Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 3811, column 3
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")((void)0);
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")__builtin_unreachable();
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&((void)0)
89 "not a constructor name")((void)0);
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&((void)0)
433 "should only reject a type result if we have a search type")((void)0);
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&((void)0)
470 "unexpected type in getDestructorType")((void)0);
471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name, bool IsUDSuffix) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)((void)0);
489 if (!IsUDSuffix) {
490 // [over.literal] p8
491 //
492 // double operator""_Bq(long double); // OK: not a reserved identifier
493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494 IdentifierInfo *II = Name.Identifier;
495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496 SourceLocation Loc = Name.getEndLoc();
497 if (Status != ReservedIdentifierStatus::NotReserved &&
498 !PP.getSourceManager().isInSystemHeader(Loc)) {
499 Diag(Loc, diag::warn_reserved_extern_symbol)
500 << II << static_cast<int>(Status)
501 << FixItHint::CreateReplacement(
502 Name.getSourceRange(),
503 (StringRef("operator\"\"") + II->getName()).str());
504 }
505 }
506
507 if (!SS.isValid())
508 return false;
509
510 switch (SS.getScopeRep()->getKind()) {
511 case NestedNameSpecifier::Identifier:
512 case NestedNameSpecifier::TypeSpec:
513 case NestedNameSpecifier::TypeSpecWithTemplate:
514 // Per C++11 [over.literal]p2, literal operators can only be declared at
515 // namespace scope. Therefore, this unqualified-id cannot name anything.
516 // Reject it early, because we have no AST representation for this in the
517 // case where the scope is dependent.
518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519 << SS.getScopeRep();
520 return true;
521
522 case NestedNameSpecifier::Global:
523 case NestedNameSpecifier::Super:
524 case NestedNameSpecifier::Namespace:
525 case NestedNameSpecifier::NamespaceAlias:
526 return false;
527 }
528
529 llvm_unreachable("unknown nested name specifier kind")__builtin_unreachable();
530}
531
532/// Build a C++ typeid expression with a type operand.
533ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534 SourceLocation TypeidLoc,
535 TypeSourceInfo *Operand,
536 SourceLocation RParenLoc) {
537 // C++ [expr.typeid]p4:
538 // The top-level cv-qualifiers of the lvalue expression or the type-id
539 // that is the operand of typeid are always ignored.
540 // If the type of the type-id is a class type or a reference to a class
541 // type, the class shall be completely-defined.
542 Qualifiers Quals;
543 QualType T
544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545 Quals);
546 if (T->getAs<RecordType>() &&
547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548 return ExprError();
549
550 if (T->isVariablyModifiedType())
551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552
553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554 return ExprError();
555
556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557 SourceRange(TypeidLoc, RParenLoc));
558}
559
560/// Build a C++ typeid expression with an expression operand.
561ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562 SourceLocation TypeidLoc,
563 Expr *E,
564 SourceLocation RParenLoc) {
565 bool WasEvaluated = false;
566 if (E && !E->isTypeDependent()) {
567 if (E->getType()->isPlaceholderType()) {
568 ExprResult result = CheckPlaceholderExpr(E);
569 if (result.isInvalid()) return ExprError();
570 E = result.get();
571 }
572
573 QualType T = E->getType();
574 if (const RecordType *RecordT = T->getAs<RecordType>()) {
575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576 // C++ [expr.typeid]p3:
577 // [...] If the type of the expression is a class type, the class
578 // shall be completely-defined.
579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580 return ExprError();
581
582 // C++ [expr.typeid]p3:
583 // When typeid is applied to an expression other than an glvalue of a
584 // polymorphic class type [...] [the] expression is an unevaluated
585 // operand. [...]
586 if (RecordD->isPolymorphic() && E->isGLValue()) {
587 if (isUnevaluatedContext()) {
588 // The operand was processed in unevaluated context, switch the
589 // context and recheck the subexpression.
590 ExprResult Result = TransformToPotentiallyEvaluated(E);
591 if (Result.isInvalid())
592 return ExprError();
593 E = Result.get();
594 }
595
596 // We require a vtable to query the type at run time.
597 MarkVTableUsed(TypeidLoc, RecordD);
598 WasEvaluated = true;
599 }
600 }
601
602 ExprResult Result = CheckUnevaluatedOperand(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606
607 // C++ [expr.typeid]p4:
608 // [...] If the type of the type-id is a reference to a possibly
609 // cv-qualified type, the result of the typeid expression refers to a
610 // std::type_info object representing the cv-unqualified referenced
611 // type.
612 Qualifiers Quals;
613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614 if (!Context.hasSameType(T, UnqualT)) {
615 T = UnqualT;
616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617 }
618 }
619
620 if (E->getType()->isVariablyModifiedType())
621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622 << E->getType());
623 else if (!inTemplateInstantiation() &&
624 E->HasSideEffects(Context, WasEvaluated)) {
625 // The expression operand for typeid is in an unevaluated expression
626 // context, so side effects could result in unintended consequences.
627 Diag(E->getExprLoc(), WasEvaluated
628 ? diag::warn_side_effects_typeid
629 : diag::warn_side_effects_unevaluated_context);
630 }
631
632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633 SourceRange(TypeidLoc, RParenLoc));
634}
635
636/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637ExprResult
638Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640 // typeid is not supported in OpenCL.
641 if (getLangOpts().OpenCLCPlusPlus) {
642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643 << "typeid");
644 }
645
646 // Find the std::type_info type.
647 if (!getStdNamespace())
648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649
650 if (!CXXTypeInfoDecl) {
651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653 LookupQualifiedName(R, getStdNamespace());
654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655 // Microsoft's typeinfo doesn't have type_info in std but in the global
656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658 LookupQualifiedName(R, Context.getTranslationUnitDecl());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 }
661 if (!CXXTypeInfoDecl)
662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663 }
664
665 if (!getLangOpts().RTTI) {
666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667 }
668
669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670
671 if (isType) {
672 // The operand is a type; handle it as such.
673 TypeSourceInfo *TInfo = nullptr;
674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675 &TInfo);
676 if (T.isNull())
677 return ExprError();
678
679 if (!TInfo)
680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681
682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683 }
684
685 // The operand is an expression.
686 ExprResult Result =
687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688
689 if (!getLangOpts().RTTIData && !Result.isInvalid())
690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694 DiagnosticOptions::MSVC);
695 return Result;
696}
697
698/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699/// a single GUID.
700static void
701getUuidAttrOfType(Sema &SemaRef, QualType QT,
702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703 // Optionally remove one level of pointer, reference or array indirection.
704 const Type *Ty = QT.getTypePtr();
705 if (QT->isPointerType() || QT->isReferenceType())
706 Ty = QT->getPointeeType().getTypePtr();
707 else if (QT->isArrayType())
708 Ty = Ty->getBaseElementTypeUnsafe();
709
710 const auto *TD = Ty->getAsTagDecl();
711 if (!TD)
712 return;
713
714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715 UuidAttrs.insert(Uuid);
716 return;
717 }
718
719 // __uuidof can grab UUIDs from template arguments.
720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722 for (const TemplateArgument &TA : TAL.asArray()) {
723 const UuidAttr *UuidForTA = nullptr;
724 if (TA.getKind() == TemplateArgument::Type)
725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726 else if (TA.getKind() == TemplateArgument::Declaration)
727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728
729 if (UuidForTA)
730 UuidAttrs.insert(UuidForTA);
731 }
732 }
733}
734
735/// Build a Microsoft __uuidof expression with a type operand.
736ExprResult Sema::BuildCXXUuidof(QualType Type,
737 SourceLocation TypeidLoc,
738 TypeSourceInfo *Operand,
739 SourceLocation RParenLoc) {
740 MSGuidDecl *Guid = nullptr;
741 if (!Operand->getType()->isDependentType()) {
742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744 if (UuidAttrs.empty())
745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746 if (UuidAttrs.size() > 1)
747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748 Guid = UuidAttrs.back()->getGuidDecl();
749 }
750
751 return new (Context)
752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753}
754
755/// Build a Microsoft __uuidof expression with an expression operand.
756ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757 Expr *E, SourceLocation RParenLoc) {
758 MSGuidDecl *Guid = nullptr;
759 if (!E->getType()->isDependentType()) {
760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763 } else {
764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766 if (UuidAttrs.empty())
767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768 if (UuidAttrs.size() > 1)
769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770 Guid = UuidAttrs.back()->getGuidDecl();
771 }
772 }
773
774 return new (Context)
775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776}
777
778/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779ExprResult
780Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782 QualType GuidType = Context.getMSGuidType();
783 GuidType.addConst();
784
785 if (isType) {
786 // The operand is a type; handle it as such.
787 TypeSourceInfo *TInfo = nullptr;
788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789 &TInfo);
790 if (T.isNull())
791 return ExprError();
792
793 if (!TInfo)
794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795
796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797 }
798
799 // The operand is an expression.
800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801}
802
803/// ActOnCXXBoolLiteral - Parse {true,false} literals.
804ExprResult
805Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&((void)0)
807 "Unknown C++ Boolean value!")((void)0);
808 return new (Context)
809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810}
811
812/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813ExprResult
814Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816}
817
818/// ActOnCXXThrow - Parse throw expressions.
819ExprResult
820Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821 bool IsThrownVarInScope = false;
822 if (Ex) {
823 // C++0x [class.copymove]p31:
824 // When certain criteria are met, an implementation is allowed to omit the
825 // copy/move construction of a class object [...]
826 //
827 // - in a throw-expression, when the operand is the name of a
828 // non-volatile automatic object (other than a function or catch-
829 // clause parameter) whose scope does not extend beyond the end of the
830 // innermost enclosing try-block (if there is one), the copy/move
831 // operation from the operand to the exception object (15.1) can be
832 // omitted by constructing the automatic object directly into the
833 // exception object
834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837 for( ; S; S = S->getParent()) {
838 if (S->isDeclScope(Var)) {
839 IsThrownVarInScope = true;
840 break;
841 }
842
843 if (S->getFlags() &
844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846 Scope::TryScope))
847 break;
848 }
849 }
850 }
851 }
852
853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854}
855
856ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857 bool IsThrownVarInScope) {
858 // Don't report an error if 'throw' is used in system headers.
859 if (!getLangOpts().CXXExceptions &&
860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861 // Delay error emission for the OpenMP device code.
862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863 }
864
865 // Exceptions aren't allowed in CUDA device code.
866 if (getLangOpts().CUDA)
867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868 << "throw" << CurrentCUDATarget();
869
870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872
873 if (Ex && !Ex->isTypeDependent()) {
874 // Initialize the exception result. This implicitly weeds out
875 // abstract types or types with inaccessible copy constructors.
876
877 // C++0x [class.copymove]p31:
878 // When certain criteria are met, an implementation is allowed to omit the
879 // copy/move construction of a class object [...]
880 //
881 // - in a throw-expression, when the operand is the name of a
882 // non-volatile automatic object (other than a function or
883 // catch-clause
884 // parameter) whose scope does not extend beyond the end of the
885 // innermost enclosing try-block (if there is one), the copy/move
886 // operation from the operand to the exception object (15.1) can be
887 // omitted by constructing the automatic object directly into the
888 // exception object
889 NamedReturnInfo NRInfo =
890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891
892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894 return ExprError();
895
896 InitializedEntity Entity =
897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899 if (Res.isInvalid())
900 return ExprError();
901 Ex = Res.get();
902 }
903
904 // PPC MMA non-pointer types are not allowed as throw expr types.
905 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907
908 return new (Context)
909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910}
911
912static void
913collectPublicBases(CXXRecordDecl *RD,
914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917 bool ParentIsPublic) {
918 for (const CXXBaseSpecifier &BS : RD->bases()) {
919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920 bool NewSubobject;
921 // Virtual bases constitute the same subobject. Non-virtual bases are
922 // always distinct subobjects.
923 if (BS.isVirtual())
924 NewSubobject = VBases.insert(BaseDecl).second;
925 else
926 NewSubobject = true;
927
928 if (NewSubobject)
929 ++SubobjectsSeen[BaseDecl];
930
931 // Only add subobjects which have public access throughout the entire chain.
932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933 if (PublicPath)
934 PublicSubobjectsSeen.insert(BaseDecl);
935
936 // Recurse on to each base subobject.
937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938 PublicPath);
939 }
940}
941
942static void getUnambiguousPublicSubobjects(
943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947 SubobjectsSeen[RD] = 1;
948 PublicSubobjectsSeen.insert(RD);
949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950 /*ParentIsPublic=*/true);
951
952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953 // Skip ambiguous objects.
954 if (SubobjectsSeen[PublicSubobject] > 1)
955 continue;
956
957 Objects.push_back(PublicSubobject);
958 }
959}
960
961/// CheckCXXThrowOperand - Validate the operand of a throw.
962bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963 QualType ExceptionObjectTy, Expr *E) {
964 // If the type of the exception would be an incomplete type or a pointer
965 // to an incomplete type other than (cv) void the program is ill-formed.
966 QualType Ty = ExceptionObjectTy;
967 bool isPointer = false;
968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969 Ty = Ptr->getPointeeType();
970 isPointer = true;
971 }
972 if (!isPointer || !Ty->isVoidType()) {
973 if (RequireCompleteType(ThrowLoc, Ty,
974 isPointer ? diag::err_throw_incomplete_ptr
975 : diag::err_throw_incomplete,
976 E->getSourceRange()))
977 return true;
978
979 if (!isPointer && Ty->isSizelessType()) {
980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981 return true;
982 }
983
984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985 diag::err_throw_abstract_type, E))
986 return true;
987 }
988
989 // If the exception has class type, we need additional handling.
990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991 if (!RD)
992 return false;
993
994 // If we are throwing a polymorphic class type or pointer thereof,
995 // exception handling will make use of the vtable.
996 MarkVTableUsed(ThrowLoc, RD);
997
998 // If a pointer is thrown, the referenced object will not be destroyed.
999 if (isPointer)
1000 return false;
1001
1002 // If the class has a destructor, we must be able to call it.
1003 if (!RD->hasIrrelevantDestructor()) {
1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006 CheckDestructorAccess(E->getExprLoc(), Destructor,
1007 PDiag(diag::err_access_dtor_exception) << Ty);
1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009 return true;
1010 }
1011 }
1012
1013 // The MSVC ABI creates a list of all types which can catch the exception
1014 // object. This list also references the appropriate copy constructor to call
1015 // if the object is caught by value and has a non-trivial copy constructor.
1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017 // We are only interested in the public, unambiguous bases contained within
1018 // the exception object. Bases which are ambiguous or otherwise
1019 // inaccessible are not catchable types.
1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022
1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024 // Attempt to lookup the copy constructor. Various pieces of machinery
1025 // will spring into action, like template instantiation, which means this
1026 // cannot be a simple walk of the class's decls. Instead, we must perform
1027 // lookup and overload resolution.
1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029 if (!CD || CD->isDeleted())
1030 continue;
1031
1032 // Mark the constructor referenced as it is used by this throw expression.
1033 MarkFunctionReferenced(E->getExprLoc(), CD);
1034
1035 // Skip this copy constructor if it is trivial, we don't need to record it
1036 // in the catchable type data.
1037 if (CD->isTrivial())
1038 continue;
1039
1040 // The copy constructor is non-trivial, create a mapping from this class
1041 // type to this constructor.
1042 // N.B. The selection of copy constructor is not sensitive to this
1043 // particular throw-site. Lookup will be performed at the catch-site to
1044 // ensure that the copy constructor is, in fact, accessible (via
1045 // friendship or any other means).
1046 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047
1048 // We don't keep the instantiated default argument expressions around so
1049 // we must rebuild them here.
1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052 return true;
1053 }
1054 }
1055 }
1056
1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058 // the runtime with no ability for the compiler to request additional
1059 // alignment. Warn if the exception type requires alignment beyond the minimum
1060 // guaranteed by the target C++ runtime.
1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064 if (ExnObjAlign < TypeAlign) {
1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067 << Ty << (unsigned)TypeAlign.getQuantity()
1068 << (unsigned)ExnObjAlign.getQuantity();
1069 }
1070 }
1071
1072 return false;
1073}
1074
1075static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078
1079 QualType ClassType = ThisTy->getPointeeType();
1080 LambdaScopeInfo *CurLSI = nullptr;
1081 DeclContext *CurDC = CurSemaContext;
1082
1083 // Iterate through the stack of lambdas starting from the innermost lambda to
1084 // the outermost lambda, checking if '*this' is ever captured by copy - since
1085 // that could change the cv-qualifiers of the '*this' object.
1086 // The object referred to by '*this' starts out with the cv-qualifiers of its
1087 // member function. We then start with the innermost lambda and iterate
1088 // outward checking to see if any lambda performs a by-copy capture of '*this'
1089 // - and if so, any nested lambda must respect the 'constness' of that
1090 // capturing lamdbda's call operator.
1091 //
1092
1093 // Since the FunctionScopeInfo stack is representative of the lexical
1094 // nesting of the lambda expressions during initial parsing (and is the best
1095 // place for querying information about captures about lambdas that are
1096 // partially processed) and perhaps during instantiation of function templates
1097 // that contain lambda expressions that need to be transformed BUT not
1098 // necessarily during instantiation of a nested generic lambda's function call
1099 // operator (which might even be instantiated at the end of the TU) - at which
1100 // time the DeclContext tree is mature enough to query capture information
1101 // reliably - we use a two pronged approach to walk through all the lexically
1102 // enclosing lambda expressions:
1103 //
1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106 // enclosed by the call-operator of the LSI below it on the stack (while
1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1108 // the stack represents the innermost lambda.
1109 //
1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111 // represents a lambda's call operator. If it does, we must be instantiating
1112 // a generic lambda's call operator (represented by the Current LSI, and
1113 // should be the only scenario where an inconsistency between the LSI and the
1114 // DeclContext should occur), so climb out the DeclContexts if they
1115 // represent lambdas, while querying the corresponding closure types
1116 // regarding capture information.
1117
1118 // 1) Climb down the function scope info stack.
1119 for (int I = FunctionScopes.size();
1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125
1126 if (!CurLSI->isCXXThisCaptured())
1127 continue;
1128
1129 auto C = CurLSI->getCXXThisCapture();
1130
1131 if (C.isCopyCapture()) {
1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133 if (CurLSI->CallOperator->isConst())
1134 ClassType.addConst();
1135 return ASTCtx.getPointerType(ClassType);
1136 }
1137 }
1138
1139 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1140 // happen during instantiation of its nested generic lambda call operator)
1141 if (isLambdaCallOperator(CurDC)) {
1142 assert(CurLSI && "While computing 'this' capture-type for a generic "((void)0)
1143 "lambda, we must have a corresponding LambdaScopeInfo")((void)0);
1144 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&((void)0)
1145 "While computing 'this' capture-type for a generic lambda, when we "((void)0)
1146 "run out of enclosing LSI's, yet the enclosing DC is a "((void)0)
1147 "lambda-call-operator we must be (i.e. Current LSI) in a generic "((void)0)
1148 "lambda call oeprator")((void)0);
1149 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))((void)0);
1150
1151 auto IsThisCaptured =
1152 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1153 IsConst = false;
1154 IsByCopy = false;
1155 for (auto &&C : Closure->captures()) {
1156 if (C.capturesThis()) {
1157 if (C.getCaptureKind() == LCK_StarThis)
1158 IsByCopy = true;
1159 if (Closure->getLambdaCallOperator()->isConst())
1160 IsConst = true;
1161 return true;
1162 }
1163 }
1164 return false;
1165 };
1166
1167 bool IsByCopyCapture = false;
1168 bool IsConstCapture = false;
1169 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1170 while (Closure &&
1171 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1172 if (IsByCopyCapture) {
1173 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1174 if (IsConstCapture)
1175 ClassType.addConst();
1176 return ASTCtx.getPointerType(ClassType);
1177 }
1178 Closure = isLambdaCallOperator(Closure->getParent())
1179 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1180 : nullptr;
1181 }
1182 }
1183 return ASTCtx.getPointerType(ClassType);
1184}
1185
1186QualType Sema::getCurrentThisType() {
1187 DeclContext *DC = getFunctionLevelDeclContext();
1188 QualType ThisTy = CXXThisTypeOverride;
1189
1190 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1191 if (method && method->isInstance())
1192 ThisTy = method->getThisType();
1193 }
1194
1195 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1196 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1197
1198 // This is a lambda call operator that is being instantiated as a default
1199 // initializer. DC must point to the enclosing class type, so we can recover
1200 // the 'this' type from it.
1201 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1202 // There are no cv-qualifiers for 'this' within default initializers,
1203 // per [expr.prim.general]p4.
1204 ThisTy = Context.getPointerType(ClassTy);
1205 }
1206
1207 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1208 // might need to be adjusted if the lambda or any of its enclosing lambda's
1209 // captures '*this' by copy.
1210 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1211 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1212 CurContext, Context);
1213 return ThisTy;
1214}
1215
1216Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1217 Decl *ContextDecl,
1218 Qualifiers CXXThisTypeQuals,
1219 bool Enabled)
1220 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1221{
1222 if (!Enabled || !ContextDecl)
1223 return;
1224
1225 CXXRecordDecl *Record = nullptr;
1226 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1227 Record = Template->getTemplatedDecl();
1228 else
1229 Record = cast<CXXRecordDecl>(ContextDecl);
1230
1231 QualType T = S.Context.getRecordType(Record);
1232 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1233
1234 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1235
1236 this->Enabled = true;
1237}
1238
1239
1240Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1241 if (Enabled) {
1242 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1243 }
1244}
1245
1246static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1247 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1248 assert(!LSI->isCXXThisCaptured())((void)0);
1249 // [=, this] {}; // until C++20: Error: this when = is the default
1250 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1251 !Sema.getLangOpts().CPlusPlus20)
1252 return;
1253 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1254 << FixItHint::CreateInsertion(
1255 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1256}
1257
1258bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1259 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1260 const bool ByCopy) {
1261 // We don't need to capture this in an unevaluated context.
1262 if (isUnevaluatedContext() && !Explicit)
1263 return true;
1264
1265 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")((void)0);
1266
1267 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1268 ? *FunctionScopeIndexToStopAt
1269 : FunctionScopes.size() - 1;
1270
1271 // Check that we can capture the *enclosing object* (referred to by '*this')
1272 // by the capturing-entity/closure (lambda/block/etc) at
1273 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1274
1275 // Note: The *enclosing object* can only be captured by-value by a
1276 // closure that is a lambda, using the explicit notation:
1277 // [*this] { ... }.
1278 // Every other capture of the *enclosing object* results in its by-reference
1279 // capture.
1280
1281 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1282 // stack), we can capture the *enclosing object* only if:
1283 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1284 // - or, 'L' has an implicit capture.
1285 // AND
1286 // -- there is no enclosing closure
1287 // -- or, there is some enclosing closure 'E' that has already captured the
1288 // *enclosing object*, and every intervening closure (if any) between 'E'
1289 // and 'L' can implicitly capture the *enclosing object*.
1290 // -- or, every enclosing closure can implicitly capture the
1291 // *enclosing object*
1292
1293
1294 unsigned NumCapturingClosures = 0;
1295 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1296 if (CapturingScopeInfo *CSI =
1297 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1298 if (CSI->CXXThisCaptureIndex != 0) {
1299 // 'this' is already being captured; there isn't anything more to do.
1300 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1301 break;
1302 }
1303 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1304 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1305 // This context can't implicitly capture 'this'; fail out.
1306 if (BuildAndDiagnose) {
1307 Diag(Loc, diag::err_this_capture)
1308 << (Explicit && idx == MaxFunctionScopesIndex);
1309 if (!Explicit)
1310 buildLambdaThisCaptureFixit(*this, LSI);
1311 }
1312 return true;
1313 }
1314 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1317 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1318 (Explicit && idx == MaxFunctionScopesIndex)) {
1319 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1320 // iteration through can be an explicit capture, all enclosing closures,
1321 // if any, must perform implicit captures.
1322
1323 // This closure can capture 'this'; continue looking upwards.
1324 NumCapturingClosures++;
1325 continue;
1326 }
1327 // This context can't implicitly capture 'this'; fail out.
1328 if (BuildAndDiagnose)
1329 Diag(Loc, diag::err_this_capture)
1330 << (Explicit && idx == MaxFunctionScopesIndex);
1331
1332 if (!Explicit)
1333 buildLambdaThisCaptureFixit(*this, LSI);
1334 return true;
1335 }
1336 break;
1337 }
1338 if (!BuildAndDiagnose) return false;
1339
1340 // If we got here, then the closure at MaxFunctionScopesIndex on the
1341 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1342 // (including implicit by-reference captures in any enclosing closures).
1343
1344 // In the loop below, respect the ByCopy flag only for the closure requesting
1345 // the capture (i.e. first iteration through the loop below). Ignore it for
1346 // all enclosing closure's up to NumCapturingClosures (since they must be
1347 // implicitly capturing the *enclosing object* by reference (see loop
1348 // above)).
1349 assert((!ByCopy ||((void)0)
1350 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&((void)0)
1351 "Only a lambda can capture the enclosing object (referred to by "((void)0)
1352 "*this) by copy")((void)0);
1353 QualType ThisTy = getCurrentThisType();
1354 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1355 --idx, --NumCapturingClosures) {
1356 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1357
1358 // The type of the corresponding data member (not a 'this' pointer if 'by
1359 // copy').
1360 QualType CaptureType = ThisTy;
1361 if (ByCopy) {
1362 // If we are capturing the object referred to by '*this' by copy, ignore
1363 // any cv qualifiers inherited from the type of the member function for
1364 // the type of the closure-type's corresponding data member and any use
1365 // of 'this'.
1366 CaptureType = ThisTy->getPointeeType();
1367 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1368 }
1369
1370 bool isNested = NumCapturingClosures > 1;
1371 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1372 }
1373 return false;
1374}
1375
1376ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1377 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1378 /// is a non-lvalue expression whose value is the address of the object for
1379 /// which the function is called.
1380
1381 QualType ThisTy = getCurrentThisType();
1382 if (ThisTy.isNull())
1383 return Diag(Loc, diag::err_invalid_this_use);
1384 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1385}
1386
1387Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1388 bool IsImplicit) {
1389 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1390 MarkThisReferenced(This);
1391 return This;
1392}
1393
1394void Sema::MarkThisReferenced(CXXThisExpr *This) {
1395 CheckCXXThisCapture(This->getExprLoc());
1396}
1397
1398bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1399 // If we're outside the body of a member function, then we'll have a specified
1400 // type for 'this'.
1401 if (CXXThisTypeOverride.isNull())
1402 return false;
1403
1404 // Determine whether we're looking into a class that's currently being
1405 // defined.
1406 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1407 return Class && Class->isBeingDefined();
1408}
1409
1410/// Parse construction of a specified type.
1411/// Can be interpreted either as function-style casting ("int(x)")
1412/// or class type construction ("ClassType(x,y,z)")
1413/// or creation of a value-initialized type ("int()").
1414ExprResult
1415Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1416 SourceLocation LParenOrBraceLoc,
1417 MultiExprArg exprs,
1418 SourceLocation RParenOrBraceLoc,
1419 bool ListInitialization) {
1420 if (!TypeRep)
1421 return ExprError();
1422
1423 TypeSourceInfo *TInfo;
1424 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1425 if (!TInfo)
1426 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1427
1428 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1429 RParenOrBraceLoc, ListInitialization);
1430 // Avoid creating a non-type-dependent expression that contains typos.
1431 // Non-type-dependent expressions are liable to be discarded without
1432 // checking for embedded typos.
1433 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1434 !Result.get()->isTypeDependent())
1435 Result = CorrectDelayedTyposInExpr(Result.get());
1436 else if (Result.isInvalid())
1437 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1438 RParenOrBraceLoc, exprs, Ty);
1439 return Result;
1440}
1441
1442ExprResult
1443Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1444 SourceLocation LParenOrBraceLoc,
1445 MultiExprArg Exprs,
1446 SourceLocation RParenOrBraceLoc,
1447 bool ListInitialization) {
1448 QualType Ty = TInfo->getType();
1449 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1450
1451 assert((!ListInitialization ||((void)0)
1452 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&((void)0)
1453 "List initialization must have initializer list as expression.")((void)0);
1454 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1455
1456 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1457 InitializationKind Kind =
1458 Exprs.size()
1459 ? ListInitialization
1460 ? InitializationKind::CreateDirectList(
1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1463 RParenOrBraceLoc)
1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1465 RParenOrBraceLoc);
1466
1467 // C++1z [expr.type.conv]p1:
1468 // If the type is a placeholder for a deduced class type, [...perform class
1469 // template argument deduction...]
1470 DeducedType *Deduced = Ty->getContainedDeducedType();
1471 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1472 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1473 Kind, Exprs);
1474 if (Ty.isNull())
1475 return ExprError();
1476 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1477 }
1478
1479 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1480 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1481 // directly. We work around this by dropping the locations of the braces.
1482 SourceRange Locs = ListInitialization
1483 ? SourceRange()
1484 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1485 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1486 TInfo, Locs.getBegin(), Exprs,
1487 Locs.getEnd());
1488 }
1489
1490 // C++ [expr.type.conv]p1:
1491 // If the expression list is a parenthesized single expression, the type
1492 // conversion expression is equivalent (in definedness, and if defined in
1493 // meaning) to the corresponding cast expression.
1494 if (Exprs.size() == 1 && !ListInitialization &&
1495 !isa<InitListExpr>(Exprs[0])) {
1496 Expr *Arg = Exprs[0];
1497 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1498 RParenOrBraceLoc);
1499 }
1500
1501 // For an expression of the form T(), T shall not be an array type.
1502 QualType ElemTy = Ty;
1503 if (Ty->isArrayType()) {
1504 if (!ListInitialization)
1505 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1506 << FullRange);
1507 ElemTy = Context.getBaseElementType(Ty);
1508 }
1509
1510 // There doesn't seem to be an explicit rule against this but sanity demands
1511 // we only construct objects with object types.
1512 if (Ty->isFunctionType())
1513 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1514 << Ty << FullRange);
1515
1516 // C++17 [expr.type.conv]p2:
1517 // If the type is cv void and the initializer is (), the expression is a
1518 // prvalue of the specified type that performs no initialization.
1519 if (!Ty->isVoidType() &&
1520 RequireCompleteType(TyBeginLoc, ElemTy,
1521 diag::err_invalid_incomplete_type_use, FullRange))
1522 return ExprError();
1523
1524 // Otherwise, the expression is a prvalue of the specified type whose
1525 // result object is direct-initialized (11.6) with the initializer.
1526 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1527 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1528
1529 if (Result.isInvalid())
1530 return Result;
1531
1532 Expr *Inner = Result.get();
1533 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1534 Inner = BTE->getSubExpr();
1535 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1536 !isa<CXXScalarValueInitExpr>(Inner)) {
1537 // If we created a CXXTemporaryObjectExpr, that node also represents the
1538 // functional cast. Otherwise, create an explicit cast to represent
1539 // the syntactic form of a functional-style cast that was used here.
1540 //
1541 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1542 // would give a more consistent AST representation than using a
1543 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1544 // is sometimes handled by initialization and sometimes not.
1545 QualType ResultType = Result.get()->getType();
1546 SourceRange Locs = ListInitialization
1547 ? SourceRange()
1548 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1549 Result = CXXFunctionalCastExpr::Create(
1550 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1551 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1552 Locs.getBegin(), Locs.getEnd());
1553 }
1554
1555 return Result;
1556}
1557
1558bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1559 // [CUDA] Ignore this function, if we can't call it.
1560 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1561 if (getLangOpts().CUDA) {
1562 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1563 // If it's not callable at all, it's not the right function.
1564 if (CallPreference < CFP_WrongSide)
1565 return false;
1566 if (CallPreference == CFP_WrongSide) {
1567 // Maybe. We have to check if there are better alternatives.
1568 DeclContext::lookup_result R =
1569 Method->getDeclContext()->lookup(Method->getDeclName());
1570 for (const auto *D : R) {
1571 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1572 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1573 return false;
1574 }
1575 }
1576 // We've found no better variants.
1577 }
1578 }
1579
1580 SmallVector<const FunctionDecl*, 4> PreventedBy;
1581 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1582
1583 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1584 return Result;
1585
1586 // In case of CUDA, return true if none of the 1-argument deallocator
1587 // functions are actually callable.
1588 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1589 assert(FD->getNumParams() == 1 &&((void)0)
1590 "Only single-operand functions should be in PreventedBy")((void)0);
1591 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1592 });
1593}
1594
1595/// Determine whether the given function is a non-placement
1596/// deallocation function.
1597static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1598 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1599 return S.isUsualDeallocationFunction(Method);
1600
1601 if (FD->getOverloadedOperator() != OO_Delete &&
1602 FD->getOverloadedOperator() != OO_Array_Delete)
1603 return false;
1604
1605 unsigned UsualParams = 1;
1606
1607 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1608 S.Context.hasSameUnqualifiedType(
1609 FD->getParamDecl(UsualParams)->getType(),
1610 S.Context.getSizeType()))
1611 ++UsualParams;
1612
1613 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1614 S.Context.hasSameUnqualifiedType(
1615 FD->getParamDecl(UsualParams)->getType(),
1616 S.Context.getTypeDeclType(S.getStdAlignValT())))
1617 ++UsualParams;
1618
1619 return UsualParams == FD->getNumParams();
1620}
1621
1622namespace {
1623 struct UsualDeallocFnInfo {
1624 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1625 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1626 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1627 Destroying(false), HasSizeT(false), HasAlignValT(false),
1628 CUDAPref(Sema::CFP_Native) {
1629 // A function template declaration is never a usual deallocation function.
1630 if (!FD)
1631 return;
1632 unsigned NumBaseParams = 1;
1633 if (FD->isDestroyingOperatorDelete()) {
1634 Destroying = true;
1635 ++NumBaseParams;
1636 }
1637
1638 if (NumBaseParams < FD->getNumParams() &&
1639 S.Context.hasSameUnqualifiedType(
1640 FD->getParamDecl(NumBaseParams)->getType(),
1641 S.Context.getSizeType())) {
1642 ++NumBaseParams;
1643 HasSizeT = true;
1644 }
1645
1646 if (NumBaseParams < FD->getNumParams() &&
1647 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1648 ++NumBaseParams;
1649 HasAlignValT = true;
1650 }
1651
1652 // In CUDA, determine how much we'd like / dislike to call this.
