Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Utils/SCCPSolver.cpp
Warning:line 407, column 30
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SCCPSolver.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Utils/SCCPSolver.cpp
1//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements the Sparse Conditional Constant Propagation (SCCP)
11// utility.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/SCCPSolver.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/InitializePasses.h"
20#include "llvm/Pass.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include <cassert>
27#include <utility>
28#include <vector>
29
30using namespace llvm;
31
32#define DEBUG_TYPE"sccp" "sccp"
33
34// The maximum number of range extensions allowed for operations requiring
35// widening.
36static const unsigned MaxNumRangeExtensions = 10;
37
38/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
39static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
40 return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
41 MaxNumRangeExtensions);
42}
43
44namespace {
45
46// Helper to check if \p LV is either a constant or a constant
47// range with a single element. This should cover exactly the same cases as the
48// old ValueLatticeElement::isConstant() and is intended to be used in the
49// transition to ValueLatticeElement.
50bool isConstant(const ValueLatticeElement &LV) {
51 return LV.isConstant() ||
52 (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
53}
54
55// Helper to check if \p LV is either overdefined or a constant range with more
56// than a single element. This should cover exactly the same cases as the old
57// ValueLatticeElement::isOverdefined() and is intended to be used in the
58// transition to ValueLatticeElement.
59bool isOverdefined(const ValueLatticeElement &LV) {
60 return !LV.isUnknownOrUndef() && !isConstant(LV);
61}
62
63} // namespace
64
65namespace llvm {
66
67/// Helper class for SCCPSolver. This implements the instruction visitor and
68/// holds all the state.
69class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
70 const DataLayout &DL;
71 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
72 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
73 DenseMap<Value *, ValueLatticeElement>
74 ValueState; // The state each value is in.
75
76 /// StructValueState - This maintains ValueState for values that have
77 /// StructType, for example for formal arguments, calls, insertelement, etc.
78 DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
79
80 /// GlobalValue - If we are tracking any values for the contents of a global
81 /// variable, we keep a mapping from the constant accessor to the element of
82 /// the global, to the currently known value. If the value becomes
83 /// overdefined, it's entry is simply removed from this map.
84 DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
85
86 /// TrackedRetVals - If we are tracking arguments into and the return
87 /// value out of a function, it will have an entry in this map, indicating
88 /// what the known return value for the function is.
89 MapVector<Function *, ValueLatticeElement> TrackedRetVals;
90
91 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
92 /// that return multiple values.
93 MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
94 TrackedMultipleRetVals;
95
96 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
97 /// represented here for efficient lookup.
98 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
99
100 /// A list of functions whose return cannot be modified.
101 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
102
103 /// TrackingIncomingArguments - This is the set of functions for whose
104 /// arguments we make optimistic assumptions about and try to prove as
105 /// constants.
106 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
107
108 /// The reason for two worklists is that overdefined is the lowest state
109 /// on the lattice, and moving things to overdefined as fast as possible
110 /// makes SCCP converge much faster.
111 ///
112 /// By having a separate worklist, we accomplish this because everything
113 /// possibly overdefined will become overdefined at the soonest possible
114 /// point.
115 SmallVector<Value *, 64> OverdefinedInstWorkList;
116 SmallVector<Value *, 64> InstWorkList;
117
118 // The BasicBlock work list
119 SmallVector<BasicBlock *, 64> BBWorkList;
120
121 /// KnownFeasibleEdges - Entries in this set are edges which have already had
122 /// PHI nodes retriggered.
123 using Edge = std::pair<BasicBlock *, BasicBlock *>;
124 DenseSet<Edge> KnownFeasibleEdges;
125
126 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
127 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
128
129 LLVMContext &Ctx;
130
131private:
132 ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
133 return dyn_cast_or_null<ConstantInt>(getConstant(IV));
134 }
135
136 // pushToWorkList - Helper for markConstant/markOverdefined
137 void pushToWorkList(ValueLatticeElement &IV, Value *V);
138
139 // Helper to push \p V to the worklist, after updating it to \p IV. Also
140 // prints a debug message with the updated value.
141 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
142
143 // markConstant - Make a value be marked as "constant". If the value
144 // is not already a constant, add it to the instruction work list so that
145 // the users of the instruction are updated later.
146 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
147 bool MayIncludeUndef = false);
148
149 bool markConstant(Value *V, Constant *C) {
150 assert(!V->getType()->isStructTy() && "structs should use mergeInValue")((void)0);
151 return markConstant(ValueState[V], V, C);
152 }
153
154 // markOverdefined - Make a value be marked as "overdefined". If the
155 // value is not already overdefined, add it to the overdefined instruction
156 // work list so that the users of the instruction are updated later.
157 bool markOverdefined(ValueLatticeElement &IV, Value *V);
158
159 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
160 /// changes.
161 bool mergeInValue(ValueLatticeElement &IV, Value *V,
162 ValueLatticeElement MergeWithV,
163 ValueLatticeElement::MergeOptions Opts = {
164 /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
165
166 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
167 ValueLatticeElement::MergeOptions Opts = {
168 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
169 assert(!V->getType()->isStructTy() &&((void)0)
170 "non-structs should use markConstant")((void)0);
171 return mergeInValue(ValueState[V], V, MergeWithV, Opts);
172 }
173
174 /// getValueState - Return the ValueLatticeElement object that corresponds to
175 /// the value. This function handles the case when the value hasn't been seen
176 /// yet by properly seeding constants etc.
177 ValueLatticeElement &getValueState(Value *V) {
178 assert(!V->getType()->isStructTy() && "Should use getStructValueState")((void)0);
179
180 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
181 ValueLatticeElement &LV = I.first->second;
182
183 if (!I.second)
184 return LV; // Common case, already in the map.
185
186 if (auto *C = dyn_cast<Constant>(V))
187 LV.markConstant(C); // Constants are constant
188
189 // All others are unknown by default.
190 return LV;
191 }
192
193 /// getStructValueState - Return the ValueLatticeElement object that
194 /// corresponds to the value/field pair. This function handles the case when
195 /// the value hasn't been seen yet by properly seeding constants etc.
196 ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
197 assert(V->getType()->isStructTy() && "Should use getValueState")((void)0);
198 assert(i < cast<StructType>(V->getType())->getNumElements() &&((void)0)
199 "Invalid element #")((void)0);
200
201 auto I = StructValueState.insert(
202 std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
203 ValueLatticeElement &LV = I.first->second;
204
205 if (!I.second)
206 return LV; // Common case, already in the map.
207
208 if (auto *C = dyn_cast<Constant>(V)) {
209 Constant *Elt = C->getAggregateElement(i);
210
211 if (!Elt)
212 LV.markOverdefined(); // Unknown sort of constant.
213 else if (isa<UndefValue>(Elt))
214 ; // Undef values remain unknown.
215 else
216 LV.markConstant(Elt); // Constants are constant.
217 }
218
219 // All others are underdefined by default.
220 return LV;
221 }
222
223 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
224 /// work list if it is not already executable.
