File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Analysis/LoopInfo.cpp |
Warning: | line 246, column 36 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file defines the LoopInfo class that is used to identify natural loops | |||
10 | // and determine the loop depth of various nodes of the CFG. Note that the | |||
11 | // loops identified may actually be several natural loops that share the same | |||
12 | // header node... not just a single natural loop. | |||
13 | // | |||
14 | //===----------------------------------------------------------------------===// | |||
15 | ||||
16 | #include "llvm/Analysis/LoopInfo.h" | |||
17 | #include "llvm/ADT/DepthFirstIterator.h" | |||
18 | #include "llvm/ADT/ScopeExit.h" | |||
19 | #include "llvm/ADT/SmallPtrSet.h" | |||
20 | #include "llvm/Analysis/IVDescriptors.h" | |||
21 | #include "llvm/Analysis/LoopInfoImpl.h" | |||
22 | #include "llvm/Analysis/LoopIterator.h" | |||
23 | #include "llvm/Analysis/LoopNestAnalysis.h" | |||
24 | #include "llvm/Analysis/MemorySSA.h" | |||
25 | #include "llvm/Analysis/MemorySSAUpdater.h" | |||
26 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | |||
27 | #include "llvm/Analysis/ValueTracking.h" | |||
28 | #include "llvm/Config/llvm-config.h" | |||
29 | #include "llvm/IR/CFG.h" | |||
30 | #include "llvm/IR/Constants.h" | |||
31 | #include "llvm/IR/DebugLoc.h" | |||
32 | #include "llvm/IR/Dominators.h" | |||
33 | #include "llvm/IR/IRPrintingPasses.h" | |||
34 | #include "llvm/IR/Instructions.h" | |||
35 | #include "llvm/IR/LLVMContext.h" | |||
36 | #include "llvm/IR/Metadata.h" | |||
37 | #include "llvm/IR/PassManager.h" | |||
38 | #include "llvm/IR/PrintPasses.h" | |||
39 | #include "llvm/InitializePasses.h" | |||
40 | #include "llvm/Support/CommandLine.h" | |||
41 | #include "llvm/Support/Debug.h" | |||
42 | #include "llvm/Support/raw_ostream.h" | |||
43 | #include <algorithm> | |||
44 | using namespace llvm; | |||
45 | ||||
46 | // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. | |||
47 | template class llvm::LoopBase<BasicBlock, Loop>; | |||
48 | template class llvm::LoopInfoBase<BasicBlock, Loop>; | |||
49 | ||||
50 | // Always verify loopinfo if expensive checking is enabled. | |||
51 | #ifdef EXPENSIVE_CHECKS | |||
52 | bool llvm::VerifyLoopInfo = true; | |||
53 | #else | |||
54 | bool llvm::VerifyLoopInfo = false; | |||
55 | #endif | |||
56 | static cl::opt<bool, true> | |||
57 | VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), | |||
58 | cl::Hidden, cl::desc("Verify loop info (time consuming)")); | |||
59 | ||||
60 | //===----------------------------------------------------------------------===// | |||
61 | // Loop implementation | |||
62 | // | |||
63 | ||||
64 | bool Loop::isLoopInvariant(const Value *V) const { | |||
65 | if (const Instruction *I = dyn_cast<Instruction>(V)) | |||
66 | return !contains(I); | |||
67 | return true; // All non-instructions are loop invariant | |||
68 | } | |||
69 | ||||
70 | bool Loop::hasLoopInvariantOperands(const Instruction *I) const { | |||
71 | return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); | |||
72 | } | |||
73 | ||||
74 | bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, | |||
75 | MemorySSAUpdater *MSSAU) const { | |||
76 | if (Instruction *I = dyn_cast<Instruction>(V)) | |||
77 | return makeLoopInvariant(I, Changed, InsertPt, MSSAU); | |||
78 | return true; // All non-instructions are loop-invariant. | |||
79 | } | |||
80 | ||||
81 | bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, | |||
82 | Instruction *InsertPt, | |||
83 | MemorySSAUpdater *MSSAU) const { | |||
84 | // Test if the value is already loop-invariant. | |||
85 | if (isLoopInvariant(I)) | |||
86 | return true; | |||
87 | if (!isSafeToSpeculativelyExecute(I)) | |||
88 | return false; | |||
89 | if (I->mayReadFromMemory()) | |||
90 | return false; | |||
91 | // EH block instructions are immobile. | |||
92 | if (I->isEHPad()) | |||
93 | return false; | |||
94 | // Determine the insertion point, unless one was given. | |||
95 | if (!InsertPt) { | |||
96 | BasicBlock *Preheader = getLoopPreheader(); | |||
97 | // Without a preheader, hoisting is not feasible. | |||
98 | if (!Preheader) | |||
99 | return false; | |||
100 | InsertPt = Preheader->getTerminator(); | |||
101 | } | |||
102 | // Don't hoist instructions with loop-variant operands. | |||
103 | for (Value *Operand : I->operands()) | |||
104 | if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) | |||
105 | return false; | |||
106 | ||||
107 | // Hoist. | |||
108 | I->moveBefore(InsertPt); | |||
109 | if (MSSAU) | |||
110 | if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) | |||
111 | MSSAU->moveToPlace(MUD, InsertPt->getParent(), | |||
112 | MemorySSA::BeforeTerminator); | |||
113 | ||||
114 | // There is possibility of hoisting this instruction above some arbitrary | |||
115 | // condition. Any metadata defined on it can be control dependent on this | |||
116 | // condition. Conservatively strip it here so that we don't give any wrong | |||
117 | // information to the optimizer. | |||
118 | I->dropUnknownNonDebugMetadata(); | |||
119 | ||||
120 | Changed = true; | |||
121 | return true; | |||
122 | } | |||
123 | ||||
124 | bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, | |||
125 | BasicBlock *&Backedge) const { | |||
126 | BasicBlock *H = getHeader(); | |||
127 | ||||
128 | Incoming = nullptr; | |||
129 | Backedge = nullptr; | |||
130 | pred_iterator PI = pred_begin(H); | |||
131 | assert(PI != pred_end(H) && "Loop must have at least one backedge!")((void)0); | |||
132 | Backedge = *PI++; | |||
133 | if (PI == pred_end(H)) | |||
134 | return false; // dead loop | |||
135 | Incoming = *PI++; | |||
136 | if (PI != pred_end(H)) | |||
137 | return false; // multiple backedges? | |||
138 | ||||
139 | if (contains(Incoming)) { | |||
140 | if (contains(Backedge)) | |||
141 | return false; | |||
142 | std::swap(Incoming, Backedge); | |||
143 | } else if (!contains(Backedge)) | |||
144 | return false; | |||
145 | ||||
146 | assert(Incoming && Backedge && "expected non-null incoming and backedges")((void)0); | |||
147 | return true; | |||
148 | } | |||
149 | ||||
150 | PHINode *Loop::getCanonicalInductionVariable() const { | |||
151 | BasicBlock *H = getHeader(); | |||
152 | ||||
153 | BasicBlock *Incoming = nullptr, *Backedge = nullptr; | |||
154 | if (!getIncomingAndBackEdge(Incoming, Backedge)) | |||
155 | return nullptr; | |||
156 | ||||