1653 if (S.getLangOpts().CUDA)
1654 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1655 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1656 }
1657
1658 explicit operator bool() const { return FD; }
1659
1660 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1661 bool WantAlign) const {
1662 // C++ P0722:
1663 // A destroying operator delete is preferred over a non-destroying
1664 // operator delete.
1665 if (Destroying != Other.Destroying)
1666 return Destroying;
1667
1668 // C++17 [expr.delete]p10:
1669 // If the type has new-extended alignment, a function with a parameter
1670 // of type std::align_val_t is preferred; otherwise a function without
1671 // such a parameter is preferred
1672 if (HasAlignValT != Other.HasAlignValT)
1673 return HasAlignValT == WantAlign;
1674
1675 if (HasSizeT != Other.HasSizeT)
1676 return HasSizeT == WantSize;
1677
1678 // Use CUDA call preference as a tiebreaker.
1679 return CUDAPref > Other.CUDAPref;
1680 }
1681
1682 DeclAccessPair Found;
1683 FunctionDecl *FD;
1684 bool Destroying, HasSizeT, HasAlignValT;
1685 Sema::CUDAFunctionPreference CUDAPref;
1686 };
1687}
1688
1689/// Determine whether a type has new-extended alignment. This may be called when
1690/// the type is incomplete (for a delete-expression with an incomplete pointee
1691/// type), in which case it will conservatively return false if the alignment is
1692/// not known.
1693static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1694 return S.getLangOpts().AlignedAllocation &&
1695 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1696 S.getASTContext().getTargetInfo().getNewAlign();
1697}
1698
1699/// Select the correct "usual" deallocation function to use from a selection of
1700/// deallocation functions (either global or class-scope).
1701static UsualDeallocFnInfo resolveDeallocationOverload(
1702 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1703 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1704 UsualDeallocFnInfo Best;
1705
1706 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1707 UsualDeallocFnInfo Info(S, I.getPair());
1708 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1709 Info.CUDAPref == Sema::CFP_Never)
1710 continue;
1711
1712 if (!Best) {
1713 Best = Info;
1714 if (BestFns)
1715 BestFns->push_back(Info);
1716 continue;
1717 }
1718
1719 if (Best.isBetterThan(Info, WantSize, WantAlign))
1720 continue;
1721
1722 // If more than one preferred function is found, all non-preferred
1723 // functions are eliminated from further consideration.
1724 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1725 BestFns->clear();
1726
1727 Best = Info;
1728 if (BestFns)
1729 BestFns->push_back(Info);
1730 }
1731
1732 return Best;
1733}
1734
1735/// Determine whether a given type is a class for which 'delete[]' would call
1736/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1737/// we need to store the array size (even if the type is
1738/// trivially-destructible).
1739static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1740 QualType allocType) {
1741 const RecordType *record =
1742 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1743 if (!record) return false;
1744
1745 // Try to find an operator delete[] in class scope.
1746
1747 DeclarationName deleteName =
1748 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1749 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1750 S.LookupQualifiedName(ops, record->getDecl());
1751
1752 // We're just doing this for information.
1753 ops.suppressDiagnostics();
1754
1755 // Very likely: there's no operator delete[].
1756 if (ops.empty()) return false;
1757
1758 // If it's ambiguous, it should be illegal to call operator delete[]
1759 // on this thing, so it doesn't matter if we allocate extra space or not.
1760 if (ops.isAmbiguous()) return false;
1761
1762 // C++17 [expr.delete]p10:
1763 // If the deallocation functions have class scope, the one without a
1764 // parameter of type std::size_t is selected.
1765 auto Best = resolveDeallocationOverload(
1766 S, ops, /*WantSize*/false,
1767 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1768 return Best && Best.HasSizeT;
1769}
1770
1771/// Parsed a C++ 'new' expression (C++ 5.3.4).
1772///
1773/// E.g.:
1774/// @code new (memory) int[size][4] @endcode
1775/// or
1776/// @code ::new Foo(23, "hello") @endcode
1777///
1778/// \param StartLoc The first location of the expression.
1779/// \param UseGlobal True if 'new' was prefixed with '::'.
1780/// \param PlacementLParen Opening paren of the placement arguments.
1781/// \param PlacementArgs Placement new arguments.
1782/// \param PlacementRParen Closing paren of the placement arguments.
1783/// \param TypeIdParens If the type is in parens, the source range.
1784/// \param D The type to be allocated, as well as array dimensions.
1785/// \param Initializer The initializing expression or initializer-list, or null
1786/// if there is none.
1787ExprResult
1788Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1789 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1790 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1791 Declarator &D, Expr *Initializer) {
1792 Optional<Expr *> ArraySize;
1793 // If the specified type is an array, unwrap it and save the expression.
1794 if (D.getNumTypeObjects() > 0 &&
1795 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1796 DeclaratorChunk &Chunk = D.getTypeObject(0);
1797 if (D.getDeclSpec().hasAutoTypeSpec())
1798 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1799 << D.getSourceRange());
1800 if (Chunk.Arr.hasStatic)
1801 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1802 << D.getSourceRange());
1803 if (!Chunk.Arr.NumElts && !Initializer)
1804 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1805 << D.getSourceRange());
1806
1807 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1808 D.DropFirstTypeObject();
1809 }
1810
1811 // Every dimension shall be of constant size.
1812 if (ArraySize) {
1813 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1814 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1815 break;
1816
1817 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1818 if (Expr *NumElts = (Expr *)Array.NumElts) {
1819 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1820 // FIXME: GCC permits constant folding here. We should either do so consistently
1821 // or not do so at all, rather than changing behavior in C++14 onwards.
1822 if (getLangOpts().CPlusPlus14) {
1823 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1824 // shall be a converted constant expression (5.19) of type std::size_t
1825 // and shall evaluate to a strictly positive value.
1826 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1827 Array.NumElts
1828 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1829 CCEK_ArrayBound)
1830 .get();
1831 } else {
1832 Array.NumElts =
1833 VerifyIntegerConstantExpression(
1834 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1835 .get();
1836 }
1837 if (!Array.NumElts)
1838 return ExprError();
1839 }
1840 }
1841 }
1842 }
1843
1844 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1845 QualType AllocType = TInfo->getType();
1846 if (D.isInvalidType())
1847 return ExprError();
1848
1849 SourceRange DirectInitRange;
1850 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1851 DirectInitRange = List->getSourceRange();
1852
1853 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1854 PlacementLParen, PlacementArgs, PlacementRParen,
1855 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1856 Initializer);
1857}
1858
1859static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1860 Expr *Init) {
1861 if (!Init)
1862 return true;
1863 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1864 return PLE->getNumExprs() == 0;
1865 if (isa<ImplicitValueInitExpr>(Init))
1866 return true;
1867 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1868 return !CCE->isListInitialization() &&
1869 CCE->getConstructor()->isDefaultConstructor();
1870 else if (Style == CXXNewExpr::ListInit) {
1871 assert(isa<InitListExpr>(Init) &&((void)0)
1872 "Shouldn't create list CXXConstructExprs for arrays.")((void)0);
1873 return true;
1874 }
1875 return false;
1876}
1877
1878bool
1879Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1880 if (!getLangOpts().AlignedAllocationUnavailable)
1881 return false;
1882 if (FD.isDefined())
1883 return false;
1884 Optional<unsigned> AlignmentParam;
1885 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1886 AlignmentParam.hasValue())
1887 return true;
1888 return false;
1889}
1890
1891// Emit a diagnostic if an aligned allocation/deallocation function that is not
1892// implemented in the standard library is selected.
1893void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1894 SourceLocation Loc) {
1895 if (isUnavailableAlignedAllocationFunction(FD)) {
1896 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1897 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1898 getASTContext().getTargetInfo().getPlatformName());
1899 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1900
1901 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1902 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1903 Diag(Loc, diag::err_aligned_allocation_unavailable)
1904 << IsDelete << FD.getType().getAsString() << OSName
1905 << OSVersion.getAsString() << OSVersion.empty();
1906 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1907 }
1908}
1909
1910ExprResult
1911Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1912 SourceLocation PlacementLParen,
1913 MultiExprArg PlacementArgs,
1914 SourceLocation PlacementRParen,
1915 SourceRange TypeIdParens,
1916 QualType AllocType,
1917 TypeSourceInfo *AllocTypeInfo,
1918 Optional<Expr *> ArraySize,
1919 SourceRange DirectInitRange,
1920 Expr *Initializer) {
1921 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1922 SourceLocation StartLoc = Range.getBegin();
1923
1924 CXXNewExpr::InitializationStyle initStyle;
1925 if (DirectInitRange.isValid()) {
1926 assert(Initializer && "Have parens but no initializer.")((void)0);
1927 initStyle = CXXNewExpr::CallInit;
1928 } else if (Initializer && isa<InitListExpr>(Initializer))
1929 initStyle = CXXNewExpr::ListInit;
1930 else {
1931 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||((void)0)
1932 isa<CXXConstructExpr>(Initializer)) &&((void)0)
1933 "Initializer expression that cannot have been implicitly created.")((void)0);
1934 initStyle = CXXNewExpr::NoInit;
1935 }
1936
1937 Expr **Inits = &Initializer;
1938 unsigned NumInits = Initializer ? 1 : 0;
1939 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1940 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")((void)0);
1941 Inits = List->getExprs();
1942 NumInits = List->getNumExprs();
1943 }
1944
1945 // C++11 [expr.new]p15:
1946 // A new-expression that creates an object of type T initializes that
1947 // object as follows:
1948 InitializationKind Kind
1949 // - If the new-initializer is omitted, the object is default-
1950 // initialized (8.5); if no initialization is performed,
1951 // the object has indeterminate value
1952 = initStyle == CXXNewExpr::NoInit
1953 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1954 // - Otherwise, the new-initializer is interpreted according to
1955 // the
1956 // initialization rules of 8.5 for direct-initialization.
1957 : initStyle == CXXNewExpr::ListInit
1958 ? InitializationKind::CreateDirectList(
1959 TypeRange.getBegin(), Initializer->getBeginLoc(),
1960 Initializer->getEndLoc())
1961 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1962 DirectInitRange.getBegin(),
1963 DirectInitRange.getEnd());
1964
1965 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1966 auto *Deduced = AllocType->getContainedDeducedType();
1967 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1968 if (ArraySize)
1969 return ExprError(
1970 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1971 diag::err_deduced_class_template_compound_type)
1972 << /*array*/ 2
1973 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1974
1975 InitializedEntity Entity
1976 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1977 AllocType = DeduceTemplateSpecializationFromInitializer(
1978 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1979 if (AllocType.isNull())
1980 return ExprError();
1981 } else if (Deduced) {
1982 bool Braced = (initStyle == CXXNewExpr::ListInit);
1983 if (NumInits == 1) {
1984 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1985 Inits = p->getInits();
1986 NumInits = p->getNumInits();
1987 Braced = true;
1988 }
1989 }
1990
1991 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1992 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1993 << AllocType << TypeRange);
1994 if (NumInits > 1) {
1995 Expr *FirstBad = Inits[1];
1996 return ExprError(Diag(FirstBad->getBeginLoc(),
1997 diag::err_auto_new_ctor_multiple_expressions)
1998 << AllocType << TypeRange);
1999 }
2000 if (Braced && !getLangOpts().CPlusPlus17)
2001 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2002 << AllocType << TypeRange;
2003 Expr *Deduce = Inits[0];
2004 QualType DeducedType;
2005 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2006 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2007 << AllocType << Deduce->getType()
2008 << TypeRange << Deduce->getSourceRange());
2009 if (DeducedType.isNull())
2010 return ExprError();
2011 AllocType = DeducedType;
2012 }
2013
2014 // Per C++0x [expr.new]p5, the type being constructed may be a
2015 // typedef of an array type.
2016 if (!ArraySize) {
2017 if (const ConstantArrayType *Array
2018 = Context.getAsConstantArrayType(AllocType)) {
2019 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2020 Context.getSizeType(),
2021 TypeRange.getEnd());
2022 AllocType = Array->getElementType();
2023 }
2024 }
2025
2026 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2027 return ExprError();
2028
2029 // In ARC, infer 'retaining' for the allocated
2030 if (getLangOpts().ObjCAutoRefCount &&
2031 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2032 AllocType->isObjCLifetimeType()) {
2033 AllocType = Context.getLifetimeQualifiedType(AllocType,
2034 AllocType->getObjCARCImplicitLifetime());
2035 }
2036
2037 QualType ResultType = Context.getPointerType(AllocType);
2038
2039 if (ArraySize && *ArraySize &&
2040 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2041 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2042 if (result.isInvalid()) return ExprError();
2043 ArraySize = result.get();
2044 }
2045 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2046 // integral or enumeration type with a non-negative value."
2047 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2048 // enumeration type, or a class type for which a single non-explicit
2049 // conversion function to integral or unscoped enumeration type exists.
2050 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2051 // std::size_t.
2052 llvm::Optional<uint64_t> KnownArraySize;
2053 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2054 ExprResult ConvertedSize;
2055 if (getLangOpts().CPlusPlus14) {
2056 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")((void)0);
2057
2058 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2059 AA_Converting);
2060
2061 if (!ConvertedSize.isInvalid() &&
2062 (*ArraySize)->getType()->getAs<RecordType>())
2063 // Diagnose the compatibility of this conversion.
2064 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2065 << (*ArraySize)->getType() << 0 << "'size_t'";
2066 } else {
2067 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2068 protected:
2069 Expr *ArraySize;
2070
2071 public:
2072 SizeConvertDiagnoser(Expr *ArraySize)
2073 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2074 ArraySize(ArraySize) {}
2075
2076 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2077 QualType T) override {
2078 return S.Diag(Loc, diag::err_array_size_not_integral)
2079 << S.getLangOpts().CPlusPlus11 << T;
2080 }
2081
2082 SemaDiagnosticBuilder diagnoseIncomplete(
2083 Sema &S, SourceLocation Loc, QualType T) override {
2084 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2085 << T << ArraySize->getSourceRange();
2086 }
2087
2088 SemaDiagnosticBuilder diagnoseExplicitConv(
2089 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2090 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2091 }
2092
2093 SemaDiagnosticBuilder noteExplicitConv(
2094 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2095 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2096 << ConvTy->isEnumeralType() << ConvTy;
2097 }
2098
2099 SemaDiagnosticBuilder diagnoseAmbiguous(
2100 Sema &S, SourceLocation Loc, QualType T) override {
2101 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2102 }
2103
2104 SemaDiagnosticBuilder noteAmbiguous(
2105 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2106 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2107 << ConvTy->isEnumeralType() << ConvTy;
2108 }
2109
2110 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2111 QualType T,
2112 QualType ConvTy) override {
2113 return S.Diag(Loc,
2114 S.getLangOpts().CPlusPlus11
2115 ? diag::warn_cxx98_compat_array_size_conversion
2116 : diag::ext_array_size_conversion)
2117 << T << ConvTy->isEnumeralType() << ConvTy;
2118 }
2119 } SizeDiagnoser(*ArraySize);
2120
2121 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2122 SizeDiagnoser);
2123 }
2124 if (ConvertedSize.isInvalid())
2125 return ExprError();
2126
2127 ArraySize = ConvertedSize.get();
2128 QualType SizeType = (*ArraySize)->getType();
2129
2130 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2131 return ExprError();
2132
2133 // C++98 [expr.new]p7:
2134 // The expression in a direct-new-declarator shall have integral type
2135 // with a non-negative value.
2136 //
2137 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2138 // per CWG1464. Otherwise, if it's not a constant, we must have an
2139 // unparenthesized array type.
2140 if (!(*ArraySize)->isValueDependent()) {
2141 // We've already performed any required implicit conversion to integer or
2142 // unscoped enumeration type.
2143 // FIXME: Per CWG1464, we are required to check the value prior to
2144 // converting to size_t. This will never find a negative array size in
2145 // C++14 onwards, because Value is always unsigned here!
2146 if (Optional<llvm::APSInt> Value =
2147 (*ArraySize)->getIntegerConstantExpr(Context)) {
2148 if (Value->isSigned() && Value->isNegative()) {
2149 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2150 diag::err_typecheck_negative_array_size)
2151 << (*ArraySize)->getSourceRange());
2152 }
2153
2154 if (!AllocType->isDependentType()) {
2155 unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits(
2156 Context, AllocType, *Value);
2157 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2158 return ExprError(
2159 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2160 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2161 }
2162
2163 KnownArraySize = Value->getZExtValue();
2164 } else if (TypeIdParens.isValid()) {
2165 // Can't have dynamic array size when the type-id is in parentheses.
2166 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2167 << (*ArraySize)->getSourceRange()
2168 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2169 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2170
2171 TypeIdParens = SourceRange();
2172 }
2173 }
2174
2175 // Note that we do *not* convert the argument in any way. It can
2176 // be signed, larger than size_t, whatever.
2177 }
2178
2179 FunctionDecl *OperatorNew = nullptr;
2180 FunctionDecl *OperatorDelete = nullptr;
2181 unsigned Alignment =
2182 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2183 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2184 bool PassAlignment = getLangOpts().AlignedAllocation &&
2185 Alignment > NewAlignment;
2186
2187 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2188 if (!AllocType->isDependentType() &&
2189 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2190 FindAllocationFunctions(
2191 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2192 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2193 OperatorNew, OperatorDelete))
2194 return ExprError();
2195
2196 // If this is an array allocation, compute whether the usual array
2197 // deallocation function for the type has a size_t parameter.
2198 bool UsualArrayDeleteWantsSize = false;
2199 if (ArraySize && !AllocType->isDependentType())
2200 UsualArrayDeleteWantsSize =
2201 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2202
2203 SmallVector<Expr *, 8> AllPlaceArgs;
2204 if (OperatorNew) {
2205 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2206 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2207 : VariadicDoesNotApply;
2208
2209 // We've already converted the placement args, just fill in any default
2210 // arguments. Skip the first parameter because we don't have a corresponding
2211 // argument. Skip the second parameter too if we're passing in the
2212 // alignment; we've already filled it in.
2213 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2214 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2215 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2216 CallType))
2217 return ExprError();
2218
2219 if (!AllPlaceArgs.empty())
2220 PlacementArgs = AllPlaceArgs;
2221
2222 // We would like to perform some checking on the given `operator new` call,
2223 // but the PlacementArgs does not contain the implicit arguments,
2224 // namely allocation size and maybe allocation alignment,
2225 // so we need to conjure them.
2226
2227 QualType SizeTy = Context.getSizeType();
2228 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2229
2230 llvm::APInt SingleEltSize(
2231 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2232
2233 // How many bytes do we want to allocate here?
2234 llvm::Optional<llvm::APInt> AllocationSize;
2235 if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2236 // For non-array operator new, we only want to allocate one element.
2237 AllocationSize = SingleEltSize;
2238 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2239 // For array operator new, only deal with static array size case.
2240 bool Overflow;
2241 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2242 .umul_ov(SingleEltSize, Overflow);
2243 (void)Overflow;
2244 assert(((void)0)
2245 !Overflow &&((void)0)
2246 "Expected that all the overflows would have been handled already.")((void)0);
2247 }
2248
2249 IntegerLiteral AllocationSizeLiteral(
2250 Context,
2251 AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)),
2252 SizeTy, SourceLocation());
2253 // Otherwise, if we failed to constant-fold the allocation size, we'll
2254 // just give up and pass-in something opaque, that isn't a null pointer.
2255 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2256 OK_Ordinary, /*SourceExpr=*/nullptr);
2257
2258 // Let's synthesize the alignment argument in case we will need it.
2259 // Since we *really* want to allocate these on stack, this is slightly ugly
2260 // because there might not be a `std::align_val_t` type.
2261 EnumDecl *StdAlignValT = getStdAlignValT();
2262 QualType AlignValT =
2263 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2264 IntegerLiteral AlignmentLiteral(
2265 Context,
2266 llvm::APInt(Context.getTypeSize(SizeTy),
2267 Alignment / Context.getCharWidth()),
2268 SizeTy, SourceLocation());
2269 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2270 CK_IntegralCast, &AlignmentLiteral,
2271 VK_PRValue, FPOptionsOverride());
2272
2273 // Adjust placement args by prepending conjured size and alignment exprs.
2274 llvm::SmallVector<Expr *, 8> CallArgs;
2275 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2276 CallArgs.emplace_back(AllocationSize.hasValue()
2277 ? static_cast<Expr *>(&AllocationSizeLiteral)
2278 : &OpaqueAllocationSize);
2279 if (PassAlignment)
2280 CallArgs.emplace_back(&DesiredAlignment);
2281 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2282
2283 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2284
2285 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2286 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2287
2288 // Warn if the type is over-aligned and is being allocated by (unaligned)
2289 // global operator new.
2290 if (PlacementArgs.empty() && !PassAlignment &&
2291 (OperatorNew->isImplicit() ||
2292 (OperatorNew->getBeginLoc().isValid() &&
2293 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2294 if (Alignment > NewAlignment)
2295 Diag(StartLoc, diag::warn_overaligned_type)
2296 << AllocType
2297 << unsigned(Alignment / Context.getCharWidth())
2298 << unsigned(NewAlignment / Context.getCharWidth());
2299 }
2300 }
2301
2302 // Array 'new' can't have any initializers except empty parentheses.
2303 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2304 // dialect distinction.
2305 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2306 SourceRange InitRange(Inits[0]->getBeginLoc(),
2307 Inits[NumInits - 1]->getEndLoc());
2308 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2309 return ExprError();
2310 }
2311
2312 // If we can perform the initialization, and we've not already done so,
2313 // do it now.
2314 if (!AllocType->isDependentType() &&
2315 !Expr::hasAnyTypeDependentArguments(
2316 llvm::makeArrayRef(Inits, NumInits))) {
2317 // The type we initialize is the complete type, including the array bound.
2318 QualType InitType;
2319 if (KnownArraySize)
2320 InitType = Context.getConstantArrayType(
2321 AllocType,
2322 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2323 *KnownArraySize),
2324 *ArraySize, ArrayType::Normal, 0);
2325 else if (ArraySize)
2326 InitType =
2327 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2328 else
2329 InitType = AllocType;
2330
2331 InitializedEntity Entity
2332 = InitializedEntity::InitializeNew(StartLoc, InitType);
2333 InitializationSequence InitSeq(*this, Entity, Kind,
2334 MultiExprArg(Inits, NumInits));
2335 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2336 MultiExprArg(Inits, NumInits));
2337 if (FullInit.isInvalid())
2338 return ExprError();
2339
2340 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2341 // we don't want the initialized object to be destructed.
2342 // FIXME: We should not create these in the first place.
2343 if (CXXBindTemporaryExpr *Binder =
2344 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2345 FullInit = Binder->getSubExpr();
2346
2347 Initializer = FullInit.get();
2348
2349 // FIXME: If we have a KnownArraySize, check that the array bound of the
2350 // initializer is no greater than that constant value.
2351
2352 if (ArraySize && !*ArraySize) {
2353 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2354 if (CAT) {
2355 // FIXME: Track that the array size was inferred rather than explicitly
2356 // specified.
2357 ArraySize = IntegerLiteral::Create(
2358 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2359 } else {
2360 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2361 << Initializer->getSourceRange();
2362 }
2363 }
2364 }
2365
2366 // Mark the new and delete operators as referenced.
2367 if (OperatorNew) {
2368 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2369 return ExprError();
2370 MarkFunctionReferenced(StartLoc, OperatorNew);
2371 }
2372 if (OperatorDelete) {
2373 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2374 return ExprError();
2375 MarkFunctionReferenced(StartLoc, OperatorDelete);
2376 }
2377
2378 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2379 PassAlignment, UsualArrayDeleteWantsSize,
2380 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2381 Initializer, ResultType, AllocTypeInfo, Range,
2382 DirectInitRange);
2383}
2384
2385/// Checks that a type is suitable as the allocated type
2386/// in a new-expression.
2387bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2388 SourceRange R) {
2389 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2390 // abstract class type or array thereof.
2391 if (AllocType->isFunctionType())
2392 return Diag(Loc, diag::err_bad_new_type)
2393 << AllocType << 0 << R;
2394 else if (AllocType->isReferenceType())
2395 return Diag(Loc, diag::err_bad_new_type)
2396 << AllocType << 1 << R;
2397 else if (!AllocType->isDependentType() &&
2398 RequireCompleteSizedType(
2399 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2400 return true;
2401 else if (RequireNonAbstractType(Loc, AllocType,
2402 diag::err_allocation_of_abstract_type))
2403 return true;
2404 else if (AllocType->isVariablyModifiedType())
2405 return Diag(Loc, diag::err_variably_modified_new_type)
2406 << AllocType;
2407 else if (AllocType.getAddressSpace() != LangAS::Default &&
2408 !getLangOpts().OpenCLCPlusPlus)
2409 return Diag(Loc, diag::err_address_space_qualified_new)
2410 << AllocType.getUnqualifiedType()
2411 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2412 else if (getLangOpts().ObjCAutoRefCount) {
2413 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2414 QualType BaseAllocType = Context.getBaseElementType(AT);
2415 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2416 BaseAllocType->isObjCLifetimeType())
2417 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2418 << BaseAllocType;
2419 }
2420 }
2421
2422 return false;
2423}
2424
2425static bool resolveAllocationOverload(
2426 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2427 bool &PassAlignment, FunctionDecl *&Operator,
2428 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2429 OverloadCandidateSet Candidates(R.getNameLoc(),
2430 OverloadCandidateSet::CSK_Normal);
2431 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2432 Alloc != AllocEnd; ++Alloc) {
2433 // Even member operator new/delete are implicitly treated as
2434 // static, so don't use AddMemberCandidate.
2435 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2436
2437 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2438 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2439 /*ExplicitTemplateArgs=*/nullptr, Args,
2440 Candidates,
2441 /*SuppressUserConversions=*/false);
2442 continue;
2443 }
2444
2445 FunctionDecl *Fn = cast<FunctionDecl>(D);
2446 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2447 /*SuppressUserConversions=*/false);
2448 }
2449
2450 // Do the resolution.
2451 OverloadCandidateSet::iterator Best;
2452 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2453 case OR_Success: {
2454 // Got one!
2455 FunctionDecl *FnDecl = Best->Function;
2456 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2457 Best->FoundDecl) == Sema::AR_inaccessible)
2458 return true;
2459
2460 Operator = FnDecl;
2461 return false;
2462 }
2463
2464 case OR_No_Viable_Function:
2465 // C++17 [expr.new]p13:
2466 // If no matching function is found and the allocated object type has
2467 // new-extended alignment, the alignment argument is removed from the
2468 // argument list, and overload resolution is performed again.
2469 if (PassAlignment) {
2470 PassAlignment = false;
2471 AlignArg = Args[1];
2472 Args.erase(Args.begin() + 1);
2473 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2474 Operator, &Candidates, AlignArg,
2475 Diagnose);
2476 }
2477
2478 // MSVC will fall back on trying to find a matching global operator new
2479 // if operator new[] cannot be found. Also, MSVC will leak by not
2480 // generating a call to operator delete or operator delete[], but we
2481 // will not replicate that bug.
2482 // FIXME: Find out how this interacts with the std::align_val_t fallback
2483 // once MSVC implements it.
2484 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2485 S.Context.getLangOpts().MSVCCompat) {
2486 R.clear();
2487 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2488 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2489 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2490 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2491 Operator, /*Candidates=*/nullptr,
2492 /*AlignArg=*/nullptr, Diagnose);
2493 }
2494
2495 if (Diagnose) {
2496 // If this is an allocation of the form 'new (p) X' for some object
2497 // pointer p (or an expression that will decay to such a pointer),
2498 // diagnose the missing inclusion of <new>.
2499 if (!R.isClassLookup() && Args.size() == 2 &&
2500 (Args[1]->getType()->isObjectPointerType() ||
2501 Args[1]->getType()->isArrayType())) {
2502 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2503 << R.getLookupName() << Range;
2504 // Listing the candidates is unlikely to be useful; skip it.
2505 return true;
2506 }
2507
2508 // Finish checking all candidates before we note any. This checking can
2509 // produce additional diagnostics so can't be interleaved with our
2510 // emission of notes.
2511 //
2512 // For an aligned allocation, separately check the aligned and unaligned
2513 // candidates with their respective argument lists.
2514 SmallVector<OverloadCandidate*, 32> Cands;
2515 SmallVector<OverloadCandidate*, 32> AlignedCands;
2516 llvm::SmallVector<Expr*, 4> AlignedArgs;
2517 if (AlignedCandidates) {
2518 auto IsAligned = [](OverloadCandidate &C) {
2519 return C.Function->getNumParams() > 1 &&
2520 C.Function->getParamDecl(1)->getType()->isAlignValT();
2521 };
2522 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2523
2524 AlignedArgs.reserve(Args.size() + 1);
2525 AlignedArgs.push_back(Args[0]);
2526 AlignedArgs.push_back(AlignArg);
2527 AlignedArgs.append(Args.begin() + 1, Args.end());
2528 AlignedCands = AlignedCandidates->CompleteCandidates(
2529 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2530
2531 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2532 R.getNameLoc(), IsUnaligned);
2533 } else {
2534 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2535 R.getNameLoc());
2536 }
2537
2538 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2539 << R.getLookupName() << Range;
2540 if (AlignedCandidates)
2541 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2542 R.getNameLoc());
2543 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2544 }
2545 return true;
2546
2547 case OR_Ambiguous:
2548 if (Diagnose) {
2549 Candidates.NoteCandidates(
2550 PartialDiagnosticAt(R.getNameLoc(),
2551 S.PDiag(diag::err_ovl_ambiguous_call)
2552 << R.getLookupName() << Range),
2553 S, OCD_AmbiguousCandidates, Args);
2554 }
2555 return true;
2556
2557 case OR_Deleted: {
2558 if (Diagnose) {
2559 Candidates.NoteCandidates(
2560 PartialDiagnosticAt(R.getNameLoc(),
2561 S.PDiag(diag::err_ovl_deleted_call)
2562 << R.getLookupName() << Range),
2563 S, OCD_AllCandidates, Args);
2564 }
2565 return true;
2566 }
2567 }
2568 llvm_unreachable("Unreachable, bad result from BestViableFunction")__builtin_unreachable();
2569}
2570
2571bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2572 AllocationFunctionScope NewScope,
2573 AllocationFunctionScope DeleteScope,
2574 QualType AllocType, bool IsArray,
2575 bool &PassAlignment, MultiExprArg PlaceArgs,
2576 FunctionDecl *&OperatorNew,
2577 FunctionDecl *&OperatorDelete,
2578 bool Diagnose) {
2579 // --- Choosing an allocation function ---
2580 // C++ 5.3.4p8 - 14 & 18
2581 // 1) If looking in AFS_Global scope for allocation functions, only look in
2582 // the global scope. Else, if AFS_Class, only look in the scope of the
2583 // allocated class. If AFS_Both, look in both.
2584 // 2) If an array size is given, look for operator new[], else look for
2585 // operator new.
2586 // 3) The first argument is always size_t. Append the arguments from the
2587 // placement form.
2588
2589 SmallVector<Expr*, 8> AllocArgs;
2590 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2591
2592 // We don't care about the actual value of these arguments.
2593 // FIXME: Should the Sema create the expression and embed it in the syntax
2594 // tree? Or should the consumer just recalculate the value?
2595 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2596 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2597 Context.getTargetInfo().getPointerWidth(0)),
2598 Context.getSizeType(),
2599 SourceLocation());
2600 AllocArgs.push_back(&Size);
2601
2602 QualType AlignValT = Context.VoidTy;
2603 if (PassAlignment) {
2604 DeclareGlobalNewDelete();
2605 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2606 }
2607 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2608 if (PassAlignment)
2609 AllocArgs.push_back(&Align);
2610
2611 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2612
2613 // C++ [expr.new]p8:
2614 // If the allocated type is a non-array type, the allocation
2615 // function's name is operator new and the deallocation function's
2616 // name is operator delete. If the allocated type is an array
2617 // type, the allocation function's name is operator new[] and the
2618 // deallocation function's name is operator delete[].
2619 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2620 IsArray ? OO_Array_New : OO_New);
2621
2622 QualType AllocElemType = Context.getBaseElementType(AllocType);
2623
2624 // Find the allocation function.
2625 {
2626 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2627
2628 // C++1z [expr.new]p9:
2629 // If the new-expression begins with a unary :: operator, the allocation
2630 // function's name is looked up in the global scope. Otherwise, if the
2631 // allocated type is a class type T or array thereof, the allocation
2632 // function's name is looked up in the scope of T.
2633 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2634 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2635
2636 // We can see ambiguity here if the allocation function is found in
2637 // multiple base classes.
2638 if (R.isAmbiguous())
2639 return true;
2640
2641 // If this lookup fails to find the name, or if the allocated type is not
2642 // a class type, the allocation function's name is looked up in the
2643 // global scope.
2644 if (R.empty()) {
2645 if (NewScope == AFS_Class)
2646 return true;
2647
2648 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2649 }
2650
2651 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2652 if (PlaceArgs.empty()) {
2653 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2654 } else {
2655 Diag(StartLoc, diag::err_openclcxx_placement_new);
2656 }
2657 return true;
2658 }
2659
2660 assert(!R.empty() && "implicitly declared allocation functions not found")((void)0);
2661 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((void)0);
2662
2663 // We do our own custom access checks below.
2664 R.suppressDiagnostics();
2665
2666 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2667 OperatorNew, /*Candidates=*/nullptr,
2668 /*AlignArg=*/nullptr, Diagnose))
2669 return true;
2670 }
2671
2672 // We don't need an operator delete if we're running under -fno-exceptions.
2673 if (!getLangOpts().Exceptions) {
2674 OperatorDelete = nullptr;
2675 return false;
2676 }
2677
2678 // Note, the name of OperatorNew might have been changed from array to
2679 // non-array by resolveAllocationOverload.
2680 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2681 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2682 ? OO_Array_Delete
2683 : OO_Delete);
2684
2685 // C++ [expr.new]p19:
2686 //
2687 // If the new-expression begins with a unary :: operator, the
2688 // deallocation function's name is looked up in the global
2689 // scope. Otherwise, if the allocated type is a class type T or an
2690 // array thereof, the deallocation function's name is looked up in
2691 // the scope of T. If this lookup fails to find the name, or if
2692 // the allocated type is not a class type or array thereof, the
2693 // deallocation function's name is looked up in the global scope.