225 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
226
227 // getFeasibleSuccessors - Return a vector of booleans to indicate which
228 // successors are reachable from a given terminator instruction.
229 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
230
231 // OperandChangedState - This method is invoked on all of the users of an
232 // instruction that was just changed state somehow. Based on this
233 // information, we need to update the specified user of this instruction.
234 void operandChangedState(Instruction *I) {
235 if (BBExecutable.count(I->getParent())) // Inst is executable?
236 visit(*I);
237 }
238
239 // Add U as additional user of V.
240 void addAdditionalUser(Value *V, User *U) {
241 auto Iter = AdditionalUsers.insert({V, {}});
242 Iter.first->second.insert(U);
243 }
244
245 // Mark I's users as changed, including AdditionalUsers.
246 void markUsersAsChanged(Value *I) {
247 // Functions include their arguments in the use-list. Changed function
248 // values mean that the result of the function changed. We only need to
249 // update the call sites with the new function result and do not have to
250 // propagate the call arguments.
251 if (isa<Function>(I)) {
252 for (User *U : I->users()) {
253 if (auto *CB = dyn_cast<CallBase>(U))
254 handleCallResult(*CB);
255 }
256 } else {
257 for (User *U : I->users())
258 if (auto *UI = dyn_cast<Instruction>(U))
259 operandChangedState(UI);
260 }
261
262 auto Iter = AdditionalUsers.find(I);
263 if (Iter != AdditionalUsers.end()) {
264 // Copy additional users before notifying them of changes, because new
265 // users may be added, potentially invalidating the iterator.
266 SmallVector<Instruction *, 2> ToNotify;
267 for (User *U : Iter->second)
268 if (auto *UI = dyn_cast<Instruction>(U))
269 ToNotify.push_back(UI);
270 for (Instruction *UI : ToNotify)
271 operandChangedState(UI);
272 }
273 }
274 void handleCallOverdefined(CallBase &CB);
275 void handleCallResult(CallBase &CB);
276 void handleCallArguments(CallBase &CB);
277
278private:
279 friend class InstVisitor<SCCPInstVisitor>;
280
281 // visit implementations - Something changed in this instruction. Either an
282 // operand made a transition, or the instruction is newly executable. Change
283 // the value type of I to reflect these changes if appropriate.
284 void visitPHINode(PHINode &I);
285
286 // Terminators
287
288 void visitReturnInst(ReturnInst &I);
289 void visitTerminator(Instruction &TI);
290
291 void visitCastInst(CastInst &I);
292 void visitSelectInst(SelectInst &I);
293 void visitUnaryOperator(Instruction &I);
294 void visitBinaryOperator(Instruction &I);
295 void visitCmpInst(CmpInst &I);
296 void visitExtractValueInst(ExtractValueInst &EVI);
297 void visitInsertValueInst(InsertValueInst &IVI);
298
299 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
300 markOverdefined(&CPI);
301 visitTerminator(CPI);
302 }
303
304 // Instructions that cannot be folded away.
305
306 void visitStoreInst(StoreInst &I);
307 void visitLoadInst(LoadInst &I);
308 void visitGetElementPtrInst(GetElementPtrInst &I);
309
310 void visitInvokeInst(InvokeInst &II) {
311 visitCallBase(II);
312 visitTerminator(II);
313 }
314
315 void visitCallBrInst(CallBrInst &CBI) {
316 visitCallBase(CBI);
317 visitTerminator(CBI);
318 }
319
320 void visitCallBase(CallBase &CB);
321 void visitResumeInst(ResumeInst &I) { /*returns void*/
322 }
323 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
324 }
325 void visitFenceInst(FenceInst &I) { /*returns void*/
326 }
327
328 void visitInstruction(Instruction &I);
329
330public:
331 void addAnalysis(Function &F, AnalysisResultsForFn A) {
332 AnalysisResults.insert({&F, std::move(A)});
333 }
334
335 void visitCallInst(CallInst &I) { visitCallBase(I); }
336
337 bool markBlockExecutable(BasicBlock *BB);
338
339 const PredicateBase *getPredicateInfoFor(Instruction *I) {
340 auto A = AnalysisResults.find(I->getParent()->getParent());
341 if (A == AnalysisResults.end())
342 return nullptr;
343 return A->second.PredInfo->getPredicateInfoFor(I);
344 }
345
346 DomTreeUpdater getDTU(Function &F) {
347 auto A = AnalysisResults.find(&F);
348 assert(A != AnalysisResults.end() && "Need analysis results for function.")((void)0);
349 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
350 }
351
352 SCCPInstVisitor(const DataLayout &DL,
353 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
354 LLVMContext &Ctx)
355 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
356
357 void trackValueOfGlobalVariable(GlobalVariable *GV) {
358 // We only track the contents of scalar globals.
359 if (GV->getValueType()->isSingleValueType()) {
360 ValueLatticeElement &IV = TrackedGlobals[GV];
361 if (!isa<UndefValue>(GV->getInitializer()))
362 IV.markConstant(GV->getInitializer());
363 }
364 }
365
366 void addTrackedFunction(Function *F) {
367 // Add an entry, F -> undef.
368 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
369 MRVFunctionsTracked.insert(F);
370 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
371 TrackedMultipleRetVals.insert(
372 std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
373 } else if (!F->getReturnType()->isVoidTy())
374 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
375 }
376
377 void addToMustPreserveReturnsInFunctions(Function *F) {
378 MustPreserveReturnsInFunctions.insert(F);
379 }
380
381 bool mustPreserveReturn(Function *F) {
382 return MustPreserveReturnsInFunctions.count(F);
383 }
384
385 void addArgumentTrackedFunction(Function *F) {
386 TrackingIncomingArguments.insert(F);
387 }
388
389 bool isArgumentTrackedFunction(Function *F) {
390 return TrackingIncomingArguments.count(F);
391 }
392
393 void solve();
394
395 bool resolvedUndefsIn(Function &F);
396
397 bool isBlockExecutable(BasicBlock *BB) const {
398 return BBExecutable.count(BB);
399 }
400
401 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
402
403 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
404 std::vector<ValueLatticeElement> StructValues;
405 auto *STy = dyn_cast<StructType>(V->getType());
2
Assuming the object is not a 'StructType'
3
'STy' initialized to a null pointer value
406 assert(STy && "getStructLatticeValueFor() can be called only on structs")((void)0);
407 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4
Called C++ object pointer is null
408 auto I = StructValueState.find(std::make_pair(V, i));
409 assert(I != StructValueState.end() && "Value not in valuemap!")((void)0);
410 StructValues.push_back(I->second);
411 }
412 return StructValues;
413 }
414
415 void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
416
417 const ValueLatticeElement &getLatticeValueFor(Value *V) const {
418 assert(!V->getType()->isStructTy() &&((void)0)
419 "Should use getStructLatticeValueFor")((void)0);
420 DenseMap<Value *, ValueLatticeElement>::const_iterator I =
421 ValueState.find(V);
422 assert(I != ValueState.end() &&((void)0)
423 "V not found in ValueState nor Paramstate map!")((void)0);
424 return I->second;
425 }
426
427 const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
428 return TrackedRetVals;
429 }
430
431 const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
432 return TrackedGlobals;
433 }
434
435 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
436 return MRVFunctionsTracked;
437 }
438
439 void markOverdefined(Value *V) {
440 if (auto *STy = dyn_cast<StructType>(V->getType()))
441 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
442 markOverdefined(getStructValueState(V, i), V);
443 else
444 markOverdefined(ValueState[V], V);
445 }
446
447 bool isStructLatticeConstant(Function *F, StructType *STy);
448
449 Constant *getConstant(const ValueLatticeElement &LV) const;
450
451 SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
452 return TrackingIncomingArguments;
453 }
454
455 void markArgInFuncSpecialization(Function *F, Argument *A, Constant *C);
456
457 void markFunctionUnreachable(Function *F) {
458 for (auto &BB : *F)
459 BBExecutable.erase(&BB);
460 }
461};
462
463} // namespace llvm
464
465bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
466 if (!BBExecutable.insert(BB).second)
467 return false;
468 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n')do { } while (false);
