| 4142 | IdentifierInfo *Name, | ||||
| 4143 | Scope *S, CXXScopeSpec *SS, | ||||
| 4144 | DeclContext *MemberContext, | ||||
| 4145 | bool EnteringContext, | ||||
| 4146 | bool isObjCIvarLookup, | ||||
| 4147 | bool FindHidden); | ||||
| 4148 | |||||
| 4149 | /// Check whether the declarations found for a typo correction are | ||||
| 4150 | /// visible. Set the correction's RequiresImport flag to true if none of the | ||||
| 4151 | /// declarations are visible, false otherwise. | ||||
| 4152 | static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { | ||||
| 4153 | TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); | ||||
| 4154 | |||||
| 4155 | for (/**/; DI != DE; ++DI) | ||||
| 4156 | if (!LookupResult::isVisible(SemaRef, *DI)) | ||||
| 4157 | break; | ||||
| 4158 | // No filtering needed if all decls are visible. | ||||
| 4159 | if (DI == DE) { | ||||
| 4160 | TC.setRequiresImport(false); | ||||
| 4161 | return; | ||||
| 4162 | } | ||||
| 4163 | |||||
| 4164 | llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); | ||||
| 4165 | bool AnyVisibleDecls = !NewDecls.empty(); | ||||
| 4166 | |||||
| 4167 | for (/**/; DI != DE; ++DI) { | ||||
| 4168 | if (LookupResult::isVisible(SemaRef, *DI)) { | ||||
| 4169 | if (!AnyVisibleDecls) { | ||||
| 4170 | // Found a visible decl, discard all hidden ones. | ||||
| 4171 | AnyVisibleDecls = true; | ||||
| 4172 | NewDecls.clear(); | ||||
| 4173 | } | ||||
| 4174 | NewDecls.push_back(*DI); | ||||
| 4175 | } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) | ||||
| 4176 | NewDecls.push_back(*DI); | ||||
| 4177 | } | ||||
| 4178 | |||||
| 4179 | if (NewDecls.empty()) | ||||
| 4180 | TC = TypoCorrection(); | ||||
| 4181 | else { | ||||
| 4182 | TC.setCorrectionDecls(NewDecls); | ||||
| 4183 | TC.setRequiresImport(!AnyVisibleDecls); | ||||
| 4184 | } | ||||
| 4185 | } | ||||
| 4186 | |||||
| 4187 | // Fill the supplied vector with the IdentifierInfo pointers for each piece of | ||||
| 4188 | // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", | ||||
| 4189 | // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). | ||||
| 4190 | static void getNestedNameSpecifierIdentifiers( | ||||
| 4191 | NestedNameSpecifier *NNS, | ||||
| 4192 | SmallVectorImpl<const IdentifierInfo*> &Identifiers) { | ||||
| 4193 | if (NestedNameSpecifier *Prefix = NNS->getPrefix()) | ||||
| |||||
| 4194 | getNestedNameSpecifierIdentifiers(Prefix, Identifiers); | ||||
| 4195 | else | ||||
| 4196 | Identifiers.clear(); | ||||
| 4197 | |||||
| 4198 | const IdentifierInfo *II = nullptr; | ||||
| 4199 | |||||
| 4200 | switch (NNS->getKind()) { | ||||
| 4201 | case NestedNameSpecifier::Identifier: | ||||
| 4202 | II = NNS->getAsIdentifier(); | ||||
| 4203 | break; | ||||
| 4204 | |||||
| 4205 | case NestedNameSpecifier::Namespace: | ||||
| 4206 | if (NNS->getAsNamespace()->isAnonymousNamespace()) | ||||
| 4207 | return; | ||||
| 4208 | II = NNS->getAsNamespace()->getIdentifier(); | ||||
| 4209 | break; | ||||
| 4210 | |||||
| 4211 | case NestedNameSpecifier::NamespaceAlias: | ||||
| 4212 | II = NNS->getAsNamespaceAlias()->getIdentifier(); | ||||
| 4213 | break; | ||||
| 4214 | |||||
| 4215 | case NestedNameSpecifier::TypeSpecWithTemplate: | ||||
| 4216 | case NestedNameSpecifier::TypeSpec: | ||||
| 4217 | II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); | ||||
| 4218 | break; | ||||
| 4219 | |||||
| 4220 | case NestedNameSpecifier::Global: | ||||
| 4221 | case NestedNameSpecifier::Super: | ||||
| 4222 | return; | ||||
| 4223 | } | ||||
| 4224 | |||||
| 4225 | if (II) | ||||
| 4226 | Identifiers.push_back(II); | ||||
| 4227 | } | ||||
| 4228 | |||||
| 4229 | void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, | ||||
| 4230 | DeclContext *Ctx, bool InBaseClass) { | ||||
| 4231 | // Don't consider hidden names for typo correction. | ||||
| 4232 | if (Hiding) | ||||
| 4233 | return; | ||||
| 4234 | |||||
| 4235 | // Only consider entities with identifiers for names, ignoring | ||||
| 4236 | // special names (constructors, overloaded operators, selectors, | ||||
| 4237 | // etc.). | ||||
| 4238 | IdentifierInfo *Name = ND->getIdentifier(); | ||||
| 4239 | if (!Name) | ||||
| 4240 | return; | ||||
| 4241 | |||||
| 4242 | // Only consider visible declarations and declarations from modules with | ||||
| 4243 | // names that exactly match. | ||||
| 4244 | if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) | ||||
| 4245 | return; | ||||
| 4246 | |||||
| 4247 | FoundName(Name->getName()); | ||||
| 4248 | } | ||||
| 4249 | |||||
| 4250 | void TypoCorrectionConsumer::FoundName(StringRef Name) { | ||||
| 4251 | // Compute the edit distance between the typo and the name of this | ||||
| 4252 | // entity, and add the identifier to the list of results. | ||||
| 4253 | addName(Name, nullptr); | ||||
| 4254 | } | ||||
| 4255 | |||||
| 4256 | void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { | ||||
| 4257 | // Compute the edit distance between the typo and this keyword, | ||||
| 4258 | // and add the keyword to the list of results. | ||||
| 4259 | addName(Keyword, nullptr, nullptr, true); | ||||
| 4260 | } | ||||
| 4261 | |||||
| 4262 | void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, | ||||
| 4263 | NestedNameSpecifier *NNS, bool isKeyword) { | ||||
| 4264 | // Use a simple length-based heuristic to determine the minimum possible | ||||
| 4265 | // edit distance. If the minimum isn't good enough, bail out early. | ||||
| 4266 | StringRef TypoStr = Typo->getName(); | ||||
| 4267 | unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); | ||||
| 4268 | if (MinED && TypoStr.size() / MinED < 3) | ||||
| 4269 | return; | ||||
| 4270 | |||||
| 4271 | // Compute an upper bound on the allowable edit distance, so that the | ||||
| 4272 | // edit-distance algorithm can short-circuit. | ||||
| 4273 | unsigned UpperBound = (TypoStr.size() + 2) / 3; | ||||
| 4274 | unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); | ||||
| 4275 | if (ED > UpperBound) return; | ||||
| 4276 | |||||
| 4277 | TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); | ||||
| 4278 | if (isKeyword) TC.makeKeyword(); | ||||
| 4279 | TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); | ||||
| 4280 | addCorrection(TC); | ||||
| 4281 | } | ||||
| 4282 | |||||
| 4283 | static const unsigned MaxTypoDistanceResultSets = 5; | ||||
| 4284 | |||||
| 4285 | void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { | ||||
| 4286 | StringRef TypoStr = Typo->getName(); | ||||
| 4287 | StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); | ||||
| 4288 | |||||
| 4289 | // For very short typos, ignore potential corrections that have a different | ||||
| 4290 | // base identifier from the typo or which have a normalized edit distance | ||||
| 4291 | // longer than the typo itself. | ||||
| 4292 | if (TypoStr.size() < 3 && | ||||
| 4293 | (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) | ||||
| 4294 | return; | ||||
| 4295 | |||||
| 4296 | // If the correction is resolved but is not viable, ignore it. | ||||
| 4297 | if (Correction.isResolved()) { | ||||
| 4298 | checkCorrectionVisibility(SemaRef, Correction); | ||||
| 4299 | if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) | ||||
| 4300 | return; | ||||
| 4301 | } | ||||
| 4302 | |||||
| 4303 | TypoResultList &CList = | ||||
| 4304 | CorrectionResults[Correction.getEditDistance(false)][Name]; | ||||
| 4305 | |||||
| 4306 | if (!CList.empty() && !CList.back().isResolved()) | ||||
| 4307 | CList.pop_back(); | ||||
| 4308 | if (NamedDecl *NewND = Correction.getCorrectionDecl()) { | ||||
| 4309 | std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts()); | ||||
| 4310 | for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end(); | ||||
| 4311 | RI != RIEnd; ++RI) { | ||||
| 4312 | // If the Correction refers to a decl already in the result list, | ||||
| 4313 | // replace the existing result if the string representation of Correction | ||||
| 4314 | // comes before the current result alphabetically, then stop as there is | ||||
| 4315 | // nothing more to be done to add Correction to the candidate set. | ||||
| 4316 | if (RI->getCorrectionDecl() == NewND) { | ||||
| 4317 | if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts())) | ||||
| 4318 | *RI = Correction; | ||||
| 4319 | return; | ||||
| 4320 | } | ||||
| 4321 | } | ||||
| 4322 | } | ||||
| 4323 | if (CList.empty() || Correction.isResolved()) | ||||
| 4324 | CList.push_back(Correction); | ||||
| 4325 | |||||
| 4326 | while (CorrectionResults.size() > MaxTypoDistanceResultSets) | ||||
| 4327 | CorrectionResults.erase(std::prev(CorrectionResults.end())); | ||||
| 4328 | } | ||||
| 4329 | |||||
| 4330 | void TypoCorrectionConsumer::addNamespaces( | ||||
| 4331 | const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { | ||||
| 4332 | SearchNamespaces = true; | ||||
| 4333 | |||||
| 4334 | for (auto KNPair : KnownNamespaces) | ||||
| 4335 | Namespaces.addNameSpecifier(KNPair.first); | ||||
| |||||
| 4336 | |||||
| 4337 | bool SSIsTemplate = false; | ||||
| 4338 | if (NestedNameSpecifier *NNS = | ||||
| 4339 | (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { | ||||
| 4340 | if (const Type *T = NNS->getAsType()) | ||||
| 4341 | SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; | ||||
| 4342 | } | ||||
| 4343 | // Do not transform this into an iterator-based loop. The loop body can | ||||
| 4344 | // trigger the creation of further types (through lazy deserialization) and | ||||
| 4345 | // invalid iterators into this list. | ||||
| 4346 | auto &Types = SemaRef.getASTContext().getTypes(); | ||||
| 4347 | for (unsigned I = 0; I != Types.size(); ++I) { | ||||
| 4348 | const auto *TI = Types[I]; | ||||
| 4349 | if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { | ||||
| 4350 | CD = CD->getCanonicalDecl(); | ||||
| 4351 | if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && | ||||
| 4352 | !CD->isUnion() && CD->getIdentifier() && | ||||
| 4353 | (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && | ||||
| 4354 | (CD->isBeingDefined() || CD->isCompleteDefinition())) | ||||
| 4355 | Namespaces.addNameSpecifier(CD); | ||||
| 4356 | } | ||||
| 4357 | } | ||||
| 4358 | } | ||||
| 4359 | |||||
| 4360 | const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { | ||||
| 4361 | if (++CurrentTCIndex < ValidatedCorrections.size()) | ||||
| 4362 | return ValidatedCorrections[CurrentTCIndex]; | ||||
| 4363 | |||||
| 4364 | CurrentTCIndex = ValidatedCorrections.size(); | ||||
| 4365 | while (!CorrectionResults.empty()) { | ||||
| 4366 | auto DI = CorrectionResults.begin(); | ||||
| 4367 | if (DI->second.empty()) { | ||||
| 4368 | CorrectionResults.erase(DI); | ||||
| 4369 | continue; | ||||
| 4370 | } | ||||
| 4371 | |||||
| 4372 | auto RI = DI->second.begin(); | ||||
| 4373 | if (RI->second.empty()) { | ||||
| 4374 | DI->second.erase(RI); | ||||
| 4375 | performQualifiedLookups(); | ||||
| 4376 | continue; | ||||
| 4377 | } | ||||
| 4378 | |||||
| 4379 | TypoCorrection TC = RI->second.pop_back_val(); | ||||
| 4380 | if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { | ||||
| 4381 | ValidatedCorrections.push_back(TC); | ||||
| 4382 | return ValidatedCorrections[CurrentTCIndex]; | ||||
| 4383 | } | ||||
| 4384 | } | ||||
| 4385 | return ValidatedCorrections[0]; // The empty correction. | ||||
| 4386 | } | ||||
| 4387 | |||||
| 4388 | bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { | ||||
| 4389 | IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); | ||||
| 4390 | DeclContext *TempMemberContext = MemberContext; | ||||
| 4391 | CXXScopeSpec *TempSS = SS.get(); | ||||
| 4392 | retry_lookup: | ||||
| 4393 | LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, | ||||
| 4394 | EnteringContext, | ||||
| 4395 | CorrectionValidator->IsObjCIvarLookup, | ||||
| 4396 | Name == Typo && !Candidate.WillReplaceSpecifier()); | ||||
| 4397 | switch (Result.getResultKind()) { | ||||
| 4398 | case LookupResult::NotFound: | ||||
| 4399 | case LookupResult::NotFoundInCurrentInstantiation: | ||||
| 4400 | case LookupResult::FoundUnresolvedValue: | ||||
| 4401 | if (TempSS) { | ||||
| 4402 | // Immediately retry the lookup without the given CXXScopeSpec | ||||
| 4403 | TempSS = nullptr; | ||||
| 4404 | Candidate.WillReplaceSpecifier(true); | ||||
| 4405 | goto retry_lookup; | ||||
| 4406 | } | ||||
| 4407 | if (TempMemberContext) { | ||||
| 4408 | if (SS && !TempSS) | ||||
| 4409 | TempSS = SS.get(); | ||||
| 4410 | TempMemberContext = nullptr; | ||||
| 4411 | goto retry_lookup; | ||||
| 4412 | } | ||||
| 4413 | if (SearchNamespaces) | ||||
| 4414 | QualifiedResults.push_back(Candidate); | ||||
| 4415 | break; | ||||
| 4416 | |||||
| 4417 | case LookupResult::Ambiguous: | ||||
| 4418 | // We don't deal with ambiguities. | ||||
| 4419 | break; | ||||
| 4420 | |||||
| 4421 | case LookupResult::Found: | ||||
| 4422 | case LookupResult::FoundOverloaded: | ||||
| 4423 | // Store all of the Decls for overloaded symbols | ||||
| 4424 | for (auto *TRD : Result) | ||||
| 4425 | Candidate.addCorrectionDecl(TRD); | ||||
| 4426 | checkCorrectionVisibility(SemaRef, Candidate); | ||||
| 4427 | if (!isCandidateViable(*CorrectionValidator, Candidate)) { | ||||
| 4428 | if (SearchNamespaces) | ||||
| 4429 | QualifiedResults.push_back(Candidate); | ||||
| 4430 | break; | ||||
| 4431 | } | ||||
| 4432 | Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); | ||||
| 4433 | return true; | ||||
| 4434 | } | ||||
| 4435 | return false; | ||||
| 4436 | } | ||||
| 4437 | |||||
| 4438 | void TypoCorrectionConsumer::performQualifiedLookups() { | ||||
| 4439 | unsigned TypoLen = Typo->getName().size(); | ||||
| 4440 | for (const TypoCorrection &QR : QualifiedResults) { | ||||
| 4441 | for (const auto &NSI : Namespaces) { | ||||
| 4442 | DeclContext *Ctx = NSI.DeclCtx; | ||||
| 4443 | const Type *NSType = NSI.NameSpecifier->getAsType(); | ||||
| 4444 | |||||
| 4445 | // If the current NestedNameSpecifier refers to a class and the | ||||
| 4446 | // current correction candidate is the name of that class, then skip | ||||
| 4447 | // it as it is unlikely a qualified version of the class' constructor | ||||
| 4448 | // is an appropriate correction. | ||||
| 4449 | if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : | ||||
| 4450 | nullptr) { | ||||
| 4451 | if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) | ||||
| 4452 | continue; | ||||
| 4453 | } | ||||
| 4454 | |||||
| 4455 | TypoCorrection TC(QR); | ||||
| 4456 | TC.ClearCorrectionDecls(); | ||||
| 4457 | TC.setCorrectionSpecifier(NSI.NameSpecifier); | ||||
| 4458 | TC.setQualifierDistance(NSI.EditDistance); | ||||
| 4459 | TC.setCallbackDistance(0); // Reset the callback distance | ||||
| 4460 | |||||
| 4461 | // If the current correction candidate and namespace combination are | ||||