2694 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2695 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2696 auto *RD =
2697 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2698 LookupQualifiedName(FoundDelete, RD);
2699 }
2700 if (FoundDelete.isAmbiguous())
2701 return true; // FIXME: clean up expressions?
2702
2703 // Filter out any destroying operator deletes. We can't possibly call such a
2704 // function in this context, because we're handling the case where the object
2705 // was not successfully constructed.
2706 // FIXME: This is not covered by the language rules yet.
2707 {
2708 LookupResult::Filter Filter = FoundDelete.makeFilter();
2709 while (Filter.hasNext()) {
2710 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2711 if (FD && FD->isDestroyingOperatorDelete())
2712 Filter.erase();
2713 }
2714 Filter.done();
2715 }
2716
2717 bool FoundGlobalDelete = FoundDelete.empty();
2718 if (FoundDelete.empty()) {
2719 FoundDelete.clear(LookupOrdinaryName);
2720
2721 if (DeleteScope == AFS_Class)
2722 return true;
2723
2724 DeclareGlobalNewDelete();
2725 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2726 }
2727
2728 FoundDelete.suppressDiagnostics();
2729
2730 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2731
2732 // Whether we're looking for a placement operator delete is dictated
2733 // by whether we selected a placement operator new, not by whether
2734 // we had explicit placement arguments. This matters for things like
2735 // struct A { void *operator new(size_t, int = 0); ... };
2736 // A *a = new A()
2737 //
2738 // We don't have any definition for what a "placement allocation function"
2739 // is, but we assume it's any allocation function whose
2740 // parameter-declaration-clause is anything other than (size_t).
2741 //
2742 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2743 // This affects whether an exception from the constructor of an overaligned
2744 // type uses the sized or non-sized form of aligned operator delete.
2745 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2746 OperatorNew->isVariadic();
2747
2748 if (isPlacementNew) {
2749 // C++ [expr.new]p20:
2750 // A declaration of a placement deallocation function matches the
2751 // declaration of a placement allocation function if it has the
2752 // same number of parameters and, after parameter transformations
2753 // (8.3.5), all parameter types except the first are
2754 // identical. [...]
2755 //
2756 // To perform this comparison, we compute the function type that
2757 // the deallocation function should have, and use that type both
2758 // for template argument deduction and for comparison purposes.
2759 QualType ExpectedFunctionType;
2760 {
2761 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2762
2763 SmallVector<QualType, 4> ArgTypes;
2764 ArgTypes.push_back(Context.VoidPtrTy);
2765 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2766 ArgTypes.push_back(Proto->getParamType(I));
2767
2768 FunctionProtoType::ExtProtoInfo EPI;
2769 // FIXME: This is not part of the standard's rule.
2770 EPI.Variadic = Proto->isVariadic();
2771
2772 ExpectedFunctionType
2773 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2774 }
2775
2776 for (LookupResult::iterator D = FoundDelete.begin(),
2777 DEnd = FoundDelete.end();
2778 D != DEnd; ++D) {
2779 FunctionDecl *Fn = nullptr;
2780 if (FunctionTemplateDecl *FnTmpl =
2781 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2782 // Perform template argument deduction to try to match the
2783 // expected function type.
2784 TemplateDeductionInfo Info(StartLoc);
2785 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2786 Info))
2787 continue;
2788 } else
2789 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2790
2791 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2792 ExpectedFunctionType,
2793 /*AdjustExcpetionSpec*/true),
2794 ExpectedFunctionType))
2795 Matches.push_back(std::make_pair(D.getPair(), Fn));
2796 }
2797
2798 if (getLangOpts().CUDA)
2799 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2800 } else {
2801 // C++1y [expr.new]p22:
2802 // For a non-placement allocation function, the normal deallocation
2803 // function lookup is used
2804 //
2805 // Per [expr.delete]p10, this lookup prefers a member operator delete
2806 // without a size_t argument, but prefers a non-member operator delete
2807 // with a size_t where possible (which it always is in this case).
2808 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2809 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2810 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2811 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2812 &BestDeallocFns);
2813 if (Selected)
2814 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2815 else {
2816 // If we failed to select an operator, all remaining functions are viable
2817 // but ambiguous.
2818 for (auto Fn : BestDeallocFns)
2819 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2820 }
2821 }
2822
2823 // C++ [expr.new]p20:
2824 // [...] If the lookup finds a single matching deallocation
2825 // function, that function will be called; otherwise, no
2826 // deallocation function will be called.
2827 if (Matches.size() == 1) {
2828 OperatorDelete = Matches[0].second;
2829
2830 // C++1z [expr.new]p23:
2831 // If the lookup finds a usual deallocation function (3.7.4.2)
2832 // with a parameter of type std::size_t and that function, considered
2833 // as a placement deallocation function, would have been
2834 // selected as a match for the allocation function, the program
2835 // is ill-formed.
2836 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2837 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2838 UsualDeallocFnInfo Info(*this,
2839 DeclAccessPair::make(OperatorDelete, AS_public));
2840 // Core issue, per mail to core reflector, 2016-10-09:
2841 // If this is a member operator delete, and there is a corresponding
2842 // non-sized member operator delete, this isn't /really/ a sized
2843 // deallocation function, it just happens to have a size_t parameter.
2844 bool IsSizedDelete = Info.HasSizeT;
2845 if (IsSizedDelete && !FoundGlobalDelete) {
2846 auto NonSizedDelete =
2847 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2848 /*WantAlign*/Info.HasAlignValT);
2849 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2850 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2851 IsSizedDelete = false;
2852 }
2853
2854 if (IsSizedDelete) {
2855 SourceRange R = PlaceArgs.empty()
2856 ? SourceRange()
2857 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2858 PlaceArgs.back()->getEndLoc());
2859 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2860 if (!OperatorDelete->isImplicit())
2861 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2862 << DeleteName;
2863 }
2864 }
2865
2866 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2867 Matches[0].first);
2868 } else if (!Matches.empty()) {
2869 // We found multiple suitable operators. Per [expr.new]p20, that means we
2870 // call no 'operator delete' function, but we should at least warn the user.
2871 // FIXME: Suppress this warning if the construction cannot throw.
2872 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2873 << DeleteName << AllocElemType;
2874
2875 for (auto &Match : Matches)
2876 Diag(Match.second->getLocation(),
2877 diag::note_member_declared_here) << DeleteName;
2878 }
2879
2880 return false;
2881}
2882
2883/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2884/// delete. These are:
2885/// @code
2886/// // C++03:
2887/// void* operator new(std::size_t) throw(std::bad_alloc);
2888/// void* operator new[](std::size_t) throw(std::bad_alloc);
2889/// void operator delete(void *) throw();
2890/// void operator delete[](void *) throw();
2891/// // C++11:
2892/// void* operator new(std::size_t);
2893/// void* operator new[](std::size_t);
2894/// void operator delete(void *) noexcept;
2895/// void operator delete[](void *) noexcept;
2896/// // C++1y:
2897/// void* operator new(std::size_t);
2898/// void* operator new[](std::size_t);
2899/// void operator delete(void *) noexcept;
2900/// void operator delete[](void *) noexcept;
2901/// void operator delete(void *, std::size_t) noexcept;
2902/// void operator delete[](void *, std::size_t) noexcept;
2903/// @endcode
2904/// Note that the placement and nothrow forms of new are *not* implicitly
2905/// declared. Their use requires including \<new\>.
2906void Sema::DeclareGlobalNewDelete() {
2907 if (GlobalNewDeleteDeclared)
2908 return;
2909
2910 // The implicitly declared new and delete operators
2911 // are not supported in OpenCL.
2912 if (getLangOpts().OpenCLCPlusPlus)
2913 return;
2914
2915 // C++ [basic.std.dynamic]p2:
2916 // [...] The following allocation and deallocation functions (18.4) are
2917 // implicitly declared in global scope in each translation unit of a
2918 // program
2919 //
2920 // C++03:
2921 // void* operator new(std::size_t) throw(std::bad_alloc);
2922 // void* operator new[](std::size_t) throw(std::bad_alloc);
2923 // void operator delete(void*) throw();
2924 // void operator delete[](void*) throw();
2925 // C++11:
2926 // void* operator new(std::size_t);
2927 // void* operator new[](std::size_t);
2928 // void operator delete(void*) noexcept;
2929 // void operator delete[](void*) noexcept;
2930 // C++1y:
2931 // void* operator new(std::size_t);
2932 // void* operator new[](std::size_t);
2933 // void operator delete(void*) noexcept;
2934 // void operator delete[](void*) noexcept;
2935 // void operator delete(void*, std::size_t) noexcept;
2936 // void operator delete[](void*, std::size_t) noexcept;
2937 //
2938 // These implicit declarations introduce only the function names operator
2939 // new, operator new[], operator delete, operator delete[].
2940 //
2941 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2942 // "std" or "bad_alloc" as necessary to form the exception specification.
2943 // However, we do not make these implicit declarations visible to name
2944 // lookup.
2945 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2946 // The "std::bad_alloc" class has not yet been declared, so build it
2947 // implicitly.
2948 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2949 getOrCreateStdNamespace(),
2950 SourceLocation(), SourceLocation(),
2951 &PP.getIdentifierTable().get("bad_alloc"),
2952 nullptr);
2953 getStdBadAlloc()->setImplicit(true);
2954 }
2955 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2956 // The "std::align_val_t" enum class has not yet been declared, so build it
2957 // implicitly.
2958 auto *AlignValT = EnumDecl::Create(
2959 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2960 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2961 AlignValT->setIntegerType(Context.getSizeType());
2962 AlignValT->setPromotionType(Context.getSizeType());
2963 AlignValT->setImplicit(true);
2964 StdAlignValT = AlignValT;
2965 }
2966
2967 GlobalNewDeleteDeclared = true;
2968
2969 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2970 QualType SizeT = Context.getSizeType();
2971
2972 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2973 QualType Return, QualType Param) {
2974 llvm::SmallVector<QualType, 3> Params;
2975 Params.push_back(Param);
2976
2977 // Create up to four variants of the function (sized/aligned).
2978 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2979 (Kind == OO_Delete || Kind == OO_Array_Delete);
2980 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2981
2982 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2983 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2984 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2985 if (Sized)
2986 Params.push_back(SizeT);
2987
2988 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2989 if (Aligned)
2990 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2991
2992 DeclareGlobalAllocationFunction(
2993 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2994
2995 if (Aligned)
2996 Params.pop_back();
2997 }
2998 }
2999 };
3000
3001 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3002 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3003 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3004 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3005}
3006
3007/// DeclareGlobalAllocationFunction - Declares a single implicit global
3008/// allocation function if it doesn't already exist.
3009void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3010 QualType Return,
3011 ArrayRef<QualType> Params) {
3012 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3013
3014 // Check if this function is already declared.
3015 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3016 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3017 Alloc != AllocEnd; ++Alloc) {
3018 // Only look at non-template functions, as it is the predefined,
3019 // non-templated allocation function we are trying to declare here.
3020 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3021 if (Func->getNumParams() == Params.size()) {
3022 llvm::SmallVector<QualType, 3> FuncParams;
3023 for (auto *P : Func->parameters())
3024 FuncParams.push_back(
3025 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3026 if (llvm::makeArrayRef(FuncParams) == Params) {
3027 // Make the function visible to name lookup, even if we found it in
3028 // an unimported module. It either is an implicitly-declared global
3029 // allocation function, or is suppressing that function.
3030 Func->setVisibleDespiteOwningModule();
3031 return;
3032 }
3033 }
3034 }
3035 }
3036
3037 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3038 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3039
3040 QualType BadAllocType;
3041 bool HasBadAllocExceptionSpec
3042 = (Name.getCXXOverloadedOperator() == OO_New ||
3043 Name.getCXXOverloadedOperator() == OO_Array_New);
3044 if (HasBadAllocExceptionSpec) {
3045 if (!getLangOpts().CPlusPlus11) {
3046 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3047 assert(StdBadAlloc && "Must have std::bad_alloc declared")((void)0);
3048 EPI.ExceptionSpec.Type = EST_Dynamic;
3049 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3050 }
3051 } else {
3052 EPI.ExceptionSpec =
3053 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3054 }
3055
3056 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3057 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3058 FunctionDecl *Alloc = FunctionDecl::Create(
3059 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
3060 FnType, /*TInfo=*/nullptr, SC_None, false, true);
3061 Alloc->setImplicit();
3062 // Global allocation functions should always be visible.
3063 Alloc->setVisibleDespiteOwningModule();
3064
3065 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3066 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3067 ? VisibilityAttr::Hidden
3068 : VisibilityAttr::Default));
3069
3070 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3071 for (QualType T : Params) {
3072 ParamDecls.push_back(ParmVarDecl::Create(
3073 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3074 /*TInfo=*/nullptr, SC_None, nullptr));
3075 ParamDecls.back()->setImplicit();
3076 }
3077 Alloc->setParams(ParamDecls);
3078 if (ExtraAttr)
3079 Alloc->addAttr(ExtraAttr);
3080 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3081 Context.getTranslationUnitDecl()->addDecl(Alloc);
3082 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3083 };
3084
3085 if (!LangOpts.CUDA)
3086 CreateAllocationFunctionDecl(nullptr);
3087 else {
3088 // Host and device get their own declaration so each can be
3089 // defined or re-declared independently.
3090 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3091 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3092 }
3093}
3094
3095FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3096 bool CanProvideSize,
3097 bool Overaligned,
3098 DeclarationName Name) {
3099 DeclareGlobalNewDelete();
3100
3101 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3102 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3103
3104 // FIXME: It's possible for this to result in ambiguity, through a
3105 // user-declared variadic operator delete or the enable_if attribute. We
3106 // should probably not consider those cases to be usual deallocation
3107 // functions. But for now we just make an arbitrary choice in that case.
3108 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3109 Overaligned);
3110 assert(Result.FD && "operator delete missing from global scope?")((void)0);
3111 return Result.FD;
3112}
3113
3114FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3115 CXXRecordDecl *RD) {
3116 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3117
3118 FunctionDecl *OperatorDelete = nullptr;
3119 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3120 return nullptr;
3121 if (OperatorDelete)
3122 return OperatorDelete;
3123
3124 // If there's no class-specific operator delete, look up the global
3125 // non-array delete.
3126 return FindUsualDeallocationFunction(
3127 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3128 Name);
3129}
3130
3131bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3132 DeclarationName Name,
3133 FunctionDecl *&Operator, bool Diagnose) {
3134 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3135 // Try to find operator delete/operator delete[] in class scope.
3136 LookupQualifiedName(Found, RD);
3137
3138 if (Found.isAmbiguous())
3139 return true;
3140
3141 Found.suppressDiagnostics();
3142
3143 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3144
3145 // C++17 [expr.delete]p10:
3146 // If the deallocation functions have class scope, the one without a
3147 // parameter of type std::size_t is selected.
3148 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3149 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3150 /*WantAlign*/ Overaligned, &Matches);
3151
3152 // If we could find an overload, use it.
3153 if (Matches.size() == 1) {
3154 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3155
3156 // FIXME: DiagnoseUseOfDecl?
3157 if (Operator->isDeleted()) {
3158 if (Diagnose) {
3159 Diag(StartLoc, diag::err_deleted_function_use);
3160 NoteDeletedFunction(Operator);
3161 }
3162 return true;
3163 }
3164
3165 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3166 Matches[0].Found, Diagnose) == AR_inaccessible)
3167 return true;
3168
3169 return false;
3170 }
3171
3172 // We found multiple suitable operators; complain about the ambiguity.
3173 // FIXME: The standard doesn't say to do this; it appears that the intent
3174 // is that this should never happen.
3175 if (!Matches.empty()) {
3176 if (Diagnose) {
3177 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3178 << Name << RD;
3179 for (auto &Match : Matches)
3180 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3181 }
3182 return true;
3183 }
3184
3185 // We did find operator delete/operator delete[] declarations, but
3186 // none of them were suitable.
3187 if (!Found.empty()) {
3188 if (Diagnose) {
3189 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3190 << Name << RD;
3191
3192 for (NamedDecl *D : Found)
3193 Diag(D->getUnderlyingDecl()->getLocation(),
3194 diag::note_member_declared_here) << Name;
3195 }
3196 return true;
3197 }
3198
3199 Operator = nullptr;
3200 return false;
3201}
3202
3203namespace {
3204/// Checks whether delete-expression, and new-expression used for
3205/// initializing deletee have the same array form.
3206class MismatchingNewDeleteDetector {
3207public:
3208 enum MismatchResult {
3209 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3210 NoMismatch,
3211 /// Indicates that variable is initialized with mismatching form of \a new.
3212 VarInitMismatches,
3213 /// Indicates that member is initialized with mismatching form of \a new.
3214 MemberInitMismatches,
3215 /// Indicates that 1 or more constructors' definitions could not been
3216 /// analyzed, and they will be checked again at the end of translation unit.
3217 AnalyzeLater
3218 };
3219
3220 /// \param EndOfTU True, if this is the final analysis at the end of
3221 /// translation unit. False, if this is the initial analysis at the point
3222 /// delete-expression was encountered.
3223 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3224 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3225 HasUndefinedConstructors(false) {}
3226
3227 /// Checks whether pointee of a delete-expression is initialized with
3228 /// matching form of new-expression.
3229 ///
3230 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3231 /// point where delete-expression is encountered, then a warning will be
3232 /// issued immediately. If return value is \c AnalyzeLater at the point where
3233 /// delete-expression is seen, then member will be analyzed at the end of
3234 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3235 /// couldn't be analyzed. If at least one constructor initializes the member
3236 /// with matching type of new, the return value is \c NoMismatch.
3237 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3238 /// Analyzes a class member.
3239 /// \param Field Class member to analyze.
3240 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3241 /// for deleting the \p Field.
3242 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3243 FieldDecl *Field;
3244 /// List of mismatching new-expressions used for initialization of the pointee
3245 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3246 /// Indicates whether delete-expression was in array form.
3247 bool IsArrayForm;
3248
3249private:
3250 const bool EndOfTU;
3251 /// Indicates that there is at least one constructor without body.
3252 bool HasUndefinedConstructors;
3253 /// Returns \c CXXNewExpr from given initialization expression.
3254 /// \param E Expression used for initializing pointee in delete-expression.
3255 /// E can be a single-element \c InitListExpr consisting of new-expression.
3256 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3257 /// Returns whether member is initialized with mismatching form of
3258 /// \c new either by the member initializer or in-class initialization.
3259 ///
3260 /// If bodies of all constructors are not visible at the end of translation
3261 /// unit or at least one constructor initializes member with the matching
3262 /// form of \c new, mismatch cannot be proven, and this function will return
3263 /// \c NoMismatch.
3264 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3265 /// Returns whether variable is initialized with mismatching form of
3266 /// \c new.
3267 ///
3268 /// If variable is initialized with matching form of \c new or variable is not
3269 /// initialized with a \c new expression, this function will return true.
3270 /// If variable is initialized with mismatching form of \c new, returns false.
3271 /// \param D Variable to analyze.
3272 bool hasMatchingVarInit(const DeclRefExpr *D);
3273 /// Checks whether the constructor initializes pointee with mismatching
3274 /// form of \c new.
3275 ///
3276 /// Returns true, if member is initialized with matching form of \c new in
3277 /// member initializer list. Returns false, if member is initialized with the
3278 /// matching form of \c new in this constructor's initializer or given
3279 /// constructor isn't defined at the point where delete-expression is seen, or
3280 /// member isn't initialized by the constructor.
3281 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3282 /// Checks whether member is initialized with matching form of
3283 /// \c new in member initializer list.
3284 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3285 /// Checks whether member is initialized with mismatching form of \c new by
3286 /// in-class initializer.
3287 MismatchResult analyzeInClassInitializer();
3288};
3289}
3290
3291MismatchingNewDeleteDetector::MismatchResult
3292MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3293 NewExprs.clear();
3294 assert(DE && "Expected delete-expression")((void)0);
3295 IsArrayForm = DE->isArrayForm();
3296 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3297 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3298 return analyzeMemberExpr(ME);
3299 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3300 if (!hasMatchingVarInit(D))
3301 return VarInitMismatches;
3302 }
3303 return NoMismatch;
3304}
3305
3306const CXXNewExpr *
3307MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3308 assert(E != nullptr && "Expected a valid initializer expression")((void)0);
3309 E = E->IgnoreParenImpCasts();
3310 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3311 if (ILE->getNumInits() == 1)
3312 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3313 }
3314
3315 return dyn_cast_or_null<const CXXNewExpr>(E);
3316}
3317
3318bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3319 const CXXCtorInitializer *CI) {
3320 const CXXNewExpr *NE = nullptr;
3321 if (Field == CI->getMember() &&
3322 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3323 if (NE->isArray() == IsArrayForm)
3324 return true;
3325 else
3326 NewExprs.push_back(NE);
3327 }
3328 return false;
3329}
3330
3331bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3332 const CXXConstructorDecl *CD) {
3333 if (CD->isImplicit())
3334 return false;
3335 const FunctionDecl *Definition = CD;
3336 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3337 HasUndefinedConstructors = true;
3338 return EndOfTU;
3339 }
3340 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3341 if (hasMatchingNewInCtorInit(CI))
3342 return true;
3343 }
3344 return false;
3345}
3346
3347MismatchingNewDeleteDetector::MismatchResult
3348MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3349 assert(Field != nullptr && "This should be called only for members")((void)0);
3350 const Expr *InitExpr = Field->getInClassInitializer();
3351 if (!InitExpr)
3352 return EndOfTU ? NoMismatch : AnalyzeLater;
3353 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3354 if (NE->isArray() != IsArrayForm) {
3355 NewExprs.push_back(NE);
3356 return MemberInitMismatches;
3357 }
3358 }
3359 return NoMismatch;
3360}
3361
3362MismatchingNewDeleteDetector::MismatchResult
3363MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3364 bool DeleteWasArrayForm) {
3365 assert(Field != nullptr && "Analysis requires a valid class member.")((void)0);
3366 this->Field = Field;
3367 IsArrayForm = DeleteWasArrayForm;
3368 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3369 for (const auto *CD : RD->ctors()) {
3370 if (hasMatchingNewInCtor(CD))
3371 return NoMismatch;
3372 }
3373 if (HasUndefinedConstructors)
3374 return EndOfTU ? NoMismatch : AnalyzeLater;
3375 if (!NewExprs.empty())
3376 return MemberInitMismatches;
3377 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3378 : NoMismatch;
3379}
3380
3381MismatchingNewDeleteDetector::MismatchResult
3382MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3383 assert(ME != nullptr && "Expected a member expression")((void)0);
3384 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3385 return analyzeField(F, IsArrayForm);
3386 return NoMismatch;
3387}
3388
3389bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3390 const CXXNewExpr *NE = nullptr;
3391 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3392 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3393 NE->isArray() != IsArrayForm) {
3394 NewExprs.push_back(NE);
3395 }
3396 }
3397 return NewExprs.empty();
3398}
3399
3400static void
3401DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3402 const MismatchingNewDeleteDetector &Detector) {
3403 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3404 FixItHint H;
3405 if (!Detector.IsArrayForm)
3406 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3407 else {
3408 SourceLocation RSquare = Lexer::findLocationAfterToken(
3409 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3410 SemaRef.getLangOpts(), true);
3411 if (RSquare.isValid())
3412 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3413 }
3414 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3415 << Detector.IsArrayForm << H;
3416
3417 for (const auto *NE : Detector.NewExprs)
3418 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3419 << Detector.IsArrayForm;
3420}
3421
3422void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3423 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3424 return;
3425 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3426 switch (Detector.analyzeDeleteExpr(DE)) {
3427 case MismatchingNewDeleteDetector::VarInitMismatches:
3428 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3429 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3430 break;
3431 }
3432 case MismatchingNewDeleteDetector::AnalyzeLater: {
3433 DeleteExprs[Detector.Field].push_back(
3434 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3435 break;
3436 }
3437 case MismatchingNewDeleteDetector::NoMismatch:
3438 break;
3439 }
3440}
3441
3442void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3443 bool DeleteWasArrayForm) {
3444 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3445 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3446 case MismatchingNewDeleteDetector::VarInitMismatches:
3447 llvm_unreachable("This analysis should have been done for class members.")__builtin_unreachable();
3448 case MismatchingNewDeleteDetector::AnalyzeLater:
3449 llvm_unreachable("Analysis cannot be postponed any point beyond end of "__builtin_unreachable()
3450 "translation unit.")__builtin_unreachable();
3451 case MismatchingNewDeleteDetector::MemberInitMismatches:
3452 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3453 break;
3454 case MismatchingNewDeleteDetector::NoMismatch:
3455 break;
3456 }
3457}
3458
3459/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3460/// @code ::delete ptr; @endcode
3461/// or
3462/// @code delete [] ptr; @endcode
3463ExprResult
3464Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3465 bool ArrayForm, Expr *ExE) {
3466 // C++ [expr.delete]p1:
3467 // The operand shall have a pointer type, or a class type having a single
3468 // non-explicit conversion function to a pointer type. The result has type
3469 // void.
3470 //
3471 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3472
3473 ExprResult Ex = ExE;
3474 FunctionDecl *OperatorDelete = nullptr;
3475 bool ArrayFormAsWritten = ArrayForm;
3476 bool UsualArrayDeleteWantsSize = false;
3477
3478 if (!Ex.get()->isTypeDependent()) {
3479 // Perform lvalue-to-rvalue cast, if needed.
3480 Ex = DefaultLvalueConversion(Ex.get());
3481 if (Ex.isInvalid())
3482 return ExprError();
3483
3484 QualType Type = Ex.get()->getType();
3485
3486 class DeleteConverter : public ContextualImplicitConverter {
3487 public:
3488 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3489
3490 bool match(QualType ConvType) override {
3491 // FIXME: If we have an operator T* and an operator void*, we must pick
3492 // the operator T*.
3493 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3494 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3495 return true;
3496 return false;
3497 }
3498
3499 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3500 QualType T) override {
3501 return S.Diag(Loc, diag::err_delete_operand) << T;
3502 }
3503
3504 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3505 QualType T) override {
3506 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3507 }
3508
3509 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3510 QualType T,
3511 QualType ConvTy) override {
3512 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3513 }
3514
3515 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3516 QualType ConvTy) override {
3517 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3518 << ConvTy;
3519 }
3520
3521 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3522 QualType T) override {
3523 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3524 }
3525
3526 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3527 QualType ConvTy) override {
3528 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3529 << ConvTy;
3530 }
3531
3532 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3533 QualType T,
3534 QualType ConvTy) override {
3535 llvm_unreachable("conversion functions are permitted")__builtin_unreachable();
3536 }
3537 } Converter;
3538
3539 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3540 if (Ex.isInvalid())
3541 return ExprError();
3542 Type = Ex.get()->getType();
3543 if (!Converter.match(Type))
3544 // FIXME: PerformContextualImplicitConversion should return ExprError
3545 // itself in this case.
3546 return ExprError();
3547
3548 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3549 QualType PointeeElem = Context.getBaseElementType(Pointee);
3550
3551 if (Pointee.getAddressSpace() != LangAS::Default &&
3552 !getLangOpts().OpenCLCPlusPlus)
3553 return Diag(Ex.get()->getBeginLoc(),
3554 diag::err_address_space_qualified_delete)
3555 << Pointee.getUnqualifiedType()
3556 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3557
3558 CXXRecordDecl *PointeeRD = nullptr;
3559 if (Pointee->isVoidType() && !isSFINAEContext()) {
3560 // The C++ standard bans deleting a pointer to a non-object type, which
3561 // effectively bans deletion of "void*". However, most compilers support
3562 // this, so we treat it as a warning unless we're in a SFINAE context.
3563 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3564 << Type << Ex.get()->getSourceRange();
3565 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3566 Pointee->isSizelessType()) {
3567 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3568 << Type << Ex.get()->getSourceRange());
3569 } else if (!Pointee->isDependentType()) {
3570 // FIXME: This can result in errors if the definition was imported from a
3571 // module but is hidden.
3572 if (!RequireCompleteType(StartLoc, Pointee,
3573 diag::warn_delete_incomplete, Ex.get())) {
3574 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3575 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3576 }
3577 }
3578
3579 if (Pointee->isArrayType() && !ArrayForm) {
3580 Diag(StartLoc, diag::warn_delete_array_type)
3581 << Type << Ex.get()->getSourceRange()
3582 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3583 ArrayForm = true;
3584 }
3585
3586 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3587 ArrayForm ? OO_Array_Delete : OO_Delete);
3588
3589 if (PointeeRD) {
3590 if (!UseGlobal &&
3591 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3592 OperatorDelete))
3593 return ExprError();
3594
3595 // If we're allocating an array of records, check whether the
3596 // usual operator delete[] has a size_t parameter.
3597 if (ArrayForm) {
3598 // If the user specifically asked to use the global allocator,
3599 // we'll need to do the lookup into the class.
3600 if (UseGlobal)
3601 UsualArrayDeleteWantsSize =
3602 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3603
3604 // Otherwise, the usual operator delete[] should be the
3605 // function we just found.
3606 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3607 UsualArrayDeleteWantsSize =
3608 UsualDeallocFnInfo(*this,
3609 DeclAccessPair::make(OperatorDelete, AS_public))
3610 .HasSizeT;
3611 }
3612
3613 if (!PointeeRD->hasIrrelevantDestructor())
3614 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3615 MarkFunctionReferenced(StartLoc,
3616 const_cast<CXXDestructorDecl*>(Dtor));
3617 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3618 return ExprError();
3619 }
3620
3621 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3622 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3623 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3624 SourceLocation());
3625 }
3626
3627 if (!OperatorDelete) {
3628 if (getLangOpts().OpenCLCPlusPlus) {
3629 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3630 return ExprError();
3631 }
3632
3633 bool IsComplete = isCompleteType(StartLoc, Pointee);
3634 bool CanProvideSize =
3635 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3636 Pointee.isDestructedType());
3637 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3638
3639 // Look for a global declaration.
3640 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3641 Overaligned, DeleteName);
3642 }
3643
3644 MarkFunctionReferenced(StartLoc, OperatorDelete);
3645
3646 // Check access and ambiguity of destructor if we're going to call it.
3647 // Note that this is required even for a virtual delete.
3648 bool IsVirtualDelete = false;
3649 if (PointeeRD) {
3650 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3651 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3652 PDiag(diag::err_access_dtor) << PointeeElem);
3653 IsVirtualDelete = Dtor->isVirtual();
3654 }
3655 }
3656
3657 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3658
3659 // Convert the operand to the type of the first parameter of operator
3660 // delete. This is only necessary if we selected a destroying operator
3661 // delete that we are going to call (non-virtually); converting to void*
3662 // is trivial and left to AST consumers to handle.
3663 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3664 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3665 Qualifiers Qs = Pointee.getQualifiers();
3666 if (Qs.hasCVRQualifiers()) {
3667 // Qualifiers are irrelevant to this conversion; we're only looking
3668 // for access and ambiguity.
3669 Qs.removeCVRQualifiers();
3670 QualType Unqual = Context.getPointerType(
3671 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3672 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3673 }
3674 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3675 if (Ex.isInvalid())
3676 return ExprError();
3677 }
3678 }
3679
3680 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3681 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3682 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3683 AnalyzeDeleteExprMismatch(Result);
3684 return Result;
3685}
3686
3687static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3688 bool IsDelete,
3689 FunctionDecl *&Operator) {
3690
3691 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3692 IsDelete ? OO_Delete : OO_New);
5
Assuming 'IsDelete' is false
6
'?' condition is false
3693
3694 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3695 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3696 assert(!R.empty() && "implicitly declared allocation functions not found")((void)0);
3697 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((void)0);
3698
3699 // We do our own custom access checks below.
3700 R.suppressDiagnostics();
3701
3702 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3703 OverloadCandidateSet Candidates(R.getNameLoc(),
3704 OverloadCandidateSet::CSK_Normal);
3705 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
7
Loop condition is false. Execution continues on line 3724
3706 FnOvl != FnOvlEnd; ++FnOvl) {
3707 // Even member operator new/delete are implicitly treated as
3708 // static, so don't use AddMemberCandidate.
3709 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3710
3711 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3712 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3713 /*ExplicitTemplateArgs=*/nullptr, Args,
3714 Candidates,
3715 /*SuppressUserConversions=*/false);
3716 continue;
3717 }
3718
3719 FunctionDecl *Fn = cast<FunctionDecl>(D);
3720 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3721 /*SuppressUserConversions=*/false);
3722 }
3723
3724 SourceRange Range = TheCall->getSourceRange();
3725
3726 // Do the resolution.
3727 OverloadCandidateSet::iterator Best;
3728 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
8
Control jumps to 'case OR_Success:' at line 3729
3729 case OR_Success: {
3730 // Got one!
3731 FunctionDecl *FnDecl = Best->Function;
3732 assert(R.getNamingClass() == nullptr &&((void)0)
3733 "class members should not be considered")((void)0);
3734
3735 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
9
Assuming the condition is false
10
Taking false branch
3736 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3737 << (IsDelete ? 1 : 0) << Range;
3738 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3739 << R.getLookupName() << FnDecl->getSourceRange();
3740 return true;
3741 }
3742
3743 Operator = FnDecl;
3744 return false;
11
Returning zero, which participates in a condition later
3745 }
3746
3747 case OR_No_Viable_Function:
3748 Candidates.NoteCandidates(
3749 PartialDiagnosticAt(R.getNameLoc(),
3750 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3751 << R.getLookupName() << Range),
3752 S, OCD_AllCandidates, Args);
3753 return true;
3754
3755 case OR_Ambiguous:
3756 Candidates.NoteCandidates(
3757 PartialDiagnosticAt(R.getNameLoc(),
3758 S.PDiag(diag::err_ovl_ambiguous_call)
3759 << R.getLookupName() << Range),
3760 S, OCD_AmbiguousCandidates, Args);
3761 return true;
3762
3763 case OR_Deleted: {
3764 Candidates.NoteCandidates(
3765 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3766 << R.getLookupName() << Range),
3767 S, OCD_AllCandidates, Args);
3768 return true;
3769 }
3770 }
3771 llvm_unreachable("Unreachable, bad result from BestViableFunction")__builtin_unreachable();
3772}
3773
3774ExprResult
3775Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3776 bool IsDelete) {
3777 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
1
The object is a 'CallExpr'
3778 if (!getLangOpts().CPlusPlus) {
2
Assuming field 'CPlusPlus' is not equal to 0
3
Taking false branch
3779 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3780 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3781 << "C++";
3782 return ExprError();
3783 }
3784 // CodeGen assumes it can find the global new and delete to call,
3785 // so ensure that they are declared.