469 BBWorkList.push_back(BB); // Add the block to the work list!
470 return true;
471}
472
473void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
474 if (IV.isOverdefined())
475 return OverdefinedInstWorkList.push_back(V);
476 InstWorkList.push_back(V);
477}
478
479void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
480 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n')do { } while (false);
481 pushToWorkList(IV, V);
482}
483
484bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
485 Constant *C, bool MayIncludeUndef) {
486 if (!IV.markConstant(C, MayIncludeUndef))
487 return false;
488 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n')do { } while (false);
489 pushToWorkList(IV, V);
490 return true;
491}
492
493bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
494 if (!IV.markOverdefined())
495 return false;
496
497 LLVM_DEBUG(dbgs() << "markOverdefined: ";do { } while (false)
498 if (auto *F = dyn_cast<Function>(V)) dbgs()do { } while (false)
499 << "Function '" << F->getName() << "'\n";do { } while (false)
500 else dbgs() << *V << '\n')do { } while (false);
501 // Only instructions go on the work list
502 pushToWorkList(IV, V);
503 return true;
504}
505
506bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
507 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
508 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
509 assert(It != TrackedMultipleRetVals.end())((void)0);
510 ValueLatticeElement LV = It->second;
511 if (!isConstant(LV))
512 return false;
513 }
514 return true;
515}
516
517Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
518 if (LV.isConstant())
519 return LV.getConstant();
520
521 if (LV.isConstantRange()) {
522 const auto &CR = LV.getConstantRange();
523 if (CR.getSingleElement())
524 return ConstantInt::get(Ctx, *CR.getSingleElement());
525 }
526 return nullptr;
527}
528
529void SCCPInstVisitor::markArgInFuncSpecialization(Function *F, Argument *A,
530 Constant *C) {
531 assert(F->arg_size() == A->getParent()->arg_size() &&((void)0)
532 "Functions should have the same number of arguments")((void)0);
533
534 // Mark the argument constant in the new function.
535 markConstant(A, C);
536
537 // For the remaining arguments in the new function, copy the lattice state
538 // over from the old function.
539 for (auto I = F->arg_begin(), J = A->getParent()->arg_begin(),
540 E = F->arg_end();
541 I != E; ++I, ++J)
542 if (J != A && ValueState.count(I)) {
543 ValueState[J] = ValueState[I];
544 pushToWorkList(ValueState[J], J);
545 }
546}
547
548void SCCPInstVisitor::visitInstruction(Instruction &I) {
549 // All the instructions we don't do any special handling for just
550 // go to overdefined.
551 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n')do { } while (false);
552 markOverdefined(&I);
553}
554
555bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
556 ValueLatticeElement MergeWithV,
557 ValueLatticeElement::MergeOptions Opts) {
558 if (IV.mergeIn(MergeWithV, Opts)) {
559 pushToWorkList(IV, V);
560 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "do { } while (false)
561 << IV << "\n")do { } while (false);
562 return true;
563 }
564 return false;
565}
566
567bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
568 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
569 return false; // This edge is already known to be executable!
570
571 if (!markBlockExecutable(Dest)) {
572 // If the destination is already executable, we just made an *edge*
573 // feasible that wasn't before. Revisit the PHI nodes in the block
574 // because they have potentially new operands.
575 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()do { } while (false)
576 << " -> " << Dest->getName() << '\n')do { } while (false);
577
578 for (PHINode &PN : Dest->phis())
579 visitPHINode(PN);
580 }
581 return true;
582}
583
584// getFeasibleSuccessors - Return a vector of booleans to indicate which
585// successors are reachable from a given terminator instruction.
586void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
587 SmallVectorImpl<bool> &Succs) {
588 Succs.resize(TI.getNumSuccessors());
589 if (auto *BI = dyn_cast<BranchInst>(&TI)) {
590 if (BI->isUnconditional()) {
591 Succs[0] = true;
592 return;
593 }
594
595 ValueLatticeElement BCValue = getValueState(BI->getCondition());
596 ConstantInt *CI = getConstantInt(BCValue);
597 if (!CI) {
598 // Overdefined condition variables, and branches on unfoldable constant
599 // conditions, mean the branch could go either way.
600 if (!BCValue.isUnknownOrUndef())
601 Succs[0] = Succs[1] = true;
602 return;
603 }
604
605 // Constant condition variables mean the branch can only go a single way.
606 Succs[CI->isZero()] = true;
607 return;
608 }
609
610 // Unwinding instructions successors are always executable.
611 if (TI.isExceptionalTerminator()) {
612 Succs.assign(TI.getNumSuccessors(), true);
613 return;
614 }
615
616 if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
617 if (!SI->getNumCases()) {
618 Succs[0] = true;
619 return;
620 }
621 const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
622 if (ConstantInt *CI = getConstantInt(SCValue)) {
623 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
624 return;
625 }
626
627 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
628 // is ready.
629 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
630 const ConstantRange &Range = SCValue.getConstantRange();
631 for (const auto &Case : SI->cases()) {
632 const APInt &CaseValue = Case.getCaseValue()->getValue();
633 if (Range.contains(CaseValue))
634 Succs[Case.getSuccessorIndex()] = true;
635 }
636
637 // TODO: Determine whether default case is reachable.
638 Succs[SI->case_default()->getSuccessorIndex()] = true;
639 return;
640 }
641
642 // Overdefined or unknown condition? All destinations are executable!
643 if (!SCValue.isUnknownOrUndef())
644 Succs.assign(TI.getNumSuccessors(), true);
645 return;
646 }
647
648 // In case of indirect branch and its address is a blockaddress, we mark
649 // the target as executable.
650 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
651 // Casts are folded by visitCastInst.
652 ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
653 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
654 if (!Addr) { // Overdefined or unknown condition?
655 // All destinations are executable!
