File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/PeepholeOptimizer.cpp |
Warning: | line 546, column 30 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// | ||||||||
2 | // | ||||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
6 | // | ||||||||
7 | //===----------------------------------------------------------------------===// | ||||||||
8 | // | ||||||||
9 | // Perform peephole optimizations on the machine code: | ||||||||
10 | // | ||||||||
11 | // - Optimize Extensions | ||||||||
12 | // | ||||||||
13 | // Optimization of sign / zero extension instructions. It may be extended to | ||||||||
14 | // handle other instructions with similar properties. | ||||||||
15 | // | ||||||||
16 | // On some targets, some instructions, e.g. X86 sign / zero extension, may | ||||||||
17 | // leave the source value in the lower part of the result. This optimization | ||||||||
18 | // will replace some uses of the pre-extension value with uses of the | ||||||||
19 | // sub-register of the results. | ||||||||
20 | // | ||||||||
21 | // - Optimize Comparisons | ||||||||
22 | // | ||||||||
23 | // Optimization of comparison instructions. For instance, in this code: | ||||||||
24 | // | ||||||||
25 | // sub r1, 1 | ||||||||
26 | // cmp r1, 0 | ||||||||
27 | // bz L1 | ||||||||
28 | // | ||||||||
29 | // If the "sub" instruction all ready sets (or could be modified to set) the | ||||||||
30 | // same flag that the "cmp" instruction sets and that "bz" uses, then we can | ||||||||
31 | // eliminate the "cmp" instruction. | ||||||||
32 | // | ||||||||
33 | // Another instance, in this code: | ||||||||
34 | // | ||||||||
35 | // sub r1, r3 | sub r1, imm | ||||||||
36 | // cmp r3, r1 or cmp r1, r3 | cmp r1, imm | ||||||||
37 | // bge L1 | ||||||||
38 | // | ||||||||
39 | // If the branch instruction can use flag from "sub", then we can replace | ||||||||
40 | // "sub" with "subs" and eliminate the "cmp" instruction. | ||||||||
41 | // | ||||||||
42 | // - Optimize Loads: | ||||||||
43 | // | ||||||||
44 | // Loads that can be folded into a later instruction. A load is foldable | ||||||||
45 | // if it loads to virtual registers and the virtual register defined has | ||||||||
46 | // a single use. | ||||||||
47 | // | ||||||||
48 | // - Optimize Copies and Bitcast (more generally, target specific copies): | ||||||||
49 | // | ||||||||
50 | // Rewrite copies and bitcasts to avoid cross register bank copies | ||||||||
51 | // when possible. | ||||||||
52 | // E.g., Consider the following example, where capital and lower | ||||||||
53 | // letters denote different register file: | ||||||||
54 | // b = copy A <-- cross-bank copy | ||||||||
55 | // C = copy b <-- cross-bank copy | ||||||||
56 | // => | ||||||||
57 | // b = copy A <-- cross-bank copy | ||||||||
58 | // C = copy A <-- same-bank copy | ||||||||
59 | // | ||||||||
60 | // E.g., for bitcast: | ||||||||
61 | // b = bitcast A <-- cross-bank copy | ||||||||
62 | // C = bitcast b <-- cross-bank copy | ||||||||
63 | // => | ||||||||
64 | // b = bitcast A <-- cross-bank copy | ||||||||
65 | // C = copy A <-- same-bank copy | ||||||||
66 | //===----------------------------------------------------------------------===// | ||||||||
67 | |||||||||
68 | #include "llvm/ADT/DenseMap.h" | ||||||||
69 | #include "llvm/ADT/Optional.h" | ||||||||
70 | #include "llvm/ADT/SmallPtrSet.h" | ||||||||
71 | #include "llvm/ADT/SmallSet.h" | ||||||||
72 | #include "llvm/ADT/SmallVector.h" | ||||||||
73 | #include "llvm/ADT/Statistic.h" | ||||||||
74 | #include "llvm/CodeGen/MachineBasicBlock.h" | ||||||||
75 | #include "llvm/CodeGen/MachineDominators.h" | ||||||||
76 | #include "llvm/CodeGen/MachineFunction.h" | ||||||||
77 | #include "llvm/CodeGen/MachineFunctionPass.h" | ||||||||
78 | #include "llvm/CodeGen/MachineInstr.h" | ||||||||
79 | #include "llvm/CodeGen/MachineInstrBuilder.h" | ||||||||
80 | #include "llvm/CodeGen/MachineLoopInfo.h" | ||||||||
81 | #include "llvm/CodeGen/MachineOperand.h" | ||||||||
82 | #include "llvm/CodeGen/MachineRegisterInfo.h" | ||||||||
83 | #include "llvm/CodeGen/TargetInstrInfo.h" | ||||||||
84 | #include "llvm/CodeGen/TargetOpcodes.h" | ||||||||
85 | #include "llvm/CodeGen/TargetRegisterInfo.h" | ||||||||
86 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | ||||||||
87 | #include "llvm/InitializePasses.h" | ||||||||
88 | #include "llvm/MC/LaneBitmask.h" | ||||||||
89 | #include "llvm/MC/MCInstrDesc.h" | ||||||||
90 | #include "llvm/Pass.h" | ||||||||
91 | #include "llvm/Support/CommandLine.h" | ||||||||
92 | #include "llvm/Support/Debug.h" | ||||||||
93 | #include "llvm/Support/ErrorHandling.h" | ||||||||
94 | #include "llvm/Support/raw_ostream.h" | ||||||||
95 | #include <cassert> | ||||||||
96 | #include <cstdint> | ||||||||
97 | #include <memory> | ||||||||
98 | #include <utility> | ||||||||
99 | |||||||||
100 | using namespace llvm; | ||||||||
101 | using RegSubRegPair = TargetInstrInfo::RegSubRegPair; | ||||||||
102 | using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; | ||||||||
103 | |||||||||
104 | #define DEBUG_TYPE"peephole-opt" "peephole-opt" | ||||||||
105 | |||||||||
106 | // Optimize Extensions | ||||||||
107 | static cl::opt<bool> | ||||||||
108 | Aggressive("aggressive-ext-opt", cl::Hidden, | ||||||||
109 | cl::desc("Aggressive extension optimization")); | ||||||||
110 | |||||||||
111 | static cl::opt<bool> | ||||||||
112 | DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), | ||||||||
113 | cl::desc("Disable the peephole optimizer")); | ||||||||
114 | |||||||||
115 | /// Specifiy whether or not the value tracking looks through | ||||||||
116 | /// complex instructions. When this is true, the value tracker | ||||||||
117 | /// bails on everything that is not a copy or a bitcast. | ||||||||
118 | static cl::opt<bool> | ||||||||
119 | DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), | ||||||||
120 | cl::desc("Disable advanced copy optimization")); | ||||||||
121 | |||||||||
122 | static cl::opt<bool> DisableNAPhysCopyOpt( | ||||||||
123 | "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), | ||||||||
124 | cl::desc("Disable non-allocatable physical register copy optimization")); | ||||||||
125 | |||||||||
126 | // Limit the number of PHI instructions to process | ||||||||
127 | // in PeepholeOptimizer::getNextSource. | ||||||||
128 | static cl::opt<unsigned> RewritePHILimit( | ||||||||
129 | "rewrite-phi-limit", cl::Hidden, cl::init(10), | ||||||||
130 | cl::desc("Limit the length of PHI chains to lookup")); | ||||||||
131 | |||||||||
132 | // Limit the length of recurrence chain when evaluating the benefit of | ||||||||
133 | // commuting operands. | ||||||||
134 | static cl::opt<unsigned> MaxRecurrenceChain( | ||||||||
135 | "recurrence-chain-limit", cl::Hidden, cl::init(3), | ||||||||
136 | cl::desc("Maximum length of recurrence chain when evaluating the benefit " | ||||||||
137 | "of commuting operands")); | ||||||||
138 | |||||||||
139 | |||||||||
140 | STATISTIC(NumReuse, "Number of extension results reused")static llvm::Statistic NumReuse = {"peephole-opt", "NumReuse" , "Number of extension results reused"}; | ||||||||
141 | STATISTIC(NumCmps, "Number of compares eliminated")static llvm::Statistic NumCmps = {"peephole-opt", "NumCmps", "Number of compares eliminated" }; | ||||||||
142 | STATISTIC(NumImmFold, "Number of move immediate folded")static llvm::Statistic NumImmFold = {"peephole-opt", "NumImmFold" , "Number of move immediate folded"}; | ||||||||
143 | STATISTIC(NumLoadFold, "Number of loads folded")static llvm::Statistic NumLoadFold = {"peephole-opt", "NumLoadFold" , "Number of loads folded"}; | ||||||||
144 | STATISTIC(NumSelects, "Number of selects optimized")static llvm::Statistic NumSelects = {"peephole-opt", "NumSelects" , "Number of selects optimized"}; | ||||||||
145 | STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized")static llvm::Statistic NumUncoalescableCopies = {"peephole-opt" , "NumUncoalescableCopies", "Number of uncoalescable copies optimized" }; | ||||||||
146 | STATISTIC(NumRewrittenCopies, "Number of copies rewritten")static llvm::Statistic NumRewrittenCopies = {"peephole-opt", "NumRewrittenCopies" , "Number of copies rewritten"}; | ||||||||
147 | STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed")static llvm::Statistic NumNAPhysCopies = {"peephole-opt", "NumNAPhysCopies" , "Number of non-allocatable physical copies removed"}; | ||||||||
148 | |||||||||
149 | namespace { | ||||||||
150 | |||||||||
151 | class ValueTrackerResult; | ||||||||
152 | class RecurrenceInstr; | ||||||||
153 | |||||||||
154 | class PeepholeOptimizer : public MachineFunctionPass { | ||||||||
155 | const TargetInstrInfo *TII; | ||||||||
156 | const TargetRegisterInfo *TRI; | ||||||||
157 | MachineRegisterInfo *MRI; | ||||||||
158 | MachineDominatorTree *DT; // Machine dominator tree | ||||||||
159 | MachineLoopInfo *MLI; | ||||||||
160 | |||||||||
161 | public: | ||||||||
162 | static char ID; // Pass identification | ||||||||
163 | |||||||||
164 | PeepholeOptimizer() : MachineFunctionPass(ID) { | ||||||||
165 | initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); | ||||||||
166 | } | ||||||||
167 | |||||||||
168 | bool runOnMachineFunction(MachineFunction &MF) override; | ||||||||
169 | |||||||||
170 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||
171 | AU.setPreservesCFG(); | ||||||||
172 | MachineFunctionPass::getAnalysisUsage(AU); | ||||||||
173 | AU.addRequired<MachineLoopInfo>(); | ||||||||
174 | AU.addPreserved<MachineLoopInfo>(); | ||||||||
175 | if (Aggressive) { | ||||||||
176 | AU.addRequired<MachineDominatorTree>(); | ||||||||
177 | AU.addPreserved<MachineDominatorTree>(); | ||||||||
178 | } | ||||||||
179 | } | ||||||||
180 | |||||||||
181 | MachineFunctionProperties getRequiredProperties() const override { | ||||||||
182 | return MachineFunctionProperties() | ||||||||
183 | .set(MachineFunctionProperties::Property::IsSSA); | ||||||||
184 | } | ||||||||
185 | |||||||||
186 | /// Track Def -> Use info used for rewriting copies. | ||||||||
187 | using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; | ||||||||
188 | |||||||||
189 | /// Sequence of instructions that formulate recurrence cycle. | ||||||||
190 | using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; | ||||||||
191 | |||||||||
192 | private: | ||||||||
193 | bool optimizeCmpInstr(MachineInstr &MI); | ||||||||
194 | bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, | ||||||||
195 | SmallPtrSetImpl<MachineInstr*> &LocalMIs); | ||||||||
196 | bool optimizeSelect(MachineInstr &MI, | ||||||||
197 | SmallPtrSetImpl<MachineInstr *> &LocalMIs); | ||||||||
198 | bool optimizeCondBranch(MachineInstr &MI); | ||||||||
199 | bool optimizeCoalescableCopy(MachineInstr &MI); | ||||||||
200 | bool optimizeUncoalescableCopy(MachineInstr &MI, | ||||||||
201 | SmallPtrSetImpl<MachineInstr *> &LocalMIs); | ||||||||
202 | bool optimizeRecurrence(MachineInstr &PHI); | ||||||||
203 | bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); | ||||||||
204 | bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, | ||||||||
205 | DenseMap<Register, MachineInstr *> &ImmDefMIs); | ||||||||
206 | bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, | ||||||||
207 | DenseMap<Register, MachineInstr *> &ImmDefMIs); | ||||||||
208 | |||||||||
209 | /// Finds recurrence cycles, but only ones that formulated around | ||||||||
210 | /// a def operand and a use operand that are tied. If there is a use | ||||||||
211 | /// operand commutable with the tied use operand, find recurrence cycle | ||||||||
212 | /// along that operand as well. | ||||||||
213 | bool findTargetRecurrence(Register Reg, | ||||||||
214 | const SmallSet<Register, 2> &TargetReg, | ||||||||
215 | RecurrenceCycle &RC); | ||||||||
216 | |||||||||
217 | /// If copy instruction \p MI is a virtual register copy, track it in | ||||||||
218 | /// the set \p CopyMIs. If this virtual register was previously seen as a | ||||||||
219 | /// copy, replace the uses of this copy with the previously seen copy's | ||||||||
220 | /// destination register. | ||||||||
221 | bool foldRedundantCopy(MachineInstr &MI, | ||||||||
222 | DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs); | ||||||||
223 | |||||||||
224 | /// Is the register \p Reg a non-allocatable physical register? | ||||||||
225 | bool isNAPhysCopy(Register Reg); | ||||||||
226 | |||||||||
227 | /// If copy instruction \p MI is a non-allocatable virtual<->physical | ||||||||
228 | /// register copy, track it in the \p NAPhysToVirtMIs map. If this | ||||||||
229 | /// non-allocatable physical register was previously copied to a virtual | ||||||||
230 | /// registered and hasn't been clobbered, the virt->phys copy can be | ||||||||
231 | /// deleted. | ||||||||
232 | bool foldRedundantNAPhysCopy( | ||||||||
233 | MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs); | ||||||||
234 | |||||||||
235 | bool isLoadFoldable(MachineInstr &MI, | ||||||||
236 | SmallSet<Register, 16> &FoldAsLoadDefCandidates); | ||||||||
237 | |||||||||
238 | /// Check whether \p MI is understood by the register coalescer | ||||||||
239 | /// but may require some rewriting. | ||||||||
240 | bool isCoalescableCopy(const MachineInstr &MI) { | ||||||||
241 | // SubregToRegs are not interesting, because they are already register | ||||||||
242 | // coalescer friendly. | ||||||||
243 | return MI.isCopy() || (!DisableAdvCopyOpt && | ||||||||
244 | (MI.isRegSequence() || MI.isInsertSubreg() || | ||||||||
245 | MI.isExtractSubreg())); | ||||||||
246 | } | ||||||||
247 | |||||||||
248 | /// Check whether \p MI is a copy like instruction that is | ||||||||
249 | /// not recognized by the register coalescer. | ||||||||
250 | bool isUncoalescableCopy(const MachineInstr &MI) { | ||||||||
251 | return MI.isBitcast() || | ||||||||
252 | (!DisableAdvCopyOpt && | ||||||||
253 | (MI.isRegSequenceLike() || MI.isInsertSubregLike() || | ||||||||
254 | MI.isExtractSubregLike())); | ||||||||
255 | } | ||||||||
256 | |||||||||
257 | MachineInstr &rewriteSource(MachineInstr &CopyLike, | ||||||||
258 | RegSubRegPair Def, RewriteMapTy &RewriteMap); | ||||||||
259 | }; | ||||||||
260 | |||||||||
261 | /// Helper class to hold instructions that are inside recurrence cycles. | ||||||||
262 | /// The recurrence cycle is formulated around 1) a def operand and its | ||||||||
263 | /// tied use operand, or 2) a def operand and a use operand that is commutable | ||||||||
264 | /// with another use operand which is tied to the def operand. In the latter | ||||||||
265 | /// case, index of the tied use operand and the commutable use operand are | ||||||||
266 | /// maintained with CommutePair. | ||||||||
267 | class RecurrenceInstr { | ||||||||
268 | public: | ||||||||
269 | using IndexPair = std::pair<unsigned, unsigned>; | ||||||||
270 | |||||||||
271 | RecurrenceInstr(MachineInstr *MI) : MI(MI) {} | ||||||||
272 | RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) | ||||||||
273 | : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} | ||||||||
274 | |||||||||
275 | MachineInstr *getMI() const { return MI; } | ||||||||
276 | Optional<IndexPair> getCommutePair() const { return CommutePair; } | ||||||||
277 | |||||||||
278 | private: | ||||||||
279 | MachineInstr *MI; | ||||||||
280 | Optional<IndexPair> CommutePair; | ||||||||
281 | }; | ||||||||
282 | |||||||||
283 | /// Helper class to hold a reply for ValueTracker queries. | ||||||||
284 | /// Contains the returned sources for a given search and the instructions | ||||||||
285 | /// where the sources were tracked from. | ||||||||
286 | class ValueTrackerResult { | ||||||||
287 | private: | ||||||||
288 | /// Track all sources found by one ValueTracker query. | ||||||||
289 | SmallVector<RegSubRegPair, 2> RegSrcs; | ||||||||
290 | |||||||||
291 | /// Instruction using the sources in 'RegSrcs'. | ||||||||
292 | const MachineInstr *Inst = nullptr; | ||||||||
293 | |||||||||
294 | public: | ||||||||
295 | ValueTrackerResult() = default; | ||||||||
296 | |||||||||
297 | ValueTrackerResult(Register Reg, unsigned SubReg) { | ||||||||
298 | addSource(Reg, SubReg); | ||||||||
299 | } | ||||||||
300 | |||||||||
301 | bool isValid() const { return getNumSources() > 0; } | ||||||||
302 | |||||||||
303 | void setInst(const MachineInstr *I) { Inst = I; } | ||||||||
304 | const MachineInstr *getInst() const { return Inst; } | ||||||||
305 | |||||||||
306 | void clear() { | ||||||||
307 | RegSrcs.clear(); | ||||||||
308 | Inst = nullptr; | ||||||||
309 | } | ||||||||
310 | |||||||||
311 | void addSource(Register SrcReg, unsigned SrcSubReg) { | ||||||||
312 | RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); | ||||||||
313 | } | ||||||||
314 | |||||||||
315 | void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) { | ||||||||
316 | assert(Idx < getNumSources() && "Reg pair source out of index")((void)0); | ||||||||
317 | RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); | ||||||||
318 | } | ||||||||
319 | |||||||||
320 | int getNumSources() const { return RegSrcs.size(); } | ||||||||
321 | |||||||||
322 | RegSubRegPair getSrc(int Idx) const { | ||||||||
323 | return RegSrcs[Idx]; | ||||||||
324 | } | ||||||||
325 | |||||||||
326 | Register getSrcReg(int Idx) const { | ||||||||
327 | assert(Idx < getNumSources() && "Reg source out of index")((void)0); | ||||||||
328 | return RegSrcs[Idx].Reg; | ||||||||
329 | } | ||||||||
330 | |||||||||
331 | unsigned getSrcSubReg(int Idx) const { | ||||||||
332 | assert(Idx < getNumSources() && "SubReg source out of index")((void)0); | ||||||||
333 | return RegSrcs[Idx].SubReg; | ||||||||
334 | } | ||||||||
335 | |||||||||
336 | bool operator==(const ValueTrackerResult &Other) const { | ||||||||
337 | if (Other.getInst() != getInst()) | ||||||||
338 | return false; | ||||||||
339 | |||||||||
340 | if (Other.getNumSources() != getNumSources()) | ||||||||
341 | return false; | ||||||||
342 | |||||||||
343 | for (int i = 0, e = Other.getNumSources(); i != e; ++i) | ||||||||
344 | if (Other.getSrcReg(i) != getSrcReg(i) || | ||||||||
345 | Other.getSrcSubReg(i) != getSrcSubReg(i)) | ||||||||
346 | return false; | ||||||||
347 | return true; | ||||||||
348 | } | ||||||||
349 | }; | ||||||||
350 | |||||||||
351 | /// Helper class to track the possible sources of a value defined by | ||||||||
352 | /// a (chain of) copy related instructions. | ||||||||
353 | /// Given a definition (instruction and definition index), this class | ||||||||
354 | /// follows the use-def chain to find successive suitable sources. | ||||||||
355 | /// The given source can be used to rewrite the definition into | ||||||||
356 | /// def = COPY src. | ||||||||
357 | /// | ||||||||
358 | /// For instance, let us consider the following snippet: | ||||||||
359 | /// v0 = | ||||||||
360 | /// v2 = INSERT_SUBREG v1, v0, sub0 | ||||||||
361 | /// def = COPY v2.sub0 | ||||||||
362 | /// | ||||||||
363 | /// Using a ValueTracker for def = COPY v2.sub0 will give the following | ||||||||
364 | /// suitable sources: | ||||||||
365 | /// v2.sub0 and v0. | ||||||||
366 | /// Then, def can be rewritten into def = COPY v0. | ||||||||
367 | class ValueTracker { | ||||||||
368 | private: | ||||||||
369 | /// The current point into the use-def chain. | ||||||||
370 | const MachineInstr *Def = nullptr; | ||||||||
371 | |||||||||
372 | /// The index of the definition in Def. | ||||||||
373 | unsigned DefIdx = 0; | ||||||||
374 | |||||||||
375 | /// The sub register index of the definition. | ||||||||
376 | unsigned DefSubReg; | ||||||||
377 | |||||||||
378 | /// The register where the value can be found. | ||||||||
379 | Register Reg; | ||||||||
380 | |||||||||
381 | /// MachineRegisterInfo used to perform tracking. | ||||||||
382 | const MachineRegisterInfo &MRI; | ||||||||
383 | |||||||||
384 | /// Optional TargetInstrInfo used to perform some complex tracking. | ||||||||
385 | const TargetInstrInfo *TII; | ||||||||
386 | |||||||||
387 | /// Dispatcher to the right underlying implementation of getNextSource. | ||||||||
388 | ValueTrackerResult getNextSourceImpl(); | ||||||||
389 | |||||||||
390 | /// Specialized version of getNextSource for Copy instructions. | ||||||||
391 | ValueTrackerResult getNextSourceFromCopy(); | ||||||||
392 | |||||||||
393 | /// Specialized version of getNextSource for Bitcast instructions. | ||||||||
394 | ValueTrackerResult getNextSourceFromBitcast(); | ||||||||
395 | |||||||||
396 | /// Specialized version of getNextSource for RegSequence instructions. | ||||||||
397 | ValueTrackerResult getNextSourceFromRegSequence(); | ||||||||
398 | |||||||||
399 | /// Specialized version of getNextSource for InsertSubreg instructions. | ||||||||
400 | ValueTrackerResult getNextSourceFromInsertSubreg(); | ||||||||
401 | |||||||||
402 | /// Specialized version of getNextSource for ExtractSubreg instructions. | ||||||||
403 | ValueTrackerResult getNextSourceFromExtractSubreg(); | ||||||||
404 | |||||||||
405 | /// Specialized version of getNextSource for SubregToReg instructions. | ||||||||
406 | ValueTrackerResult getNextSourceFromSubregToReg(); | ||||||||
407 | |||||||||
408 | /// Specialized version of getNextSource for PHI instructions. | ||||||||
409 | ValueTrackerResult getNextSourceFromPHI(); | ||||||||
410 | |||||||||
411 | public: | ||||||||
412 | /// Create a ValueTracker instance for the value defined by \p Reg. | ||||||||
413 | /// \p DefSubReg represents the sub register index the value tracker will | ||||||||
414 | /// track. It does not need to match the sub register index used in the | ||||||||
415 | /// definition of \p Reg. | ||||||||
416 | /// If \p Reg is a physical register, a value tracker constructed with | ||||||||
417 | /// this constructor will not find any alternative source. | ||||||||
418 | /// Indeed, when \p Reg is a physical register that constructor does not | ||||||||
419 | /// know which definition of \p Reg it should track. | ||||||||
420 | /// Use the next constructor to track a physical register. | ||||||||
421 | ValueTracker(Register Reg, unsigned DefSubReg, | ||||||||
422 | const MachineRegisterInfo &MRI, | ||||||||
423 | const TargetInstrInfo *TII = nullptr) | ||||||||
424 | : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { | ||||||||
425 | if (!Reg.isPhysical()) { | ||||||||
426 | Def = MRI.getVRegDef(Reg); | ||||||||
427 | DefIdx = MRI.def_begin(Reg).getOperandNo(); | ||||||||
428 | } | ||||||||
429 | } | ||||||||
430 | |||||||||
431 | /// Following the use-def chain, get the next available source | ||||||||
432 | /// for the tracked value. | ||||||||
433 | /// \return A ValueTrackerResult containing a set of registers | ||||||||
434 | /// and sub registers with tracked values. A ValueTrackerResult with | ||||||||
435 | /// an empty set of registers means no source was found. | ||||||||
436 | ValueTrackerResult getNextSource(); | ||||||||
437 | }; | ||||||||
438 | |||||||||
439 | } // end anonymous namespace | ||||||||
440 | |||||||||
441 | char PeepholeOptimizer::ID = 0; | ||||||||
442 | |||||||||
443 | char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; | ||||||||
444 | |||||||||
445 | INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,static void *initializePeepholeOptimizerPassOnce(PassRegistry &Registry) { | ||||||||
446 | "Peephole Optimizations", false, false)static void *initializePeepholeOptimizerPassOnce(PassRegistry &Registry) { | ||||||||
447 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry); | ||||||||
448 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry); | ||||||||
449 | INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Peephole Optimizations", "peephole-opt" , &PeepholeOptimizer::ID, PassInfo::NormalCtor_t(callDefaultCtor <PeepholeOptimizer>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializePeepholeOptimizerPassFlag ; void llvm::initializePeepholeOptimizerPass(PassRegistry & Registry) { llvm::call_once(InitializePeepholeOptimizerPassFlag , initializePeepholeOptimizerPassOnce, std::ref(Registry)); } | ||||||||
450 | "Peephole Optimizations", false, false)PassInfo *PI = new PassInfo( "Peephole Optimizations", "peephole-opt" , &PeepholeOptimizer::ID, PassInfo::NormalCtor_t(callDefaultCtor <PeepholeOptimizer>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializePeepholeOptimizerPassFlag ; void llvm::initializePeepholeOptimizerPass(PassRegistry & Registry) { llvm::call_once(InitializePeepholeOptimizerPassFlag , initializePeepholeOptimizerPassOnce, std::ref(Registry)); } | ||||||||
451 | |||||||||
452 | /// If instruction is a copy-like instruction, i.e. it reads a single register | ||||||||
453 | /// and writes a single register and it does not modify the source, and if the | ||||||||
454 | /// source value is preserved as a sub-register of the result, then replace all | ||||||||
455 | /// reachable uses of the source with the subreg of the result. | ||||||||
456 | /// | ||||||||
457 | /// Do not generate an EXTRACT that is used only in a debug use, as this changes | ||||||||
458 | /// the code. Since this code does not currently share EXTRACTs, just ignore all | ||||||||
459 | /// debug uses. | ||||||||
460 | bool PeepholeOptimizer:: | ||||||||
461 | optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, | ||||||||
462 | SmallPtrSetImpl<MachineInstr*> &LocalMIs) { | ||||||||
463 | Register SrcReg, DstReg; | ||||||||
464 | unsigned SubIdx; | ||||||||
465 | if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) | ||||||||
466 | return false; | ||||||||
467 | |||||||||
468 | if (DstReg.isPhysical() || SrcReg.isPhysical()) | ||||||||
469 | return false; | ||||||||
470 | |||||||||
471 | if (MRI->hasOneNonDBGUse(SrcReg)) | ||||||||
472 | // No other uses. | ||||||||
473 | return false; | ||||||||
474 | |||||||||
475 | // Ensure DstReg can get a register class that actually supports | ||||||||
476 | // sub-registers. Don't change the class until we commit. | ||||||||
477 | const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); | ||||||||
478 | DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); | ||||||||
