| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h |
| Warning: | line 85, column 47 The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- AddressSanitizer.cpp - memory error detector -----------------------===// | ||||||||
| 2 | // | ||||||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
| 6 | // | ||||||||
| 7 | //===----------------------------------------------------------------------===// | ||||||||
| 8 | // | ||||||||
| 9 | // This file is a part of AddressSanitizer, an address sanity checker. | ||||||||
| 10 | // Details of the algorithm: | ||||||||
| 11 | // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm | ||||||||
| 12 | // | ||||||||
| 13 | // FIXME: This sanitizer does not yet handle scalable vectors | ||||||||
| 14 | // | ||||||||
| 15 | //===----------------------------------------------------------------------===// | ||||||||
| 16 | |||||||||
| 17 | #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" | ||||||||
| 18 | #include "llvm/ADT/ArrayRef.h" | ||||||||
| 19 | #include "llvm/ADT/DenseMap.h" | ||||||||
| 20 | #include "llvm/ADT/DepthFirstIterator.h" | ||||||||
| 21 | #include "llvm/ADT/SmallPtrSet.h" | ||||||||
| 22 | #include "llvm/ADT/SmallVector.h" | ||||||||
| 23 | #include "llvm/ADT/Statistic.h" | ||||||||
| 24 | #include "llvm/ADT/StringExtras.h" | ||||||||
| 25 | #include "llvm/ADT/StringRef.h" | ||||||||
| 26 | #include "llvm/ADT/Triple.h" | ||||||||
| 27 | #include "llvm/ADT/Twine.h" | ||||||||
| 28 | #include "llvm/Analysis/MemoryBuiltins.h" | ||||||||
| 29 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||||
| 30 | #include "llvm/Analysis/ValueTracking.h" | ||||||||
| 31 | #include "llvm/BinaryFormat/MachO.h" | ||||||||
| 32 | #include "llvm/IR/Argument.h" | ||||||||
| 33 | #include "llvm/IR/Attributes.h" | ||||||||
| 34 | #include "llvm/IR/BasicBlock.h" | ||||||||
| 35 | #include "llvm/IR/Comdat.h" | ||||||||
| 36 | #include "llvm/IR/Constant.h" | ||||||||
| 37 | #include "llvm/IR/Constants.h" | ||||||||
| 38 | #include "llvm/IR/DIBuilder.h" | ||||||||
| 39 | #include "llvm/IR/DataLayout.h" | ||||||||
| 40 | #include "llvm/IR/DebugInfoMetadata.h" | ||||||||
| 41 | #include "llvm/IR/DebugLoc.h" | ||||||||
| 42 | #include "llvm/IR/DerivedTypes.h" | ||||||||
| 43 | #include "llvm/IR/Dominators.h" | ||||||||
| 44 | #include "llvm/IR/Function.h" | ||||||||
| 45 | #include "llvm/IR/GlobalAlias.h" | ||||||||
| 46 | #include "llvm/IR/GlobalValue.h" | ||||||||
| 47 | #include "llvm/IR/GlobalVariable.h" | ||||||||
| 48 | #include "llvm/IR/IRBuilder.h" | ||||||||
| 49 | #include "llvm/IR/InlineAsm.h" | ||||||||
| 50 | #include "llvm/IR/InstVisitor.h" | ||||||||
| 51 | #include "llvm/IR/InstrTypes.h" | ||||||||
| 52 | #include "llvm/IR/Instruction.h" | ||||||||
| 53 | #include "llvm/IR/Instructions.h" | ||||||||
| 54 | #include "llvm/IR/IntrinsicInst.h" | ||||||||
| 55 | #include "llvm/IR/Intrinsics.h" | ||||||||
| 56 | #include "llvm/IR/LLVMContext.h" | ||||||||
| 57 | #include "llvm/IR/MDBuilder.h" | ||||||||
| 58 | #include "llvm/IR/Metadata.h" | ||||||||
| 59 | #include "llvm/IR/Module.h" | ||||||||
| 60 | #include "llvm/IR/Type.h" | ||||||||
| 61 | #include "llvm/IR/Use.h" | ||||||||
| 62 | #include "llvm/IR/Value.h" | ||||||||
| 63 | #include "llvm/InitializePasses.h" | ||||||||
| 64 | #include "llvm/MC/MCSectionMachO.h" | ||||||||
| 65 | #include "llvm/Pass.h" | ||||||||
| 66 | #include "llvm/Support/Casting.h" | ||||||||
| 67 | #include "llvm/Support/CommandLine.h" | ||||||||
| 68 | #include "llvm/Support/Debug.h" | ||||||||
| 69 | #include "llvm/Support/ErrorHandling.h" | ||||||||
| 70 | #include "llvm/Support/MathExtras.h" | ||||||||
| 71 | #include "llvm/Support/ScopedPrinter.h" | ||||||||
| 72 | #include "llvm/Support/raw_ostream.h" | ||||||||
| 73 | #include "llvm/Transforms/Instrumentation.h" | ||||||||
| 74 | #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" | ||||||||
| 75 | #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" | ||||||||
| 76 | #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" | ||||||||
| 77 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | ||||||||
| 78 | #include "llvm/Transforms/Utils/Local.h" | ||||||||
| 79 | #include "llvm/Transforms/Utils/ModuleUtils.h" | ||||||||
| 80 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" | ||||||||
| 81 | #include <algorithm> | ||||||||
| 82 | #include <cassert> | ||||||||
| 83 | #include <cstddef> | ||||||||
| 84 | #include <cstdint> | ||||||||
| 85 | #include <iomanip> | ||||||||
| 86 | #include <limits> | ||||||||
| 87 | #include <memory> | ||||||||
| 88 | #include <sstream> | ||||||||
| 89 | #include <string> | ||||||||
| 90 | #include <tuple> | ||||||||
| 91 | |||||||||
| 92 | using namespace llvm; | ||||||||
| 93 | |||||||||
| 94 | #define DEBUG_TYPE"asan" "asan" | ||||||||
| 95 | |||||||||
| 96 | static const uint64_t kDefaultShadowScale = 3; | ||||||||
| 97 | static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; | ||||||||
| 98 | static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; | ||||||||
| 99 | static const uint64_t kDynamicShadowSentinel = | ||||||||
| 100 | std::numeric_limits<uint64_t>::max(); | ||||||||
| 101 | static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. | ||||||||
| 102 | static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; | ||||||||
| 103 | static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; | ||||||||
| 104 | static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; | ||||||||
| 105 | static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; | ||||||||
| 106 | static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; | ||||||||
| 107 | static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; | ||||||||
| 108 | static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; | ||||||||
| 109 | static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; | ||||||||
| 110 | static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; | ||||||||
| 111 | static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; | ||||||||
| 112 | static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; | ||||||||
| 113 | static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; | ||||||||
| 114 | static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; | ||||||||
| 115 | static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; | ||||||||
| 116 | static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; | ||||||||
| 117 | static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; | ||||||||
| 118 | static const uint64_t kEmscriptenShadowOffset = 0; | ||||||||
| 119 | |||||||||
| 120 | // The shadow memory space is dynamically allocated. | ||||||||
| 121 | static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; | ||||||||
| 122 | |||||||||
| 123 | static const size_t kMinStackMallocSize = 1 << 6; // 64B | ||||||||
| 124 | static const size_t kMaxStackMallocSize = 1 << 16; // 64K | ||||||||
| 125 | static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; | ||||||||
| 126 | static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; | ||||||||
| 127 | |||||||||
| 128 | const char kAsanModuleCtorName[] = "asan.module_ctor"; | ||||||||
| 129 | const char kAsanModuleDtorName[] = "asan.module_dtor"; | ||||||||
| 130 | static const uint64_t kAsanCtorAndDtorPriority = 1; | ||||||||
| 131 | // On Emscripten, the system needs more than one priorities for constructors. | ||||||||
| 132 | static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; | ||||||||
| 133 | const char kAsanReportErrorTemplate[] = "__asan_report_"; | ||||||||
| 134 | const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; | ||||||||
| 135 | const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; | ||||||||
| 136 | const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; | ||||||||
| 137 | const char kAsanUnregisterImageGlobalsName[] = | ||||||||
| 138 | "__asan_unregister_image_globals"; | ||||||||
| 139 | const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; | ||||||||
| 140 | const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; | ||||||||
| 141 | const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; | ||||||||
| 142 | const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; | ||||||||
| 143 | const char kAsanInitName[] = "__asan_init"; | ||||||||
| 144 | const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; | ||||||||
| 145 | const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; | ||||||||
| 146 | const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; | ||||||||
| 147 | const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; | ||||||||
| 148 | static const int kMaxAsanStackMallocSizeClass = 10; | ||||||||
| 149 | const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; | ||||||||
| 150 | const char kAsanStackMallocAlwaysNameTemplate[] = | ||||||||
| 151 | "__asan_stack_malloc_always_"; | ||||||||
| 152 | const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; | ||||||||
| 153 | const char kAsanGenPrefix[] = "___asan_gen_"; | ||||||||
| 154 | const char kODRGenPrefix[] = "__odr_asan_gen_"; | ||||||||
| 155 | const char kSanCovGenPrefix[] = "__sancov_gen_"; | ||||||||
| 156 | const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; | ||||||||
| 157 | const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; | ||||||||
| 158 | const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; | ||||||||
| 159 | |||||||||
| 160 | // ASan version script has __asan_* wildcard. Triple underscore prevents a | ||||||||
| 161 | // linker (gold) warning about attempting to export a local symbol. | ||||||||
| 162 | const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; | ||||||||
| 163 | |||||||||
| 164 | const char kAsanOptionDetectUseAfterReturn[] = | ||||||||
| 165 | "__asan_option_detect_stack_use_after_return"; | ||||||||
| 166 | |||||||||
| 167 | const char kAsanShadowMemoryDynamicAddress[] = | ||||||||
| 168 | "__asan_shadow_memory_dynamic_address"; | ||||||||
| 169 | |||||||||
| 170 | const char kAsanAllocaPoison[] = "__asan_alloca_poison"; | ||||||||
| 171 | const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; | ||||||||
| 172 | |||||||||
| 173 | const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; | ||||||||
| 174 | const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; | ||||||||
| 175 | |||||||||
| 176 | // Accesses sizes are powers of two: 1, 2, 4, 8, 16. | ||||||||
| 177 | static const size_t kNumberOfAccessSizes = 5; | ||||||||
| 178 | |||||||||
| 179 | static const unsigned kAllocaRzSize = 32; | ||||||||
| 180 | |||||||||
| 181 | // Command-line flags. | ||||||||
| 182 | |||||||||
| 183 | static cl::opt<bool> ClEnableKasan( | ||||||||
| 184 | "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), | ||||||||
| 185 | cl::Hidden, cl::init(false)); | ||||||||
| 186 | |||||||||
| 187 | static cl::opt<bool> ClRecover( | ||||||||
| 188 | "asan-recover", | ||||||||
| 189 | cl::desc("Enable recovery mode (continue-after-error)."), | ||||||||
| 190 | cl::Hidden, cl::init(false)); | ||||||||
| 191 | |||||||||
| 192 | static cl::opt<bool> ClInsertVersionCheck( | ||||||||
| 193 | "asan-guard-against-version-mismatch", | ||||||||
| 194 | cl::desc("Guard against compiler/runtime version mismatch."), | ||||||||
| 195 | cl::Hidden, cl::init(true)); | ||||||||
| 196 | |||||||||
| 197 | // This flag may need to be replaced with -f[no-]asan-reads. | ||||||||
| 198 | static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", | ||||||||
| 199 | cl::desc("instrument read instructions"), | ||||||||
| 200 | cl::Hidden, cl::init(true)); | ||||||||
| 201 | |||||||||
| 202 | static cl::opt<bool> ClInstrumentWrites( | ||||||||
| 203 | "asan-instrument-writes", cl::desc("instrument write instructions"), | ||||||||
| 204 | cl::Hidden, cl::init(true)); | ||||||||
| 205 | |||||||||
| 206 | static cl::opt<bool> ClInstrumentAtomics( | ||||||||
| 207 | "asan-instrument-atomics", | ||||||||
| 208 | cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, | ||||||||
| 209 | cl::init(true)); | ||||||||
| 210 | |||||||||
| 211 | static cl::opt<bool> | ||||||||
| 212 | ClInstrumentByval("asan-instrument-byval", | ||||||||
| 213 | cl::desc("instrument byval call arguments"), cl::Hidden, | ||||||||
| 214 | cl::init(true)); | ||||||||
| 215 | |||||||||
| 216 | static cl::opt<bool> ClAlwaysSlowPath( | ||||||||
| 217 | "asan-always-slow-path", | ||||||||
| 218 | cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, | ||||||||
| 219 | cl::init(false)); | ||||||||
| 220 | |||||||||
| 221 | static cl::opt<bool> ClForceDynamicShadow( | ||||||||
| 222 | "asan-force-dynamic-shadow", | ||||||||
| 223 | cl::desc("Load shadow address into a local variable for each function"), | ||||||||
| 224 | cl::Hidden, cl::init(false)); | ||||||||
| 225 | |||||||||
| 226 | static cl::opt<bool> | ||||||||
| 227 | ClWithIfunc("asan-with-ifunc", | ||||||||
| 228 | cl::desc("Access dynamic shadow through an ifunc global on " | ||||||||
| 229 | "platforms that support this"), | ||||||||
| 230 | cl::Hidden, cl::init(true)); | ||||||||
| 231 | |||||||||
| 232 | static cl::opt<bool> ClWithIfuncSuppressRemat( | ||||||||
| 233 | "asan-with-ifunc-suppress-remat", | ||||||||
| 234 | cl::desc("Suppress rematerialization of dynamic shadow address by passing " | ||||||||
| 235 | "it through inline asm in prologue."), | ||||||||
| 236 | cl::Hidden, cl::init(true)); | ||||||||
| 237 | |||||||||
| 238 | // This flag limits the number of instructions to be instrumented | ||||||||
| 239 | // in any given BB. Normally, this should be set to unlimited (INT_MAX), | ||||||||
| 240 | // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary | ||||||||
| 241 | // set it to 10000. | ||||||||
| 242 | static cl::opt<int> ClMaxInsnsToInstrumentPerBB( | ||||||||
| 243 | "asan-max-ins-per-bb", cl::init(10000), | ||||||||
| 244 | cl::desc("maximal number of instructions to instrument in any given BB"), | ||||||||
| 245 | cl::Hidden); | ||||||||
| 246 | |||||||||
| 247 | // This flag may need to be replaced with -f[no]asan-stack. | ||||||||
| 248 | static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), | ||||||||
| 249 | cl::Hidden, cl::init(true)); | ||||||||
| 250 | static cl::opt<uint32_t> ClMaxInlinePoisoningSize( | ||||||||
| 251 | "asan-max-inline-poisoning-size", | ||||||||
| 252 | cl::desc( | ||||||||
| 253 | "Inline shadow poisoning for blocks up to the given size in bytes."), | ||||||||
| 254 | cl::Hidden, cl::init(64)); | ||||||||
| 255 | |||||||||
| 256 | static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( | ||||||||
| 257 | "asan-use-after-return", | ||||||||
| 258 | cl::desc("Sets the mode of detection for stack-use-after-return."), | ||||||||
| 259 | cl::values( | ||||||||
| 260 | clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",llvm::cl::OptionEnumValue { "never", int(AsanDetectStackUseAfterReturnMode ::Never), "Never detect stack use after return." } | ||||||||
| 261 | "Never detect stack use after return.")llvm::cl::OptionEnumValue { "never", int(AsanDetectStackUseAfterReturnMode ::Never), "Never detect stack use after return." }, | ||||||||
| 262 | clEnumValN(llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode ::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." } | ||||||||
| 263 | AsanDetectStackUseAfterReturnMode::Runtime, "runtime",llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode ::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." } | ||||||||
| 264 | "Detect stack use after return if "llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode ::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." } | ||||||||
| 265 | "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set.")llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode ::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." }, | ||||||||
| 266 | clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",llvm::cl::OptionEnumValue { "always", int(AsanDetectStackUseAfterReturnMode ::Always), "Always detect stack use after return." } | ||||||||
| 267 | "Always detect stack use after return.")llvm::cl::OptionEnumValue { "always", int(AsanDetectStackUseAfterReturnMode ::Always), "Always detect stack use after return." }), | ||||||||
| 268 | cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); | ||||||||
| 269 | |||||||||
| 270 | static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", | ||||||||
| 271 | cl::desc("Create redzones for byval " | ||||||||
| 272 | "arguments (extra copy " | ||||||||
| 273 | "required)"), cl::Hidden, | ||||||||
| 274 | cl::init(true)); | ||||||||
| 275 | |||||||||
| 276 | static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", | ||||||||
| 277 | cl::desc("Check stack-use-after-scope"), | ||||||||
| 278 | cl::Hidden, cl::init(false)); | ||||||||
| 279 | |||||||||
| 280 | // This flag may need to be replaced with -f[no]asan-globals. | ||||||||
| 281 | static cl::opt<bool> ClGlobals("asan-globals", | ||||||||
| 282 | cl::desc("Handle global objects"), cl::Hidden, | ||||||||
| 283 | cl::init(true)); | ||||||||
| 284 | |||||||||
| 285 | static cl::opt<bool> ClInitializers("asan-initialization-order", | ||||||||
| 286 | cl::desc("Handle C++ initializer order"), | ||||||||
| 287 | cl::Hidden, cl::init(true)); | ||||||||
| 288 | |||||||||
| 289 | static cl::opt<bool> ClInvalidPointerPairs( | ||||||||
| 290 | "asan-detect-invalid-pointer-pair", | ||||||||
| 291 | cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, | ||||||||
| 292 | cl::init(false)); | ||||||||
| 293 | |||||||||
| 294 | static cl::opt<bool> ClInvalidPointerCmp( | ||||||||
| 295 | "asan-detect-invalid-pointer-cmp", | ||||||||
| 296 | cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, | ||||||||
| 297 | cl::init(false)); | ||||||||
| 298 | |||||||||
| 299 | static cl::opt<bool> ClInvalidPointerSub( | ||||||||
| 300 | "asan-detect-invalid-pointer-sub", | ||||||||
| 301 | cl::desc("Instrument - operations with pointer operands"), cl::Hidden, | ||||||||
| 302 | cl::init(false)); | ||||||||
| 303 | |||||||||
| 304 | static cl::opt<unsigned> ClRealignStack( | ||||||||
| 305 | "asan-realign-stack", | ||||||||
| 306 | cl::desc("Realign stack to the value of this flag (power of two)"), | ||||||||
| 307 | cl::Hidden, cl::init(32)); | ||||||||
| 308 | |||||||||
| 309 | static cl::opt<int> ClInstrumentationWithCallsThreshold( | ||||||||
| 310 | "asan-instrumentation-with-call-threshold", | ||||||||
| 311 | cl::desc( | ||||||||
| 312 | "If the function being instrumented contains more than " | ||||||||
| 313 | "this number of memory accesses, use callbacks instead of " | ||||||||
| 314 | "inline checks (-1 means never use callbacks)."), | ||||||||
| 315 | cl::Hidden, cl::init(7000)); | ||||||||
| 316 | |||||||||
| 317 | static cl::opt<std::string> ClMemoryAccessCallbackPrefix( | ||||||||
| 318 | "asan-memory-access-callback-prefix", | ||||||||
| 319 | cl::desc("Prefix for memory access callbacks"), cl::Hidden, | ||||||||
| 320 | cl::init("__asan_")); | ||||||||
| 321 | |||||||||
| 322 | static cl::opt<bool> | ||||||||
| 323 | ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", | ||||||||
| 324 | cl::desc("instrument dynamic allocas"), | ||||||||
| 325 | cl::Hidden, cl::init(true)); | ||||||||
| 326 | |||||||||
| 327 | static cl::opt<bool> ClSkipPromotableAllocas( | ||||||||
| 328 | "asan-skip-promotable-allocas", | ||||||||
| 329 | cl::desc("Do not instrument promotable allocas"), cl::Hidden, | ||||||||
| 330 | cl::init(true)); | ||||||||
| 331 | |||||||||
| 332 | // These flags allow to change the shadow mapping. | ||||||||
| 333 | // The shadow mapping looks like | ||||||||
| 334 | // Shadow = (Mem >> scale) + offset | ||||||||
| 335 | |||||||||
| 336 | static cl::opt<int> ClMappingScale("asan-mapping-scale", | ||||||||
| 337 | cl::desc("scale of asan shadow mapping"), | ||||||||
| 338 | cl::Hidden, cl::init(0)); | ||||||||
| 339 | |||||||||
| 340 | static cl::opt<uint64_t> | ||||||||
| 341 | ClMappingOffset("asan-mapping-offset", | ||||||||
| 342 | cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), | ||||||||
| 343 | cl::Hidden, cl::init(0)); | ||||||||
| 344 | |||||||||
| 345 | // Optimization flags. Not user visible, used mostly for testing | ||||||||
| 346 | // and benchmarking the tool. | ||||||||
| 347 | |||||||||
| 348 | static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), | ||||||||
| 349 | cl::Hidden, cl::init(true)); | ||||||||
| 350 | |||||||||
| 351 | static cl::opt<bool> ClOptSameTemp( | ||||||||
| 352 | "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), | ||||||||
| 353 | cl::Hidden, cl::init(true)); | ||||||||
| 354 | |||||||||
| 355 | static cl::opt<bool> ClOptGlobals("asan-opt-globals", | ||||||||
| 356 | cl::desc("Don't instrument scalar globals"), | ||||||||
| 357 | cl::Hidden, cl::init(true)); | ||||||||
| 358 | |||||||||
| 359 | static cl::opt<bool> ClOptStack( | ||||||||
| 360 | "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), | ||||||||
| 361 | cl::Hidden, cl::init(false)); | ||||||||
| 362 | |||||||||
| 363 | static cl::opt<bool> ClDynamicAllocaStack( | ||||||||
| 364 | "asan-stack-dynamic-alloca", | ||||||||
| 365 | cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, | ||||||||
| 366 | cl::init(true)); | ||||||||
| 367 | |||||||||
| 368 | static cl::opt<uint32_t> ClForceExperiment( | ||||||||
| 369 | "asan-force-experiment", | ||||||||
| 370 | cl::desc("Force optimization experiment (for testing)"), cl::Hidden, | ||||||||
| 371 | cl::init(0)); | ||||||||
| 372 | |||||||||
| 373 | static cl::opt<bool> | ||||||||
| 374 | ClUsePrivateAlias("asan-use-private-alias", | ||||||||
| 375 | cl::desc("Use private aliases for global variables"), | ||||||||
| 376 | cl::Hidden, cl::init(false)); | ||||||||
| 377 | |||||||||
| 378 | static cl::opt<bool> | ||||||||
| 379 | ClUseOdrIndicator("asan-use-odr-indicator", | ||||||||
| 380 | cl::desc("Use odr indicators to improve ODR reporting"), | ||||||||
| 381 | cl::Hidden, cl::init(false)); | ||||||||
| 382 | |||||||||
| 383 | static cl::opt<bool> | ||||||||
| 384 | ClUseGlobalsGC("asan-globals-live-support", | ||||||||
| 385 | cl::desc("Use linker features to support dead " | ||||||||
| 386 | "code stripping of globals"), | ||||||||
| 387 | cl::Hidden, cl::init(true)); | ||||||||
| 388 | |||||||||
| 389 | // This is on by default even though there is a bug in gold: | ||||||||
| 390 | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 | ||||||||
| 391 | static cl::opt<bool> | ||||||||
| 392 | ClWithComdat("asan-with-comdat", | ||||||||
| 393 | cl::desc("Place ASan constructors in comdat sections"), | ||||||||
| 394 | cl::Hidden, cl::init(true)); | ||||||||
| 395 | |||||||||
| 396 | static cl::opt<AsanDtorKind> ClOverrideDestructorKind( | ||||||||
| 397 | "asan-destructor-kind", | ||||||||
| 398 | cl::desc("Sets the ASan destructor kind. The default is to use the value " | ||||||||
| 399 | "provided to the pass constructor"), | ||||||||
| 400 | cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors")llvm::cl::OptionEnumValue { "none", int(AsanDtorKind::None), "No destructors" }, | ||||||||
| 401 | clEnumValN(AsanDtorKind::Global, "global",llvm::cl::OptionEnumValue { "global", int(AsanDtorKind::Global ), "Use global destructors" } | ||||||||
| 402 | "Use global destructors")llvm::cl::OptionEnumValue { "global", int(AsanDtorKind::Global ), "Use global destructors" }), | ||||||||
| 403 | cl::init(AsanDtorKind::Invalid), cl::Hidden); | ||||||||
| 404 | |||||||||
| 405 | // Debug flags. | ||||||||
| 406 | |||||||||
| 407 | static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, | ||||||||
| 408 | cl::init(0)); | ||||||||
| 409 | |||||||||
| 410 | static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), | ||||||||
| 411 | cl::Hidden, cl::init(0)); | ||||||||
| 412 | |||||||||
| 413 | static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, | ||||||||
| 414 | cl::desc("Debug func")); | ||||||||
| 415 | |||||||||
| 416 | static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), | ||||||||
| 417 | cl::Hidden, cl::init(-1)); | ||||||||
| 418 | |||||||||
| 419 | static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), | ||||||||
| 420 | cl::Hidden, cl::init(-1)); | ||||||||
| 421 | |||||||||
| 422 | STATISTIC(NumInstrumentedReads, "Number of instrumented reads")static llvm::Statistic NumInstrumentedReads = {"asan", "NumInstrumentedReads" , "Number of instrumented reads"}; | ||||||||
| 423 | STATISTIC(NumInstrumentedWrites, "Number of instrumented writes")static llvm::Statistic NumInstrumentedWrites = {"asan", "NumInstrumentedWrites" , "Number of instrumented writes"}; | ||||||||
| 424 | STATISTIC(NumOptimizedAccessesToGlobalVar,static llvm::Statistic NumOptimizedAccessesToGlobalVar = {"asan" , "NumOptimizedAccessesToGlobalVar", "Number of optimized accesses to global vars" } | ||||||||
| 425 | "Number of optimized accesses to global vars")static llvm::Statistic NumOptimizedAccessesToGlobalVar = {"asan" , "NumOptimizedAccessesToGlobalVar", "Number of optimized accesses to global vars" }; | ||||||||
| 426 | STATISTIC(NumOptimizedAccessesToStackVar,static llvm::Statistic NumOptimizedAccessesToStackVar = {"asan" , "NumOptimizedAccessesToStackVar", "Number of optimized accesses to stack vars" } | ||||||||
| 427 | "Number of optimized accesses to stack vars")static llvm::Statistic NumOptimizedAccessesToStackVar = {"asan" , "NumOptimizedAccessesToStackVar", "Number of optimized accesses to stack vars" }; | ||||||||
| 428 | |||||||||
| 429 | namespace { | ||||||||
| 430 | |||||||||
| 431 | /// This struct defines the shadow mapping using the rule: | ||||||||
| 432 | /// shadow = (mem >> Scale) ADD-or-OR Offset. | ||||||||
| 433 | /// If InGlobal is true, then | ||||||||
| 434 | /// extern char __asan_shadow[]; | ||||||||
| 435 | /// shadow = (mem >> Scale) + &__asan_shadow | ||||||||
| 436 | struct ShadowMapping { | ||||||||
| 437 | int Scale; | ||||||||
| 438 | uint64_t Offset; | ||||||||
| 439 | bool OrShadowOffset; | ||||||||
| 440 | bool InGlobal; | ||||||||
| 441 | }; | ||||||||
| 442 | |||||||||
| 443 | } // end anonymous namespace | ||||||||
| 444 | |||||||||
| 445 | static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, | ||||||||
| 446 | bool IsKasan) { | ||||||||
| 447 | bool IsAndroid = TargetTriple.isAndroid(); | ||||||||
| 448 | bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); | ||||||||
| 449 | bool IsMacOS = TargetTriple.isMacOSX(); | ||||||||
| 450 | bool IsFreeBSD = TargetTriple.isOSFreeBSD(); | ||||||||
| 451 | bool IsNetBSD = TargetTriple.isOSNetBSD(); | ||||||||
| 452 | bool IsPS4CPU = TargetTriple.isPS4CPU(); | ||||||||
| 453 | bool IsLinux = TargetTriple.isOSLinux(); | ||||||||
| 454 | bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || | ||||||||
| 455 | TargetTriple.getArch() == Triple::ppc64le; | ||||||||
| 456 | bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; | ||||||||
| 457 | bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; | ||||||||
| 458 | bool IsMIPS32 = TargetTriple.isMIPS32(); | ||||||||
| 459 | bool IsMIPS64 = TargetTriple.isMIPS64(); | ||||||||
| 460 | bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); | ||||||||
| 461 | bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; | ||||||||
| 462 | bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; | ||||||||
| 463 | bool IsWindows = TargetTriple.isOSWindows(); | ||||||||
| 464 | bool IsFuchsia = TargetTriple.isOSFuchsia(); | ||||||||
| 465 | bool IsEmscripten = TargetTriple.isOSEmscripten(); | ||||||||
| 466 | bool IsAMDGPU = TargetTriple.isAMDGPU(); | ||||||||
| 467 | |||||||||
| 468 | ShadowMapping Mapping; | ||||||||
| 469 | |||||||||
| 470 | Mapping.Scale = kDefaultShadowScale; | ||||||||
| 471 | if (ClMappingScale.getNumOccurrences() > 0) { | ||||||||
| 472 | Mapping.Scale = ClMappingScale; | ||||||||
| 473 | } | ||||||||
| 474 | |||||||||
| 475 | if (LongSize == 32) { | ||||||||
| 476 | if (IsAndroid) | ||||||||
| 477 | Mapping.Offset = kDynamicShadowSentinel; | ||||||||
| 478 | else if (IsMIPS32) | ||||||||
| 479 | Mapping.Offset = kMIPS32_ShadowOffset32; | ||||||||
| 480 | else if (IsFreeBSD) | ||||||||
| 481 | Mapping.Offset = kFreeBSD_ShadowOffset32; | ||||||||
| 482 | else if (IsNetBSD) | ||||||||
| 483 | Mapping.Offset = kNetBSD_ShadowOffset32; | ||||||||
| 484 | else if (IsIOS) | ||||||||
| 485 | Mapping.Offset = kDynamicShadowSentinel; | ||||||||
| 486 | else if (IsWindows) | ||||||||
| 487 | Mapping.Offset = kWindowsShadowOffset32; | ||||||||
| 488 | else if (IsEmscripten) | ||||||||
| 489 | Mapping.Offset = kEmscriptenShadowOffset; | ||||||||
| 490 | else | ||||||||
| 491 | Mapping.Offset = kDefaultShadowOffset32; | ||||||||
| 492 | } else { // LongSize == 64 | ||||||||
| 493 | // Fuchsia is always PIE, which means that the beginning of the address | ||||||||
| 494 | // space is always available. | ||||||||
| 495 | if (IsFuchsia) | ||||||||
| 496 | Mapping.Offset = 0; | ||||||||
| 497 | else if (IsPPC64) | ||||||||
| 498 | Mapping.Offset = kPPC64_ShadowOffset64; | ||||||||
| 499 | else if (IsSystemZ) | ||||||||
| 500 | Mapping.Offset = kSystemZ_ShadowOffset64; | ||||||||
| 501 | else if (IsFreeBSD && !IsMIPS64) { | ||||||||
| 502 | if (IsKasan) | ||||||||
| 503 | Mapping.Offset = kFreeBSDKasan_ShadowOffset64; | ||||||||
| 504 | else | ||||||||
| 505 | Mapping.Offset = kFreeBSD_ShadowOffset64; | ||||||||
| 506 | } else if (IsNetBSD) { | ||||||||
| 507 | if (IsKasan) | ||||||||
| 508 | Mapping.Offset = kNetBSDKasan_ShadowOffset64; | ||||||||
| 509 | else | ||||||||
| 510 | Mapping.Offset = kNetBSD_ShadowOffset64; | ||||||||
| 511 | } else if (IsPS4CPU) | ||||||||
| 512 | Mapping.Offset = kPS4CPU_ShadowOffset64; | ||||||||
| 513 | else if (IsLinux && IsX86_64) { | ||||||||
| 514 | if (IsKasan) | ||||||||
| 515 | Mapping.Offset = kLinuxKasan_ShadowOffset64; | ||||||||
| 516 | else | ||||||||
| 517 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & | ||||||||
| 518 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); | ||||||||
| 519 | } else if (IsWindows && IsX86_64) { | ||||||||
| 520 | Mapping.Offset = kWindowsShadowOffset64; | ||||||||
| 521 | } else if (IsMIPS64) | ||||||||
| 522 | Mapping.Offset = kMIPS64_ShadowOffset64; | ||||||||
| 523 | else if (IsIOS) | ||||||||
| 524 | Mapping.Offset = kDynamicShadowSentinel; | ||||||||
| 525 | else if (IsMacOS && IsAArch64) | ||||||||
| 526 | Mapping.Offset = kDynamicShadowSentinel; | ||||||||
| 527 | else if (IsAArch64) | ||||||||
| 528 | Mapping.Offset = kAArch64_ShadowOffset64; | ||||||||
| 529 | else if (IsRISCV64) | ||||||||
| 530 | Mapping.Offset = kRISCV64_ShadowOffset64; | ||||||||
| 531 | else if (IsAMDGPU) | ||||||||
| 532 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & | ||||||||
| 533 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); | ||||||||
| 534 | else | ||||||||
| 535 | Mapping.Offset = kDefaultShadowOffset64; | ||||||||
| 536 | } | ||||||||
| 537 | |||||||||
| 538 | if (ClForceDynamicShadow) { | ||||||||
| 539 | Mapping.Offset = kDynamicShadowSentinel; | ||||||||
| 540 | } | ||||||||
| 541 | |||||||||
| 542 | if (ClMappingOffset.getNumOccurrences() > 0) { | ||||||||
| 543 | Mapping.Offset = ClMappingOffset; | ||||||||
| 544 | } | ||||||||
| 545 | |||||||||
| 546 | // OR-ing shadow offset if more efficient (at least on x86) if the offset | ||||||||
| 547 | // is a power of two, but on ppc64 we have to use add since the shadow | ||||||||
| 548 | // offset is not necessary 1/8-th of the address space. On SystemZ, | ||||||||
| 549 | // we could OR the constant in a single instruction, but it's more | ||||||||
| 550 | // efficient to load it once and use indexed addressing. | ||||||||
| 551 | Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && | ||||||||
| 552 | !IsRISCV64 && | ||||||||
| 553 | !(Mapping.Offset & (Mapping.Offset - 1)) && | ||||||||
| 554 | Mapping.Offset != kDynamicShadowSentinel; | ||||||||
| 555 | bool IsAndroidWithIfuncSupport = | ||||||||
| 556 | IsAndroid && !TargetTriple.isAndroidVersionLT(21); | ||||||||
| 557 | Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; | ||||||||
| 558 | |||||||||
| 559 | return Mapping; | ||||||||
| 560 | } | ||||||||
| 561 | |||||||||
| 562 | static uint64_t getRedzoneSizeForScale(int MappingScale) { | ||||||||
| 563 | // Redzone used for stack and globals is at least 32 bytes. | ||||||||
| 564 | // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. | ||||||||
| 565 | return std::max(32U, 1U << MappingScale); | ||||||||
| 566 | } | ||||||||
| 567 | |||||||||
| 568 | static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { | ||||||||
| 569 | if (TargetTriple.isOSEmscripten()) { | ||||||||
| 570 | return kAsanEmscriptenCtorAndDtorPriority; | ||||||||
| 571 | } else { | ||||||||
| 572 | return kAsanCtorAndDtorPriority; | ||||||||
| 573 | } | ||||||||
| 574 | } | ||||||||
| 575 | |||||||||
| 576 | namespace { | ||||||||
| 577 | |||||||||
| 578 | /// Module analysis for getting various metadata about the module. | ||||||||
| 579 | class ASanGlobalsMetadataWrapperPass : public ModulePass { | ||||||||
| 580 | public: | ||||||||
| 581 | static char ID; | ||||||||
| 582 | |||||||||
| 583 | ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { | ||||||||
| 584 | initializeASanGlobalsMetadataWrapperPassPass( | ||||||||
| 585 | *PassRegistry::getPassRegistry()); | ||||||||
| 586 | } | ||||||||
| 587 | |||||||||
| 588 | bool runOnModule(Module &M) override { | ||||||||
| 589 | GlobalsMD = GlobalsMetadata(M); | ||||||||
| 590 | return false; | ||||||||
| 591 | } | ||||||||
| 592 | |||||||||
| 593 | StringRef getPassName() const override { | ||||||||
| 594 | return "ASanGlobalsMetadataWrapperPass"; | ||||||||
| 595 | } | ||||||||
| 596 | |||||||||
| 597 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||
| 598 | AU.setPreservesAll(); | ||||||||
| 599 | } | ||||||||
| 600 | |||||||||
| 601 | GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } | ||||||||
| 602 | |||||||||
| 603 | private: | ||||||||
| 604 | GlobalsMetadata GlobalsMD; | ||||||||
| 605 | }; | ||||||||
| 606 | |||||||||
| 607 | char ASanGlobalsMetadataWrapperPass::ID = 0; | ||||||||
| 608 | |||||||||
| 609 | /// AddressSanitizer: instrument the code in module to find memory bugs. | ||||||||
| 610 | struct AddressSanitizer { | ||||||||
| 611 | AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, | ||||||||
| 612 | bool CompileKernel = false, bool Recover = false, | ||||||||
| 613 | bool UseAfterScope = false, | ||||||||
| 614 | AsanDetectStackUseAfterReturnMode UseAfterReturn = | ||||||||
| 615 | AsanDetectStackUseAfterReturnMode::Runtime) | ||||||||
| 616 | : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan | ||||||||
| 617 | : CompileKernel), | ||||||||
| 618 | Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), | ||||||||
| 619 | UseAfterScope(UseAfterScope || ClUseAfterScope), | ||||||||
| 620 | UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn | ||||||||
| 621 | : UseAfterReturn), | ||||||||
| 622 | GlobalsMD(*GlobalsMD) { | ||||||||
| 623 | C = &(M.getContext()); | ||||||||
| 624 | LongSize = M.getDataLayout().getPointerSizeInBits(); | ||||||||
| 625 | IntptrTy = Type::getIntNTy(*C, LongSize); | ||||||||
| 626 | TargetTriple = Triple(M.getTargetTriple()); | ||||||||
| 627 | |||||||||
| 628 | Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); | ||||||||
| 629 | |||||||||
| 630 | assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid)((void)0); | ||||||||
| 631 | } | ||||||||
| 632 | |||||||||
| 633 | uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { | ||||||||
| 634 | uint64_t ArraySize = 1; | ||||||||
| 635 | if (AI.isArrayAllocation()) { | ||||||||
| 636 | const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); | ||||||||
| 637 | assert(CI && "non-constant array size")((void)0); | ||||||||
| 638 | ArraySize = CI->getZExtValue(); | ||||||||
| 639 | } | ||||||||
| 640 | Type *Ty = AI.getAllocatedType(); | ||||||||
| 641 | uint64_t SizeInBytes = | ||||||||
| 642 | AI.getModule()->getDataLayout().getTypeAllocSize(Ty); | ||||||||
| 643 | return SizeInBytes * ArraySize; | ||||||||
| 644 | } | ||||||||
| 645 | |||||||||
| 646 | /// Check if we want (and can) handle this alloca. | ||||||||
| 647 | bool isInterestingAlloca(const AllocaInst &AI); | ||||||||
| 648 | |||||||||
| 649 | bool ignoreAccess(Value *Ptr); | ||||||||
| 650 | void getInterestingMemoryOperands( | ||||||||
| 651 | Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); | ||||||||
| 652 | |||||||||
| 653 | void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, | ||||||||
| 654 | InterestingMemoryOperand &O, bool UseCalls, | ||||||||
| 655 | const DataLayout &DL); | ||||||||
| 656 | void instrumentPointerComparisonOrSubtraction(Instruction *I); | ||||||||
| 657 | void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, | ||||||||
| 658 | Value *Addr, uint32_t TypeSize, bool IsWrite, | ||||||||
| 659 | Value *SizeArgument, bool UseCalls, uint32_t Exp); | ||||||||
| 660 | Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, | ||||||||
| 661 | Instruction *InsertBefore, Value *Addr, | ||||||||
| 662 | uint32_t TypeSize, bool IsWrite, | ||||||||
| 663 | Value *SizeArgument); | ||||||||
| 664 | void instrumentUnusualSizeOrAlignment(Instruction *I, | ||||||||
| 665 | Instruction *InsertBefore, Value *Addr, | ||||||||
| 666 | uint32_t TypeSize, bool IsWrite, | ||||||||
| 667 | Value *SizeArgument, bool UseCalls, | ||||||||
| 668 | uint32_t Exp); | ||||||||
| 669 | Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, | ||||||||
| 670 | Value *ShadowValue, uint32_t TypeSize); | ||||||||
| 671 | Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, | ||||||||
| 672 | bool IsWrite, size_t AccessSizeIndex, | ||||||||
| 673 | Value *SizeArgument, uint32_t Exp); | ||||||||
| 674 | void instrumentMemIntrinsic(MemIntrinsic *MI); | ||||||||
| 675 | Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); | ||||||||
| 676 | bool suppressInstrumentationSiteForDebug(int &Instrumented); | ||||||||
| 677 | bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); | ||||||||
| 678 | bool maybeInsertAsanInitAtFunctionEntry(Function &F); | ||||||||
| 679 | bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); | ||||||||
| 680 | void markEscapedLocalAllocas(Function &F); | ||||||||
| 681 | |||||||||
| 682 | private: | ||||||||
| 683 | friend struct FunctionStackPoisoner; | ||||||||
| 684 | |||||||||
| 685 | void initializeCallbacks(Module &M); | ||||||||
| 686 | |||||||||
| 687 | bool LooksLikeCodeInBug11395(Instruction *I); | ||||||||
| 688 | bool GlobalIsLinkerInitialized(GlobalVariable *G); | ||||||||
| 689 | bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, | ||||||||
| 690 | uint64_t TypeSize) const; | ||||||||
| 691 | |||||||||
| 692 | /// Helper to cleanup per-function state. | ||||||||
| 693 | struct FunctionStateRAII { | ||||||||
| 694 | AddressSanitizer *Pass; | ||||||||
| 695 | |||||||||
| 696 | FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { | ||||||||
| 697 | assert(Pass->ProcessedAllocas.empty() &&((void)0) | ||||||||
| 698 | "last pass forgot to clear cache")((void)0); | ||||||||
| 699 | assert(!Pass->LocalDynamicShadow)((void)0); | ||||||||
| 700 | } | ||||||||
| 701 | |||||||||
| 702 | ~FunctionStateRAII() { | ||||||||
| 703 | Pass->LocalDynamicShadow = nullptr; | ||||||||
| 704 | Pass->ProcessedAllocas.clear(); | ||||||||
| 705 | } | ||||||||
| 706 | }; | ||||||||
| 707 | |||||||||
| 708 | LLVMContext *C; | ||||||||
| 709 | Triple TargetTriple; | ||||||||
| 710 | int LongSize; | ||||||||
| 711 | bool CompileKernel; | ||||||||
| 712 | bool Recover; | ||||||||
| 713 | bool UseAfterScope; | ||||||||
| 714 | AsanDetectStackUseAfterReturnMode UseAfterReturn; | ||||||||
| 715 | Type *IntptrTy; | ||||||||
| 716 | ShadowMapping Mapping; | ||||||||
| 717 | FunctionCallee AsanHandleNoReturnFunc; | ||||||||
| 718 | FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; | ||||||||
| 719 | Constant *AsanShadowGlobal; | ||||||||
| 720 | |||||||||
| 721 | // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). | ||||||||
| 722 | FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; | ||||||||
| 723 | FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; | ||||||||
| 724 | |||||||||
| 725 | // These arrays is indexed by AccessIsWrite and Experiment. | ||||||||
| 726 | FunctionCallee AsanErrorCallbackSized[2][2]; | ||||||||
| 727 | FunctionCallee AsanMemoryAccessCallbackSized[2][2]; | ||||||||
| 728 | |||||||||
| 729 | FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; | ||||||||
| 730 | Value *LocalDynamicShadow = nullptr; | ||||||||
| 731 | const GlobalsMetadata &GlobalsMD; | ||||||||
| 732 | DenseMap<const AllocaInst *, bool> ProcessedAllocas; | ||||||||
| 733 | |||||||||
| 734 | FunctionCallee AMDGPUAddressShared; | ||||||||
| 735 | FunctionCallee AMDGPUAddressPrivate; | ||||||||
| 736 | }; | ||||||||
| 737 | |||||||||
| 738 | class AddressSanitizerLegacyPass : public FunctionPass { | ||||||||
| 739 | public: | ||||||||
| 740 | static char ID; | ||||||||
| 741 | |||||||||
| 742 | explicit AddressSanitizerLegacyPass( | ||||||||
| 743 | bool CompileKernel = false, bool Recover = false, | ||||||||
| 744 | bool UseAfterScope = false, | ||||||||
| 745 | AsanDetectStackUseAfterReturnMode UseAfterReturn = | ||||||||
| 746 | AsanDetectStackUseAfterReturnMode::Runtime) | ||||||||
| 747 | : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), | ||||||||
| 748 | UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) { | ||||||||
| 749 | initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); | ||||||||
| 750 | } | ||||||||
| 751 | |||||||||
| 752 | StringRef getPassName() const override { | ||||||||
| 753 | return "AddressSanitizerFunctionPass"; | ||||||||
| 754 | } | ||||||||
| 755 | |||||||||
| 756 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||
| 757 | AU.addRequired<ASanGlobalsMetadataWrapperPass>(); | ||||||||
| 758 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||||||
| 759 | } | ||||||||
| 760 | |||||||||
| 761 | bool runOnFunction(Function &F) override { | ||||||||
| 762 | GlobalsMetadata &GlobalsMD = | ||||||||
| 763 | getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); | ||||||||
| 764 | const TargetLibraryInfo *TLI = | ||||||||
| 765 | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | ||||||||
| 766 | AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, | ||||||||
| 767 | UseAfterScope, UseAfterReturn); | ||||||||
| 768 | return ASan.instrumentFunction(F, TLI); | ||||||||
| |||||||||
| 769 | } | ||||||||
| 770 | |||||||||
| 771 | private: | ||||||||
| 772 | bool CompileKernel; | ||||||||
| 773 | bool Recover; | ||||||||
| 774 | bool UseAfterScope; | ||||||||
| 775 | AsanDetectStackUseAfterReturnMode UseAfterReturn; | ||||||||
| 776 | }; | ||||||||
| 777 | |||||||||
| 778 | class ModuleAddressSanitizer { | ||||||||
| 779 | public: | ||||||||
| 780 | ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, | ||||||||
| 781 | bool CompileKernel = false, bool Recover = false, | ||||||||
| 782 | bool UseGlobalsGC = true, bool UseOdrIndicator = false, | ||||||||
| 783 | AsanDtorKind DestructorKind = AsanDtorKind::Global) | ||||||||
| 784 | : GlobalsMD(*GlobalsMD), | ||||||||
| 785 | CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan | ||||||||
| 786 | : CompileKernel), | ||||||||
| 787 | Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), | ||||||||
| 788 | UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), | ||||||||
| 789 | // Enable aliases as they should have no downside with ODR indicators. | ||||||||
| 790 | UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), | ||||||||
| 791 | UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), | ||||||||
| 792 | // Not a typo: ClWithComdat is almost completely pointless without | ||||||||
| 793 | // ClUseGlobalsGC (because then it only works on modules without | ||||||||
| 794 | // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; | ||||||||
| 795 | // and both suffer from gold PR19002 for which UseGlobalsGC constructor | ||||||||
| 796 | // argument is designed as workaround. Therefore, disable both | ||||||||
| 797 | // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to | ||||||||
| 798 | // do globals-gc. | ||||||||
| 799 | UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), | ||||||||
| 800 | DestructorKind(DestructorKind) { | ||||||||
| 801 | C = &(M.getContext()); | ||||||||
| 802 | int LongSize = M.getDataLayout().getPointerSizeInBits(); | ||||||||
| 803 | IntptrTy = Type::getIntNTy(*C, LongSize); | ||||||||
| 804 | TargetTriple = Triple(M.getTargetTriple()); | ||||||||
| 805 | Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); | ||||||||
| 806 | |||||||||
| 807 | if (ClOverrideDestructorKind != AsanDtorKind::Invalid) | ||||||||
| 808 | this->DestructorKind = ClOverrideDestructorKind; | ||||||||
| 809 | assert(this->DestructorKind != AsanDtorKind::Invalid)((void)0); | ||||||||
| 810 | } | ||||||||
| 811 | |||||||||
| 812 | bool instrumentModule(Module &); | ||||||||
| 813 | |||||||||
| 814 | private: | ||||||||
| 815 | void initializeCallbacks(Module &M); | ||||||||
| 816 | |||||||||
| 817 | bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); | ||||||||
| 818 | void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, | ||||||||
| 819 | ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||||||
| 820 | ArrayRef<Constant *> MetadataInitializers); | ||||||||
| 821 | void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, | ||||||||
| 822 | ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||||||
| 823 | ArrayRef<Constant *> MetadataInitializers, | ||||||||
| 824 | const std::string &UniqueModuleId); | ||||||||
| 825 | void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, | ||||||||
| 826 | ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||||||
| 827 | ArrayRef<Constant *> MetadataInitializers); | ||||||||
| 828 | void | ||||||||
| 829 | InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, | ||||||||
| 830 | ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||||||
| 831 | ArrayRef<Constant *> MetadataInitializers); | ||||||||
| 832 | |||||||||
| 833 | GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, | ||||||||
| 834 | StringRef OriginalName); | ||||||||
| 835 | void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, | ||||||||
| 836 | StringRef InternalSuffix); | ||||||||
| 837 | Instruction *CreateAsanModuleDtor(Module &M); | ||||||||
| 838 | |||||||||
| 839 | const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; | ||||||||
| 840 | bool shouldInstrumentGlobal(GlobalVariable *G) const; | ||||||||
| 841 | bool ShouldUseMachOGlobalsSection() const; | ||||||||
| 842 | StringRef getGlobalMetadataSection() const; | ||||||||
| 843 | void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); | ||||||||
| 844 | void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); | ||||||||
| 845 | uint64_t getMinRedzoneSizeForGlobal() const { | ||||||||
| 846 | return getRedzoneSizeForScale(Mapping.Scale); | ||||||||
| 847 | } | ||||||||
| 848 | uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; | ||||||||
| 849 | int GetAsanVersion(const Module &M) const; | ||||||||
| 850 | |||||||||
| 851 | const GlobalsMetadata &GlobalsMD; | ||||||||
| 852 | bool CompileKernel; | ||||||||
| 853 | bool Recover; | ||||||||
| 854 | bool UseGlobalsGC; | ||||||||
| 855 | bool UsePrivateAlias; | ||||||||
| 856 | bool UseOdrIndicator; | ||||||||
| 857 | bool UseCtorComdat; | ||||||||
| 858 | AsanDtorKind DestructorKind; | ||||||||
| 859 | Type *IntptrTy; | ||||||||
| 860 | LLVMContext *C; | ||||||||
| 861 | Triple TargetTriple; | ||||||||
| 862 | ShadowMapping Mapping; | ||||||||
| 863 | FunctionCallee AsanPoisonGlobals; | ||||||||
| 864 | FunctionCallee AsanUnpoisonGlobals; | ||||||||
| 865 | FunctionCallee AsanRegisterGlobals; | ||||||||
| 866 | FunctionCallee AsanUnregisterGlobals; | ||||||||
| 867 | FunctionCallee AsanRegisterImageGlobals; | ||||||||
| 868 | FunctionCallee AsanUnregisterImageGlobals; | ||||||||
| 869 | FunctionCallee AsanRegisterElfGlobals; | ||||||||
| 870 | FunctionCallee AsanUnregisterElfGlobals; | ||||||||
| 871 | |||||||||
| 872 | Function *AsanCtorFunction = nullptr; | ||||||||
| 873 | Function *AsanDtorFunction = nullptr; | ||||||||
| 874 | }; | ||||||||
| 875 | |||||||||
| 876 | class ModuleAddressSanitizerLegacyPass : public ModulePass { | ||||||||
| 877 | public: | ||||||||
| 878 | static char ID; | ||||||||
| 879 | |||||||||
| 880 | explicit ModuleAddressSanitizerLegacyPass( | ||||||||
| 881 | bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, | ||||||||
| 882 | bool UseOdrIndicator = false, | ||||||||
| 883 | AsanDtorKind DestructorKind = AsanDtorKind::Global) | ||||||||
| 884 | : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), | ||||||||
| 885 | UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), | ||||||||
| 886 | DestructorKind(DestructorKind) { | ||||||||
| 887 | initializeModuleAddressSanitizerLegacyPassPass( | ||||||||
| 888 | *PassRegistry::getPassRegistry()); | ||||||||
| 889 | } | ||||||||
| 890 | |||||||||
| 891 | StringRef getPassName() const override { return "ModuleAddressSanitizer"; } | ||||||||
| 892 | |||||||||
| 893 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||
| 894 | AU.addRequired<ASanGlobalsMetadataWrapperPass>(); | ||||||||
| 895 | } | ||||||||
| 896 | |||||||||
| 897 | bool runOnModule(Module &M) override { | ||||||||
| 898 | GlobalsMetadata &GlobalsMD = | ||||||||
| 899 | getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); | ||||||||
| 900 | ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, | ||||||||
| 901 | UseGlobalGC, UseOdrIndicator, | ||||||||
| 902 | DestructorKind); | ||||||||
| 903 | return ASanModule.instrumentModule(M); | ||||||||
| 904 | } | ||||||||
| 905 | |||||||||
| 906 | private: | ||||||||
| 907 | bool CompileKernel; | ||||||||
| 908 | bool Recover; | ||||||||
| 909 | bool UseGlobalGC; | ||||||||
| 910 | bool UseOdrIndicator; | ||||||||
| 911 | AsanDtorKind DestructorKind; | ||||||||
| 912 | }; | ||||||||
| 913 | |||||||||
| 914 | // Stack poisoning does not play well with exception handling. | ||||||||
| 915 | // When an exception is thrown, we essentially bypass the code | ||||||||
| 916 | // that unpoisones the stack. This is why the run-time library has | ||||||||
| 917 | // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire | ||||||||
| 918 | // stack in the interceptor. This however does not work inside the | ||||||||
| 919 | // actual function which catches the exception. Most likely because the | ||||||||
| 920 | // compiler hoists the load of the shadow value somewhere too high. | ||||||||
| 921 | // This causes asan to report a non-existing bug on 453.povray. | ||||||||
| 922 | // It sounds like an LLVM bug. | ||||||||
| 923 | struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { | ||||||||
| 924 | Function &F; | ||||||||
| 925 | AddressSanitizer &ASan; | ||||||||
| 926 | DIBuilder DIB; | ||||||||
| 927 | LLVMContext *C; | ||||||||
| 928 | Type *IntptrTy; | ||||||||
| 929 | Type *IntptrPtrTy; | ||||||||
| 930 | ShadowMapping Mapping; | ||||||||
| 931 | |||||||||
| 932 | SmallVector<AllocaInst *, 16> AllocaVec; | ||||||||
| 933 | SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; | ||||||||
| 934 | SmallVector<Instruction *, 8> RetVec; | ||||||||
| 935 | |||||||||
| 936 | FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], | ||||||||
| 937 | AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; | ||||||||
| 938 | FunctionCallee AsanSetShadowFunc[0x100] = {}; | ||||||||
| 939 | FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; | ||||||||
| 940 | FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; | ||||||||
| 941 | |||||||||
| 942 | // Stores a place and arguments of poisoning/unpoisoning call for alloca. | ||||||||
| 943 | struct AllocaPoisonCall { | ||||||||
| 944 | IntrinsicInst *InsBefore; | ||||||||
| 945 | AllocaInst *AI; | ||||||||
| 946 | uint64_t Size; | ||||||||
| 947 | bool DoPoison; | ||||||||
| 948 | }; | ||||||||
| 949 | SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; | ||||||||
| 950 | SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; | ||||||||
| 951 | bool HasUntracedLifetimeIntrinsic = false; | ||||||||
| 952 | |||||||||
| 953 | SmallVector<AllocaInst *, 1> DynamicAllocaVec; | ||||||||
| 954 | SmallVector<IntrinsicInst *, 1> StackRestoreVec; | ||||||||
| 955 | AllocaInst *DynamicAllocaLayout = nullptr; | ||||||||
| 956 | IntrinsicInst *LocalEscapeCall = nullptr; | ||||||||
| 957 | |||||||||
| 958 | bool HasInlineAsm = false; | ||||||||
| 959 | bool HasReturnsTwiceCall = false; | ||||||||
| 960 | bool PoisonStack; | ||||||||
| 961 | |||||||||
| 962 | FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) | ||||||||
| 963 | : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), | ||||||||
| 964 | C(ASan.C), IntptrTy(ASan.IntptrTy), | ||||||||
| 965 | IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), | ||||||||
| 966 | PoisonStack(ClStack && | ||||||||
| 967 | !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} | ||||||||
| 968 | |||||||||
| 969 | bool runOnFunction() { | ||||||||
| 970 | if (!PoisonStack
| ||||||||
| 971 | return false; | ||||||||
| 972 | |||||||||
| 973 | if (ClRedzoneByvalArgs) | ||||||||
| 974 | copyArgsPassedByValToAllocas(); | ||||||||
| 975 | |||||||||
| 976 | // Collect alloca, ret, lifetime instructions etc. | ||||||||
| 977 | for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); | ||||||||
| 978 | |||||||||
| 979 | if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; | ||||||||
| 980 | |||||||||
| 981 | initializeCallbacks(*F.getParent()); | ||||||||
| 982 | |||||||||
| 983 | if (HasUntracedLifetimeIntrinsic) { | ||||||||
| 984 | // If there are lifetime intrinsics which couldn't be traced back to an | ||||||||
| 985 | // alloca, we may not know exactly when a variable enters scope, and | ||||||||
| 986 | // therefore should "fail safe" by not poisoning them. | ||||||||
| 987 | StaticAllocaPoisonCallVec.clear(); | ||||||||
| 988 | DynamicAllocaPoisonCallVec.clear(); | ||||||||
| 989 | } | ||||||||
| 990 | |||||||||
| 991 | processDynamicAllocas(); | ||||||||
| 992 | processStaticAllocas(); | ||||||||
| 993 | |||||||||
| 994 | if (ClDebugStack) { | ||||||||
| 995 | LLVM_DEBUG(dbgs() << F)do { } while (false); | ||||||||
| 996 | } | ||||||||
| 997 | return true; | ||||||||
| 998 | } | ||||||||
| 999 | |||||||||
| 1000 | // Arguments marked with the "byval" attribute are implicitly copied without | ||||||||
| 1001 | // using an alloca instruction. To produce redzones for those arguments, we | ||||||||
| 1002 | // copy them a second time into memory allocated with an alloca instruction. | ||||||||
| 1003 | void copyArgsPassedByValToAllocas(); | ||||||||
| 1004 | |||||||||
| 1005 | // Finds all Alloca instructions and puts | ||||||||
| 1006 | // poisoned red zones around all of them. | ||||||||
| 1007 | // Then unpoison everything back before the function returns. | ||||||||
| 1008 | void processStaticAllocas(); | ||||||||
| 1009 | void processDynamicAllocas(); | ||||||||
| 1010 | |||||||||
| 1011 | void createDynamicAllocasInitStorage(); | ||||||||
| 1012 | |||||||||
| 1013 | // ----------------------- Visitors. | ||||||||
| 1014 | /// Collect all Ret instructions, or the musttail call instruction if it | ||||||||
| 1015 | /// precedes the return instruction. | ||||||||
| 1016 | void visitReturnInst(ReturnInst &RI) { | ||||||||
| 1017 | if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) | ||||||||
| 1018 | RetVec.push_back(CI); | ||||||||
| 1019 | else | ||||||||
| 1020 | RetVec.push_back(&RI); | ||||||||
| 1021 | } | ||||||||
| 1022 | |||||||||
| 1023 | /// Collect all Resume instructions. | ||||||||
| 1024 | void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } | ||||||||
| 1025 | |||||||||
| 1026 | /// Collect all CatchReturnInst instructions. | ||||||||
| 1027 | void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } | ||||||||
| 1028 | |||||||||
| 1029 | void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, | ||||||||
| 1030 | Value *SavedStack) { | ||||||||
| 1031 | IRBuilder<> IRB(InstBefore); | ||||||||
| 1032 | Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); | ||||||||
| 1033 | // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we | ||||||||
| 1034 | // need to adjust extracted SP to compute the address of the most recent | ||||||||
| 1035 | // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for | ||||||||
| 1036 | // this purpose. | ||||||||
| 1037 | if (!isa<ReturnInst>(InstBefore)) { | ||||||||
| 1038 | Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( | ||||||||
| 1039 | InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, | ||||||||
| 1040 | {IntptrTy}); | ||||||||
| 1041 | |||||||||
| 1042 | Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); | ||||||||
| 1043 | |||||||||
| 1044 | DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), | ||||||||
| 1045 | DynamicAreaOffset); | ||||||||
| 1046 | } | ||||||||
| 1047 | |||||||||
| 1048 | IRB.CreateCall( | ||||||||
| 1049 | AsanAllocasUnpoisonFunc, | ||||||||
| 1050 | {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); | ||||||||
| 1051 | } | ||||||||
| 1052 | |||||||||
| 1053 | // Unpoison dynamic allocas redzones. | ||||||||
| 1054 | void unpoisonDynamicAllocas() { | ||||||||
| 1055 | for (Instruction *Ret : RetVec) | ||||||||
| 1056 | unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); | ||||||||
| 1057 | |||||||||
| 1058 | for (Instruction *StackRestoreInst : StackRestoreVec) | ||||||||
| 1059 | unpoisonDynamicAllocasBeforeInst(StackRestoreInst, | ||||||||
| 1060 | StackRestoreInst->getOperand(0)); | ||||||||
| 1061 | } | ||||||||
| 1062 | |||||||||
| 1063 | // Deploy and poison redzones around dynamic alloca call. To do this, we | ||||||||
| 1064 | // should replace this call with another one with changed parameters and | ||||||||
| 1065 | // replace all its uses with new address, so | ||||||||
| 1066 | // addr = alloca type, old_size, align | ||||||||
| 1067 | // is replaced by | ||||||||
| 1068 | // new_size = (old_size + additional_size) * sizeof(type) | ||||||||
| 1069 | // tmp = alloca i8, new_size, max(align, 32) | ||||||||
| 1070 | // addr = tmp + 32 (first 32 bytes are for the left redzone). | ||||||||
| 1071 | // Additional_size is added to make new memory allocation contain not only | ||||||||
| 1072 | // requested memory, but also left, partial and right redzones. | ||||||||
| 1073 | void handleDynamicAllocaCall(AllocaInst *AI); | ||||||||
| 1074 | |||||||||
| 1075 | /// Collect Alloca instructions we want (and can) handle. | ||||||||
| 1076 | void visitAllocaInst(AllocaInst &AI) { | ||||||||
| 1077 | if (!ASan.isInterestingAlloca(AI)) { | ||||||||
| 1078 | if (AI.isStaticAlloca()) { | ||||||||
