| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h |
| Warning: | line 85, column 47 The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- CSEInfo.cpp ------------------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // | |||
| 10 | //===----------------------------------------------------------------------===// | |||
| 11 | #include "llvm/CodeGen/GlobalISel/CSEInfo.h" | |||
| 12 | #include "llvm/CodeGen/MachineRegisterInfo.h" | |||
| 13 | #include "llvm/InitializePasses.h" | |||
| 14 | #include "llvm/Support/Error.h" | |||
| 15 | ||||
| 16 | #define DEBUG_TYPE"cseinfo" "cseinfo" | |||
| 17 | ||||
| 18 | using namespace llvm; | |||
| 19 | char llvm::GISelCSEAnalysisWrapperPass::ID = 0; | |||
| 20 | GISelCSEAnalysisWrapperPass::GISelCSEAnalysisWrapperPass() | |||
| 21 | : MachineFunctionPass(ID) { | |||
| 22 | initializeGISelCSEAnalysisWrapperPassPass(*PassRegistry::getPassRegistry()); | |||
| 23 | } | |||
| 24 | INITIALIZE_PASS_BEGIN(GISelCSEAnalysisWrapperPass, DEBUG_TYPE,static void *initializeGISelCSEAnalysisWrapperPassPassOnce(PassRegistry &Registry) { | |||
| 25 | "Analysis containing CSE Info", false, true)static void *initializeGISelCSEAnalysisWrapperPassPassOnce(PassRegistry &Registry) { | |||
| 26 | INITIALIZE_PASS_END(GISelCSEAnalysisWrapperPass, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Analysis containing CSE Info", "cseinfo" , &GISelCSEAnalysisWrapperPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<GISelCSEAnalysisWrapperPass>), false, true ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeGISelCSEAnalysisWrapperPassPassFlag; void llvm::initializeGISelCSEAnalysisWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeGISelCSEAnalysisWrapperPassPassFlag , initializeGISelCSEAnalysisWrapperPassPassOnce, std::ref(Registry )); } | |||
| 27 | "Analysis containing CSE Info", false, true)PassInfo *PI = new PassInfo( "Analysis containing CSE Info", "cseinfo" , &GISelCSEAnalysisWrapperPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<GISelCSEAnalysisWrapperPass>), false, true ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeGISelCSEAnalysisWrapperPassPassFlag; void llvm::initializeGISelCSEAnalysisWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeGISelCSEAnalysisWrapperPassPassFlag , initializeGISelCSEAnalysisWrapperPassPassOnce, std::ref(Registry )); } | |||
| 28 | ||||
| 29 | /// -------- UniqueMachineInstr -------------// | |||
| 30 | ||||
| 31 | void UniqueMachineInstr::Profile(FoldingSetNodeID &ID) { | |||
| 32 | GISelInstProfileBuilder(ID, MI->getMF()->getRegInfo()).addNodeID(MI); | |||
| 33 | } | |||
| 34 | /// ----------------------------------------- | |||
| 35 | ||||
| 36 | /// --------- CSEConfigFull ---------- /// | |||
| 37 | bool CSEConfigFull::shouldCSEOpc(unsigned Opc) { | |||
| 38 | switch (Opc) { | |||
| 39 | default: | |||
| 40 | break; | |||
| 41 | case TargetOpcode::G_ADD: | |||
| 42 | case TargetOpcode::G_AND: | |||
| 43 | case TargetOpcode::G_ASHR: | |||
| 44 | case TargetOpcode::G_LSHR: | |||
| 45 | case TargetOpcode::G_MUL: | |||
| 46 | case TargetOpcode::G_OR: | |||
| 47 | case TargetOpcode::G_SHL: | |||
| 48 | case TargetOpcode::G_SUB: | |||
| 49 | case TargetOpcode::G_XOR: | |||
| 50 | case TargetOpcode::G_UDIV: | |||
| 51 | case TargetOpcode::G_SDIV: | |||
| 52 | case TargetOpcode::G_UREM: | |||
| 53 | case TargetOpcode::G_SREM: | |||
| 54 | case TargetOpcode::G_CONSTANT: | |||
| 55 | case TargetOpcode::G_FCONSTANT: | |||
| 56 | case TargetOpcode::G_IMPLICIT_DEF: | |||
| 57 | case TargetOpcode::G_ZEXT: | |||
| 58 | case TargetOpcode::G_SEXT: | |||
| 59 | case TargetOpcode::G_ANYEXT: | |||
| 60 | case TargetOpcode::G_UNMERGE_VALUES: | |||
| 61 | case TargetOpcode::G_TRUNC: | |||
| 62 | case TargetOpcode::G_PTR_ADD: | |||
| 63 | case TargetOpcode::G_EXTRACT: | |||
| 64 | return true; | |||
| 65 | } | |||
| 66 | return false; | |||
| 67 | } | |||
| 68 | ||||
| 69 | bool CSEConfigConstantOnly::shouldCSEOpc(unsigned Opc) { | |||
| 70 | return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_IMPLICIT_DEF; | |||
| 71 | } | |||
| 72 | ||||
| 73 | std::unique_ptr<CSEConfigBase> | |||
| 74 | llvm::getStandardCSEConfigForOpt(CodeGenOpt::Level Level) { | |||
| 75 | std::unique_ptr<CSEConfigBase> Config; | |||
| 76 | if (Level == CodeGenOpt::None) | |||
| 77 | Config = std::make_unique<CSEConfigConstantOnly>(); | |||
| 78 | else | |||
| 79 | Config = std::make_unique<CSEConfigFull>(); | |||
| 80 | return Config; | |||
| 81 | } | |||
| 82 | ||||
| 83 | /// ----------------------------------------- | |||
| 84 | ||||
| 85 | /// -------- GISelCSEInfo -------------// | |||
| 86 | void GISelCSEInfo::setMF(MachineFunction &MF) { | |||
| 87 | this->MF = &MF; | |||
| 88 | this->MRI = &MF.getRegInfo(); | |||
| 89 | } | |||
| 90 | ||||
| 91 | GISelCSEInfo::~GISelCSEInfo() {} | |||
| 92 | ||||
| 93 | bool GISelCSEInfo::isUniqueMachineInstValid( | |||
| 94 | const UniqueMachineInstr &UMI) const { | |||
| 95 | // Should we check here and assert that the instruction has been fully | |||
| 96 | // constructed? | |||
| 97 | // FIXME: Any other checks required to be done here? Remove this method if | |||
| 98 | // none. | |||
| 99 | return true; | |||
| 100 | } | |||
| 101 | ||||
| 102 | void GISelCSEInfo::invalidateUniqueMachineInstr(UniqueMachineInstr *UMI) { | |||
| 103 | bool Removed = CSEMap.RemoveNode(UMI); | |||
| 104 | (void)Removed; | |||
| 105 | assert(Removed && "Invalidation called on invalid UMI")((void)0); | |||
| 106 | // FIXME: Should UMI be deallocated/destroyed? | |||
| 107 | } | |||
| 108 | ||||
| 109 | UniqueMachineInstr *GISelCSEInfo::getNodeIfExists(FoldingSetNodeID &ID, | |||
| 110 | MachineBasicBlock *MBB, | |||
| 111 | void *&InsertPos) { | |||
| 112 | auto *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos); | |||
| 113 | if (Node) { | |||
| 114 | if (!isUniqueMachineInstValid(*Node)) { | |||
| 115 | invalidateUniqueMachineInstr(Node); | |||
| 116 | return nullptr; | |||
| 117 | } | |||
| 118 | ||||
| 119 | if (Node->MI->getParent() != MBB) | |||
| 120 | return nullptr; | |||
| 121 | } | |||
| 122 | return Node; | |||
| 123 | } | |||
| 124 | ||||
| 125 | void GISelCSEInfo::insertNode(UniqueMachineInstr *UMI, void *InsertPos) { | |||
| 126 | handleRecordedInsts(); | |||
| 127 | assert(UMI)((void)0); | |||
| 128 | UniqueMachineInstr *MaybeNewNode = UMI; | |||
| 129 | if (InsertPos) | |||
| 130 | CSEMap.InsertNode(UMI, InsertPos); | |||
| 131 | else | |||
| 132 | MaybeNewNode = CSEMap.GetOrInsertNode(UMI); | |||
| 133 | if (MaybeNewNode != UMI) { | |||
| 134 | // A similar node exists in the folding set. Let's ignore this one. | |||
| 135 | return; | |||
| 136 | } | |||
| 137 | assert(InstrMapping.count(UMI->MI) == 0 &&((void)0) | |||
| 138 | "This instruction should not be in the map")((void)0); | |||
| 139 | InstrMapping[UMI->MI] = MaybeNewNode; | |||
| 140 | } | |||