157 | // Loop over all of the PHI nodes, looking for a canonical indvar. | |||
158 | for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { | |||
159 | PHINode *PN = cast<PHINode>(I); | |||
160 | if (ConstantInt *CI = | |||
161 | dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) | |||
162 | if (CI->isZero()) | |||
163 | if (Instruction *Inc = | |||
164 | dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) | |||
165 | if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) | |||
166 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) | |||
167 | if (CI->isOne()) | |||
168 | return PN; | |||
169 | } | |||
170 | return nullptr; | |||
171 | } | |||
172 | ||||
173 | /// Get the latch condition instruction. | |||
174 | ICmpInst *Loop::getLatchCmpInst() const { | |||
175 | if (BasicBlock *Latch = getLoopLatch()) | |||
176 | if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) | |||
177 | if (BI->isConditional()) | |||
178 | return dyn_cast<ICmpInst>(BI->getCondition()); | |||
179 | ||||
180 | return nullptr; | |||
181 | } | |||
182 | ||||
183 | /// Return the final value of the loop induction variable if found. | |||
184 | static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, | |||
185 | const Instruction &StepInst) { | |||
186 | ICmpInst *LatchCmpInst = L.getLatchCmpInst(); | |||
187 | if (!LatchCmpInst) | |||
188 | return nullptr; | |||
189 | ||||
190 | Value *Op0 = LatchCmpInst->getOperand(0); | |||
191 | Value *Op1 = LatchCmpInst->getOperand(1); | |||
192 | if (Op0 == &IndVar || Op0 == &StepInst) | |||
193 | return Op1; | |||
194 | ||||
195 | if (Op1 == &IndVar || Op1 == &StepInst) | |||
196 | return Op0; | |||
197 | ||||
198 | return nullptr; | |||
199 | } | |||
200 | ||||
201 | Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, | |||
202 | PHINode &IndVar, | |||
203 | ScalarEvolution &SE) { | |||
204 | InductionDescriptor IndDesc; | |||
205 | if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) | |||
206 | return None; | |||
207 | ||||
208 | Value *InitialIVValue = IndDesc.getStartValue(); | |||
209 | Instruction *StepInst = IndDesc.getInductionBinOp(); | |||
210 | if (!InitialIVValue || !StepInst) | |||
211 | return None; | |||
212 | ||||
213 | const SCEV *Step = IndDesc.getStep(); | |||
214 | Value *StepInstOp1 = StepInst->getOperand(1); | |||
215 | Value *StepInstOp0 = StepInst->getOperand(0); | |||
216 | Value *StepValue = nullptr; | |||
217 | if (SE.getSCEV(StepInstOp1) == Step) | |||
218 | StepValue = StepInstOp1; | |||
219 | else if (SE.getSCEV(StepInstOp0) == Step) | |||
220 | StepValue = StepInstOp0; | |||
221 | ||||
222 | Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); | |||
223 | if (!FinalIVValue) | |||
224 | return None; | |||
225 | ||||
226 | return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, | |||
227 | SE); | |||
228 | } | |||
229 | ||||
230 | using Direction = Loop::LoopBounds::Direction; | |||
231 | ||||
232 | ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { | |||
233 | BasicBlock *Latch = L.getLoopLatch(); | |||
234 | assert(Latch && "Expecting valid latch")((void)0); | |||
235 | ||||
236 | BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); | |||
| ||||
237 | assert(BI && BI->isConditional() && "Expecting conditional latch branch")((void)0); | |||
238 | ||||
239 | ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); | |||
240 | assert(LatchCmpInst &&((void)0) | |||
241 | "Expecting the latch compare instruction to be a CmpInst")((void)0); | |||
242 | ||||
243 | // Need to inverse the predicate when first successor is not the loop | |||
244 | // header | |||
245 | ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) | |||
246 | ? LatchCmpInst->getPredicate() | |||
| ||||
247 | : LatchCmpInst->getInversePredicate(); | |||
248 | ||||
249 | if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) | |||
250 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
251 | ||||
252 | // Need to flip strictness of the predicate when the latch compare instruction | |||
253 | // is not using StepInst | |||
254 | if (LatchCmpInst->getOperand(0) == &getStepInst() || | |||
255 | LatchCmpInst->getOperand(1) == &getStepInst()) | |||
256 | return Pred; | |||
257 | ||||
258 | // Cannot flip strictness of NE and EQ | |||
259 | if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) | |||
260 | return ICmpInst::getFlippedStrictnessPredicate(Pred); | |||
261 | ||||
262 | Direction D = getDirection(); | |||
263 | if (D == Direction::Increasing) | |||
264 | return ICmpInst::ICMP_SLT; | |||
265 | ||||
266 | if (D == Direction::Decreasing) | |||
267 | return ICmpInst::ICMP_SGT; | |||
268 | ||||
269 | // If cannot determine the direction, then unable to find the canonical | |||
270 | // predicate | |||
271 | return ICmpInst::BAD_ICMP_PREDICATE; | |||
272 | } | |||
273 | ||||
274 | Direction Loop::LoopBounds::getDirection() const { | |||
275 | if (const SCEVAddRecExpr *StepAddRecExpr = | |||
276 | dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) | |||
277 | if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { | |||
278 | if (SE.isKnownPositive(StepRecur)) | |||
279 | return Direction::Increasing; | |||
280 | if (SE.isKnownNegative(StepRecur)) | |||
281 | return Direction::Decreasing; | |||
282 | } | |||
283 | ||||
284 | return Direction::Unknown; | |||
285 | } | |||
286 | ||||
287 | Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { | |||
288 | if (PHINode *IndVar = getInductionVariable(SE)) | |||
289 | return LoopBounds::getBounds(*this, *IndVar, SE); | |||
290 | ||||
291 | return None; | |||
292 | } | |||
293 | ||||
294 | PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { | |||
295 | if (!isLoopSimplifyForm()) | |||
296 | return nullptr; | |||
297 | ||||
298 | BasicBlock *Header = getHeader(); | |||
299 | assert(Header && "Expected a valid loop header")((void)0); | |||
300 | ICmpInst *CmpInst = getLatchCmpInst(); | |||
301 | if (!CmpInst) | |||
302 | return nullptr; | |||
303 | ||||
304 | Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0)); | |||
305 | Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1)); | |||
306 | ||||
307 | for (PHINode &IndVar : Header->phis()) { | |||
308 | InductionDescriptor IndDesc; | |||
309 | if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) | |||
310 | continue; | |||
311 | ||||
312 | Instruction *StepInst = IndDesc.getInductionBinOp(); | |||
313 | ||||
314 | // case 1: | |||
315 | // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] | |||