| 4462 | // too far away from the original typo based on the normalized edit | ||||
| 4463 | // distance, then skip performing a qualified name lookup. | ||||
| 4464 | unsigned TmpED = TC.getEditDistance(true); | ||||
| 4465 | if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && | ||||
| 4466 | TypoLen / TmpED < 3) | ||||
| 4467 | continue; | ||||
| 4468 | |||||
| 4469 | Result.clear(); | ||||
| 4470 | Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); | ||||
| 4471 | if (!SemaRef.LookupQualifiedName(Result, Ctx)) | ||||
| 4472 | continue; | ||||
| 4473 | |||||
| 4474 | // Any corrections added below will be validated in subsequent | ||||
| 4475 | // iterations of the main while() loop over the Consumer's contents. | ||||
| 4476 | switch (Result.getResultKind()) { | ||||
| 4477 | case LookupResult::Found: | ||||
| 4478 | case LookupResult::FoundOverloaded: { | ||||
| 4479 | if (SS && SS->isValid()) { | ||||
| 4480 | std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); | ||||
| 4481 | std::string OldQualified; | ||||
| 4482 | llvm::raw_string_ostream OldOStream(OldQualified); | ||||
| 4483 | SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); | ||||
| 4484 | OldOStream << Typo->getName(); | ||||
| 4485 | // If correction candidate would be an identical written qualified | ||||
| 4486 | // identifier, then the existing CXXScopeSpec probably included a | ||||
| 4487 | // typedef that didn't get accounted for properly. | ||||
| 4488 | if (OldOStream.str() == NewQualified) | ||||
| 4489 | break; | ||||
| 4490 | } | ||||
| 4491 | for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); | ||||
| 4492 | TRD != TRDEnd; ++TRD) { | ||||
| 4493 | if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), | ||||
| 4494 | NSType ? NSType->getAsCXXRecordDecl() | ||||
| 4495 | : nullptr, | ||||
| 4496 | TRD.getPair()) == Sema::AR_accessible) | ||||
| 4497 | TC.addCorrectionDecl(*TRD); | ||||
| 4498 | } | ||||
| 4499 | if (TC.isResolved()) { | ||||
| 4500 | TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); | ||||
| 4501 | addCorrection(TC); | ||||
| 4502 | } | ||||
| 4503 | break; | ||||
| 4504 | } | ||||
| 4505 | case LookupResult::NotFound: | ||||
| 4506 | case LookupResult::NotFoundInCurrentInstantiation: | ||||
| 4507 | case LookupResult::Ambiguous: | ||||
| 4508 | case LookupResult::FoundUnresolvedValue: | ||||
| 4509 | break; | ||||
| 4510 | } | ||||
| 4511 | } | ||||
| 4512 | } | ||||
| 4513 | QualifiedResults.clear(); | ||||
| 4514 | } | ||||
| 4515 | |||||
| 4516 | TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( | ||||
| 4517 | ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) | ||||
| 4518 | : Context(Context), CurContextChain(buildContextChain(CurContext)) { | ||||
| 4519 | if (NestedNameSpecifier *NNS = | ||||
| 4520 | CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { | ||||
| 4521 | llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); | ||||
| 4522 | NNS->print(SpecifierOStream, Context.getPrintingPolicy()); | ||||
| 4523 | |||||
| 4524 | getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); | ||||
| 4525 | } | ||||
| 4526 | // Build the list of identifiers that would be used for an absolute | ||||
| 4527 | // (from the global context) NestedNameSpecifier referring to the current | ||||
| 4528 | // context. | ||||
| 4529 | for (DeclContext *C : llvm::reverse(CurContextChain)) { | ||||
| 4530 | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) | ||||
| 4531 | CurContextIdentifiers.push_back(ND->getIdentifier()); | ||||
| 4532 | } | ||||
| 4533 | |||||
| 4534 | // Add the global context as a NestedNameSpecifier | ||||
| 4535 | SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), | ||||
| 4536 | NestedNameSpecifier::GlobalSpecifier(Context), 1}; | ||||
| 4537 | DistanceMap[1].push_back(SI); | ||||
| 4538 | } | ||||
| 4539 | |||||
| 4540 | auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( | ||||
| 4541 | DeclContext *Start) -> DeclContextList { | ||||
| 4542 | assert(Start && "Building a context chain from a null context")((void)0); | ||||
| 4543 | DeclContextList Chain; | ||||
| 4544 | for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; | ||||
| 4545 | DC = DC->getLookupParent()) { | ||||
| 4546 | NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); | ||||
| 4547 | if (!DC->isInlineNamespace() && !DC->isTransparentContext() && | ||||
| 4548 | !(ND && ND->isAnonymousNamespace())) | ||||
| 4549 | Chain.push_back(DC->getPrimaryContext()); | ||||
| 4550 | } | ||||
| 4551 | return Chain; | ||||
| 4552 | } | ||||
| 4553 | |||||
| 4554 | unsigned | ||||
| 4555 | TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( | ||||
| 4556 | DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { | ||||
| 4557 | unsigned NumSpecifiers = 0; | ||||
| 4558 | for (DeclContext *C : llvm::reverse(DeclChain)) { | ||||
| 4559 | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { | ||||
| 4560 | NNS = NestedNameSpecifier::Create(Context, NNS, ND); | ||||
| 4561 | ++NumSpecifiers; | ||||
| 4562 | } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { | ||||
| 4563 | NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), | ||||
| 4564 | RD->getTypeForDecl()); | ||||
| 4565 | ++NumSpecifiers; | ||||
| 4566 | } | ||||
| 4567 | } | ||||
| 4568 | return NumSpecifiers; | ||||
| 4569 | } | ||||
| 4570 | |||||
| 4571 | void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( | ||||
| 4572 | DeclContext *Ctx) { | ||||
| 4573 | NestedNameSpecifier *NNS = nullptr; | ||||
| 4574 | unsigned NumSpecifiers = 0; | ||||
| 4575 | DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); | ||||
| 4576 | DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); | ||||
| 4577 | |||||
| 4578 | // Eliminate common elements from the two DeclContext chains. | ||||
| 4579 | for (DeclContext *C : llvm::reverse(CurContextChain)) { | ||||
| 4580 | if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) | ||||
| 4581 | break; | ||||
| 4582 | NamespaceDeclChain.pop_back(); | ||||
| 4583 | } | ||||
| 4584 | |||||
| 4585 | // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain | ||||
| 4586 | NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); | ||||
| 4587 | |||||
| 4588 | // Add an explicit leading '::' specifier if needed. | ||||
| 4589 | if (NamespaceDeclChain.empty()) { | ||||
| 4590 | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. | ||||
| 4591 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); | ||||
| 4592 | NumSpecifiers = | ||||
| 4593 | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); | ||||
| 4594 | } else if (NamedDecl *ND
| ||||
| 4595 | dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { | ||||
| 4596 | IdentifierInfo *Name = ND->getIdentifier(); | ||||
| 4597 | bool SameNameSpecifier = false; | ||||
| 4598 | if (std::find(CurNameSpecifierIdentifiers.begin(), | ||||
| 4599 | CurNameSpecifierIdentifiers.end(), | ||||
| 4600 | Name) != CurNameSpecifierIdentifiers.end()) { | ||||
| 4601 | std::string NewNameSpecifier; | ||||
| 4602 | llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); | ||||
| 4603 | SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; | ||||
| 4604 | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); | ||||
| 4605 | NNS->print(SpecifierOStream, Context.getPrintingPolicy()); | ||||
| 4606 | SpecifierOStream.flush(); | ||||
| 4607 | SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; | ||||
| 4608 | } | ||||
| 4609 | if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) != | ||||
| 4610 | CurContextIdentifiers.end()) { | ||||
| 4611 | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. | ||||
| 4612 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); | ||||
| 4613 | NumSpecifiers = | ||||
| 4614 | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); | ||||
| 4615 | } | ||||
| 4616 | } | ||||
| 4617 | |||||
| 4618 | // If the built NestedNameSpecifier would be replacing an existing | ||||
| 4619 | // NestedNameSpecifier, use the number of component identifiers that | ||||
| 4620 | // would need to be changed as the edit distance instead of the number | ||||
| 4621 | // of components in the built NestedNameSpecifier. | ||||
| 4622 | if (NNS && !CurNameSpecifierIdentifiers.empty()) { | ||||
| 4623 | SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; | ||||
| 4624 | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); | ||||
| 4625 | NumSpecifiers = llvm::ComputeEditDistance( | ||||
| 4626 | llvm::makeArrayRef(CurNameSpecifierIdentifiers), | ||||
| 4627 | llvm::makeArrayRef(NewNameSpecifierIdentifiers)); | ||||
| 4628 | } | ||||
| 4629 | |||||
| 4630 | SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; | ||||
| 4631 | DistanceMap[NumSpecifiers].push_back(SI); | ||||
| 4632 | } | ||||
| 4633 | |||||
| 4634 | /// Perform name lookup for a possible result for typo correction. | ||||
| 4635 | static void LookupPotentialTypoResult(Sema &SemaRef, | ||||
| 4636 | LookupResult &Res, | ||||
| 4637 | IdentifierInfo *Name, | ||||
| 4638 | Scope *S, CXXScopeSpec *SS, | ||||
| 4639 | DeclContext *MemberContext, | ||||
| 4640 | bool EnteringContext, | ||||
| 4641 | bool isObjCIvarLookup, | ||||
| 4642 | bool FindHidden) { | ||||
| 4643 | Res.suppressDiagnostics(); | ||||
| 4644 | Res.clear(); | ||||
| 4645 | Res.setLookupName(Name); | ||||
| 4646 | Res.setAllowHidden(FindHidden); | ||||
| 4647 | if (MemberContext) { | ||||
| 4648 | if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { | ||||
| 4649 | if (isObjCIvarLookup) { | ||||
| 4650 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { | ||||
| 4651 | Res.addDecl(Ivar); | ||||
| 4652 | Res.resolveKind(); | ||||
| 4653 | return; | ||||
| 4654 | } | ||||
| 4655 | } | ||||
| 4656 | |||||
| 4657 | if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( | ||||
| 4658 | Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { | ||||
| 4659 | Res.addDecl(Prop); | ||||
| 4660 | Res.resolveKind(); | ||||
| 4661 | return; | ||||
| 4662 | } | ||||
| 4663 | } | ||||
| 4664 | |||||
| 4665 | SemaRef.LookupQualifiedName(Res, MemberContext); | ||||
| 4666 | return; | ||||
| 4667 | } | ||||
| 4668 | |||||
| 4669 | SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, | ||||
| 4670 | EnteringContext); | ||||
| 4671 | |||||
| 4672 | // Fake ivar lookup; this should really be part of | ||||
| 4673 | // LookupParsedName. | ||||
| 4674 | if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { | ||||
| 4675 | if (Method->isInstanceMethod() && Method->getClassInterface() && | ||||
| 4676 | (Res.empty() || | ||||
| 4677 | (Res.isSingleResult() && | ||||
| 4678 | Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { | ||||
| 4679 | if (ObjCIvarDecl *IV | ||||
| 4680 | = Method->getClassInterface()->lookupInstanceVariable(Name)) { | ||||
| 4681 | Res.addDecl(IV); | ||||
| 4682 | Res.resolveKind(); | ||||
| 4683 | } | ||||
| 4684 | } | ||||
| 4685 | } | ||||
| 4686 | } | ||||
| 4687 | |||||
| 4688 | /// Add keywords to the consumer as possible typo corrections. | ||||
| 4689 | static void AddKeywordsToConsumer(Sema &SemaRef, | ||||
| 4690 | TypoCorrectionConsumer &Consumer, | ||||
| 4691 | Scope *S, CorrectionCandidateCallback &CCC, | ||||
| 4692 | bool AfterNestedNameSpecifier) { | ||||
| 4693 | if (AfterNestedNameSpecifier) { | ||||
| 4694 | // For 'X::', we know exactly which keywords can appear next. | ||||
| 4695 | Consumer.addKeywordResult("template"); | ||||
| 4696 | if (CCC.WantExpressionKeywords) | ||||
| 4697 | Consumer.addKeywordResult("operator"); | ||||
| 4698 | return; | ||||
| 4699 | } | ||||
| 4700 | |||||
| 4701 | if (CCC.WantObjCSuper) | ||||
| 4702 | Consumer.addKeywordResult("super"); | ||||
| 4703 | |||||
| 4704 | if (CCC.WantTypeSpecifiers) { | ||||
| 4705 | // Add type-specifier keywords to the set of results. | ||||
| 4706 | static const char *const CTypeSpecs[] = { | ||||
| 4707 | "char", "const", "double", "enum", "float", "int", "long", "short", | ||||
| 4708 | "signed", "struct", "union", "unsigned", "void", "volatile", | ||||
| 4709 | "_Complex", "_Imaginary", | ||||
| 4710 | // storage-specifiers as well | ||||
| 4711 | "extern", "inline", "static", "typedef" | ||||
| 4712 | }; | ||||
| 4713 | |||||
| 4714 | const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs); | ||||
| 4715 | for (unsigned I = 0; I != NumCTypeSpecs; ++I) | ||||
| 4716 | Consumer.addKeywordResult(CTypeSpecs[I]); | ||||
| 4717 | |||||
| 4718 | if (SemaRef.getLangOpts().C99) | ||||
| 4719 | Consumer.addKeywordResult("restrict"); | ||||
| 4720 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) | ||||
| 4721 | Consumer.addKeywordResult("bool"); | ||||
| 4722 | else if (SemaRef.getLangOpts().C99) | ||||
| 4723 | Consumer.addKeywordResult("_Bool"); | ||||
| 4724 | |||||
| 4725 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
| 4726 | Consumer.addKeywordResult("class"); | ||||
| 4727 | Consumer.addKeywordResult("typename"); | ||||
| 4728 | Consumer.addKeywordResult("wchar_t"); | ||||
| 4729 | |||||
| 4730 | if (SemaRef.getLangOpts().CPlusPlus11) { | ||||
| 4731 | Consumer.addKeywordResult("char16_t"); | ||||
| 4732 | Consumer.addKeywordResult("char32_t"); | ||||
| 4733 | Consumer.addKeywordResult("constexpr"); | ||||
| 4734 | Consumer.addKeywordResult("decltype"); | ||||
| 4735 | Consumer.addKeywordResult("thread_local"); | ||||
| 4736 | } | ||||
| 4737 | } | ||||
| 4738 | |||||
| 4739 | if (SemaRef.getLangOpts().GNUKeywords) | ||||
| 4740 | Consumer.addKeywordResult("typeof"); | ||||
| 4741 | } else if (CCC.WantFunctionLikeCasts) { | ||||
| 4742 | static const char *const CastableTypeSpecs[] = { | ||||
| 4743 | "char", "double", "float", "int", "long", "short", | ||||
| 4744 | "signed", "unsigned", "void" | ||||
| 4745 | }; | ||||
| 4746 | for (auto *kw : CastableTypeSpecs) | ||||
| 4747 | Consumer.addKeywordResult(kw); | ||||
| 4748 | } | ||||
| 4749 | |||||
| 4750 | if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { | ||||
| 4751 | Consumer.addKeywordResult("const_cast"); | ||||
| 4752 | Consumer.addKeywordResult("dynamic_cast"); | ||||
| 4753 | Consumer.addKeywordResult("reinterpret_cast"); | ||||
| 4754 | Consumer.addKeywordResult("static_cast"); | ||||
| 4755 | } | ||||
| 4756 | |||||
| 4757 | if (CCC.WantExpressionKeywords) { | ||||
| 4758 | Consumer.addKeywordResult("sizeof"); | ||||
| 4759 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { | ||||
| 4760 | Consumer.addKeywordResult("false"); | ||||
| 4761 | Consumer.addKeywordResult("true"); | ||||
| 4762 | } | ||||
| 4763 | |||||
| 4764 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
| 4765 | static const char *const CXXExprs[] = { | ||||
| 4766 | "delete", "new", "operator", "throw", "typeid" | ||||
| 4767 | }; | ||||
| 4768 | const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs); | ||||