| 141 | ||||
| 142 | UniqueMachineInstr *GISelCSEInfo::getUniqueInstrForMI(const MachineInstr *MI) { | |||
| 143 | assert(shouldCSE(MI->getOpcode()) && "Trying to CSE an unsupported Node")((void)0); | |||
| 144 | auto *Node = new (UniqueInstrAllocator) UniqueMachineInstr(MI); | |||
| 145 | return Node; | |||
| 146 | } | |||
| 147 | ||||
| 148 | void GISelCSEInfo::insertInstr(MachineInstr *MI, void *InsertPos) { | |||
| 149 | assert(MI)((void)0); | |||
| 150 | // If it exists in temporary insts, remove it. | |||
| 151 | TemporaryInsts.remove(MI); | |||
| 152 | auto *Node = getUniqueInstrForMI(MI); | |||
| 153 | insertNode(Node, InsertPos); | |||
| 154 | } | |||
| 155 | ||||
| 156 | MachineInstr *GISelCSEInfo::getMachineInstrIfExists(FoldingSetNodeID &ID, | |||
| 157 | MachineBasicBlock *MBB, | |||
| 158 | void *&InsertPos) { | |||
| 159 | handleRecordedInsts(); | |||
| 160 | if (auto *Inst = getNodeIfExists(ID, MBB, InsertPos)) { | |||
| 161 | LLVM_DEBUG(dbgs() << "CSEInfo::Found Instr " << *Inst->MI;)do { } while (false); | |||
| 162 | return const_cast<MachineInstr *>(Inst->MI); | |||
| 163 | } | |||
| 164 | return nullptr; | |||
| 165 | } | |||
| 166 | ||||
| 167 | void GISelCSEInfo::countOpcodeHit(unsigned Opc) { | |||
| 168 | #ifndef NDEBUG1 | |||
| 169 | if (OpcodeHitTable.count(Opc)) | |||
| 170 | OpcodeHitTable[Opc] += 1; | |||
| 171 | else | |||
| 172 | OpcodeHitTable[Opc] = 1; | |||
| 173 | #endif | |||
| 174 | // Else do nothing. | |||
| 175 | } | |||
| 176 | ||||
| 177 | void GISelCSEInfo::recordNewInstruction(MachineInstr *MI) { | |||
| 178 | if (shouldCSE(MI->getOpcode())) { | |||
| 179 | TemporaryInsts.insert(MI); | |||
| 180 | LLVM_DEBUG(dbgs() << "CSEInfo::Recording new MI " << *MI)do { } while (false); | |||
| 181 | } | |||
| 182 | } | |||
| 183 | ||||
| 184 | void GISelCSEInfo::handleRecordedInst(MachineInstr *MI) { | |||
| 185 | assert(shouldCSE(MI->getOpcode()) && "Invalid instruction for CSE")((void)0); | |||
| 186 | auto *UMI = InstrMapping.lookup(MI); | |||
| 187 | LLVM_DEBUG(dbgs() << "CSEInfo::Handling recorded MI " << *MI)do { } while (false); | |||
| 188 | if (UMI) { | |||
| 189 | // Invalidate this MI. | |||
| 190 | invalidateUniqueMachineInstr(UMI); | |||
| 191 | InstrMapping.erase(MI); | |||
| 192 | } | |||
| 193 | /// Now insert the new instruction. | |||
| 194 | if (UMI) { | |||
| 195 | /// We'll reuse the same UniqueMachineInstr to avoid the new | |||
| 196 | /// allocation. | |||
| 197 | *UMI = UniqueMachineInstr(MI); | |||
| 198 | insertNode(UMI, nullptr); | |||
| 199 | } else { | |||
| 200 | /// This is a new instruction. Allocate a new UniqueMachineInstr and | |||
| 201 | /// Insert. | |||
| 202 | insertInstr(MI); | |||
| 203 | } | |||
| 204 | } | |||
| 205 | ||||
| 206 | void GISelCSEInfo::handleRemoveInst(MachineInstr *MI) { | |||
| 207 | if (auto *UMI = InstrMapping.lookup(MI)) { | |||
| 208 | invalidateUniqueMachineInstr(UMI); | |||
| 209 | InstrMapping.erase(MI); | |||
| 210 | } | |||
| 211 | TemporaryInsts.remove(MI); | |||
| 212 | } | |||
| 213 | ||||
| 214 | void GISelCSEInfo::handleRecordedInsts() { | |||
| 215 | while (!TemporaryInsts.empty()) { | |||
| 216 | auto *MI = TemporaryInsts.pop_back_val(); | |||
| 217 | handleRecordedInst(MI); | |||
| 218 | } | |||
| 219 | } | |||
| 220 | ||||
| 221 | bool GISelCSEInfo::shouldCSE(unsigned Opc) const { | |||
| 222 | assert(CSEOpt.get() && "CSEConfig not set")((void)0); | |||
| 223 | return CSEOpt->shouldCSEOpc(Opc); | |||
| 224 | } | |||
| 225 | ||||
| 226 | void GISelCSEInfo::erasingInstr(MachineInstr &MI) { handleRemoveInst(&MI); } | |||
| 227 | void GISelCSEInfo::createdInstr(MachineInstr &MI) { recordNewInstruction(&MI); } | |||
| 228 | void GISelCSEInfo::changingInstr(MachineInstr &MI) { | |||
| 229 | // For now, perform erase, followed by insert. | |||
| 230 | erasingInstr(MI); | |||
| 231 | createdInstr(MI); | |||
| 232 | } | |||
| 233 | void GISelCSEInfo::changedInstr(MachineInstr &MI) { changingInstr(MI); } | |||
| 234 | ||||
| 235 | void GISelCSEInfo::analyze(MachineFunction &MF) { | |||
| 236 | setMF(MF); | |||
| 237 | for (auto &MBB : MF) { | |||
| 238 | if (MBB.empty()) | |||
| 239 | continue; | |||
| 240 | for (MachineInstr &MI : MBB) { | |||
| 241 | if (!shouldCSE(MI.getOpcode())) | |||
| 242 | continue; | |||
| 243 | LLVM_DEBUG(dbgs() << "CSEInfo::Add MI: " << MI)do { } while (false); | |||
| 244 | insertInstr(&MI); | |||
| 245 | } | |||
| 246 | } | |||
| 247 | } | |||
| 248 | ||||
| 249 | void GISelCSEInfo::releaseMemory() { | |||
| 250 | print(); | |||
| 251 | CSEMap.clear(); | |||
| 252 | InstrMapping.clear(); | |||
| 253 | UniqueInstrAllocator.Reset(); | |||
| 254 | TemporaryInsts.clear(); | |||
| 255 | CSEOpt.reset(); | |||
| 256 | MRI = nullptr; | |||
| 257 | MF = nullptr; | |||
| 258 | #ifndef NDEBUG1 | |||
| 259 | OpcodeHitTable.clear(); | |||
| 260 | #endif | |||
| 261 | } | |||
| 262 | ||||
| 263 | #ifndef NDEBUG1 | |||
| 264 | static const char *stringify(const MachineInstr *MI, std::string &S) { | |||
| 265 | raw_string_ostream OS(S); | |||
| 266 | OS << *MI; | |||
| 267 | return OS.str().c_str(); | |||
| 268 | } | |||
| 269 | #endif | |||
| 270 | ||||
| 271 | Error GISelCSEInfo::verify() { | |||
| 272 | #ifndef NDEBUG1 | |||
| 273 | std::string S1, S2; | |||
| 274 | handleRecordedInsts(); | |||
| 275 | // For each instruction in map from MI -> UMI, | |||
| 276 | // Profile(MI) and make sure UMI is found for that profile. | |||
| 277 | for (auto &It : InstrMapping) { | |||
| 278 | FoldingSetNodeID TmpID; | |||
| 279 | GISelInstProfileBuilder(TmpID, *MRI).addNodeID(It.first); | |||
| 280 | void *InsertPos; | |||
| 281 | UniqueMachineInstr *FoundNode = | |||
| 282 | CSEMap.FindNodeOrInsertPos(TmpID, InsertPos); | |||
| 283 | if (FoundNode != It.second) | |||
| 284 | return createStringError(std::errc::not_supported, | |||
| 285 | "CSEMap mismatch, InstrMapping has MIs without " | |||
| 286 | "corresponding Nodes in CSEMap:\n%s", | |||
| 287 | stringify(It.second->MI, S1)); | |||
| 288 | } | |||
| 289 | ||||
| 290 | // For every node in the CSEMap, make sure that the InstrMapping | |||
| 291 | // points to it. | |||
| 292 | for (const UniqueMachineInstr &UMI : CSEMap) { | |||
| 293 | if (!InstrMapping.count(UMI.MI)) | |||
| 294 | return createStringError(std::errc::not_supported, | |||
| 295 | "Node in CSE without InstrMapping:\n%s", | |||
| 296 | stringify(UMI.MI, S1)); | |||
| 297 | ||||
| 298 | if (InstrMapping[UMI.MI] != &UMI) | |||
| 299 | return createStringError(std::make_error_code(std::errc::not_supported), | |||
| 300 | "Mismatch in CSE mapping:\n%s\n%s", | |||
| 301 | stringify(InstrMapping[UMI.MI]->MI, S1), | |||
| 302 | stringify(UMI.MI, S2)); | |||
| 303 | } | |||
| 304 | #endif | |||
| 305 | return Error::success(); | |||
| 306 | } | |||
| 307 | ||||
| 308 | void GISelCSEInfo::print() { | |||
| 309 | LLVM_DEBUG(for (auto &Itdo { } while (false) | |||