316 | // StepInst = IndVar + step | |||
317 | // cmp = StepInst < FinalValue | |||
318 | if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) | |||
319 | return &IndVar; | |||
320 | ||||
321 | // case 2: | |||
322 | // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] | |||
323 | // StepInst = IndVar + step | |||
324 | // cmp = IndVar < FinalValue | |||
325 | if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) | |||
326 | return &IndVar; | |||
327 | } | |||
328 | ||||
329 | return nullptr; | |||
330 | } | |||
331 | ||||
332 | bool Loop::getInductionDescriptor(ScalarEvolution &SE, | |||
333 | InductionDescriptor &IndDesc) const { | |||
334 | if (PHINode *IndVar = getInductionVariable(SE)) | |||
335 | return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); | |||
336 | ||||
337 | return false; | |||
338 | } | |||
339 | ||||
340 | bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, | |||
341 | ScalarEvolution &SE) const { | |||
342 | // Located in the loop header | |||
343 | BasicBlock *Header = getHeader(); | |||
344 | if (AuxIndVar.getParent() != Header) | |||
345 | return false; | |||
346 | ||||
347 | // No uses outside of the loop | |||
348 | for (User *U : AuxIndVar.users()) | |||
349 | if (const Instruction *I = dyn_cast<Instruction>(U)) | |||
350 | if (!contains(I)) | |||
351 | return false; | |||
352 | ||||
353 | InductionDescriptor IndDesc; | |||
354 | if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) | |||
355 | return false; | |||
356 | ||||
357 | // The step instruction opcode should be add or sub. | |||
358 | if (IndDesc.getInductionOpcode() != Instruction::Add && | |||
359 | IndDesc.getInductionOpcode() != Instruction::Sub) | |||
360 | return false; | |||
361 | ||||
362 | // Incremented by a loop invariant step for each loop iteration | |||
363 | return SE.isLoopInvariant(IndDesc.getStep(), this); | |||
364 | } | |||
365 | ||||
366 | BranchInst *Loop::getLoopGuardBranch() const { | |||
367 | if (!isLoopSimplifyForm()) | |||
368 | return nullptr; | |||
369 | ||||
370 | BasicBlock *Preheader = getLoopPreheader(); | |||
371 | assert(Preheader && getLoopLatch() &&((void)0) | |||
372 | "Expecting a loop with valid preheader and latch")((void)0); | |||
373 | ||||
374 | // Loop should be in rotate form. | |||
375 | if (!isRotatedForm()) | |||
376 | return nullptr; | |||
377 | ||||
378 | // Disallow loops with more than one unique exit block, as we do not verify | |||
379 | // that GuardOtherSucc post dominates all exit blocks. | |||
380 | BasicBlock *ExitFromLatch = getUniqueExitBlock(); | |||
381 | if (!ExitFromLatch) | |||
382 | return nullptr; | |||
383 | ||||
384 | BasicBlock *GuardBB = Preheader->getUniquePredecessor(); | |||
385 | if (!GuardBB) | |||
386 | return nullptr; | |||
387 | ||||
388 | assert(GuardBB->getTerminator() && "Expecting valid guard terminator")((void)0); | |||
389 | ||||
390 | BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); | |||
391 | if (!GuardBI || GuardBI->isUnconditional()) | |||
392 | return nullptr; | |||
393 | ||||
394 | BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) | |||
395 | ? GuardBI->getSuccessor(1) | |||
396 | : GuardBI->getSuccessor(0); | |||
397 | ||||
398 | // Check if ExitFromLatch (or any BasicBlock which is an empty unique | |||
399 | // successor of ExitFromLatch) is equal to GuardOtherSucc. If | |||
400 | // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the | |||
401 | // loop is GuardBI (return GuardBI), otherwise return nullptr. | |||
402 | if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc, | |||
403 | /*CheckUniquePred=*/true) == | |||
404 | GuardOtherSucc) | |||
405 | return GuardBI; | |||
406 | else | |||
407 | return nullptr; | |||
408 | } | |||
409 | ||||
410 | bool Loop::isCanonical(ScalarEvolution &SE) const { | |||
411 | InductionDescriptor IndDesc; | |||
412 | if (!getInductionDescriptor(SE, IndDesc)) | |||
413 | return false; | |||
414 | ||||
415 | ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); | |||
416 | if (!Init || !Init->isZero()) | |||
417 | return false; | |||
418 | ||||
419 | if (IndDesc.getInductionOpcode() != Instruction::Add) | |||
420 | return false; | |||
421 | ||||
422 | ConstantInt *Step = IndDesc.getConstIntStepValue(); | |||
423 | if (!Step || !Step->isOne()) | |||
424 | return false; | |||
425 | ||||
426 | return true; | |||
427 | } | |||
428 | ||||
429 | // Check that 'BB' doesn't have any uses outside of the 'L' | |||
430 | static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, | |||
431 | const DominatorTree &DT) { | |||
432 | for (const Instruction &I : BB) { | |||
433 | // Tokens can't be used in PHI nodes and live-out tokens prevent loop | |||
434 | // optimizations, so for the purposes of considered LCSSA form, we | |||
435 | // can ignore them. | |||
436 | if (I.getType()->isTokenTy()) | |||
437 | continue; | |||
438 | ||||
439 | for (const Use &U : I.uses()) { | |||
440 | const Instruction *UI = cast<Instruction>(U.getUser()); | |||
441 | const BasicBlock *UserBB = UI->getParent(); | |||
442 | ||||
443 | // For practical purposes, we consider that the use in a PHI | |||
444 | // occurs in the respective predecessor block. For more info, | |||
445 | // see the `phi` doc in LangRef and the LCSSA doc. | |||
446 | if (const PHINode *P = dyn_cast<PHINode>(UI)) | |||
447 | UserBB = P->getIncomingBlock(U); | |||
448 | ||||
449 | // Check the current block, as a fast-path, before checking whether | |||
450 | // the use is anywhere in the loop. Most values are used in the same | |||
451 | // block they are defined in. Also, blocks not reachable from the | |||
452 | // entry are special; uses in them don't need to go through PHIs. | |||
453 | if (UserBB != &BB && !L.contains(UserBB) && | |||
454 | DT.isReachableFromEntry(UserBB)) | |||
455 | return false; | |||
456 | } | |||
457 | } | |||
458 | return true; | |||
459 | } | |||
460 | ||||
461 | bool Loop::isLCSSAForm(const DominatorTree &DT) const { | |||
462 | // For each block we check that it doesn't have any uses outside of this loop. | |||
463 | return all_of(this->blocks(), [&](const BasicBlock *BB) { | |||
464 | return isBlockInLCSSAForm(*this, *BB, DT); | |||
465 | }); | |||
466 | } | |||
467 | ||||
468 | bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, | |||
469 | const LoopInfo &LI) const { | |||
470 | // For each block we check that it doesn't have any uses outside of its | |||
471 | // innermost loop. This process will transitively guarantee that the current | |||