479 | if (!DstRC) | ||||||||
480 | return false; | ||||||||
481 | |||||||||
482 | // The ext instr may be operating on a sub-register of SrcReg as well. | ||||||||
483 | // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit | ||||||||
484 | // register. | ||||||||
485 | // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of | ||||||||
486 | // SrcReg:SubIdx should be replaced. | ||||||||
487 | bool UseSrcSubIdx = | ||||||||
488 | TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; | ||||||||
489 | |||||||||
490 | // The source has other uses. See if we can replace the other uses with use of | ||||||||
491 | // the result of the extension. | ||||||||
492 | SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; | ||||||||
493 | for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) | ||||||||
494 | ReachedBBs.insert(UI.getParent()); | ||||||||
495 | |||||||||
496 | // Uses that are in the same BB of uses of the result of the instruction. | ||||||||
497 | SmallVector<MachineOperand*, 8> Uses; | ||||||||
498 | |||||||||
499 | // Uses that the result of the instruction can reach. | ||||||||
500 | SmallVector<MachineOperand*, 8> ExtendedUses; | ||||||||
501 | |||||||||
502 | bool ExtendLife = true; | ||||||||
503 | for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { | ||||||||
504 | MachineInstr *UseMI = UseMO.getParent(); | ||||||||
505 | if (UseMI == &MI) | ||||||||
506 | continue; | ||||||||
507 | |||||||||
508 | if (UseMI->isPHI()) { | ||||||||
509 | ExtendLife = false; | ||||||||
510 | continue; | ||||||||
511 | } | ||||||||
512 | |||||||||
513 | // Only accept uses of SrcReg:SubIdx. | ||||||||
514 | if (UseSrcSubIdx
| ||||||||
515 | continue; | ||||||||
516 | |||||||||
517 | // It's an error to translate this: | ||||||||
518 | // | ||||||||
519 | // %reg1025 = <sext> %reg1024 | ||||||||
520 | // ... | ||||||||
521 | // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 | ||||||||
522 | // | ||||||||
523 | // into this: | ||||||||
524 | // | ||||||||
525 | // %reg1025 = <sext> %reg1024 | ||||||||
526 | // ... | ||||||||
527 | // %reg1027 = COPY %reg1025:4 | ||||||||
528 | // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 | ||||||||
529 | // | ||||||||
530 | // The problem here is that SUBREG_TO_REG is there to assert that an | ||||||||
531 | // implicit zext occurs. It doesn't insert a zext instruction. If we allow | ||||||||
532 | // the COPY here, it will give us the value after the <sext>, not the | ||||||||
533 | // original value of %reg1024 before <sext>. | ||||||||
534 | if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) | ||||||||
535 | continue; | ||||||||
536 | |||||||||
537 | MachineBasicBlock *UseMBB = UseMI->getParent(); | ||||||||
538 | if (UseMBB == &MBB) { | ||||||||
539 | // Local uses that come after the extension. | ||||||||
540 | if (!LocalMIs.count(UseMI)) | ||||||||
541 | Uses.push_back(&UseMO); | ||||||||
542 | } else if (ReachedBBs.count(UseMBB)) { | ||||||||
543 | // Non-local uses where the result of the extension is used. Always | ||||||||
544 | // replace these unless it's a PHI. | ||||||||
545 | Uses.push_back(&UseMO); | ||||||||
546 | } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { | ||||||||
| |||||||||
547 | // We may want to extend the live range of the extension result in order | ||||||||
548 | // to replace these uses. | ||||||||
549 | ExtendedUses.push_back(&UseMO); | ||||||||
550 | } else { | ||||||||
551 | // Both will be live out of the def MBB anyway. Don't extend live range of | ||||||||
552 | // the extension result. | ||||||||
553 | ExtendLife = false; | ||||||||
554 | break; | ||||||||
555 | } | ||||||||
556 | } | ||||||||
557 | |||||||||
558 | if (ExtendLife && !ExtendedUses.empty()) | ||||||||
559 | // Extend the liveness of the extension result. | ||||||||
560 | Uses.append(ExtendedUses.begin(), ExtendedUses.end()); | ||||||||
561 | |||||||||
562 | // Now replace all uses. | ||||||||
563 | bool Changed = false; | ||||||||
564 | if (!Uses.empty()) { | ||||||||
565 | SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; | ||||||||
566 | |||||||||
567 | // Look for PHI uses of the extended result, we don't want to extend the | ||||||||
568 | // liveness of a PHI input. It breaks all kinds of assumptions down | ||||||||
569 | // stream. A PHI use is expected to be the kill of its source values. | ||||||||
570 | for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) | ||||||||
571 | if (UI.isPHI()) | ||||||||
572 | PHIBBs.insert(UI.getParent()); | ||||||||
573 | |||||||||
574 | const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); | ||||||||
575 | for (unsigned i = 0, e = Uses.size(); i != e; ++i) { | ||||||||
576 | MachineOperand *UseMO = Uses[i]; | ||||||||
577 | MachineInstr *UseMI = UseMO->getParent(); | ||||||||
578 | MachineBasicBlock *UseMBB = UseMI->getParent(); | ||||||||
579 | if (PHIBBs.count(UseMBB)) | ||||||||
580 | continue; | ||||||||
581 | |||||||||
582 | // About to add uses of DstReg, clear DstReg's kill flags. | ||||||||
583 | if (!Changed) { | ||||||||
584 | MRI->clearKillFlags(DstReg); | ||||||||
585 | MRI->constrainRegClass(DstReg, DstRC); | ||||||||
586 | } | ||||||||
587 | |||||||||
588 | // SubReg defs are illegal in machine SSA phase, | ||||||||
589 | // we should not generate SubReg defs. | ||||||||
590 | // | ||||||||
591 | // For example, for the instructions: | ||||||||
592 | // | ||||||||
593 | // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc | ||||||||
594 | // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc | ||||||||
595 | // | ||||||||
596 | // We should generate: | ||||||||
597 | // | ||||||||
598 | // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc | ||||||||
599 | // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0 | ||||||||
600 | // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0 | ||||||||
601 | // | ||||||||
602 | if (UseSrcSubIdx) | ||||||||
603 | RC = MRI->getRegClass(UseMI->getOperand(0).getReg()); | ||||||||
604 | |||||||||
605 | Register NewVR = MRI->createVirtualRegister(RC); | ||||||||
606 | BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), | ||||||||
607 | TII->get(TargetOpcode::COPY), NewVR) | ||||||||
608 | .addReg(DstReg, 0, SubIdx); | ||||||||
609 | if (UseSrcSubIdx) | ||||||||
610 | UseMO->setSubReg(0); | ||||||||
611 | |||||||||
612 | UseMO->setReg(NewVR); | ||||||||
613 | ++NumReuse; | ||||||||
614 | Changed = true; | ||||||||
615 | } | ||||||||
616 | } | ||||||||
617 | |||||||||
618 | return Changed; | ||||||||
619 | } | ||||||||
620 | |||||||||
621 | /// If the instruction is a compare and the previous instruction it's comparing | ||||||||
622 | /// against already sets (or could be modified to set) the same flag as the | ||||||||
623 | /// compare, then we can remove the comparison and use the flag from the | ||||||||
624 | /// previous instruction. | ||||||||
625 | bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { | ||||||||
626 | // If this instruction is a comparison against zero and isn't comparing a | ||||||||
627 | // physical register, we can try to optimize it. | ||||||||
628 | Register SrcReg, SrcReg2; | ||||||||
629 | int CmpMask, CmpValue; | ||||||||
630 | if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || | ||||||||
631 | SrcReg.isPhysical() || SrcReg2.isPhysical()) | ||||||||
632 | return false; | ||||||||
633 | |||||||||
634 | // Attempt to optimize the comparison instruction. | ||||||||
635 | LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI)do { } while (false); | ||||||||
636 | if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { | ||||||||
637 | LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n")do { } while (false); | ||||||||
638 | ++NumCmps; | ||||||||
639 | return true; | ||||||||
640 | } | ||||||||
641 | |||||||||
642 | return false; | ||||||||
643 | } | ||||||||
644 | |||||||||
645 | /// Optimize a select instruction. | ||||||||
646 | bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, | ||||||||
647 | SmallPtrSetImpl<MachineInstr *> &LocalMIs) { | ||||||||
648 | unsigned TrueOp = 0; | ||||||||
649 | unsigned FalseOp = 0; | ||||||||
650 | bool Optimizable = false; | ||||||||
651 | SmallVector<MachineOperand, 4> Cond; | ||||||||
652 | if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) | ||||||||
653 | return false; | ||||||||
654 | if (!Optimizable) | ||||||||
655 | return false; | ||||||||
656 | if (!TII->optimizeSelect(MI, LocalMIs)) | ||||||||
657 | return false; | ||||||||
658 | LLVM_DEBUG(dbgs() << "Deleting select: " << MI)do { } while (false); | ||||||||
659 | MI.eraseFromParent(); | ||||||||
660 | ++NumSelects; | ||||||||
661 | return true; | ||||||||
662 | } | ||||||||
663 | |||||||||
664 | /// Check if a simpler conditional branch can be generated. | ||||||||
665 | bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { | ||||||||
666 | return TII->optimizeCondBranch(MI); | ||||||||
667 | } | ||||||||
668 | |||||||||
669 | /// Try to find the next source that share the same register file | ||||||||
670 | /// for the value defined by \p Reg and \p SubReg. | ||||||||
671 | /// When true is returned, the \p RewriteMap can be used by the client to | ||||||||
672 | /// retrieve all Def -> Use along the way up to the next source. Any found | ||||||||
673 | /// Use that is not itself a key for another entry, is the next source to | ||||||||
674 | /// use. During the search for the next source, multiple sources can be found | ||||||||
675 | /// given multiple incoming sources of a PHI instruction. In this case, we | ||||||||
676 | /// look in each PHI source for the next source; all found next sources must | ||||||||
677 | /// share the same register file as \p Reg and \p SubReg. The client should | ||||||||
678 | /// then be capable to rewrite all intermediate PHIs to get the next source. | ||||||||
679 | /// \return False if no alternative sources are available. True otherwise. | ||||||||
680 | bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, | ||||||||
681 | RewriteMapTy &RewriteMap) { | ||||||||
682 | // Do not try to find a new source for a physical register. | ||||||||
683 | // So far we do not have any motivating example for doing that. | ||||||||
684 | // Thus, instead of maintaining untested code, we will revisit that if | ||||||||
685 | // that changes at some point. | ||||||||
686 | Register Reg = RegSubReg.Reg; | ||||||||
687 | if (Reg.isPhysical()) | ||||||||
688 | return false; | ||||||||
689 | const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); | ||||||||
690 | |||||||||
691 | SmallVector<RegSubRegPair, 4> SrcToLook; | ||||||||
692 | RegSubRegPair CurSrcPair = RegSubReg; | ||||||||
693 | SrcToLook.push_back(CurSrcPair); | ||||||||
694 | |||||||||
695 | unsigned PHICount = 0; | ||||||||
696 | do { | ||||||||
697 | CurSrcPair = SrcToLook.pop_back_val(); | ||||||||
698 | // As explained above, do not handle physical registers | ||||||||
699 | if (Register::isPhysicalRegister(CurSrcPair.Reg)) | ||||||||
700 | return false; | ||||||||
701 | |||||||||
702 | ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); | ||||||||
703 | |||||||||
704 | // Follow the chain of copies until we find a more suitable source, a phi | ||||||||
705 | // or have to abort. | ||||||||
706 | while (true) { | ||||||||
707 | ValueTrackerResult Res = ValTracker.getNextSource(); | ||||||||
708 | // Abort at the end of a chain (without finding a suitable source). | ||||||||
709 | if (!Res.isValid()) | ||||||||
710 | return false; | ||||||||
711 | |||||||||
712 | // Insert the Def -> Use entry for the recently found source. | ||||||||
713 | ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); | ||||||||
714 | if (CurSrcRes.isValid()) { | ||||||||
715 | assert(CurSrcRes == Res && "ValueTrackerResult found must match")((void)0); | ||||||||
716 | // An existent entry with multiple sources is a PHI cycle we must avoid. | ||||||||
717 | // Otherwise it's an entry with a valid next source we already found. | ||||||||
718 | if (CurSrcRes.getNumSources() > 1) { | ||||||||
719 | LLVM_DEBUG(dbgs()do { } while (false) | ||||||||
720 | << "findNextSource: found PHI cycle, aborting...\n")do { } while (false); | ||||||||
721 | return false; | ||||||||
722 | } | ||||||||
723 | break; | ||||||||
724 | } | ||||||||
725 | RewriteMap.insert(std::make_pair(CurSrcPair, Res)); | ||||||||
726 | |||||||||
727 | // ValueTrackerResult usually have one source unless it's the result from | ||||||||
728 | // a PHI instruction. Add the found PHI edges to be looked up further. | ||||||||
729 | unsigned NumSrcs = Res.getNumSources(); | ||||||||
730 | if (NumSrcs > 1) { | ||||||||
731 | PHICount++; | ||||||||
732 | if (PHICount >= RewritePHILimit) { | ||||||||
733 | LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n")do { } while (false); | ||||||||
734 | return false; | ||||||||
735 | } | ||||||||
736 | |||||||||
737 | for (unsigned i = 0; i < NumSrcs; ++i) | ||||||||
738 | SrcToLook.push_back(Res.getSrc(i)); | ||||||||
739 | break; | ||||||||
740 | } | ||||||||
741 | |||||||||
742 | CurSrcPair = Res.getSrc(0); | ||||||||
743 | // Do not extend the live-ranges of physical registers as they add | ||||||||
744 | // constraints to the register allocator. Moreover, if we want to extend | ||||||||
745 | // the live-range of a physical register, unlike SSA virtual register, | ||||||||
746 | // we will have to check that they aren't redefine before the related use. | ||||||||
747 | if (Register::isPhysicalRegister(CurSrcPair.Reg)) | ||||||||
748 | return false; | ||||||||
749 | |||||||||
750 | // Keep following the chain if the value isn't any better yet. | ||||||||
751 | const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); | ||||||||
752 | if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, | ||||||||
753 | CurSrcPair.SubReg)) | ||||||||
754 | continue; | ||||||||
755 | |||||||||
756 | // We currently cannot deal with subreg operands on PHI instructions | ||||||||
757 | // (see insertPHI()). | ||||||||
758 | if (PHICount > 0 && CurSrcPair.SubReg != 0) | ||||||||
759 | continue; | ||||||||
760 | |||||||||
761 | // We found a suitable source, and are done with this chain. | ||||||||
762 | break; | ||||||||
763 | } | ||||||||
764 | } while (!SrcToLook.empty()); | ||||||||
765 | |||||||||
766 | // If we did not find a more suitable source, there is nothing to optimize. | ||||||||
767 | return CurSrcPair.Reg != Reg; | ||||||||
768 | } | ||||||||
769 | |||||||||
770 | /// Insert a PHI instruction with incoming edges \p SrcRegs that are | ||||||||
771 | /// guaranteed to have the same register class. This is necessary whenever we | ||||||||
772 | /// successfully traverse a PHI instruction and find suitable sources coming | ||||||||
773 | /// from its edges. By inserting a new PHI, we provide a rewritten PHI def | ||||||||
774 | /// suitable to be used in a new COPY instruction. | ||||||||
775 | static MachineInstr & | ||||||||
776 | insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, | ||||||||
777 | const SmallVectorImpl<RegSubRegPair> &SrcRegs, | ||||||||
778 | MachineInstr &OrigPHI) { | ||||||||
779 | assert(!SrcRegs.empty() && "No sources to create a PHI instruction?")((void)0); | ||||||||
780 | |||||||||
781 | const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); | ||||||||
782 | // NewRC is only correct if no subregisters are involved. findNextSource() | ||||||||
783 | // should have rejected those cases already. | ||||||||
784 | assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand")((void)0); | ||||||||
785 | Register NewVR = MRI.createVirtualRegister(NewRC); | ||||||||
786 | MachineBasicBlock *MBB = OrigPHI.getParent(); | ||||||||
787 | MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), | ||||||||
788 | TII.get(TargetOpcode::PHI), NewVR); | ||||||||
789 | |||||||||
790 | unsigned MBBOpIdx = 2; | ||||||||
791 | for (const RegSubRegPair &RegPair : SrcRegs) { | ||||||||
792 | MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); | ||||||||
793 | MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); | ||||||||
794 | // Since we're extended the lifetime of RegPair.Reg, clear the | ||||||||
795 | // kill flags to account for that and make RegPair.Reg reaches | ||||||||
796 | // the new PHI. | ||||||||
797 | MRI.clearKillFlags(RegPair.Reg); | ||||||||
798 | MBBOpIdx += 2; | ||||||||
799 | } | ||||||||
800 | |||||||||
801 | return *MIB; | ||||||||
802 | } | ||||||||
803 | |||||||||
804 | namespace { | ||||||||
805 | |||||||||
806 | /// Interface to query instructions amenable to copy rewriting. | ||||||||
807 | class Rewriter { | ||||||||
808 | protected: | ||||||||
809 | MachineInstr &CopyLike; | ||||||||
810 | unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten. | ||||||||
811 | public: | ||||||||
812 | Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} | ||||||||
813 | virtual ~Rewriter() {} | ||||||||
814 | |||||||||
815 | /// Get the next rewritable source (SrcReg, SrcSubReg) and | ||||||||
816 | /// the related value that it affects (DstReg, DstSubReg). | ||||||||
817 | /// A source is considered rewritable if its register class and the | ||||||||
818 | /// register class of the related DstReg may not be register | ||||||||
819 | /// coalescer friendly. In other words, given a copy-like instruction | ||||||||
820 | /// not all the arguments may be returned at rewritable source, since | ||||||||
821 | /// some arguments are none to be register coalescer friendly. | ||||||||
822 | /// | ||||||||
823 | /// Each call of this method moves the current source to the next | ||||||||
824 | /// rewritable source. | ||||||||
825 | /// For instance, let CopyLike be the instruction to rewrite. | ||||||||
826 | /// CopyLike has one definition and one source: | ||||||||
827 | /// dst.dstSubIdx = CopyLike src.srcSubIdx. | ||||||||
828 | /// | ||||||||
829 | /// The first call will give the first rewritable source, i.e., | ||||||||
830 | /// the only source this instruction has: | ||||||||
831 | /// (SrcReg, SrcSubReg) = (src, srcSubIdx). | ||||||||
832 | /// This source defines the whole definition, i.e., | ||||||||
833 | /// (DstReg, DstSubReg) = (dst, dstSubIdx). | ||||||||
834 | /// | ||||||||
835 | /// The second and subsequent calls will return false, as there is only one | ||||||||
836 | /// rewritable source. | ||||||||
837 | /// | ||||||||
838 | /// \return True if a rewritable source has been found, false otherwise. | ||||||||
839 | /// The output arguments are valid if and only if true is returned. | ||||||||
840 | virtual bool getNextRewritableSource(RegSubRegPair &Src, | ||||||||
841 | RegSubRegPair &Dst) = 0; | ||||||||
842 | |||||||||
843 | /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. | ||||||||
844 | /// \return True if the rewriting was possible, false otherwise. | ||||||||
845 | virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0; | ||||||||
846 | }; | ||||||||
847 | |||||||||
848 | /// Rewriter for COPY instructions. | ||||||||
849 | class CopyRewriter : public Rewriter { | ||||||||
850 | public: | ||||||||
851 | CopyRewriter(MachineInstr &MI) : Rewriter(MI) { | ||||||||
852 | assert(MI.isCopy() && "Expected copy instruction")((void)0); | ||||||||
853 | } | ||||||||
854 | virtual ~CopyRewriter() = default; | ||||||||
855 | |||||||||
856 | bool getNextRewritableSource(RegSubRegPair &Src, | ||||||||
857 | RegSubRegPair &Dst) override { | ||||||||
858 | // CurrentSrcIdx > 0 means this function has already been called. | ||||||||
859 | if (CurrentSrcIdx > 0) | ||||||||
860 | return false; | ||||||||
861 | // This is the first call to getNextRewritableSource. | ||||||||
862 | // Move the CurrentSrcIdx to remember that we made that call. | ||||||||
863 | CurrentSrcIdx = 1; | ||||||||
864 | // The rewritable source is the argument. | ||||||||
865 | const MachineOperand &MOSrc = CopyLike.getOperand(1); | ||||||||
866 | Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); | ||||||||
867 | // What we track are the alternative sources of the definition. | ||||||||
868 | const MachineOperand &MODef = CopyLike.getOperand(0); | ||||||||
869 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); | ||||||||
870 | return true; | ||||||||
871 | } | ||||||||
872 | |||||||||
873 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { | ||||||||
874 | if (CurrentSrcIdx != 1) | ||||||||
875 | return false; | ||||||||
876 | MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); | ||||||||
877 | MOSrc.setReg(NewReg); | ||||||||
878 | MOSrc.setSubReg(NewSubReg); | ||||||||
879 | return true; | ||||||||
880 | } | ||||||||
881 | }; | ||||||||
882 | |||||||||
883 | /// Helper class to rewrite uncoalescable copy like instructions | ||||||||
884 | /// into new COPY (coalescable friendly) instructions. | ||||||||
885 | class UncoalescableRewriter : public Rewriter { | ||||||||
886 | unsigned NumDefs; ///< Number of defs in the bitcast. | ||||||||
887 | |||||||||
888 | public: | ||||||||
889 | UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { | ||||||||
890 | NumDefs = MI.getDesc().getNumDefs(); | ||||||||
891 | } | ||||||||
892 | |||||||||
893 | /// \see See Rewriter::getNextRewritableSource() | ||||||||
894 | /// All such sources need to be considered rewritable in order to | ||||||||
895 | /// rewrite a uncoalescable copy-like instruction. This method return | ||||||||
896 | /// each definition that must be checked if rewritable. | ||||||||
897 | bool getNextRewritableSource(RegSubRegPair &Src, | ||||||||
898 | RegSubRegPair &Dst) override { | ||||||||
899 | // Find the next non-dead definition and continue from there. | ||||||||
900 | if (CurrentSrcIdx == NumDefs) | ||||||||
901 | return false; | ||||||||
902 | |||||||||
903 | while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { | ||||||||
904 | ++CurrentSrcIdx; | ||||||||
905 | if (CurrentSrcIdx == NumDefs) | ||||||||
906 | return false; | ||||||||
907 | } | ||||||||
908 | |||||||||
909 | // What we track are the alternative sources of the definition. | ||||||||
910 | Src = RegSubRegPair(0, 0); | ||||||||
911 | const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); | ||||||||
912 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); | ||||||||
913 | |||||||||
914 | CurrentSrcIdx++; | ||||||||
915 | return true; | ||||||||
916 | } | ||||||||
917 | |||||||||
918 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { | ||||||||
919 | return false; | ||||||||
920 | } | ||||||||
921 | }; | ||||||||
922 | |||||||||
923 | /// Specialized rewriter for INSERT_SUBREG instruction. | ||||||||
924 | class InsertSubregRewriter : public Rewriter { | ||||||||
925 | public: | ||||||||
926 | InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { | ||||||||
927 | assert(MI.isInsertSubreg() && "Invalid instruction")((void)0); | ||||||||
928 | } | ||||||||
929 | |||||||||
930 | /// \see See Rewriter::getNextRewritableSource() | ||||||||
931 | /// Here CopyLike has the following form: | ||||||||
932 | /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. | ||||||||
933 | /// Src1 has the same register class has dst, hence, there is | ||||||||
934 | /// nothing to rewrite. | ||||||||
935 | /// Src2.src2SubIdx, may not be register coalescer friendly. | ||||||||
936 | /// Therefore, the first call to this method returns: | ||||||||
937 | /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). | ||||||||
938 | /// (DstReg, DstSubReg) = (dst, subIdx). | ||||||||
939 | /// | ||||||||
940 | /// Subsequence calls will return false. | ||||||||
941 | bool getNextRewritableSource(RegSubRegPair &Src, | ||||||||
942 | RegSubRegPair &Dst) override { | ||||||||
943 | // If we already get the only source we can rewrite, return false. | ||||||||
944 | if (CurrentSrcIdx == 2) | ||||||||
945 | return false; | ||||||||
946 | // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. | ||||||||
947 | CurrentSrcIdx = 2; | ||||||||
948 | const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); | ||||||||
949 | Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); | ||||||||
950 | const MachineOperand &MODef = CopyLike.getOperand(0); | ||||||||
951 | |||||||||
952 | // We want to track something that is compatible with the | ||||||||
953 | // partial definition. | ||||||||
954 | if (MODef.getSubReg()) | ||||||||
955 | // Bail if we have to compose sub-register indices. | ||||||||
956 | return false; | ||||||||
957 | Dst = RegSubRegPair(MODef.getReg(), | ||||||||
958 | (unsigned)CopyLike.getOperand(3).getImm()); | ||||||||
959 | return true; | ||||||||
960 | } | ||||||||
961 | |||||||||
962 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { | ||||||||
963 | if (CurrentSrcIdx != 2) | ||||||||
964 | return false; | ||||||||
965 | // We are rewriting the inserted reg. | ||||||||
966 | MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); | ||||||||
967 | MO.setReg(NewReg); | ||||||||
968 | MO.setSubReg(NewSubReg); | ||||||||
969 | return true; | ||||||||
970 | } | ||||||||
971 | }; | ||||||||
972 | |||||||||
973 | /// Specialized rewriter for EXTRACT_SUBREG instruction. | ||||||||
974 | class ExtractSubregRewriter : public Rewriter { | ||||||||
975 | const TargetInstrInfo &TII; | ||||||||
976 | |||||||||
977 | public: | ||||||||
978 | ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) | ||||||||
979 | : Rewriter(MI), TII(TII) { | ||||||||
980 | assert(MI.isExtractSubreg() && "Invalid instruction")((void)0); | ||||||||
981 | } | ||||||||
982 | |||||||||
983 | /// \see Rewriter::getNextRewritableSource() | ||||||||
984 | /// Here CopyLike has the following form: | ||||||||
985 | /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. | ||||||||
986 | /// There is only one rewritable source: Src.subIdx, | ||||||||
987 | /// which defines dst.dstSubIdx. | ||||||||
988 | bool getNextRewritableSource(RegSubRegPair &Src, | ||||||||
989 | RegSubRegPair &Dst) override { | ||||||||
990 | // If we already get the only source we can rewrite, return false. | ||||||||
991 | if (CurrentSrcIdx == 1) | ||||||||
992 | return false; | ||||||||
993 | // We are looking at v1 = EXTRACT_SUBREG v0, sub0. | ||||||||