| 4769 | for (unsigned I = 0; I != NumCXXExprs; ++I) | ||||
| 4770 | Consumer.addKeywordResult(CXXExprs[I]); | ||||
| 4771 | |||||
| 4772 | if (isa<CXXMethodDecl>(SemaRef.CurContext) && | ||||
| 4773 | cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) | ||||
| 4774 | Consumer.addKeywordResult("this"); | ||||
| 4775 | |||||
| 4776 | if (SemaRef.getLangOpts().CPlusPlus11) { | ||||
| 4777 | Consumer.addKeywordResult("alignof"); | ||||
| 4778 | Consumer.addKeywordResult("nullptr"); | ||||
| 4779 | } | ||||
| 4780 | } | ||||
| 4781 | |||||
| 4782 | if (SemaRef.getLangOpts().C11) { | ||||
| 4783 | // FIXME: We should not suggest _Alignof if the alignof macro | ||||
| 4784 | // is present. | ||||
| 4785 | Consumer.addKeywordResult("_Alignof"); | ||||
| 4786 | } | ||||
| 4787 | } | ||||
| 4788 | |||||
| 4789 | if (CCC.WantRemainingKeywords) { | ||||
| 4790 | if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { | ||||
| 4791 | // Statements. | ||||
| 4792 | static const char *const CStmts[] = { | ||||
| 4793 | "do", "else", "for", "goto", "if", "return", "switch", "while" }; | ||||
| 4794 | const unsigned NumCStmts = llvm::array_lengthof(CStmts); | ||||
| 4795 | for (unsigned I = 0; I != NumCStmts; ++I) | ||||
| 4796 | Consumer.addKeywordResult(CStmts[I]); | ||||
| 4797 | |||||
| 4798 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
| 4799 | Consumer.addKeywordResult("catch"); | ||||
| 4800 | Consumer.addKeywordResult("try"); | ||||
| 4801 | } | ||||
| 4802 | |||||
| 4803 | if (S && S->getBreakParent()) | ||||
| 4804 | Consumer.addKeywordResult("break"); | ||||
| 4805 | |||||
| 4806 | if (S && S->getContinueParent()) | ||||
| 4807 | Consumer.addKeywordResult("continue"); | ||||
| 4808 | |||||
| 4809 | if (SemaRef.getCurFunction() && | ||||
| 4810 | !SemaRef.getCurFunction()->SwitchStack.empty()) { | ||||
| 4811 | Consumer.addKeywordResult("case"); | ||||
| 4812 | Consumer.addKeywordResult("default"); | ||||
| 4813 | } | ||||
| 4814 | } else { | ||||
| 4815 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
| 4816 | Consumer.addKeywordResult("namespace"); | ||||
| 4817 | Consumer.addKeywordResult("template"); | ||||
| 4818 | } | ||||
| 4819 | |||||
| 4820 | if (S && S->isClassScope()) { | ||||
| 4821 | Consumer.addKeywordResult("explicit"); | ||||
| 4822 | Consumer.addKeywordResult("friend"); | ||||
| 4823 | Consumer.addKeywordResult("mutable"); | ||||
| 4824 | Consumer.addKeywordResult("private"); | ||||
| 4825 | Consumer.addKeywordResult("protected"); | ||||
| 4826 | Consumer.addKeywordResult("public"); | ||||
| 4827 | Consumer.addKeywordResult("virtual"); | ||||
| 4828 | } | ||||
| 4829 | } | ||||
| 4830 | |||||
| 4831 | if (SemaRef.getLangOpts().CPlusPlus) { | ||||
| 4832 | Consumer.addKeywordResult("using"); | ||||
| 4833 | |||||
| 4834 | if (SemaRef.getLangOpts().CPlusPlus11) | ||||
| 4835 | Consumer.addKeywordResult("static_assert"); | ||||
| 4836 | } | ||||
| 4837 | } | ||||
| 4838 | } | ||||
| 4839 | |||||
| 4840 | std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( | ||||
| 4841 | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, | ||||
| 4842 | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, | ||||
| 4843 | DeclContext *MemberContext, bool EnteringContext, | ||||
| 4844 | const ObjCObjectPointerType *OPT, bool ErrorRecovery) { | ||||
| 4845 | |||||
| 4846 | if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || | ||||
| 4847 | DisableTypoCorrection) | ||||
| 4848 | return nullptr; | ||||
| 4849 | |||||
| 4850 | // In Microsoft mode, don't perform typo correction in a template member | ||||
| 4851 | // function dependent context because it interferes with the "lookup into | ||||
| 4852 | // dependent bases of class templates" feature. | ||||
| 4853 | if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && | ||||
| 4854 | isa<CXXMethodDecl>(CurContext)) | ||||
| 4855 | return nullptr; | ||||
| 4856 | |||||
| 4857 | // We only attempt to correct typos for identifiers. | ||||
| 4858 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | ||||
| 4859 | if (!Typo) | ||||
| 4860 | return nullptr; | ||||
| 4861 | |||||
| 4862 | // If the scope specifier itself was invalid, don't try to correct | ||||
| 4863 | // typos. | ||||
| 4864 | if (SS && SS->isInvalid()) | ||||
| 4865 | return nullptr; | ||||
| 4866 | |||||
| 4867 | // Never try to correct typos during any kind of code synthesis. | ||||
| 4868 | if (!CodeSynthesisContexts.empty()) | ||||
| 4869 | return nullptr; | ||||
| 4870 | |||||
| 4871 | // Don't try to correct 'super'. | ||||
| 4872 | if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) | ||||
| 4873 | return nullptr; | ||||
| 4874 | |||||
| 4875 | // Abort if typo correction already failed for this specific typo. | ||||
| 4876 | IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); | ||||
| 4877 | if (locs != TypoCorrectionFailures.end() && | ||||
| 4878 | locs->second.count(TypoName.getLoc())) | ||||
| 4879 | return nullptr; | ||||
| 4880 | |||||
| 4881 | // Don't try to correct the identifier "vector" when in AltiVec mode. | ||||
| 4882 | // TODO: Figure out why typo correction misbehaves in this case, fix it, and | ||||
| 4883 | // remove this workaround. | ||||
| 4884 | if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) | ||||
| 4885 | return nullptr; | ||||
| 4886 | |||||
| 4887 | // Provide a stop gap for files that are just seriously broken. Trying | ||||
| 4888 | // to correct all typos can turn into a HUGE performance penalty, causing | ||||
| 4889 | // some files to take minutes to get rejected by the parser. | ||||
| 4890 | unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; | ||||
| 4891 | if (Limit && TyposCorrected >= Limit) | ||||
| 4892 | return nullptr; | ||||
| 4893 | ++TyposCorrected; | ||||
| 4894 | |||||
| 4895 | // If we're handling a missing symbol error, using modules, and the | ||||
| 4896 | // special search all modules option is used, look for a missing import. | ||||
| 4897 | if (ErrorRecovery && getLangOpts().Modules && | ||||
| 4898 | getLangOpts().ModulesSearchAll) { | ||||
| 4899 | // The following has the side effect of loading the missing module. | ||||
| 4900 | getModuleLoader().lookupMissingImports(Typo->getName(), | ||||
| 4901 | TypoName.getBeginLoc()); | ||||
| 4902 | } | ||||
| 4903 | |||||
| 4904 | // Extend the lifetime of the callback. We delayed this until here | ||||
| 4905 | // to avoid allocations in the hot path (which is where no typo correction | ||||
| 4906 | // occurs). Note that CorrectionCandidateCallback is polymorphic and | ||||
| 4907 | // initially stack-allocated. | ||||
| 4908 | std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); | ||||
| 4909 | auto Consumer = std::make_unique<TypoCorrectionConsumer>( | ||||
| 4910 | *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, | ||||
| 4911 | EnteringContext); | ||||
| 4912 | |||||
| 4913 | // Perform name lookup to find visible, similarly-named entities. | ||||
| 4914 | bool IsUnqualifiedLookup = false; | ||||
| 4915 | DeclContext *QualifiedDC = MemberContext; | ||||
| 4916 | if (MemberContext) { | ||||
| 4917 | LookupVisibleDecls(MemberContext, LookupKind, *Consumer); | ||||
| 4918 | |||||
| 4919 | // Look in qualified interfaces. | ||||
| 4920 | if (OPT) { | ||||
| 4921 | for (auto *I : OPT->quals()) | ||||
| 4922 | LookupVisibleDecls(I, LookupKind, *Consumer); | ||||
| 4923 | } | ||||
| 4924 | } else if (SS && SS->isSet()) { | ||||
| 4925 | QualifiedDC = computeDeclContext(*SS, EnteringContext); | ||||
| 4926 | if (!QualifiedDC) | ||||
| 4927 | return nullptr; | ||||
| 4928 | |||||
| 4929 | LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); | ||||
| 4930 | } else { | ||||
| 4931 | IsUnqualifiedLookup = true; | ||||
| 4932 | } | ||||
| 4933 | |||||
| 4934 | // Determine whether we are going to search in the various namespaces for | ||||
| 4935 | // corrections. | ||||
| 4936 | bool SearchNamespaces | ||||
| 4937 | = getLangOpts().CPlusPlus && | ||||
| 4938 | (IsUnqualifiedLookup || (SS && SS->isSet())); | ||||
| 4939 | |||||
| 4940 | if (IsUnqualifiedLookup || SearchNamespaces) { | ||||
| 4941 | // For unqualified lookup, look through all of the names that we have | ||||
| 4942 | // seen in this translation unit. | ||||
| 4943 | // FIXME: Re-add the ability to skip very unlikely potential corrections. | ||||
| 4944 | for (const auto &I : Context.Idents) | ||||
| 4945 | Consumer->FoundName(I.getKey()); | ||||
| 4946 | |||||
| 4947 | // Walk through identifiers in external identifier sources. | ||||
| 4948 | // FIXME: Re-add the ability to skip very unlikely potential corrections. | ||||
| 4949 | if (IdentifierInfoLookup *External | ||||
| 4950 | = Context.Idents.getExternalIdentifierLookup()) { | ||||
| 4951 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); | ||||
| 4952 | do { | ||||
| 4953 | StringRef Name = Iter->Next(); | ||||
| 4954 | if (Name.empty()) | ||||
| 4955 | break; | ||||
| 4956 | |||||
| 4957 | Consumer->FoundName(Name); | ||||
| 4958 | } while (true); | ||||
| 4959 | } | ||||
| 4960 | } | ||||
| 4961 | |||||
| 4962 | AddKeywordsToConsumer(*this, *Consumer, S, | ||||
| 4963 | *Consumer->getCorrectionValidator(), | ||||
| 4964 | SS && SS->isNotEmpty()); | ||||
| 4965 | |||||
| 4966 | // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going | ||||
| 4967 | // to search those namespaces. | ||||
| 4968 | if (SearchNamespaces) { | ||||
| 4969 | // Load any externally-known namespaces. | ||||
| 4970 | if (ExternalSource && !LoadedExternalKnownNamespaces) { | ||||
| 4971 | SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; | ||||
| 4972 | LoadedExternalKnownNamespaces = true; | ||||
| 4973 | ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); | ||||
| 4974 | for (auto *N : ExternalKnownNamespaces) | ||||
| 4975 | KnownNamespaces[N] = true; | ||||
| 4976 | } | ||||
| 4977 | |||||
| 4978 | Consumer->addNamespaces(KnownNamespaces); | ||||
| 4979 | } | ||||
| 4980 | |||||
| 4981 | return Consumer; | ||||
| 4982 | } | ||||
| 4983 | |||||
| 4984 | /// Try to "correct" a typo in the source code by finding | ||||
| 4985 | /// visible declarations whose names are similar to the name that was | ||||
| 4986 | /// present in the source code. | ||||
| 4987 | /// | ||||
| 4988 | /// \param TypoName the \c DeclarationNameInfo structure that contains | ||||
| 4989 | /// the name that was present in the source code along with its location. | ||||
| 4990 | /// | ||||
| 4991 | /// \param LookupKind the name-lookup criteria used to search for the name. | ||||
| 4992 | /// | ||||
| 4993 | /// \param S the scope in which name lookup occurs. | ||||
| 4994 | /// | ||||
| 4995 | /// \param SS the nested-name-specifier that precedes the name we're | ||||
| 4996 | /// looking for, if present. | ||||
| 4997 | /// | ||||
| 4998 | /// \param CCC A CorrectionCandidateCallback object that provides further | ||||
| 4999 | /// validation of typo correction candidates. It also provides flags for | ||||
| 5000 | /// determining the set of keywords permitted. | ||||
| 5001 | /// | ||||
| 5002 | /// \param MemberContext if non-NULL, the context in which to look for | ||||
| 5003 | /// a member access expression. | ||||
| 5004 | /// | ||||
| 5005 | /// \param EnteringContext whether we're entering the context described by | ||||
| 5006 | /// the nested-name-specifier SS. | ||||
| 5007 | /// | ||||
| 5008 | /// \param OPT when non-NULL, the search for visible declarations will | ||||
| 5009 | /// also walk the protocols in the qualified interfaces of \p OPT. | ||||
| 5010 | /// | ||||
| 5011 | /// \returns a \c TypoCorrection containing the corrected name if the typo | ||||
| 5012 | /// along with information such as the \c NamedDecl where the corrected name | ||||
| 5013 | /// was declared, and any additional \c NestedNameSpecifier needed to access | ||||
| 5014 | /// it (C++ only). The \c TypoCorrection is empty if there is no correction. | ||||
| 5015 | TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, | ||||
| 5016 | Sema::LookupNameKind LookupKind, | ||||
| 5017 | Scope *S, CXXScopeSpec *SS, | ||||
| 5018 | CorrectionCandidateCallback &CCC, | ||||
| 5019 | CorrectTypoKind Mode, | ||||
| 5020 | DeclContext *MemberContext, | ||||
| 5021 | bool EnteringContext, | ||||
| 5022 | const ObjCObjectPointerType *OPT, | ||||
| 5023 | bool RecordFailure) { | ||||
| 5024 | // Always let the ExternalSource have the first chance at correction, even | ||||
| 5025 | // if we would otherwise have given up. | ||||
| 5026 | if (ExternalSource) { | ||||
| 5027 | if (TypoCorrection Correction = | ||||
| 5028 | ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, | ||||
| 5029 | MemberContext, EnteringContext, OPT)) | ||||
| 5030 | return Correction; | ||||
| 5031 | } | ||||
| 5032 | |||||
| 5033 | // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; | ||||
| 5034 | // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for | ||||
| 5035 | // some instances of CTC_Unknown, while WantRemainingKeywords is true | ||||
| 5036 | // for CTC_Unknown but not for CTC_ObjCMessageReceiver. | ||||
| 5037 | bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; | ||||
| 5038 | |||||
| 5039 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | ||||
| 5040 | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, | ||||
| 5041 | MemberContext, EnteringContext, | ||||
| 5042 | OPT, Mode == CTK_ErrorRecovery); | ||||
| 5043 | |||||
| 5044 | if (!Consumer) | ||||
| 5045 | return TypoCorrection(); | ||||
| 5046 | |||||
| 5047 | // If we haven't found anything, we're done. | ||||
| 5048 | if (Consumer->empty()) | ||||
| 5049 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
| 5050 | |||||
| 5051 | // Make sure the best edit distance (prior to adding any namespace qualifiers) | ||||
| 5052 | // is not more that about a third of the length of the typo's identifier. | ||||
| 5053 | unsigned ED = Consumer->getBestEditDistance(true); | ||||
| 5054 | unsigned TypoLen = Typo->getName().size(); | ||||
| 5055 | if (ED > 0 && TypoLen / ED < 3) | ||||
| 5056 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
| 5057 | |||||
| 5058 | TypoCorrection BestTC = Consumer->getNextCorrection(); | ||||
| 5059 | TypoCorrection SecondBestTC = Consumer->getNextCorrection(); | ||||
| 5060 | if (!BestTC) | ||||
| 5061 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
| 5062 | |||||
| 5063 | ED = BestTC.getEditDistance(); | ||||
| 5064 | |||||
| 5065 | if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { | ||||
| 5066 | // If this was an unqualified lookup and we believe the callback | ||||
| 5067 | // object wouldn't have filtered out possible corrections, note | ||||
| 5068 | // that no correction was found. | ||||
| 5069 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
| 5070 | } | ||||
| 5071 | |||||
| 5072 | // If only a single name remains, return that result. | ||||