| 1079 | // Skip over allocas that are present *before* the first instrumented | ||||||||
| 1080 | // alloca, we don't want to move those around. | ||||||||
| 1081 | if (AllocaVec.empty()) | ||||||||
| 1082 | return; | ||||||||
| 1083 | |||||||||
| 1084 | StaticAllocasToMoveUp.push_back(&AI); | ||||||||
| 1085 | } | ||||||||
| 1086 | return; | ||||||||
| 1087 | } | ||||||||
| 1088 | |||||||||
| 1089 | if (!AI.isStaticAlloca()) | ||||||||
| 1090 | DynamicAllocaVec.push_back(&AI); | ||||||||
| 1091 | else | ||||||||
| 1092 | AllocaVec.push_back(&AI); | ||||||||
| 1093 | } | ||||||||
| 1094 | |||||||||
| 1095 | /// Collect lifetime intrinsic calls to check for use-after-scope | ||||||||
| 1096 | /// errors. | ||||||||
| 1097 | void visitIntrinsicInst(IntrinsicInst &II) { | ||||||||
| 1098 | Intrinsic::ID ID = II.getIntrinsicID(); | ||||||||
| 1099 | if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); | ||||||||
| 1100 | if (ID == Intrinsic::localescape) LocalEscapeCall = &II; | ||||||||
| 1101 | if (!ASan.UseAfterScope) | ||||||||
| 1102 | return; | ||||||||
| 1103 | if (!II.isLifetimeStartOrEnd()) | ||||||||
| 1104 | return; | ||||||||
| 1105 | // Found lifetime intrinsic, add ASan instrumentation if necessary. | ||||||||
| 1106 | auto *Size = cast<ConstantInt>(II.getArgOperand(0)); | ||||||||
| 1107 | // If size argument is undefined, don't do anything. | ||||||||
| 1108 | if (Size->isMinusOne()) return; | ||||||||
| 1109 | // Check that size doesn't saturate uint64_t and can | ||||||||
| 1110 | // be stored in IntptrTy. | ||||||||
| 1111 | const uint64_t SizeValue = Size->getValue().getLimitedValue(); | ||||||||
| 1112 | if (SizeValue == ~0ULL || | ||||||||
| 1113 | !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) | ||||||||
| 1114 | return; | ||||||||
| 1115 | // Find alloca instruction that corresponds to llvm.lifetime argument. | ||||||||
| 1116 | // Currently we can only handle lifetime markers pointing to the | ||||||||
| 1117 | // beginning of the alloca. | ||||||||
| 1118 | AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); | ||||||||
| 1119 | if (!AI) { | ||||||||
| 1120 | HasUntracedLifetimeIntrinsic = true; | ||||||||
| 1121 | return; | ||||||||
| 1122 | } | ||||||||
| 1123 | // We're interested only in allocas we can handle. | ||||||||
| 1124 | if (!ASan.isInterestingAlloca(*AI)) | ||||||||
| 1125 | return; | ||||||||
| 1126 | bool DoPoison = (ID == Intrinsic::lifetime_end); | ||||||||
| 1127 | AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; | ||||||||
| 1128 | if (AI->isStaticAlloca()) | ||||||||
| 1129 | StaticAllocaPoisonCallVec.push_back(APC); | ||||||||
| 1130 | else if (ClInstrumentDynamicAllocas) | ||||||||
| 1131 | DynamicAllocaPoisonCallVec.push_back(APC); | ||||||||
| 1132 | } | ||||||||
| 1133 | |||||||||
| 1134 | void visitCallBase(CallBase &CB) { | ||||||||
| 1135 | if (CallInst *CI = dyn_cast<CallInst>(&CB)) { | ||||||||
| 1136 | HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; | ||||||||
| 1137 | HasReturnsTwiceCall |= CI->canReturnTwice(); | ||||||||
| 1138 | } | ||||||||
| 1139 | } | ||||||||
| 1140 | |||||||||
| 1141 | // ---------------------- Helpers. | ||||||||
| 1142 | void initializeCallbacks(Module &M); | ||||||||
| 1143 | |||||||||
| 1144 | // Copies bytes from ShadowBytes into shadow memory for indexes where | ||||||||
| 1145 | // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that | ||||||||
| 1146 | // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. | ||||||||
| 1147 | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, | ||||||||
| 1148 | IRBuilder<> &IRB, Value *ShadowBase); | ||||||||
| 1149 | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, | ||||||||
| 1150 | size_t Begin, size_t End, IRBuilder<> &IRB, | ||||||||
| 1151 | Value *ShadowBase); | ||||||||
| 1152 | void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, | ||||||||
| 1153 | ArrayRef<uint8_t> ShadowBytes, size_t Begin, | ||||||||
| 1154 | size_t End, IRBuilder<> &IRB, Value *ShadowBase); | ||||||||
| 1155 | |||||||||
| 1156 | void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); | ||||||||
| 1157 | |||||||||
| 1158 | Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, | ||||||||
| 1159 | bool Dynamic); | ||||||||
| 1160 | PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, | ||||||||
| 1161 | Instruction *ThenTerm, Value *ValueIfFalse); | ||||||||
| 1162 | }; | ||||||||
| 1163 | |||||||||
| 1164 | } // end anonymous namespace | ||||||||
| 1165 | |||||||||
| 1166 | void LocationMetadata::parse(MDNode *MDN) { | ||||||||
| 1167 | assert(MDN->getNumOperands() == 3)((void)0); | ||||||||
| 1168 | MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); | ||||||||
| 1169 | Filename = DIFilename->getString(); | ||||||||
| 1170 | LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); | ||||||||
| 1171 | ColumnNo = | ||||||||
| 1172 | mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); | ||||||||
| 1173 | } | ||||||||
| 1174 | |||||||||
| 1175 | // FIXME: It would be cleaner to instead attach relevant metadata to the globals | ||||||||
| 1176 | // we want to sanitize instead and reading this metadata on each pass over a | ||||||||
| 1177 | // function instead of reading module level metadata at first. | ||||||||
| 1178 | GlobalsMetadata::GlobalsMetadata(Module &M) { | ||||||||
| 1179 | NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); | ||||||||
| 1180 | if (!Globals) | ||||||||
| 1181 | return; | ||||||||
| 1182 | for (auto MDN : Globals->operands()) { | ||||||||
| 1183 | // Metadata node contains the global and the fields of "Entry". | ||||||||
| 1184 | assert(MDN->getNumOperands() == 5)((void)0); | ||||||||
| 1185 | auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); | ||||||||
| 1186 | // The optimizer may optimize away a global entirely. | ||||||||
| 1187 | if (!V) | ||||||||
| 1188 | continue; | ||||||||
| 1189 | auto *StrippedV = V->stripPointerCasts(); | ||||||||
| 1190 | auto *GV = dyn_cast<GlobalVariable>(StrippedV); | ||||||||
| 1191 | if (!GV) | ||||||||
| 1192 | continue; | ||||||||
| 1193 | // We can already have an entry for GV if it was merged with another | ||||||||
| 1194 | // global. | ||||||||
| 1195 | Entry &E = Entries[GV]; | ||||||||
| 1196 | if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) | ||||||||
| 1197 | E.SourceLoc.parse(Loc); | ||||||||
| 1198 | if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) | ||||||||
| 1199 | E.Name = Name->getString(); | ||||||||
| 1200 | ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); | ||||||||
| 1201 | E.IsDynInit |= IsDynInit->isOne(); | ||||||||
| 1202 | ConstantInt *IsExcluded = | ||||||||
| 1203 | mdconst::extract<ConstantInt>(MDN->getOperand(4)); | ||||||||
| 1204 | E.IsExcluded |= IsExcluded->isOne(); | ||||||||
| 1205 | } | ||||||||
| 1206 | } | ||||||||
| 1207 | |||||||||
| 1208 | AnalysisKey ASanGlobalsMetadataAnalysis::Key; | ||||||||
| 1209 | |||||||||
| 1210 | GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, | ||||||||
| 1211 | ModuleAnalysisManager &AM) { | ||||||||
| 1212 | return GlobalsMetadata(M); | ||||||||
| 1213 | } | ||||||||
| 1214 | |||||||||
| 1215 | AddressSanitizerPass::AddressSanitizerPass( | ||||||||
| 1216 | bool CompileKernel, bool Recover, bool UseAfterScope, | ||||||||
| 1217 | AsanDetectStackUseAfterReturnMode UseAfterReturn) | ||||||||
| 1218 | : CompileKernel(CompileKernel), Recover(Recover), | ||||||||
| 1219 | UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {} | ||||||||
| 1220 | |||||||||
| 1221 | PreservedAnalyses AddressSanitizerPass::run(Function &F, | ||||||||
| 1222 | AnalysisManager<Function> &AM) { | ||||||||
| 1223 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); | ||||||||
| 1224 | Module &M = *F.getParent(); | ||||||||
| 1225 | if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { | ||||||||
| 1226 | const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); | ||||||||
| 1227 | AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope, | ||||||||
| 1228 | UseAfterReturn); | ||||||||
| 1229 | if (Sanitizer.instrumentFunction(F, TLI)) | ||||||||
| 1230 | return PreservedAnalyses::none(); | ||||||||
| 1231 | return PreservedAnalyses::all(); | ||||||||
| 1232 | } | ||||||||
| 1233 | |||||||||
| 1234 | report_fatal_error( | ||||||||
| 1235 | "The ASanGlobalsMetadataAnalysis is required to run before " | ||||||||
| 1236 | "AddressSanitizer can run"); | ||||||||
| 1237 | return PreservedAnalyses::all(); | ||||||||
| 1238 | } | ||||||||
| 1239 | |||||||||
| 1240 | ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( | ||||||||
| 1241 | bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator, | ||||||||
| 1242 | AsanDtorKind DestructorKind) | ||||||||
| 1243 | : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), | ||||||||
| 1244 | UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} | ||||||||
| 1245 | |||||||||
| 1246 | PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, | ||||||||
| 1247 | AnalysisManager<Module> &AM) { | ||||||||
| 1248 | GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); | ||||||||
| 1249 | ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, | ||||||||
| 1250 | UseGlobalGC, UseOdrIndicator, | ||||||||
| 1251 | DestructorKind); | ||||||||
| 1252 | if (Sanitizer.instrumentModule(M)) | ||||||||
| 1253 | return PreservedAnalyses::none(); | ||||||||
| 1254 | return PreservedAnalyses::all(); | ||||||||
| 1255 | } | ||||||||
| 1256 | |||||||||
| 1257 | INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",static void *initializeASanGlobalsMetadataWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented " "when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag ; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag , initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref( Registry)); } | ||||||||
| 1258 | "Read metadata to mark which globals should be instrumented "static void *initializeASanGlobalsMetadataWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented " "when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag ; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag , initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref( Registry)); } | ||||||||
| 1259 | "when running ASan.",static void *initializeASanGlobalsMetadataWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented " "when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag ; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag , initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref( Registry)); } | ||||||||
| 1260 | false, true)static void *initializeASanGlobalsMetadataWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented " "when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag ; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag , initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref( Registry)); } | ||||||||
| 1261 | |||||||||
| 1262 | char AddressSanitizerLegacyPass::ID = 0; | ||||||||
| 1263 | |||||||||
| 1264 | INITIALIZE_PASS_BEGIN(static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry &Registry) { | ||||||||
| 1265 | AddressSanitizerLegacyPass, "asan",static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry &Registry) { | ||||||||
| 1266 | "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry &Registry) { | ||||||||
| 1267 | false)static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry &Registry) { | ||||||||
| 1268 | INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)initializeASanGlobalsMetadataWrapperPassPass(Registry); | ||||||||
| 1269 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||||||
| 1270 | INITIALIZE_PASS_END(PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." , "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<AddressSanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag , initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry )); } | ||||||||
| 1271 | AddressSanitizerLegacyPass, "asan",PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." , "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<AddressSanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag , initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry )); } | ||||||||
| 1272 | "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." , "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<AddressSanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag , initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry )); } | ||||||||
| 1273 | false)PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." , "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<AddressSanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag , initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry )); } | ||||||||
| 1274 | |||||||||
| 1275 | FunctionPass *llvm::createAddressSanitizerFunctionPass( | ||||||||
| 1276 | bool CompileKernel, bool Recover, bool UseAfterScope, | ||||||||
| 1277 | AsanDetectStackUseAfterReturnMode UseAfterReturn) { | ||||||||
| 1278 | assert(!CompileKernel || Recover)((void)0); | ||||||||
| 1279 | return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope, | ||||||||
| 1280 | UseAfterReturn); | ||||||||
| 1281 | } | ||||||||
| 1282 | |||||||||
| 1283 | char ModuleAddressSanitizerLegacyPass::ID = 0; | ||||||||
| 1284 | |||||||||
| 1285 | INITIALIZE_PASS(static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||||||
| 1286 | ModuleAddressSanitizerLegacyPass, "asan-module",static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||||||
| 1287 | "AddressSanitizer: detects use-after-free and out-of-bounds bugs."static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||||||
| 1288 | "ModulePass",static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||||||
| 1289 | false, false)static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||||||
| 1290 | |||||||||
| 1291 | ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( | ||||||||
| 1292 | bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, | ||||||||
| 1293 | AsanDtorKind Destructor) { | ||||||||
| 1294 | assert(!CompileKernel || Recover)((void)0); | ||||||||
| 1295 | return new ModuleAddressSanitizerLegacyPass( | ||||||||
| 1296 | CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); | ||||||||
| 1297 | } | ||||||||
| 1298 | |||||||||
| 1299 | static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { | ||||||||
| 1300 | size_t Res = countTrailingZeros(TypeSize / 8); | ||||||||
| 1301 | assert(Res < kNumberOfAccessSizes)((void)0); | ||||||||
| 1302 | return Res; | ||||||||
| 1303 | } | ||||||||
| 1304 | |||||||||
| 1305 | /// Create a global describing a source location. | ||||||||
| 1306 | static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, | ||||||||
| 1307 | LocationMetadata MD) { | ||||||||
| 1308 | Constant *LocData[] = { | ||||||||
| 1309 | createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), | ||||||||
| 1310 | ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), | ||||||||
| 1311 | ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), | ||||||||
| 1312 | }; | ||||||||
| 1313 | auto LocStruct = ConstantStruct::getAnon(LocData); | ||||||||
| 1314 | auto GV = new GlobalVariable(M, LocStruct->getType(), true, | ||||||||
| 1315 | GlobalValue::PrivateLinkage, LocStruct, | ||||||||
| 1316 | kAsanGenPrefix); | ||||||||
| 1317 | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); | ||||||||
| 1318 | return GV; | ||||||||
| 1319 | } | ||||||||
| 1320 | |||||||||
| 1321 | /// Check if \p G has been created by a trusted compiler pass. | ||||||||
| 1322 | static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { | ||||||||
| 1323 | // Do not instrument @llvm.global_ctors, @llvm.used, etc. | ||||||||
| 1324 | if (G->getName().startswith("llvm.")) | ||||||||
| 1325 | return true; | ||||||||
| 1326 | |||||||||
| 1327 | // Do not instrument asan globals. | ||||||||
| 1328 | if (G->getName().startswith(kAsanGenPrefix) || | ||||||||
| 1329 | G->getName().startswith(kSanCovGenPrefix) || | ||||||||
| 1330 | G->getName().startswith(kODRGenPrefix)) | ||||||||
| 1331 | return true; | ||||||||
| 1332 | |||||||||
| 1333 | // Do not instrument gcov counter arrays. | ||||||||
| 1334 | if (G->getName() == "__llvm_gcov_ctr") | ||||||||
| 1335 | return true; | ||||||||
| 1336 | |||||||||
| 1337 | return false; | ||||||||
| 1338 | } | ||||||||
| 1339 | |||||||||
| 1340 | static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { | ||||||||
| 1341 | Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); | ||||||||
| 1342 | unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); | ||||||||
| 1343 | if (AddrSpace == 3 || AddrSpace == 5) | ||||||||
| 1344 | return true; | ||||||||
| 1345 | return false; | ||||||||
| 1346 | } | ||||||||
| 1347 | |||||||||
| 1348 | Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { | ||||||||
| 1349 | // Shadow >> scale | ||||||||
| 1350 | Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); | ||||||||
| 1351 | if (Mapping.Offset == 0) return Shadow; | ||||||||
| 1352 | // (Shadow >> scale) | offset | ||||||||
| 1353 | Value *ShadowBase; | ||||||||
| 1354 | if (LocalDynamicShadow) | ||||||||
| 1355 | ShadowBase = LocalDynamicShadow; | ||||||||
| 1356 | else | ||||||||
| 1357 | ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); | ||||||||
| 1358 | if (Mapping.OrShadowOffset) | ||||||||
| 1359 | return IRB.CreateOr(Shadow, ShadowBase); | ||||||||
| 1360 | else | ||||||||
| 1361 | return IRB.CreateAdd(Shadow, ShadowBase); | ||||||||
| 1362 | } | ||||||||
| 1363 | |||||||||
| 1364 | // Instrument memset/memmove/memcpy | ||||||||
| 1365 | void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { | ||||||||
| 1366 | IRBuilder<> IRB(MI); | ||||||||
| 1367 | if (isa<MemTransferInst>(MI)) { | ||||||||
| 1368 | IRB.CreateCall( | ||||||||
| 1369 | isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, | ||||||||
| 1370 | {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), | ||||||||
| 1371 | IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), | ||||||||
| 1372 | IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); | ||||||||
| 1373 | } else if (isa<MemSetInst>(MI)) { | ||||||||
| 1374 | IRB.CreateCall( | ||||||||
| 1375 | AsanMemset, | ||||||||
| 1376 | {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), | ||||||||
| 1377 | IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), | ||||||||
| 1378 | IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); | ||||||||
| 1379 | } | ||||||||
| 1380 | MI->eraseFromParent(); | ||||||||
| 1381 | } | ||||||||
| 1382 | |||||||||
| 1383 | /// Check if we want (and can) handle this alloca. | ||||||||
| 1384 | bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { | ||||||||
| 1385 | auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); | ||||||||
| 1386 | |||||||||
| 1387 | if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) | ||||||||
| 1388 | return PreviouslySeenAllocaInfo->getSecond(); | ||||||||
| 1389 | |||||||||
| 1390 | bool IsInteresting = | ||||||||
| 1391 | (AI.getAllocatedType()->isSized() && | ||||||||
| 1392 | // alloca() may be called with 0 size, ignore it. | ||||||||
| 1393 | ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && | ||||||||
| 1394 | // We are only interested in allocas not promotable to registers. | ||||||||
| 1395 | // Promotable allocas are common under -O0. | ||||||||
| 1396 | (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && | ||||||||
| 1397 | // inalloca allocas are not treated as static, and we don't want | ||||||||
| 1398 | // dynamic alloca instrumentation for them as well. | ||||||||
| 1399 | !AI.isUsedWithInAlloca() && | ||||||||
| 1400 | // swifterror allocas are register promoted by ISel | ||||||||
| 1401 | !AI.isSwiftError()); | ||||||||
| 1402 | |||||||||
| 1403 | ProcessedAllocas[&AI] = IsInteresting; | ||||||||
| 1404 | return IsInteresting; | ||||||||
| 1405 | } | ||||||||
| 1406 | |||||||||
| 1407 | bool AddressSanitizer::ignoreAccess(Value *Ptr) { | ||||||||
| 1408 | // Instrument acesses from different address spaces only for AMDGPU. | ||||||||
| 1409 | Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); | ||||||||
| 1410 | if (PtrTy->getPointerAddressSpace() != 0 && | ||||||||
| 1411 | !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) | ||||||||
| 1412 | return true; | ||||||||
| 1413 | |||||||||
| 1414 | // Ignore swifterror addresses. | ||||||||
| 1415 | // swifterror memory addresses are mem2reg promoted by instruction | ||||||||
| 1416 | // selection. As such they cannot have regular uses like an instrumentation | ||||||||
| 1417 | // function and it makes no sense to track them as memory. | ||||||||
| 1418 | if (Ptr->isSwiftError()) | ||||||||
| 1419 | return true; | ||||||||
| 1420 | |||||||||
| 1421 | // Treat memory accesses to promotable allocas as non-interesting since they | ||||||||
| 1422 | // will not cause memory violations. This greatly speeds up the instrumented | ||||||||
| 1423 | // executable at -O0. | ||||||||
| 1424 | if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) | ||||||||
| 1425 | if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) | ||||||||
| 1426 | return true; | ||||||||
| 1427 | |||||||||
| 1428 | return false; | ||||||||
| 1429 | } | ||||||||
| 1430 | |||||||||
| 1431 | void AddressSanitizer::getInterestingMemoryOperands( | ||||||||
| 1432 | Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { | ||||||||
| 1433 | // Skip memory accesses inserted by another instrumentation. | ||||||||
| 1434 | if (I->hasMetadata("nosanitize")) | ||||||||
| 1435 | return; | ||||||||
| 1436 | |||||||||
| 1437 | // Do not instrument the load fetching the dynamic shadow address. | ||||||||
| 1438 | if (LocalDynamicShadow == I) | ||||||||
| 1439 | return; | ||||||||
| 1440 | |||||||||
| 1441 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | ||||||||
| 1442 | if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) | ||||||||
| 1443 | return; | ||||||||
| 1444 | Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, | ||||||||
| 1445 | LI->getType(), LI->getAlign()); | ||||||||
| 1446 | } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { | ||||||||
| 1447 | if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) | ||||||||
| 1448 | return; | ||||||||
| 1449 | Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, | ||||||||
| 1450 | SI->getValueOperand()->getType(), SI->getAlign()); | ||||||||
| 1451 | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { | ||||||||
| 1452 | if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) | ||||||||
| 1453 | return; | ||||||||
| 1454 | Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, | ||||||||
| 1455 | RMW->getValOperand()->getType(), None); | ||||||||
| 1456 | } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { | ||||||||
| 1457 | if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) | ||||||||
| 1458 | return; | ||||||||
| 1459 | Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, | ||||||||
| 1460 | XCHG->getCompareOperand()->getType(), None); | ||||||||
| 1461 | } else if (auto CI = dyn_cast<CallInst>(I)) { | ||||||||
| 1462 | auto *F = CI->getCalledFunction(); | ||||||||
| 1463 | if (F && (F->getName().startswith("llvm.masked.load.") || | ||||||||
| 1464 | F->getName().startswith("llvm.masked.store."))) { | ||||||||
| 1465 | bool IsWrite = F->getName().startswith("llvm.masked.store."); | ||||||||
| 1466 | // Masked store has an initial operand for the value. | ||||||||
| 1467 | unsigned OpOffset = IsWrite ? 1 : 0; | ||||||||
| 1468 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) | ||||||||
| 1469 | return; | ||||||||
| 1470 | |||||||||
| 1471 | auto BasePtr = CI->getOperand(OpOffset); | ||||||||
| 1472 | if (ignoreAccess(BasePtr)) | ||||||||
| 1473 | return; | ||||||||
| 1474 | auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); | ||||||||
| 1475 | MaybeAlign Alignment = Align(1); | ||||||||
| 1476 | // Otherwise no alignment guarantees. We probably got Undef. | ||||||||
| 1477 | if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) | ||||||||
| 1478 | Alignment = Op->getMaybeAlignValue(); | ||||||||
| 1479 | Value *Mask = CI->getOperand(2 + OpOffset); | ||||||||
| 1480 | Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); | ||||||||
| 1481 | } else { | ||||||||
| 1482 | for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { | ||||||||
| 1483 | if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || | ||||||||
| 1484 | ignoreAccess(CI->getArgOperand(ArgNo))) | ||||||||
| 1485 | continue; | ||||||||
| 1486 | Type *Ty = CI->getParamByValType(ArgNo); | ||||||||
| 1487 | Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); | ||||||||
| 1488 | } | ||||||||
| 1489 | } | ||||||||
| 1490 | } | ||||||||
| 1491 | } | ||||||||
| 1492 | |||||||||
| 1493 | static bool isPointerOperand(Value *V) { | ||||||||
| 1494 | return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); | ||||||||
| 1495 | } | ||||||||
| 1496 | |||||||||
| 1497 | // This is a rough heuristic; it may cause both false positives and | ||||||||
| 1498 | // false negatives. The proper implementation requires cooperation with | ||||||||
| 1499 | // the frontend. | ||||||||
| 1500 | static bool isInterestingPointerComparison(Instruction *I) { | ||||||||
| 1501 | if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { | ||||||||
| 1502 | if (!Cmp->isRelational()) | ||||||||
| 1503 | return false; | ||||||||
| 1504 | } else { | ||||||||
| 1505 | return false; | ||||||||
| 1506 | } | ||||||||
| 1507 | return isPointerOperand(I->getOperand(0)) && | ||||||||
| 1508 | isPointerOperand(I->getOperand(1)); | ||||||||
| 1509 | } | ||||||||
| 1510 | |||||||||
| 1511 | // This is a rough heuristic; it may cause both false positives and | ||||||||
| 1512 | // false negatives. The proper implementation requires cooperation with | ||||||||
| 1513 | // the frontend. | ||||||||
| 1514 | static bool isInterestingPointerSubtraction(Instruction *I) { | ||||||||
| 1515 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | ||||||||
| 1516 | if (BO->getOpcode() != Instruction::Sub) | ||||||||
| 1517 | return false; | ||||||||
| 1518 | } else { | ||||||||
| 1519 | return false; | ||||||||
| 1520 | } | ||||||||
| 1521 | return isPointerOperand(I->getOperand(0)) && | ||||||||
| 1522 | isPointerOperand(I->getOperand(1)); | ||||||||
| 1523 | } | ||||||||
| 1524 | |||||||||
| 1525 | bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { | ||||||||
| 1526 | // If a global variable does not have dynamic initialization we don't | ||||||||
| 1527 | // have to instrument it. However, if a global does not have initializer | ||||||||
| 1528 | // at all, we assume it has dynamic initializer (in other TU). | ||||||||
| 1529 | // | ||||||||
| 1530 | // FIXME: Metadata should be attched directly to the global directly instead | ||||||||
| 1531 | // of being added to llvm.asan.globals. | ||||||||
| 1532 | return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; | ||||||||
| 1533 | } | ||||||||
| 1534 | |||||||||
| 1535 | void AddressSanitizer::instrumentPointerComparisonOrSubtraction( | ||||||||
| 1536 | Instruction *I) { | ||||||||
| 1537 | IRBuilder<> IRB(I); | ||||||||
| 1538 | FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; | ||||||||
| 1539 | Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; | ||||||||
| 1540 | for (Value *&i : Param) { | ||||||||
| 1541 | if (i->getType()->isPointerTy()) | ||||||||
| 1542 | i = IRB.CreatePointerCast(i, IntptrTy); | ||||||||
| 1543 | } | ||||||||
| 1544 | IRB.CreateCall(F, Param); | ||||||||
| 1545 | } | ||||||||
| 1546 | |||||||||
| 1547 | static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, | ||||||||
| 1548 | Instruction *InsertBefore, Value *Addr, | ||||||||
| 1549 | MaybeAlign Alignment, unsigned Granularity, | ||||||||
| 1550 | uint32_t TypeSize, bool IsWrite, | ||||||||
| 1551 | Value *SizeArgument, bool UseCalls, | ||||||||
| 1552 | uint32_t Exp) { | ||||||||
| 1553 | // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check | ||||||||
| 1554 | // if the data is properly aligned. | ||||||||
| 1555 | if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || | ||||||||
| 1556 | TypeSize == 128) && | ||||||||
| 1557 | (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) | ||||||||
| 1558 | return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, | ||||||||
| 1559 | nullptr, UseCalls, Exp); | ||||||||
| 1560 | Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, | ||||||||
| 1561 | IsWrite, nullptr, UseCalls, Exp); | ||||||||
| 1562 | } | ||||||||
| 1563 | |||||||||
| 1564 | static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, | ||||||||
| 1565 | const DataLayout &DL, Type *IntptrTy, | ||||||||
| 1566 | Value *Mask, Instruction *I, | ||||||||
| 1567 | Value *Addr, MaybeAlign Alignment, | ||||||||
| 1568 | unsigned Granularity, uint32_t TypeSize, | ||||||||
| 1569 | bool IsWrite, Value *SizeArgument, | ||||||||
| 1570 | bool UseCalls, uint32_t Exp) { | ||||||||
| 1571 | auto *VTy = cast<FixedVectorType>( | ||||||||
| 1572 | cast<PointerType>(Addr->getType())->getElementType()); | ||||||||
| 1573 | uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); | ||||||||
| 1574 | unsigned Num = VTy->getNumElements(); | ||||||||
| 1575 | auto Zero = ConstantInt::get(IntptrTy, 0); | ||||||||
| 1576 | for (unsigned Idx = 0; Idx < Num; ++Idx) { | ||||||||
| 1577 | Value *InstrumentedAddress = nullptr; | ||||||||
| 1578 | Instruction *InsertBefore = I; | ||||||||
| 1579 | if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { | ||||||||
| 1580 | // dyn_cast as we might get UndefValue | ||||||||
| 1581 | if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { | ||||||||
| 1582 | if (Masked->isZero()) | ||||||||
| 1583 | // Mask is constant false, so no instrumentation needed. | ||||||||
| 1584 | continue; | ||||||||
| 1585 | // If we have a true or undef value, fall through to doInstrumentAddress | ||||||||
| 1586 | // with InsertBefore == I | ||||||||
| 1587 | } | ||||||||
| 1588 | } else { | ||||||||
| 1589 | IRBuilder<> IRB(I); | ||||||||
| 1590 | Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); | ||||||||
| 1591 | Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); | ||||||||
| 1592 | InsertBefore = ThenTerm; | ||||||||
| 1593 | } | ||||||||
| 1594 | |||||||||
| 1595 | IRBuilder<> IRB(InsertBefore); | ||||||||
| 1596 | InstrumentedAddress = | ||||||||
| 1597 | IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); | ||||||||
| 1598 | doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, | ||||||||
| 1599 | Granularity, ElemTypeSize, IsWrite, SizeArgument, | ||||||||
| 1600 | UseCalls, Exp); | ||||||||
| 1601 | } | ||||||||
| 1602 | } | ||||||||
| 1603 | |||||||||
| 1604 | void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, | ||||||||
| 1605 | InterestingMemoryOperand &O, bool UseCalls, | ||||||||
| 1606 | const DataLayout &DL) { | ||||||||
| 1607 | Value *Addr = O.getPtr(); | ||||||||
| 1608 | |||||||||
| 1609 | // Optimization experiments. | ||||||||
| 1610 | // The experiments can be used to evaluate potential optimizations that remove | ||||||||
| 1611 | // instrumentation (assess false negatives). Instead of completely removing | ||||||||
| 1612 | // some instrumentation, you set Exp to a non-zero value (mask of optimization | ||||||||
| 1613 | // experiments that want to remove instrumentation of this instruction). | ||||||||
| 1614 | // If Exp is non-zero, this pass will emit special calls into runtime | ||||||||
| 1615 | // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls | ||||||||
| 1616 | // make runtime terminate the program in a special way (with a different | ||||||||
| 1617 | // exit status). Then you run the new compiler on a buggy corpus, collect | ||||||||
| 1618 | // the special terminations (ideally, you don't see them at all -- no false | ||||||||
| 1619 | // negatives) and make the decision on the optimization. | ||||||||
| 1620 | uint32_t Exp = ClForceExperiment; | ||||||||
| 1621 | |||||||||
| 1622 | if (ClOpt && ClOptGlobals) { | ||||||||
| 1623 | // If initialization order checking is disabled, a simple access to a | ||||||||
| 1624 | // dynamically initialized global is always valid. | ||||||||
| 1625 | GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); | ||||||||
| 1626 | if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && | ||||||||
| 1627 | isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { | ||||||||
| 1628 | NumOptimizedAccessesToGlobalVar++; | ||||||||
| 1629 | return; | ||||||||
| 1630 | } | ||||||||
| 1631 | } | ||||||||
| 1632 | |||||||||
| 1633 | if (ClOpt && ClOptStack) { | ||||||||
| 1634 | // A direct inbounds access to a stack variable is always valid. | ||||||||
| 1635 | if (isa<AllocaInst>(getUnderlyingObject(Addr)) && | ||||||||
| 1636 | isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { | ||||||||
| 1637 | NumOptimizedAccessesToStackVar++; | ||||||||
| 1638 | return; | ||||||||
| 1639 | } | ||||||||
| 1640 | } | ||||||||
| 1641 | |||||||||
| 1642 | if (O.IsWrite) | ||||||||
| 1643 | NumInstrumentedWrites++; | ||||||||
| 1644 | else | ||||||||
| 1645 | NumInstrumentedReads++; | ||||||||
| 1646 | |||||||||
| 1647 | unsigned Granularity = 1 << Mapping.Scale; | ||||||||
| 1648 | if (O.MaybeMask) { | ||||||||
| 1649 | instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), | ||||||||
| 1650 | Addr, O.Alignment, Granularity, O.TypeSize, | ||||||||
| 1651 | O.IsWrite, nullptr, UseCalls, Exp); | ||||||||
| 1652 | } else { | ||||||||
| 1653 | doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, | ||||||||
| 1654 | Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, | ||||||||
| 1655 | Exp); | ||||||||
| 1656 | } | ||||||||
| 1657 | } | ||||||||
| 1658 | |||||||||
| 1659 | Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, | ||||||||
| 1660 | Value *Addr, bool IsWrite, | ||||||||
| 1661 | size_t AccessSizeIndex, | ||||||||
| 1662 | Value *SizeArgument, | ||||||||
| 1663 | uint32_t Exp) { | ||||||||
| 1664 | IRBuilder<> IRB(InsertBefore); | ||||||||
| 1665 | Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); | ||||||||
| 1666 | CallInst *Call = nullptr; | ||||||||
| 1667 | if (SizeArgument) { | ||||||||
| 1668 | if (Exp == 0) | ||||||||
| 1669 | Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], | ||||||||
| 1670 | {Addr, SizeArgument}); | ||||||||
| 1671 | else | ||||||||
| 1672 | Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], | ||||||||
| 1673 | {Addr, SizeArgument, ExpVal}); | ||||||||
| 1674 | } else { | ||||||||
| 1675 | if (Exp == 0) | ||||||||
| 1676 | Call = | ||||||||
| 1677 | IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); | ||||||||
| 1678 | else | ||||||||
| 1679 | Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], | ||||||||
| 1680 | {Addr, ExpVal}); | ||||||||
| 1681 | } | ||||||||
| 1682 | |||||||||
| 1683 | Call->setCannotMerge(); | ||||||||
| 1684 | return Call; | ||||||||
| 1685 | } | ||||||||
| 1686 | |||||||||
| 1687 | Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, | ||||||||
| 1688 | Value *ShadowValue, | ||||||||
| 1689 | uint32_t TypeSize) { | ||||||||
| 1690 | size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; | ||||||||
| 1691 | // Addr & (Granularity - 1) | ||||||||
| 1692 | Value *LastAccessedByte = | ||||||||
| 1693 | IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); | ||||||||
| 1694 | // (Addr & (Granularity - 1)) + size - 1 | ||||||||
| 1695 | if (TypeSize / 8 > 1) | ||||||||
| 1696 | LastAccessedByte = IRB.CreateAdd( | ||||||||
| 1697 | LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); | ||||||||
| 1698 | // (uint8_t) ((Addr & (Granularity-1)) + size - 1) | ||||||||
| 1699 | LastAccessedByte = | ||||||||
| 1700 | IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); | ||||||||
| 1701 | // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue | ||||||||
| 1702 | return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); | ||||||||
| 1703 | } | ||||||||
| 1704 | |||||||||
| 1705 | Instruction *AddressSanitizer::instrumentAMDGPUAddress( | ||||||||
| 1706 | Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, | ||||||||
| 1707 | uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { | ||||||||
| 1708 | // Do not instrument unsupported addrspaces. | ||||||||
| 1709 | if (isUnsupportedAMDGPUAddrspace(Addr)) | ||||||||
| 1710 | return nullptr; | ||||||||
| 1711 | Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); | ||||||||
| 1712 | // Follow host instrumentation for global and constant addresses. | ||||||||
| 1713 | if (PtrTy->getPointerAddressSpace() != 0) | ||||||||
| 1714 | return InsertBefore; | ||||||||
| 1715 | // Instrument generic addresses in supported addressspaces. | ||||||||
| 1716 | IRBuilder<> IRB(InsertBefore); | ||||||||
| 1717 | Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); | ||||||||
| 1718 | Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); | ||||||||
| 1719 | Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); | ||||||||
| 1720 | Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); | ||||||||
| 1721 | Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); | ||||||||
| 1722 | Value *AddrSpaceZeroLanding = | ||||||||
| 1723 | SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); | ||||||||
| 1724 | InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); | ||||||||
| 1725 | return InsertBefore; | ||||||||
| 1726 | } | ||||||||
| 1727 | |||||||||
| 1728 | void AddressSanitizer::instrumentAddress(Instruction *OrigIns, | ||||||||
| 1729 | Instruction *InsertBefore, Value *Addr, | ||||||||
| 1730 | uint32_t TypeSize, bool IsWrite, | ||||||||
| 1731 | Value *SizeArgument, bool UseCalls, | ||||||||
| 1732 | uint32_t Exp) { | ||||||||
| 1733 | if (TargetTriple.isAMDGPU()) { | ||||||||
| 1734 | InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, | ||||||||
| 1735 | TypeSize, IsWrite, SizeArgument); | ||||||||
| 1736 | if (!InsertBefore) | ||||||||
| 1737 | return; | ||||||||
| 1738 | } | ||||||||
| 1739 | |||||||||
| 1740 | IRBuilder<> IRB(InsertBefore); | ||||||||
| 1741 | Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); | ||||||||
| 1742 | size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); | ||||||||
| 1743 | |||||||||
| 1744 | if (UseCalls) { | ||||||||
| 1745 | if (Exp == 0) | ||||||||
| 1746 | IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], | ||||||||
| 1747 | AddrLong); | ||||||||
| 1748 | else | ||||||||
| 1749 | IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], | ||||||||
| 1750 | {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); | ||||||||
| 1751 | return; | ||||||||
| 1752 | } | ||||||||
| 1753 | |||||||||
| 1754 | Type *ShadowTy = | ||||||||
| 1755 | IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); | ||||||||
| 1756 | Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); | ||||||||
| 1757 | Value *ShadowPtr = memToShadow(AddrLong, IRB); | ||||||||
| 1758 | Value *CmpVal = Constant::getNullValue(ShadowTy); | ||||||||
| 1759 | Value *ShadowValue = | ||||||||
| 1760 | IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); | ||||||||
| 1761 | |||||||||
| 1762 | Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); | ||||||||
| 1763 | size_t Granularity = 1ULL << Mapping.Scale; | ||||||||
| 1764 | Instruction *CrashTerm = nullptr; | ||||||||
| 1765 | |||||||||
| 1766 | if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { | ||||||||
| 1767 | // We use branch weights for the slow path check, to indicate that the slow | ||||||||
| 1768 | // path is rarely taken. This seems to be the case for SPEC benchmarks. | ||||||||
| 1769 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( | ||||||||
| 1770 | Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); | ||||||||
| 1771 | assert(cast<BranchInst>(CheckTerm)->isUnconditional())((void)0); | ||||||||
| 1772 | BasicBlock *NextBB = CheckTerm->getSuccessor(0); | ||||||||
| 1773 | IRB.SetInsertPoint(CheckTerm); | ||||||||
| 1774 | Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); | ||||||||
| 1775 | if (Recover) { | ||||||||
| 1776 | CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); | ||||||||
| 1777 | } else { | ||||||||
| 1778 | BasicBlock *CrashBlock = | ||||||||
| 1779 | BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); | ||||||||
| 1780 | CrashTerm = new UnreachableInst(*C, CrashBlock); | ||||||||
| 1781 | BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); | ||||||||
| 1782 | ReplaceInstWithInst(CheckTerm, NewTerm); | ||||||||
| 1783 | } | ||||||||
| 1784 | } else { | ||||||||
| 1785 | CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); | ||||||||
| 1786 | } | ||||||||
| 1787 | |||||||||
| 1788 | Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, | ||||||||
| 1789 | AccessSizeIndex, SizeArgument, Exp); | ||||||||
| 1790 | Crash->setDebugLoc(OrigIns->getDebugLoc()); | ||||||||
| 1791 | } | ||||||||
| 1792 | |||||||||
| 1793 | // Instrument unusual size or unusual alignment. | ||||||||
| 1794 | // We can not do it with a single check, so we do 1-byte check for the first | ||||||||
| 1795 | // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able | ||||||||
| 1796 | // to report the actual access size. | ||||||||
| 1797 | void AddressSanitizer::instrumentUnusualSizeOrAlignment( | ||||||||
| 1798 | Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, | ||||||||
| 1799 | bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { | ||||||||
| 1800 | IRBuilder<> IRB(InsertBefore); | ||||||||
| 1801 | Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); | ||||||||
| 1802 | Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); | ||||||||
| 1803 | if (UseCalls) { | ||||||||
| 1804 | if (Exp == 0) | ||||||||
| 1805 | IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], | ||||||||
| 1806 | {AddrLong, Size}); | ||||||||
| 1807 | else | ||||||||
| 1808 | IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], | ||||||||
| 1809 | {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); | ||||||||
| 1810 | } else { | ||||||||
| 1811 | Value *LastByte = IRB.CreateIntToPtr( | ||||||||
| 1812 | IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), | ||||||||
| 1813 | Addr->getType()); | ||||||||
| 1814 | instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); | ||||||||
| 1815 | instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); | ||||||||
| 1816 | } | ||||||||
| 1817 | } | ||||||||
| 1818 | |||||||||
| 1819 | void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, | ||||||||
| 1820 | GlobalValue *ModuleName) { | ||||||||
| 1821 | // Set up the arguments to our poison/unpoison functions. | ||||||||
| 1822 | IRBuilder<> IRB(&GlobalInit.front(), | ||||||||
| 1823 | GlobalInit.front().getFirstInsertionPt()); | ||||||||
| 1824 | |||||||||
| 1825 | // Add a call to poison all external globals before the given function starts. | ||||||||
| 1826 | Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); | ||||||||
| 1827 | IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); | ||||||||
| 1828 | |||||||||
| 1829 | // Add calls to unpoison all globals before each return instruction. | ||||||||
| 1830 | for (auto &BB : GlobalInit.getBasicBlockList()) | ||||||||
| 1831 | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) | ||||||||
| 1832 | CallInst::Create(AsanUnpoisonGlobals, "", RI); | ||||||||
| 1833 | } | ||||||||
| 1834 | |||||||||
| 1835 | void ModuleAddressSanitizer::createInitializerPoisonCalls( | ||||||||
| 1836 | Module &M, GlobalValue *ModuleName) { | ||||||||
| 1837 | GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); | ||||||||
| 1838 | if (!GV) | ||||||||
| 1839 | return; | ||||||||
| 1840 | |||||||||
| 1841 | ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); | ||||||||
| 1842 | if (!CA) | ||||||||
| 1843 | return; | ||||||||
| 1844 | |||||||||
| 1845 | for (Use &OP : CA->operands()) { | ||||||||
| 1846 | if (isa<ConstantAggregateZero>(OP)) continue; | ||||||||
| 1847 | ConstantStruct *CS = cast<ConstantStruct>(OP); | ||||||||
| 1848 | |||||||||
| 1849 | // Must have a function or null ptr. | ||||||||
| 1850 | if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { | ||||||||
| 1851 | if (F->getName() == kAsanModuleCtorName) continue; | ||||||||
| 1852 | auto *Priority = cast<ConstantInt>(CS->getOperand(0)); | ||||||||
| 1853 | // Don't instrument CTORs that will run before asan.module_ctor. | ||||||||
| 1854 | if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) | ||||||||
| 1855 | continue; | ||||||||
| 1856 | poisonOneInitializer(*F, ModuleName); | ||||||||
| 1857 | } | ||||||||
| 1858 | } | ||||||||
| 1859 | } | ||||||||
| 1860 | |||||||||
| 1861 | const GlobalVariable * | ||||||||
| 1862 | ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { | ||||||||
| 1863 | // In case this function should be expanded to include rules that do not just | ||||||||
| 1864 | // apply when CompileKernel is true, either guard all existing rules with an | ||||||||
| 1865 | // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules | ||||||||
| 1866 | // should also apply to user space. | ||||||||
| 1867 | assert(CompileKernel && "Only expecting to be called when compiling kernel")((void)0); | ||||||||
| 1868 | |||||||||
| 1869 | const Constant *C = GA.getAliasee(); | ||||||||
| 1870 | |||||||||
| 1871 | // When compiling the kernel, globals that are aliased by symbols prefixed | ||||||||
| 1872 | // by "__" are special and cannot be padded with a redzone. | ||||||||
| 1873 | if (GA.getName().startswith("__")) | ||||||||
| 1874 | return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); | ||||||||
| 1875 | |||||||||
| 1876 | return nullptr; | ||||||||
| 1877 | } | ||||||||
| 1878 | |||||||||
| 1879 | bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { | ||||||||
| 1880 | Type *Ty = G->getValueType(); | ||||||||
| 1881 | LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n")do { } while (false); | ||||||||
| 1882 | |||||||||
| 1883 | // FIXME: Metadata should be attched directly to the global directly instead | ||||||||
| 1884 | // of being added to llvm.asan.globals. | ||||||||
| 1885 | if (GlobalsMD.get(G).IsExcluded) return false; | ||||||||
| 1886 | if (!Ty->isSized()) return false; | ||||||||
| 1887 | if (!G->hasInitializer()) return false; | ||||||||
| 1888 | // Globals in address space 1 and 4 are supported for AMDGPU. | ||||||||
| 1889 | if (G->getAddressSpace() && | ||||||||
| 1890 | !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) | ||||||||
| 1891 | return false; | ||||||||
| 1892 | if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. | ||||||||
| 1893 | // Two problems with thread-locals: | ||||||||
| 1894 | // - The address of the main thread's copy can't be computed at link-time. | ||||||||
| 1895 | // - Need to poison all copies, not just the main thread's one. | ||||||||
| 1896 | if (G->isThreadLocal()) return false; | ||||||||
| 1897 | // For now, just ignore this Global if the alignment is large. | ||||||||
| 1898 | if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; | ||||||||
| 1899 | |||||||||
| 1900 | // For non-COFF targets, only instrument globals known to be defined by this | ||||||||
| 1901 | // TU. | ||||||||
| 1902 | // FIXME: We can instrument comdat globals on ELF if we are using the | ||||||||
| 1903 | // GC-friendly metadata scheme. | ||||||||
| 1904 | if (!TargetTriple.isOSBinFormatCOFF()) { | ||||||||
| 1905 | if (!G->hasExactDefinition() || G->hasComdat()) | ||||||||
| 1906 | return false; | ||||||||
| 1907 | } else { | ||||||||
| 1908 | // On COFF, don't instrument non-ODR linkages. | ||||||||
| 1909 | if (G->isInterposable()) | ||||||||
| 1910 | return false; | ||||||||
| 1911 | } | ||||||||
| 1912 | |||||||||
| 1913 | // If a comdat is present, it must have a selection kind that implies ODR | ||||||||
| 1914 | // semantics: no duplicates, any, or exact match. | ||||||||
| 1915 | if (Comdat *C = G->getComdat()) { | ||||||||
| 1916 | switch (C->getSelectionKind()) { | ||||||||
| 1917 | case Comdat::Any: | ||||||||
| 1918 | case Comdat::ExactMatch: | ||||||||
| 1919 | case Comdat::NoDeduplicate: | ||||||||
| 1920 | break; | ||||||||
| 1921 | case Comdat::Largest: | ||||||||
| 1922 | case Comdat::SameSize: | ||||||||
| 1923 | return false; | ||||||||
| 1924 | } | ||||||||
| 1925 | } | ||||||||
| 1926 | |||||||||
| 1927 | if (G->hasSection()) { | ||||||||
| 1928 | // The kernel uses explicit sections for mostly special global variables | ||||||||
| 1929 | // that we should not instrument. E.g. the kernel may rely on their layout | ||||||||
| 1930 | // without redzones, or remove them at link time ("discard.*"), etc. | ||||||||
| 1931 | if (CompileKernel) | ||||||||
| 1932 | return false; | ||||||||
| 1933 | |||||||||
| 1934 | StringRef Section = G->getSection(); | ||||||||
| 1935 | |||||||||
| 1936 | // Globals from llvm.metadata aren't emitted, do not instrument them. | ||||||||
| 1937 | if (Section == "llvm.metadata") return false; | ||||||||
| 1938 | // Do not instrument globals from special LLVM sections. | ||||||||
| 1939 | if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; | ||||||||
| 1940 | |||||||||
| 1941 | // Do not instrument function pointers to initialization and termination | ||||||||
| 1942 | // routines: dynamic linker will not properly handle redzones. | ||||||||
| 1943 | if (Section.startswith(".preinit_array") || | ||||||||
| 1944 | Section.startswith(".init_array") || | ||||||||
| 1945 | Section.startswith(".fini_array")) { | ||||||||
| 1946 | return false; | ||||||||
| 1947 | } | ||||||||
| 1948 | |||||||||
| 1949 | // Do not instrument user-defined sections (with names resembling | ||||||||
| 1950 | // valid C identifiers) | ||||||||
| 1951 | if (TargetTriple.isOSBinFormatELF()) { | ||||||||
| 1952 | if (llvm::all_of(Section, | ||||||||
| 1953 | [](char c) { return llvm::isAlnum(c) || c == '_'; })) | ||||||||
| 1954 | return false; | ||||||||
| 1955 | } | ||||||||
| 1956 | |||||||||
| 1957 | // On COFF, if the section name contains '$', it is highly likely that the | ||||||||
| 1958 | // user is using section sorting to create an array of globals similar to | ||||||||
| 1959 | // the way initialization callbacks are registered in .init_array and | ||||||||
| 1960 | // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones | ||||||||
| 1961 | // to such globals is counterproductive, because the intent is that they | ||||||||
| 1962 | // will form an array, and out-of-bounds accesses are expected. | ||||||||
| 1963 | // See https://github.com/google/sanitizers/issues/305 | ||||||||
| 1964 | // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx | ||||||||
| 1965 | if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { | ||||||||
| 1966 | LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "do { } while (false) | ||||||||
| 1967 | << *G << "\n")do { } while (false); | ||||||||
| 1968 | return false; | ||||||||
| 1969 | } | ||||||||
| 1970 | |||||||||
| 1971 | if (TargetTriple.isOSBinFormatMachO()) { | ||||||||
| 1972 | StringRef ParsedSegment, ParsedSection; | ||||||||
| 1973 | unsigned TAA = 0, StubSize = 0; | ||||||||
| 1974 | bool TAAParsed; | ||||||||
| 1975 | cantFail(MCSectionMachO::ParseSectionSpecifier( | ||||||||
| 1976 | Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); | ||||||||
| 1977 | |||||||||
| 1978 | // Ignore the globals from the __OBJC section. The ObjC runtime assumes | ||||||||
| 1979 | // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to | ||||||||
| 1980 | // them. | ||||||||
| 1981 | if (ParsedSegment == "__OBJC" || | ||||||||
| 1982 | (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { | ||||||||
| 1983 | LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n")do { } while (false); | ||||||||
| 1984 | return false; | ||||||||
| 1985 | } | ||||||||
| 1986 | // See https://github.com/google/sanitizers/issues/32 | ||||||||
| 1987 | // Constant CFString instances are compiled in the following way: | ||||||||
| 1988 | // -- the string buffer is emitted into | ||||||||
| 1989 | // __TEXT,__cstring,cstring_literals | ||||||||
| 1990 | // -- the constant NSConstantString structure referencing that buffer | ||||||||
| 1991 | // is placed into __DATA,__cfstring | ||||||||
| 1992 | // Therefore there's no point in placing redzones into __DATA,__cfstring. | ||||||||
| 1993 | // Moreover, it causes the linker to crash on OS X 10.7 | ||||||||
| 1994 | if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { | ||||||||
| 1995 | LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n")do { } while (false); | ||||||||
| 1996 | return false; | ||||||||
| 1997 | } | ||||||||
| 1998 | // The linker merges the contents of cstring_literals and removes the | ||||||||
| 1999 | // trailing zeroes. | ||||||||
| 2000 | if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { | ||||||||
| 2001 | LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n")do { } while (false); | ||||||||
| 2002 | return false; | ||||||||
| 2003 | } | ||||||||
| 2004 | } | ||||||||
| 2005 | } | ||||||||
| 2006 | |||||||||
| 2007 | if (CompileKernel) { | ||||||||
| 2008 | // Globals that prefixed by "__" are special and cannot be padded with a | ||||||||
| 2009 | // redzone. | ||||||||
| 2010 | if (G->getName().startswith("__")) | ||||||||
| 2011 | return false; | ||||||||
| 2012 | } | ||||||||
| 2013 | |||||||||
| 2014 | return true; | ||||||||
| 2015 | } | ||||||||
| 2016 | |||||||||
| 2017 | // On Mach-O platforms, we emit global metadata in a separate section of the | ||||||||
| 2018 | // binary in order to allow the linker to properly dead strip. This is only | ||||||||
| 2019 | // supported on recent versions of ld64. | ||||||||
| 2020 | bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { | ||||||||
| 2021 | if (!TargetTriple.isOSBinFormatMachO()) | ||||||||
| 2022 | return false; | ||||||||
| 2023 | |||||||||
| 2024 | if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) | ||||||||
| 2025 | return true; | ||||||||
| 2026 | if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) | ||||||||
| 2027 | return true; | ||||||||
| 2028 | if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) | ||||||||
| 2029 | return true; | ||||||||
| 2030 | |||||||||
| 2031 | return false; | ||||||||
| 2032 | } | ||||||||
| 2033 | |||||||||
| 2034 | StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { | ||||||||
| 2035 | switch (TargetTriple.getObjectFormat()) { | ||||||||
| 2036 | case Triple::COFF: return ".ASAN$GL"; | ||||||||
| 2037 | case Triple::ELF: return "asan_globals"; | ||||||||
| 2038 | case Triple::MachO: return "__DATA,__asan_globals,regular"; | ||||||||
| 2039 | case Triple::Wasm: | ||||||||
| 2040 | case Triple::GOFF: | ||||||||
| 2041 | case Triple::XCOFF: | ||||||||
| 2042 | report_fatal_error( | ||||||||
| 2043 | "ModuleAddressSanitizer not implemented for object file format"); | ||||||||
| 2044 | case Triple::UnknownObjectFormat: | ||||||||
| 2045 | break; | ||||||||
| 2046 | } | ||||||||
| 2047 | llvm_unreachable("unsupported object format")__builtin_unreachable(); | ||||||||
| 2048 | } | ||||||||
| 2049 | |||||||||
| 2050 | void ModuleAddressSanitizer::initializeCallbacks(Module &M) { | ||||||||
| 2051 | IRBuilder<> IRB(*C); | ||||||||
| 2052 | |||||||||
| 2053 | // Declare our poisoning and unpoisoning functions. | ||||||||
| 2054 | AsanPoisonGlobals = | ||||||||
| 2055 | M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); | ||||||||
| 2056 | AsanUnpoisonGlobals = | ||||||||
| 2057 | M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); | ||||||||
| 2058 | |||||||||
| 2059 | // Declare functions that register/unregister globals. | ||||||||
| 2060 | AsanRegisterGlobals = M.getOrInsertFunction( | ||||||||
| 2061 | kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2062 | AsanUnregisterGlobals = M.getOrInsertFunction( | ||||||||
| 2063 | kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2064 | |||||||||
| 2065 | // Declare the functions that find globals in a shared object and then invoke | ||||||||
| 2066 | // the (un)register function on them. | ||||||||
| 2067 | AsanRegisterImageGlobals = M.getOrInsertFunction( | ||||||||
| 2068 | kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); | ||||||||
| 2069 | AsanUnregisterImageGlobals = M.getOrInsertFunction( | ||||||||
| 2070 | kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); | ||||||||
| 2071 | |||||||||
| 2072 | AsanRegisterElfGlobals = | ||||||||
| 2073 | M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), | ||||||||
| 2074 | IntptrTy, IntptrTy, IntptrTy); | ||||||||
| 2075 | AsanUnregisterElfGlobals = | ||||||||
| 2076 | M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), | ||||||||
| 2077 | IntptrTy, IntptrTy, IntptrTy); | ||||||||
| 2078 | } | ||||||||
| 2079 | |||||||||
| 2080 | // Put the metadata and the instrumented global in the same group. This ensures | ||||||||
| 2081 | // that the metadata is discarded if the instrumented global is discarded. | ||||||||
| 2082 | void ModuleAddressSanitizer::SetComdatForGlobalMetadata( | ||||||||
| 2083 | GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { | ||||||||
| 2084 | Module &M = *G->getParent(); | ||||||||
| 2085 | Comdat *C = G->getComdat(); | ||||||||
| 2086 | if (!C) { | ||||||||
| 2087 | if (!G->hasName()) { | ||||||||
| 2088 | // If G is unnamed, it must be internal. Give it an artificial name | ||||||||
| 2089 | // so we can put it in a comdat. | ||||||||
| 2090 | assert(G->hasLocalLinkage())((void)0); | ||||||||
| 2091 | G->setName(Twine(kAsanGenPrefix) + "_anon_global"); | ||||||||
| 2092 | } | ||||||||
| 2093 | |||||||||
| 2094 | if (!InternalSuffix.empty() && G->hasLocalLinkage()) { | ||||||||
| 2095 | std::string Name = std::string(G->getName()); | ||||||||
| 2096 | Name += InternalSuffix; | ||||||||
| 2097 | C = M.getOrInsertComdat(Name); | ||||||||
| 2098 | } else { | ||||||||
| 2099 | C = M.getOrInsertComdat(G->getName()); | ||||||||
| 2100 | } | ||||||||
| 2101 | |||||||||
| 2102 | // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private | ||||||||
| 2103 | // linkage to internal linkage so that a symbol table entry is emitted. This | ||||||||
| 2104 | // is necessary in order to create the comdat group. | ||||||||
| 2105 | if (TargetTriple.isOSBinFormatCOFF()) { | ||||||||
| 2106 | C->setSelectionKind(Comdat::NoDeduplicate); | ||||||||
| 2107 | if (G->hasPrivateLinkage()) | ||||||||
| 2108 | G->setLinkage(GlobalValue::InternalLinkage); | ||||||||
| 2109 | } | ||||||||
| 2110 | G->setComdat(C); | ||||||||
| 2111 | } | ||||||||
| 2112 | |||||||||
| 2113 | assert(G->hasComdat())((void)0); | ||||||||
| 2114 | Metadata->setComdat(G->getComdat()); | ||||||||
| 2115 | } | ||||||||
| 2116 | |||||||||
| 2117 | // Create a separate metadata global and put it in the appropriate ASan | ||||||||
| 2118 | // global registration section. | ||||||||
| 2119 | GlobalVariable * | ||||||||
| 2120 | ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, | ||||||||
| 2121 | StringRef OriginalName) { | ||||||||