656 if (!IBRValue.isUnknownOrUndef())
657 Succs.assign(TI.getNumSuccessors(), true);
658 return;
659 }
660
661 BasicBlock *T = Addr->getBasicBlock();
662 assert(Addr->getFunction() == T->getParent() &&((void)0)
663 "Block address of a different function ?")((void)0);
664 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
665 // This is the target.
666 if (IBR->getDestination(i) == T) {
667 Succs[i] = true;
668 return;
669 }
670 }
671
672 // If we didn't find our destination in the IBR successor list, then we
673 // have undefined behavior. Its ok to assume no successor is executable.
674 return;
675 }
676
677 // In case of callbr, we pessimistically assume that all successors are
678 // feasible.
679 if (isa<CallBrInst>(&TI)) {
680 Succs.assign(TI.getNumSuccessors(), true);
681 return;
682 }
683
684 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n')do { } while (false);
685 llvm_unreachable("SCCP: Don't know how to handle this terminator!")__builtin_unreachable();
686}
687
688// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
689// block to the 'To' basic block is currently feasible.
690bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
691 // Check if we've called markEdgeExecutable on the edge yet. (We could
692 // be more aggressive and try to consider edges which haven't been marked
693 // yet, but there isn't any need.)
694 return KnownFeasibleEdges.count(Edge(From, To));
695}
696
697// visit Implementations - Something changed in this instruction, either an
698// operand made a transition, or the instruction is newly executable. Change
699// the value type of I to reflect these changes if appropriate. This method
700// makes sure to do the following actions:
701//
702// 1. If a phi node merges two constants in, and has conflicting value coming
703// from different branches, or if the PHI node merges in an overdefined
704// value, then the PHI node becomes overdefined.
705// 2. If a phi node merges only constants in, and they all agree on value, the
706// PHI node becomes a constant value equal to that.
707// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
708// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
709// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
710// 6. If a conditional branch has a value that is constant, make the selected
711// destination executable
712// 7. If a conditional branch has a value that is overdefined, make all
713// successors executable.
714void SCCPInstVisitor::visitPHINode(PHINode &PN) {
715 // If this PN returns a struct, just mark the result overdefined.
716 // TODO: We could do a lot better than this if code actually uses this.
717 if (PN.getType()->isStructTy())
718 return (void)markOverdefined(&PN);
719
720 if (getValueState(&PN).isOverdefined())
721 return; // Quick exit
722
723 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
724 // and slow us down a lot. Just mark them overdefined.
725 if (PN.getNumIncomingValues() > 64)
726 return (void)markOverdefined(&PN);
727
728 unsigned NumActiveIncoming = 0;
729
730 // Look at all of the executable operands of the PHI node. If any of them
731 // are overdefined, the PHI becomes overdefined as well. If they are all
732 // constant, and they agree with each other, the PHI becomes the identical
733 // constant. If they are constant and don't agree, the PHI is a constant
734 // range. If there are no executable operands, the PHI remains unknown.
735 ValueLatticeElement PhiState = getValueState(&PN);
736 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
737 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
738 continue;
739
740 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
741 PhiState.mergeIn(IV);
742 NumActiveIncoming++;
743 if (PhiState.isOverdefined())
744 break;
745 }
746
747 // We allow up to 1 range extension per active incoming value and one
748 // additional extension. Note that we manually adjust the number of range
749 // extensions to match the number of active incoming values. This helps to
750 // limit multiple extensions caused by the same incoming value, if other
751 // incoming values are equal.
752 mergeInValue(&PN, PhiState,
753 ValueLatticeElement::MergeOptions().setMaxWidenSteps(
754 NumActiveIncoming + 1));
755 ValueLatticeElement &PhiStateRef = getValueState(&PN);
756 PhiStateRef.setNumRangeExtensions(
757 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
758}
759
760void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
761 if (I.getNumOperands() == 0)
762 return; // ret void
763
764 Function *F = I.getParent()->getParent();
765 Value *ResultOp = I.getOperand(0);
766
767 // If we are tracking the return value of this function, merge it in.
768 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
769 auto TFRVI = TrackedRetVals.find(F);
770 if (TFRVI != TrackedRetVals.end()) {
771 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
772 return;
773 }
774 }
775
776 // Handle functions that return multiple values.
777 if (!TrackedMultipleRetVals.empty()) {
778 if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
779 if (MRVFunctionsTracked.count(F))
780 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
781 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
782 getStructValueState(ResultOp, i));
783 }
784}
785
786void SCCPInstVisitor::visitTerminator(Instruction &TI) {
787 SmallVector<bool, 16> SuccFeasible;
788 getFeasibleSuccessors(TI, SuccFeasible);
789
790 BasicBlock *BB = TI.getParent();
791
792 // Mark all feasible successors executable.
793 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
794 if (SuccFeasible[i])
795 markEdgeExecutable(BB, TI.getSuccessor(i));
796}
797
798void SCCPInstVisitor::visitCastInst(CastInst &I) {
799 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
800 // discover a concrete value later.
801 if (ValueState[&I].isOverdefined())
802 return;
803
804 ValueLatticeElement OpSt = getValueState(I.getOperand(0));
805 if (Constant *OpC = getConstant(OpSt)) {
806 // Fold the constant as we build.
807 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
808 if (isa<UndefValue>(C))
809 return;
810 // Propagate constant value
811 markConstant(&I, C);
812 } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
813 auto &LV = getValueState(&I);
814 ConstantRange OpRange = OpSt.getConstantRange();
815 Type *DestTy = I.getDestTy();
816 // Vectors where all elements have the same known constant range are treated
817 // as a single constant range in the lattice. When bitcasting such vectors,
818 // there is a mis-match between the width of the lattice value (single
819 // constant range) and the original operands (vector). Go to overdefined in
820 // that case.
821 if (I.getOpcode() == Instruction::BitCast &&
822 I.getOperand(0)->getType()->isVectorTy() &&
823 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
824 return (void)markOverdefined(&I);
825
826 ConstantRange Res =
827 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
828 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
829 } else if (!OpSt.isUnknownOrUndef())
830 markOverdefined(&I);
831}
832
833void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
834 // If this returns a struct, mark all elements over defined, we don't track
835 // structs in structs.
836 if (EVI.getType()->isStructTy())
837 return (void)markOverdefined(&EVI);
838
839 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
840 // discover a concrete value later.
841 if (ValueState[&EVI].isOverdefined())
842 return (void)markOverdefined(&EVI);
843
844 // If this is extracting from more than one level of struct, we don't know.
845 if (EVI.getNumIndices() != 1)
846 return (void)markOverdefined(&EVI);
847
848 Value *AggVal = EVI.getAggregateOperand();
849 if (AggVal->getType()->isStructTy()) {
850 unsigned i = *EVI.idx_begin();
851 ValueLatticeElement EltVal = getStructValueState(AggVal, i);
852 mergeInValue(getValueState(&EVI), &EVI, EltVal);
853 } else {
854 // Otherwise, must be extracting from an array.