994 | CurrentSrcIdx = 1; | ||||||||
995 | const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); | ||||||||
996 | // If we have to compose sub-register indices, bail out. | ||||||||
997 | if (MOExtractedReg.getSubReg()) | ||||||||
998 | return false; | ||||||||
999 | |||||||||
1000 | Src = RegSubRegPair(MOExtractedReg.getReg(), | ||||||||
1001 | CopyLike.getOperand(2).getImm()); | ||||||||
1002 | |||||||||
1003 | // We want to track something that is compatible with the definition. | ||||||||
1004 | const MachineOperand &MODef = CopyLike.getOperand(0); | ||||||||
1005 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); | ||||||||
1006 | return true; | ||||||||
1007 | } | ||||||||
1008 | |||||||||
1009 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { | ||||||||
1010 | // The only source we can rewrite is the input register. | ||||||||
1011 | if (CurrentSrcIdx != 1) | ||||||||
1012 | return false; | ||||||||
1013 | |||||||||
1014 | CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); | ||||||||
1015 | |||||||||
1016 | // If we find a source that does not require to extract something, | ||||||||
1017 | // rewrite the operation with a copy. | ||||||||
1018 | if (!NewSubReg) { | ||||||||
1019 | // Move the current index to an invalid position. | ||||||||
1020 | // We do not want another call to this method to be able | ||||||||
1021 | // to do any change. | ||||||||
1022 | CurrentSrcIdx = -1; | ||||||||
1023 | // Rewrite the operation as a COPY. | ||||||||
1024 | // Get rid of the sub-register index. | ||||||||
1025 | CopyLike.RemoveOperand(2); | ||||||||
1026 | // Morph the operation into a COPY. | ||||||||
1027 | CopyLike.setDesc(TII.get(TargetOpcode::COPY)); | ||||||||
1028 | return true; | ||||||||
1029 | } | ||||||||
1030 | CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); | ||||||||
1031 | return true; | ||||||||
1032 | } | ||||||||
1033 | }; | ||||||||
1034 | |||||||||
1035 | /// Specialized rewriter for REG_SEQUENCE instruction. | ||||||||
1036 | class RegSequenceRewriter : public Rewriter { | ||||||||
1037 | public: | ||||||||
1038 | RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { | ||||||||
1039 | assert(MI.isRegSequence() && "Invalid instruction")((void)0); | ||||||||
1040 | } | ||||||||
1041 | |||||||||
1042 | /// \see Rewriter::getNextRewritableSource() | ||||||||
1043 | /// Here CopyLike has the following form: | ||||||||
1044 | /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. | ||||||||
1045 | /// Each call will return a different source, walking all the available | ||||||||
1046 | /// source. | ||||||||
1047 | /// | ||||||||
1048 | /// The first call returns: | ||||||||
1049 | /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). | ||||||||
1050 | /// (DstReg, DstSubReg) = (dst, subIdx1). | ||||||||
1051 | /// | ||||||||
1052 | /// The second call returns: | ||||||||
1053 | /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). | ||||||||
1054 | /// (DstReg, DstSubReg) = (dst, subIdx2). | ||||||||
1055 | /// | ||||||||
1056 | /// And so on, until all the sources have been traversed, then | ||||||||
1057 | /// it returns false. | ||||||||
1058 | bool getNextRewritableSource(RegSubRegPair &Src, | ||||||||
1059 | RegSubRegPair &Dst) override { | ||||||||
1060 | // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. | ||||||||
1061 | |||||||||
1062 | // If this is the first call, move to the first argument. | ||||||||
1063 | if (CurrentSrcIdx == 0) { | ||||||||
1064 | CurrentSrcIdx = 1; | ||||||||
1065 | } else { | ||||||||
1066 | // Otherwise, move to the next argument and check that it is valid. | ||||||||
1067 | CurrentSrcIdx += 2; | ||||||||
1068 | if (CurrentSrcIdx >= CopyLike.getNumOperands()) | ||||||||
1069 | return false; | ||||||||
1070 | } | ||||||||
1071 | const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); | ||||||||
1072 | Src.Reg = MOInsertedReg.getReg(); | ||||||||
1073 | // If we have to compose sub-register indices, bail out. | ||||||||
1074 | if ((Src.SubReg = MOInsertedReg.getSubReg())) | ||||||||
1075 | return false; | ||||||||
1076 | |||||||||
1077 | // We want to track something that is compatible with the related | ||||||||
1078 | // partial definition. | ||||||||
1079 | Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); | ||||||||
1080 | |||||||||
1081 | const MachineOperand &MODef = CopyLike.getOperand(0); | ||||||||
1082 | Dst.Reg = MODef.getReg(); | ||||||||
1083 | // If we have to compose sub-registers, bail. | ||||||||
1084 | return MODef.getSubReg() == 0; | ||||||||
1085 | } | ||||||||
1086 | |||||||||
1087 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { | ||||||||
1088 | // We cannot rewrite out of bound operands. | ||||||||
1089 | // Moreover, rewritable sources are at odd positions. | ||||||||
1090 | if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) | ||||||||
1091 | return false; | ||||||||
1092 | |||||||||
1093 | MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); | ||||||||
1094 | MO.setReg(NewReg); | ||||||||
1095 | MO.setSubReg(NewSubReg); | ||||||||
1096 | return true; | ||||||||
1097 | } | ||||||||
1098 | }; | ||||||||
1099 | |||||||||
1100 | } // end anonymous namespace | ||||||||
1101 | |||||||||
1102 | /// Get the appropriated Rewriter for \p MI. | ||||||||
1103 | /// \return A pointer to a dynamically allocated Rewriter or nullptr if no | ||||||||
1104 | /// rewriter works for \p MI. | ||||||||
1105 | static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { | ||||||||
1106 | // Handle uncoalescable copy-like instructions. | ||||||||
1107 | if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || | ||||||||
1108 | MI.isExtractSubregLike()) | ||||||||
1109 | return new UncoalescableRewriter(MI); | ||||||||
1110 | |||||||||
1111 | switch (MI.getOpcode()) { | ||||||||
1112 | default: | ||||||||
1113 | return nullptr; | ||||||||
1114 | case TargetOpcode::COPY: | ||||||||
1115 | return new CopyRewriter(MI); | ||||||||
1116 | case TargetOpcode::INSERT_SUBREG: | ||||||||
1117 | return new InsertSubregRewriter(MI); | ||||||||
1118 | case TargetOpcode::EXTRACT_SUBREG: | ||||||||
1119 | return new ExtractSubregRewriter(MI, TII); | ||||||||
1120 | case TargetOpcode::REG_SEQUENCE: | ||||||||
1121 | return new RegSequenceRewriter(MI); | ||||||||
1122 | } | ||||||||
1123 | } | ||||||||
1124 | |||||||||
1125 | /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find | ||||||||
1126 | /// the new source to use for rewrite. If \p HandleMultipleSources is true and | ||||||||
1127 | /// multiple sources for a given \p Def are found along the way, we found a | ||||||||
1128 | /// PHI instructions that needs to be rewritten. | ||||||||
1129 | /// TODO: HandleMultipleSources should be removed once we test PHI handling | ||||||||
1130 | /// with coalescable copies. | ||||||||
1131 | static RegSubRegPair | ||||||||
1132 | getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, | ||||||||
1133 | RegSubRegPair Def, | ||||||||
1134 | const PeepholeOptimizer::RewriteMapTy &RewriteMap, | ||||||||
1135 | bool HandleMultipleSources = true) { | ||||||||
1136 | RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); | ||||||||
1137 | while (true) { | ||||||||
1138 | ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); | ||||||||
1139 | // If there are no entries on the map, LookupSrc is the new source. | ||||||||
1140 | if (!Res.isValid()) | ||||||||
1141 | return LookupSrc; | ||||||||
1142 | |||||||||
1143 | // There's only one source for this definition, keep searching... | ||||||||
1144 | unsigned NumSrcs = Res.getNumSources(); | ||||||||
1145 | if (NumSrcs == 1) { | ||||||||
1146 | LookupSrc.Reg = Res.getSrcReg(0); | ||||||||
1147 | LookupSrc.SubReg = Res.getSrcSubReg(0); | ||||||||
1148 | continue; | ||||||||
1149 | } | ||||||||
1150 | |||||||||
1151 | // TODO: Remove once multiple srcs w/ coalescable copies are supported. | ||||||||
1152 | if (!HandleMultipleSources) | ||||||||
1153 | break; | ||||||||
1154 | |||||||||
1155 | // Multiple sources, recurse into each source to find a new source | ||||||||
1156 | // for it. Then, rewrite the PHI accordingly to its new edges. | ||||||||
1157 | SmallVector<RegSubRegPair, 4> NewPHISrcs; | ||||||||
1158 | for (unsigned i = 0; i < NumSrcs; ++i) { | ||||||||
1159 | RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); | ||||||||
1160 | NewPHISrcs.push_back( | ||||||||
1161 | getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); | ||||||||
1162 | } | ||||||||
1163 | |||||||||
1164 | // Build the new PHI node and return its def register as the new source. | ||||||||
1165 | MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); | ||||||||
1166 | MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); | ||||||||
1167 | LLVM_DEBUG(dbgs() << "-- getNewSource\n")do { } while (false); | ||||||||
1168 | LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI)do { } while (false); | ||||||||
1169 | LLVM_DEBUG(dbgs() << " With: " << NewPHI)do { } while (false); | ||||||||
1170 | const MachineOperand &MODef = NewPHI.getOperand(0); | ||||||||
1171 | return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); | ||||||||
1172 | } | ||||||||
1173 | |||||||||
1174 | return RegSubRegPair(0, 0); | ||||||||
1175 | } | ||||||||
1176 | |||||||||
1177 | /// Optimize generic copy instructions to avoid cross register bank copy. | ||||||||
1178 | /// The optimization looks through a chain of copies and tries to find a source | ||||||||
1179 | /// that has a compatible register class. | ||||||||
1180 | /// Two register classes are considered to be compatible if they share the same | ||||||||
1181 | /// register bank. | ||||||||
1182 | /// New copies issued by this optimization are register allocator | ||||||||
1183 | /// friendly. This optimization does not remove any copy as it may | ||||||||
1184 | /// overconstrain the register allocator, but replaces some operands | ||||||||
1185 | /// when possible. | ||||||||
1186 | /// \pre isCoalescableCopy(*MI) is true. | ||||||||
1187 | /// \return True, when \p MI has been rewritten. False otherwise. | ||||||||
1188 | bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { | ||||||||
1189 | assert(isCoalescableCopy(MI) && "Invalid argument")((void)0); | ||||||||
1190 | assert(MI.getDesc().getNumDefs() == 1 &&((void)0) | ||||||||
1191 | "Coalescer can understand multiple defs?!")((void)0); | ||||||||
1192 | const MachineOperand &MODef = MI.getOperand(0); | ||||||||
1193 | // Do not rewrite physical definitions. | ||||||||
1194 | if (Register::isPhysicalRegister(MODef.getReg())) | ||||||||
1195 | return false; | ||||||||
1196 | |||||||||
1197 | bool Changed = false; | ||||||||
1198 | // Get the right rewriter for the current copy. | ||||||||
1199 | std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII)); | ||||||||
1200 | // If none exists, bail out. | ||||||||
1201 | if (!CpyRewriter) | ||||||||
1202 | return false; | ||||||||
1203 | // Rewrite each rewritable source. | ||||||||
1204 | RegSubRegPair Src; | ||||||||
1205 | RegSubRegPair TrackPair; | ||||||||
1206 | while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { | ||||||||
1207 | // Keep track of PHI nodes and its incoming edges when looking for sources. | ||||||||
1208 | RewriteMapTy RewriteMap; | ||||||||
1209 | // Try to find a more suitable source. If we failed to do so, or get the | ||||||||
1210 | // actual source, move to the next source. | ||||||||
1211 | if (!findNextSource(TrackPair, RewriteMap)) | ||||||||
1212 | continue; | ||||||||
1213 | |||||||||
1214 | // Get the new source to rewrite. TODO: Only enable handling of multiple | ||||||||
1215 | // sources (PHIs) once we have a motivating example and testcases for it. | ||||||||
1216 | RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, | ||||||||
1217 | /*HandleMultipleSources=*/false); | ||||||||
1218 | if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) | ||||||||
1219 | continue; | ||||||||
1220 | |||||||||
1221 | // Rewrite source. | ||||||||
1222 | if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { | ||||||||
1223 | // We may have extended the live-range of NewSrc, account for that. | ||||||||
1224 | MRI->clearKillFlags(NewSrc.Reg); | ||||||||
1225 | Changed = true; | ||||||||
1226 | } | ||||||||
1227 | } | ||||||||
1228 | // TODO: We could have a clean-up method to tidy the instruction. | ||||||||
1229 | // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 | ||||||||
1230 | // => v0 = COPY v1 | ||||||||
1231 | // Currently we haven't seen motivating example for that and we | ||||||||
1232 | // want to avoid untested code. | ||||||||
1233 | NumRewrittenCopies += Changed; | ||||||||
1234 | return Changed; | ||||||||
1235 | } | ||||||||
1236 | |||||||||
1237 | /// Rewrite the source found through \p Def, by using the \p RewriteMap | ||||||||
1238 | /// and create a new COPY instruction. More info about RewriteMap in | ||||||||
1239 | /// PeepholeOptimizer::findNextSource. Right now this is only used to handle | ||||||||
1240 | /// Uncoalescable copies, since they are copy like instructions that aren't | ||||||||
1241 | /// recognized by the register allocator. | ||||||||
1242 | MachineInstr & | ||||||||
1243 | PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, | ||||||||
1244 | RegSubRegPair Def, RewriteMapTy &RewriteMap) { | ||||||||
1245 | assert(!Register::isPhysicalRegister(Def.Reg) &&((void)0) | ||||||||
1246 | "We do not rewrite physical registers")((void)0); | ||||||||
1247 | |||||||||
1248 | // Find the new source to use in the COPY rewrite. | ||||||||
1249 | RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); | ||||||||
1250 | |||||||||
1251 | // Insert the COPY. | ||||||||
1252 | const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); | ||||||||
1253 | Register NewVReg = MRI->createVirtualRegister(DefRC); | ||||||||
1254 | |||||||||
1255 | MachineInstr *NewCopy = | ||||||||
1256 | BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), | ||||||||
1257 | TII->get(TargetOpcode::COPY), NewVReg) | ||||||||
1258 | .addReg(NewSrc.Reg, 0, NewSrc.SubReg); | ||||||||
1259 | |||||||||
1260 | if (Def.SubReg) { | ||||||||
1261 | NewCopy->getOperand(0).setSubReg(Def.SubReg); | ||||||||
1262 | NewCopy->getOperand(0).setIsUndef(); | ||||||||
1263 | } | ||||||||
1264 | |||||||||
1265 | LLVM_DEBUG(dbgs() << "-- RewriteSource\n")do { } while (false); | ||||||||
1266 | LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike)do { } while (false); | ||||||||
1267 | LLVM_DEBUG(dbgs() << " With: " << *NewCopy)do { } while (false); | ||||||||
1268 | MRI->replaceRegWith(Def.Reg, NewVReg); | ||||||||
1269 | MRI->clearKillFlags(NewVReg); | ||||||||
1270 | |||||||||
1271 | // We extended the lifetime of NewSrc.Reg, clear the kill flags to | ||||||||
1272 | // account for that. | ||||||||
1273 | MRI->clearKillFlags(NewSrc.Reg); | ||||||||
1274 | |||||||||
1275 | return *NewCopy; | ||||||||
1276 | } | ||||||||
1277 | |||||||||
1278 | /// Optimize copy-like instructions to create | ||||||||
1279 | /// register coalescer friendly instruction. | ||||||||
1280 | /// The optimization tries to kill-off the \p MI by looking | ||||||||
1281 | /// through a chain of copies to find a source that has a compatible | ||||||||
1282 | /// register class. | ||||||||
1283 | /// If such a source is found, it replace \p MI by a generic COPY | ||||||||
1284 | /// operation. | ||||||||
1285 | /// \pre isUncoalescableCopy(*MI) is true. | ||||||||
1286 | /// \return True, when \p MI has been optimized. In that case, \p MI has | ||||||||
1287 | /// been removed from its parent. | ||||||||
1288 | /// All COPY instructions created, are inserted in \p LocalMIs. | ||||||||
1289 | bool PeepholeOptimizer::optimizeUncoalescableCopy( | ||||||||
1290 | MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { | ||||||||
1291 | assert(isUncoalescableCopy(MI) && "Invalid argument")((void)0); | ||||||||
1292 | UncoalescableRewriter CpyRewriter(MI); | ||||||||
1293 | |||||||||
1294 | // Rewrite each rewritable source by generating new COPYs. This works | ||||||||
1295 | // differently from optimizeCoalescableCopy since it first makes sure that all | ||||||||
1296 | // definitions can be rewritten. | ||||||||
1297 | RewriteMapTy RewriteMap; | ||||||||
1298 | RegSubRegPair Src; | ||||||||
1299 | RegSubRegPair Def; | ||||||||
1300 | SmallVector<RegSubRegPair, 4> RewritePairs; | ||||||||
1301 | while (CpyRewriter.getNextRewritableSource(Src, Def)) { | ||||||||
1302 | // If a physical register is here, this is probably for a good reason. | ||||||||
1303 | // Do not rewrite that. | ||||||||
1304 | if (Register::isPhysicalRegister(Def.Reg)) | ||||||||
1305 | return false; | ||||||||
1306 | |||||||||
1307 | // If we do not know how to rewrite this definition, there is no point | ||||||||
1308 | // in trying to kill this instruction. | ||||||||
1309 | if (!findNextSource(Def, RewriteMap)) | ||||||||
1310 | return false; | ||||||||
1311 | |||||||||
1312 | RewritePairs.push_back(Def); | ||||||||
1313 | } | ||||||||
1314 | |||||||||
1315 | // The change is possible for all defs, do it. | ||||||||
1316 | for (const RegSubRegPair &Def : RewritePairs) { | ||||||||
1317 | // Rewrite the "copy" in a way the register coalescer understands. | ||||||||
1318 | MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); | ||||||||
1319 | LocalMIs.insert(&NewCopy); | ||||||||
1320 | } | ||||||||
1321 | |||||||||
1322 | // MI is now dead. | ||||||||
1323 | LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI)do { } while (false); | ||||||||
1324 | MI.eraseFromParent(); | ||||||||
1325 | ++NumUncoalescableCopies; | ||||||||
1326 | return true; | ||||||||
1327 | } | ||||||||
1328 | |||||||||
1329 | /// Check whether MI is a candidate for folding into a later instruction. | ||||||||
1330 | /// We only fold loads to virtual registers and the virtual register defined | ||||||||
1331 | /// has a single user. | ||||||||
1332 | bool PeepholeOptimizer::isLoadFoldable( | ||||||||
1333 | MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) { | ||||||||
1334 | if (!MI.canFoldAsLoad() || !MI.mayLoad()) | ||||||||
1335 | return false; | ||||||||
1336 | const MCInstrDesc &MCID = MI.getDesc(); | ||||||||
1337 | if (MCID.getNumDefs() != 1) | ||||||||
1338 | return false; | ||||||||
1339 | |||||||||
1340 | Register Reg = MI.getOperand(0).getReg(); | ||||||||
1341 | // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting | ||||||||
1342 | // loads. It should be checked when processing uses of the load, since | ||||||||
1343 | // uses can be removed during peephole. | ||||||||
1344 | if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() && | ||||||||
1345 | MRI->hasOneNonDBGUser(Reg)) { | ||||||||
1346 | FoldAsLoadDefCandidates.insert(Reg); | ||||||||
1347 | return true; | ||||||||
1348 | } | ||||||||
1349 | return false; | ||||||||
1350 | } | ||||||||
1351 | |||||||||
1352 | bool PeepholeOptimizer::isMoveImmediate( | ||||||||
1353 | MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, | ||||||||
1354 | DenseMap<Register, MachineInstr *> &ImmDefMIs) { | ||||||||
1355 | const MCInstrDesc &MCID = MI.getDesc(); | ||||||||
1356 | if (!MI.isMoveImmediate()) | ||||||||
1357 | return false; | ||||||||
1358 | if (MCID.getNumDefs() != 1) | ||||||||
1359 | return false; | ||||||||
1360 | Register Reg = MI.getOperand(0).getReg(); | ||||||||
1361 | if (Reg.isVirtual()) { | ||||||||
1362 | ImmDefMIs.insert(std::make_pair(Reg, &MI)); | ||||||||
1363 | ImmDefRegs.insert(Reg); | ||||||||
1364 | return true; | ||||||||
1365 | } | ||||||||
1366 | |||||||||
1367 | return false; | ||||||||
1368 | } | ||||||||
1369 | |||||||||
1370 | /// Try folding register operands that are defined by move immediate | ||||||||
1371 | /// instructions, i.e. a trivial constant folding optimization, if | ||||||||
1372 | /// and only if the def and use are in the same BB. | ||||||||
1373 | bool PeepholeOptimizer::foldImmediate( | ||||||||
1374 | MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, | ||||||||
1375 | DenseMap<Register, MachineInstr *> &ImmDefMIs) { | ||||||||
1376 | for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { | ||||||||
1377 | MachineOperand &MO = MI.getOperand(i); | ||||||||
1378 | if (!MO.isReg() || MO.isDef()) | ||||||||
1379 | continue; | ||||||||
1380 | Register Reg = MO.getReg(); | ||||||||
1381 | if (!Reg.isVirtual()) | ||||||||
1382 | continue; | ||||||||
1383 | if (ImmDefRegs.count(Reg) == 0) | ||||||||
1384 | continue; | ||||||||
1385 | DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg); | ||||||||
1386 | assert(II != ImmDefMIs.end() && "couldn't find immediate definition")((void)0); | ||||||||
1387 | if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { | ||||||||
1388 | ++NumImmFold; | ||||||||
1389 | return true; | ||||||||
1390 | } | ||||||||
1391 | } | ||||||||
1392 | return false; | ||||||||
1393 | } | ||||||||
1394 | |||||||||
1395 | // FIXME: This is very simple and misses some cases which should be handled when | ||||||||
1396 | // motivating examples are found. | ||||||||
1397 | // | ||||||||
1398 | // The copy rewriting logic should look at uses as well as defs and be able to | ||||||||
1399 | // eliminate copies across blocks. | ||||||||
1400 | // | ||||||||
1401 | // Later copies that are subregister extracts will also not be eliminated since | ||||||||
1402 | // only the first copy is considered. | ||||||||
1403 | // | ||||||||
1404 | // e.g. | ||||||||
1405 | // %1 = COPY %0 | ||||||||
1406 | // %2 = COPY %0:sub1 | ||||||||
1407 | // | ||||||||
1408 | // Should replace %2 uses with %1:sub1 | ||||||||
1409 | bool PeepholeOptimizer::foldRedundantCopy( | ||||||||
1410 | MachineInstr &MI, DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs) { | ||||||||
1411 | assert(MI.isCopy() && "expected a COPY machine instruction")((void)0); | ||||||||
1412 | |||||||||
1413 | Register SrcReg = MI.getOperand(1).getReg(); | ||||||||
1414 | unsigned SrcSubReg = MI.getOperand(1).getSubReg(); | ||||||||
1415 | if (!SrcReg.isVirtual()) | ||||||||
1416 | return false; | ||||||||
1417 | |||||||||
1418 | Register DstReg = MI.getOperand(0).getReg(); | ||||||||
1419 | if (!DstReg.isVirtual()) | ||||||||
1420 | return false; | ||||||||
1421 | |||||||||
1422 | RegSubRegPair SrcPair(SrcReg, SrcSubReg); | ||||||||
1423 | |||||||||
1424 | if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) { | ||||||||
1425 | // First copy of this reg seen. | ||||||||
1426 | return false; | ||||||||
1427 | } | ||||||||
1428 | |||||||||
1429 | MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second; | ||||||||
1430 | |||||||||
1431 | assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() &&((void)0) | ||||||||
1432 | "Unexpected mismatching subreg!")((void)0); | ||||||||
1433 | |||||||||
1434 | Register PrevDstReg = PrevCopy->getOperand(0).getReg(); | ||||||||
1435 | |||||||||
1436 | // Only replace if the copy register class is the same. | ||||||||
1437 | // | ||||||||
1438 | // TODO: If we have multiple copies to different register classes, we may want | ||||||||
1439 | // to track multiple copies of the same source register. | ||||||||
1440 | if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) | ||||||||
1441 | return false; | ||||||||
1442 | |||||||||
1443 | MRI->replaceRegWith(DstReg, PrevDstReg); | ||||||||
1444 | |||||||||
1445 | // Lifetime of the previous copy has been extended. | ||||||||
1446 | MRI->clearKillFlags(PrevDstReg); | ||||||||
1447 | return true; | ||||||||
1448 | } | ||||||||
1449 | |||||||||
1450 | bool PeepholeOptimizer::isNAPhysCopy(Register Reg) { | ||||||||
1451 | return Reg.isPhysical() && !MRI->isAllocatable(Reg); | ||||||||
1452 | } | ||||||||
1453 | |||||||||
1454 | bool PeepholeOptimizer::foldRedundantNAPhysCopy( | ||||||||
1455 | MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) { | ||||||||
1456 | assert(MI.isCopy() && "expected a COPY machine instruction")((void)0); | ||||||||
1457 | |||||||||
1458 | if (DisableNAPhysCopyOpt) | ||||||||
1459 | return false; | ||||||||
1460 | |||||||||
1461 | Register DstReg = MI.getOperand(0).getReg(); | ||||||||
1462 | Register SrcReg = MI.getOperand(1).getReg(); | ||||||||
1463 | if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) { | ||||||||
1464 | // %vreg = COPY $physreg | ||||||||
1465 | // Avoid using a datastructure which can track multiple live non-allocatable | ||||||||
1466 | // phys->virt copies since LLVM doesn't seem to do this. | ||||||||
1467 | NAPhysToVirtMIs.insert({SrcReg, &MI}); | ||||||||
1468 | return false; | ||||||||
1469 | } | ||||||||
1470 | |||||||||
1471 | if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg))) | ||||||||
1472 | return false; | ||||||||
1473 | |||||||||
1474 | // $physreg = COPY %vreg | ||||||||
1475 | auto PrevCopy = NAPhysToVirtMIs.find(DstReg); | ||||||||
1476 | if (PrevCopy == NAPhysToVirtMIs.end()) { | ||||||||
1477 | // We can't remove the copy: there was an intervening clobber of the | ||||||||
1478 | // non-allocatable physical register after the copy to virtual. | ||||||||
1479 | LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "do { } while (false) | ||||||||
1480 | << MI)do { } while (false); | ||||||||
1481 | return false; | ||||||||
1482 | } | ||||||||
1483 | |||||||||
1484 | Register PrevDstReg = PrevCopy->second->getOperand(0).getReg(); | ||||||||
1485 | if (PrevDstReg == SrcReg) { | ||||||||
1486 | // Remove the virt->phys copy: we saw the virtual register definition, and | ||||||||
1487 | // the non-allocatable physical register's state hasn't changed since then. | ||||||||
1488 | LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI)do { } while (false); | ||||||||
1489 | ++NumNAPhysCopies; | ||||||||
1490 | return true; | ||||||||
1491 | } | ||||||||
1492 | |||||||||
1493 | // Potential missed optimization opportunity: we saw a different virtual | ||||||||
1494 | // register get a copy of the non-allocatable physical register, and we only | ||||||||
1495 | // track one such copy. Avoid getting confused by this new non-allocatable | ||||||||
1496 | // physical register definition, and remove it from the tracked copies. | ||||||||