| 310 | : OpcodeHitTable) {do { } while (false) | |||
| 311 | dbgs() << "CSEInfo::CSE Hit for Opc " << It.first << " : " << It.seconddo { } while (false) | |||
| 312 | << "\n";do { } while (false) | |||
| 313 | };)do { } while (false); | |||
| 314 | } | |||
| 315 | /// ----------------------------------------- | |||
| 316 | // ---- Profiling methods for FoldingSetNode --- // | |||
| 317 | const GISelInstProfileBuilder & | |||
| 318 | GISelInstProfileBuilder::addNodeID(const MachineInstr *MI) const { | |||
| 319 | addNodeIDMBB(MI->getParent()); | |||
| 320 | addNodeIDOpcode(MI->getOpcode()); | |||
| 321 | for (auto &Op : MI->operands()) | |||
| 322 | addNodeIDMachineOperand(Op); | |||
| 323 | addNodeIDFlag(MI->getFlags()); | |||
| 324 | return *this; | |||
| 325 | } | |||
| 326 | ||||
| 327 | const GISelInstProfileBuilder & | |||
| 328 | GISelInstProfileBuilder::addNodeIDOpcode(unsigned Opc) const { | |||
| 329 | ID.AddInteger(Opc); | |||
| 330 | return *this; | |||
| 331 | } | |||
| 332 | ||||
| 333 | const GISelInstProfileBuilder & | |||
| 334 | GISelInstProfileBuilder::addNodeIDRegType(const LLT Ty) const { | |||
| 335 | uint64_t Val = Ty.getUniqueRAWLLTData(); | |||
| 336 | ID.AddInteger(Val); | |||
| 337 | return *this; | |||
| 338 | } | |||
| 339 | ||||
| 340 | const GISelInstProfileBuilder & | |||
| 341 | GISelInstProfileBuilder::addNodeIDRegType(const TargetRegisterClass *RC) const { | |||
| 342 | ID.AddPointer(RC); | |||
| 343 | return *this; | |||
| 344 | } | |||
| 345 | ||||
| 346 | const GISelInstProfileBuilder & | |||
| 347 | GISelInstProfileBuilder::addNodeIDRegType(const RegisterBank *RB) const { | |||
| 348 | ID.AddPointer(RB); | |||
| 349 | return *this; | |||
| 350 | } | |||
| 351 | ||||
| 352 | const GISelInstProfileBuilder & | |||
| 353 | GISelInstProfileBuilder::addNodeIDImmediate(int64_t Imm) const { | |||
| 354 | ID.AddInteger(Imm); | |||
| 355 | return *this; | |||
| 356 | } | |||
| 357 | ||||
| 358 | const GISelInstProfileBuilder & | |||
| 359 | GISelInstProfileBuilder::addNodeIDRegNum(Register Reg) const { | |||
| 360 | ID.AddInteger(Reg); | |||
| 361 | return *this; | |||
| 362 | } | |||
| 363 | ||||
| 364 | const GISelInstProfileBuilder & | |||
| 365 | GISelInstProfileBuilder::addNodeIDRegType(const Register Reg) const { | |||
| 366 | addNodeIDMachineOperand(MachineOperand::CreateReg(Reg, false)); | |||
| 367 | return *this; | |||
| 368 | } | |||
| 369 | ||||
| 370 | const GISelInstProfileBuilder & | |||
| 371 | GISelInstProfileBuilder::addNodeIDMBB(const MachineBasicBlock *MBB) const { | |||
| 372 | ID.AddPointer(MBB); | |||
| 373 | return *this; | |||
| 374 | } | |||
| 375 | ||||
| 376 | const GISelInstProfileBuilder & | |||
| 377 | GISelInstProfileBuilder::addNodeIDFlag(unsigned Flag) const { | |||
| 378 | if (Flag) | |||
| 379 | ID.AddInteger(Flag); | |||
| 380 | return *this; | |||
| 381 | } | |||
| 382 | ||||
| 383 | const GISelInstProfileBuilder & | |||
| 384 | GISelInstProfileBuilder::addNodeIDReg(Register Reg) const { | |||
| 385 | LLT Ty = MRI.getType(Reg); | |||
| 386 | if (Ty.isValid()) | |||
| 387 | addNodeIDRegType(Ty); | |||
| 388 | ||||
| 389 | if (const RegClassOrRegBank &RCOrRB = MRI.getRegClassOrRegBank(Reg)) { | |||
| 390 | if (const auto *RB = RCOrRB.dyn_cast<const RegisterBank *>()) | |||
| 391 | addNodeIDRegType(RB); | |||
| 392 | else if (const auto *RC = RCOrRB.dyn_cast<const TargetRegisterClass *>()) | |||
| 393 | addNodeIDRegType(RC); | |||
| 394 | } | |||
| 395 | return *this; | |||
| 396 | } | |||
| 397 | ||||
| 398 | const GISelInstProfileBuilder &GISelInstProfileBuilder::addNodeIDMachineOperand( | |||
| 399 | const MachineOperand &MO) const { | |||
| 400 | if (MO.isReg()) { | |||
| 401 | Register Reg = MO.getReg(); | |||
| 402 | if (!MO.isDef()) | |||
| 403 | addNodeIDRegNum(Reg); | |||
| 404 | ||||
| 405 | // Profile the register properties. | |||
| 406 | addNodeIDReg(Reg); | |||
| 407 | assert(!MO.isImplicit() && "Unhandled case")((void)0); | |||
| 408 | } else if (MO.isImm()) | |||
| 409 | ID.AddInteger(MO.getImm()); | |||
| 410 | else if (MO.isCImm()) | |||
| 411 | ID.AddPointer(MO.getCImm()); | |||
| 412 | else if (MO.isFPImm()) | |||
| 413 | ID.AddPointer(MO.getFPImm()); | |||
| 414 | else if (MO.isPredicate()) | |||
| 415 | ID.AddInteger(MO.getPredicate()); | |||
| 416 | else | |||
| 417 | llvm_unreachable("Unhandled operand type")__builtin_unreachable(); | |||
| 418 | // Handle other types | |||
| 419 | return *this; | |||
| 420 | } | |||
| 421 | ||||
| 422 | GISelCSEInfo & | |||
| 423 | GISelCSEAnalysisWrapper::get(std::unique_ptr<CSEConfigBase> CSEOpt, | |||
| 424 | bool Recompute) { | |||
| 425 | if (!AlreadyComputed || Recompute) { | |||
| ||||
| 426 | Info.releaseMemory(); | |||
| 427 | Info.setCSEConfig(std::move(CSEOpt)); | |||
| 428 | Info.analyze(*MF); | |||
| 429 | AlreadyComputed = true; | |||
| 430 | } | |||
| 431 | return Info; | |||
| 432 | } | |||
| 433 | void GISelCSEAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | |||
| 434 | AU.setPreservesAll(); | |||
| 435 | MachineFunctionPass::getAnalysisUsage(AU); | |||
| 436 | } | |||
| 437 | ||||
| 438 | bool GISelCSEAnalysisWrapperPass::runOnMachineFunction(MachineFunction &MF) { | |||
| 439 | releaseMemory(); | |||
| 440 | Wrapper.setMF(MF); | |||
| 441 | return false; | |||
| 442 | } |
| 1 | //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// |
| 10 | /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms |
| 11 | /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but |
| 12 | /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the |
| 13 | /// allocator. |
| 14 | /// |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef LLVM_SUPPORT_ALLOCATOR_H |
| 18 | #define LLVM_SUPPORT_ALLOCATOR_H |
| 19 | |
| 20 | #include "llvm/ADT/Optional.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/Support/Alignment.h" |
| 23 | #include "llvm/Support/AllocatorBase.h" |
| 24 | #include "llvm/Support/Compiler.h" |
| 25 | #include "llvm/Support/ErrorHandling.h" |
| 26 | #include "llvm/Support/MathExtras.h" |
| 27 | #include "llvm/Support/MemAlloc.h" |
| 28 | #include <algorithm> |
| 29 | #include <cassert> |
| 30 | #include <cstddef> |
| 31 | #include <cstdint> |
| 32 | #include <cstdlib> |
| 33 | #include <iterator> |
| 34 | #include <type_traits> |
| 35 | #include <utility> |
| 36 | |
| 37 | namespace llvm { |
| 38 | |
| 39 | namespace detail { |
| 40 | |
| 41 | // We call out to an external function to actually print the message as the |
| 42 | // printing code uses Allocator.h in its implementation. |
| 43 | void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, |
| 44 | size_t TotalMemory); |
| 45 | |
| 46 | } // end namespace detail |
| 47 | |
| 48 | /// Allocate memory in an ever growing pool, as if by bump-pointer. |
| 49 | /// |
| 50 | /// This isn't strictly a bump-pointer allocator as it uses backing slabs of |