855 return (void)markOverdefined(&EVI);
856 }
857}
858
859void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
860 auto *STy = dyn_cast<StructType>(IVI.getType());
861 if (!STy)
862 return (void)markOverdefined(&IVI);
863
864 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
865 // discover a concrete value later.
866 if (isOverdefined(ValueState[&IVI]))
867 return (void)markOverdefined(&IVI);
868
869 // If this has more than one index, we can't handle it, drive all results to
870 // undef.
871 if (IVI.getNumIndices() != 1)
872 return (void)markOverdefined(&IVI);
873
874 Value *Aggr = IVI.getAggregateOperand();
875 unsigned Idx = *IVI.idx_begin();
876
877 // Compute the result based on what we're inserting.
878 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
879 // This passes through all values that aren't the inserted element.
880 if (i != Idx) {
881 ValueLatticeElement EltVal = getStructValueState(Aggr, i);
882 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
883 continue;
884 }
885
886 Value *Val = IVI.getInsertedValueOperand();
887 if (Val->getType()->isStructTy())
888 // We don't track structs in structs.
889 markOverdefined(getStructValueState(&IVI, i), &IVI);
890 else {
891 ValueLatticeElement InVal = getValueState(Val);
892 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
893 }
894 }
895}
896
897void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
898 // If this select returns a struct, just mark the result overdefined.
899 // TODO: We could do a lot better than this if code actually uses this.
900 if (I.getType()->isStructTy())
901 return (void)markOverdefined(&I);
902
903 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
904 // discover a concrete value later.
905 if (ValueState[&I].isOverdefined())
906 return (void)markOverdefined(&I);
907
908 ValueLatticeElement CondValue = getValueState(I.getCondition());
909 if (CondValue.isUnknownOrUndef())
910 return;
911
912 if (ConstantInt *CondCB = getConstantInt(CondValue)) {
913 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
914 mergeInValue(&I, getValueState(OpVal));
915 return;
916 }
917
918 // Otherwise, the condition is overdefined or a constant we can't evaluate.
919 // See if we can produce something better than overdefined based on the T/F
920 // value.
921 ValueLatticeElement TVal = getValueState(I.getTrueValue());
922 ValueLatticeElement FVal = getValueState(I.getFalseValue());
923
924 bool Changed = ValueState[&I].mergeIn(TVal);
925 Changed |= ValueState[&I].mergeIn(FVal);
926 if (Changed)
927 pushToWorkListMsg(ValueState[&I], &I);
928}
929
930// Handle Unary Operators.
931void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
932 ValueLatticeElement V0State = getValueState(I.getOperand(0));
933
934 ValueLatticeElement &IV = ValueState[&I];
935 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
936 // discover a concrete value later.
937 if (isOverdefined(IV))
938 return (void)markOverdefined(&I);
939
940 if (isConstant(V0State)) {
941 Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
942
943 // op Y -> undef.
944 if (isa<UndefValue>(C))
945 return;
946 return (void)markConstant(IV, &I, C);
947 }
948
949 // If something is undef, wait for it to resolve.
950 if (!isOverdefined(V0State))
951 return;
952
953 markOverdefined(&I);
954}
955
956// Handle Binary Operators.
957void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
958 ValueLatticeElement V1State = getValueState(I.getOperand(0));
959 ValueLatticeElement V2State = getValueState(I.getOperand(1));
960
961 ValueLatticeElement &IV = ValueState[&I];
962 if (IV.isOverdefined())
963 return;
964
965 // If something is undef, wait for it to resolve.
966 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
967 return;
968
969 if (V1State.isOverdefined() && V2State.isOverdefined())
970 return (void)markOverdefined(&I);
971
972 // If either of the operands is a constant, try to fold it to a constant.
973 // TODO: Use information from notconstant better.
974 if ((V1State.isConstant() || V2State.isConstant())) {
975 Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
976 Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
977 Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
978 auto *C = dyn_cast_or_null<Constant>(R);
979 if (C) {
980 // X op Y -> undef.
981 if (isa<UndefValue>(C))
982 return;
983 // Conservatively assume that the result may be based on operands that may
984 // be undef. Note that we use mergeInValue to combine the constant with
985 // the existing lattice value for I, as different constants might be found
986 // after one of the operands go to overdefined, e.g. due to one operand
987 // being a special floating value.
988 ValueLatticeElement NewV;
989 NewV.markConstant(C, /*MayIncludeUndef=*/true);
990 return (void)mergeInValue(&I, NewV);
991 }
992 }
993
994 // Only use ranges for binary operators on integers.
995 if (!I.getType()->isIntegerTy())
996 return markOverdefined(&I);
997
998 // Try to simplify to a constant range.
999 ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
1000 ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
1001 if (V1State.isConstantRange())
1002 A = V1State.getConstantRange();
1003 if (V2State.isConstantRange())
1004 B = V2State.getConstantRange();
1005
1006 ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
1007 mergeInValue(&I, ValueLatticeElement::getRange(R));
1008
1009 // TODO: Currently we do not exploit special values that produce something
1010 // better than overdefined with an overdefined operand for vector or floating
1011 // point types, like and <4 x i32> overdefined, zeroinitializer.
1012}
1013
1014// Handle ICmpInst instruction.
1015void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1016 // Do not cache this lookup, getValueState calls later in the function might
1017 // invalidate the reference.
1018 if (isOverdefined(ValueState[&I]))
1019 return (void)markOverdefined(&I);
1020
1021 Value *Op1 = I.getOperand(0);
1022 Value *Op2 = I.getOperand(1);
1023
1024 // For parameters, use ParamState which includes constant range info if
1025 // available.
1026 auto V1State = getValueState(Op1);
1027 auto V2State = getValueState(Op2);
1028
1029 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1030 if (C) {
1031 if (isa<UndefValue>(C))
1032 return;
1033 ValueLatticeElement CV;
1034 CV.markConstant(C);
1035 mergeInValue(&I, CV);
1036 return;
1037 }
1038
1039 // If operands are still unknown, wait for it to resolve.
1040 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1041 !isConstant(ValueState[&I]))
1042 return;
1043
1044 markOverdefined(&I);
1045}
1046
1047// Handle getelementptr instructions. If all operands are constants then we
1048// can turn this into a getelementptr ConstantExpr.
1049void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1050 if (isOverdefined(ValueState[&I]))
1051 return (void)markOverdefined(&I);
1052
1053 SmallVector<Constant *, 8> Operands;
1054 Operands.reserve(I.getNumOperands());
1055
1056 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1057 ValueLatticeElement State = getValueState(I.getOperand(i));
1058 if (State.isUnknownOrUndef())
1059 return; // Operands are not resolved yet.
1060
1061 if (isOverdefined(State))
1062 return (void)markOverdefined(&I);
1063
1064 if (Constant *C = getConstant(State)) {
1065 Operands.push_back(C);
1066 continue;
1067 }
1068
1069 return (void)markOverdefined(&I);
1070 }
1071
1072 Constant *Ptr = Operands[0];
1073 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1074 Constant *C =
1075 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1076 if (isa<UndefValue>(C))
1077 return;
1078 markConstant(&I, C);
1079}
1080
1081void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1082 // If this store is of a struct, ignore it.