| 5073 | if (!SecondBestTC || | ||||
| 5074 | SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { | ||||
| 5075 | const TypoCorrection &Result = BestTC; | ||||
| 5076 | |||||
| 5077 | // Don't correct to a keyword that's the same as the typo; the keyword | ||||
| 5078 | // wasn't actually in scope. | ||||
| 5079 | if (ED == 0 && Result.isKeyword()) | ||||
| 5080 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
| 5081 | |||||
| 5082 | TypoCorrection TC = Result; | ||||
| 5083 | TC.setCorrectionRange(SS, TypoName); | ||||
| 5084 | checkCorrectionVisibility(*this, TC); | ||||
| 5085 | return TC; | ||||
| 5086 | } else if (SecondBestTC && ObjCMessageReceiver) { | ||||
| 5087 | // Prefer 'super' when we're completing in a message-receiver | ||||
| 5088 | // context. | ||||
| 5089 | |||||
| 5090 | if (BestTC.getCorrection().getAsString() != "super") { | ||||
| 5091 | if (SecondBestTC.getCorrection().getAsString() == "super") | ||||
| 5092 | BestTC = SecondBestTC; | ||||
| 5093 | else if ((*Consumer)["super"].front().isKeyword()) | ||||
| 5094 | BestTC = (*Consumer)["super"].front(); | ||||
| 5095 | } | ||||
| 5096 | // Don't correct to a keyword that's the same as the typo; the keyword | ||||
| 5097 | // wasn't actually in scope. | ||||
| 5098 | if (BestTC.getEditDistance() == 0 || | ||||
| 5099 | BestTC.getCorrection().getAsString() != "super") | ||||
| 5100 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | ||||
| 5101 | |||||
| 5102 | BestTC.setCorrectionRange(SS, TypoName); | ||||
| 5103 | return BestTC; | ||||
| 5104 | } | ||||
| 5105 | |||||
| 5106 | // Record the failure's location if needed and return an empty correction. If | ||||
| 5107 | // this was an unqualified lookup and we believe the callback object did not | ||||
| 5108 | // filter out possible corrections, also cache the failure for the typo. | ||||
| 5109 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); | ||||
| 5110 | } | ||||
| 5111 | |||||
| 5112 | /// Try to "correct" a typo in the source code by finding | ||||
| 5113 | /// visible declarations whose names are similar to the name that was | ||||
| 5114 | /// present in the source code. | ||||
| 5115 | /// | ||||
| 5116 | /// \param TypoName the \c DeclarationNameInfo structure that contains | ||||
| 5117 | /// the name that was present in the source code along with its location. | ||||
| 5118 | /// | ||||
| 5119 | /// \param LookupKind the name-lookup criteria used to search for the name. | ||||
| 5120 | /// | ||||
| 5121 | /// \param S the scope in which name lookup occurs. | ||||
| 5122 | /// | ||||
| 5123 | /// \param SS the nested-name-specifier that precedes the name we're | ||||
| 5124 | /// looking for, if present. | ||||
| 5125 | /// | ||||
| 5126 | /// \param CCC A CorrectionCandidateCallback object that provides further | ||||
| 5127 | /// validation of typo correction candidates. It also provides flags for | ||||
| 5128 | /// determining the set of keywords permitted. | ||||
| 5129 | /// | ||||
| 5130 | /// \param TDG A TypoDiagnosticGenerator functor that will be used to print | ||||
| 5131 | /// diagnostics when the actual typo correction is attempted. | ||||
| 5132 | /// | ||||
| 5133 | /// \param TRC A TypoRecoveryCallback functor that will be used to build an | ||||
| 5134 | /// Expr from a typo correction candidate. | ||||
| 5135 | /// | ||||
| 5136 | /// \param MemberContext if non-NULL, the context in which to look for | ||||
| 5137 | /// a member access expression. | ||||
| 5138 | /// | ||||
| 5139 | /// \param EnteringContext whether we're entering the context described by | ||||
| 5140 | /// the nested-name-specifier SS. | ||||
| 5141 | /// | ||||
| 5142 | /// \param OPT when non-NULL, the search for visible declarations will | ||||
| 5143 | /// also walk the protocols in the qualified interfaces of \p OPT. | ||||
| 5144 | /// | ||||
| 5145 | /// \returns a new \c TypoExpr that will later be replaced in the AST with an | ||||
| 5146 | /// Expr representing the result of performing typo correction, or nullptr if | ||||
| 5147 | /// typo correction is not possible. If nullptr is returned, no diagnostics will | ||||
| 5148 | /// be emitted and it is the responsibility of the caller to emit any that are | ||||
| 5149 | /// needed. | ||||
| 5150 | TypoExpr *Sema::CorrectTypoDelayed( | ||||
| 5151 | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, | ||||
| 5152 | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, | ||||
| 5153 | TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, | ||||
| 5154 | DeclContext *MemberContext, bool EnteringContext, | ||||
| 5155 | const ObjCObjectPointerType *OPT) { | ||||
| 5156 | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, | ||||
| 5157 | MemberContext, EnteringContext, | ||||
| 5158 | OPT, Mode == CTK_ErrorRecovery); | ||||
| 5159 | |||||
| 5160 | // Give the external sema source a chance to correct the typo. | ||||
| 5161 | TypoCorrection ExternalTypo; | ||||
| 5162 | if (ExternalSource && Consumer) { | ||||
| 5163 | ExternalTypo = ExternalSource->CorrectTypo( | ||||
| 5164 | TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), | ||||
| 5165 | MemberContext, EnteringContext, OPT); | ||||
| 5166 | if (ExternalTypo) | ||||
| 5167 | Consumer->addCorrection(ExternalTypo); | ||||
| 5168 | } | ||||
| 5169 | |||||
| 5170 | if (!Consumer || Consumer->empty()) | ||||
| 5171 | return nullptr; | ||||
| 5172 | |||||
| 5173 | // Make sure the best edit distance (prior to adding any namespace qualifiers) | ||||
| 5174 | // is not more that about a third of the length of the typo's identifier. | ||||
| 5175 | unsigned ED = Consumer->getBestEditDistance(true); | ||||
| 5176 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | ||||
| 5177 | if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) | ||||
| 5178 | return nullptr; | ||||
| 5179 | ExprEvalContexts.back().NumTypos++; | ||||
| 5180 | return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), | ||||
| 5181 | TypoName.getLoc()); | ||||
| 5182 | } | ||||
| 5183 | |||||
| 5184 | void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { | ||||
| 5185 | if (!CDecl) return; | ||||
| 5186 | |||||
| 5187 | if (isKeyword()) | ||||
| 5188 | CorrectionDecls.clear(); | ||||
| 5189 | |||||
| 5190 | CorrectionDecls.push_back(CDecl); | ||||
| 5191 | |||||
| 5192 | if (!CorrectionName) | ||||
| 5193 | CorrectionName = CDecl->getDeclName(); | ||||
| 5194 | } | ||||
| 5195 | |||||
| 5196 | std::string TypoCorrection::getAsString(const LangOptions &LO) const { | ||||
| 5197 | if (CorrectionNameSpec) { | ||||
| 5198 | std::string tmpBuffer; | ||||
| 5199 | llvm::raw_string_ostream PrefixOStream(tmpBuffer); | ||||
| 5200 | CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); | ||||
| 5201 | PrefixOStream << CorrectionName; | ||||
| 5202 | return PrefixOStream.str(); | ||||
| 5203 | } | ||||
| 5204 | |||||
| 5205 | return CorrectionName.getAsString(); | ||||
| 5206 | } | ||||
| 5207 | |||||
| 5208 | bool CorrectionCandidateCallback::ValidateCandidate( | ||||
| 5209 | const TypoCorrection &candidate) { | ||||
| 5210 | if (!candidate.isResolved()) | ||||
| 5211 | return true; | ||||
| 5212 | |||||
| 5213 | if (candidate.isKeyword()) | ||||
| 5214 | return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || | ||||
| 5215 | WantRemainingKeywords || WantObjCSuper; | ||||
| 5216 | |||||
| 5217 | bool HasNonType = false; | ||||
| 5218 | bool HasStaticMethod = false; | ||||
| 5219 | bool HasNonStaticMethod = false; | ||||
| 5220 | for (Decl *D : candidate) { | ||||
| 5221 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) | ||||
| 5222 | D = FTD->getTemplatedDecl(); | ||||
| 5223 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | ||||
| 5224 | if (Method->isStatic()) | ||||
| 5225 | HasStaticMethod = true; | ||||
| 5226 | else | ||||
| 5227 | HasNonStaticMethod = true; | ||||
| 5228 | } | ||||
| 5229 | if (!isa<TypeDecl>(D)) | ||||
| 5230 | HasNonType = true; | ||||
| 5231 | } | ||||
| 5232 | |||||
| 5233 | if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && | ||||
| 5234 | !candidate.getCorrectionSpecifier()) | ||||
| 5235 | return false; | ||||
| 5236 | |||||
| 5237 | return WantTypeSpecifiers || HasNonType; | ||||
| 5238 | } | ||||
| 5239 | |||||
| 5240 | FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, | ||||
| 5241 | bool HasExplicitTemplateArgs, | ||||
| 5242 | MemberExpr *ME) | ||||
| 5243 | : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), | ||||
| 5244 | CurContext(SemaRef.CurContext), MemberFn(ME) { | ||||
| 5245 | WantTypeSpecifiers = false; | ||||
| 5246 | WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && | ||||
| 5247 | !HasExplicitTemplateArgs && NumArgs == 1; | ||||
| 5248 | WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; | ||||
| 5249 | WantRemainingKeywords = false; | ||||
| 5250 | } | ||||
| 5251 | |||||
| 5252 | bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { | ||||
| 5253 | if (!candidate.getCorrectionDecl()) | ||||
| 5254 | return candidate.isKeyword(); | ||||
| 5255 | |||||
| 5256 | for (auto *C : candidate) { | ||||
| 5257 | FunctionDecl *FD = nullptr; | ||||
| 5258 | NamedDecl *ND = C->getUnderlyingDecl(); | ||||
| 5259 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) | ||||
| 5260 | FD = FTD->getTemplatedDecl(); | ||||
| 5261 | if (!HasExplicitTemplateArgs && !FD) { | ||||
| 5262 | if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { | ||||
| 5263 | // If the Decl is neither a function nor a template function, | ||||
| 5264 | // determine if it is a pointer or reference to a function. If so, | ||||
| 5265 | // check against the number of arguments expected for the pointee. | ||||
| 5266 | QualType ValType = cast<ValueDecl>(ND)->getType(); | ||||
| 5267 | if (ValType.isNull()) | ||||
| 5268 | continue; | ||||
| 5269 | if (ValType->isAnyPointerType() || ValType->isReferenceType()) | ||||
| 5270 | ValType = ValType->getPointeeType(); | ||||
| 5271 | if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) | ||||
| 5272 | if (FPT->getNumParams() == NumArgs) | ||||
| 5273 | return true; | ||||
| 5274 | } | ||||
| 5275 | } | ||||
| 5276 | |||||
| 5277 | // A typo for a function-style cast can look like a function call in C++. | ||||
| 5278 | if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr | ||||
| 5279 | : isa<TypeDecl>(ND)) && | ||||
| 5280 | CurContext->getParentASTContext().getLangOpts().CPlusPlus) | ||||
| 5281 | // Only a class or class template can take two or more arguments. | ||||
| 5282 | return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); | ||||
| 5283 | |||||
| 5284 | // Skip the current candidate if it is not a FunctionDecl or does not accept | ||||
| 5285 | // the current number of arguments. | ||||
| 5286 | if (!FD || !(FD->getNumParams() >= NumArgs && | ||||
| 5287 | FD->getMinRequiredArguments() <= NumArgs)) | ||||
| 5288 | continue; | ||||
| 5289 | |||||
| 5290 | // If the current candidate is a non-static C++ method, skip the candidate | ||||
| 5291 | // unless the method being corrected--or the current DeclContext, if the | ||||
| 5292 | // function being corrected is not a method--is a method in the same class | ||||
| 5293 | // or a descendent class of the candidate's parent class. | ||||
| 5294 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | ||||
| 5295 | if (MemberFn || !MD->isStatic()) { | ||||
| 5296 | CXXMethodDecl *CurMD = | ||||
| 5297 | MemberFn | ||||
| 5298 | ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl()) | ||||
| 5299 | : dyn_cast_or_null<CXXMethodDecl>(CurContext); | ||||
| 5300 | CXXRecordDecl *CurRD = | ||||
| 5301 | CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; | ||||
| 5302 | CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); | ||||
| 5303 | if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) | ||||
| 5304 | continue; | ||||
| 5305 | } | ||||
| 5306 | } | ||||
| 5307 | return true; | ||||
| 5308 | } | ||||
| 5309 | return false; | ||||
| 5310 | } | ||||
| 5311 | |||||
| 5312 | void Sema::diagnoseTypo(const TypoCorrection &Correction, | ||||
| 5313 | const PartialDiagnostic &TypoDiag, | ||||
| 5314 | bool ErrorRecovery) { | ||||
| 5315 | diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), | ||||
| 5316 | ErrorRecovery); | ||||
| 5317 | } | ||||
| 5318 | |||||
| 5319 | /// Find which declaration we should import to provide the definition of | ||||
| 5320 | /// the given declaration. | ||||
| 5321 | static NamedDecl *getDefinitionToImport(NamedDecl *D) { | ||||
| 5322 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) | ||||
| 5323 | return VD->getDefinition(); | ||||
| 5324 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | ||||
| 5325 | return FD->getDefinition(); | ||||
| 5326 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) | ||||
| 5327 | return TD->getDefinition(); | ||||
| 5328 | // The first definition for this ObjCInterfaceDecl might be in the TU | ||||
| 5329 | // and not associated with any module. Use the one we know to be complete | ||||
| 5330 | // and have just seen in a module. | ||||
| 5331 | if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) | ||||
| 5332 | return ID; | ||||
| 5333 | if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) | ||||
| 5334 | return PD->getDefinition(); | ||||
| 5335 | if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) | ||||
| 5336 | if (NamedDecl *TTD = TD->getTemplatedDecl()) | ||||
| 5337 | return getDefinitionToImport(TTD); | ||||
| 5338 | return nullptr; | ||||
| 5339 | } | ||||
| 5340 | |||||
| 5341 | void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, | ||||
| 5342 | MissingImportKind MIK, bool Recover) { | ||||
| 5343 | // Suggest importing a module providing the definition of this entity, if | ||||
| 5344 | // possible. | ||||
| 5345 | NamedDecl *Def = getDefinitionToImport(Decl); | ||||
| 5346 | if (!Def) | ||||
| 5347 | Def = Decl; | ||||
| 5348 | |||||
| 5349 | Module *Owner = getOwningModule(Def); | ||||
| 5350 | assert(Owner && "definition of hidden declaration is not in a module")((void)0); | ||||
| 5351 | |||||
| 5352 | llvm::SmallVector<Module*, 8> OwningModules; | ||||
| 5353 | OwningModules.push_back(Owner); | ||||
| 5354 | auto Merged = Context.getModulesWithMergedDefinition(Def); | ||||
| 5355 | OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); | ||||
| 5356 | |||||
| 5357 | diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, | ||||
| 5358 | Recover); | ||||
| 5359 | } | ||||
| 5360 | |||||
| 5361 | /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic | ||||
| 5362 | /// suggesting the addition of a #include of the specified file. | ||||
| 5363 | static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E, | ||||
| 5364 | llvm::StringRef IncludingFile) { | ||||
| 5365 | bool IsSystem = false; | ||||