| 51 | /// memory rather than relying on a boundless contiguous heap. However, it has |
| 52 | /// bump-pointer semantics in that it is a monotonically growing pool of memory |
| 53 | /// where every allocation is found by merely allocating the next N bytes in |
| 54 | /// the slab, or the next N bytes in the next slab. |
| 55 | /// |
| 56 | /// Note that this also has a threshold for forcing allocations above a certain |
| 57 | /// size into their own slab. |
| 58 | /// |
| 59 | /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator |
| 60 | /// object, which wraps malloc, to allocate memory, but it can be changed to |
| 61 | /// use a custom allocator. |
| 62 | /// |
| 63 | /// The GrowthDelay specifies after how many allocated slabs the allocator |
| 64 | /// increases the size of the slabs. |
| 65 | template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096, |
| 66 | size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128> |
| 67 | class BumpPtrAllocatorImpl |
| 68 | : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize, |
| 69 | SizeThreshold, GrowthDelay>>, |
| 70 | private AllocatorT { |
| 71 | public: |
| 72 | static_assert(SizeThreshold <= SlabSize, |
| 73 | "The SizeThreshold must be at most the SlabSize to ensure " |
| 74 | "that objects larger than a slab go into their own memory " |
| 75 | "allocation."); |
| 76 | static_assert(GrowthDelay > 0, |
| 77 | "GrowthDelay must be at least 1 which already increases the" |
| 78 | "slab size after each allocated slab."); |
| 79 | |
| 80 | BumpPtrAllocatorImpl() = default; |
| 81 | |
| 82 | template <typename T> |
| 83 | BumpPtrAllocatorImpl(T &&Allocator) |
| 84 | : AllocatorT(std::forward<T &&>(Allocator)) {} |
| 85 | |
| 86 | // Manually implement a move constructor as we must clear the old allocator's |
| 87 | // slabs as a matter of correctness. |
| 88 | BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) |
| 89 | : AllocatorT(static_cast<AllocatorT &&>(Old)), CurPtr(Old.CurPtr), |
| 90 | End(Old.End), Slabs(std::move(Old.Slabs)), |
| 91 | CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), |
| 92 | BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) { |
| 93 | Old.CurPtr = Old.End = nullptr; |
| 94 | Old.BytesAllocated = 0; |
| 95 | Old.Slabs.clear(); |
| 96 | Old.CustomSizedSlabs.clear(); |
| 97 | } |
| 98 | |
| 99 | ~BumpPtrAllocatorImpl() { |
| 100 | DeallocateSlabs(Slabs.begin(), Slabs.end()); |
| 101 | DeallocateCustomSizedSlabs(); |
| 102 | } |
| 103 | |
| 104 | BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { |
| 105 | DeallocateSlabs(Slabs.begin(), Slabs.end()); |
| 106 | DeallocateCustomSizedSlabs(); |
| 107 | |
| 108 | CurPtr = RHS.CurPtr; |
| 109 | End = RHS.End; |
| 110 | BytesAllocated = RHS.BytesAllocated; |
| 111 | RedZoneSize = RHS.RedZoneSize; |
| 112 | Slabs = std::move(RHS.Slabs); |
| 113 | CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); |
| 114 | AllocatorT::operator=(static_cast<AllocatorT &&>(RHS)); |
| 115 | |
| 116 | RHS.CurPtr = RHS.End = nullptr; |
| 117 | RHS.BytesAllocated = 0; |
| 118 | RHS.Slabs.clear(); |
| 119 | RHS.CustomSizedSlabs.clear(); |
| 120 | return *this; |
| 121 | } |
| 122 | |
| 123 | /// Deallocate all but the current slab and reset the current pointer |
| 124 | /// to the beginning of it, freeing all memory allocated so far. |
| 125 | void Reset() { |
| 126 | // Deallocate all but the first slab, and deallocate all custom-sized slabs. |
| 127 | DeallocateCustomSizedSlabs(); |
| 128 | CustomSizedSlabs.clear(); |
| 129 | |
| 130 | if (Slabs.empty()) |
| 131 | return; |
| 132 | |
| 133 | // Reset the state. |
| 134 | BytesAllocated = 0; |
| 135 | CurPtr = (char *)Slabs.front(); |
| 136 | End = CurPtr + SlabSize; |
| 137 | |
| 138 | __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0)); |
| 139 | DeallocateSlabs(std::next(Slabs.begin()), Slabs.end()); |
| 140 | Slabs.erase(std::next(Slabs.begin()), Slabs.end()); |
| 141 | } |
| 142 | |
| 143 | /// Allocate space at the specified alignment. |
| 144 | LLVM_ATTRIBUTE_RETURNS_NONNULL__attribute__((returns_nonnull)) LLVM_ATTRIBUTE_RETURNS_NOALIAS__attribute__((__malloc__)) void * |
| 145 | Allocate(size_t Size, Align Alignment) { |
| 146 | // Keep track of how many bytes we've allocated. |
| 147 | BytesAllocated += Size; |
| 148 | |
| 149 | size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment); |
| 150 | assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow")((void)0); |
| 151 | |
| 152 | size_t SizeToAllocate = Size; |
| 153 | #if LLVM_ADDRESS_SANITIZER_BUILD0 |
| 154 | // Add trailing bytes as a "red zone" under ASan. |
| 155 | SizeToAllocate += RedZoneSize; |
| 156 | #endif |
| 157 | |
| 158 | // Check if we have enough space. |
| 159 | if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) { |
| 160 | char *AlignedPtr = CurPtr + Adjustment; |
| 161 | CurPtr = AlignedPtr + SizeToAllocate; |
| 162 | // Update the allocation point of this memory block in MemorySanitizer. |
| 163 | // Without this, MemorySanitizer messages for values originated from here |
| 164 | // will point to the allocation of the entire slab. |
| 165 | __msan_allocated_memory(AlignedPtr, Size); |
| 166 | // Similarly, tell ASan about this space. |
| 167 | __asan_unpoison_memory_region(AlignedPtr, Size); |
| 168 | return AlignedPtr; |
| 169 | } |
| 170 | |
| 171 | // If Size is really big, allocate a separate slab for it. |
| 172 | size_t PaddedSize = SizeToAllocate + Alignment.value() - 1; |
| 173 | if (PaddedSize > SizeThreshold) { |
| 174 | void *NewSlab = |
| 175 | AllocatorT::Allocate(PaddedSize, alignof(std::max_align_t)); |
| 176 | // We own the new slab and don't want anyone reading anyting other than |
| 177 | // pieces returned from this method. So poison the whole slab. |
| 178 | __asan_poison_memory_region(NewSlab, PaddedSize); |
| 179 | CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize)); |
| 180 | |
| 181 | uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment); |
| 182 | assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize)((void)0); |
| 183 | char *AlignedPtr = (char*)AlignedAddr; |
| 184 | __msan_allocated_memory(AlignedPtr, Size); |
| 185 | __asan_unpoison_memory_region(AlignedPtr, Size); |
| 186 | return AlignedPtr; |
| 187 | } |
| 188 | |
| 189 | // Otherwise, start a new slab and try again. |
| 190 | StartNewSlab(); |
| 191 | uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment); |
| 192 | assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&((void)0) |
| 193 | "Unable to allocate memory!")((void)0); |
| 194 | char *AlignedPtr = (char*)AlignedAddr; |
| 195 | CurPtr = AlignedPtr + SizeToAllocate; |
| 196 | __msan_allocated_memory(AlignedPtr, Size); |
| 197 | __asan_unpoison_memory_region(AlignedPtr, Size); |
| 198 | return AlignedPtr; |
| 199 | } |
| 200 | |