1497 | LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI)do { } while (false); | ||||||||
1498 | NAPhysToVirtMIs.erase(PrevCopy); | ||||||||
1499 | return false; | ||||||||
1500 | } | ||||||||
1501 | |||||||||
1502 | /// \bried Returns true if \p MO is a virtual register operand. | ||||||||
1503 | static bool isVirtualRegisterOperand(MachineOperand &MO) { | ||||||||
1504 | return MO.isReg() && MO.getReg().isVirtual(); | ||||||||
1505 | } | ||||||||
1506 | |||||||||
1507 | bool PeepholeOptimizer::findTargetRecurrence( | ||||||||
1508 | Register Reg, const SmallSet<Register, 2> &TargetRegs, | ||||||||
1509 | RecurrenceCycle &RC) { | ||||||||
1510 | // Recurrence found if Reg is in TargetRegs. | ||||||||
1511 | if (TargetRegs.count(Reg)) | ||||||||
1512 | return true; | ||||||||
1513 | |||||||||
1514 | // TODO: Curerntly, we only allow the last instruction of the recurrence | ||||||||
1515 | // cycle (the instruction that feeds the PHI instruction) to have more than | ||||||||
1516 | // one uses to guarantee that commuting operands does not tie registers | ||||||||
1517 | // with overlapping live range. Once we have actual live range info of | ||||||||
1518 | // each register, this constraint can be relaxed. | ||||||||
1519 | if (!MRI->hasOneNonDBGUse(Reg)) | ||||||||
1520 | return false; | ||||||||
1521 | |||||||||
1522 | // Give up if the reccurrence chain length is longer than the limit. | ||||||||
1523 | if (RC.size() >= MaxRecurrenceChain) | ||||||||
1524 | return false; | ||||||||
1525 | |||||||||
1526 | MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); | ||||||||
1527 | unsigned Idx = MI.findRegisterUseOperandIdx(Reg); | ||||||||
1528 | |||||||||
1529 | // Only interested in recurrences whose instructions have only one def, which | ||||||||
1530 | // is a virtual register. | ||||||||
1531 | if (MI.getDesc().getNumDefs() != 1) | ||||||||
1532 | return false; | ||||||||
1533 | |||||||||
1534 | MachineOperand &DefOp = MI.getOperand(0); | ||||||||
1535 | if (!isVirtualRegisterOperand(DefOp)) | ||||||||
1536 | return false; | ||||||||
1537 | |||||||||
1538 | // Check if def operand of MI is tied to any use operand. We are only | ||||||||
1539 | // interested in the case that all the instructions in the recurrence chain | ||||||||
1540 | // have there def operand tied with one of the use operand. | ||||||||
1541 | unsigned TiedUseIdx; | ||||||||
1542 | if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) | ||||||||
1543 | return false; | ||||||||
1544 | |||||||||
1545 | if (Idx == TiedUseIdx) { | ||||||||
1546 | RC.push_back(RecurrenceInstr(&MI)); | ||||||||
1547 | return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); | ||||||||
1548 | } else { | ||||||||
1549 | // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. | ||||||||
1550 | unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; | ||||||||
1551 | if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { | ||||||||
1552 | RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); | ||||||||
1553 | return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); | ||||||||
1554 | } | ||||||||
1555 | } | ||||||||
1556 | |||||||||
1557 | return false; | ||||||||
1558 | } | ||||||||
1559 | |||||||||
1560 | /// Phi instructions will eventually be lowered to copy instructions. | ||||||||
1561 | /// If phi is in a loop header, a recurrence may formulated around the source | ||||||||
1562 | /// and destination of the phi. For such case commuting operands of the | ||||||||
1563 | /// instructions in the recurrence may enable coalescing of the copy instruction | ||||||||
1564 | /// generated from the phi. For example, if there is a recurrence of | ||||||||
1565 | /// | ||||||||
1566 | /// LoopHeader: | ||||||||
1567 | /// %1 = phi(%0, %100) | ||||||||
1568 | /// LoopLatch: | ||||||||
1569 | /// %0<def, tied1> = ADD %2<def, tied0>, %1 | ||||||||
1570 | /// | ||||||||
1571 | /// , the fact that %0 and %2 are in the same tied operands set makes | ||||||||
1572 | /// the coalescing of copy instruction generated from the phi in | ||||||||
1573 | /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and | ||||||||
1574 | /// %2 have overlapping live range. This introduces additional move | ||||||||
1575 | /// instruction to the final assembly. However, if we commute %2 and | ||||||||
1576 | /// %1 of ADD instruction, the redundant move instruction can be | ||||||||
1577 | /// avoided. | ||||||||
1578 | bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { | ||||||||
1579 | SmallSet<Register, 2> TargetRegs; | ||||||||
1580 | for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { | ||||||||
1581 | MachineOperand &MO = PHI.getOperand(Idx); | ||||||||
1582 | assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction")((void)0); | ||||||||
1583 | TargetRegs.insert(MO.getReg()); | ||||||||
1584 | } | ||||||||
1585 | |||||||||
1586 | bool Changed = false; | ||||||||
1587 | RecurrenceCycle RC; | ||||||||
1588 | if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { | ||||||||
1589 | // Commutes operands of instructions in RC if necessary so that the copy to | ||||||||
1590 | // be generated from PHI can be coalesced. | ||||||||
1591 | LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI)do { } while (false); | ||||||||
1592 | for (auto &RI : RC) { | ||||||||
1593 | LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()))do { } while (false); | ||||||||
1594 | auto CP = RI.getCommutePair(); | ||||||||
1595 | if (CP) { | ||||||||
1596 | Changed = true; | ||||||||
1597 | TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, | ||||||||
1598 | (*CP).second); | ||||||||
1599 | LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()))do { } while (false); | ||||||||
1600 | } | ||||||||
1601 | } | ||||||||
1602 | } | ||||||||
1603 | |||||||||
1604 | return Changed; | ||||||||
1605 | } | ||||||||
1606 | |||||||||
1607 | bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { | ||||||||
1608 | if (skipFunction(MF.getFunction())) | ||||||||
| |||||||||
1609 | return false; | ||||||||
1610 | |||||||||
1611 | LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n")do { } while (false); | ||||||||
1612 | LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n')do { } while (false); | ||||||||
1613 | |||||||||
1614 | if (DisablePeephole) | ||||||||
1615 | return false; | ||||||||
1616 | |||||||||
1617 | TII = MF.getSubtarget().getInstrInfo(); | ||||||||
1618 | TRI = MF.getSubtarget().getRegisterInfo(); | ||||||||
1619 | MRI = &MF.getRegInfo(); | ||||||||
1620 | DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; | ||||||||
1621 | MLI = &getAnalysis<MachineLoopInfo>(); | ||||||||
1622 | |||||||||
1623 | bool Changed = false; | ||||||||
1624 | |||||||||
1625 | for (MachineBasicBlock &MBB : MF) { | ||||||||
1626 | bool SeenMoveImm = false; | ||||||||
1627 | |||||||||
1628 | // During this forward scan, at some point it needs to answer the question | ||||||||
1629 | // "given a pointer to an MI in the current BB, is it located before or | ||||||||
1630 | // after the current instruction". | ||||||||
1631 | // To perform this, the following set keeps track of the MIs already seen | ||||||||
1632 | // during the scan, if a MI is not in the set, it is assumed to be located | ||||||||
1633 | // after. Newly created MIs have to be inserted in the set as well. | ||||||||
1634 | SmallPtrSet<MachineInstr*, 16> LocalMIs; | ||||||||
1635 | SmallSet<Register, 4> ImmDefRegs; | ||||||||
1636 | DenseMap<Register, MachineInstr *> ImmDefMIs; | ||||||||
1637 | SmallSet<Register, 16> FoldAsLoadDefCandidates; | ||||||||
1638 | |||||||||
1639 | // Track when a non-allocatable physical register is copied to a virtual | ||||||||
1640 | // register so that useless moves can be removed. | ||||||||
1641 | // | ||||||||
1642 | // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg` | ||||||||
1643 | // without any intervening re-definition of $physreg. | ||||||||
1644 | DenseMap<Register, MachineInstr *> NAPhysToVirtMIs; | ||||||||
1645 | |||||||||
1646 | // Set of pairs of virtual registers and their subregs that are copied | ||||||||
1647 | // from. | ||||||||
1648 | DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs; | ||||||||
1649 | |||||||||
1650 | bool IsLoopHeader = MLI->isLoopHeader(&MBB); | ||||||||
1651 | |||||||||
1652 | for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); | ||||||||
1653 | MII != MIE; ) { | ||||||||
1654 | MachineInstr *MI = &*MII; | ||||||||
1655 | // We may be erasing MI below, increment MII now. | ||||||||
1656 | ++MII; | ||||||||
1657 | LocalMIs.insert(MI); | ||||||||
1658 | |||||||||
1659 | // Skip debug instructions. They should not affect this peephole | ||||||||
1660 | // optimization. | ||||||||
1661 | if (MI->isDebugInstr()) | ||||||||
1662 | continue; | ||||||||
1663 | |||||||||
1664 | if (MI->isPosition()) | ||||||||
1665 | continue; | ||||||||
1666 | |||||||||
1667 | if (IsLoopHeader && MI->isPHI()) { | ||||||||
1668 | if (optimizeRecurrence(*MI)) { | ||||||||
1669 | Changed = true; | ||||||||
1670 | continue; | ||||||||
1671 | } | ||||||||
1672 | } | ||||||||
1673 | |||||||||
1674 | if (!MI->isCopy()) { | ||||||||
1675 | for (const MachineOperand &MO : MI->operands()) { | ||||||||
1676 | // Visit all operands: definitions can be implicit or explicit. | ||||||||
1677 | if (MO.isReg()) { | ||||||||
1678 | Register Reg = MO.getReg(); | ||||||||
1679 | if (MO.isDef() && isNAPhysCopy(Reg)) { | ||||||||
1680 | const auto &Def = NAPhysToVirtMIs.find(Reg); | ||||||||
1681 | if (Def != NAPhysToVirtMIs.end()) { | ||||||||
1682 | // A new definition of the non-allocatable physical register | ||||||||
1683 | // invalidates previous copies. | ||||||||
1684 | LLVM_DEBUG(dbgs()do { } while (false) | ||||||||
1685 | << "NAPhysCopy: invalidating because of " << *MI)do { } while (false); | ||||||||
1686 | NAPhysToVirtMIs.erase(Def); | ||||||||
1687 | } | ||||||||
1688 | } | ||||||||
1689 | } else if (MO.isRegMask()) { | ||||||||
1690 | const uint32_t *RegMask = MO.getRegMask(); | ||||||||
1691 | for (auto &RegMI : NAPhysToVirtMIs) { | ||||||||
1692 | Register Def = RegMI.first; | ||||||||
1693 | if (MachineOperand::clobbersPhysReg(RegMask, Def)) { | ||||||||
1694 | LLVM_DEBUG(dbgs()do { } while (false) | ||||||||
1695 | << "NAPhysCopy: invalidating because of " << *MI)do { } while (false); | ||||||||
1696 | NAPhysToVirtMIs.erase(Def); | ||||||||
1697 | } | ||||||||
1698 | } | ||||||||
1699 | } | ||||||||
1700 | } | ||||||||
1701 | } | ||||||||
1702 | |||||||||
1703 | if (MI->isImplicitDef() || MI->isKill()) | ||||||||
1704 | continue; | ||||||||
1705 | |||||||||
1706 | if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { | ||||||||
1707 | // Blow away all non-allocatable physical registers knowledge since we | ||||||||
1708 | // don't know what's correct anymore. | ||||||||
1709 | // | ||||||||
1710 | // FIXME: handle explicit asm clobbers. | ||||||||
1711 | LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "do { } while (false) | ||||||||
1712 | << *MI)do { } while (false); | ||||||||
1713 | NAPhysToVirtMIs.clear(); | ||||||||
1714 | } | ||||||||
1715 | |||||||||
1716 | if ((isUncoalescableCopy(*MI) && | ||||||||
1717 | optimizeUncoalescableCopy(*MI, LocalMIs)) || | ||||||||
1718 | (MI->isCompare() && optimizeCmpInstr(*MI)) || | ||||||||
1719 | (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { | ||||||||
1720 | // MI is deleted. | ||||||||
1721 | LocalMIs.erase(MI); | ||||||||
1722 | Changed = true; | ||||||||
1723 | continue; | ||||||||
1724 | } | ||||||||
1725 | |||||||||
1726 | if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { | ||||||||
1727 | Changed = true; | ||||||||
1728 | continue; | ||||||||
1729 | } | ||||||||
1730 | |||||||||
1731 | if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { | ||||||||
1732 | // MI is just rewritten. | ||||||||
1733 | Changed = true; | ||||||||
1734 | continue; | ||||||||
1735 | } | ||||||||
1736 | |||||||||
1737 | if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) || | ||||||||
1738 | foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { | ||||||||
1739 | LocalMIs.erase(MI); | ||||||||
1740 | LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n")do { } while (false); | ||||||||
1741 | MI->eraseFromParent(); | ||||||||
1742 | Changed = true; | ||||||||
1743 | continue; | ||||||||
1744 | } | ||||||||
1745 | |||||||||
1746 | if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { | ||||||||
1747 | SeenMoveImm = true; | ||||||||
1748 | } else { | ||||||||
1749 | Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); | ||||||||
1750 | // optimizeExtInstr might have created new instructions after MI | ||||||||
1751 | // and before the already incremented MII. Adjust MII so that the | ||||||||
1752 | // next iteration sees the new instructions. | ||||||||
1753 | MII = MI; | ||||||||
1754 | ++MII; | ||||||||
1755 | if (SeenMoveImm) | ||||||||
1756 | Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); | ||||||||
1757 | } | ||||||||
1758 | |||||||||
1759 | // Check whether MI is a load candidate for folding into a later | ||||||||
1760 | // instruction. If MI is not a candidate, check whether we can fold an | ||||||||
1761 | // earlier load into MI. | ||||||||
1762 | if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && | ||||||||
1763 | !FoldAsLoadDefCandidates.empty()) { | ||||||||
1764 | |||||||||
1765 | // We visit each operand even after successfully folding a previous | ||||||||
1766 | // one. This allows us to fold multiple loads into a single | ||||||||
1767 | // instruction. We do assume that optimizeLoadInstr doesn't insert | ||||||||
1768 | // foldable uses earlier in the argument list. Since we don't restart | ||||||||
1769 | // iteration, we'd miss such cases. | ||||||||
1770 | const MCInstrDesc &MIDesc = MI->getDesc(); | ||||||||
1771 | for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); | ||||||||
1772 | ++i) { | ||||||||
1773 | const MachineOperand &MOp = MI->getOperand(i); | ||||||||
1774 | if (!MOp.isReg()) | ||||||||
1775 | continue; | ||||||||
1776 | Register FoldAsLoadDefReg = MOp.getReg(); | ||||||||
1777 | if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { | ||||||||
1778 | // We need to fold load after optimizeCmpInstr, since | ||||||||
1779 | // optimizeCmpInstr can enable folding by converting SUB to CMP. | ||||||||
1780 | // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and | ||||||||
1781 | // we need it for markUsesInDebugValueAsUndef(). | ||||||||
1782 | Register FoldedReg = FoldAsLoadDefReg; | ||||||||
1783 | MachineInstr *DefMI = nullptr; | ||||||||
1784 | if (MachineInstr *FoldMI = | ||||||||
1785 | TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { | ||||||||
1786 | // Update LocalMIs since we replaced MI with FoldMI and deleted | ||||||||
1787 | // DefMI. | ||||||||
1788 | LLVM_DEBUG(dbgs() << "Replacing: " << *MI)do { } while (false); | ||||||||
1789 | LLVM_DEBUG(dbgs() << " With: " << *FoldMI)do { } while (false); | ||||||||
1790 | LocalMIs.erase(MI); | ||||||||
1791 | LocalMIs.erase(DefMI); | ||||||||
1792 | LocalMIs.insert(FoldMI); | ||||||||
1793 | // Update the call site info. | ||||||||
1794 | if (MI->shouldUpdateCallSiteInfo()) | ||||||||
1795 | MI->getMF()->moveCallSiteInfo(MI, FoldMI); | ||||||||
1796 | MI->eraseFromParent(); | ||||||||
1797 | DefMI->eraseFromParent(); | ||||||||
1798 | MRI->markUsesInDebugValueAsUndef(FoldedReg); | ||||||||
1799 | FoldAsLoadDefCandidates.erase(FoldedReg); | ||||||||
1800 | ++NumLoadFold; | ||||||||
1801 | |||||||||
1802 | // MI is replaced with FoldMI so we can continue trying to fold | ||||||||
1803 | Changed = true; | ||||||||
1804 | MI = FoldMI; | ||||||||
1805 | } | ||||||||
1806 | } | ||||||||
1807 | } | ||||||||
1808 | } | ||||||||
1809 | |||||||||
1810 | // If we run into an instruction we can't fold across, discard | ||||||||
1811 | // the load candidates. Note: We might be able to fold *into* this | ||||||||
1812 | // instruction, so this needs to be after the folding logic. | ||||||||
1813 | if (MI->isLoadFoldBarrier()) { | ||||||||
1814 | LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI)do { } while (false); | ||||||||
1815 | FoldAsLoadDefCandidates.clear(); | ||||||||
1816 | } | ||||||||
1817 | } | ||||||||
1818 | } | ||||||||
1819 | |||||||||
1820 | return Changed; | ||||||||
1821 | } | ||||||||
1822 | |||||||||
1823 | ValueTrackerResult ValueTracker::getNextSourceFromCopy() { | ||||||||
1824 | assert(Def->isCopy() && "Invalid definition")((void)0); | ||||||||
1825 | // Copy instruction are supposed to be: Def = Src. | ||||||||
1826 | // If someone breaks this assumption, bad things will happen everywhere. | ||||||||
1827 | // There may be implicit uses preventing the copy to be moved across | ||||||||
1828 | // some target specific register definitions | ||||||||
1829 | assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&((void)0) | ||||||||
1830 | "Invalid number of operands")((void)0); | ||||||||
1831 | assert(!Def->hasImplicitDef() && "Only implicit uses are allowed")((void)0); | ||||||||
1832 | |||||||||
1833 | if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) | ||||||||
1834 | // If we look for a different subreg, it means we want a subreg of src. | ||||||||
1835 | // Bails as we do not support composing subregs yet. | ||||||||
1836 | return ValueTrackerResult(); | ||||||||
1837 | // Otherwise, we want the whole source. | ||||||||
1838 | const MachineOperand &Src = Def->getOperand(1); | ||||||||
1839 | if (Src.isUndef()) | ||||||||
1840 | return ValueTrackerResult(); | ||||||||
1841 | return ValueTrackerResult(Src.getReg(), Src.getSubReg()); | ||||||||
1842 | } | ||||||||
1843 | |||||||||
1844 | ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { | ||||||||
1845 | assert(Def->isBitcast() && "Invalid definition")((void)0); | ||||||||
1846 | |||||||||
1847 | // Bail if there are effects that a plain copy will not expose. | ||||||||
1848 | if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) | ||||||||
1849 | return ValueTrackerResult(); | ||||||||
1850 | |||||||||
1851 | // Bitcasts with more than one def are not supported. | ||||||||
1852 | if (Def->getDesc().getNumDefs() != 1) | ||||||||
1853 | return ValueTrackerResult(); | ||||||||
1854 | const MachineOperand DefOp = Def->getOperand(DefIdx); | ||||||||
1855 | if (DefOp.getSubReg() != DefSubReg) | ||||||||
1856 | // If we look for a different subreg, it means we want a subreg of the src. | ||||||||
1857 | // Bails as we do not support composing subregs yet. | ||||||||
1858 | return ValueTrackerResult(); | ||||||||
1859 | |||||||||
1860 | unsigned SrcIdx = Def->getNumOperands(); | ||||||||
1861 | for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; | ||||||||
1862 | ++OpIdx) { | ||||||||
1863 | const MachineOperand &MO = Def->getOperand(OpIdx); | ||||||||
1864 | if (!MO.isReg() || !MO.getReg()) | ||||||||
1865 | continue; | ||||||||
1866 | // Ignore dead implicit defs. | ||||||||
1867 | if (MO.isImplicit() && MO.isDead()) | ||||||||
1868 | continue; | ||||||||
1869 | assert(!MO.isDef() && "We should have skipped all the definitions by now")((void)0); | ||||||||
1870 | if (SrcIdx != EndOpIdx) | ||||||||
1871 | // Multiple sources? | ||||||||
1872 | return ValueTrackerResult(); | ||||||||
1873 | SrcIdx = OpIdx; | ||||||||
1874 | } | ||||||||
1875 | |||||||||
1876 | // In some rare case, Def has no input, SrcIdx is out of bound, | ||||||||
1877 | // getOperand(SrcIdx) will fail below. | ||||||||
1878 | if (SrcIdx >= Def->getNumOperands()) | ||||||||
1879 | return ValueTrackerResult(); | ||||||||
1880 | |||||||||
1881 | // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY | ||||||||
1882 | // will break the assumed guarantees for the upper bits. | ||||||||
1883 | for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { | ||||||||
1884 | if (UseMI.isSubregToReg()) | ||||||||
1885 | return ValueTrackerResult(); | ||||||||
1886 | } | ||||||||
1887 | |||||||||
1888 | const MachineOperand &Src = Def->getOperand(SrcIdx); | ||||||||
1889 | if (Src.isUndef()) | ||||||||
1890 | return ValueTrackerResult(); | ||||||||
1891 | return ValueTrackerResult(Src.getReg(), Src.getSubReg()); | ||||||||
1892 | } | ||||||||
1893 | |||||||||
1894 | ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { | ||||||||
1895 | assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&((void)0) | ||||||||
1896 | "Invalid definition")((void)0); | ||||||||
1897 | |||||||||
1898 | if (Def->getOperand(DefIdx).getSubReg()) | ||||||||
1899 | // If we are composing subregs, bail out. | ||||||||
1900 | // The case we are checking is Def.<subreg> = REG_SEQUENCE. | ||||||||
1901 | // This should almost never happen as the SSA property is tracked at | ||||||||
1902 | // the register level (as opposed to the subreg level). | ||||||||
1903 | // I.e., | ||||||||
1904 | // Def.sub0 = | ||||||||
1905 | // Def.sub1 = | ||||||||
1906 | // is a valid SSA representation for Def.sub0 and Def.sub1, but not for | ||||||||
1907 | // Def. Thus, it must not be generated. | ||||||||
1908 | // However, some code could theoretically generates a single | ||||||||
1909 | // Def.sub0 (i.e, not defining the other subregs) and we would | ||||||||
1910 | // have this case. | ||||||||
1911 | // If we can ascertain (or force) that this never happens, we could | ||||||||
1912 | // turn that into an assertion. | ||||||||
1913 | return ValueTrackerResult(); | ||||||||
1914 | |||||||||
1915 | if (!TII) | ||||||||
1916 | // We could handle the REG_SEQUENCE here, but we do not want to | ||||||||
1917 | // duplicate the code from the generic TII. | ||||||||
1918 | return ValueTrackerResult(); | ||||||||
1919 | |||||||||
1920 | SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; | ||||||||
1921 | if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) | ||||||||
1922 | return ValueTrackerResult(); | ||||||||
1923 | |||||||||
1924 | // We are looking at: | ||||||||
1925 | // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... | ||||||||
1926 | // Check if one of the operand defines the subreg we are interested in. | ||||||||
1927 | for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { | ||||||||
1928 | if (RegSeqInput.SubIdx == DefSubReg) | ||||||||
1929 | return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); | ||||||||
1930 | } | ||||||||
1931 | |||||||||
1932 | // If the subreg we are tracking is super-defined by another subreg, | ||||||||
1933 | // we could follow this value. However, this would require to compose | ||||||||
1934 | // the subreg and we do not do that for now. | ||||||||
1935 | return ValueTrackerResult(); | ||||||||
1936 | } | ||||||||
1937 | |||||||||
1938 | ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { | ||||||||
1939 | assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&((void)0) | ||||||||
1940 | "Invalid definition")((void)0); | ||||||||
1941 | |||||||||
1942 | if (Def->getOperand(DefIdx).getSubReg()) | ||||||||
1943 | // If we are composing subreg, bail out. | ||||||||
1944 | // Same remark as getNextSourceFromRegSequence. | ||||||||
1945 | // I.e., this may be turned into an assert. | ||||||||
1946 | return ValueTrackerResult(); | ||||||||
1947 | |||||||||
1948 | if (!TII) | ||||||||
1949 | // We could handle the REG_SEQUENCE here, but we do not want to | ||||||||
1950 | // duplicate the code from the generic TII. | ||||||||
1951 | return ValueTrackerResult(); | ||||||||
1952 | |||||||||
1953 | RegSubRegPair BaseReg; | ||||||||
1954 | RegSubRegPairAndIdx InsertedReg; | ||||||||
1955 | if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) | ||||||||
1956 | return ValueTrackerResult(); | ||||||||
1957 | |||||||||
1958 | // We are looking at: | ||||||||
1959 | // Def = INSERT_SUBREG v0, v1, sub1 | ||||||||
1960 | // There are two cases: | ||||||||
1961 | // 1. DefSubReg == sub1, get v1. | ||||||||
1962 | // 2. DefSubReg != sub1, the value may be available through v0. | ||||||||
1963 | |||||||||
1964 | // #1 Check if the inserted register matches the required sub index. | ||||||||
1965 | if (InsertedReg.SubIdx == DefSubReg) { | ||||||||
1966 | return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); | ||||||||
1967 | } | ||||||||
1968 | // #2 Otherwise, if the sub register we are looking for is not partial | ||||||||
1969 | // defined by the inserted element, we can look through the main | ||||||||
1970 | // register (v0). | ||||||||
1971 | const MachineOperand &MODef = Def->getOperand(DefIdx); | ||||||||
1972 | // If the result register (Def) and the base register (v0) do not | ||||||||
1973 | // have the same register class or if we have to compose | ||||||||
1974 | // subregisters, bail out. | ||||||||
1975 | if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || | ||||||||
1976 | BaseReg.SubReg) | ||||||||
1977 | return ValueTrackerResult(); | ||||||||
1978 | |||||||||
1979 | // Get the TRI and check if the inserted sub-register overlaps with the | ||||||||
1980 | // sub-register we are tracking. | ||||||||
1981 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); | ||||||||
1982 | if (!TRI || | ||||||||
1983 | !(TRI->getSubRegIndexLaneMask(DefSubReg) & | ||||||||
1984 | TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) | ||||||||
1985 | return ValueTrackerResult(); | ||||||||
1986 | // At this point, the value is available in v0 via the same subreg | ||||||||
1987 | // we used for Def. | ||||||||
1988 | return ValueTrackerResult(BaseReg.Reg, DefSubReg); | ||||||||
1989 | } | ||||||||
1990 | |||||||||
1991 | ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { | ||||||||
1992 | assert((Def->isExtractSubreg() ||((void)0) | ||||||||
1993 | Def->isExtractSubregLike()) && "Invalid definition")((void)0); | ||||||||
1994 | // We are looking at: | ||||||||
1995 | // Def = EXTRACT_SUBREG v0, sub0 | ||||||||
1996 | |||||||||
1997 | // Bail if we have to compose sub registers. | ||||||||
1998 | // Indeed, if DefSubReg != 0, we would have to compose it with sub0. | ||||||||
1999 | if (DefSubReg) | ||||||||
2000 | return ValueTrackerResult(); | ||||||||