472 | // loop and all of the nested loops are in LCSSA form. | |||
473 | return all_of(this->blocks(), [&](const BasicBlock *BB) { | |||
474 | return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); | |||
475 | }); | |||
476 | } | |||
477 | ||||
478 | bool Loop::isLoopSimplifyForm() const { | |||
479 | // Normal-form loops have a preheader, a single backedge, and all of their | |||
480 | // exits have all their predecessors inside the loop. | |||
481 | return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); | |||
482 | } | |||
483 | ||||
484 | // Routines that reform the loop CFG and split edges often fail on indirectbr. | |||
485 | bool Loop::isSafeToClone() const { | |||
486 | // Return false if any loop blocks contain indirectbrs, or there are any calls | |||
487 | // to noduplicate functions. | |||
488 | // FIXME: it should be ok to clone CallBrInst's if we correctly update the | |||
489 | // operand list to reflect the newly cloned labels. | |||
490 | for (BasicBlock *BB : this->blocks()) { | |||
491 | if (isa<IndirectBrInst>(BB->getTerminator()) || | |||
492 | isa<CallBrInst>(BB->getTerminator())) | |||
493 | return false; | |||
494 | ||||
495 | for (Instruction &I : *BB) | |||
496 | if (auto *CB = dyn_cast<CallBase>(&I)) | |||
497 | if (CB->cannotDuplicate()) | |||
498 | return false; | |||
499 | } | |||
500 | return true; | |||
501 | } | |||
502 | ||||
503 | MDNode *Loop::getLoopID() const { | |||
504 | MDNode *LoopID = nullptr; | |||
505 | ||||
506 | // Go through the latch blocks and check the terminator for the metadata. | |||
507 | SmallVector<BasicBlock *, 4> LatchesBlocks; | |||
508 | getLoopLatches(LatchesBlocks); | |||
509 | for (BasicBlock *BB : LatchesBlocks) { | |||
510 | Instruction *TI = BB->getTerminator(); | |||
511 | MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); | |||
512 | ||||
513 | if (!MD) | |||
514 | return nullptr; | |||
515 | ||||
516 | if (!LoopID) | |||
517 | LoopID = MD; | |||
518 | else if (MD != LoopID) | |||
519 | return nullptr; | |||
520 | } | |||
521 | if (!LoopID || LoopID->getNumOperands() == 0 || | |||
522 | LoopID->getOperand(0) != LoopID) | |||
523 | return nullptr; | |||
524 | return LoopID; | |||
525 | } | |||
526 | ||||
527 | void Loop::setLoopID(MDNode *LoopID) const { | |||
528 | assert((!LoopID || LoopID->getNumOperands() > 0) &&((void)0) | |||
529 | "Loop ID needs at least one operand")((void)0); | |||
530 | assert((!LoopID || LoopID->getOperand(0) == LoopID) &&((void)0) | |||
531 | "Loop ID should refer to itself")((void)0); | |||
532 | ||||
533 | SmallVector<BasicBlock *, 4> LoopLatches; | |||
534 | getLoopLatches(LoopLatches); | |||
535 | for (BasicBlock *BB : LoopLatches) | |||
536 | BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); | |||
537 | } | |||
538 | ||||
539 | void Loop::setLoopAlreadyUnrolled() { | |||
540 | LLVMContext &Context = getHeader()->getContext(); | |||
541 | ||||
542 | MDNode *DisableUnrollMD = | |||
543 | MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); | |||
544 | MDNode *LoopID = getLoopID(); | |||
545 | MDNode *NewLoopID = makePostTransformationMetadata( | |||
546 | Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); | |||
547 | setLoopID(NewLoopID); | |||
548 | } | |||
549 | ||||
550 | void Loop::setLoopMustProgress() { | |||
551 | LLVMContext &Context = getHeader()->getContext(); | |||
552 | ||||
553 | MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress"); | |||
554 | ||||
555 | if (MustProgress) | |||
556 | return; | |||
557 | ||||
558 | MDNode *MustProgressMD = | |||
559 | MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress")); | |||
560 | MDNode *LoopID = getLoopID(); | |||
561 | MDNode *NewLoopID = | |||
562 | makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD}); | |||
563 | setLoopID(NewLoopID); | |||
564 | } | |||
565 | ||||
566 | bool Loop::isAnnotatedParallel() const { | |||
567 | MDNode *DesiredLoopIdMetadata = getLoopID(); | |||
568 | ||||
569 | if (!DesiredLoopIdMetadata) | |||
570 | return false; | |||
571 | ||||
572 | MDNode *ParallelAccesses = | |||
573 | findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); | |||
574 | SmallPtrSet<MDNode *, 4> | |||
575 | ParallelAccessGroups; // For scalable 'contains' check. | |||
576 | if (ParallelAccesses) { | |||
577 | for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) { | |||
578 | MDNode *AccGroup = cast<MDNode>(MD.get()); | |||
579 | assert(isValidAsAccessGroup(AccGroup) &&((void)0) | |||
580 | "List item must be an access group")((void)0); | |||
581 | ParallelAccessGroups.insert(AccGroup); | |||
582 | } | |||
583 | } | |||
584 | ||||
585 | // The loop branch contains the parallel loop metadata. In order to ensure | |||
586 | // that any parallel-loop-unaware optimization pass hasn't added loop-carried | |||
587 | // dependencies (thus converted the loop back to a sequential loop), check | |||
588 | // that all the memory instructions in the loop belong to an access group that | |||
589 | // is parallel to this loop. | |||
590 | for (BasicBlock *BB : this->blocks()) { | |||
591 | for (Instruction &I : *BB) { | |||
592 | if (!I.mayReadOrWriteMemory()) | |||
593 | continue; | |||
594 | ||||
595 | if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { | |||
596 | auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { | |||
597 | if (AG->getNumOperands() == 0) { | |||
598 | assert(isValidAsAccessGroup(AG) && "Item must be an access group")((void)0); | |||
599 | return ParallelAccessGroups.count(AG); | |||
600 | } | |||
601 | ||||
602 | for (const MDOperand &AccessListItem : AG->operands()) { | |||
603 | MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); | |||
604 | assert(isValidAsAccessGroup(AccGroup) &&((void)0) | |||
605 | "List item must be an access group")((void)0); | |||
606 | if (ParallelAccessGroups.count(AccGroup)) | |||
607 | return true; | |||
608 | } | |||
609 | return false; | |||
610 | }; | |||
611 | ||||
612 | if (ContainsAccessGroup(AccessGroup)) | |||
613 | continue; | |||
614 | } | |||
615 | ||||
616 | // The memory instruction can refer to the loop identifier metadata | |||
617 | // directly or indirectly through another list metadata (in case of | |||
618 | // nested parallel loops). The loop identifier metadata refers to | |||
619 | // itself so we can check both cases with the same routine. | |||
620 | MDNode *LoopIdMD = | |||
621 | I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); | |||