3786 DeclareGlobalNewDelete();
3787
3788 FunctionDecl *OperatorNewOrDelete = nullptr;
3789 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
4
Calling 'resolveBuiltinNewDeleteOverload'
12
Returning from 'resolveBuiltinNewDeleteOverload'
13
Taking false branch
3790 OperatorNewOrDelete))
3791 return ExprError();
3792 assert(OperatorNewOrDelete && "should be found")((void)0);
3793
3794 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3795 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3796
3797 TheCall->setType(OperatorNewOrDelete->getReturnType());
3798 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
14
Assuming the condition is false
15
Loop condition is false. Execution continues on line 3808
3799 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3800 InitializedEntity Entity =
3801 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3802 ExprResult Arg = PerformCopyInitialization(
3803 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3804 if (Arg.isInvalid())
3805 return ExprError();
3806 TheCall->setArg(i, Arg.get());
3807 }
3808 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
16
Assuming the object is not a 'ImplicitCastExpr'
17
'Callee' initialized to a null pointer value
3809 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&((void)0)
3810 "Callee expected to be implicit cast to a builtin function pointer")((void)0);
3811 Callee->setType(OperatorNewOrDelete->getType());
18
Called C++ object pointer is null
3812
3813 return TheCallResult;
3814}
3815
3816void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3817 bool IsDelete, bool CallCanBeVirtual,
3818 bool WarnOnNonAbstractTypes,
3819 SourceLocation DtorLoc) {
3820 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3821 return;
3822
3823 // C++ [expr.delete]p3:
3824 // In the first alternative (delete object), if the static type of the
3825 // object to be deleted is different from its dynamic type, the static
3826 // type shall be a base class of the dynamic type of the object to be
3827 // deleted and the static type shall have a virtual destructor or the
3828 // behavior is undefined.
3829 //
3830 const CXXRecordDecl *PointeeRD = dtor->getParent();
3831 // Note: a final class cannot be derived from, no issue there
3832 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3833 return;
3834
3835 // If the superclass is in a system header, there's nothing that can be done.
3836 // The `delete` (where we emit the warning) can be in a system header,
3837 // what matters for this warning is where the deleted type is defined.
3838 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3839 return;
3840
3841 QualType ClassType = dtor->getThisType()->getPointeeType();
3842 if (PointeeRD->isAbstract()) {
3843 // If the class is abstract, we warn by default, because we're
3844 // sure the code has undefined behavior.
3845 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3846 << ClassType;
3847 } else if (WarnOnNonAbstractTypes) {
3848 // Otherwise, if this is not an array delete, it's a bit suspect,
3849 // but not necessarily wrong.
3850 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3851 << ClassType;
3852 }
3853 if (!IsDelete) {
3854 std::string TypeStr;
3855 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3856 Diag(DtorLoc, diag::note_delete_non_virtual)
3857 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3858 }
3859}
3860
3861Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3862 SourceLocation StmtLoc,
3863 ConditionKind CK) {
3864 ExprResult E =
3865 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3866 if (E.isInvalid())
3867 return ConditionError();
3868 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3869 CK == ConditionKind::ConstexprIf);
3870}
3871
3872/// Check the use of the given variable as a C++ condition in an if,
3873/// while, do-while, or switch statement.
3874ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3875 SourceLocation StmtLoc,
3876 ConditionKind CK) {
3877 if (ConditionVar->isInvalidDecl())
3878 return ExprError();
3879
3880 QualType T = ConditionVar->getType();
3881
3882 // C++ [stmt.select]p2:
3883 // The declarator shall not specify a function or an array.
3884 if (T->isFunctionType())
3885 return ExprError(Diag(ConditionVar->getLocation(),
3886 diag::err_invalid_use_of_function_type)
3887 << ConditionVar->getSourceRange());
3888 else if (T->isArrayType())
3889 return ExprError(Diag(ConditionVar->getLocation(),
3890 diag::err_invalid_use_of_array_type)
3891 << ConditionVar->getSourceRange());
3892
3893 ExprResult Condition = BuildDeclRefExpr(
3894 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3895 ConditionVar->getLocation());
3896
3897 switch (CK) {
3898 case ConditionKind::Boolean:
3899 return CheckBooleanCondition(StmtLoc, Condition.get());
3900
3901 case ConditionKind::ConstexprIf:
3902 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3903
3904 case ConditionKind::Switch:
3905 return CheckSwitchCondition(StmtLoc, Condition.get());
3906 }
3907
3908 llvm_unreachable("unexpected condition kind")__builtin_unreachable();
3909}
3910
3911/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3912ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3913 // C++11 6.4p4:
3914 // The value of a condition that is an initialized declaration in a statement
3915 // other than a switch statement is the value of the declared variable
3916 // implicitly converted to type bool. If that conversion is ill-formed, the
3917 // program is ill-formed.
3918 // The value of a condition that is an expression is the value of the
3919 // expression, implicitly converted to bool.
3920 //
3921 // C++2b 8.5.2p2
3922 // If the if statement is of the form if constexpr, the value of the condition
3923 // is contextually converted to bool and the converted expression shall be
3924 // a constant expression.
3925 //
3926
3927 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3928 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3929 return E;
3930
3931 // FIXME: Return this value to the caller so they don't need to recompute it.
3932 llvm::APSInt Cond;
3933 E = VerifyIntegerConstantExpression(
3934 E.get(), &Cond,
3935 diag::err_constexpr_if_condition_expression_is_not_constant);
3936 return E;
3937}
3938
3939/// Helper function to determine whether this is the (deprecated) C++
3940/// conversion from a string literal to a pointer to non-const char or
3941/// non-const wchar_t (for narrow and wide string literals,
3942/// respectively).
3943bool
3944Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3945 // Look inside the implicit cast, if it exists.
3946 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3947 From = Cast->getSubExpr();
3948
3949 // A string literal (2.13.4) that is not a wide string literal can
3950 // be converted to an rvalue of type "pointer to char"; a wide
3951 // string literal can be converted to an rvalue of type "pointer
3952 // to wchar_t" (C++ 4.2p2).
3953 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3954 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3955 if (const BuiltinType *ToPointeeType
3956 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3957 // This conversion is considered only when there is an
3958 // explicit appropriate pointer target type (C++ 4.2p2).
3959 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3960 switch (StrLit->getKind()) {
3961 case StringLiteral::UTF8:
3962 case StringLiteral::UTF16:
3963 case StringLiteral::UTF32:
3964 // We don't allow UTF literals to be implicitly converted
3965 break;
3966 case StringLiteral::Ascii:
3967 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3968 ToPointeeType->getKind() == BuiltinType::Char_S);
3969 case StringLiteral::Wide:
3970 return Context.typesAreCompatible(Context.getWideCharType(),
3971 QualType(ToPointeeType, 0));
3972 }
3973 }
3974 }
3975
3976 return false;
3977}
3978
3979static ExprResult BuildCXXCastArgument(Sema &S,
3980 SourceLocation CastLoc,
3981 QualType Ty,
3982 CastKind Kind,
3983 CXXMethodDecl *Method,
3984 DeclAccessPair FoundDecl,
3985 bool HadMultipleCandidates,
3986 Expr *From) {
3987 switch (Kind) {
3988 default: llvm_unreachable("Unhandled cast kind!")__builtin_unreachable();
3989 case CK_ConstructorConversion: {
3990 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3991 SmallVector<Expr*, 8> ConstructorArgs;
3992
3993 if (S.RequireNonAbstractType(CastLoc, Ty,
3994 diag::err_allocation_of_abstract_type))
3995 return ExprError();
3996
3997 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
3998 ConstructorArgs))
3999 return ExprError();
4000
4001 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4002 InitializedEntity::InitializeTemporary(Ty));
4003 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4004 return ExprError();
4005
4006 ExprResult Result = S.BuildCXXConstructExpr(
4007 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4008 ConstructorArgs, HadMultipleCandidates,
4009 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4010 CXXConstructExpr::CK_Complete, SourceRange());
4011 if (Result.isInvalid())
4012 return ExprError();
4013
4014 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4015 }
4016
4017 case CK_UserDefinedConversion: {
4018 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")((void)0);
4019
4020 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4021 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4022 return ExprError();
4023
4024 // Create an implicit call expr that calls it.
4025 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4026 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4027 HadMultipleCandidates);
4028 if (Result.isInvalid())
4029 return ExprError();
4030 // Record usage of conversion in an implicit cast.
4031 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4032 CK_UserDefinedConversion, Result.get(),
4033 nullptr, Result.get()->getValueKind(),
4034 S.CurFPFeatureOverrides());
4035
4036 return S.MaybeBindToTemporary(Result.get());
4037 }
4038 }
4039}
4040
4041/// PerformImplicitConversion - Perform an implicit conversion of the
4042/// expression From to the type ToType using the pre-computed implicit
4043/// conversion sequence ICS. Returns the converted
4044/// expression. Action is the kind of conversion we're performing,
4045/// used in the error message.
4046ExprResult
4047Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4048 const ImplicitConversionSequence &ICS,
4049 AssignmentAction Action,
4050 CheckedConversionKind CCK) {
4051 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4052 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4053 return From;
4054
4055 switch (ICS.getKind()) {
4056 case ImplicitConversionSequence::StandardConversion: {
4057 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4058 Action, CCK);
4059 if (Res.isInvalid())
4060 return ExprError();
4061 From = Res.get();
4062 break;
4063 }
4064
4065 case ImplicitConversionSequence::UserDefinedConversion: {
4066
4067 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4068 CastKind CastKind;
4069 QualType BeforeToType;
4070 assert(FD && "no conversion function for user-defined conversion seq")((void)0);
4071 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4072 CastKind = CK_UserDefinedConversion;
4073
4074 // If the user-defined conversion is specified by a conversion function,
4075 // the initial standard conversion sequence converts the source type to
4076 // the implicit object parameter of the conversion function.
4077 BeforeToType = Context.getTagDeclType(Conv->getParent());
4078 } else {
4079 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4080 CastKind = CK_ConstructorConversion;
4081 // Do no conversion if dealing with ... for the first conversion.
4082 if (!ICS.UserDefined.EllipsisConversion) {
4083 // If the user-defined conversion is specified by a constructor, the
4084 // initial standard conversion sequence converts the source type to
4085 // the type required by the argument of the constructor
4086 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4087 }
4088 }
4089 // Watch out for ellipsis conversion.
4090 if (!ICS.UserDefined.EllipsisConversion) {
4091 ExprResult Res =
4092 PerformImplicitConversion(From, BeforeToType,
4093 ICS.UserDefined.Before, AA_Converting,
4094 CCK);
4095 if (Res.isInvalid())
4096 return ExprError();
4097 From = Res.get();
4098 }
4099
4100 ExprResult CastArg = BuildCXXCastArgument(
4101 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4102 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4103 ICS.UserDefined.HadMultipleCandidates, From);
4104
4105 if (CastArg.isInvalid())
4106 return ExprError();
4107
4108 From = CastArg.get();
4109
4110 // C++ [over.match.oper]p7:
4111 // [...] the second standard conversion sequence of a user-defined
4112 // conversion sequence is not applied.
4113 if (CCK == CCK_ForBuiltinOverloadedOp)
4114 return From;
4115
4116 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4117 AA_Converting, CCK);
4118 }
4119
4120 case ImplicitConversionSequence::AmbiguousConversion:
4121 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4122 PDiag(diag::err_typecheck_ambiguous_condition)
4123 << From->getSourceRange());
4124 return ExprError();
4125
4126 case ImplicitConversionSequence::EllipsisConversion:
4127 llvm_unreachable("Cannot perform an ellipsis conversion")__builtin_unreachable();
4128
4129 case ImplicitConversionSequence::BadConversion:
4130 Sema::AssignConvertType ConvTy =
4131 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4132 bool Diagnosed = DiagnoseAssignmentResult(
4133 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4134 ToType, From->getType(), From, Action);
4135 assert(Diagnosed && "failed to diagnose bad conversion")((void)0); (void)Diagnosed;
4136 return ExprError();
4137 }
4138
4139 // Everything went well.
4140 return From;
4141}
4142
4143/// PerformImplicitConversion - Perform an implicit conversion of the
4144/// expression From to the type ToType by following the standard
4145/// conversion sequence SCS. Returns the converted
4146/// expression. Flavor is the context in which we're performing this
4147/// conversion, for use in error messages.
4148ExprResult
4149Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4150 const StandardConversionSequence& SCS,
4151 AssignmentAction Action,
4152 CheckedConversionKind CCK) {
4153 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4154
4155 // Overall FIXME: we are recomputing too many types here and doing far too
4156 // much extra work. What this means is that we need to keep track of more
4157 // information that is computed when we try the implicit conversion initially,
4158 // so that we don't need to recompute anything here.
4159 QualType FromType = From->getType();
4160
4161 if (SCS.CopyConstructor) {
4162 // FIXME: When can ToType be a reference type?
4163 assert(!ToType->isReferenceType())((void)0);
4164 if (SCS.Second == ICK_Derived_To_Base) {
4165 SmallVector<Expr*, 8> ConstructorArgs;
4166 if (CompleteConstructorCall(
4167 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4168 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4169 return ExprError();
4170 return BuildCXXConstructExpr(
4171 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4172 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4173 ConstructorArgs, /*HadMultipleCandidates*/ false,
4174 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4175 CXXConstructExpr::CK_Complete, SourceRange());
4176 }
4177 return BuildCXXConstructExpr(
4178 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4179 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4180 From, /*HadMultipleCandidates*/ false,
4181 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4182 CXXConstructExpr::CK_Complete, SourceRange());
4183 }
4184
4185 // Resolve overloaded function references.
4186 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4187 DeclAccessPair Found;
4188 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4189 true, Found);
4190 if (!Fn)
4191 return ExprError();
4192
4193 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4194 return ExprError();
4195
4196 From = FixOverloadedFunctionReference(From, Found, Fn);
4197 FromType = From->getType();
4198 }
4199
4200 // If we're converting to an atomic type, first convert to the corresponding
4201 // non-atomic type.
4202 QualType ToAtomicType;
4203 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4204 ToAtomicType = ToType;
4205 ToType = ToAtomic->getValueType();
4206 }
4207
4208 QualType InitialFromType = FromType;
4209 // Perform the first implicit conversion.
4210 switch (SCS.First) {
4211 case ICK_Identity:
4212 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4213 FromType = FromAtomic->getValueType().getUnqualifiedType();
4214 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4215 From, /*BasePath=*/nullptr, VK_PRValue,
4216 FPOptionsOverride());
4217 }
4218 break;
4219
4220 case ICK_Lvalue_To_Rvalue: {
4221 assert(From->getObjectKind() != OK_ObjCProperty)((void)0);
4222 ExprResult FromRes = DefaultLvalueConversion(From);
4223 if (FromRes.isInvalid())
4224 return ExprError();
4225
4226 From = FromRes.get();
4227 FromType = From->getType();
4228 break;
4229 }
4230
4231 case ICK_Array_To_Pointer:
4232 FromType = Context.getArrayDecayedType(FromType);
4233 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4234 /*BasePath=*/nullptr, CCK)
4235 .get();
4236 break;
4237
4238 case ICK_Function_To_Pointer:
4239 FromType = Context.getPointerType(FromType);
4240 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4241 VK_PRValue, /*BasePath=*/nullptr, CCK)
4242 .get();
4243 break;
4244
4245 default:
4246 llvm_unreachable("Improper first standard conversion")__builtin_unreachable();
4247 }
4248
4249 // Perform the second implicit conversion
4250 switch (SCS.Second) {
4251 case ICK_Identity:
4252 // C++ [except.spec]p5:
4253 // [For] assignment to and initialization of pointers to functions,
4254 // pointers to member functions, and references to functions: the
4255 // target entity shall allow at least the exceptions allowed by the
4256 // source value in the assignment or initialization.
4257 switch (Action) {
4258 case AA_Assigning:
4259 case AA_Initializing:
4260 // Note, function argument passing and returning are initialization.
4261 case AA_Passing:
4262 case AA_Returning:
4263 case AA_Sending:
4264 case AA_Passing_CFAudited:
4265 if (CheckExceptionSpecCompatibility(From, ToType))
4266 return ExprError();
4267 break;
4268
4269 case AA_Casting:
4270 case AA_Converting:
4271 // Casts and implicit conversions are not initialization, so are not
4272 // checked for exception specification mismatches.
4273 break;
4274 }
4275 // Nothing else to do.
4276 break;
4277
4278 case ICK_Integral_Promotion:
4279 case ICK_Integral_Conversion:
4280 if (ToType->isBooleanType()) {
4281 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&((void)0)
4282 SCS.Second == ICK_Integral_Promotion &&((void)0)
4283 "only enums with fixed underlying type can promote to bool")((void)0);
4284 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4285 /*BasePath=*/nullptr, CCK)
4286 .get();
4287 } else {
4288 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4289 /*BasePath=*/nullptr, CCK)
4290 .get();
4291 }
4292 break;
4293
4294 case ICK_Floating_Promotion:
4295 case ICK_Floating_Conversion:
4296 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4297 /*BasePath=*/nullptr, CCK)
4298 .get();
4299 break;
4300
4301 case ICK_Complex_Promotion:
4302 case ICK_Complex_Conversion: {
4303 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4304 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4305 CastKind CK;
4306 if (FromEl->isRealFloatingType()) {
4307 if (ToEl->isRealFloatingType())
4308 CK = CK_FloatingComplexCast;
4309 else
4310 CK = CK_FloatingComplexToIntegralComplex;
4311 } else if (ToEl->isRealFloatingType()) {
4312 CK = CK_IntegralComplexToFloatingComplex;
4313 } else {
4314 CK = CK_IntegralComplexCast;
4315 }
4316 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4317 CCK)
4318 .get();
4319 break;
4320 }
4321
4322 case ICK_Floating_Integral:
4323 if (ToType->isRealFloatingType())
4324 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4325 /*BasePath=*/nullptr, CCK)
4326 .get();
4327 else
4328 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4329 /*BasePath=*/nullptr, CCK)
4330 .get();
4331 break;
4332
4333 case ICK_Compatible_Conversion:
4334 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4335 /*BasePath=*/nullptr, CCK).get();
4336 break;
4337
4338 case ICK_Writeback_Conversion:
4339 case ICK_Pointer_Conversion: {
4340 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4341 // Diagnose incompatible Objective-C conversions
4342 if (Action == AA_Initializing || Action == AA_Assigning)
4343 Diag(From->getBeginLoc(),
4344 diag::ext_typecheck_convert_incompatible_pointer)
4345 << ToType << From->getType() << Action << From->getSourceRange()
4346 << 0;
4347 else
4348 Diag(From->getBeginLoc(),
4349 diag::ext_typecheck_convert_incompatible_pointer)
4350 << From->getType() << ToType << Action << From->getSourceRange()
4351 << 0;
4352
4353 if (From->getType()->isObjCObjectPointerType() &&
4354 ToType->isObjCObjectPointerType())
4355 EmitRelatedResultTypeNote(From);
4356 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4357 !CheckObjCARCUnavailableWeakConversion(ToType,
4358 From->getType())) {
4359 if (Action == AA_Initializing)
4360 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4361 else
4362 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4363 << (Action == AA_Casting) << From->getType() << ToType
4364 << From->getSourceRange();
4365 }
4366
4367 // Defer address space conversion to the third conversion.
4368 QualType FromPteeType = From->getType()->getPointeeType();
4369 QualType ToPteeType = ToType->getPointeeType();
4370 QualType NewToType = ToType;
4371 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4372 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4373 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4374 NewToType = Context.getAddrSpaceQualType(NewToType,
4375 FromPteeType.getAddressSpace());
4376 if (ToType->isObjCObjectPointerType())
4377 NewToType = Context.getObjCObjectPointerType(NewToType);
4378 else if (ToType->isBlockPointerType())
4379 NewToType = Context.getBlockPointerType(NewToType);
4380 else
4381 NewToType = Context.getPointerType(NewToType);
4382 }
4383
4384 CastKind Kind;
4385 CXXCastPath BasePath;
4386 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4387 return ExprError();
4388
4389 // Make sure we extend blocks if necessary.
4390 // FIXME: doing this here is really ugly.
4391 if (Kind == CK_BlockPointerToObjCPointerCast) {
4392 ExprResult E = From;
4393 (void) PrepareCastToObjCObjectPointer(E);
4394 From = E.get();
4395 }
4396 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4397 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4398 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4399 .get();
4400 break;
4401 }
4402
4403 case ICK_Pointer_Member: {
4404 CastKind Kind;
4405 CXXCastPath BasePath;
4406 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4407 return ExprError();
4408 if (CheckExceptionSpecCompatibility(From, ToType))
4409 return ExprError();
4410
4411 // We may not have been able to figure out what this member pointer resolved
4412 // to up until this exact point. Attempt to lock-in it's inheritance model.
4413 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4414 (void)isCompleteType(From->getExprLoc(), From->getType());
4415 (void)isCompleteType(From->getExprLoc(), ToType);
4416 }
4417
4418 From =
4419 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4420 break;
4421 }
4422
4423 case ICK_Boolean_Conversion:
4424 // Perform half-to-boolean conversion via float.
4425 if (From->getType()->isHalfType()) {
4426 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4427 FromType = Context.FloatTy;
4428 }
4429
4430 From = ImpCastExprToType(From, Context.BoolTy,
4431 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4432 /*BasePath=*/nullptr, CCK)
4433 .get();
4434 break;
4435
4436 case ICK_Derived_To_Base: {
4437 CXXCastPath BasePath;
4438 if (CheckDerivedToBaseConversion(
4439 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4440 From->getSourceRange(), &BasePath, CStyle))
4441 return ExprError();
4442
4443 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4444 CK_DerivedToBase, From->getValueKind(),
4445 &BasePath, CCK).get();
4446 break;
4447 }
4448
4449 case ICK_Vector_Conversion:
4450 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4451 /*BasePath=*/nullptr, CCK)
4452 .get();
4453 break;
4454
4455 case ICK_SVE_Vector_Conversion:
4456 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4457 /*BasePath=*/nullptr, CCK)
4458 .get();
4459 break;
4460
4461 case ICK_Vector_Splat: {
4462 // Vector splat from any arithmetic type to a vector.
4463 Expr *Elem = prepareVectorSplat(ToType, From).get();
4464 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4465 /*BasePath=*/nullptr, CCK)
4466 .get();
4467 break;
4468 }
4469
4470 case ICK_Complex_Real:
4471 // Case 1. x -> _Complex y
4472 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4473 QualType ElType = ToComplex->getElementType();
4474 bool isFloatingComplex = ElType->isRealFloatingType();
4475
4476 // x -> y
4477 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4478 // do nothing
4479 } else if (From->getType()->isRealFloatingType()) {
4480 From = ImpCastExprToType(From, ElType,
4481 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4482 } else {
4483 assert(From->getType()->isIntegerType())((void)0);
4484 From = ImpCastExprToType(From, ElType,
4485 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4486 }
4487 // y -> _Complex y
4488 From = ImpCastExprToType(From, ToType,
4489 isFloatingComplex ? CK_FloatingRealToComplex
4490 : CK_IntegralRealToComplex).get();
4491
4492 // Case 2. _Complex x -> y
4493 } else {
4494 auto *FromComplex = From->getType()->castAs<ComplexType>();
4495 QualType ElType = FromComplex->getElementType();
4496 bool isFloatingComplex = ElType->isRealFloatingType();
4497
4498 // _Complex x -> x
4499 From = ImpCastExprToType(From, ElType,
4500 isFloatingComplex ? CK_FloatingComplexToReal
4501 : CK_IntegralComplexToReal,
4502 VK_PRValue, /*BasePath=*/nullptr, CCK)
4503 .get();
4504
4505 // x -> y
4506 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4507 // do nothing
4508 } else if (ToType->isRealFloatingType()) {
4509 From = ImpCastExprToType(From, ToType,
4510 isFloatingComplex ? CK_FloatingCast
4511 : CK_IntegralToFloating,
4512 VK_PRValue, /*BasePath=*/nullptr, CCK)
4513 .get();
4514 } else {
4515 assert(ToType->isIntegerType())((void)0);
4516 From = ImpCastExprToType(From, ToType,
4517 isFloatingComplex ? CK_FloatingToIntegral
4518 : CK_IntegralCast,
4519 VK_PRValue, /*BasePath=*/nullptr, CCK)
4520 .get();
4521 }
4522 }
4523 break;
4524
4525 case ICK_Block_Pointer_Conversion: {
4526 LangAS AddrSpaceL =
4527 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4528 LangAS AddrSpaceR =
4529 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4530 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&((void)0)
4531 "Invalid cast")((void)0);
4532 CastKind Kind =
4533 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4534 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4535 VK_PRValue, /*BasePath=*/nullptr, CCK)
4536 .get();
4537 break;
4538 }
4539
4540 case ICK_TransparentUnionConversion: {
4541 ExprResult FromRes = From;
4542 Sema::AssignConvertType ConvTy =
4543 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4544 if (FromRes.isInvalid())
4545 return ExprError();
4546 From = FromRes.get();
4547 assert ((ConvTy == Sema::Compatible) &&((void)0)
4548 "Improper transparent union conversion")((void)0);
4549 (void)ConvTy;
4550 break;
4551 }
4552
4553 case ICK_Zero_Event_Conversion:
4554 case ICK_Zero_Queue_Conversion:
4555 From = ImpCastExprToType(From, ToType,
4556 CK_ZeroToOCLOpaqueType,
4557 From->getValueKind()).get();
4558 break;
4559
4560 case ICK_Lvalue_To_Rvalue:
4561 case ICK_Array_To_Pointer:
4562 case ICK_Function_To_Pointer:
4563 case ICK_Function_Conversion:
4564 case ICK_Qualification:
4565 case ICK_Num_Conversion_Kinds:
4566 case ICK_C_Only_Conversion:
4567 case ICK_Incompatible_Pointer_Conversion:
4568 llvm_unreachable("Improper second standard conversion")__builtin_unreachable();
4569 }
4570
4571 switch (SCS.Third) {
4572 case ICK_Identity:
4573 // Nothing to do.
4574 break;
4575
4576 case ICK_Function_Conversion:
4577 // If both sides are functions (or pointers/references to them), there could
4578 // be incompatible exception declarations.
4579 if (CheckExceptionSpecCompatibility(From, ToType))
4580 return ExprError();
4581
4582 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4583 /*BasePath=*/nullptr, CCK)
4584 .get();
4585 break;
4586
4587 case ICK_Qualification: {
4588 ExprValueKind VK = From->getValueKind();
4589 CastKind CK = CK_NoOp;
4590
4591 if (ToType->isReferenceType() &&
4592 ToType->getPointeeType().getAddressSpace() !=
4593 From->getType().getAddressSpace())
4594 CK = CK_AddressSpaceConversion;
4595
4596 if (ToType->isPointerType() &&
4597 ToType->getPointeeType().getAddressSpace() !=
4598 From->getType()->getPointeeType().getAddressSpace())
4599 CK = CK_AddressSpaceConversion;
4600
4601 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4602 /*BasePath=*/nullptr, CCK)
4603 .get();
4604
4605 if (SCS.DeprecatedStringLiteralToCharPtr &&
4606 !getLangOpts().WritableStrings) {
4607 Diag(From->getBeginLoc(),
4608 getLangOpts().CPlusPlus11
4609 ? diag::ext_deprecated_string_literal_conversion
4610 : diag::warn_deprecated_string_literal_conversion)
4611 << ToType.getNonReferenceType();
4612 }
4613
4614 break;
4615 }
4616
4617 default:
4618 llvm_unreachable("Improper third standard conversion")__builtin_unreachable();
4619 }
4620
4621 // If this conversion sequence involved a scalar -> atomic conversion, perform
4622 // that conversion now.
4623 if (!ToAtomicType.isNull()) {
4624 assert(Context.hasSameType(((void)0)
4625 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))((void)0);
4626 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4627 VK_PRValue, nullptr, CCK)
4628 .get();
4629 }
4630
4631 // Materialize a temporary if we're implicitly converting to a reference
4632 // type. This is not required by the C++ rules but is necessary to maintain
4633 // AST invariants.
4634 if (ToType->isReferenceType() && From->isPRValue()) {
4635 ExprResult Res = TemporaryMaterializationConversion(From);
4636 if (Res.isInvalid())
4637 return ExprError();
4638 From = Res.get();
4639 }
4640
4641 // If this conversion sequence succeeded and involved implicitly converting a
4642 // _Nullable type to a _Nonnull one, complain.
4643 if (!isCast(CCK))
4644 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4645 From->getBeginLoc());
4646
4647 return From;
4648}
4649
4650/// Check the completeness of a type in a unary type trait.
4651///
4652/// If the particular type trait requires a complete type, tries to complete
4653/// it. If completing the type fails, a diagnostic is emitted and false
4654/// returned. If completing the type succeeds or no completion was required,
4655/// returns true.
4656static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4657 SourceLocation Loc,
4658 QualType ArgTy) {
4659 // C++0x [meta.unary.prop]p3:
4660 // For all of the class templates X declared in this Clause, instantiating
4661 // that template with a template argument that is a class template
4662 // specialization may result in the implicit instantiation of the template
4663 // argument if and only if the semantics of X require that the argument
4664 // must be a complete type.
4665 // We apply this rule to all the type trait expressions used to implement
4666 // these class templates. We also try to follow any GCC documented behavior
4667 // in these expressions to ensure portability of standard libraries.
4668 switch (UTT) {
4669 default: llvm_unreachable("not a UTT")__builtin_unreachable();
4670 // is_complete_type somewhat obviously cannot require a complete type.
4671 case UTT_IsCompleteType:
4672 // Fall-through
4673
4674 // These traits are modeled on the type predicates in C++0x
4675 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4676 // requiring a complete type, as whether or not they return true cannot be
4677 // impacted by the completeness of the type.
4678 case UTT_IsVoid:
4679 case UTT_IsIntegral:
4680 case UTT_IsFloatingPoint:
4681 case UTT_IsArray:
4682 case UTT_IsPointer:
4683 case UTT_IsLvalueReference:
4684 case UTT_IsRvalueReference:
4685 case UTT_IsMemberFunctionPointer:
4686 case UTT_IsMemberObjectPointer:
4687 case UTT_IsEnum:
4688 case UTT_IsUnion:
4689 case UTT_IsClass:
4690 case UTT_IsFunction:
4691 case UTT_IsReference:
4692 case UTT_IsArithmetic:
4693 case UTT_IsFundamental:
4694 case UTT_IsObject:
4695 case UTT_IsScalar:
4696 case UTT_IsCompound:
4697 case UTT_IsMemberPointer:
4698 // Fall-through
4699
4700 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4701 // which requires some of its traits to have the complete type. However,
4702 // the completeness of the type cannot impact these traits' semantics, and
4703 // so they don't require it. This matches the comments on these traits in
4704 // Table 49.
4705 case UTT_IsConst:
4706 case UTT_IsVolatile:
4707 case UTT_IsSigned:
4708 case UTT_IsUnsigned:
4709
4710 // This type trait always returns false, checking the type is moot.
4711 case UTT_IsInterfaceClass:
4712 return true;
4713
4714 // C++14 [meta.unary.prop]:
4715 // If T is a non-union class type, T shall be a complete type.
4716 case UTT_IsEmpty:
4717 case UTT_IsPolymorphic:
4718 case UTT_IsAbstract:
4719 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4720 if (!RD->isUnion())
4721 return !S.RequireCompleteType(
4722 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4723 return true;
4724
4725 // C++14 [meta.unary.prop]:
4726 // If T is a class type, T shall be a complete type.
4727 case UTT_IsFinal:
4728 case UTT_IsSealed:
4729 if (ArgTy->getAsCXXRecordDecl())
4730 return !S.RequireCompleteType(
4731 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4732 return true;
4733
4734 // C++1z [meta.unary.prop]:
4735 // remove_all_extents_t<T> shall be a complete type or cv void.
4736 case UTT_IsAggregate:
4737 case UTT_IsTrivial:
4738 case UTT_IsTriviallyCopyable:
4739 case UTT_IsStandardLayout:
4740 case UTT_IsPOD:
4741 case UTT_IsLiteral:
4742 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4743 // or an array of unknown bound. But GCC actually imposes the same constraints
4744 // as above.
4745 case UTT_HasNothrowAssign:
4746 case UTT_HasNothrowMoveAssign:
4747 case UTT_HasNothrowConstructor:
4748 case UTT_HasNothrowCopy:
4749 case UTT_HasTrivialAssign:
4750 case UTT_HasTrivialMoveAssign:
4751 case UTT_HasTrivialDefaultConstructor:
4752 case UTT_HasTrivialMoveConstructor:
4753 case UTT_HasTrivialCopy:
4754 case UTT_HasTrivialDestructor:
4755 case UTT_HasVirtualDestructor:
4756 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4757 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4758
4759 // C++1z [meta.unary.prop]:
4760 // T shall be a complete type, cv void, or an array of unknown bound.