2001 | |||||||||
2002 | if (!TII) | ||||||||
2003 | // We could handle the EXTRACT_SUBREG here, but we do not want to | ||||||||
2004 | // duplicate the code from the generic TII. | ||||||||
2005 | return ValueTrackerResult(); | ||||||||
2006 | |||||||||
2007 | RegSubRegPairAndIdx ExtractSubregInputReg; | ||||||||
2008 | if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) | ||||||||
2009 | return ValueTrackerResult(); | ||||||||
2010 | |||||||||
2011 | // Bail if we have to compose sub registers. | ||||||||
2012 | // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. | ||||||||
2013 | if (ExtractSubregInputReg.SubReg) | ||||||||
2014 | return ValueTrackerResult(); | ||||||||
2015 | // Otherwise, the value is available in the v0.sub0. | ||||||||
2016 | return ValueTrackerResult(ExtractSubregInputReg.Reg, | ||||||||
2017 | ExtractSubregInputReg.SubIdx); | ||||||||
2018 | } | ||||||||
2019 | |||||||||
2020 | ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { | ||||||||
2021 | assert(Def->isSubregToReg() && "Invalid definition")((void)0); | ||||||||
2022 | // We are looking at: | ||||||||
2023 | // Def = SUBREG_TO_REG Imm, v0, sub0 | ||||||||
2024 | |||||||||
2025 | // Bail if we have to compose sub registers. | ||||||||
2026 | // If DefSubReg != sub0, we would have to check that all the bits | ||||||||
2027 | // we track are included in sub0 and if yes, we would have to | ||||||||
2028 | // determine the right subreg in v0. | ||||||||
2029 | if (DefSubReg != Def->getOperand(3).getImm()) | ||||||||
2030 | return ValueTrackerResult(); | ||||||||
2031 | // Bail if we have to compose sub registers. | ||||||||
2032 | // Likewise, if v0.subreg != 0, we would have to compose it with sub0. | ||||||||
2033 | if (Def->getOperand(2).getSubReg()) | ||||||||
2034 | return ValueTrackerResult(); | ||||||||
2035 | |||||||||
2036 | return ValueTrackerResult(Def->getOperand(2).getReg(), | ||||||||
2037 | Def->getOperand(3).getImm()); | ||||||||
2038 | } | ||||||||
2039 | |||||||||
2040 | /// Explore each PHI incoming operand and return its sources. | ||||||||
2041 | ValueTrackerResult ValueTracker::getNextSourceFromPHI() { | ||||||||
2042 | assert(Def->isPHI() && "Invalid definition")((void)0); | ||||||||
2043 | ValueTrackerResult Res; | ||||||||
2044 | |||||||||
2045 | // If we look for a different subreg, bail as we do not support composing | ||||||||
2046 | // subregs yet. | ||||||||
2047 | if (Def->getOperand(0).getSubReg() != DefSubReg) | ||||||||
2048 | return ValueTrackerResult(); | ||||||||
2049 | |||||||||
2050 | // Return all register sources for PHI instructions. | ||||||||
2051 | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { | ||||||||
2052 | const MachineOperand &MO = Def->getOperand(i); | ||||||||
2053 | assert(MO.isReg() && "Invalid PHI instruction")((void)0); | ||||||||
2054 | // We have no code to deal with undef operands. They shouldn't happen in | ||||||||
2055 | // normal programs anyway. | ||||||||
2056 | if (MO.isUndef()) | ||||||||
2057 | return ValueTrackerResult(); | ||||||||
2058 | Res.addSource(MO.getReg(), MO.getSubReg()); | ||||||||
2059 | } | ||||||||
2060 | |||||||||
2061 | return Res; | ||||||||
2062 | } | ||||||||
2063 | |||||||||
2064 | ValueTrackerResult ValueTracker::getNextSourceImpl() { | ||||||||
2065 | assert(Def && "This method needs a valid definition")((void)0); | ||||||||
2066 | |||||||||
2067 | assert(((Def->getOperand(DefIdx).isDef() &&((void)0) | ||||||||
2068 | (DefIdx < Def->getDesc().getNumDefs() ||((void)0) | ||||||||
2069 | Def->getDesc().isVariadic())) ||((void)0) | ||||||||
2070 | Def->getOperand(DefIdx).isImplicit()) &&((void)0) | ||||||||
2071 | "Invalid DefIdx")((void)0); | ||||||||
2072 | if (Def->isCopy()) | ||||||||
2073 | return getNextSourceFromCopy(); | ||||||||
2074 | if (Def->isBitcast()) | ||||||||
2075 | return getNextSourceFromBitcast(); | ||||||||
2076 | // All the remaining cases involve "complex" instructions. | ||||||||
2077 | // Bail if we did not ask for the advanced tracking. | ||||||||
2078 | if (DisableAdvCopyOpt) | ||||||||
2079 | return ValueTrackerResult(); | ||||||||
2080 | if (Def->isRegSequence() || Def->isRegSequenceLike()) | ||||||||
2081 | return getNextSourceFromRegSequence(); | ||||||||
2082 | if (Def->isInsertSubreg() || Def->isInsertSubregLike()) | ||||||||
2083 | return getNextSourceFromInsertSubreg(); | ||||||||
2084 | if (Def->isExtractSubreg() || Def->isExtractSubregLike()) | ||||||||
2085 | return getNextSourceFromExtractSubreg(); | ||||||||
2086 | if (Def->isSubregToReg()) | ||||||||
2087 | return getNextSourceFromSubregToReg(); | ||||||||
2088 | if (Def->isPHI()) | ||||||||
2089 | return getNextSourceFromPHI(); | ||||||||
2090 | return ValueTrackerResult(); | ||||||||
2091 | } | ||||||||
2092 | |||||||||
2093 | ValueTrackerResult ValueTracker::getNextSource() { | ||||||||
2094 | // If we reach a point where we cannot move up in the use-def chain, | ||||||||
2095 | // there is nothing we can get. | ||||||||
2096 | if (!Def) | ||||||||
2097 | return ValueTrackerResult(); | ||||||||
2098 | |||||||||
2099 | ValueTrackerResult Res = getNextSourceImpl(); | ||||||||
2100 | if (Res.isValid()) { | ||||||||
2101 | // Update definition, definition index, and subregister for the | ||||||||
2102 | // next call of getNextSource. | ||||||||
2103 | // Update the current register. | ||||||||
2104 | bool OneRegSrc = Res.getNumSources() == 1; | ||||||||
2105 | if (OneRegSrc) | ||||||||
2106 | Reg = Res.getSrcReg(0); | ||||||||
2107 | // Update the result before moving up in the use-def chain | ||||||||
2108 | // with the instruction containing the last found sources. | ||||||||
2109 | Res.setInst(Def); | ||||||||
2110 | |||||||||
2111 | // If we can still move up in the use-def chain, move to the next | ||||||||
2112 | // definition. | ||||||||
2113 | if (!Register::isPhysicalRegister(Reg) && OneRegSrc) { | ||||||||
2114 | MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); | ||||||||
2115 | if (DI != MRI.def_end()) { | ||||||||
2116 | Def = DI->getParent(); | ||||||||
2117 | DefIdx = DI.getOperandNo(); | ||||||||
2118 | DefSubReg = Res.getSrcSubReg(0); | ||||||||
2119 | } else { | ||||||||
2120 | Def = nullptr; | ||||||||
2121 | } | ||||||||
2122 | return Res; | ||||||||
2123 | } | ||||||||
2124 | } | ||||||||
2125 | // If we end up here, this means we will not be able to find another source | ||||||||
2126 | // for the next iteration. Make sure any new call to getNextSource bails out | ||||||||
2127 | // early by cutting the use-def chain. | ||||||||
2128 | Def = nullptr; | ||||||||
2129 | return Res; | ||||||||
2130 | } |
1 | //===-- llvm/CodeGen/Register.h ---------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_CODEGEN_REGISTER_H |
10 | #define LLVM_CODEGEN_REGISTER_H |
11 | |
12 | #include "llvm/MC/MCRegister.h" |
13 | #include <cassert> |
14 | |
15 | namespace llvm { |
16 | |
17 | /// Wrapper class representing virtual and physical registers. Should be passed |
18 | /// by value. |
19 | class Register { |
20 | unsigned Reg; |
21 | |
22 | public: |
23 | constexpr Register(unsigned Val = 0): Reg(Val) {} |
24 | constexpr Register(MCRegister Val): Reg(Val) {} |
25 | |
26 | // Register numbers can represent physical registers, virtual registers, and |
27 | // sometimes stack slots. The unsigned values are divided into these ranges: |
28 | // |
29 | // 0 Not a register, can be used as a sentinel. |
30 | // [1;2^30) Physical registers assigned by TableGen. |
31 | // [2^30;2^31) Stack slots. (Rarely used.) |
32 | // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. |
33 | // |
34 | // Further sentinels can be allocated from the small negative integers. |
35 | // DenseMapInfo<unsigned> uses -1u and -2u. |
36 | static_assert(std::numeric_limits<decltype(Reg)>::max() >= 0xFFFFFFFF, |
37 | "Reg isn't large enough to hold full range."); |
38 | |
39 | /// isStackSlot - Sometimes it is useful the be able to store a non-negative |
40 | /// frame index in a variable that normally holds a register. isStackSlot() |
41 | /// returns true if Reg is in the range used for stack slots. |
42 | /// |
43 | /// FIXME: remove in favor of member. |
44 | static bool isStackSlot(unsigned Reg) { |
45 | return MCRegister::isStackSlot(Reg); |
46 | } |
47 | |
48 | /// Return true if this is a stack slot. |
49 | bool isStack() const { return MCRegister::isStackSlot(Reg); } |
50 | |
51 | /// Compute the frame index from a register value representing a stack slot. |
52 | static int stackSlot2Index(Register Reg) { |
53 | assert(Reg.isStack() && "Not a stack slot")((void)0); |
54 | return int(Reg - MCRegister::FirstStackSlot); |
55 | } |
56 | |
57 | /// Convert a non-negative frame index to a stack slot register value. |
58 | static Register index2StackSlot(int FI) { |
59 | assert(FI >= 0 && "Cannot hold a negative frame index.")((void)0); |
60 | return Register(FI + MCRegister::FirstStackSlot); |
61 | } |
62 | |
63 | /// Return true if the specified register number is in |
64 | /// the physical register namespace. |
65 | static bool isPhysicalRegister(unsigned Reg) { |
66 | return MCRegister::isPhysicalRegister(Reg); |
67 | } |
68 | |
69 | /// Return true if the specified register number is in |
70 | /// the virtual register namespace. |
71 | static bool isVirtualRegister(unsigned Reg) { |
72 | return Reg & MCRegister::VirtualRegFlag && !isStackSlot(Reg); |
73 | } |
74 | |
75 | /// Convert a virtual register number to a 0-based index. |
76 | /// The first virtual register in a function will get the index 0. |
77 | static unsigned virtReg2Index(Register Reg) { |
78 | assert(isVirtualRegister(Reg) && "Not a virtual register")((void)0); |
79 | return Reg & ~MCRegister::VirtualRegFlag; |
80 | } |
81 | |
82 | /// Convert a 0-based index to a virtual register number. |
83 | /// This is the inverse operation of VirtReg2IndexFunctor below. |
84 | static Register index2VirtReg(unsigned Index) { |
85 | assert(Index < (1u << 31) && "Index too large for virtual register range.")((void)0); |
86 | return Index | MCRegister::VirtualRegFlag; |
87 | } |
88 | |
89 | /// Return true if the specified register number is in the virtual register |
90 | /// namespace. |
91 | bool isVirtual() const { |
92 | return isVirtualRegister(Reg); |
93 | } |
94 | |
95 | /// Return true if the specified register number is in the physical register |
96 | /// namespace. |
97 | bool isPhysical() const { |
98 | return isPhysicalRegister(Reg); |
99 | } |
100 | |
101 | /// Convert a virtual register number to a 0-based index. The first virtual |
102 | /// register in a function will get the index 0. |
103 | unsigned virtRegIndex() const { |
104 | return virtReg2Index(Reg); |
105 | } |
106 | |
107 | constexpr operator unsigned() const { |
108 | return Reg; |
109 | } |
110 | |
111 | unsigned id() const { return Reg; } |
112 | |
113 | operator MCRegister() const { |
114 | return MCRegister(Reg); |
115 | } |
116 | |
117 | /// Utility to check-convert this value to a MCRegister. The caller is |
118 | /// expected to have already validated that this Register is, indeed, |
119 | /// physical. |
120 | MCRegister asMCReg() const { |
121 | assert(Reg == MCRegister::NoRegister ||((void)0) |
122 | MCRegister::isPhysicalRegister(Reg))((void)0); |
123 | return MCRegister(Reg); |
124 | } |
125 | |
126 | bool isValid() const { return Reg != MCRegister::NoRegister; } |
127 | |
128 | /// Comparisons between register objects |
129 | bool operator==(const Register &Other) const { return Reg == Other.Reg; } |
130 | bool operator!=(const Register &Other) const { return Reg != Other.Reg; } |
131 | bool operator==(const MCRegister &Other) const { return Reg == Other.id(); } |
132 | bool operator!=(const MCRegister &Other) const { return Reg != Other.id(); } |
133 | |
134 | /// Comparisons against register constants. E.g. |
135 | /// * R == AArch64::WZR |
136 | /// * R == 0 |
137 | /// * R == VirtRegMap::NO_PHYS_REG |
138 | bool operator==(unsigned Other) const { return Reg == Other; } |
139 | bool operator!=(unsigned Other) const { return Reg != Other; } |
140 | bool operator==(int Other) const { return Reg == unsigned(Other); } |
141 | bool operator!=(int Other) const { return Reg != unsigned(Other); } |
142 | // MSVC requires that we explicitly declare these two as well. |
143 | bool operator==(MCPhysReg Other) const { return Reg == unsigned(Other); } |
144 | bool operator!=(MCPhysReg Other) const { return Reg != unsigned(Other); } |
145 | }; |
146 | |
147 | // Provide DenseMapInfo for Register |
148 | template<> struct DenseMapInfo<Register> { |
149 | static inline unsigned getEmptyKey() { |
150 | return DenseMapInfo<unsigned>::getEmptyKey(); |
151 | } |
152 | static inline unsigned getTombstoneKey() { |
153 | return DenseMapInfo<unsigned>::getTombstoneKey(); |
154 | } |
155 | static unsigned getHashValue(const Register &Val) { |
156 | return DenseMapInfo<unsigned>::getHashValue(Val.id()); |
157 | } |
158 | static bool isEqual(const Register &LHS, const Register &RHS) { |
159 | return DenseMapInfo<unsigned>::isEqual(LHS.id(), RHS.id()); |
160 | } |
161 | }; |
162 | |
163 | } |
164 | |
165 | #endif // LLVM_CODEGEN_REGISTER_H |
1 | //===-- llvm/MC/Register.h --------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_MC_MCREGISTER_H |
10 | #define LLVM_MC_MCREGISTER_H |
11 | |
12 | #include "llvm/ADT/DenseMapInfo.h" |
13 | #include <cassert> |
14 | #include <limits> |
15 | |
16 | namespace llvm { |
17 | |
18 | /// An unsigned integer type large enough to represent all physical registers, |
19 | /// but not necessarily virtual registers. |
20 | using MCPhysReg = uint16_t; |
21 | |
22 | /// Wrapper class representing physical registers. Should be passed by value. |
23 | class MCRegister { |
24 | friend hash_code hash_value(const MCRegister &); |
25 | unsigned Reg; |
26 | |
27 | public: |
28 | constexpr MCRegister(unsigned Val = 0): Reg(Val) {} |
29 | |
30 | // Register numbers can represent physical registers, virtual registers, and |
31 | // sometimes stack slots. The unsigned values are divided into these ranges: |
32 | // |
33 | // 0 Not a register, can be used as a sentinel. |
34 | // [1;2^30) Physical registers assigned by TableGen. |
35 | // [2^30;2^31) Stack slots. (Rarely used.) |
36 | // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. |
37 | // |
38 | // Further sentinels can be allocated from the small negative integers. |
39 | // DenseMapInfo<unsigned> uses -1u and -2u. |
40 | static_assert(std::numeric_limits<decltype(Reg)>::max() >= 0xFFFFFFFF, |
41 | "Reg isn't large enough to hold full range."); |
42 | static constexpr unsigned NoRegister = 0u; |
43 | static constexpr unsigned FirstPhysicalReg = 1u; |
44 | static constexpr unsigned FirstStackSlot = 1u << 30; |
45 | static constexpr unsigned VirtualRegFlag = 1u << 31; |
46 | |
47 | /// This is the portion of the positive number space that is not a physical |
48 | /// register. StackSlot values do not exist in the MC layer, see |
49 | /// Register::isStackSlot() for the more information on them. |
50 | /// |
51 | static bool isStackSlot(unsigned Reg) { |
52 | return FirstStackSlot <= Reg && Reg < VirtualRegFlag; |
53 | } |
54 | |
55 | /// Return true if the specified register number is in |
56 | /// the physical register namespace. |
57 | static bool isPhysicalRegister(unsigned Reg) { |
58 | return FirstPhysicalReg <= Reg && Reg < FirstStackSlot; |
59 | } |
60 | |
61 | constexpr operator unsigned() const { |
62 | return Reg; |
63 | } |
64 | |
65 | /// Check the provided unsigned value is a valid MCRegister. |
66 | static MCRegister from(unsigned Val) { |
67 | assert(Val == NoRegister || isPhysicalRegister(Val))((void)0); |
68 | return MCRegister(Val); |
69 | } |
70 | |
71 | unsigned id() const { |
72 | return Reg; |
73 | } |
74 | |
75 | bool isValid() const { return Reg != NoRegister; } |
76 | |
77 | /// Comparisons between register objects |
78 | bool operator==(const MCRegister &Other) const { return Reg == Other.Reg; } |
79 | bool operator!=(const MCRegister &Other) const { return Reg != Other.Reg; } |
80 | |
81 | /// Comparisons against register constants. E.g. |
82 | /// * R == AArch64::WZR |
83 | /// * R == 0 |
84 | /// * R == VirtRegMap::NO_PHYS_REG |
85 | bool operator==(unsigned Other) const { return Reg == Other; } |
86 | bool operator!=(unsigned Other) const { return Reg != Other; } |
87 | bool operator==(int Other) const { return Reg == unsigned(Other); } |
88 | bool operator!=(int Other) const { return Reg != unsigned(Other); } |
89 | // MSVC requires that we explicitly declare these two as well. |
90 | bool operator==(MCPhysReg Other) const { return Reg == unsigned(Other); } |
91 | bool operator!=(MCPhysReg Other) const { return Reg != unsigned(Other); } |
92 | }; |
93 | |
94 | // Provide DenseMapInfo for MCRegister |
95 | template<> struct DenseMapInfo<MCRegister> { |
96 | static inline unsigned getEmptyKey() { |
97 | return DenseMapInfo<unsigned>::getEmptyKey(); |
98 | } |
99 | static inline unsigned getTombstoneKey() { |
100 | return DenseMapInfo<unsigned>::getTombstoneKey(); |
101 | } |
102 | static unsigned getHashValue(const MCRegister &Val) { |
103 | return DenseMapInfo<unsigned>::getHashValue(Val.id()); |
104 | } |
105 | static bool isEqual(const MCRegister &LHS, const MCRegister &RHS) { |
106 | return DenseMapInfo<unsigned>::isEqual(LHS.id(), RHS.id()); |
107 | } |
108 | }; |
109 | |
110 | inline hash_code hash_value(const MCRegister &Reg) { |
111 | return hash_value(Reg.id()); |
112 | } |
113 | } |
114 | |
115 | #endif // LLVM_MC_MCREGISTER_H |
1 | //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the declaration of the MachineInstr class, which is the |
10 | // basic representation for all target dependent machine instructions used by |
11 | // the back end. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_CODEGEN_MACHINEINSTR_H |
16 | #define LLVM_CODEGEN_MACHINEINSTR_H |
17 | |
18 | #include "llvm/ADT/DenseMapInfo.h" |
19 | #include "llvm/ADT/PointerSumType.h" |
20 | #include "llvm/ADT/SmallSet.h" |
21 | #include "llvm/ADT/ilist.h" |
22 | #include "llvm/ADT/ilist_node.h" |
23 | #include "llvm/ADT/iterator_range.h" |
24 | #include "llvm/CodeGen/MachineMemOperand.h" |
25 | #include "llvm/CodeGen/MachineOperand.h" |
26 | #include "llvm/CodeGen/TargetOpcodes.h" |
27 | #include "llvm/IR/DebugLoc.h" |
28 | #include "llvm/IR/InlineAsm.h" |
29 | #include "llvm/IR/PseudoProbe.h" |
30 | #include "llvm/MC/MCInstrDesc.h" |
31 | #include "llvm/MC/MCSymbol.h" |
32 | #include "llvm/Support/ArrayRecycler.h" |
33 | #include "llvm/Support/TrailingObjects.h" |
34 | #include <algorithm> |
35 | #include <cassert> |
36 | #include <cstdint> |
37 | #include <utility> |
38 | |
39 | namespace llvm { |
40 | |
41 | class AAResults; |
42 | template <typename T> class ArrayRef; |
43 | class DIExpression; |
44 | class DILocalVariable; |
45 | class MachineBasicBlock; |
46 | class MachineFunction; |
47 | class MachineRegisterInfo; |
48 | class ModuleSlotTracker; |
49 | class raw_ostream; |
50 | template <typename T> class SmallVectorImpl; |
51 | class SmallBitVector; |
52 | class StringRef; |
53 | class TargetInstrInfo; |
54 | class TargetRegisterClass; |
55 | class TargetRegisterInfo; |
56 | |
57 | //===----------------------------------------------------------------------===// |
58 | /// Representation of each machine instruction. |
59 | /// |
60 | /// This class isn't a POD type, but it must have a trivial destructor. When a |
61 | /// MachineFunction is deleted, all the contained MachineInstrs are deallocated |
62 | /// without having their destructor called. |
63 | /// |
64 | class MachineInstr |
65 | : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, |
66 | ilist_sentinel_tracking<true>> { |
67 | public: |
68 | using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; |
69 | |
70 | /// Flags to specify different kinds of comments to output in |
71 | /// assembly code. These flags carry semantic information not |
72 | /// otherwise easily derivable from the IR text. |
73 | /// |
74 | enum CommentFlag { |
75 | ReloadReuse = 0x1, // higher bits are reserved for target dep comments. |
76 | NoSchedComment = 0x2, |
77 | TAsmComments = 0x4 // Target Asm comments should start from this value. |
78 | }; |
79 | |
80 | enum MIFlag { |
81 | NoFlags = 0, |
82 | FrameSetup = 1 << 0, // Instruction is used as a part of |
83 | // function frame setup code. |
84 | FrameDestroy = 1 << 1, // Instruction is used as a part of |
85 | // function frame destruction code. |
86 | BundledPred = 1 << 2, // Instruction has bundled predecessors. |
87 | BundledSucc = 1 << 3, // Instruction has bundled successors. |
88 | FmNoNans = 1 << 4, // Instruction does not support Fast |
89 | // math nan values. |
90 | FmNoInfs = 1 << 5, // Instruction does not support Fast |
91 | // math infinity values. |
92 | FmNsz = 1 << 6, // Instruction is not required to retain |
93 | // signed zero values. |
94 | FmArcp = 1 << 7, // Instruction supports Fast math |
95 | // reciprocal approximations. |
96 | FmContract = 1 << 8, // Instruction supports Fast math |
97 | // contraction operations like fma. |
98 | FmAfn = 1 << 9, // Instruction may map to Fast math |
99 | // instrinsic approximation. |
100 | FmReassoc = 1 << 10, // Instruction supports Fast math |
101 | // reassociation of operand order. |
102 | NoUWrap = 1 << 11, // Instruction supports binary operator |
103 | // no unsigned wrap. |
104 | NoSWrap = 1 << 12, // Instruction supports binary operator |
105 | // no signed wrap. |
106 | IsExact = 1 << 13, // Instruction supports division is |
107 | // known to be exact. |
108 | NoFPExcept = 1 << 14, // Instruction does not raise |
109 | // floatint-point exceptions. |
110 | NoMerge = 1 << 15, // Passes that drop source location info |
111 | // (e.g. branch folding) should skip |
112 | // this instruction. |
113 | }; |
114 | |
115 | private: |
116 | const MCInstrDesc *MCID; // Instruction descriptor. |
117 | MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. |
118 | |
119 | // Operands are allocated by an ArrayRecycler. |
120 | MachineOperand *Operands = nullptr; // Pointer to the first operand. |
121 | unsigned NumOperands = 0; // Number of operands on instruction. |
122 | |
123 | uint16_t Flags = 0; // Various bits of additional |
124 | // information about machine |
125 | // instruction. |
126 | |
127 | uint8_t AsmPrinterFlags = 0; // Various bits of information used by |
128 | // the AsmPrinter to emit helpful |
129 | // comments. This is *not* semantic |
130 | // information. Do not use this for |
131 | // anything other than to convey comment |
132 | // information to AsmPrinter. |
133 | |
134 | // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags |
135 | // to properly pack. |
136 | using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; |
137 | OperandCapacity CapOperands; // Capacity of the Operands array. |
138 | |
139 | /// Internal implementation detail class that provides out-of-line storage for |
140 | /// extra info used by the machine instruction when this info cannot be stored |
141 | /// in-line within the instruction itself. |
142 | /// |
143 | /// This has to be defined eagerly due to the implementation constraints of |
144 | /// `PointerSumType` where it is used. |
145 | class ExtraInfo final |
146 | : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> { |
147 | public: |
148 | static ExtraInfo *create(BumpPtrAllocator &Allocator, |
149 | ArrayRef<MachineMemOperand *> MMOs, |
150 | MCSymbol *PreInstrSymbol = nullptr, |
151 | MCSymbol *PostInstrSymbol = nullptr, |
152 | MDNode *HeapAllocMarker = nullptr) { |
153 | bool HasPreInstrSymbol = PreInstrSymbol != nullptr; |
154 | bool HasPostInstrSymbol = PostInstrSymbol != nullptr; |
155 | bool HasHeapAllocMarker = HeapAllocMarker != nullptr; |
156 | auto *Result = new (Allocator.Allocate( |
157 | totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>( |
158 | MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, |
159 | HasHeapAllocMarker), |
160 | alignof(ExtraInfo))) |
161 | ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, |
162 | HasHeapAllocMarker); |
163 | |
164 | // Copy the actual data into the trailing objects. |
165 | std::copy(MMOs.begin(), MMOs.end(), |
166 | Result->getTrailingObjects<MachineMemOperand *>()); |
167 | |
168 | if (HasPreInstrSymbol) |
169 | Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; |
170 | if (HasPostInstrSymbol) |
171 | Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = |
172 | PostInstrSymbol; |
173 | if (HasHeapAllocMarker) |
174 | Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker; |
175 | |
176 | return Result; |
177 | } |
178 | |
179 | ArrayRef<MachineMemOperand *> getMMOs() const { |
180 | return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); |
181 | } |
182 | |
183 | MCSymbol *getPreInstrSymbol() const { |
184 | return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; |
185 | } |
186 | |
187 | MCSymbol *getPostInstrSymbol() const { |
188 | return HasPostInstrSymbol |
189 | ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] |
190 | : nullptr; |
191 | } |
192 | |
193 | MDNode *getHeapAllocMarker() const { |
194 | return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; |
195 | } |
196 | |
197 | private: |
198 | friend TrailingObjects; |
199 | |
200 | // Description of the extra info, used to interpret the actual optional |
201 | // data appended. |
202 | // |
203 | // Note that this is not terribly space optimized. This leaves a great deal |
204 | // of flexibility to fit more in here later. |
205 | const int NumMMOs; |
206 | const bool HasPreInstrSymbol; |
207 | const bool HasPostInstrSymbol; |
208 | const bool HasHeapAllocMarker; |
209 | |
210 | // Implement the `TrailingObjects` internal API. |
211 | size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { |
212 | return NumMMOs; |
213 | } |
214 | size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { |
215 | return HasPreInstrSymbol + HasPostInstrSymbol; |
216 | } |
217 | size_t numTrailingObjects(OverloadToken<MDNode *>) const { |