622 | ||||
623 | if (!LoopIdMD) | |||
624 | return false; | |||
625 | ||||
626 | if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata)) | |||
627 | return false; | |||
628 | } | |||
629 | } | |||
630 | return true; | |||
631 | } | |||
632 | ||||
633 | DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } | |||
634 | ||||
635 | Loop::LocRange Loop::getLocRange() const { | |||
636 | // If we have a debug location in the loop ID, then use it. | |||
637 | if (MDNode *LoopID = getLoopID()) { | |||
638 | DebugLoc Start; | |||
639 | // We use the first DebugLoc in the header as the start location of the loop | |||
640 | // and if there is a second DebugLoc in the header we use it as end location | |||
641 | // of the loop. | |||
642 | for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { | |||
643 | if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { | |||
644 | if (!Start) | |||
645 | Start = DebugLoc(L); | |||
646 | else | |||
647 | return LocRange(Start, DebugLoc(L)); | |||
648 | } | |||
649 | } | |||
650 | ||||
651 | if (Start) | |||
652 | return LocRange(Start); | |||
653 | } | |||
654 | ||||
655 | // Try the pre-header first. | |||
656 | if (BasicBlock *PHeadBB = getLoopPreheader()) | |||
657 | if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) | |||
658 | return LocRange(DL); | |||
659 | ||||
660 | // If we have no pre-header or there are no instructions with debug | |||
661 | // info in it, try the header. | |||
662 | if (BasicBlock *HeadBB = getHeader()) | |||
663 | return LocRange(HeadBB->getTerminator()->getDebugLoc()); | |||
664 | ||||
665 | return LocRange(); | |||
666 | } | |||
667 | ||||
668 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | |||
669 | LLVM_DUMP_METHOD__attribute__((noinline)) void Loop::dump() const { print(dbgs()); } | |||
670 | ||||
671 | LLVM_DUMP_METHOD__attribute__((noinline)) void Loop::dumpVerbose() const { | |||
672 | print(dbgs(), /*Verbose=*/true); | |||
673 | } | |||
674 | #endif | |||
675 | ||||
676 | //===----------------------------------------------------------------------===// | |||
677 | // UnloopUpdater implementation | |||
678 | // | |||
679 | ||||
680 | namespace { | |||
681 | /// Find the new parent loop for all blocks within the "unloop" whose last | |||
682 | /// backedges has just been removed. | |||
683 | class UnloopUpdater { | |||
684 | Loop &Unloop; | |||
685 | LoopInfo *LI; | |||
686 | ||||
687 | LoopBlocksDFS DFS; | |||
688 | ||||
689 | // Map unloop's immediate subloops to their nearest reachable parents. Nested | |||
690 | // loops within these subloops will not change parents. However, an immediate | |||
691 | // subloop's new parent will be the nearest loop reachable from either its own | |||
692 | // exits *or* any of its nested loop's exits. | |||
693 | DenseMap<Loop *, Loop *> SubloopParents; | |||
694 | ||||
695 | // Flag the presence of an irreducible backedge whose destination is a block | |||
696 | // directly contained by the original unloop. | |||
697 | bool FoundIB; | |||
698 | ||||
699 | public: | |||
700 | UnloopUpdater(Loop *UL, LoopInfo *LInfo) | |||
701 | : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} | |||
702 | ||||
703 | void updateBlockParents(); | |||
704 | ||||
705 | void removeBlocksFromAncestors(); | |||
706 | ||||
707 | void updateSubloopParents(); | |||
708 | ||||
709 | protected: | |||
710 | Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); | |||
711 | }; | |||
712 | } // end anonymous namespace | |||
713 | ||||
714 | /// Update the parent loop for all blocks that are directly contained within the | |||
715 | /// original "unloop". | |||
716 | void UnloopUpdater::updateBlockParents() { | |||
717 | if (Unloop.getNumBlocks()) { | |||
718 | // Perform a post order CFG traversal of all blocks within this loop, | |||
719 | // propagating the nearest loop from successors to predecessors. | |||
720 | LoopBlocksTraversal Traversal(DFS, LI); | |||
721 | for (BasicBlock *POI : Traversal) { | |||
722 | ||||
723 | Loop *L = LI->getLoopFor(POI); | |||
724 | Loop *NL = getNearestLoop(POI, L); | |||
725 | ||||
726 | if (NL != L) { | |||
727 | // For reducible loops, NL is now an ancestor of Unloop. | |||
728 | assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&((void)0) | |||
729 | "uninitialized successor")((void)0); | |||
730 | LI->changeLoopFor(POI, NL); | |||
731 | } else { | |||
732 | // Or the current block is part of a subloop, in which case its parent | |||
733 | // is unchanged. | |||
734 | assert((FoundIB || Unloop.contains(L)) && "uninitialized successor")((void)0); | |||
735 | } | |||
736 | } | |||
737 | } | |||
738 | // Each irreducible loop within the unloop induces a round of iteration using | |||
739 | // the DFS result cached by Traversal. | |||
740 | bool Changed = FoundIB; | |||
741 | for (unsigned NIters = 0; Changed; ++NIters) { | |||
742 | assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm")((void)0); | |||
743 | ||||
744 | // Iterate over the postorder list of blocks, propagating the nearest loop | |||
745 | // from successors to predecessors as before. | |||
746 | Changed = false; | |||
747 | for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), | |||
748 | POE = DFS.endPostorder(); | |||
749 | POI != POE; ++POI) { | |||
750 | ||||
751 | Loop *L = LI->getLoopFor(*POI); | |||
752 | Loop *NL = getNearestLoop(*POI, L); | |||
753 | if (NL != L) { | |||
754 | assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&((void)0) | |||
755 | "uninitialized successor")((void)0); | |||
756 | LI->changeLoopFor(*POI, NL); | |||
757 | Changed = true; | |||
758 | } | |||
759 | } | |||
760 | } | |||
761 | } | |||
762 | ||||
763 | /// Remove unloop's blocks from all ancestors below their new parents. | |||
764 | void UnloopUpdater::removeBlocksFromAncestors() { | |||
765 | // Remove all unloop's blocks (including those in nested subloops) from | |||
766 | // ancestors below the new parent loop. | |||
767 | for (BasicBlock *BB : Unloop.blocks()) { | |||
768 | Loop *OuterParent = LI->getLoopFor(BB); | |||
769 | if (Unloop.contains(OuterParent)) { | |||
770 | while (OuterParent->getParentLoop() != &Unloop) | |||
771 | OuterParent = OuterParent->getParentLoop(); | |||
772 | OuterParent = SubloopParents[OuterParent]; | |||
773 | } | |||
774 | // Remove blocks from former Ancestors except Unloop itself which will be | |||
775 | // deleted. | |||
776 | for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; | |||