| 2122 | auto Linkage = TargetTriple.isOSBinFormatMachO() | ||||||||
| 2123 | ? GlobalVariable::InternalLinkage | ||||||||
| 2124 | : GlobalVariable::PrivateLinkage; | ||||||||
| 2125 | GlobalVariable *Metadata = new GlobalVariable( | ||||||||
| 2126 | M, Initializer->getType(), false, Linkage, Initializer, | ||||||||
| 2127 | Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); | ||||||||
| 2128 | Metadata->setSection(getGlobalMetadataSection()); | ||||||||
| 2129 | return Metadata; | ||||||||
| 2130 | } | ||||||||
| 2131 | |||||||||
| 2132 | Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { | ||||||||
| 2133 | AsanDtorFunction = Function::createWithDefaultAttr( | ||||||||
| 2134 | FunctionType::get(Type::getVoidTy(*C), false), | ||||||||
| 2135 | GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); | ||||||||
| 2136 | AsanDtorFunction->addAttribute(AttributeList::FunctionIndex, | ||||||||
| 2137 | Attribute::NoUnwind); | ||||||||
| 2138 | // Ensure Dtor cannot be discarded, even if in a comdat. | ||||||||
| 2139 | appendToUsed(M, {AsanDtorFunction}); | ||||||||
| 2140 | BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); | ||||||||
| 2141 | |||||||||
| 2142 | return ReturnInst::Create(*C, AsanDtorBB); | ||||||||
| 2143 | } | ||||||||
| 2144 | |||||||||
| 2145 | void ModuleAddressSanitizer::InstrumentGlobalsCOFF( | ||||||||
| 2146 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||||||
| 2147 | ArrayRef<Constant *> MetadataInitializers) { | ||||||||
| 2148 | assert(ExtendedGlobals.size() == MetadataInitializers.size())((void)0); | ||||||||
| 2149 | auto &DL = M.getDataLayout(); | ||||||||
| 2150 | |||||||||
| 2151 | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); | ||||||||
| 2152 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | ||||||||
| 2153 | Constant *Initializer = MetadataInitializers[i]; | ||||||||
| 2154 | GlobalVariable *G = ExtendedGlobals[i]; | ||||||||
| 2155 | GlobalVariable *Metadata = | ||||||||
| 2156 | CreateMetadataGlobal(M, Initializer, G->getName()); | ||||||||
| 2157 | MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); | ||||||||
| 2158 | Metadata->setMetadata(LLVMContext::MD_associated, MD); | ||||||||
| 2159 | MetadataGlobals[i] = Metadata; | ||||||||
| 2160 | |||||||||
| 2161 | // The MSVC linker always inserts padding when linking incrementally. We | ||||||||
| 2162 | // cope with that by aligning each struct to its size, which must be a power | ||||||||
| 2163 | // of two. | ||||||||
| 2164 | unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); | ||||||||
| 2165 | assert(isPowerOf2_32(SizeOfGlobalStruct) &&((void)0) | ||||||||
| 2166 | "global metadata will not be padded appropriately")((void)0); | ||||||||
| 2167 | Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); | ||||||||
| 2168 | |||||||||
| 2169 | SetComdatForGlobalMetadata(G, Metadata, ""); | ||||||||
| 2170 | } | ||||||||
| 2171 | |||||||||
| 2172 | // Update llvm.compiler.used, adding the new metadata globals. This is | ||||||||
| 2173 | // needed so that during LTO these variables stay alive. | ||||||||
| 2174 | if (!MetadataGlobals.empty()) | ||||||||
| 2175 | appendToCompilerUsed(M, MetadataGlobals); | ||||||||
| 2176 | } | ||||||||
| 2177 | |||||||||
| 2178 | void ModuleAddressSanitizer::InstrumentGlobalsELF( | ||||||||
| 2179 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||||||
| 2180 | ArrayRef<Constant *> MetadataInitializers, | ||||||||
| 2181 | const std::string &UniqueModuleId) { | ||||||||
| 2182 | assert(ExtendedGlobals.size() == MetadataInitializers.size())((void)0); | ||||||||
| 2183 | |||||||||
| 2184 | // Putting globals in a comdat changes the semantic and potentially cause | ||||||||
| 2185 | // false negative odr violations at link time. If odr indicators are used, we | ||||||||
| 2186 | // keep the comdat sections, as link time odr violations will be dectected on | ||||||||
| 2187 | // the odr indicator symbols. | ||||||||
| 2188 | bool UseComdatForGlobalsGC = UseOdrIndicator; | ||||||||
| 2189 | |||||||||
| 2190 | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); | ||||||||
| 2191 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | ||||||||
| 2192 | GlobalVariable *G = ExtendedGlobals[i]; | ||||||||
| 2193 | GlobalVariable *Metadata = | ||||||||
| 2194 | CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); | ||||||||
| 2195 | MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); | ||||||||
| 2196 | Metadata->setMetadata(LLVMContext::MD_associated, MD); | ||||||||
| 2197 | MetadataGlobals[i] = Metadata; | ||||||||
| 2198 | |||||||||
| 2199 | if (UseComdatForGlobalsGC) | ||||||||
| 2200 | SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); | ||||||||
| 2201 | } | ||||||||
| 2202 | |||||||||
| 2203 | // Update llvm.compiler.used, adding the new metadata globals. This is | ||||||||
| 2204 | // needed so that during LTO these variables stay alive. | ||||||||
| 2205 | if (!MetadataGlobals.empty()) | ||||||||
| 2206 | appendToCompilerUsed(M, MetadataGlobals); | ||||||||
| 2207 | |||||||||
| 2208 | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() | ||||||||
| 2209 | // to look up the loaded image that contains it. Second, we can store in it | ||||||||
| 2210 | // whether registration has already occurred, to prevent duplicate | ||||||||
| 2211 | // registration. | ||||||||
| 2212 | // | ||||||||
| 2213 | // Common linkage ensures that there is only one global per shared library. | ||||||||
| 2214 | GlobalVariable *RegisteredFlag = new GlobalVariable( | ||||||||
| 2215 | M, IntptrTy, false, GlobalVariable::CommonLinkage, | ||||||||
| 2216 | ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); | ||||||||
| 2217 | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); | ||||||||
| 2218 | |||||||||
| 2219 | // Create start and stop symbols. | ||||||||
| 2220 | GlobalVariable *StartELFMetadata = new GlobalVariable( | ||||||||
| 2221 | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, | ||||||||
| 2222 | "__start_" + getGlobalMetadataSection()); | ||||||||
| 2223 | StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); | ||||||||
| 2224 | GlobalVariable *StopELFMetadata = new GlobalVariable( | ||||||||
| 2225 | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, | ||||||||
| 2226 | "__stop_" + getGlobalMetadataSection()); | ||||||||
| 2227 | StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); | ||||||||
| 2228 | |||||||||
| 2229 | // Create a call to register the globals with the runtime. | ||||||||
| 2230 | IRB.CreateCall(AsanRegisterElfGlobals, | ||||||||
| 2231 | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), | ||||||||
| 2232 | IRB.CreatePointerCast(StartELFMetadata, IntptrTy), | ||||||||
| 2233 | IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); | ||||||||
| 2234 | |||||||||
| 2235 | // We also need to unregister globals at the end, e.g., when a shared library | ||||||||
| 2236 | // gets closed. | ||||||||
| 2237 | if (DestructorKind != AsanDtorKind::None) { | ||||||||
| 2238 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); | ||||||||
| 2239 | IrbDtor.CreateCall(AsanUnregisterElfGlobals, | ||||||||
| 2240 | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), | ||||||||
| 2241 | IRB.CreatePointerCast(StartELFMetadata, IntptrTy), | ||||||||
| 2242 | IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); | ||||||||
| 2243 | } | ||||||||
| 2244 | } | ||||||||
| 2245 | |||||||||
| 2246 | void ModuleAddressSanitizer::InstrumentGlobalsMachO( | ||||||||
| 2247 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||||||
| 2248 | ArrayRef<Constant *> MetadataInitializers) { | ||||||||
| 2249 | assert(ExtendedGlobals.size() == MetadataInitializers.size())((void)0); | ||||||||
| 2250 | |||||||||
| 2251 | // On recent Mach-O platforms, use a structure which binds the liveness of | ||||||||
| 2252 | // the global variable to the metadata struct. Keep the list of "Liveness" GV | ||||||||
| 2253 | // created to be added to llvm.compiler.used | ||||||||
| 2254 | StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); | ||||||||
| 2255 | SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); | ||||||||
| 2256 | |||||||||
| 2257 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | ||||||||
| 2258 | Constant *Initializer = MetadataInitializers[i]; | ||||||||
| 2259 | GlobalVariable *G = ExtendedGlobals[i]; | ||||||||
| 2260 | GlobalVariable *Metadata = | ||||||||
| 2261 | CreateMetadataGlobal(M, Initializer, G->getName()); | ||||||||
| 2262 | |||||||||
| 2263 | // On recent Mach-O platforms, we emit the global metadata in a way that | ||||||||
| 2264 | // allows the linker to properly strip dead globals. | ||||||||
| 2265 | auto LivenessBinder = | ||||||||
| 2266 | ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), | ||||||||
| 2267 | ConstantExpr::getPointerCast(Metadata, IntptrTy)); | ||||||||
| 2268 | GlobalVariable *Liveness = new GlobalVariable( | ||||||||
| 2269 | M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, | ||||||||
| 2270 | Twine("__asan_binder_") + G->getName()); | ||||||||
| 2271 | Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); | ||||||||
| 2272 | LivenessGlobals[i] = Liveness; | ||||||||
| 2273 | } | ||||||||
| 2274 | |||||||||
| 2275 | // Update llvm.compiler.used, adding the new liveness globals. This is | ||||||||
| 2276 | // needed so that during LTO these variables stay alive. The alternative | ||||||||
| 2277 | // would be to have the linker handling the LTO symbols, but libLTO | ||||||||
| 2278 | // current API does not expose access to the section for each symbol. | ||||||||
| 2279 | if (!LivenessGlobals.empty()) | ||||||||
| 2280 | appendToCompilerUsed(M, LivenessGlobals); | ||||||||
| 2281 | |||||||||
| 2282 | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() | ||||||||
| 2283 | // to look up the loaded image that contains it. Second, we can store in it | ||||||||
| 2284 | // whether registration has already occurred, to prevent duplicate | ||||||||
| 2285 | // registration. | ||||||||
| 2286 | // | ||||||||
| 2287 | // common linkage ensures that there is only one global per shared library. | ||||||||
| 2288 | GlobalVariable *RegisteredFlag = new GlobalVariable( | ||||||||
| 2289 | M, IntptrTy, false, GlobalVariable::CommonLinkage, | ||||||||
| 2290 | ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); | ||||||||
| 2291 | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); | ||||||||
| 2292 | |||||||||
| 2293 | IRB.CreateCall(AsanRegisterImageGlobals, | ||||||||
| 2294 | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); | ||||||||
| 2295 | |||||||||
| 2296 | // We also need to unregister globals at the end, e.g., when a shared library | ||||||||
| 2297 | // gets closed. | ||||||||
| 2298 | if (DestructorKind != AsanDtorKind::None) { | ||||||||
| 2299 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); | ||||||||
| 2300 | IrbDtor.CreateCall(AsanUnregisterImageGlobals, | ||||||||
| 2301 | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); | ||||||||
| 2302 | } | ||||||||
| 2303 | } | ||||||||
| 2304 | |||||||||
| 2305 | void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( | ||||||||
| 2306 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||||||
| 2307 | ArrayRef<Constant *> MetadataInitializers) { | ||||||||
| 2308 | assert(ExtendedGlobals.size() == MetadataInitializers.size())((void)0); | ||||||||
| 2309 | unsigned N = ExtendedGlobals.size(); | ||||||||
| 2310 | assert(N > 0)((void)0); | ||||||||
| 2311 | |||||||||
| 2312 | // On platforms that don't have a custom metadata section, we emit an array | ||||||||
| 2313 | // of global metadata structures. | ||||||||
| 2314 | ArrayType *ArrayOfGlobalStructTy = | ||||||||
| 2315 | ArrayType::get(MetadataInitializers[0]->getType(), N); | ||||||||
| 2316 | auto AllGlobals = new GlobalVariable( | ||||||||
| 2317 | M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, | ||||||||
| 2318 | ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); | ||||||||
| 2319 | if (Mapping.Scale > 3) | ||||||||
| 2320 | AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); | ||||||||
| 2321 | |||||||||
| 2322 | IRB.CreateCall(AsanRegisterGlobals, | ||||||||
| 2323 | {IRB.CreatePointerCast(AllGlobals, IntptrTy), | ||||||||
| 2324 | ConstantInt::get(IntptrTy, N)}); | ||||||||
| 2325 | |||||||||
| 2326 | // We also need to unregister globals at the end, e.g., when a shared library | ||||||||
| 2327 | // gets closed. | ||||||||
| 2328 | if (DestructorKind != AsanDtorKind::None) { | ||||||||
| 2329 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); | ||||||||
| 2330 | IrbDtor.CreateCall(AsanUnregisterGlobals, | ||||||||
| 2331 | {IRB.CreatePointerCast(AllGlobals, IntptrTy), | ||||||||
| 2332 | ConstantInt::get(IntptrTy, N)}); | ||||||||
| 2333 | } | ||||||||
| 2334 | } | ||||||||
| 2335 | |||||||||
| 2336 | // This function replaces all global variables with new variables that have | ||||||||
| 2337 | // trailing redzones. It also creates a function that poisons | ||||||||
| 2338 | // redzones and inserts this function into llvm.global_ctors. | ||||||||
| 2339 | // Sets *CtorComdat to true if the global registration code emitted into the | ||||||||
| 2340 | // asan constructor is comdat-compatible. | ||||||||
| 2341 | bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, | ||||||||
| 2342 | bool *CtorComdat) { | ||||||||
| 2343 | *CtorComdat = false; | ||||||||
| 2344 | |||||||||
| 2345 | // Build set of globals that are aliased by some GA, where | ||||||||
| 2346 | // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. | ||||||||
| 2347 | SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; | ||||||||
| 2348 | if (CompileKernel) { | ||||||||
| 2349 | for (auto &GA : M.aliases()) { | ||||||||
| 2350 | if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) | ||||||||
| 2351 | AliasedGlobalExclusions.insert(GV); | ||||||||
| 2352 | } | ||||||||
| 2353 | } | ||||||||
| 2354 | |||||||||
| 2355 | SmallVector<GlobalVariable *, 16> GlobalsToChange; | ||||||||
| 2356 | for (auto &G : M.globals()) { | ||||||||
| 2357 | if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) | ||||||||
| 2358 | GlobalsToChange.push_back(&G); | ||||||||
| 2359 | } | ||||||||
| 2360 | |||||||||
| 2361 | size_t n = GlobalsToChange.size(); | ||||||||
| 2362 | if (n == 0) { | ||||||||
| 2363 | *CtorComdat = true; | ||||||||
| 2364 | return false; | ||||||||
| 2365 | } | ||||||||
| 2366 | |||||||||
| 2367 | auto &DL = M.getDataLayout(); | ||||||||
| 2368 | |||||||||
| 2369 | // A global is described by a structure | ||||||||
| 2370 | // size_t beg; | ||||||||
| 2371 | // size_t size; | ||||||||
| 2372 | // size_t size_with_redzone; | ||||||||
| 2373 | // const char *name; | ||||||||
| 2374 | // const char *module_name; | ||||||||
| 2375 | // size_t has_dynamic_init; | ||||||||
| 2376 | // void *source_location; | ||||||||
| 2377 | // size_t odr_indicator; | ||||||||
| 2378 | // We initialize an array of such structures and pass it to a run-time call. | ||||||||
| 2379 | StructType *GlobalStructTy = | ||||||||
| 2380 | StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, | ||||||||
| 2381 | IntptrTy, IntptrTy, IntptrTy); | ||||||||
| 2382 | SmallVector<GlobalVariable *, 16> NewGlobals(n); | ||||||||
| 2383 | SmallVector<Constant *, 16> Initializers(n); | ||||||||
| 2384 | |||||||||
| 2385 | bool HasDynamicallyInitializedGlobals = false; | ||||||||
| 2386 | |||||||||
| 2387 | // We shouldn't merge same module names, as this string serves as unique | ||||||||
| 2388 | // module ID in runtime. | ||||||||
| 2389 | GlobalVariable *ModuleName = createPrivateGlobalForString( | ||||||||
| 2390 | M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); | ||||||||
| 2391 | |||||||||
| 2392 | for (size_t i = 0; i < n; i++) { | ||||||||
| 2393 | GlobalVariable *G = GlobalsToChange[i]; | ||||||||
| 2394 | |||||||||
| 2395 | // FIXME: Metadata should be attched directly to the global directly instead | ||||||||
| 2396 | // of being added to llvm.asan.globals. | ||||||||
| 2397 | auto MD = GlobalsMD.get(G); | ||||||||
| 2398 | StringRef NameForGlobal = G->getName(); | ||||||||
| 2399 | // Create string holding the global name (use global name from metadata | ||||||||
| 2400 | // if it's available, otherwise just write the name of global variable). | ||||||||
| 2401 | GlobalVariable *Name = createPrivateGlobalForString( | ||||||||
| 2402 | M, MD.Name.empty() ? NameForGlobal : MD.Name, | ||||||||
| 2403 | /*AllowMerging*/ true, kAsanGenPrefix); | ||||||||
| 2404 | |||||||||
| 2405 | Type *Ty = G->getValueType(); | ||||||||
| 2406 | const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); | ||||||||
| 2407 | const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); | ||||||||
| 2408 | Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); | ||||||||
| 2409 | |||||||||
| 2410 | StructType *NewTy = StructType::get(Ty, RightRedZoneTy); | ||||||||
| 2411 | Constant *NewInitializer = ConstantStruct::get( | ||||||||
| 2412 | NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); | ||||||||
| 2413 | |||||||||
| 2414 | // Create a new global variable with enough space for a redzone. | ||||||||
| 2415 | GlobalValue::LinkageTypes Linkage = G->getLinkage(); | ||||||||
| 2416 | if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) | ||||||||
| 2417 | Linkage = GlobalValue::InternalLinkage; | ||||||||
| 2418 | GlobalVariable *NewGlobal = new GlobalVariable( | ||||||||
| 2419 | M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, | ||||||||
| 2420 | G->getThreadLocalMode(), G->getAddressSpace()); | ||||||||
| 2421 | NewGlobal->copyAttributesFrom(G); | ||||||||
| 2422 | NewGlobal->setComdat(G->getComdat()); | ||||||||
| 2423 | NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); | ||||||||
| 2424 | // Don't fold globals with redzones. ODR violation detector and redzone | ||||||||
| 2425 | // poisoning implicitly creates a dependence on the global's address, so it | ||||||||
| 2426 | // is no longer valid for it to be marked unnamed_addr. | ||||||||
| 2427 | NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); | ||||||||
| 2428 | |||||||||
| 2429 | // Move null-terminated C strings to "__asan_cstring" section on Darwin. | ||||||||
| 2430 | if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && | ||||||||
| 2431 | G->isConstant()) { | ||||||||
| 2432 | auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); | ||||||||
| 2433 | if (Seq && Seq->isCString()) | ||||||||
| 2434 | NewGlobal->setSection("__TEXT,__asan_cstring,regular"); | ||||||||
| 2435 | } | ||||||||
| 2436 | |||||||||
| 2437 | // Transfer the debug info and type metadata. The payload starts at offset | ||||||||
| 2438 | // zero so we can copy the metadata over as is. | ||||||||
| 2439 | NewGlobal->copyMetadata(G, 0); | ||||||||
| 2440 | |||||||||
| 2441 | Value *Indices2[2]; | ||||||||
| 2442 | Indices2[0] = IRB.getInt32(0); | ||||||||
| 2443 | Indices2[1] = IRB.getInt32(0); | ||||||||
| 2444 | |||||||||
| 2445 | G->replaceAllUsesWith( | ||||||||
| 2446 | ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); | ||||||||
| 2447 | NewGlobal->takeName(G); | ||||||||
| 2448 | G->eraseFromParent(); | ||||||||
| 2449 | NewGlobals[i] = NewGlobal; | ||||||||
| 2450 | |||||||||
| 2451 | Constant *SourceLoc; | ||||||||
| 2452 | if (!MD.SourceLoc.empty()) { | ||||||||
| 2453 | auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); | ||||||||
| 2454 | SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); | ||||||||
| 2455 | } else { | ||||||||
| 2456 | SourceLoc = ConstantInt::get(IntptrTy, 0); | ||||||||
| 2457 | } | ||||||||
| 2458 | |||||||||
| 2459 | Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); | ||||||||
| 2460 | GlobalValue *InstrumentedGlobal = NewGlobal; | ||||||||
| 2461 | |||||||||
| 2462 | bool CanUsePrivateAliases = | ||||||||
| 2463 | TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || | ||||||||
| 2464 | TargetTriple.isOSBinFormatWasm(); | ||||||||
| 2465 | if (CanUsePrivateAliases && UsePrivateAlias) { | ||||||||
| 2466 | // Create local alias for NewGlobal to avoid crash on ODR between | ||||||||
| 2467 | // instrumented and non-instrumented libraries. | ||||||||
| 2468 | InstrumentedGlobal = | ||||||||
| 2469 | GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); | ||||||||
| 2470 | } | ||||||||
| 2471 | |||||||||
| 2472 | // ODR should not happen for local linkage. | ||||||||
| 2473 | if (NewGlobal->hasLocalLinkage()) { | ||||||||
| 2474 | ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), | ||||||||
| 2475 | IRB.getInt8PtrTy()); | ||||||||
| 2476 | } else if (UseOdrIndicator) { | ||||||||
| 2477 | // With local aliases, we need to provide another externally visible | ||||||||
| 2478 | // symbol __odr_asan_XXX to detect ODR violation. | ||||||||
| 2479 | auto *ODRIndicatorSym = | ||||||||
| 2480 | new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, | ||||||||
| 2481 | Constant::getNullValue(IRB.getInt8Ty()), | ||||||||
| 2482 | kODRGenPrefix + NameForGlobal, nullptr, | ||||||||
| 2483 | NewGlobal->getThreadLocalMode()); | ||||||||
| 2484 | |||||||||
| 2485 | // Set meaningful attributes for indicator symbol. | ||||||||
| 2486 | ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); | ||||||||
| 2487 | ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); | ||||||||
| 2488 | ODRIndicatorSym->setAlignment(Align(1)); | ||||||||
| 2489 | ODRIndicator = ODRIndicatorSym; | ||||||||
| 2490 | } | ||||||||
| 2491 | |||||||||
| 2492 | Constant *Initializer = ConstantStruct::get( | ||||||||
| 2493 | GlobalStructTy, | ||||||||
| 2494 | ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), | ||||||||
| 2495 | ConstantInt::get(IntptrTy, SizeInBytes), | ||||||||
| 2496 | ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), | ||||||||
| 2497 | ConstantExpr::getPointerCast(Name, IntptrTy), | ||||||||
| 2498 | ConstantExpr::getPointerCast(ModuleName, IntptrTy), | ||||||||
| 2499 | ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, | ||||||||
| 2500 | ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); | ||||||||
| 2501 | |||||||||
| 2502 | if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; | ||||||||
| 2503 | |||||||||
| 2504 | LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n")do { } while (false); | ||||||||
| 2505 | |||||||||
| 2506 | Initializers[i] = Initializer; | ||||||||
| 2507 | } | ||||||||
| 2508 | |||||||||
| 2509 | // Add instrumented globals to llvm.compiler.used list to avoid LTO from | ||||||||
| 2510 | // ConstantMerge'ing them. | ||||||||
| 2511 | SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; | ||||||||
| 2512 | for (size_t i = 0; i < n; i++) { | ||||||||
| 2513 | GlobalVariable *G = NewGlobals[i]; | ||||||||
| 2514 | if (G->getName().empty()) continue; | ||||||||
| 2515 | GlobalsToAddToUsedList.push_back(G); | ||||||||
| 2516 | } | ||||||||
| 2517 | appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); | ||||||||
| 2518 | |||||||||
| 2519 | std::string ELFUniqueModuleId = | ||||||||
| 2520 | (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) | ||||||||
| 2521 | : ""; | ||||||||
| 2522 | |||||||||
| 2523 | if (!ELFUniqueModuleId.empty()) { | ||||||||
| 2524 | InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); | ||||||||
| 2525 | *CtorComdat = true; | ||||||||
| 2526 | } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { | ||||||||
| 2527 | InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); | ||||||||
| 2528 | } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { | ||||||||
| 2529 | InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); | ||||||||
| 2530 | } else { | ||||||||
| 2531 | InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); | ||||||||
| 2532 | } | ||||||||
| 2533 | |||||||||
| 2534 | // Create calls for poisoning before initializers run and unpoisoning after. | ||||||||
| 2535 | if (HasDynamicallyInitializedGlobals) | ||||||||
| 2536 | createInitializerPoisonCalls(M, ModuleName); | ||||||||
| 2537 | |||||||||
| 2538 | LLVM_DEBUG(dbgs() << M)do { } while (false); | ||||||||
| 2539 | return true; | ||||||||
| 2540 | } | ||||||||
| 2541 | |||||||||
| 2542 | uint64_t | ||||||||
| 2543 | ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { | ||||||||
| 2544 | constexpr uint64_t kMaxRZ = 1 << 18; | ||||||||
| 2545 | const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); | ||||||||
| 2546 | |||||||||
| 2547 | uint64_t RZ = 0; | ||||||||
| 2548 | if (SizeInBytes <= MinRZ / 2) { | ||||||||
| 2549 | // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is | ||||||||
| 2550 | // at least 32 bytes, optimize when SizeInBytes is less than or equal to | ||||||||
| 2551 | // half of MinRZ. | ||||||||
| 2552 | RZ = MinRZ - SizeInBytes; | ||||||||
| 2553 | } else { | ||||||||
| 2554 | // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. | ||||||||
| 2555 | RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); | ||||||||
| 2556 | |||||||||
| 2557 | // Round up to multiple of MinRZ. | ||||||||
| 2558 | if (SizeInBytes % MinRZ) | ||||||||
| 2559 | RZ += MinRZ - (SizeInBytes % MinRZ); | ||||||||
| 2560 | } | ||||||||
| 2561 | |||||||||
| 2562 | assert((RZ + SizeInBytes) % MinRZ == 0)((void)0); | ||||||||
| 2563 | |||||||||
| 2564 | return RZ; | ||||||||
| 2565 | } | ||||||||
| 2566 | |||||||||
| 2567 | int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { | ||||||||
| 2568 | int LongSize = M.getDataLayout().getPointerSizeInBits(); | ||||||||
| 2569 | bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); | ||||||||
| 2570 | int Version = 8; | ||||||||
| 2571 | // 32-bit Android is one version ahead because of the switch to dynamic | ||||||||
| 2572 | // shadow. | ||||||||
| 2573 | Version += (LongSize == 32 && isAndroid); | ||||||||
| 2574 | return Version; | ||||||||
| 2575 | } | ||||||||
| 2576 | |||||||||
| 2577 | bool ModuleAddressSanitizer::instrumentModule(Module &M) { | ||||||||
| 2578 | initializeCallbacks(M); | ||||||||
| 2579 | |||||||||
| 2580 | // Create a module constructor. A destructor is created lazily because not all | ||||||||
| 2581 | // platforms, and not all modules need it. | ||||||||
| 2582 | if (CompileKernel) { | ||||||||
| 2583 | // The kernel always builds with its own runtime, and therefore does not | ||||||||
| 2584 | // need the init and version check calls. | ||||||||
| 2585 | AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); | ||||||||
| 2586 | } else { | ||||||||
| 2587 | std::string AsanVersion = std::to_string(GetAsanVersion(M)); | ||||||||
| 2588 | std::string VersionCheckName = | ||||||||
| 2589 | ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; | ||||||||
| 2590 | std::tie(AsanCtorFunction, std::ignore) = | ||||||||
| 2591 | createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, | ||||||||
| 2592 | kAsanInitName, /*InitArgTypes=*/{}, | ||||||||
| 2593 | /*InitArgs=*/{}, VersionCheckName); | ||||||||
| 2594 | } | ||||||||
| 2595 | |||||||||
| 2596 | bool CtorComdat = true; | ||||||||
| 2597 | if (ClGlobals) { | ||||||||
| 2598 | IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); | ||||||||
| 2599 | InstrumentGlobals(IRB, M, &CtorComdat); | ||||||||
| 2600 | } | ||||||||
| 2601 | |||||||||
| 2602 | const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); | ||||||||
| 2603 | |||||||||
| 2604 | // Put the constructor and destructor in comdat if both | ||||||||
| 2605 | // (1) global instrumentation is not TU-specific | ||||||||
| 2606 | // (2) target is ELF. | ||||||||
| 2607 | if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { | ||||||||
| 2608 | AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); | ||||||||
| 2609 | appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); | ||||||||
| 2610 | if (AsanDtorFunction) { | ||||||||
| 2611 | AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); | ||||||||
| 2612 | appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); | ||||||||
| 2613 | } | ||||||||
| 2614 | } else { | ||||||||
| 2615 | appendToGlobalCtors(M, AsanCtorFunction, Priority); | ||||||||
| 2616 | if (AsanDtorFunction) | ||||||||
| 2617 | appendToGlobalDtors(M, AsanDtorFunction, Priority); | ||||||||
| 2618 | } | ||||||||
| 2619 | |||||||||
| 2620 | return true; | ||||||||
| 2621 | } | ||||||||
| 2622 | |||||||||
| 2623 | void AddressSanitizer::initializeCallbacks(Module &M) { | ||||||||
| 2624 | IRBuilder<> IRB(*C); | ||||||||
| 2625 | // Create __asan_report* callbacks. | ||||||||
| 2626 | // IsWrite, TypeSize and Exp are encoded in the function name. | ||||||||
| 2627 | for (int Exp = 0; Exp < 2; Exp++) { | ||||||||
| 2628 | for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { | ||||||||
| 2629 | const std::string TypeStr = AccessIsWrite ? "store" : "load"; | ||||||||
| 2630 | const std::string ExpStr = Exp ? "exp_" : ""; | ||||||||
| 2631 | const std::string EndingStr = Recover ? "_noabort" : ""; | ||||||||
| 2632 | |||||||||
| 2633 | SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; | ||||||||
| 2634 | SmallVector<Type *, 2> Args1{1, IntptrTy}; | ||||||||
| 2635 | if (Exp) { | ||||||||
| 2636 | Type *ExpType = Type::getInt32Ty(*C); | ||||||||
| 2637 | Args2.push_back(ExpType); | ||||||||
| 2638 | Args1.push_back(ExpType); | ||||||||
| 2639 | } | ||||||||
| 2640 | AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( | ||||||||
| 2641 | kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, | ||||||||
| 2642 | FunctionType::get(IRB.getVoidTy(), Args2, false)); | ||||||||
| 2643 | |||||||||
| 2644 | AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( | ||||||||
| 2645 | ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, | ||||||||
| 2646 | FunctionType::get(IRB.getVoidTy(), Args2, false)); | ||||||||
| 2647 | |||||||||
| 2648 | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; | ||||||||
| 2649 | AccessSizeIndex++) { | ||||||||
| 2650 | const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); | ||||||||
| 2651 | AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = | ||||||||
| 2652 | M.getOrInsertFunction( | ||||||||
| 2653 | kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, | ||||||||
| 2654 | FunctionType::get(IRB.getVoidTy(), Args1, false)); | ||||||||
| 2655 | |||||||||
| 2656 | AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = | ||||||||
| 2657 | M.getOrInsertFunction( | ||||||||
| 2658 | ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, | ||||||||
| 2659 | FunctionType::get(IRB.getVoidTy(), Args1, false)); | ||||||||
| 2660 | } | ||||||||
| 2661 | } | ||||||||
| 2662 | } | ||||||||
| 2663 | |||||||||
| 2664 | const std::string MemIntrinCallbackPrefix = | ||||||||
| 2665 | CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; | ||||||||
| 2666 | AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", | ||||||||
| 2667 | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | ||||||||
| 2668 | IRB.getInt8PtrTy(), IntptrTy); | ||||||||
| 2669 | AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", | ||||||||
| 2670 | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | ||||||||
| 2671 | IRB.getInt8PtrTy(), IntptrTy); | ||||||||
| 2672 | AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", | ||||||||
| 2673 | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | ||||||||
| 2674 | IRB.getInt32Ty(), IntptrTy); | ||||||||
| 2675 | |||||||||
| 2676 | AsanHandleNoReturnFunc = | ||||||||
| 2677 | M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); | ||||||||
| 2678 | |||||||||
| 2679 | AsanPtrCmpFunction = | ||||||||
| 2680 | M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2681 | AsanPtrSubFunction = | ||||||||
| 2682 | M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2683 | if (Mapping.InGlobal) | ||||||||
| 2684 | AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", | ||||||||
| 2685 | ArrayType::get(IRB.getInt8Ty(), 0)); | ||||||||
| 2686 | |||||||||
| 2687 | AMDGPUAddressShared = M.getOrInsertFunction( | ||||||||
| 2688 | kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); | ||||||||
| 2689 | AMDGPUAddressPrivate = M.getOrInsertFunction( | ||||||||
| 2690 | kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); | ||||||||
| 2691 | } | ||||||||
| 2692 | |||||||||
| 2693 | bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { | ||||||||
| 2694 | // For each NSObject descendant having a +load method, this method is invoked | ||||||||
| 2695 | // by the ObjC runtime before any of the static constructors is called. | ||||||||
| 2696 | // Therefore we need to instrument such methods with a call to __asan_init | ||||||||
| 2697 | // at the beginning in order to initialize our runtime before any access to | ||||||||
| 2698 | // the shadow memory. | ||||||||
| 2699 | // We cannot just ignore these methods, because they may call other | ||||||||
| 2700 | // instrumented functions. | ||||||||
| 2701 | if (F.getName().find(" load]") != std::string::npos) { | ||||||||
| 2702 | FunctionCallee AsanInitFunction = | ||||||||
| 2703 | declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); | ||||||||
| 2704 | IRBuilder<> IRB(&F.front(), F.front().begin()); | ||||||||
| 2705 | IRB.CreateCall(AsanInitFunction, {}); | ||||||||
| 2706 | return true; | ||||||||
| 2707 | } | ||||||||
| 2708 | return false; | ||||||||
| 2709 | } | ||||||||
| 2710 | |||||||||
| 2711 | bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { | ||||||||
| 2712 | // Generate code only when dynamic addressing is needed. | ||||||||
| 2713 | if (Mapping.Offset != kDynamicShadowSentinel) | ||||||||
| 2714 | return false; | ||||||||
| 2715 | |||||||||
| 2716 | IRBuilder<> IRB(&F.front().front()); | ||||||||
| 2717 | if (Mapping.InGlobal) { | ||||||||
| 2718 | if (ClWithIfuncSuppressRemat) { | ||||||||
| 2719 | // An empty inline asm with input reg == output reg. | ||||||||
| 2720 | // An opaque pointer-to-int cast, basically. | ||||||||
| 2721 | InlineAsm *Asm = InlineAsm::get( | ||||||||
| 2722 | FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), | ||||||||
| 2723 | StringRef(""), StringRef("=r,0"), | ||||||||
| 2724 | /*hasSideEffects=*/false); | ||||||||
| 2725 | LocalDynamicShadow = | ||||||||
| 2726 | IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); | ||||||||
| 2727 | } else { | ||||||||
| 2728 | LocalDynamicShadow = | ||||||||
| 2729 | IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); | ||||||||
| 2730 | } | ||||||||
| 2731 | } else { | ||||||||
| 2732 | Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( | ||||||||
| 2733 | kAsanShadowMemoryDynamicAddress, IntptrTy); | ||||||||
| 2734 | LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); | ||||||||
| 2735 | } | ||||||||
| 2736 | return true; | ||||||||
| 2737 | } | ||||||||
| 2738 | |||||||||
| 2739 | void AddressSanitizer::markEscapedLocalAllocas(Function &F) { | ||||||||
| 2740 | // Find the one possible call to llvm.localescape and pre-mark allocas passed | ||||||||
| 2741 | // to it as uninteresting. This assumes we haven't started processing allocas | ||||||||
| 2742 | // yet. This check is done up front because iterating the use list in | ||||||||
| 2743 | // isInterestingAlloca would be algorithmically slower. | ||||||||
| 2744 | assert(ProcessedAllocas.empty() && "must process localescape before allocas")((void)0); | ||||||||
| 2745 | |||||||||
| 2746 | // Try to get the declaration of llvm.localescape. If it's not in the module, | ||||||||
| 2747 | // we can exit early. | ||||||||
| 2748 | if (!F.getParent()->getFunction("llvm.localescape")) return; | ||||||||
| 2749 | |||||||||
| 2750 | // Look for a call to llvm.localescape call in the entry block. It can't be in | ||||||||
| 2751 | // any other block. | ||||||||
| 2752 | for (Instruction &I : F.getEntryBlock()) { | ||||||||
| 2753 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); | ||||||||
| 2754 | if (II && II->getIntrinsicID() == Intrinsic::localescape) { | ||||||||
| 2755 | // We found a call. Mark all the allocas passed in as uninteresting. | ||||||||
| 2756 | for (Value *Arg : II->arg_operands()) { | ||||||||
| 2757 | AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); | ||||||||
| 2758 | assert(AI && AI->isStaticAlloca() &&((void)0) | ||||||||
| 2759 | "non-static alloca arg to localescape")((void)0); | ||||||||
| 2760 | ProcessedAllocas[AI] = false; | ||||||||
| 2761 | } | ||||||||
| 2762 | break; | ||||||||
| 2763 | } | ||||||||
| 2764 | } | ||||||||
| 2765 | } | ||||||||
| 2766 | |||||||||
| 2767 | bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { | ||||||||
| 2768 | bool ShouldInstrument = | ||||||||
| 2769 | ClDebugMin < 0 || ClDebugMax < 0 || | ||||||||
| 2770 | (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); | ||||||||
| 2771 | Instrumented++; | ||||||||
| 2772 | return !ShouldInstrument; | ||||||||
| 2773 | } | ||||||||
| 2774 | |||||||||
| 2775 | bool AddressSanitizer::instrumentFunction(Function &F, | ||||||||
| 2776 | const TargetLibraryInfo *TLI) { | ||||||||
| 2777 | if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; | ||||||||
| 2778 | if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; | ||||||||
| 2779 | if (F.getName().startswith("__asan_")) return false; | ||||||||
| 2780 | |||||||||
| 2781 | bool FunctionModified = false; | ||||||||
| 2782 | |||||||||
| 2783 | // If needed, insert __asan_init before checking for SanitizeAddress attr. | ||||||||
| 2784 | // This function needs to be called even if the function body is not | ||||||||
| 2785 | // instrumented. | ||||||||
| 2786 | if (maybeInsertAsanInitAtFunctionEntry(F)) | ||||||||
| 2787 | FunctionModified = true; | ||||||||
| 2788 | |||||||||
| 2789 | // Leave if the function doesn't need instrumentation. | ||||||||
| 2790 | if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; | ||||||||
| 2791 | |||||||||
| 2792 | LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n")do { } while (false); | ||||||||
| 2793 | |||||||||
| 2794 | initializeCallbacks(*F.getParent()); | ||||||||
| 2795 | |||||||||
| 2796 | FunctionStateRAII CleanupObj(this); | ||||||||
| 2797 | |||||||||
| 2798 | FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); | ||||||||
| 2799 | |||||||||
| 2800 | // We can't instrument allocas used with llvm.localescape. Only static allocas | ||||||||
| 2801 | // can be passed to that intrinsic. | ||||||||
| 2802 | markEscapedLocalAllocas(F); | ||||||||
| 2803 | |||||||||
| 2804 | // We want to instrument every address only once per basic block (unless there | ||||||||
| 2805 | // are calls between uses). | ||||||||
| 2806 | SmallPtrSet<Value *, 16> TempsToInstrument; | ||||||||
| 2807 | SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; | ||||||||
| 2808 | SmallVector<MemIntrinsic *, 16> IntrinToInstrument; | ||||||||
| 2809 | SmallVector<Instruction *, 8> NoReturnCalls; | ||||||||
| 2810 | SmallVector<BasicBlock *, 16> AllBlocks; | ||||||||
| 2811 | SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; | ||||||||
| 2812 | int NumAllocas = 0; | ||||||||
| 2813 | |||||||||
| 2814 | // Fill the set of memory operations to instrument. | ||||||||
| 2815 | for (auto &BB : F) { | ||||||||
| 2816 | AllBlocks.push_back(&BB); | ||||||||
| 2817 | TempsToInstrument.clear(); | ||||||||
| 2818 | int NumInsnsPerBB = 0; | ||||||||
| 2819 | for (auto &Inst : BB) { | ||||||||
| 2820 | if (LooksLikeCodeInBug11395(&Inst)) return false; | ||||||||
| 2821 | SmallVector<InterestingMemoryOperand, 1> InterestingOperands; | ||||||||
| 2822 | getInterestingMemoryOperands(&Inst, InterestingOperands); | ||||||||
| 2823 | |||||||||
| 2824 | if (!InterestingOperands.empty()) { | ||||||||
| 2825 | for (auto &Operand : InterestingOperands) { | ||||||||
| 2826 | if (ClOpt && ClOptSameTemp) { | ||||||||
| 2827 | Value *Ptr = Operand.getPtr(); | ||||||||
| 2828 | // If we have a mask, skip instrumentation if we've already | ||||||||
| 2829 | // instrumented the full object. But don't add to TempsToInstrument | ||||||||
| 2830 | // because we might get another load/store with a different mask. | ||||||||
| 2831 | if (Operand.MaybeMask) { | ||||||||
| 2832 | if (TempsToInstrument.count(Ptr)) | ||||||||
| 2833 | continue; // We've seen this (whole) temp in the current BB. | ||||||||
| 2834 | } else { | ||||||||
| 2835 | if (!TempsToInstrument.insert(Ptr).second) | ||||||||
| 2836 | continue; // We've seen this temp in the current BB. | ||||||||
| 2837 | } | ||||||||
| 2838 | } | ||||||||
| 2839 | OperandsToInstrument.push_back(Operand); | ||||||||
| 2840 | NumInsnsPerBB++; | ||||||||
| 2841 | } | ||||||||
| 2842 | } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && | ||||||||
| 2843 | isInterestingPointerComparison(&Inst)) || | ||||||||
| 2844 | ((ClInvalidPointerPairs || ClInvalidPointerSub) && | ||||||||
| 2845 | isInterestingPointerSubtraction(&Inst))) { | ||||||||
| 2846 | PointerComparisonsOrSubtracts.push_back(&Inst); | ||||||||
| 2847 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { | ||||||||
| 2848 | // ok, take it. | ||||||||
| 2849 | IntrinToInstrument.push_back(MI); | ||||||||
| 2850 | NumInsnsPerBB++; | ||||||||
| 2851 | } else { | ||||||||
| 2852 | if (isa<AllocaInst>(Inst)) NumAllocas++; | ||||||||
| 2853 | if (auto *CB = dyn_cast<CallBase>(&Inst)) { | ||||||||
| 2854 | // A call inside BB. | ||||||||
| 2855 | TempsToInstrument.clear(); | ||||||||
| 2856 | if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) | ||||||||
| 2857 | NoReturnCalls.push_back(CB); | ||||||||
| 2858 | } | ||||||||
| 2859 | if (CallInst *CI = dyn_cast<CallInst>(&Inst)) | ||||||||
| 2860 | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); | ||||||||
| 2861 | } | ||||||||
| 2862 | if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; | ||||||||
| 2863 | } | ||||||||
| 2864 | } | ||||||||
| 2865 | |||||||||
| 2866 | bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && | ||||||||
| 2867 | OperandsToInstrument.size() + IntrinToInstrument.size() > | ||||||||
| 2868 | (unsigned)ClInstrumentationWithCallsThreshold); | ||||||||
| 2869 | const DataLayout &DL = F.getParent()->getDataLayout(); | ||||||||
| 2870 | ObjectSizeOpts ObjSizeOpts; | ||||||||
| 2871 | ObjSizeOpts.RoundToAlign = true; | ||||||||
| 2872 | ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); | ||||||||
| 2873 | |||||||||
| 2874 | // Instrument. | ||||||||
| 2875 | int NumInstrumented = 0; | ||||||||
| 2876 | for (auto &Operand : OperandsToInstrument) { | ||||||||
| 2877 | if (!suppressInstrumentationSiteForDebug(NumInstrumented)) | ||||||||
| 2878 | instrumentMop(ObjSizeVis, Operand, UseCalls, | ||||||||
| 2879 | F.getParent()->getDataLayout()); | ||||||||
| 2880 | FunctionModified = true; | ||||||||
| 2881 | } | ||||||||
| 2882 | for (auto Inst : IntrinToInstrument) { | ||||||||
| 2883 | if (!suppressInstrumentationSiteForDebug(NumInstrumented)) | ||||||||
| 2884 | instrumentMemIntrinsic(Inst); | ||||||||
| 2885 | FunctionModified = true; | ||||||||
| 2886 | } | ||||||||
| 2887 | |||||||||
| 2888 | FunctionStackPoisoner FSP(F, *this); | ||||||||
| 2889 | bool ChangedStack = FSP.runOnFunction(); | ||||||||
| 2890 | |||||||||
| 2891 | // We must unpoison the stack before NoReturn calls (throw, _exit, etc). | ||||||||
| 2892 | // See e.g. https://github.com/google/sanitizers/issues/37 | ||||||||
| 2893 | for (auto CI : NoReturnCalls) { | ||||||||
| 2894 | IRBuilder<> IRB(CI); | ||||||||
| 2895 | IRB.CreateCall(AsanHandleNoReturnFunc, {}); | ||||||||
| 2896 | } | ||||||||
| 2897 | |||||||||
| 2898 | for (auto Inst : PointerComparisonsOrSubtracts) { | ||||||||
| 2899 | instrumentPointerComparisonOrSubtraction(Inst); | ||||||||
| 2900 | FunctionModified = true; | ||||||||
| 2901 | } | ||||||||
| 2902 | |||||||||
| 2903 | if (ChangedStack || !NoReturnCalls.empty()) | ||||||||
| 2904 | FunctionModified = true; | ||||||||
| 2905 | |||||||||
| 2906 | LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "do { } while (false) | ||||||||
| 2907 | << F << "\n")do { } while (false); | ||||||||
| 2908 | |||||||||
| 2909 | return FunctionModified; | ||||||||
| 2910 | } | ||||||||
| 2911 | |||||||||
| 2912 | // Workaround for bug 11395: we don't want to instrument stack in functions | ||||||||
| 2913 | // with large assembly blobs (32-bit only), otherwise reg alloc may crash. | ||||||||
| 2914 | // FIXME: remove once the bug 11395 is fixed. | ||||||||
| 2915 | bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { | ||||||||
| 2916 | if (LongSize != 32) return false; | ||||||||
| 2917 | CallInst *CI = dyn_cast<CallInst>(I); | ||||||||
| 2918 | if (!CI || !CI->isInlineAsm()) return false; | ||||||||
| 2919 | if (CI->getNumArgOperands() <= 5) return false; | ||||||||
| 2920 | // We have inline assembly with quite a few arguments. | ||||||||
| 2921 | return true; | ||||||||
| 2922 | } | ||||||||
| 2923 | |||||||||
| 2924 | void FunctionStackPoisoner::initializeCallbacks(Module &M) { | ||||||||
| 2925 | IRBuilder<> IRB(*C); | ||||||||
| 2926 | if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || | ||||||||
| 2927 | ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { | ||||||||
| 2928 | const char *MallocNameTemplate = | ||||||||
| 2929 | ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always | ||||||||
| 2930 | ? kAsanStackMallocAlwaysNameTemplate | ||||||||
| 2931 | : kAsanStackMallocNameTemplate; | ||||||||
| 2932 | for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { | ||||||||
| 2933 | std::string Suffix = itostr(Index); | ||||||||
| 2934 | AsanStackMallocFunc[Index] = M.getOrInsertFunction( | ||||||||
| 2935 | MallocNameTemplate + Suffix, IntptrTy, IntptrTy); | ||||||||
| 2936 | AsanStackFreeFunc[Index] = | ||||||||
| 2937 | M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, | ||||||||
| 2938 | IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2939 | } | ||||||||
| 2940 | } | ||||||||
| 2941 | if (ASan.UseAfterScope) { | ||||||||
| 2942 | AsanPoisonStackMemoryFunc = M.getOrInsertFunction( | ||||||||
| 2943 | kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2944 | AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( | ||||||||
| 2945 | kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2946 | } | ||||||||
| 2947 | |||||||||
| 2948 | for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { | ||||||||
| 2949 | std::ostringstream Name; | ||||||||
| 2950 | Name << kAsanSetShadowPrefix; | ||||||||
| 2951 | Name << std::setw(2) << std::setfill('0') << std::hex << Val; | ||||||||
| 2952 | AsanSetShadowFunc[Val] = | ||||||||
| 2953 | M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2954 | } | ||||||||
| 2955 | |||||||||
| 2956 | AsanAllocaPoisonFunc = M.getOrInsertFunction( | ||||||||
| 2957 | kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2958 | AsanAllocasUnpoisonFunc = M.getOrInsertFunction( | ||||||||
| 2959 | kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||||||
| 2960 | } | ||||||||
| 2961 | |||||||||
| 2962 | void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, | ||||||||
| 2963 | ArrayRef<uint8_t> ShadowBytes, | ||||||||
| 2964 | size_t Begin, size_t End, | ||||||||
| 2965 | IRBuilder<> &IRB, | ||||||||
| 2966 | Value *ShadowBase) { | ||||||||
| 2967 | if (Begin >= End) | ||||||||
| 2968 | return; | ||||||||
| 2969 | |||||||||
| 2970 | const size_t LargestStoreSizeInBytes = | ||||||||
| 2971 | std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); | ||||||||
| 2972 | |||||||||
| 2973 | const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); | ||||||||
| 2974 | |||||||||
| 2975 | // Poison given range in shadow using larges store size with out leading and | ||||||||
| 2976 | // trailing zeros in ShadowMask. Zeros never change, so they need neither | ||||||||
| 2977 | // poisoning nor up-poisoning. Still we don't mind if some of them get into a | ||||||||
| 2978 | // middle of a store. | ||||||||
| 2979 | for (size_t i = Begin; i < End;) { | ||||||||
| 2980 | if (!ShadowMask[i]) { | ||||||||
| 2981 | assert(!ShadowBytes[i])((void)0); | ||||||||
| 2982 | ++i; | ||||||||
| 2983 | continue; | ||||||||
| 2984 | } | ||||||||
| 2985 | |||||||||
| 2986 | size_t StoreSizeInBytes = LargestStoreSizeInBytes; | ||||||||
| 2987 | // Fit store size into the range. | ||||||||
| 2988 | while (StoreSizeInBytes > End - i) | ||||||||
| 2989 | StoreSizeInBytes /= 2; | ||||||||
| 2990 | |||||||||
| 2991 | // Minimize store size by trimming trailing zeros. | ||||||||
| 2992 | for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { | ||||||||
| 2993 | while (j <= StoreSizeInBytes / 2) | ||||||||
| 2994 | StoreSizeInBytes /= 2; | ||||||||
| 2995 | } | ||||||||
| 2996 | |||||||||
| 2997 | uint64_t Val = 0; | ||||||||
| 2998 | for (size_t j = 0; j < StoreSizeInBytes; j++) { | ||||||||
| 2999 | if (IsLittleEndian) | ||||||||
| 3000 | Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); | ||||||||
| 3001 | else | ||||||||
| 3002 | Val = (Val << 8) | ShadowBytes[i + j]; | ||||||||
| 3003 | } | ||||||||
| 3004 | |||||||||
| 3005 | Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); | ||||||||
| 3006 | Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); | ||||||||
| 3007 | IRB.CreateAlignedStore( | ||||||||
| 3008 | Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), | ||||||||
| 3009 | Align(1)); | ||||||||
| 3010 | |||||||||
| 3011 | i += StoreSizeInBytes; | ||||||||
| 3012 | } | ||||||||
| 3013 | } | ||||||||
| 3014 | |||||||||
| 3015 | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, | ||||||||
| 3016 | ArrayRef<uint8_t> ShadowBytes, | ||||||||
| 3017 | IRBuilder<> &IRB, Value *ShadowBase) { | ||||||||
| 3018 | copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); | ||||||||
| 3019 | } | ||||||||
| 3020 | |||||||||
| 3021 | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, | ||||||||
| 3022 | ArrayRef<uint8_t> ShadowBytes, | ||||||||
| 3023 | size_t Begin, size_t End, | ||||||||
| 3024 | IRBuilder<> &IRB, Value *ShadowBase) { | ||||||||
| 3025 | assert(ShadowMask.size() == ShadowBytes.size())((void)0); | ||||||||
| 3026 | size_t Done = Begin; | ||||||||
| 3027 | for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { | ||||||||
| 3028 | if (!ShadowMask[i]) { | ||||||||
| 3029 | assert(!ShadowBytes[i])((void)0); | ||||||||
| 3030 | continue; | ||||||||
| 3031 | } | ||||||||
| 3032 | uint8_t Val = ShadowBytes[i]; | ||||||||
| 3033 | if (!AsanSetShadowFunc[Val]) | ||||||||
| 3034 | continue; | ||||||||
| 3035 | |||||||||
| 3036 | // Skip same values. | ||||||||
| 3037 | for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { | ||||||||
| 3038 | } | ||||||||
| 3039 | |||||||||
| 3040 | if (j - i >= ClMaxInlinePoisoningSize) { | ||||||||
| 3041 | copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); | ||||||||
| 3042 | IRB.CreateCall(AsanSetShadowFunc[Val], | ||||||||
| 3043 | {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), | ||||||||
| 3044 | ConstantInt::get(IntptrTy, j - i)}); | ||||||||
| 3045 | Done = j; | ||||||||
| 3046 | } | ||||||||
| 3047 | } | ||||||||
| 3048 | |||||||||
| 3049 | copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); | ||||||||
| 3050 | } | ||||||||
| 3051 | |||||||||
| 3052 | // Fake stack allocator (asan_fake_stack.h) has 11 size classes | ||||||||
| 3053 | // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass | ||||||||
| 3054 | static int StackMallocSizeClass(uint64_t LocalStackSize) { | ||||||||
| 3055 | assert(LocalStackSize <= kMaxStackMallocSize)((void)0); | ||||||||
| 3056 | uint64_t MaxSize = kMinStackMallocSize; | ||||||||
| 3057 | for (int i = 0;; i++, MaxSize *= 2) | ||||||||
| 3058 | if (LocalStackSize <= MaxSize) return i; | ||||||||
| 3059 | llvm_unreachable("impossible LocalStackSize")__builtin_unreachable(); | ||||||||
| 3060 | } | ||||||||
| 3061 | |||||||||
| 3062 | void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { | ||||||||
| 3063 | Instruction *CopyInsertPoint = &F.front().front(); | ||||||||
| 3064 | if (CopyInsertPoint == ASan.LocalDynamicShadow) { | ||||||||
| 3065 | // Insert after the dynamic shadow location is determined | ||||||||
| 3066 | CopyInsertPoint = CopyInsertPoint->getNextNode(); | ||||||||
| 3067 | assert(CopyInsertPoint)((void)0); | ||||||||
| 3068 | } | ||||||||
| 3069 | IRBuilder<> IRB(CopyInsertPoint); | ||||||||
| 3070 | const DataLayout &DL = F.getParent()->getDataLayout(); | ||||||||
| 3071 | for (Argument &Arg : F.args()) { | ||||||||
| 3072 | if (Arg.hasByValAttr()) { | ||||||||
| 3073 | Type *Ty = Arg.getParamByValType(); | ||||||||
| 3074 | const Align Alignment = | ||||||||
| 3075 | DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); | ||||||||
| 3076 | |||||||||
| 3077 | AllocaInst *AI = IRB.CreateAlloca( | ||||||||
| 3078 | Ty, nullptr, | ||||||||
| 3079 | (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + | ||||||||
| 3080 | ".byval"); | ||||||||
| 3081 | AI->setAlignment(Alignment); | ||||||||
| 3082 | Arg.replaceAllUsesWith(AI); | ||||||||
| 3083 | |||||||||
| 3084 | uint64_t AllocSize = DL.getTypeAllocSize(Ty); | ||||||||
| 3085 | IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); | ||||||||
| 3086 | } | ||||||||
| 3087 | } | ||||||||
| 3088 | } | ||||||||
| 3089 | |||||||||
| 3090 | PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, | ||||||||
| 3091 | Value *ValueIfTrue, | ||||||||
| 3092 | Instruction *ThenTerm, | ||||||||
| 3093 | Value *ValueIfFalse) { | ||||||||
| 3094 | PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); | ||||||||
| 3095 | BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); | ||||||||
| 3096 | PHI->addIncoming(ValueIfFalse, CondBlock); | ||||||||
| 3097 | BasicBlock *ThenBlock = ThenTerm->getParent(); | ||||||||
| 3098 | PHI->addIncoming(ValueIfTrue, ThenBlock); | ||||||||
| 3099 | return PHI; | ||||||||
| 3100 | } | ||||||||
| 3101 | |||||||||
| 3102 | Value *FunctionStackPoisoner::createAllocaForLayout( | ||||||||
| 3103 | IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { | ||||||||
| 3104 | AllocaInst *Alloca; | ||||||||
| 3105 | if (Dynamic) { | ||||||||
| 3106 | Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), | ||||||||
| 3107 | ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), | ||||||||
| 3108 | "MyAlloca"); | ||||||||
| 3109 | } else { | ||||||||
| 3110 | Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), | ||||||||
| 3111 | nullptr, "MyAlloca"); | ||||||||
| 3112 | assert(Alloca->isStaticAlloca())((void)0); | ||||||||
| 3113 | } | ||||||||
| 3114 | assert((ClRealignStack & (ClRealignStack - 1)) == 0)((void)0); | ||||||||
| 3115 | size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); | ||||||||
| 3116 | Alloca->setAlignment(Align(FrameAlignment)); | ||||||||
| 3117 | return IRB.CreatePointerCast(Alloca, IntptrTy); | ||||||||
| 3118 | } | ||||||||
| 3119 | |||||||||
| 3120 | void FunctionStackPoisoner::createDynamicAllocasInitStorage() { | ||||||||
| 3121 | BasicBlock &FirstBB = *F.begin(); | ||||||||
| 3122 | IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); | ||||||||
| 3123 | DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); | ||||||||
| 3124 | IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); | ||||||||
| 3125 | DynamicAllocaLayout->setAlignment(Align(32)); | ||||||||
| 3126 | } | ||||||||
| 3127 | |||||||||
| 3128 | void FunctionStackPoisoner::processDynamicAllocas() { | ||||||||
| 3129 | if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { | ||||||||
| 3130 | assert(DynamicAllocaPoisonCallVec.empty())((void)0); | ||||||||
| 3131 | return; | ||||||||
| 3132 | } | ||||||||
| 3133 | |||||||||
| 3134 | // Insert poison calls for lifetime intrinsics for dynamic allocas. | ||||||||
| 3135 | for (const auto &APC : DynamicAllocaPoisonCallVec) { | ||||||||
| 3136 | assert(APC.InsBefore)((void)0); | ||||||||
| 3137 | assert(APC.AI)((void)0); | ||||||||
| 3138 | assert(ASan.isInterestingAlloca(*APC.AI))((void)0); | ||||||||
| 3139 | assert(!APC.AI->isStaticAlloca())((void)0); | ||||||||
| 3140 | |||||||||
| 3141 | IRBuilder<> IRB(APC.InsBefore); | ||||||||
| 3142 | poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); | ||||||||
| 3143 | // Dynamic allocas will be unpoisoned unconditionally below in | ||||||||
| 3144 | // unpoisonDynamicAllocas. | ||||||||
| 3145 | // Flag that we need unpoison static allocas. | ||||||||
| 3146 | } | ||||||||
| 3147 | |||||||||
| 3148 | // Handle dynamic allocas. | ||||||||
| 3149 | createDynamicAllocasInitStorage(); | ||||||||
| 3150 | for (auto &AI : DynamicAllocaVec) | ||||||||
| 3151 | handleDynamicAllocaCall(AI); | ||||||||
| 3152 | unpoisonDynamicAllocas(); | ||||||||
| 3153 | } | ||||||||
| 3154 | |||||||||
| 3155 | /// Collect instructions in the entry block after \p InsBefore which initialize | ||||||||
| 3156 | /// permanent storage for a function argument. These instructions must remain in | ||||||||
| 3157 | /// the entry block so that uninitialized values do not appear in backtraces. An | ||||||||
| 3158 | /// added benefit is that this conserves spill slots. This does not move stores | ||||||||
| 3159 | /// before instrumented / "interesting" allocas. | ||||||||
| 3160 | static void findStoresToUninstrumentedArgAllocas( | ||||||||
| 3161 | AddressSanitizer &ASan, Instruction &InsBefore, | ||||||||
| 3162 | SmallVectorImpl<Instruction *> &InitInsts) { | ||||||||
| 3163 | Instruction *Start = InsBefore.getNextNonDebugInstruction(); | ||||||||
| 3164 | for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { | ||||||||
| 3165 | // Argument initialization looks like: | ||||||||
| 3166 | // 1) store <Argument>, <Alloca> OR | ||||||||
| 3167 | // 2) <CastArgument> = cast <Argument> to ... | ||||||||
| 3168 | // store <CastArgument> to <Alloca> | ||||||||
| 3169 | // Do not consider any other kind of instruction. | ||||||||
| 3170 | // | ||||||||
| 3171 | // Note: This covers all known cases, but may not be exhaustive. An | ||||||||
| 3172 | // alternative to pattern-matching stores is to DFS over all Argument uses: | ||||||||
| 3173 | // this might be more general, but is probably much more complicated. | ||||||||
| 3174 | if (isa<AllocaInst>(It) || isa<CastInst>(It)) | ||||||||
| 3175 | continue; | ||||||||
| 3176 | if (auto *Store = dyn_cast<StoreInst>(It)) { | ||||||||
| 3177 | // The store destination must be an alloca that isn't interesting for | ||||||||
| 3178 | // ASan to instrument. These are moved up before InsBefore, and they're | ||||||||
| 3179 | // not interesting because allocas for arguments can be mem2reg'd. | ||||||||
| 3180 | auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); | ||||||||
| 3181 | if (!Alloca || ASan.isInterestingAlloca(*Alloca)) | ||||||||
| 3182 | continue; | ||||||||
| 3183 | |||||||||
| 3184 | Value *Val = Store->getValueOperand(); | ||||||||
| 3185 | bool IsDirectArgInit = isa<Argument>(Val); | ||||||||
| 3186 | bool IsArgInitViaCast = | ||||||||
| 3187 | isa<CastInst>(Val) && | ||||||||
| 3188 | isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && | ||||||||
| 3189 | // Check that the cast appears directly before the store. Otherwise | ||||||||