| 201 | inline LLVM_ATTRIBUTE_RETURNS_NONNULL__attribute__((returns_nonnull)) LLVM_ATTRIBUTE_RETURNS_NOALIAS__attribute__((__malloc__)) void * |
| 202 | Allocate(size_t Size, size_t Alignment) { |
| 203 | assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.")((void)0); |
| 204 | return Allocate(Size, Align(Alignment)); |
| 205 | } |
| 206 | |
| 207 | // Pull in base class overloads. |
| 208 | using AllocatorBase<BumpPtrAllocatorImpl>::Allocate; |
| 209 | |
| 210 | // Bump pointer allocators are expected to never free their storage; and |
| 211 | // clients expect pointers to remain valid for non-dereferencing uses even |
| 212 | // after deallocation. |
| 213 | void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) { |
| 214 | __asan_poison_memory_region(Ptr, Size); |
| 215 | } |
| 216 | |
| 217 | // Pull in base class overloads. |
| 218 | using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate; |
| 219 | |
| 220 | size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); } |
| 221 | |
| 222 | /// \return An index uniquely and reproducibly identifying |
| 223 | /// an input pointer \p Ptr in the given allocator. |
| 224 | /// The returned value is negative iff the object is inside a custom-size |
| 225 | /// slab. |
| 226 | /// Returns an empty optional if the pointer is not found in the allocator. |
| 227 | llvm::Optional<int64_t> identifyObject(const void *Ptr) { |
| 228 | const char *P = static_cast<const char *>(Ptr); |
| 229 | int64_t InSlabIdx = 0; |
| 230 | for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) { |
| 231 | const char *S = static_cast<const char *>(Slabs[Idx]); |
| 232 | if (P >= S && P < S + computeSlabSize(Idx)) |
| 233 | return InSlabIdx + static_cast<int64_t>(P - S); |
| 234 | InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx)); |
| 235 | } |
| 236 | |
| 237 | // Use negative index to denote custom sized slabs. |
| 238 | int64_t InCustomSizedSlabIdx = -1; |
| 239 | for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) { |
| 240 | const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first); |
| 241 | size_t Size = CustomSizedSlabs[Idx].second; |
| 242 | if (P >= S && P < S + Size) |
| 243 | return InCustomSizedSlabIdx - static_cast<int64_t>(P - S); |
| 244 | InCustomSizedSlabIdx -= static_cast<int64_t>(Size); |
| 245 | } |
| 246 | return None; |
| 247 | } |
| 248 | |
| 249 | /// A wrapper around identifyObject that additionally asserts that |
| 250 | /// the object is indeed within the allocator. |
| 251 | /// \return An index uniquely and reproducibly identifying |
| 252 | /// an input pointer \p Ptr in the given allocator. |
| 253 | int64_t identifyKnownObject(const void *Ptr) { |
| 254 | Optional<int64_t> Out = identifyObject(Ptr); |
| 255 | assert(Out && "Wrong allocator used")((void)0); |
| 256 | return *Out; |
| 257 | } |
| 258 | |
| 259 | /// A wrapper around identifyKnownObject. Accepts type information |
| 260 | /// about the object and produces a smaller identifier by relying on |
| 261 | /// the alignment information. Note that sub-classes may have different |
| 262 | /// alignment, so the most base class should be passed as template parameter |
| 263 | /// in order to obtain correct results. For that reason automatic template |
| 264 | /// parameter deduction is disabled. |
| 265 | /// \return An index uniquely and reproducibly identifying |
| 266 | /// an input pointer \p Ptr in the given allocator. This identifier is |
| 267 | /// different from the ones produced by identifyObject and |
| 268 | /// identifyAlignedObject. |
| 269 | template <typename T> |
| 270 | int64_t identifyKnownAlignedObject(const void *Ptr) { |
| 271 | int64_t Out = identifyKnownObject(Ptr); |
| 272 | assert(Out % alignof(T) == 0 && "Wrong alignment information")((void)0); |
| 273 | return Out / alignof(T); |
| 274 | } |
| 275 | |
| 276 | size_t getTotalMemory() const { |
| 277 | size_t TotalMemory = 0; |
| 278 | for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) |
| 279 | TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I)); |
| 280 | for (auto &PtrAndSize : CustomSizedSlabs) |
| 281 | TotalMemory += PtrAndSize.second; |
| 282 | return TotalMemory; |
| 283 | } |
| 284 | |
| 285 | size_t getBytesAllocated() const { return BytesAllocated; } |
| 286 | |
| 287 | void setRedZoneSize(size_t NewSize) { |
| 288 | RedZoneSize = NewSize; |
| 289 | } |
| 290 | |
| 291 | void PrintStats() const { |
| 292 | detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated, |
| 293 | getTotalMemory()); |
| 294 | } |
| 295 | |
| 296 | private: |
| 297 | /// The current pointer into the current slab. |
| 298 | /// |
| 299 | /// This points to the next free byte in the slab. |
| 300 | char *CurPtr = nullptr; |
| 301 | |
| 302 | /// The end of the current slab. |
| 303 | char *End = nullptr; |
| 304 | |
| 305 | /// The slabs allocated so far. |
| 306 | SmallVector<void *, 4> Slabs; |
| 307 | |
| 308 | /// Custom-sized slabs allocated for too-large allocation requests. |
| 309 | SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs; |
| 310 | |
| 311 | /// How many bytes we've allocated. |
| 312 | /// |
| 313 | /// Used so that we can compute how much space was wasted. |
| 314 | size_t BytesAllocated = 0; |
| 315 | |
| 316 | /// The number of bytes to put between allocations when running under |
| 317 | /// a sanitizer. |
| 318 | size_t RedZoneSize = 1; |
| 319 | |
| 320 | static size_t computeSlabSize(unsigned SlabIdx) { |
| 321 | // Scale the actual allocated slab size based on the number of slabs |
| 322 | // allocated. Every GrowthDelay slabs allocated, we double |
| 323 | // the allocated size to reduce allocation frequency, but saturate at |
| 324 | // multiplying the slab size by 2^30. |
| 325 | return SlabSize * |
| 326 | ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay)); |
| 327 | } |
| 328 | |
| 329 | /// Allocate a new slab and move the bump pointers over into the new |
| 330 | /// slab, modifying CurPtr and End. |
| 331 | void StartNewSlab() { |
| 332 | size_t AllocatedSlabSize = computeSlabSize(Slabs.size()); |
| 333 | |
| 334 | void *NewSlab = |
| 335 | AllocatorT::Allocate(AllocatedSlabSize, alignof(std::max_align_t)); |
| 336 | // We own the new slab and don't want anyone reading anything other than |
| 337 | // pieces returned from this method. So poison the whole slab. |
| 338 | __asan_poison_memory_region(NewSlab, AllocatedSlabSize); |
| 339 | |
| 340 | Slabs.push_back(NewSlab); |
| 341 | CurPtr = (char *)(NewSlab); |
| 342 | End = ((char *)NewSlab) + AllocatedSlabSize; |
| 343 | } |
| 344 | |
| 345 | /// Deallocate a sequence of slabs. |
| 346 | void DeallocateSlabs(SmallVectorImpl<void *>::iterator I, |
| 347 | SmallVectorImpl<void *>::iterator E) { |
| 348 | for (; I != E; ++I) { |
| 349 | size_t AllocatedSlabSize = |
| 350 | computeSlabSize(std::distance(Slabs.begin(), I)); |
| 351 | AllocatorT::Deallocate(*I, AllocatedSlabSize, alignof(std::max_align_t)); |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | /// Deallocate all memory for custom sized slabs. |
| 356 | void DeallocateCustomSizedSlabs() { |
| 357 | for (auto &PtrAndSize : CustomSizedSlabs) { |
| 358 | void *Ptr = PtrAndSize.first; |
| 359 | size_t Size = PtrAndSize.second; |
| 360 | AllocatorT::Deallocate(Ptr, Size, alignof(std::max_align_t)); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | template <typename T> friend class SpecificBumpPtrAllocator; |
| 365 | }; |
| 366 | |
| 367 | /// The standard BumpPtrAllocator which just uses the default template |
| 368 | /// parameters. |
| 369 | typedef BumpPtrAllocatorImpl<> BumpPtrAllocator; |
| 370 | |
| 371 | /// A BumpPtrAllocator that allows only elements of a specific type to be |
| 372 | /// allocated. |
| 373 | /// |
| 374 | /// This allows calling the destructor in DestroyAll() and when the allocator is |
| 375 | /// destroyed. |
| 376 | template <typename T> class SpecificBumpPtrAllocator { |
| 377 | BumpPtrAllocator Allocator; |
| 378 | |
| 379 | public: |
| 380 | SpecificBumpPtrAllocator() { |
| 381 | // Because SpecificBumpPtrAllocator walks the memory to call destructors, |
| 382 | // it can't have red zones between allocations. |
| 383 | Allocator.setRedZoneSize(0); |
| 384 | } |
| 385 | SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) |
| 386 | : Allocator(std::move(Old.Allocator)) {} |
| 387 | ~SpecificBumpPtrAllocator() { DestroyAll(); } |
| 388 | |
| 389 | SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { |
| 390 | Allocator = std::move(RHS.Allocator); |
| 391 | return *this; |
| 392 | } |
| 393 | |
| 394 | /// Call the destructor of each allocated object and deallocate all but the |
| 395 | /// current slab and reset the current pointer to the beginning of it, freeing |
| 396 | /// all memory allocated so far. |
| 397 | void DestroyAll() { |
| 398 | auto DestroyElements = [](char *Begin, char *End) { |
| 399 | assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()))((void)0); |
| 400 | for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) |
| 401 | reinterpret_cast<T *>(Ptr)->~T(); |
| 402 | }; |
| 403 | |
| 404 | for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; |
| 405 | ++I) { |
| 406 | size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( |
| 407 | std::distance(Allocator.Slabs.begin(), I)); |
| 408 | char *Begin = (char *)alignAddr(*I, Align::Of<T>()); |
| 409 | char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr |
| 410 | : (char *)*I + AllocatedSlabSize; |
| 411 | |
| 412 | DestroyElements(Begin, End); |
| 413 | } |
| 414 | |
| 415 | for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { |
| 416 | void *Ptr = PtrAndSize.first; |
| 417 | size_t Size = PtrAndSize.second; |
| 418 | DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()), |
| 419 | (char *)Ptr + Size); |
| 420 | } |
| 421 | |
| 422 | Allocator.Reset(); |
| 423 | } |
| 424 | |
| 425 | /// Allocate space for an array of objects without constructing them. |
| 426 | T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); } |
| 427 | }; |
| 428 | |
| 429 | } // end namespace llvm |
| 430 | |
| 431 | template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, |
| 432 | size_t GrowthDelay> |
| 433 | void * |
| 434 | operator new(size_t Size, |
| 435 | llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold, |
| 436 | GrowthDelay> &Allocator) { |
| 437 | return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size), |
| 438 | alignof(std::max_align_t))); |
| 439 | } |
| 440 | |
| 441 | template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, |
| 442 | size_t GrowthDelay> |
| 443 | void operator delete(void *, |
| 444 | llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, |
| 445 | SizeThreshold, GrowthDelay> &) { |
| 446 | } |
| 447 | |
| 448 | #endif // LLVM_SUPPORT_ALLOCATOR_H |
| 1 | //===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file contains types to represent alignments. | |||
| 10 | // They are instrumented to guarantee some invariants are preserved and prevent | |||
| 11 | // invalid manipulations. | |||
| 12 | // | |||
| 13 | // - Align represents an alignment in bytes, it is always set and always a valid | |||
| 14 | // power of two, its minimum value is 1 which means no alignment requirements. | |||
| 15 | // | |||
| 16 | // - MaybeAlign is an optional type, it may be undefined or set. When it's set | |||
| 17 | // you can get the underlying Align type by using the getValue() method. | |||
| 18 | // | |||
| 19 | //===----------------------------------------------------------------------===// | |||
| 20 | ||||
| 21 | #ifndef LLVM_SUPPORT_ALIGNMENT_H_ | |||
| 22 | #define LLVM_SUPPORT_ALIGNMENT_H_ | |||
| 23 | ||||
| 24 | #include "llvm/ADT/Optional.h" | |||
| 25 | #include "llvm/Support/MathExtras.h" | |||
| 26 | #include <cassert> | |||
| 27 | #ifndef NDEBUG1 | |||
| 28 | #include <string> | |||
| 29 | #endif // NDEBUG | |||
| 30 | ||||
| 31 | namespace llvm { | |||
| 32 | ||||
| 33 | #define ALIGN_CHECK_ISPOSITIVE(decl) \ | |||
| 34 | assert(decl > 0 && (#decl " should be defined"))((void)0) | |||
| 35 | ||||
| 36 | /// This struct is a compact representation of a valid (non-zero power of two) | |||
| 37 | /// alignment. | |||
| 38 | /// It is suitable for use as static global constants. | |||
| 39 | struct Align { | |||
| 40 | private: | |||
| 41 | uint8_t ShiftValue = 0; /// The log2 of the required alignment. | |||
| 42 | /// ShiftValue is less than 64 by construction. | |||
| 43 | ||||
| 44 | friend struct MaybeAlign; | |||
| 45 | friend unsigned Log2(Align); | |||
| 46 | friend bool operator==(Align Lhs, Align Rhs); | |||
| 47 | friend bool operator!=(Align Lhs, Align Rhs); | |||
| 48 | friend bool operator<=(Align Lhs, Align Rhs); | |||
| 49 | friend bool operator>=(Align Lhs, Align Rhs); | |||
| 50 | friend bool operator<(Align Lhs, Align Rhs); | |||
| 51 | friend bool operator>(Align Lhs, Align Rhs); | |||
| 52 | friend unsigned encode(struct MaybeAlign A); | |||
| 53 | friend struct MaybeAlign decodeMaybeAlign(unsigned Value); | |||
| 54 | ||||
| 55 | /// A trivial type to allow construction of constexpr Align. | |||
| 56 | /// This is currently needed to workaround a bug in GCC 5.3 which prevents | |||
| 57 | /// definition of constexpr assign operators. | |||
| 58 | /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic | |||
| 59 | /// FIXME: Remove this, make all assign operators constexpr and introduce user | |||
| 60 | /// defined literals when we don't have to support GCC 5.3 anymore. | |||
| 61 | /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain | |||
| 62 | struct LogValue { | |||
| 63 | uint8_t Log; | |||
| 64 | }; | |||
| 65 | ||||
| 66 | public: | |||
| 67 | /// Default is byte-aligned. | |||
| 68 | constexpr Align() = default; | |||