777 | OldParent = OldParent->getParentLoop()) { | |||
778 | assert(OldParent && "new loop is not an ancestor of the original")((void)0); | |||
779 | OldParent->removeBlockFromLoop(BB); | |||
780 | } | |||
781 | } | |||
782 | } | |||
783 | ||||
784 | /// Update the parent loop for all subloops directly nested within unloop. | |||
785 | void UnloopUpdater::updateSubloopParents() { | |||
786 | while (!Unloop.isInnermost()) { | |||
787 | Loop *Subloop = *std::prev(Unloop.end()); | |||
788 | Unloop.removeChildLoop(std::prev(Unloop.end())); | |||
789 | ||||
790 | assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop")((void)0); | |||
791 | if (Loop *Parent = SubloopParents[Subloop]) | |||
792 | Parent->addChildLoop(Subloop); | |||
793 | else | |||
794 | LI->addTopLevelLoop(Subloop); | |||
795 | } | |||
796 | } | |||
797 | ||||
798 | /// Return the nearest parent loop among this block's successors. If a successor | |||
799 | /// is a subloop header, consider its parent to be the nearest parent of the | |||
800 | /// subloop's exits. | |||
801 | /// | |||
802 | /// For subloop blocks, simply update SubloopParents and return NULL. | |||
803 | Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { | |||
804 | ||||
805 | // Initially for blocks directly contained by Unloop, NearLoop == Unloop and | |||
806 | // is considered uninitialized. | |||
807 | Loop *NearLoop = BBLoop; | |||
808 | ||||
809 | Loop *Subloop = nullptr; | |||
810 | if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { | |||
811 | Subloop = NearLoop; | |||
812 | // Find the subloop ancestor that is directly contained within Unloop. | |||
813 | while (Subloop->getParentLoop() != &Unloop) { | |||
814 | Subloop = Subloop->getParentLoop(); | |||
815 | assert(Subloop && "subloop is not an ancestor of the original loop")((void)0); | |||
816 | } | |||
817 | // Get the current nearest parent of the Subloop exits, initially Unloop. | |||
818 | NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; | |||
819 | } | |||
820 | ||||
821 | succ_iterator I = succ_begin(BB), E = succ_end(BB); | |||
822 | if (I == E) { | |||
823 | assert(!Subloop && "subloop blocks must have a successor")((void)0); | |||
824 | NearLoop = nullptr; // unloop blocks may now exit the function. | |||
825 | } | |||
826 | for (; I != E; ++I) { | |||
827 | if (*I == BB) | |||
828 | continue; // self loops are uninteresting | |||
829 | ||||
830 | Loop *L = LI->getLoopFor(*I); | |||
831 | if (L == &Unloop) { | |||
832 | // This successor has not been processed. This path must lead to an | |||
833 | // irreducible backedge. | |||
834 | assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB")((void)0); | |||
835 | FoundIB = true; | |||
836 | } | |||
837 | if (L != &Unloop && Unloop.contains(L)) { | |||
838 | // Successor is in a subloop. | |||
839 | if (Subloop) | |||
840 | continue; // Branching within subloops. Ignore it. | |||
841 | ||||
842 | // BB branches from the original into a subloop header. | |||
843 | assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops")((void)0); | |||
844 | ||||
845 | // Get the current nearest parent of the Subloop's exits. | |||
846 | L = SubloopParents[L]; | |||
847 | // L could be Unloop if the only exit was an irreducible backedge. | |||
848 | } | |||
849 | if (L == &Unloop) { | |||
850 | continue; | |||
851 | } | |||
852 | // Handle critical edges from Unloop into a sibling loop. | |||
853 | if (L && !L->contains(&Unloop)) { | |||
854 | L = L->getParentLoop(); | |||
855 | } | |||
856 | // Remember the nearest parent loop among successors or subloop exits. | |||
857 | if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) | |||
858 | NearLoop = L; | |||
859 | } | |||
860 | if (Subloop) { | |||
861 | SubloopParents[Subloop] = NearLoop; | |||
862 | return BBLoop; | |||
863 | } | |||
864 | return NearLoop; | |||
865 | } | |||
866 | ||||
867 | LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } | |||
868 | ||||
869 | bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, | |||
870 | FunctionAnalysisManager::Invalidator &) { | |||
871 | // Check whether the analysis, all analyses on functions, or the function's | |||
872 | // CFG have been preserved. | |||
873 | auto PAC = PA.getChecker<LoopAnalysis>(); | |||
874 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || | |||
875 | PAC.preservedSet<CFGAnalyses>()); | |||
876 | } | |||
877 | ||||
878 | void LoopInfo::erase(Loop *Unloop) { | |||
879 | assert(!Unloop->isInvalid() && "Loop has already been erased!")((void)0); | |||
880 | ||||
881 | auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); | |||
882 | ||||
883 | // First handle the special case of no parent loop to simplify the algorithm. | |||
884 | if (Unloop->isOutermost()) { | |||
885 | // Since BBLoop had no parent, Unloop blocks are no longer in a loop. | |||
886 | for (BasicBlock *BB : Unloop->blocks()) { | |||
887 | // Don't reparent blocks in subloops. | |||
888 | if (getLoopFor(BB) != Unloop) | |||
889 | continue; | |||
890 | ||||
891 | // Blocks no longer have a parent but are still referenced by Unloop until | |||
892 | // the Unloop object is deleted. | |||
893 | changeLoopFor(BB, nullptr); | |||
894 | } | |||
895 | ||||
896 | // Remove the loop from the top-level LoopInfo object. | |||
897 | for (iterator I = begin();; ++I) { | |||
898 | assert(I != end() && "Couldn't find loop")((void)0); | |||
899 | if (*I == Unloop) { | |||
900 | removeLoop(I); | |||
901 | break; | |||
902 | } | |||
903 | } | |||
904 | ||||
905 | // Move all of the subloops to the top-level. | |||
906 | while (!Unloop->isInnermost()) | |||
907 | addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); | |||
908 | ||||
909 | return; | |||
910 | } | |||
911 | ||||
912 | // Update the parent loop for all blocks within the loop. Blocks within | |||
913 | // subloops will not change parents. | |||
914 | UnloopUpdater Updater(Unloop, this); | |||
915 | Updater.updateBlockParents(); | |||
916 | ||||
917 | // Remove blocks from former ancestor loops. | |||
918 | Updater.removeBlocksFromAncestors(); | |||
919 | ||||
920 | // Add direct subloops as children in their new parent loop. | |||
921 | Updater.updateSubloopParents(); | |||
922 | ||||
923 | // Remove unloop from its parent loop. | |||
924 | Loop *ParentLoop = Unloop->getParentLoop(); | |||
925 | for (Loop::iterator I = ParentLoop->begin();; ++I) { | |||
926 | assert(I != ParentLoop->end() && "Couldn't find loop")((void)0); | |||
927 | if (*I == Unloop) { | |||