| 3190 | // moving the cast before InsBefore may break the IR. | ||||||||
| 3191 | Val == It->getPrevNonDebugInstruction(); | ||||||||
| 3192 | bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; | ||||||||
| 3193 | if (!IsArgInit) | ||||||||
| 3194 | continue; | ||||||||
| 3195 | |||||||||
| 3196 | if (IsArgInitViaCast) | ||||||||
| 3197 | InitInsts.push_back(cast<Instruction>(Val)); | ||||||||
| 3198 | InitInsts.push_back(Store); | ||||||||
| 3199 | continue; | ||||||||
| 3200 | } | ||||||||
| 3201 | |||||||||
| 3202 | // Do not reorder past unknown instructions: argument initialization should | ||||||||
| 3203 | // only involve casts and stores. | ||||||||
| 3204 | return; | ||||||||
| 3205 | } | ||||||||
| 3206 | } | ||||||||
| 3207 | |||||||||
| 3208 | void FunctionStackPoisoner::processStaticAllocas() { | ||||||||
| 3209 | if (AllocaVec.empty()) { | ||||||||
| 3210 | assert(StaticAllocaPoisonCallVec.empty())((void)0); | ||||||||
| 3211 | return; | ||||||||
| 3212 | } | ||||||||
| 3213 | |||||||||
| 3214 | int StackMallocIdx = -1; | ||||||||
| 3215 | DebugLoc EntryDebugLocation; | ||||||||
| 3216 | if (auto SP = F.getSubprogram()) | ||||||||
| 3217 | EntryDebugLocation = | ||||||||
| 3218 | DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); | ||||||||
| 3219 | |||||||||
| 3220 | Instruction *InsBefore = AllocaVec[0]; | ||||||||
| 3221 | IRBuilder<> IRB(InsBefore); | ||||||||
| 3222 | |||||||||
| 3223 | // Make sure non-instrumented allocas stay in the entry block. Otherwise, | ||||||||
| 3224 | // debug info is broken, because only entry-block allocas are treated as | ||||||||
| 3225 | // regular stack slots. | ||||||||
| 3226 | auto InsBeforeB = InsBefore->getParent(); | ||||||||
| 3227 | assert(InsBeforeB == &F.getEntryBlock())((void)0); | ||||||||
| 3228 | for (auto *AI : StaticAllocasToMoveUp) | ||||||||
| 3229 | if (AI->getParent() == InsBeforeB) | ||||||||
| 3230 | AI->moveBefore(InsBefore); | ||||||||
| 3231 | |||||||||
| 3232 | // Move stores of arguments into entry-block allocas as well. This prevents | ||||||||
| 3233 | // extra stack slots from being generated (to house the argument values until | ||||||||
| 3234 | // they can be stored into the allocas). This also prevents uninitialized | ||||||||
| 3235 | // values from being shown in backtraces. | ||||||||
| 3236 | SmallVector<Instruction *, 8> ArgInitInsts; | ||||||||
| 3237 | findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); | ||||||||
| 3238 | for (Instruction *ArgInitInst : ArgInitInsts) | ||||||||
| 3239 | ArgInitInst->moveBefore(InsBefore); | ||||||||
| 3240 | |||||||||
| 3241 | // If we have a call to llvm.localescape, keep it in the entry block. | ||||||||
| 3242 | if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); | ||||||||
| 3243 | |||||||||
| 3244 | SmallVector<ASanStackVariableDescription, 16> SVD; | ||||||||
| 3245 | SVD.reserve(AllocaVec.size()); | ||||||||
| 3246 | for (AllocaInst *AI : AllocaVec) { | ||||||||
| 3247 | ASanStackVariableDescription D = {AI->getName().data(), | ||||||||
| 3248 | ASan.getAllocaSizeInBytes(*AI), | ||||||||
| 3249 | 0, | ||||||||
| 3250 | AI->getAlignment(), | ||||||||
| 3251 | AI, | ||||||||
| 3252 | 0, | ||||||||
| 3253 | 0}; | ||||||||
| 3254 | SVD.push_back(D); | ||||||||
| 3255 | } | ||||||||
| 3256 | |||||||||
| 3257 | // Minimal header size (left redzone) is 4 pointers, | ||||||||
| 3258 | // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. | ||||||||
| 3259 | size_t Granularity = 1ULL << Mapping.Scale; | ||||||||
| 3260 | size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); | ||||||||
| 3261 | const ASanStackFrameLayout &L = | ||||||||
| 3262 | ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); | ||||||||
| 3263 | |||||||||
| 3264 | // Build AllocaToSVDMap for ASanStackVariableDescription lookup. | ||||||||
| 3265 | DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; | ||||||||
| 3266 | for (auto &Desc : SVD) | ||||||||
| 3267 | AllocaToSVDMap[Desc.AI] = &Desc; | ||||||||
| 3268 | |||||||||
| 3269 | // Update SVD with information from lifetime intrinsics. | ||||||||
| 3270 | for (const auto &APC : StaticAllocaPoisonCallVec) { | ||||||||
| 3271 | assert(APC.InsBefore)((void)0); | ||||||||
| 3272 | assert(APC.AI)((void)0); | ||||||||
| 3273 | assert(ASan.isInterestingAlloca(*APC.AI))((void)0); | ||||||||
| 3274 | assert(APC.AI->isStaticAlloca())((void)0); | ||||||||
| 3275 | |||||||||
| 3276 | ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; | ||||||||
| 3277 | Desc.LifetimeSize = Desc.Size; | ||||||||
| 3278 | if (const DILocation *FnLoc = EntryDebugLocation.get()) { | ||||||||
| 3279 | if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { | ||||||||
| 3280 | if (LifetimeLoc->getFile() == FnLoc->getFile()) | ||||||||
| 3281 | if (unsigned Line = LifetimeLoc->getLine()) | ||||||||
| 3282 | Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); | ||||||||
| 3283 | } | ||||||||
| 3284 | } | ||||||||
| 3285 | } | ||||||||
| 3286 | |||||||||
| 3287 | auto DescriptionString = ComputeASanStackFrameDescription(SVD); | ||||||||
| 3288 | LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n")do { } while (false); | ||||||||
| 3289 | uint64_t LocalStackSize = L.FrameSize; | ||||||||
| 3290 | bool DoStackMalloc = | ||||||||
| 3291 | ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && | ||||||||
| 3292 | !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; | ||||||||
| 3293 | bool DoDynamicAlloca = ClDynamicAllocaStack; | ||||||||
| 3294 | // Don't do dynamic alloca or stack malloc if: | ||||||||
| 3295 | // 1) There is inline asm: too often it makes assumptions on which registers | ||||||||
| 3296 | // are available. | ||||||||
| 3297 | // 2) There is a returns_twice call (typically setjmp), which is | ||||||||
| 3298 | // optimization-hostile, and doesn't play well with introduced indirect | ||||||||
| 3299 | // register-relative calculation of local variable addresses. | ||||||||
| 3300 | DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; | ||||||||
| 3301 | DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; | ||||||||
| 3302 | |||||||||
| 3303 | Value *StaticAlloca = | ||||||||
| 3304 | DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); | ||||||||
| 3305 | |||||||||
| 3306 | Value *FakeStack; | ||||||||
| 3307 | Value *LocalStackBase; | ||||||||
| 3308 | Value *LocalStackBaseAlloca; | ||||||||
| 3309 | uint8_t DIExprFlags = DIExpression::ApplyOffset; | ||||||||
| 3310 | |||||||||
| 3311 | if (DoStackMalloc) { | ||||||||
| 3312 | LocalStackBaseAlloca = | ||||||||
| 3313 | IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); | ||||||||
| 3314 | if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { | ||||||||
| 3315 | // void *FakeStack = __asan_option_detect_stack_use_after_return | ||||||||
| 3316 | // ? __asan_stack_malloc_N(LocalStackSize) | ||||||||
| 3317 | // : nullptr; | ||||||||
| 3318 | // void *LocalStackBase = (FakeStack) ? FakeStack : | ||||||||
| 3319 | // alloca(LocalStackSize); | ||||||||
| 3320 | Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( | ||||||||
| 3321 | kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); | ||||||||
| 3322 | Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( | ||||||||
| 3323 | IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), | ||||||||
| 3324 | Constant::getNullValue(IRB.getInt32Ty())); | ||||||||
| 3325 | Instruction *Term = | ||||||||
| 3326 | SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); | ||||||||
| 3327 | IRBuilder<> IRBIf(Term); | ||||||||
| 3328 | StackMallocIdx = StackMallocSizeClass(LocalStackSize); | ||||||||
| 3329 | assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass)((void)0); | ||||||||
| 3330 | Value *FakeStackValue = | ||||||||
| 3331 | IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], | ||||||||
| 3332 | ConstantInt::get(IntptrTy, LocalStackSize)); | ||||||||
| 3333 | IRB.SetInsertPoint(InsBefore); | ||||||||
| 3334 | FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, | ||||||||
| 3335 | ConstantInt::get(IntptrTy, 0)); | ||||||||
| 3336 | } else { | ||||||||
| 3337 | // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) | ||||||||
| 3338 | // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); | ||||||||
| 3339 | // void *LocalStackBase = (FakeStack) ? FakeStack : | ||||||||
| 3340 | // alloca(LocalStackSize); | ||||||||
| 3341 | StackMallocIdx = StackMallocSizeClass(LocalStackSize); | ||||||||
| 3342 | FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], | ||||||||
| 3343 | ConstantInt::get(IntptrTy, LocalStackSize)); | ||||||||
| 3344 | } | ||||||||
| 3345 | Value *NoFakeStack = | ||||||||
| 3346 | IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); | ||||||||
| 3347 | Instruction *Term = | ||||||||
| 3348 | SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); | ||||||||
| 3349 | IRBuilder<> IRBIf(Term); | ||||||||
| 3350 | Value *AllocaValue = | ||||||||
| 3351 | DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; | ||||||||
| 3352 | |||||||||
| 3353 | IRB.SetInsertPoint(InsBefore); | ||||||||
| 3354 | LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); | ||||||||
| 3355 | IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); | ||||||||
| 3356 | DIExprFlags |= DIExpression::DerefBefore; | ||||||||
| 3357 | } else { | ||||||||
| 3358 | // void *FakeStack = nullptr; | ||||||||
| 3359 | // void *LocalStackBase = alloca(LocalStackSize); | ||||||||
| 3360 | FakeStack = ConstantInt::get(IntptrTy, 0); | ||||||||
| 3361 | LocalStackBase = | ||||||||
| 3362 | DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; | ||||||||
| 3363 | LocalStackBaseAlloca = LocalStackBase; | ||||||||
| 3364 | } | ||||||||
| 3365 | |||||||||
| 3366 | // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the | ||||||||
| 3367 | // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse | ||||||||
| 3368 | // later passes and can result in dropped variable coverage in debug info. | ||||||||
| 3369 | Value *LocalStackBaseAllocaPtr = | ||||||||
| 3370 | isa<PtrToIntInst>(LocalStackBaseAlloca) | ||||||||
| 3371 | ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() | ||||||||
| 3372 | : LocalStackBaseAlloca; | ||||||||
| 3373 | assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&((void)0) | ||||||||
| 3374 | "Variable descriptions relative to ASan stack base will be dropped")((void)0); | ||||||||
| 3375 | |||||||||
| 3376 | // Replace Alloca instructions with base+offset. | ||||||||
| 3377 | for (const auto &Desc : SVD) { | ||||||||
| 3378 | AllocaInst *AI = Desc.AI; | ||||||||
| 3379 | replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, | ||||||||
| 3380 | Desc.Offset); | ||||||||
| 3381 | Value *NewAllocaPtr = IRB.CreateIntToPtr( | ||||||||
| 3382 | IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), | ||||||||
| 3383 | AI->getType()); | ||||||||
| 3384 | AI->replaceAllUsesWith(NewAllocaPtr); | ||||||||
| 3385 | } | ||||||||
| 3386 | |||||||||
| 3387 | // The left-most redzone has enough space for at least 4 pointers. | ||||||||
| 3388 | // Write the Magic value to redzone[0]. | ||||||||
| 3389 | Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); | ||||||||
| 3390 | IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), | ||||||||
| 3391 | BasePlus0); | ||||||||
| 3392 | // Write the frame description constant to redzone[1]. | ||||||||
| 3393 | Value *BasePlus1 = IRB.CreateIntToPtr( | ||||||||
| 3394 | IRB.CreateAdd(LocalStackBase, | ||||||||
| 3395 | ConstantInt::get(IntptrTy, ASan.LongSize / 8)), | ||||||||
| 3396 | IntptrPtrTy); | ||||||||
| 3397 | GlobalVariable *StackDescriptionGlobal = | ||||||||
| 3398 | createPrivateGlobalForString(*F.getParent(), DescriptionString, | ||||||||
| 3399 | /*AllowMerging*/ true, kAsanGenPrefix); | ||||||||
| 3400 | Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); | ||||||||
| 3401 | IRB.CreateStore(Description, BasePlus1); | ||||||||
| 3402 | // Write the PC to redzone[2]. | ||||||||
| 3403 | Value *BasePlus2 = IRB.CreateIntToPtr( | ||||||||
| 3404 | IRB.CreateAdd(LocalStackBase, | ||||||||
| 3405 | ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), | ||||||||
| 3406 | IntptrPtrTy); | ||||||||
| 3407 | IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); | ||||||||
| 3408 | |||||||||
| 3409 | const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); | ||||||||
| 3410 | |||||||||
| 3411 | // Poison the stack red zones at the entry. | ||||||||
| 3412 | Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); | ||||||||
| 3413 | // As mask we must use most poisoned case: red zones and after scope. | ||||||||
| 3414 | // As bytes we can use either the same or just red zones only. | ||||||||
| 3415 | copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); | ||||||||
| 3416 | |||||||||
| 3417 | if (!StaticAllocaPoisonCallVec.empty()) { | ||||||||
| 3418 | const auto &ShadowInScope = GetShadowBytes(SVD, L); | ||||||||
| 3419 | |||||||||
| 3420 | // Poison static allocas near lifetime intrinsics. | ||||||||
| 3421 | for (const auto &APC : StaticAllocaPoisonCallVec) { | ||||||||
| 3422 | const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; | ||||||||
| 3423 | assert(Desc.Offset % L.Granularity == 0)((void)0); | ||||||||
| 3424 | size_t Begin = Desc.Offset / L.Granularity; | ||||||||
| 3425 | size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; | ||||||||
| 3426 | |||||||||
| 3427 | IRBuilder<> IRB(APC.InsBefore); | ||||||||
| 3428 | copyToShadow(ShadowAfterScope, | ||||||||
| 3429 | APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, | ||||||||
| 3430 | IRB, ShadowBase); | ||||||||
| 3431 | } | ||||||||
| 3432 | } | ||||||||
| 3433 | |||||||||
| 3434 | SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); | ||||||||
| 3435 | SmallVector<uint8_t, 64> ShadowAfterReturn; | ||||||||
| 3436 | |||||||||
| 3437 | // (Un)poison the stack before all ret instructions. | ||||||||
| 3438 | for (Instruction *Ret : RetVec) { | ||||||||
| 3439 | IRBuilder<> IRBRet(Ret); | ||||||||
| 3440 | // Mark the current frame as retired. | ||||||||
| 3441 | IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), | ||||||||
| 3442 | BasePlus0); | ||||||||
| 3443 | if (DoStackMalloc) { | ||||||||
| 3444 | assert(StackMallocIdx >= 0)((void)0); | ||||||||
| 3445 | // if FakeStack != 0 // LocalStackBase == FakeStack | ||||||||
| 3446 | // // In use-after-return mode, poison the whole stack frame. | ||||||||
| 3447 | // if StackMallocIdx <= 4 | ||||||||
| 3448 | // // For small sizes inline the whole thing: | ||||||||
| 3449 | // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); | ||||||||
| 3450 | // **SavedFlagPtr(FakeStack) = 0 | ||||||||
| 3451 | // else | ||||||||
| 3452 | // __asan_stack_free_N(FakeStack, LocalStackSize) | ||||||||
| 3453 | // else | ||||||||
| 3454 | // <This is not a fake stack; unpoison the redzones> | ||||||||
| 3455 | Value *Cmp = | ||||||||
| 3456 | IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); | ||||||||
| 3457 | Instruction *ThenTerm, *ElseTerm; | ||||||||
| 3458 | SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); | ||||||||
| 3459 | |||||||||
| 3460 | IRBuilder<> IRBPoison(ThenTerm); | ||||||||
| 3461 | if (StackMallocIdx <= 4) { | ||||||||
| 3462 | int ClassSize = kMinStackMallocSize << StackMallocIdx; | ||||||||
| 3463 | ShadowAfterReturn.resize(ClassSize / L.Granularity, | ||||||||
| 3464 | kAsanStackUseAfterReturnMagic); | ||||||||
| 3465 | copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, | ||||||||
| 3466 | ShadowBase); | ||||||||
| 3467 | Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( | ||||||||
| 3468 | FakeStack, | ||||||||
| 3469 | ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); | ||||||||
| 3470 | Value *SavedFlagPtr = IRBPoison.CreateLoad( | ||||||||
| 3471 | IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); | ||||||||
| 3472 | IRBPoison.CreateStore( | ||||||||
| 3473 | Constant::getNullValue(IRBPoison.getInt8Ty()), | ||||||||
| 3474 | IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); | ||||||||
| 3475 | } else { | ||||||||
| 3476 | // For larger frames call __asan_stack_free_*. | ||||||||
| 3477 | IRBPoison.CreateCall( | ||||||||
| 3478 | AsanStackFreeFunc[StackMallocIdx], | ||||||||
| 3479 | {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); | ||||||||
| 3480 | } | ||||||||
| 3481 | |||||||||
| 3482 | IRBuilder<> IRBElse(ElseTerm); | ||||||||
| 3483 | copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); | ||||||||
| 3484 | } else { | ||||||||
| 3485 | copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); | ||||||||
| 3486 | } | ||||||||
| 3487 | } | ||||||||
| 3488 | |||||||||
| 3489 | // We are done. Remove the old unused alloca instructions. | ||||||||
| 3490 | for (auto AI : AllocaVec) AI->eraseFromParent(); | ||||||||
| 3491 | } | ||||||||
| 3492 | |||||||||
| 3493 | void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, | ||||||||
| 3494 | IRBuilder<> &IRB, bool DoPoison) { | ||||||||
| 3495 | // For now just insert the call to ASan runtime. | ||||||||
| 3496 | Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); | ||||||||
| 3497 | Value *SizeArg = ConstantInt::get(IntptrTy, Size); | ||||||||
| 3498 | IRB.CreateCall( | ||||||||
| 3499 | DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, | ||||||||
| 3500 | {AddrArg, SizeArg}); | ||||||||
| 3501 | } | ||||||||
| 3502 | |||||||||
| 3503 | // Handling llvm.lifetime intrinsics for a given %alloca: | ||||||||
| 3504 | // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. | ||||||||
| 3505 | // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect | ||||||||
| 3506 | // invalid accesses) and unpoison it for llvm.lifetime.start (the memory | ||||||||
| 3507 | // could be poisoned by previous llvm.lifetime.end instruction, as the | ||||||||
| 3508 | // variable may go in and out of scope several times, e.g. in loops). | ||||||||
| 3509 | // (3) if we poisoned at least one %alloca in a function, | ||||||||
| 3510 | // unpoison the whole stack frame at function exit. | ||||||||
| 3511 | void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { | ||||||||
| 3512 | IRBuilder<> IRB(AI); | ||||||||
| 3513 | |||||||||
| 3514 | const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); | ||||||||
| 3515 | const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; | ||||||||
| 3516 | |||||||||
| 3517 | Value *Zero = Constant::getNullValue(IntptrTy); | ||||||||
| 3518 | Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); | ||||||||
| 3519 | Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); | ||||||||
| 3520 | |||||||||
| 3521 | // Since we need to extend alloca with additional memory to locate | ||||||||
| 3522 | // redzones, and OldSize is number of allocated blocks with | ||||||||
| 3523 | // ElementSize size, get allocated memory size in bytes by | ||||||||
| 3524 | // OldSize * ElementSize. | ||||||||
| 3525 | const unsigned ElementSize = | ||||||||
| 3526 | F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); | ||||||||
| 3527 | Value *OldSize = | ||||||||
| 3528 | IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), | ||||||||
| 3529 | ConstantInt::get(IntptrTy, ElementSize)); | ||||||||
| 3530 | |||||||||
| 3531 | // PartialSize = OldSize % 32 | ||||||||
| 3532 | Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); | ||||||||
| 3533 | |||||||||
| 3534 | // Misalign = kAllocaRzSize - PartialSize; | ||||||||
| 3535 | Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); | ||||||||
| 3536 | |||||||||
| 3537 | // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; | ||||||||
| 3538 | Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); | ||||||||
| 3539 | Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); | ||||||||
| 3540 | |||||||||
| 3541 | // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize | ||||||||
| 3542 | // Alignment is added to locate left redzone, PartialPadding for possible | ||||||||
| 3543 | // partial redzone and kAllocaRzSize for right redzone respectively. | ||||||||
| 3544 | Value *AdditionalChunkSize = IRB.CreateAdd( | ||||||||
| 3545 | ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); | ||||||||
| 3546 | |||||||||
| 3547 | Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); | ||||||||
| 3548 | |||||||||
| 3549 | // Insert new alloca with new NewSize and Alignment params. | ||||||||
| 3550 | AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); | ||||||||
| 3551 | NewAlloca->setAlignment(Align(Alignment)); | ||||||||
| 3552 | |||||||||
| 3553 | // NewAddress = Address + Alignment | ||||||||
| 3554 | Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), | ||||||||
| 3555 | ConstantInt::get(IntptrTy, Alignment)); | ||||||||
| 3556 | |||||||||
| 3557 | // Insert __asan_alloca_poison call for new created alloca. | ||||||||
| 3558 | IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); | ||||||||
| 3559 | |||||||||
| 3560 | // Store the last alloca's address to DynamicAllocaLayout. We'll need this | ||||||||
| 3561 | // for unpoisoning stuff. | ||||||||
| 3562 | IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); | ||||||||
| 3563 | |||||||||
| 3564 | Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); | ||||||||
| 3565 | |||||||||
| 3566 | // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. | ||||||||
| 3567 | AI->replaceAllUsesWith(NewAddressPtr); | ||||||||
| 3568 | |||||||||
| 3569 | // We are done. Erase old alloca from parent. | ||||||||
| 3570 | AI->eraseFromParent(); | ||||||||
| 3571 | } | ||||||||
| 3572 | |||||||||
| 3573 | // isSafeAccess returns true if Addr is always inbounds with respect to its | ||||||||
| 3574 | // base object. For example, it is a field access or an array access with | ||||||||
| 3575 | // constant inbounds index. | ||||||||
| 3576 | bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, | ||||||||
| 3577 | Value *Addr, uint64_t TypeSize) const { | ||||||||
| 3578 | SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); | ||||||||
| 3579 | if (!ObjSizeVis.bothKnown(SizeOffset)) return false; | ||||||||
| 3580 | uint64_t Size = SizeOffset.first.getZExtValue(); | ||||||||
| 3581 | int64_t Offset = SizeOffset.second.getSExtValue(); | ||||||||
| 3582 | // Three checks are required to ensure safety: | ||||||||
| 3583 | // . Offset >= 0 (since the offset is given from the base ptr) | ||||||||
| 3584 | // . Size >= Offset (unsigned) | ||||||||
| 3585 | // . Size - Offset >= NeededSize (unsigned) | ||||||||
| 3586 | return Offset >= 0 && Size >= uint64_t(Offset) && | ||||||||
| 3587 | Size - uint64_t(Offset) >= TypeSize / 8; | ||||||||
| 3588 | } |
| 1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file exposes the class definitions of all of the subclasses of the |
| 10 | // Instruction class. This is meant to be an easy way to get access to all |
| 11 | // instruction subclasses. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
| 16 | #define LLVM_IR_INSTRUCTIONS_H |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/Bitfields.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/None.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/StringRef.h" |
| 25 | #include "llvm/ADT/Twine.h" |
| 26 | #include "llvm/ADT/iterator.h" |
| 27 | #include "llvm/ADT/iterator_range.h" |
| 28 | #include "llvm/IR/Attributes.h" |
| 29 | #include "llvm/IR/BasicBlock.h" |
| 30 | #include "llvm/IR/CallingConv.h" |
| 31 | #include "llvm/IR/CFG.h" |
| 32 | #include "llvm/IR/Constant.h" |
| 33 | #include "llvm/IR/DerivedTypes.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/InstrTypes.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/OperandTraits.h" |
| 38 | #include "llvm/IR/Type.h" |
| 39 | #include "llvm/IR/Use.h" |
| 40 | #include "llvm/IR/User.h" |
| 41 | #include "llvm/IR/Value.h" |
| 42 | #include "llvm/Support/AtomicOrdering.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include "llvm/Support/ErrorHandling.h" |
| 45 | #include <cassert> |
| 46 | #include <cstddef> |
| 47 | #include <cstdint> |
| 48 | #include <iterator> |
| 49 | |
| 50 | namespace llvm { |
| 51 | |
| 52 | class APInt; |
| 53 | class ConstantInt; |
| 54 | class DataLayout; |
| 55 | class LLVMContext; |
| 56 | |
| 57 | //===----------------------------------------------------------------------===// |
| 58 | // AllocaInst Class |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | /// an instruction to allocate memory on the stack |
| 62 | class AllocaInst : public UnaryInstruction { |
| 63 | Type *AllocatedType; |
| 64 | |
| 65 | using AlignmentField = AlignmentBitfieldElementT<0>; |
| 66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
| 67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
| 68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
| 69 | SwiftErrorField>(), |
| 70 | "Bitfields must be contiguous"); |
| 71 | |
| 72 | protected: |
| 73 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 74 | friend class Instruction; |
| 75 | |
| 76 | AllocaInst *cloneImpl() const; |
| 77 | |
| 78 | public: |
| 79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 80 | const Twine &Name, Instruction *InsertBefore); |
| 81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 82 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 83 | |
| 84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
| 85 | Instruction *InsertBefore); |
| 86 | AllocaInst(Type *Ty, unsigned AddrSpace, |
| 87 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 88 | |
| 89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
| 91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 92 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 93 | |
| 94 | /// Return true if there is an allocation size parameter to the allocation |
| 95 | /// instruction that is not 1. |
| 96 | bool isArrayAllocation() const; |
| 97 | |
| 98 | /// Get the number of elements allocated. For a simple allocation of a single |
| 99 | /// element, this will return a constant 1 value. |
| 100 | const Value *getArraySize() const { return getOperand(0); } |
| 101 | Value *getArraySize() { return getOperand(0); } |
| 102 | |
| 103 | /// Overload to return most specific pointer type. |
| 104 | PointerType *getType() const { |
| 105 | return cast<PointerType>(Instruction::getType()); |
| 106 | } |
| 107 | |
| 108 | /// Get allocation size in bits. Returns None if size can't be determined, |
| 109 | /// e.g. in case of a VLA. |
| 110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
| 111 | |
| 112 | /// Return the type that is being allocated by the instruction. |
| 113 | Type *getAllocatedType() const { return AllocatedType; } |
| 114 | /// for use only in special circumstances that need to generically |
| 115 | /// transform a whole instruction (eg: IR linking and vectorization). |
| 116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
| 117 | |
| 118 | /// Return the alignment of the memory that is being allocated by the |
| 119 | /// instruction. |
| 120 | Align getAlign() const { |
| 121 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 122 | } |
| 123 | |
| 124 | void setAlignment(Align Align) { |
| 125 | setSubclassData<AlignmentField>(Log2(Align)); |
| 126 | } |
| 127 | |
| 128 | // FIXME: Remove this one transition to Align is over. |
| 129 | unsigned getAlignment() const { return getAlign().value(); } |
| 130 | |
| 131 | /// Return true if this alloca is in the entry block of the function and is a |
| 132 | /// constant size. If so, the code generator will fold it into the |
| 133 | /// prolog/epilog code, so it is basically free. |
| 134 | bool isStaticAlloca() const; |
| 135 | |
| 136 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
| 137 | /// allocas are never considered static even if they are in the entry block. |
| 138 | bool isUsedWithInAlloca() const { |
| 139 | return getSubclassData<UsedWithInAllocaField>(); |
| 140 | } |
| 141 | |
| 142 | /// Specify whether this alloca is used to represent the arguments to a call. |
| 143 | void setUsedWithInAlloca(bool V) { |
| 144 | setSubclassData<UsedWithInAllocaField>(V); |
| 145 | } |
| 146 | |
| 147 | /// Return true if this alloca is used as a swifterror argument to a call. |
| 148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
| 149 | /// Specify whether this alloca is used to represent a swifterror. |
| 150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
| 151 | |
| 152 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 153 | static bool classof(const Instruction *I) { |
| 154 | return (I->getOpcode() == Instruction::Alloca); |
| 155 | } |
| 156 | static bool classof(const Value *V) { |
| 157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 158 | } |
| 159 | |
| 160 | private: |
| 161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 162 | // method so that subclasses cannot accidentally use it. |
| 163 | template <typename Bitfield> |
| 164 | void setSubclassData(typename Bitfield::Type Value) { |
| 165 | Instruction::setSubclassData<Bitfield>(Value); |
| 166 | } |
| 167 | }; |
| 168 | |
| 169 | //===----------------------------------------------------------------------===// |
| 170 | // LoadInst Class |
| 171 | //===----------------------------------------------------------------------===// |
| 172 | |
| 173 | /// An instruction for reading from memory. This uses the SubclassData field in |
| 174 | /// Value to store whether or not the load is volatile. |
| 175 | class LoadInst : public UnaryInstruction { |
| 176 | using VolatileField = BoolBitfieldElementT<0>; |
| 177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 179 | static_assert( |
| 180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 181 | "Bitfields must be contiguous"); |
| 182 | |
| 183 | void AssertOK(); |
| 184 | |
| 185 | protected: |
| 186 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 187 | friend class Instruction; |
| 188 | |
| 189 | LoadInst *cloneImpl() const; |
| 190 | |
| 191 | public: |
| 192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
| 193 | Instruction *InsertBefore); |
| 194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 196 | Instruction *InsertBefore); |
| 197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 198 | BasicBlock *InsertAtEnd); |
| 199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 200 | Align Align, Instruction *InsertBefore = nullptr); |
| 201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 202 | Align Align, BasicBlock *InsertAtEnd); |
| 203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 204 | Align Align, AtomicOrdering Order, |
| 205 | SyncScope::ID SSID = SyncScope::System, |
| 206 | Instruction *InsertBefore = nullptr); |
| 207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
| 209 | BasicBlock *InsertAtEnd); |
| 210 | |
| 211 | /// Return true if this is a load from a volatile memory location. |
| 212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 213 | |
| 214 | /// Specify whether this is a volatile load or not. |
| 215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 216 | |
| 217 | /// Return the alignment of the access that is being performed. |
| 218 | /// FIXME: Remove this function once transition to Align is over. |
| 219 | /// Use getAlign() instead. |
| 220 | unsigned getAlignment() const { return getAlign().value(); } |
| 221 | |
| 222 | /// Return the alignment of the access that is being performed. |
| 223 | Align getAlign() const { |
| 224 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 225 | } |
| 226 | |
| 227 | void setAlignment(Align Align) { |
| 228 | setSubclassData<AlignmentField>(Log2(Align)); |
| 229 | } |
| 230 | |
| 231 | /// Returns the ordering constraint of this load instruction. |
| 232 | AtomicOrdering getOrdering() const { |
| 233 | return getSubclassData<OrderingField>(); |
| 234 | } |
| 235 | /// Sets the ordering constraint of this load instruction. May not be Release |
| 236 | /// or AcquireRelease. |
| 237 | void setOrdering(AtomicOrdering Ordering) { |
| 238 | setSubclassData<OrderingField>(Ordering); |
| 239 | } |
| 240 | |
| 241 | /// Returns the synchronization scope ID of this load instruction. |
| 242 | SyncScope::ID getSyncScopeID() const { |
| 243 | return SSID; |
| 244 | } |
| 245 | |
| 246 | /// Sets the synchronization scope ID of this load instruction. |
| 247 | void setSyncScopeID(SyncScope::ID SSID) { |
| 248 | this->SSID = SSID; |
| 249 | } |
| 250 | |
| 251 | /// Sets the ordering constraint and the synchronization scope ID of this load |
| 252 | /// instruction. |
| 253 | void setAtomic(AtomicOrdering Ordering, |
| 254 | SyncScope::ID SSID = SyncScope::System) { |
| 255 | setOrdering(Ordering); |
| 256 | setSyncScopeID(SSID); |
| 257 | } |
| 258 | |
| 259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 260 | |
| 261 | bool isUnordered() const { |
| 262 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 263 | getOrdering() == AtomicOrdering::Unordered) && |
| 264 | !isVolatile(); |
| 265 | } |
| 266 | |
| 267 | Value *getPointerOperand() { return getOperand(0); } |
| 268 | const Value *getPointerOperand() const { return getOperand(0); } |
| 269 | static unsigned getPointerOperandIndex() { return 0U; } |
| 270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 271 | |
| 272 | /// Returns the address space of the pointer operand. |
| 273 | unsigned getPointerAddressSpace() const { |
| 274 | return getPointerOperandType()->getPointerAddressSpace(); |
| 275 | } |
| 276 | |
| 277 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 278 | static bool classof(const Instruction *I) { |
| 279 | return I->getOpcode() == Instruction::Load; |
| 280 | } |
| 281 | static bool classof(const Value *V) { |
| 282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 283 | } |
| 284 | |
| 285 | private: |
| 286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 287 | // method so that subclasses cannot accidentally use it. |
| 288 | template <typename Bitfield> |
| 289 | void setSubclassData(typename Bitfield::Type Value) { |
| 290 | Instruction::setSubclassData<Bitfield>(Value); |
| 291 | } |
| 292 | |
| 293 | /// The synchronization scope ID of this load instruction. Not quite enough |
| 294 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 295 | /// own field. |
| 296 | SyncScope::ID SSID; |
| 297 | }; |
| 298 | |
| 299 | //===----------------------------------------------------------------------===// |
| 300 | // StoreInst Class |
| 301 | //===----------------------------------------------------------------------===// |
| 302 | |
| 303 | /// An instruction for storing to memory. |
| 304 | class StoreInst : public Instruction { |
| 305 | using VolatileField = BoolBitfieldElementT<0>; |
| 306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 308 | static_assert( |
| 309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 310 | "Bitfields must be contiguous"); |
| 311 | |
| 312 | void AssertOK(); |
| 313 | |
| 314 | protected: |
| 315 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 316 | friend class Instruction; |
| 317 | |
| 318 | StoreInst *cloneImpl() const; |
| 319 | |
| 320 | public: |
| 321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
| 322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
| 323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
| 324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
| 325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 326 | Instruction *InsertBefore = nullptr); |
| 327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 328 | BasicBlock *InsertAtEnd); |
| 329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
| 331 | Instruction *InsertBefore = nullptr); |
| 332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
| 334 | |
| 335 | // allocate space for exactly two operands |
| 336 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 338 | |
| 339 | /// Return true if this is a store to a volatile memory location. |
| 340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 341 | |
| 342 | /// Specify whether this is a volatile store or not. |
| 343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 344 | |
| 345 | /// Transparently provide more efficient getOperand methods. |
| 346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 347 | |
| 348 | /// Return the alignment of the access that is being performed |
| 349 | /// FIXME: Remove this function once transition to Align is over. |
| 350 | /// Use getAlign() instead. |
| 351 | unsigned getAlignment() const { return getAlign().value(); } |
| 352 | |
| 353 | Align getAlign() const { |
| 354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 355 | } |
| 356 | |
| 357 | void setAlignment(Align Align) { |
| 358 | setSubclassData<AlignmentField>(Log2(Align)); |
| 359 | } |
| 360 | |
| 361 | /// Returns the ordering constraint of this store instruction. |
| 362 | AtomicOrdering getOrdering() const { |
| 363 | return getSubclassData<OrderingField>(); |
| 364 | } |
| 365 | |
| 366 | /// Sets the ordering constraint of this store instruction. May not be |
| 367 | /// Acquire or AcquireRelease. |
| 368 | void setOrdering(AtomicOrdering Ordering) { |
| 369 | setSubclassData<OrderingField>(Ordering); |
| 370 | } |
| 371 | |
| 372 | /// Returns the synchronization scope ID of this store instruction. |
| 373 | SyncScope::ID getSyncScopeID() const { |
| 374 | return SSID; |
| 375 | } |
| 376 | |
| 377 | /// Sets the synchronization scope ID of this store instruction. |
| 378 | void setSyncScopeID(SyncScope::ID SSID) { |
| 379 | this->SSID = SSID; |
| 380 | } |
| 381 | |
| 382 | /// Sets the ordering constraint and the synchronization scope ID of this |
| 383 | /// store instruction. |
| 384 | void setAtomic(AtomicOrdering Ordering, |
| 385 | SyncScope::ID SSID = SyncScope::System) { |
| 386 | setOrdering(Ordering); |
| 387 | setSyncScopeID(SSID); |
| 388 | } |
| 389 | |
| 390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 391 | |
| 392 | bool isUnordered() const { |
| 393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 394 | getOrdering() == AtomicOrdering::Unordered) && |
| 395 | !isVolatile(); |
| 396 | } |
| 397 | |
| 398 | Value *getValueOperand() { return getOperand(0); } |
| 399 | const Value *getValueOperand() const { return getOperand(0); } |
| 400 | |
| 401 | Value *getPointerOperand() { return getOperand(1); } |
| 402 | const Value *getPointerOperand() const { return getOperand(1); } |
| 403 | static unsigned getPointerOperandIndex() { return 1U; } |
| 404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 405 | |
| 406 | /// Returns the address space of the pointer operand. |
| 407 | unsigned getPointerAddressSpace() const { |
| 408 | return getPointerOperandType()->getPointerAddressSpace(); |
| 409 | } |
| 410 | |
| 411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 412 | static bool classof(const Instruction *I) { |
| 413 | return I->getOpcode() == Instruction::Store; |
| 414 | } |
| 415 | static bool classof(const Value *V) { |
| 416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 417 | } |
| 418 | |
| 419 | private: |
| 420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 421 | // method so that subclasses cannot accidentally use it. |
| 422 | template <typename Bitfield> |
| 423 | void setSubclassData(typename Bitfield::Type Value) { |
| 424 | Instruction::setSubclassData<Bitfield>(Value); |
| 425 | } |
| 426 | |
| 427 | /// The synchronization scope ID of this store instruction. Not quite enough |
| 428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 429 | /// own field. |
| 430 | SyncScope::ID SSID; |
| 431 | }; |
| 432 | |
| 433 | template <> |
| 434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
| 435 | }; |
| 436 | |
| 437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
| 438 | |
| 439 | //===----------------------------------------------------------------------===// |
| 440 | // FenceInst Class |
| 441 | //===----------------------------------------------------------------------===// |
| 442 | |
| 443 | /// An instruction for ordering other memory operations. |
| 444 | class FenceInst : public Instruction { |
| 445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
| 446 | |
| 447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
| 448 | |
| 449 | protected: |
| 450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 451 | friend class Instruction; |
| 452 | |
| 453 | FenceInst *cloneImpl() const; |
| 454 | |
| 455 | public: |
| 456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
| 457 | // SequentiallyConsistent. |
| 458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| 459 | SyncScope::ID SSID = SyncScope::System, |
| 460 | Instruction *InsertBefore = nullptr); |
| 461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
| 462 | BasicBlock *InsertAtEnd); |
| 463 | |
| 464 | // allocate space for exactly zero operands |
| 465 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 467 | |
| 468 | /// Returns the ordering constraint of this fence instruction. |
| 469 | AtomicOrdering getOrdering() const { |
| 470 | return getSubclassData<OrderingField>(); |
| 471 | } |
| 472 | |
| 473 | /// Sets the ordering constraint of this fence instruction. May only be |
| 474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
| 475 | void setOrdering(AtomicOrdering Ordering) { |
| 476 | setSubclassData<OrderingField>(Ordering); |
| 477 | } |
| 478 | |
| 479 | /// Returns the synchronization scope ID of this fence instruction. |
| 480 | SyncScope::ID getSyncScopeID() const { |
| 481 | return SSID; |
| 482 | } |
| 483 | |
| 484 | /// Sets the synchronization scope ID of this fence instruction. |
| 485 | void setSyncScopeID(SyncScope::ID SSID) { |
| 486 | this->SSID = SSID; |
| 487 | } |
| 488 | |
| 489 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 490 | static bool classof(const Instruction *I) { |
| 491 | return I->getOpcode() == Instruction::Fence; |
| 492 | } |
| 493 | static bool classof(const Value *V) { |
| 494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 495 | } |
| 496 | |
| 497 | private: |
| 498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 499 | // method so that subclasses cannot accidentally use it. |
| 500 | template <typename Bitfield> |
| 501 | void setSubclassData(typename Bitfield::Type Value) { |
| 502 | Instruction::setSubclassData<Bitfield>(Value); |
| 503 | } |
| 504 | |
| 505 | /// The synchronization scope ID of this fence instruction. Not quite enough |
| 506 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 507 | /// own field. |
| 508 | SyncScope::ID SSID; |
| 509 | }; |
| 510 | |
| 511 | //===----------------------------------------------------------------------===// |
| 512 | // AtomicCmpXchgInst Class |
| 513 | //===----------------------------------------------------------------------===// |
| 514 | |
| 515 | /// An instruction that atomically checks whether a |
| 516 | /// specified value is in a memory location, and, if it is, stores a new value |
| 517 | /// there. The value returned by this instruction is a pair containing the |
| 518 | /// original value as first element, and an i1 indicating success (true) or |
| 519 | /// failure (false) as second element. |
| 520 | /// |
| 521 | class AtomicCmpXchgInst : public Instruction { |
| 522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
| 523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
| 524 | SyncScope::ID SSID); |
| 525 | |
| 526 | template <unsigned Offset> |
| 527 | using AtomicOrderingBitfieldElement = |
| 528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 529 | AtomicOrdering::LAST>; |
| 530 | |
| 531 | protected: |
| 532 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 533 | friend class Instruction; |
| 534 | |
| 535 | AtomicCmpXchgInst *cloneImpl() const; |
| 536 | |
| 537 | public: |
| 538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 539 | AtomicOrdering SuccessOrdering, |
| 540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 541 | Instruction *InsertBefore = nullptr); |
| 542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 543 | AtomicOrdering SuccessOrdering, |
| 544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 545 | BasicBlock *InsertAtEnd); |
| 546 | |
| 547 | // allocate space for exactly three operands |
| 548 | void *operator new(size_t S) { return User::operator new(S, 3); } |
| 549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 550 | |
| 551 | using VolatileField = BoolBitfieldElementT<0>; |
| 552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
| 553 | using SuccessOrderingField = |
| 554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
| 555 | using FailureOrderingField = |
| 556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
| 557 | using AlignmentField = |
| 558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
| 559 | static_assert( |
| 560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
| 561 | FailureOrderingField, AlignmentField>(), |
| 562 | "Bitfields must be contiguous"); |
| 563 | |
| 564 | /// Return the alignment of the memory that is being allocated by the |
| 565 | /// instruction. |
| 566 | Align getAlign() const { |
| 567 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 568 | } |
| 569 | |
| 570 | void setAlignment(Align Align) { |
| 571 | setSubclassData<AlignmentField>(Log2(Align)); |
| 572 | } |
| 573 | |
| 574 | /// Return true if this is a cmpxchg from a volatile memory |
| 575 | /// location. |
| 576 | /// |
| 577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 578 | |
| 579 | /// Specify whether this is a volatile cmpxchg. |
| 580 | /// |
| 581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 582 | |
| 583 | /// Return true if this cmpxchg may spuriously fail. |
| 584 | bool isWeak() const { return getSubclassData<WeakField>(); } |
| 585 | |
| 586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
| 587 | |
| 588 | /// Transparently provide more efficient getOperand methods. |
| 589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 590 | |
| 591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
| 592 | return Ordering != AtomicOrdering::NotAtomic && |
| 593 | Ordering != AtomicOrdering::Unordered; |
| 594 | } |
| 595 | |
| 596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
| 597 | return Ordering != AtomicOrdering::NotAtomic && |
| 598 | Ordering != AtomicOrdering::Unordered && |
| 599 | Ordering != AtomicOrdering::AcquireRelease && |
| 600 | Ordering != AtomicOrdering::Release; |
| 601 | } |
| 602 | |
| 603 | /// Returns the success ordering constraint of this cmpxchg instruction. |
| 604 | AtomicOrdering getSuccessOrdering() const { |
| 605 | return getSubclassData<SuccessOrderingField>(); |
| 606 | } |
| 607 | |
| 608 | /// Sets the success ordering constraint of this cmpxchg instruction. |
| 609 | void setSuccessOrdering(AtomicOrdering Ordering) { |
| 610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) |
| 611 | "invalid CmpXchg success ordering")((void)0); |
| 612 | setSubclassData<SuccessOrderingField>(Ordering); |
| 613 | } |
| 614 | |
| 615 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
| 616 | AtomicOrdering getFailureOrdering() const { |
| 617 | return getSubclassData<FailureOrderingField>(); |
| 618 | } |
| 619 | |
| 620 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
| 621 | void setFailureOrdering(AtomicOrdering Ordering) { |
| 622 | assert(isValidFailureOrdering(Ordering) &&((void)0) |
| 623 | "invalid CmpXchg failure ordering")((void)0); |
| 624 | setSubclassData<FailureOrderingField>(Ordering); |
| 625 | } |
| 626 | |
| 627 | /// Returns a single ordering which is at least as strong as both the |
| 628 | /// success and failure orderings for this cmpxchg. |
| 629 | AtomicOrdering getMergedOrdering() const { |
| 630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 631 | return AtomicOrdering::SequentiallyConsistent; |
| 632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
| 633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
| 634 | return AtomicOrdering::Acquire; |
| 635 | if (getSuccessOrdering() == AtomicOrdering::Release) |
| 636 | return AtomicOrdering::AcquireRelease; |
| 637 | } |
| 638 | return getSuccessOrdering(); |
| 639 | } |
| 640 | |
| 641 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
| 642 | SyncScope::ID getSyncScopeID() const { |
| 643 | return SSID; |
| 644 | } |
| 645 | |
| 646 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
| 647 | void setSyncScopeID(SyncScope::ID SSID) { |
| 648 | this->SSID = SSID; |
| 649 | } |
| 650 | |
| 651 | Value *getPointerOperand() { return getOperand(0); } |
| 652 | const Value *getPointerOperand() const { return getOperand(0); } |
| 653 | static unsigned getPointerOperandIndex() { return 0U; } |
| 654 | |
| 655 | Value *getCompareOperand() { return getOperand(1); } |
| 656 | const Value *getCompareOperand() const { return getOperand(1); } |
| 657 | |
| 658 | Value *getNewValOperand() { return getOperand(2); } |
| 659 | const Value *getNewValOperand() const { return getOperand(2); } |
| 660 | |
| 661 | /// Returns the address space of the pointer operand. |
| 662 | unsigned getPointerAddressSpace() const { |
| 663 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 664 | } |
| 665 | |
| 666 | /// Returns the strongest permitted ordering on failure, given the |
| 667 | /// desired ordering on success. |
| 668 | /// |
| 669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
| 670 | /// so release semantics cannot be provided. So this function drops explicit |
| 671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
| 672 | /// operation would remain SequentiallyConsistent. |
| 673 | static AtomicOrdering |
| 674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
| 675 | switch (SuccessOrdering) { |
| 676 | default: |
| 677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); |
| 678 | case AtomicOrdering::Release: |
| 679 | case AtomicOrdering::Monotonic: |
| 680 | return AtomicOrdering::Monotonic; |
| 681 | case AtomicOrdering::AcquireRelease: |
| 682 | case AtomicOrdering::Acquire: |
| 683 | return AtomicOrdering::Acquire; |
| 684 | case AtomicOrdering::SequentiallyConsistent: |
| 685 | return AtomicOrdering::SequentiallyConsistent; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 690 | static bool classof(const Instruction *I) { |
| 691 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
| 692 | } |
| 693 | static bool classof(const Value *V) { |
| 694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 695 | } |
| 696 | |
| 697 | private: |
| 698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 699 | // method so that subclasses cannot accidentally use it. |
| 700 | template <typename Bitfield> |
| 701 | void setSubclassData(typename Bitfield::Type Value) { |
| 702 | Instruction::setSubclassData<Bitfield>(Value); |
| 703 | } |
| 704 | |
| 705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
| 706 | /// enough room in SubClassData for everything, so synchronization scope ID |
| 707 | /// gets its own field. |
| 708 | SyncScope::ID SSID; |
| 709 | }; |
| 710 | |
| 711 | template <> |
| 712 | struct OperandTraits<AtomicCmpXchgInst> : |
| 713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
| 714 | }; |
| 715 | |
| 716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 717 | |
| 718 | //===----------------------------------------------------------------------===// |
| 719 | // AtomicRMWInst Class |
| 720 | //===----------------------------------------------------------------------===// |
| 721 | |
| 722 | /// an instruction that atomically reads a memory location, |
| 723 | /// combines it with another value, and then stores the result back. Returns |
| 724 | /// the old value. |
| 725 | /// |
| 726 | class AtomicRMWInst : public Instruction { |
| 727 | protected: |
| 728 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 729 | friend class Instruction; |
| 730 | |
| 731 | AtomicRMWInst *cloneImpl() const; |
| 732 | |
| 733 | public: |
| 734 | /// This enumeration lists the possible modifications atomicrmw can make. In |
| 735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
| 736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
| 737 | /// instruction. These instructions always return 'old'. |
| 738 | enum BinOp : unsigned { |
| 739 | /// *p = v |
| 740 | Xchg, |
| 741 | /// *p = old + v |
| 742 | Add, |
| 743 | /// *p = old - v |
| 744 | Sub, |
| 745 | /// *p = old & v |
| 746 | And, |
| 747 | /// *p = ~(old & v) |
| 748 | Nand, |
| 749 | /// *p = old | v |
| 750 | Or, |
| 751 | /// *p = old ^ v |
| 752 | Xor, |
| 753 | /// *p = old >signed v ? old : v |
| 754 | Max, |
| 755 | /// *p = old <signed v ? old : v |
| 756 | Min, |
| 757 | /// *p = old >unsigned v ? old : v |
| 758 | UMax, |
| 759 | /// *p = old <unsigned v ? old : v |
| 760 | UMin, |
| 761 | |
| 762 | /// *p = old + v |
| 763 | FAdd, |
| 764 | |
| 765 | /// *p = old - v |
| 766 | FSub, |
| 767 | |
| 768 | FIRST_BINOP = Xchg, |
| 769 | LAST_BINOP = FSub, |
| 770 | BAD_BINOP |
| 771 | }; |
| 772 | |
| 773 | private: |
| 774 | template <unsigned Offset> |
| 775 | using AtomicOrderingBitfieldElement = |
| 776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 777 | AtomicOrdering::LAST>; |
| 778 | |
| 779 | template <unsigned Offset> |
| 780 | using BinOpBitfieldElement = |
| 781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
| 782 | |
| 783 | public: |
| 784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 785 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 786 | Instruction *InsertBefore = nullptr); |
| 787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 788 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 789 | BasicBlock *InsertAtEnd); |
| 790 | |
| 791 | // allocate space for exactly two operands |
| 792 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 794 | |
| 795 | using VolatileField = BoolBitfieldElementT<0>; |
| 796 | using AtomicOrderingField = |
| 797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
| 798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
| 799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
| 800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
| 801 | OperationField, AlignmentField>(), |
| 802 | "Bitfields must be contiguous"); |
| 803 | |
| 804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
| 805 | |
| 806 | static StringRef getOperationName(BinOp Op); |
| 807 | |
| 808 | static bool isFPOperation(BinOp Op) { |
| 809 | switch (Op) { |
| 810 | case AtomicRMWInst::FAdd: |
| 811 | case AtomicRMWInst::FSub: |
| 812 | return true; |
| 813 | default: |
| 814 | return false; |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | void setOperation(BinOp Operation) { |
| 819 | setSubclassData<OperationField>(Operation); |
| 820 | } |
| 821 | |
| 822 | /// Return the alignment of the memory that is being allocated by the |
| 823 | /// instruction. |
| 824 | Align getAlign() const { |
| 825 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 826 | } |
| 827 | |
| 828 | void setAlignment(Align Align) { |
| 829 | setSubclassData<AlignmentField>(Log2(Align)); |
| 830 | } |
| 831 | |
| 832 | /// Return true if this is a RMW on a volatile memory location. |
| 833 | /// |
| 834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 835 | |
| 836 | /// Specify whether this is a volatile RMW or not. |
| 837 | /// |
| 838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 839 | |
| 840 | /// Transparently provide more efficient getOperand methods. |
| 841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 842 | |
| 843 | /// Returns the ordering constraint of this rmw instruction. |
| 844 | AtomicOrdering getOrdering() const { |
| 845 | return getSubclassData<AtomicOrderingField>(); |
| 846 | } |
| 847 | |
| 848 | /// Sets the ordering constraint of this rmw instruction. |
| 849 | void setOrdering(AtomicOrdering Ordering) { |
| 850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) |
| 851 | "atomicrmw instructions can only be atomic.")((void)0); |
| 852 | setSubclassData<AtomicOrderingField>(Ordering); |
| 853 | } |
| 854 | |
| 855 | /// Returns the synchronization scope ID of this rmw instruction. |
| 856 | SyncScope::ID getSyncScopeID() const { |
| 857 | return SSID; |
| 858 | } |
| 859 | |
| 860 | /// Sets the synchronization scope ID of this rmw instruction. |
| 861 | void setSyncScopeID(SyncScope::ID SSID) { |
| 862 | this->SSID = SSID; |
| 863 | } |
| 864 | |
| 865 | Value *getPointerOperand() { return getOperand(0); } |
| 866 | const Value *getPointerOperand() const { return getOperand(0); } |
| 867 | static unsigned getPointerOperandIndex() { return 0U; } |
| 868 | |
| 869 | Value *getValOperand() { return getOperand(1); } |
| 870 | const Value *getValOperand() const { return getOperand(1); } |
| 871 | |
| 872 | /// Returns the address space of the pointer operand. |
| 873 | unsigned getPointerAddressSpace() const { |
| 874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 875 | } |
| 876 | |
| 877 | bool isFloatingPointOperation() const { |
| 878 | return isFPOperation(getOperation()); |
| 879 | } |
| 880 | |
| 881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 882 | static bool classof(const Instruction *I) { |
| 883 | return I->getOpcode() == Instruction::AtomicRMW; |
| 884 | } |
| 885 | static bool classof(const Value *V) { |
| 886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 887 | } |
| 888 | |
| 889 | private: |
| 890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
| 891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
| 892 | |
| 893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 894 | // method so that subclasses cannot accidentally use it. |
| 895 | template <typename Bitfield> |
| 896 | void setSubclassData(typename Bitfield::Type Value) { |
| 897 | Instruction::setSubclassData<Bitfield>(Value); |
| 898 | } |
| 899 | |
| 900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
| 901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 902 | /// own field. |
| 903 | SyncScope::ID SSID; |
| 904 | }; |
| 905 | |
| 906 | template <> |
| 907 | struct OperandTraits<AtomicRMWInst> |
| 908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
| 909 | }; |
| 910 | |
| 911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 912 | |
| 913 | //===----------------------------------------------------------------------===// |
| 914 | // GetElementPtrInst Class |
| 915 | //===----------------------------------------------------------------------===// |
| 916 | |
| 917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
| 918 | // message on bad indexes for a gep instruction. |
| 919 | // |
| 920 | inline Type *checkGEPType(Type *Ty) { |
| 921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); |
| 922 | return Ty; |
| 923 | } |
| 924 | |
| 925 | /// an instruction for type-safe pointer arithmetic to |
| 926 | /// access elements of arrays and structs |
| 927 | /// |
| 928 | class GetElementPtrInst : public Instruction { |
| 929 | Type *SourceElementType; |
| 930 | Type *ResultElementType; |
| 931 | |
| 932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