1083 if (SI.getOperand(0)->getType()->isStructTy())
1084 return;
1085
1086 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1087 return;
1088
1089 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1090 auto I = TrackedGlobals.find(GV);
1091 if (I == TrackedGlobals.end())
1092 return;
1093
1094 // Get the value we are storing into the global, then merge it.
1095 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1096 ValueLatticeElement::MergeOptions().setCheckWiden(false));
1097 if (I->second.isOverdefined())
1098 TrackedGlobals.erase(I); // No need to keep tracking this!
1099}
1100
1101static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1102 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1103 if (I->getType()->isIntegerTy())
1104 return ValueLatticeElement::getRange(
1105 getConstantRangeFromMetadata(*Ranges));
1106 if (I->hasMetadata(LLVMContext::MD_nonnull))
1107 return ValueLatticeElement::getNot(
1108 ConstantPointerNull::get(cast<PointerType>(I->getType())));
1109 return ValueLatticeElement::getOverdefined();
1110}
1111
1112// Handle load instructions. If the operand is a constant pointer to a constant
1113// global, we can replace the load with the loaded constant value!
1114void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1115 // If this load is of a struct or the load is volatile, just mark the result
1116 // as overdefined.
1117 if (I.getType()->isStructTy() || I.isVolatile())
1118 return (void)markOverdefined(&I);
1119
1120 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1121 // discover a concrete value later.
1122 if (ValueState[&I].isOverdefined())
1123 return (void)markOverdefined(&I);
1124
1125 ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1126 if (PtrVal.isUnknownOrUndef())
1127 return; // The pointer is not resolved yet!
1128
1129 ValueLatticeElement &IV = ValueState[&I];
1130
1131 if (isConstant(PtrVal)) {
1132 Constant *Ptr = getConstant(PtrVal);
1133
1134 // load null is undefined.
1135 if (isa<ConstantPointerNull>(Ptr)) {
1136 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1137 return (void)markOverdefined(IV, &I);
1138 else
1139 return;
1140 }
1141
1142 // Transform load (constant global) into the value loaded.
1143 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1144 if (!TrackedGlobals.empty()) {
1145 // If we are tracking this global, merge in the known value for it.
1146 auto It = TrackedGlobals.find(GV);
1147 if (It != TrackedGlobals.end()) {
1148 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1149 return;
1150 }
1151 }
1152 }
1153
1154 // Transform load from a constant into a constant if possible.
1155 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1156 if (isa<UndefValue>(C))
1157 return;
1158 return (void)markConstant(IV, &I, C);
1159 }
1160 }
1161
1162 // Fall back to metadata.
1163 mergeInValue(&I, getValueFromMetadata(&I));
1164}
1165
1166void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1167 handleCallResult(CB);
1168 handleCallArguments(CB);
1169}
1170
1171void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1172 Function *F = CB.getCalledFunction();
1173
1174 // Void return and not tracking callee, just bail.
1175 if (CB.getType()->isVoidTy())
1176 return;
1177
1178 // Always mark struct return as overdefined.
1179 if (CB.getType()->isStructTy())
1180 return (void)markOverdefined(&CB);
1181
1182 // Otherwise, if we have a single return value case, and if the function is
1183 // a declaration, maybe we can constant fold it.
1184 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1185 SmallVector<Constant *, 8> Operands;
1186 for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
1187 if (AI->get()->getType()->isStructTy())
1188 return markOverdefined(&CB); // Can't handle struct args.
1189 ValueLatticeElement State = getValueState(*AI);
1190
1191 if (State.isUnknownOrUndef())
1192 return; // Operands are not resolved yet.
1193 if (isOverdefined(State))
1194 return (void)markOverdefined(&CB);
1195 assert(isConstant(State) && "Unknown state!")((void)0);
1196 Operands.push_back(getConstant(State));
1197 }
1198
1199 if (isOverdefined(getValueState(&CB)))
1200 return (void)markOverdefined(&CB);
1201
1202 // If we can constant fold this, mark the result of the call as a
1203 // constant.
1204 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
1205 // call -> undef.
1206 if (isa<UndefValue>(C))
1207 return;
1208 return (void)markConstant(&CB, C);
1209 }
1210 }
1211
1212 // Fall back to metadata.
1213 mergeInValue(&CB, getValueFromMetadata(&CB));
1214}
1215
1216void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1217 Function *F = CB.getCalledFunction();
1218 // If this is a local function that doesn't have its address taken, mark its
1219 // entry block executable and merge in the actual arguments to the call into
1220 // the formal arguments of the function.
1221 if (!TrackingIncomingArguments.empty() &&
1222 TrackingIncomingArguments.count(F)) {
1223 markBlockExecutable(&F->front());
1224
1225 // Propagate information from this call site into the callee.
1226 auto CAI = CB.arg_begin();
1227 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1228 ++AI, ++CAI) {
1229 // If this argument is byval, and if the function is not readonly, there
1230 // will be an implicit copy formed of the input aggregate.
1231 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1232 markOverdefined(&*AI);
1233 continue;
1234 }
1235
1236 if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1237 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1238 ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1239 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1240 getMaxWidenStepsOpts());
1241 }
1242 } else
1243 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1244 }
1245 }
1246}
1247
1248void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1249 Function *F = CB.getCalledFunction();
1250
1251 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1252 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1253 if (ValueState[&CB].isOverdefined())
1254 return;
1255
1256 Value *CopyOf = CB.getOperand(0);
1257 ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1258 const auto *PI = getPredicateInfoFor(&CB);
1259 assert(PI && "Missing predicate info for ssa.copy")((void)0);
1260
1261 const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1262 if (!Constraint) {
1263 mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1264 return;
1265 }
1266
1267 CmpInst::Predicate Pred = Constraint->Predicate;
1268 Value *OtherOp = Constraint->OtherOp;
1269
1270 // Wait until OtherOp is resolved.
1271 if (getValueState(OtherOp).isUnknown()) {
1272 addAdditionalUser(OtherOp, &CB);
1273 return;
1274 }
1275
1276 // TODO: Actually filp MayIncludeUndef for the created range to false,
1277 // once most places in the optimizer respect the branches on
1278 // undef/poison are UB rule. The reason why the new range cannot be
1279 // undef is as follows below:
1280 // The new range is based on a branch condition. That guarantees that
1281 // neither of the compare operands can be undef in the branch targets,
1282 // unless we have conditions that are always true/false (e.g. icmp ule
1283 // i32, %a, i32_max). For the latter overdefined/empty range will be
1284 // inferred, but the branch will get folded accordingly anyways.
1285 bool MayIncludeUndef = !isa<PredicateAssume>(PI);
1286
1287 ValueLatticeElement CondVal = getValueState(OtherOp);
1288 ValueLatticeElement &IV = ValueState[&CB];
1289 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1290 auto ImposedCR =
1291 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1292
1293 // Get the range imposed by the condition.