| 69 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
| 70 | /// checks have been performed when building `Other`. | |||
| 71 | constexpr Align(const Align &Other) = default; | |||
| 72 | constexpr Align(Align &&Other) = default; | |||
| 73 | Align &operator=(const Align &Other) = default; | |||
| 74 | Align &operator=(Align &&Other) = default; | |||
| 75 | ||||
| 76 | explicit Align(uint64_t Value) { | |||
| 77 | assert(Value > 0 && "Value must not be 0")((void)0); | |||
| 78 | assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0); | |||
| 79 | ShiftValue = Log2_64(Value); | |||
| 80 | assert(ShiftValue < 64 && "Broken invariant")((void)0); | |||
| 81 | } | |||
| 82 | ||||
| 83 | /// This is a hole in the type system and should not be abused. | |||
| 84 | /// Needed to interact with C for instance. | |||
| 85 | uint64_t value() const { return uint64_t(1) << ShiftValue; } | |||
| ||||
| 86 | ||||
| 87 | /// Allow constructions of constexpr Align. | |||
| 88 | template <size_t kValue> constexpr static LogValue Constant() { | |||
| 89 | return LogValue{static_cast<uint8_t>(CTLog2<kValue>())}; | |||
| 90 | } | |||
| 91 | ||||
| 92 | /// Allow constructions of constexpr Align from types. | |||
| 93 | /// Compile time equivalent to Align(alignof(T)). | |||
| 94 | template <typename T> constexpr static LogValue Of() { | |||
| 95 | return Constant<std::alignment_of<T>::value>(); | |||
| 96 | } | |||
| 97 | ||||
| 98 | /// Constexpr constructor from LogValue type. | |||
| 99 | constexpr Align(LogValue CA) : ShiftValue(CA.Log) {} | |||
| 100 | }; | |||
| 101 | ||||
| 102 | /// Treats the value 0 as a 1, so Align is always at least 1. | |||
| 103 | inline Align assumeAligned(uint64_t Value) { | |||
| 104 | return Value ? Align(Value) : Align(); | |||
| 105 | } | |||
| 106 | ||||
| 107 | /// This struct is a compact representation of a valid (power of two) or | |||
| 108 | /// undefined (0) alignment. | |||
| 109 | struct MaybeAlign : public llvm::Optional<Align> { | |||
| 110 | private: | |||
| 111 | using UP = llvm::Optional<Align>; | |||
| 112 | ||||
| 113 | public: | |||
| 114 | /// Default is undefined. | |||
| 115 | MaybeAlign() = default; | |||
| 116 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
| 117 | /// checks have been performed when building `Other`. | |||
| 118 | MaybeAlign(const MaybeAlign &Other) = default; | |||
| 119 | MaybeAlign &operator=(const MaybeAlign &Other) = default; | |||
| 120 | MaybeAlign(MaybeAlign &&Other) = default; | |||
| 121 | MaybeAlign &operator=(MaybeAlign &&Other) = default; | |||
| 122 | ||||
| 123 | /// Use llvm::Optional<Align> constructor. | |||
| 124 | using UP::UP; | |||
| 125 | ||||
| 126 | explicit MaybeAlign(uint64_t Value) { | |||
| 127 | assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0) | |||
| 128 | "Alignment is neither 0 nor a power of 2")((void)0); | |||
| 129 | if (Value) | |||
| 130 | emplace(Value); | |||
| 131 | } | |||
| 132 | ||||
| 133 | /// For convenience, returns a valid alignment or 1 if undefined. | |||
| 134 | Align valueOrOne() const { return hasValue() ? getValue() : Align(); } | |||
| 135 | }; | |||
| 136 | ||||
| 137 | /// Checks that SizeInBytes is a multiple of the alignment. | |||
| 138 | inline bool isAligned(Align Lhs, uint64_t SizeInBytes) { | |||
| 139 | return SizeInBytes % Lhs.value() == 0; | |||
| 140 | } | |||
| 141 | ||||
| 142 | /// Checks that Addr is a multiple of the alignment. | |||
| 143 | inline bool isAddrAligned(Align Lhs, const void *Addr) { | |||
| 144 | return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr)); | |||
| 145 | } | |||
| 146 | ||||
| 147 | /// Returns a multiple of A needed to store `Size` bytes. | |||
| 148 | inline uint64_t alignTo(uint64_t Size, Align A) { | |||
| 149 | const uint64_t Value = A.value(); | |||
| 150 | // The following line is equivalent to `(Size + Value - 1) / Value * Value`. | |||
| 151 | ||||
| 152 | // The division followed by a multiplication can be thought of as a right | |||
| 153 | // shift followed by a left shift which zeros out the extra bits produced in | |||
| 154 | // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out | |||
| 155 | // are just zero. | |||
| 156 | ||||
| 157 | // Most compilers can generate this code but the pattern may be missed when | |||
| 158 | // multiple functions gets inlined. | |||
| 159 | return (Size + Value - 1) & ~(Value - 1U); | |||
| 160 | } | |||
| 161 | ||||
| 162 | /// If non-zero \p Skew is specified, the return value will be a minimal integer | |||
| 163 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for | |||
| 164 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p | |||
| 165 | /// Skew mod \p A'. | |||
| 166 | /// | |||
| 167 | /// Examples: | |||
| 168 | /// \code | |||
| 169 | /// alignTo(5, Align(8), 7) = 7 | |||
| 170 | /// alignTo(17, Align(8), 1) = 17 | |||
| 171 | /// alignTo(~0LL, Align(8), 3) = 3 | |||
| 172 | /// \endcode | |||
| 173 | inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) { | |||
| 174 | const uint64_t Value = A.value(); | |||
| 175 | Skew %= Value; | |||
| 176 | return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew; | |||
| 177 | } | |||
| 178 | ||||
| 179 | /// Returns a multiple of A needed to store `Size` bytes. | |||
| 180 | /// Returns `Size` if current alignment is undefined. | |||
| 181 | inline uint64_t alignTo(uint64_t Size, MaybeAlign A) { | |||
| 182 | return A ? alignTo(Size, A.getValue()) : Size; | |||
| 183 | } | |||
| 184 | ||||
| 185 | /// Aligns `Addr` to `Alignment` bytes, rounding up. | |||
| 186 | inline uintptr_t alignAddr(const void *Addr, Align Alignment) { | |||
| 187 | uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr); | |||
| 188 | assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0) | |||
| 189 | ArithAddr &&((void)0) | |||
| 190 | "Overflow")((void)0); | |||
| 191 | return alignTo(ArithAddr, Alignment); | |||
| 192 | } | |||
| 193 | ||||
| 194 | /// Returns the offset to the next integer (mod 2**64) that is greater than | |||
| 195 | /// or equal to \p Value and is a multiple of \p Align. | |||
| 196 | inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) { | |||
| 197 | return alignTo(Value, Alignment) - Value; | |||
| 198 | } | |||
| 199 | ||||
| 200 | /// Returns the necessary adjustment for aligning `Addr` to `Alignment` | |||
| 201 | /// bytes, rounding up. | |||
| 202 | inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) { | |||
| 203 | return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment); | |||
| 204 | } | |||
| 205 | ||||
| 206 | /// Returns the log2 of the alignment. | |||
| 207 | inline unsigned Log2(Align A) { return A.ShiftValue; } | |||
| 208 | ||||
| 209 | /// Returns the alignment that satisfies both alignments. | |||
| 210 | /// Same semantic as MinAlign. | |||
| 211 | inline Align commonAlignment(Align A, Align B) { return std::min(A, B); } | |||