| 933 | |
| 934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
| 935 | /// list of indices. The first ctor can optionally insert before an existing |
| 936 | /// instruction, the second appends the new instruction to the specified |
| 937 | /// BasicBlock. |
| 938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 939 | ArrayRef<Value *> IdxList, unsigned Values, |
| 940 | const Twine &NameStr, Instruction *InsertBefore); |
| 941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 942 | ArrayRef<Value *> IdxList, unsigned Values, |
| 943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 944 | |
| 945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
| 946 | |
| 947 | protected: |
| 948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 949 | friend class Instruction; |
| 950 | |
| 951 | GetElementPtrInst *cloneImpl() const; |
| 952 | |
| 953 | public: |
| 954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 955 | ArrayRef<Value *> IdxList, |
| 956 | const Twine &NameStr = "", |
| 957 | Instruction *InsertBefore = nullptr) { |
| 958 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 959 | assert(PointeeType && "Must specify element type")((void)0); |
| 960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 963 | NameStr, InsertBefore); |
| 964 | } |
| 965 | |
| 966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 967 | ArrayRef<Value *> IdxList, |
| 968 | const Twine &NameStr, |
| 969 | BasicBlock *InsertAtEnd) { |
| 970 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 971 | assert(PointeeType && "Must specify element type")((void)0); |
| 972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 975 | NameStr, InsertAtEnd); |
| 976 | } |
| 977 | |
| 978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
| 982 | return CreateInBounds( |
| 983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 984 | NameStr, InsertBefore); |
| 985 | } |
| 986 | |
| 987 | /// Create an "inbounds" getelementptr. See the documentation for the |
| 988 | /// "inbounds" flag in LangRef.html for details. |
| 989 | static GetElementPtrInst * |
| 990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
| 991 | const Twine &NameStr = "", |
| 992 | Instruction *InsertBefore = nullptr) { |
| 993 | GetElementPtrInst *GEP = |
| 994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
| 995 | GEP->setIsInBounds(true); |
| 996 | return GEP; |
| 997 | } |
| 998 | |
| 999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1003 | return CreateInBounds( |
| 1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 1005 | NameStr, InsertAtEnd); |
| 1006 | } |
| 1007 | |
| 1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
| 1009 | ArrayRef<Value *> IdxList, |
| 1010 | const Twine &NameStr, |
| 1011 | BasicBlock *InsertAtEnd) { |
| 1012 | GetElementPtrInst *GEP = |
| 1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
| 1014 | GEP->setIsInBounds(true); |
| 1015 | return GEP; |
| 1016 | } |
| 1017 | |
| 1018 | /// Transparently provide more efficient getOperand methods. |
| 1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1020 | |
| 1021 | Type *getSourceElementType() const { return SourceElementType; } |
| 1022 | |
| 1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
| 1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
| 1025 | |
| 1026 | Type *getResultElementType() const { |
| 1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1029 | return ResultElementType; |
| 1030 | } |
| 1031 | |
| 1032 | /// Returns the address space of this instruction's pointer type. |
| 1033 | unsigned getAddressSpace() const { |
| 1034 | // Note that this is always the same as the pointer operand's address space |
| 1035 | // and that is cheaper to compute, so cheat here. |
| 1036 | return getPointerAddressSpace(); |
| 1037 | } |
| 1038 | |
| 1039 | /// Returns the result type of a getelementptr with the given source |
| 1040 | /// element type and indexes. |
| 1041 | /// |
| 1042 | /// Null is returned if the indices are invalid for the specified |
| 1043 | /// source element type. |
| 1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
| 1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
| 1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
| 1047 | |
| 1048 | /// Return the type of the element at the given index of an indexable |
| 1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
| 1050 | /// |
| 1051 | /// Returns null if the type can't be indexed, or the given index is not |
| 1052 | /// legal for the given type. |
| 1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
| 1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
| 1055 | |
| 1056 | inline op_iterator idx_begin() { return op_begin()+1; } |
| 1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
| 1058 | inline op_iterator idx_end() { return op_end(); } |
| 1059 | inline const_op_iterator idx_end() const { return op_end(); } |
| 1060 | |
| 1061 | inline iterator_range<op_iterator> indices() { |
| 1062 | return make_range(idx_begin(), idx_end()); |
| 1063 | } |
| 1064 | |
| 1065 | inline iterator_range<const_op_iterator> indices() const { |
| 1066 | return make_range(idx_begin(), idx_end()); |
| 1067 | } |
| 1068 | |
| 1069 | Value *getPointerOperand() { |
| 1070 | return getOperand(0); |
| 1071 | } |
| 1072 | const Value *getPointerOperand() const { |
| 1073 | return getOperand(0); |
| 1074 | } |
| 1075 | static unsigned getPointerOperandIndex() { |
| 1076 | return 0U; // get index for modifying correct operand. |
| 1077 | } |
| 1078 | |
| 1079 | /// Method to return the pointer operand as a |
| 1080 | /// PointerType. |
| 1081 | Type *getPointerOperandType() const { |
| 1082 | return getPointerOperand()->getType(); |
| 1083 | } |
| 1084 | |
| 1085 | /// Returns the address space of the pointer operand. |
| 1086 | unsigned getPointerAddressSpace() const { |
| 1087 | return getPointerOperandType()->getPointerAddressSpace(); |
| 1088 | } |
| 1089 | |
| 1090 | /// Returns the pointer type returned by the GEP |
| 1091 | /// instruction, which may be a vector of pointers. |
| 1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
| 1093 | ArrayRef<Value *> IdxList) { |
| 1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
| 1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
| 1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
| 1097 | Type *PtrTy = OrigPtrTy->isOpaque() |
| 1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
| 1099 | : PointerType::get(ResultElemTy, AddrSpace); |
| 1100 | // Vector GEP |
| 1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
| 1102 | ElementCount EltCount = PtrVTy->getElementCount(); |
| 1103 | return VectorType::get(PtrTy, EltCount); |
| 1104 | } |
| 1105 | for (Value *Index : IdxList) |
| 1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
| 1107 | ElementCount EltCount = IndexVTy->getElementCount(); |
| 1108 | return VectorType::get(PtrTy, EltCount); |
| 1109 | } |
| 1110 | // Scalar GEP |
| 1111 | return PtrTy; |
| 1112 | } |
| 1113 | |
| 1114 | unsigned getNumIndices() const { // Note: always non-negative |
| 1115 | return getNumOperands() - 1; |
| 1116 | } |
| 1117 | |
| 1118 | bool hasIndices() const { |
| 1119 | return getNumOperands() > 1; |
| 1120 | } |
| 1121 | |
| 1122 | /// Return true if all of the indices of this GEP are |
| 1123 | /// zeros. If so, the result pointer and the first operand have the same |
| 1124 | /// value, just potentially different types. |
| 1125 | bool hasAllZeroIndices() const; |
| 1126 | |
| 1127 | /// Return true if all of the indices of this GEP are |
| 1128 | /// constant integers. If so, the result pointer and the first operand have |
| 1129 | /// a constant offset between them. |
| 1130 | bool hasAllConstantIndices() const; |
| 1131 | |
| 1132 | /// Set or clear the inbounds flag on this GEP instruction. |
| 1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
| 1134 | void setIsInBounds(bool b = true); |
| 1135 | |
| 1136 | /// Determine whether the GEP has the inbounds flag. |
| 1137 | bool isInBounds() const; |
| 1138 | |
| 1139 | /// Accumulate the constant address offset of this GEP if possible. |
| 1140 | /// |
| 1141 | /// This routine accepts an APInt into which it will accumulate the constant |
| 1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
| 1143 | /// all-constant, it returns false and the value of the offset APInt is |
| 1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
| 1145 | /// must be at least as wide as the IntPtr type for the address space of |
| 1146 | /// the base GEP pointer. |
| 1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
| 1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
| 1149 | MapVector<Value *, APInt> &VariableOffsets, |
| 1150 | APInt &ConstantOffset) const; |
| 1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1152 | static bool classof(const Instruction *I) { |
| 1153 | return (I->getOpcode() == Instruction::GetElementPtr); |
| 1154 | } |
| 1155 | static bool classof(const Value *V) { |
| 1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1157 | } |
| 1158 | }; |
| 1159 | |
| 1160 | template <> |
| 1161 | struct OperandTraits<GetElementPtrInst> : |
| 1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
| 1163 | }; |
| 1164 | |
| 1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1166 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1167 | const Twine &NameStr, |
| 1168 | Instruction *InsertBefore) |
| 1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1171 | Values, InsertBefore), |
| 1172 | SourceElementType(PointeeType), |
| 1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1176 | init(Ptr, IdxList, NameStr); |
| 1177 | } |
| 1178 | |
| 1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1180 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1181 | const Twine &NameStr, |
| 1182 | BasicBlock *InsertAtEnd) |
| 1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1185 | Values, InsertAtEnd), |
| 1186 | SourceElementType(PointeeType), |
| 1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1190 | init(Ptr, IdxList, NameStr); |
| 1191 | } |
| 1192 | |
| 1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1194 | |
| 1195 | //===----------------------------------------------------------------------===// |
| 1196 | // ICmpInst Class |
| 1197 | //===----------------------------------------------------------------------===// |
| 1198 | |
| 1199 | /// This instruction compares its operands according to the predicate given |
| 1200 | /// to the constructor. It only operates on integers or pointers. The operands |
| 1201 | /// must be identical types. |
| 1202 | /// Represent an integer comparison operator. |
| 1203 | class ICmpInst: public CmpInst { |
| 1204 | void AssertOK() { |
| 1205 | assert(isIntPredicate() &&((void)0) |
| 1206 | "Invalid ICmp predicate value")((void)0); |
| 1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); |
| 1209 | // Check that the operands are the right type |
| 1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) |
| 1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) |
| 1212 | "Invalid operand types for ICmp instruction")((void)0); |
| 1213 | } |
| 1214 | |
| 1215 | protected: |
| 1216 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1217 | friend class Instruction; |
| 1218 | |
| 1219 | /// Clone an identical ICmpInst |
| 1220 | ICmpInst *cloneImpl() const; |
| 1221 | |
| 1222 | public: |
| 1223 | /// Constructor with insert-before-instruction semantics. |
| 1224 | ICmpInst( |
| 1225 | Instruction *InsertBefore, ///< Where to insert |
| 1226 | Predicate pred, ///< The predicate to use for the comparison |
| 1227 | Value *LHS, ///< The left-hand-side of the expression |
| 1228 | Value *RHS, ///< The right-hand-side of the expression |
| 1229 | const Twine &NameStr = "" ///< Name of the instruction |
| 1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1232 | InsertBefore) { |
| 1233 | #ifndef NDEBUG1 |
| 1234 | AssertOK(); |
| 1235 | #endif |
| 1236 | } |
| 1237 | |
| 1238 | /// Constructor with insert-at-end semantics. |
| 1239 | ICmpInst( |
| 1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1241 | Predicate pred, ///< The predicate to use for the comparison |
| 1242 | Value *LHS, ///< The left-hand-side of the expression |
| 1243 | Value *RHS, ///< The right-hand-side of the expression |
| 1244 | const Twine &NameStr = "" ///< Name of the instruction |
| 1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1247 | &InsertAtEnd) { |
| 1248 | #ifndef NDEBUG1 |
| 1249 | AssertOK(); |
| 1250 | #endif |
| 1251 | } |
| 1252 | |
| 1253 | /// Constructor with no-insertion semantics |
| 1254 | ICmpInst( |
| 1255 | Predicate pred, ///< The predicate to use for the comparison |
| 1256 | Value *LHS, ///< The left-hand-side of the expression |
| 1257 | Value *RHS, ///< The right-hand-side of the expression |
| 1258 | const Twine &NameStr = "" ///< Name of the instruction |
| 1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
| 1261 | #ifndef NDEBUG1 |
| 1262 | AssertOK(); |
| 1263 | #endif |
| 1264 | } |
| 1265 | |
| 1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
| 1267 | /// @returns the predicate that would be the result if the operand were |
| 1268 | /// regarded as signed. |
| 1269 | /// Return the signed version of the predicate |
| 1270 | Predicate getSignedPredicate() const { |
| 1271 | return getSignedPredicate(getPredicate()); |
| 1272 | } |
| 1273 | |
| 1274 | /// This is a static version that you can use without an instruction. |
| 1275 | /// Return the signed version of the predicate. |
| 1276 | static Predicate getSignedPredicate(Predicate pred); |
| 1277 | |
| 1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
| 1279 | /// @returns the predicate that would be the result if the operand were |
| 1280 | /// regarded as unsigned. |
| 1281 | /// Return the unsigned version of the predicate |
| 1282 | Predicate getUnsignedPredicate() const { |
| 1283 | return getUnsignedPredicate(getPredicate()); |
| 1284 | } |
| 1285 | |
| 1286 | /// This is a static version that you can use without an instruction. |
| 1287 | /// Return the unsigned version of the predicate. |
| 1288 | static Predicate getUnsignedPredicate(Predicate pred); |
| 1289 | |
| 1290 | /// Return true if this predicate is either EQ or NE. This also |
| 1291 | /// tests for commutativity. |
| 1292 | static bool isEquality(Predicate P) { |
| 1293 | return P == ICMP_EQ || P == ICMP_NE; |
| 1294 | } |
| 1295 | |
| 1296 | /// Return true if this predicate is either EQ or NE. This also |
| 1297 | /// tests for commutativity. |
| 1298 | bool isEquality() const { |
| 1299 | return isEquality(getPredicate()); |
| 1300 | } |
| 1301 | |
| 1302 | /// @returns true if the predicate of this ICmpInst is commutative |
| 1303 | /// Determine if this relation is commutative. |
| 1304 | bool isCommutative() const { return isEquality(); } |
| 1305 | |
| 1306 | /// Return true if the predicate is relational (not EQ or NE). |
| 1307 | /// |
| 1308 | bool isRelational() const { |
| 1309 | return !isEquality(); |
| 1310 | } |
| 1311 | |
| 1312 | /// Return true if the predicate is relational (not EQ or NE). |
| 1313 | /// |
| 1314 | static bool isRelational(Predicate P) { |
| 1315 | return !isEquality(P); |
| 1316 | } |
| 1317 | |
| 1318 | /// Return true if the predicate is SGT or UGT. |
| 1319 | /// |
| 1320 | static bool isGT(Predicate P) { |
| 1321 | return P == ICMP_SGT || P == ICMP_UGT; |
| 1322 | } |
| 1323 | |
| 1324 | /// Return true if the predicate is SLT or ULT. |
| 1325 | /// |
| 1326 | static bool isLT(Predicate P) { |
| 1327 | return P == ICMP_SLT || P == ICMP_ULT; |
| 1328 | } |
| 1329 | |
| 1330 | /// Return true if the predicate is SGE or UGE. |
| 1331 | /// |
| 1332 | static bool isGE(Predicate P) { |
| 1333 | return P == ICMP_SGE || P == ICMP_UGE; |
| 1334 | } |
| 1335 | |
| 1336 | /// Return true if the predicate is SLE or ULE. |
| 1337 | /// |
| 1338 | static bool isLE(Predicate P) { |
| 1339 | return P == ICMP_SLE || P == ICMP_ULE; |
| 1340 | } |
| 1341 | |
| 1342 | /// Exchange the two operands to this instruction in such a way that it does |
| 1343 | /// not modify the semantics of the instruction. The predicate value may be |
| 1344 | /// changed to retain the same result if the predicate is order dependent |
| 1345 | /// (e.g. ult). |
| 1346 | /// Swap operands and adjust predicate. |
| 1347 | void swapOperands() { |
| 1348 | setPredicate(getSwappedPredicate()); |
| 1349 | Op<0>().swap(Op<1>()); |
| 1350 | } |
| 1351 | |
| 1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1353 | static bool classof(const Instruction *I) { |
| 1354 | return I->getOpcode() == Instruction::ICmp; |
| 1355 | } |
| 1356 | static bool classof(const Value *V) { |
| 1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1358 | } |
| 1359 | }; |
| 1360 | |
| 1361 | //===----------------------------------------------------------------------===// |
| 1362 | // FCmpInst Class |
| 1363 | //===----------------------------------------------------------------------===// |
| 1364 | |
| 1365 | /// This instruction compares its operands according to the predicate given |
| 1366 | /// to the constructor. It only operates on floating point values or packed |
| 1367 | /// vectors of floating point values. The operands must be identical types. |
| 1368 | /// Represents a floating point comparison operator. |
| 1369 | class FCmpInst: public CmpInst { |
| 1370 | void AssertOK() { |
| 1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); |
| 1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); |
| 1374 | // Check that the operands are the right type |
| 1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) |
| 1376 | "Invalid operand types for FCmp instruction")((void)0); |
| 1377 | } |
| 1378 | |
| 1379 | protected: |
| 1380 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1381 | friend class Instruction; |
| 1382 | |
| 1383 | /// Clone an identical FCmpInst |
| 1384 | FCmpInst *cloneImpl() const; |
| 1385 | |
| 1386 | public: |
| 1387 | /// Constructor with insert-before-instruction semantics. |
| 1388 | FCmpInst( |
| 1389 | Instruction *InsertBefore, ///< Where to insert |
| 1390 | Predicate pred, ///< The predicate to use for the comparison |
| 1391 | Value *LHS, ///< The left-hand-side of the expression |
| 1392 | Value *RHS, ///< The right-hand-side of the expression |
| 1393 | const Twine &NameStr = "" ///< Name of the instruction |
| 1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1396 | InsertBefore) { |
| 1397 | AssertOK(); |
| 1398 | } |
| 1399 | |
| 1400 | /// Constructor with insert-at-end semantics. |
| 1401 | FCmpInst( |
| 1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1403 | Predicate pred, ///< The predicate to use for the comparison |
| 1404 | Value *LHS, ///< The left-hand-side of the expression |
| 1405 | Value *RHS, ///< The right-hand-side of the expression |
| 1406 | const Twine &NameStr = "" ///< Name of the instruction |
| 1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1409 | &InsertAtEnd) { |
| 1410 | AssertOK(); |
| 1411 | } |
| 1412 | |
| 1413 | /// Constructor with no-insertion semantics |
| 1414 | FCmpInst( |
| 1415 | Predicate Pred, ///< The predicate to use for the comparison |
| 1416 | Value *LHS, ///< The left-hand-side of the expression |
| 1417 | Value *RHS, ///< The right-hand-side of the expression |
| 1418 | const Twine &NameStr = "", ///< Name of the instruction |
| 1419 | Instruction *FlagsSource = nullptr |
| 1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
| 1421 | RHS, NameStr, nullptr, FlagsSource) { |
| 1422 | AssertOK(); |
| 1423 | } |
| 1424 | |
| 1425 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1426 | /// Determine if this is an equality predicate. |
| 1427 | static bool isEquality(Predicate Pred) { |
| 1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
| 1429 | Pred == FCMP_UNE; |
| 1430 | } |
| 1431 | |
| 1432 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1433 | /// Determine if this is an equality predicate. |
| 1434 | bool isEquality() const { return isEquality(getPredicate()); } |
| 1435 | |
| 1436 | /// @returns true if the predicate of this instruction is commutative. |
| 1437 | /// Determine if this is a commutative predicate. |
| 1438 | bool isCommutative() const { |
| 1439 | return isEquality() || |
| 1440 | getPredicate() == FCMP_FALSE || |
| 1441 | getPredicate() == FCMP_TRUE || |
| 1442 | getPredicate() == FCMP_ORD || |
| 1443 | getPredicate() == FCMP_UNO; |
| 1444 | } |
| 1445 | |
| 1446 | /// @returns true if the predicate is relational (not EQ or NE). |
| 1447 | /// Determine if this a relational predicate. |
| 1448 | bool isRelational() const { return !isEquality(); } |
| 1449 | |
| 1450 | /// Exchange the two operands to this instruction in such a way that it does |
| 1451 | /// not modify the semantics of the instruction. The predicate value may be |
| 1452 | /// changed to retain the same result if the predicate is order dependent |
| 1453 | /// (e.g. ult). |
| 1454 | /// Swap operands and adjust predicate. |
| 1455 | void swapOperands() { |
| 1456 | setPredicate(getSwappedPredicate()); |
| 1457 | Op<0>().swap(Op<1>()); |
| 1458 | } |
| 1459 | |
| 1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1461 | static bool classof(const Instruction *I) { |
| 1462 | return I->getOpcode() == Instruction::FCmp; |
| 1463 | } |
| 1464 | static bool classof(const Value *V) { |
| 1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1466 | } |
| 1467 | }; |
| 1468 | |
| 1469 | //===----------------------------------------------------------------------===// |
| 1470 | /// This class represents a function call, abstracting a target |
| 1471 | /// machine's calling convention. This class uses low bit of the SubClassData |
| 1472 | /// field to indicate whether or not this is a tail call. The rest of the bits |
| 1473 | /// hold the calling convention of the call. |
| 1474 | /// |
| 1475 | class CallInst : public CallBase { |
| 1476 | CallInst(const CallInst &CI); |
| 1477 | |
| 1478 | /// Construct a CallInst given a range of arguments. |
| 1479 | /// Construct a CallInst from a range of arguments |
| 1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1482 | Instruction *InsertBefore); |
| 1483 | |
| 1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1485 | const Twine &NameStr, Instruction *InsertBefore) |
| 1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
| 1487 | |
| 1488 | /// Construct a CallInst given a range of arguments. |
| 1489 | /// Construct a CallInst from a range of arguments |
| 1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1492 | BasicBlock *InsertAtEnd); |
| 1493 | |
| 1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1495 | Instruction *InsertBefore); |
| 1496 | |
| 1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
| 1498 | BasicBlock *InsertAtEnd); |
| 1499 | |
| 1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
| 1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
| 1503 | |
| 1504 | /// Compute the number of operands to allocate. |
| 1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 1506 | // We need one operand for the called function, plus the input operand |
| 1507 | // counts provided. |
| 1508 | return 1 + NumArgs + NumBundleInputs; |
| 1509 | } |
| 1510 | |
| 1511 | protected: |
| 1512 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1513 | friend class Instruction; |
| 1514 | |
| 1515 | CallInst *cloneImpl() const; |
| 1516 | |
| 1517 | public: |
| 1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
| 1519 | Instruction *InsertBefore = nullptr) { |
| 1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
| 1521 | } |
| 1522 | |
| 1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1524 | const Twine &NameStr, |
| 1525 | Instruction *InsertBefore = nullptr) { |
| 1526 | return new (ComputeNumOperands(Args.size())) |
| 1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
| 1528 | } |
| 1529 | |
| 1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1531 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1532 | const Twine &NameStr = "", |
| 1533 | Instruction *InsertBefore = nullptr) { |
| 1534 | const int NumOperands = |
| 1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1537 | |
| 1538 | return new (NumOperands, DescriptorBytes) |
| 1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
| 1540 | } |
| 1541 | |
| 1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1543 | BasicBlock *InsertAtEnd) { |
| 1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
| 1545 | } |
| 1546 | |
| 1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1549 | return new (ComputeNumOperands(Args.size())) |
| 1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
| 1551 | } |
| 1552 | |
| 1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1554 | ArrayRef<OperandBundleDef> Bundles, |
| 1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1556 | const int NumOperands = |
| 1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1559 | |
| 1560 | return new (NumOperands, DescriptorBytes) |
| 1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
| 1562 | } |
| 1563 | |
| 1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
| 1565 | Instruction *InsertBefore = nullptr) { |
| 1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1567 | InsertBefore); |
| 1568 | } |
| 1569 | |
| 1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1571 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1572 | const Twine &NameStr = "", |
| 1573 | Instruction *InsertBefore = nullptr) { |
| 1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1575 | NameStr, InsertBefore); |
| 1576 | } |
| 1577 | |
| 1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1579 | const Twine &NameStr, |
| 1580 | Instruction *InsertBefore = nullptr) { |
| 1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1582 | InsertBefore); |
| 1583 | } |
| 1584 | |
| 1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
| 1586 | BasicBlock *InsertAtEnd) { |
| 1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1588 | InsertAtEnd); |
| 1589 | } |
| 1590 | |
| 1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1594 | InsertAtEnd); |
| 1595 | } |
| 1596 | |
| 1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1598 | ArrayRef<OperandBundleDef> Bundles, |
| 1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1601 | NameStr, InsertAtEnd); |
| 1602 | } |
| 1603 | |
| 1604 | /// Create a clone of \p CI with a different set of operand bundles and |
| 1605 | /// insert it before \p InsertPt. |
| 1606 | /// |
| 1607 | /// The returned call instruction is identical \p CI in every way except that |
| 1608 | /// the operand bundles for the new instruction are set to the operand bundles |
| 1609 | /// in \p Bundles. |
| 1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
| 1611 | Instruction *InsertPt = nullptr); |
| 1612 | |
| 1613 | /// Generate the IR for a call to malloc: |
| 1614 | /// 1. Compute the malloc call's argument as the specified type's size, |
| 1615 | /// possibly multiplied by the array size if the array size is not |
| 1616 | /// constant 1. |
| 1617 | /// 2. Call malloc with that argument. |
| 1618 | /// 3. Bitcast the result of the malloc call to the specified type. |
| 1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1620 | Type *AllocTy, Value *AllocSize, |
| 1621 | Value *ArraySize = nullptr, |
| 1622 | Function *MallocF = nullptr, |
| 1623 | const Twine &Name = ""); |
| 1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1625 | Type *AllocTy, Value *AllocSize, |
| 1626 | Value *ArraySize = nullptr, |
| 1627 | Function *MallocF = nullptr, |
| 1628 | const Twine &Name = ""); |
| 1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1630 | Type *AllocTy, Value *AllocSize, |
| 1631 | Value *ArraySize = nullptr, |
| 1632 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1633 | Function *MallocF = nullptr, |
| 1634 | const Twine &Name = ""); |
| 1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1636 | Type *AllocTy, Value *AllocSize, |
| 1637 | Value *ArraySize = nullptr, |
| 1638 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1639 | Function *MallocF = nullptr, |
| 1640 | const Twine &Name = ""); |
| 1641 | /// Generate the IR for a call to the builtin free function. |
| 1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
| 1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
| 1644 | static Instruction *CreateFree(Value *Source, |
| 1645 | ArrayRef<OperandBundleDef> Bundles, |
| 1646 | Instruction *InsertBefore); |
| 1647 | static Instruction *CreateFree(Value *Source, |
| 1648 | ArrayRef<OperandBundleDef> Bundles, |
| 1649 | BasicBlock *InsertAtEnd); |
| 1650 | |
| 1651 | // Note that 'musttail' implies 'tail'. |
| 1652 | enum TailCallKind : unsigned { |
| 1653 | TCK_None = 0, |
| 1654 | TCK_Tail = 1, |
| 1655 | TCK_MustTail = 2, |
| 1656 | TCK_NoTail = 3, |
| 1657 | TCK_LAST = TCK_NoTail |
| 1658 | }; |
| 1659 | |
| 1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
| 1661 | static_assert( |
| 1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
| 1663 | "Bitfields must be contiguous"); |
| 1664 | |
| 1665 | TailCallKind getTailCallKind() const { |
| 1666 | return getSubclassData<TailCallKindField>(); |
| 1667 | } |
| 1668 | |
| 1669 | bool isTailCall() const { |
| 1670 | TailCallKind Kind = getTailCallKind(); |
| 1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
| 1672 | } |
| 1673 | |
| 1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
| 1675 | |
| 1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
| 1677 | |
| 1678 | void setTailCallKind(TailCallKind TCK) { |
| 1679 | setSubclassData<TailCallKindField>(TCK); |
| 1680 | } |
| 1681 | |
| 1682 | void setTailCall(bool IsTc = true) { |
| 1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
| 1684 | } |
| 1685 | |
| 1686 | /// Return true if the call can return twice |
| 1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
| 1688 | void setCanReturnTwice() { |
| 1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
| 1690 | } |
| 1691 | |
| 1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1693 | static bool classof(const Instruction *I) { |
| 1694 | return I->getOpcode() == Instruction::Call; |
| 1695 | } |
| 1696 | static bool classof(const Value *V) { |
| 1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1698 | } |
| 1699 | |
| 1700 | /// Updates profile metadata by scaling it by \p S / \p T. |
| 1701 | void updateProfWeight(uint64_t S, uint64_t T); |
| 1702 | |
| 1703 | private: |
| 1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 1705 | // method so that subclasses cannot accidentally use it. |
| 1706 | template <typename Bitfield> |
| 1707 | void setSubclassData(typename Bitfield::Type Value) { |
| 1708 | Instruction::setSubclassData<Bitfield>(Value); |
| 1709 | } |
| 1710 | }; |
| 1711 | |
| 1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1714 | BasicBlock *InsertAtEnd) |
| 1715 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1716 | OperandTraits<CallBase>::op_end(this) - |
| 1717 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1719 | InsertAtEnd) { |
| 1720 | init(Ty, Func, Args, Bundles, NameStr); |
| 1721 | } |
| 1722 | |
| 1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1725 | Instruction *InsertBefore) |
| 1726 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1727 | OperandTraits<CallBase>::op_end(this) - |
| 1728 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1730 | InsertBefore) { |
| 1731 | init(Ty, Func, Args, Bundles, NameStr); |
| 1732 | } |
| 1733 | |
| 1734 | //===----------------------------------------------------------------------===// |
| 1735 | // SelectInst Class |
| 1736 | //===----------------------------------------------------------------------===// |
| 1737 | |
| 1738 | /// This class represents the LLVM 'select' instruction. |
| 1739 | /// |
| 1740 | class SelectInst : public Instruction { |
| 1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1742 | Instruction *InsertBefore) |
| 1743 | : Instruction(S1->getType(), Instruction::Select, |
| 1744 | &Op<0>(), 3, InsertBefore) { |
| 1745 | init(C, S1, S2); |
| 1746 | setName(NameStr); |
| 1747 | } |
| 1748 | |
| 1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1750 | BasicBlock *InsertAtEnd) |
| 1751 | : Instruction(S1->getType(), Instruction::Select, |
| 1752 | &Op<0>(), 3, InsertAtEnd) { |
| 1753 | init(C, S1, S2); |
| 1754 | setName(NameStr); |
| 1755 | } |
| 1756 | |
| 1757 | void init(Value *C, Value *S1, Value *S2) { |
| 1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); |
| 1759 | Op<0>() = C; |
| 1760 | Op<1>() = S1; |
| 1761 | Op<2>() = S2; |
| 1762 | } |
| 1763 | |
| 1764 | protected: |
| 1765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1766 | friend class Instruction; |
| 1767 | |
| 1768 | SelectInst *cloneImpl() const; |
| 1769 | |
| 1770 | public: |
| 1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1772 | const Twine &NameStr = "", |
| 1773 | Instruction *InsertBefore = nullptr, |
| 1774 | Instruction *MDFrom = nullptr) { |
| 1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
| 1776 | if (MDFrom) |
| 1777 | Sel->copyMetadata(*MDFrom); |
| 1778 | return Sel; |
| 1779 | } |
| 1780 | |
| 1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1782 | const Twine &NameStr, |
| 1783 | BasicBlock *InsertAtEnd) { |
| 1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
| 1785 | } |
| 1786 | |
| 1787 | const Value *getCondition() const { return Op<0>(); } |
| 1788 | const Value *getTrueValue() const { return Op<1>(); } |
| 1789 | const Value *getFalseValue() const { return Op<2>(); } |
| 1790 | Value *getCondition() { return Op<0>(); } |
| 1791 | Value *getTrueValue() { return Op<1>(); } |
| 1792 | Value *getFalseValue() { return Op<2>(); } |
| 1793 | |
| 1794 | void setCondition(Value *V) { Op<0>() = V; } |
| 1795 | void setTrueValue(Value *V) { Op<1>() = V; } |
| 1796 | void setFalseValue(Value *V) { Op<2>() = V; } |
| 1797 | |
| 1798 | /// Swap the true and false values of the select instruction. |
| 1799 | /// This doesn't swap prof metadata. |
| 1800 | void swapValues() { Op<1>().swap(Op<2>()); } |
| 1801 | |
| 1802 | /// Return a string if the specified operands are invalid |
| 1803 | /// for a select operation, otherwise return null. |
| 1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
| 1805 | |
| 1806 | /// Transparently provide more efficient getOperand methods. |
| 1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1808 | |
| 1809 | OtherOps getOpcode() const { |
| 1810 | return static_cast<OtherOps>(Instruction::getOpcode()); |
| 1811 | } |
| 1812 | |
| 1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1814 | static bool classof(const Instruction *I) { |
| 1815 | return I->getOpcode() == Instruction::Select; |
| 1816 | } |
| 1817 | static bool classof(const Value *V) { |
| 1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1819 | } |
| 1820 | }; |
| 1821 | |
| 1822 | template <> |
| 1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
| 1824 | }; |
| 1825 | |
| 1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 1827 | |
| 1828 | //===----------------------------------------------------------------------===// |
| 1829 | // VAArgInst Class |
| 1830 | //===----------------------------------------------------------------------===// |
| 1831 | |
| 1832 | /// This class represents the va_arg llvm instruction, which returns |
| 1833 | /// an argument of the specified type given a va_list and increments that list |
| 1834 | /// |
| 1835 | class VAArgInst : public UnaryInstruction { |
| 1836 | protected: |
| 1837 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1838 | friend class Instruction; |
| 1839 | |
| 1840 | VAArgInst *cloneImpl() const; |
| 1841 | |
| 1842 | public: |
| 1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
| 1844 | Instruction *InsertBefore = nullptr) |
| 1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
| 1846 | setName(NameStr); |
| 1847 | } |
| 1848 | |
| 1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
| 1850 | BasicBlock *InsertAtEnd) |
| 1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
| 1852 | setName(NameStr); |
| 1853 | } |
| 1854 | |
| 1855 | Value *getPointerOperand() { return getOperand(0); } |
| 1856 | const Value *getPointerOperand() const { return getOperand(0); } |
| 1857 | static unsigned getPointerOperandIndex() { return 0U; } |
| 1858 | |
| 1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1860 | static bool classof(const Instruction *I) { |
| 1861 | return I->getOpcode() == VAArg; |
| 1862 | } |
| 1863 | static bool classof(const Value *V) { |
| 1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1865 | } |
| 1866 | }; |
| 1867 | |
| 1868 | //===----------------------------------------------------------------------===// |
| 1869 | // ExtractElementInst Class |
| 1870 | //===----------------------------------------------------------------------===// |
| 1871 | |
| 1872 | /// This instruction extracts a single (scalar) |
| 1873 | /// element from a VectorType value |
| 1874 | /// |
| 1875 | class ExtractElementInst : public Instruction { |
| 1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
| 1877 | Instruction *InsertBefore = nullptr); |
| 1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
| 1879 | BasicBlock *InsertAtEnd); |
| 1880 | |
| 1881 | protected: |
| 1882 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1883 | friend class Instruction; |
| 1884 | |
| 1885 | ExtractElementInst *cloneImpl() const; |
| 1886 | |
| 1887 | public: |
| 1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1889 | const Twine &NameStr = "", |
| 1890 | Instruction *InsertBefore = nullptr) { |
| 1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
| 1892 | } |
| 1893 | |
| 1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1895 | const Twine &NameStr, |
| 1896 | BasicBlock *InsertAtEnd) { |
| 1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
| 1898 | } |
| 1899 | |
| 1900 | /// Return true if an extractelement instruction can be |
| 1901 | /// formed with the specified operands. |
| 1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
| 1903 | |
| 1904 | Value *getVectorOperand() { return Op<0>(); } |
| 1905 | Value *getIndexOperand() { return Op<1>(); } |
| 1906 | const Value *getVectorOperand() const { return Op<0>(); } |
| 1907 | const Value *getIndexOperand() const { return Op<1>(); } |
| 1908 | |
| 1909 | VectorType *getVectorOperandType() const { |
| 1910 | return cast<VectorType>(getVectorOperand()->getType()); |
| 1911 | } |
| 1912 | |
| 1913 | /// Transparently provide more efficient getOperand methods. |
| 1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1915 | |
| 1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1917 | static bool classof(const Instruction *I) { |
| 1918 | return I->getOpcode() == Instruction::ExtractElement; |
| 1919 | } |
| 1920 | static bool classof(const Value *V) { |
| 1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1922 | } |
| 1923 | }; |
| 1924 | |
| 1925 | template <> |
| 1926 | struct OperandTraits<ExtractElementInst> : |
| 1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
| 1928 | }; |
| 1929 | |
| 1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1931 | |
| 1932 | //===----------------------------------------------------------------------===// |
| 1933 | // InsertElementInst Class |
| 1934 | //===----------------------------------------------------------------------===// |
| 1935 | |
| 1936 | /// This instruction inserts a single (scalar) |
| 1937 | /// element into a VectorType value |
| 1938 | /// |
| 1939 | class InsertElementInst : public Instruction { |
| 1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
| 1941 | const Twine &NameStr = "", |
| 1942 | Instruction *InsertBefore = nullptr); |
| 1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
| 1944 | BasicBlock *InsertAtEnd); |
| 1945 | |
| 1946 | protected: |
| 1947 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1948 | friend class Instruction; |
| 1949 | |
| 1950 | InsertElementInst *cloneImpl() const; |
| 1951 | |
| 1952 | public: |
| 1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1954 | const Twine &NameStr = "", |
| 1955 | Instruction *InsertBefore = nullptr) { |
| 1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
| 1957 | } |
| 1958 | |
| 1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1960 | const Twine &NameStr, |
| 1961 | BasicBlock *InsertAtEnd) { |
| 1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
| 1963 | } |
| 1964 | |
| 1965 | /// Return true if an insertelement instruction can be |
| 1966 | /// formed with the specified operands. |
| 1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
| 1968 | const Value *Idx); |
| 1969 | |
| 1970 | /// Overload to return most specific vector type. |
| 1971 | /// |
| 1972 | VectorType *getType() const { |
| 1973 | return cast<VectorType>(Instruction::getType()); |
| 1974 | } |
| 1975 | |
| 1976 | /// Transparently provide more efficient getOperand methods. |
| 1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1978 | |
| 1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1980 | static bool classof(const Instruction *I) { |
| 1981 | return I->getOpcode() == Instruction::InsertElement; |
| 1982 | } |
| 1983 | static bool classof(const Value *V) { |
| 1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1985 | } |
| 1986 | }; |
| 1987 | |
| 1988 | template <> |
| 1989 | struct OperandTraits<InsertElementInst> : |
| 1990 | public FixedNumOperandTraits<InsertElementInst, 3> { |
| 1991 | }; |
| 1992 | |
| 1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1994 | |
| 1995 | //===----------------------------------------------------------------------===// |
| 1996 | // ShuffleVectorInst Class |
| 1997 | //===----------------------------------------------------------------------===// |
| 1998 | |
| 1999 | constexpr int UndefMaskElem = -1; |
| 2000 | |
| 2001 | /// This instruction constructs a fixed permutation of two |
| 2002 | /// input vectors. |
| 2003 | /// |
| 2004 | /// For each element of the result vector, the shuffle mask selects an element |
| 2005 | /// from one of the input vectors to copy to the result. Non-negative elements |
| 2006 | /// in the mask represent an index into the concatenated pair of input vectors. |
| 2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
| 2008 | /// |
| 2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
| 2010 | /// requirement may be relaxed in the future. |
| 2011 | class ShuffleVectorInst : public Instruction { |
| 2012 | SmallVector<int, 4> ShuffleMask; |
| 2013 | Constant *ShuffleMaskForBitcode; |
| 2014 | |
| 2015 | protected: |
| 2016 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2017 | friend class Instruction; |
| 2018 | |
| 2019 | ShuffleVectorInst *cloneImpl() const; |
| 2020 | |
| 2021 | public: |
| 2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2023 | const Twine &NameStr = "", |
| 2024 | Instruction *InsertBefor = nullptr); |
| 2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2028 | const Twine &NameStr = "", |
| 2029 | Instruction *InsertBefor = nullptr); |
| 2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2032 | |
| 2033 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 2035 | |
| 2036 | /// Swap the operands and adjust the mask to preserve the semantics |
| 2037 | /// of the instruction. |
| 2038 | void commute(); |
| 2039 | |
| 2040 | /// Return true if a shufflevector instruction can be |
| 2041 | /// formed with the specified operands. |
| 2042 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2043 | const Value *Mask); |
| 2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2045 | ArrayRef<int> Mask); |
| 2046 | |
| 2047 | /// Overload to return most specific vector type. |
| 2048 | /// |
| 2049 | VectorType *getType() const { |
| 2050 | return cast<VectorType>(Instruction::getType()); |
| 2051 | } |
| 2052 | |
| 2053 | /// Transparently provide more efficient getOperand methods. |
| 2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2055 | |
| 2056 | /// Return the shuffle mask value of this instruction for the given element |
| 2057 | /// index. Return UndefMaskElem if the element is undef. |
| 2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
| 2059 | |
| 2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
| 2061 | /// elements of the mask are returned as UndefMaskElem. |
| 2062 | static void getShuffleMask(const Constant *Mask, |
| 2063 | SmallVectorImpl<int> &Result); |
| 2064 | |
| 2065 | /// Return the mask for this instruction as a vector of integers. Undefined |
| 2066 | /// elements of the mask are returned as UndefMaskElem. |
| 2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
| 2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
| 2069 | } |
| 2070 | |
| 2071 | /// Return the mask for this instruction, for use in bitcode. |
| 2072 | /// |
| 2073 | /// TODO: This is temporary until we decide a new bitcode encoding for |
| 2074 | /// shufflevector. |
| 2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
| 2076 | |
| 2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
| 2078 | Type *ResultTy); |
| 2079 | |
| 2080 | void setShuffleMask(ArrayRef<int> Mask); |
| 2081 | |
| 2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
| 2083 | |
| 2084 | /// Return true if this shuffle returns a vector with a different number of |
| 2085 | /// elements than its source vectors. |
| 2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
| 2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
| 2088 | bool changesLength() const { |
| 2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2090 | ->getElementCount() |
| 2091 | .getKnownMinValue(); |
| 2092 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2093 | return NumSourceElts != NumMaskElts; |
| 2094 | } |
| 2095 | |
| 2096 | /// Return true if this shuffle returns a vector with a greater number of |
| 2097 | /// elements than its source vectors. |
| 2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
| 2099 | bool increasesLength() const { |
| 2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2101 | ->getElementCount() |
| 2102 | .getKnownMinValue(); |
| 2103 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2104 | return NumSourceElts < NumMaskElts; |
| 2105 | } |
| 2106 | |
| 2107 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2108 | /// vector. |
| 2109 | /// Example: <7,5,undef,7> |
| 2110 | /// This assumes that vector operands are the same length as the mask. |
| 2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
| 2112 | static bool isSingleSourceMask(const Constant *Mask) { |
| 2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2114 | SmallVector<int, 16> MaskAsInts; |
| 2115 | getShuffleMask(Mask, MaskAsInts); |
| 2116 | return isSingleSourceMask(MaskAsInts); |
| 2117 | } |
| 2118 | |
| 2119 | /// Return true if this shuffle chooses elements from exactly one source |
| 2120 | /// vector without changing the length of that vector. |
| 2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
| 2122 | /// TODO: Optionally allow length-changing shuffles. |
| 2123 | bool isSingleSource() const { |
| 2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
| 2125 | } |
| 2126 | |
| 2127 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2128 | /// vector without lane crossings. A shuffle using this mask is not |
| 2129 | /// necessarily a no-op because it may change the number of elements from its |
| 2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
| 2131 | /// Example: <undef,undef,2,3> |
| 2132 | static bool isIdentityMask(ArrayRef<int> Mask); |
| 2133 | static bool isIdentityMask(const Constant *Mask) { |
| 2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2135 | SmallVector<int, 16> MaskAsInts; |
| 2136 | getShuffleMask(Mask, MaskAsInts); |
| 2137 | return isIdentityMask(MaskAsInts); |
| 2138 | } |
| 2139 | |
| 2140 | /// Return true if this shuffle chooses elements from exactly one source |
| 2141 | /// vector without lane crossings and does not change the number of elements |
| 2142 | /// from its input vectors. |
| 2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
| 2144 | bool isIdentity() const { |
| 2145 | return !changesLength() && isIdentityMask(ShuffleMask); |
| 2146 | } |
| 2147 | |
| 2148 | /// Return true if this shuffle lengthens exactly one source vector with |
| 2149 | /// undefs in the high elements. |
| 2150 | bool isIdentityWithPadding() const; |
| 2151 | |
| 2152 | /// Return true if this shuffle extracts the first N elements of exactly one |
| 2153 | /// source vector. |
| 2154 | bool isIdentityWithExtract() const; |
| 2155 | |
| 2156 | /// Return true if this shuffle concatenates its 2 source vectors. This |
| 2157 | /// returns false if either input is undefined. In that case, the shuffle is |
| 2158 | /// is better classified as an identity with padding operation. |
| 2159 | bool isConcat() const; |
| 2160 | |
| 2161 | /// Return true if this shuffle mask chooses elements from its source vectors |
| 2162 | /// without lane crossings. A shuffle using this mask would be |
| 2163 | /// equivalent to a vector select with a constant condition operand. |
| 2164 | /// Example: <4,1,6,undef> |
| 2165 | /// This returns false if the mask does not choose from both input vectors. |
| 2166 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2167 | /// This assumes that vector operands are the same length as the mask |
| 2168 | /// (a length-changing shuffle can never be equivalent to a vector select). |
| 2169 | static bool isSelectMask(ArrayRef<int> Mask); |
| 2170 | static bool isSelectMask(const Constant *Mask) { |
| 2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2172 | SmallVector<int, 16> MaskAsInts; |
| 2173 | getShuffleMask(Mask, MaskAsInts); |
| 2174 | return isSelectMask(MaskAsInts); |
| 2175 | } |
| 2176 | |
| 2177 | /// Return true if this shuffle chooses elements from its source vectors |
| 2178 | /// without lane crossings and all operands have the same number of elements. |
| 2179 | /// In other words, this shuffle is equivalent to a vector select with a |
| 2180 | /// constant condition operand. |
| 2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
| 2182 | /// This returns false if the mask does not choose from both input vectors. |
| 2183 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2184 | /// TODO: Optionally allow length-changing shuffles. |
| 2185 | bool isSelect() const { |
| 2186 | return !changesLength() && isSelectMask(ShuffleMask); |
| 2187 | } |
| 2188 | |
| 2189 | /// Return true if this shuffle mask swaps the order of elements from exactly |
| 2190 | /// one source vector. |
| 2191 | /// Example: <7,6,undef,4> |
| 2192 | /// This assumes that vector operands are the same length as the mask. |
| 2193 | static bool isReverseMask(ArrayRef<int> Mask); |
| 2194 | static bool isReverseMask(const Constant *Mask) { |
| 2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2196 | SmallVector<int, 16> MaskAsInts; |
| 2197 | getShuffleMask(Mask, MaskAsInts); |
| 2198 | return isReverseMask(MaskAsInts); |
| 2199 | } |
| 2200 | |
| 2201 | /// Return true if this shuffle swaps the order of elements from exactly |
| 2202 | /// one source vector. |
| 2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
| 2204 | /// TODO: Optionally allow length-changing shuffles. |
| 2205 | bool isReverse() const { |
| 2206 | return !changesLength() && isReverseMask(ShuffleMask); |
| 2207 | } |
| 2208 | |
| 2209 | /// Return true if this shuffle mask chooses all elements with the same value |
| 2210 | /// as the first element of exactly one source vector. |
| 2211 | /// Example: <4,undef,undef,4> |
| 2212 | /// This assumes that vector operands are the same length as the mask. |
| 2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
| 2214 | static bool isZeroEltSplatMask(const Constant *Mask) { |
| 2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2216 | SmallVector<int, 16> MaskAsInts; |
| 2217 | getShuffleMask(Mask, MaskAsInts); |
| 2218 | return isZeroEltSplatMask(MaskAsInts); |
| 2219 | } |
| 2220 | |
| 2221 | /// Return true if all elements of this shuffle are the same value as the |
| 2222 | /// first element of exactly one source vector without changing the length |
| 2223 | /// of that vector. |
| 2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
| 2225 | /// TODO: Optionally allow length-changing shuffles. |
| 2226 | /// TODO: Optionally allow splats from other elements. |
| 2227 | bool isZeroEltSplat() const { |
| 2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
| 2229 | } |
| 2230 | |
| 2231 | /// Return true if this shuffle mask is a transpose mask. |
| 2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
| 2233 | /// even- or odd-numbered vector elements from two n-dimensional source |
| 2234 | /// vectors and write each result into consecutive elements of an |
| 2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
| 2236 | /// the transpose, one for the even elements and another for the odd elements. |
| 2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
| 2238 | /// instructions operate. |
| 2239 | /// |
| 2240 | /// For example, a simple 2x2 matrix can be transposed with: |
| 2241 | /// |
| 2242 | /// ; Original matrix |
| 2243 | /// m0 = < a, b > |
| 2244 | /// m1 = < c, d > |
| 2245 | /// |
| 2246 | /// ; Transposed matrix |
| 2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
| 2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
| 2249 | /// |
| 2250 | /// For matrices having greater than n columns, the resulting nx2 transposed |
| 2251 | /// matrix is stored in two result vectors such that one vector contains |
| 2252 | /// interleaved elements from all the even-numbered rows and the other vector |
| 2253 | /// contains interleaved elements from all the odd-numbered rows. For example, |
| 2254 | /// a 2x4 matrix can be transposed with: |
| 2255 | /// |
| 2256 | /// ; Original matrix |
| 2257 | /// m0 = < a, b, c, d > |
| 2258 | /// m1 = < e, f, g, h > |
| 2259 | /// |
| 2260 | /// ; Transposed matrix |
| 2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
| 2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
| 2263 | static bool isTransposeMask(ArrayRef<int> Mask); |
| 2264 | static bool isTransposeMask(const Constant *Mask) { |
| 2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2266 | SmallVector<int, 16> MaskAsInts; |
| 2267 | getShuffleMask(Mask, MaskAsInts); |
| 2268 | return isTransposeMask(MaskAsInts); |
| 2269 | } |
| 2270 | |
| 2271 | /// Return true if this shuffle transposes the elements of its inputs without |
| 2272 | /// changing the length of the vectors. This operation may also be known as a |
| 2273 | /// merge or interleave. See the description for isTransposeMask() for the |
| 2274 | /// exact specification. |
| 2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
| 2276 | bool isTranspose() const { |
| 2277 | return !changesLength() && isTransposeMask(ShuffleMask); |
| 2278 | } |
| 2279 | |
| 2280 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2281 | /// A valid extract subvector mask returns a smaller vector from a single |
| 2282 | /// source operand. The base extraction index is returned as well. |
| 2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
| 2284 | int &Index); |
| 2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
| 2286 | int &Index) { |
| 2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2288 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2289 | // case. |
| 2290 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2291 | return false; |
| 2292 | SmallVector<int, 16> MaskAsInts; |
| 2293 | getShuffleMask(Mask, MaskAsInts); |
| 2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
| 2295 | } |
| 2296 | |
| 2297 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2298 | bool isExtractSubvectorMask(int &Index) const { |
| 2299 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2300 | // case. |
| 2301 | if (isa<ScalableVectorType>(getType())) |
| 2302 | return false; |
| 2303 | |
| 2304 | int NumSrcElts = |
| 2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
| 2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
| 2307 | } |
| 2308 | |
| 2309 | /// Change values in a shuffle permute mask assuming the two vector operands |
| 2310 | /// of length InVecNumElts have swapped position. |
| 2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
| 2312 | unsigned InVecNumElts) { |
| 2313 | for (int &Idx : Mask) { |
| 2314 | if (Idx == -1) |
| 2315 | continue; |
| 2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
| 2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) |
| 2318 | "shufflevector mask index out of range")((void)0); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2323 | static bool classof(const Instruction *I) { |
| 2324 | return I->getOpcode() == Instruction::ShuffleVector; |
| 2325 | } |
| 2326 | static bool classof(const Value *V) { |
| 2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2328 | } |
| 2329 | }; |
| 2330 | |
| 2331 | template <> |
| 2332 | struct OperandTraits<ShuffleVectorInst> |
| 2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
| 2334 | |
| 2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 2336 | |
| 2337 | //===----------------------------------------------------------------------===// |
| 2338 | // ExtractValueInst Class |
| 2339 | //===----------------------------------------------------------------------===// |
| 2340 | |
| 2341 | /// This instruction extracts a struct member or array |
| 2342 | /// element value from an aggregate value. |
| 2343 | /// |
| 2344 | class ExtractValueInst : public UnaryInstruction { |
| 2345 | SmallVector<unsigned, 4> Indices; |
| 2346 | |
| 2347 | ExtractValueInst(const ExtractValueInst &EVI); |
| 2348 | |
| 2349 | /// Constructors - Create a extractvalue instruction with a base aggregate |
| 2350 | /// value and a list of indices. The first ctor can optionally insert before |
| 2351 | /// an existing instruction, the second appends the new instruction to the |
| 2352 | /// specified BasicBlock. |
| 2353 | inline ExtractValueInst(Value *Agg, |
| 2354 | ArrayRef<unsigned> Idxs, |
| 2355 | const Twine &NameStr, |
| 2356 | Instruction *InsertBefore); |
| 2357 | inline ExtractValueInst(Value *Agg, |
| 2358 | ArrayRef<unsigned> Idxs, |
| 2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2360 | |
| 2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
| 2362 | |
| 2363 | protected: |
| 2364 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2365 | friend class Instruction; |
| 2366 | |
| 2367 | ExtractValueInst *cloneImpl() const; |
| 2368 | |
| 2369 | public: |
| 2370 | static ExtractValueInst *Create(Value *Agg, |
| 2371 | ArrayRef<unsigned> Idxs, |
| 2372 | const Twine &NameStr = "", |
| 2373 | Instruction *InsertBefore = nullptr) { |