4761 case UTT_IsDestructible:
4762 case UTT_IsNothrowDestructible:
4763 case UTT_IsTriviallyDestructible:
4764 case UTT_HasUniqueObjectRepresentations:
4765 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4766 return true;
4767
4768 return !S.RequireCompleteType(
4769 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4770 }
4771}
4772
4773static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4774 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4775 bool (CXXRecordDecl::*HasTrivial)() const,
4776 bool (CXXRecordDecl::*HasNonTrivial)() const,
4777 bool (CXXMethodDecl::*IsDesiredOp)() const)
4778{
4779 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4780 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4781 return true;
4782
4783 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4784 DeclarationNameInfo NameInfo(Name, KeyLoc);
4785 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4786 if (Self.LookupQualifiedName(Res, RD)) {
4787 bool FoundOperator = false;
4788 Res.suppressDiagnostics();
4789 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4790 Op != OpEnd; ++Op) {
4791 if (isa<FunctionTemplateDecl>(*Op))
4792 continue;
4793
4794 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4795 if((Operator->*IsDesiredOp)()) {
4796 FoundOperator = true;
4797 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4798 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4799 if (!CPT || !CPT->isNothrow())
4800 return false;
4801 }
4802 }
4803 return FoundOperator;
4804 }
4805 return false;
4806}
4807
4808static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4809 SourceLocation KeyLoc, QualType T) {
4810 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((void)0);
4811
4812 ASTContext &C = Self.Context;
4813 switch(UTT) {
4814 default: llvm_unreachable("not a UTT")__builtin_unreachable();
4815 // Type trait expressions corresponding to the primary type category
4816 // predicates in C++0x [meta.unary.cat].
4817 case UTT_IsVoid:
4818 return T->isVoidType();
4819 case UTT_IsIntegral:
4820 return T->isIntegralType(C);
4821 case UTT_IsFloatingPoint:
4822 return T->isFloatingType();
4823 case UTT_IsArray:
4824 return T->isArrayType();
4825 case UTT_IsPointer:
4826 return T->isAnyPointerType();
4827 case UTT_IsLvalueReference:
4828 return T->isLValueReferenceType();
4829 case UTT_IsRvalueReference:
4830 return T->isRValueReferenceType();
4831 case UTT_IsMemberFunctionPointer:
4832 return T->isMemberFunctionPointerType();
4833 case UTT_IsMemberObjectPointer:
4834 return T->isMemberDataPointerType();
4835 case UTT_IsEnum:
4836 return T->isEnumeralType();
4837 case UTT_IsUnion:
4838 return T->isUnionType();
4839 case UTT_IsClass:
4840 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4841 case UTT_IsFunction:
4842 return T->isFunctionType();
4843
4844 // Type trait expressions which correspond to the convenient composition
4845 // predicates in C++0x [meta.unary.comp].
4846 case UTT_IsReference:
4847 return T->isReferenceType();
4848 case UTT_IsArithmetic:
4849 return T->isArithmeticType() && !T->isEnumeralType();
4850 case UTT_IsFundamental:
4851 return T->isFundamentalType();
4852 case UTT_IsObject:
4853 return T->isObjectType();
4854 case UTT_IsScalar:
4855 // Note: semantic analysis depends on Objective-C lifetime types to be
4856 // considered scalar types. However, such types do not actually behave
4857 // like scalar types at run time (since they may require retain/release
4858 // operations), so we report them as non-scalar.
4859 if (T->isObjCLifetimeType()) {
4860 switch (T.getObjCLifetime()) {
4861 case Qualifiers::OCL_None:
4862 case Qualifiers::OCL_ExplicitNone:
4863 return true;
4864
4865 case Qualifiers::OCL_Strong:
4866 case Qualifiers::OCL_Weak:
4867 case Qualifiers::OCL_Autoreleasing:
4868 return false;
4869 }
4870 }
4871
4872 return T->isScalarType();
4873 case UTT_IsCompound:
4874 return T->isCompoundType();
4875 case UTT_IsMemberPointer:
4876 return T->isMemberPointerType();
4877
4878 // Type trait expressions which correspond to the type property predicates
4879 // in C++0x [meta.unary.prop].
4880 case UTT_IsConst:
4881 return T.isConstQualified();
4882 case UTT_IsVolatile:
4883 return T.isVolatileQualified();
4884 case UTT_IsTrivial:
4885 return T.isTrivialType(C);
4886 case UTT_IsTriviallyCopyable:
4887 return T.isTriviallyCopyableType(C);
4888 case UTT_IsStandardLayout:
4889 return T->isStandardLayoutType();
4890 case UTT_IsPOD:
4891 return T.isPODType(C);
4892 case UTT_IsLiteral:
4893 return T->isLiteralType(C);
4894 case UTT_IsEmpty:
4895 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4896 return !RD->isUnion() && RD->isEmpty();
4897 return false;
4898 case UTT_IsPolymorphic:
4899 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4900 return !RD->isUnion() && RD->isPolymorphic();
4901 return false;
4902 case UTT_IsAbstract:
4903 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4904 return !RD->isUnion() && RD->isAbstract();
4905 return false;
4906 case UTT_IsAggregate:
4907 // Report vector extensions and complex types as aggregates because they
4908 // support aggregate initialization. GCC mirrors this behavior for vectors
4909 // but not _Complex.
4910 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4911 T->isAnyComplexType();
4912 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4913 // even then only when it is used with the 'interface struct ...' syntax
4914 // Clang doesn't support /CLR which makes this type trait moot.
4915 case UTT_IsInterfaceClass:
4916 return false;
4917 case UTT_IsFinal:
4918 case UTT_IsSealed:
4919 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4920 return RD->hasAttr<FinalAttr>();
4921 return false;
4922 case UTT_IsSigned:
4923 // Enum types should always return false.
4924 // Floating points should always return true.
4925 return T->isFloatingType() ||
4926 (T->isSignedIntegerType() && !T->isEnumeralType());
4927 case UTT_IsUnsigned:
4928 // Enum types should always return false.
4929 return T->isUnsignedIntegerType() && !T->isEnumeralType();
4930
4931 // Type trait expressions which query classes regarding their construction,
4932 // destruction, and copying. Rather than being based directly on the
4933 // related type predicates in the standard, they are specified by both
4934 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4935 // specifications.
4936 //
4937 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4938 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4939 //
4940 // Note that these builtins do not behave as documented in g++: if a class
4941 // has both a trivial and a non-trivial special member of a particular kind,
4942 // they return false! For now, we emulate this behavior.
4943 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4944 // does not correctly compute triviality in the presence of multiple special
4945 // members of the same kind. Revisit this once the g++ bug is fixed.
4946 case UTT_HasTrivialDefaultConstructor:
4947 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4948 // If __is_pod (type) is true then the trait is true, else if type is
4949 // a cv class or union type (or array thereof) with a trivial default
4950 // constructor ([class.ctor]) then the trait is true, else it is false.
4951 if (T.isPODType(C))
4952 return true;
4953 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4954 return RD->hasTrivialDefaultConstructor() &&
4955 !RD->hasNonTrivialDefaultConstructor();
4956 return false;
4957 case UTT_HasTrivialMoveConstructor:
4958 // This trait is implemented by MSVC 2012 and needed to parse the
4959 // standard library headers. Specifically this is used as the logic
4960 // behind std::is_trivially_move_constructible (20.9.4.3).
4961 if (T.isPODType(C))
4962 return true;
4963 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4964 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4965 return false;
4966 case UTT_HasTrivialCopy:
4967 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4968 // If __is_pod (type) is true or type is a reference type then
4969 // the trait is true, else if type is a cv class or union type
4970 // with a trivial copy constructor ([class.copy]) then the trait
4971 // is true, else it is false.
4972 if (T.isPODType(C) || T->isReferenceType())
4973 return true;
4974 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4975 return RD->hasTrivialCopyConstructor() &&
4976 !RD->hasNonTrivialCopyConstructor();
4977 return false;
4978 case UTT_HasTrivialMoveAssign:
4979 // This trait is implemented by MSVC 2012 and needed to parse the
4980 // standard library headers. Specifically it is used as the logic
4981 // behind std::is_trivially_move_assignable (20.9.4.3)
4982 if (T.isPODType(C))
4983 return true;
4984 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4985 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4986 return false;
4987 case UTT_HasTrivialAssign:
4988 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4989 // If type is const qualified or is a reference type then the
4990 // trait is false. Otherwise if __is_pod (type) is true then the
4991 // trait is true, else if type is a cv class or union type with
4992 // a trivial copy assignment ([class.copy]) then the trait is
4993 // true, else it is false.
4994 // Note: the const and reference restrictions are interesting,
4995 // given that const and reference members don't prevent a class
4996 // from having a trivial copy assignment operator (but do cause
4997 // errors if the copy assignment operator is actually used, q.v.
4998 // [class.copy]p12).
4999
5000 if (T.isConstQualified())
5001 return false;
5002 if (T.isPODType(C))
5003 return true;
5004 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5005 return RD->hasTrivialCopyAssignment() &&
5006 !RD->hasNonTrivialCopyAssignment();
5007 return false;
5008 case UTT_IsDestructible:
5009 case UTT_IsTriviallyDestructible:
5010 case UTT_IsNothrowDestructible:
5011 // C++14 [meta.unary.prop]:
5012 // For reference types, is_destructible<T>::value is true.
5013 if (T->isReferenceType())
5014 return true;
5015
5016 // Objective-C++ ARC: autorelease types don't require destruction.
5017 if (T->isObjCLifetimeType() &&
5018 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5019 return true;
5020
5021 // C++14 [meta.unary.prop]:
5022 // For incomplete types and function types, is_destructible<T>::value is
5023 // false.
5024 if (T->isIncompleteType() || T->isFunctionType())
5025 return false;
5026
5027 // A type that requires destruction (via a non-trivial destructor or ARC
5028 // lifetime semantics) is not trivially-destructible.
5029 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5030 return false;
5031
5032 // C++14 [meta.unary.prop]:
5033 // For object types and given U equal to remove_all_extents_t<T>, if the
5034 // expression std::declval<U&>().~U() is well-formed when treated as an
5035 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5036 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5037 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5038 if (!Destructor)
5039 return false;
5040 // C++14 [dcl.fct.def.delete]p2:
5041 // A program that refers to a deleted function implicitly or
5042 // explicitly, other than to declare it, is ill-formed.
5043 if (Destructor->isDeleted())
5044 return false;
5045 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5046 return false;
5047 if (UTT == UTT_IsNothrowDestructible) {
5048 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5049 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5050 if (!CPT || !CPT->isNothrow())
5051 return false;
5052 }
5053 }
5054 return true;
5055
5056 case UTT_HasTrivialDestructor:
5057 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5058 // If __is_pod (type) is true or type is a reference type
5059 // then the trait is true, else if type is a cv class or union
5060 // type (or array thereof) with a trivial destructor
5061 // ([class.dtor]) then the trait is true, else it is
5062 // false.
5063 if (T.isPODType(C) || T->isReferenceType())
5064 return true;
5065
5066 // Objective-C++ ARC: autorelease types don't require destruction.
5067 if (T->isObjCLifetimeType() &&
5068 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5069 return true;
5070
5071 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5072 return RD->hasTrivialDestructor();
5073 return false;
5074 // TODO: Propagate nothrowness for implicitly declared special members.
5075 case UTT_HasNothrowAssign:
5076 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5077 // If type is const qualified or is a reference type then the
5078 // trait is false. Otherwise if __has_trivial_assign (type)
5079 // is true then the trait is true, else if type is a cv class
5080 // or union type with copy assignment operators that are known
5081 // not to throw an exception then the trait is true, else it is
5082 // false.
5083 if (C.getBaseElementType(T).isConstQualified())
5084 return false;
5085 if (T->isReferenceType())
5086 return false;
5087 if (T.isPODType(C) || T->isObjCLifetimeType())
5088 return true;
5089
5090 if (const RecordType *RT = T->getAs<RecordType>())
5091 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5092 &CXXRecordDecl::hasTrivialCopyAssignment,
5093 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5094 &CXXMethodDecl::isCopyAssignmentOperator);
5095 return false;
5096 case UTT_HasNothrowMoveAssign:
5097 // This trait is implemented by MSVC 2012 and needed to parse the
5098 // standard library headers. Specifically this is used as the logic
5099 // behind std::is_nothrow_move_assignable (20.9.4.3).
5100 if (T.isPODType(C))
5101 return true;
5102
5103 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5104 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5105 &CXXRecordDecl::hasTrivialMoveAssignment,
5106 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5107 &CXXMethodDecl::isMoveAssignmentOperator);
5108 return false;
5109 case UTT_HasNothrowCopy:
5110 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5111 // If __has_trivial_copy (type) is true then the trait is true, else
5112 // if type is a cv class or union type with copy constructors that are
5113 // known not to throw an exception then the trait is true, else it is
5114 // false.
5115 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5116 return true;
5117 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5118 if (RD->hasTrivialCopyConstructor() &&
5119 !RD->hasNonTrivialCopyConstructor())
5120 return true;
5121
5122 bool FoundConstructor = false;
5123 unsigned FoundTQs;
5124 for (const auto *ND : Self.LookupConstructors(RD)) {
5125 // A template constructor is never a copy constructor.
5126 // FIXME: However, it may actually be selected at the actual overload
5127 // resolution point.
5128 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5129 continue;
5130 // UsingDecl itself is not a constructor
5131 if (isa<UsingDecl>(ND))
5132 continue;
5133 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5134 if (Constructor->isCopyConstructor(FoundTQs)) {
5135 FoundConstructor = true;
5136 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5137 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5138 if (!CPT)
5139 return false;
5140 // TODO: check whether evaluating default arguments can throw.
5141 // For now, we'll be conservative and assume that they can throw.
5142 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5143 return false;
5144 }
5145 }
5146
5147 return FoundConstructor;
5148 }
5149 return false;
5150 case UTT_HasNothrowConstructor:
5151 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5152 // If __has_trivial_constructor (type) is true then the trait is
5153 // true, else if type is a cv class or union type (or array
5154 // thereof) with a default constructor that is known not to
5155 // throw an exception then the trait is true, else it is false.
5156 if (T.isPODType(C) || T->isObjCLifetimeType())
5157 return true;
5158 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5159 if (RD->hasTrivialDefaultConstructor() &&
5160 !RD->hasNonTrivialDefaultConstructor())
5161 return true;
5162
5163 bool FoundConstructor = false;
5164 for (const auto *ND : Self.LookupConstructors(RD)) {
5165 // FIXME: In C++0x, a constructor template can be a default constructor.
5166 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5167 continue;
5168 // UsingDecl itself is not a constructor
5169 if (isa<UsingDecl>(ND))
5170 continue;
5171 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5172 if (Constructor->isDefaultConstructor()) {
5173 FoundConstructor = true;
5174 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5175 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5176 if (!CPT)
5177 return false;
5178 // FIXME: check whether evaluating default arguments can throw.
5179 // For now, we'll be conservative and assume that they can throw.
5180 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5181 return false;
5182 }
5183 }
5184 return FoundConstructor;
5185 }
5186 return false;
5187 case UTT_HasVirtualDestructor:
5188 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5189 // If type is a class type with a virtual destructor ([class.dtor])
5190 // then the trait is true, else it is false.
5191 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5192 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5193 return Destructor->isVirtual();
5194 return false;
5195
5196 // These type trait expressions are modeled on the specifications for the
5197 // Embarcadero C++0x type trait functions:
5198 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5199 case UTT_IsCompleteType:
5200 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5201 // Returns True if and only if T is a complete type at the point of the
5202 // function call.
5203 return !T->isIncompleteType();
5204 case UTT_HasUniqueObjectRepresentations:
5205 return C.hasUniqueObjectRepresentations(T);
5206 }
5207}
5208
5209static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5210 QualType RhsT, SourceLocation KeyLoc);
5211
5212static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5213 ArrayRef<TypeSourceInfo *> Args,
5214 SourceLocation RParenLoc) {
5215 if (Kind <= UTT_Last)
5216 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5217
5218 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5219 // traits to avoid duplication.
5220 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5221 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5222 Args[1]->getType(), RParenLoc);
5223
5224 switch (Kind) {
5225 case clang::BTT_ReferenceBindsToTemporary:
5226 case clang::TT_IsConstructible:
5227 case clang::TT_IsNothrowConstructible:
5228 case clang::TT_IsTriviallyConstructible: {
5229 // C++11 [meta.unary.prop]:
5230 // is_trivially_constructible is defined as:
5231 //
5232 // is_constructible<T, Args...>::value is true and the variable
5233 // definition for is_constructible, as defined below, is known to call
5234 // no operation that is not trivial.
5235 //
5236 // The predicate condition for a template specialization
5237 // is_constructible<T, Args...> shall be satisfied if and only if the
5238 // following variable definition would be well-formed for some invented
5239 // variable t:
5240 //
5241 // T t(create<Args>()...);
5242 assert(!Args.empty())((void)0);
5243
5244 // Precondition: T and all types in the parameter pack Args shall be
5245 // complete types, (possibly cv-qualified) void, or arrays of
5246 // unknown bound.
5247 for (const auto *TSI : Args) {
5248 QualType ArgTy = TSI->getType();
5249 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5250 continue;
5251
5252 if (S.RequireCompleteType(KWLoc, ArgTy,
5253 diag::err_incomplete_type_used_in_type_trait_expr))
5254 return false;
5255 }
5256
5257 // Make sure the first argument is not incomplete nor a function type.
5258 QualType T = Args[0]->getType();
5259 if (T->isIncompleteType() || T->isFunctionType())
5260 return false;
5261
5262 // Make sure the first argument is not an abstract type.
5263 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5264 if (RD && RD->isAbstract())
5265 return false;
5266
5267 llvm::BumpPtrAllocator OpaqueExprAllocator;
5268 SmallVector<Expr *, 2> ArgExprs;
5269 ArgExprs.reserve(Args.size() - 1);
5270 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5271 QualType ArgTy = Args[I]->getType();
5272 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5273 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5274 ArgExprs.push_back(
5275 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5276 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5277 ArgTy.getNonLValueExprType(S.Context),
5278 Expr::getValueKindForType(ArgTy)));
5279 }
5280
5281 // Perform the initialization in an unevaluated context within a SFINAE
5282 // trap at translation unit scope.
5283 EnterExpressionEvaluationContext Unevaluated(
5284 S, Sema::ExpressionEvaluationContext::Unevaluated);
5285 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5286 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5287 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
5288 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5289 RParenLoc));
5290 InitializationSequence Init(S, To, InitKind, ArgExprs);
5291 if (Init.Failed())
5292 return false;
5293
5294 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5295 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5296 return false;
5297
5298 if (Kind == clang::TT_IsConstructible)
5299 return true;
5300
5301 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5302 if (!T->isReferenceType())
5303 return false;
5304
5305 return !Init.isDirectReferenceBinding();
5306 }
5307
5308 if (Kind == clang::TT_IsNothrowConstructible)
5309 return S.canThrow(Result.get()) == CT_Cannot;
5310
5311 if (Kind == clang::TT_IsTriviallyConstructible) {
5312 // Under Objective-C ARC and Weak, if the destination has non-trivial
5313 // Objective-C lifetime, this is a non-trivial construction.
5314 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5315 return false;
5316
5317 // The initialization succeeded; now make sure there are no non-trivial
5318 // calls.
5319 return !Result.get()->hasNonTrivialCall(S.Context);
5320 }
5321
5322 llvm_unreachable("unhandled type trait")__builtin_unreachable();
5323 return false;
5324 }
5325 default: llvm_unreachable("not a TT")__builtin_unreachable();
5326 }
5327
5328 return false;
5329}
5330
5331ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5332 ArrayRef<TypeSourceInfo *> Args,
5333 SourceLocation RParenLoc) {
5334 QualType ResultType = Context.getLogicalOperationType();
5335
5336 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5337 *this, Kind, KWLoc, Args[0]->getType()))
5338 return ExprError();
5339
5340 bool Dependent = false;
5341 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5342 if (Args[I]->getType()->isDependentType()) {
5343 Dependent = true;
5344 break;
5345 }
5346 }
5347
5348 bool Result = false;
5349 if (!Dependent)
5350 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5351
5352 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5353 RParenLoc, Result);
5354}
5355
5356ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5357 ArrayRef<ParsedType> Args,
5358 SourceLocation RParenLoc) {
5359 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5360 ConvertedArgs.reserve(Args.size());
5361
5362 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5363 TypeSourceInfo *TInfo;
5364 QualType T = GetTypeFromParser(Args[I], &TInfo);
5365 if (!TInfo)
5366 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5367
5368 ConvertedArgs.push_back(TInfo);
5369 }
5370
5371 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5372}
5373
5374static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5375 QualType RhsT, SourceLocation KeyLoc) {
5376 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&((void)0)
5377 "Cannot evaluate traits of dependent types")((void)0);
5378
5379 switch(BTT) {
5380 case BTT_IsBaseOf: {
5381 // C++0x [meta.rel]p2
5382 // Base is a base class of Derived without regard to cv-qualifiers or
5383 // Base and Derived are not unions and name the same class type without
5384 // regard to cv-qualifiers.
5385
5386 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5387 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5388 if (!rhsRecord || !lhsRecord) {
5389 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5390 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5391 if (!LHSObjTy || !RHSObjTy)
5392 return false;
5393
5394 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5395 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5396 if (!BaseInterface || !DerivedInterface)
5397 return false;
5398
5399 if (Self.RequireCompleteType(
5400 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5401 return false;
5402
5403 return BaseInterface->isSuperClassOf(DerivedInterface);
5404 }
5405
5406 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)((void)0)
5407 == (lhsRecord == rhsRecord))((void)0);
5408
5409 // Unions are never base classes, and never have base classes.
5410 // It doesn't matter if they are complete or not. See PR#41843
5411 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5412 return false;
5413 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5414 return false;
5415
5416 if (lhsRecord == rhsRecord)
5417 return true;
5418
5419 // C++0x [meta.rel]p2:
5420 // If Base and Derived are class types and are different types
5421 // (ignoring possible cv-qualifiers) then Derived shall be a
5422 // complete type.
5423 if (Self.RequireCompleteType(KeyLoc, RhsT,
5424 diag::err_incomplete_type_used_in_type_trait_expr))
5425 return false;
5426
5427 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5428 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5429 }
5430 case BTT_IsSame:
5431 return Self.Context.hasSameType(LhsT, RhsT);
5432 case BTT_TypeCompatible: {
5433 // GCC ignores cv-qualifiers on arrays for this builtin.
5434 Qualifiers LhsQuals, RhsQuals;
5435 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5436 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5437 return Self.Context.typesAreCompatible(Lhs, Rhs);
5438 }
5439 case BTT_IsConvertible:
5440 case BTT_IsConvertibleTo: {
5441 // C++0x [meta.rel]p4:
5442 // Given the following function prototype:
5443 //
5444 // template <class T>
5445 // typename add_rvalue_reference<T>::type create();
5446 //
5447 // the predicate condition for a template specialization
5448 // is_convertible<From, To> shall be satisfied if and only if
5449 // the return expression in the following code would be
5450 // well-formed, including any implicit conversions to the return
5451 // type of the function:
5452 //
5453 // To test() {
5454 // return create<From>();
5455 // }
5456 //
5457 // Access checking is performed as if in a context unrelated to To and
5458 // From. Only the validity of the immediate context of the expression
5459 // of the return-statement (including conversions to the return type)
5460 // is considered.
5461 //
5462 // We model the initialization as a copy-initialization of a temporary
5463 // of the appropriate type, which for this expression is identical to the
5464 // return statement (since NRVO doesn't apply).
5465
5466 // Functions aren't allowed to return function or array types.
5467 if (RhsT->isFunctionType() || RhsT->isArrayType())
5468 return false;
5469
5470 // A return statement in a void function must have void type.
5471 if (RhsT->isVoidType())
5472 return LhsT->isVoidType();
5473
5474 // A function definition requires a complete, non-abstract return type.
5475 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5476 return false;
5477
5478 // Compute the result of add_rvalue_reference.
5479 if (LhsT->isObjectType() || LhsT->isFunctionType())
5480 LhsT = Self.Context.getRValueReferenceType(LhsT);
5481
5482 // Build a fake source and destination for initialization.
5483 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5484 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5485 Expr::getValueKindForType(LhsT));
5486 Expr *FromPtr = &From;
5487 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5488 SourceLocation()));
5489
5490 // Perform the initialization in an unevaluated context within a SFINAE
5491 // trap at translation unit scope.
5492 EnterExpressionEvaluationContext Unevaluated(
5493 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5494 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5495 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5496 InitializationSequence Init(Self, To, Kind, FromPtr);
5497 if (Init.Failed())
5498 return false;
5499
5500 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5501 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5502 }
5503
5504 case BTT_IsAssignable:
5505 case BTT_IsNothrowAssignable:
5506 case BTT_IsTriviallyAssignable: {
5507 // C++11 [meta.unary.prop]p3:
5508 // is_trivially_assignable is defined as:
5509 // is_assignable<T, U>::value is true and the assignment, as defined by
5510 // is_assignable, is known to call no operation that is not trivial
5511 //
5512 // is_assignable is defined as:
5513 // The expression declval<T>() = declval<U>() is well-formed when
5514 // treated as an unevaluated operand (Clause 5).
5515 //
5516 // For both, T and U shall be complete types, (possibly cv-qualified)
5517 // void, or arrays of unknown bound.
5518 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5519 Self.RequireCompleteType(KeyLoc, LhsT,
5520 diag::err_incomplete_type_used_in_type_trait_expr))
5521 return false;
5522 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5523 Self.RequireCompleteType(KeyLoc, RhsT,
5524 diag::err_incomplete_type_used_in_type_trait_expr))
5525 return false;
5526
5527 // cv void is never assignable.
5528 if (LhsT->isVoidType() || RhsT->isVoidType())
5529 return false;
5530
5531 // Build expressions that emulate the effect of declval<T>() and
5532 // declval<U>().
5533 if (LhsT->isObjectType() || LhsT->isFunctionType())
5534 LhsT = Self.Context.getRValueReferenceType(LhsT);
5535 if (RhsT->isObjectType() || RhsT->isFunctionType())
5536 RhsT = Self.Context.getRValueReferenceType(RhsT);
5537 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5538 Expr::getValueKindForType(LhsT));
5539 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5540 Expr::getValueKindForType(RhsT));
5541
5542 // Attempt the assignment in an unevaluated context within a SFINAE
5543 // trap at translation unit scope.
5544 EnterExpressionEvaluationContext Unevaluated(
5545 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5546 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5547 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5548 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5549 &Rhs);
5550 if (Result.isInvalid())
5551 return false;
5552
5553 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5554 Self.CheckUnusedVolatileAssignment(Result.get());
5555
5556 if (SFINAE.hasErrorOccurred())
5557 return false;
5558
5559 if (BTT == BTT_IsAssignable)
5560 return true;
5561
5562 if (BTT == BTT_IsNothrowAssignable)
5563 return Self.canThrow(Result.get()) == CT_Cannot;
5564
5565 if (BTT == BTT_IsTriviallyAssignable) {
5566 // Under Objective-C ARC and Weak, if the destination has non-trivial
5567 // Objective-C lifetime, this is a non-trivial assignment.
5568 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5569 return false;
5570
5571 return !Result.get()->hasNonTrivialCall(Self.Context);
5572 }
5573
5574 llvm_unreachable("unhandled type trait")__builtin_unreachable();
5575 return false;
5576 }
5577 default: llvm_unreachable("not a BTT")__builtin_unreachable();
5578 }
5579 llvm_unreachable("Unknown type trait or not implemented")__builtin_unreachable();
5580}
5581
5582ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5583 SourceLocation KWLoc,
5584 ParsedType Ty,
5585 Expr* DimExpr,
5586 SourceLocation RParen) {
5587 TypeSourceInfo *TSInfo;
5588 QualType T = GetTypeFromParser(Ty, &TSInfo);
5589 if (!TSInfo)
5590 TSInfo = Context.getTrivialTypeSourceInfo(T);
5591
5592 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5593}
5594
5595static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5596 QualType T, Expr *DimExpr,
5597 SourceLocation KeyLoc) {
5598 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((void)0);
5599
5600 switch(ATT) {
5601 case ATT_ArrayRank:
5602 if (T->isArrayType()) {
5603 unsigned Dim = 0;
5604 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5605 ++Dim;
5606 T = AT->getElementType();
5607 }
5608 return Dim;
5609 }
5610 return 0;
5611
5612 case ATT_ArrayExtent: {
5613 llvm::APSInt Value;
5614 uint64_t Dim;
5615 if (Self.VerifyIntegerConstantExpression(
5616 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5617 .isInvalid())
5618 return 0;
5619 if (Value.isSigned() && Value.isNegative()) {
5620 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5621 << DimExpr->getSourceRange();
5622 return 0;
5623 }
5624 Dim = Value.getLimitedValue();
5625
5626 if (T->isArrayType()) {
5627 unsigned D = 0;
5628 bool Matched = false;
5629 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5630 if (Dim == D) {
5631 Matched = true;
5632 break;
5633 }
5634 ++D;
5635 T = AT->getElementType();
5636 }
5637
5638 if (Matched && T->isArrayType()) {
5639 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5640 return CAT->getSize().getLimitedValue();
5641 }
5642 }
5643 return 0;
5644 }
5645 }
5646 llvm_unreachable("Unknown type trait or not implemented")__builtin_unreachable();
5647}
5648
5649ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5650 SourceLocation KWLoc,
5651 TypeSourceInfo *TSInfo,
5652 Expr* DimExpr,
5653 SourceLocation RParen) {
5654 QualType T = TSInfo->getType();
5655
5656 // FIXME: This should likely be tracked as an APInt to remove any host
5657 // assumptions about the width of size_t on the target.
5658 uint64_t Value = 0;
5659 if (!T->isDependentType())
5660 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5661
5662 // While the specification for these traits from the Embarcadero C++
5663 // compiler's documentation says the return type is 'unsigned int', Clang
5664 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5665 // compiler, there is no difference. On several other platforms this is an
5666 // important distinction.
5667 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5668 RParen, Context.getSizeType());
5669}
5670
5671ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5672 SourceLocation KWLoc,
5673 Expr *Queried,
5674 SourceLocation RParen) {
5675 // If error parsing the expression, ignore.
5676 if (!Queried)
5677 return ExprError();
5678
5679 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5680
5681 return Result;
5682}
5683
5684static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5685 switch (ET) {
5686 case ET_IsLValueExpr: return E->isLValue();
5687 case ET_IsRValueExpr:
5688 return E->isPRValue();
5689 }
5690 llvm_unreachable("Expression trait not covered by switch")__builtin_unreachable();
5691}
5692
5693ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5694 SourceLocation KWLoc,
5695 Expr *Queried,
5696 SourceLocation RParen) {
5697 if (Queried->isTypeDependent()) {
5698 // Delay type-checking for type-dependent expressions.
5699 } else if (Queried->getType()->isPlaceholderType()) {
5700 ExprResult PE = CheckPlaceholderExpr(Queried);
5701 if (PE.isInvalid()) return ExprError();
5702 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5703 }
5704
5705 bool Value = EvaluateExpressionTrait(ET, Queried);
5706
5707 return new (Context)
5708 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5709}
5710
5711QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5712 ExprValueKind &VK,
5713 SourceLocation Loc,
5714 bool isIndirect) {
5715 assert(!LHS.get()->getType()->isPlaceholderType() &&((void)0)
5716 !RHS.get()->getType()->isPlaceholderType() &&((void)0)
5717 "placeholders should have been weeded out by now")((void)0);
5718
5719 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5720 // temporary materialization conversion otherwise.
5721 if (isIndirect)
5722 LHS = DefaultLvalueConversion(LHS.get());
5723 else if (LHS.get()->isPRValue())
5724 LHS = TemporaryMaterializationConversion(LHS.get());
5725 if (LHS.isInvalid())
5726 return QualType();
5727
5728 // The RHS always undergoes lvalue conversions.
5729 RHS = DefaultLvalueConversion(RHS.get());
5730 if (RHS.isInvalid()) return QualType();
5731
5732 const char *OpSpelling = isIndirect ? "->*" : ".*";
5733 // C++ 5.5p2
5734 // The binary operator .* [p3: ->*] binds its second operand, which shall
5735 // be of type "pointer to member of T" (where T is a completely-defined
5736 // class type) [...]
5737 QualType RHSType = RHS.get()->getType();
5738 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5739 if (!MemPtr) {
5740 Diag(Loc, diag::err_bad_memptr_rhs)
5741 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5742 return QualType();
5743 }
5744
5745 QualType Class(MemPtr->getClass(), 0);
5746
5747 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5748 // member pointer points must be completely-defined. However, there is no
5749 // reason for this semantic distinction, and the rule is not enforced by
5750 // other compilers. Therefore, we do not check this property, as it is
5751 // likely to be considered a defect.
5752
5753 // C++ 5.5p2
5754 // [...] to its first operand, which shall be of class T or of a class of
5755 // which T is an unambiguous and accessible base class. [p3: a pointer to
5756 // such a class]
5757 QualType LHSType = LHS.get()->getType();
5758 if (isIndirect) {
5759 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5760 LHSType = Ptr->getPointeeType();
5761 else {
5762 Diag(Loc, diag::err_bad_memptr_lhs)
5763 << OpSpelling << 1 << LHSType
5764 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5765 return QualType();
5766 }
5767 }
5768
5769 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5770 // If we want to check the hierarchy, we need a complete type.
5771 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5772 OpSpelling, (int)isIndirect)) {
5773 return QualType();
5774 }
5775
5776 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5777 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5778 << (int)isIndirect << LHS.get()->getType();
5779 return QualType();
5780 }
5781
5782 CXXCastPath BasePath;
5783 if (CheckDerivedToBaseConversion(
5784 LHSType, Class, Loc,
5785 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5786 &BasePath))
5787 return QualType();
5788
5789 // Cast LHS to type of use.
5790 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5791 if (isIndirect)
5792 UseType = Context.getPointerType(UseType);
5793 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5794 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5795 &BasePath);
5796 }
5797
5798 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5799 // Diagnose use of pointer-to-member type which when used as
5800 // the functional cast in a pointer-to-member expression.
5801 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5802 return QualType();
5803 }
5804
5805 // C++ 5.5p2
5806 // The result is an object or a function of the type specified by the
5807 // second operand.
5808 // The cv qualifiers are the union of those in the pointer and the left side,
5809 // in accordance with 5.5p5 and 5.2.5.
5810 QualType Result = MemPtr->getPointeeType();
5811 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5812
5813 // C++0x [expr.mptr.oper]p6:
5814 // In a .* expression whose object expression is an rvalue, the program is
5815 // ill-formed if the second operand is a pointer to member function with
5816 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5817 // expression is an lvalue, the program is ill-formed if the second operand
5818 // is a pointer to member function with ref-qualifier &&.