1294 if (CondVal.isConstantRange())
1295 ImposedCR = ConstantRange::makeAllowedICmpRegion(
1296 Pred, CondVal.getConstantRange());
1297
1298 // Combine range info for the original value with the new range from the
1299 // condition.
1300 auto CopyOfCR = CopyOfVal.isConstantRange()
1301 ? CopyOfVal.getConstantRange()
1302 : ConstantRange::getFull(
1303 DL.getTypeSizeInBits(CopyOf->getType()));
1304 auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1305 // If the existing information is != x, do not use the information from
1306 // a chained predicate, as the != x information is more likely to be
1307 // helpful in practice.
1308 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1309 NewCR = CopyOfCR;
1310
1311 addAdditionalUser(OtherOp, &CB);
1312 mergeInValue(IV, &CB,
1313 ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
1314 return;
1315 } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
1316 // For non-integer values or integer constant expressions, only
1317 // propagate equal constants.
1318 addAdditionalUser(OtherOp, &CB);
1319 mergeInValue(IV, &CB, CondVal);
1320 return;
1321 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
1322 !MayIncludeUndef) {
1323 // Propagate inequalities.
1324 addAdditionalUser(OtherOp, &CB);
1325 mergeInValue(IV, &CB,
1326 ValueLatticeElement::getNot(CondVal.getConstant()));
1327 return;
1328 }
1329
1330 return (void)mergeInValue(IV, &CB, CopyOfVal);
1331 }
1332
1333 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1334 // Compute result range for intrinsics supported by ConstantRange.
1335 // Do this even if we don't know a range for all operands, as we may
1336 // still know something about the result range, e.g. of abs(x).
1337 SmallVector<ConstantRange, 2> OpRanges;
1338 for (Value *Op : II->args()) {
1339 const ValueLatticeElement &State = getValueState(Op);
1340 if (State.isConstantRange())
1341 OpRanges.push_back(State.getConstantRange());
1342 else
1343 OpRanges.push_back(
1344 ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
1345 }
1346
1347 ConstantRange Result =
1348 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1349 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1350 }
1351 }
1352
1353 // The common case is that we aren't tracking the callee, either because we
1354 // are not doing interprocedural analysis or the callee is indirect, or is
1355 // external. Handle these cases first.
1356 if (!F || F->isDeclaration())
1357 return handleCallOverdefined(CB);
1358
1359 // If this is a single/zero retval case, see if we're tracking the function.
1360 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1361 if (!MRVFunctionsTracked.count(F))
1362 return handleCallOverdefined(CB); // Not tracking this callee.
1363
1364 // If we are tracking this callee, propagate the result of the function
1365 // into this call site.
1366 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1367 mergeInValue(getStructValueState(&CB, i), &CB,
1368 TrackedMultipleRetVals[std::make_pair(F, i)],
1369 getMaxWidenStepsOpts());
1370 } else {
1371 auto TFRVI = TrackedRetVals.find(F);
1372 if (TFRVI == TrackedRetVals.end())
1373 return handleCallOverdefined(CB); // Not tracking this callee.
1374
1375 // If so, propagate the return value of the callee into this call result.
1376 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1377 }
1378}
1379
1380void SCCPInstVisitor::solve() {
1381 // Process the work lists until they are empty!
1382 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1383 !OverdefinedInstWorkList.empty()) {
1384 // Process the overdefined instruction's work list first, which drives other
1385 // things to overdefined more quickly.
1386 while (!OverdefinedInstWorkList.empty()) {
1387 Value *I = OverdefinedInstWorkList.pop_back_val();
1388
1389 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n')do { } while (false);
1390
1391 // "I" got into the work list because it either made the transition from
1392 // bottom to constant, or to overdefined.
1393 //
1394 // Anything on this worklist that is overdefined need not be visited
1395 // since all of its users will have already been marked as overdefined
1396 // Update all of the users of this instruction's value.
1397 //
1398 markUsersAsChanged(I);
1399 }
1400
1401 // Process the instruction work list.
1402 while (!InstWorkList.empty()) {
1403 Value *I = InstWorkList.pop_back_val();
1404
1405 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n')do { } while (false);
1406
1407 // "I" got into the work list because it made the transition from undef to
1408 // constant.
1409 //
1410 // Anything on this worklist that is overdefined need not be visited
1411 // since all of its users will have already been marked as overdefined.
1412 // Update all of the users of this instruction's value.
1413 //
1414 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1415 markUsersAsChanged(I);
1416 }
1417
1418 // Process the basic block work list.
1419 while (!BBWorkList.empty()) {
1420 BasicBlock *BB = BBWorkList.pop_back_val();
1421
1422 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n')do { } while (false);
1423
1424 // Notify all instructions in this basic block that they are newly
1425 // executable.
1426 visit(BB);
1427 }
1428 }
1429}
1430
1431/// resolvedUndefsIn - While solving the dataflow for a function, we assume
1432/// that branches on undef values cannot reach any of their successors.
1433/// However, this is not a safe assumption. After we solve dataflow, this
1434/// method should be use to handle this. If this returns true, the solver
1435/// should be rerun.
1436///
1437/// This method handles this by finding an unresolved branch and marking it one
1438/// of the edges from the block as being feasible, even though the condition
1439/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1440/// CFG and only slightly pessimizes the analysis results (by marking one,
1441/// potentially infeasible, edge feasible). This cannot usefully modify the
1442/// constraints on the condition of the branch, as that would impact other users
1443/// of the value.
1444///
1445/// This scan also checks for values that use undefs. It conservatively marks
1446/// them as overdefined.
1447bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
1448 bool MadeChange = false;
1449 for (BasicBlock &BB : F) {
1450 if (!BBExecutable.count(&BB))
1451 continue;
1452
1453 for (Instruction &I : BB) {
1454 // Look for instructions which produce undef values.
1455 if (I.getType()->isVoidTy())
1456 continue;
1457
1458 if (auto *STy = dyn_cast<StructType>(I.getType())) {
1459 // Only a few things that can be structs matter for undef.
1460
1461 // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1462 if (auto *CB = dyn_cast<CallBase>(&I))
1463 if (Function *F = CB->getCalledFunction())
1464 if (MRVFunctionsTracked.count(F))
1465 continue;
1466
1467 // extractvalue and insertvalue don't need to be marked; they are
1468 // tracked as precisely as their operands.
1469 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1470 continue;
1471 // Send the results of everything else to overdefined. We could be
1472 // more precise than this but it isn't worth bothering.
1473 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1474 ValueLatticeElement &LV = getStructValueState(&I, i);
1475 if (LV.isUnknownOrUndef()) {
1476 markOverdefined(LV, &I);
1477 MadeChange = true;
1478 }
1479 }
1480 continue;
1481 }
1482
1483 ValueLatticeElement &LV = getValueState(&I);
1484 if (!LV.isUnknownOrUndef())
1485 continue;
1486
1487 // There are two reasons a call can have an undef result
1488 // 1. It could be tracked.
1489 // 2. It could be constant-foldable.
1490 // Because of the way we solve return values, tracked calls must
1491 // never be marked overdefined in resolvedUndefsIn.