| 212 | ||||
| 213 | /// Returns the alignment that satisfies both alignments. | |||
| 214 | /// Same semantic as MinAlign. | |||
| 215 | inline Align commonAlignment(Align A, uint64_t Offset) { | |||
| 216 | return Align(MinAlign(A.value(), Offset)); | |||
| 217 | } | |||
| 218 | ||||
| 219 | /// Returns the alignment that satisfies both alignments. | |||
| 220 | /// Same semantic as MinAlign. | |||
| 221 | inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) { | |||
| 222 | return A && B ? commonAlignment(*A, *B) : A ? A : B; | |||
| 223 | } | |||
| 224 | ||||
| 225 | /// Returns the alignment that satisfies both alignments. | |||
| 226 | /// Same semantic as MinAlign. | |||
| 227 | inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) { | |||
| 228 | return MaybeAlign(MinAlign((*A).value(), Offset)); | |||
| 229 | } | |||
| 230 | ||||
| 231 | /// Returns a representation of the alignment that encodes undefined as 0. | |||
| 232 | inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; } | |||
| 233 | ||||
| 234 | /// Dual operation of the encode function above. | |||
| 235 | inline MaybeAlign decodeMaybeAlign(unsigned Value) { | |||
| 236 | if (Value == 0) | |||
| 237 | return MaybeAlign(); | |||
| 238 | Align Out; | |||
| 239 | Out.ShiftValue = Value - 1; | |||
| 240 | return Out; | |||
| 241 | } | |||
| 242 | ||||
| 243 | /// Returns a representation of the alignment, the encoded value is positive by | |||
| 244 | /// definition. | |||
| 245 | inline unsigned encode(Align A) { return encode(MaybeAlign(A)); } | |||
| 246 | ||||
| 247 | /// Comparisons between Align and scalars. Rhs must be positive. | |||
| 248 | inline bool operator==(Align Lhs, uint64_t Rhs) { | |||
| 249 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 250 | return Lhs.value() == Rhs; | |||
| 251 | } | |||
| 252 | inline bool operator!=(Align Lhs, uint64_t Rhs) { | |||
| 253 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 254 | return Lhs.value() != Rhs; | |||
| 255 | } | |||
| 256 | inline bool operator<=(Align Lhs, uint64_t Rhs) { | |||
| 257 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 258 | return Lhs.value() <= Rhs; | |||
| 259 | } | |||
| 260 | inline bool operator>=(Align Lhs, uint64_t Rhs) { | |||
| 261 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 262 | return Lhs.value() >= Rhs; | |||
| 263 | } | |||
| 264 | inline bool operator<(Align Lhs, uint64_t Rhs) { | |||
| 265 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 266 | return Lhs.value() < Rhs; | |||
| 267 | } | |||
| 268 | inline bool operator>(Align Lhs, uint64_t Rhs) { | |||
| 269 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 270 | return Lhs.value() > Rhs; | |||
| 271 | } | |||
| 272 | ||||
| 273 | /// Comparisons between MaybeAlign and scalars. | |||
| 274 | inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 275 | return Lhs ? (*Lhs).value() == Rhs : Rhs == 0; | |||
| 276 | } | |||
| 277 | inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 278 | return Lhs ? (*Lhs).value() != Rhs : Rhs != 0; | |||
| 279 | } | |||
| 280 | ||||
| 281 | /// Comparisons operators between Align. | |||
| 282 | inline bool operator==(Align Lhs, Align Rhs) { | |||
| 283 | return Lhs.ShiftValue == Rhs.ShiftValue; | |||
| 284 | } | |||
| 285 | inline bool operator!=(Align Lhs, Align Rhs) { | |||
| 286 | return Lhs.ShiftValue != Rhs.ShiftValue; | |||
| 287 | } | |||
| 288 | inline bool operator<=(Align Lhs, Align Rhs) { | |||
| 289 | return Lhs.ShiftValue <= Rhs.ShiftValue; | |||
| 290 | } | |||
| 291 | inline bool operator>=(Align Lhs, Align Rhs) { | |||
| 292 | return Lhs.ShiftValue >= Rhs.ShiftValue; | |||
| 293 | } | |||
| 294 | inline bool operator<(Align Lhs, Align Rhs) { | |||
| 295 | return Lhs.ShiftValue < Rhs.ShiftValue; | |||
| 296 | } | |||
| 297 | inline bool operator>(Align Lhs, Align Rhs) { | |||
| 298 | return Lhs.ShiftValue > Rhs.ShiftValue; | |||
| 299 | } | |||
| 300 | ||||
| 301 | // Don't allow relational comparisons with MaybeAlign. | |||
| 302 | bool operator<=(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 303 | bool operator>=(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 304 | bool operator<(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 305 | bool operator>(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 306 | ||||
| 307 | bool operator<=(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 308 | bool operator>=(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 309 | bool operator<(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 310 | bool operator>(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 311 | ||||
| 312 | bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 313 | bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 314 | bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 315 | bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 316 | ||||
| 317 | inline Align operator*(Align Lhs, uint64_t Rhs) { | |||
| 318 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
| 319 | return Align(Lhs.value() * Rhs); | |||
| 320 | } | |||
| 321 | ||||
| 322 | inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 323 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
| 324 | return Lhs ? Lhs.getValue() * Rhs : MaybeAlign(); | |||
| 325 | } | |||
| 326 | ||||
| 327 | inline Align operator/(Align Lhs, uint64_t Divisor) { | |||
| 328 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
| 329 | "Divisor must be positive and a power of 2")((void)0); | |||
| 330 | assert(Lhs != 1 && "Can't halve byte alignment")((void)0); | |||
| 331 | return Align(Lhs.value() / Divisor); | |||
| 332 | } | |||
| 333 | ||||
| 334 | inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) { | |||
| 335 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
| 336 | "Divisor must be positive and a power of 2")((void)0); | |||
| 337 | return Lhs ? Lhs.getValue() / Divisor : MaybeAlign(); | |||
| 338 | } | |||
| 339 | ||||
| 340 | inline Align max(MaybeAlign Lhs, Align Rhs) { | |||
| 341 | return Lhs && *Lhs > Rhs ? *Lhs : Rhs; | |||
| 342 | } | |||
| 343 | ||||
| 344 | inline Align max(Align Lhs, MaybeAlign Rhs) { | |||
| 345 | return Rhs && *Rhs > Lhs ? *Rhs : Lhs; | |||
| 346 | } | |||
| 347 | ||||
| 348 | #ifndef NDEBUG1 | |||
| 349 | // For usage in LLVM_DEBUG macros. | |||
| 350 | inline std::string DebugStr(const Align &A) { | |||
| 351 | return std::to_string(A.value()); | |||
| 352 | } | |||
| 353 | // For usage in LLVM_DEBUG macros. | |||
| 354 | inline std::string DebugStr(const MaybeAlign &MA) { | |||
| 355 | if (MA) | |||
| 356 | return std::to_string(MA->value()); | |||
| 357 | return "None"; | |||
| 358 | } | |||
| 359 | #endif // NDEBUG | |||
| 360 | ||||
| 361 | #undef ALIGN_CHECK_ISPOSITIVE | |||
| 362 | ||||
| 363 | } // namespace llvm | |||
| 364 | ||||
| 365 | #endif // LLVM_SUPPORT_ALIGNMENT_H_ |