5819 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5820 switch (Proto->getRefQualifier()) {
5821 case RQ_None:
5822 // Do nothing
5823 break;
5824
5825 case RQ_LValue:
5826 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5827 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5828 // is (exactly) 'const'.
5829 if (Proto->isConst() && !Proto->isVolatile())
5830 Diag(Loc, getLangOpts().CPlusPlus20
5831 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5832 : diag::ext_pointer_to_const_ref_member_on_rvalue);
5833 else
5834 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5835 << RHSType << 1 << LHS.get()->getSourceRange();
5836 }
5837 break;
5838
5839 case RQ_RValue:
5840 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5841 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5842 << RHSType << 0 << LHS.get()->getSourceRange();
5843 break;
5844 }
5845 }
5846
5847 // C++ [expr.mptr.oper]p6:
5848 // The result of a .* expression whose second operand is a pointer
5849 // to a data member is of the same value category as its
5850 // first operand. The result of a .* expression whose second
5851 // operand is a pointer to a member function is a prvalue. The
5852 // result of an ->* expression is an lvalue if its second operand
5853 // is a pointer to data member and a prvalue otherwise.
5854 if (Result->isFunctionType()) {
5855 VK = VK_PRValue;
5856 return Context.BoundMemberTy;
5857 } else if (isIndirect) {
5858 VK = VK_LValue;
5859 } else {
5860 VK = LHS.get()->getValueKind();
5861 }
5862
5863 return Result;
5864}
5865
5866/// Try to convert a type to another according to C++11 5.16p3.
5867///
5868/// This is part of the parameter validation for the ? operator. If either
5869/// value operand is a class type, the two operands are attempted to be
5870/// converted to each other. This function does the conversion in one direction.
5871/// It returns true if the program is ill-formed and has already been diagnosed
5872/// as such.
5873static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5874 SourceLocation QuestionLoc,
5875 bool &HaveConversion,
5876 QualType &ToType) {
5877 HaveConversion = false;
5878 ToType = To->getType();
5879
5880 InitializationKind Kind =
5881 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5882 // C++11 5.16p3
5883 // The process for determining whether an operand expression E1 of type T1
5884 // can be converted to match an operand expression E2 of type T2 is defined
5885 // as follows:
5886 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5887 // implicitly converted to type "lvalue reference to T2", subject to the
5888 // constraint that in the conversion the reference must bind directly to
5889 // an lvalue.
5890 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5891 // implicitly converted to the type "rvalue reference to R2", subject to
5892 // the constraint that the reference must bind directly.
5893 if (To->isLValue() || To->isXValue()) {
5894 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5895 : Self.Context.getRValueReferenceType(ToType);
5896
5897 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5898
5899 InitializationSequence InitSeq(Self, Entity, Kind, From);
5900 if (InitSeq.isDirectReferenceBinding()) {
5901 ToType = T;
5902 HaveConversion = true;
5903 return false;
5904 }
5905
5906 if (InitSeq.isAmbiguous())
5907 return InitSeq.Diagnose(Self, Entity, Kind, From);
5908 }
5909
5910 // -- If E2 is an rvalue, or if the conversion above cannot be done:
5911 // -- if E1 and E2 have class type, and the underlying class types are
5912 // the same or one is a base class of the other:
5913 QualType FTy = From->getType();
5914 QualType TTy = To->getType();
5915 const RecordType *FRec = FTy->getAs<RecordType>();
5916 const RecordType *TRec = TTy->getAs<RecordType>();
5917 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5918 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5919 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5920 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5921 // E1 can be converted to match E2 if the class of T2 is the
5922 // same type as, or a base class of, the class of T1, and
5923 // [cv2 > cv1].
5924 if (FRec == TRec || FDerivedFromT) {
5925 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5926 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5927 InitializationSequence InitSeq(Self, Entity, Kind, From);
5928 if (InitSeq) {
5929 HaveConversion = true;
5930 return false;
5931 }
5932
5933 if (InitSeq.isAmbiguous())
5934 return InitSeq.Diagnose(Self, Entity, Kind, From);
5935 }
5936 }
5937
5938 return false;
5939 }
5940
5941 // -- Otherwise: E1 can be converted to match E2 if E1 can be
5942 // implicitly converted to the type that expression E2 would have
5943 // if E2 were converted to an rvalue (or the type it has, if E2 is
5944 // an rvalue).
5945 //
5946 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5947 // to the array-to-pointer or function-to-pointer conversions.
5948 TTy = TTy.getNonLValueExprType(Self.Context);
5949
5950 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5951 InitializationSequence InitSeq(Self, Entity, Kind, From);
5952 HaveConversion = !InitSeq.Failed();
5953 ToType = TTy;
5954 if (InitSeq.isAmbiguous())
5955 return InitSeq.Diagnose(Self, Entity, Kind, From);
5956
5957 return false;
5958}
5959
5960/// Try to find a common type for two according to C++0x 5.16p5.
5961///
5962/// This is part of the parameter validation for the ? operator. If either
5963/// value operand is a class type, overload resolution is used to find a
5964/// conversion to a common type.
5965static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5966 SourceLocation QuestionLoc) {
5967 Expr *Args[2] = { LHS.get(), RHS.get() };
5968 OverloadCandidateSet CandidateSet(QuestionLoc,
5969 OverloadCandidateSet::CSK_Operator);
5970 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5971 CandidateSet);
5972
5973 OverloadCandidateSet::iterator Best;
5974 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5975 case OR_Success: {
5976 // We found a match. Perform the conversions on the arguments and move on.
5977 ExprResult LHSRes = Self.PerformImplicitConversion(
5978 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5979 Sema::AA_Converting);
5980 if (LHSRes.isInvalid())
5981 break;
5982 LHS = LHSRes;
5983
5984 ExprResult RHSRes = Self.PerformImplicitConversion(
5985 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5986 Sema::AA_Converting);
5987 if (RHSRes.isInvalid())
5988 break;
5989 RHS = RHSRes;
5990 if (Best->Function)
5991 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5992 return false;
5993 }
5994
5995 case OR_No_Viable_Function:
5996
5997 // Emit a better diagnostic if one of the expressions is a null pointer
5998 // constant and the other is a pointer type. In this case, the user most
5999 // likely forgot to take the address of the other expression.
6000 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6001 return true;
6002
6003 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6004 << LHS.get()->getType() << RHS.get()->getType()
6005 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6006 return true;
6007
6008 case OR_Ambiguous:
6009 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6010 << LHS.get()->getType() << RHS.get()->getType()
6011 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6012 // FIXME: Print the possible common types by printing the return types of
6013 // the viable candidates.
6014 break;
6015
6016 case OR_Deleted:
6017 llvm_unreachable("Conditional operator has only built-in overloads")__builtin_unreachable();
6018 }
6019 return true;
6020}
6021
6022/// Perform an "extended" implicit conversion as returned by
6023/// TryClassUnification.
6024static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6025 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6026 InitializationKind Kind =
6027 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6028 Expr *Arg = E.get();
6029 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6030 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6031 if (Result.isInvalid())
6032 return true;
6033
6034 E = Result;
6035 return false;
6036}
6037
6038// Check the condition operand of ?: to see if it is valid for the GCC
6039// extension.
6040static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6041 QualType CondTy) {
6042 if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6043 return false;
6044 const QualType EltTy =
6045 cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6046 assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() &&((void)0)
6047 "Vectors cant be boolean or enum types")((void)0);
6048 return EltTy->isIntegralType(Ctx);
6049}
6050
6051QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6052 ExprResult &RHS,
6053 SourceLocation QuestionLoc) {
6054 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6055 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6056
6057 QualType CondType = Cond.get()->getType();
6058 const auto *CondVT = CondType->castAs<VectorType>();
6059 QualType CondElementTy = CondVT->getElementType();
6060 unsigned CondElementCount = CondVT->getNumElements();
6061 QualType LHSType = LHS.get()->getType();
6062 const auto *LHSVT = LHSType->getAs<VectorType>();
6063 QualType RHSType = RHS.get()->getType();
6064 const auto *RHSVT = RHSType->getAs<VectorType>();
6065
6066 QualType ResultType;
6067
6068
6069 if (LHSVT && RHSVT) {
6070 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6071 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6072 << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6073 return {};
6074 }
6075
6076 // If both are vector types, they must be the same type.
6077 if (!Context.hasSameType(LHSType, RHSType)) {
6078 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6079 << LHSType << RHSType;
6080 return {};
6081 }
6082 ResultType = LHSType;
6083 } else if (LHSVT || RHSVT) {
6084 ResultType = CheckVectorOperands(
6085 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6086 /*AllowBoolConversions*/ false);
6087 if (ResultType.isNull())
6088 return {};
6089 } else {
6090 // Both are scalar.
6091 QualType ResultElementTy;
6092 LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6093 RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6094
6095 if (Context.hasSameType(LHSType, RHSType))
6096 ResultElementTy = LHSType;
6097 else
6098 ResultElementTy =
6099 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6100
6101 if (ResultElementTy->isEnumeralType()) {
6102 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6103 << ResultElementTy;
6104 return {};
6105 }
6106 if (CondType->isExtVectorType())
6107 ResultType =
6108 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6109 else
6110 ResultType = Context.getVectorType(
6111 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6112
6113 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6114 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6115 }
6116
6117 assert(!ResultType.isNull() && ResultType->isVectorType() &&((void)0)
6118 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&((void)0)
6119 "Result should have been a vector type")((void)0);
6120 auto *ResultVectorTy = ResultType->castAs<VectorType>();
6121 QualType ResultElementTy = ResultVectorTy->getElementType();
6122 unsigned ResultElementCount = ResultVectorTy->getNumElements();
6123
6124 if (ResultElementCount != CondElementCount) {
6125 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6126 << ResultType;
6127 return {};
6128 }
6129
6130 if (Context.getTypeSize(ResultElementTy) !=
6131 Context.getTypeSize(CondElementTy)) {
6132 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6133 << ResultType;
6134 return {};
6135 }
6136
6137 return ResultType;
6138}
6139
6140/// Check the operands of ?: under C++ semantics.
6141///
6142/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6143/// extension. In this case, LHS == Cond. (But they're not aliases.)
6144///
6145/// This function also implements GCC's vector extension and the
6146/// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6147/// permit the use of a?b:c where the type of a is that of a integer vector with
6148/// the same number of elements and size as the vectors of b and c. If one of
6149/// either b or c is a scalar it is implicitly converted to match the type of
6150/// the vector. Otherwise the expression is ill-formed. If both b and c are
6151/// scalars, then b and c are checked and converted to the type of a if
6152/// possible.
6153///
6154/// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6155/// For the GCC extension, the ?: operator is evaluated as
6156/// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6157/// For the OpenCL extensions, the ?: operator is evaluated as
6158/// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
6159/// most-significant-bit-set(a[n]) ? b[n] : c[n]).
6160QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6161 ExprResult &RHS, ExprValueKind &VK,
6162 ExprObjectKind &OK,
6163 SourceLocation QuestionLoc) {
6164 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6165 // pointers.
6166
6167 // Assume r-value.
6168 VK = VK_PRValue;
6169 OK = OK_Ordinary;
6170 bool IsVectorConditional =
6171 isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6172
6173 // C++11 [expr.cond]p1
6174 // The first expression is contextually converted to bool.
6175 if (!Cond.get()->isTypeDependent()) {
6176 ExprResult CondRes = IsVectorConditional
6177 ? DefaultFunctionArrayLvalueConversion(Cond.get())
6178 : CheckCXXBooleanCondition(Cond.get());
6179 if (CondRes.isInvalid())
6180 return QualType();
6181 Cond = CondRes;
6182 } else {
6183 // To implement C++, the first expression typically doesn't alter the result
6184 // type of the conditional, however the GCC compatible vector extension
6185 // changes the result type to be that of the conditional. Since we cannot
6186 // know if this is a vector extension here, delay the conversion of the
6187 // LHS/RHS below until later.
6188 return Context.DependentTy;
6189 }
6190
6191
6192 // Either of the arguments dependent?
6193 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6194 return Context.DependentTy;
6195
6196 // C++11 [expr.cond]p2
6197 // If either the second or the third operand has type (cv) void, ...
6198 QualType LTy = LHS.get()->getType();
6199 QualType RTy = RHS.get()->getType();
6200 bool LVoid = LTy->isVoidType();
6201 bool RVoid = RTy->isVoidType();
6202 if (LVoid || RVoid) {
6203 // ... one of the following shall hold:
6204 // -- The second or the third operand (but not both) is a (possibly
6205 // parenthesized) throw-expression; the result is of the type
6206 // and value category of the other.
6207 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6208 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6209
6210 // Void expressions aren't legal in the vector-conditional expressions.
6211 if (IsVectorConditional) {
6212 SourceRange DiagLoc =
6213 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6214 bool IsThrow = LVoid ? LThrow : RThrow;
6215 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6216 << DiagLoc << IsThrow;
6217 return QualType();
6218 }
6219
6220 if (LThrow != RThrow) {
6221 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6222 VK = NonThrow->getValueKind();
6223 // DR (no number yet): the result is a bit-field if the
6224 // non-throw-expression operand is a bit-field.
6225 OK = NonThrow->getObjectKind();
6226 return NonThrow->getType();
6227 }
6228
6229 // -- Both the second and third operands have type void; the result is of
6230 // type void and is a prvalue.
6231 if (LVoid && RVoid)
6232 return Context.VoidTy;
6233
6234 // Neither holds, error.
6235 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6236 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6237 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6238 return QualType();
6239 }
6240
6241 // Neither is void.
6242 if (IsVectorConditional)
6243 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6244
6245 // C++11 [expr.cond]p3
6246 // Otherwise, if the second and third operand have different types, and
6247 // either has (cv) class type [...] an attempt is made to convert each of
6248 // those operands to the type of the other.
6249 if (!Context.hasSameType(LTy, RTy) &&
6250 (LTy->isRecordType() || RTy->isRecordType())) {
6251 // These return true if a single direction is already ambiguous.
6252 QualType L2RType, R2LType;
6253 bool HaveL2R, HaveR2L;
6254 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6255 return QualType();
6256 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6257 return QualType();
6258
6259 // If both can be converted, [...] the program is ill-formed.
6260 if (HaveL2R && HaveR2L) {
6261 Diag(QuestionLoc, diag::err_conditional_ambiguous)
6262 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6263 return QualType();
6264 }
6265
6266 // If exactly one conversion is possible, that conversion is applied to
6267 // the chosen operand and the converted operands are used in place of the
6268 // original operands for the remainder of this section.
6269 if (HaveL2R) {
6270 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6271 return QualType();
6272 LTy = LHS.get()->getType();
6273 } else if (HaveR2L) {
6274 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6275 return QualType();
6276 RTy = RHS.get()->getType();
6277 }
6278 }
6279
6280 // C++11 [expr.cond]p3
6281 // if both are glvalues of the same value category and the same type except
6282 // for cv-qualification, an attempt is made to convert each of those
6283 // operands to the type of the other.
6284 // FIXME:
6285 // Resolving a defect in P0012R1: we extend this to cover all cases where
6286 // one of the operands is reference-compatible with the other, in order
6287 // to support conditionals between functions differing in noexcept. This
6288 // will similarly cover difference in array bounds after P0388R4.
6289 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6290 // that instead?
6291 ExprValueKind LVK = LHS.get()->getValueKind();
6292 ExprValueKind RVK = RHS.get()->getValueKind();
6293 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6294 // DerivedToBase was already handled by the class-specific case above.
6295 // FIXME: Should we allow ObjC conversions here?
6296 const ReferenceConversions AllowedConversions =
6297 ReferenceConversions::Qualification |
6298 ReferenceConversions::NestedQualification |
6299 ReferenceConversions::Function;
6300
6301 ReferenceConversions RefConv;
6302 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6303 Ref_Compatible &&
6304 !(RefConv & ~AllowedConversions) &&
6305 // [...] subject to the constraint that the reference must bind
6306 // directly [...]
6307 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6308 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6309 RTy = RHS.get()->getType();
6310 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6311 Ref_Compatible &&
6312 !(RefConv & ~AllowedConversions) &&
6313 !LHS.get()->refersToBitField() &&
6314 !LHS.get()->refersToVectorElement()) {
6315 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6316 LTy = LHS.get()->getType();
6317 }
6318 }
6319
6320 // C++11 [expr.cond]p4
6321 // If the second and third operands are glvalues of the same value
6322 // category and have the same type, the result is of that type and
6323 // value category and it is a bit-field if the second or the third
6324 // operand is a bit-field, or if both are bit-fields.
6325 // We only extend this to bitfields, not to the crazy other kinds of
6326 // l-values.
6327 bool Same = Context.hasSameType(LTy, RTy);
6328 if (Same && LVK == RVK && LVK != VK_PRValue &&
6329 LHS.get()->isOrdinaryOrBitFieldObject() &&
6330 RHS.get()->isOrdinaryOrBitFieldObject()) {
6331 VK = LHS.get()->getValueKind();
6332 if (LHS.get()->getObjectKind() == OK_BitField ||
6333 RHS.get()->getObjectKind() == OK_BitField)
6334 OK = OK_BitField;
6335
6336 // If we have function pointer types, unify them anyway to unify their
6337 // exception specifications, if any.
6338 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6339 Qualifiers Qs = LTy.getQualifiers();
6340 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
6341 /*ConvertArgs*/false);
6342 LTy = Context.getQualifiedType(LTy, Qs);
6343
6344 assert(!LTy.isNull() && "failed to find composite pointer type for "((void)0)
6345 "canonically equivalent function ptr types")((void)0);
6346 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type")((void)0);
6347 }
6348
6349 return LTy;
6350 }
6351
6352 // C++11 [expr.cond]p5
6353 // Otherwise, the result is a prvalue. If the second and third operands
6354 // do not have the same type, and either has (cv) class type, ...
6355 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6356 // ... overload resolution is used to determine the conversions (if any)
6357 // to be applied to the operands. If the overload resolution fails, the
6358 // program is ill-formed.
6359 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6360 return QualType();
6361 }
6362
6363 // C++11 [expr.cond]p6
6364 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6365 // conversions are performed on the second and third operands.
6366 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6367 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6368 if (LHS.isInvalid() || RHS.isInvalid())
6369 return QualType();
6370 LTy = LHS.get()->getType();
6371 RTy = RHS.get()->getType();
6372
6373 // After those conversions, one of the following shall hold:
6374 // -- The second and third operands have the same type; the result
6375 // is of that type. If the operands have class type, the result
6376 // is a prvalue temporary of the result type, which is
6377 // copy-initialized from either the second operand or the third
6378 // operand depending on the value of the first operand.
6379 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
6380 if (LTy->isRecordType()) {
6381 // The operands have class type. Make a temporary copy.
6382 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
6383
6384 ExprResult LHSCopy = PerformCopyInitialization(Entity,
6385 SourceLocation(),
6386 LHS);
6387 if (LHSCopy.isInvalid())
6388 return QualType();
6389
6390 ExprResult RHSCopy = PerformCopyInitialization(Entity,
6391 SourceLocation(),
6392 RHS);
6393 if (RHSCopy.isInvalid())
6394 return QualType();
6395
6396 LHS = LHSCopy;
6397 RHS = RHSCopy;
6398 }
6399
6400 // If we have function pointer types, unify them anyway to unify their
6401 // exception specifications, if any.
6402 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6403 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
6404 assert(!LTy.isNull() && "failed to find composite pointer type for "((void)0)
6405 "canonically equivalent function ptr types")((void)0);
6406 }
6407
6408 return LTy;
6409 }
6410
6411 // Extension: conditional operator involving vector types.
6412 if (LTy->isVectorType() || RTy->isVectorType())
6413 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6414 /*AllowBothBool*/true,
6415 /*AllowBoolConversions*/false);
6416
6417 // -- The second and third operands have arithmetic or enumeration type;
6418 // the usual arithmetic conversions are performed to bring them to a
6419 // common type, and the result is of that type.
6420 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6421 QualType ResTy =
6422 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6423 if (LHS.isInvalid() || RHS.isInvalid())
6424 return QualType();
6425 if (ResTy.isNull()) {
6426 Diag(QuestionLoc,
6427 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6428 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6429 return QualType();
6430 }
6431
6432 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6433 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6434
6435 return ResTy;
6436 }
6437
6438 // -- The second and third operands have pointer type, or one has pointer
6439 // type and the other is a null pointer constant, or both are null
6440 // pointer constants, at least one of which is non-integral; pointer
6441 // conversions and qualification conversions are performed to bring them
6442 // to their composite pointer type. The result is of the composite
6443 // pointer type.
6444 // -- The second and third operands have pointer to member type, or one has
6445 // pointer to member type and the other is a null pointer constant;
6446 // pointer to member conversions and qualification conversions are
6447 // performed to bring them to a common type, whose cv-qualification
6448 // shall match the cv-qualification of either the second or the third
6449 // operand. The result is of the common type.
6450 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6451 if (!Composite.isNull())
6452 return Composite;
6453
6454 // Similarly, attempt to find composite type of two objective-c pointers.
6455 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6456 if (LHS.isInvalid() || RHS.isInvalid())
6457 return QualType();
6458 if (!Composite.isNull())
6459 return Composite;
6460
6461 // Check if we are using a null with a non-pointer type.
6462 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6463 return QualType();
6464
6465 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6466 << LHS.get()->getType() << RHS.get()->getType()
6467 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6468 return QualType();
6469}
6470
6471static FunctionProtoType::ExceptionSpecInfo
6472mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6473 FunctionProtoType::ExceptionSpecInfo ESI2,
6474 SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6475 ExceptionSpecificationType EST1 = ESI1.Type;
6476 ExceptionSpecificationType EST2 = ESI2.Type;
6477
6478 // If either of them can throw anything, that is the result.
6479 if (EST1 == EST_None) return ESI1;
6480 if (EST2 == EST_None) return ESI2;
6481 if (EST1 == EST_MSAny) return ESI1;
6482 if (EST2 == EST_MSAny) return ESI2;
6483 if (EST1 == EST_NoexceptFalse) return ESI1;
6484 if (EST2 == EST_NoexceptFalse) return ESI2;
6485
6486 // If either of them is non-throwing, the result is the other.
6487 if (EST1 == EST_NoThrow) return ESI2;
6488 if (EST2 == EST_NoThrow) return ESI1;
6489 if (EST1 == EST_DynamicNone) return ESI2;
6490 if (EST2 == EST_DynamicNone) return ESI1;
6491 if (EST1 == EST_BasicNoexcept) return ESI2;
6492 if (EST2 == EST_BasicNoexcept) return ESI1;
6493 if (EST1 == EST_NoexceptTrue) return ESI2;
6494 if (EST2 == EST_NoexceptTrue) return ESI1;
6495
6496 // If we're left with value-dependent computed noexcept expressions, we're
6497 // stuck. Before C++17, we can just drop the exception specification entirely,
6498 // since it's not actually part of the canonical type. And this should never
6499 // happen in C++17, because it would mean we were computing the composite
6500 // pointer type of dependent types, which should never happen.
6501 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6502 assert(!S.getLangOpts().CPlusPlus17 &&((void)0)
6503 "computing composite pointer type of dependent types")((void)0);
6504 return FunctionProtoType::ExceptionSpecInfo();
6505 }
6506
6507 // Switch over the possibilities so that people adding new values know to
6508 // update this function.
6509 switch (EST1) {
6510 case EST_None:
6511 case EST_DynamicNone:
6512 case EST_MSAny:
6513 case EST_BasicNoexcept:
6514 case EST_DependentNoexcept:
6515 case EST_NoexceptFalse:
6516 case EST_NoexceptTrue:
6517 case EST_NoThrow:
6518 llvm_unreachable("handled above")__builtin_unreachable();
6519
6520 case EST_Dynamic: {
6521 // This is the fun case: both exception specifications are dynamic. Form
6522 // the union of the two lists.
6523 assert(EST2 == EST_Dynamic && "other cases should already be handled")((void)0);
6524 llvm::SmallPtrSet<QualType, 8> Found;
6525 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6526 for (QualType E : Exceptions)
6527 if (Found.insert(S.Context.getCanonicalType(E)).second)
6528 ExceptionTypeStorage.push_back(E);
6529
6530 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6531 Result.Exceptions = ExceptionTypeStorage;
6532 return Result;
6533 }
6534
6535 case EST_Unevaluated:
6536 case EST_Uninstantiated:
6537 case EST_Unparsed:
6538 llvm_unreachable("shouldn't see unresolved exception specifications here")__builtin_unreachable();
6539 }
6540
6541 llvm_unreachable("invalid ExceptionSpecificationType")__builtin_unreachable();
6542}
6543
6544/// Find a merged pointer type and convert the two expressions to it.
6545///
6546/// This finds the composite pointer type for \p E1 and \p E2 according to
6547/// C++2a [expr.type]p3. It converts both expressions to this type and returns
6548/// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6549/// is \c true).
6550///
6551/// \param Loc The location of the operator requiring these two expressions to
6552/// be converted to the composite pointer type.
6553///
6554/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6555QualType Sema::FindCompositePointerType(SourceLocation Loc,
6556 Expr *&E1, Expr *&E2,
6557 bool ConvertArgs) {
6558 assert(getLangOpts().CPlusPlus && "This function assumes C++")((void)0);
6559
6560 // C++1z [expr]p14:
6561 // The composite pointer type of two operands p1 and p2 having types T1
6562 // and T2
6563 QualType T1 = E1->getType(), T2 = E2->getType();
6564
6565 // where at least one is a pointer or pointer to member type or
6566 // std::nullptr_t is:
6567 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6568 T1->isNullPtrType();
6569 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6570 T2->isNullPtrType();
6571 if (!T1IsPointerLike && !T2IsPointerLike)
6572 return QualType();
6573
6574 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6575 // This can't actually happen, following the standard, but we also use this
6576 // to implement the end of [expr.conv], which hits this case.
6577 //
6578 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6579 if (T1IsPointerLike &&
6580 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6581 if (ConvertArgs)
6582 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6583 ? CK_NullToMemberPointer
6584 : CK_NullToPointer).get();
6585 return T1;
6586 }
6587 if (T2IsPointerLike &&
6588 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6589 if (ConvertArgs)
6590 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6591 ? CK_NullToMemberPointer
6592 : CK_NullToPointer).get();
6593 return T2;
6594 }
6595
6596 // Now both have to be pointers or member pointers.
6597 if (!T1IsPointerLike || !T2IsPointerLike)
6598 return QualType();
6599 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&((void)0)
6600 "nullptr_t should be a null pointer constant")((void)0);
6601
6602 struct Step {
6603 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6604 // Qualifiers to apply under the step kind.
6605 Qualifiers Quals;
6606 /// The class for a pointer-to-member; a constant array type with a bound
6607 /// (if any) for an array.
6608 const Type *ClassOrBound;
6609
6610 Step(Kind K, const Type *ClassOrBound = nullptr)
6611 : K(K), Quals(), ClassOrBound(ClassOrBound) {}
6612 QualType rebuild(ASTContext &Ctx, QualType T) const {
6613 T = Ctx.getQualifiedType(T, Quals);
6614 switch (K) {
6615 case Pointer:
6616 return Ctx.getPointerType(T);
6617 case MemberPointer:
6618 return Ctx.getMemberPointerType(T, ClassOrBound);
6619 case ObjCPointer:
6620 return Ctx.getObjCObjectPointerType(T);
6621 case Array:
6622 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6623 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6624 ArrayType::Normal, 0);
6625 else
6626 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6627 }
6628 llvm_unreachable("unknown step kind")__builtin_unreachable();
6629 }
6630 };
6631
6632 SmallVector<Step, 8> Steps;
6633
6634 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6635 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6636 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6637 // respectively;
6638 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6639 // to member of C2 of type cv2 U2" for some non-function type U, where
6640 // C1 is reference-related to C2 or C2 is reference-related to C1, the
6641 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6642 // respectively;
6643 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6644 // T2;
6645 //
6646 // Dismantle T1 and T2 to simultaneously determine whether they are similar
6647 // and to prepare to form the cv-combined type if so.
6648 QualType Composite1 = T1;
6649 QualType Composite2 = T2;
6650 unsigned NeedConstBefore = 0;
6651 while (true) {
6652 assert(!Composite1.isNull() && !Composite2.isNull())((void)0);
6653
6654 Qualifiers Q1, Q2;
6655 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6656 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6657
6658 // Top-level qualifiers are ignored. Merge at all lower levels.
6659 if (!Steps.empty()) {
6660 // Find the qualifier union: (approximately) the unique minimal set of
6661 // qualifiers that is compatible with both types.
6662 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6663 Q2.getCVRUQualifiers());
6664
6665 // Under one level of pointer or pointer-to-member, we can change to an
6666 // unambiguous compatible address space.
6667 if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6668 Quals.setAddressSpace(Q1.getAddressSpace());
6669 } else if (Steps.size() == 1) {
6670 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6671 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6672 if (MaybeQ1 == MaybeQ2)
6673 return QualType(); // No unique best address space.
6674 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6675 : Q2.getAddressSpace());
6676 } else {
6677 return QualType();
6678 }
6679
6680 // FIXME: In C, we merge __strong and none to __strong at the top level.
6681 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6682 Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6683 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6684 assert(Steps.size() == 1)((void)0);
6685 else
6686 return QualType();
6687
6688 // Mismatched lifetime qualifiers never compatibly include each other.
6689 if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6690 Quals.setObjCLifetime(Q1.getObjCLifetime());
6691 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6692 assert(Steps.size() == 1)((void)0);
6693 else
6694 return QualType();
6695
6696 Steps.back().Quals = Quals;
6697 if (Q1 != Quals || Q2 != Quals)
6698 NeedConstBefore = Steps.size() - 1;
6699 }
6700
6701 // FIXME: Can we unify the following with UnwrapSimilarTypes?
6702 const PointerType *Ptr1, *Ptr2;
6703 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6704 (Ptr2 = Composite2->getAs<PointerType>())) {
6705 Composite1 = Ptr1->getPointeeType();
6706 Composite2 = Ptr2->getPointeeType();
6707 Steps.emplace_back(Step::Pointer);
6708 continue;
6709 }
6710
6711 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6712 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6713 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6714 Composite1 = ObjPtr1->getPointeeType();
6715 Composite2 = ObjPtr2->getPointeeType();
6716 Steps.emplace_back(Step::ObjCPointer);
6717 continue;
6718 }
6719
6720 const MemberPointerType *MemPtr1, *MemPtr2;
6721 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6722 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6723 Composite1 = MemPtr1->getPointeeType();
6724 Composite2 = MemPtr2->getPointeeType();
6725
6726 // At the top level, we can perform a base-to-derived pointer-to-member
6727 // conversion:
6728 //
6729 // - [...] where C1 is reference-related to C2 or C2 is
6730 // reference-related to C1
6731 //
6732 // (Note that the only kinds of reference-relatedness in scope here are
6733 // "same type or derived from".) At any other level, the class must
6734 // exactly match.
6735 const Type *Class = nullptr;
6736 QualType Cls1(MemPtr1->getClass(), 0);
6737 QualType Cls2(MemPtr2->getClass(), 0);
6738 if (Context.hasSameType(Cls1, Cls2))
6739 Class = MemPtr1->getClass();
6740 else if (Steps.empty())
6741 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
6742 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
6743 if (!Class)
6744 return QualType();
6745
6746 Steps.emplace_back(Step::MemberPointer, Class);
6747 continue;
6748 }
6749
6750 // Special case: at the top level, we can decompose an Objective-C pointer
6751 // and a 'cv void *'. Unify the qualifiers.
6752 if (Steps.empty() && ((Composite1->isVoidPointerType() &&
6753 Composite2->isObjCObjectPointerType()) ||
6754 (Composite1->isObjCObjectPointerType() &&
6755 Composite2->isVoidPointerType()))) {
6756 Composite1 = Composite1->getPointeeType();
6757 Composite2 = Composite2->getPointeeType();
6758 Steps.emplace_back(Step::Pointer);
6759 continue;
6760 }
6761
6762 // FIXME: arrays
6763
6764 // FIXME: block pointer types?
6765
6766 // Cannot unwrap any more types.
6767 break;
6768 }
6769
6770 // - if T1 or T2 is "pointer to noexcept function" and the other type is
6771 // "pointer to function", where the function types are otherwise the same,
6772 // "pointer to function";
6773 // - if T1 or T2 is "pointer to member of C1 of type function", the other
6774 // type is "pointer to member of C2 of type noexcept function", and C1
6775 // is reference-related to C2 or C2 is reference-related to C1, where
6776 // the function types are otherwise the same, "pointer to member of C2 of
6777 // type function" or "pointer to member of C1 of type function",
6778 // respectively;
6779 //
6780 // We also support 'noreturn' here, so as a Clang extension we generalize the
6781 // above to:
6782 //
6783 // - [Clang] If T1 and T2 are both of type "pointer to function" or
6784 // "pointer to member function" and the pointee types can be unified
6785 // by a function pointer conversion, that conversion is applied
6786 // before checking the following rules.
6787 //
6788 // We've already unwrapped down to the function types, and we want to merge
6789 // rather than just convert, so do this ourselves rather than calling
6790 // IsFunctionConversion.
6791 //
6792 // FIXME: In order to match the standard wording as closely as possible, we
6793 // currently only do this under a single level of pointers. Ideally, we would
6794 // allow this in general, and set NeedConstBefore to the relevant depth on
6795 // the side(s) where we changed anything. If we permit that, we should also
6796 // consider this conversion when determining type similarity and model it as
6797 // a qualification conversion.
6798 if (Steps.size() == 1) {
6799 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6800 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6801 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6802 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6803
6804 // The result is noreturn if both operands are.
6805 bool Noreturn =
6806 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6807 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6808 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6809
6810 // The result is nothrow if both operands are.
6811 SmallVector<QualType, 8> ExceptionTypeStorage;
6812 EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6813 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6814 ExceptionTypeStorage);
6815
6816 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6817 FPT1->getParamTypes(), EPI1);
6818 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6819 FPT2->getParamTypes(), EPI2);
6820 }
6821 }
6822 }
6823
6824 // There are some more conversions we can perform under exactly one pointer.