| 2374 | return new |
| 2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
| 2376 | } |
| 2377 | |
| 2378 | static ExtractValueInst *Create(Value *Agg, |
| 2379 | ArrayRef<unsigned> Idxs, |
| 2380 | const Twine &NameStr, |
| 2381 | BasicBlock *InsertAtEnd) { |
| 2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
| 2383 | } |
| 2384 | |
| 2385 | /// Returns the type of the element that would be extracted |
| 2386 | /// with an extractvalue instruction with the specified parameters. |
| 2387 | /// |
| 2388 | /// Null is returned if the indices are invalid for the specified type. |
| 2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
| 2390 | |
| 2391 | using idx_iterator = const unsigned*; |
| 2392 | |
| 2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2394 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2395 | inline iterator_range<idx_iterator> indices() const { |
| 2396 | return make_range(idx_begin(), idx_end()); |
| 2397 | } |
| 2398 | |
| 2399 | Value *getAggregateOperand() { |
| 2400 | return getOperand(0); |
| 2401 | } |
| 2402 | const Value *getAggregateOperand() const { |
| 2403 | return getOperand(0); |
| 2404 | } |
| 2405 | static unsigned getAggregateOperandIndex() { |
| 2406 | return 0U; // get index for modifying correct operand |
| 2407 | } |
| 2408 | |
| 2409 | ArrayRef<unsigned> getIndices() const { |
| 2410 | return Indices; |
| 2411 | } |
| 2412 | |
| 2413 | unsigned getNumIndices() const { |
| 2414 | return (unsigned)Indices.size(); |
| 2415 | } |
| 2416 | |
| 2417 | bool hasIndices() const { |
| 2418 | return true; |
| 2419 | } |
| 2420 | |
| 2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2422 | static bool classof(const Instruction *I) { |
| 2423 | return I->getOpcode() == Instruction::ExtractValue; |
| 2424 | } |
| 2425 | static bool classof(const Value *V) { |
| 2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2427 | } |
| 2428 | }; |
| 2429 | |
| 2430 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2431 | ArrayRef<unsigned> Idxs, |
| 2432 | const Twine &NameStr, |
| 2433 | Instruction *InsertBefore) |
| 2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2435 | ExtractValue, Agg, InsertBefore) { |
| 2436 | init(Idxs, NameStr); |
| 2437 | } |
| 2438 | |
| 2439 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2440 | ArrayRef<unsigned> Idxs, |
| 2441 | const Twine &NameStr, |
| 2442 | BasicBlock *InsertAtEnd) |
| 2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2444 | ExtractValue, Agg, InsertAtEnd) { |
| 2445 | init(Idxs, NameStr); |
| 2446 | } |
| 2447 | |
| 2448 | //===----------------------------------------------------------------------===// |
| 2449 | // InsertValueInst Class |
| 2450 | //===----------------------------------------------------------------------===// |
| 2451 | |
| 2452 | /// This instruction inserts a struct field of array element |
| 2453 | /// value into an aggregate value. |
| 2454 | /// |
| 2455 | class InsertValueInst : public Instruction { |
| 2456 | SmallVector<unsigned, 4> Indices; |
| 2457 | |
| 2458 | InsertValueInst(const InsertValueInst &IVI); |
| 2459 | |
| 2460 | /// Constructors - Create a insertvalue instruction with a base aggregate |
| 2461 | /// value, a value to insert, and a list of indices. The first ctor can |
| 2462 | /// optionally insert before an existing instruction, the second appends |
| 2463 | /// the new instruction to the specified BasicBlock. |
| 2464 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2465 | ArrayRef<unsigned> Idxs, |
| 2466 | const Twine &NameStr, |
| 2467 | Instruction *InsertBefore); |
| 2468 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2469 | ArrayRef<unsigned> Idxs, |
| 2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2471 | |
| 2472 | /// Constructors - These two constructors are convenience methods because one |
| 2473 | /// and two index insertvalue instructions are so common. |
| 2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
| 2475 | const Twine &NameStr = "", |
| 2476 | Instruction *InsertBefore = nullptr); |
| 2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
| 2478 | BasicBlock *InsertAtEnd); |
| 2479 | |
| 2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| 2481 | const Twine &NameStr); |
| 2482 | |
| 2483 | protected: |
| 2484 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2485 | friend class Instruction; |
| 2486 | |
| 2487 | InsertValueInst *cloneImpl() const; |
| 2488 | |
| 2489 | public: |
| 2490 | // allocate space for exactly two operands |
| 2491 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2493 | |
| 2494 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2495 | ArrayRef<unsigned> Idxs, |
| 2496 | const Twine &NameStr = "", |
| 2497 | Instruction *InsertBefore = nullptr) { |
| 2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
| 2499 | } |
| 2500 | |
| 2501 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2502 | ArrayRef<unsigned> Idxs, |
| 2503 | const Twine &NameStr, |
| 2504 | BasicBlock *InsertAtEnd) { |
| 2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
| 2506 | } |
| 2507 | |
| 2508 | /// Transparently provide more efficient getOperand methods. |
| 2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2510 | |
| 2511 | using idx_iterator = const unsigned*; |
| 2512 | |
| 2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2514 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2515 | inline iterator_range<idx_iterator> indices() const { |
| 2516 | return make_range(idx_begin(), idx_end()); |
| 2517 | } |
| 2518 | |
| 2519 | Value *getAggregateOperand() { |
| 2520 | return getOperand(0); |
| 2521 | } |
| 2522 | const Value *getAggregateOperand() const { |
| 2523 | return getOperand(0); |
| 2524 | } |
| 2525 | static unsigned getAggregateOperandIndex() { |
| 2526 | return 0U; // get index for modifying correct operand |
| 2527 | } |
| 2528 | |
| 2529 | Value *getInsertedValueOperand() { |
| 2530 | return getOperand(1); |
| 2531 | } |
| 2532 | const Value *getInsertedValueOperand() const { |
| 2533 | return getOperand(1); |
| 2534 | } |
| 2535 | static unsigned getInsertedValueOperandIndex() { |
| 2536 | return 1U; // get index for modifying correct operand |
| 2537 | } |
| 2538 | |
| 2539 | ArrayRef<unsigned> getIndices() const { |
| 2540 | return Indices; |
| 2541 | } |
| 2542 | |
| 2543 | unsigned getNumIndices() const { |
| 2544 | return (unsigned)Indices.size(); |
| 2545 | } |
| 2546 | |
| 2547 | bool hasIndices() const { |
| 2548 | return true; |
| 2549 | } |
| 2550 | |
| 2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2552 | static bool classof(const Instruction *I) { |
| 2553 | return I->getOpcode() == Instruction::InsertValue; |
| 2554 | } |
| 2555 | static bool classof(const Value *V) { |
| 2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2557 | } |
| 2558 | }; |
| 2559 | |
| 2560 | template <> |
| 2561 | struct OperandTraits<InsertValueInst> : |
| 2562 | public FixedNumOperandTraits<InsertValueInst, 2> { |
| 2563 | }; |
| 2564 | |
| 2565 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2566 | Value *Val, |
| 2567 | ArrayRef<unsigned> Idxs, |
| 2568 | const Twine &NameStr, |
| 2569 | Instruction *InsertBefore) |
| 2570 | : Instruction(Agg->getType(), InsertValue, |
| 2571 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2572 | 2, InsertBefore) { |
| 2573 | init(Agg, Val, Idxs, NameStr); |
| 2574 | } |
| 2575 | |
| 2576 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2577 | Value *Val, |
| 2578 | ArrayRef<unsigned> Idxs, |
| 2579 | const Twine &NameStr, |
| 2580 | BasicBlock *InsertAtEnd) |
| 2581 | : Instruction(Agg->getType(), InsertValue, |
| 2582 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2583 | 2, InsertAtEnd) { |
| 2584 | init(Agg, Val, Idxs, NameStr); |
| 2585 | } |
| 2586 | |
| 2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2588 | |
| 2589 | //===----------------------------------------------------------------------===// |
| 2590 | // PHINode Class |
| 2591 | //===----------------------------------------------------------------------===// |
| 2592 | |
| 2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
| 2594 | // node, that can not exist in nature, but can be synthesized in a computer |
| 2595 | // scientist's overactive imagination. |
| 2596 | // |
| 2597 | class PHINode : public Instruction { |
| 2598 | /// The number of operands actually allocated. NumOperands is |
| 2599 | /// the number actually in use. |
| 2600 | unsigned ReservedSpace; |
| 2601 | |
| 2602 | PHINode(const PHINode &PN); |
| 2603 | |
| 2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
| 2605 | const Twine &NameStr = "", |
| 2606 | Instruction *InsertBefore = nullptr) |
| 2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
| 2608 | ReservedSpace(NumReservedValues) { |
| 2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2610 | setName(NameStr); |
| 2611 | allocHungoffUses(ReservedSpace); |
| 2612 | } |
| 2613 | |
| 2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
| 2615 | BasicBlock *InsertAtEnd) |
| 2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
| 2617 | ReservedSpace(NumReservedValues) { |
| 2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2619 | setName(NameStr); |
| 2620 | allocHungoffUses(ReservedSpace); |
| 2621 | } |
| 2622 | |
| 2623 | protected: |
| 2624 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2625 | friend class Instruction; |
| 2626 | |
| 2627 | PHINode *cloneImpl() const; |
| 2628 | |
| 2629 | // allocHungoffUses - this is more complicated than the generic |
| 2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
| 2631 | // values and pointers to the incoming blocks, all in one allocation. |
| 2632 | void allocHungoffUses(unsigned N) { |
| 2633 | User::allocHungoffUses(N, /* IsPhi */ true); |
| 2634 | } |
| 2635 | |
| 2636 | public: |
| 2637 | /// Constructors - NumReservedValues is a hint for the number of incoming |
| 2638 | /// edges that this phi node will have (use 0 if you really have no idea). |
| 2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2640 | const Twine &NameStr = "", |
| 2641 | Instruction *InsertBefore = nullptr) { |
| 2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
| 2643 | } |
| 2644 | |
| 2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
| 2648 | } |
| 2649 | |
| 2650 | /// Provide fast operand accessors |
| 2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2652 | |
| 2653 | // Block iterator interface. This provides access to the list of incoming |
| 2654 | // basic blocks, which parallels the list of incoming values. |
| 2655 | |
| 2656 | using block_iterator = BasicBlock **; |
| 2657 | using const_block_iterator = BasicBlock * const *; |
| 2658 | |
| 2659 | block_iterator block_begin() { |
| 2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
| 2661 | } |
| 2662 | |
| 2663 | const_block_iterator block_begin() const { |
| 2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
| 2665 | } |
| 2666 | |
| 2667 | block_iterator block_end() { |
| 2668 | return block_begin() + getNumOperands(); |
| 2669 | } |
| 2670 | |
| 2671 | const_block_iterator block_end() const { |
| 2672 | return block_begin() + getNumOperands(); |
| 2673 | } |
| 2674 | |
| 2675 | iterator_range<block_iterator> blocks() { |
| 2676 | return make_range(block_begin(), block_end()); |
| 2677 | } |
| 2678 | |
| 2679 | iterator_range<const_block_iterator> blocks() const { |
| 2680 | return make_range(block_begin(), block_end()); |
| 2681 | } |
| 2682 | |
| 2683 | op_range incoming_values() { return operands(); } |
| 2684 | |
| 2685 | const_op_range incoming_values() const { return operands(); } |
| 2686 | |
| 2687 | /// Return the number of incoming edges |
| 2688 | /// |
| 2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
| 2690 | |
| 2691 | /// Return incoming value number x |
| 2692 | /// |
| 2693 | Value *getIncomingValue(unsigned i) const { |
| 2694 | return getOperand(i); |
| 2695 | } |
| 2696 | void setIncomingValue(unsigned i, Value *V) { |
| 2697 | assert(V && "PHI node got a null value!")((void)0); |
| 2698 | assert(getType() == V->getType() &&((void)0) |
| 2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); |
| 2700 | setOperand(i, V); |
| 2701 | } |
| 2702 | |
| 2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
| 2704 | return i; |
| 2705 | } |
| 2706 | |
| 2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
| 2708 | return i; |
| 2709 | } |
| 2710 | |
| 2711 | /// Return incoming basic block number @p i. |
| 2712 | /// |
| 2713 | BasicBlock *getIncomingBlock(unsigned i) const { |
| 2714 | return block_begin()[i]; |
| 2715 | } |
| 2716 | |
| 2717 | /// Return incoming basic block corresponding |
| 2718 | /// to an operand of the PHI. |
| 2719 | /// |
| 2720 | BasicBlock *getIncomingBlock(const Use &U) const { |
| 2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); |
| 2722 | return getIncomingBlock(unsigned(&U - op_begin())); |
| 2723 | } |
| 2724 | |
| 2725 | /// Return incoming basic block corresponding |
| 2726 | /// to value use iterator. |
| 2727 | /// |
| 2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
| 2729 | return getIncomingBlock(I.getUse()); |
| 2730 | } |
| 2731 | |
| 2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
| 2733 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2734 | block_begin()[i] = BB; |
| 2735 | } |
| 2736 | |
| 2737 | /// Replace every incoming basic block \p Old to basic block \p New. |
| 2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
| 2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); |
| 2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2741 | if (getIncomingBlock(Op) == Old) |
| 2742 | setIncomingBlock(Op, New); |
| 2743 | } |
| 2744 | |
| 2745 | /// Add an incoming value to the end of the PHI list |
| 2746 | /// |
| 2747 | void addIncoming(Value *V, BasicBlock *BB) { |
| 2748 | if (getNumOperands() == ReservedSpace) |
| 2749 | growOperands(); // Get more space! |
| 2750 | // Initialize some new operands. |
| 2751 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 2752 | setIncomingValue(getNumOperands() - 1, V); |
| 2753 | setIncomingBlock(getNumOperands() - 1, BB); |
| 2754 | } |
| 2755 | |
| 2756 | /// Remove an incoming value. This is useful if a |
| 2757 | /// predecessor basic block is deleted. The value removed is returned. |
| 2758 | /// |
| 2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
| 2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
| 2761 | /// dummy values. The only time there should be zero incoming values to a PHI |
| 2762 | /// node is when the block is dead, so this strategy is sound. |
| 2763 | /// |
| 2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
| 2765 | |
| 2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
| 2767 | int Idx = getBasicBlockIndex(BB); |
| 2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); |
| 2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
| 2770 | } |
| 2771 | |
| 2772 | /// Return the first index of the specified basic |
| 2773 | /// block in the value list for this PHI. Returns -1 if no instance. |
| 2774 | /// |
| 2775 | int getBasicBlockIndex(const BasicBlock *BB) const { |
| 2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| 2777 | if (block_begin()[i] == BB) |
| 2778 | return i; |
| 2779 | return -1; |
| 2780 | } |
| 2781 | |
| 2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
| 2783 | int Idx = getBasicBlockIndex(BB); |
| 2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); |
| 2785 | return getIncomingValue(Idx); |
| 2786 | } |
| 2787 | |
| 2788 | /// Set every incoming value(s) for block \p BB to \p V. |
| 2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
| 2790 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2791 | bool Found = false; |
| 2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2793 | if (getIncomingBlock(Op) == BB) { |
| 2794 | Found = true; |
| 2795 | setIncomingValue(Op, V); |
| 2796 | } |
| 2797 | (void)Found; |
| 2798 | assert(Found && "Invalid basic block argument to set!")((void)0); |
| 2799 | } |
| 2800 | |
| 2801 | /// If the specified PHI node always merges together the |
| 2802 | /// same value, return the value, otherwise return null. |
| 2803 | Value *hasConstantValue() const; |
| 2804 | |
| 2805 | /// Whether the specified PHI node always merges |
| 2806 | /// together the same value, assuming undefs are equal to a unique |
| 2807 | /// non-undef value. |
| 2808 | bool hasConstantOrUndefValue() const; |
| 2809 | |
| 2810 | /// If the PHI node is complete which means all of its parent's predecessors |
| 2811 | /// have incoming value in this PHI, return true, otherwise return false. |
| 2812 | bool isComplete() const { |
| 2813 | return llvm::all_of(predecessors(getParent()), |
| 2814 | [this](const BasicBlock *Pred) { |
| 2815 | return getBasicBlockIndex(Pred) >= 0; |
| 2816 | }); |
| 2817 | } |
| 2818 | |
| 2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2820 | static bool classof(const Instruction *I) { |
| 2821 | return I->getOpcode() == Instruction::PHI; |
| 2822 | } |
| 2823 | static bool classof(const Value *V) { |
| 2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2825 | } |
| 2826 | |
| 2827 | private: |
| 2828 | void growOperands(); |
| 2829 | }; |
| 2830 | |
| 2831 | template <> |
| 2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
| 2833 | }; |
| 2834 | |
| 2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 2836 | |
| 2837 | //===----------------------------------------------------------------------===// |
| 2838 | // LandingPadInst Class |
| 2839 | //===----------------------------------------------------------------------===// |
| 2840 | |
| 2841 | //===--------------------------------------------------------------------------- |
| 2842 | /// The landingpad instruction holds all of the information |
| 2843 | /// necessary to generate correct exception handling. The landingpad instruction |
| 2844 | /// cannot be moved from the top of a landing pad block, which itself is |
| 2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
| 2846 | /// SubclassData field in Value to store whether or not the landingpad is a |
| 2847 | /// cleanup. |
| 2848 | /// |
| 2849 | class LandingPadInst : public Instruction { |
| 2850 | using CleanupField = BoolBitfieldElementT<0>; |
| 2851 | |
| 2852 | /// The number of operands actually allocated. NumOperands is |
| 2853 | /// the number actually in use. |
| 2854 | unsigned ReservedSpace; |
| 2855 | |
| 2856 | LandingPadInst(const LandingPadInst &LP); |
| 2857 | |
| 2858 | public: |
| 2859 | enum ClauseType { Catch, Filter }; |
| 2860 | |
| 2861 | private: |
| 2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2863 | const Twine &NameStr, Instruction *InsertBefore); |
| 2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2866 | |
| 2867 | // Allocate space for exactly zero operands. |
| 2868 | void *operator new(size_t S) { return User::operator new(S); } |
| 2869 | |
| 2870 | void growOperands(unsigned Size); |
| 2871 | void init(unsigned NumReservedValues, const Twine &NameStr); |
| 2872 | |
| 2873 | protected: |
| 2874 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2875 | friend class Instruction; |
| 2876 | |
| 2877 | LandingPadInst *cloneImpl() const; |
| 2878 | |
| 2879 | public: |
| 2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2881 | |
| 2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
| 2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
| 2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2885 | const Twine &NameStr = "", |
| 2886 | Instruction *InsertBefore = nullptr); |
| 2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2889 | |
| 2890 | /// Provide fast operand accessors |
| 2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2892 | |
| 2893 | /// Return 'true' if this landingpad instruction is a |
| 2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
| 2895 | /// doesn't catch the exception. |
| 2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
| 2897 | |
| 2898 | /// Indicate that this landingpad instruction is a cleanup. |
| 2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
| 2900 | |
| 2901 | /// Add a catch or filter clause to the landing pad. |
| 2902 | void addClause(Constant *ClauseVal); |
| 2903 | |
| 2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
| 2905 | /// determine what type of clause this is. |
| 2906 | Constant *getClause(unsigned Idx) const { |
| 2907 | return cast<Constant>(getOperandList()[Idx]); |
| 2908 | } |
| 2909 | |
| 2910 | /// Return 'true' if the clause and index Idx is a catch clause. |
| 2911 | bool isCatch(unsigned Idx) const { |
| 2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2913 | } |
| 2914 | |
| 2915 | /// Return 'true' if the clause and index Idx is a filter clause. |
| 2916 | bool isFilter(unsigned Idx) const { |
| 2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2918 | } |
| 2919 | |
| 2920 | /// Get the number of clauses for this landing pad. |
| 2921 | unsigned getNumClauses() const { return getNumOperands(); } |
| 2922 | |
| 2923 | /// Grow the size of the operand list to accommodate the new |
| 2924 | /// number of clauses. |
| 2925 | void reserveClauses(unsigned Size) { growOperands(Size); } |
| 2926 | |
| 2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2928 | static bool classof(const Instruction *I) { |
| 2929 | return I->getOpcode() == Instruction::LandingPad; |
| 2930 | } |
| 2931 | static bool classof(const Value *V) { |
| 2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2933 | } |
| 2934 | }; |
| 2935 | |
| 2936 | template <> |
| 2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
| 2938 | }; |
| 2939 | |
| 2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2941 | |
| 2942 | //===----------------------------------------------------------------------===// |
| 2943 | // ReturnInst Class |
| 2944 | //===----------------------------------------------------------------------===// |
| 2945 | |
| 2946 | //===--------------------------------------------------------------------------- |
| 2947 | /// Return a value (possibly void), from a function. Execution |
| 2948 | /// does not continue in this function any longer. |
| 2949 | /// |
| 2950 | class ReturnInst : public Instruction { |
| 2951 | ReturnInst(const ReturnInst &RI); |
| 2952 | |
| 2953 | private: |
| 2954 | // ReturnInst constructors: |
| 2955 | // ReturnInst() - 'ret void' instruction |
| 2956 | // ReturnInst( null) - 'ret void' instruction |
| 2957 | // ReturnInst(Value* X) - 'ret X' instruction |
| 2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
| 2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
| 2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
| 2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
| 2962 | // |
| 2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
| 2964 | // if it was passed NULL. |
| 2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
| 2966 | Instruction *InsertBefore = nullptr); |
| 2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
| 2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 2969 | |
| 2970 | protected: |
| 2971 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2972 | friend class Instruction; |
| 2973 | |
| 2974 | ReturnInst *cloneImpl() const; |
| 2975 | |
| 2976 | public: |
| 2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
| 2978 | Instruction *InsertBefore = nullptr) { |
| 2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
| 2980 | } |
| 2981 | |
| 2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
| 2983 | BasicBlock *InsertAtEnd) { |
| 2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
| 2985 | } |
| 2986 | |
| 2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
| 2988 | return new(0) ReturnInst(C, InsertAtEnd); |
| 2989 | } |
| 2990 | |
| 2991 | /// Provide fast operand accessors |
| 2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2993 | |
| 2994 | /// Convenience accessor. Returns null if there is no return value. |
| 2995 | Value *getReturnValue() const { |
| 2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
| 2997 | } |
| 2998 | |
| 2999 | unsigned getNumSuccessors() const { return 0; } |
| 3000 | |
| 3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3002 | static bool classof(const Instruction *I) { |
| 3003 | return (I->getOpcode() == Instruction::Ret); |
| 3004 | } |
| 3005 | static bool classof(const Value *V) { |
| 3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3007 | } |
| 3008 | |
| 3009 | private: |
| 3010 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3012 | } |
| 3013 | |
| 3014 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3016 | } |
| 3017 | }; |
| 3018 | |
| 3019 | template <> |
| 3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
| 3021 | }; |
| 3022 | |
| 3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3024 | |
| 3025 | //===----------------------------------------------------------------------===// |
| 3026 | // BranchInst Class |
| 3027 | //===----------------------------------------------------------------------===// |
| 3028 | |
| 3029 | //===--------------------------------------------------------------------------- |
| 3030 | /// Conditional or Unconditional Branch instruction. |
| 3031 | /// |
| 3032 | class BranchInst : public Instruction { |
| 3033 | /// Ops list - Branches are strange. The operands are ordered: |
| 3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
| 3035 | /// they don't have to check for cond/uncond branchness. These are mostly |
| 3036 | /// accessed relative from op_end(). |
| 3037 | BranchInst(const BranchInst &BI); |
| 3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
| 3039 | // BranchInst(BB *B) - 'br B' |
| 3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
| 3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
| 3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
| 3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
| 3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
| 3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
| 3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3047 | Instruction *InsertBefore = nullptr); |
| 3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
| 3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3050 | BasicBlock *InsertAtEnd); |
| 3051 | |
| 3052 | void AssertOK(); |
| 3053 | |
| 3054 | protected: |
| 3055 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3056 | friend class Instruction; |
| 3057 | |
| 3058 | BranchInst *cloneImpl() const; |
| 3059 | |
| 3060 | public: |
| 3061 | /// Iterator type that casts an operand to a basic block. |
| 3062 | /// |
| 3063 | /// This only makes sense because the successors are stored as adjacent |
| 3064 | /// operands for branch instructions. |
| 3065 | struct succ_op_iterator |
| 3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3067 | std::random_access_iterator_tag, BasicBlock *, |
| 3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3070 | |
| 3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3072 | BasicBlock *operator->() const { return operator*(); } |
| 3073 | }; |
| 3074 | |
| 3075 | /// The const version of `succ_op_iterator`. |
| 3076 | struct const_succ_op_iterator |
| 3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3078 | std::random_access_iterator_tag, |
| 3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3080 | const BasicBlock *> { |
| 3081 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3082 | : iterator_adaptor_base(I) {} |
| 3083 | |
| 3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3085 | const BasicBlock *operator->() const { return operator*(); } |
| 3086 | }; |
| 3087 | |
| 3088 | static BranchInst *Create(BasicBlock *IfTrue, |
| 3089 | Instruction *InsertBefore = nullptr) { |
| 3090 | return new(1) BranchInst(IfTrue, InsertBefore); |
| 3091 | } |
| 3092 | |
| 3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3094 | Value *Cond, Instruction *InsertBefore = nullptr) { |
| 3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
| 3096 | } |
| 3097 | |
| 3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
| 3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
| 3100 | } |
| 3101 | |
| 3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3103 | Value *Cond, BasicBlock *InsertAtEnd) { |
| 3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
| 3105 | } |
| 3106 | |
| 3107 | /// Transparently provide more efficient getOperand methods. |
| 3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3109 | |
| 3110 | bool isUnconditional() const { return getNumOperands() == 1; } |
| 3111 | bool isConditional() const { return getNumOperands() == 3; } |
| 3112 | |
| 3113 | Value *getCondition() const { |
| 3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); |
| 3115 | return Op<-3>(); |
| 3116 | } |
| 3117 | |
| 3118 | void setCondition(Value *V) { |
| 3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); |
| 3120 | Op<-3>() = V; |
| 3121 | } |
| 3122 | |
| 3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
| 3124 | |
| 3125 | BasicBlock *getSuccessor(unsigned i) const { |
| 3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
| 3128 | } |
| 3129 | |
| 3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3132 | *(&Op<-1>() - idx) = NewSucc; |
| 3133 | } |
| 3134 | |
| 3135 | /// Swap the successors of this branch instruction. |
| 3136 | /// |
| 3137 | /// Swaps the successors of the branch instruction. This also swaps any |
| 3138 | /// branch weight metadata associated with the instruction so that it |
| 3139 | /// continues to map correctly to each operand. |
| 3140 | void swapSuccessors(); |
| 3141 | |
| 3142 | iterator_range<succ_op_iterator> successors() { |
| 3143 | return make_range( |
| 3144 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3145 | succ_op_iterator(value_op_end())); |
| 3146 | } |
| 3147 | |
| 3148 | iterator_range<const_succ_op_iterator> successors() const { |
| 3149 | return make_range(const_succ_op_iterator( |
| 3150 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3151 | const_succ_op_iterator(value_op_end())); |
| 3152 | } |
| 3153 | |
| 3154 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3155 | static bool classof(const Instruction *I) { |
| 3156 | return (I->getOpcode() == Instruction::Br); |
| 3157 | } |
| 3158 | static bool classof(const Value *V) { |
| 3159 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3160 | } |
| 3161 | }; |
| 3162 | |
| 3163 | template <> |
| 3164 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
| 3165 | }; |
| 3166 | |
| 3167 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<BranchInst>::op_begin(const_cast <BranchInst*>(this))[i_nocapture].get()); } void BranchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3168 | |
| 3169 | //===----------------------------------------------------------------------===// |
| 3170 | // SwitchInst Class |
| 3171 | //===----------------------------------------------------------------------===// |
| 3172 | |
| 3173 | //===--------------------------------------------------------------------------- |
| 3174 | /// Multiway switch |
| 3175 | /// |
| 3176 | class SwitchInst : public Instruction { |
| 3177 | unsigned ReservedSpace; |
| 3178 | |
| 3179 | // Operand[0] = Value to switch on |
| 3180 | // Operand[1] = Default basic block destination |
| 3181 | // Operand[2n ] = Value to match |
| 3182 | // Operand[2n+1] = BasicBlock to go to on match |
| 3183 | SwitchInst(const SwitchInst &SI); |
| 3184 | |
| 3185 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3186 | /// default destination. The number of additional cases can be specified here |
| 3187 | /// to make memory allocation more efficient. This constructor can also |
| 3188 | /// auto-insert before another instruction. |
| 3189 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3190 | Instruction *InsertBefore); |
| 3191 | |
| 3192 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3193 | /// default destination. The number of additional cases can be specified here |
| 3194 | /// to make memory allocation more efficient. This constructor also |
| 3195 | /// auto-inserts at the end of the specified BasicBlock. |
| 3196 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3197 | BasicBlock *InsertAtEnd); |
| 3198 | |
| 3199 | // allocate space for exactly zero operands |
| 3200 | void *operator new(size_t S) { return User::operator new(S); } |
| 3201 | |
| 3202 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
| 3203 | void growOperands(); |
| 3204 | |
| 3205 | protected: |
| 3206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3207 | friend class Instruction; |
| 3208 | |
| 3209 | SwitchInst *cloneImpl() const; |
| 3210 | |
| 3211 | public: |
| 3212 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3213 | |
| 3214 | // -2 |
| 3215 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
| 3216 | |
| 3217 | template <typename CaseHandleT> class CaseIteratorImpl; |
| 3218 | |
| 3219 | /// A handle to a particular switch case. It exposes a convenient interface |
| 3220 | /// to both the case value and the successor block. |
| 3221 | /// |
| 3222 | /// We define this as a template and instantiate it to form both a const and |
| 3223 | /// non-const handle. |
| 3224 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
| 3225 | class CaseHandleImpl { |
| 3226 | // Directly befriend both const and non-const iterators. |
| 3227 | friend class SwitchInst::CaseIteratorImpl< |
| 3228 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
| 3229 | |
| 3230 | protected: |
| 3231 | // Expose the switch type we're parameterized with to the iterator. |
| 3232 | using SwitchInstType = SwitchInstT; |
| 3233 | |
| 3234 | SwitchInstT *SI; |
| 3235 | ptrdiff_t Index; |
| 3236 | |
| 3237 | CaseHandleImpl() = default; |
| 3238 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
| 3239 | |
| 3240 | public: |
| 3241 | /// Resolves case value for current case. |
| 3242 | ConstantIntT *getCaseValue() const { |
| 3243 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3244 | "Index out the number of cases.")((void)0); |
| 3245 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
| 3246 | } |
| 3247 | |
| 3248 | /// Resolves successor for current case. |
| 3249 | BasicBlockT *getCaseSuccessor() const { |
| 3250 | assert(((unsigned)Index < SI->getNumCases() ||((void)0) |
| 3251 | (unsigned)Index == DefaultPseudoIndex) &&((void)0) |
| 3252 | "Index out the number of cases.")((void)0); |
| 3253 | return SI->getSuccessor(getSuccessorIndex()); |
| 3254 | } |
| 3255 | |
| 3256 | /// Returns number of current case. |
| 3257 | unsigned getCaseIndex() const { return Index; } |
| 3258 | |
| 3259 | /// Returns successor index for current case successor. |
| 3260 | unsigned getSuccessorIndex() const { |
| 3261 | assert(((unsigned)Index == DefaultPseudoIndex ||((void)0) |
| 3262 | (unsigned)Index < SI->getNumCases()) &&((void)0) |
| 3263 | "Index out the number of cases.")((void)0); |
| 3264 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
| 3265 | } |
| 3266 | |
| 3267 | bool operator==(const CaseHandleImpl &RHS) const { |
| 3268 | assert(SI == RHS.SI && "Incompatible operators.")((void)0); |
| 3269 | return Index == RHS.Index; |
| 3270 | } |
| 3271 | }; |
| 3272 | |
| 3273 | using ConstCaseHandle = |
| 3274 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
| 3275 | |
| 3276 | class CaseHandle |
| 3277 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
| 3278 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
| 3279 | |
| 3280 | public: |
| 3281 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
| 3282 | |
| 3283 | /// Sets the new value for current case. |
| 3284 | void setValue(ConstantInt *V) { |
| 3285 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3286 | "Index out the number of cases.")((void)0); |
| 3287 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
| 3288 | } |
| 3289 | |
| 3290 | /// Sets the new successor for current case. |
| 3291 | void setSuccessor(BasicBlock *S) { |
| 3292 | SI->setSuccessor(getSuccessorIndex(), S); |
| 3293 | } |
| 3294 | }; |
| 3295 | |
| 3296 | template <typename CaseHandleT> |
| 3297 | class CaseIteratorImpl |
| 3298 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
| 3299 | std::random_access_iterator_tag, |
| 3300 | CaseHandleT> { |
| 3301 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
| 3302 | |
| 3303 | CaseHandleT Case; |
| 3304 | |
| 3305 | public: |
| 3306 | /// Default constructed iterator is in an invalid state until assigned to |
| 3307 | /// a case for a particular switch. |
| 3308 | CaseIteratorImpl() = default; |
| 3309 | |
| 3310 | /// Initializes case iterator for given SwitchInst and for given |
| 3311 | /// case number. |
| 3312 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
| 3313 | |
| 3314 | /// Initializes case iterator for given SwitchInst and for given |
| 3315 | /// successor index. |
| 3316 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
| 3317 | unsigned SuccessorIndex) { |
| 3318 | assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0) |
| 3319 | "Successor index # out of range!")((void)0); |
| 3320 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
| 3321 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
| 3322 | } |
| 3323 | |
| 3324 | /// Support converting to the const variant. This will be a no-op for const |
| 3325 | /// variant. |
| 3326 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
| 3327 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
| 3328 | } |
| 3329 | |
| 3330 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
| 3331 | // Check index correctness after addition. |
| 3332 | // Note: Index == getNumCases() means end(). |
| 3333 | assert(Case.Index + N >= 0 &&((void)0) |
| 3334 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0) |
| 3335 | "Case.Index out the number of cases.")((void)0); |
| 3336 | Case.Index += N; |
| 3337 | return *this; |
| 3338 | } |
| 3339 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
| 3340 | // Check index correctness after subtraction. |
| 3341 | // Note: Case.Index == getNumCases() means end(). |
| 3342 | assert(Case.Index - N >= 0 &&((void)0) |
| 3343 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0) |
| 3344 | "Case.Index out the number of cases.")((void)0); |
| 3345 | Case.Index -= N; |
| 3346 | return *this; |
| 3347 | } |
| 3348 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
| 3349 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3350 | return Case.Index - RHS.Case.Index; |
| 3351 | } |
| 3352 | bool operator==(const CaseIteratorImpl &RHS) const { |
| 3353 | return Case == RHS.Case; |
| 3354 | } |
| 3355 | bool operator<(const CaseIteratorImpl &RHS) const { |
| 3356 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3357 | return Case.Index < RHS.Case.Index; |
| 3358 | } |
| 3359 | CaseHandleT &operator*() { return Case; } |
| 3360 | const CaseHandleT &operator*() const { return Case; } |
| 3361 | }; |
| 3362 | |
| 3363 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
| 3364 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
| 3365 | |
| 3366 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3367 | unsigned NumCases, |
| 3368 | Instruction *InsertBefore = nullptr) { |
| 3369 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
| 3370 | } |
| 3371 | |
| 3372 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3373 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
| 3374 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
| 3375 | } |
| 3376 | |
| 3377 | /// Provide fast operand accessors |
| 3378 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3379 | |
| 3380 | // Accessor Methods for Switch stmt |
| 3381 | Value *getCondition() const { return getOperand(0); } |
| 3382 | void setCondition(Value *V) { setOperand(0, V); } |
| 3383 | |
| 3384 | BasicBlock *getDefaultDest() const { |
| 3385 | return cast<BasicBlock>(getOperand(1)); |
| 3386 | } |
| 3387 | |
| 3388 | void setDefaultDest(BasicBlock *DefaultCase) { |
| 3389 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
| 3390 | } |
| 3391 | |
| 3392 | /// Return the number of 'cases' in this switch instruction, excluding the |
| 3393 | /// default case. |
| 3394 | unsigned getNumCases() const { |
| 3395 | return getNumOperands()/2 - 1; |
| 3396 | } |
| 3397 | |
| 3398 | /// Returns a read/write iterator that points to the first case in the |
| 3399 | /// SwitchInst. |
| 3400 | CaseIt case_begin() { |
| 3401 | return CaseIt(this, 0); |
| 3402 | } |
| 3403 | |
| 3404 | /// Returns a read-only iterator that points to the first case in the |
| 3405 | /// SwitchInst. |
| 3406 | ConstCaseIt case_begin() const { |
| 3407 | return ConstCaseIt(this, 0); |
| 3408 | } |
| 3409 | |
| 3410 | /// Returns a read/write iterator that points one past the last in the |
| 3411 | /// SwitchInst. |
| 3412 | CaseIt case_end() { |
| 3413 | return CaseIt(this, getNumCases()); |
| 3414 | } |
| 3415 | |
| 3416 | /// Returns a read-only iterator that points one past the last in the |
| 3417 | /// SwitchInst. |
| 3418 | ConstCaseIt case_end() const { |
| 3419 | return ConstCaseIt(this, getNumCases()); |
| 3420 | } |
| 3421 | |
| 3422 | /// Iteration adapter for range-for loops. |
| 3423 | iterator_range<CaseIt> cases() { |
| 3424 | return make_range(case_begin(), case_end()); |
| 3425 | } |
| 3426 | |
| 3427 | /// Constant iteration adapter for range-for loops. |
| 3428 | iterator_range<ConstCaseIt> cases() const { |
| 3429 | return make_range(case_begin(), case_end()); |
| 3430 | } |
| 3431 | |
| 3432 | /// Returns an iterator that points to the default case. |
| 3433 | /// Note: this iterator allows to resolve successor only. Attempt |
| 3434 | /// to resolve case value causes an assertion. |
| 3435 | /// Also note, that increment and decrement also causes an assertion and |
| 3436 | /// makes iterator invalid. |
| 3437 | CaseIt case_default() { |
| 3438 | return CaseIt(this, DefaultPseudoIndex); |
| 3439 | } |
| 3440 | ConstCaseIt case_default() const { |
| 3441 | return ConstCaseIt(this, DefaultPseudoIndex); |
| 3442 | } |
| 3443 | |
| 3444 | /// Search all of the case values for the specified constant. If it is |
| 3445 | /// explicitly handled, return the case iterator of it, otherwise return |
| 3446 | /// default case iterator to indicate that it is handled by the default |
| 3447 | /// handler. |
| 3448 | CaseIt findCaseValue(const ConstantInt *C) { |
| 3449 | CaseIt I = llvm::find_if( |
| 3450 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); |
| 3451 | if (I != case_end()) |
| 3452 | return I; |
| 3453 | |
| 3454 | return case_default(); |
| 3455 | } |
| 3456 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
| 3457 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { |
| 3458 | return Case.getCaseValue() == C; |
| 3459 | }); |
| 3460 | if (I != case_end()) |
| 3461 | return I; |
| 3462 | |
| 3463 | return case_default(); |
| 3464 | } |
| 3465 | |
| 3466 | /// Finds the unique case value for a given successor. Returns null if the |
| 3467 | /// successor is not found, not unique, or is the default case. |
| 3468 | ConstantInt *findCaseDest(BasicBlock *BB) { |
| 3469 | if (BB == getDefaultDest()) |
| 3470 | return nullptr; |
| 3471 | |
| 3472 | ConstantInt *CI = nullptr; |
| 3473 | for (auto Case : cases()) { |
| 3474 | if (Case.getCaseSuccessor() != BB) |
| 3475 | continue; |
| 3476 | |
| 3477 | if (CI) |
| 3478 | return nullptr; // Multiple cases lead to BB. |
| 3479 | |
| 3480 | CI = Case.getCaseValue(); |
| 3481 | } |
| 3482 | |
| 3483 | return CI; |
| 3484 | } |
| 3485 | |
| 3486 | /// Add an entry to the switch instruction. |
| 3487 | /// Note: |
| 3488 | /// This action invalidates case_end(). Old case_end() iterator will |
| 3489 | /// point to the added case. |
| 3490 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
| 3491 | |
| 3492 | /// This method removes the specified case and its successor from the switch |
| 3493 | /// instruction. Note that this operation may reorder the remaining cases at |
| 3494 | /// index idx and above. |
| 3495 | /// Note: |
| 3496 | /// This action invalidates iterators for all cases following the one removed, |
| 3497 | /// including the case_end() iterator. It returns an iterator for the next |
| 3498 | /// case. |
| 3499 | CaseIt removeCase(CaseIt I); |
| 3500 | |
| 3501 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
| 3502 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3503 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0); |
| 3504 | return cast<BasicBlock>(getOperand(idx*2+1)); |
| 3505 | } |
| 3506 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3507 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0); |
| 3508 | setOperand(idx * 2 + 1, NewSucc); |
| 3509 | } |
| 3510 | |
| 3511 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3512 | static bool classof(const Instruction *I) { |
| 3513 | return I->getOpcode() == Instruction::Switch; |
| 3514 | } |
| 3515 | static bool classof(const Value *V) { |
| 3516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3517 | } |
| 3518 | }; |
| 3519 | |
| 3520 | /// A wrapper class to simplify modification of SwitchInst cases along with |
| 3521 | /// their prof branch_weights metadata. |
| 3522 | class SwitchInstProfUpdateWrapper { |
| 3523 | SwitchInst &SI; |
| 3524 | Optional<SmallVector<uint32_t, 8> > Weights = None; |
| 3525 | bool Changed = false; |
| 3526 | |
| 3527 | protected: |
| 3528 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); |
| 3529 | |
| 3530 | MDNode *buildProfBranchWeightsMD(); |
| 3531 | |
| 3532 | void init(); |
| 3533 | |
| 3534 | public: |
| 3535 | using CaseWeightOpt = Optional<uint32_t>; |
| 3536 | SwitchInst *operator->() { return &SI; } |
| 3537 | SwitchInst &operator*() { return SI; } |
| 3538 | operator SwitchInst *() { return &SI; } |
| 3539 | |
| 3540 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } |
| 3541 | |
| 3542 | ~SwitchInstProfUpdateWrapper() { |
| 3543 | if (Changed) |
| 3544 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); |
| 3545 | } |
| 3546 | |
| 3547 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove |
| 3548 | /// correspondent branch weight. |
| 3549 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); |
| 3550 | |
| 3551 | /// Delegate the call to the underlying SwitchInst::addCase() and set the |
| 3552 | /// specified branch weight for the added case. |
| 3553 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); |
| 3554 | |
| 3555 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark |
| 3556 | /// this object to not touch the underlying SwitchInst in destructor. |
| 3557 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 3558 | |
| 3559 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); |
| 3560 | CaseWeightOpt getSuccessorWeight(unsigned idx); |
| 3561 | |
| 3562 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); |
| 3563 | }; |
| 3564 | |
| 3565 | template <> |
| 3566 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { |
| 3567 | }; |
| 3568 | |
| 3569 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SwitchInst>::op_begin(const_cast <SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3570 | |
| 3571 | //===----------------------------------------------------------------------===// |
| 3572 | // IndirectBrInst Class |
| 3573 | //===----------------------------------------------------------------------===// |
| 3574 | |
| 3575 | //===--------------------------------------------------------------------------- |
| 3576 | /// Indirect Branch Instruction. |
| 3577 | /// |
| 3578 | class IndirectBrInst : public Instruction { |
| 3579 | unsigned ReservedSpace; |
| 3580 | |
| 3581 | // Operand[0] = Address to jump to |
| 3582 | // Operand[n+1] = n-th destination |
| 3583 | IndirectBrInst(const IndirectBrInst &IBI); |
| 3584 | |
| 3585 | /// Create a new indirectbr instruction, specifying an |
| 3586 | /// Address to jump to. The number of expected destinations can be specified |
| 3587 | /// here to make memory allocation more efficient. This constructor can also |
| 3588 | /// autoinsert before another instruction. |
| 3589 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); |
| 3590 | |
| 3591 | /// Create a new indirectbr instruction, specifying an |
| 3592 | /// Address to jump to. The number of expected destinations can be specified |
| 3593 | /// here to make memory allocation more efficient. This constructor also |
| 3594 | /// autoinserts at the end of the specified BasicBlock. |
| 3595 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); |
| 3596 | |
| 3597 | // allocate space for exactly zero operands |
| 3598 | void *operator new(size_t S) { return User::operator new(S); } |
| 3599 | |
| 3600 | void init(Value *Address, unsigned NumDests); |
| 3601 | void growOperands(); |
| 3602 | |
| 3603 | protected: |
| 3604 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3605 | friend class Instruction; |
| 3606 | |
| 3607 | IndirectBrInst *cloneImpl() const; |
| 3608 | |
| 3609 | public: |
| 3610 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3611 | |
| 3612 | /// Iterator type that casts an operand to a basic block. |
| 3613 | /// |
| 3614 | /// This only makes sense because the successors are stored as adjacent |
| 3615 | /// operands for indirectbr instructions. |
| 3616 | struct succ_op_iterator |
| 3617 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3618 | std::random_access_iterator_tag, BasicBlock *, |
| 3619 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3620 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3621 | |
| 3622 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3623 | BasicBlock *operator->() const { return operator*(); } |
| 3624 | }; |
| 3625 | |
| 3626 | /// The const version of `succ_op_iterator`. |
| 3627 | struct const_succ_op_iterator |
| 3628 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3629 | std::random_access_iterator_tag, |
| 3630 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3631 | const BasicBlock *> { |
| 3632 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3633 | : iterator_adaptor_base(I) {} |
| 3634 | |
| 3635 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3636 | const BasicBlock *operator->() const { return operator*(); } |
| 3637 | }; |
| 3638 | |
| 3639 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3640 | Instruction *InsertBefore = nullptr) { |
| 3641 | return new IndirectBrInst(Address, NumDests, InsertBefore); |
| 3642 | } |
| 3643 | |
| 3644 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3645 | BasicBlock *InsertAtEnd) { |
| 3646 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); |
| 3647 | } |
| 3648 | |
| 3649 | /// Provide fast operand accessors. |
| 3650 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3651 | |
| 3652 | // Accessor Methods for IndirectBrInst instruction. |
| 3653 | Value *getAddress() { return getOperand(0); } |
| 3654 | const Value *getAddress() const { return getOperand(0); } |
| 3655 | void setAddress(Value *V) { setOperand(0, V); } |
| 3656 | |
| 3657 | /// return the number of possible destinations in this |
| 3658 | /// indirectbr instruction. |
| 3659 | unsigned getNumDestinations() const { return getNumOperands()-1; } |
| 3660 | |
| 3661 | /// Return the specified destination. |
| 3662 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } |
| 3663 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } |
| 3664 | |
| 3665 | /// Add a destination. |
| 3666 | /// |
| 3667 | void addDestination(BasicBlock *Dest); |
| 3668 | |
| 3669 | /// This method removes the specified successor from the |
| 3670 | /// indirectbr instruction. |
| 3671 | void removeDestination(unsigned i); |
| 3672 | |
| 3673 | unsigned getNumSuccessors() const { return getNumOperands()-1; } |
| 3674 | BasicBlock *getSuccessor(unsigned i) const { |
| 3675 | return cast<BasicBlock>(getOperand(i+1)); |
| 3676 | } |
| 3677 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3678 | setOperand(i + 1, NewSucc); |
| 3679 | } |
| 3680 | |
| 3681 | iterator_range<succ_op_iterator> successors() { |
| 3682 | return make_range(succ_op_iterator(std::next(value_op_begin())), |
| 3683 | succ_op_iterator(value_op_end())); |
| 3684 | } |
| 3685 | |
| 3686 | iterator_range<const_succ_op_iterator> successors() const { |
| 3687 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), |
| 3688 | const_succ_op_iterator(value_op_end())); |
| 3689 | } |
| 3690 | |
| 3691 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3692 | static bool classof(const Instruction *I) { |
| 3693 | return I->getOpcode() == Instruction::IndirectBr; |
| 3694 | } |
| 3695 | static bool classof(const Value *V) { |
| 3696 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3697 | } |
| 3698 | }; |
| 3699 | |
| 3700 | template <> |
| 3701 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { |
| 3702 | }; |
| 3703 | |
| 3704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<IndirectBrInst>::op_begin( const_cast<IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits <IndirectBrInst>::operands(this); } template <int Idx_nocapture > Use &IndirectBrInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 3705 | |
| 3706 | //===----------------------------------------------------------------------===// |
| 3707 | // InvokeInst Class |
| 3708 | //===----------------------------------------------------------------------===// |
| 3709 | |
| 3710 | /// Invoke instruction. The SubclassData field is used to hold the |
| 3711 | /// calling convention of the call. |
| 3712 | /// |
| 3713 | class InvokeInst : public CallBase { |
| 3714 | /// The number of operands for this call beyond the called function, |
| 3715 | /// arguments, and operand bundles. |
| 3716 | static constexpr int NumExtraOperands = 2; |
| 3717 | |
| 3718 | /// The index from the end of the operand array to the normal destination. |
| 3719 | static constexpr int NormalDestOpEndIdx = -3; |
| 3720 | |
| 3721 | /// The index from the end of the operand array to the unwind destination. |
| 3722 | static constexpr int UnwindDestOpEndIdx = -2; |
| 3723 | |
| 3724 | InvokeInst(const InvokeInst &BI); |
| 3725 | |
| 3726 | /// Construct an InvokeInst given a range of arguments. |
| 3727 | /// |
| 3728 | /// Construct an InvokeInst from a range of arguments |
| 3729 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3730 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3731 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3732 | const Twine &NameStr, Instruction *InsertBefore); |
| 3733 | |
| 3734 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3735 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3736 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3737 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3738 | |
| 3739 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3740 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3741 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3742 | |
| 3743 | /// Compute the number of operands to allocate. |
| 3744 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 3745 | // We need one operand for the called function, plus our extra operands and |
| 3746 | // the input operand counts provided. |
| 3747 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; |
| 3748 | } |
| 3749 | |
| 3750 | protected: |
| 3751 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3752 | friend class Instruction; |
| 3753 | |
| 3754 | InvokeInst *cloneImpl() const; |
| 3755 | |
| 3756 | public: |
| 3757 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3758 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3759 | const Twine &NameStr, |
| 3760 | Instruction *InsertBefore = nullptr) { |
| 3761 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3762 | return new (NumOperands) |
| 3763 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3764 | NameStr, InsertBefore); |
| 3765 | } |
| 3766 | |
| 3767 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3768 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3769 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3770 | const Twine &NameStr = "", |
| 3771 | Instruction *InsertBefore = nullptr) { |
| 3772 | int NumOperands = |
| 3773 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3774 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3775 | |
| 3776 | return new (NumOperands, DescriptorBytes) |
| 3777 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3778 | NameStr, InsertBefore); |
| 3779 | } |
| 3780 | |
| 3781 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3782 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3783 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3784 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3785 | return new (NumOperands) |
| 3786 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3787 | NameStr, InsertAtEnd); |
| 3788 | } |
| 3789 | |
| 3790 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3791 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3792 | ArrayRef<OperandBundleDef> Bundles, |
| 3793 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3794 | int NumOperands = |
| 3795 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3796 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3797 | |
| 3798 | return new (NumOperands, DescriptorBytes) |
| 3799 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3800 | NameStr, InsertAtEnd); |
| 3801 | } |
| 3802 | |
| 3803 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3804 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3805 | const Twine &NameStr, |
| 3806 | Instruction *InsertBefore = nullptr) { |
| 3807 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3808 | IfException, Args, None, NameStr, InsertBefore); |
| 3809 | } |
| 3810 | |
| 3811 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3812 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3813 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3814 | const Twine &NameStr = "", |
| 3815 | Instruction *InsertBefore = nullptr) { |
| 3816 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3817 | IfException, Args, Bundles, NameStr, InsertBefore); |
| 3818 | } |
| 3819 | |
| 3820 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3821 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3822 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3823 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3824 | IfException, Args, NameStr, InsertAtEnd); |
| 3825 | } |
| 3826 | |
| 3827 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3828 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3829 | ArrayRef<OperandBundleDef> Bundles, |
| 3830 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3831 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3832 | IfException, Args, Bundles, NameStr, InsertAtEnd); |
| 3833 | } |
| 3834 | |
| 3835 | /// Create a clone of \p II with a different set of operand bundles and |