1492 if (auto *CB = dyn_cast<CallBase>(&I))
1493 if (Function *F = CB->getCalledFunction())
1494 if (TrackedRetVals.count(F))
1495 continue;
1496
1497 if (isa<LoadInst>(I)) {
1498 // A load here means one of two things: a load of undef from a global,
1499 // a load from an unknown pointer. Either way, having it return undef
1500 // is okay.
1501 continue;
1502 }
1503
1504 markOverdefined(&I);
1505 MadeChange = true;
1506 }
1507
1508 // Check to see if we have a branch or switch on an undefined value. If so
1509 // we force the branch to go one way or the other to make the successor
1510 // values live. It doesn't really matter which way we force it.
1511 Instruction *TI = BB.getTerminator();
1512 if (auto *BI = dyn_cast<BranchInst>(TI)) {
1513 if (!BI->isConditional())
1514 continue;
1515 if (!getValueState(BI->getCondition()).isUnknownOrUndef())
1516 continue;
1517
1518 // If the input to SCCP is actually branch on undef, fix the undef to
1519 // false.
1520 if (isa<UndefValue>(BI->getCondition())) {
1521 BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1522 markEdgeExecutable(&BB, TI->getSuccessor(1));
1523 MadeChange = true;
1524 continue;
1525 }
1526
1527 // Otherwise, it is a branch on a symbolic value which is currently
1528 // considered to be undef. Make sure some edge is executable, so a
1529 // branch on "undef" always flows somewhere.
1530 // FIXME: Distinguish between dead code and an LLVM "undef" value.
1531 BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1532 if (markEdgeExecutable(&BB, DefaultSuccessor))
1533 MadeChange = true;
1534
1535 continue;
1536 }
1537
1538 if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1539 // Indirect branch with no successor ?. Its ok to assume it branches
1540 // to no target.
1541 if (IBR->getNumSuccessors() < 1)
1542 continue;
1543
1544 if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
1545 continue;
1546
1547 // If the input to SCCP is actually branch on undef, fix the undef to
1548 // the first successor of the indirect branch.
1549 if (isa<UndefValue>(IBR->getAddress())) {
1550 IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1551 markEdgeExecutable(&BB, IBR->getSuccessor(0));
1552 MadeChange = true;
1553 continue;
1554 }
1555
1556 // Otherwise, it is a branch on a symbolic value which is currently
1557 // considered to be undef. Make sure some edge is executable, so a
1558 // branch on "undef" always flows somewhere.
1559 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1560 // we can assume the branch has undefined behavior instead.
1561 BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1562 if (markEdgeExecutable(&BB, DefaultSuccessor))
1563 MadeChange = true;
1564
1565 continue;
1566 }
1567
1568 if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1569 if (!SI->getNumCases() ||
1570 !getValueState(SI->getCondition()).isUnknownOrUndef())
1571 continue;
1572
1573 // If the input to SCCP is actually switch on undef, fix the undef to
1574 // the first constant.
1575 if (isa<UndefValue>(SI->getCondition())) {
1576 SI->setCondition(SI->case_begin()->getCaseValue());
1577 markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1578 MadeChange = true;
1579 continue;
1580 }
1581
1582 // Otherwise, it is a branch on a symbolic value which is currently
1583 // considered to be undef. Make sure some edge is executable, so a
1584 // branch on "undef" always flows somewhere.
1585 // FIXME: Distinguish between dead code and an LLVM "undef" value.
1586 BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1587 if (markEdgeExecutable(&BB, DefaultSuccessor))
1588 MadeChange = true;
1589
1590 continue;
1591 }
1592 }
1593
1594 return MadeChange;
1595}
1596
1597//===----------------------------------------------------------------------===//
1598//
1599// SCCPSolver implementations
1600//
1601SCCPSolver::SCCPSolver(
1602 const DataLayout &DL,
1603 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1604 LLVMContext &Ctx)
1605 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1606
1607SCCPSolver::~SCCPSolver() {}
1608
1609void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
1610 return Visitor->addAnalysis(F, std::move(A));
1611}
1612
1613bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
1614 return Visitor->markBlockExecutable(BB);
1615}
1616
1617const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
1618 return Visitor->getPredicateInfoFor(I);
1619}
1620
1621DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
1622
1623void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
1624 Visitor->trackValueOfGlobalVariable(GV);
1625}
1626
1627void SCCPSolver::addTrackedFunction(Function *F) {
1628 Visitor->addTrackedFunction(F);
1629}
1630
1631void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
1632 Visitor->addToMustPreserveReturnsInFunctions(F);
1633}
1634
1635bool SCCPSolver::mustPreserveReturn(Function *F) {
1636 return Visitor->mustPreserveReturn(F);
1637}
1638
1639void SCCPSolver::addArgumentTrackedFunction(Function *F) {
1640 Visitor->addArgumentTrackedFunction(F);
1641}
1642
1643bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
1644 return Visitor->isArgumentTrackedFunction(F);
1645}
1646
1647void SCCPSolver::solve() { Visitor->solve(); }
1648
1649bool SCCPSolver::resolvedUndefsIn(Function &F) {
1650 return Visitor->resolvedUndefsIn(F);
1651}
1652
1653bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
1654 return Visitor->isBlockExecutable(BB);
1655}
1656
1657bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
1658 return Visitor->isEdgeFeasible(From, To);
1659}
1660
1661std::vector<ValueLatticeElement>
1662SCCPSolver::getStructLatticeValueFor(Value *V) const {
1663 return Visitor->getStructLatticeValueFor(V);
1
Calling 'SCCPInstVisitor::getStructLatticeValueFor'
1664}
1665
1666void SCCPSolver::removeLatticeValueFor(Value *V) {
1667 return Visitor->removeLatticeValueFor(V);
1668}
1669
1670const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
1671 return Visitor->getLatticeValueFor(V);
1672}
1673
1674const MapVector<Function *, ValueLatticeElement> &
1675SCCPSolver::getTrackedRetVals() {
1676 return Visitor->getTrackedRetVals();
1677}
1678
1679const DenseMap<GlobalVariable *, ValueLatticeElement> &
1680SCCPSolver::getTrackedGlobals() {
1681 return Visitor->getTrackedGlobals();
1682}
1683
1684const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
1685 return Visitor->getMRVFunctionsTracked();
1686}
1687
1688void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
1689
1690bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
1691 return Visitor->isStructLatticeConstant(F, STy);
1692}
1693
1694Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
1695 return Visitor->getConstant(LV);
1696}
1697
1698SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
1699 return Visitor->getArgumentTrackedFunctions();
1700}
1701
1702void SCCPSolver::markArgInFuncSpecialization(Function *F, Argument *A,
1703 Constant *C) {
1704 Visitor->markArgInFuncSpecialization(F, A, C);
1705}
1706
1707void SCCPSolver::markFunctionUnreachable(Function *F) {
1708 Visitor->markFunctionUnreachable(F);
1709}
1710
1711void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
1712
1713void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }