clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstCombineCompares.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | #include "InstCombineInternal.h" |
14 | #include "llvm/ADT/APSInt.h" |
15 | #include "llvm/ADT/SetVector.h" |
16 | #include "llvm/ADT/Statistic.h" |
17 | #include "llvm/Analysis/ConstantFolding.h" |
18 | #include "llvm/Analysis/InstructionSimplify.h" |
19 | #include "llvm/Analysis/TargetLibraryInfo.h" |
20 | #include "llvm/IR/ConstantRange.h" |
21 | #include "llvm/IR/DataLayout.h" |
22 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
23 | #include "llvm/IR/IntrinsicInst.h" |
24 | #include "llvm/IR/PatternMatch.h" |
25 | #include "llvm/Support/Debug.h" |
26 | #include "llvm/Support/KnownBits.h" |
27 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
28 | |
29 | using namespace llvm; |
30 | using namespace PatternMatch; |
31 | |
32 | #define DEBUG_TYPE "instcombine" |
33 | |
34 | |
35 | STATISTIC(NumSel, "Number of select opts"); |
36 | |
37 | |
38 | |
39 | |
40 | static bool addWithOverflow(APInt &Result, const APInt &In1, |
41 | const APInt &In2, bool IsSigned = false) { |
42 | bool Overflow; |
43 | if (IsSigned) |
44 | Result = In1.sadd_ov(In2, Overflow); |
45 | else |
46 | Result = In1.uadd_ov(In2, Overflow); |
47 | |
48 | return Overflow; |
49 | } |
50 | |
51 | |
52 | |
53 | static bool subWithOverflow(APInt &Result, const APInt &In1, |
54 | const APInt &In2, bool IsSigned = false) { |
55 | bool Overflow; |
56 | if (IsSigned) |
57 | Result = In1.ssub_ov(In2, Overflow); |
58 | else |
59 | Result = In1.usub_ov(In2, Overflow); |
60 | |
61 | return Overflow; |
62 | } |
63 | |
64 | |
65 | |
66 | static bool hasBranchUse(ICmpInst &I) { |
67 | for (auto *U : I.users()) |
68 | if (isa<BranchInst>(U)) |
69 | return true; |
70 | return false; |
71 | } |
72 | |
73 | |
74 | |
75 | |
76 | |
77 | static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { |
78 | if (!ICmpInst::isSigned(Pred)) |
79 | return false; |
80 | |
81 | if (C.isNullValue()) |
82 | return ICmpInst::isRelational(Pred); |
83 | |
84 | if (C.isOneValue()) { |
85 | if (Pred == ICmpInst::ICMP_SLT) { |
86 | Pred = ICmpInst::ICMP_SLE; |
87 | return true; |
88 | } |
89 | } else if (C.isAllOnesValue()) { |
90 | if (Pred == ICmpInst::ICMP_SGT) { |
91 | Pred = ICmpInst::ICMP_SGE; |
92 | return true; |
93 | } |
94 | } |
95 | |
96 | return false; |
97 | } |
98 | |
99 | |
100 | |
101 | |
102 | |
103 | |
104 | |
105 | |
106 | |
107 | Instruction * |
108 | InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, |
109 | GlobalVariable *GV, CmpInst &ICI, |
110 | ConstantInt *AndCst) { |
111 | Constant *Init = GV->getInitializer(); |
112 | if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) |
113 | return nullptr; |
114 | |
115 | uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); |
116 | |
117 | if (ArrayElementCount > MaxArraySizeForCombine) |
118 | return nullptr; |
119 | |
120 | |
121 | |
122 | |
123 | |
124 | if (GEP->getNumOperands() < 3 || |
125 | !isa<ConstantInt>(GEP->getOperand(1)) || |
126 | !cast<ConstantInt>(GEP->getOperand(1))->isZero() || |
127 | isa<Constant>(GEP->getOperand(2))) |
128 | return nullptr; |
129 | |
130 | |
131 | |
132 | |
133 | SmallVector<unsigned, 4> LaterIndices; |
134 | |
135 | Type *EltTy = Init->getType()->getArrayElementType(); |
136 | for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { |
137 | ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); |
138 | if (!Idx) return nullptr; |
139 | |
140 | uint64_t IdxVal = Idx->getZExtValue(); |
141 | if ((unsigned)IdxVal != IdxVal) return nullptr; |
142 | |
143 | if (StructType *STy = dyn_cast<StructType>(EltTy)) |
144 | EltTy = STy->getElementType(IdxVal); |
145 | else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { |
146 | if (IdxVal >= ATy->getNumElements()) return nullptr; |
147 | EltTy = ATy->getElementType(); |
148 | } else { |
149 | return nullptr; |
150 | } |
151 | |
152 | LaterIndices.push_back(IdxVal); |
153 | } |
154 | |
155 | enum { Overdefined = -3, Undefined = -2 }; |
156 | |
157 | |
158 | |
159 | |
160 | |
161 | |
162 | |
163 | |
164 | int FirstTrueElement = Undefined, SecondTrueElement = Undefined; |
165 | |
166 | |
167 | |
168 | int FirstFalseElement = Undefined, SecondFalseElement = Undefined; |
169 | |
170 | |
171 | |
172 | |
173 | |
174 | |
175 | |
176 | int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; |
177 | |
178 | |
179 | |
180 | |
181 | uint64_t MagicBitvector = 0; |
182 | |
183 | |
184 | Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); |
185 | for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { |
186 | Constant *Elt = Init->getAggregateElement(i); |
187 | if (!Elt) return nullptr; |
188 | |
189 | |
190 | if (!LaterIndices.empty()) |
191 | Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); |
192 | |
193 | |
194 | if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); |
195 | |
196 | |
197 | Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, |
198 | CompareRHS, DL, &TLI); |
199 | |
200 | if (isa<UndefValue>(C)) { |
201 | |
202 | |
203 | if (TrueRangeEnd == (int)i-1) |
204 | TrueRangeEnd = i; |
205 | if (FalseRangeEnd == (int)i-1) |
206 | FalseRangeEnd = i; |
207 | continue; |
208 | } |
209 | |
210 | |
211 | |
212 | if (!isa<ConstantInt>(C)) return nullptr; |
213 | |
214 | |
215 | |
216 | bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); |
217 | |
218 | |
219 | if (IsTrueForElt) { |
220 | |
221 | if (FirstTrueElement == Undefined) |
222 | FirstTrueElement = TrueRangeEnd = i; |
223 | else { |
224 | |
225 | if (SecondTrueElement == Undefined) |
226 | SecondTrueElement = i; |
227 | else |
228 | SecondTrueElement = Overdefined; |
229 | |
230 | |
231 | if (TrueRangeEnd == (int)i-1) |
232 | TrueRangeEnd = i; |
233 | else |
234 | TrueRangeEnd = Overdefined; |
235 | } |
236 | } else { |
237 | |
238 | if (FirstFalseElement == Undefined) |
239 | FirstFalseElement = FalseRangeEnd = i; |
240 | else { |
241 | |
242 | if (SecondFalseElement == Undefined) |
243 | SecondFalseElement = i; |
244 | else |
245 | SecondFalseElement = Overdefined; |
246 | |
247 | |
248 | if (FalseRangeEnd == (int)i-1) |
249 | FalseRangeEnd = i; |
250 | else |
251 | FalseRangeEnd = Overdefined; |
252 | } |
253 | } |
254 | |
255 | |
256 | if (i < 64 && IsTrueForElt) |
257 | MagicBitvector |= 1ULL << i; |
258 | |
259 | |
260 | |
261 | |
262 | if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && |
263 | SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && |
264 | FalseRangeEnd == Overdefined) |
265 | return nullptr; |
266 | } |
267 | |
268 | |
269 | |
270 | Value *Idx = GEP->getOperand(2); |
271 | |
272 | |
273 | |
274 | |
275 | if (!GEP->isInBounds()) { |
276 | Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); |
277 | unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); |
278 | if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) |
279 | Idx = Builder.CreateTrunc(Idx, IntPtrTy); |
280 | } |
281 | |
282 | |
283 | |
284 | |
285 | |
286 | |
287 | |
288 | |
289 | unsigned ElementSize = |
290 | DL.getTypeAllocSize(Init->getType()->getArrayElementType()); |
291 | auto MaskIdx = [&](Value* Idx){ |
292 | if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { |
293 | Value *Mask = ConstantInt::get(Idx->getType(), -1); |
294 | Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); |
295 | Idx = Builder.CreateAnd(Idx, Mask); |
296 | } |
297 | return Idx; |
298 | }; |
299 | |
300 | |
301 | |
302 | if (SecondTrueElement != Overdefined) { |
303 | Idx = MaskIdx(Idx); |
304 | |
305 | if (FirstTrueElement == Undefined) |
306 | return replaceInstUsesWith(ICI, Builder.getFalse()); |
307 | |
308 | Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); |
309 | |
310 | |
311 | if (SecondTrueElement == Undefined) |
312 | return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); |
313 | |
314 | |
315 | Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); |
316 | Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); |
317 | Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); |
318 | return BinaryOperator::CreateOr(C1, C2); |
319 | } |
320 | |
321 | |
322 | |
323 | if (SecondFalseElement != Overdefined) { |
324 | Idx = MaskIdx(Idx); |
325 | |
326 | if (FirstFalseElement == Undefined) |
327 | return replaceInstUsesWith(ICI, Builder.getTrue()); |
328 | |
329 | Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); |
330 | |
331 | |
332 | if (SecondFalseElement == Undefined) |
333 | return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); |
334 | |
335 | |
336 | Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); |
337 | Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); |
338 | Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); |
339 | return BinaryOperator::CreateAnd(C1, C2); |
340 | } |
341 | |
342 | |
343 | |
344 | if (TrueRangeEnd != Overdefined) { |
345 | assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); |
346 | Idx = MaskIdx(Idx); |
347 | |
348 | |
349 | if (FirstTrueElement) { |
350 | Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); |
351 | Idx = Builder.CreateAdd(Idx, Offs); |
352 | } |
353 | |
354 | Value *End = ConstantInt::get(Idx->getType(), |
355 | TrueRangeEnd-FirstTrueElement+1); |
356 | return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); |
357 | } |
358 | |
359 | |
360 | if (FalseRangeEnd != Overdefined) { |
361 | assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); |
362 | Idx = MaskIdx(Idx); |
363 | |
364 | if (FirstFalseElement) { |
365 | Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); |
366 | Idx = Builder.CreateAdd(Idx, Offs); |
367 | } |
368 | |
369 | Value *End = ConstantInt::get(Idx->getType(), |
370 | FalseRangeEnd-FirstFalseElement); |
371 | return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); |
372 | } |
373 | |
374 | |
375 | |
376 | |
377 | { |
378 | Type *Ty = nullptr; |
379 | |
380 | |
381 | |
382 | |
383 | if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) |
384 | Ty = Idx->getType(); |
385 | else |
386 | Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); |
387 | |
388 | if (Ty) { |
389 | Idx = MaskIdx(Idx); |
390 | Value *V = Builder.CreateIntCast(Idx, Ty, false); |
391 | V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); |
392 | V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); |
393 | return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); |
394 | } |
395 | } |
396 | |
397 | return nullptr; |
398 | } |
399 | |
400 | |
401 | |
402 | |
403 | |
404 | |
405 | |
406 | |
407 | |
408 | |
409 | |
410 | static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, |
411 | const DataLayout &DL) { |
412 | gep_type_iterator GTI = gep_type_begin(GEP); |
413 | |
414 | |
415 | |
416 | |
417 | |
418 | |
419 | unsigned i, e = GEP->getNumOperands(); |
420 | int64_t Offset = 0; |
421 | for (i = 1; i != e; ++i, ++GTI) { |
422 | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { |
423 | |
424 | if (CI->isZero()) continue; |
425 | |
426 | |
427 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
428 | Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); |
429 | } else { |
430 | uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); |
431 | Offset += Size*CI->getSExtValue(); |
432 | } |
433 | } else { |
434 | |
435 | break; |
436 | } |
437 | } |
438 | |
439 | |
440 | |
441 | if (i == e) return nullptr; |
442 | |
443 | Value *VariableIdx = GEP->getOperand(i); |
444 | |
445 | |
446 | uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); |
447 | |
448 | |
449 | for (++i, ++GTI; i != e; ++i, ++GTI) { |
450 | ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); |
451 | if (!CI) return nullptr; |
452 | |
453 | |
454 | if (CI->isZero()) continue; |
455 | |
456 | |
457 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
458 | Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); |
459 | } else { |
460 | uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); |
461 | Offset += Size*CI->getSExtValue(); |
462 | } |
463 | } |
464 | |
465 | |
466 | |
467 | |
468 | Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); |
469 | unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); |
470 | if (Offset == 0) { |
471 | |
472 | |
473 | |
474 | if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > |
475 | IntPtrWidth) { |
476 | VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); |
477 | } |
478 | return VariableIdx; |
479 | } |
480 | |
481 | |
482 | |
483 | Offset = SignExtend64(Offset, IntPtrWidth); |
484 | VariableScale = SignExtend64(VariableScale, IntPtrWidth); |
485 | |
486 | |
487 | |
488 | |
489 | |
490 | int64_t NewOffs = Offset / (int64_t)VariableScale; |
491 | if (Offset != NewOffs*(int64_t)VariableScale) |
492 | return nullptr; |
493 | |
494 | |
495 | if (VariableIdx->getType() != IntPtrTy) |
496 | VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, |
497 | true ); |
498 | Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); |
499 | return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); |
500 | } |
501 | |
502 | |
503 | |
504 | |
505 | static bool canRewriteGEPAsOffset(Value *Start, Value *Base, |
506 | const DataLayout &DL, |
507 | SetVector<Value *> &Explored) { |
508 | SmallVector<Value *, 16> WorkList(1, Start); |
509 | Explored.insert(Base); |
510 | |
511 | |
512 | |
513 | |
514 | |
515 | |
516 | |
517 | |
518 | |
519 | while (!WorkList.empty()) { |
520 | SetVector<PHINode *> PHIs; |
521 | |
522 | while (!WorkList.empty()) { |
523 | if (Explored.size() >= 100) |
524 | return false; |
525 | |
526 | Value *V = WorkList.back(); |
527 | |
528 | if (Explored.contains(V)) { |
529 | WorkList.pop_back(); |
530 | continue; |
531 | } |
532 | |
533 | if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && |
534 | !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) |
535 | |
536 | |
537 | return false; |
538 | |
539 | if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { |
540 | auto *CI = cast<CastInst>(V); |
541 | if (!CI->isNoopCast(DL)) |
542 | return false; |
543 | |
544 | if (Explored.count(CI->getOperand(0)) == 0) |
545 | WorkList.push_back(CI->getOperand(0)); |
546 | } |
547 | |
548 | if (auto *GEP = dyn_cast<GEPOperator>(V)) { |
549 | |
550 | |
551 | |
552 | if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || |
553 | GEP->getType() != Start->getType()) |
554 | return false; |
555 | |
556 | if (Explored.count(GEP->getOperand(0)) == 0) |
557 | WorkList.push_back(GEP->getOperand(0)); |
558 | } |
559 | |
560 | if (WorkList.back() == V) { |
561 | WorkList.pop_back(); |
562 | |
563 | Explored.insert(V); |
564 | } |
565 | |
566 | if (auto *PN = dyn_cast<PHINode>(V)) { |
567 | |
568 | if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) |
569 | return false; |
570 | Explored.insert(PN); |
571 | PHIs.insert(PN); |
572 | } |
573 | } |
574 | |
575 | |
576 | for (auto *PN : PHIs) |
577 | for (Value *Op : PN->incoming_values()) |
578 | if (Explored.count(Op) == 0) |
579 | WorkList.push_back(Op); |
580 | } |
581 | |
582 | |
583 | |
584 | |
585 | for (Value *Val : Explored) { |
586 | for (Value *Use : Val->uses()) { |
587 | |
588 | auto *PHI = dyn_cast<PHINode>(Use); |
589 | auto *Inst = dyn_cast<Instruction>(Val); |
590 | |
591 | if (Inst == Base || Inst == PHI || !Inst || !PHI || |
592 | Explored.count(PHI) == 0) |
593 | continue; |
594 | |
595 | if (PHI->getParent() == Inst->getParent()) |
596 | return false; |
597 | } |
598 | } |
599 | return true; |
600 | } |
601 | |
602 | |
603 | |
604 | static void setInsertionPoint(IRBuilder<> &Builder, Value *V, |
605 | bool Before = true) { |
606 | if (auto *PHI = dyn_cast<PHINode>(V)) { |
607 | Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); |
608 | return; |
609 | } |
610 | if (auto *I = dyn_cast<Instruction>(V)) { |
611 | if (!Before) |
612 | I = &*std::next(I->getIterator()); |
613 | Builder.SetInsertPoint(I); |
614 | return; |
615 | } |
616 | if (auto *A = dyn_cast<Argument>(V)) { |
617 | |
618 | BasicBlock &Entry = A->getParent()->getEntryBlock(); |
619 | Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); |
620 | return; |
621 | } |
622 | |
623 | |
624 | assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); |
625 | } |
626 | |
627 | |
628 | |
629 | static Value *rewriteGEPAsOffset(Value *Start, Value *Base, |
630 | const DataLayout &DL, |
631 | SetVector<Value *> &Explored) { |
632 | |
633 | |
634 | |
635 | |
636 | |
637 | |
638 | |
639 | Type *IndexType = IntegerType::get( |
640 | Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); |
641 | |
642 | DenseMap<Value *, Value *> NewInsts; |
643 | NewInsts[Base] = ConstantInt::getNullValue(IndexType); |
644 | |
645 | |
646 | for (Value *Val : Explored) { |
647 | if (Val == Base) |
648 | continue; |
649 | |
650 | |
651 | if (auto *PHI = dyn_cast<PHINode>(Val)) |
652 | NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), |
653 | PHI->getName() + ".idx", PHI); |
654 | } |
655 | IRBuilder<> Builder(Base->getContext()); |
656 | |
657 | |
658 | for (Value *Val : Explored) { |
659 | |
660 | if (NewInsts.find(Val) != NewInsts.end()) |
661 | continue; |
662 | |
663 | if (auto *CI = dyn_cast<CastInst>(Val)) { |
664 | |
665 | |
666 | Value *V = NewInsts[CI->getOperand(0)]; |
667 | NewInsts[CI] = V; |
668 | continue; |
669 | } |
670 | if (auto *GEP = dyn_cast<GEPOperator>(Val)) { |
671 | Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] |
672 | : GEP->getOperand(1); |
673 | setInsertionPoint(Builder, GEP); |
674 | |
675 | |
676 | if (Index->getType()->getScalarSizeInBits() != |
677 | NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { |
678 | Index = Builder.CreateSExtOrTrunc( |
679 | Index, NewInsts[GEP->getOperand(0)]->getType(), |
680 | GEP->getOperand(0)->getName() + ".sext"); |
681 | } |
682 | |
683 | auto *Op = NewInsts[GEP->getOperand(0)]; |
684 | if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) |
685 | NewInsts[GEP] = Index; |
686 | else |
687 | NewInsts[GEP] = Builder.CreateNSWAdd( |
688 | Op, Index, GEP->getOperand(0)->getName() + ".add"); |
689 | continue; |
690 | } |
691 | if (isa<PHINode>(Val)) |
692 | continue; |
693 | |
694 | llvm_unreachable("Unexpected instruction type"); |
695 | } |
696 | |
697 | |
698 | for (Value *Val : Explored) { |
699 | if (Val == Base) |
700 | continue; |
701 | |
702 | |
703 | if (auto *PHI = dyn_cast<PHINode>(Val)) { |
704 | PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); |
705 | for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { |
706 | Value *NewIncoming = PHI->getIncomingValue(I); |
707 | |
708 | if (NewInsts.find(NewIncoming) != NewInsts.end()) |
709 | NewIncoming = NewInsts[NewIncoming]; |
710 | |
711 | NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); |
712 | } |
713 | } |
714 | } |
715 | |
716 | for (Value *Val : Explored) { |
717 | if (Val == Base) |
718 | continue; |
719 | |
720 | |
721 | |
722 | setInsertionPoint(Builder, Val, false); |
723 | |
724 | |
725 | Value *NewBase = Base; |
726 | if (!Base->getType()->isPointerTy()) |
727 | NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), |
728 | Start->getName() + "to.ptr"); |
729 | |
730 | Value *GEP = Builder.CreateInBoundsGEP( |
731 | Start->getType()->getPointerElementType(), NewBase, |
732 | makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); |
733 | |
734 | if (!Val->getType()->isPointerTy()) { |
735 | Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), |
736 | Val->getName() + ".conv"); |
737 | GEP = Cast; |
738 | } |
739 | Val->replaceAllUsesWith(GEP); |
740 | } |
741 | |
742 | return NewInsts[Start]; |
743 | } |
744 | |
745 | |
746 | |
747 | |
748 | static std::pair<Value *, Value *> |
749 | getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { |
750 | Type *IndexType = IntegerType::get(V->getContext(), |
751 | DL.getIndexTypeSizeInBits(V->getType())); |
752 | |
753 | Constant *Index = ConstantInt::getNullValue(IndexType); |
754 | while (true) { |
755 | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { |
756 | |
757 | |
758 | if (!GEP->isInBounds()) |
759 | break; |
760 | if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && |
761 | GEP->getType() == V->getType()) { |
762 | V = GEP->getOperand(0); |
763 | Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); |
764 | Index = ConstantExpr::getAdd( |
765 | Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); |
766 | continue; |
767 | } |
768 | break; |
769 | } |
770 | if (auto *CI = dyn_cast<IntToPtrInst>(V)) { |
771 | if (!CI->isNoopCast(DL)) |
772 | break; |
773 | V = CI->getOperand(0); |
774 | continue; |
775 | } |
776 | if (auto *CI = dyn_cast<PtrToIntInst>(V)) { |
777 | if (!CI->isNoopCast(DL)) |
778 | break; |
779 | V = CI->getOperand(0); |
780 | continue; |
781 | } |
782 | break; |
783 | } |
784 | return {V, Index}; |
785 | } |
786 | |
787 | |
788 | |
789 | |
790 | static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, |
791 | ICmpInst::Predicate Cond, |
792 | const DataLayout &DL) { |
793 | |
794 | if (GEPLHS->getType()->isVectorTy()) |
795 | return nullptr; |
796 | |
797 | if (!GEPLHS->hasAllConstantIndices()) |
798 | return nullptr; |
799 | |
800 | |
801 | if (GEPLHS->getType() != RHS->getType()) |
802 | return nullptr; |
803 | |
804 | Value *PtrBase, *Index; |
805 | std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); |
806 | |
807 | |
808 | SetVector<Value *> Nodes; |
809 | |
810 | if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) |
811 | return nullptr; |
812 | |
813 | |
814 | |
815 | |
816 | |
817 | |
818 | |
819 | Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); |
820 | |
821 | |
822 | |
823 | |
824 | |
825 | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); |
826 | } |
827 | |
828 | |
829 | |
830 | Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, |
831 | ICmpInst::Predicate Cond, |
832 | Instruction &I) { |
833 | |
834 | |
835 | |
836 | |
837 | |
838 | if (ICmpInst::isSigned(Cond)) |
839 | return nullptr; |
840 | |
841 | |
842 | |
843 | if (!isa<GetElementPtrInst>(RHS)) |
844 | RHS = RHS->stripPointerCasts(); |
845 | |
846 | Value *PtrBase = GEPLHS->getOperand(0); |
847 | |
848 | if (PtrBase == RHS && GEPLHS->isInBounds() && |
849 | !GEPLHS->getType()->isVectorTy()) { |
850 | |
851 | |
852 | |
853 | |
854 | Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); |
855 | |
856 | |
857 | if (!Offset) |
858 | Offset = EmitGEPOffset(GEPLHS); |
859 | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, |
860 | Constant::getNullValue(Offset->getType())); |
861 | } |
862 | |
863 | if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && |
864 | isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && |
865 | !NullPointerIsDefined(I.getFunction(), |
866 | RHS->getType()->getPointerAddressSpace())) { |
867 | |
868 | |
869 | |
870 | |
871 | |
872 | |
873 | |
874 | |
875 | |
876 | |
877 | |
878 | |
879 | |
880 | |
881 | |
882 | |
883 | |
884 | auto *Base = GEPLHS->getPointerOperand(); |
885 | if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { |
886 | auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); |
887 | Base = Builder.CreateVectorSplat(EC, Base); |
888 | } |
889 | return new ICmpInst(Cond, Base, |
890 | ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
891 | cast<Constant>(RHS), Base->getType())); |
892 | } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { |
893 | |
894 | |
895 | if (PtrBase != GEPRHS->getOperand(0)) { |
896 | bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); |
897 | IndicesTheSame &= GEPLHS->getOperand(0)->getType() == |
898 | GEPRHS->getOperand(0)->getType(); |
899 | if (IndicesTheSame) |
900 | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) |
901 | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { |
902 | IndicesTheSame = false; |
903 | break; |
904 | } |
905 | |
906 | |
907 | Type *BaseType = GEPLHS->getOperand(0)->getType(); |
908 | if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) |
909 | return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); |
910 | |
911 | |
912 | |
913 | |
914 | |
915 | if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && |
916 | (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && |
917 | (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && |
918 | PtrBase->stripPointerCasts() == |
919 | GEPRHS->getOperand(0)->stripPointerCasts() && |
920 | !GEPLHS->getType()->isVectorTy()) { |
921 | Value *LOffset = EmitGEPOffset(GEPLHS); |
922 | Value *ROffset = EmitGEPOffset(GEPRHS); |
923 | |
924 | |
925 | |
926 | |
927 | Type *LHSIndexTy = LOffset->getType(); |
928 | Type *RHSIndexTy = ROffset->getType(); |
929 | if (LHSIndexTy != RHSIndexTy) { |
930 | if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < |
931 | RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { |
932 | ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); |
933 | } else |
934 | LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); |
935 | } |
936 | |
937 | Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), |
938 | LOffset, ROffset); |
939 | return replaceInstUsesWith(I, Cmp); |
940 | } |
941 | |
942 | |
943 | |
944 | |
945 | return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); |
946 | } |
947 | |
948 | |
949 | |
950 | if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) |
951 | return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), |
952 | ICmpInst::getSwappedPredicate(Cond), I); |
953 | |
954 | |
955 | |
956 | if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) |
957 | return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); |
958 | |
959 | bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); |
960 | if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { |
961 | |
962 | unsigned NumDifferences = 0; |
963 | unsigned DiffOperand = 0; |
964 | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) |
965 | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { |
966 | Type *LHSType = GEPLHS->getOperand(i)->getType(); |
967 | Type *RHSType = GEPRHS->getOperand(i)->getType(); |
968 | |
969 | if (LHSType->getPrimitiveSizeInBits() != |
970 | RHSType->getPrimitiveSizeInBits() || |
971 | (GEPLHS->getType()->isVectorTy() && |
972 | (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { |
973 | |
974 | NumDifferences = 2; |
975 | break; |
976 | } |
977 | |
978 | if (NumDifferences++) break; |
979 | DiffOperand = i; |
980 | } |
981 | |
982 | if (NumDifferences == 0) |
983 | return replaceInstUsesWith(I, |
984 | ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); |
985 | |
986 | else if (NumDifferences == 1 && GEPsInBounds) { |
987 | Value *LHSV = GEPLHS->getOperand(DiffOperand); |
988 | Value *RHSV = GEPRHS->getOperand(DiffOperand); |
989 | |
990 | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); |
991 | } |
992 | } |
993 | |
994 | |
995 | |
996 | if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && |
997 | (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { |
998 | |
999 | Value *L = EmitGEPOffset(GEPLHS); |
1000 | Value *R = EmitGEPOffset(GEPRHS); |
1001 | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); |
1002 | } |
1003 | } |
1004 | |
1005 | |
1006 | |
1007 | return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); |
1008 | } |
1009 | |
1010 | Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, |
1011 | const AllocaInst *Alloca, |
1012 | const Value *Other) { |
1013 | assert(ICI.isEquality() && "Cannot fold non-equality comparison."); |
1014 | |
1015 | |
1016 | |
1017 | |
1018 | |
1019 | |
1020 | |
1021 | |
1022 | |
1023 | |
1024 | |
1025 | |
1026 | |
1027 | |
1028 | |
1029 | unsigned MaxIter = 32; |
1030 | |
1031 | SmallVector<const Use *, 32> Worklist; |
1032 | for (const Use &U : Alloca->uses()) { |
1033 | if (Worklist.size() >= MaxIter) |
1034 | return nullptr; |
1035 | Worklist.push_back(&U); |
1036 | } |
1037 | |
1038 | unsigned NumCmps = 0; |
1039 | while (!Worklist.empty()) { |
1040 | assert(Worklist.size() <= MaxIter); |
1041 | const Use *U = Worklist.pop_back_val(); |
1042 | const Value *V = U->getUser(); |
1043 | --MaxIter; |
1044 | |
1045 | if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || |
1046 | isa<SelectInst>(V)) { |
1047 | |
1048 | } else if (isa<LoadInst>(V)) { |
1049 | |
1050 | continue; |
1051 | } else if (const auto *SI = dyn_cast<StoreInst>(V)) { |
1052 | |
1053 | if (SI->getValueOperand() == U->get()) |
1054 | return nullptr; |
1055 | continue; |
1056 | } else if (isa<ICmpInst>(V)) { |
1057 | if (NumCmps++) |
1058 | return nullptr; |
1059 | continue; |
1060 | } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { |
1061 | switch (Intrin->getIntrinsicID()) { |
1062 | |
1063 | |
1064 | |
1065 | case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: |
1066 | case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: |
1067 | continue; |
1068 | default: |
1069 | return nullptr; |
1070 | } |
1071 | } else { |
1072 | return nullptr; |
1073 | } |
1074 | for (const Use &U : V->uses()) { |
1075 | if (Worklist.size() >= MaxIter) |
1076 | return nullptr; |
1077 | Worklist.push_back(&U); |
1078 | } |
1079 | } |
1080 | |
1081 | Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); |
1082 | return replaceInstUsesWith( |
1083 | ICI, |
1084 | ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); |
1085 | } |
1086 | |
1087 | |
1088 | Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, |
1089 | ICmpInst::Predicate Pred) { |
1090 | |
1091 | |
1092 | |
1093 | assert(!!C && "C should not be zero!"); |
1094 | |
1095 | |
1096 | |
1097 | |
1098 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { |
1099 | Constant *R = ConstantInt::get(X->getType(), |
1100 | APInt::getMaxValue(C.getBitWidth()) - C); |
1101 | return new ICmpInst(ICmpInst::ICMP_UGT, X, R); |
1102 | } |
1103 | |
1104 | |
1105 | |
1106 | |
1107 | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) |
1108 | return new ICmpInst(ICmpInst::ICMP_ULT, X, |
1109 | ConstantInt::get(X->getType(), -C)); |
1110 | |
1111 | APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); |
1112 | |
1113 | |
1114 | |
1115 | |
1116 | |
1117 | |
1118 | |
1119 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) |
1120 | return new ICmpInst(ICmpInst::ICMP_SGT, X, |
1121 | ConstantInt::get(X->getType(), SMax - C)); |
1122 | |
1123 | |
1124 | |
1125 | |
1126 | |
1127 | |
1128 | |
1129 | |
1130 | assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); |
1131 | return new ICmpInst(ICmpInst::ICMP_SLT, X, |
1132 | ConstantInt::get(X->getType(), SMax - (C - 1))); |
1133 | } |
1134 | |
1135 | |
1136 | |
1137 | |
1138 | Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, |
1139 | const APInt &AP1, |
1140 | const APInt &AP2) { |
1141 | assert(I.isEquality() && "Cannot fold icmp gt/lt"); |
1142 | |
1143 | auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { |
1144 | if (I.getPredicate() == I.ICMP_NE) |
1145 | Pred = CmpInst::getInversePredicate(Pred); |
1146 | return new ICmpInst(Pred, LHS, RHS); |
1147 | }; |
1148 | |
1149 | |
1150 | if (AP2.isNullValue()) |
1151 | return nullptr; |
1152 | |
1153 | bool IsAShr = isa<AShrOperator>(I.getOperand(0)); |
1154 | if (IsAShr) { |
1155 | if (AP2.isAllOnesValue()) |
1156 | return nullptr; |
1157 | if (AP2.isNegative() != AP1.isNegative()) |
1158 | return nullptr; |
1159 | if (AP2.sgt(AP1)) |
1160 | return nullptr; |
1161 | } |
1162 | |
1163 | if (!AP1) |
1164 | |
1165 | return getICmp(I.ICMP_UGT, A, |
1166 | ConstantInt::get(A->getType(), AP2.logBase2())); |
1167 | |
1168 | if (AP1 == AP2) |
1169 | return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); |
1170 | |
1171 | int Shift; |
1172 | if (IsAShr && AP1.isNegative()) |
1173 | Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); |
1174 | else |
1175 | Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); |
1176 | |
1177 | if (Shift > 0) { |
1178 | if (IsAShr && AP1 == AP2.ashr(Shift)) { |
1179 | |
1180 | |
1181 | if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) |
1182 | return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); |
1183 | return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); |
1184 | } else if (AP1 == AP2.lshr(Shift)) { |
1185 | return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); |
1186 | } |
1187 | } |
1188 | |
1189 | |
1190 | |
1191 | auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); |
1192 | return replaceInstUsesWith(I, TorF); |
1193 | } |
1194 | |
1195 | |
1196 | |
1197 | Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, |
1198 | const APInt &AP1, |
1199 | const APInt &AP2) { |
1200 | assert(I.isEquality() && "Cannot fold icmp gt/lt"); |
1201 | |
1202 | auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { |
1203 | if (I.getPredicate() == I.ICMP_NE) |
1204 | Pred = CmpInst::getInversePredicate(Pred); |
1205 | return new ICmpInst(Pred, LHS, RHS); |
1206 | }; |
1207 | |
1208 | |
1209 | if (AP2.isNullValue()) |
1210 | return nullptr; |
1211 | |
1212 | unsigned AP2TrailingZeros = AP2.countTrailingZeros(); |
1213 | |
1214 | if (!AP1 && AP2TrailingZeros != 0) |
1215 | return getICmp( |
1216 | I.ICMP_UGE, A, |
1217 | ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); |
1218 | |
1219 | if (AP1 == AP2) |
1220 | return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); |
1221 | |
1222 | |
1223 | int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; |
1224 | |
1225 | if (Shift > 0 && AP2.shl(Shift) == AP1) |
1226 | return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); |
1227 | |
1228 | |
1229 | |
1230 | auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); |
1231 | return replaceInstUsesWith(I, TorF); |
1232 | } |
1233 | |
1234 | |
1235 | |
1236 | |
1237 | |
1238 | |
1239 | |
1240 | |
1241 | static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, |
1242 | ConstantInt *CI2, ConstantInt *CI1, |
1243 | InstCombinerImpl &IC) { |
1244 | |
1245 | |
1246 | |
1247 | |
1248 | |
1249 | |
1250 | |
1251 | Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); |
1252 | if (!AddWithCst->hasOneUse()) |
1253 | return nullptr; |
1254 | |
1255 | |
1256 | if (!CI2->getValue().isPowerOf2()) |
1257 | return nullptr; |
1258 | unsigned NewWidth = CI2->getValue().countTrailingZeros(); |
1259 | if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) |
1260 | return nullptr; |
1261 | |
1262 | |
1263 | ++NewWidth; |
1264 | |
1265 | |
1266 | if (CI1->getBitWidth() == NewWidth || |
1267 | CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) |
1268 | return nullptr; |
1269 | |
1270 | |
1271 | |
1272 | |
1273 | unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; |
1274 | if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || |
1275 | IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) |
1276 | return nullptr; |
1277 | |
1278 | |
1279 | |
1280 | |
1281 | |
1282 | Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); |
1283 | for (User *U : OrigAdd->users()) { |
1284 | if (U == AddWithCst) |
1285 | continue; |
1286 | |
1287 | |
1288 | |
1289 | |
1290 | |
1291 | |
1292 | TruncInst *TI = dyn_cast<TruncInst>(U); |
1293 | if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) |
1294 | return nullptr; |
1295 | } |
1296 | |
1297 | |
1298 | |
1299 | |
1300 | Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); |
1301 | Function *F = Intrinsic::getDeclaration( |
1302 | I.getModule(), Intrinsic::sadd_with_overflow, NewType); |
1303 | |
1304 | InstCombiner::BuilderTy &Builder = IC.Builder; |
1305 | |
1306 | |
1307 | |
1308 | Builder.SetInsertPoint(OrigAdd); |
1309 | |
1310 | Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); |
1311 | Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); |
1312 | CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); |
1313 | Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); |
1314 | Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); |
1315 | |
1316 | |
1317 | |
1318 | IC.replaceInstUsesWith(*OrigAdd, ZExt); |
1319 | IC.eraseInstFromFunction(*OrigAdd); |
1320 | |
1321 | |
1322 | return ExtractValueInst::Create(Call, 1, "sadd.overflow"); |
1323 | } |
1324 | |
1325 | |
1326 | |
1327 | |
1328 | |
1329 | Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { |
1330 | |
1331 | if (!I.isEquality()) |
1332 | return nullptr; |
1333 | ICmpInst::Predicate Pred; |
1334 | Value *X, *Y, *Zero; |
1335 | if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), |
1336 | m_CombineAnd(m_Zero(), m_Value(Zero))))) |
1337 | return nullptr; |
1338 | if (!isKnownToBeAPowerOfTwo(Y, true, 0, &I)) |
1339 | return nullptr; |
1340 | |
1341 | Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); |
1342 | Value *Masked = Builder.CreateAnd(X, Mask); |
1343 | return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); |
1344 | } |
1345 | |
1346 | |
1347 | |
1348 | Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { |
1349 | Instruction *Val; |
1350 | ICmpInst::Predicate Pred; |
1351 | if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) |
1352 | return nullptr; |
1353 | |
1354 | Value *X; |
1355 | Type *XTy; |
1356 | |
1357 | Constant *C; |
1358 | if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { |
1359 | XTy = X->getType(); |
1360 | unsigned XBitWidth = XTy->getScalarSizeInBits(); |
1361 | if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, |
1362 | APInt(XBitWidth, XBitWidth - 1)))) |
1363 | return nullptr; |
1364 | } else if (isa<BinaryOperator>(Val) && |
1365 | (X = reassociateShiftAmtsOfTwoSameDirectionShifts( |
1366 | cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), |
1367 | true))) { |
1368 | XTy = X->getType(); |
1369 | } else |
1370 | return nullptr; |
1371 | |
1372 | return ICmpInst::Create(Instruction::ICmp, |
1373 | Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE |
1374 | : ICmpInst::ICMP_SLT, |
1375 | X, ConstantInt::getNullValue(XTy)); |
1376 | } |
1377 | |
1378 | |
1379 | Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { |
1380 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
1381 | if (!match(Cmp.getOperand(1), m_Zero())) |
1382 | return nullptr; |
1383 | |
1384 | |
1385 | if (Pred == ICmpInst::ICMP_SGT) { |
1386 | Value *A, *B; |
1387 | SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); |
1388 | if (SPR.Flavor == SPF_SMIN) { |
1389 | if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) |
1390 | return new ICmpInst(Pred, B, Cmp.getOperand(1)); |
1391 | if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) |
1392 | return new ICmpInst(Pred, A, Cmp.getOperand(1)); |
1393 | } |
1394 | } |
1395 | |
1396 | if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) |
1397 | return New; |
1398 | |
1399 | |
1400 | |
1401 | |
1402 | |
1403 | Value *X, *Y; |
1404 | if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && |
1405 | ICmpInst::isEquality(Pred)) { |
1406 | KnownBits XKnown = computeKnownBits(X, 0, &Cmp); |
1407 | KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); |
1408 | if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) |
1409 | return new ICmpInst(Pred, X, Cmp.getOperand(1)); |
1410 | } |
1411 | |
1412 | return nullptr; |
1413 | } |
1414 | |
1415 | |
1416 | |
1417 | |
1418 | |
1419 | |
1420 | Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { |
1421 | |
1422 | |
1423 | |
1424 | |
1425 | |
1426 | |
1427 | |
1428 | |
1429 | |
1430 | |
1431 | |
1432 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
1433 | Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); |
1434 | Value *A, *B; |
1435 | ConstantInt *CI, *CI2; |
1436 | if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && |
1437 | match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) |
1438 | if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) |
1439 | return Res; |
1440 | |
1441 | |
1442 | Constant *C = dyn_cast<Constant>(Op1); |
1443 | if (!C || C->canTrap()) |
1444 | return nullptr; |
1445 | |
1446 | if (auto *Phi = dyn_cast<PHINode>(Op0)) |
1447 | if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { |
1448 | Type *Ty = Cmp.getType(); |
1449 | Builder.SetInsertPoint(Phi); |
1450 | PHINode *NewPhi = |
1451 | Builder.CreatePHI(Ty, Phi->getNumOperands()); |
1452 | for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { |
1453 | auto *Input = |
1454 | cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); |
1455 | auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); |
1456 | NewPhi->addIncoming(BoolInput, Predecessor); |
1457 | } |
1458 | NewPhi->takeName(&Cmp); |
1459 | return replaceInstUsesWith(Cmp, NewPhi); |
1460 | } |
1461 | |
1462 | return nullptr; |
1463 | } |
1464 | |
1465 | |
1466 | Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { |
1467 | |
1468 | |
1469 | BasicBlock *CmpBB = Cmp.getParent(); |
1470 | BasicBlock *DomBB = CmpBB->getSinglePredecessor(); |
1471 | if (!DomBB) |
1472 | return nullptr; |
1473 | |
1474 | Value *DomCond; |
1475 | BasicBlock *TrueBB, *FalseBB; |
1476 | if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) |
1477 | return nullptr; |
1478 | |
1479 | assert((TrueBB == CmpBB || FalseBB == CmpBB) && |
1480 | "Predecessor block does not point to successor?"); |
1481 | |
1482 | |
1483 | if (TrueBB == FalseBB) |
1484 | return nullptr; |
1485 | |
1486 | |
1487 | Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); |
1488 | if (Imp) |
1489 | return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); |
1490 | |
1491 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
1492 | Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); |
1493 | ICmpInst::Predicate DomPred; |
1494 | const APInt *C, *DomC; |
1495 | if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && |
1496 | match(Y, m_APInt(C))) { |
1497 | |
1498 | |
1499 | |
1500 | |
1501 | |
1502 | |
1503 | |
1504 | ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); |
1505 | ConstantRange DominatingCR = |
1506 | (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) |
1507 | : ConstantRange::makeExactICmpRegion( |
1508 | CmpInst::getInversePredicate(DomPred), *DomC); |
1509 | ConstantRange Intersection = DominatingCR.intersectWith(CR); |
1510 | ConstantRange Difference = DominatingCR.difference(CR); |
1511 | if (Intersection.isEmptySet()) |
1512 | return replaceInstUsesWith(Cmp, Builder.getFalse()); |
1513 | if (Difference.isEmptySet()) |
1514 | return replaceInstUsesWith(Cmp, Builder.getTrue()); |
1515 | |
1516 | |
1517 | |
1518 | |
1519 | |
1520 | |
1521 | bool UnusedBit; |
1522 | bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); |
1523 | if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) |
1524 | return nullptr; |
1525 | |
1526 | |
1527 | |
1528 | if (Cmp.hasOneUse() && |
1529 | match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) |
1530 | return nullptr; |
1531 | |
1532 | if (const APInt *EqC = Intersection.getSingleElement()) |
1533 | return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); |
1534 | if (const APInt *NeC = Difference.getSingleElement()) |
1535 | return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); |
1536 | } |
1537 | |
1538 | return nullptr; |
1539 | } |
1540 | |
1541 | |
1542 | Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, |
1543 | TruncInst *Trunc, |
1544 | const APInt &C) { |
1545 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
1546 | Value *X = Trunc->getOperand(0); |
1547 | if (C.isOneValue() && C.getBitWidth() > 1) { |
1548 | |
1549 | Value *V = nullptr; |
1550 | if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) |
1551 | return new ICmpInst(ICmpInst::ICMP_SLT, V, |
1552 | ConstantInt::get(V->getType(), 1)); |
1553 | } |
1554 | |
1555 | unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), |
1556 | SrcBits = X->getType()->getScalarSizeInBits(); |
1557 | if (Cmp.isEquality() && Trunc->hasOneUse()) { |
1558 | |
1559 | |
1560 | KnownBits Known = computeKnownBits(X, 0, &Cmp); |
1561 | |
1562 | |
1563 | if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { |
1564 | |
1565 | APInt NewRHS = C.zext(SrcBits); |
1566 | NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); |
1567 | return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); |
1568 | } |
1569 | } |
1570 | |
1571 | |
1572 | |
1573 | |
1574 | Value *ShOp; |
1575 | const APInt *ShAmtC; |
1576 | bool TrueIfSigned; |
1577 | if (isSignBitCheck(Pred, C, TrueIfSigned) && |
1578 | match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && |
1579 | DstBits == SrcBits - ShAmtC->getZExtValue()) { |
1580 | return TrueIfSigned |
1581 | ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, |
1582 | ConstantInt::getNullValue(X->getType())) |
1583 | : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, |
1584 | ConstantInt::getAllOnesValue(X->getType())); |
1585 | } |
1586 | |
1587 | return nullptr; |
1588 | } |
1589 | |
1590 | |
1591 | Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, |
1592 | BinaryOperator *Xor, |
1593 | const APInt &C) { |
1594 | Value *X = Xor->getOperand(0); |
1595 | Value *Y = Xor->getOperand(1); |
1596 | const APInt *XorC; |
1597 | if (!match(Y, m_APInt(XorC))) |
1598 | return nullptr; |
1599 | |
1600 | |
1601 | |
1602 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
1603 | bool TrueIfSigned = false; |
1604 | if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { |
1605 | |
1606 | |
1607 | |
1608 | if (!XorC->isNegative()) |
1609 | return replaceOperand(Cmp, 0, X); |
1610 | |
1611 | |
1612 | if (TrueIfSigned) |
1613 | return new ICmpInst(ICmpInst::ICMP_SGT, X, |
1614 | ConstantInt::getAllOnesValue(X->getType())); |
1615 | else |
1616 | return new ICmpInst(ICmpInst::ICMP_SLT, X, |
1617 | ConstantInt::getNullValue(X->getType())); |
1618 | } |
1619 | |
1620 | if (Xor->hasOneUse()) { |
1621 | |
1622 | if (!Cmp.isEquality() && XorC->isSignMask()) { |
1623 | Pred = Cmp.getFlippedSignednessPredicate(); |
1624 | return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); |
1625 | } |
1626 | |
1627 | |
1628 | if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { |
1629 | Pred = Cmp.getFlippedSignednessPredicate(); |
1630 | Pred = Cmp.getSwappedPredicate(Pred); |
1631 | return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); |
1632 | } |
1633 | } |
1634 | |
1635 | |
1636 | if (Pred == ICmpInst::ICMP_UGT) { |
1637 | |
1638 | if (*XorC == ~C && (C + 1).isPowerOf2()) |
1639 | return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); |
1640 | |
1641 | if (*XorC == C && (C + 1).isPowerOf2()) |
1642 | return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); |
1643 | } |
1644 | if (Pred == ICmpInst::ICMP_ULT) { |
1645 | |
1646 | if (*XorC == -C && C.isPowerOf2()) |
1647 | return new ICmpInst(ICmpInst::ICMP_UGT, X, |
1648 | ConstantInt::get(X->getType(), ~C)); |
1649 | |
1650 | if (*XorC == C && (-C).isPowerOf2()) |
1651 | return new ICmpInst(ICmpInst::ICMP_UGT, X, |
1652 | ConstantInt::get(X->getType(), ~C)); |
1653 | } |
1654 | return nullptr; |
1655 | } |
1656 | |
1657 | |
1658 | Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, |
1659 | BinaryOperator *And, |
1660 | const APInt &C1, |
1661 | const APInt &C2) { |
1662 | BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); |
1663 | if (!Shift || !Shift->isShift()) |
1664 | return nullptr; |
1665 | |
1666 | |
1667 | |
1668 | |
1669 | |
1670 | |
1671 | unsigned ShiftOpcode = Shift->getOpcode(); |
1672 | bool IsShl = ShiftOpcode == Instruction::Shl; |
1673 | const APInt *C3; |
1674 | if (match(Shift->getOperand(1), m_APInt(C3))) { |
1675 | APInt NewAndCst, NewCmpCst; |
1676 | bool AnyCmpCstBitsShiftedOut; |
1677 | if (ShiftOpcode == Instruction::Shl) { |
1678 | |
1679 | |
1680 | |
1681 | |
1682 | if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) |
1683 | return nullptr; |
1684 | |
1685 | NewCmpCst = C1.lshr(*C3); |
1686 | NewAndCst = C2.lshr(*C3); |
1687 | AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; |
1688 | } else if (ShiftOpcode == Instruction::LShr) { |
1689 | |
1690 | |
1691 | |
1692 | |
1693 | NewCmpCst = C1.shl(*C3); |
1694 | NewAndCst = C2.shl(*C3); |
1695 | AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; |
1696 | if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) |
1697 | return nullptr; |
1698 | } else { |
1699 | |
1700 | |
1701 | assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); |
1702 | NewCmpCst = C1.shl(*C3); |
1703 | NewAndCst = C2.shl(*C3); |
1704 | AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; |
1705 | if (NewAndCst.ashr(*C3) != C2) |
1706 | return nullptr; |
1707 | } |
1708 | |
1709 | if (AnyCmpCstBitsShiftedOut) { |
1710 | |
1711 | |
1712 | |
1713 | if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) |
1714 | return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); |
1715 | if (Cmp.getPredicate() == ICmpInst::ICMP_NE) |
1716 | return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); |
1717 | } else { |
1718 | Value *NewAnd = Builder.CreateAnd( |
1719 | Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); |
1720 | return new ICmpInst(Cmp.getPredicate(), |
1721 | NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); |
1722 | } |
1723 | } |
1724 | |
1725 | |
1726 | |
1727 | |
1728 | if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && |
1729 | !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { |
1730 | |
1731 | Value *NewShift = |
1732 | IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) |
1733 | : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); |
1734 | |
1735 | |
1736 | Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); |
1737 | return replaceOperand(Cmp, 0, NewAnd); |
1738 | } |
1739 | |
1740 | return nullptr; |
1741 | } |
1742 | |
1743 | |
1744 | Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, |
1745 | BinaryOperator *And, |
1746 | const APInt &C1) { |
1747 | bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; |
1748 | |
1749 | |
1750 | |
1751 | |
1752 | if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && |
1753 | match(And->getOperand(1), m_One())) |
1754 | return new TruncInst(And->getOperand(0), Cmp.getType()); |
1755 | |
1756 | const APInt *C2; |
1757 | Value *X; |
1758 | if (!match(And, m_And(m_Value(X), m_APInt(C2)))) |
1759 | return nullptr; |
1760 | |
1761 | |
1762 | if (!And->hasOneUse()) |
1763 | return nullptr; |
1764 | |
1765 | if (Cmp.isEquality() && C1.isNullValue()) { |
1766 | |
1767 | |
1768 | if (C2->isSignMask()) { |
1769 | Constant *Zero = Constant::getNullValue(X->getType()); |
1770 | auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; |
1771 | return new ICmpInst(NewPred, X, Zero); |
1772 | } |
1773 | |
1774 | |
1775 | |
1776 | if ((~(*C2) + 1).isPowerOf2()) { |
1777 | Constant *NegBOC = |
1778 | ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); |
1779 | auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; |
1780 | return new ICmpInst(NewPred, X, NegBOC); |
1781 | } |
1782 | } |
1783 | |
1784 | |
1785 | |
1786 | |
1787 | |
1788 | |
1789 | |
1790 | |
1791 | |
1792 | Value *W; |
1793 | if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && |
1794 | (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { |
1795 | |
1796 | |
1797 | |
1798 | if (!Cmp.getType()->isVectorTy()) { |
1799 | Type *WideType = W->getType(); |
1800 | unsigned WideScalarBits = WideType->getScalarSizeInBits(); |
1801 | Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); |
1802 | Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); |
1803 | Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); |
1804 | return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); |
1805 | } |
1806 | } |
1807 | |
1808 | if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) |
1809 | return I; |
1810 | |
1811 | |
1812 | |
1813 | |
1814 | |
1815 | if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && |
1816 | match(And->getOperand(1), m_One())) { |
1817 | Constant *One = cast<Constant>(And->getOperand(1)); |
1818 | Value *Or = And->getOperand(0); |
1819 | Value *A, *B, *LShr; |
1820 | if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && |
1821 | match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { |
1822 | unsigned UsesRemoved = 0; |
1823 | if (And->hasOneUse()) |
1824 | ++UsesRemoved; |
1825 | if (Or->hasOneUse()) |
1826 | ++UsesRemoved; |
1827 | if (LShr->hasOneUse()) |
1828 | ++UsesRemoved; |
1829 | |
1830 | |
1831 | Value *NewOr = nullptr; |
1832 | if (auto *C = dyn_cast<Constant>(B)) { |
1833 | if (UsesRemoved >= 1) |
1834 | NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); |
1835 | } else { |
1836 | if (UsesRemoved >= 3) |
1837 | NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), |
1838 | true), |
1839 | One, Or->getName()); |
1840 | } |
1841 | if (NewOr) { |
1842 | Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); |
1843 | return replaceOperand(Cmp, 0, NewAnd); |
1844 | } |
1845 | } |
1846 | } |
1847 | |
1848 | return nullptr; |
1849 | } |
1850 | |
1851 | |
1852 | Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, |
1853 | BinaryOperator *And, |
1854 | const APInt &C) { |
1855 | if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) |
1856 | return I; |
1857 | |
1858 | const ICmpInst::Predicate Pred = Cmp.getPredicate(); |
1859 | bool TrueIfNeg; |
1860 | if (isSignBitCheck(Pred, C, TrueIfNeg)) { |
1861 | |
1862 | |
1863 | Value *X; |
1864 | if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && |
1865 | match(And->getOperand(1), m_Not(m_Specific(X)))) { |
1866 | auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; |
1867 | return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); |
1868 | } |
1869 | } |
1870 | |
1871 | |
1872 | |
1873 | |
1874 | Value *X = And->getOperand(0); |
1875 | Value *Y = And->getOperand(1); |
1876 | if (auto *LI = dyn_cast<LoadInst>(X)) |
1877 | if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) |
1878 | if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) |
1879 | if (GV->isConstant() && GV->hasDefinitiveInitializer() && |
1880 | !LI->isVolatile() && isa<ConstantInt>(Y)) { |
1881 | ConstantInt *C2 = cast<ConstantInt>(Y); |
1882 | if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) |
1883 | return Res; |
1884 | } |
1885 | |
1886 | if (!Cmp.isEquality()) |
1887 | return nullptr; |
1888 | |
1889 | |
1890 | |
1891 | |
1892 | if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { |
1893 | auto NewPred = |
1894 | Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; |
1895 | return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); |
1896 | } |
1897 | |
1898 | |
1899 | |
1900 | |
1901 | const APInt *C2; |
1902 | if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { |
1903 | int32_t ExactLogBase2 = C2->exactLogBase2(); |
1904 | if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { |
1905 | Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); |
1906 | if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) |
1907 | NTy = VectorType::get(NTy, AndVTy->getElementCount()); |
1908 | Value *Trunc = Builder.CreateTrunc(X, NTy); |
1909 | auto NewPred = |
1910 | Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE : CmpInst::ICMP_SLT; |
1911 | return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); |
1912 | } |
1913 | } |
1914 | |
1915 | return nullptr; |
1916 | } |
1917 | |
1918 | |
1919 | Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, |
1920 | BinaryOperator *Or, |
1921 | const APInt &C) { |
1922 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
1923 | if (C.isOneValue()) { |
1924 | |
1925 | Value *V = nullptr; |
1926 | if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) |
1927 | return new ICmpInst(ICmpInst::ICMP_SLT, V, |
1928 | ConstantInt::get(V->getType(), 1)); |
1929 | } |
1930 | |
1931 | Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); |
1932 | const APInt *MaskC; |
1933 | if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { |
1934 | if (*MaskC == C && (C + 1).isPowerOf2()) { |
1935 | |
1936 | |
1937 | |
1938 | Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; |
1939 | return new ICmpInst(Pred, OrOp0, OrOp1); |
1940 | } |
1941 | |
1942 | |
1943 | |
1944 | |
1945 | |
1946 | if (Or->hasOneUse()) { |
1947 | Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); |
1948 | Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); |
1949 | return new ICmpInst(Pred, And, NewC); |
1950 | } |
1951 | } |
1952 | |
1953 | if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) |
1954 | return nullptr; |
1955 | |
1956 | Value *P, *Q; |
1957 | if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { |
1958 | |
1959 | |
1960 | Value *CmpP = |
1961 | Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); |
1962 | Value *CmpQ = |
1963 | Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); |
1964 | auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; |
1965 | return BinaryOperator::Create(BOpc, CmpP, CmpQ); |
1966 | } |
1967 | |
1968 | |
1969 | |
1970 | Value *X1, *X2, *X3, *X4; |
1971 | if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && |
1972 | match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { |
1973 | |
1974 | |
1975 | Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); |
1976 | Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); |
1977 | auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; |
1978 | return BinaryOperator::Create(BOpc, Cmp12, Cmp34); |
1979 | } |
1980 | |
1981 | return nullptr; |
1982 | } |
1983 | |
1984 | |
1985 | Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, |
1986 | BinaryOperator *Mul, |
1987 | const APInt &C) { |
1988 | const APInt *MulC; |
1989 | if (!match(Mul->getOperand(1), m_APInt(MulC))) |
1990 | return nullptr; |
1991 | |
1992 | |
1993 | |
1994 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
1995 | if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { |
1996 | if (MulC->isNegative()) |
1997 | Pred = ICmpInst::getSwappedPredicate(Pred); |
1998 | return new ICmpInst(Pred, Mul->getOperand(0), |
1999 | Constant::getNullValue(Mul->getType())); |
2000 | } |
2001 | |
2002 | |
2003 | |
2004 | if (Cmp.isEquality() && !MulC->isNullValue()) { |
2005 | |
2006 | if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { |
2007 | Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); |
2008 | return new ICmpInst(Pred, Mul->getOperand(0), NewC); |
2009 | } |
2010 | |
2011 | if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { |
2012 | Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); |
2013 | return new ICmpInst(Pred, Mul->getOperand(0), NewC); |
2014 | } |
2015 | } |
2016 | |
2017 | return nullptr; |
2018 | } |
2019 | |
2020 | |
2021 | static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, |
2022 | const APInt &C) { |
2023 | Value *Y; |
2024 | if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) |
2025 | return nullptr; |
2026 | |
2027 | Type *ShiftType = Shl->getType(); |
2028 | unsigned TypeBits = C.getBitWidth(); |
2029 | bool CIsPowerOf2 = C.isPowerOf2(); |
2030 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
2031 | if (Cmp.isUnsigned()) { |
2032 | |
2033 | if (!CIsPowerOf2) { |
2034 | |
2035 | |
2036 | |
2037 | |
2038 | if (Pred == ICmpInst::ICMP_ULT) |
2039 | Pred = ICmpInst::ICMP_ULE; |
2040 | else if (Pred == ICmpInst::ICMP_UGE) |
2041 | Pred = ICmpInst::ICMP_UGT; |
2042 | } |
2043 | |
2044 | |
2045 | |
2046 | unsigned CLog2 = C.logBase2(); |
2047 | if (CLog2 == TypeBits - 1) { |
2048 | if (Pred == ICmpInst::ICMP_UGE) |
2049 | Pred = ICmpInst::ICMP_EQ; |
2050 | else if (Pred == ICmpInst::ICMP_ULT) |
2051 | Pred = ICmpInst::ICMP_NE; |
2052 | } |
2053 | return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); |
2054 | } else if (Cmp.isSigned()) { |
2055 | Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); |
2056 | if (C.isAllOnesValue()) { |
2057 | |
2058 | if (Pred == ICmpInst::ICMP_SLE) |
2059 | return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); |
2060 | |
2061 | |
2062 | if (Pred == ICmpInst::ICMP_SGT) |
2063 | return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); |
2064 | } else if (!C) { |
2065 | |
2066 | |
2067 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) |
2068 | return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); |
2069 | |
2070 | |
2071 | |
2072 | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) |
2073 | return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); |
2074 | } |
2075 | } else if (Cmp.isEquality() && CIsPowerOf2) { |
2076 | return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); |
2077 | } |
2078 | |
2079 | return nullptr; |
2080 | } |
2081 | |
2082 | |
2083 | Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, |
2084 | BinaryOperator *Shl, |
2085 | const APInt &C) { |
2086 | const APInt *ShiftVal; |
2087 | if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) |
2088 | return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); |
2089 | |
2090 | const APInt *ShiftAmt; |
2091 | if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) |
2092 | return foldICmpShlOne(Cmp, Shl, C); |
2093 | |
2094 | |
2095 | |
2096 | unsigned TypeBits = C.getBitWidth(); |
2097 | if (ShiftAmt->uge(TypeBits)) |
2098 | return nullptr; |
2099 | |
2100 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
2101 | Value *X = Shl->getOperand(0); |
2102 | Type *ShType = Shl->getType(); |
2103 | |
2104 | |
2105 | |
2106 | |
2107 | if (Shl->hasNoSignedWrap()) { |
2108 | if (Pred == ICmpInst::ICMP_SGT) { |
2109 | |
2110 | APInt ShiftedC = C.ashr(*ShiftAmt); |
2111 | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); |
2112 | } |
2113 | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && |
2114 | C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { |
2115 | APInt ShiftedC = C.ashr(*ShiftAmt); |
2116 | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); |
2117 | } |
2118 | if (Pred == ICmpInst::ICMP_SLT) { |
2119 | |
2120 | |
2121 | |
2122 | |
2123 | assert(!C.isMinSignedValue() && "Unexpected icmp slt"); |
2124 | APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; |
2125 | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); |
2126 | } |
2127 | |
2128 | |
2129 | |
2130 | if (isSignTest(Pred, C)) |
2131 | return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); |
2132 | } |
2133 | |
2134 | |
2135 | |
2136 | |
2137 | if (Shl->hasNoUnsignedWrap()) { |
2138 | if (Pred == ICmpInst::ICMP_UGT) { |
2139 | |
2140 | APInt ShiftedC = C.lshr(*ShiftAmt); |
2141 | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); |
2142 | } |
2143 | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && |
2144 | C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { |
2145 | APInt ShiftedC = C.lshr(*ShiftAmt); |
2146 | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); |
2147 | } |
2148 | if (Pred == ICmpInst::ICMP_ULT) { |
2149 | |
2150 | |
2151 | |
2152 | |
2153 | assert(C.ugt(0) && "ult 0 should have been eliminated"); |
2154 | APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; |
2155 | return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); |
2156 | } |
2157 | } |
2158 | |
2159 | if (Cmp.isEquality() && Shl->hasOneUse()) { |
2160 | |
2161 | Constant *Mask = ConstantInt::get( |
2162 | ShType, |
2163 | APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); |
2164 | Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); |
2165 | Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); |
2166 | return new ICmpInst(Pred, And, LShrC); |
2167 | } |
2168 | |
2169 | |
2170 | bool TrueIfSigned = false; |
2171 | if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { |
2172 | |
2173 | Constant *Mask = ConstantInt::get( |
2174 | ShType, |
2175 | APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); |
2176 | Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); |
2177 | return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, |
2178 | And, Constant::getNullValue(ShType)); |
2179 | } |
2180 | |
2181 | |
2182 | if (Cmp.isUnsigned() && Shl->hasOneUse()) { |
2183 | |
2184 | if ((C + 1).isPowerOf2() && |
2185 | (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { |
2186 | Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); |
2187 | return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ |
2188 | : ICmpInst::ICMP_NE, |
2189 | And, Constant::getNullValue(ShType)); |
2190 | } |
2191 | |
2192 | if (C.isPowerOf2() && |
2193 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { |
2194 | Value *And = |
2195 | Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); |
2196 | return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ |
2197 | : ICmpInst::ICMP_NE, |
2198 | And, Constant::getNullValue(ShType)); |
2199 | } |
2200 | } |
2201 | |
2202 | |
2203 | |
2204 | |
2205 | |
2206 | |
2207 | |
2208 | unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); |
2209 | if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && |
2210 | DL.isLegalInteger(TypeBits - Amt)) { |
2211 | Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); |
2212 | if (auto *ShVTy = dyn_cast<VectorType>(ShType)) |
2213 | TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); |
2214 | Constant *NewC = |
2215 | ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); |
2216 | return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); |
2217 | } |
2218 | |
2219 | return nullptr; |
2220 | } |
2221 | |
2222 | |
2223 | Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, |
2224 | BinaryOperator *Shr, |
2225 | const APInt &C) { |
2226 | |
2227 | |
2228 | Value *X = Shr->getOperand(0); |
2229 | CmpInst::Predicate Pred = Cmp.getPredicate(); |
2230 | if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && |
2231 | C.isNullValue()) |
2232 | return new ICmpInst(Pred, X, Cmp.getOperand(1)); |
2233 | |
2234 | const APInt *ShiftVal; |
2235 | if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) |
2236 | return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); |
2237 | |
2238 | const APInt *ShiftAmt; |
2239 | if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) |
2240 | return nullptr; |
2241 | |
2242 | |
2243 | |
2244 | unsigned TypeBits = C.getBitWidth(); |
2245 | unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); |
2246 | if (ShAmtVal >= TypeBits || ShAmtVal == 0) |
2247 | return nullptr; |
2248 | |
2249 | bool IsAShr = Shr->getOpcode() == Instruction::AShr; |
2250 | bool IsExact = Shr->isExact(); |
2251 | Type *ShrTy = Shr->getType(); |
2252 | |
2253 | |
2254 | |
2255 | |
2256 | if (IsAShr) { |
2257 | if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { |
2258 | |
2259 | |
2260 | APInt ShiftedC = C.shl(ShAmtVal); |
2261 | if (ShiftedC.ashr(ShAmtVal) == C) |
2262 | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); |
2263 | } |
2264 | if (Pred == CmpInst::ICMP_SGT) { |
2265 | |
2266 | APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; |
2267 | if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && |
2268 | (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) |
2269 | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); |
2270 | } |
2271 | |
2272 | |
2273 | |
2274 | |
2275 | |
2276 | if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { |
2277 | if (Pred == CmpInst::ICMP_UGT) { |
2278 | return new ICmpInst(CmpInst::ICMP_SLT, X, |
2279 | ConstantInt::getNullValue(ShrTy)); |
2280 | } |
2281 | if (Pred == CmpInst::ICMP_ULT) { |
2282 | return new ICmpInst(CmpInst::ICMP_SGT, X, |
2283 | ConstantInt::getAllOnesValue(ShrTy)); |
2284 | } |
2285 | } |
2286 | } else { |
2287 | if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { |
2288 | |
2289 | |
2290 | APInt ShiftedC = C.shl(ShAmtVal); |
2291 | if (ShiftedC.lshr(ShAmtVal) == C) |
2292 | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); |
2293 | } |
2294 | if (Pred == CmpInst::ICMP_UGT) { |
2295 | |
2296 | APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; |
2297 | if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) |
2298 | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); |
2299 | } |
2300 | } |
2301 | |
2302 | if (!Cmp.isEquality()) |
2303 | return nullptr; |
2304 | |
2305 | |
2306 | |
2307 | |
2308 | |
2309 | |
2310 | assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || |
2311 | (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && |
2312 | "Expected icmp+shr simplify did not occur."); |
2313 | |
2314 | |
2315 | |
2316 | if (Shr->isExact()) |
2317 | return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); |
2318 | |
2319 | if (C.isNullValue()) { |
2320 | |
2321 | if (Pred == CmpInst::ICMP_EQ) |
2322 | return new ICmpInst(CmpInst::ICMP_ULT, X, |
2323 | ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); |
2324 | else |
2325 | return new ICmpInst(CmpInst::ICMP_UGT, X, |
2326 | ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); |
2327 | } |
2328 | |
2329 | if (Shr->hasOneUse()) { |
2330 | |
2331 | |
2332 | APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); |
2333 | Constant *Mask = ConstantInt::get(ShrTy, Val); |
2334 | Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); |
2335 | return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); |
2336 | } |
2337 | |
2338 | return nullptr; |
2339 | } |
2340 | |
2341 | Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, |
2342 | BinaryOperator *SRem, |
2343 | const APInt &C) { |
2344 | |
2345 | |
2346 | |
2347 | const ICmpInst::Predicate Pred = Cmp.getPredicate(); |
2348 | if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) |
2349 | return nullptr; |
2350 | |
2351 | |
2352 | |
2353 | |
2354 | if (!SRem->hasOneUse()) |
2355 | return nullptr; |
2356 | |
2357 | const APInt *DivisorC; |
2358 | if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) |
2359 | return nullptr; |
2360 | |
2361 | |
2362 | Type *Ty = SRem->getType(); |
2363 | APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); |
2364 | Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); |
2365 | Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); |
2366 | |
2367 | |
2368 | |
2369 | |
2370 | if (Pred == ICmpInst::ICMP_SGT) |
2371 | return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); |
2372 | |
2373 | |
2374 | |
2375 | |
2376 | return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); |
2377 | } |
2378 | |
2379 | |
2380 | Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, |
2381 | BinaryOperator *UDiv, |
2382 | const APInt &C) { |
2383 | const APInt *C2; |
2384 | if (!match(UDiv->getOperand(0), m_APInt(C2))) |
2385 | return nullptr; |
2386 | |
2387 | assert(*C2 != 0 && "udiv 0, X should have been simplified already."); |
2388 | |
2389 | |
2390 | Value *Y = UDiv->getOperand(1); |
2391 | if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { |
2392 | assert(!C.isMaxValue() && |
2393 | "icmp ugt X, UINT_MAX should have been simplified already."); |
2394 | return new ICmpInst(ICmpInst::ICMP_ULE, Y, |
2395 | ConstantInt::get(Y->getType(), C2->udiv(C + 1))); |
2396 | } |
2397 | |
2398 | |
2399 | if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { |
2400 | assert(C != 0 && "icmp ult X, 0 should have been simplified already."); |
2401 | return new ICmpInst(ICmpInst::ICMP_UGT, Y, |
2402 | ConstantInt::get(Y->getType(), C2->udiv(C))); |
2403 | } |
2404 | |
2405 | return nullptr; |
2406 | } |
2407 | |
2408 | |
2409 | Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, |
2410 | BinaryOperator *Div, |
2411 | const APInt &C) { |
2412 | |
2413 | |
2414 | |
2415 | |
2416 | |
2417 | |
2418 | const APInt *C2; |
2419 | if (!match(Div->getOperand(1), m_APInt(C2))) |
2420 | return nullptr; |
2421 | |
2422 | |
2423 | |
2424 | |
2425 | |
2426 | |
2427 | |
2428 | |
2429 | |
2430 | bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; |
2431 | if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) |
2432 | return nullptr; |
2433 | |
2434 | |
2435 | |
2436 | |
2437 | |
2438 | if (C2->isNullValue() || C2->isOneValue() || |
2439 | (DivIsSigned && C2->isAllOnesValue())) |
2440 | return nullptr; |
2441 | |
2442 | |
2443 | |
2444 | |
2445 | |
2446 | APInt Prod = C * *C2; |
2447 | |
2448 | |
2449 | |
2450 | |
2451 | bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; |
2452 | |
2453 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
2454 | |
2455 | |
2456 | |
2457 | APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; |
2458 | |
2459 | |
2460 | |
2461 | |
2462 | |
2463 | |
2464 | |
2465 | |
2466 | int LoOverflow = 0, HiOverflow = 0; |
2467 | APInt LoBound, HiBound; |
2468 | |
2469 | if (!DivIsSigned) { |
2470 | |
2471 | LoBound = Prod; |
2472 | HiOverflow = LoOverflow = ProdOV; |
2473 | if (!HiOverflow) { |
2474 | |
2475 | |
2476 | HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); |
2477 | } |
2478 | } else if (C2->isStrictlyPositive()) { |
2479 | if (C.isNullValue()) { |
2480 | |
2481 | LoBound = -(RangeSize - 1); |
2482 | HiBound = RangeSize; |
2483 | } else if (C.isStrictlyPositive()) { |
2484 | LoBound = Prod; |
2485 | HiOverflow = LoOverflow = ProdOV; |
2486 | if (!HiOverflow) |
2487 | HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); |
2488 | } else { |
2489 | |
2490 | HiBound = Prod + 1; |
2491 | LoOverflow = HiOverflow = ProdOV ? -1 : 0; |
2492 | if (!LoOverflow) { |
2493 | APInt DivNeg = -RangeSize; |
2494 | LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; |
2495 | } |
2496 | } |
2497 | } else if (C2->isNegative()) { |
2498 | if (Div->isExact()) |
2499 | RangeSize.negate(); |
2500 | if (C.isNullValue()) { |
2501 | |
2502 | LoBound = RangeSize + 1; |
2503 | HiBound = -RangeSize; |
2504 | if (HiBound == *C2) { |
2505 | HiOverflow = 1; |
2506 | HiBound = APInt(); |
2507 | } |
2508 | } else if (C.isStrictlyPositive()) { |
2509 | |
2510 | HiBound = Prod + 1; |
2511 | HiOverflow = LoOverflow = ProdOV ? -1 : 0; |
2512 | if (!LoOverflow) |
2513 | LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; |
2514 | } else { |
2515 | LoBound = Prod; |
2516 | LoOverflow = HiOverflow = ProdOV; |
2517 | if (!HiOverflow) |
2518 | HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); |
2519 | } |
2520 | |
2521 | |
2522 | Pred = ICmpInst::getSwappedPredicate(Pred); |
2523 | } |
2524 | |
2525 | Value *X = Div->getOperand(0); |
2526 | switch (Pred) { |
2527 | default: llvm_unreachable("Unhandled icmp opcode!"); |
2528 | case ICmpInst::ICMP_EQ: |
2529 | if (LoOverflow && HiOverflow) |
2530 | return replaceInstUsesWith(Cmp, Builder.getFalse()); |
2531 | if (HiOverflow) |
2532 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : |
2533 | ICmpInst::ICMP_UGE, X, |
2534 | ConstantInt::get(Div->getType(), LoBound)); |
2535 | if (LoOverflow) |
2536 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : |
2537 | ICmpInst::ICMP_ULT, X, |
2538 | ConstantInt::get(Div->getType(), HiBound)); |
2539 | return replaceInstUsesWith( |
2540 | Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); |
2541 | case ICmpInst::ICMP_NE: |
2542 | if (LoOverflow && HiOverflow) |
2543 | return replaceInstUsesWith(Cmp, Builder.getTrue()); |
2544 | if (HiOverflow) |
2545 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : |
2546 | ICmpInst::ICMP_ULT, X, |
2547 | ConstantInt::get(Div->getType(), LoBound)); |
2548 | if (LoOverflow) |
2549 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : |
2550 | ICmpInst::ICMP_UGE, X, |
2551 | ConstantInt::get(Div->getType(), HiBound)); |
2552 | return replaceInstUsesWith(Cmp, |
2553 | insertRangeTest(X, LoBound, HiBound, |
2554 | DivIsSigned, false)); |
2555 | case ICmpInst::ICMP_ULT: |
2556 | case ICmpInst::ICMP_SLT: |
2557 | if (LoOverflow == +1) |
2558 | return replaceInstUsesWith(Cmp, Builder.getTrue()); |
2559 | if (LoOverflow == -1) |
2560 | return replaceInstUsesWith(Cmp, Builder.getFalse()); |
2561 | return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); |
2562 | case ICmpInst::ICMP_UGT: |
2563 | case ICmpInst::ICMP_SGT: |
2564 | if (HiOverflow == +1) |
2565 | return replaceInstUsesWith(Cmp, Builder.getFalse()); |
2566 | if (HiOverflow == -1) |
2567 | return replaceInstUsesWith(Cmp, Builder.getTrue()); |
2568 | if (Pred == ICmpInst::ICMP_UGT) |
2569 | return new ICmpInst(ICmpInst::ICMP_UGE, X, |
2570 | ConstantInt::get(Div->getType(), HiBound)); |
2571 | return new ICmpInst(ICmpInst::ICMP_SGE, X, |
2572 | ConstantInt::get(Div->getType(), HiBound)); |
2573 | } |
2574 | |
2575 | return nullptr; |
2576 | } |
2577 | |
2578 | |
2579 | Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, |
2580 | BinaryOperator *Sub, |
2581 | const APInt &C) { |
2582 | Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); |
2583 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
2584 | const APInt *C2; |
2585 | APInt SubResult; |
2586 | |
2587 | |
2588 | if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) |
2589 | return new ICmpInst(Cmp.getPredicate(), Y, |
2590 | ConstantInt::get(Y->getType(), 0)); |
2591 | |
2592 | |
2593 | if (match(X, m_APInt(C2)) && |
2594 | ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || |
2595 | (Cmp.isSigned() && Sub->hasNoSignedWrap())) && |
2596 | !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) |
2597 | return new ICmpInst(Cmp.getSwappedPredicate(), Y, |
2598 | ConstantInt::get(Y->getType(), SubResult)); |
2599 | |
2600 | |
2601 | |
2602 | if (!Sub->hasOneUse()) |
2603 | return nullptr; |
2604 | |
2605 | if (Sub->hasNoSignedWrap()) { |
2606 | |
2607 | if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) |
2608 | return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); |
2609 | |
2610 | |
2611 | if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) |
2612 | return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); |
2613 | |
2614 | |
2615 | if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) |
2616 | return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); |
2617 | |
2618 | |
2619 | if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) |
2620 | return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); |
2621 | } |
2622 | |
2623 | if (!match(X, m_APInt(C2))) |
2624 | return nullptr; |
2625 | |
2626 | |
2627 | |
2628 | if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && |
2629 | (*C2 & (C - 1)) == (C - 1)) |
2630 | return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); |
2631 | |
2632 | |
2633 | |
2634 | if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) |
2635 | return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); |
2636 | |
2637 | return nullptr; |
2638 | } |
2639 | |
2640 | |
2641 | Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, |
2642 | BinaryOperator *Add, |
2643 | const APInt &C) { |
2644 | Value *Y = Add->getOperand(1); |
2645 | const APInt *C2; |
2646 | if (Cmp.isEquality() || !match(Y, m_APInt(C2))) |
2647 | return nullptr; |
2648 | |
2649 | |
2650 | Value *X = Add->getOperand(0); |
2651 | Type *Ty = Add->getType(); |
2652 | const CmpInst::Predicate Pred = Cmp.getPredicate(); |
2653 | |
2654 | |
2655 | |
2656 | |
2657 | if ((Add->hasNoSignedWrap() && |
2658 | (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || |
2659 | (Add->hasNoUnsignedWrap() && |
2660 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { |
2661 | bool Overflow; |
2662 | APInt NewC = |
2663 | Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); |
2664 | |
2665 | |
2666 | |
2667 | if (!Overflow) |
2668 | |
2669 | return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); |
2670 | } |
2671 | |
2672 | auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); |
2673 | const APInt &Upper = CR.getUpper(); |
2674 | const APInt &Lower = CR.getLower(); |
2675 | if (Cmp.isSigned()) { |
2676 | if (Lower.isSignMask()) |
2677 | return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); |
2678 | if (Upper.isSignMask()) |
2679 | return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); |
2680 | } else { |
2681 | if (Lower.isMinValue()) |
2682 | return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); |
2683 | if (Upper.isMinValue()) |
2684 | return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); |
2685 | } |
2686 | |
2687 | |
2688 | |
2689 | const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); |
2690 | const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); |
2691 | |
2692 | |
2693 | |
2694 | if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) |
2695 | return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); |
2696 | |
2697 | |
2698 | if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) |
2699 | return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); |
2700 | |
2701 | |
2702 | if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) |
2703 | return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); |
2704 | |
2705 | |
2706 | if (Pred == CmpInst::ICMP_SLT && C == *C2) |
2707 | return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); |
2708 | |
2709 | if (!Add->hasOneUse()) |
2710 | return nullptr; |
2711 | |
2712 | |
2713 | |
2714 | |
2715 | if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) |
2716 | return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), |
2717 | ConstantExpr::getNeg(cast<Constant>(Y))); |
2718 | |
2719 | |
2720 | |
2721 | |
2722 | if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) |
2723 | return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), |
2724 | ConstantExpr::getNeg(cast<Constant>(Y))); |
2725 | |
2726 | return nullptr; |
2727 | } |
2728 | |
2729 | bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, |
2730 | Value *&RHS, ConstantInt *&Less, |
2731 | ConstantInt *&Equal, |
2732 | ConstantInt *&Greater) { |
2733 | |
2734 | |
2735 | |
2736 | |
2737 | |
2738 | |
2739 | |
2740 | ICmpInst::Predicate PredA; |
2741 | if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || |
2742 | !ICmpInst::isEquality(PredA)) |
2743 | return false; |
2744 | Value *EqualVal = SI->getTrueValue(); |
2745 | Value *UnequalVal = SI->getFalseValue(); |
2746 | |
2747 | if (PredA == ICmpInst::ICMP_NE) |
2748 | std::swap(EqualVal, UnequalVal); |
2749 | if (!match(EqualVal, m_ConstantInt(Equal))) |
2750 | return false; |
2751 | ICmpInst::Predicate PredB; |
2752 | Value *LHS2, *RHS2; |
2753 | if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), |
2754 | m_ConstantInt(Less), m_ConstantInt(Greater)))) |
2755 | return false; |
2756 | |
2757 | |
2758 | if (LHS2 != LHS) { |
2759 | |
2760 | std::swap(LHS2, RHS2); |
2761 | PredB = ICmpInst::getSwappedPredicate(PredB); |
2762 | } |
2763 | if (LHS2 != LHS) |
2764 | return false; |
2765 | |
2766 | if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { |
2767 | |
2768 | auto FlippedStrictness = |
2769 | InstCombiner::getFlippedStrictnessPredicateAndConstant( |
2770 | PredB, cast<Constant>(RHS2)); |
2771 | if (!FlippedStrictness) |
2772 | return false; |
2773 | assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); |
2774 | RHS2 = FlippedStrictness->second; |
2775 | |
2776 | std::swap(Less, Greater); |
2777 | PredB = ICmpInst::ICMP_SLT; |
2778 | } |
2779 | return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; |
2780 | } |
2781 | |
2782 | Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, |
2783 | SelectInst *Select, |
2784 | ConstantInt *C) { |
2785 | |
2786 | assert(C && "Cmp RHS should be a constant int!"); |
2787 | |
2788 | |
2789 | |
2790 | |
2791 | |
2792 | Value *OrigLHS, *OrigRHS; |
2793 | ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; |
2794 | if (Cmp.hasOneUse() && |
2795 | matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, |
2796 | C3GreaterThan)) { |
2797 | assert(C1LessThan && C2Equal && C3GreaterThan); |
2798 | |
2799 | bool TrueWhenLessThan = |
2800 | ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) |
2801 | ->isAllOnesValue(); |
2802 | bool TrueWhenEqual = |
2803 | ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) |
2804 | ->isAllOnesValue(); |
2805 | bool TrueWhenGreaterThan = |
2806 | ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) |
2807 | ->isAllOnesValue(); |
2808 | |
2809 | |
2810 | |
2811 | |
2812 | |
2813 | |
2814 | |
2815 | |
2816 | |
2817 | Value *Cond = Builder.getFalse(); |
2818 | if (TrueWhenLessThan) |
2819 | Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, |
2820 | OrigLHS, OrigRHS)); |
2821 | if (TrueWhenEqual) |
2822 | Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, |
2823 | OrigLHS, OrigRHS)); |
2824 | if (TrueWhenGreaterThan) |
2825 | Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, |
2826 | OrigLHS, OrigRHS)); |
2827 | |
2828 | return replaceInstUsesWith(Cmp, Cond); |
2829 | } |
2830 | return nullptr; |
2831 | } |
2832 | |
2833 | static Instruction *foldICmpBitCast(ICmpInst &Cmp, |
2834 | InstCombiner::BuilderTy &Builder) { |
2835 | auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); |
2836 | if (!Bitcast) |
2837 | return nullptr; |
2838 | |
2839 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
2840 | Value *Op1 = Cmp.getOperand(1); |
2841 | Value *BCSrcOp = Bitcast->getOperand(0); |
2842 | |
2843 | |
2844 | if (Bitcast->getSrcTy()->getScalarSizeInBits() == |
2845 | Bitcast->getDestTy()->getScalarSizeInBits()) { |
2846 | |
2847 | Value *X; |
2848 | if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { |
2849 | |
2850 | |
2851 | |
2852 | |
2853 | if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || |
2854 | Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && |
2855 | match(Op1, m_Zero())) |
2856 | return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); |
2857 | |
2858 | |
2859 | if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) |
2860 | return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); |
2861 | |
2862 | |
2863 | if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) |
2864 | return new ICmpInst(Pred, X, |
2865 | ConstantInt::getAllOnesValue(X->getType())); |
2866 | } |
2867 | |
2868 | |
2869 | |
2870 | |
2871 | if (match(BCSrcOp, m_UIToFP(m_Value(X)))) |
2872 | if (Cmp.isEquality() && match(Op1, m_Zero())) |
2873 | return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); |
2874 | |
2875 | |
2876 | |
2877 | |
2878 | |
2879 | const APInt *C; |
2880 | bool TrueIfSigned; |
2881 | if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && |
2882 | InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { |
2883 | if (match(BCSrcOp, m_FPExt(m_Value(X))) || |
2884 | match(BCSrcOp, m_FPTrunc(m_Value(X)))) { |
2885 | |
2886 | |
2887 | Type *XType = X->getType(); |
2888 | |
2889 | |
2890 | if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { |
2891 | |
2892 | Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); |
2893 | if (auto *XVTy = dyn_cast<VectorType>(XType)) |
2894 | NewType = VectorType::get(NewType, XVTy->getElementCount()); |
2895 | Value *NewBitcast = Builder.CreateBitCast(X, NewType); |
2896 | if (TrueIfSigned) |
2897 | return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, |
2898 | ConstantInt::getNullValue(NewType)); |
2899 | else |
2900 | return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, |
2901 | ConstantInt::getAllOnesValue(NewType)); |
2902 | } |
2903 | } |
2904 | } |
2905 | } |
2906 | |
2907 | |
2908 | |
2909 | if (Bitcast->getType()->isPointerTy() && |
2910 | (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { |
2911 | |
2912 | |
2913 | if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) |
2914 | Op1 = BC2->getOperand(0); |
2915 | |
2916 | Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); |
2917 | return new ICmpInst(Pred, BCSrcOp, Op1); |
2918 | } |
2919 | |
2920 | |
2921 | |
2922 | |
2923 | |
2924 | |
2925 | |
2926 | |
2927 | const APInt *C; |
2928 | if (!match(Cmp.getOperand(1), m_APInt(C)) || |
2929 | !Bitcast->getType()->isIntegerTy() || |
2930 | !Bitcast->getSrcTy()->isIntOrIntVectorTy()) |
2931 | return nullptr; |
2932 | |
2933 | Value *Vec; |
2934 | ArrayRef<int> Mask; |
2935 | if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { |
2936 | |
2937 | if (is_splat(Mask)) { |
2938 | auto *VecTy = cast<VectorType>(BCSrcOp->getType()); |
2939 | auto *EltTy = cast<IntegerType>(VecTy->getElementType()); |
2940 | if (C->isSplat(EltTy->getBitWidth())) { |
2941 | |
2942 | |
2943 | |
2944 | |
2945 | |
2946 | Value *Elem = Builder.getInt32(Mask[0]); |
2947 | Value *Extract = Builder.CreateExtractElement(Vec, Elem); |
2948 | Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); |
2949 | return new ICmpInst(Pred, Extract, NewC); |
2950 | } |
2951 | } |
2952 | } |
2953 | return nullptr; |
2954 | } |
2955 | |
2956 | |
2957 | |
2958 | Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { |
2959 | const APInt *C; |
2960 | if (!match(Cmp.getOperand(1), m_APInt(C))) |
2961 | return nullptr; |
2962 | |
2963 | if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { |
2964 | switch (BO->getOpcode()) { |
2965 | case Instruction::Xor: |
2966 | if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) |
2967 | return I; |
2968 | break; |
2969 | case Instruction::And: |
2970 | if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) |
2971 | return I; |
2972 | break; |
2973 | case Instruction::Or: |
2974 | if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) |
2975 | return I; |
2976 | break; |
2977 | case Instruction::Mul: |
2978 | if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) |
2979 | return I; |
2980 | break; |
2981 | case Instruction::Shl: |
2982 | if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) |
2983 | return I; |
2984 | break; |
2985 | case Instruction::LShr: |
2986 | case Instruction::AShr: |
2987 | if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) |
2988 | return I; |
2989 | break; |
2990 | case Instruction::SRem: |
2991 | if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) |
2992 | return I; |
2993 | break; |
2994 | case Instruction::UDiv: |
2995 | if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) |
2996 | return I; |
2997 | LLVM_FALLTHROUGH; |
2998 | case Instruction::SDiv: |
2999 | if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) |
3000 | return I; |
3001 | break; |
3002 | case Instruction::Sub: |
3003 | if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) |
3004 | return I; |
3005 | break; |
3006 | case Instruction::Add: |
3007 | if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) |
3008 | return I; |
3009 | break; |
3010 | default: |
3011 | break; |
3012 | } |
3013 | |
3014 | if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) |
3015 | return I; |
3016 | } |
3017 | |
3018 | |
3019 | |
3020 | if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { |
3021 | |
3022 | |
3023 | |
3024 | if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) |
3025 | if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) |
3026 | return I; |
3027 | } |
3028 | |
3029 | if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { |
3030 | if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) |
3031 | return I; |
3032 | } |
3033 | |
3034 | if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) |
3035 | if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) |
3036 | return I; |
3037 | |
3038 | return nullptr; |
3039 | } |
3040 | |
3041 | |
3042 | |
3043 | Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( |
3044 | ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { |
3045 | |
3046 | |
3047 | if (!Cmp.isEquality()) |
3048 | return nullptr; |
3049 | |
3050 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
3051 | bool isICMP_NE = Pred == ICmpInst::ICMP_NE; |
3052 | Constant *RHS = cast<Constant>(Cmp.getOperand(1)); |
3053 | Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); |
3054 | |
3055 | switch (BO->getOpcode()) { |
3056 | case Instruction::SRem: |
3057 | |
3058 | if (C.isNullValue() && BO->hasOneUse()) { |
3059 | const APInt *BOC; |
3060 | if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { |
3061 | Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); |
3062 | return new ICmpInst(Pred, NewRem, |
3063 | Constant::getNullValue(BO->getType())); |
3064 | } |
3065 | } |
3066 | break; |
3067 | case Instruction::Add: { |
3068 | |
3069 | if (Constant *BOC = dyn_cast<Constant>(BOp1)) { |
3070 | if (BO->hasOneUse()) |
3071 | return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); |
3072 | } else if (C.isNullValue()) { |
3073 | |
3074 | |
3075 | if (Value *NegVal = dyn_castNegVal(BOp1)) |
3076 | return new ICmpInst(Pred, BOp0, NegVal); |
3077 | if (Value *NegVal = dyn_castNegVal(BOp0)) |
3078 | return new ICmpInst(Pred, NegVal, BOp1); |
3079 | if (BO->hasOneUse()) { |
3080 | Value *Neg = Builder.CreateNeg(BOp1); |
3081 | Neg->takeName(BO); |
3082 | return new ICmpInst(Pred, BOp0, Neg); |
3083 | } |
3084 | } |
3085 | break; |
3086 | } |
3087 | case Instruction::Xor: |
3088 | if (BO->hasOneUse()) { |
3089 | if (Constant *BOC = dyn_cast<Constant>(BOp1)) { |
3090 | |
3091 | |
3092 | return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); |
3093 | } else if (C.isNullValue()) { |
3094 | |
3095 | return new ICmpInst(Pred, BOp0, BOp1); |
3096 | } |
3097 | } |
3098 | break; |
3099 | case Instruction::Sub: |
3100 | if (BO->hasOneUse()) { |
3101 | |
3102 | |
3103 | if (Constant *BOC = dyn_cast<Constant>(BOp0)) { |
3104 | |
3105 | return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); |
3106 | } else if (C.isNullValue()) { |
3107 | |
3108 | return new ICmpInst(Pred, BOp0, BOp1); |
3109 | } |
3110 | } |
3111 | break; |
3112 | case Instruction::Or: { |
3113 | const APInt *BOC; |
3114 | if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { |
3115 | |
3116 | |
3117 | |
3118 | Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); |
3119 | Value *And = Builder.CreateAnd(BOp0, NotBOC); |
3120 | return new ICmpInst(Pred, And, NotBOC); |
3121 | } |
3122 | break; |
3123 | } |
3124 | case Instruction::And: { |
3125 | const APInt *BOC; |
3126 | if (match(BOp1, m_APInt(BOC))) { |
3127 | |
3128 | if (C == *BOC && C.isPowerOf2()) |
3129 | return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, |
3130 | BO, Constant::getNullValue(RHS->getType())); |
3131 | } |
3132 | break; |
3133 | } |
3134 | case Instruction::UDiv: |
3135 | if (C.isNullValue()) { |
3136 | |
3137 | auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; |
3138 | return new ICmpInst(NewPred, BOp1, BOp0); |
3139 | } |
3140 | break; |
3141 | default: |
3142 | break; |
3143 | } |
3144 | return nullptr; |
3145 | } |
3146 | |
3147 | |
3148 | Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( |
3149 | ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { |
3150 | Type *Ty = II->getType(); |
3151 | unsigned BitWidth = C.getBitWidth(); |
3152 | switch (II->getIntrinsicID()) { |
3153 | case Intrinsic::abs: |
3154 | |
3155 | |
3156 | if (C.isNullValue() || C.isMinSignedValue()) |
3157 | return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), |
3158 | ConstantInt::get(Ty, C)); |
3159 | break; |
3160 | |
3161 | case Intrinsic::bswap: |
3162 | |
3163 | return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), |
3164 | ConstantInt::get(Ty, C.byteSwap())); |
3165 | |
3166 | case Intrinsic::ctlz: |
3167 | case Intrinsic::cttz: { |
3168 | |
3169 | if (C == BitWidth) |
3170 | return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), |
3171 | ConstantInt::getNullValue(Ty)); |
3172 | |
3173 | |
3174 | |
3175 | |
3176 | unsigned Num = C.getLimitedValue(BitWidth); |
3177 | if (Num != BitWidth && II->hasOneUse()) { |
3178 | bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; |
3179 | APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) |
3180 | : APInt::getHighBitsSet(BitWidth, Num + 1); |
3181 | APInt Mask2 = IsTrailing |
3182 | ? APInt::getOneBitSet(BitWidth, Num) |
3183 | : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); |
3184 | return new ICmpInst(Cmp.getPredicate(), |
3185 | Builder.CreateAnd(II->getArgOperand(0), Mask1), |
3186 | ConstantInt::get(Ty, Mask2)); |
3187 | } |
3188 | break; |
3189 | } |
3190 | |
3191 | case Intrinsic::ctpop: { |
3192 | |
3193 | |
3194 | bool IsZero = C.isNullValue(); |
3195 | if (IsZero || C == BitWidth) |
3196 | return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), |
3197 | IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); |
3198 | |
3199 | break; |
3200 | } |
3201 | |
3202 | case Intrinsic::uadd_sat: { |
3203 | |
3204 | if (C.isNullValue()) { |
3205 | Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); |
3206 | return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); |
3207 | } |
3208 | break; |
3209 | } |
3210 | |
3211 | case Intrinsic::usub_sat: { |
3212 | |
3213 | if (C.isNullValue()) { |
3214 | ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ |
3215 | ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; |
3216 | return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); |
3217 | } |
3218 | break; |
3219 | } |
3220 | default: |
3221 | break; |
3222 | } |
3223 | |
3224 | return nullptr; |
3225 | } |
3226 | |
3227 | |
3228 | Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, |
3229 | IntrinsicInst *II, |
3230 | const APInt &C) { |
3231 | if (Cmp.isEquality()) |
3232 | return foldICmpEqIntrinsicWithConstant(Cmp, II, C); |
3233 | |
3234 | Type *Ty = II->getType(); |
3235 | unsigned BitWidth = C.getBitWidth(); |
3236 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
3237 | switch (II->getIntrinsicID()) { |
3238 | case Intrinsic::ctpop: { |
3239 | |
3240 | Value *X = II->getArgOperand(0); |
3241 | if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) |
3242 | return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, |
3243 | ConstantInt::getAllOnesValue(Ty)); |
3244 | |
3245 | if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) |
3246 | return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, |
3247 | ConstantInt::getAllOnesValue(Ty)); |
3248 | break; |
3249 | } |
3250 | case Intrinsic::ctlz: { |
3251 | |
3252 | if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { |
3253 | unsigned Num = C.getLimitedValue(); |
3254 | APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); |
3255 | return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, |
3256 | II->getArgOperand(0), ConstantInt::get(Ty, Limit)); |
3257 | } |
3258 | |
3259 | |
3260 | if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { |
3261 | unsigned Num = C.getLimitedValue(); |
3262 | APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); |
3263 | return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, |
3264 | II->getArgOperand(0), ConstantInt::get(Ty, Limit)); |
3265 | } |
3266 | break; |
3267 | } |
3268 | case Intrinsic::cttz: { |
3269 | |
3270 | if (!II->hasOneUse()) |
3271 | return nullptr; |
3272 | |
3273 | |
3274 | if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { |
3275 | APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); |
3276 | return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, |
3277 | Builder.CreateAnd(II->getArgOperand(0), Mask), |
3278 | ConstantInt::getNullValue(Ty)); |
3279 | } |
3280 | |
3281 | |
3282 | if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { |
3283 | APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); |
3284 | return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, |
3285 | Builder.CreateAnd(II->getArgOperand(0), Mask), |
3286 | ConstantInt::getNullValue(Ty)); |
3287 | } |
3288 | break; |
3289 | } |
3290 | default: |
3291 | break; |
3292 | } |
3293 | |
3294 | return nullptr; |
3295 | } |
3296 | |
3297 | |
3298 | Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { |
3299 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
3300 | Constant *RHSC = dyn_cast<Constant>(Op1); |
3301 | Instruction *LHSI = dyn_cast<Instruction>(Op0); |
3302 | if (!RHSC || !LHSI) |
3303 | return nullptr; |
3304 | |
3305 | switch (LHSI->getOpcode()) { |
3306 | case Instruction::GetElementPtr: |
3307 | |
3308 | if (RHSC->isNullValue() && |
3309 | cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) |
3310 | return new ICmpInst( |
3311 | I.getPredicate(), LHSI->getOperand(0), |
3312 | Constant::getNullValue(LHSI->getOperand(0)->getType())); |
3313 | break; |
3314 | case Instruction::PHI: |
3315 | |
3316 | |
3317 | |
3318 | if (LHSI->getParent() == I.getParent()) |
3319 | if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) |
3320 | return NV; |
3321 | break; |
3322 | case Instruction::Select: { |
3323 | |
3324 | |
3325 | |
3326 | Value *Op1 = nullptr, *Op2 = nullptr; |
3327 | ConstantInt *CI = nullptr; |
3328 | |
3329 | auto SimplifyOp = [&](Value *V) { |
3330 | Value *Op = nullptr; |
3331 | if (Constant *C = dyn_cast<Constant>(V)) { |
3332 | Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); |
3333 | } else if (RHSC->isNullValue()) { |
3334 | |
3335 | Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); |
3336 | } |
3337 | return Op; |
3338 | }; |
3339 | Op1 = SimplifyOp(LHSI->getOperand(1)); |
3340 | if (Op1) |
3341 | CI = dyn_cast<ConstantInt>(Op1); |
3342 | |
3343 | Op2 = SimplifyOp(LHSI->getOperand(2)); |
3344 | if (Op2) |
3345 | CI = dyn_cast<ConstantInt>(Op2); |
3346 | |
3347 | |
3348 | |
3349 | |
3350 | |
3351 | |
3352 | |
3353 | |
3354 | bool Transform = false; |
3355 | if (Op1 && Op2) |
3356 | Transform = true; |
3357 | else if (Op1 || Op2) { |
3358 | |
3359 | if (LHSI->hasOneUse()) |
3360 | Transform = true; |
3361 | |
3362 | else if (CI && !CI->isZero()) |
3363 | |
3364 | |
3365 | |
3366 | Transform = |
3367 | replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); |
3368 | } |
3369 | if (Transform) { |
3370 | if (!Op1) |
3371 | Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, |
3372 | I.getName()); |
3373 | if (!Op2) |
3374 | Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, |
3375 | I.getName()); |
3376 | return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); |
3377 | } |
3378 | break; |
3379 | } |
3380 | case Instruction::IntToPtr: |
3381 | |
3382 | if (RHSC->isNullValue() && |
3383 | DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) |
3384 | return new ICmpInst( |
3385 | I.getPredicate(), LHSI->getOperand(0), |
3386 | Constant::getNullValue(LHSI->getOperand(0)->getType())); |
3387 | break; |
3388 | |
3389 | case Instruction::Load: |
3390 | |
3391 | if (GetElementPtrInst *GEP = |
3392 | dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { |
3393 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) |
3394 | if (GV->isConstant() && GV->hasDefinitiveInitializer() && |
3395 | !cast<LoadInst>(LHSI)->isVolatile()) |
3396 | if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) |
3397 | return Res; |
3398 | } |
3399 | break; |
3400 | } |
3401 | |
3402 | return nullptr; |
3403 | } |
3404 | |
3405 | |
3406 | |
3407 | |
3408 | |
3409 | |
3410 | |
3411 | |
3412 | |
3413 | |
3414 | |
3415 | |
3416 | |
3417 | |
3418 | static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, |
3419 | InstCombiner::BuilderTy &Builder) { |
3420 | ICmpInst::Predicate SrcPred; |
3421 | Value *X, *M, *Y; |
3422 | auto m_VariableMask = m_CombineOr( |
3423 | m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), |
3424 | m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), |
3425 | m_CombineOr(m_LShr(m_AllOnes(), m_Value()), |
3426 | m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); |
3427 | auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); |
3428 | if (!match(&I, m_c_ICmp(SrcPred, |
3429 | m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), |
3430 | m_Deferred(X)))) |
3431 | return nullptr; |
3432 | |
3433 | ICmpInst::Predicate DstPred; |
3434 | switch (SrcPred) { |
3435 | case ICmpInst::Predicate::ICMP_EQ: |
3436 | |
3437 | DstPred = ICmpInst::Predicate::ICMP_ULE; |
3438 | break; |
3439 | case ICmpInst::Predicate::ICMP_NE: |
3440 | |
3441 | DstPred = ICmpInst::Predicate::ICMP_UGT; |
3442 | break; |
3443 | case ICmpInst::Predicate::ICMP_ULT: |
3444 | |
3445 | |
3446 | DstPred = ICmpInst::Predicate::ICMP_UGT; |
3447 | break; |
3448 | case ICmpInst::Predicate::ICMP_UGE: |
3449 | |
3450 | |
3451 | DstPred = ICmpInst::Predicate::ICMP_ULE; |
3452 | break; |
3453 | case ICmpInst::Predicate::ICMP_SLT: |
3454 | |
3455 | |
3456 | if (!match(M, m_Constant())) |
3457 | return nullptr; |
3458 | if (!match(M, m_NonNegative())) |
3459 | return nullptr; |
3460 | DstPred = ICmpInst::Predicate::ICMP_SGT; |
3461 | break; |
3462 | case ICmpInst::Predicate::ICMP_SGE: |
3463 | |
3464 | |
3465 | if (!match(M, m_Constant())) |
3466 | return nullptr; |
3467 | if (!match(M, m_NonNegative())) |
3468 | return nullptr; |
3469 | DstPred = ICmpInst::Predicate::ICMP_SLE; |
3470 | break; |
3471 | case ICmpInst::Predicate::ICMP_SGT: |
3472 | case ICmpInst::Predicate::ICMP_SLE: |
3473 | return nullptr; |
3474 | case ICmpInst::Predicate::ICMP_UGT: |
3475 | case ICmpInst::Predicate::ICMP_ULE: |
3476 | llvm_unreachable("Instsimplify took care of commut. variant"); |
3477 | break; |
3478 | default: |
3479 | llvm_unreachable("All possible folds are handled."); |
3480 | } |
3481 | |
3482 | |
3483 | |
3484 | |
3485 | Type *OpTy = M->getType(); |
3486 | auto *VecC = dyn_cast<Constant>(M); |
3487 | auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); |
3488 | if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { |
3489 | Constant *SafeReplacementConstant = nullptr; |
3490 | for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { |
3491 | if (!isa<UndefValue>(VecC->getAggregateElement(i))) { |
3492 | SafeReplacementConstant = VecC->getAggregateElement(i); |
3493 | break; |
3494 | } |
3495 | } |
3496 | assert(SafeReplacementConstant && "Failed to find undef replacement"); |
3497 | M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); |
3498 | } |
3499 | |
3500 | return Builder.CreateICmp(DstPred, X, M); |
3501 | } |
3502 | |
3503 | |
3504 | |
3505 | |
3506 | |
3507 | |
3508 | |
3509 | |
3510 | |
3511 | static Value * |
3512 | foldICmpWithTruncSignExtendedVal(ICmpInst &I, |
3513 | InstCombiner::BuilderTy &Builder) { |
3514 | ICmpInst::Predicate SrcPred; |
3515 | Value *X; |
3516 | const APInt *C0, *C1; |
3517 | |
3518 | if (!match(&I, m_c_ICmp(SrcPred, |
3519 | m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), |
3520 | m_APInt(C1))), |
3521 | m_Deferred(X)))) |
3522 | return nullptr; |
3523 | |
3524 | |
3525 | |
3526 | |
3527 | |
3528 | |
3529 | |
3530 | |
3531 | if (*C0 != *C1) |
3532 | return nullptr; |
3533 | const APInt &MaskedBits = *C0; |
3534 | assert(MaskedBits != 0 && "shift by zero should be folded away already."); |
3535 | |
3536 | ICmpInst::Predicate DstPred; |
3537 | switch (SrcPred) { |
3538 | case ICmpInst::Predicate::ICMP_EQ: |
3539 | |
3540 | |
3541 | |
3542 | DstPred = ICmpInst::Predicate::ICMP_ULT; |
3543 | break; |
3544 | case ICmpInst::Predicate::ICMP_NE: |
3545 | |
3546 | |
3547 | |
3548 | DstPred = ICmpInst::Predicate::ICMP_UGE; |
3549 | break; |
3550 | |
3551 | default: |
3552 | return nullptr; |
3553 | } |
3554 | |
3555 | auto *XType = X->getType(); |
3556 | const unsigned XBitWidth = XType->getScalarSizeInBits(); |
3557 | const APInt BitWidth = APInt(XBitWidth, XBitWidth); |
3558 | assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); |
3559 | |
3560 | |
3561 | const APInt KeptBits = BitWidth - MaskedBits; |
3562 | assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); |
3563 | |
3564 | const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); |
3565 | assert(ICmpCst.isPowerOf2()); |
3566 | |
3567 | const APInt AddCst = ICmpCst.lshr(1); |
3568 | assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); |
3569 | |
3570 | |
3571 | Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); |
3572 | |
3573 | Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); |
3574 | |
3575 | return T1; |
3576 | } |
3577 | |
3578 | |
3579 | |
3580 | |
3581 | |
3582 | |
3583 | |
3584 | |
3585 | static Value * |
3586 | foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, |
3587 | InstCombiner::BuilderTy &Builder) { |
3588 | if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || |
| 32 | | Assuming the condition is false | |
|
| |
3589 | !I.getOperand(0)->hasOneUse()) |
| 33 | | Assuming the condition is false | |
|
3590 | return nullptr; |
3591 | |
3592 | auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); |
3593 | |
3594 | |
3595 | |
3596 | Instruction *XShift, *MaybeTruncation, *YShift; |
3597 | if (!match( |
| 35 | | Calling 'match<llvm::Value, llvm::PatternMatch::BinaryOp_match<llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction>>, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction>>, 38>, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction>>>, llvm::PatternMatch::bind_ty<llvm::Instruction>>, 28, true>>' | |
|
| 43 | | Returning from 'match<llvm::Value, llvm::PatternMatch::BinaryOp_match<llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction>>, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction>>, 38>, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction>>>, llvm::PatternMatch::bind_ty<llvm::Instruction>>, 28, true>>' | |
|
| |
3598 | I.getOperand(0), |
3599 | m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), |
3600 | m_CombineAnd(m_TruncOrSelf(m_CombineAnd( |
3601 | m_AnyLogicalShift, m_Instruction(YShift))), |
3602 | m_Instruction(MaybeTruncation))))) |
3603 | return nullptr; |
3604 | |
3605 | |
3606 | |
3607 | Instruction *WidestShift = YShift; |
3608 | |
3609 | |
3610 | Instruction *NarrowestShift = XShift; |
3611 | |
3612 | Type *WidestTy = WidestShift->getType(); |
3613 | Type *NarrowestTy = NarrowestShift->getType(); |
3614 | assert(NarrowestTy == I.getOperand(0)->getType() && |
3615 | "We did not look past any shifts while matching XShift though."); |
3616 | bool HadTrunc = WidestTy != I.getOperand(0)->getType(); |
| 45 | | Assuming the condition is false | |
|
3617 | |
3618 | |
3619 | if (match(YShift, m_LShr(m_Value(), m_Value()))) |
| |
3620 | std::swap(XShift, YShift); |
3621 | |
3622 | |
3623 | auto XShiftOpcode = XShift->getOpcode(); |
3624 | if (XShiftOpcode == YShift->getOpcode()) |
| 47 | | Assuming the condition is false | |
|
| |
3625 | return nullptr; |
3626 | |
3627 | Value *X, *XShAmt, *Y, *YShAmt; |
| 49 | | 'XShAmt' declared without an initial value | |
|
3628 | match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); |
| |
| 54 | | Returning from 'm_Value' | |
|
| 55 | | Calling 'm_ZExtOrSelf<llvm::PatternMatch::bind_ty<llvm::Value>>' | |
|
| 63 | | Returning from 'm_ZExtOrSelf<llvm::PatternMatch::bind_ty<llvm::Value>>' | |
|
| 64 | | Calling 'm_BinOp<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>>' | |
|
| 66 | | Returning from 'm_BinOp<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>>' | |
|
3629 | match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); |
3630 | |
3631 | |
3632 | |
3633 | |
3634 | if (!isa<Constant>(X) && !isa<Constant>(Y)) { |
| 67 | | Assuming 'X' is a 'Constant' | |
|
3635 | |
3636 | if (!match(I.getOperand(0), |
3637 | m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) |
3638 | return nullptr; |
3639 | if (HadTrunc) { |
3640 | |
3641 | |
3642 | if (!MaybeTruncation->hasOneUse() && |
3643 | !NarrowestShift->getOperand(1)->hasOneUse()) |
3644 | return nullptr; |
3645 | } |
3646 | } |
3647 | |
3648 | |
3649 | |
3650 | if (XShAmt->getType() != YShAmt->getType()) |
| 68 | | Called C++ object pointer is uninitialized |
|
3651 | return nullptr; |
3652 | |
3653 | |
3654 | |
3655 | |
3656 | |
3657 | |
3658 | |
3659 | |
3660 | |
3661 | |
3662 | unsigned MaximalPossibleTotalShiftAmount = |
3663 | (WidestTy->getScalarSizeInBits() - 1) + |
3664 | (NarrowestTy->getScalarSizeInBits() - 1); |
3665 | APInt MaximalRepresentableShiftAmount = |
3666 | APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); |
3667 | if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) |
3668 | return nullptr; |
3669 | |
3670 | |
3671 | auto *NewShAmt = dyn_cast_or_null<Constant>( |
3672 | SimplifyAddInst(XShAmt, YShAmt, false, |
3673 | false, SQ.getWithInstruction(&I))); |
3674 | if (!NewShAmt) |
3675 | return nullptr; |
3676 | NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); |
3677 | unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); |
3678 | |
3679 | |
3680 | |
3681 | if (!match(NewShAmt, |
3682 | m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, |
3683 | APInt(WidestBitWidth, WidestBitWidth)))) |
3684 | return nullptr; |
3685 | |
3686 | |
3687 | if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { |
3688 | auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, |
3689 | WidestShift]() { |
3690 | |
3691 | |
3692 | |
3693 | Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() |
3694 | ? NewShAmt->getSplatValue() |
3695 | : NewShAmt; |
3696 | |
3697 | if (NewShAmtSplat && |
3698 | (NewShAmtSplat->isNullValue() || |
3699 | NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) |
3700 | return true; |
3701 | |
3702 | |
3703 | if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { |
3704 | KnownBits Known = computeKnownBits(C, SQ.DL); |
3705 | unsigned MinLeadZero = Known.countMinLeadingZeros(); |
3706 | |
3707 | unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; |
3708 | if (MaxActiveBits <= 1) |
3709 | return true; |
3710 | |
3711 | if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) |
3712 | return true; |
3713 | } |
3714 | if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { |
3715 | KnownBits Known = computeKnownBits(C, SQ.DL); |
3716 | unsigned MinLeadZero = Known.countMinLeadingZeros(); |
3717 | |
3718 | unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; |
3719 | if (MaxActiveBits <= 1) |
3720 | return true; |
3721 | |
3722 | if (NewShAmtSplat) { |
3723 | APInt AdjNewShAmt = |
3724 | (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); |
3725 | if (AdjNewShAmt.ule(MinLeadZero)) |
3726 | return true; |
3727 | } |
3728 | } |
3729 | return false; |
3730 | }; |
3731 | if (!CanFold()) |
3732 | return nullptr; |
3733 | } |
3734 | |
3735 | |
3736 | X = Builder.CreateZExt(X, WidestTy); |
3737 | Y = Builder.CreateZExt(Y, WidestTy); |
3738 | |
3739 | Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr |
3740 | ? Builder.CreateLShr(X, NewShAmt) |
3741 | : Builder.CreateShl(X, NewShAmt); |
3742 | Value *T1 = Builder.CreateAnd(T0, Y); |
3743 | return Builder.CreateICmp(I.getPredicate(), T1, |
3744 | Constant::getNullValue(WidestTy)); |
3745 | } |
3746 | |
3747 | |
3748 | |
3749 | |
3750 | |
3751 | |
3752 | |
3753 | |
3754 | Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { |
3755 | ICmpInst::Predicate Pred; |
3756 | Value *X, *Y; |
3757 | Instruction *Mul; |
3758 | bool NeedNegation; |
3759 | |
3760 | if (!I.isEquality() && |
3761 | match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), |
3762 | m_Value(Y)))) { |
3763 | Mul = nullptr; |
3764 | |
3765 | |
3766 | switch (Pred) { |
3767 | case ICmpInst::Predicate::ICMP_ULT: |
3768 | NeedNegation = false; |
3769 | break; |
3770 | case ICmpInst::Predicate::ICMP_UGE: |
3771 | NeedNegation = true; |
3772 | break; |
3773 | default: |
3774 | return nullptr; |
3775 | } |
3776 | } else |
3777 | if (I.isEquality() && |
3778 | match(&I, m_c_ICmp(Pred, m_Value(Y), |
3779 | m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), |
3780 | m_Value(X)), |
3781 | m_Instruction(Mul)), |
3782 | m_Deferred(X)))))) { |
3783 | NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; |
3784 | } else |
3785 | return nullptr; |
3786 | |
3787 | BuilderTy::InsertPointGuard Guard(Builder); |
3788 | |
3789 | |
3790 | bool MulHadOtherUses = Mul && !Mul->hasOneUse(); |
3791 | if (MulHadOtherUses) |
3792 | Builder.SetInsertPoint(Mul); |
3793 | |
3794 | Function *F = Intrinsic::getDeclaration( |
3795 | I.getModule(), Intrinsic::umul_with_overflow, X->getType()); |
3796 | CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); |
3797 | |
3798 | |
3799 | |
3800 | |
3801 | if (MulHadOtherUses) |
3802 | replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); |
3803 | |
3804 | Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); |
3805 | if (NeedNegation) |
3806 | Res = Builder.CreateNot(Res, "umul.not.ov"); |
3807 | |
3808 | |
3809 | |
3810 | if (MulHadOtherUses) |
3811 | eraseInstFromFunction(*Mul); |
3812 | |
3813 | return Res; |
3814 | } |
3815 | |
3816 | static Instruction *foldICmpXNegX(ICmpInst &I) { |
3817 | CmpInst::Predicate Pred; |
3818 | Value *X; |
3819 | if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) |
3820 | return nullptr; |
3821 | |
3822 | if (ICmpInst::isSigned(Pred)) |
3823 | Pred = ICmpInst::getSwappedPredicate(Pred); |
3824 | else if (ICmpInst::isUnsigned(Pred)) |
3825 | Pred = ICmpInst::getSignedPredicate(Pred); |
3826 | |
3827 | |
3828 | return ICmpInst::Create(Instruction::ICmp, Pred, X, |
3829 | Constant::getNullValue(X->getType()), I.getName()); |
3830 | } |
3831 | |
3832 | |
3833 | |
3834 | |
3835 | |
3836 | Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, |
3837 | const SimplifyQuery &SQ) { |
3838 | const SimplifyQuery Q = SQ.getWithInstruction(&I); |
3839 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
3840 | |
3841 | |
3842 | BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); |
| 1 | Assuming 'Op0' is a 'BinaryOperator' | |
|
3843 | BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); |
| 2 | | Assuming 'Op1' is not a 'BinaryOperator' | |
|
3844 | if (!BO0 && !BO1) |
3845 | return nullptr; |
3846 | |
3847 | if (Instruction *NewICmp = foldICmpXNegX(I)) |
| |
3848 | return NewICmp; |
3849 | |
3850 | const CmpInst::Predicate Pred = I.getPredicate(); |
3851 | Value *X; |
3852 | |
3853 | |
3854 | |
3855 | if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && |
| |
3856 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) |
3857 | return new ICmpInst(Pred, Builder.CreateNot(Op1), X); |
3858 | |
3859 | if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && |
| |
3860 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) |
3861 | return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); |
3862 | |
3863 | bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; |
3864 | if (BO0 && isa<OverflowingBinaryOperator>(BO0)) |
| 6 | | Assuming 'BO0' is not a 'OverflowingBinaryOperator' | |
|
| |
3865 | NoOp0WrapProblem = |
3866 | ICmpInst::isEquality(Pred) || |
3867 | (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || |
3868 | (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); |
3869 | if (BO1 && isa<OverflowingBinaryOperator>(BO1)) |
3870 | NoOp1WrapProblem = |
3871 | ICmpInst::isEquality(Pred) || |
3872 | (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || |
3873 | (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); |
3874 | |
3875 | |
3876 | |
3877 | Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; |
3878 | if (BO0 && BO0->getOpcode() == Instruction::Add) { |
| 8 | | Assuming the condition is false | |
|
| |
3879 | A = BO0->getOperand(0); |
3880 | B = BO0->getOperand(1); |
3881 | } |
3882 | if (BO1 && BO1->getOpcode() == Instruction::Add) { |
3883 | C = BO1->getOperand(0); |
3884 | D = BO1->getOperand(1); |
3885 | } |
3886 | |
3887 | |
3888 | |
3889 | if ((A == Op1 || B == Op1) && NoOp0WrapProblem) |
3890 | return new ICmpInst(Pred, A == Op1 ? B : A, |
3891 | Constant::getNullValue(Op1->getType())); |
3892 | |
3893 | |
3894 | |
3895 | if ((C == Op0 || D == Op0) && NoOp1WrapProblem) |
3896 | return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), |
3897 | C == Op0 ? D : C); |
3898 | |
3899 | |
3900 | if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && |
3901 | NoOp1WrapProblem) { |
3902 | |
3903 | Value *Y, *Z; |
3904 | if (A == C) { |
3905 | |
3906 | Y = B; |
3907 | Z = D; |
3908 | } else if (A == D) { |
3909 | |
3910 | Y = B; |
3911 | Z = C; |
3912 | } else if (B == C) { |
3913 | |
3914 | Y = A; |
3915 | Z = D; |
3916 | } else { |
3917 | assert(B == D); |
3918 | |
3919 | Y = A; |
3920 | Z = C; |
3921 | } |
3922 | return new ICmpInst(Pred, Y, Z); |
3923 | } |
3924 | |
3925 | |
3926 | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && |
| |
3927 | match(B, m_AllOnes())) |
3928 | return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); |
3929 | |
3930 | |
3931 | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && |
| |
3932 | match(B, m_AllOnes())) |
3933 | return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); |
3934 | |
3935 | |
3936 | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) |
| |
3937 | return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); |
3938 | |
3939 | |
3940 | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) |
| |
3941 | return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); |
3942 | |
3943 | |
3944 | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && |
| |
3945 | match(D, m_AllOnes())) |
3946 | return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); |
3947 | |
3948 | |
3949 | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && |
| |
3950 | match(D, m_AllOnes())) |
3951 | return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); |
3952 | |
3953 | |
3954 | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) |
| |
3955 | return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); |
3956 | |
3957 | |
3958 | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) |
| |
3959 | return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); |
3960 | |
3961 | |
3962 | |
3963 | |
3964 | |
3965 | |
3966 | |
3967 | |
3968 | |
3969 | |
3970 | |
3971 | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) |
| |
3972 | return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); |
3973 | |
3974 | |
3975 | if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) |
| |
3976 | return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); |