928 | ParentLoop->removeChildLoop(I); | |||
929 | break; | |||
930 | } | |||
931 | } | |||
932 | } | |||
933 | ||||
934 | bool | |||
935 | LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, | |||
936 | const BasicBlock *ExitBB) const { | |||
937 | if (V->getType()->isTokenTy()) | |||
938 | // We can't form PHIs of token type, so the definition of LCSSA excludes | |||
939 | // values of that type. | |||
940 | return false; | |||
941 | ||||
942 | const Instruction *I = dyn_cast<Instruction>(V); | |||
943 | if (!I) | |||
944 | return false; | |||
945 | const Loop *L = getLoopFor(I->getParent()); | |||
946 | if (!L) | |||
947 | return false; | |||
948 | if (L->contains(ExitBB)) | |||
949 | // Could be an exit bb of a subloop and contained in defining loop | |||
950 | return false; | |||
951 | ||||
952 | // We found a (new) out-of-loop use location, for a value defined in-loop. | |||
953 | // (Note that because of LCSSA, we don't have to account for values defined | |||
954 | // in sibling loops. Such values will have LCSSA phis of their own in the | |||
955 | // common parent loop.) | |||
956 | return true; | |||
957 | } | |||
958 | ||||
959 | AnalysisKey LoopAnalysis::Key; | |||
960 | ||||
961 | LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { | |||
962 | // FIXME: Currently we create a LoopInfo from scratch for every function. | |||
963 | // This may prove to be too wasteful due to deallocating and re-allocating | |||
964 | // memory each time for the underlying map and vector datastructures. At some | |||
965 | // point it may prove worthwhile to use a freelist and recycle LoopInfo | |||
966 | // objects. I don't want to add that kind of complexity until the scope of | |||
967 | // the problem is better understood. | |||
968 | LoopInfo LI; | |||
969 | LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); | |||
970 | return LI; | |||
971 | } | |||
972 | ||||
973 | PreservedAnalyses LoopPrinterPass::run(Function &F, | |||
974 | FunctionAnalysisManager &AM) { | |||
975 | AM.getResult<LoopAnalysis>(F).print(OS); | |||
976 | return PreservedAnalyses::all(); | |||
977 | } | |||
978 | ||||
979 | void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { | |||
980 | ||||
981 | if (forcePrintModuleIR()) { | |||
982 | // handling -print-module-scope | |||
983 | OS << Banner << " (loop: "; | |||
984 | L.getHeader()->printAsOperand(OS, false); | |||
985 | OS << ")\n"; | |||
986 | ||||
987 | // printing whole module | |||
988 | OS << *L.getHeader()->getModule(); | |||
989 | return; | |||
990 | } | |||
991 | ||||
992 | OS << Banner; | |||
993 | ||||
994 | auto *PreHeader = L.getLoopPreheader(); | |||
995 | if (PreHeader) { | |||
996 | OS << "\n; Preheader:"; | |||
997 | PreHeader->print(OS); | |||
998 | OS << "\n; Loop:"; | |||
999 | } | |||
1000 | ||||
1001 | for (auto *Block : L.blocks()) | |||
1002 | if (Block) | |||
1003 | Block->print(OS); | |||
1004 | else | |||
1005 | OS << "Printing <null> block"; | |||
1006 | ||||
1007 | SmallVector<BasicBlock *, 8> ExitBlocks; | |||
1008 | L.getExitBlocks(ExitBlocks); | |||
1009 | if (!ExitBlocks.empty()) { | |||
1010 | OS << "\n; Exit blocks"; | |||
1011 | for (auto *Block : ExitBlocks) | |||
1012 | if (Block) | |||
1013 | Block->print(OS); | |||
1014 | else | |||
1015 | OS << "Printing <null> block"; | |||
1016 | } | |||
1017 | } | |||
1018 | ||||
1019 | MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { | |||
1020 | // No loop metadata node, no loop properties. | |||
1021 | if (!LoopID) | |||
1022 | return nullptr; | |||
1023 | ||||
1024 | // First operand should refer to the metadata node itself, for legacy reasons. | |||
1025 | assert(LoopID->getNumOperands() > 0 && "requires at least one operand")((void)0); | |||
1026 | assert(LoopID->getOperand(0) == LoopID && "invalid loop id")((void)0); | |||
1027 | ||||
1028 | // Iterate over the metdata node operands and look for MDString metadata. | |||
1029 | for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { | |||
1030 | MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); | |||
1031 | if (!MD || MD->getNumOperands() < 1) | |||
1032 | continue; | |||
1033 | MDString *S = dyn_cast<MDString>(MD->getOperand(0)); | |||
1034 | if (!S) | |||
1035 | continue; | |||
1036 | // Return the operand node if MDString holds expected metadata. | |||
1037 | if (Name.equals(S->getString())) | |||
1038 | return MD; | |||
1039 | } | |||
1040 | ||||
1041 | // Loop property not found. | |||
1042 | return nullptr; | |||
1043 | } | |||
1044 | ||||
1045 | MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { | |||
1046 | return findOptionMDForLoopID(TheLoop->getLoopID(), Name); | |||
1047 | } | |||
1048 | ||||
1049 | /// Find string metadata for loop | |||
1050 | /// | |||
1051 | /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an | |||
1052 | /// operand or null otherwise. If the string metadata is not found return | |||
1053 | /// Optional's not-a-value. | |||
1054 | Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, | |||
1055 | StringRef Name) { | |||
1056 | MDNode *MD = findOptionMDForLoop(TheLoop, Name); | |||
1057 | if (!MD) | |||
1058 | return None; | |||
1059 | switch (MD->getNumOperands()) { | |||
1060 | case 1: | |||
1061 | return nullptr; | |||
1062 | case 2: | |||
1063 | return &MD->getOperand(1); | |||
1064 | default: | |||
1065 | llvm_unreachable("loop metadata has 0 or 1 operand")__builtin_unreachable(); | |||
1066 | } | |||
1067 | } | |||
1068 | ||||
1069 | Optional<bool> llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop, | |||
1070 | StringRef Name) { | |||
1071 | MDNode *MD = findOptionMDForLoop(TheLoop, Name); | |||
1072 | if (!MD) | |||
1073 | return None; | |||
1074 | switch (MD->getNumOperands()) { | |||
1075 | case 1: | |||
1076 | // When the value is absent it is interpreted as 'attribute set'. | |||
1077 | return true; | |||
1078 | case 2: | |||
1079 | if (ConstantInt *IntMD = | |||
1080 | mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) | |||
1081 | return IntMD->getZExtValue(); | |||
1082 | return true; | |||
1083 | } | |||
1084 | llvm_unreachable("unexpected number of options")__builtin_unreachable(); | |||
1085 | } | |||
1086 | ||||
1087 | bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { | |||
1088 | return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); | |||
1089 | } | |||
1090 | ||||
1091 | llvm::Optional<int> llvm::getOptionalIntLoopAttribute(const Loop *TheLoop, | |||
1092 | StringRef Name) { | |||