218 | return HasHeapAllocMarker; |
219 | } |
220 | |
221 | // Just a boring constructor to allow us to initialize the sizes. Always use |
222 | // the `create` routine above. |
223 | ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, |
224 | bool HasHeapAllocMarker) |
225 | : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), |
226 | HasPostInstrSymbol(HasPostInstrSymbol), |
227 | HasHeapAllocMarker(HasHeapAllocMarker) {} |
228 | }; |
229 | |
230 | /// Enumeration of the kinds of inline extra info available. It is important |
231 | /// that the `MachineMemOperand` inline kind has a tag value of zero to make |
232 | /// it accessible as an `ArrayRef`. |
233 | enum ExtraInfoInlineKinds { |
234 | EIIK_MMO = 0, |
235 | EIIK_PreInstrSymbol, |
236 | EIIK_PostInstrSymbol, |
237 | EIIK_OutOfLine |
238 | }; |
239 | |
240 | // We store extra information about the instruction here. The common case is |
241 | // expected to be nothing or a single pointer (typically a MMO or a symbol). |
242 | // We work to optimize this common case by storing it inline here rather than |
243 | // requiring a separate allocation, but we fall back to an allocation when |
244 | // multiple pointers are needed. |
245 | PointerSumType<ExtraInfoInlineKinds, |
246 | PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, |
247 | PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, |
248 | PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, |
249 | PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> |
250 | Info; |
251 | |
252 | DebugLoc debugLoc; // Source line information. |
253 | |
254 | /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values |
255 | /// defined by this instruction. |
256 | unsigned DebugInstrNum; |
257 | |
258 | // Intrusive list support |
259 | friend struct ilist_traits<MachineInstr>; |
260 | friend struct ilist_callback_traits<MachineBasicBlock>; |
261 | void setParent(MachineBasicBlock *P) { Parent = P; } |
262 | |
263 | /// This constructor creates a copy of the given |
264 | /// MachineInstr in the given MachineFunction. |
265 | MachineInstr(MachineFunction &, const MachineInstr &); |
266 | |
267 | /// This constructor create a MachineInstr and add the implicit operands. |
268 | /// It reserves space for number of operands specified by |
269 | /// MCInstrDesc. An explicit DebugLoc is supplied. |
270 | MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl, |
271 | bool NoImp = false); |
272 | |
273 | // MachineInstrs are pool-allocated and owned by MachineFunction. |
274 | friend class MachineFunction; |
275 | |
276 | void |
277 | dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, |
278 | SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const; |
279 | |
280 | public: |
281 | MachineInstr(const MachineInstr &) = delete; |
282 | MachineInstr &operator=(const MachineInstr &) = delete; |
283 | // Use MachineFunction::DeleteMachineInstr() instead. |
284 | ~MachineInstr() = delete; |
285 | |
286 | const MachineBasicBlock* getParent() const { return Parent; } |
287 | MachineBasicBlock* getParent() { return Parent; } |
288 | |
289 | /// Move the instruction before \p MovePos. |
290 | void moveBefore(MachineInstr *MovePos); |
291 | |
292 | /// Return the function that contains the basic block that this instruction |
293 | /// belongs to. |
294 | /// |
295 | /// Note: this is undefined behaviour if the instruction does not have a |
296 | /// parent. |
297 | const MachineFunction *getMF() const; |
298 | MachineFunction *getMF() { |
299 | return const_cast<MachineFunction *>( |
300 | static_cast<const MachineInstr *>(this)->getMF()); |
301 | } |
302 | |
303 | /// Return the asm printer flags bitvector. |
304 | uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } |
305 | |
306 | /// Clear the AsmPrinter bitvector. |
307 | void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } |
308 | |
309 | /// Return whether an AsmPrinter flag is set. |
310 | bool getAsmPrinterFlag(CommentFlag Flag) const { |
311 | return AsmPrinterFlags & Flag; |
312 | } |
313 | |
314 | /// Set a flag for the AsmPrinter. |
315 | void setAsmPrinterFlag(uint8_t Flag) { |
316 | AsmPrinterFlags |= Flag; |
317 | } |
318 | |
319 | /// Clear specific AsmPrinter flags. |
320 | void clearAsmPrinterFlag(CommentFlag Flag) { |
321 | AsmPrinterFlags &= ~Flag; |
322 | } |
323 | |
324 | /// Return the MI flags bitvector. |
325 | uint16_t getFlags() const { |
326 | return Flags; |
327 | } |
328 | |
329 | /// Return whether an MI flag is set. |
330 | bool getFlag(MIFlag Flag) const { |
331 | return Flags & Flag; |
332 | } |
333 | |
334 | /// Set a MI flag. |
335 | void setFlag(MIFlag Flag) { |
336 | Flags |= (uint16_t)Flag; |
337 | } |
338 | |
339 | void setFlags(unsigned flags) { |
340 | // Filter out the automatically maintained flags. |
341 | unsigned Mask = BundledPred | BundledSucc; |
342 | Flags = (Flags & Mask) | (flags & ~Mask); |
343 | } |
344 | |
345 | /// clearFlag - Clear a MI flag. |
346 | void clearFlag(MIFlag Flag) { |
347 | Flags &= ~((uint16_t)Flag); |
348 | } |
349 | |
350 | /// Return true if MI is in a bundle (but not the first MI in a bundle). |
351 | /// |
352 | /// A bundle looks like this before it's finalized: |
353 | /// ---------------- |
354 | /// | MI | |
355 | /// ---------------- |
356 | /// | |
357 | /// ---------------- |
358 | /// | MI * | |
359 | /// ---------------- |
360 | /// | |
361 | /// ---------------- |
362 | /// | MI * | |
363 | /// ---------------- |
364 | /// In this case, the first MI starts a bundle but is not inside a bundle, the |
365 | /// next 2 MIs are considered "inside" the bundle. |
366 | /// |
367 | /// After a bundle is finalized, it looks like this: |
368 | /// ---------------- |
369 | /// | Bundle | |
370 | /// ---------------- |
371 | /// | |
372 | /// ---------------- |
373 | /// | MI * | |
374 | /// ---------------- |
375 | /// | |
376 | /// ---------------- |
377 | /// | MI * | |
378 | /// ---------------- |
379 | /// | |
380 | /// ---------------- |
381 | /// | MI * | |
382 | /// ---------------- |
383 | /// The first instruction has the special opcode "BUNDLE". It's not "inside" |
384 | /// a bundle, but the next three MIs are. |
385 | bool isInsideBundle() const { |
386 | return getFlag(BundledPred); |
387 | } |
388 | |
389 | /// Return true if this instruction part of a bundle. This is true |
390 | /// if either itself or its following instruction is marked "InsideBundle". |
391 | bool isBundled() const { |
392 | return isBundledWithPred() || isBundledWithSucc(); |
393 | } |
394 | |
395 | /// Return true if this instruction is part of a bundle, and it is not the |
396 | /// first instruction in the bundle. |
397 | bool isBundledWithPred() const { return getFlag(BundledPred); } |
398 | |
399 | /// Return true if this instruction is part of a bundle, and it is not the |
400 | /// last instruction in the bundle. |
401 | bool isBundledWithSucc() const { return getFlag(BundledSucc); } |
402 | |
403 | /// Bundle this instruction with its predecessor. This can be an unbundled |
404 | /// instruction, or it can be the first instruction in a bundle. |
405 | void bundleWithPred(); |
406 | |
407 | /// Bundle this instruction with its successor. This can be an unbundled |
408 | /// instruction, or it can be the last instruction in a bundle. |
409 | void bundleWithSucc(); |
410 | |
411 | /// Break bundle above this instruction. |
412 | void unbundleFromPred(); |
413 | |
414 | /// Break bundle below this instruction. |
415 | void unbundleFromSucc(); |
416 | |
417 | /// Returns the debug location id of this MachineInstr. |
418 | const DebugLoc &getDebugLoc() const { return debugLoc; } |
419 | |
420 | /// Return the operand containing the offset to be used if this DBG_VALUE |
421 | /// instruction is indirect; will be an invalid register if this value is |
422 | /// not indirect, and an immediate with value 0 otherwise. |
423 | const MachineOperand &getDebugOffset() const { |
424 | assert(isNonListDebugValue() && "not a DBG_VALUE")((void)0); |
425 | return getOperand(1); |
426 | } |
427 | MachineOperand &getDebugOffset() { |
428 | assert(isNonListDebugValue() && "not a DBG_VALUE")((void)0); |
429 | return getOperand(1); |
430 | } |
431 | |
432 | /// Return the operand for the debug variable referenced by |
433 | /// this DBG_VALUE instruction. |
434 | const MachineOperand &getDebugVariableOp() const; |
435 | MachineOperand &getDebugVariableOp(); |
436 | |
437 | /// Return the debug variable referenced by |
438 | /// this DBG_VALUE instruction. |
439 | const DILocalVariable *getDebugVariable() const; |
440 | |
441 | /// Return the operand for the complex address expression referenced by |
442 | /// this DBG_VALUE instruction. |
443 | const MachineOperand &getDebugExpressionOp() const; |
444 | MachineOperand &getDebugExpressionOp(); |
445 | |
446 | /// Return the complex address expression referenced by |
447 | /// this DBG_VALUE instruction. |
448 | const DIExpression *getDebugExpression() const; |
449 | |
450 | /// Return the debug label referenced by |
451 | /// this DBG_LABEL instruction. |
452 | const DILabel *getDebugLabel() const; |
453 | |
454 | /// Fetch the instruction number of this MachineInstr. If it does not have |
455 | /// one already, a new and unique number will be assigned. |
456 | unsigned getDebugInstrNum(); |
457 | |
458 | /// Fetch instruction number of this MachineInstr -- but before it's inserted |
459 | /// into \p MF. Needed for transformations that create an instruction but |
460 | /// don't immediately insert them. |
461 | unsigned getDebugInstrNum(MachineFunction &MF); |
462 | |
463 | /// Examine the instruction number of this MachineInstr. May be zero if |
464 | /// it hasn't been assigned a number yet. |
465 | unsigned peekDebugInstrNum() const { return DebugInstrNum; } |
466 | |
467 | /// Set instruction number of this MachineInstr. Avoid using unless you're |
468 | /// deserializing this information. |
469 | void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } |
470 | |
471 | /// Drop any variable location debugging information associated with this |
472 | /// instruction. Use when an instruction is modified in such a way that it no |
473 | /// longer defines the value it used to. Variable locations using that value |
474 | /// will be dropped. |
475 | void dropDebugNumber() { DebugInstrNum = 0; } |
476 | |
477 | /// Emit an error referring to the source location of this instruction. |
478 | /// This should only be used for inline assembly that is somehow |
479 | /// impossible to compile. Other errors should have been handled much |
480 | /// earlier. |
481 | /// |
482 | /// If this method returns, the caller should try to recover from the error. |
483 | void emitError(StringRef Msg) const; |
484 | |
485 | /// Returns the target instruction descriptor of this MachineInstr. |
486 | const MCInstrDesc &getDesc() const { return *MCID; } |
487 | |
488 | /// Returns the opcode of this MachineInstr. |
489 | unsigned getOpcode() const { return MCID->Opcode; } |
490 | |
491 | /// Retuns the total number of operands. |
492 | unsigned getNumOperands() const { return NumOperands; } |
493 | |
494 | /// Returns the total number of operands which are debug locations. |
495 | unsigned getNumDebugOperands() const { |
496 | return std::distance(debug_operands().begin(), debug_operands().end()); |
497 | } |
498 | |
499 | const MachineOperand& getOperand(unsigned i) const { |
500 | assert(i < getNumOperands() && "getOperand() out of range!")((void)0); |
501 | return Operands[i]; |
502 | } |
503 | MachineOperand& getOperand(unsigned i) { |
504 | assert(i < getNumOperands() && "getOperand() out of range!")((void)0); |
505 | return Operands[i]; |
506 | } |
507 | |
508 | MachineOperand &getDebugOperand(unsigned Index) { |
509 | assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!")((void)0); |
510 | return *(debug_operands().begin() + Index); |
511 | } |
512 | const MachineOperand &getDebugOperand(unsigned Index) const { |
513 | assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!")((void)0); |
514 | return *(debug_operands().begin() + Index); |
515 | } |
516 | |
517 | SmallSet<Register, 4> getUsedDebugRegs() const { |
518 | assert(isDebugValue() && "not a DBG_VALUE*")((void)0); |
519 | SmallSet<Register, 4> UsedRegs; |
520 | for (auto MO : debug_operands()) |
521 | if (MO.isReg() && MO.getReg()) |
522 | UsedRegs.insert(MO.getReg()); |
523 | return UsedRegs; |
524 | } |
525 | |
526 | /// Returns whether this debug value has at least one debug operand with the |
527 | /// register \p Reg. |
528 | bool hasDebugOperandForReg(Register Reg) const { |
529 | return any_of(debug_operands(), [Reg](const MachineOperand &Op) { |
530 | return Op.isReg() && Op.getReg() == Reg; |
531 | }); |
532 | } |
533 | |
534 | /// Returns a range of all of the operands that correspond to a debug use of |
535 | /// \p Reg. |
536 | template <typename Operand, typename Instruction> |
537 | static iterator_range< |
538 | filter_iterator<Operand *, std::function<bool(Operand &Op)>>> |
539 | getDebugOperandsForReg(Instruction *MI, Register Reg) { |
540 | std::function<bool(Operand & Op)> OpUsesReg( |
541 | [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); |
542 | return make_filter_range(MI->debug_operands(), OpUsesReg); |
543 | } |
544 | iterator_range<filter_iterator<const MachineOperand *, |
545 | std::function<bool(const MachineOperand &Op)>>> |
546 | getDebugOperandsForReg(Register Reg) const { |
547 | return MachineInstr::getDebugOperandsForReg<const MachineOperand, |
548 | const MachineInstr>(this, Reg); |
549 | } |
550 | iterator_range<filter_iterator<MachineOperand *, |
551 | std::function<bool(MachineOperand &Op)>>> |
552 | getDebugOperandsForReg(Register Reg) { |
553 | return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( |
554 | this, Reg); |
555 | } |
556 | |
557 | bool isDebugOperand(const MachineOperand *Op) const { |
558 | return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); |
559 | } |
560 | |
561 | unsigned getDebugOperandIndex(const MachineOperand *Op) const { |
562 | assert(isDebugOperand(Op) && "Expected a debug operand.")((void)0); |
563 | return std::distance(adl_begin(debug_operands()), Op); |
564 | } |
565 | |
566 | /// Returns the total number of definitions. |
567 | unsigned getNumDefs() const { |
568 | return getNumExplicitDefs() + MCID->getNumImplicitDefs(); |
569 | } |
570 | |
571 | /// Returns true if the instruction has implicit definition. |
572 | bool hasImplicitDef() const { |
573 | for (unsigned I = getNumExplicitOperands(), E = getNumOperands(); |
574 | I != E; ++I) { |
575 | const MachineOperand &MO = getOperand(I); |
576 | if (MO.isDef() && MO.isImplicit()) |
577 | return true; |
578 | } |
579 | return false; |
580 | } |
581 | |
582 | /// Returns the implicit operands number. |
583 | unsigned getNumImplicitOperands() const { |
584 | return getNumOperands() - getNumExplicitOperands(); |
585 | } |
586 | |
587 | /// Return true if operand \p OpIdx is a subregister index. |
588 | bool isOperandSubregIdx(unsigned OpIdx) const { |
589 | assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&((void)0) |
590 | "Expected MO_Immediate operand type.")((void)0); |
591 | if (isExtractSubreg() && OpIdx == 2) |
592 | return true; |
593 | if (isInsertSubreg() && OpIdx == 3) |
594 | return true; |
595 | if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) |
596 | return true; |
597 | if (isSubregToReg() && OpIdx == 3) |
598 | return true; |
599 | return false; |
600 | } |
601 | |
602 | /// Returns the number of non-implicit operands. |
603 | unsigned getNumExplicitOperands() const; |
604 | |
605 | /// Returns the number of non-implicit definitions. |
606 | unsigned getNumExplicitDefs() const; |
607 | |
608 | /// iterator/begin/end - Iterate over all operands of a machine instruction. |
609 | using mop_iterator = MachineOperand *; |
610 | using const_mop_iterator = const MachineOperand *; |
611 | |
612 | mop_iterator operands_begin() { return Operands; } |
613 | mop_iterator operands_end() { return Operands + NumOperands; } |
614 | |
615 | const_mop_iterator operands_begin() const { return Operands; } |
616 | const_mop_iterator operands_end() const { return Operands + NumOperands; } |
617 | |
618 | iterator_range<mop_iterator> operands() { |
619 | return make_range(operands_begin(), operands_end()); |
620 | } |
621 | iterator_range<const_mop_iterator> operands() const { |
622 | return make_range(operands_begin(), operands_end()); |
623 | } |
624 | iterator_range<mop_iterator> explicit_operands() { |
625 | return make_range(operands_begin(), |
626 | operands_begin() + getNumExplicitOperands()); |
627 | } |
628 | iterator_range<const_mop_iterator> explicit_operands() const { |
629 | return make_range(operands_begin(), |
630 | operands_begin() + getNumExplicitOperands()); |
631 | } |
632 | iterator_range<mop_iterator> implicit_operands() { |
633 | return make_range(explicit_operands().end(), operands_end()); |
634 | } |
635 | iterator_range<const_mop_iterator> implicit_operands() const { |
636 | return make_range(explicit_operands().end(), operands_end()); |
637 | } |
638 | /// Returns a range over all operands that are used to determine the variable |
639 | /// location for this DBG_VALUE instruction. |
640 | iterator_range<mop_iterator> debug_operands() { |
641 | assert(isDebugValue() && "Must be a debug value instruction.")((void)0); |
642 | return isDebugValueList() |
643 | ? make_range(operands_begin() + 2, operands_end()) |
644 | : make_range(operands_begin(), operands_begin() + 1); |
645 | } |
646 | /// \copydoc debug_operands() |
647 | iterator_range<const_mop_iterator> debug_operands() const { |
648 | assert(isDebugValue() && "Must be a debug value instruction.")((void)0); |
649 | return isDebugValueList() |
650 | ? make_range(operands_begin() + 2, operands_end()) |
651 | : make_range(operands_begin(), operands_begin() + 1); |
652 | } |
653 | /// Returns a range over all explicit operands that are register definitions. |
654 | /// Implicit definition are not included! |
655 | iterator_range<mop_iterator> defs() { |
656 | return make_range(operands_begin(), |
657 | operands_begin() + getNumExplicitDefs()); |
658 | } |
659 | /// \copydoc defs() |
660 | iterator_range<const_mop_iterator> defs() const { |
661 | return make_range(operands_begin(), |
662 | operands_begin() + getNumExplicitDefs()); |
663 | } |
664 | /// Returns a range that includes all operands that are register uses. |
665 | /// This may include unrelated operands which are not register uses. |
666 | iterator_range<mop_iterator> uses() { |
667 | return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); |
668 | } |
669 | /// \copydoc uses() |
670 | iterator_range<const_mop_iterator> uses() const { |
671 | return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); |
672 | } |
673 | iterator_range<mop_iterator> explicit_uses() { |
674 | return make_range(operands_begin() + getNumExplicitDefs(), |
675 | operands_begin() + getNumExplicitOperands()); |
676 | } |
677 | iterator_range<const_mop_iterator> explicit_uses() const { |
678 | return make_range(operands_begin() + getNumExplicitDefs(), |
679 | operands_begin() + getNumExplicitOperands()); |
680 | } |
681 | |
682 | /// Returns the number of the operand iterator \p I points to. |
683 | unsigned getOperandNo(const_mop_iterator I) const { |
684 | return I - operands_begin(); |
685 | } |
686 | |
687 | /// Access to memory operands of the instruction. If there are none, that does |
688 | /// not imply anything about whether the function accesses memory. Instead, |
689 | /// the caller must behave conservatively. |
690 | ArrayRef<MachineMemOperand *> memoperands() const { |
691 | if (!Info) |
692 | return {}; |
693 | |
694 | if (Info.is<EIIK_MMO>()) |
695 | return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1); |
696 | |
697 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
698 | return EI->getMMOs(); |
699 | |
700 | return {}; |
701 | } |
702 | |
703 | /// Access to memory operands of the instruction. |
704 | /// |
705 | /// If `memoperands_begin() == memoperands_end()`, that does not imply |
706 | /// anything about whether the function accesses memory. Instead, the caller |
707 | /// must behave conservatively. |
708 | mmo_iterator memoperands_begin() const { return memoperands().begin(); } |
709 | |
710 | /// Access to memory operands of the instruction. |
711 | /// |
712 | /// If `memoperands_begin() == memoperands_end()`, that does not imply |
713 | /// anything about whether the function accesses memory. Instead, the caller |
714 | /// must behave conservatively. |
715 | mmo_iterator memoperands_end() const { return memoperands().end(); } |
716 | |
717 | /// Return true if we don't have any memory operands which described the |
718 | /// memory access done by this instruction. If this is true, calling code |
719 | /// must be conservative. |
720 | bool memoperands_empty() const { return memoperands().empty(); } |
721 | |
722 | /// Return true if this instruction has exactly one MachineMemOperand. |
723 | bool hasOneMemOperand() const { return memoperands().size() == 1; } |
724 | |
725 | /// Return the number of memory operands. |
726 | unsigned getNumMemOperands() const { return memoperands().size(); } |
727 | |
728 | /// Helper to extract a pre-instruction symbol if one has been added. |
729 | MCSymbol *getPreInstrSymbol() const { |
730 | if (!Info) |
731 | return nullptr; |
732 | if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) |
733 | return S; |
734 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
735 | return EI->getPreInstrSymbol(); |
736 | |
737 | return nullptr; |
738 | } |
739 | |
740 | /// Helper to extract a post-instruction symbol if one has been added. |
741 | MCSymbol *getPostInstrSymbol() const { |
742 | if (!Info) |
743 | return nullptr; |
744 | if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) |
745 | return S; |
746 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
747 | return EI->getPostInstrSymbol(); |
748 | |
749 | return nullptr; |
750 | } |
751 | |
752 | /// Helper to extract a heap alloc marker if one has been added. |
753 | MDNode *getHeapAllocMarker() const { |
754 | if (!Info) |
755 | return nullptr; |
756 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
757 | return EI->getHeapAllocMarker(); |
758 | |
759 | return nullptr; |
760 | } |
761 | |
762 | /// API for querying MachineInstr properties. They are the same as MCInstrDesc |
763 | /// queries but they are bundle aware. |
764 | |
765 | enum QueryType { |
766 | IgnoreBundle, // Ignore bundles |
767 | AnyInBundle, // Return true if any instruction in bundle has property |
768 | AllInBundle // Return true if all instructions in bundle have property |
769 | }; |
770 | |
771 | /// Return true if the instruction (or in the case of a bundle, |
772 | /// the instructions inside the bundle) has the specified property. |
773 | /// The first argument is the property being queried. |
774 | /// The second argument indicates whether the query should look inside |
775 | /// instruction bundles. |
776 | bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { |
777 | assert(MCFlag < 64 &&((void)0) |
778 | "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.")((void)0); |
779 | // Inline the fast path for unbundled or bundle-internal instructions. |
780 | if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) |
781 | return getDesc().getFlags() & (1ULL << MCFlag); |
782 | |
783 | // If this is the first instruction in a bundle, take the slow path. |
784 | return hasPropertyInBundle(1ULL << MCFlag, Type); |
785 | } |
786 | |
787 | /// Return true if this is an instruction that should go through the usual |
788 | /// legalization steps. |
789 | bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { |
790 | return hasProperty(MCID::PreISelOpcode, Type); |
791 | } |
792 | |
793 | /// Return true if this instruction can have a variable number of operands. |
794 | /// In this case, the variable operands will be after the normal |
795 | /// operands but before the implicit definitions and uses (if any are |
796 | /// present). |
797 | bool isVariadic(QueryType Type = IgnoreBundle) const { |
798 | return hasProperty(MCID::Variadic, Type); |
799 | } |
800 | |
801 | /// Set if this instruction has an optional definition, e.g. |
802 | /// ARM instructions which can set condition code if 's' bit is set. |
803 | bool hasOptionalDef(QueryType Type = IgnoreBundle) const { |
804 | return hasProperty(MCID::HasOptionalDef, Type); |
805 | } |
806 | |
807 | /// Return true if this is a pseudo instruction that doesn't |
808 | /// correspond to a real machine instruction. |
809 | bool isPseudo(QueryType Type = IgnoreBundle) const { |
810 | return hasProperty(MCID::Pseudo, Type); |
811 | } |
812 | |
813 | bool isReturn(QueryType Type = AnyInBundle) const { |
814 | return hasProperty(MCID::Return, Type); |
815 | } |
816 | |
817 | /// Return true if this is an instruction that marks the end of an EH scope, |
818 | /// i.e., a catchpad or a cleanuppad instruction. |
819 | bool isEHScopeReturn(QueryType Type = AnyInBundle) const { |
820 | return hasProperty(MCID::EHScopeReturn, Type); |
821 | } |
822 | |
823 | bool isCall(QueryType Type = AnyInBundle) const { |
824 | return hasProperty(MCID::Call, Type); |
825 | } |
826 | |
827 | /// Return true if this is a call instruction that may have an associated |
828 | /// call site entry in the debug info. |
829 | bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; |
830 | /// Return true if copying, moving, or erasing this instruction requires |
831 | /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, |
832 | /// \ref eraseCallSiteInfo). |
833 | bool shouldUpdateCallSiteInfo() const; |
834 | |
835 | /// Returns true if the specified instruction stops control flow |
836 | /// from executing the instruction immediately following it. Examples include |
837 | /// unconditional branches and return instructions. |
838 | bool isBarrier(QueryType Type = AnyInBundle) const { |
839 | return hasProperty(MCID::Barrier, Type); |