6825 if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
6826 !Context.hasSameType(Composite1, Composite2)) {
6827 // - if T1 or T2 is "pointer to cv1 void" and the other type is
6828 // "pointer to cv2 T", where T is an object type or void,
6829 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
6830 if (Composite1->isVoidType() && Composite2->isObjectType())
6831 Composite2 = Composite1;
6832 else if (Composite2->isVoidType() && Composite1->isObjectType())
6833 Composite1 = Composite2;
6834 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6835 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6836 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
6837 // T1, respectively;
6838 //
6839 // The "similar type" handling covers all of this except for the "T1 is a
6840 // base class of T2" case in the definition of reference-related.
6841 else if (IsDerivedFrom(Loc, Composite1, Composite2))
6842 Composite1 = Composite2;
6843 else if (IsDerivedFrom(Loc, Composite2, Composite1))
6844 Composite2 = Composite1;
6845 }
6846
6847 // At this point, either the inner types are the same or we have failed to
6848 // find a composite pointer type.
6849 if (!Context.hasSameType(Composite1, Composite2))
6850 return QualType();
6851
6852 // Per C++ [conv.qual]p3, add 'const' to every level before the last
6853 // differing qualifier.
6854 for (unsigned I = 0; I != NeedConstBefore; ++I)
6855 Steps[I].Quals.addConst();
6856
6857 // Rebuild the composite type.
6858 QualType Composite = Composite1;
6859 for (auto &S : llvm::reverse(Steps))
6860 Composite = S.rebuild(Context, Composite);
6861
6862 if (ConvertArgs) {
6863 // Convert the expressions to the composite pointer type.
6864 InitializedEntity Entity =
6865 InitializedEntity::InitializeTemporary(Composite);
6866 InitializationKind Kind =
6867 InitializationKind::CreateCopy(Loc, SourceLocation());
6868
6869 InitializationSequence E1ToC(*this, Entity, Kind, E1);
6870 if (!E1ToC)
6871 return QualType();
6872
6873 InitializationSequence E2ToC(*this, Entity, Kind, E2);
6874 if (!E2ToC)
6875 return QualType();
6876
6877 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
6878 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
6879 if (E1Result.isInvalid())
6880 return QualType();
6881 E1 = E1Result.get();
6882
6883 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
6884 if (E2Result.isInvalid())
6885 return QualType();
6886 E2 = E2Result.get();
6887 }
6888
6889 return Composite;
6890}
6891
6892ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6893 if (!E)
6894 return ExprError();
6895
6896 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")((void)0);
6897
6898 // If the result is a glvalue, we shouldn't bind it.
6899 if (E->isGLValue())
6900 return E;
6901
6902 // In ARC, calls that return a retainable type can return retained,
6903 // in which case we have to insert a consuming cast.
6904 if (getLangOpts().ObjCAutoRefCount &&
6905 E->getType()->isObjCRetainableType()) {
6906
6907 bool ReturnsRetained;
6908
6909 // For actual calls, we compute this by examining the type of the
6910 // called value.
6911 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6912 Expr *Callee = Call->getCallee()->IgnoreParens();
6913 QualType T = Callee->getType();
6914
6915 if (T == Context.BoundMemberTy) {
6916 // Handle pointer-to-members.
6917 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6918 T = BinOp->getRHS()->getType();
6919 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6920 T = Mem->getMemberDecl()->getType();
6921 }
6922
6923 if (const PointerType *Ptr = T->getAs<PointerType>())
6924 T = Ptr->getPointeeType();
6925 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6926 T = Ptr->getPointeeType();
6927 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6928 T = MemPtr->getPointeeType();
6929
6930 auto *FTy = T->castAs<FunctionType>();
6931 ReturnsRetained = FTy->getExtInfo().getProducesResult();
6932
6933 // ActOnStmtExpr arranges things so that StmtExprs of retainable
6934 // type always produce a +1 object.
6935 } else if (isa<StmtExpr>(E)) {
6936 ReturnsRetained = true;
6937
6938 // We hit this case with the lambda conversion-to-block optimization;
6939 // we don't want any extra casts here.
6940 } else if (isa<CastExpr>(E) &&
6941 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6942 return E;
6943
6944 // For message sends and property references, we try to find an
6945 // actual method. FIXME: we should infer retention by selector in
6946 // cases where we don't have an actual method.
6947 } else {
6948 ObjCMethodDecl *D = nullptr;
6949 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6950 D = Send->getMethodDecl();
6951 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6952 D = BoxedExpr->getBoxingMethod();
6953 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6954 // Don't do reclaims if we're using the zero-element array
6955 // constant.
6956 if (ArrayLit->getNumElements() == 0 &&
6957 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6958 return E;
6959
6960 D = ArrayLit->getArrayWithObjectsMethod();
6961 } else if (ObjCDictionaryLiteral *DictLit
6962 = dyn_cast<ObjCDictionaryLiteral>(E)) {
6963 // Don't do reclaims if we're using the zero-element dictionary
6964 // constant.
6965 if (DictLit->getNumElements() == 0 &&
6966 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6967 return E;
6968
6969 D = DictLit->getDictWithObjectsMethod();
6970 }
6971
6972 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6973
6974 // Don't do reclaims on performSelector calls; despite their
6975 // return type, the invoked method doesn't necessarily actually
6976 // return an object.
6977 if (!ReturnsRetained &&
6978 D && D->getMethodFamily() == OMF_performSelector)
6979 return E;
6980 }
6981
6982 // Don't reclaim an object of Class type.
6983 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6984 return E;
6985
6986 Cleanup.setExprNeedsCleanups(true);
6987
6988 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6989 : CK_ARCReclaimReturnedObject);
6990 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6991 VK_PRValue, FPOptionsOverride());
6992 }
6993
6994 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
6995 Cleanup.setExprNeedsCleanups(true);
6996
6997 if (!getLangOpts().CPlusPlus)
6998 return E;
6999
7000 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7001 // a fast path for the common case that the type is directly a RecordType.
7002 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7003 const RecordType *RT = nullptr;
7004 while (!RT) {
7005 switch (T->getTypeClass()) {
7006 case Type::Record:
7007 RT = cast<RecordType>(T);
7008 break;
7009 case Type::ConstantArray:
7010 case Type::IncompleteArray:
7011 case Type::VariableArray:
7012 case Type::DependentSizedArray:
7013 T = cast<ArrayType>(T)->getElementType().getTypePtr();
7014 break;
7015 default:
7016 return E;
7017 }
7018 }
7019
7020 // That should be enough to guarantee that this type is complete, if we're
7021 // not processing a decltype expression.
7022 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7023 if (RD->isInvalidDecl() || RD->isDependentContext())
7024 return E;
7025
7026 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7027 ExpressionEvaluationContextRecord::EK_Decltype;
7028 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7029
7030 if (Destructor) {
7031 MarkFunctionReferenced(E->getExprLoc(), Destructor);
7032 CheckDestructorAccess(E->getExprLoc(), Destructor,
7033 PDiag(diag::err_access_dtor_temp)
7034 << E->getType());
7035 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7036 return ExprError();
7037
7038 // If destructor is trivial, we can avoid the extra copy.
7039 if (Destructor->isTrivial())
7040 return E;
7041
7042 // We need a cleanup, but we don't need to remember the temporary.
7043 Cleanup.setExprNeedsCleanups(true);
7044 }
7045
7046 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7047 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7048
7049 if (IsDecltype)
7050 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7051
7052 return Bind;
7053}
7054
7055ExprResult
7056Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7057 if (SubExpr.isInvalid())
7058 return ExprError();
7059
7060 return MaybeCreateExprWithCleanups(SubExpr.get());
7061}
7062
7063Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7064 assert(SubExpr && "subexpression can't be null!")((void)0);
7065
7066 CleanupVarDeclMarking();
7067
7068 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7069 assert(ExprCleanupObjects.size() >= FirstCleanup)((void)0);
7070 assert(Cleanup.exprNeedsCleanups() ||((void)0)
7071 ExprCleanupObjects.size() == FirstCleanup)((void)0);
7072 if (!Cleanup.exprNeedsCleanups())
7073 return SubExpr;
7074
7075 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7076 ExprCleanupObjects.size() - FirstCleanup);
7077
7078 auto *E = ExprWithCleanups::Create(
7079 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7080 DiscardCleanupsInEvaluationContext();
7081
7082 return E;
7083}
7084
7085Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7086 assert(SubStmt && "sub-statement can't be null!")((void)0);
7087
7088 CleanupVarDeclMarking();
7089
7090 if (!Cleanup.exprNeedsCleanups())
7091 return SubStmt;
7092
7093 // FIXME: In order to attach the temporaries, wrap the statement into
7094 // a StmtExpr; currently this is only used for asm statements.
7095 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7096 // a new AsmStmtWithTemporaries.
7097 CompoundStmt *CompStmt = CompoundStmt::Create(
7098 Context, SubStmt, SourceLocation(), SourceLocation());
7099 Expr *E = new (Context)
7100 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7101 /*FIXME TemplateDepth=*/0);
7102 return MaybeCreateExprWithCleanups(E);
7103}
7104
7105/// Process the expression contained within a decltype. For such expressions,
7106/// certain semantic checks on temporaries are delayed until this point, and
7107/// are omitted for the 'topmost' call in the decltype expression. If the
7108/// topmost call bound a temporary, strip that temporary off the expression.
7109ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7110 assert(ExprEvalContexts.back().ExprContext ==((void)0)
7111 ExpressionEvaluationContextRecord::EK_Decltype &&((void)0)
7112 "not in a decltype expression")((void)0);
7113
7114 ExprResult Result = CheckPlaceholderExpr(E);
7115 if (Result.isInvalid())
7116 return ExprError();
7117 E = Result.get();
7118
7119 // C++11 [expr.call]p11:
7120 // If a function call is a prvalue of object type,
7121 // -- if the function call is either
7122 // -- the operand of a decltype-specifier, or
7123 // -- the right operand of a comma operator that is the operand of a
7124 // decltype-specifier,
7125 // a temporary object is not introduced for the prvalue.
7126
7127 // Recursively rebuild ParenExprs and comma expressions to strip out the
7128 // outermost CXXBindTemporaryExpr, if any.
7129 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7130 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7131 if (SubExpr.isInvalid())
7132 return ExprError();
7133 if (SubExpr.get() == PE->getSubExpr())
7134 return E;
7135 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7136 }
7137 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7138 if (BO->getOpcode() == BO_Comma) {
7139 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7140 if (RHS.isInvalid())
7141 return ExprError();
7142 if (RHS.get() == BO->getRHS())
7143 return E;
7144 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7145 BO->getType(), BO->getValueKind(),
7146 BO->getObjectKind(), BO->getOperatorLoc(),
7147 BO->getFPFeatures(getLangOpts()));
7148 }
7149 }
7150
7151 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7152 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7153 : nullptr;
7154 if (TopCall)
7155 E = TopCall;
7156 else
7157 TopBind = nullptr;
7158
7159 // Disable the special decltype handling now.
7160 ExprEvalContexts.back().ExprContext =
7161 ExpressionEvaluationContextRecord::EK_Other;
7162
7163 Result = CheckUnevaluatedOperand(E);
7164 if (Result.isInvalid())
7165 return ExprError();
7166 E = Result.get();
7167
7168 // In MS mode, don't perform any extra checking of call return types within a
7169 // decltype expression.
7170 if (getLangOpts().MSVCCompat)
7171 return E;
7172
7173 // Perform the semantic checks we delayed until this point.
7174 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7175 I != N; ++I) {
7176 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7177 if (Call == TopCall)
7178 continue;
7179
7180 if (CheckCallReturnType(Call->getCallReturnType(Context),
7181 Call->getBeginLoc(), Call, Call->getDirectCallee()))
7182 return ExprError();
7183 }
7184
7185 // Now all relevant types are complete, check the destructors are accessible
7186 // and non-deleted, and annotate them on the temporaries.
7187 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7188 I != N; ++I) {
7189 CXXBindTemporaryExpr *Bind =
7190 ExprEvalContexts.back().DelayedDecltypeBinds[I];
7191 if (Bind == TopBind)
7192 continue;
7193
7194 CXXTemporary *Temp = Bind->getTemporary();
7195
7196 CXXRecordDecl *RD =
7197 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7198 CXXDestructorDecl *Destructor = LookupDestructor(RD);
7199 Temp->setDestructor(Destructor);
7200
7201 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7202 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7203 PDiag(diag::err_access_dtor_temp)
7204 << Bind->getType());
7205 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7206 return ExprError();
7207
7208 // We need a cleanup, but we don't need to remember the temporary.
7209 Cleanup.setExprNeedsCleanups(true);
7210 }
7211
7212 // Possibly strip off the top CXXBindTemporaryExpr.
7213 return E;
7214}
7215
7216/// Note a set of 'operator->' functions that were used for a member access.
7217static void noteOperatorArrows(Sema &S,
7218 ArrayRef<FunctionDecl *> OperatorArrows) {
7219 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7220 // FIXME: Make this configurable?
7221 unsigned Limit = 9;
7222 if (OperatorArrows.size() > Limit) {
7223 // Produce Limit-1 normal notes and one 'skipping' note.
7224 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7225 SkipCount = OperatorArrows.size() - (Limit - 1);
7226 }
7227
7228 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7229 if (I == SkipStart) {
7230 S.Diag(OperatorArrows[I]->getLocation(),
7231 diag::note_operator_arrows_suppressed)
7232 << SkipCount;
7233 I += SkipCount;
7234 } else {
7235 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7236 << OperatorArrows[I]->getCallResultType();
7237 ++I;
7238 }
7239 }
7240}
7241
7242ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7243 SourceLocation OpLoc,
7244 tok::TokenKind OpKind,
7245 ParsedType &ObjectType,
7246 bool &MayBePseudoDestructor) {
7247 // Since this might be a postfix expression, get rid of ParenListExprs.
7248 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7249 if (Result.isInvalid()) return ExprError();
7250 Base = Result.get();
7251
7252 Result = CheckPlaceholderExpr(Base);
7253 if (Result.isInvalid()) return ExprError();
7254 Base = Result.get();
7255
7256 QualType BaseType = Base->getType();
7257 MayBePseudoDestructor = false;
7258 if (BaseType->isDependentType()) {
7259 // If we have a pointer to a dependent type and are using the -> operator,
7260 // the object type is the type that the pointer points to. We might still
7261 // have enough information about that type to do something useful.
7262 if (OpKind == tok::arrow)
7263 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7264 BaseType = Ptr->getPointeeType();
7265
7266 ObjectType = ParsedType::make(BaseType);
7267 MayBePseudoDestructor = true;
7268 return Base;
7269 }
7270
7271 // C++ [over.match.oper]p8:
7272 // [...] When operator->returns, the operator-> is applied to the value
7273 // returned, with the original second operand.
7274 if (OpKind == tok::arrow) {
7275 QualType StartingType = BaseType;
7276 bool NoArrowOperatorFound = false;
7277 bool FirstIteration = true;
7278 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7279 // The set of types we've considered so far.
7280 llvm::SmallPtrSet<CanQualType,8> CTypes;
7281 SmallVector<FunctionDecl*, 8> OperatorArrows;
7282 CTypes.insert(Context.getCanonicalType(BaseType));
7283
7284 while (BaseType->isRecordType()) {
7285 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7286 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7287 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7288 noteOperatorArrows(*this, OperatorArrows);
7289 Diag(OpLoc, diag::note_operator_arrow_depth)
7290 << getLangOpts().ArrowDepth;
7291 return ExprError();
7292 }
7293
7294 Result = BuildOverloadedArrowExpr(
7295 S, Base, OpLoc,
7296 // When in a template specialization and on the first loop iteration,
7297 // potentially give the default diagnostic (with the fixit in a
7298 // separate note) instead of having the error reported back to here
7299 // and giving a diagnostic with a fixit attached to the error itself.
7300 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7301 ? nullptr
7302 : &NoArrowOperatorFound);
7303 if (Result.isInvalid()) {
7304 if (NoArrowOperatorFound) {
7305 if (FirstIteration) {
7306 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7307 << BaseType << 1 << Base->getSourceRange()
7308 << FixItHint::CreateReplacement(OpLoc, ".");
7309 OpKind = tok::period;
7310 break;
7311 }
7312 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7313 << BaseType << Base->getSourceRange();
7314 CallExpr *CE = dyn_cast<CallExpr>(Base);
7315 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7316 Diag(CD->getBeginLoc(),
7317 diag::note_member_reference_arrow_from_operator_arrow);
7318 }
7319 }
7320 return ExprError();
7321 }
7322 Base = Result.get();
7323 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7324 OperatorArrows.push_back(OpCall->getDirectCallee());
7325 BaseType = Base->getType();
7326 CanQualType CBaseType = Context.getCanonicalType(BaseType);
7327 if (!CTypes.insert(CBaseType).second) {
7328 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7329 noteOperatorArrows(*this, OperatorArrows);
7330 return ExprError();
7331 }
7332 FirstIteration = false;
7333 }
7334
7335 if (OpKind == tok::arrow) {
7336 if (BaseType->isPointerType())
7337 BaseType = BaseType->getPointeeType();
7338 else if (auto *AT = Context.getAsArrayType(BaseType))
7339 BaseType = AT->getElementType();
7340 }
7341 }
7342
7343 // Objective-C properties allow "." access on Objective-C pointer types,
7344 // so adjust the base type to the object type itself.
7345 if (BaseType->isObjCObjectPointerType())
7346 BaseType = BaseType->getPointeeType();
7347
7348 // C++ [basic.lookup.classref]p2:
7349 // [...] If the type of the object expression is of pointer to scalar
7350 // type, the unqualified-id is looked up in the context of the complete
7351 // postfix-expression.
7352 //
7353 // This also indicates that we could be parsing a pseudo-destructor-name.
7354 // Note that Objective-C class and object types can be pseudo-destructor
7355 // expressions or normal member (ivar or property) access expressions, and
7356 // it's legal for the type to be incomplete if this is a pseudo-destructor
7357 // call. We'll do more incomplete-type checks later in the lookup process,
7358 // so just skip this check for ObjC types.
7359 if (!BaseType->isRecordType()) {
7360 ObjectType = ParsedType::make(BaseType);
7361 MayBePseudoDestructor = true;
7362 return Base;
7363 }
7364
7365 // The object type must be complete (or dependent), or
7366 // C++11 [expr.prim.general]p3:
7367 // Unlike the object expression in other contexts, *this is not required to
7368 // be of complete type for purposes of class member access (5.2.5) outside
7369 // the member function body.
7370 if (!BaseType->isDependentType() &&
7371 !isThisOutsideMemberFunctionBody(BaseType) &&
7372 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
7373 return ExprError();
7374
7375 // C++ [basic.lookup.classref]p2:
7376 // If the id-expression in a class member access (5.2.5) is an
7377 // unqualified-id, and the type of the object expression is of a class
7378 // type C (or of pointer to a class type C), the unqualified-id is looked
7379 // up in the scope of class C. [...]
7380 ObjectType = ParsedType::make(BaseType);
7381 return Base;
7382}
7383
7384static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7385 tok::TokenKind &OpKind, SourceLocation OpLoc) {
7386 if (Base->hasPlaceholderType()) {
7387 ExprResult result = S.CheckPlaceholderExpr(Base);
7388 if (result.isInvalid()) return true;
7389 Base = result.get();
7390 }
7391 ObjectType = Base->getType();
7392
7393 // C++ [expr.pseudo]p2:
7394 // The left-hand side of the dot operator shall be of scalar type. The
7395 // left-hand side of the arrow operator shall be of pointer to scalar type.
7396 // This scalar type is the object type.
7397 // Note that this is rather different from the normal handling for the
7398 // arrow operator.
7399 if (OpKind == tok::arrow) {
7400 // The operator requires a prvalue, so perform lvalue conversions.
7401 // Only do this if we might plausibly end with a pointer, as otherwise
7402 // this was likely to be intended to be a '.'.
7403 if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7404 ObjectType->isFunctionType()) {
7405 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7406 if (BaseResult.isInvalid())
7407 return true;
7408 Base = BaseResult.get();
7409 ObjectType = Base->getType();
7410 }
7411
7412 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7413 ObjectType = Ptr->getPointeeType();
7414 } else if (!Base->isTypeDependent()) {
7415 // The user wrote "p->" when they probably meant "p."; fix it.
7416 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7417 << ObjectType << true
7418 << FixItHint::CreateReplacement(OpLoc, ".");
7419 if (S.isSFINAEContext())
7420 return true;
7421
7422 OpKind = tok::period;
7423 }
7424 }
7425
7426 return false;
7427}
7428
7429/// Check if it's ok to try and recover dot pseudo destructor calls on
7430/// pointer objects.
7431static bool
7432canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7433 QualType DestructedType) {
7434 // If this is a record type, check if its destructor is callable.
7435 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7436 if (RD->hasDefinition())
7437 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7438 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7439 return false;
7440 }
7441
7442 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7443 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7444 DestructedType->isVectorType();
7445}
7446
7447ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7448 SourceLocation OpLoc,
7449 tok::TokenKind OpKind,
7450 const CXXScopeSpec &SS,
7451 TypeSourceInfo *ScopeTypeInfo,
7452 SourceLocation CCLoc,
7453 SourceLocation TildeLoc,
7454 PseudoDestructorTypeStorage Destructed) {
7455 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7456
7457 QualType ObjectType;
7458 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7459 return ExprError();
7460
7461 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7462 !ObjectType->isVectorType()) {
7463 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7464 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7465 else {
7466 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7467 << ObjectType << Base->getSourceRange();
7468 return ExprError();
7469 }
7470 }
7471
7472 // C++ [expr.pseudo]p2:
7473 // [...] The cv-unqualified versions of the object type and of the type
7474 // designated by the pseudo-destructor-name shall be the same type.
7475 if (DestructedTypeInfo) {
7476 QualType DestructedType = DestructedTypeInfo->getType();
7477 SourceLocation DestructedTypeStart
7478 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
7479 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7480 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7481 // Detect dot pseudo destructor calls on pointer objects, e.g.:
7482 // Foo *foo;
7483 // foo.~Foo();
7484 if (OpKind == tok::period && ObjectType->isPointerType() &&
7485 Context.hasSameUnqualifiedType(DestructedType,
7486 ObjectType->getPointeeType())) {
7487 auto Diagnostic =
7488 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7489 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7490
7491 // Issue a fixit only when the destructor is valid.
7492 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7493 *this, DestructedType))
7494 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7495
7496 // Recover by setting the object type to the destructed type and the
7497 // operator to '->'.
7498 ObjectType = DestructedType;
7499 OpKind = tok::arrow;
7500 } else {
7501 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7502 << ObjectType << DestructedType << Base->getSourceRange()
7503 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7504
7505 // Recover by setting the destructed type to the object type.
7506 DestructedType = ObjectType;
7507 DestructedTypeInfo =
7508 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7509 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7510 }
7511 } else if (DestructedType.getObjCLifetime() !=
7512 ObjectType.getObjCLifetime()) {
7513
7514 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7515 // Okay: just pretend that the user provided the correctly-qualified
7516 // type.
7517 } else {
7518 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7519 << ObjectType << DestructedType << Base->getSourceRange()
7520 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7521 }
7522
7523 // Recover by setting the destructed type to the object type.
7524 DestructedType = ObjectType;
7525 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7526 DestructedTypeStart);
7527 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7528 }
7529 }
7530 }
7531
7532 // C++ [expr.pseudo]p2:
7533 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7534 // form
7535 //
7536 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7537 //
7538 // shall designate the same scalar type.
7539 if (ScopeTypeInfo) {
7540 QualType ScopeType = ScopeTypeInfo->getType();
7541 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7542 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7543
7544 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
7545 diag::err_pseudo_dtor_type_mismatch)
7546 << ObjectType << ScopeType << Base->getSourceRange()
7547 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
7548
7549 ScopeType = QualType();
7550 ScopeTypeInfo = nullptr;
7551 }
7552 }
7553
7554 Expr *Result
7555 = new (Context) CXXPseudoDestructorExpr(Context, Base,
7556 OpKind == tok::arrow, OpLoc,
7557 SS.getWithLocInContext(Context),
7558 ScopeTypeInfo,
7559 CCLoc,
7560 TildeLoc,
7561 Destructed);
7562
7563 return Result;
7564}
7565
7566ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7567 SourceLocation OpLoc,
7568 tok::TokenKind OpKind,
7569 CXXScopeSpec &SS,
7570 UnqualifiedId &FirstTypeName,
7571 SourceLocation CCLoc,
7572 SourceLocation TildeLoc,
7573 UnqualifiedId &SecondTypeName) {
7574 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||((void)0)
7575 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&((void)0)
7576 "Invalid first type name in pseudo-destructor")((void)0);
7577 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||((void)0)
7578 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&((void)0)
7579 "Invalid second type name in pseudo-destructor")((void)0);
7580
7581 QualType ObjectType;
7582 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7583 return ExprError();
7584
7585 // Compute the object type that we should use for name lookup purposes. Only
7586 // record types and dependent types matter.
7587 ParsedType ObjectTypePtrForLookup;
7588 if (!SS.isSet()) {
7589 if (ObjectType->isRecordType())
7590 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7591 else if (ObjectType->isDependentType())
7592 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7593 }
7594
7595 // Convert the name of the type being destructed (following the ~) into a
7596 // type (with source-location information).
7597 QualType DestructedType;
7598 TypeSourceInfo *DestructedTypeInfo = nullptr;
7599 PseudoDestructorTypeStorage Destructed;
7600 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7601 ParsedType T = getTypeName(*SecondTypeName.Identifier,
7602 SecondTypeName.StartLocation,
7603 S, &SS, true, false, ObjectTypePtrForLookup,
7604 /*IsCtorOrDtorName*/true);
7605 if (!T &&
7606 ((SS.isSet() && !computeDeclContext(SS, false)) ||
7607 (!SS.isSet() && ObjectType->isDependentType()))) {
7608 // The name of the type being destroyed is a dependent name, and we
7609 // couldn't find anything useful in scope. Just store the identifier and
7610 // it's location, and we'll perform (qualified) name lookup again at
7611 // template instantiation time.
7612 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7613 SecondTypeName.StartLocation);
7614 } else if (!T) {
7615 Diag(SecondTypeName.StartLocation,
7616 diag::err_pseudo_dtor_destructor_non_type)
7617 << SecondTypeName.Identifier << ObjectType;
7618 if (isSFINAEContext())
7619 return ExprError();
7620
7621 // Recover by assuming we had the right type all along.
7622 DestructedType = ObjectType;
7623 } else
7624 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7625 } else {
7626 // Resolve the template-id to a type.
7627 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7628 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7629 TemplateId->NumArgs);
7630 TypeResult T = ActOnTemplateIdType(S,
7631 SS,
7632 TemplateId->TemplateKWLoc,
7633 TemplateId->Template,
7634 TemplateId->Name,
7635 TemplateId->TemplateNameLoc,
7636 TemplateId->LAngleLoc,
7637 TemplateArgsPtr,
7638 TemplateId->RAngleLoc,
7639 /*IsCtorOrDtorName*/true);
7640 if (T.isInvalid() || !T.get()) {
7641 // Recover by assuming we had the right type all along.
7642 DestructedType = ObjectType;
7643 } else
7644 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7645 }
7646
7647 // If we've performed some kind of recovery, (re-)build the type source
7648 // information.
7649 if (!DestructedType.isNull()) {
7650 if (!DestructedTypeInfo)
7651 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7652 SecondTypeName.StartLocation);
7653 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7654 }
7655
7656 // Convert the name of the scope type (the type prior to '::') into a type.
7657 TypeSourceInfo *ScopeTypeInfo = nullptr;
7658 QualType ScopeType;
7659 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7660 FirstTypeName.Identifier) {
7661 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7662 ParsedType T = getTypeName(*FirstTypeName.Identifier,
7663 FirstTypeName.StartLocation,
7664 S, &SS, true, false, ObjectTypePtrForLookup,
7665 /*IsCtorOrDtorName*/true);
7666 if (!T) {
7667 Diag(FirstTypeName.StartLocation,
7668 diag::err_pseudo_dtor_destructor_non_type)
7669 << FirstTypeName.Identifier << ObjectType;
7670
7671 if (isSFINAEContext())
7672 return ExprError();
7673
7674 // Just drop this type. It's unnecessary anyway.
7675 ScopeType = QualType();
7676 } else
7677 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7678 } else {
7679 // Resolve the template-id to a type.
7680 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7681 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7682 TemplateId->NumArgs);
7683 TypeResult T = ActOnTemplateIdType(S,
7684 SS,
7685 TemplateId->TemplateKWLoc,
7686 TemplateId->Template,
7687 TemplateId->Name,
7688 TemplateId->TemplateNameLoc,
7689 TemplateId->LAngleLoc,
7690 TemplateArgsPtr,
7691 TemplateId->RAngleLoc,
7692 /*IsCtorOrDtorName*/true);
7693 if (T.isInvalid() || !T.get()) {
7694 // Recover by dropping this type.
7695 ScopeType = QualType();
7696 } else
7697 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7698 }
7699 }
7700
7701 if (!ScopeType.isNull() && !ScopeTypeInfo)
7702 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7703 FirstTypeName.StartLocation);
7704
7705
7706 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7707 ScopeTypeInfo, CCLoc, TildeLoc,
7708 Destructed);
7709}
7710
7711ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7712 SourceLocation OpLoc,
7713 tok::TokenKind OpKind,
7714 SourceLocation TildeLoc,
7715 const DeclSpec& DS) {
7716 QualType ObjectType;
7717 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7718 return ExprError();
7719
7720 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7721 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7722 return true;
7723 }
7724
7725 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7726 false);
7727
7728 TypeLocBuilder TLB;
7729 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7730 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7731 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7732 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7733
7734 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7735 nullptr, SourceLocation(), TildeLoc,
7736 Destructed);
7737}
7738
7739ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7740 CXXConversionDecl *Method,
7741 bool HadMultipleCandidates) {
7742 // Convert the expression to match the conversion function's implicit object
7743 // parameter.
7744 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7745 FoundDecl, Method);
7746 if (Exp.isInvalid())
7747 return true;
7748
7749 if (Method->getParent()->isLambda() &&
7750 Method->getConversionType()->isBlockPointerType()) {
7751 // This is a lambda conversion to block pointer; check if the argument
7752 // was a LambdaExpr.
7753 Expr *SubE = E;
7754 CastExpr *CE = dyn_cast<CastExpr>(SubE);
7755 if (CE && CE->getCastKind() == CK_NoOp)
7756 SubE = CE->getSubExpr();
7757 SubE = SubE->IgnoreParens();
7758 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7759 SubE = BE->getSubExpr();
7760 if (isa<LambdaExpr>(SubE)) {
7761 // For the conversion to block pointer on a lambda expression, we
7762 // construct a special BlockLiteral instead; this doesn't really make
7763 // a difference in ARC, but outside of ARC the resulting block literal
7764 // follows the normal lifetime rules for block literals instead of being
7765 // autoreleased.
7766 PushExpressionEvaluationContext(
7767 ExpressionEvaluationContext::PotentiallyEvaluated);
7768 ExprResult BlockExp = BuildBlockForLambdaConversion(
7769 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7770 PopExpressionEvaluationContext();
7771
7772 // FIXME: This note should be produced by a CodeSynthesisContext.
7773 if (BlockExp.isInvalid())
7774 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7775 return BlockExp;
7776 }
7777 }
7778
7779 MemberExpr *ME =
7780 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7781 NestedNameSpecifierLoc(), SourceLocation(), Method,
7782 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7783 HadMultipleCandidates, DeclarationNameInfo(),
7784 Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
7785
7786 QualType ResultType = Method->getReturnType();
7787 ExprValueKind VK = Expr::getValueKindForType(ResultType);
7788 ResultType = ResultType.getNonLValueExprType(Context);
7789
7790 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7791 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
7792 CurFPFeatureOverrides());
7793
7794 if (CheckFunctionCall(Method, CE,
7795 Method->getType()->castAs<FunctionProtoType>()))
7796 return ExprError();
7797
7798 return CheckForImmediateInvocation(CE, CE->getMethodDecl());
7799}
7800
7801ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7802 SourceLocation RParen) {
7803 // If the operand is an unresolved lookup expression, the expression is ill-
7804 // formed per [over.over]p1, because overloaded function names cannot be used
7805 // without arguments except in explicit contexts.
7806 ExprResult R = CheckPlaceholderExpr(Operand);
7807 if (R.isInvalid())
7808 return R;
7809
7810 R = CheckUnevaluatedOperand(R.get());
7811 if (R.isInvalid())
7812 return ExprError();
7813
7814 Operand = R.get();
7815
7816 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
7817 Operand->HasSideEffects(Context, false)) {
7818 // The expression operand for noexcept is in an unevaluated expression
7819 // context, so side effects could result in unintended consequences.
7820 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7821 }
7822
7823 CanThrowResult CanThrow = canThrow(Operand);
7824 return new (Context)
7825 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7826}
7827
7828ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7829 Expr *Operand, SourceLocation RParen) {
7830 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7831}
7832
7833static void MaybeDecrementCount(
7834 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
7835 DeclRefExpr *LHS = nullptr;
7836 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7837 if (BO->getLHS()->getType()->isDependentType() ||
7838 BO->getRHS()->getType()->isDependentType()) {
7839 if (BO->getOpcode() != BO_Assign)
7840 return;
7841 } else if (!BO->isAssignmentOp())
7842 return;
7843 LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
7844 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
7845 if (COCE->getOperator() != OO_Equal)
7846 return;
7847 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
7848 }
7849 if (!LHS)
7850 return;
7851 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
7852 if (!VD)
7853 return;
7854 auto iter = RefsMinusAssignments.find(VD);
7855 if (iter == RefsMinusAssignments.end())
7856 return;
7857 iter->getSecond()--;
7858}
7859
7860/// Perform the conversions required for an expression used in a
7861/// context that ignores the result.
7862ExprResult Sema::IgnoredValueConversions(Expr *E) {
7863 MaybeDecrementCount(E, RefsMinusAssignments);
7864
7865 if (E->hasPlaceholderType()) {
7866 ExprResult result = CheckPlaceholderExpr(E);
7867 if (result.isInvalid()) return E;
7868 E = result.get();
7869 }
7870
7871 // C99 6.3.2.1:
7872 // [Except in specific positions,] an lvalue that does not have
7873 // array type is converted to the value stored in the
7874 // designated object (and is no longer an lvalue).