| 5366 | auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( | ||||
| 5367 | E, IncludingFile, &IsSystem); | ||||
| 5368 | return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"'); | ||||
| 5369 | } | ||||
| 5370 | |||||
| 5371 | void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl, | ||||
| 5372 | SourceLocation DeclLoc, | ||||
| 5373 | ArrayRef<Module *> Modules, | ||||
| 5374 | MissingImportKind MIK, bool Recover) { | ||||
| 5375 | assert(!Modules.empty())((void)0); | ||||
| 5376 | |||||
| 5377 | auto NotePrevious = [&] { | ||||
| 5378 | // FIXME: Suppress the note backtrace even under | ||||
| 5379 | // -fdiagnostics-show-note-include-stack. We don't care how this | ||||
| 5380 | // declaration was previously reached. | ||||
| 5381 | Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; | ||||
| 5382 | }; | ||||
| 5383 | |||||
| 5384 | // Weed out duplicates from module list. | ||||
| 5385 | llvm::SmallVector<Module*, 8> UniqueModules; | ||||
| 5386 | llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; | ||||
| 5387 | for (auto *M : Modules) { | ||||
| 5388 | if (M->Kind == Module::GlobalModuleFragment) | ||||
| 5389 | continue; | ||||
| 5390 | if (UniqueModuleSet.insert(M).second) | ||||
| 5391 | UniqueModules.push_back(M); | ||||
| 5392 | } | ||||
| 5393 | |||||
| 5394 | // Try to find a suitable header-name to #include. | ||||
| 5395 | std::string HeaderName; | ||||
| 5396 | if (const FileEntry *Header = | ||||
| 5397 | PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { | ||||
| 5398 | if (const FileEntry *FE = | ||||
| 5399 | SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) | ||||
| 5400 | HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName()); | ||||
| 5401 | } | ||||
| 5402 | |||||
| 5403 | // If we have a #include we should suggest, or if all definition locations | ||||
| 5404 | // were in global module fragments, don't suggest an import. | ||||
| 5405 | if (!HeaderName.empty() || UniqueModules.empty()) { | ||||
| 5406 | // FIXME: Find a smart place to suggest inserting a #include, and add | ||||
| 5407 | // a FixItHint there. | ||||
| 5408 | Diag(UseLoc, diag::err_module_unimported_use_header) | ||||
| 5409 | << (int)MIK << Decl << !HeaderName.empty() << HeaderName; | ||||
| 5410 | // Produce a note showing where the entity was declared. | ||||
| 5411 | NotePrevious(); | ||||
| 5412 | if (Recover) | ||||
| 5413 | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); | ||||
| 5414 | return; | ||||
| 5415 | } | ||||
| 5416 | |||||
| 5417 | Modules = UniqueModules; | ||||
| 5418 | |||||
| 5419 | if (Modules.size() > 1) { | ||||
| 5420 | std::string ModuleList; | ||||
| 5421 | unsigned N = 0; | ||||
| 5422 | for (Module *M : Modules) { | ||||
| 5423 | ModuleList += "\n "; | ||||
| 5424 | if (++N == 5 && N != Modules.size()) { | ||||
| 5425 | ModuleList += "[...]"; | ||||
| 5426 | break; | ||||
| 5427 | } | ||||
| 5428 | ModuleList += M->getFullModuleName(); | ||||
| 5429 | } | ||||
| 5430 | |||||
| 5431 | Diag(UseLoc, diag::err_module_unimported_use_multiple) | ||||
| 5432 | << (int)MIK << Decl << ModuleList; | ||||
| 5433 | } else { | ||||
| 5434 | // FIXME: Add a FixItHint that imports the corresponding module. | ||||
| 5435 | Diag(UseLoc, diag::err_module_unimported_use) | ||||
| 5436 | << (int)MIK << Decl << Modules[0]->getFullModuleName(); | ||||
| 5437 | } | ||||
| 5438 | |||||
| 5439 | NotePrevious(); | ||||
| 5440 | |||||
| 5441 | // Try to recover by implicitly importing this module. | ||||
| 5442 | if (Recover) | ||||
| 5443 | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); | ||||
| 5444 | } | ||||
| 5445 | |||||
| 5446 | /// Diagnose a successfully-corrected typo. Separated from the correction | ||||
| 5447 | /// itself to allow external validation of the result, etc. | ||||
| 5448 | /// | ||||
| 5449 | /// \param Correction The result of performing typo correction. | ||||
| 5450 | /// \param TypoDiag The diagnostic to produce. This will have the corrected | ||||
| 5451 | /// string added to it (and usually also a fixit). | ||||
| 5452 | /// \param PrevNote A note to use when indicating the location of the entity to | ||||
| 5453 | /// which we are correcting. Will have the correction string added to it. | ||||
| 5454 | /// \param ErrorRecovery If \c true (the default), the caller is going to | ||||
| 5455 | /// recover from the typo as if the corrected string had been typed. | ||||
| 5456 | /// In this case, \c PDiag must be an error, and we will attach a fixit | ||||
| 5457 | /// to it. | ||||
| 5458 | void Sema::diagnoseTypo(const TypoCorrection &Correction, | ||||
| 5459 | const PartialDiagnostic &TypoDiag, | ||||
| 5460 | const PartialDiagnostic &PrevNote, | ||||
| 5461 | bool ErrorRecovery) { | ||||
| 5462 | std::string CorrectedStr = Correction.getAsString(getLangOpts()); | ||||
| 5463 | std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); | ||||
| 5464 | FixItHint FixTypo = FixItHint::CreateReplacement( | ||||
| 5465 | Correction.getCorrectionRange(), CorrectedStr); | ||||
| 5466 | |||||
| 5467 | // Maybe we're just missing a module import. | ||||
| 5468 | if (Correction.requiresImport()) { | ||||
| 5469 | NamedDecl *Decl = Correction.getFoundDecl(); | ||||
| 5470 | assert(Decl && "import required but no declaration to import")((void)0); | ||||
| 5471 | |||||
| 5472 | diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, | ||||
| 5473 | MissingImportKind::Declaration, ErrorRecovery); | ||||
| 5474 | return; | ||||
| 5475 | } | ||||
| 5476 | |||||
| 5477 | Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) | ||||
| 5478 | << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); | ||||
| 5479 | |||||
| 5480 | NamedDecl *ChosenDecl = | ||||
| 5481 | Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); | ||||
| 5482 | if (PrevNote.getDiagID() && ChosenDecl) | ||||
| 5483 | Diag(ChosenDecl->getLocation(), PrevNote) | ||||
| 5484 | << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); | ||||
| 5485 | |||||
| 5486 | // Add any extra diagnostics. | ||||
| 5487 | for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) | ||||
| 5488 | Diag(Correction.getCorrectionRange().getBegin(), PD); | ||||
| 5489 | } | ||||
| 5490 | |||||
| 5491 | TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, | ||||
| 5492 | TypoDiagnosticGenerator TDG, | ||||
| 5493 | TypoRecoveryCallback TRC, | ||||
| 5494 | SourceLocation TypoLoc) { | ||||
| 5495 | assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")((void)0); | ||||
| 5496 | auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); | ||||
| 5497 | auto &State = DelayedTypos[TE]; | ||||
| 5498 | State.Consumer = std::move(TCC); | ||||
| 5499 | State.DiagHandler = std::move(TDG); | ||||
| 5500 | State.RecoveryHandler = std::move(TRC); | ||||
| 5501 | if (TE) | ||||
| 5502 | TypoExprs.push_back(TE); | ||||
| 5503 | return TE; | ||||
| 5504 | } | ||||
| 5505 | |||||
| 5506 | const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { | ||||
| 5507 | auto Entry = DelayedTypos.find(TE); | ||||
| 5508 | assert(Entry != DelayedTypos.end() &&((void)0) | ||||
| 5509 | "Failed to get the state for a TypoExpr!")((void)0); | ||||
| 5510 | return Entry->second; | ||||
| 5511 | } | ||||
| 5512 | |||||
| 5513 | void Sema::clearDelayedTypo(TypoExpr *TE) { | ||||
| 5514 | DelayedTypos.erase(TE); | ||||
| 5515 | } | ||||
| 5516 | |||||
| 5517 | void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { | ||||
| 5518 | DeclarationNameInfo Name(II, IILoc); | ||||
| 5519 | LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration); | ||||
| 5520 | R.suppressDiagnostics(); | ||||
| 5521 | R.setHideTags(false); | ||||
| 5522 | LookupName(R, S); | ||||
| 5523 | R.dump(); | ||||
| 5524 | } |
| 1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the SmallVector class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_ADT_SMALLVECTOR_H |
| 14 | #define LLVM_ADT_SMALLVECTOR_H |
| 15 | |
| 16 | #include "llvm/ADT/iterator_range.h" |
| 17 | #include "llvm/Support/Compiler.h" |
| 18 | #include "llvm/Support/ErrorHandling.h" |
| 19 | #include "llvm/Support/MemAlloc.h" |
| 20 | #include "llvm/Support/type_traits.h" |
| 21 | #include <algorithm> |
| 22 | #include <cassert> |
| 23 | #include <cstddef> |
| 24 | #include <cstdlib> |
| 25 | #include <cstring> |
| 26 | #include <functional> |
| 27 | #include <initializer_list> |
| 28 | #include <iterator> |
| 29 | #include <limits> |
| 30 | #include <memory> |
| 31 | #include <new> |
| 32 | #include <type_traits> |
| 33 | #include <utility> |
| 34 | |
| 35 | namespace llvm { |
| 36 | |
| 37 | /// This is all the stuff common to all SmallVectors. |
| 38 | /// |
| 39 | /// The template parameter specifies the type which should be used to hold the |
| 40 | /// Size and Capacity of the SmallVector, so it can be adjusted. |
| 41 | /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
| 42 | /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
| 43 | /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
| 44 | /// buffering bitcode output - which can exceed 4GB. |
| 45 | template <class Size_T> class SmallVectorBase { |
| 46 | protected: |
| 47 | void *BeginX; |
| 48 | Size_T Size = 0, Capacity; |
| 49 | |
| 50 | /// The maximum value of the Size_T used. |
| 51 | static constexpr size_t SizeTypeMax() { |
| 52 | return std::numeric_limits<Size_T>::max(); |
| 53 | } |
| 54 | |
| 55 | SmallVectorBase() = delete; |
| 56 | SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
| 57 | : BeginX(FirstEl), Capacity(TotalCapacity) {} |
| 58 | |
| 59 | /// This is a helper for \a grow() that's out of line to reduce code |
| 60 | /// duplication. This function will report a fatal error if it can't grow at |
| 61 | /// least to \p MinSize. |
| 62 | void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity); |
| 63 | |
| 64 | /// This is an implementation of the grow() method which only works |
| 65 | /// on POD-like data types and is out of line to reduce code duplication. |
| 66 | /// This function will report a fatal error if it cannot increase capacity. |
| 67 | void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
| 68 | |
| 69 | public: |
| 70 | size_t size() const { return Size; } |
| 71 | size_t capacity() const { return Capacity; } |
| 72 | |
| 73 | LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; } |
| 74 | |
| 75 | /// Set the array size to \p N, which the current array must have enough |
| 76 | /// capacity for. |
| 77 | /// |
| 78 | /// This does not construct or destroy any elements in the vector. |
| 79 | /// |
| 80 | /// Clients can use this in conjunction with capacity() to write past the end |
| 81 | /// of the buffer when they know that more elements are available, and only |
| 82 | /// update the size later. This avoids the cost of value initializing elements |
| 83 | /// which will only be overwritten. |
| 84 | void set_size(size_t N) { |
| 85 | assert(N <= capacity())((void)0); |
| 86 | Size = N; |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | template <class T> |
| 91 | using SmallVectorSizeType = |
| 92 | typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
| 93 | uint32_t>::type; |
| 94 | |
| 95 | /// Figure out the offset of the first element. |
| 96 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
| 97 | alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
| 98 | SmallVectorBase<SmallVectorSizeType<T>>)]; |
| 99 | alignas(T) char FirstEl[sizeof(T)]; |
| 100 | }; |
| 101 | |
| 102 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
| 103 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
| 104 | /// to avoid unnecessarily requiring T to be complete. |
| 105 | template <typename T, typename = void> |
| 106 | class SmallVectorTemplateCommon |
| 107 | : public SmallVectorBase<SmallVectorSizeType<T>> { |
| 108 | using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
| 109 | |
| 110 | /// Find the address of the first element. For this pointer math to be valid |
| 111 | /// with small-size of 0 for T with lots of alignment, it's important that |
| 112 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
| 113 | void *getFirstEl() const { |
| 114 | return const_cast<void *>(reinterpret_cast<const void *>( |
| 115 | reinterpret_cast<const char *>(this) + |
| 116 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl ))); |
| 117 | } |
| 118 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
| 119 | |
| 120 | protected: |
| 121 | SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
| 122 | |
| 123 | void grow_pod(size_t MinSize, size_t TSize) { |
| 124 | Base::grow_pod(getFirstEl(), MinSize, TSize); |
| 125 | } |
| 126 | |
| 127 | /// Return true if this is a smallvector which has not had dynamic |
| 128 | /// memory allocated for it. |
| 129 | bool isSmall() const { return this->BeginX == getFirstEl(); } |
| 130 | |
| 131 | /// Put this vector in a state of being small. |
| 132 | void resetToSmall() { |
| 133 | this->BeginX = getFirstEl(); |
| 134 | this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
| 135 | } |
| 136 | |
| 137 | /// Return true if V is an internal reference to the given range. |
| 138 | bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
| 139 | // Use std::less to avoid UB. |
| 140 | std::less<> LessThan; |
| 141 | return !LessThan(V, First) && LessThan(V, Last); |
| 142 | } |
| 143 | |
| 144 | /// Return true if V is an internal reference to this vector. |
| 145 | bool isReferenceToStorage(const void *V) const { |
| 146 | return isReferenceToRange(V, this->begin(), this->end()); |
| 147 | } |
| 148 | |
| 149 | /// Return true if First and Last form a valid (possibly empty) range in this |
| 150 | /// vector's storage. |
| 151 | bool isRangeInStorage(const void *First, const void *Last) const { |
| 152 | // Use std::less to avoid UB. |
| 153 | std::less<> LessThan; |
| 154 | return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
| 155 | !LessThan(this->end(), Last); |
| 156 | } |
| 157 | |
| 158 | /// Return true unless Elt will be invalidated by resizing the vector to |
| 159 | /// NewSize. |
| 160 | bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| 161 | // Past the end. |
| 162 | if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true)) |
| 163 | return true; |
| 164 | |
| 165 | // Return false if Elt will be destroyed by shrinking. |
| 166 | if (NewSize <= this->size()) |
| 167 | return Elt < this->begin() + NewSize; |
| 168 | |
| 169 | // Return false if we need to grow. |
| 170 | return NewSize <= this->capacity(); |
| 171 | } |
| 172 | |
| 173 | /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
| 174 | void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| 175 | assert(isSafeToReferenceAfterResize(Elt, NewSize) &&((void)0) |
| 176 | "Attempting to reference an element of the vector in an operation "((void)0) |