840 | } |
841 | |
842 | /// Returns true if this instruction part of the terminator for a basic block. |
843 | /// Typically this is things like return and branch instructions. |
844 | /// |
845 | /// Various passes use this to insert code into the bottom of a basic block, |
846 | /// but before control flow occurs. |
847 | bool isTerminator(QueryType Type = AnyInBundle) const { |
848 | return hasProperty(MCID::Terminator, Type); |
849 | } |
850 | |
851 | /// Returns true if this is a conditional, unconditional, or indirect branch. |
852 | /// Predicates below can be used to discriminate between |
853 | /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to |
854 | /// get more information. |
855 | bool isBranch(QueryType Type = AnyInBundle) const { |
856 | return hasProperty(MCID::Branch, Type); |
857 | } |
858 | |
859 | /// Return true if this is an indirect branch, such as a |
860 | /// branch through a register. |
861 | bool isIndirectBranch(QueryType Type = AnyInBundle) const { |
862 | return hasProperty(MCID::IndirectBranch, Type); |
863 | } |
864 | |
865 | /// Return true if this is a branch which may fall |
866 | /// through to the next instruction or may transfer control flow to some other |
867 | /// block. The TargetInstrInfo::analyzeBranch method can be used to get more |
868 | /// information about this branch. |
869 | bool isConditionalBranch(QueryType Type = AnyInBundle) const { |
870 | return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); |
871 | } |
872 | |
873 | /// Return true if this is a branch which always |
874 | /// transfers control flow to some other block. The |
875 | /// TargetInstrInfo::analyzeBranch method can be used to get more information |
876 | /// about this branch. |
877 | bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { |
878 | return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); |
879 | } |
880 | |
881 | /// Return true if this instruction has a predicate operand that |
882 | /// controls execution. It may be set to 'always', or may be set to other |
883 | /// values. There are various methods in TargetInstrInfo that can be used to |
884 | /// control and modify the predicate in this instruction. |
885 | bool isPredicable(QueryType Type = AllInBundle) const { |
886 | // If it's a bundle than all bundled instructions must be predicable for this |
887 | // to return true. |
888 | return hasProperty(MCID::Predicable, Type); |
889 | } |
890 | |
891 | /// Return true if this instruction is a comparison. |
892 | bool isCompare(QueryType Type = IgnoreBundle) const { |
893 | return hasProperty(MCID::Compare, Type); |
894 | } |
895 | |
896 | /// Return true if this instruction is a move immediate |
897 | /// (including conditional moves) instruction. |
898 | bool isMoveImmediate(QueryType Type = IgnoreBundle) const { |
899 | return hasProperty(MCID::MoveImm, Type); |
900 | } |
901 | |
902 | /// Return true if this instruction is a register move. |
903 | /// (including moving values from subreg to reg) |
904 | bool isMoveReg(QueryType Type = IgnoreBundle) const { |
905 | return hasProperty(MCID::MoveReg, Type); |
906 | } |
907 | |
908 | /// Return true if this instruction is a bitcast instruction. |
909 | bool isBitcast(QueryType Type = IgnoreBundle) const { |
910 | return hasProperty(MCID::Bitcast, Type); |
911 | } |
912 | |
913 | /// Return true if this instruction is a select instruction. |
914 | bool isSelect(QueryType Type = IgnoreBundle) const { |
915 | return hasProperty(MCID::Select, Type); |
916 | } |
917 | |
918 | /// Return true if this instruction cannot be safely duplicated. |
919 | /// For example, if the instruction has a unique labels attached |
920 | /// to it, duplicating it would cause multiple definition errors. |
921 | bool isNotDuplicable(QueryType Type = AnyInBundle) const { |
922 | return hasProperty(MCID::NotDuplicable, Type); |
923 | } |
924 | |
925 | /// Return true if this instruction is convergent. |
926 | /// Convergent instructions can not be made control-dependent on any |
927 | /// additional values. |
928 | bool isConvergent(QueryType Type = AnyInBundle) const { |
929 | if (isInlineAsm()) { |
930 | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
931 | if (ExtraInfo & InlineAsm::Extra_IsConvergent) |
932 | return true; |
933 | } |
934 | return hasProperty(MCID::Convergent, Type); |
935 | } |
936 | |
937 | /// Returns true if the specified instruction has a delay slot |
938 | /// which must be filled by the code generator. |
939 | bool hasDelaySlot(QueryType Type = AnyInBundle) const { |
940 | return hasProperty(MCID::DelaySlot, Type); |
941 | } |
942 | |
943 | /// Return true for instructions that can be folded as |
944 | /// memory operands in other instructions. The most common use for this |
945 | /// is instructions that are simple loads from memory that don't modify |
946 | /// the loaded value in any way, but it can also be used for instructions |
947 | /// that can be expressed as constant-pool loads, such as V_SETALLONES |
948 | /// on x86, to allow them to be folded when it is beneficial. |
949 | /// This should only be set on instructions that return a value in their |
950 | /// only virtual register definition. |
951 | bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { |
952 | return hasProperty(MCID::FoldableAsLoad, Type); |
953 | } |
954 | |
955 | /// Return true if this instruction behaves |
956 | /// the same way as the generic REG_SEQUENCE instructions. |
957 | /// E.g., on ARM, |
958 | /// dX VMOVDRR rY, rZ |
959 | /// is equivalent to |
960 | /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. |
961 | /// |
962 | /// Note that for the optimizers to be able to take advantage of |
963 | /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be |
964 | /// override accordingly. |
965 | bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { |
966 | return hasProperty(MCID::RegSequence, Type); |
967 | } |
968 | |
969 | /// Return true if this instruction behaves |
970 | /// the same way as the generic EXTRACT_SUBREG instructions. |
971 | /// E.g., on ARM, |
972 | /// rX, rY VMOVRRD dZ |
973 | /// is equivalent to two EXTRACT_SUBREG: |
974 | /// rX = EXTRACT_SUBREG dZ, ssub_0 |
975 | /// rY = EXTRACT_SUBREG dZ, ssub_1 |
976 | /// |
977 | /// Note that for the optimizers to be able to take advantage of |
978 | /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be |
979 | /// override accordingly. |
980 | bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { |
981 | return hasProperty(MCID::ExtractSubreg, Type); |
982 | } |
983 | |
984 | /// Return true if this instruction behaves |
985 | /// the same way as the generic INSERT_SUBREG instructions. |
986 | /// E.g., on ARM, |
987 | /// dX = VSETLNi32 dY, rZ, Imm |
988 | /// is equivalent to a INSERT_SUBREG: |
989 | /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) |
990 | /// |
991 | /// Note that for the optimizers to be able to take advantage of |
992 | /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be |
993 | /// override accordingly. |
994 | bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { |
995 | return hasProperty(MCID::InsertSubreg, Type); |
996 | } |
997 | |
998 | //===--------------------------------------------------------------------===// |
999 | // Side Effect Analysis |
1000 | //===--------------------------------------------------------------------===// |
1001 | |
1002 | /// Return true if this instruction could possibly read memory. |
1003 | /// Instructions with this flag set are not necessarily simple load |
1004 | /// instructions, they may load a value and modify it, for example. |
1005 | bool mayLoad(QueryType Type = AnyInBundle) const { |
1006 | if (isInlineAsm()) { |
1007 | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
1008 | if (ExtraInfo & InlineAsm::Extra_MayLoad) |
1009 | return true; |
1010 | } |
1011 | return hasProperty(MCID::MayLoad, Type); |
1012 | } |
1013 | |
1014 | /// Return true if this instruction could possibly modify memory. |
1015 | /// Instructions with this flag set are not necessarily simple store |
1016 | /// instructions, they may store a modified value based on their operands, or |
1017 | /// may not actually modify anything, for example. |
1018 | bool mayStore(QueryType Type = AnyInBundle) const { |
1019 | if (isInlineAsm()) { |
1020 | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
1021 | if (ExtraInfo & InlineAsm::Extra_MayStore) |
1022 | return true; |
1023 | } |
1024 | return hasProperty(MCID::MayStore, Type); |
1025 | } |
1026 | |
1027 | /// Return true if this instruction could possibly read or modify memory. |
1028 | bool mayLoadOrStore(QueryType Type = AnyInBundle) const { |
1029 | return mayLoad(Type) || mayStore(Type); |
1030 | } |
1031 | |
1032 | /// Return true if this instruction could possibly raise a floating-point |
1033 | /// exception. This is the case if the instruction is a floating-point |
1034 | /// instruction that can in principle raise an exception, as indicated |
1035 | /// by the MCID::MayRaiseFPException property, *and* at the same time, |
1036 | /// the instruction is used in a context where we expect floating-point |
1037 | /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. |
1038 | bool mayRaiseFPException() const { |
1039 | return hasProperty(MCID::MayRaiseFPException) && |
1040 | !getFlag(MachineInstr::MIFlag::NoFPExcept); |
1041 | } |
1042 | |
1043 | //===--------------------------------------------------------------------===// |
1044 | // Flags that indicate whether an instruction can be modified by a method. |
1045 | //===--------------------------------------------------------------------===// |
1046 | |
1047 | /// Return true if this may be a 2- or 3-address |
1048 | /// instruction (of the form "X = op Y, Z, ..."), which produces the same |
1049 | /// result if Y and Z are exchanged. If this flag is set, then the |
1050 | /// TargetInstrInfo::commuteInstruction method may be used to hack on the |
1051 | /// instruction. |
1052 | /// |
1053 | /// Note that this flag may be set on instructions that are only commutable |
1054 | /// sometimes. In these cases, the call to commuteInstruction will fail. |
1055 | /// Also note that some instructions require non-trivial modification to |
1056 | /// commute them. |
1057 | bool isCommutable(QueryType Type = IgnoreBundle) const { |
1058 | return hasProperty(MCID::Commutable, Type); |
1059 | } |
1060 | |
1061 | /// Return true if this is a 2-address instruction |
1062 | /// which can be changed into a 3-address instruction if needed. Doing this |
1063 | /// transformation can be profitable in the register allocator, because it |
1064 | /// means that the instruction can use a 2-address form if possible, but |
1065 | /// degrade into a less efficient form if the source and dest register cannot |
1066 | /// be assigned to the same register. For example, this allows the x86 |
1067 | /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which |
1068 | /// is the same speed as the shift but has bigger code size. |
1069 | /// |
1070 | /// If this returns true, then the target must implement the |
1071 | /// TargetInstrInfo::convertToThreeAddress method for this instruction, which |
1072 | /// is allowed to fail if the transformation isn't valid for this specific |
1073 | /// instruction (e.g. shl reg, 4 on x86). |
1074 | /// |
1075 | bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { |
1076 | return hasProperty(MCID::ConvertibleTo3Addr, Type); |
1077 | } |
1078 | |
1079 | /// Return true if this instruction requires |
1080 | /// custom insertion support when the DAG scheduler is inserting it into a |
1081 | /// machine basic block. If this is true for the instruction, it basically |
1082 | /// means that it is a pseudo instruction used at SelectionDAG time that is |
1083 | /// expanded out into magic code by the target when MachineInstrs are formed. |
1084 | /// |
1085 | /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method |
1086 | /// is used to insert this into the MachineBasicBlock. |
1087 | bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { |
1088 | return hasProperty(MCID::UsesCustomInserter, Type); |
1089 | } |
1090 | |
1091 | /// Return true if this instruction requires *adjustment* |
1092 | /// after instruction selection by calling a target hook. For example, this |
1093 | /// can be used to fill in ARM 's' optional operand depending on whether |
1094 | /// the conditional flag register is used. |
1095 | bool hasPostISelHook(QueryType Type = IgnoreBundle) const { |
1096 | return hasProperty(MCID::HasPostISelHook, Type); |
1097 | } |
1098 | |
1099 | /// Returns true if this instruction is a candidate for remat. |
1100 | /// This flag is deprecated, please don't use it anymore. If this |
1101 | /// flag is set, the isReallyTriviallyReMaterializable() method is called to |
1102 | /// verify the instruction is really rematable. |
1103 | bool isRematerializable(QueryType Type = AllInBundle) const { |
1104 | // It's only possible to re-mat a bundle if all bundled instructions are |
1105 | // re-materializable. |
1106 | return hasProperty(MCID::Rematerializable, Type); |
1107 | } |
1108 | |
1109 | /// Returns true if this instruction has the same cost (or less) than a move |
1110 | /// instruction. This is useful during certain types of optimizations |
1111 | /// (e.g., remat during two-address conversion or machine licm) |
1112 | /// where we would like to remat or hoist the instruction, but not if it costs |
1113 | /// more than moving the instruction into the appropriate register. Note, we |
1114 | /// are not marking copies from and to the same register class with this flag. |
1115 | bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { |
1116 | // Only returns true for a bundle if all bundled instructions are cheap. |
1117 | return hasProperty(MCID::CheapAsAMove, Type); |
1118 | } |
1119 | |
1120 | /// Returns true if this instruction source operands |
1121 | /// have special register allocation requirements that are not captured by the |
1122 | /// operand register classes. e.g. ARM::STRD's two source registers must be an |
1123 | /// even / odd pair, ARM::STM registers have to be in ascending order. |
1124 | /// Post-register allocation passes should not attempt to change allocations |
1125 | /// for sources of instructions with this flag. |
1126 | bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { |
1127 | return hasProperty(MCID::ExtraSrcRegAllocReq, Type); |
1128 | } |
1129 | |
1130 | /// Returns true if this instruction def operands |
1131 | /// have special register allocation requirements that are not captured by the |
1132 | /// operand register classes. e.g. ARM::LDRD's two def registers must be an |
1133 | /// even / odd pair, ARM::LDM registers have to be in ascending order. |
1134 | /// Post-register allocation passes should not attempt to change allocations |
1135 | /// for definitions of instructions with this flag. |
1136 | bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { |
1137 | return hasProperty(MCID::ExtraDefRegAllocReq, Type); |
1138 | } |
1139 | |
1140 | enum MICheckType { |
1141 | CheckDefs, // Check all operands for equality |
1142 | CheckKillDead, // Check all operands including kill / dead markers |
1143 | IgnoreDefs, // Ignore all definitions |
1144 | IgnoreVRegDefs // Ignore virtual register definitions |
1145 | }; |
1146 | |
1147 | /// Return true if this instruction is identical to \p Other. |
1148 | /// Two instructions are identical if they have the same opcode and all their |
1149 | /// operands are identical (with respect to MachineOperand::isIdenticalTo()). |
1150 | /// Note that this means liveness related flags (dead, undef, kill) do not |
1151 | /// affect the notion of identical. |
1152 | bool isIdenticalTo(const MachineInstr &Other, |
1153 | MICheckType Check = CheckDefs) const; |
1154 | |
1155 | /// Unlink 'this' from the containing basic block, and return it without |
1156 | /// deleting it. |
1157 | /// |
1158 | /// This function can not be used on bundled instructions, use |
1159 | /// removeFromBundle() to remove individual instructions from a bundle. |
1160 | MachineInstr *removeFromParent(); |
1161 | |
1162 | /// Unlink this instruction from its basic block and return it without |
1163 | /// deleting it. |
1164 | /// |
1165 | /// If the instruction is part of a bundle, the other instructions in the |
1166 | /// bundle remain bundled. |
1167 | MachineInstr *removeFromBundle(); |
1168 | |
1169 | /// Unlink 'this' from the containing basic block and delete it. |
1170 | /// |
1171 | /// If this instruction is the header of a bundle, the whole bundle is erased. |
1172 | /// This function can not be used for instructions inside a bundle, use |
1173 | /// eraseFromBundle() to erase individual bundled instructions. |
1174 | void eraseFromParent(); |
1175 | |
1176 | /// Unlink 'this' from the containing basic block and delete it. |
1177 | /// |
1178 | /// For all definitions mark their uses in DBG_VALUE nodes |
1179 | /// as undefined. Otherwise like eraseFromParent(). |
1180 | void eraseFromParentAndMarkDBGValuesForRemoval(); |
1181 | |
1182 | /// Unlink 'this' form its basic block and delete it. |
1183 | /// |
1184 | /// If the instruction is part of a bundle, the other instructions in the |
1185 | /// bundle remain bundled. |
1186 | void eraseFromBundle(); |
1187 | |
1188 | bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } |
1189 | bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } |
1190 | bool isAnnotationLabel() const { |
1191 | return getOpcode() == TargetOpcode::ANNOTATION_LABEL; |
1192 | } |
1193 | |
1194 | /// Returns true if the MachineInstr represents a label. |
1195 | bool isLabel() const { |
1196 | return isEHLabel() || isGCLabel() || isAnnotationLabel(); |
1197 | } |
1198 | |
1199 | bool isCFIInstruction() const { |
1200 | return getOpcode() == TargetOpcode::CFI_INSTRUCTION; |
1201 | } |
1202 | |
1203 | bool isPseudoProbe() const { |
1204 | return getOpcode() == TargetOpcode::PSEUDO_PROBE; |
1205 | } |
1206 | |
1207 | // True if the instruction represents a position in the function. |
1208 | bool isPosition() const { return isLabel() || isCFIInstruction(); } |
1209 | |
1210 | bool isNonListDebugValue() const { |
1211 | return getOpcode() == TargetOpcode::DBG_VALUE; |
1212 | } |
1213 | bool isDebugValueList() const { |
1214 | return getOpcode() == TargetOpcode::DBG_VALUE_LIST; |
1215 | } |
1216 | bool isDebugValue() const { |
1217 | return isNonListDebugValue() || isDebugValueList(); |
1218 | } |
1219 | bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } |
1220 | bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } |
1221 | bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } |
1222 | bool isDebugInstr() const { |
1223 | return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); |
1224 | } |
1225 | bool isDebugOrPseudoInstr() const { |
1226 | return isDebugInstr() || isPseudoProbe(); |
1227 | } |
1228 | |
1229 | bool isDebugOffsetImm() const { |
1230 | return isNonListDebugValue() && getDebugOffset().isImm(); |
1231 | } |
1232 | |
1233 | /// A DBG_VALUE is indirect iff the location operand is a register and |
1234 | /// the offset operand is an immediate. |
1235 | bool isIndirectDebugValue() const { |
1236 | return isDebugOffsetImm() && getDebugOperand(0).isReg(); |
1237 | } |
1238 | |
1239 | /// A DBG_VALUE is an entry value iff its debug expression contains the |
1240 | /// DW_OP_LLVM_entry_value operation. |
1241 | bool isDebugEntryValue() const; |
1242 | |
1243 | /// Return true if the instruction is a debug value which describes a part of |
1244 | /// a variable as unavailable. |
1245 | bool isUndefDebugValue() const { |
1246 | if (!isDebugValue()) |
1247 | return false; |
1248 | // If any $noreg locations are given, this DV is undef. |
1249 | for (const MachineOperand &Op : debug_operands()) |
1250 | if (Op.isReg() && !Op.getReg().isValid()) |
1251 | return true; |
1252 | return false; |
1253 | } |
1254 | |
1255 | bool isPHI() const { |
1256 | return getOpcode() == TargetOpcode::PHI || |
1257 | getOpcode() == TargetOpcode::G_PHI; |
1258 | } |
1259 | bool isKill() const { return getOpcode() == TargetOpcode::KILL; } |
1260 | bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } |
1261 | bool isInlineAsm() const { |
1262 | return getOpcode() == TargetOpcode::INLINEASM || |
1263 | getOpcode() == TargetOpcode::INLINEASM_BR; |
1264 | } |
1265 | |
1266 | /// FIXME: Seems like a layering violation that the AsmDialect, which is X86 |
1267 | /// specific, be attached to a generic MachineInstr. |
1268 | bool isMSInlineAsm() const { |
1269 | return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; |
1270 | } |
1271 | |
1272 | bool isStackAligningInlineAsm() const; |
1273 | InlineAsm::AsmDialect getInlineAsmDialect() const; |
1274 | |
1275 | bool isInsertSubreg() const { |
1276 | return getOpcode() == TargetOpcode::INSERT_SUBREG; |
1277 | } |
1278 | |
1279 | bool isSubregToReg() const { |
1280 | return getOpcode() == TargetOpcode::SUBREG_TO_REG; |
1281 | } |
1282 | |
1283 | bool isRegSequence() const { |
1284 | return getOpcode() == TargetOpcode::REG_SEQUENCE; |
1285 | } |
1286 | |
1287 | bool isBundle() const { |
1288 | return getOpcode() == TargetOpcode::BUNDLE; |
1289 | } |
1290 | |
1291 | bool isCopy() const { |
1292 | return getOpcode() == TargetOpcode::COPY; |
1293 | } |
1294 | |
1295 | bool isFullCopy() const { |
1296 | return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); |
1297 | } |
1298 | |
1299 | bool isExtractSubreg() const { |
1300 | return getOpcode() == TargetOpcode::EXTRACT_SUBREG; |
1301 | } |
1302 | |
1303 | /// Return true if the instruction behaves like a copy. |
1304 | /// This does not include native copy instructions. |
1305 | bool isCopyLike() const { |
1306 | return isCopy() || isSubregToReg(); |
1307 | } |
1308 | |
1309 | /// Return true is the instruction is an identity copy. |
1310 | bool isIdentityCopy() const { |
1311 | return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && |
1312 | getOperand(0).getSubReg() == getOperand(1).getSubReg(); |
1313 | } |
1314 | |
1315 | /// Return true if this instruction doesn't produce any output in the form of |
1316 | /// executable instructions. |
1317 | bool isMetaInstruction() const { |
1318 | switch (getOpcode()) { |
1319 | default: |
1320 | return false; |
1321 | case TargetOpcode::IMPLICIT_DEF: |
1322 | case TargetOpcode::KILL: |
1323 | case TargetOpcode::CFI_INSTRUCTION: |
1324 | case TargetOpcode::EH_LABEL: |
1325 | case TargetOpcode::GC_LABEL: |
1326 | case TargetOpcode::DBG_VALUE: |
1327 | case TargetOpcode::DBG_VALUE_LIST: |
1328 | case TargetOpcode::DBG_INSTR_REF: |
1329 | case TargetOpcode::DBG_PHI: |
1330 | case TargetOpcode::DBG_LABEL: |
1331 | case TargetOpcode::LIFETIME_START: |
1332 | case TargetOpcode::LIFETIME_END: |
1333 | case TargetOpcode::PSEUDO_PROBE: |
1334 | return true; |
1335 | } |
1336 | } |
1337 | |
1338 | /// Return true if this is a transient instruction that is either very likely |
1339 | /// to be eliminated during register allocation (such as copy-like |
1340 | /// instructions), or if this instruction doesn't have an execution-time cost. |
1341 | bool isTransient() const { |
1342 | switch (getOpcode()) { |
1343 | default: |
1344 | return isMetaInstruction(); |
1345 | // Copy-like instructions are usually eliminated during register allocation. |
1346 | case TargetOpcode::PHI: |
1347 | case TargetOpcode::G_PHI: |
1348 | case TargetOpcode::COPY: |
1349 | case TargetOpcode::INSERT_SUBREG: |
1350 | case TargetOpcode::SUBREG_TO_REG: |
1351 | case TargetOpcode::REG_SEQUENCE: |
1352 | return true; |
1353 | } |
1354 | } |
1355 | |
1356 | /// Return the number of instructions inside the MI bundle, excluding the |
1357 | /// bundle header. |
1358 | /// |
1359 | /// This is the number of instructions that MachineBasicBlock::iterator |
1360 | /// skips, 0 for unbundled instructions. |
1361 | unsigned getBundleSize() const; |
1362 | |
1363 | /// Return true if the MachineInstr reads the specified register. |
1364 | /// If TargetRegisterInfo is passed, then it also checks if there |
1365 | /// is a read of a super-register. |
1366 | /// This does not count partial redefines of virtual registers as reads: |
1367 | /// %reg1024:6 = OP. |
1368 | bool readsRegister(Register Reg, |
1369 | const TargetRegisterInfo *TRI = nullptr) const { |
1370 | return findRegisterUseOperandIdx(Reg, false, TRI) != -1; |
1371 | } |
1372 | |
1373 | /// Return true if the MachineInstr reads the specified virtual register. |
1374 | /// Take into account that a partial define is a |
1375 | /// read-modify-write operation. |
1376 | bool readsVirtualRegister(Register Reg) const { |
1377 | return readsWritesVirtualRegister(Reg).first; |
1378 | } |
1379 | |
1380 | /// Return a pair of bools (reads, writes) indicating if this instruction |
1381 | /// reads or writes Reg. This also considers partial defines. |
1382 | /// If Ops is not null, all operand indices for Reg are added. |
1383 | std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, |
1384 | SmallVectorImpl<unsigned> *Ops = nullptr) const; |
1385 | |
1386 | /// Return true if the MachineInstr kills the specified register. |
1387 | /// If TargetRegisterInfo is passed, then it also checks if there is |
1388 | /// a kill of a super-register. |
1389 | bool killsRegister(Register Reg, |
1390 | const TargetRegisterInfo *TRI = nullptr) const { |
1391 | return findRegisterUseOperandIdx(Reg, true, TRI) != -1; |
1392 | } |
1393 | |
1394 | /// Return true if the MachineInstr fully defines the specified register. |
1395 | /// If TargetRegisterInfo is passed, then it also checks |
1396 | /// if there is a def of a super-register. |
1397 | /// NOTE: It's ignoring subreg indices on virtual registers. |
1398 | bool definesRegister(Register Reg, |
1399 | const TargetRegisterInfo *TRI = nullptr) const { |
1400 | return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; |
1401 | } |
1402 | |
1403 | /// Return true if the MachineInstr modifies (fully define or partially |