7875 if (E->isPRValue()) {
7876 // In C, function designators (i.e. expressions of function type)
7877 // are r-values, but we still want to do function-to-pointer decay
7878 // on them. This is both technically correct and convenient for
7879 // some clients.
7880 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7881 return DefaultFunctionArrayConversion(E);
7882
7883 return E;
7884 }
7885
7886 if (getLangOpts().CPlusPlus) {
7887 // The C++11 standard defines the notion of a discarded-value expression;
7888 // normally, we don't need to do anything to handle it, but if it is a
7889 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7890 // conversion.
7891 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
7892 ExprResult Res = DefaultLvalueConversion(E);
7893 if (Res.isInvalid())
7894 return E;
7895 E = Res.get();
7896 } else {
7897 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7898 // it occurs as a discarded-value expression.
7899 CheckUnusedVolatileAssignment(E);
7900 }
7901
7902 // C++1z:
7903 // If the expression is a prvalue after this optional conversion, the
7904 // temporary materialization conversion is applied.
7905 //
7906 // We skip this step: IR generation is able to synthesize the storage for
7907 // itself in the aggregate case, and adding the extra node to the AST is
7908 // just clutter.
7909 // FIXME: We don't emit lifetime markers for the temporaries due to this.
7910 // FIXME: Do any other AST consumers care about this?
7911 return E;
7912 }
7913
7914 // GCC seems to also exclude expressions of incomplete enum type.
7915 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7916 if (!T->getDecl()->isComplete()) {
7917 // FIXME: stupid workaround for a codegen bug!
7918 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7919 return E;
7920 }
7921 }
7922
7923 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7924 if (Res.isInvalid())
7925 return E;
7926 E = Res.get();
7927
7928 if (!E->getType()->isVoidType())
7929 RequireCompleteType(E->getExprLoc(), E->getType(),
7930 diag::err_incomplete_type);
7931 return E;
7932}
7933
7934ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
7935 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7936 // it occurs as an unevaluated operand.
7937 CheckUnusedVolatileAssignment(E);
7938
7939 return E;
7940}
7941
7942// If we can unambiguously determine whether Var can never be used
7943// in a constant expression, return true.
7944// - if the variable and its initializer are non-dependent, then
7945// we can unambiguously check if the variable is a constant expression.
7946// - if the initializer is not value dependent - we can determine whether
7947// it can be used to initialize a constant expression. If Init can not
7948// be used to initialize a constant expression we conclude that Var can
7949// never be a constant expression.
7950// - FXIME: if the initializer is dependent, we can still do some analysis and
7951// identify certain cases unambiguously as non-const by using a Visitor:
7952// - such as those that involve odr-use of a ParmVarDecl, involve a new
7953// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
7954static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7955 ASTContext &Context) {
7956 if (isa<ParmVarDecl>(Var)) return true;
7957 const VarDecl *DefVD = nullptr;
7958
7959 // If there is no initializer - this can not be a constant expression.
7960 if (!Var->getAnyInitializer(DefVD)) return true;
7961 assert(DefVD)((void)0);
7962 if (DefVD->isWeak()) return false;
7963 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
7964
7965 Expr *Init = cast<Expr>(Eval->Value);
7966
7967 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
7968 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
7969 // of value-dependent expressions, and use it here to determine whether the
7970 // initializer is a potential constant expression.
7971 return false;
7972 }
7973
7974 return !Var->isUsableInConstantExpressions(Context);
7975}
7976
7977/// Check if the current lambda has any potential captures
7978/// that must be captured by any of its enclosing lambdas that are ready to
7979/// capture. If there is a lambda that can capture a nested
7980/// potential-capture, go ahead and do so. Also, check to see if any
7981/// variables are uncaptureable or do not involve an odr-use so do not
7982/// need to be captured.
7983
7984static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7985 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7986
7987 assert(!S.isUnevaluatedContext())((void)0);
7988 assert(S.CurContext->isDependentContext())((void)0);
7989#ifndef NDEBUG1
7990 DeclContext *DC = S.CurContext;
7991 while (DC && isa<CapturedDecl>(DC))
7992 DC = DC->getParent();
7993 assert(((void)0)
7994 CurrentLSI->CallOperator == DC &&((void)0)
7995 "The current call operator must be synchronized with Sema's CurContext")((void)0);
7996#endif // NDEBUG
7997
7998 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7999
8000 // All the potentially captureable variables in the current nested
8001 // lambda (within a generic outer lambda), must be captured by an
8002 // outer lambda that is enclosed within a non-dependent context.
8003 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
8004 // If the variable is clearly identified as non-odr-used and the full
8005 // expression is not instantiation dependent, only then do we not
8006 // need to check enclosing lambda's for speculative captures.
8007 // For e.g.:
8008 // Even though 'x' is not odr-used, it should be captured.
8009 // int test() {
8010 // const int x = 10;
8011 // auto L = [=](auto a) {
8012 // (void) +x + a;
8013 // };
8014 // }
8015 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8016 !IsFullExprInstantiationDependent)
8017 return;
8018
8019 // If we have a capture-capable lambda for the variable, go ahead and
8020 // capture the variable in that lambda (and all its enclosing lambdas).
8021 if (const Optional<unsigned> Index =
8022 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8023 S.FunctionScopes, Var, S))
8024 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
8025 Index.getValue());
8026 const bool IsVarNeverAConstantExpression =
8027 VariableCanNeverBeAConstantExpression(Var, S.Context);
8028 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8029 // This full expression is not instantiation dependent or the variable
8030 // can not be used in a constant expression - which means
8031 // this variable must be odr-used here, so diagnose a
8032 // capture violation early, if the variable is un-captureable.
8033 // This is purely for diagnosing errors early. Otherwise, this
8034 // error would get diagnosed when the lambda becomes capture ready.
8035 QualType CaptureType, DeclRefType;
8036 SourceLocation ExprLoc = VarExpr->getExprLoc();
8037 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8038 /*EllipsisLoc*/ SourceLocation(),
8039 /*BuildAndDiagnose*/false, CaptureType,
8040 DeclRefType, nullptr)) {
8041 // We will never be able to capture this variable, and we need
8042 // to be able to in any and all instantiations, so diagnose it.
8043 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8044 /*EllipsisLoc*/ SourceLocation(),
8045 /*BuildAndDiagnose*/true, CaptureType,
8046 DeclRefType, nullptr);
8047 }
8048 }
8049 });
8050
8051 // Check if 'this' needs to be captured.
8052 if (CurrentLSI->hasPotentialThisCapture()) {
8053 // If we have a capture-capable lambda for 'this', go ahead and capture
8054 // 'this' in that lambda (and all its enclosing lambdas).
8055 if (const Optional<unsigned> Index =
8056 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8057 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8058 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
8059 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8060 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8061 &FunctionScopeIndexOfCapturableLambda);
8062 }
8063 }
8064
8065 // Reset all the potential captures at the end of each full-expression.
8066 CurrentLSI->clearPotentialCaptures();
8067}
8068
8069static ExprResult attemptRecovery(Sema &SemaRef,
8070 const TypoCorrectionConsumer &Consumer,
8071 const TypoCorrection &TC) {
8072 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8073 Consumer.getLookupResult().getLookupKind());
8074 const CXXScopeSpec *SS = Consumer.getSS();
8075 CXXScopeSpec NewSS;
8076
8077 // Use an approprate CXXScopeSpec for building the expr.
8078 if (auto *NNS = TC.getCorrectionSpecifier())
8079 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8080 else if (SS && !TC.WillReplaceSpecifier())
8081 NewSS = *SS;
8082
8083 if (auto *ND = TC.getFoundDecl()) {
8084 R.setLookupName(ND->getDeclName());
8085 R.addDecl(ND);
8086 if (ND->isCXXClassMember()) {
8087 // Figure out the correct naming class to add to the LookupResult.
8088 CXXRecordDecl *Record = nullptr;
8089 if (auto *NNS = TC.getCorrectionSpecifier())
8090 Record = NNS->getAsType()->getAsCXXRecordDecl();
8091 if (!Record)
8092 Record =
8093 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8094 if (Record)
8095 R.setNamingClass(Record);
8096
8097 // Detect and handle the case where the decl might be an implicit
8098 // member.
8099 bool MightBeImplicitMember;
8100 if (!Consumer.isAddressOfOperand())
8101 MightBeImplicitMember = true;
8102 else if (!NewSS.isEmpty())
8103 MightBeImplicitMember = false;
8104 else if (R.isOverloadedResult())
8105 MightBeImplicitMember = false;
8106 else if (R.isUnresolvableResult())
8107 MightBeImplicitMember = true;
8108 else
8109 MightBeImplicitMember = isa<FieldDecl>(ND) ||
8110 isa<IndirectFieldDecl>(ND) ||
8111 isa<MSPropertyDecl>(ND);
8112
8113 if (MightBeImplicitMember)
8114 return SemaRef.BuildPossibleImplicitMemberExpr(
8115 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8116 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8117 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8118 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8119 Ivar->getIdentifier());
8120 }
8121 }
8122
8123 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8124 /*AcceptInvalidDecl*/ true);
8125}
8126
8127namespace {
8128class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8129 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8130
8131public:
8132 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8133 : TypoExprs(TypoExprs) {}
8134 bool VisitTypoExpr(TypoExpr *TE) {
8135 TypoExprs.insert(TE);
8136 return true;
8137 }
8138};
8139
8140class TransformTypos : public TreeTransform<TransformTypos> {
8141 typedef TreeTransform<TransformTypos> BaseTransform;
8142
8143 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8144 // process of being initialized.
8145 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8146 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8147 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8148 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8149
8150 /// Emit diagnostics for all of the TypoExprs encountered.
8151 ///
8152 /// If the TypoExprs were successfully corrected, then the diagnostics should
8153 /// suggest the corrections. Otherwise the diagnostics will not suggest
8154 /// anything (having been passed an empty TypoCorrection).
8155 ///
8156 /// If we've failed to correct due to ambiguous corrections, we need to
8157 /// be sure to pass empty corrections and replacements. Otherwise it's
8158 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8159 /// and we don't want to report those diagnostics.
8160 void EmitAllDiagnostics(bool IsAmbiguous) {
8161 for (TypoExpr *TE : TypoExprs) {
8162 auto &State = SemaRef.getTypoExprState(TE);
8163 if (State.DiagHandler) {
8164 TypoCorrection TC = IsAmbiguous
8165 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8166 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8167
8168 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8169 // TypoCorrection, replacing the existing decls. This ensures the right
8170 // NamedDecl is used in diagnostics e.g. in the case where overload
8171 // resolution was used to select one from several possible decls that
8172 // had been stored in the TypoCorrection.
8173 if (auto *ND = getDeclFromExpr(
8174 Replacement.isInvalid() ? nullptr : Replacement.get()))
8175 TC.setCorrectionDecl(ND);
8176
8177 State.DiagHandler(TC);
8178 }
8179 SemaRef.clearDelayedTypo(TE);
8180 }
8181 }
8182
8183 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8184 /// We allow advancement of the correction stream by removing it from the
8185 /// TransformCache which allows `TransformTypoExpr` to advance during the
8186 /// next transformation attempt.
8187 ///
8188 /// Any substitution attempts for the previous TypoExprs (which must have been
8189 /// finished) will need to be retried since it's possible that they will now
8190 /// be invalid given the latest advancement.
8191 ///
8192 /// We need to be sure that we're making progress - it's possible that the
8193 /// tree is so malformed that the transform never makes it to the
8194 /// `TransformTypoExpr`.
8195 ///
8196 /// Returns true if there are any untried correction combinations.
8197 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8198 for (auto TE : TypoExprs) {
8199 auto &State = SemaRef.getTypoExprState(TE);
8200 TransformCache.erase(TE);
8201 if (!State.Consumer->hasMadeAnyCorrectionProgress())
8202 return false;
8203 if (!State.Consumer->finished())
8204 return true;
8205 State.Consumer->resetCorrectionStream();
8206 }
8207 return false;
8208 }
8209
8210 NamedDecl *getDeclFromExpr(Expr *E) {
8211 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8212 E = OverloadResolution[OE];
8213
8214 if (!E)
8215 return nullptr;
8216 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8217 return DRE->getFoundDecl();
8218 if (auto *ME = dyn_cast<MemberExpr>(E))
8219 return ME->getFoundDecl();
8220 // FIXME: Add any other expr types that could be be seen by the delayed typo
8221 // correction TreeTransform for which the corresponding TypoCorrection could
8222 // contain multiple decls.
8223 return nullptr;
8224 }
8225
8226 ExprResult TryTransform(Expr *E) {
8227 Sema::SFINAETrap Trap(SemaRef);
8228 ExprResult Res = TransformExpr(E);
8229 if (Trap.hasErrorOccurred() || Res.isInvalid())
8230 return ExprError();
8231
8232 return ExprFilter(Res.get());
8233 }
8234
8235 // Since correcting typos may intoduce new TypoExprs, this function
8236 // checks for new TypoExprs and recurses if it finds any. Note that it will
8237 // only succeed if it is able to correct all typos in the given expression.
8238 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8239 if (Res.isInvalid()) {
8240 return Res;
8241 }
8242 // Check to see if any new TypoExprs were created. If so, we need to recurse
8243 // to check their validity.
8244 Expr *FixedExpr = Res.get();
8245
8246 auto SavedTypoExprs = std::move(TypoExprs);
8247 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8248 TypoExprs.clear();
8249 AmbiguousTypoExprs.clear();
8250
8251 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8252 if (!TypoExprs.empty()) {
8253 // Recurse to handle newly created TypoExprs. If we're not able to
8254 // handle them, discard these TypoExprs.
8255 ExprResult RecurResult =
8256 RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8257 if (RecurResult.isInvalid()) {
8258 Res = ExprError();
8259 // Recursive corrections didn't work, wipe them away and don't add
8260 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8261 // since we don't want to clear them twice. Note: it's possible the
8262 // TypoExprs were created recursively and thus won't be in our
8263 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8264 auto &SemaTypoExprs = SemaRef.TypoExprs;
8265 for (auto TE : TypoExprs) {
8266 TransformCache.erase(TE);
8267 SemaRef.clearDelayedTypo(TE);
8268
8269 auto SI = find(SemaTypoExprs, TE);
8270 if (SI != SemaTypoExprs.end()) {
8271 SemaTypoExprs.erase(SI);
8272 }
8273 }
8274 } else {
8275 // TypoExpr is valid: add newly created TypoExprs since we were
8276 // able to correct them.
8277 Res = RecurResult;
8278 SavedTypoExprs.set_union(TypoExprs);
8279 }
8280 }
8281
8282 TypoExprs = std::move(SavedTypoExprs);
8283 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8284
8285 return Res;
8286 }
8287
8288 // Try to transform the given expression, looping through the correction
8289 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8290 //
8291 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8292 // true and this method immediately will return an `ExprError`.
8293 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8294 ExprResult Res;
8295 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8296 SemaRef.TypoExprs.clear();
8297
8298 while (true) {
8299 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8300
8301 // Recursion encountered an ambiguous correction. This means that our
8302 // correction itself is ambiguous, so stop now.
8303 if (IsAmbiguous)
8304 break;
8305
8306 // If the transform is still valid after checking for any new typos,
8307 // it's good to go.
8308 if (!Res.isInvalid())
8309 break;
8310
8311 // The transform was invalid, see if we have any TypoExprs with untried
8312 // correction candidates.
8313 if (!CheckAndAdvanceTypoExprCorrectionStreams())
8314 break;
8315 }
8316
8317 // If we found a valid result, double check to make sure it's not ambiguous.
8318 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8319 auto SavedTransformCache =
8320 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8321
8322 // Ensure none of the TypoExprs have multiple typo correction candidates
8323 // with the same edit length that pass all the checks and filters.
8324 while (!AmbiguousTypoExprs.empty()) {
8325 auto TE = AmbiguousTypoExprs.back();
8326
8327 // TryTransform itself can create new Typos, adding them to the TypoExpr map
8328 // and invalidating our TypoExprState, so always fetch it instead of storing.
8329 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8330
8331 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8332 TypoCorrection Next;
8333 do {
8334 // Fetch the next correction by erasing the typo from the cache and calling
8335 // `TryTransform` which will iterate through corrections in
8336 // `TransformTypoExpr`.
8337 TransformCache.erase(TE);
8338 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8339
8340 if (!AmbigRes.isInvalid() || IsAmbiguous) {
8341 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8342 SavedTransformCache.erase(TE);
8343 Res = ExprError();
8344 IsAmbiguous = true;
8345 break;
8346 }
8347 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8348 Next.getEditDistance(false) == TC.getEditDistance(false));
8349
8350 if (IsAmbiguous)
8351 break;
8352
8353 AmbiguousTypoExprs.remove(TE);
8354 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8355 TransformCache[TE] = SavedTransformCache[TE];
8356 }
8357 TransformCache = std::move(SavedTransformCache);
8358 }
8359
8360 // Wipe away any newly created TypoExprs that we don't know about. Since we
8361 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8362 // possible if a `TypoExpr` is created during a transformation but then
8363 // fails before we can discover it.
8364 auto &SemaTypoExprs = SemaRef.TypoExprs;
8365 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8366 auto TE = *Iterator;
8367 auto FI = find(TypoExprs, TE);
8368 if (FI != TypoExprs.end()) {
8369 Iterator++;
8370 continue;
8371 }
8372 SemaRef.clearDelayedTypo(TE);
8373 Iterator = SemaTypoExprs.erase(Iterator);
8374 }
8375 SemaRef.TypoExprs = std::move(SavedTypoExprs);
8376
8377 return Res;
8378 }
8379
8380public:
8381 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8382 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8383
8384 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8385 MultiExprArg Args,
8386 SourceLocation RParenLoc,
8387 Expr *ExecConfig = nullptr) {
8388 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8389 RParenLoc, ExecConfig);
8390 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8391 if (Result.isUsable()) {
8392 Expr *ResultCall = Result.get();
8393 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8394 ResultCall = BE->getSubExpr();
8395 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8396 OverloadResolution[OE] = CE->getCallee();
8397 }
8398 }
8399 return Result;
8400 }
8401
8402 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8403
8404 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8405
8406 ExprResult Transform(Expr *E) {
8407 bool IsAmbiguous = false;
8408 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8409
8410 if (!Res.isUsable())
8411 FindTypoExprs(TypoExprs).TraverseStmt(E);
8412
8413 EmitAllDiagnostics(IsAmbiguous);
8414
8415 return Res;
8416 }
8417
8418 ExprResult TransformTypoExpr(TypoExpr *E) {
8419 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8420 // cached transformation result if there is one and the TypoExpr isn't the
8421 // first one that was encountered.
8422 auto &CacheEntry = TransformCache[E];
8423 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8424 return CacheEntry;
8425 }
8426
8427 auto &State = SemaRef.getTypoExprState(E);
8428 assert(State.Consumer && "Cannot transform a cleared TypoExpr")((void)0);
8429
8430 // For the first TypoExpr and an uncached TypoExpr, find the next likely
8431 // typo correction and return it.
8432 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8433 if (InitDecl && TC.getFoundDecl() == InitDecl)
8434 continue;
8435 // FIXME: If we would typo-correct to an invalid declaration, it's
8436 // probably best to just suppress all errors from this typo correction.
8437 ExprResult NE = State.RecoveryHandler ?
8438 State.RecoveryHandler(SemaRef, E, TC) :
8439 attemptRecovery(SemaRef, *State.Consumer, TC);
8440 if (!NE.isInvalid()) {
8441 // Check whether there may be a second viable correction with the same
8442 // edit distance; if so, remember this TypoExpr may have an ambiguous
8443 // correction so it can be more thoroughly vetted later.
8444 TypoCorrection Next;
8445 if ((Next = State.Consumer->peekNextCorrection()) &&
8446 Next.getEditDistance(false) == TC.getEditDistance(false)) {
8447 AmbiguousTypoExprs.insert(E);
8448 } else {
8449 AmbiguousTypoExprs.remove(E);
8450 }
8451 assert(!NE.isUnset() &&((void)0)
8452 "Typo was transformed into a valid-but-null ExprResult")((void)0);
8453 return CacheEntry = NE;
8454 }
8455 }
8456 return CacheEntry = ExprError();
8457 }
8458};
8459}
8460
8461ExprResult
8462Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8463 bool RecoverUncorrectedTypos,
8464 llvm::function_ref<ExprResult(Expr *)> Filter) {
8465 // If the current evaluation context indicates there are uncorrected typos
8466 // and the current expression isn't guaranteed to not have typos, try to
8467 // resolve any TypoExpr nodes that might be in the expression.
8468 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8469 (E->isTypeDependent() || E->isValueDependent() ||
8470 E->isInstantiationDependent())) {
8471 auto TyposResolved = DelayedTypos.size();
8472 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8473 TyposResolved -= DelayedTypos.size();
8474 if (Result.isInvalid() || Result.get() != E) {
8475 ExprEvalContexts.back().NumTypos -= TyposResolved;
8476 if (Result.isInvalid() && RecoverUncorrectedTypos) {
8477 struct TyposReplace : TreeTransform<TyposReplace> {
8478 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8479 ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8480 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8481 E->getEndLoc(), {});
8482 }
8483 } TT(*this);
8484 return TT.TransformExpr(E);
8485 }
8486 return Result;
8487 }
8488 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?")((void)0);
8489 }
8490 return E;
8491}
8492
8493ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8494 bool DiscardedValue,
8495 bool IsConstexpr) {
8496 ExprResult FullExpr = FE;
8497
8498 if (!FullExpr.get())
8499 return ExprError();
8500
8501 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
8502 return ExprError();
8503
8504 if (DiscardedValue) {
8505 // Top-level expressions default to 'id' when we're in a debugger.
8506 if (getLangOpts().DebuggerCastResultToId &&
8507 FullExpr.get()->getType() == Context.UnknownAnyTy) {
8508 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8509 if (FullExpr.isInvalid())
8510 return ExprError();
8511 }
8512
8513 FullExpr = CheckPlaceholderExpr(FullExpr.get());
8514 if (FullExpr.isInvalid())
8515 return ExprError();
8516
8517 FullExpr = IgnoredValueConversions(FullExpr.get());
8518 if (FullExpr.isInvalid())
8519 return ExprError();
8520
8521 DiagnoseUnusedExprResult(FullExpr.get());
8522 }
8523
8524 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8525 /*RecoverUncorrectedTypos=*/true);
8526 if (FullExpr.isInvalid())
8527 return ExprError();
8528
8529 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8530
8531 // At the end of this full expression (which could be a deeply nested
8532 // lambda), if there is a potential capture within the nested lambda,
8533 // have the outer capture-able lambda try and capture it.
8534 // Consider the following code:
8535 // void f(int, int);
8536 // void f(const int&, double);
8537 // void foo() {
8538 // const int x = 10, y = 20;
8539 // auto L = [=](auto a) {
8540 // auto M = [=](auto b) {
8541 // f(x, b); <-- requires x to be captured by L and M
8542 // f(y, a); <-- requires y to be captured by L, but not all Ms
8543 // };
8544 // };
8545 // }
8546
8547 // FIXME: Also consider what happens for something like this that involves
8548 // the gnu-extension statement-expressions or even lambda-init-captures:
8549 // void f() {
8550 // const int n = 0;
8551 // auto L = [&](auto a) {
8552 // +n + ({ 0; a; });
8553 // };
8554 // }
8555 //
8556 // Here, we see +n, and then the full-expression 0; ends, so we don't
8557 // capture n (and instead remove it from our list of potential captures),
8558 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8559 // for us to see that we need to capture n after all.
8560
8561 LambdaScopeInfo *const CurrentLSI =
8562 getCurLambda(/*IgnoreCapturedRegions=*/true);
8563 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8564 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8565 // for an example of the code that might cause this asynchrony.
8566 // By ensuring we are in the context of a lambda's call operator
8567 // we can fix the bug (we only need to check whether we need to capture
8568 // if we are within a lambda's body); but per the comments in that
8569 // PR, a proper fix would entail :
8570 // "Alternative suggestion:
8571 // - Add to Sema an integer holding the smallest (outermost) scope
8572 // index that we are *lexically* within, and save/restore/set to
8573 // FunctionScopes.size() in InstantiatingTemplate's
8574 // constructor/destructor.
8575 // - Teach the handful of places that iterate over FunctionScopes to
8576 // stop at the outermost enclosing lexical scope."
8577 DeclContext *DC = CurContext;
8578 while (DC && isa<CapturedDecl>(DC))
8579 DC = DC->getParent();
8580 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8581 if (IsInLambdaDeclContext && CurrentLSI &&
8582 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8583 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8584 *this);
8585 return MaybeCreateExprWithCleanups(FullExpr);
8586}
8587
8588StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8589 if (!FullStmt) return StmtError();
8590
8591 return MaybeCreateStmtWithCleanups(FullStmt);
8592}
8593
8594Sema::IfExistsResult
8595Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8596 CXXScopeSpec &SS,
8597 const DeclarationNameInfo &TargetNameInfo) {
8598 DeclarationName TargetName = TargetNameInfo.getName();
8599 if (!TargetName)
8600 return IER_DoesNotExist;
8601
8602 // If the name itself is dependent, then the result is dependent.
8603 if (TargetName.isDependentName())
8604 return IER_Dependent;
8605
8606 // Do the redeclaration lookup in the current scope.
8607 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8608 Sema::NotForRedeclaration);
8609 LookupParsedName(R, S, &SS);
8610 R.suppressDiagnostics();
8611
8612 switch (R.getResultKind()) {
8613 case LookupResult::Found:
8614 case LookupResult::FoundOverloaded:
8615 case LookupResult::FoundUnresolvedValue:
8616 case LookupResult::Ambiguous:
8617 return IER_Exists;
8618
8619 case LookupResult::NotFound:
8620 return IER_DoesNotExist;
8621
8622 case LookupResult::NotFoundInCurrentInstantiation:
8623 return IER_Dependent;
8624 }
8625
8626 llvm_unreachable("Invalid LookupResult Kind!")__builtin_unreachable();
8627}
8628
8629Sema::IfExistsResult
8630Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8631 bool IsIfExists, CXXScopeSpec &SS,
8632 UnqualifiedId &Name) {
8633 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8634
8635 // Check for an unexpanded parameter pack.
8636 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8637 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8638 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8639 return IER_Error;
8640
8641 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8642}
8643
8644concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8645 return BuildExprRequirement(E, /*IsSimple=*/true,
8646 /*NoexceptLoc=*/SourceLocation(),
8647 /*ReturnTypeRequirement=*/{});
8648}
8649
8650concepts::Requirement *
8651Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8652 SourceLocation NameLoc, IdentifierInfo *TypeName,
8653 TemplateIdAnnotation *TemplateId) {
8654 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&((void)0)
8655 "Exactly one of TypeName and TemplateId must be specified.")((void)0);
8656 TypeSourceInfo *TSI = nullptr;
8657 if (TypeName) {
8658 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8659 SS.getWithLocInContext(Context), *TypeName,
8660 NameLoc, &TSI, /*DeducedTypeContext=*/false);
8661 if (T.isNull())
8662 return nullptr;
8663 } else {
8664 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8665 TemplateId->NumArgs);
8666 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8667 TemplateId->TemplateKWLoc,
8668 TemplateId->Template, TemplateId->Name,
8669 TemplateId->TemplateNameLoc,
8670 TemplateId->LAngleLoc, ArgsPtr,
8671 TemplateId->RAngleLoc);
8672 if (T.isInvalid())
8673 return nullptr;
8674 if (GetTypeFromParser(T.get(), &TSI).isNull())
8675 return nullptr;
8676 }
8677 return BuildTypeRequirement(TSI);
8678}
8679
8680concepts::Requirement *
8681Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8682 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8683 /*ReturnTypeRequirement=*/{});
8684}
8685
8686concepts::Requirement *
8687Sema::ActOnCompoundRequirement(
8688 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8689 TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8690 // C++2a [expr.prim.req.compound] p1.3.3
8691 // [..] the expression is deduced against an invented function template
8692 // F [...] F is a void function template with a single type template
8693 // parameter T declared with the constrained-parameter. Form a new
8694 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
8695 // around the constrained-parameter. F has a single parameter whose
8696 // type-specifier is cv T followed by the abstract-declarator. [...]
8697 //
8698 // The cv part is done in the calling function - we get the concept with
8699 // arguments and the abstract declarator with the correct CV qualification and
8700 // have to synthesize T and the single parameter of F.
8701 auto &II = Context.Idents.get("expr-type");
8702 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8703 SourceLocation(),
8704 SourceLocation(), Depth,
8705 /*Index=*/0, &II,
8706 /*Typename=*/true,
8707 /*ParameterPack=*/false,
8708 /*HasTypeConstraint=*/true);
8709
8710 if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8711 /*EllpsisLoc=*/SourceLocation(),
8712 /*AllowUnexpandedPack=*/true))
8713 // Just produce a requirement with no type requirements.
8714 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8715
8716 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8717 SourceLocation(),
8718 ArrayRef<NamedDecl *>(TParam),
8719 SourceLocation(),
8720 /*RequiresClause=*/nullptr);
8721 return BuildExprRequirement(
8722 E, /*IsSimple=*/false, NoexceptLoc,
8723 concepts::ExprRequirement::ReturnTypeRequirement(TPL));
8724}
8725
8726concepts::ExprRequirement *
8727Sema::BuildExprRequirement(
8728 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
8729 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8730 auto Status = concepts::ExprRequirement::SS_Satisfied;
8731 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
8732 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
8733 Status = concepts::ExprRequirement::SS_Dependent;
8734 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
8735 Status = concepts::ExprRequirement::SS_NoexceptNotMet;
8736 else if (ReturnTypeRequirement.isSubstitutionFailure())
8737 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
8738 else if (ReturnTypeRequirement.isTypeConstraint()) {
8739 // C++2a [expr.prim.req]p1.3.3
8740 // The immediately-declared constraint ([temp]) of decltype((E)) shall
8741 // be satisfied.
8742 TemplateParameterList *TPL =
8743 ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
8744 QualType MatchedType =
8745 getDecltypeForParenthesizedExpr(E).getCanonicalType();
8746 llvm::SmallVector<TemplateArgument, 1> Args;
8747 Args.push_back(TemplateArgument(MatchedType));
8748 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
8749 MultiLevelTemplateArgumentList MLTAL(TAL);
8750 for (unsigned I = 0; I < TPL->getDepth(); ++I)
8751 MLTAL.addOuterRetainedLevel();
8752 Expr *IDC =
8753 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
8754 ->getImmediatelyDeclaredConstraint();
8755 ExprResult Constraint = SubstExpr(IDC, MLTAL);
8756 assert(!Constraint.isInvalid() &&((void)0)
8757 "Substitution cannot fail as it is simply putting a type template "((void)0)
8758 "argument into a concept specialization expression's parameter.")((void)0);
8759
8760 SubstitutedConstraintExpr =
8761 cast<ConceptSpecializationExpr>(Constraint.get());
8762 if (!SubstitutedConstraintExpr->isSatisfied())
8763 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
8764 }
8765 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
8766 ReturnTypeRequirement, Status,
8767 SubstitutedConstraintExpr);
8768}
8769
8770concepts::ExprRequirement *
8771Sema::BuildExprRequirement(
8772 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
8773 bool IsSimple, SourceLocation NoexceptLoc,
8774 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8775 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
8776 IsSimple, NoexceptLoc,
8777 ReturnTypeRequirement);
8778}
8779
8780concepts::TypeRequirement *
8781Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
8782 return new (Context) concepts::TypeRequirement(Type);
8783}
8784
8785concepts::TypeRequirement *
8786Sema::BuildTypeRequirement(
8787 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8788 return new (Context) concepts::TypeRequirement(SubstDiag);
8789}
8790
8791concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
8792 return BuildNestedRequirement(Constraint);
8793}
8794
8795concepts::NestedRequirement *
8796Sema::BuildNestedRequirement(Expr *Constraint) {
8797 ConstraintSatisfaction Satisfaction;
8798 if (!Constraint->isInstantiationDependent() &&
8799 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
8800 Constraint->getSourceRange(), Satisfaction))
8801 return nullptr;
8802 return new (Context) concepts::NestedRequirement(Context, Constraint,
8803 Satisfaction);
8804}
8805
8806concepts::NestedRequirement *
8807Sema::BuildNestedRequirement(
8808 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8809 return new (Context) concepts::NestedRequirement(SubstDiag);
8810}
8811
8812RequiresExprBodyDecl *
8813Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
8814 ArrayRef<ParmVarDecl *> LocalParameters,
8815 Scope *BodyScope) {
8816 assert(BodyScope)((void)0);
8817
8818 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
8819 RequiresKWLoc);
8820
8821 PushDeclContext(BodyScope, Body);
8822
8823 for (ParmVarDecl *Param : LocalParameters) {
8824 if (Param->hasDefaultArg())
8825 // C++2a [expr.prim.req] p4
8826 // [...] A local parameter of a requires-expression shall not have a
8827 // default argument. [...]
8828 Diag(Param->getDefaultArgRange().getBegin(),
8829 diag::err_requires_expr_local_parameter_default_argument);
8830 // Ignore default argument and move on
8831
8832 Param->setDeclContext(Body);
8833 // If this has an identifier, add it to the scope stack.
8834 if (Param->getIdentifier()) {
8835 CheckShadow(BodyScope, Param);
8836 PushOnScopeChains(Param, BodyScope);
8837 }
8838 }
8839 return Body;
8840}
8841
8842void Sema::ActOnFinishRequiresExpr() {
8843 assert(CurContext && "DeclContext imbalance!")((void)0);
8844 CurContext = CurContext->getLexicalParent();
8845 assert(CurContext && "Popped translation unit!")((void)0);
8846}
8847
8848ExprResult
8849Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8850 RequiresExprBodyDecl *Body,
8851 ArrayRef<ParmVarDecl *> LocalParameters,
8852 ArrayRef<concepts::Requirement *> Requirements,
8853 SourceLocation ClosingBraceLoc) {
8854 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
8855 Requirements, ClosingBraceLoc);
8856 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
8857 return ExprError();
8858 return RE;
8859}