| 177 | "that invalidates it")((void)0); |
| 178 | } |
| 179 | |
| 180 | /// Check whether Elt will be invalidated by increasing the size of the |
| 181 | /// vector by N. |
| 182 | void assertSafeToAdd(const void *Elt, size_t N = 1) { |
| 183 | this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
| 184 | } |
| 185 | |
| 186 | /// Check whether any part of the range will be invalidated by clearing. |
| 187 | void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
| 188 | if (From == To) |
| 189 | return; |
| 190 | this->assertSafeToReferenceAfterResize(From, 0); |
| 191 | this->assertSafeToReferenceAfterResize(To - 1, 0); |
| 192 | } |
| 193 | template < |
| 194 | class ItTy, |
| 195 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| 196 | bool> = false> |
| 197 | void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
| 198 | |
| 199 | /// Check whether any part of the range will be invalidated by growing. |
| 200 | void assertSafeToAddRange(const T *From, const T *To) { |
| 201 | if (From == To) |
| 202 | return; |
| 203 | this->assertSafeToAdd(From, To - From); |
| 204 | this->assertSafeToAdd(To - 1, To - From); |
| 205 | } |
| 206 | template < |
| 207 | class ItTy, |
| 208 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| 209 | bool> = false> |
| 210 | void assertSafeToAddRange(ItTy, ItTy) {} |
| 211 | |
| 212 | /// Reserve enough space to add one element, and return the updated element |
| 213 | /// pointer in case it was a reference to the storage. |
| 214 | template <class U> |
| 215 | static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
| 216 | size_t N) { |
| 217 | size_t NewSize = This->size() + N; |
| 218 | if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true )) |
| 219 | return &Elt; |
| 220 | |
| 221 | bool ReferencesStorage = false; |
| 222 | int64_t Index = -1; |
| 223 | if (!U::TakesParamByValue) { |
| 224 | if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt )), false)) { |
| 225 | ReferencesStorage = true; |
| 226 | Index = &Elt - This->begin(); |
| 227 | } |
| 228 | } |
| 229 | This->grow(NewSize); |
| 230 | return ReferencesStorage ? This->begin() + Index : &Elt; |
| 231 | } |
| 232 | |
| 233 | public: |
| 234 | using size_type = size_t; |
| 235 | using difference_type = ptrdiff_t; |
| 236 | using value_type = T; |
| 237 | using iterator = T *; |
| 238 | using const_iterator = const T *; |
| 239 | |
| 240 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 241 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 242 | |
| 243 | using reference = T &; |
| 244 | using const_reference = const T &; |
| 245 | using pointer = T *; |
| 246 | using const_pointer = const T *; |
| 247 | |
| 248 | using Base::capacity; |
| 249 | using Base::empty; |
| 250 | using Base::size; |
| 251 | |
| 252 | // forward iterator creation methods. |
| 253 | iterator begin() { return (iterator)this->BeginX; } |
| 254 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
| 255 | iterator end() { return begin() + size(); } |
| 256 | const_iterator end() const { return begin() + size(); } |
| 257 | |
| 258 | // reverse iterator creation methods. |
| 259 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
| 260 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
| 261 | reverse_iterator rend() { return reverse_iterator(begin()); } |
| 262 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
| 263 | |
| 264 | size_type size_in_bytes() const { return size() * sizeof(T); } |
| 265 | size_type max_size() const { |
| 266 | return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
| 267 | } |
| 268 | |
| 269 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
| 270 | |
| 271 | /// Return a pointer to the vector's buffer, even if empty(). |
| 272 | pointer data() { return pointer(begin()); } |
| 273 | /// Return a pointer to the vector's buffer, even if empty(). |
| 274 | const_pointer data() const { return const_pointer(begin()); } |
| 275 | |
| 276 | reference operator[](size_type idx) { |
| 277 | assert(idx < size())((void)0); |
| 278 | return begin()[idx]; |
| 279 | } |
| 280 | const_reference operator[](size_type idx) const { |
| 281 | assert(idx < size())((void)0); |
| 282 | return begin()[idx]; |
| 283 | } |
| 284 | |
| 285 | reference front() { |
| 286 | assert(!empty())((void)0); |
| 287 | return begin()[0]; |
| 288 | } |
| 289 | const_reference front() const { |
| 290 | assert(!empty())((void)0); |
| 291 | return begin()[0]; |
| 292 | } |
| 293 | |
| 294 | reference back() { |
| 295 | assert(!empty())((void)0); |
| 296 | return end()[-1]; |
| 297 | } |
| 298 | const_reference back() const { |
| 299 | assert(!empty())((void)0); |
| 300 | return end()[-1]; |
| 301 | } |
| 302 | }; |
| 303 | |
| 304 | /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
| 305 | /// method implementations that are designed to work with non-trivial T's. |
| 306 | /// |
| 307 | /// We approximate is_trivially_copyable with trivial move/copy construction and |
| 308 | /// trivial destruction. While the standard doesn't specify that you're allowed |
| 309 | /// copy these types with memcpy, there is no way for the type to observe this. |
| 310 | /// This catches the important case of std::pair<POD, POD>, which is not |
| 311 | /// trivially assignable. |
| 312 | template <typename T, bool = (is_trivially_copy_constructible<T>::value) && |
| 313 | (is_trivially_move_constructible<T>::value) && |
| 314 | std::is_trivially_destructible<T>::value> |
| 315 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
| 316 | friend class SmallVectorTemplateCommon<T>; |
| 317 | |
| 318 | protected: |
| 319 | static constexpr bool TakesParamByValue = false; |
| 320 | using ValueParamT = const T &; |
| 321 | |
| 322 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| 323 | |
| 324 | static void destroy_range(T *S, T *E) { |
| 325 | while (S != E) { |
| 326 | --E; |
| 327 | E->~T(); |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
| 332 | /// constructing elements as needed. |
| 333 | template<typename It1, typename It2> |
| 334 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| 335 | std::uninitialized_copy(std::make_move_iterator(I), |
| 336 | std::make_move_iterator(E), Dest); |
| 337 | } |
| 338 | |
| 339 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
| 340 | /// constructing elements as needed. |
| 341 | template<typename It1, typename It2> |
| 342 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| 343 | std::uninitialized_copy(I, E, Dest); |
| 344 | } |
| 345 | |
| 346 | /// Grow the allocated memory (without initializing new elements), doubling |
| 347 | /// the size of the allocated memory. Guarantees space for at least one more |
| 348 | /// element, or MinSize more elements if specified. |
| 349 | void grow(size_t MinSize = 0); |
| 350 | |
| 351 | /// Create a new allocation big enough for \p MinSize and pass back its size |
| 352 | /// in \p NewCapacity. This is the first section of \a grow(). |
| 353 | T *mallocForGrow(size_t MinSize, size_t &NewCapacity) { |
| 354 | return static_cast<T *>( |
| 355 | SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
| 356 | MinSize, sizeof(T), NewCapacity)); |
| 357 | } |
| 358 | |
| 359 | /// Move existing elements over to the new allocation \p NewElts, the middle |
| 360 | /// section of \a grow(). |
| 361 | void moveElementsForGrow(T *NewElts); |
| 362 | |
| 363 | /// Transfer ownership of the allocation, finishing up \a grow(). |
| 364 | void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
| 365 | |
| 366 | /// Reserve enough space to add one element, and return the updated element |
| 367 | /// pointer in case it was a reference to the storage. |
| 368 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| 369 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| 370 | } |
| 371 | |
| 372 | /// Reserve enough space to add one element, and return the updated element |
| 373 | /// pointer in case it was a reference to the storage. |
| 374 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| 375 | return const_cast<T *>( |
| 376 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| 377 | } |
| 378 | |
| 379 | static T &&forward_value_param(T &&V) { return std::move(V); } |
| 380 | static const T &forward_value_param(const T &V) { return V; } |
| 381 | |
| 382 | void growAndAssign(size_t NumElts, const T &Elt) { |
| 383 | // Grow manually in case Elt is an internal reference. |
| 384 | size_t NewCapacity; |
| 385 | T *NewElts = mallocForGrow(NumElts, NewCapacity); |
| 386 | std::uninitialized_fill_n(NewElts, NumElts, Elt); |
| 387 | this->destroy_range(this->begin(), this->end()); |
| 388 | takeAllocationForGrow(NewElts, NewCapacity); |
| 389 | this->set_size(NumElts); |
| 390 | } |
| 391 | |
| 392 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| 393 | // Grow manually in case one of Args is an internal reference. |
| 394 | size_t NewCapacity; |
| 395 | T *NewElts = mallocForGrow(0, NewCapacity); |
| 396 | ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
| 397 | moveElementsForGrow(NewElts); |
| 398 | takeAllocationForGrow(NewElts, NewCapacity); |
| 399 | this->set_size(this->size() + 1); |
| 400 | return this->back(); |
| 401 | } |
| 402 | |
| 403 | public: |
| 404 | void push_back(const T &Elt) { |
| 405 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 406 | ::new ((void *)this->end()) T(*EltPtr); |
| 407 | this->set_size(this->size() + 1); |
| 408 | } |
| 409 | |
| 410 | void push_back(T &&Elt) { |
| 411 | T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 412 | ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
| 413 | this->set_size(this->size() + 1); |
| 414 | } |
| 415 | |
| 416 | void pop_back() { |
| 417 | this->set_size(this->size() - 1); |
| 418 | this->end()->~T(); |
| 419 | } |
| 420 | }; |
| 421 | |
| 422 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 423 | template <typename T, bool TriviallyCopyable> |
| 424 | void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
| 425 | size_t NewCapacity; |
| 426 | T *NewElts = mallocForGrow(MinSize, NewCapacity); |
| 427 | moveElementsForGrow(NewElts); |
| 428 | takeAllocationForGrow(NewElts, NewCapacity); |
| 429 | } |
| 430 | |
| 431 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 432 | template <typename T, bool TriviallyCopyable> |
| 433 | void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
| 434 | T *NewElts) { |
| 435 | // Move the elements over. |
| 436 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
| 437 | |
| 438 | // Destroy the original elements. |
| 439 | destroy_range(this->begin(), this->end()); |
| 440 | } |
| 441 | |
| 442 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 443 | template <typename T, bool TriviallyCopyable> |
| 444 | void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
| 445 | T *NewElts, size_t NewCapacity) { |
| 446 | // If this wasn't grown from the inline copy, deallocate the old space. |
| 447 | if (!this->isSmall()) |
| 448 | free(this->begin()); |
| 449 | |
| 450 | this->BeginX = NewElts; |
| 451 | this->Capacity = NewCapacity; |
| 452 | } |
| 453 | |
| 454 | /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
| 455 | /// method implementations that are designed to work with trivially copyable |
| 456 | /// T's. This allows using memcpy in place of copy/move construction and |
| 457 | /// skipping destruction. |
| 458 | template <typename T> |
| 459 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
| 460 | friend class SmallVectorTemplateCommon<T>; |
| 461 | |
| 462 | protected: |
| 463 | /// True if it's cheap enough to take parameters by value. Doing so avoids |
| 464 | /// overhead related to mitigations for reference invalidation. |
| 465 | static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
| 466 | |
| 467 | /// Either const T& or T, depending on whether it's cheap enough to take |
| 468 | /// parameters by value. |
| 469 | using ValueParamT = |
| 470 | typename std::conditional<TakesParamByValue, T, const T &>::type; |
| 471 | |
| 472 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| 473 | |
| 474 | // No need to do a destroy loop for POD's. |
| 475 | static void destroy_range(T *, T *) {} |
| 476 | |
| 477 | /// Move the range [I, E) onto the uninitialized memory |
| 478 | /// starting with "Dest", constructing elements into it as needed. |
| 479 | template<typename It1, typename It2> |
| 480 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| 481 | // Just do a copy. |
| 482 | uninitialized_copy(I, E, Dest); |
| 483 | } |
| 484 | |
| 485 | /// Copy the range [I, E) onto the uninitialized memory |
| 486 | /// starting with "Dest", constructing elements into it as needed. |
| 487 | template<typename It1, typename It2> |
| 488 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| 489 | // Arbitrary iterator types; just use the basic implementation. |
| 490 | std::uninitialized_copy(I, E, Dest); |
| 491 | } |
| 492 | |
| 493 | /// Copy the range [I, E) onto the uninitialized memory |
| 494 | /// starting with "Dest", constructing elements into it as needed. |
| 495 | template <typename T1, typename T2> |
| 496 | static void uninitialized_copy( |
| 497 | T1 *I, T1 *E, T2 *Dest, |
| 498 | std::enable_if_t<std::is_same<typename std::remove_const<T1>::type, |
| 499 | T2>::value> * = nullptr) { |
| 500 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
| 501 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
| 502 | // use memcpy here. Note that I and E are iterators and thus might be |
| 503 | // invalid for memcpy if they are equal. |
| 504 | if (I != E) |
| 505 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
| 506 | } |
| 507 | |
| 508 | /// Double the size of the allocated memory, guaranteeing space for at |
| 509 | /// least one more element or MinSize if specified. |
| 510 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
| 511 | |
| 512 | /// Reserve enough space to add one element, and return the updated element |
| 513 | /// pointer in case it was a reference to the storage. |
| 514 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| 515 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| 516 | } |
| 517 | |
| 518 | /// Reserve enough space to add one element, and return the updated element |
| 519 | /// pointer in case it was a reference to the storage. |
| 520 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| 521 | return const_cast<T *>( |
| 522 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| 523 | } |
| 524 | |
| 525 | /// Copy \p V or return a reference, depending on \a ValueParamT. |
| 526 | static ValueParamT forward_value_param(ValueParamT V) { return V; } |
| 527 | |
| 528 | void growAndAssign(size_t NumElts, T Elt) { |
| 529 | // Elt has been copied in case it's an internal reference, side-stepping |
| 530 | // reference invalidation problems without losing the realloc optimization. |
| 531 | this->set_size(0); |
| 532 | this->grow(NumElts); |
| 533 | std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
| 534 | this->set_size(NumElts); |
| 535 | } |
| 536 | |
| 537 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| 538 | // Use push_back with a copy in case Args has an internal reference, |
| 539 | // side-stepping reference invalidation problems without losing the realloc |
| 540 | // optimization. |
| 541 | push_back(T(std::forward<ArgTypes>(Args)...)); |
| 542 | return this->back(); |
| 543 | } |
| 544 | |
| 545 | public: |
| 546 | void push_back(ValueParamT Elt) { |
| 547 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 548 | memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
| 549 | this->set_size(this->size() + 1); |
| 550 | } |
| 551 | |
| 552 | void pop_back() { this->set_size(this->size() - 1); } |
| 553 | }; |
| 554 | |
| 555 | /// This class consists of common code factored out of the SmallVector class to |
| 556 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
| 557 | template <typename T> |
| 558 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
| 559 | using SuperClass = SmallVectorTemplateBase<T>; |
| 560 | |
| 561 | public: |
| 562 | using iterator = typename SuperClass::iterator; |
| 563 | using const_iterator = typename SuperClass::const_iterator; |
| 564 | using reference = typename SuperClass::reference; |
| 565 | using size_type = typename SuperClass::size_type; |
| 566 | |
| 567 | protected: |
| 568 | using SmallVectorTemplateBase<T>::TakesParamByValue; |
| 569 | using ValueParamT = typename SuperClass::ValueParamT; |
| 570 | |
| 571 | // Default ctor - Initialize to empty. |
| 572 | explicit SmallVectorImpl(unsigned N) |
| 573 | : SmallVectorTemplateBase<T>(N) {} |
| 574 | |
| 575 | public: |
| 576 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
| 577 | |
| 578 | ~SmallVectorImpl() { |
| 579 | // Subclass has already destructed this vector's elements. |
| 580 | // If this wasn't grown from the inline copy, deallocate the old space. |
| 581 | if (!this->isSmall()) |
| 582 | free(this->begin()); |
| 583 | } |
| 584 | |
| 585 | void clear() { |
| 586 | this->destroy_range(this->begin(), this->end()); |
| 587 | this->Size = 0; |
| 588 | } |
| 589 | |
| 590 | private: |
| 591 | template <bool ForOverwrite> void resizeImpl(size_type N) { |
| 592 | if (N < this->size()) { |
| 593 | this->pop_back_n(this->size() - N); |
| 594 | } else if (N > this->size()) { |
| 595 | this->reserve(N); |
| 596 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
| 597 | if (ForOverwrite) |
| 598 | new (&*I) T; |
| 599 | else |
| 600 | new (&*I) T(); |
| 601 | this->set_size(N); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | public: |
| 606 | void resize(size_type N) { resizeImpl<false>(N); } |
| 607 | |
| 608 | /// Like resize, but \ref T is POD, the new values won't be initialized. |
| 609 | void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
| 610 | |
| 611 | void resize(size_type N, ValueParamT NV) { |
| 612 | if (N == this->size()) |
| 613 | return; |
| 614 | |
| 615 | if (N < this->size()) { |
| 616 | this->pop_back_n(this->size() - N); |
| 617 | return; |
| 618 | } |
| 619 | |
| 620 | // N > this->size(). Defer to append. |
| 621 | this->append(N - this->size(), NV); |
| 622 | } |
| 623 | |
| 624 | void reserve(size_type N) { |
| 625 | if (this->capacity() < N) |
| 626 | this->grow(N); |
| 627 | } |
| 628 | |
| 629 | void pop_back_n(size_type NumItems) { |
| 630 | assert(this->size() >= NumItems)((void)0); |
| 631 | this->destroy_range(this->end() - NumItems, this->end()); |
| 632 | this->set_size(this->size() - NumItems); |
| 633 | } |
| 634 | |
| 635 | LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() { |
| 636 | T Result = ::std::move(this->back()); |
| 637 | this->pop_back(); |
| 638 | return Result; |
| 639 | } |
| 640 | |
| 641 | void swap(SmallVectorImpl &RHS); |
| 642 | |
| 643 | /// Add the specified range to the end of the SmallVector. |
| 644 | template <typename in_iter, |
| 645 | typename = std::enable_if_t<std::is_convertible< |
| 646 | typename std::iterator_traits<in_iter>::iterator_category, |
| 647 | std::input_iterator_tag>::value>> |
| 648 | void append(in_iter in_start, in_iter in_end) { |
| 649 | this->assertSafeToAddRange(in_start, in_end); |
| 650 | size_type NumInputs = std::distance(in_start, in_end); |
| 651 | this->reserve(this->size() + NumInputs); |
| 652 | this->uninitialized_copy(in_start, in_end, this->end()); |
| 653 | this->set_size(this->size() + NumInputs); |
| 654 | } |
| 655 | |
| 656 | /// Append \p NumInputs copies of \p Elt to the end. |
| 657 | void append(size_type NumInputs, ValueParamT Elt) { |
| 658 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
| 659 | std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
| 660 | this->set_size(this->size() + NumInputs); |
| 661 | } |
| 662 | |
| 663 | void append(std::initializer_list<T> IL) { |
| 664 | append(IL.begin(), IL.end()); |
| 665 | } |
| 666 | |
| 667 | void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
| 668 | |
| 669 | void assign(size_type NumElts, ValueParamT Elt) { |
| 670 | // Note that Elt could be an internal reference. |
| 671 | if (NumElts > this->capacity()) { |
| 672 | this->growAndAssign(NumElts, Elt); |
| 673 | return; |
| 674 | } |
| 675 | |
| 676 | // Assign over existing elements. |
| 677 | std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
| 678 | if (NumElts > this->size()) |
| 679 | std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
| 680 | else if (NumElts < this->size()) |
| 681 | this->destroy_range(this->begin() + NumElts, this->end()); |
| 682 | this->set_size(NumElts); |
| 683 | } |
| 684 | |
| 685 | // FIXME: Consider assigning over existing elements, rather than clearing & |
| 686 | // re-initializing them - for all assign(...) variants. |
| 687 | |
| 688 | template <typename in_iter, |
| 689 | typename = std::enable_if_t<std::is_convertible< |
| 690 | typename std::iterator_traits<in_iter>::iterator_category, |
| 691 | std::input_iterator_tag>::value>> |
| 692 | void assign(in_iter in_start, in_iter in_end) { |
| 693 | this->assertSafeToReferenceAfterClear(in_start, in_end); |
| 694 | clear(); |
| 695 | append(in_start, in_end); |
| 696 | } |
| 697 | |
| 698 | void assign(std::initializer_list<T> IL) { |
| 699 | clear(); |
| 700 | append(IL); |
| 701 | } |
| 702 | |
| 703 | void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
| 704 | |
| 705 | iterator erase(const_iterator CI) { |
| 706 | // Just cast away constness because this is a non-const member function. |
| 707 | iterator I = const_cast<iterator>(CI); |
| 708 | |
| 709 | assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")((void)0); |
| 710 | |
| 711 | iterator N = I; |
| 712 | // Shift all elts down one. |
| 713 | std::move(I+1, this->end(), I); |
| 714 | // Drop the last elt. |
| 715 | this->pop_back(); |
| 716 | return(N); |
| 717 | } |
| 718 | |
| 719 | iterator erase(const_iterator CS, const_iterator CE) { |
| 720 | // Just cast away constness because this is a non-const member function. |
| 721 | iterator S = const_cast<iterator>(CS); |
| 722 | iterator E = const_cast<iterator>(CE); |
| 723 | |
| 724 | assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")((void)0); |
| 725 | |
| 726 | iterator N = S; |
| 727 | // Shift all elts down. |
| 728 | iterator I = std::move(E, this->end(), S); |
| 729 | // Drop the last elts. |
| 730 | this->destroy_range(I, this->end()); |
| 731 | this->set_size(I - this->begin()); |
| 732 | return(N); |
| 733 | } |
| 734 | |
| 735 | private: |
| 736 | template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
| 737 | // Callers ensure that ArgType is derived from T. |
| 738 | static_assert( |
| 739 | std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
| 740 | T>::value, |
| 741 | "ArgType must be derived from T!"); |
| 742 | |
| 743 | if (I == this->end()) { // Important special case for empty vector. |
| 744 | this->push_back(::std::forward<ArgType>(Elt)); |
| 745 | return this->end()-1; |
| 746 | } |
| 747 | |
| 748 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 749 | |
| 750 | // Grow if necessary. |
| 751 | size_t Index = I - this->begin(); |
| 752 | std::remove_reference_t<ArgType> *EltPtr = |
| 753 | this->reserveForParamAndGetAddress(Elt); |
| 754 | I = this->begin() + Index; |
| 755 | |
| 756 | ::new ((void*) this->end()) T(::std::move(this->back())); |
| 757 | // Push everything else over. |
| 758 | std::move_backward(I, this->end()-1, this->end()); |
| 759 | this->set_size(this->size() + 1); |
| 760 | |
| 761 | // If we just moved the element we're inserting, be sure to update |
| 762 | // the reference (never happens if TakesParamByValue). |
| 763 | static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
| 764 | "ArgType must be 'T' when taking by value!"); |
| 765 | if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
| 766 | ++EltPtr; |
| 767 | |
| 768 | *I = ::std::forward<ArgType>(*EltPtr); |
| 769 | return I; |
| 770 | } |
| 771 | |
| 772 | public: |
| 773 | iterator insert(iterator I, T &&Elt) { |
| 774 | return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
| 775 | } |
| 776 | |
| 777 | iterator insert(iterator I, const T &Elt) { |
| 778 | return insert_one_impl(I, this->forward_value_param(Elt)); |
| 779 | } |
| 780 | |
| 781 | iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
| 782 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| 783 | size_t InsertElt = I - this->begin(); |
| 784 | |
| 785 | if (I == this->end()) { // Important special case for empty vector. |
| 786 | append(NumToInsert, Elt); |
| 787 | return this->begin()+InsertElt; |
| 788 | } |
| 789 | |
| 790 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 791 | |
| 792 | // Ensure there is enough space, and get the (maybe updated) address of |
| 793 | // Elt. |
| 794 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
| 795 | |
| 796 | // Uninvalidate the iterator. |
| 797 | I = this->begin()+InsertElt; |
| 798 | |
| 799 | // If there are more elements between the insertion point and the end of the |
| 800 | // range than there are being inserted, we can use a simple approach to |
| 801 | // insertion. Since we already reserved space, we know that this won't |
| 802 | // reallocate the vector. |
| 803 | if (size_t(this->end()-I) >= NumToInsert) { |
| 804 | T *OldEnd = this->end(); |
| 805 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| 806 | std::move_iterator<iterator>(this->end())); |
| 807 | |
| 808 | // Copy the existing elements that get replaced. |
| 809 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| 810 | |
| 811 | // If we just moved the element we're inserting, be sure to update |
| 812 | // the reference (never happens if TakesParamByValue). |
| 813 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| 814 | EltPtr += NumToInsert; |
| 815 | |
| 816 | std::fill_n(I, NumToInsert, *EltPtr); |
| 817 | return I; |
| 818 | } |
| 819 | |
| 820 | // Otherwise, we're inserting more elements than exist already, and we're |
| 821 | // not inserting at the end. |
| 822 | |
| 823 | // Move over the elements that we're about to overwrite. |
| 824 | T *OldEnd = this->end(); |
| 825 | this->set_size(this->size() + NumToInsert); |
| 826 | size_t NumOverwritten = OldEnd-I; |
| 827 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| 828 | |
| 829 | // If we just moved the element we're inserting, be sure to update |
| 830 | // the reference (never happens if TakesParamByValue). |
| 831 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| 832 | EltPtr += NumToInsert; |
| 833 | |
| 834 | // Replace the overwritten part. |
| 835 | std::fill_n(I, NumOverwritten, *EltPtr); |
| 836 | |
| 837 | // Insert the non-overwritten middle part. |
| 838 | std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
| 839 | return I; |
| 840 | } |
| 841 | |
| 842 | template <typename ItTy, |
| 843 | typename = std::enable_if_t<std::is_convertible< |
| 844 | typename std::iterator_traits<ItTy>::iterator_category, |
| 845 | std::input_iterator_tag>::value>> |
| 846 | iterator insert(iterator I, ItTy From, ItTy To) { |
| 847 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| 848 | size_t InsertElt = I - this->begin(); |
| 849 | |
| 850 | if (I == this->end()) { // Important special case for empty vector. |
| 851 | append(From, To); |
| 852 | return this->begin()+InsertElt; |
| 853 | } |
| 854 | |
| 855 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 856 | |
| 857 | // Check that the reserve that follows doesn't invalidate the iterators. |
| 858 | this->assertSafeToAddRange(From, To); |
| 859 | |
| 860 | size_t NumToInsert = std::distance(From, To); |
| 861 | |
| 862 | // Ensure there is enough space. |
| 863 | reserve(this->size() + NumToInsert); |
| 864 | |
| 865 | // Uninvalidate the iterator. |
| 866 | I = this->begin()+InsertElt; |
| 867 | |
| 868 | // If there are more elements between the insertion point and the end of the |
| 869 | // range than there are being inserted, we can use a simple approach to |
| 870 | // insertion. Since we already reserved space, we know that this won't |
| 871 | // reallocate the vector. |
| 872 | if (size_t(this->end()-I) >= NumToInsert) { |
| 873 | T *OldEnd = this->end(); |
| 874 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| 875 | std::move_iterator<iterator>(this->end())); |
| 876 | |
| 877 | // Copy the existing elements that get replaced. |
| 878 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| 879 | |
| 880 | std::copy(From, To, I); |
| 881 | return I; |
| 882 | } |
| 883 | |
| 884 | // Otherwise, we're inserting more elements than exist already, and we're |
| 885 | // not inserting at the end. |
| 886 | |
| 887 | // Move over the elements that we're about to overwrite. |
| 888 | T *OldEnd = this->end(); |
| 889 | this->set_size(this->size() + NumToInsert); |
| 890 | size_t NumOverwritten = OldEnd-I; |
| 891 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| 892 | |
| 893 | // Replace the overwritten part. |
| 894 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
| 895 | *J = *From; |
| 896 | ++J; ++From; |
| 897 | } |
| 898 | |
| 899 | // Insert the non-overwritten middle part. |
| 900 | this->uninitialized_copy(From, To, OldEnd); |
| 901 | return I; |
| 902 | } |
| 903 | |
| 904 | void insert(iterator I, std::initializer_list<T> IL) { |
| 905 | insert(I, IL.begin(), IL.end()); |
| 906 | } |
| 907 | |
| 908 | template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
| 909 | if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity ()), false)) |
| 910 | return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
| 911 | |
| 912 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