| 3836 | /// insert it before \p InsertPt. |
| 3837 | /// |
| 3838 | /// The returned invoke instruction is identical to \p II in every way except |
| 3839 | /// that the operand bundles for the new instruction are set to the operand |
| 3840 | /// bundles in \p Bundles. |
| 3841 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, |
| 3842 | Instruction *InsertPt = nullptr); |
| 3843 | |
| 3844 | // get*Dest - Return the destination basic blocks... |
| 3845 | BasicBlock *getNormalDest() const { |
| 3846 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); |
| 3847 | } |
| 3848 | BasicBlock *getUnwindDest() const { |
| 3849 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); |
| 3850 | } |
| 3851 | void setNormalDest(BasicBlock *B) { |
| 3852 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3853 | } |
| 3854 | void setUnwindDest(BasicBlock *B) { |
| 3855 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3856 | } |
| 3857 | |
| 3858 | /// Get the landingpad instruction from the landing pad |
| 3859 | /// block (the unwind destination). |
| 3860 | LandingPadInst *getLandingPadInst() const; |
| 3861 | |
| 3862 | BasicBlock *getSuccessor(unsigned i) const { |
| 3863 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3864 | return i == 0 ? getNormalDest() : getUnwindDest(); |
| 3865 | } |
| 3866 | |
| 3867 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3868 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3869 | if (i == 0) |
| 3870 | setNormalDest(NewSucc); |
| 3871 | else |
| 3872 | setUnwindDest(NewSucc); |
| 3873 | } |
| 3874 | |
| 3875 | unsigned getNumSuccessors() const { return 2; } |
| 3876 | |
| 3877 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3878 | static bool classof(const Instruction *I) { |
| 3879 | return (I->getOpcode() == Instruction::Invoke); |
| 3880 | } |
| 3881 | static bool classof(const Value *V) { |
| 3882 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3883 | } |
| 3884 | |
| 3885 | private: |
| 3886 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 3887 | // method so that subclasses cannot accidentally use it. |
| 3888 | template <typename Bitfield> |
| 3889 | void setSubclassData(typename Bitfield::Type Value) { |
| 3890 | Instruction::setSubclassData<Bitfield>(Value); |
| 3891 | } |
| 3892 | }; |
| 3893 | |
| 3894 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3895 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3896 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3897 | const Twine &NameStr, Instruction *InsertBefore) |
| 3898 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3899 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3900 | InsertBefore) { |
| 3901 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3902 | } |
| 3903 | |
| 3904 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3905 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3906 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3907 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 3908 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3909 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3910 | InsertAtEnd) { |
| 3911 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3912 | } |
| 3913 | |
| 3914 | //===----------------------------------------------------------------------===// |
| 3915 | // CallBrInst Class |
| 3916 | //===----------------------------------------------------------------------===// |
| 3917 | |
| 3918 | /// CallBr instruction, tracking function calls that may not return control but |
| 3919 | /// instead transfer it to a third location. The SubclassData field is used to |
| 3920 | /// hold the calling convention of the call. |
| 3921 | /// |
| 3922 | class CallBrInst : public CallBase { |
| 3923 | |
| 3924 | unsigned NumIndirectDests; |
| 3925 | |
| 3926 | CallBrInst(const CallBrInst &BI); |
| 3927 | |
| 3928 | /// Construct a CallBrInst given a range of arguments. |
| 3929 | /// |
| 3930 | /// Construct a CallBrInst from a range of arguments |
| 3931 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3932 | ArrayRef<BasicBlock *> IndirectDests, |
| 3933 | ArrayRef<Value *> Args, |
| 3934 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3935 | const Twine &NameStr, Instruction *InsertBefore); |
| 3936 | |
| 3937 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3938 | ArrayRef<BasicBlock *> IndirectDests, |
| 3939 | ArrayRef<Value *> Args, |
| 3940 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3941 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3942 | |
| 3943 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, |
| 3944 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
| 3945 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3946 | |
| 3947 | /// Should the Indirect Destinations change, scan + update the Arg list. |
| 3948 | void updateArgBlockAddresses(unsigned i, BasicBlock *B); |
| 3949 | |
| 3950 | /// Compute the number of operands to allocate. |
| 3951 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, |
| 3952 | int NumBundleInputs = 0) { |
| 3953 | // We need one operand for the called function, plus our extra operands and |
| 3954 | // the input operand counts provided. |
| 3955 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; |
| 3956 | } |
| 3957 | |
| 3958 | protected: |
| 3959 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3960 | friend class Instruction; |
| 3961 | |
| 3962 | CallBrInst *cloneImpl() const; |
| 3963 | |
| 3964 | public: |
| 3965 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3966 | BasicBlock *DefaultDest, |
| 3967 | ArrayRef<BasicBlock *> IndirectDests, |
| 3968 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3969 | Instruction *InsertBefore = nullptr) { |
| 3970 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3971 | return new (NumOperands) |
| 3972 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 3973 | NumOperands, NameStr, InsertBefore); |
| 3974 | } |
| 3975 | |
| 3976 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3977 | BasicBlock *DefaultDest, |
| 3978 | ArrayRef<BasicBlock *> IndirectDests, |
| 3979 | ArrayRef<Value *> Args, |
| 3980 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3981 | const Twine &NameStr = "", |
| 3982 | Instruction *InsertBefore = nullptr) { |
| 3983 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 3984 | CountBundleInputs(Bundles)); |
| 3985 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3986 | |
| 3987 | return new (NumOperands, DescriptorBytes) |
| 3988 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 3989 | NumOperands, NameStr, InsertBefore); |
| 3990 | } |
| 3991 | |
| 3992 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3993 | BasicBlock *DefaultDest, |
| 3994 | ArrayRef<BasicBlock *> IndirectDests, |
| 3995 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3996 | BasicBlock *InsertAtEnd) { |
| 3997 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3998 | return new (NumOperands) |
| 3999 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 4000 | NumOperands, NameStr, InsertAtEnd); |
| 4001 | } |
| 4002 | |
| 4003 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 4004 | BasicBlock *DefaultDest, |
| 4005 | ArrayRef<BasicBlock *> IndirectDests, |
| 4006 | ArrayRef<Value *> Args, |
| 4007 | ArrayRef<OperandBundleDef> Bundles, |
| 4008 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4009 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 4010 | CountBundleInputs(Bundles)); |
| 4011 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 4012 | |
| 4013 | return new (NumOperands, DescriptorBytes) |
| 4014 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 4015 | NumOperands, NameStr, InsertAtEnd); |
| 4016 | } |
| 4017 | |
| 4018 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4019 | ArrayRef<BasicBlock *> IndirectDests, |
| 4020 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4021 | Instruction *InsertBefore = nullptr) { |
| 4022 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4023 | IndirectDests, Args, NameStr, InsertBefore); |
| 4024 | } |
| 4025 | |
| 4026 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4027 | ArrayRef<BasicBlock *> IndirectDests, |
| 4028 | ArrayRef<Value *> Args, |
| 4029 | ArrayRef<OperandBundleDef> Bundles = None, |
| 4030 | const Twine &NameStr = "", |
| 4031 | Instruction *InsertBefore = nullptr) { |
| 4032 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4033 | IndirectDests, Args, Bundles, NameStr, InsertBefore); |
| 4034 | } |
| 4035 | |
| 4036 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4037 | ArrayRef<BasicBlock *> IndirectDests, |
| 4038 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4039 | BasicBlock *InsertAtEnd) { |
| 4040 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4041 | IndirectDests, Args, NameStr, InsertAtEnd); |
| 4042 | } |
| 4043 | |
| 4044 | static CallBrInst *Create(FunctionCallee Func, |
| 4045 | BasicBlock *DefaultDest, |
| 4046 | ArrayRef<BasicBlock *> IndirectDests, |
| 4047 | ArrayRef<Value *> Args, |
| 4048 | ArrayRef<OperandBundleDef> Bundles, |
| 4049 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4050 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4051 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); |
| 4052 | } |
| 4053 | |
| 4054 | /// Create a clone of \p CBI with a different set of operand bundles and |
| 4055 | /// insert it before \p InsertPt. |
| 4056 | /// |
| 4057 | /// The returned callbr instruction is identical to \p CBI in every way |
| 4058 | /// except that the operand bundles for the new instruction are set to the |
| 4059 | /// operand bundles in \p Bundles. |
| 4060 | static CallBrInst *Create(CallBrInst *CBI, |
| 4061 | ArrayRef<OperandBundleDef> Bundles, |
| 4062 | Instruction *InsertPt = nullptr); |
| 4063 | |
| 4064 | /// Return the number of callbr indirect dest labels. |
| 4065 | /// |
| 4066 | unsigned getNumIndirectDests() const { return NumIndirectDests; } |
| 4067 | |
| 4068 | /// getIndirectDestLabel - Return the i-th indirect dest label. |
| 4069 | /// |
| 4070 | Value *getIndirectDestLabel(unsigned i) const { |
| 4071 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4072 | return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4073 | 1); |
| 4074 | } |
| 4075 | |
| 4076 | Value *getIndirectDestLabelUse(unsigned i) const { |
| 4077 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4078 | return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4079 | 1); |
| 4080 | } |
| 4081 | |
| 4082 | // Return the destination basic blocks... |
| 4083 | BasicBlock *getDefaultDest() const { |
| 4084 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); |
| 4085 | } |
| 4086 | BasicBlock *getIndirectDest(unsigned i) const { |
| 4087 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); |
| 4088 | } |
| 4089 | SmallVector<BasicBlock *, 16> getIndirectDests() const { |
| 4090 | SmallVector<BasicBlock *, 16> IndirectDests; |
| 4091 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) |
| 4092 | IndirectDests.push_back(getIndirectDest(i)); |
| 4093 | return IndirectDests; |
| 4094 | } |
| 4095 | void setDefaultDest(BasicBlock *B) { |
| 4096 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); |
| 4097 | } |
| 4098 | void setIndirectDest(unsigned i, BasicBlock *B) { |
| 4099 | updateArgBlockAddresses(i, B); |
| 4100 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); |
| 4101 | } |
| 4102 | |
| 4103 | BasicBlock *getSuccessor(unsigned i) const { |
| 4104 | assert(i < getNumSuccessors() + 1 &&((void)0) |
| 4105 | "Successor # out of range for callbr!")((void)0); |
| 4106 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); |
| 4107 | } |
| 4108 | |
| 4109 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 4110 | assert(i < getNumIndirectDests() + 1 &&((void)0) |
| 4111 | "Successor # out of range for callbr!")((void)0); |
| 4112 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); |
| 4113 | } |
| 4114 | |
| 4115 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } |
| 4116 | |
| 4117 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4118 | static bool classof(const Instruction *I) { |
| 4119 | return (I->getOpcode() == Instruction::CallBr); |
| 4120 | } |
| 4121 | static bool classof(const Value *V) { |
| 4122 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4123 | } |
| 4124 | |
| 4125 | private: |
| 4126 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4127 | // method so that subclasses cannot accidentally use it. |
| 4128 | template <typename Bitfield> |
| 4129 | void setSubclassData(typename Bitfield::Type Value) { |
| 4130 | Instruction::setSubclassData<Bitfield>(Value); |
| 4131 | } |
| 4132 | }; |
| 4133 | |
| 4134 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4135 | ArrayRef<BasicBlock *> IndirectDests, |
| 4136 | ArrayRef<Value *> Args, |
| 4137 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4138 | const Twine &NameStr, Instruction *InsertBefore) |
| 4139 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4140 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4141 | InsertBefore) { |
| 4142 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4143 | } |
| 4144 | |
| 4145 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4146 | ArrayRef<BasicBlock *> IndirectDests, |
| 4147 | ArrayRef<Value *> Args, |
| 4148 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4149 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 4150 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4151 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4152 | InsertAtEnd) { |
| 4153 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4154 | } |
| 4155 | |
| 4156 | //===----------------------------------------------------------------------===// |
| 4157 | // ResumeInst Class |
| 4158 | //===----------------------------------------------------------------------===// |
| 4159 | |
| 4160 | //===--------------------------------------------------------------------------- |
| 4161 | /// Resume the propagation of an exception. |
| 4162 | /// |
| 4163 | class ResumeInst : public Instruction { |
| 4164 | ResumeInst(const ResumeInst &RI); |
| 4165 | |
| 4166 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); |
| 4167 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); |
| 4168 | |
| 4169 | protected: |
| 4170 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4171 | friend class Instruction; |
| 4172 | |
| 4173 | ResumeInst *cloneImpl() const; |
| 4174 | |
| 4175 | public: |
| 4176 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { |
| 4177 | return new(1) ResumeInst(Exn, InsertBefore); |
| 4178 | } |
| 4179 | |
| 4180 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { |
| 4181 | return new(1) ResumeInst(Exn, InsertAtEnd); |
| 4182 | } |
| 4183 | |
| 4184 | /// Provide fast operand accessors |
| 4185 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4186 | |
| 4187 | /// Convenience accessor. |
| 4188 | Value *getValue() const { return Op<0>(); } |
| 4189 | |
| 4190 | unsigned getNumSuccessors() const { return 0; } |
| 4191 | |
| 4192 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4193 | static bool classof(const Instruction *I) { |
| 4194 | return I->getOpcode() == Instruction::Resume; |
| 4195 | } |
| 4196 | static bool classof(const Value *V) { |
| 4197 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4198 | } |
| 4199 | |
| 4200 | private: |
| 4201 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4202 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4203 | } |
| 4204 | |
| 4205 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 4206 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4207 | } |
| 4208 | }; |
| 4209 | |
| 4210 | template <> |
| 4211 | struct OperandTraits<ResumeInst> : |
| 4212 | public FixedNumOperandTraits<ResumeInst, 1> { |
| 4213 | }; |
| 4214 | |
| 4215 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ResumeInst>::op_begin(const_cast <ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 4216 | |
| 4217 | //===----------------------------------------------------------------------===// |
| 4218 | // CatchSwitchInst Class |
| 4219 | //===----------------------------------------------------------------------===// |
| 4220 | class CatchSwitchInst : public Instruction { |
| 4221 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4222 | |
| 4223 | /// The number of operands actually allocated. NumOperands is |
| 4224 | /// the number actually in use. |
| 4225 | unsigned ReservedSpace; |
| 4226 | |
| 4227 | // Operand[0] = Outer scope |
| 4228 | // Operand[1] = Unwind block destination |
| 4229 | // Operand[n] = BasicBlock to go to on match |
| 4230 | CatchSwitchInst(const CatchSwitchInst &CSI); |
| 4231 | |
| 4232 | /// Create a new switch instruction, specifying a |
| 4233 | /// default destination. The number of additional handlers can be specified |
| 4234 | /// here to make memory allocation more efficient. |
| 4235 | /// This constructor can also autoinsert before another instruction. |
| 4236 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4237 | unsigned NumHandlers, const Twine &NameStr, |
| 4238 | Instruction *InsertBefore); |
| 4239 | |
| 4240 | /// Create a new switch instruction, specifying a |
| 4241 | /// default destination. The number of additional handlers can be specified |
| 4242 | /// here to make memory allocation more efficient. |
| 4243 | /// This constructor also autoinserts at the end of the specified BasicBlock. |
| 4244 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4245 | unsigned NumHandlers, const Twine &NameStr, |
| 4246 | BasicBlock *InsertAtEnd); |
| 4247 | |
| 4248 | // allocate space for exactly zero operands |
| 4249 | void *operator new(size_t S) { return User::operator new(S); } |
| 4250 | |
| 4251 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); |
| 4252 | void growOperands(unsigned Size); |
| 4253 | |
| 4254 | protected: |
| 4255 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4256 | friend class Instruction; |
| 4257 | |
| 4258 | CatchSwitchInst *cloneImpl() const; |
| 4259 | |
| 4260 | public: |
| 4261 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 4262 | |
| 4263 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4264 | unsigned NumHandlers, |
| 4265 | const Twine &NameStr = "", |
| 4266 | Instruction *InsertBefore = nullptr) { |
| 4267 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4268 | InsertBefore); |
| 4269 | } |
| 4270 | |
| 4271 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4272 | unsigned NumHandlers, const Twine &NameStr, |
| 4273 | BasicBlock *InsertAtEnd) { |
| 4274 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4275 | InsertAtEnd); |
| 4276 | } |
| 4277 | |
| 4278 | /// Provide fast operand accessors |
| 4279 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4280 | |
| 4281 | // Accessor Methods for CatchSwitch stmt |
| 4282 | Value *getParentPad() const { return getOperand(0); } |
| 4283 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } |
| 4284 | |
| 4285 | // Accessor Methods for CatchSwitch stmt |
| 4286 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4287 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4288 | BasicBlock *getUnwindDest() const { |
| 4289 | if (hasUnwindDest()) |
| 4290 | return cast<BasicBlock>(getOperand(1)); |
| 4291 | return nullptr; |
| 4292 | } |
| 4293 | void setUnwindDest(BasicBlock *UnwindDest) { |
| 4294 | assert(UnwindDest)((void)0); |
| 4295 | assert(hasUnwindDest())((void)0); |
| 4296 | setOperand(1, UnwindDest); |
| 4297 | } |
| 4298 | |
| 4299 | /// return the number of 'handlers' in this catchswitch |
| 4300 | /// instruction, except the default handler |
| 4301 | unsigned getNumHandlers() const { |
| 4302 | if (hasUnwindDest()) |
| 4303 | return getNumOperands() - 2; |
| 4304 | return getNumOperands() - 1; |
| 4305 | } |
| 4306 | |
| 4307 | private: |
| 4308 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } |
| 4309 | static const BasicBlock *handler_helper(const Value *V) { |
| 4310 | return cast<BasicBlock>(V); |
| 4311 | } |
| 4312 | |
| 4313 | public: |
| 4314 | using DerefFnTy = BasicBlock *(*)(Value *); |
| 4315 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; |
| 4316 | using handler_range = iterator_range<handler_iterator>; |
| 4317 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); |
| 4318 | using const_handler_iterator = |
| 4319 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; |
| 4320 | using const_handler_range = iterator_range<const_handler_iterator>; |
| 4321 | |
| 4322 | /// Returns an iterator that points to the first handler in CatchSwitchInst. |
| 4323 | handler_iterator handler_begin() { |
| 4324 | op_iterator It = op_begin() + 1; |
| 4325 | if (hasUnwindDest()) |
| 4326 | ++It; |
| 4327 | return handler_iterator(It, DerefFnTy(handler_helper)); |
| 4328 | } |
| 4329 | |
| 4330 | /// Returns an iterator that points to the first handler in the |
| 4331 | /// CatchSwitchInst. |
| 4332 | const_handler_iterator handler_begin() const { |
| 4333 | const_op_iterator It = op_begin() + 1; |
| 4334 | if (hasUnwindDest()) |
| 4335 | ++It; |
| 4336 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); |
| 4337 | } |
| 4338 | |
| 4339 | /// Returns a read-only iterator that points one past the last |
| 4340 | /// handler in the CatchSwitchInst. |
| 4341 | handler_iterator handler_end() { |
| 4342 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); |
| 4343 | } |
| 4344 | |
| 4345 | /// Returns an iterator that points one past the last handler in the |
| 4346 | /// CatchSwitchInst. |
| 4347 | const_handler_iterator handler_end() const { |
| 4348 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); |
| 4349 | } |
| 4350 | |
| 4351 | /// iteration adapter for range-for loops. |
| 4352 | handler_range handlers() { |
| 4353 | return make_range(handler_begin(), handler_end()); |
| 4354 | } |
| 4355 | |
| 4356 | /// iteration adapter for range-for loops. |
| 4357 | const_handler_range handlers() const { |
| 4358 | return make_range(handler_begin(), handler_end()); |
| 4359 | } |
| 4360 | |
| 4361 | /// Add an entry to the switch instruction... |
| 4362 | /// Note: |
| 4363 | /// This action invalidates handler_end(). Old handler_end() iterator will |
| 4364 | /// point to the added handler. |
| 4365 | void addHandler(BasicBlock *Dest); |
| 4366 | |
| 4367 | void removeHandler(handler_iterator HI); |
| 4368 | |
| 4369 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } |
| 4370 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4371 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4372 | "Successor # out of range for catchswitch!")((void)0); |
| 4373 | return cast<BasicBlock>(getOperand(Idx + 1)); |
| 4374 | } |
| 4375 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { |
| 4376 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4377 | "Successor # out of range for catchswitch!")((void)0); |
| 4378 | setOperand(Idx + 1, NewSucc); |
| 4379 | } |
| 4380 | |
| 4381 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4382 | static bool classof(const Instruction *I) { |
| 4383 | return I->getOpcode() == Instruction::CatchSwitch; |
| 4384 | } |
| 4385 | static bool classof(const Value *V) { |
| 4386 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4387 | } |
| 4388 | }; |
| 4389 | |
| 4390 | template <> |
| 4391 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; |
| 4392 | |
| 4393 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchSwitchInst>::op_begin (const_cast<CatchSwitchInst*>(this))[i_nocapture].get() ); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands() const { return OperandTraits <CatchSwitchInst>::operands(this); } template <int Idx_nocapture > Use &CatchSwitchInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4394 | |
| 4395 | //===----------------------------------------------------------------------===// |
| 4396 | // CleanupPadInst Class |
| 4397 | //===----------------------------------------------------------------------===// |
| 4398 | class CleanupPadInst : public FuncletPadInst { |
| 4399 | private: |
| 4400 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4401 | unsigned Values, const Twine &NameStr, |
| 4402 | Instruction *InsertBefore) |
| 4403 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4404 | NameStr, InsertBefore) {} |
| 4405 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4406 | unsigned Values, const Twine &NameStr, |
| 4407 | BasicBlock *InsertAtEnd) |
| 4408 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4409 | NameStr, InsertAtEnd) {} |
| 4410 | |
| 4411 | public: |
| 4412 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, |
| 4413 | const Twine &NameStr = "", |
| 4414 | Instruction *InsertBefore = nullptr) { |
| 4415 | unsigned Values = 1 + Args.size(); |
| 4416 | return new (Values) |
| 4417 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); |
| 4418 | } |
| 4419 | |
| 4420 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, |
| 4421 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4422 | unsigned Values = 1 + Args.size(); |
| 4423 | return new (Values) |
| 4424 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); |
| 4425 | } |
| 4426 | |
| 4427 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4428 | static bool classof(const Instruction *I) { |
| 4429 | return I->getOpcode() == Instruction::CleanupPad; |
| 4430 | } |
| 4431 | static bool classof(const Value *V) { |
| 4432 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4433 | } |
| 4434 | }; |
| 4435 | |
| 4436 | //===----------------------------------------------------------------------===// |
| 4437 | // CatchPadInst Class |
| 4438 | //===----------------------------------------------------------------------===// |
| 4439 | class CatchPadInst : public FuncletPadInst { |
| 4440 | private: |
| 4441 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4442 | unsigned Values, const Twine &NameStr, |
| 4443 | Instruction *InsertBefore) |
| 4444 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4445 | NameStr, InsertBefore) {} |
| 4446 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4447 | unsigned Values, const Twine &NameStr, |
| 4448 | BasicBlock *InsertAtEnd) |
| 4449 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4450 | NameStr, InsertAtEnd) {} |
| 4451 | |
| 4452 | public: |
| 4453 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4454 | const Twine &NameStr = "", |
| 4455 | Instruction *InsertBefore = nullptr) { |
| 4456 | unsigned Values = 1 + Args.size(); |
| 4457 | return new (Values) |
| 4458 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); |
| 4459 | } |
| 4460 | |
| 4461 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4462 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4463 | unsigned Values = 1 + Args.size(); |
| 4464 | return new (Values) |
| 4465 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); |
| 4466 | } |
| 4467 | |
| 4468 | /// Convenience accessors |
| 4469 | CatchSwitchInst *getCatchSwitch() const { |
| 4470 | return cast<CatchSwitchInst>(Op<-1>()); |
| 4471 | } |
| 4472 | void setCatchSwitch(Value *CatchSwitch) { |
| 4473 | assert(CatchSwitch)((void)0); |
| 4474 | Op<-1>() = CatchSwitch; |
| 4475 | } |
| 4476 | |
| 4477 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4478 | static bool classof(const Instruction *I) { |
| 4479 | return I->getOpcode() == Instruction::CatchPad; |
| 4480 | } |
| 4481 | static bool classof(const Value *V) { |
| 4482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4483 | } |
| 4484 | }; |
| 4485 | |
| 4486 | //===----------------------------------------------------------------------===// |
| 4487 | // CatchReturnInst Class |
| 4488 | //===----------------------------------------------------------------------===// |
| 4489 | |
| 4490 | class CatchReturnInst : public Instruction { |
| 4491 | CatchReturnInst(const CatchReturnInst &RI); |
| 4492 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); |
| 4493 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); |
| 4494 | |
| 4495 | void init(Value *CatchPad, BasicBlock *BB); |
| 4496 | |
| 4497 | protected: |
| 4498 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4499 | friend class Instruction; |
| 4500 | |
| 4501 | CatchReturnInst *cloneImpl() const; |
| 4502 | |
| 4503 | public: |
| 4504 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4505 | Instruction *InsertBefore = nullptr) { |
| 4506 | assert(CatchPad)((void)0); |
| 4507 | assert(BB)((void)0); |
| 4508 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); |
| 4509 | } |
| 4510 | |
| 4511 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4512 | BasicBlock *InsertAtEnd) { |
| 4513 | assert(CatchPad)((void)0); |
| 4514 | assert(BB)((void)0); |
| 4515 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); |
| 4516 | } |
| 4517 | |
| 4518 | /// Provide fast operand accessors |
| 4519 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4520 | |
| 4521 | /// Convenience accessors. |
| 4522 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } |
| 4523 | void setCatchPad(CatchPadInst *CatchPad) { |
| 4524 | assert(CatchPad)((void)0); |
| 4525 | Op<0>() = CatchPad; |
| 4526 | } |
| 4527 | |
| 4528 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } |
| 4529 | void setSuccessor(BasicBlock *NewSucc) { |
| 4530 | assert(NewSucc)((void)0); |
| 4531 | Op<1>() = NewSucc; |
| 4532 | } |
| 4533 | unsigned getNumSuccessors() const { return 1; } |
| 4534 | |
| 4535 | /// Get the parentPad of this catchret's catchpad's catchswitch. |
| 4536 | /// The successor block is implicitly a member of this funclet. |
| 4537 | Value *getCatchSwitchParentPad() const { |
| 4538 | return getCatchPad()->getCatchSwitch()->getParentPad(); |
| 4539 | } |
| 4540 | |
| 4541 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4542 | static bool classof(const Instruction *I) { |
| 4543 | return (I->getOpcode() == Instruction::CatchRet); |
| 4544 | } |
| 4545 | static bool classof(const Value *V) { |
| 4546 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4547 | } |
| 4548 | |
| 4549 | private: |
| 4550 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4551 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4552 | return getSuccessor(); |
| 4553 | } |
| 4554 | |
| 4555 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4556 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4557 | setSuccessor(B); |
| 4558 | } |
| 4559 | }; |
| 4560 | |
| 4561 | template <> |
| 4562 | struct OperandTraits<CatchReturnInst> |
| 4563 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; |
| 4564 | |
| 4565 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchReturnInst>::op_begin (const_cast<CatchReturnInst*>(this))[i_nocapture].get() ); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands() const { return OperandTraits <CatchReturnInst>::operands(this); } template <int Idx_nocapture > Use &CatchReturnInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4566 | |
| 4567 | //===----------------------------------------------------------------------===// |
| 4568 | // CleanupReturnInst Class |
| 4569 | //===----------------------------------------------------------------------===// |
| 4570 | |
| 4571 | class CleanupReturnInst : public Instruction { |
| 4572 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4573 | |
| 4574 | private: |
| 4575 | CleanupReturnInst(const CleanupReturnInst &RI); |
| 4576 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4577 | Instruction *InsertBefore = nullptr); |
| 4578 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4579 | BasicBlock *InsertAtEnd); |
| 4580 | |
| 4581 | void init(Value *CleanupPad, BasicBlock *UnwindBB); |
| 4582 | |
| 4583 | protected: |
| 4584 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4585 | friend class Instruction; |
| 4586 | |
| 4587 | CleanupReturnInst *cloneImpl() const; |
| 4588 | |
| 4589 | public: |
| 4590 | static CleanupReturnInst *Create(Value *CleanupPad, |
| 4591 | BasicBlock *UnwindBB = nullptr, |
| 4592 | Instruction *InsertBefore = nullptr) { |
| 4593 | assert(CleanupPad)((void)0); |
| 4594 | unsigned Values = 1; |
| 4595 | if (UnwindBB) |
| 4596 | ++Values; |
| 4597 | return new (Values) |
| 4598 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); |
| 4599 | } |
| 4600 | |
| 4601 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, |
| 4602 | BasicBlock *InsertAtEnd) { |
| 4603 | assert(CleanupPad)((void)0); |
| 4604 | unsigned Values = 1; |
| 4605 | if (UnwindBB) |
| 4606 | ++Values; |
| 4607 | return new (Values) |
| 4608 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); |
| 4609 | } |
| 4610 | |
| 4611 | /// Provide fast operand accessors |
| 4612 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4613 | |
| 4614 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4615 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4616 | |
| 4617 | /// Convenience accessor. |
| 4618 | CleanupPadInst *getCleanupPad() const { |
| 4619 | return cast<CleanupPadInst>(Op<0>()); |
| 4620 | } |
| 4621 | void setCleanupPad(CleanupPadInst *CleanupPad) { |
| 4622 | assert(CleanupPad)((void)0); |
| 4623 | Op<0>() = CleanupPad; |
| 4624 | } |
| 4625 | |
| 4626 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } |
| 4627 | |
| 4628 | BasicBlock *getUnwindDest() const { |
| 4629 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; |
| 4630 | } |
| 4631 | void setUnwindDest(BasicBlock *NewDest) { |
| 4632 | assert(NewDest)((void)0); |
| 4633 | assert(hasUnwindDest())((void)0); |
| 4634 | Op<1>() = NewDest; |
| 4635 | } |
| 4636 | |
| 4637 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4638 | static bool classof(const Instruction *I) { |
| 4639 | return (I->getOpcode() == Instruction::CleanupRet); |
| 4640 | } |
| 4641 | static bool classof(const Value *V) { |
| 4642 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4643 | } |
| 4644 | |
| 4645 | private: |
| 4646 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4647 | assert(Idx == 0)((void)0); |
| 4648 | return getUnwindDest(); |
| 4649 | } |
| 4650 | |
| 4651 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4652 | assert(Idx == 0)((void)0); |
| 4653 | setUnwindDest(B); |
| 4654 | } |
| 4655 | |
| 4656 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4657 | // method so that subclasses cannot accidentally use it. |
| 4658 | template <typename Bitfield> |
| 4659 | void setSubclassData(typename Bitfield::Type Value) { |
| 4660 | Instruction::setSubclassData<Bitfield>(Value); |
| 4661 | } |
| 4662 | }; |
| 4663 | |
| 4664 | template <> |
| 4665 | struct OperandTraits<CleanupReturnInst> |
| 4666 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; |
| 4667 | |
| 4668 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> ::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst ::op_iterator CleanupReturnInst::op_end() { return OperandTraits <CleanupReturnInst>::op_end(this); } CleanupReturnInst:: const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits <CleanupReturnInst>::op_end(const_cast<CleanupReturnInst *>(this)); } Value *CleanupReturnInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<CleanupReturnInst>::op_begin(const_cast <CleanupReturnInst*>(this))[i_nocapture].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst ::getNumOperands() const { return OperandTraits<CleanupReturnInst >::operands(this); } template <int Idx_nocapture> Use &CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 4669 | |
| 4670 | //===----------------------------------------------------------------------===// |
| 4671 | // UnreachableInst Class |
| 4672 | //===----------------------------------------------------------------------===// |
| 4673 | |
| 4674 | //===--------------------------------------------------------------------------- |
| 4675 | /// This function has undefined behavior. In particular, the |
| 4676 | /// presence of this instruction indicates some higher level knowledge that the |
| 4677 | /// end of the block cannot be reached. |
| 4678 | /// |
| 4679 | class UnreachableInst : public Instruction { |
| 4680 | protected: |
| 4681 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4682 | friend class Instruction; |
| 4683 | |
| 4684 | UnreachableInst *cloneImpl() const; |
| 4685 | |
| 4686 | public: |
| 4687 | explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); |
| 4688 | explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 4689 | |
| 4690 | // allocate space for exactly zero operands |
| 4691 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 4692 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 4693 | |
| 4694 | unsigned getNumSuccessors() const { return 0; } |
| 4695 | |
| 4696 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4697 | static bool classof(const Instruction *I) { |
| 4698 | return I->getOpcode() == Instruction::Unreachable; |
| 4699 | } |
| 4700 | static bool classof(const Value *V) { |
| 4701 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4702 | } |
| 4703 | |
| 4704 | private: |
| 4705 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4706 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4707 | } |
| 4708 | |
| 4709 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 4710 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4711 | } |
| 4712 | }; |
| 4713 | |
| 4714 | //===----------------------------------------------------------------------===// |
| 4715 | // TruncInst Class |
| 4716 | //===----------------------------------------------------------------------===// |
| 4717 | |
| 4718 | /// This class represents a truncation of integer types. |
| 4719 | class TruncInst : public CastInst { |
| 4720 | protected: |
| 4721 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4722 | friend class Instruction; |
| 4723 | |
| 4724 | /// Clone an identical TruncInst |
| 4725 | TruncInst *cloneImpl() const; |
| 4726 | |
| 4727 | public: |
| 4728 | /// Constructor with insert-before-instruction semantics |
| 4729 | TruncInst( |
| 4730 | Value *S, ///< The value to be truncated |
| 4731 | Type *Ty, ///< The (smaller) type to truncate to |
| 4732 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4733 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4734 | ); |
| 4735 | |
| 4736 | /// Constructor with insert-at-end-of-block semantics |
| 4737 | TruncInst( |
| 4738 | Value *S, ///< The value to be truncated |
| 4739 | Type *Ty, ///< The (smaller) type to truncate to |
| 4740 | const Twine &NameStr, ///< A name for the new instruction |
| 4741 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4742 | ); |
| 4743 | |
| 4744 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4745 | static bool classof(const Instruction *I) { |
| 4746 | return I->getOpcode() == Trunc; |
| 4747 | } |
| 4748 | static bool classof(const Value *V) { |
| 4749 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4750 | } |
| 4751 | }; |
| 4752 | |
| 4753 | //===----------------------------------------------------------------------===// |
| 4754 | // ZExtInst Class |
| 4755 | //===----------------------------------------------------------------------===// |
| 4756 | |
| 4757 | /// This class represents zero extension of integer types. |
| 4758 | class ZExtInst : public CastInst { |
| 4759 | protected: |
| 4760 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4761 | friend class Instruction; |
| 4762 | |
| 4763 | /// Clone an identical ZExtInst |
| 4764 | ZExtInst *cloneImpl() const; |
| 4765 | |
| 4766 | public: |
| 4767 | /// Constructor with insert-before-instruction semantics |
| 4768 | ZExtInst( |
| 4769 | Value *S, ///< The value to be zero extended |
| 4770 | Type *Ty, ///< The type to zero extend to |
| 4771 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4772 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4773 | ); |
| 4774 | |
| 4775 | /// Constructor with insert-at-end semantics. |
| 4776 | ZExtInst( |
| 4777 | Value *S, ///< The value to be zero extended |
| 4778 | Type *Ty, ///< The type to zero extend to |
| 4779 | const Twine &NameStr, ///< A name for the new instruction |
| 4780 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4781 | ); |
| 4782 | |
| 4783 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4784 | static bool classof(const Instruction *I) { |
| 4785 | return I->getOpcode() == ZExt; |
| 4786 | } |
| 4787 | static bool classof(const Value *V) { |
| 4788 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4789 | } |
| 4790 | }; |
| 4791 | |
| 4792 | //===----------------------------------------------------------------------===// |
| 4793 | // SExtInst Class |
| 4794 | //===----------------------------------------------------------------------===// |
| 4795 | |
| 4796 | /// This class represents a sign extension of integer types. |
| 4797 | class SExtInst : public CastInst { |
| 4798 | protected: |
| 4799 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4800 | friend class Instruction; |
| 4801 | |
| 4802 | /// Clone an identical SExtInst |
| 4803 | SExtInst *cloneImpl() const; |
| 4804 | |
| 4805 | public: |
| 4806 | /// Constructor with insert-before-instruction semantics |
| 4807 | SExtInst( |
| 4808 | Value *S, ///< The value to be sign extended |
| 4809 | Type *Ty, ///< The type to sign extend to |
| 4810 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4811 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4812 | ); |
| 4813 | |
| 4814 | /// Constructor with insert-at-end-of-block semantics |
| 4815 | SExtInst( |
| 4816 | Value *S, ///< The value to be sign extended |
| 4817 | Type *Ty, ///< The type to sign extend to |
| 4818 | const Twine &NameStr, ///< A name for the new instruction |
| 4819 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4820 | ); |
| 4821 | |
| 4822 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4823 | static bool classof(const Instruction *I) { |
| 4824 | return I->getOpcode() == SExt; |
| 4825 | } |
| 4826 | static bool classof(const Value *V) { |
| 4827 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4828 | } |
| 4829 | }; |
| 4830 | |
| 4831 | //===----------------------------------------------------------------------===// |
| 4832 | // FPTruncInst Class |
| 4833 | //===----------------------------------------------------------------------===// |
| 4834 | |
| 4835 | /// This class represents a truncation of floating point types. |
| 4836 | class FPTruncInst : public CastInst { |
| 4837 | protected: |
| 4838 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4839 | friend class Instruction; |
| 4840 | |
| 4841 | /// Clone an identical FPTruncInst |
| 4842 | FPTruncInst *cloneImpl() const; |
| 4843 | |
| 4844 | public: |
| 4845 | /// Constructor with insert-before-instruction semantics |
| 4846 | FPTruncInst( |
| 4847 | Value *S, ///< The value to be truncated |
| 4848 | Type *Ty, ///< The type to truncate to |
| 4849 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4850 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4851 | ); |
| 4852 | |
| 4853 | /// Constructor with insert-before-instruction semantics |
| 4854 | FPTruncInst( |
| 4855 | Value *S, ///< The value to be truncated |
| 4856 | Type *Ty, ///< The type to truncate to |
| 4857 | const Twine &NameStr, ///< A name for the new instruction |
| 4858 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4859 | ); |
| 4860 | |
| 4861 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4862 | static bool classof(const Instruction *I) { |
| 4863 | return I->getOpcode() == FPTrunc; |
| 4864 | } |
| 4865 | static bool classof(const Value *V) { |
| 4866 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4867 | } |
| 4868 | }; |
| 4869 | |
| 4870 | //===----------------------------------------------------------------------===// |
| 4871 | // FPExtInst Class |
| 4872 | //===----------------------------------------------------------------------===// |
| 4873 | |
| 4874 | /// This class represents an extension of floating point types. |
| 4875 | class FPExtInst : public CastInst { |
| 4876 | protected: |
| 4877 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4878 | friend class Instruction; |
| 4879 | |
| 4880 | /// Clone an identical FPExtInst |
| 4881 | FPExtInst *cloneImpl() const; |
| 4882 | |
| 4883 | public: |
| 4884 | /// Constructor with insert-before-instruction semantics |
| 4885 | FPExtInst( |
| 4886 | Value *S, ///< The value to be extended |
| 4887 | Type *Ty, ///< The type to extend to |
| 4888 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4889 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4890 | ); |
| 4891 | |
| 4892 | /// Constructor with insert-at-end-of-block semantics |
| 4893 | FPExtInst( |
| 4894 | Value *S, ///< The value to be extended |
| 4895 | Type *Ty, ///< The type to extend to |
| 4896 | const Twine &NameStr, ///< A name for the new instruction |
| 4897 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4898 | ); |
| 4899 | |
| 4900 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4901 | static bool classof(const Instruction *I) { |
| 4902 | return I->getOpcode() == FPExt; |
| 4903 | } |
| 4904 | static bool classof(const Value *V) { |
| 4905 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4906 | } |
| 4907 | }; |
| 4908 | |
| 4909 | //===----------------------------------------------------------------------===// |
| 4910 | // UIToFPInst Class |
| 4911 | //===----------------------------------------------------------------------===// |
| 4912 | |
| 4913 | /// This class represents a cast unsigned integer to floating point. |
| 4914 | class UIToFPInst : public CastInst { |
| 4915 | protected: |
| 4916 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4917 | friend class Instruction; |
| 4918 | |
| 4919 | /// Clone an identical UIToFPInst |
| 4920 | UIToFPInst *cloneImpl() const; |
| 4921 | |
| 4922 | public: |
| 4923 | /// Constructor with insert-before-instruction semantics |
| 4924 | UIToFPInst( |
| 4925 | Value *S, ///< The value to be converted |
| 4926 | Type *Ty, ///< The type to convert to |
| 4927 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4928 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4929 | ); |
| 4930 | |
| 4931 | /// Constructor with insert-at-end-of-block semantics |
| 4932 | UIToFPInst( |
| 4933 | Value *S, ///< The value to be converted |
| 4934 | Type *Ty, ///< The type to convert to |
| 4935 | const Twine &NameStr, ///< A name for the new instruction |
| 4936 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4937 | ); |
| 4938 | |
| 4939 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4940 | static bool classof(const Instruction *I) { |
| 4941 | return I->getOpcode() == UIToFP; |
| 4942 | } |
| 4943 | static bool classof(const Value *V) { |
| 4944 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4945 | } |
| 4946 | }; |
| 4947 | |
| 4948 | //===----------------------------------------------------------------------===// |
| 4949 | // SIToFPInst Class |
| 4950 | //===----------------------------------------------------------------------===// |
| 4951 | |
| 4952 | /// This class represents a cast from signed integer to floating point. |
| 4953 | class SIToFPInst : public CastInst { |
| 4954 | protected: |
| 4955 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4956 | friend class Instruction; |
| 4957 | |
| 4958 | /// Clone an identical SIToFPInst |
| 4959 | SIToFPInst *cloneImpl() const; |
| 4960 | |
| 4961 | public: |
| 4962 | /// Constructor with insert-before-instruction semantics |
| 4963 | SIToFPInst( |
| 4964 | Value *S, ///< The value to be converted |
| 4965 | Type *Ty, ///< The type to convert to |
| 4966 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4967 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4968 | ); |
| 4969 | |
| 4970 | /// Constructor with insert-at-end-of-block semantics |
| 4971 | SIToFPInst( |
| 4972 | Value *S, ///< The value to be converted |
| 4973 | Type *Ty, ///< The type to convert to |
| 4974 | const Twine &NameStr, ///< A name for the new instruction |
| 4975 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4976 | ); |
| 4977 | |
| 4978 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4979 | static bool classof(const Instruction *I) { |
| 4980 | return I->getOpcode() == SIToFP; |
| 4981 | } |
| 4982 | static bool classof(const Value *V) { |
| 4983 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4984 | } |
| 4985 | }; |
| 4986 | |
| 4987 | //===----------------------------------------------------------------------===// |
| 4988 | // FPToUIInst Class |
| 4989 | //===----------------------------------------------------------------------===// |
| 4990 | |
| 4991 | /// This class represents a cast from floating point to unsigned integer |
| 4992 | class FPToUIInst : public CastInst { |
| 4993 | protected: |
| 4994 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4995 | friend class Instruction; |
| 4996 | |
| 4997 | /// Clone an identical FPToUIInst |
| 4998 | FPToUIInst *cloneImpl() const; |
| 4999 | |
| 5000 | public: |
| 5001 | /// Constructor with insert-before-instruction semantics |
| 5002 | FPToUIInst( |
| 5003 | Value *S, ///< The value to be converted |
| 5004 | Type *Ty, ///< The type to convert to |
| 5005 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5006 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5007 | ); |
| 5008 | |
| 5009 | /// Constructor with insert-at-end-of-block semantics |
| 5010 | FPToUIInst( |
| 5011 | Value *S, ///< The value to be converted |
| 5012 | Type *Ty, ///< The type to convert to |
| 5013 | const Twine &NameStr, ///< A name for the new instruction |
| 5014 | BasicBlock *InsertAtEnd ///< Where to insert the new instruction |
| 5015 | ); |
| 5016 | |
| 5017 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5018 | static bool classof(const Instruction *I) { |
| 5019 | return I->getOpcode() == FPToUI; |
| 5020 | } |
| 5021 | static bool classof(const Value *V) { |
| 5022 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5023 | } |
| 5024 | }; |
| 5025 | |
| 5026 | //===----------------------------------------------------------------------===// |
| 5027 | // FPToSIInst Class |
| 5028 | //===----------------------------------------------------------------------===// |
| 5029 | |
| 5030 | /// This class represents a cast from floating point to signed integer. |
| 5031 | class FPToSIInst : public CastInst { |
| 5032 | protected: |
| 5033 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5034 | friend class Instruction; |
| 5035 | |
| 5036 | /// Clone an identical FPToSIInst |
| 5037 | FPToSIInst *cloneImpl() const; |
| 5038 | |
| 5039 | public: |
| 5040 | /// Constructor with insert-before-instruction semantics |
| 5041 | FPToSIInst( |
| 5042 | Value *S, ///< The value to be converted |
| 5043 | Type *Ty, ///< The type to convert to |
| 5044 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5045 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5046 | ); |
| 5047 | |
| 5048 | /// Constructor with insert-at-end-of-block semantics |
| 5049 | FPToSIInst( |
| 5050 | Value *S, ///< The value to be converted |
| 5051 | Type *Ty, ///< The type to convert to |
| 5052 | const Twine &NameStr, ///< A name for the new instruction |
| 5053 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5054 | ); |
| 5055 | |
| 5056 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5057 | static bool classof(const Instruction *I) { |
| 5058 | return I->getOpcode() == FPToSI; |
| 5059 | } |
| 5060 | static bool classof(const Value *V) { |
| 5061 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5062 | } |
| 5063 | }; |
| 5064 | |
| 5065 | //===----------------------------------------------------------------------===// |
| 5066 | // IntToPtrInst Class |
| 5067 | //===----------------------------------------------------------------------===// |
| 5068 | |
| 5069 | /// This class represents a cast from an integer to a pointer. |
| 5070 | class IntToPtrInst : public CastInst { |
| 5071 | public: |
| 5072 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5073 | friend class Instruction; |
| 5074 | |
| 5075 | /// Constructor with insert-before-instruction semantics |
| 5076 | IntToPtrInst( |
| 5077 | Value *S, ///< The value to be converted |
| 5078 | Type *Ty, ///< The type to convert to |
| 5079 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5080 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5081 | ); |
| 5082 | |
| 5083 | /// Constructor with insert-at-end-of-block semantics |
| 5084 | IntToPtrInst( |
| 5085 | Value *S, ///< The value to be converted |
| 5086 | Type *Ty, ///< The type to convert to |
| 5087 | const Twine &NameStr, ///< A name for the new instruction |
| 5088 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5089 | ); |
| 5090 | |
| 5091 | /// Clone an identical IntToPtrInst. |
| 5092 | IntToPtrInst *cloneImpl() const; |
| 5093 | |
| 5094 | /// Returns the address space of this instruction's pointer type. |
| 5095 | unsigned getAddressSpace() const { |
| 5096 | return getType()->getPointerAddressSpace(); |
| 5097 | } |
| 5098 | |
| 5099 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5100 | static bool classof(const Instruction *I) { |
| 5101 | return I->getOpcode() == IntToPtr; |
| 5102 | } |
| 5103 | static bool classof(const Value *V) { |
| 5104 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5105 | } |
| 5106 | }; |
| 5107 | |
| 5108 | //===----------------------------------------------------------------------===// |
| 5109 | // PtrToIntInst Class |
| 5110 | //===----------------------------------------------------------------------===// |
| 5111 | |
| 5112 | /// This class represents a cast from a pointer to an integer. |
| 5113 | class PtrToIntInst : public CastInst { |
| 5114 | protected: |
| 5115 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5116 | friend class Instruction; |
| 5117 | |
| 5118 | /// Clone an identical PtrToIntInst. |
| 5119 | PtrToIntInst *cloneImpl() const; |
| 5120 | |
| 5121 | public: |
| 5122 | /// Constructor with insert-before-instruction semantics |
| 5123 | PtrToIntInst( |
| 5124 | Value *S, ///< The value to be converted |
| 5125 | Type *Ty, ///< The type to convert to |
| 5126 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5127 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5128 | ); |
| 5129 | |
| 5130 | /// Constructor with insert-at-end-of-block semantics |
| 5131 | PtrToIntInst( |
| 5132 | Value *S, ///< The value to be converted |
| 5133 | Type *Ty, ///< The type to convert to |
| 5134 | const Twine &NameStr, ///< A name for the new instruction |
| 5135 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5136 | ); |
| 5137 | |
| 5138 | /// Gets the pointer operand. |
| 5139 | Value *getPointerOperand() { return getOperand(0); } |
| 5140 | /// Gets the pointer operand. |
| 5141 | const Value *getPointerOperand() const { return getOperand(0); } |
| 5142 | /// Gets the operand index of the pointer operand. |
| 5143 | static unsigned getPointerOperandIndex() { return 0U; } |
| 5144 | |
| 5145 | /// Returns the address space of the pointer operand. |
| 5146 | unsigned getPointerAddressSpace() const { |
| 5147 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5148 | } |
| 5149 | |
| 5150 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5151 | static bool classof(const Instruction *I) { |
| 5152 | return I->getOpcode() == PtrToInt; |
| 5153 | } |
| 5154 | static bool classof(const Value *V) { |
| 5155 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5156 | } |
| 5157 | }; |
| 5158 | |
| 5159 | //===----------------------------------------------------------------------===// |
| 5160 | // BitCastInst Class |
| 5161 | //===----------------------------------------------------------------------===// |
| 5162 | |
| 5163 | /// This class represents a no-op cast from one type to another. |
| 5164 | class BitCastInst : public CastInst { |
| 5165 | protected: |
| 5166 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5167 | friend class Instruction; |
| 5168 | |
| 5169 | /// Clone an identical BitCastInst. |
| 5170 | BitCastInst *cloneImpl() const; |
| 5171 | |
| 5172 | public: |
| 5173 | /// Constructor with insert-before-instruction semantics |
| 5174 | BitCastInst( |
| 5175 | Value *S, ///< The value to be casted |
| 5176 | Type *Ty, ///< The type to casted to |
| 5177 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5178 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5179 | ); |
| 5180 | |
| 5181 | /// Constructor with insert-at-end-of-block semantics |
| 5182 | BitCastInst( |
| 5183 | Value *S, ///< The value to be casted |
| 5184 | Type *Ty, ///< The type to casted to |
| 5185 | const Twine &NameStr, ///< A name for the new instruction |
| 5186 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5187 | ); |
| 5188 | |
| 5189 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5190 | static bool classof(const Instruction *I) { |
| 5191 | return I->getOpcode() == BitCast; |
| 5192 | } |
| 5193 | static bool classof(const Value *V) { |
| 5194 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5195 | } |
| 5196 | }; |
| 5197 | |
| 5198 | //===----------------------------------------------------------------------===// |
| 5199 | // AddrSpaceCastInst Class |
| 5200 | //===----------------------------------------------------------------------===// |
| 5201 | |
| 5202 | /// This class represents a conversion between pointers from one address space |
| 5203 | /// to another. |
| 5204 | class AddrSpaceCastInst : public CastInst { |
| 5205 | protected: |
| 5206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5207 | friend class Instruction; |
| 5208 | |
| 5209 | /// Clone an identical AddrSpaceCastInst. |
| 5210 | AddrSpaceCastInst *cloneImpl() const; |
| 5211 | |
| 5212 | public: |
| 5213 | /// Constructor with insert-before-instruction semantics |
| 5214 | AddrSpaceCastInst( |
| 5215 | Value *S, ///< The value to be casted |
| 5216 | Type *Ty, ///< The type to casted to |
| 5217 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5218 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5219 | ); |
| 5220 | |
| 5221 | /// Constructor with insert-at-end-of-block semantics |
| 5222 | AddrSpaceCastInst( |
| 5223 | Value *S, ///< The value to be casted |
| 5224 | Type *Ty, ///< The type to casted to |
| 5225 | const Twine &NameStr, ///< A name for the new instruction |
| 5226 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5227 | ); |
| 5228 | |
| 5229 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5230 | static bool classof(const Instruction *I) { |
| 5231 | return I->getOpcode() == AddrSpaceCast; |
| 5232 | } |
| 5233 | static bool classof(const Value *V) { |
| 5234 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5235 | } |
| 5236 | |
| 5237 | /// Gets the pointer operand. |
| 5238 | Value *getPointerOperand() { |
| 5239 | return getOperand(0); |
| 5240 | } |
| 5241 | |
| 5242 | /// Gets the pointer operand. |