1093 | const MDOperand *AttrMD = | |||
1094 | findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); | |||
1095 | if (!AttrMD) | |||
1096 | return None; | |||
1097 | ||||
1098 | ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); | |||
1099 | if (!IntMD) | |||
1100 | return None; | |||
1101 | ||||
1102 | return IntMD->getSExtValue(); | |||
1103 | } | |||
1104 | ||||
1105 | static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; | |||
1106 | ||||
1107 | bool llvm::hasMustProgress(const Loop *L) { | |||
1108 | return getBooleanLoopAttribute(L, LLVMLoopMustProgress); | |||
1109 | } | |||
1110 | ||||
1111 | bool llvm::isMustProgress(const Loop *L) { | |||
1112 | return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L); | |||
1113 | } | |||
1114 | ||||
1115 | bool llvm::isValidAsAccessGroup(MDNode *Node) { | |||
1116 | return Node->getNumOperands() == 0 && Node->isDistinct(); | |||
1117 | } | |||
1118 | ||||
1119 | MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, | |||
1120 | MDNode *OrigLoopID, | |||
1121 | ArrayRef<StringRef> RemovePrefixes, | |||
1122 | ArrayRef<MDNode *> AddAttrs) { | |||
1123 | // First remove any existing loop metadata related to this transformation. | |||
1124 | SmallVector<Metadata *, 4> MDs; | |||
1125 | ||||
1126 | // Reserve first location for self reference to the LoopID metadata node. | |||
1127 | MDs.push_back(nullptr); | |||
1128 | ||||
1129 | // Remove metadata for the transformation that has been applied or that became | |||
1130 | // outdated. | |||
1131 | if (OrigLoopID) { | |||
1132 | for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { | |||
1133 | bool IsVectorMetadata = false; | |||
1134 | Metadata *Op = OrigLoopID->getOperand(i); | |||
1135 | if (MDNode *MD = dyn_cast<MDNode>(Op)) { | |||
1136 | const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); | |||
1137 | if (S) | |||
1138 | IsVectorMetadata = | |||
1139 | llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { | |||
1140 | return S->getString().startswith(Prefix); | |||
1141 | }); | |||
1142 | } | |||
1143 | if (!IsVectorMetadata) | |||
1144 | MDs.push_back(Op); | |||
1145 | } | |||
1146 | } | |||
1147 | ||||
1148 | // Add metadata to avoid reapplying a transformation, such as | |||
1149 | // llvm.loop.unroll.disable and llvm.loop.isvectorized. | |||
1150 | MDs.append(AddAttrs.begin(), AddAttrs.end()); | |||
1151 | ||||
1152 | MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); | |||
1153 | // Replace the temporary node with a self-reference. | |||
1154 | NewLoopID->replaceOperandWith(0, NewLoopID); | |||
1155 | return NewLoopID; | |||
1156 | } | |||
1157 | ||||
1158 | //===----------------------------------------------------------------------===// | |||
1159 | // LoopInfo implementation | |||
1160 | // | |||
1161 | ||||
1162 | LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) { | |||
1163 | initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); | |||
1164 | } | |||
1165 | ||||
1166 | char LoopInfoWrapperPass::ID = 0; | |||
1167 | INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",static void *initializeLoopInfoWrapperPassPassOnce(PassRegistry &Registry) { | |||
1168 | true, true)static void *initializeLoopInfoWrapperPassPassOnce(PassRegistry &Registry) { | |||
1169 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry); | |||
1170 | INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",PassInfo *PI = new PassInfo( "Natural Loop Information", "loops" , &LoopInfoWrapperPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <LoopInfoWrapperPass>), true, true); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLoopInfoWrapperPassPassFlag ; void llvm::initializeLoopInfoWrapperPassPass(PassRegistry & Registry) { llvm::call_once(InitializeLoopInfoWrapperPassPassFlag , initializeLoopInfoWrapperPassPassOnce, std::ref(Registry)); } | |||
1171 | true, true)PassInfo *PI = new PassInfo( "Natural Loop Information", "loops" , &LoopInfoWrapperPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <LoopInfoWrapperPass>), true, true); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLoopInfoWrapperPassPassFlag ; void llvm::initializeLoopInfoWrapperPassPass(PassRegistry & Registry) { llvm::call_once(InitializeLoopInfoWrapperPassPassFlag , initializeLoopInfoWrapperPassPassOnce, std::ref(Registry)); } | |||
1172 | ||||
1173 | bool LoopInfoWrapperPass::runOnFunction(Function &) { | |||
1174 | releaseMemory(); | |||
1175 | LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); | |||
1176 | return false; | |||
1177 | } | |||
1178 | ||||
1179 | void LoopInfoWrapperPass::verifyAnalysis() const { | |||
1180 | // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the | |||
1181 | // function each time verifyAnalysis is called is very expensive. The | |||
1182 | // -verify-loop-info option can enable this. In order to perform some | |||
1183 | // checking by default, LoopPass has been taught to call verifyLoop manually | |||
1184 | // during loop pass sequences. | |||
1185 | if (VerifyLoopInfo) { | |||
1186 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | |||
1187 | LI.verify(DT); | |||
1188 | } | |||
1189 | } | |||
1190 | ||||
1191 | void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | |||
1192 | AU.setPreservesAll(); | |||
1193 | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); | |||
1194 | } | |||
1195 | ||||
1196 | void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { | |||
1197 | LI.print(OS); | |||
1198 | } | |||
1199 | ||||
1200 | PreservedAnalyses LoopVerifierPass::run(Function &F, | |||
1201 | FunctionAnalysisManager &AM) { | |||
1202 | LoopInfo &LI = AM.getResult<LoopAnalysis>(F); | |||
1203 | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | |||
1204 | LI.verify(DT); | |||
1205 | return PreservedAnalyses::all(); | |||
1206 | } | |||
1207 | ||||
1208 | //===----------------------------------------------------------------------===// | |||
1209 | // LoopBlocksDFS implementation | |||
1210 | // | |||
1211 | ||||
1212 | /// Traverse the loop blocks and store the DFS result. | |||
1213 | /// Useful for clients that just want the final DFS result and don't need to | |||
1214 | /// visit blocks during the initial traversal. | |||
1215 | void LoopBlocksDFS::perform(LoopInfo *LI) { | |||
1216 | LoopBlocksTraversal Traversal(*this, LI); | |||
1217 | for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), | |||
1218 | POE = Traversal.end(); | |||
1219 | POI != POE; ++POI) | |||
1220 | ; | |||
1221 | } |