| 913 | this->set_size(this->size() + 1); |
| 914 | return this->back(); |
| 915 | } |
| 916 | |
| 917 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
| 918 | |
| 919 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
| 920 | |
| 921 | bool operator==(const SmallVectorImpl &RHS) const { |
| 922 | if (this->size() != RHS.size()) return false; |
| 923 | return std::equal(this->begin(), this->end(), RHS.begin()); |
| 924 | } |
| 925 | bool operator!=(const SmallVectorImpl &RHS) const { |
| 926 | return !(*this == RHS); |
| 927 | } |
| 928 | |
| 929 | bool operator<(const SmallVectorImpl &RHS) const { |
| 930 | return std::lexicographical_compare(this->begin(), this->end(), |
| 931 | RHS.begin(), RHS.end()); |
| 932 | } |
| 933 | }; |
| 934 | |
| 935 | template <typename T> |
| 936 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
| 937 | if (this == &RHS) return; |
| 938 | |
| 939 | // We can only avoid copying elements if neither vector is small. |
| 940 | if (!this->isSmall() && !RHS.isSmall()) { |
| 941 | std::swap(this->BeginX, RHS.BeginX); |
| 942 | std::swap(this->Size, RHS.Size); |
| 943 | std::swap(this->Capacity, RHS.Capacity); |
| 944 | return; |
| 945 | } |
| 946 | this->reserve(RHS.size()); |
| 947 | RHS.reserve(this->size()); |
| 948 | |
| 949 | // Swap the shared elements. |
| 950 | size_t NumShared = this->size(); |
| 951 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
| 952 | for (size_type i = 0; i != NumShared; ++i) |
| 953 | std::swap((*this)[i], RHS[i]); |
| 954 | |
| 955 | // Copy over the extra elts. |
| 956 | if (this->size() > RHS.size()) { |
| 957 | size_t EltDiff = this->size() - RHS.size(); |
| 958 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
| 959 | RHS.set_size(RHS.size() + EltDiff); |
| 960 | this->destroy_range(this->begin()+NumShared, this->end()); |
| 961 | this->set_size(NumShared); |
| 962 | } else if (RHS.size() > this->size()) { |
| 963 | size_t EltDiff = RHS.size() - this->size(); |
| 964 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
| 965 | this->set_size(this->size() + EltDiff); |
| 966 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
| 967 | RHS.set_size(NumShared); |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | template <typename T> |
| 972 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
| 973 | operator=(const SmallVectorImpl<T> &RHS) { |
| 974 | // Avoid self-assignment. |
| 975 | if (this == &RHS) return *this; |
| 976 | |
| 977 | // If we already have sufficient space, assign the common elements, then |
| 978 | // destroy any excess. |
| 979 | size_t RHSSize = RHS.size(); |
| 980 | size_t CurSize = this->size(); |
| 981 | if (CurSize >= RHSSize) { |
| 982 | // Assign common elements. |
| 983 | iterator NewEnd; |
| 984 | if (RHSSize) |
| 985 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
| 986 | else |
| 987 | NewEnd = this->begin(); |
| 988 | |
| 989 | // Destroy excess elements. |
| 990 | this->destroy_range(NewEnd, this->end()); |
| 991 | |
| 992 | // Trim. |
| 993 | this->set_size(RHSSize); |
| 994 | return *this; |
| 995 | } |
| 996 | |
| 997 | // If we have to grow to have enough elements, destroy the current elements. |
| 998 | // This allows us to avoid copying them during the grow. |
| 999 | // FIXME: don't do this if they're efficiently moveable. |
| 1000 | if (this->capacity() < RHSSize) { |
| 1001 | // Destroy current elements. |
| 1002 | this->clear(); |
| 1003 | CurSize = 0; |
| 1004 | this->grow(RHSSize); |
| 1005 | } else if (CurSize) { |
| 1006 | // Otherwise, use assignment for the already-constructed elements. |
| 1007 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| 1008 | } |
| 1009 | |
| 1010 | // Copy construct the new elements in place. |
| 1011 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
| 1012 | this->begin()+CurSize); |
| 1013 | |
| 1014 | // Set end. |
| 1015 | this->set_size(RHSSize); |
| 1016 | return *this; |
| 1017 | } |
| 1018 | |
| 1019 | template <typename T> |
| 1020 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
| 1021 | // Avoid self-assignment. |
| 1022 | if (this == &RHS) return *this; |
| 1023 | |
| 1024 | // If the RHS isn't small, clear this vector and then steal its buffer. |
| 1025 | if (!RHS.isSmall()) { |
| 1026 | this->destroy_range(this->begin(), this->end()); |
| 1027 | if (!this->isSmall()) free(this->begin()); |
| 1028 | this->BeginX = RHS.BeginX; |
| 1029 | this->Size = RHS.Size; |
| 1030 | this->Capacity = RHS.Capacity; |
| 1031 | RHS.resetToSmall(); |
| 1032 | return *this; |
| 1033 | } |
| 1034 | |
| 1035 | // If we already have sufficient space, assign the common elements, then |
| 1036 | // destroy any excess. |
| 1037 | size_t RHSSize = RHS.size(); |
| 1038 | size_t CurSize = this->size(); |
| 1039 | if (CurSize >= RHSSize) { |
| 1040 | // Assign common elements. |
| 1041 | iterator NewEnd = this->begin(); |
| 1042 | if (RHSSize) |
| 1043 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
| 1044 | |
| 1045 | // Destroy excess elements and trim the bounds. |
| 1046 | this->destroy_range(NewEnd, this->end()); |
| 1047 | this->set_size(RHSSize); |
| 1048 | |
| 1049 | // Clear the RHS. |
| 1050 | RHS.clear(); |
| 1051 | |
| 1052 | return *this; |
| 1053 | } |
| 1054 | |
| 1055 | // If we have to grow to have enough elements, destroy the current elements. |
| 1056 | // This allows us to avoid copying them during the grow. |
| 1057 | // FIXME: this may not actually make any sense if we can efficiently move |
| 1058 | // elements. |
| 1059 | if (this->capacity() < RHSSize) { |
| 1060 | // Destroy current elements. |
| 1061 | this->clear(); |
| 1062 | CurSize = 0; |
| 1063 | this->grow(RHSSize); |
| 1064 | } else if (CurSize) { |
| 1065 | // Otherwise, use assignment for the already-constructed elements. |
| 1066 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| 1067 | } |
| 1068 | |
| 1069 | // Move-construct the new elements in place. |
| 1070 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
| 1071 | this->begin()+CurSize); |
| 1072 | |
| 1073 | // Set end. |
| 1074 | this->set_size(RHSSize); |
| 1075 | |
| 1076 | RHS.clear(); |
| 1077 | return *this; |
| 1078 | } |
| 1079 | |
| 1080 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
| 1081 | /// to avoid allocating unnecessary storage. |
| 1082 | template <typename T, unsigned N> |
| 1083 | struct SmallVectorStorage { |
| 1084 | alignas(T) char InlineElts[N * sizeof(T)]; |
| 1085 | }; |
| 1086 | |
| 1087 | /// We need the storage to be properly aligned even for small-size of 0 so that |
| 1088 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
| 1089 | /// well-defined. |
| 1090 | template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
| 1091 | |
| 1092 | /// Forward declaration of SmallVector so that |
| 1093 | /// calculateSmallVectorDefaultInlinedElements can reference |
| 1094 | /// `sizeof(SmallVector<T, 0>)`. |
| 1095 | template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector; |
| 1096 | |
| 1097 | /// Helper class for calculating the default number of inline elements for |
| 1098 | /// `SmallVector<T>`. |
| 1099 | /// |
| 1100 | /// This should be migrated to a constexpr function when our minimum |
| 1101 | /// compiler support is enough for multi-statement constexpr functions. |
| 1102 | template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
| 1103 | // Parameter controlling the default number of inlined elements |
| 1104 | // for `SmallVector<T>`. |
| 1105 | // |
| 1106 | // The default number of inlined elements ensures that |
| 1107 | // 1. There is at least one inlined element. |
| 1108 | // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
| 1109 | // it contradicts 1. |
| 1110 | static constexpr size_t kPreferredSmallVectorSizeof = 64; |
| 1111 | |
| 1112 | // static_assert that sizeof(T) is not "too big". |
| 1113 | // |
| 1114 | // Because our policy guarantees at least one inlined element, it is possible |
| 1115 | // for an arbitrarily large inlined element to allocate an arbitrarily large |
| 1116 | // amount of inline storage. We generally consider it an antipattern for a |
| 1117 | // SmallVector to allocate an excessive amount of inline storage, so we want |
| 1118 | // to call attention to these cases and make sure that users are making an |
| 1119 | // intentional decision if they request a lot of inline storage. |
| 1120 | // |
| 1121 | // We want this assertion to trigger in pathological cases, but otherwise |
| 1122 | // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
| 1123 | // larger than kPreferredSmallVectorSizeof (otherwise, |
| 1124 | // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
| 1125 | // pattern seems useful in practice). |
| 1126 | // |
| 1127 | // One wrinkle is that this assertion is in theory non-portable, since |
| 1128 | // sizeof(T) is in general platform-dependent. However, we don't expect this |
| 1129 | // to be much of an issue, because most LLVM development happens on 64-bit |
| 1130 | // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
| 1131 | // 32-bit hosts, dodging the issue. The reverse situation, where development |
| 1132 | // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
| 1133 | // 64-bit host, is expected to be very rare. |
| 1134 | static_assert( |
| 1135 | sizeof(T) <= 256, |
| 1136 | "You are trying to use a default number of inlined elements for " |
| 1137 | "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
| 1138 | "explicit number of inlined elements with `SmallVector<T, N>` to make " |
| 1139 | "sure you really want that much inline storage."); |
| 1140 | |
| 1141 | // Discount the size of the header itself when calculating the maximum inline |
| 1142 | // bytes. |
| 1143 | static constexpr size_t PreferredInlineBytes = |
| 1144 | kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
| 1145 | static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
| 1146 | static constexpr size_t value = |
| 1147 | NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
| 1148 | }; |
| 1149 | |
| 1150 | /// This is a 'vector' (really, a variable-sized array), optimized |
| 1151 | /// for the case when the array is small. It contains some number of elements |
| 1152 | /// in-place, which allows it to avoid heap allocation when the actual number of |
| 1153 | /// elements is below that threshold. This allows normal "small" cases to be |
| 1154 | /// fast without losing generality for large inputs. |
| 1155 | /// |
| 1156 | /// \note |
| 1157 | /// In the absence of a well-motivated choice for the number of inlined |
| 1158 | /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
| 1159 | /// omitting the \p N). This will choose a default number of inlined elements |
| 1160 | /// reasonable for allocation on the stack (for example, trying to keep \c |
| 1161 | /// sizeof(SmallVector<T>) around 64 bytes). |
| 1162 | /// |
| 1163 | /// \warning This does not attempt to be exception safe. |
| 1164 | /// |
| 1165 | /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
| 1166 | template <typename T, |
| 1167 | unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
| 1168 | class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>, |
| 1169 | SmallVectorStorage<T, N> { |
| 1170 | public: |
| 1171 | SmallVector() : SmallVectorImpl<T>(N) {} |
| 1172 | |
| 1173 | ~SmallVector() { |
| 1174 | // Destroy the constructed elements in the vector. |
| 1175 | this->destroy_range(this->begin(), this->end()); |
| 1176 | } |
| 1177 | |
| 1178 | explicit SmallVector(size_t Size, const T &Value = T()) |
| 1179 | : SmallVectorImpl<T>(N) { |
| 1180 | this->assign(Size, Value); |
| 1181 | } |
| 1182 | |
| 1183 | template <typename ItTy, |
| 1184 | typename = std::enable_if_t<std::is_convertible< |
| 1185 | typename std::iterator_traits<ItTy>::iterator_category, |
| 1186 | std::input_iterator_tag>::value>> |
| 1187 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
| 1188 | this->append(S, E); |
| 1189 | } |
| 1190 | |
| 1191 | template <typename RangeTy> |
| 1192 | explicit SmallVector(const iterator_range<RangeTy> &R) |
| 1193 | : SmallVectorImpl<T>(N) { |
| 1194 | this->append(R.begin(), R.end()); |
| 1195 | } |
| 1196 | |
| 1197 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
| 1198 | this->assign(IL); |
| 1199 | } |
| 1200 | |
| 1201 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
| 1202 | if (!RHS.empty()) |
| 1203 | SmallVectorImpl<T>::operator=(RHS); |
| 1204 | } |
| 1205 | |
| 1206 | SmallVector &operator=(const SmallVector &RHS) { |
| 1207 | SmallVectorImpl<T>::operator=(RHS); |
| 1208 | return *this; |
| 1209 | } |
| 1210 | |
| 1211 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
| 1212 | if (!RHS.empty()) |
| 1213 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1214 | } |
| 1215 | |
| 1216 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
| 1217 | if (!RHS.empty()) |
| 1218 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1219 | } |
| 1220 | |
| 1221 | SmallVector &operator=(SmallVector &&RHS) { |
| 1222 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1223 | return *this; |
| 1224 | } |
| 1225 | |
| 1226 | SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
| 1227 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1228 | return *this; |
| 1229 | } |
| 1230 | |
| 1231 | SmallVector &operator=(std::initializer_list<T> IL) { |
| 1232 | this->assign(IL); |
| 1233 | return *this; |
| 1234 | } |
| 1235 | }; |
| 1236 | |
| 1237 | template <typename T, unsigned N> |
| 1238 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
| 1239 | return X.capacity_in_bytes(); |
| 1240 | } |
| 1241 | |
| 1242 | /// Given a range of type R, iterate the entire range and return a |
| 1243 | /// SmallVector with elements of the vector. This is useful, for example, |
| 1244 | /// when you want to iterate a range and then sort the results. |
| 1245 | template <unsigned Size, typename R> |
| 1246 | SmallVector<typename std::remove_const<typename std::remove_reference< |
| 1247 | decltype(*std::begin(std::declval<R &>()))>::type>::type, |
| 1248 | Size> |
| 1249 | to_vector(R &&Range) { |
| 1250 | return {std::begin(Range), std::end(Range)}; |
| 1251 | } |
| 1252 | |
| 1253 | } // end namespace llvm |
| 1254 | |
| 1255 | namespace std { |
| 1256 | |
| 1257 | /// Implement std::swap in terms of SmallVector swap. |
| 1258 | template<typename T> |
| 1259 | inline void |
| 1260 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
| 1261 | LHS.swap(RHS); |
| 1262 | } |
| 1263 | |
| 1264 | /// Implement std::swap in terms of SmallVector swap. |
| 1265 | template<typename T, unsigned N> |
| 1266 | inline void |
| 1267 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
| 1268 | LHS.swap(RHS); |
| 1269 | } |
| 1270 | |
| 1271 | } // end namespace std |
| 1272 | |
| 1273 | #endif // LLVM_ADT_SMALLVECTOR_H |