1404 | /// define) the specified register. |
1405 | /// NOTE: It's ignoring subreg indices on virtual registers. |
1406 | bool modifiesRegister(Register Reg, |
1407 | const TargetRegisterInfo *TRI = nullptr) const { |
1408 | return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; |
1409 | } |
1410 | |
1411 | /// Returns true if the register is dead in this machine instruction. |
1412 | /// If TargetRegisterInfo is passed, then it also checks |
1413 | /// if there is a dead def of a super-register. |
1414 | bool registerDefIsDead(Register Reg, |
1415 | const TargetRegisterInfo *TRI = nullptr) const { |
1416 | return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; |
1417 | } |
1418 | |
1419 | /// Returns true if the MachineInstr has an implicit-use operand of exactly |
1420 | /// the given register (not considering sub/super-registers). |
1421 | bool hasRegisterImplicitUseOperand(Register Reg) const; |
1422 | |
1423 | /// Returns the operand index that is a use of the specific register or -1 |
1424 | /// if it is not found. It further tightens the search criteria to a use |
1425 | /// that kills the register if isKill is true. |
1426 | int findRegisterUseOperandIdx(Register Reg, bool isKill = false, |
1427 | const TargetRegisterInfo *TRI = nullptr) const; |
1428 | |
1429 | /// Wrapper for findRegisterUseOperandIdx, it returns |
1430 | /// a pointer to the MachineOperand rather than an index. |
1431 | MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, |
1432 | const TargetRegisterInfo *TRI = nullptr) { |
1433 | int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); |
1434 | return (Idx == -1) ? nullptr : &getOperand(Idx); |
1435 | } |
1436 | |
1437 | const MachineOperand *findRegisterUseOperand( |
1438 | Register Reg, bool isKill = false, |
1439 | const TargetRegisterInfo *TRI = nullptr) const { |
1440 | return const_cast<MachineInstr *>(this)-> |
1441 | findRegisterUseOperand(Reg, isKill, TRI); |
1442 | } |
1443 | |
1444 | /// Returns the operand index that is a def of the specified register or |
1445 | /// -1 if it is not found. If isDead is true, defs that are not dead are |
1446 | /// skipped. If Overlap is true, then it also looks for defs that merely |
1447 | /// overlap the specified register. If TargetRegisterInfo is non-null, |
1448 | /// then it also checks if there is a def of a super-register. |
1449 | /// This may also return a register mask operand when Overlap is true. |
1450 | int findRegisterDefOperandIdx(Register Reg, |
1451 | bool isDead = false, bool Overlap = false, |
1452 | const TargetRegisterInfo *TRI = nullptr) const; |
1453 | |
1454 | /// Wrapper for findRegisterDefOperandIdx, it returns |
1455 | /// a pointer to the MachineOperand rather than an index. |
1456 | MachineOperand * |
1457 | findRegisterDefOperand(Register Reg, bool isDead = false, |
1458 | bool Overlap = false, |
1459 | const TargetRegisterInfo *TRI = nullptr) { |
1460 | int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); |
1461 | return (Idx == -1) ? nullptr : &getOperand(Idx); |
1462 | } |
1463 | |
1464 | const MachineOperand * |
1465 | findRegisterDefOperand(Register Reg, bool isDead = false, |
1466 | bool Overlap = false, |
1467 | const TargetRegisterInfo *TRI = nullptr) const { |
1468 | return const_cast<MachineInstr *>(this)->findRegisterDefOperand( |
1469 | Reg, isDead, Overlap, TRI); |
1470 | } |
1471 | |
1472 | /// Find the index of the first operand in the |
1473 | /// operand list that is used to represent the predicate. It returns -1 if |
1474 | /// none is found. |
1475 | int findFirstPredOperandIdx() const; |
1476 | |
1477 | /// Find the index of the flag word operand that |
1478 | /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if |
1479 | /// getOperand(OpIdx) does not belong to an inline asm operand group. |
1480 | /// |
1481 | /// If GroupNo is not NULL, it will receive the number of the operand group |
1482 | /// containing OpIdx. |
1483 | int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; |
1484 | |
1485 | /// Compute the static register class constraint for operand OpIdx. |
1486 | /// For normal instructions, this is derived from the MCInstrDesc. |
1487 | /// For inline assembly it is derived from the flag words. |
1488 | /// |
1489 | /// Returns NULL if the static register class constraint cannot be |
1490 | /// determined. |
1491 | const TargetRegisterClass* |
1492 | getRegClassConstraint(unsigned OpIdx, |
1493 | const TargetInstrInfo *TII, |
1494 | const TargetRegisterInfo *TRI) const; |
1495 | |
1496 | /// Applies the constraints (def/use) implied by this MI on \p Reg to |
1497 | /// the given \p CurRC. |
1498 | /// If \p ExploreBundle is set and MI is part of a bundle, all the |
1499 | /// instructions inside the bundle will be taken into account. In other words, |
1500 | /// this method accumulates all the constraints of the operand of this MI and |
1501 | /// the related bundle if MI is a bundle or inside a bundle. |
1502 | /// |
1503 | /// Returns the register class that satisfies both \p CurRC and the |
1504 | /// constraints set by MI. Returns NULL if such a register class does not |
1505 | /// exist. |
1506 | /// |
1507 | /// \pre CurRC must not be NULL. |
1508 | const TargetRegisterClass *getRegClassConstraintEffectForVReg( |
1509 | Register Reg, const TargetRegisterClass *CurRC, |
1510 | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, |
1511 | bool ExploreBundle = false) const; |
1512 | |
1513 | /// Applies the constraints (def/use) implied by the \p OpIdx operand |
1514 | /// to the given \p CurRC. |
1515 | /// |
1516 | /// Returns the register class that satisfies both \p CurRC and the |
1517 | /// constraints set by \p OpIdx MI. Returns NULL if such a register class |
1518 | /// does not exist. |
1519 | /// |
1520 | /// \pre CurRC must not be NULL. |
1521 | /// \pre The operand at \p OpIdx must be a register. |
1522 | const TargetRegisterClass * |
1523 | getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, |
1524 | const TargetInstrInfo *TII, |
1525 | const TargetRegisterInfo *TRI) const; |
1526 | |
1527 | /// Add a tie between the register operands at DefIdx and UseIdx. |
1528 | /// The tie will cause the register allocator to ensure that the two |
1529 | /// operands are assigned the same physical register. |
1530 | /// |
1531 | /// Tied operands are managed automatically for explicit operands in the |
1532 | /// MCInstrDesc. This method is for exceptional cases like inline asm. |
1533 | void tieOperands(unsigned DefIdx, unsigned UseIdx); |
1534 | |
1535 | /// Given the index of a tied register operand, find the |
1536 | /// operand it is tied to. Defs are tied to uses and vice versa. Returns the |
1537 | /// index of the tied operand which must exist. |
1538 | unsigned findTiedOperandIdx(unsigned OpIdx) const; |
1539 | |
1540 | /// Given the index of a register def operand, |
1541 | /// check if the register def is tied to a source operand, due to either |
1542 | /// two-address elimination or inline assembly constraints. Returns the |
1543 | /// first tied use operand index by reference if UseOpIdx is not null. |
1544 | bool isRegTiedToUseOperand(unsigned DefOpIdx, |
1545 | unsigned *UseOpIdx = nullptr) const { |
1546 | const MachineOperand &MO = getOperand(DefOpIdx); |
1547 | if (!MO.isReg() || !MO.isDef() || !MO.isTied()) |
1548 | return false; |
1549 | if (UseOpIdx) |
1550 | *UseOpIdx = findTiedOperandIdx(DefOpIdx); |
1551 | return true; |
1552 | } |
1553 | |
1554 | /// Return true if the use operand of the specified index is tied to a def |
1555 | /// operand. It also returns the def operand index by reference if DefOpIdx |
1556 | /// is not null. |
1557 | bool isRegTiedToDefOperand(unsigned UseOpIdx, |
1558 | unsigned *DefOpIdx = nullptr) const { |
1559 | const MachineOperand &MO = getOperand(UseOpIdx); |
1560 | if (!MO.isReg() || !MO.isUse() || !MO.isTied()) |
1561 | return false; |
1562 | if (DefOpIdx) |
1563 | *DefOpIdx = findTiedOperandIdx(UseOpIdx); |
1564 | return true; |
1565 | } |
1566 | |
1567 | /// Clears kill flags on all operands. |
1568 | void clearKillInfo(); |
1569 | |
1570 | /// Replace all occurrences of FromReg with ToReg:SubIdx, |
1571 | /// properly composing subreg indices where necessary. |
1572 | void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, |
1573 | const TargetRegisterInfo &RegInfo); |
1574 | |
1575 | /// We have determined MI kills a register. Look for the |
1576 | /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, |
1577 | /// add a implicit operand if it's not found. Returns true if the operand |
1578 | /// exists / is added. |
1579 | bool addRegisterKilled(Register IncomingReg, |
1580 | const TargetRegisterInfo *RegInfo, |
1581 | bool AddIfNotFound = false); |
1582 | |
1583 | /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes |
1584 | /// all aliasing registers. |
1585 | void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); |
1586 | |
1587 | /// We have determined MI defined a register without a use. |
1588 | /// Look for the operand that defines it and mark it as IsDead. If |
1589 | /// AddIfNotFound is true, add a implicit operand if it's not found. Returns |
1590 | /// true if the operand exists / is added. |
1591 | bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, |
1592 | bool AddIfNotFound = false); |
1593 | |
1594 | /// Clear all dead flags on operands defining register @p Reg. |
1595 | void clearRegisterDeads(Register Reg); |
1596 | |
1597 | /// Mark all subregister defs of register @p Reg with the undef flag. |
1598 | /// This function is used when we determined to have a subregister def in an |
1599 | /// otherwise undefined super register. |
1600 | void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); |
1601 | |
1602 | /// We have determined MI defines a register. Make sure there is an operand |
1603 | /// defining Reg. |
1604 | void addRegisterDefined(Register Reg, |
1605 | const TargetRegisterInfo *RegInfo = nullptr); |
1606 | |
1607 | /// Mark every physreg used by this instruction as |
1608 | /// dead except those in the UsedRegs list. |
1609 | /// |
1610 | /// On instructions with register mask operands, also add implicit-def |
1611 | /// operands for all registers in UsedRegs. |
1612 | void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, |
1613 | const TargetRegisterInfo &TRI); |
1614 | |
1615 | /// Return true if it is safe to move this instruction. If |
1616 | /// SawStore is set to true, it means that there is a store (or call) between |
1617 | /// the instruction's location and its intended destination. |
1618 | bool isSafeToMove(AAResults *AA, bool &SawStore) const; |
1619 | |
1620 | /// Returns true if this instruction's memory access aliases the memory |
1621 | /// access of Other. |
1622 | // |
1623 | /// Assumes any physical registers used to compute addresses |
1624 | /// have the same value for both instructions. Returns false if neither |
1625 | /// instruction writes to memory. |
1626 | /// |
1627 | /// @param AA Optional alias analysis, used to compare memory operands. |
1628 | /// @param Other MachineInstr to check aliasing against. |
1629 | /// @param UseTBAA Whether to pass TBAA information to alias analysis. |
1630 | bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; |
1631 | |
1632 | /// Return true if this instruction may have an ordered |
1633 | /// or volatile memory reference, or if the information describing the memory |
1634 | /// reference is not available. Return false if it is known to have no |
1635 | /// ordered or volatile memory references. |
1636 | bool hasOrderedMemoryRef() const; |
1637 | |
1638 | /// Return true if this load instruction never traps and points to a memory |
1639 | /// location whose value doesn't change during the execution of this function. |
1640 | /// |
1641 | /// Examples include loading a value from the constant pool or from the |
1642 | /// argument area of a function (if it does not change). If the instruction |
1643 | /// does multiple loads, this returns true only if all of the loads are |
1644 | /// dereferenceable and invariant. |
1645 | bool isDereferenceableInvariantLoad(AAResults *AA) const; |
1646 | |
1647 | /// If the specified instruction is a PHI that always merges together the |
1648 | /// same virtual register, return the register, otherwise return 0. |
1649 | unsigned isConstantValuePHI() const; |
1650 | |
1651 | /// Return true if this instruction has side effects that are not modeled |
1652 | /// by mayLoad / mayStore, etc. |
1653 | /// For all instructions, the property is encoded in MCInstrDesc::Flags |
1654 | /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is |
1655 | /// INLINEASM instruction, in which case the side effect property is encoded |
1656 | /// in one of its operands (see InlineAsm::Extra_HasSideEffect). |
1657 | /// |
1658 | bool hasUnmodeledSideEffects() const; |
1659 | |
1660 | /// Returns true if it is illegal to fold a load across this instruction. |
1661 | bool isLoadFoldBarrier() const; |
1662 | |
1663 | /// Return true if all the defs of this instruction are dead. |
1664 | bool allDefsAreDead() const; |
1665 | |
1666 | /// Return a valid size if the instruction is a spill instruction. |
1667 | Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const; |
1668 | |
1669 | /// Return a valid size if the instruction is a folded spill instruction. |
1670 | Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const; |
1671 | |
1672 | /// Return a valid size if the instruction is a restore instruction. |
1673 | Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const; |
1674 | |
1675 | /// Return a valid size if the instruction is a folded restore instruction. |
1676 | Optional<unsigned> |
1677 | getFoldedRestoreSize(const TargetInstrInfo *TII) const; |
1678 | |
1679 | /// Copy implicit register operands from specified |
1680 | /// instruction to this instruction. |
1681 | void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); |
1682 | |
1683 | /// Debugging support |
1684 | /// @{ |
1685 | /// Determine the generic type to be printed (if needed) on uses and defs. |
1686 | LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, |
1687 | const MachineRegisterInfo &MRI) const; |
1688 | |
1689 | /// Return true when an instruction has tied register that can't be determined |
1690 | /// by the instruction's descriptor. This is useful for MIR printing, to |
1691 | /// determine whether we need to print the ties or not. |
1692 | bool hasComplexRegisterTies() const; |
1693 | |
1694 | /// Print this MI to \p OS. |
1695 | /// Don't print information that can be inferred from other instructions if |
1696 | /// \p IsStandalone is false. It is usually true when only a fragment of the |
1697 | /// function is printed. |
1698 | /// Only print the defs and the opcode if \p SkipOpers is true. |
1699 | /// Otherwise, also print operands if \p SkipDebugLoc is true. |
1700 | /// Otherwise, also print the debug loc, with a terminating newline. |
1701 | /// \p TII is used to print the opcode name. If it's not present, but the |
1702 | /// MI is in a function, the opcode will be printed using the function's TII. |
1703 | void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, |
1704 | bool SkipDebugLoc = false, bool AddNewLine = true, |
1705 | const TargetInstrInfo *TII = nullptr) const; |
1706 | void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, |
1707 | bool SkipOpers = false, bool SkipDebugLoc = false, |
1708 | bool AddNewLine = true, |
1709 | const TargetInstrInfo *TII = nullptr) const; |
1710 | void dump() const; |
1711 | /// Print on dbgs() the current instruction and the instructions defining its |
1712 | /// operands and so on until we reach \p MaxDepth. |
1713 | void dumpr(const MachineRegisterInfo &MRI, |
1714 | unsigned MaxDepth = UINT_MAX(2147483647 *2U +1U)) const; |
1715 | /// @} |
1716 | |
1717 | //===--------------------------------------------------------------------===// |
1718 | // Accessors used to build up machine instructions. |
1719 | |
1720 | /// Add the specified operand to the instruction. If it is an implicit |
1721 | /// operand, it is added to the end of the operand list. If it is an |
1722 | /// explicit operand it is added at the end of the explicit operand list |
1723 | /// (before the first implicit operand). |
1724 | /// |
1725 | /// MF must be the machine function that was used to allocate this |
1726 | /// instruction. |
1727 | /// |
1728 | /// MachineInstrBuilder provides a more convenient interface for creating |
1729 | /// instructions and adding operands. |
1730 | void addOperand(MachineFunction &MF, const MachineOperand &Op); |
1731 | |
1732 | /// Add an operand without providing an MF reference. This only works for |
1733 | /// instructions that are inserted in a basic block. |
1734 | /// |
1735 | /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be |
1736 | /// preferred. |
1737 | void addOperand(const MachineOperand &Op); |
1738 | |
1739 | /// Replace the instruction descriptor (thus opcode) of |
1740 | /// the current instruction with a new one. |
1741 | void setDesc(const MCInstrDesc &tid) { MCID = &tid; } |
1742 | |
1743 | /// Replace current source information with new such. |
1744 | /// Avoid using this, the constructor argument is preferable. |
1745 | void setDebugLoc(DebugLoc dl) { |
1746 | debugLoc = std::move(dl); |
1747 | assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")((void)0); |
1748 | } |
1749 | |
1750 | /// Erase an operand from an instruction, leaving it with one |
1751 | /// fewer operand than it started with. |
1752 | void RemoveOperand(unsigned OpNo); |
1753 | |
1754 | /// Clear this MachineInstr's memory reference descriptor list. This resets |
1755 | /// the memrefs to their most conservative state. This should be used only |
1756 | /// as a last resort since it greatly pessimizes our knowledge of the memory |
1757 | /// access performed by the instruction. |
1758 | void dropMemRefs(MachineFunction &MF); |
1759 | |
1760 | /// Assign this MachineInstr's memory reference descriptor list. |
1761 | /// |
1762 | /// Unlike other methods, this *will* allocate them into a new array |
1763 | /// associated with the provided `MachineFunction`. |
1764 | void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); |
1765 | |
1766 | /// Add a MachineMemOperand to the machine instruction. |
1767 | /// This function should be used only occasionally. The setMemRefs function |
1768 | /// is the primary method for setting up a MachineInstr's MemRefs list. |
1769 | void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); |
1770 | |
1771 | /// Clone another MachineInstr's memory reference descriptor list and replace |
1772 | /// ours with it. |
1773 | /// |
1774 | /// Note that `*this` may be the incoming MI! |
1775 | /// |
1776 | /// Prefer this API whenever possible as it can avoid allocations in common |
1777 | /// cases. |
1778 | void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); |
1779 | |
1780 | /// Clone the merge of multiple MachineInstrs' memory reference descriptors |
1781 | /// list and replace ours with it. |
1782 | /// |
1783 | /// Note that `*this` may be one of the incoming MIs! |
1784 | /// |
1785 | /// Prefer this API whenever possible as it can avoid allocations in common |
1786 | /// cases. |
1787 | void cloneMergedMemRefs(MachineFunction &MF, |
1788 | ArrayRef<const MachineInstr *> MIs); |
1789 | |
1790 | /// Set a symbol that will be emitted just prior to the instruction itself. |
1791 | /// |
1792 | /// Setting this to a null pointer will remove any such symbol. |
1793 | /// |
1794 | /// FIXME: This is not fully implemented yet. |
1795 | void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); |
1796 | |
1797 | /// Set a symbol that will be emitted just after the instruction itself. |
1798 | /// |
1799 | /// Setting this to a null pointer will remove any such symbol. |
1800 | /// |
1801 | /// FIXME: This is not fully implemented yet. |
1802 | void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); |
1803 | |
1804 | /// Clone another MachineInstr's pre- and post- instruction symbols and |
1805 | /// replace ours with it. |
1806 | void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); |
1807 | |
1808 | /// Set a marker on instructions that denotes where we should create and emit |
1809 | /// heap alloc site labels. This waits until after instruction selection and |
1810 | /// optimizations to create the label, so it should still work if the |
1811 | /// instruction is removed or duplicated. |
1812 | void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); |
1813 | |
1814 | /// Return the MIFlags which represent both MachineInstrs. This |
1815 | /// should be used when merging two MachineInstrs into one. This routine does |
1816 | /// not modify the MIFlags of this MachineInstr. |
1817 | uint16_t mergeFlagsWith(const MachineInstr& Other) const; |
1818 | |
1819 | static uint16_t copyFlagsFromInstruction(const Instruction &I); |
1820 | |
1821 | /// Copy all flags to MachineInst MIFlags |
1822 | void copyIRFlags(const Instruction &I); |
1823 | |
1824 | /// Break any tie involving OpIdx. |
1825 | void untieRegOperand(unsigned OpIdx) { |
1826 | MachineOperand &MO = getOperand(OpIdx); |
1827 | if (MO.isReg() && MO.isTied()) { |
1828 | getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; |
1829 | MO.TiedTo = 0; |
1830 | } |
1831 | } |
1832 | |
1833 | /// Add all implicit def and use operands to this instruction. |
1834 | void addImplicitDefUseOperands(MachineFunction &MF); |
1835 | |
1836 | /// Scan instructions immediately following MI and collect any matching |
1837 | /// DBG_VALUEs. |
1838 | void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); |
1839 | |
1840 | /// Find all DBG_VALUEs that point to the register def in this instruction |
1841 | /// and point them to \p Reg instead. |
1842 | void changeDebugValuesDefReg(Register Reg); |
1843 | |
1844 | /// Returns the Intrinsic::ID for this instruction. |
1845 | /// \pre Must have an intrinsic ID operand. |
1846 | unsigned getIntrinsicID() const { |
1847 | return getOperand(getNumExplicitDefs()).getIntrinsicID(); |
1848 | } |
1849 | |
1850 | /// Sets all register debug operands in this debug value instruction to be |
1851 | /// undef. |
1852 | void setDebugValueUndef() { |
1853 | assert(isDebugValue() && "Must be a debug value instruction.")((void)0); |
1854 | for (MachineOperand &MO : debug_operands()) { |
1855 | if (MO.isReg()) { |
1856 | MO.setReg(0); |
1857 | MO.setSubReg(0); |
1858 | } |
1859 | } |
1860 | } |
1861 | |
1862 | PseudoProbeAttributes getPseudoProbeAttribute() const { |
1863 | assert(isPseudoProbe() && "Must be a pseudo probe instruction")((void)0); |
1864 | return (PseudoProbeAttributes)getOperand(3).getImm(); |
1865 | } |
1866 | |
1867 | void addPseudoProbeAttribute(PseudoProbeAttributes Attr) { |
1868 | assert(isPseudoProbe() && "Must be a pseudo probe instruction")((void)0); |
1869 | MachineOperand &AttrOperand = getOperand(3); |
1870 | AttrOperand.setImm(AttrOperand.getImm() | (uint32_t)Attr); |
1871 | } |
1872 | |
1873 | private: |
1874 | /// If this instruction is embedded into a MachineFunction, return the |
1875 | /// MachineRegisterInfo object for the current function, otherwise |
1876 | /// return null. |
1877 | MachineRegisterInfo *getRegInfo(); |
1878 | |
1879 | /// Unlink all of the register operands in this instruction from their |
1880 | /// respective use lists. This requires that the operands already be on their |
1881 | /// use lists. |
1882 | void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); |
1883 | |
1884 | /// Add all of the register operands in this instruction from their |
1885 | /// respective use lists. This requires that the operands not be on their |
1886 | /// use lists yet. |
1887 | void AddRegOperandsToUseLists(MachineRegisterInfo&); |
1888 | |
1889 | /// Slow path for hasProperty when we're dealing with a bundle. |
1890 | bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; |
1891 | |
1892 | /// Implements the logic of getRegClassConstraintEffectForVReg for the |
1893 | /// this MI and the given operand index \p OpIdx. |
1894 | /// If the related operand does not constrained Reg, this returns CurRC. |
1895 | const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( |
1896 | unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, |
1897 | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; |
1898 | |
1899 | /// Stores extra instruction information inline or allocates as ExtraInfo |
1900 | /// based on the number of pointers. |
1901 | void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, |
1902 | MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, |
1903 | MDNode *HeapAllocMarker); |
1904 | }; |
1905 | |
1906 | /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the |
1907 | /// instruction rather than by pointer value. |
1908 | /// The hashing and equality testing functions ignore definitions so this is |
1909 | /// useful for CSE, etc. |
1910 | struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { |
1911 | static inline MachineInstr *getEmptyKey() { |
1912 | return nullptr; |
1913 | } |
1914 | |
1915 | static inline MachineInstr *getTombstoneKey() { |
1916 | return reinterpret_cast<MachineInstr*>(-1); |
1917 | } |
1918 | |
1919 | static unsigned getHashValue(const MachineInstr* const &MI); |
1920 | |
1921 | static bool isEqual(const MachineInstr* const &LHS, |
1922 | const MachineInstr* const &RHS) { |
1923 | if (RHS == getEmptyKey() || RHS == getTombstoneKey() || |
1924 | LHS == getEmptyKey() || LHS == getTombstoneKey()) |
1925 | return LHS == RHS; |
1926 | return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); |
1927 | } |
1928 | }; |
1929 | |
1930 | //===----------------------------------------------------------------------===// |
1931 | // Debugging Support |
1932 | |
1933 | inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { |
1934 | MI.print(OS); |
1935 | return OS; |
1936 | } |
1937 | |
1938 | } // end namespace llvm |
1939 | |
1940 | #endif // LLVM_CODEGEN_MACHINEINSTR_H |