| 5243 | const Value *getPointerOperand() const { |
| 5244 | return getOperand(0); |
| 5245 | } |
| 5246 | |
| 5247 | /// Gets the operand index of the pointer operand. |
| 5248 | static unsigned getPointerOperandIndex() { |
| 5249 | return 0U; |
| 5250 | } |
| 5251 | |
| 5252 | /// Returns the address space of the pointer operand. |
| 5253 | unsigned getSrcAddressSpace() const { |
| 5254 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5255 | } |
| 5256 | |
| 5257 | /// Returns the address space of the result. |
| 5258 | unsigned getDestAddressSpace() const { |
| 5259 | return getType()->getPointerAddressSpace(); |
| 5260 | } |
| 5261 | }; |
| 5262 | |
| 5263 | /// A helper function that returns the pointer operand of a load or store |
| 5264 | /// instruction. Returns nullptr if not load or store. |
| 5265 | inline const Value *getLoadStorePointerOperand(const Value *V) { |
| 5266 | if (auto *Load = dyn_cast<LoadInst>(V)) |
| 5267 | return Load->getPointerOperand(); |
| 5268 | if (auto *Store = dyn_cast<StoreInst>(V)) |
| 5269 | return Store->getPointerOperand(); |
| 5270 | return nullptr; |
| 5271 | } |
| 5272 | inline Value *getLoadStorePointerOperand(Value *V) { |
| 5273 | return const_cast<Value *>( |
| 5274 | getLoadStorePointerOperand(static_cast<const Value *>(V))); |
| 5275 | } |
| 5276 | |
| 5277 | /// A helper function that returns the pointer operand of a load, store |
| 5278 | /// or GEP instruction. Returns nullptr if not load, store, or GEP. |
| 5279 | inline const Value *getPointerOperand(const Value *V) { |
| 5280 | if (auto *Ptr = getLoadStorePointerOperand(V)) |
| 5281 | return Ptr; |
| 5282 | if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) |
| 5283 | return Gep->getPointerOperand(); |
| 5284 | return nullptr; |
| 5285 | } |
| 5286 | inline Value *getPointerOperand(Value *V) { |
| 5287 | return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); |
| 5288 | } |
| 5289 | |
| 5290 | /// A helper function that returns the alignment of load or store instruction. |
| 5291 | inline Align getLoadStoreAlignment(Value *I) { |
| 5292 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5293 | "Expected Load or Store instruction")((void)0); |
| 5294 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5295 | return LI->getAlign(); |
| 5296 | return cast<StoreInst>(I)->getAlign(); |
| 5297 | } |
| 5298 | |
| 5299 | /// A helper function that returns the address space of the pointer operand of |
| 5300 | /// load or store instruction. |
| 5301 | inline unsigned getLoadStoreAddressSpace(Value *I) { |
| 5302 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5303 | "Expected Load or Store instruction")((void)0); |
| 5304 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5305 | return LI->getPointerAddressSpace(); |
| 5306 | return cast<StoreInst>(I)->getPointerAddressSpace(); |
| 5307 | } |
| 5308 | |
| 5309 | /// A helper function that returns the type of a load or store instruction. |
| 5310 | inline Type *getLoadStoreType(Value *I) { |
| 5311 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5312 | "Expected Load or Store instruction")((void)0); |
| 5313 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5314 | return LI->getType(); |
| 5315 | return cast<StoreInst>(I)->getValueOperand()->getType(); |
| 5316 | } |
| 5317 | |
| 5318 | //===----------------------------------------------------------------------===// |
| 5319 | // FreezeInst Class |
| 5320 | //===----------------------------------------------------------------------===// |
| 5321 | |
| 5322 | /// This class represents a freeze function that returns random concrete |
| 5323 | /// value if an operand is either a poison value or an undef value |
| 5324 | class FreezeInst : public UnaryInstruction { |
| 5325 | protected: |
| 5326 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5327 | friend class Instruction; |
| 5328 | |
| 5329 | /// Clone an identical FreezeInst |
| 5330 | FreezeInst *cloneImpl() const; |
| 5331 | |
| 5332 | public: |
| 5333 | explicit FreezeInst(Value *S, |
| 5334 | const Twine &NameStr = "", |
| 5335 | Instruction *InsertBefore = nullptr); |
| 5336 | FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 5337 | |
| 5338 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5339 | static inline bool classof(const Instruction *I) { |
| 5340 | return I->getOpcode() == Freeze; |
| 5341 | } |
| 5342 | static inline bool classof(const Value *V) { |
| 5343 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5344 | } |
| 5345 | }; |
| 5346 | |
| 5347 | } // end namespace llvm |
| 5348 | |
| 5349 | #endif // LLVM_IR_INSTRUCTIONS_H |
| 1 | //===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file contains types to represent alignments. | |||
| 10 | // They are instrumented to guarantee some invariants are preserved and prevent | |||
| 11 | // invalid manipulations. | |||
| 12 | // | |||
| 13 | // - Align represents an alignment in bytes, it is always set and always a valid | |||
| 14 | // power of two, its minimum value is 1 which means no alignment requirements. | |||
| 15 | // | |||
| 16 | // - MaybeAlign is an optional type, it may be undefined or set. When it's set | |||
| 17 | // you can get the underlying Align type by using the getValue() method. | |||
| 18 | // | |||
| 19 | //===----------------------------------------------------------------------===// | |||
| 20 | ||||
| 21 | #ifndef LLVM_SUPPORT_ALIGNMENT_H_ | |||
| 22 | #define LLVM_SUPPORT_ALIGNMENT_H_ | |||
| 23 | ||||
| 24 | #include "llvm/ADT/Optional.h" | |||
| 25 | #include "llvm/Support/MathExtras.h" | |||
| 26 | #include <cassert> | |||
| 27 | #ifndef NDEBUG1 | |||
| 28 | #include <string> | |||
| 29 | #endif // NDEBUG | |||
| 30 | ||||
| 31 | namespace llvm { | |||
| 32 | ||||
| 33 | #define ALIGN_CHECK_ISPOSITIVE(decl) \ | |||
| 34 | assert(decl > 0 && (#decl " should be defined"))((void)0) | |||
| 35 | ||||
| 36 | /// This struct is a compact representation of a valid (non-zero power of two) | |||
| 37 | /// alignment. | |||
| 38 | /// It is suitable for use as static global constants. | |||
| 39 | struct Align { | |||
| 40 | private: | |||
| 41 | uint8_t ShiftValue = 0; /// The log2 of the required alignment. | |||
| 42 | /// ShiftValue is less than 64 by construction. | |||
| 43 | ||||
| 44 | friend struct MaybeAlign; | |||
| 45 | friend unsigned Log2(Align); | |||
| 46 | friend bool operator==(Align Lhs, Align Rhs); | |||
| 47 | friend bool operator!=(Align Lhs, Align Rhs); | |||
| 48 | friend bool operator<=(Align Lhs, Align Rhs); | |||
| 49 | friend bool operator>=(Align Lhs, Align Rhs); | |||
| 50 | friend bool operator<(Align Lhs, Align Rhs); | |||
| 51 | friend bool operator>(Align Lhs, Align Rhs); | |||
| 52 | friend unsigned encode(struct MaybeAlign A); | |||
| 53 | friend struct MaybeAlign decodeMaybeAlign(unsigned Value); | |||
| 54 | ||||
| 55 | /// A trivial type to allow construction of constexpr Align. | |||
| 56 | /// This is currently needed to workaround a bug in GCC 5.3 which prevents | |||
| 57 | /// definition of constexpr assign operators. | |||
| 58 | /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic | |||
| 59 | /// FIXME: Remove this, make all assign operators constexpr and introduce user | |||
| 60 | /// defined literals when we don't have to support GCC 5.3 anymore. | |||
| 61 | /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain | |||
| 62 | struct LogValue { | |||
| 63 | uint8_t Log; | |||
| 64 | }; | |||
| 65 | ||||
| 66 | public: | |||
| 67 | /// Default is byte-aligned. | |||
| 68 | constexpr Align() = default; | |||
| 69 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
| 70 | /// checks have been performed when building `Other`. | |||
| 71 | constexpr Align(const Align &Other) = default; | |||
| 72 | constexpr Align(Align &&Other) = default; | |||
| 73 | Align &operator=(const Align &Other) = default; | |||
| 74 | Align &operator=(Align &&Other) = default; | |||
| 75 | ||||
| 76 | explicit Align(uint64_t Value) { | |||
| 77 | assert(Value > 0 && "Value must not be 0")((void)0); | |||
| 78 | assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0); | |||
| 79 | ShiftValue = Log2_64(Value); | |||
| 80 | assert(ShiftValue < 64 && "Broken invariant")((void)0); | |||
| 81 | } | |||
| 82 | ||||
| 83 | /// This is a hole in the type system and should not be abused. | |||
| 84 | /// Needed to interact with C for instance. | |||
| 85 | uint64_t value() const { return uint64_t(1) << ShiftValue; } | |||
| ||||
| 86 | ||||
| 87 | /// Allow constructions of constexpr Align. | |||
| 88 | template <size_t kValue> constexpr static LogValue Constant() { | |||
| 89 | return LogValue{static_cast<uint8_t>(CTLog2<kValue>())}; | |||
| 90 | } | |||
| 91 | ||||
| 92 | /// Allow constructions of constexpr Align from types. | |||
| 93 | /// Compile time equivalent to Align(alignof(T)). | |||
| 94 | template <typename T> constexpr static LogValue Of() { | |||
| 95 | return Constant<std::alignment_of<T>::value>(); | |||
| 96 | } | |||
| 97 | ||||
| 98 | /// Constexpr constructor from LogValue type. | |||
| 99 | constexpr Align(LogValue CA) : ShiftValue(CA.Log) {} | |||
| 100 | }; | |||
| 101 | ||||
| 102 | /// Treats the value 0 as a 1, so Align is always at least 1. | |||
| 103 | inline Align assumeAligned(uint64_t Value) { | |||
| 104 | return Value ? Align(Value) : Align(); | |||
| 105 | } | |||
| 106 | ||||
| 107 | /// This struct is a compact representation of a valid (power of two) or | |||
| 108 | /// undefined (0) alignment. | |||
| 109 | struct MaybeAlign : public llvm::Optional<Align> { | |||
| 110 | private: | |||
| 111 | using UP = llvm::Optional<Align>; | |||
| 112 | ||||
| 113 | public: | |||
| 114 | /// Default is undefined. | |||
| 115 | MaybeAlign() = default; | |||
| 116 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
| 117 | /// checks have been performed when building `Other`. | |||
| 118 | MaybeAlign(const MaybeAlign &Other) = default; | |||
| 119 | MaybeAlign &operator=(const MaybeAlign &Other) = default; | |||
| 120 | MaybeAlign(MaybeAlign &&Other) = default; | |||
| 121 | MaybeAlign &operator=(MaybeAlign &&Other) = default; | |||
| 122 | ||||
| 123 | /// Use llvm::Optional<Align> constructor. | |||
| 124 | using UP::UP; | |||
| 125 | ||||
| 126 | explicit MaybeAlign(uint64_t Value) { | |||
| 127 | assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0) | |||
| 128 | "Alignment is neither 0 nor a power of 2")((void)0); | |||
| 129 | if (Value) | |||
| 130 | emplace(Value); | |||
| 131 | } | |||
| 132 | ||||
| 133 | /// For convenience, returns a valid alignment or 1 if undefined. | |||
| 134 | Align valueOrOne() const { return hasValue() ? getValue() : Align(); } | |||
| 135 | }; | |||
| 136 | ||||
| 137 | /// Checks that SizeInBytes is a multiple of the alignment. | |||
| 138 | inline bool isAligned(Align Lhs, uint64_t SizeInBytes) { | |||
| 139 | return SizeInBytes % Lhs.value() == 0; | |||
| 140 | } | |||
| 141 | ||||
| 142 | /// Checks that Addr is a multiple of the alignment. | |||
| 143 | inline bool isAddrAligned(Align Lhs, const void *Addr) { | |||
| 144 | return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr)); | |||
| 145 | } | |||
| 146 | ||||
| 147 | /// Returns a multiple of A needed to store `Size` bytes. | |||
| 148 | inline uint64_t alignTo(uint64_t Size, Align A) { | |||
| 149 | const uint64_t Value = A.value(); | |||
| 150 | // The following line is equivalent to `(Size + Value - 1) / Value * Value`. | |||
| 151 | ||||
| 152 | // The division followed by a multiplication can be thought of as a right | |||
| 153 | // shift followed by a left shift which zeros out the extra bits produced in | |||
| 154 | // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out | |||
| 155 | // are just zero. | |||
| 156 | ||||
| 157 | // Most compilers can generate this code but the pattern may be missed when | |||
| 158 | // multiple functions gets inlined. | |||
| 159 | return (Size + Value - 1) & ~(Value - 1U); | |||
| 160 | } | |||
| 161 | ||||
| 162 | /// If non-zero \p Skew is specified, the return value will be a minimal integer | |||
| 163 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for | |||
| 164 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p | |||
| 165 | /// Skew mod \p A'. | |||
| 166 | /// | |||
| 167 | /// Examples: | |||
| 168 | /// \code | |||
| 169 | /// alignTo(5, Align(8), 7) = 7 | |||
| 170 | /// alignTo(17, Align(8), 1) = 17 | |||
| 171 | /// alignTo(~0LL, Align(8), 3) = 3 | |||
| 172 | /// \endcode | |||
| 173 | inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) { | |||
| 174 | const uint64_t Value = A.value(); | |||
| 175 | Skew %= Value; | |||
| 176 | return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew; | |||
| 177 | } | |||
| 178 | ||||
| 179 | /// Returns a multiple of A needed to store `Size` bytes. | |||
| 180 | /// Returns `Size` if current alignment is undefined. | |||
| 181 | inline uint64_t alignTo(uint64_t Size, MaybeAlign A) { | |||
| 182 | return A ? alignTo(Size, A.getValue()) : Size; | |||
| 183 | } | |||
| 184 | ||||
| 185 | /// Aligns `Addr` to `Alignment` bytes, rounding up. | |||
| 186 | inline uintptr_t alignAddr(const void *Addr, Align Alignment) { | |||
| 187 | uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr); | |||
| 188 | assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0) | |||
| 189 | ArithAddr &&((void)0) | |||
| 190 | "Overflow")((void)0); | |||
| 191 | return alignTo(ArithAddr, Alignment); | |||
| 192 | } | |||
| 193 | ||||
| 194 | /// Returns the offset to the next integer (mod 2**64) that is greater than | |||
| 195 | /// or equal to \p Value and is a multiple of \p Align. | |||
| 196 | inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) { | |||
| 197 | return alignTo(Value, Alignment) - Value; | |||
| 198 | } | |||
| 199 | ||||
| 200 | /// Returns the necessary adjustment for aligning `Addr` to `Alignment` | |||
| 201 | /// bytes, rounding up. | |||
| 202 | inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) { | |||
| 203 | return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment); | |||
| 204 | } | |||
| 205 | ||||
| 206 | /// Returns the log2 of the alignment. | |||
| 207 | inline unsigned Log2(Align A) { return A.ShiftValue; } | |||
| 208 | ||||
| 209 | /// Returns the alignment that satisfies both alignments. | |||
| 210 | /// Same semantic as MinAlign. | |||
| 211 | inline Align commonAlignment(Align A, Align B) { return std::min(A, B); } | |||
| 212 | ||||
| 213 | /// Returns the alignment that satisfies both alignments. | |||
| 214 | /// Same semantic as MinAlign. | |||
| 215 | inline Align commonAlignment(Align A, uint64_t Offset) { | |||
| 216 | return Align(MinAlign(A.value(), Offset)); | |||
| 217 | } | |||
| 218 | ||||
| 219 | /// Returns the alignment that satisfies both alignments. | |||
| 220 | /// Same semantic as MinAlign. | |||
| 221 | inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) { | |||
| 222 | return A && B ? commonAlignment(*A, *B) : A ? A : B; | |||
| 223 | } | |||
| 224 | ||||
| 225 | /// Returns the alignment that satisfies both alignments. | |||
| 226 | /// Same semantic as MinAlign. | |||
| 227 | inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) { | |||
| 228 | return MaybeAlign(MinAlign((*A).value(), Offset)); | |||
| 229 | } | |||
| 230 | ||||
| 231 | /// Returns a representation of the alignment that encodes undefined as 0. | |||
| 232 | inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; } | |||
| 233 | ||||
| 234 | /// Dual operation of the encode function above. | |||
| 235 | inline MaybeAlign decodeMaybeAlign(unsigned Value) { | |||
| 236 | if (Value == 0) | |||
| 237 | return MaybeAlign(); | |||
| 238 | Align Out; | |||
| 239 | Out.ShiftValue = Value - 1; | |||
| 240 | return Out; | |||
| 241 | } | |||
| 242 | ||||
| 243 | /// Returns a representation of the alignment, the encoded value is positive by | |||
| 244 | /// definition. | |||
| 245 | inline unsigned encode(Align A) { return encode(MaybeAlign(A)); } | |||
| 246 | ||||
| 247 | /// Comparisons between Align and scalars. Rhs must be positive. | |||
| 248 | inline bool operator==(Align Lhs, uint64_t Rhs) { | |||
| 249 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 250 | return Lhs.value() == Rhs; | |||
| 251 | } | |||
| 252 | inline bool operator!=(Align Lhs, uint64_t Rhs) { | |||
| 253 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 254 | return Lhs.value() != Rhs; | |||
| 255 | } | |||
| 256 | inline bool operator<=(Align Lhs, uint64_t Rhs) { | |||
| 257 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 258 | return Lhs.value() <= Rhs; | |||
| 259 | } | |||
| 260 | inline bool operator>=(Align Lhs, uint64_t Rhs) { | |||
| 261 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 262 | return Lhs.value() >= Rhs; | |||
| 263 | } | |||
| 264 | inline bool operator<(Align Lhs, uint64_t Rhs) { | |||
| 265 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 266 | return Lhs.value() < Rhs; | |||
| 267 | } | |||
| 268 | inline bool operator>(Align Lhs, uint64_t Rhs) { | |||
| 269 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 270 | return Lhs.value() > Rhs; | |||
| 271 | } | |||
| 272 | ||||
| 273 | /// Comparisons between MaybeAlign and scalars. | |||
| 274 | inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 275 | return Lhs ? (*Lhs).value() == Rhs : Rhs == 0; | |||
| 276 | } | |||
| 277 | inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 278 | return Lhs ? (*Lhs).value() != Rhs : Rhs != 0; | |||
| 279 | } | |||
| 280 | ||||
| 281 | /// Comparisons operators between Align. | |||
| 282 | inline bool operator==(Align Lhs, Align Rhs) { | |||
| 283 | return Lhs.ShiftValue == Rhs.ShiftValue; | |||
| 284 | } | |||
| 285 | inline bool operator!=(Align Lhs, Align Rhs) { | |||
| 286 | return Lhs.ShiftValue != Rhs.ShiftValue; | |||
| 287 | } | |||
| 288 | inline bool operator<=(Align Lhs, Align Rhs) { | |||
| 289 | return Lhs.ShiftValue <= Rhs.ShiftValue; | |||
| 290 | } | |||
| 291 | inline bool operator>=(Align Lhs, Align Rhs) { | |||
| 292 | return Lhs.ShiftValue >= Rhs.ShiftValue; | |||
| 293 | } | |||
| 294 | inline bool operator<(Align Lhs, Align Rhs) { | |||
| 295 | return Lhs.ShiftValue < Rhs.ShiftValue; | |||
| 296 | } | |||
| 297 | inline bool operator>(Align Lhs, Align Rhs) { | |||
| 298 | return Lhs.ShiftValue > Rhs.ShiftValue; | |||
| 299 | } | |||
| 300 | ||||
| 301 | // Don't allow relational comparisons with MaybeAlign. | |||
| 302 | bool operator<=(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 303 | bool operator>=(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 304 | bool operator<(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 305 | bool operator>(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 306 | ||||
| 307 | bool operator<=(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 308 | bool operator>=(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 309 | bool operator<(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 310 | bool operator>(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 311 | ||||
| 312 | bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 313 | bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 314 | bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 315 | bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 316 | ||||
| 317 | inline Align operator*(Align Lhs, uint64_t Rhs) { | |||
| 318 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
| 319 | return Align(Lhs.value() * Rhs); | |||
| 320 | } | |||
| 321 | ||||
| 322 | inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 323 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
| 324 | return Lhs ? Lhs.getValue() * Rhs : MaybeAlign(); | |||
| 325 | } | |||
| 326 | ||||
| 327 | inline Align operator/(Align Lhs, uint64_t Divisor) { | |||
| 328 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
| 329 | "Divisor must be positive and a power of 2")((void)0); | |||
| 330 | assert(Lhs != 1 && "Can't halve byte alignment")((void)0); | |||
| 331 | return Align(Lhs.value() / Divisor); | |||
| 332 | } | |||
| 333 | ||||
| 334 | inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) { | |||
| 335 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
| 336 | "Divisor must be positive and a power of 2")((void)0); | |||
| 337 | return Lhs ? Lhs.getValue() / Divisor : MaybeAlign(); | |||
| 338 | } | |||
| 339 | ||||
| 340 | inline Align max(MaybeAlign Lhs, Align Rhs) { | |||
| 341 | return Lhs && *Lhs > Rhs ? *Lhs : Rhs; | |||
| 342 | } | |||
| 343 | ||||
| 344 | inline Align max(Align Lhs, MaybeAlign Rhs) { | |||
| 345 | return Rhs && *Rhs > Lhs ? *Rhs : Lhs; | |||
| 346 | } | |||
| 347 | ||||
| 348 | #ifndef NDEBUG1 | |||
| 349 | // For usage in LLVM_DEBUG macros. | |||
| 350 | inline std::string DebugStr(const Align &A) { | |||
| 351 | return std::to_string(A.value()); | |||
| 352 | } | |||
| 353 | // For usage in LLVM_DEBUG macros. | |||
| 354 | inline std::string DebugStr(const MaybeAlign &MA) { | |||
| 355 | if (MA) | |||
| 356 | return std::to_string(MA->value()); | |||
| 357 | return "None"; | |||
| 358 | } | |||
| 359 | #endif // NDEBUG | |||
| 360 | ||||
| 361 | #undef ALIGN_CHECK_ISPOSITIVE | |||
| 362 | ||||
| 363 | } // namespace llvm | |||
| 364 | ||||
| 365 | #endif // LLVM_SUPPORT_ALIGNMENT_H_ |
| 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains some functions that are useful for math stuff. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
| 14 | #define LLVM_SUPPORT_MATHEXTRAS_H |
| 15 | |
| 16 | #include "llvm/Support/Compiler.h" |
| 17 | #include <cassert> |
| 18 | #include <climits> |
| 19 | #include <cmath> |
| 20 | #include <cstdint> |
| 21 | #include <cstring> |
| 22 | #include <limits> |
| 23 | #include <type_traits> |
| 24 | |
| 25 | #ifdef __ANDROID_NDK__ |
| 26 | #include <android/api-level.h> |
| 27 | #endif |
| 28 | |
| 29 | #ifdef _MSC_VER |
| 30 | // Declare these intrinsics manually rather including intrin.h. It's very |
| 31 | // expensive, and MathExtras.h is popular. |
| 32 | // #include <intrin.h> |
| 33 | extern "C" { |
| 34 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
| 35 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
| 36 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
| 37 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
| 38 | } |
| 39 | #endif |
| 40 | |
| 41 | namespace llvm { |
| 42 | |
| 43 | /// The behavior an operation has on an input of 0. |
| 44 | enum ZeroBehavior { |
| 45 | /// The returned value is undefined. |
| 46 | ZB_Undefined, |
| 47 | /// The returned value is numeric_limits<T>::max() |
| 48 | ZB_Max, |
| 49 | /// The returned value is numeric_limits<T>::digits |
| 50 | ZB_Width |
| 51 | }; |
| 52 | |
| 53 | /// Mathematical constants. |
| 54 | namespace numbers { |
| 55 | // TODO: Track C++20 std::numbers. |
| 56 | // TODO: Favor using the hexadecimal FP constants (requires C++17). |
| 57 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 |
| 58 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 |
| 59 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 |
| 60 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 |
| 61 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) |
| 62 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) |
| 63 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 |
| 64 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 |
| 65 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 |
| 66 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 |
| 67 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 |
| 68 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) |
| 69 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 |
| 70 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) |
| 71 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 |
| 72 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 |
| 73 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 |
| 74 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 |
| 75 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 |
| 76 | log2ef = 1.44269504F, // (0x1.715476P+0) |
| 77 | log10ef = .434294482F, // (0x1.bcb7b2P-2) |
| 78 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 |
| 79 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 |
| 80 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 |
| 81 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 |
| 82 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 |
| 83 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) |
| 84 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 |
| 85 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) |
| 86 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 |
| 87 | } // namespace numbers |
| 88 | |
| 89 | namespace detail { |
| 90 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
| 91 | static unsigned count(T Val, ZeroBehavior) { |
| 92 | if (!Val) |
| 93 | return std::numeric_limits<T>::digits; |
| 94 | if (Val & 0x1) |
| 95 | return 0; |
| 96 | |
| 97 | // Bisection method. |
| 98 | unsigned ZeroBits = 0; |
| 99 | T Shift = std::numeric_limits<T>::digits >> 1; |
| 100 | T Mask = std::numeric_limits<T>::max() >> Shift; |
| 101 | while (Shift) { |
| 102 | if ((Val & Mask) == 0) { |
| 103 | Val >>= Shift; |
| 104 | ZeroBits |= Shift; |
| 105 | } |
| 106 | Shift >>= 1; |
| 107 | Mask >>= Shift; |
| 108 | } |
| 109 | return ZeroBits; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 114 | template <typename T> struct TrailingZerosCounter<T, 4> { |
| 115 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 116 | if (ZB != ZB_Undefined && Val == 0) |
| 117 | return 32; |
| 118 | |
| 119 | #if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4) |
| 120 | return __builtin_ctz(Val); |
| 121 | #elif defined(_MSC_VER) |
| 122 | unsigned long Index; |
| 123 | _BitScanForward(&Index, Val); |
| 124 | return Index; |
| 125 | #endif |
| 126 | } |
| 127 | }; |
| 128 | |
| 129 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 130 | template <typename T> struct TrailingZerosCounter<T, 8> { |
| 131 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 132 | if (ZB != ZB_Undefined && Val == 0) |
| 133 | return 64; |
| 134 | |
| 135 | #if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4) |
| 136 | return __builtin_ctzll(Val); |
| 137 | #elif defined(_MSC_VER) |
| 138 | unsigned long Index; |
| 139 | _BitScanForward64(&Index, Val); |
| 140 | return Index; |
| 141 | #endif |
| 142 | } |
| 143 | }; |
| 144 | #endif |
| 145 | #endif |
| 146 | } // namespace detail |
| 147 | |
| 148 | /// Count number of 0's from the least significant bit to the most |
| 149 | /// stopping at the first 1. |
| 150 | /// |
| 151 | /// Only unsigned integral types are allowed. |
| 152 | /// |
| 153 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 154 | /// valid arguments. |
| 155 | template <typename T> |
| 156 | unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 157 | static_assert(std::numeric_limits<T>::is_integer && |
| 158 | !std::numeric_limits<T>::is_signed, |
| 159 | "Only unsigned integral types are allowed."); |
| 160 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 161 | } |
| 162 | |
| 163 | namespace detail { |
| 164 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
| 165 | static unsigned count(T Val, ZeroBehavior) { |
| 166 | if (!Val) |
| 167 | return std::numeric_limits<T>::digits; |
| 168 | |
| 169 | // Bisection method. |
| 170 | unsigned ZeroBits = 0; |
| 171 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
| 172 | T Tmp = Val >> Shift; |
| 173 | if (Tmp) |
| 174 | Val = Tmp; |
| 175 | else |
| 176 | ZeroBits |= Shift; |
| 177 | } |
| 178 | return ZeroBits; |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 183 | template <typename T> struct LeadingZerosCounter<T, 4> { |
| 184 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 185 | if (ZB != ZB_Undefined && Val == 0) |
| 186 | return 32; |
| 187 | |
| 188 | #if __has_builtin(__builtin_clz)1 || defined(__GNUC__4) |
| 189 | return __builtin_clz(Val); |
| 190 | #elif defined(_MSC_VER) |
| 191 | unsigned long Index; |
| 192 | _BitScanReverse(&Index, Val); |
| 193 | return Index ^ 31; |
| 194 | #endif |
| 195 | } |
| 196 | }; |
| 197 | |
| 198 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 199 | template <typename T> struct LeadingZerosCounter<T, 8> { |
| 200 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 201 | if (ZB != ZB_Undefined && Val == 0) |
| 202 | return 64; |
| 203 | |
| 204 | #if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4) |
| 205 | return __builtin_clzll(Val); |
| 206 | #elif defined(_MSC_VER) |
| 207 | unsigned long Index; |
| 208 | _BitScanReverse64(&Index, Val); |
| 209 | return Index ^ 63; |
| 210 | #endif |
| 211 | } |
| 212 | }; |
| 213 | #endif |
| 214 | #endif |
| 215 | } // namespace detail |
| 216 | |
| 217 | /// Count number of 0's from the most significant bit to the least |
| 218 | /// stopping at the first 1. |
| 219 | /// |
| 220 | /// Only unsigned integral types are allowed. |
| 221 | /// |
| 222 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 223 | /// valid arguments. |
| 224 | template <typename T> |
| 225 | unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 226 | static_assert(std::numeric_limits<T>::is_integer && |
| 227 | !std::numeric_limits<T>::is_signed, |
| 228 | "Only unsigned integral types are allowed."); |
| 229 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 230 | } |
| 231 | |
| 232 | /// Get the index of the first set bit starting from the least |
| 233 | /// significant bit. |
| 234 | /// |
| 235 | /// Only unsigned integral types are allowed. |
| 236 | /// |
| 237 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 238 | /// valid arguments. |
| 239 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 240 | if (ZB == ZB_Max && Val == 0) |
| 241 | return std::numeric_limits<T>::max(); |
| 242 | |
| 243 | return countTrailingZeros(Val, ZB_Undefined); |
| 244 | } |
| 245 | |
| 246 | /// Create a bitmask with the N right-most bits set to 1, and all other |
| 247 | /// bits set to 0. Only unsigned types are allowed. |
| 248 | template <typename T> T maskTrailingOnes(unsigned N) { |
| 249 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); |
| 250 | const unsigned Bits = CHAR_BIT8 * sizeof(T); |
| 251 | assert(N <= Bits && "Invalid bit index")((void)0); |
| 252 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
| 253 | } |
| 254 | |
| 255 | /// Create a bitmask with the N left-most bits set to 1, and all other |
| 256 | /// bits set to 0. Only unsigned types are allowed. |
| 257 | template <typename T> T maskLeadingOnes(unsigned N) { |
| 258 | return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 259 | } |
| 260 | |
| 261 | /// Create a bitmask with the N right-most bits set to 0, and all other |
| 262 | /// bits set to 1. Only unsigned types are allowed. |
| 263 | template <typename T> T maskTrailingZeros(unsigned N) { |
| 264 | return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 265 | } |
| 266 | |
| 267 | /// Create a bitmask with the N left-most bits set to 0, and all other |
| 268 | /// bits set to 1. Only unsigned types are allowed. |
| 269 | template <typename T> T maskLeadingZeros(unsigned N) { |
| 270 | return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 271 | } |
| 272 | |
| 273 | /// Get the index of the last set bit starting from the least |
| 274 | /// significant bit. |
| 275 | /// |
| 276 | /// Only unsigned integral types are allowed. |
| 277 | /// |
| 278 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 279 | /// valid arguments. |
| 280 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 281 | if (ZB == ZB_Max && Val == 0) |
| 282 | return std::numeric_limits<T>::max(); |
| 283 | |
| 284 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
| 285 | // in the __builtin_clz intrinsic on x86. |
| 286 | return countLeadingZeros(Val, ZB_Undefined) ^ |
| 287 | (std::numeric_limits<T>::digits - 1); |
| 288 | } |
| 289 | |
| 290 | /// Macro compressed bit reversal table for 256 bits. |
| 291 | /// |
| 292 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
| 293 | static const unsigned char BitReverseTable256[256] = { |
| 294 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
| 295 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
| 296 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
| 297 | R6(0), R6(2), R6(1), R6(3) |
| 298 | #undef R2 |
| 299 | #undef R4 |
| 300 | #undef R6 |
| 301 | }; |
| 302 | |
| 303 | /// Reverse the bits in \p Val. |
| 304 | template <typename T> |
| 305 | T reverseBits(T Val) { |
| 306 | unsigned char in[sizeof(Val)]; |
| 307 | unsigned char out[sizeof(Val)]; |
| 308 | std::memcpy(in, &Val, sizeof(Val)); |
| 309 | for (unsigned i = 0; i < sizeof(Val); ++i) |
| 310 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
| 311 | std::memcpy(&Val, out, sizeof(Val)); |
| 312 | return Val; |
| 313 | } |
| 314 | |
| 315 | #if __has_builtin(__builtin_bitreverse8)1 |
| 316 | template<> |
| 317 | inline uint8_t reverseBits<uint8_t>(uint8_t Val) { |
| 318 | return __builtin_bitreverse8(Val); |
| 319 | } |
| 320 | #endif |
| 321 | |
| 322 | #if __has_builtin(__builtin_bitreverse16)1 |
| 323 | template<> |
| 324 | inline uint16_t reverseBits<uint16_t>(uint16_t Val) { |
| 325 | return __builtin_bitreverse16(Val); |
| 326 | } |
| 327 | #endif |
| 328 | |
| 329 | #if __has_builtin(__builtin_bitreverse32)1 |
| 330 | template<> |
| 331 | inline uint32_t reverseBits<uint32_t>(uint32_t Val) { |
| 332 | return __builtin_bitreverse32(Val); |
| 333 | } |
| 334 | #endif |
| 335 | |
| 336 | #if __has_builtin(__builtin_bitreverse64)1 |
| 337 | template<> |
| 338 | inline uint64_t reverseBits<uint64_t>(uint64_t Val) { |
| 339 | return __builtin_bitreverse64(Val); |
| 340 | } |
| 341 | #endif |
| 342 | |
| 343 | // NOTE: The following support functions use the _32/_64 extensions instead of |
| 344 | // type overloading so that signed and unsigned integers can be used without |
| 345 | // ambiguity. |
| 346 | |
| 347 | /// Return the high 32 bits of a 64 bit value. |
| 348 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
| 349 | return static_cast<uint32_t>(Value >> 32); |
| 350 | } |
| 351 | |
| 352 | /// Return the low 32 bits of a 64 bit value. |
| 353 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
| 354 | return static_cast<uint32_t>(Value); |
| 355 | } |
| 356 | |
| 357 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
| 358 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
| 359 | return ((uint64_t)High << 32) | (uint64_t)Low; |
| 360 | } |
| 361 | |
| 362 | /// Checks if an integer fits into the given bit width. |
| 363 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
| 364 | return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1))); |
| 365 | } |
| 366 | // Template specializations to get better code for common cases. |
| 367 | template <> constexpr inline bool isInt<8>(int64_t x) { |
| 368 | return static_cast<int8_t>(x) == x; |
| 369 | } |
| 370 | template <> constexpr inline bool isInt<16>(int64_t x) { |
| 371 | return static_cast<int16_t>(x) == x; |
| 372 | } |
| 373 | template <> constexpr inline bool isInt<32>(int64_t x) { |
| 374 | return static_cast<int32_t>(x) == x; |
| 375 | } |
| 376 | |
| 377 | /// Checks if a signed integer is an N bit number shifted left by S. |
| 378 | template <unsigned N, unsigned S> |
| 379 | constexpr inline bool isShiftedInt(int64_t x) { |
| 380 | static_assert( |
| 381 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); |
| 382 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); |
| 383 | return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); |
| 384 | } |
| 385 | |
| 386 | /// Checks if an unsigned integer fits into the given bit width. |
| 387 | /// |
| 388 | /// This is written as two functions rather than as simply |
| 389 | /// |
| 390 | /// return N >= 64 || X < (UINT64_C(1) << N); |
| 391 | /// |
| 392 | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting |
| 393 | /// left too many places. |
| 394 | template <unsigned N> |
| 395 | constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) { |
| 396 | static_assert(N > 0, "isUInt<0> doesn't make sense"); |
| 397 | return X < (UINT64_C(1)1ULL << (N)); |
| 398 | } |
| 399 | template <unsigned N> |
| 400 | constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) { |
| 401 | return true; |
| 402 | } |
| 403 | |
| 404 | // Template specializations to get better code for common cases. |
| 405 | template <> constexpr inline bool isUInt<8>(uint64_t x) { |
| 406 | return static_cast<uint8_t>(x) == x; |
| 407 | } |
| 408 | template <> constexpr inline bool isUInt<16>(uint64_t x) { |
| 409 | return static_cast<uint16_t>(x) == x; |
| 410 | } |
| 411 | template <> constexpr inline bool isUInt<32>(uint64_t x) { |
| 412 | return static_cast<uint32_t>(x) == x; |
| 413 | } |
| 414 | |
| 415 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
| 416 | template <unsigned N, unsigned S> |
| 417 | constexpr inline bool isShiftedUInt(uint64_t x) { |
| 418 | static_assert( |
| 419 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); |
| 420 | static_assert(N + S <= 64, |
| 421 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); |
| 422 | // Per the two static_asserts above, S must be strictly less than 64. So |
| 423 | // 1 << S is not undefined behavior. |
| 424 | return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); |
| 425 | } |
| 426 | |
| 427 | /// Gets the maximum value for a N-bit unsigned integer. |
| 428 | inline uint64_t maxUIntN(uint64_t N) { |
| 429 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 430 | |
| 431 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
| 432 | // (uint64_t(1) << N) - 1 |
| 433 | // without checking first that N != 64. But this works and doesn't have a |
| 434 | // branch. |
| 435 | return UINT64_MAX0xffffffffffffffffULL >> (64 - N); |
| 436 | } |
| 437 | |
| 438 | /// Gets the minimum value for a N-bit signed integer. |
| 439 | inline int64_t minIntN(int64_t N) { |
| 440 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 441 | |
| 442 | return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1)); |
| 443 | } |
| 444 | |
| 445 | /// Gets the maximum value for a N-bit signed integer. |
| 446 | inline int64_t maxIntN(int64_t N) { |
| 447 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 448 | |
| 449 | // This relies on two's complement wraparound when N == 64, so we convert to |
| 450 | // int64_t only at the very end to avoid UB. |
| 451 | return (UINT64_C(1)1ULL << (N - 1)) - 1; |
| 452 | } |
| 453 | |
| 454 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
| 455 | inline bool isUIntN(unsigned N, uint64_t x) { |
| 456 | return N >= 64 || x <= maxUIntN(N); |
| 457 | } |
| 458 | |
| 459 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
| 460 | inline bool isIntN(unsigned N, int64_t x) { |
| 461 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
| 462 | } |
| 463 | |
| 464 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 465 | /// least significant bit with the remainder zero (32 bit version). |
| 466 | /// Ex. isMask_32(0x0000FFFFU) == true. |
| 467 | constexpr inline bool isMask_32(uint32_t Value) { |
| 468 | return Value && ((Value + 1) & Value) == 0; |
| 469 | } |
| 470 | |
| 471 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 472 | /// least significant bit with the remainder zero (64 bit version). |
| 473 | constexpr inline bool isMask_64(uint64_t Value) { |
| 474 | return Value && ((Value + 1) & Value) == 0; |
| 475 | } |
| 476 | |
| 477 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 478 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
| 479 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
| 480 | return Value && isMask_32((Value - 1) | Value); |
| 481 | } |
| 482 | |
| 483 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 484 | /// remainder zero (64 bit version.) |
| 485 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
| 486 | return Value && isMask_64((Value - 1) | Value); |
| 487 | } |
| 488 | |
| 489 | /// Return true if the argument is a power of two > 0. |
| 490 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
| 491 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
| 492 | return Value && !(Value & (Value - 1)); |
| 493 | } |
| 494 | |
| 495 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
| 496 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
| 497 | return Value && !(Value & (Value - 1)); |
| 498 | } |
| 499 | |
| 500 | /// Count the number of ones from the most significant bit to the first |
| 501 | /// zero bit. |
| 502 | /// |
| 503 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
| 504 | /// Only unsigned integral types are allowed. |
| 505 | /// |
| 506 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 507 | /// ZB_Undefined are valid arguments. |
| 508 | template <typename T> |
| 509 | unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 510 | static_assert(std::numeric_limits<T>::is_integer && |
| 511 | !std::numeric_limits<T>::is_signed, |
| 512 | "Only unsigned integral types are allowed."); |
| 513 | return countLeadingZeros<T>(~Value, ZB); |
| 514 | } |
| 515 | |
| 516 | /// Count the number of ones from the least significant bit to the first |
| 517 | /// zero bit. |
| 518 | /// |
| 519 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
| 520 | /// Only unsigned integral types are allowed. |
| 521 | /// |
| 522 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 523 | /// ZB_Undefined are valid arguments. |
| 524 | template <typename T> |
| 525 | unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 526 | static_assert(std::numeric_limits<T>::is_integer && |
| 527 | !std::numeric_limits<T>::is_signed, |
| 528 | "Only unsigned integral types are allowed."); |
| 529 | return countTrailingZeros<T>(~Value, ZB); |
| 530 | } |
| 531 | |
| 532 | namespace detail { |
| 533 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
| 534 | static unsigned count(T Value) { |
| 535 | // Generic version, forward to 32 bits. |
| 536 | static_assert(SizeOfT <= 4, "Not implemented!"); |
| 537 | #if defined(__GNUC__4) |
| 538 | return __builtin_popcount(Value); |
| 539 | #else |
| 540 | uint32_t v = Value; |
| 541 | v = v - ((v >> 1) & 0x55555555); |
| 542 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| 543 | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; |
| 544 | #endif |
| 545 | } |
| 546 | }; |
| 547 | |
| 548 | template <typename T> struct PopulationCounter<T, 8> { |
| 549 | static unsigned count(T Value) { |
| 550 | #if defined(__GNUC__4) |
| 551 | return __builtin_popcountll(Value); |
| 552 | #else |
| 553 | uint64_t v = Value; |
| 554 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
| 555 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| 556 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| 557 | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| 558 | #endif |
| 559 | } |
| 560 | }; |
| 561 | } // namespace detail |
| 562 | |
| 563 | /// Count the number of set bits in a value. |
| 564 | /// Ex. countPopulation(0xF000F000) = 8 |
| 565 | /// Returns 0 if the word is zero. |
| 566 | template <typename T> |
| 567 | inline unsigned countPopulation(T Value) { |
| 568 | static_assert(std::numeric_limits<T>::is_integer && |
| 569 | !std::numeric_limits<T>::is_signed, |
| 570 | "Only unsigned integral types are allowed."); |
| 571 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
| 572 | } |
| 573 | |
| 574 | /// Compile time Log2. |
| 575 | /// Valid only for positive powers of two. |
| 576 | template <size_t kValue> constexpr inline size_t CTLog2() { |
| 577 | static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), |
| 578 | "Value is not a valid power of 2"); |
| 579 | return 1 + CTLog2<kValue / 2>(); |
| 580 | } |
| 581 | |
| 582 | template <> constexpr inline size_t CTLog2<1>() { return 0; } |
| 583 | |
| 584 | /// Return the log base 2 of the specified value. |
| 585 | inline double Log2(double Value) { |
| 586 | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 |
| 587 | return __builtin_log(Value) / __builtin_log(2.0); |
| 588 | #else |
| 589 | return log2(Value); |
| 590 | #endif |
| 591 | } |
| 592 | |
| 593 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 594 | /// (32 bit edition.) |
| 595 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
| 596 | inline unsigned Log2_32(uint32_t Value) { |
| 597 | return 31 - countLeadingZeros(Value); |
| 598 | } |
| 599 | |
| 600 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 601 | /// (64 bit edition.) |
| 602 | inline unsigned Log2_64(uint64_t Value) { |
| 603 | return 63 - countLeadingZeros(Value); |
| 604 | } |
| 605 | |
| 606 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
| 607 | /// (32 bit edition). |
| 608 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
| 609 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
| 610 | return 32 - countLeadingZeros(Value - 1); |
| 611 | } |
| 612 | |
| 613 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
| 614 | /// (64 bit edition.) |
| 615 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
| 616 | return 64 - countLeadingZeros(Value - 1); |
| 617 | } |
| 618 | |
| 619 | /// Return the greatest common divisor of the values using Euclid's algorithm. |
| 620 | template <typename T> |
| 621 | inline T greatestCommonDivisor(T A, T B) { |
| 622 | while (B) { |
| 623 | T Tmp = B; |
| 624 | B = A % B; |
| 625 | A = Tmp; |
| 626 | } |
| 627 | return A; |
| 628 | } |
| 629 | |
| 630 | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { |
| 631 | return greatestCommonDivisor<uint64_t>(A, B); |
| 632 | } |
| 633 | |
| 634 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
| 635 | inline double BitsToDouble(uint64_t Bits) { |
| 636 | double D; |
| 637 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 638 | memcpy(&D, &Bits, sizeof(Bits)); |
| 639 | return D; |
| 640 | } |
| 641 | |
| 642 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
| 643 | inline float BitsToFloat(uint32_t Bits) { |
| 644 | float F; |
| 645 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 646 | memcpy(&F, &Bits, sizeof(Bits)); |
| 647 | return F; |
| 648 | } |
| 649 | |
| 650 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
| 651 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
| 652 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 653 | inline uint64_t DoubleToBits(double Double) { |
| 654 | uint64_t Bits; |
| 655 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 656 | memcpy(&Bits, &Double, sizeof(Double)); |
| 657 | return Bits; |
| 658 | } |
| 659 | |
| 660 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
| 661 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
| 662 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 663 | inline uint32_t FloatToBits(float Float) { |
| 664 | uint32_t Bits; |
| 665 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 666 | memcpy(&Bits, &Float, sizeof(Float)); |
| 667 | return Bits; |
| 668 | } |
| 669 | |
| 670 | /// A and B are either alignments or offsets. Return the minimum alignment that |
| 671 | /// may be assumed after adding the two together. |
| 672 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
| 673 | // The largest power of 2 that divides both A and B. |
| 674 | // |
| 675 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
| 676 | // MSVC warning C4146 |
| 677 | // return (A | B) & -(A | B); |
| 678 | return (A | B) & (1 + ~(A | B)); |
| 679 | } |
| 680 | |
| 681 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
| 682 | /// Returns zero on overflow. |
| 683 | inline uint64_t NextPowerOf2(uint64_t A) { |
| 684 | A |= (A >> 1); |
| 685 | A |= (A >> 2); |
| 686 | A |= (A >> 4); |
| 687 | A |= (A >> 8); |
| 688 | A |= (A >> 16); |
| 689 | A |= (A >> 32); |
| 690 | return A + 1; |
| 691 | } |
| 692 | |
| 693 | /// Returns the power of two which is less than or equal to the given value. |
| 694 | /// Essentially, it is a floor operation across the domain of powers of two. |
| 695 | inline uint64_t PowerOf2Floor(uint64_t A) { |
| 696 | if (!A) return 0; |
| 697 | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); |
| 698 | } |
| 699 | |
| 700 | /// Returns the power of two which is greater than or equal to the given value. |
| 701 | /// Essentially, it is a ceil operation across the domain of powers of two. |
| 702 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
| 703 | if (!A) |
| 704 | return 0; |
| 705 | return NextPowerOf2(A - 1); |
| 706 | } |
| 707 | |
| 708 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 709 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
| 710 | /// |
| 711 | /// If non-zero \p Skew is specified, the return value will be a minimal |
| 712 | /// integer that is greater than or equal to \p Value and equal to |
| 713 | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than |
| 714 | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. |
| 715 | /// |
| 716 | /// Examples: |
| 717 | /// \code |
| 718 | /// alignTo(5, 8) = 8 |
| 719 | /// alignTo(17, 8) = 24 |
| 720 | /// alignTo(~0LL, 8) = 0 |
| 721 | /// alignTo(321, 255) = 510 |
| 722 | /// |
| 723 | /// alignTo(5, 8, 7) = 7 |
| 724 | /// alignTo(17, 8, 1) = 17 |
| 725 | /// alignTo(~0LL, 8, 3) = 3 |
| 726 | /// alignTo(321, 255, 42) = 552 |
| 727 | /// \endcode |
| 728 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 729 | assert(Align != 0u && "Align can't be 0.")((void)0); |
| 730 | Skew %= Align; |
| 731 | return (Value + Align - 1 - Skew) / Align * Align + Skew; |
| 732 | } |
| 733 | |
| 734 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 735 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
| 736 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
| 737 | static_assert(Align != 0u, "Align must be non-zero"); |
| 738 | return (Value + Align - 1) / Align * Align; |
| 739 | } |
| 740 | |
| 741 | /// Returns the integer ceil(Numerator / Denominator). |
| 742 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
| 743 | return alignTo(Numerator, Denominator) / Denominator; |
| 744 | } |
| 745 | |
| 746 | /// Returns the integer nearest(Numerator / Denominator). |
| 747 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { |
| 748 | return (Numerator + (Denominator / 2)) / Denominator; |
| 749 | } |
| 750 | |
| 751 | /// Returns the largest uint64_t less than or equal to \p Value and is |
| 752 | /// \p Skew mod \p Align. \p Align must be non-zero |
| 753 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 754 | assert(Align != 0u && "Align can't be 0.")((void)0); |
| 755 | Skew %= Align; |
| 756 | return (Value - Skew) / Align * Align + Skew; |
| 757 | } |
| 758 | |
| 759 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 760 | /// Requires 0 < B <= 32. |
| 761 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
| 762 | static_assert(B > 0, "Bit width can't be 0."); |
| 763 | static_assert(B <= 32, "Bit width out of range."); |
| 764 | return int32_t(X << (32 - B)) >> (32 - B); |
| 765 | } |
| 766 | |
| 767 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 768 | /// Requires 0 < B <= 32. |
| 769 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
| 770 | assert(B > 0 && "Bit width can't be 0.")((void)0); |
| 771 | assert(B <= 32 && "Bit width out of range.")((void)0); |
| 772 | return int32_t(X << (32 - B)) >> (32 - B); |
| 773 | } |
| 774 | |
| 775 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 776 | /// Requires 0 < B <= 64. |
| 777 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
| 778 | static_assert(B > 0, "Bit width can't be 0."); |
| 779 | static_assert(B <= 64, "Bit width out of range."); |
| 780 | return int64_t(x << (64 - B)) >> (64 - B); |
| 781 | } |
| 782 | |
| 783 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 784 | /// Requires 0 < B <= 64. |
| 785 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
| 786 | assert(B > 0 && "Bit width can't be 0.")((void)0); |
| 787 | assert(B <= 64 && "Bit width out of range.")((void)0); |
| 788 | return int64_t(X << (64 - B)) >> (64 - B); |
| 789 | } |
| 790 | |
| 791 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
| 792 | /// value of the result. |
| 793 | template <typename T> |
| 794 | std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { |
| 795 | return X > Y ? (X - Y) : (Y - X); |
| 796 | } |
| 797 | |
| 798 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
| 799 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 800 | /// the result is larger than the maximum representable value of type T. |
| 801 | template <typename T> |
| 802 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 803 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 804 | bool Dummy; |
| 805 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 806 | // Hacker's Delight, p. 29 |
| 807 | T Z = X + Y; |
| 808 | Overflowed = (Z < X || Z < Y); |
| 809 | if (Overflowed) |
| 810 | return std::numeric_limits<T>::max(); |
| 811 | else |
| 812 | return Z; |
| 813 | } |
| 814 | |
| 815 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
| 816 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 817 | /// the result is larger than the maximum representable value of type T. |
| 818 | template <typename T> |
| 819 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 820 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 821 | bool Dummy; |
| 822 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 823 | |
| 824 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
| 825 | // because it fails for uint16_t (where multiplication can have undefined |
| 826 | // behavior due to promotion to int), and requires a division in addition |
| 827 | // to the multiplication. |
| 828 | |
| 829 | Overflowed = false; |
| 830 | |
| 831 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
| 832 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
| 833 | // will necessarily be less than Log2Max as desired. |
| 834 | int Log2Z = Log2_64(X) + Log2_64(Y); |
| 835 | const T Max = std::numeric_limits<T>::max(); |
| 836 | int Log2Max = Log2_64(Max); |
| 837 | if (Log2Z < Log2Max) { |
| 838 | return X * Y; |
| 839 | } |
| 840 | if (Log2Z > Log2Max) { |
| 841 | Overflowed = true; |
| 842 | return Max; |
| 843 | } |
| 844 | |
| 845 | // We're going to use the top bit, and maybe overflow one |
| 846 | // bit past it. Multiply all but the bottom bit then add |
| 847 | // that on at the end. |
| 848 | T Z = (X >> 1) * Y; |
| 849 | if (Z & ~(Max >> 1)) { |
| 850 | Overflowed = true; |
| 851 | return Max; |
| 852 | } |
| 853 | Z <<= 1; |
| 854 | if (X & 1) |
| 855 | return SaturatingAdd(Z, Y, ResultOverflowed); |
| 856 | |
| 857 | return Z; |
| 858 | } |
| 859 | |
| 860 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
| 861 | /// the product. Clamp the result to the maximum representable value of T on |
| 862 | /// overflow. ResultOverflowed indicates if the result is larger than the |
| 863 | /// maximum representable value of type T. |
| 864 | template <typename T> |
| 865 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 866 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
| 867 | bool Dummy; |
| 868 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 869 | |
| 870 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
| 871 | if (Overflowed) |
| 872 | return Product; |
| 873 | |
| 874 | return SaturatingAdd(A, Product, &Overflowed); |
| 875 | } |
| 876 | |
| 877 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
| 878 | extern const float huge_valf; |
| 879 | |
| 880 | |
| 881 | /// Add two signed integers, computing the two's complement truncated result, |
| 882 | /// returning true if overflow occured. |
| 883 | template <typename T> |
| 884 | std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { |
| 885 | #if __has_builtin(__builtin_add_overflow)1 |
| 886 | return __builtin_add_overflow(X, Y, &Result); |
| 887 | #else |
| 888 | // Perform the unsigned addition. |
| 889 | using U = std::make_unsigned_t<T>; |
| 890 | const U UX = static_cast<U>(X); |
| 891 | const U UY = static_cast<U>(Y); |
| 892 | const U UResult = UX + UY; |
| 893 | |
| 894 | // Convert to signed. |
| 895 | Result = static_cast<T>(UResult); |
| 896 | |
| 897 | // Adding two positive numbers should result in a positive number. |
| 898 | if (X > 0 && Y > 0) |
| 899 | return Result <= 0; |
| 900 | // Adding two negatives should result in a negative number. |
| 901 | if (X < 0 && Y < 0) |
| 902 | return Result >= 0; |
| 903 | return false; |
| 904 | #endif |
| 905 | } |
| 906 | |
| 907 | /// Subtract two signed integers, computing the two's complement truncated |
| 908 | /// result, returning true if an overflow ocurred. |
| 909 | template <typename T> |
| 910 | std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { |
| 911 | #if __has_builtin(__builtin_sub_overflow)1 |
| 912 | return __builtin_sub_overflow(X, Y, &Result); |
| 913 | #else |
| 914 | // Perform the unsigned addition. |
| 915 | using U = std::make_unsigned_t<T>; |
| 916 | const U UX = static_cast<U>(X); |
| 917 | const U UY = static_cast<U>(Y); |
| 918 | const U UResult = UX - UY; |
| 919 | |
| 920 | // Convert to signed. |
| 921 | Result = static_cast<T>(UResult); |
| 922 | |
| 923 | // Subtracting a positive number from a negative results in a negative number. |
| 924 | if (X <= 0 && Y > 0) |
| 925 | return Result >= 0; |
| 926 | // Subtracting a negative number from a positive results in a positive number. |
| 927 | if (X >= 0 && Y < 0) |
| 928 | return Result <= 0; |
| 929 | return false; |
| 930 | #endif |
| 931 | } |
| 932 | |
| 933 | /// Multiply two signed integers, computing the two's complement truncated |
| 934 | /// result, returning true if an overflow ocurred. |
| 935 | template <typename T> |
| 936 | std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { |
| 937 | // Perform the unsigned multiplication on absolute values. |
| 938 | using U = std::make_unsigned_t<T>; |
| 939 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
| 940 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
| 941 | const U UResult = UX * UY; |
| 942 | |
| 943 | // Convert to signed. |
| 944 | const bool IsNegative = (X < 0) ^ (Y < 0); |
| 945 | Result = IsNegative ? (0 - UResult) : UResult; |
| 946 | |
| 947 | // If any of the args was 0, result is 0 and no overflow occurs. |
| 948 | if (UX == 0 || UY == 0) |
| 949 | return false; |
| 950 | |
| 951 | // UX and UY are in [1, 2^n], where n is the number of digits. |
| 952 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
| 953 | // positive) divided by an argument compares to the other. |
| 954 | if (IsNegative) |
| 955 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
| 956 | else |
| 957 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
| 958 | } |
| 959 | |
| 960 | } // End llvm namespace |
| 961 | |
| 962 | #endif |