3977 | |
3978 | |
3979 | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) |
| |
3980 | return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); |
3981 | |
3982 | |
3983 | if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) |
| |
3984 | return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); |
3985 | |
3986 | |
3987 | |
3988 | |
3989 | |
3990 | |
3991 | |
3992 | |
3993 | if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && |
3994 | (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) |
3995 | if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) |
3996 | if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { |
3997 | const APInt &AP1 = C1->getValue(); |
3998 | const APInt &AP2 = C2->getValue(); |
3999 | if (AP1.isNegative() == AP2.isNegative()) { |
4000 | APInt AP1Abs = C1->getValue().abs(); |
4001 | APInt AP2Abs = C2->getValue().abs(); |
4002 | if (AP1Abs.uge(AP2Abs)) { |
4003 | ConstantInt *C3 = Builder.getInt(AP1 - AP2); |
4004 | bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); |
4005 | bool HasNSW = BO0->hasNoSignedWrap(); |
4006 | Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); |
4007 | return new ICmpInst(Pred, NewAdd, C); |
4008 | } else { |
4009 | ConstantInt *C3 = Builder.getInt(AP2 - AP1); |
4010 | bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); |
4011 | bool HasNSW = BO1->hasNoSignedWrap(); |
4012 | Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); |
4013 | return new ICmpInst(Pred, A, NewAdd); |
4014 | } |
4015 | } |
4016 | } |
4017 | |
4018 | |
4019 | |
4020 | A = nullptr; |
4021 | B = nullptr; |
4022 | C = nullptr; |
4023 | D = nullptr; |
4024 | if (BO0 && BO0->getOpcode() == Instruction::Sub) { |
| 22 | | Assuming the condition is false | |
|
| |
4025 | A = BO0->getOperand(0); |
4026 | B = BO0->getOperand(1); |
4027 | } |
4028 | if (BO1 && BO1->getOpcode() == Instruction::Sub) { |
4029 | C = BO1->getOperand(0); |
4030 | D = BO1->getOperand(1); |
4031 | } |
4032 | |
4033 | |
4034 | if (A == Op1 && NoOp0WrapProblem) |
4035 | return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); |
4036 | |
4037 | if (C == Op0 && NoOp1WrapProblem) |
4038 | return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); |
4039 | |
4040 | |
4041 | |
4042 | if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) |
4043 | return new ICmpInst(Pred, B, A); |
4044 | |
4045 | if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) |
4046 | return new ICmpInst(Pred, C, D); |
4047 | |
4048 | if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && |
4049 | isKnownNonZero(B, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) |
4050 | return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); |
4051 | |
4052 | if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && |
4053 | isKnownNonZero(D, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) |
4054 | return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); |
4055 | |
4056 | |
4057 | if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) |
4058 | return new ICmpInst(Pred, A, C); |
4059 | |
4060 | |
4061 | if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) |
4062 | return new ICmpInst(Pred, D, B); |
4063 | |
4064 | |
4065 | if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { |
4066 | Value *X; |
4067 | if (match(BO0, m_Neg(m_Value(X)))) |
4068 | if (Constant *RHSC = dyn_cast<Constant>(Op1)) |
4069 | if (RHSC->isNotMinSignedValue()) |
4070 | return new ICmpInst(I.getSwappedPredicate(), X, |
4071 | ConstantExpr::getNeg(RHSC)); |
4072 | } |
4073 | |
4074 | { |
4075 | |
4076 | |
4077 | Value *X, *Y; |
4078 | const APInt *C; |
4079 | if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && |
| |
4080 | match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) |
4081 | if (!C->countTrailingZeros() || |
4082 | (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || |
4083 | (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) |
4084 | return new ICmpInst(Pred, X, Y); |
4085 | } |
4086 | |
4087 | BinaryOperator *SRem = nullptr; |
4088 | |
4089 | if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) |
| 25 | | Assuming the condition is false | |
|
4090 | SRem = BO0; |
4091 | |
4092 | else if (BO1 && BO1->getOpcode() == Instruction::SRem && |
4093 | Op0 == BO1->getOperand(1)) |
4094 | SRem = BO1; |
4095 | if (SRem) { |
| |
4096 | |
4097 | |
4098 | switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { |
4099 | default: |
4100 | break; |
4101 | case ICmpInst::ICMP_EQ: |
4102 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
4103 | case ICmpInst::ICMP_NE: |
4104 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
4105 | case ICmpInst::ICMP_SGT: |
4106 | case ICmpInst::ICMP_SGE: |
4107 | return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), |
4108 | Constant::getAllOnesValue(SRem->getType())); |
4109 | case ICmpInst::ICMP_SLT: |
4110 | case ICmpInst::ICMP_SLE: |
4111 | return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), |
4112 | Constant::getNullValue(SRem->getType())); |
4113 | } |
4114 | } |
4115 | |
4116 | if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && |
4117 | BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { |
4118 | switch (BO0->getOpcode()) { |
4119 | default: |
4120 | break; |
4121 | case Instruction::Add: |
4122 | case Instruction::Sub: |
4123 | case Instruction::Xor: { |
4124 | if (I.isEquality()) |
4125 | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); |
4126 | |
4127 | const APInt *C; |
4128 | if (match(BO0->getOperand(1), m_APInt(C))) { |
4129 | |
4130 | if (C->isSignMask()) { |
4131 | ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); |
4132 | return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); |
4133 | } |
4134 | |
4135 | |
4136 | if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { |
4137 | ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); |
4138 | NewPred = I.getSwappedPredicate(NewPred); |
4139 | return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); |
4140 | } |
4141 | } |
4142 | break; |
4143 | } |
4144 | case Instruction::Mul: { |
4145 | if (!I.isEquality()) |
4146 | break; |
4147 | |
4148 | const APInt *C; |
4149 | if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && |
4150 | !C->isOneValue()) { |
4151 | |
4152 | |
4153 | if (unsigned TZs = C->countTrailingZeros()) { |
4154 | Constant *Mask = ConstantInt::get( |
4155 | BO0->getType(), |
4156 | APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); |
4157 | Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); |
4158 | Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); |
4159 | return new ICmpInst(Pred, And1, And2); |
4160 | } |
4161 | } |
4162 | break; |
4163 | } |
4164 | case Instruction::UDiv: |
4165 | case Instruction::LShr: |
4166 | if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) |
4167 | break; |
4168 | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); |
4169 | |
4170 | case Instruction::SDiv: |
4171 | if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) |
4172 | break; |
4173 | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); |
4174 | |
4175 | case Instruction::AShr: |
4176 | if (!BO0->isExact() || !BO1->isExact()) |
4177 | break; |
4178 | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); |
4179 | |
4180 | case Instruction::Shl: { |
4181 | bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); |
4182 | bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); |
4183 | if (!NUW && !NSW) |
4184 | break; |
4185 | if (!NSW && I.isSigned()) |
4186 | break; |
4187 | return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); |
4188 | } |
4189 | } |
4190 | } |
4191 | |
4192 | if (BO0) { |
| |
4193 | |
4194 | auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); |
4195 | auto BitwiseAnd = m_c_And(m_Value(), LSubOne); |
4196 | |
4197 | if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { |
4198 | auto *Zero = Constant::getNullValue(BO0->getType()); |
4199 | return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); |
4200 | } |
4201 | } |
4202 | |
4203 | if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) |
| |
4204 | return replaceInstUsesWith(I, V); |
4205 | |
4206 | if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) |
| |
4207 | return replaceInstUsesWith(I, V); |
4208 | |
4209 | if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) |
| |
4210 | return replaceInstUsesWith(I, V); |
4211 | |
4212 | if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) |
| 31 | | Calling 'foldShiftIntoShiftInAnotherHandOfAndInICmp' | |
|
4213 | return replaceInstUsesWith(I, V); |
4214 | |
4215 | return nullptr; |
4216 | } |
4217 | |
4218 | |
4219 | static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { |
4220 | ICmpInst::Predicate Pred = Cmp.getPredicate(); |
4221 | Value *Op0 = Cmp.getOperand(0); |
4222 | Value *X = Cmp.getOperand(1); |
4223 | |
4224 | |
4225 | if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || |
4226 | match(X, m_c_SMax(m_Specific(Op0), m_Value())) || |
4227 | match(X, m_c_UMin(m_Specific(Op0), m_Value())) || |
4228 | match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { |
4229 | std::swap(Op0, X); |
4230 | Pred = Cmp.getSwappedPredicate(); |
4231 | } |
4232 | |
4233 | Value *Y; |
4234 | if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { |
4235 | |
4236 | |
4237 | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) |
4238 | return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); |
4239 | |
4240 | |
4241 | |
4242 | if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) |
4243 | return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); |
4244 | |
4245 | |
4246 | |
4247 | |
4248 | return nullptr; |
4249 | } |
4250 | |
4251 | if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { |
4252 | |
4253 | |
4254 | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) |
4255 | return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); |
4256 | |
4257 | |
4258 | |
4259 | if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) |
4260 | return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); |
4261 | |
4262 | |
4263 | |
4264 | |
4265 | return nullptr; |
4266 | } |
4267 | |
4268 | if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { |
4269 | |
4270 | |
4271 | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) |
4272 | return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); |
4273 | |
4274 | |
4275 | |
4276 | if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) |
4277 | return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); |
4278 | |
4279 | |
4280 | |
4281 | |
4282 | return nullptr; |
4283 | } |
4284 | |
4285 | if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { |
4286 | |
4287 | |
4288 | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) |
4289 | return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); |
4290 | |
4291 | |
4292 | |
4293 | if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) |
4294 | return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); |
4295 | |
4296 | |
4297 | |
4298 | |
4299 | return nullptr; |
4300 | } |
4301 | |
4302 | return nullptr; |
4303 | } |
4304 | |
4305 | Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { |
4306 | if (!I.isEquality()) |
4307 | return nullptr; |
4308 | |
4309 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
4310 | const CmpInst::Predicate Pred = I.getPredicate(); |
4311 | Value *A, *B, *C, *D; |
4312 | if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { |
4313 | if (A == Op1 || B == Op1) { |
4314 | Value *OtherVal = A == Op1 ? B : A; |
4315 | return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); |
4316 | } |
4317 | |
4318 | if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { |
4319 | |
4320 | ConstantInt *C1, *C2; |
4321 | if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && |
4322 | Op1->hasOneUse()) { |
4323 | Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); |
4324 | Value *Xor = Builder.CreateXor(C, NC); |
4325 | return new ICmpInst(Pred, A, Xor); |
4326 | } |
4327 | |
4328 | |
4329 | if (A == C) |
4330 | return new ICmpInst(Pred, B, D); |
4331 | if (A == D) |
4332 | return new ICmpInst(Pred, B, C); |
4333 | if (B == C) |
4334 | return new ICmpInst(Pred, A, D); |
4335 | if (B == D) |
4336 | return new ICmpInst(Pred, A, C); |
4337 | } |
4338 | } |
4339 | |
4340 | if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { |
4341 | |
4342 | Value *OtherVal = A == Op0 ? B : A; |
4343 | return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); |
4344 | } |
4345 | |
4346 | |
4347 | if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && |
4348 | match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { |
4349 | Value *X = nullptr, *Y = nullptr, *Z = nullptr; |
4350 | |
4351 | if (A == C) { |
4352 | X = B; |
4353 | Y = D; |
4354 | Z = A; |
4355 | } else if (A == D) { |
4356 | X = B; |
4357 | Y = C; |
4358 | Z = A; |
4359 | } else if (B == C) { |
4360 | X = A; |
4361 | Y = D; |
4362 | Z = B; |
4363 | } else if (B == D) { |
4364 | X = A; |
4365 | Y = C; |
4366 | Z = B; |
4367 | } |
4368 | |
4369 | if (X) { |
4370 | Op1 = Builder.CreateXor(X, Y); |
4371 | Op1 = Builder.CreateAnd(Op1, Z); |
4372 | return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); |
4373 | } |
4374 | } |
4375 | |
4376 | |
4377 | |
4378 | ConstantInt *Cst1; |
4379 | if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && |
4380 | match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || |
4381 | (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && |
4382 | match(Op1, m_ZExt(m_Value(A))))) { |
4383 | APInt Pow2 = Cst1->getValue() + 1; |
4384 | if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && |
4385 | Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) |
4386 | return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); |
4387 | } |
4388 | |
4389 | |
4390 | |
4391 | if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && |
4392 | match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || |
4393 | (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && |
4394 | match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { |
4395 | unsigned TypeBits = Cst1->getBitWidth(); |
4396 | unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); |
4397 | if (ShAmt < TypeBits && ShAmt != 0) { |
4398 | ICmpInst::Predicate NewPred = |
4399 | Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; |
4400 | Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); |
4401 | APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); |
4402 | return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); |
4403 | } |
4404 | } |
4405 | |
4406 | |
4407 | if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && |
4408 | match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { |
4409 | unsigned TypeBits = Cst1->getBitWidth(); |
4410 | unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); |
4411 | if (ShAmt < TypeBits && ShAmt != 0) { |
4412 | Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); |
4413 | APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); |
4414 | Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), |
4415 | I.getName() + ".mask"); |
4416 | return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); |
4417 | } |
4418 | } |
4419 | |
4420 | |
4421 | |
4422 | uint64_t ShAmt = 0; |
4423 | if (Op0->hasOneUse() && |
4424 | match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && |
4425 | match(Op1, m_ConstantInt(Cst1)) && |
4426 | |
4427 | |
4428 | !A->hasOneUse()) { |
4429 | unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); |
4430 | |
4431 | if (ShAmt < ASize) { |
4432 | APInt MaskV = |
4433 | APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); |
4434 | MaskV <<= ShAmt; |
4435 | |
4436 | APInt CmpV = Cst1->getValue().zext(ASize); |
4437 | CmpV <<= ShAmt; |
4438 | |
4439 | Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); |
4440 | return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); |
4441 | } |
4442 | } |
4443 | |
4444 | |
4445 | |
4446 | |
4447 | |
4448 | if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || |
4449 | (match(Op0, m_BitReverse(m_Value(A))) && |
4450 | match(Op1, m_BitReverse(m_Value(B))))) |
4451 | return new ICmpInst(Pred, A, B); |
4452 | |
4453 | |
4454 | |
4455 | |
4456 | if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), |
4457 | m_Deferred(A)))) || |
4458 | !match(Op1, m_ZeroInt())) |
4459 | A = nullptr; |
4460 | |
4461 | |
4462 | |
4463 | if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) |
4464 | A = Op1; |
4465 | else if (match(Op1, |
4466 | m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) |
4467 | A = Op0; |
4468 | |
4469 | if (A) { |
4470 | Type *Ty = A->getType(); |
4471 | CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); |
4472 | return Pred == ICmpInst::ICMP_EQ |
4473 | ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) |
4474 | : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); |
4475 | } |
4476 | |
4477 | return nullptr; |
4478 | } |
4479 | |
4480 | static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, |
4481 | InstCombiner::BuilderTy &Builder) { |
4482 | assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); |
4483 | auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); |
4484 | Value *X; |
4485 | if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) |
4486 | return nullptr; |
4487 | |
4488 | bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; |
4489 | bool IsSignedCmp = ICmp.isSigned(); |
4490 | if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { |
4491 | |
4492 | |
4493 | |
4494 | if (CastOp0->getOpcode() != CastOp1->getOpcode()) |
4495 | return nullptr; |
4496 | |
4497 | |
4498 | Value *Y = CastOp1->getOperand(0); |
4499 | Type *XTy = X->getType(), *YTy = Y->getType(); |
4500 | if (XTy != YTy) { |
4501 | |
4502 | if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) |
4503 | return nullptr; |
4504 | |
4505 | if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) |
4506 | X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); |
4507 | else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) |
4508 | Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); |
4509 | else |
4510 | return nullptr; |
4511 | } |
4512 | |
4513 | |
4514 | |
4515 | if (ICmp.isEquality()) |
4516 | return new ICmpInst(ICmp.getPredicate(), X, Y); |
4517 | |
4518 | |
4519 | |
4520 | if (IsSignedCmp && IsSignedExt) |
4521 | return new ICmpInst(ICmp.getPredicate(), X, Y); |
4522 | |
4523 | |
4524 | return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); |
4525 | } |
4526 | |
4527 | |
4528 | auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); |
4529 | if (!C) |
4530 | return nullptr; |
4531 | |
4532 | |
4533 | |
4534 | Type *SrcTy = CastOp0->getSrcTy(); |
4535 | Type *DestTy = CastOp0->getDestTy(); |
4536 | Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); |
4537 | Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); |
4538 | |
4539 | |
4540 | if (Res2 == C) { |
4541 | if (ICmp.isEquality()) |
4542 | return new ICmpInst(ICmp.getPredicate(), X, Res1); |
4543 | |
4544 | |
4545 | |
4546 | if (IsSignedExt && IsSignedCmp) |
4547 | return new ICmpInst(ICmp.getPredicate(), X, Res1); |
4548 | |
4549 | |
4550 | return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); |
4551 | } |
4552 | |
4553 | |
4554 | |
4555 | |
4556 | |
4557 | |
4558 | if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) |
4559 | return nullptr; |
4560 | |
4561 | |
4562 | |
4563 | if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) |
4564 | return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); |
4565 | |
4566 | |
4567 | |
4568 | assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); |
4569 | return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); |
4570 | } |
4571 | |
4572 | |
4573 | Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { |
4574 | |
4575 | |
4576 | |
4577 | Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); |
4578 | Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); |
4579 | if (SimplifiedOp0 || SimplifiedOp1) |
4580 | return new ICmpInst(ICmp.getPredicate(), |
4581 | SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), |
4582 | SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); |
4583 | |
4584 | auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); |
4585 | if (!CastOp0) |
4586 | return nullptr; |
4587 | if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) |
4588 | return nullptr; |
4589 | |
4590 | Value *Op0Src = CastOp0->getOperand(0); |
4591 | Type *SrcTy = CastOp0->getSrcTy(); |
4592 | Type *DestTy = CastOp0->getDestTy(); |
4593 | |
4594 | |
4595 | |
4596 | auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { |
4597 | if (isa<VectorType>(SrcTy)) { |
4598 | SrcTy = cast<VectorType>(SrcTy)->getElementType(); |
4599 | DestTy = cast<VectorType>(DestTy)->getElementType(); |
4600 | } |
4601 | return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); |
4602 | }; |
4603 | if (CastOp0->getOpcode() == Instruction::PtrToInt && |
4604 | CompatibleSizes(SrcTy, DestTy)) { |
4605 | Value *NewOp1 = nullptr; |
4606 | if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { |
4607 | Value *PtrSrc = PtrToIntOp1->getOperand(0); |
4608 | if (PtrSrc->getType()->getPointerAddressSpace() == |
4609 | Op0Src->getType()->getPointerAddressSpace()) { |
4610 | NewOp1 = PtrToIntOp1->getOperand(0); |
4611 | |
4612 | if (Op0Src->getType() != NewOp1->getType()) |
4613 | NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); |
4614 | } |
4615 | } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { |
4616 | NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); |
4617 | } |
4618 | |
4619 | if (NewOp1) |
4620 | return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); |
4621 | } |
4622 | |
4623 | return foldICmpWithZextOrSext(ICmp, Builder); |
4624 | } |
4625 | |
4626 | static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { |
4627 | switch (BinaryOp) { |
4628 | default: |
4629 | llvm_unreachable("Unsupported binary op"); |
4630 | case Instruction::Add: |
4631 | case Instruction::Sub: |
4632 | return match(RHS, m_Zero()); |
4633 | case Instruction::Mul: |
4634 | return match(RHS, m_One()); |
4635 | } |
4636 | } |
4637 | |
4638 | OverflowResult |
4639 | InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, |
4640 | bool IsSigned, Value *LHS, Value *RHS, |
4641 | Instruction *CxtI) const { |
4642 | switch (BinaryOp) { |
4643 | default: |
4644 | llvm_unreachable("Unsupported binary op"); |
4645 | case Instruction::Add: |
4646 | if (IsSigned) |
4647 | return computeOverflowForSignedAdd(LHS, RHS, CxtI); |
4648 | else |
4649 | return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); |
4650 | case Instruction::Sub: |
4651 | if (IsSigned) |
4652 | return computeOverflowForSignedSub(LHS, RHS, CxtI); |
4653 | else |
4654 | return computeOverflowForUnsignedSub(LHS, RHS, CxtI); |
4655 | case Instruction::Mul: |
4656 | if (IsSigned) |
4657 | return computeOverflowForSignedMul(LHS, RHS, CxtI); |
4658 | else |
4659 | return computeOverflowForUnsignedMul(LHS, RHS, CxtI); |
4660 | } |
4661 | } |
4662 | |
4663 | bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, |
4664 | bool IsSigned, Value *LHS, |
4665 | Value *RHS, Instruction &OrigI, |
4666 | Value *&Result, |
4667 | Constant *&Overflow) { |
4668 | if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) |
4669 | std::swap(LHS, RHS); |
4670 | |
4671 | |
4672 | |
4673 | |
4674 | |
4675 | Builder.SetInsertPoint(&OrigI); |
4676 | |
4677 | Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); |
4678 | if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) |
4679 | OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); |
4680 | |
4681 | if (isNeutralValue(BinaryOp, RHS)) { |
4682 | Result = LHS; |
4683 | Overflow = ConstantInt::getFalse(OverflowTy); |
4684 | return true; |
4685 | } |
4686 | |
4687 | switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { |
4688 | case OverflowResult::MayOverflow: |
4689 | return false; |
4690 | case OverflowResult::AlwaysOverflowsLow: |
4691 | case OverflowResult::AlwaysOverflowsHigh: |
4692 | Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); |
4693 | Result->takeName(&OrigI); |
4694 | Overflow = ConstantInt::getTrue(OverflowTy); |
4695 | return true; |
4696 | case OverflowResult::NeverOverflows: |
4697 | Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); |
4698 | Result->takeName(&OrigI); |
4699 | Overflow = ConstantInt::getFalse(OverflowTy); |
4700 | if (auto *Inst = dyn_cast<Instruction>(Result)) { |
4701 | if (IsSigned) |
4702 | Inst->setHasNoSignedWrap(); |
4703 | else |
4704 | Inst->setHasNoUnsignedWrap(); |
4705 | } |
4706 | return true; |
4707 | } |
4708 | |
4709 | llvm_unreachable("Unexpected overflow result"); |
4710 | } |
4711 | |
4712 | |
4713 | |
4714 | |
4715 | |
4716 | |
4717 | |
4718 | |
4719 | |
4720 | |
4721 | |
4722 | |
4723 | |
4724 | |
4725 | |
4726 | static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, |
4727 | Value *OtherVal, |
4728 | InstCombinerImpl &IC) { |
4729 | |
4730 | |
4731 | if (!isa<IntegerType>(MulVal->getType())) |
4732 | return nullptr; |
4733 | |
4734 | assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); |
4735 | assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); |
4736 | auto *MulInstr = dyn_cast<Instruction>(MulVal); |
4737 | if (!MulInstr) |
4738 | return nullptr; |
4739 | assert(MulInstr->getOpcode() == Instruction::Mul); |
4740 | |
4741 | auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), |
4742 | *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); |
4743 | assert(LHS->getOpcode() == Instruction::ZExt); |
4744 | assert(RHS->getOpcode() == Instruction::ZExt); |
4745 | Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); |
4746 | |
4747 | |
4748 | Type *TyA = A->getType(), *TyB = B->getType(); |
4749 | unsigned WidthA = TyA->getPrimitiveSizeInBits(), |
4750 | WidthB = TyB->getPrimitiveSizeInBits(); |
4751 | unsigned MulWidth; |
4752 | Type *MulType; |
4753 | if (WidthB > WidthA) { |
4754 | MulWidth = WidthB; |
4755 | MulType = TyB; |
4756 | } else { |
4757 | MulWidth = WidthA; |
4758 | MulType = TyA; |
4759 | } |
4760 | |
4761 | |
4762 | |
4763 | |
4764 | if (MulVal->hasNUsesOrMore(2)) |
4765 | for (User *U : MulVal->users()) { |
4766 | if (U == &I) |
4767 | continue; |
4768 | if (TruncInst *TI = dyn_cast<TruncInst>(U)) { |
4769 | |
4770 | unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); |
4771 | if (TruncWidth > MulWidth) |
4772 | return nullptr; |
4773 | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { |
4774 | |
4775 | if (BO->getOpcode() != Instruction::And) |
4776 | return nullptr; |
4777 | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { |
4778 | const APInt &CVal = CI->getValue(); |
4779 | if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) |
4780 | return nullptr; |
4781 | } else { |
4782 | |
4783 | |
4784 | |
4785 | return nullptr; |
4786 | } |
4787 | } else { |
4788 | |
4789 | return nullptr; |
4790 | } |
4791 | } |
4792 | |
4793 | |
4794 | switch (I.getPredicate()) { |
4795 | case ICmpInst::ICMP_EQ: |
4796 | case ICmpInst::ICMP_NE: |
4797 | |
4798 | |
4799 | |
4800 | ConstantInt *CI; |
4801 | Value *ValToMask; |
4802 | if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { |
4803 | if (ValToMask != MulVal) |
4804 | return nullptr; |
4805 | const APInt &CVal = CI->getValue() + 1; |
4806 | if (CVal.isPowerOf2()) { |
4807 | unsigned MaskWidth = CVal.logBase2(); |
4808 | if (MaskWidth == MulWidth) |
4809 | break; |
4810 | } |
4811 | } |
4812 | return nullptr; |
4813 | |
4814 | case ICmpInst::ICMP_UGT: |
4815 | |
4816 | |
4817 | |
4818 | if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { |
4819 | APInt MaxVal = APInt::getMaxValue(MulWidth); |
4820 | MaxVal = MaxVal.zext(CI->getBitWidth()); |
4821 | if (MaxVal.eq(CI->getValue())) |
4822 | break; |
4823 | } |
4824 | return nullptr; |
4825 | |
4826 | case ICmpInst::ICMP_UGE: |
4827 | |
4828 | |
4829 | |
4830 | if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { |
4831 | APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); |
4832 | if (MaxVal.eq(CI->getValue())) |
4833 | break; |
4834 | } |
4835 | return nullptr; |
4836 | |
4837 | case ICmpInst::ICMP_ULE: |
4838 | |
4839 | |
4840 | |
4841 | if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { |
4842 | APInt MaxVal = APInt::getMaxValue(MulWidth); |
4843 | MaxVal = MaxVal.zext(CI->getBitWidth()); |
4844 | if (MaxVal.eq(CI->getValue())) |
4845 | break; |
4846 | } |
4847 | return nullptr; |
4848 | |
4849 | case ICmpInst::ICMP_ULT: |
4850 | |
4851 | |
4852 | |
4853 | if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { |
4854 | APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); |
4855 | if (MaxVal.eq(CI->getValue())) |
4856 | break; |
4857 | } |
4858 | return nullptr; |
4859 | |
4860 | default: |
4861 | return nullptr; |
4862 | } |
4863 | |
4864 | InstCombiner::BuilderTy &Builder = IC.Builder; |
4865 | Builder.SetInsertPoint(MulInstr); |
4866 | |
4867 | |
4868 | Value *MulA = A, *MulB = B; |
4869 | if (WidthA < MulWidth) |
4870 | MulA = Builder.CreateZExt(A, MulType); |
4871 | if (WidthB < MulWidth) |
4872 | MulB = Builder.CreateZExt(B, MulType); |
4873 | Function *F = Intrinsic::getDeclaration( |
4874 | I.getModule(), Intrinsic::umul_with_overflow, MulType); |
4875 | CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); |
4876 | IC.addToWorklist(MulInstr); |
4877 | |
4878 | |
4879 | |
4880 | |
4881 | if (MulVal->hasNUsesOrMore(2)) { |
4882 | Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); |
4883 | for (User *U : make_early_inc_range(MulVal->users())) { |
4884 | if (U == &I || U == OtherVal) |
4885 | continue; |
4886 | if (TruncInst *TI = dyn_cast<TruncInst>(U)) { |
4887 | if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) |
4888 | IC.replaceInstUsesWith(*TI, Mul); |
4889 | else |
4890 | TI->setOperand(0, Mul); |
4891 | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { |
4892 | assert(BO->getOpcode() == Instruction::And); |
4893 | |
4894 | ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); |
4895 | APInt ShortMask = CI->getValue().trunc(MulWidth); |
4896 | Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); |
4897 | Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); |
4898 | IC.replaceInstUsesWith(*BO, Zext); |
4899 | } else { |
4900 | llvm_unreachable("Unexpected Binary operation"); |
4901 | } |
4902 | IC.addToWorklist(cast<Instruction>(U)); |
4903 | } |
4904 | } |
4905 | if (isa<Instruction>(OtherVal)) |
4906 | IC.addToWorklist(cast<Instruction>(OtherVal)); |
4907 | |
4908 | |
4909 | |
4910 | bool Inverse = false; |
4911 | switch (I.getPredicate()) { |
4912 | case ICmpInst::ICMP_NE: |
4913 | break; |
4914 | case ICmpInst::ICMP_EQ: |
4915 | Inverse = true; |
4916 | break; |
4917 | case ICmpInst::ICMP_UGT: |
4918 | case ICmpInst::ICMP_UGE: |
4919 | if (I.getOperand(0) == MulVal) |
4920 | break; |
4921 | Inverse = true; |
4922 | break; |
4923 | case ICmpInst::ICMP_ULT: |
4924 | case ICmpInst::ICMP_ULE: |
4925 | if (I.getOperand(1) == MulVal) |
4926 | break; |
4927 | Inverse = true; |
4928 | break; |
4929 | default: |
4930 | llvm_unreachable("Unexpected predicate"); |
4931 | } |
4932 | if (Inverse) { |
4933 | Value *Res = Builder.CreateExtractValue(Call, 1); |
4934 | return BinaryOperator::CreateNot(Res); |
4935 | } |
4936 | |
4937 | return ExtractValueInst::Create(Call, 1); |
4938 | } |
4939 | |
4940 | |
4941 | |
4942 | |
4943 | static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { |
4944 | const APInt *RHS; |
4945 | if (!match(I.getOperand(1), m_APInt(RHS))) |
4946 | return APInt::getAllOnesValue(BitWidth); |
4947 | |
4948 | |
4949 | |
4950 | bool UnusedBit; |
4951 | if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) |
4952 | return APInt::getSignMask(BitWidth); |
4953 | |
4954 | switch (I.getPredicate()) { |
4955 | |
4956 | |
4957 | |
4958 | |
4959 | case ICmpInst::ICMP_UGT: |
4960 | return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); |
4961 | |
4962 | |
4963 | |
4964 | case ICmpInst::ICMP_ULT: |
4965 | return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); |
4966 | |
4967 | default: |
4968 | return APInt::getAllOnesValue(BitWidth); |
4969 | } |
4970 | } |
4971 | |
4972 | |
4973 | |
4974 | |
4975 | |
4976 | |
4977 | |
4978 | |
4979 | |
4980 | static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { |
4981 | |
4982 | |
4983 | if (Op0->getType()->isPointerTy()) |
4984 | return false; |
4985 | |
4986 | |
4987 | |
4988 | int GoodToSwap = 0; |
4989 | for (const User *U : Op0->users()) { |
4990 | if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) |
4991 | GoodToSwap++; |
4992 | else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) |
4993 | GoodToSwap--; |
4994 | } |
4995 | return GoodToSwap > 0; |
4996 | } |
4997 | |
4998 | |
4999 | |
5000 | |
5001 | |
5002 | |
5003 | |
5004 | |
5005 | |
5006 | |
5007 | |
5008 | bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, |
5009 | const Instruction *UI, |
5010 | const BasicBlock *DB) const { |
5011 | assert(DI && UI && "Instruction not defined\n"); |
5012 | |
5013 | if (!DI->getParent()) |
5014 | return false; |
5015 | |
5016 | if (DI->getParent() != UI->getParent()) |
5017 | return false; |
5018 | |
5019 | if (DI->getParent() == DB) |
5020 | return false; |
5021 | for (const User *U : DI->users()) { |
5022 | auto *Usr = cast<Instruction>(U); |
5023 | if (Usr != UI && !DT.dominates(DB, Usr->getParent())) |
5024 | return false; |
5025 | } |
5026 | return true; |
5027 | } |
5028 | |
5029 | |
5030 | static bool isChainSelectCmpBranch(const SelectInst *SI) { |
5031 | const BasicBlock *BB = SI->getParent(); |
5032 | if (!BB) |
5033 | return false; |
5034 | auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); |
5035 | if (!BI || BI->getNumSuccessors() != 2) |
5036 | return false; |
5037 | auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); |
5038 | if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) |
5039 | return false; |
5040 | return true; |
5041 | } |
5042 | |
5043 | |
5044 | |
5045 | |
5046 | |
5047 | |
5048 | |
5049 | |
5050 | |
5051 | |
5052 | |
5053 | |
5054 | |
5055 | |
5056 | |
5057 | |
5058 | |
5059 | |
5060 | |
5061 | |
5062 | |
5063 | |
5064 | |
5065 | |
5066 | |
5067 | |
5068 | |
5069 | |
5070 | |
5071 | |
5072 | |
5073 | |
5074 | |
5075 | |
5076 | |
5077 | |
5078 | |
5079 | |
5080 | |
5081 | |
5082 | |
5083 | bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, |
5084 | const ICmpInst *Icmp, |
5085 | const unsigned SIOpd) { |
5086 | assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); |
5087 | if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { |
5088 | BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); |
5089 | |
5090 | |
5091 | |
5092 | |
5093 | |
5094 | |
5095 | |
5096 | |
5097 | |
5098 | |
5099 | |
5100 | if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { |
5101 | NumSel++; |
5102 | SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); |
5103 | return true; |
5104 | } |
5105 | } |
5106 | return false; |
5107 | } |
5108 | |
5109 | |
5110 | |
5111 | Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { |
5112 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
5113 | Type *Ty = Op0->getType(); |
5114 | ICmpInst::Predicate Pred = I.getPredicate(); |
5115 | |
5116 | |
5117 | unsigned BitWidth = Ty->isIntOrIntVectorTy() |
5118 | ? Ty->getScalarSizeInBits() |
5119 | : DL.getPointerTypeSizeInBits(Ty->getScalarType()); |
5120 | |
5121 | if (!BitWidth) |
5122 | return nullptr; |
5123 | |
5124 | KnownBits Op0Known(BitWidth); |
5125 | KnownBits Op1Known(BitWidth); |
5126 | |
5127 | if (SimplifyDemandedBits(&I, 0, |
5128 | getDemandedBitsLHSMask(I, BitWidth), |
5129 | Op0Known, 0)) |
5130 | return &I; |
5131 | |
5132 | if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), |
5133 | Op1Known, 0)) |
5134 | return &I; |
5135 | |
5136 | |
5137 | |
5138 | |
5139 | APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); |
5140 | APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); |
5141 | if (I.isSigned()) { |
5142 | Op0Min = Op0Known.getSignedMinValue(); |
5143 | Op0Max = Op0Known.getSignedMaxValue(); |
5144 | Op1Min = Op1Known.getSignedMinValue(); |
5145 | Op1Max = Op1Known.getSignedMaxValue(); |
5146 | } else { |
5147 | Op0Min = Op0Known.getMinValue(); |
5148 | Op0Max = Op0Known.getMaxValue(); |
5149 | Op1Min = Op1Known.getMinValue(); |
5150 | Op1Max = Op1Known.getMaxValue(); |
5151 | } |
5152 | |
5153 | |
5154 | |
5155 | |
5156 | if (!isa<Constant>(Op0) && Op0Min == Op0Max) |
5157 | return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); |
5158 | if (!isa<Constant>(Op1) && Op1Min == Op1Max) |
5159 | return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); |
5160 | |
5161 | |
5162 | |
5163 | |
5164 | |
5165 | auto isMinMaxCmp = [&](Instruction &Cmp) { |
5166 | if (!Cmp.hasOneUse()) |
5167 | return false; |
5168 | Value *A, *B; |
5169 | SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; |
5170 | if (!SelectPatternResult::isMinOrMax(SPF)) |
5171 | return false; |
5172 | return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || |
5173 | match(Op1, m_MaxOrMin(m_Value(), m_Value())); |
5174 | }; |
5175 | if (!isMinMaxCmp(I)) { |
5176 | switch (Pred) { |
5177 | default: |
5178 | break; |
5179 | case ICmpInst::ICMP_ULT: { |
5180 | if (Op1Min == Op0Max) |
5181 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
5182 | const APInt *CmpC; |
5183 | if (match(Op1, m_APInt(CmpC))) { |
5184 | |
5185 | if (*CmpC == Op0Min + 1) |
5186 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
5187 | ConstantInt::get(Op1->getType(), *CmpC - 1)); |
5188 | |
5189 | |
5190 | if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) |
5191 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
5192 | Constant::getNullValue(Op1->getType())); |
5193 | } |
5194 | break; |
5195 | } |
5196 | case ICmpInst::ICMP_UGT: { |
5197 | if (Op1Max == Op0Min) |
5198 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
5199 | const APInt *CmpC; |
5200 | if (match(Op1, m_APInt(CmpC))) { |
5201 | |
5202 | if (*CmpC == Op0Max - 1) |
5203 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
5204 | ConstantInt::get(Op1->getType(), *CmpC + 1)); |
5205 | |
5206 | |
5207 | if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) |
5208 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, |
5209 | Constant::getNullValue(Op1->getType())); |
5210 | } |
5211 | break; |
5212 | } |
5213 | case ICmpInst::ICMP_SLT: { |
5214 | if (Op1Min == Op0Max) |
5215 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
5216 | const APInt *CmpC; |
5217 | if (match(Op1, m_APInt(CmpC))) { |
5218 | if (*CmpC == Op0Min + 1) |
5219 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
5220 | ConstantInt::get(Op1->getType(), *CmpC - 1)); |
5221 | } |
5222 | break; |
5223 | } |
5224 | case ICmpInst::ICMP_SGT: { |
5225 | if (Op1Max == Op0Min) |
5226 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
5227 | const APInt *CmpC; |
5228 | if (match(Op1, m_APInt(CmpC))) { |
5229 | if (*CmpC == Op0Max - 1) |
5230 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
5231 | ConstantInt::get(Op1->getType(), *CmpC + 1)); |
5232 | } |
5233 | break; |
5234 | } |
5235 | } |
5236 | } |
5237 | |
5238 | |
5239 | |
5240 | switch (Pred) { |
5241 | default: |
5242 | llvm_unreachable("Unknown icmp opcode!"); |
5243 | case ICmpInst::ICMP_EQ: |
5244 | case ICmpInst::ICMP_NE: { |
5245 | if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) |
5246 | return replaceInstUsesWith( |
5247 | I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); |
5248 | |
5249 | |
5250 | |
5251 | |
5252 | APInt Op0KnownZeroInverted = ~Op0Known.Zero; |
5253 | if (Op1Known.isZero()) { |
5254 | |
5255 | Value *LHS = nullptr; |
5256 | const APInt *LHSC; |
5257 | if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || |
5258 | *LHSC != Op0KnownZeroInverted) |
5259 | LHS = Op0; |
5260 | |
5261 | Value *X; |
5262 | if (match(LHS, m_Shl(m_One(), m_Value(X)))) { |
5263 | APInt ValToCheck = Op0KnownZeroInverted; |
5264 | Type *XTy = X->getType(); |
5265 | if (ValToCheck.isPowerOf2()) { |
5266 | |
5267 | |
5268 | auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); |
5269 | auto NewPred = ICmpInst::getInversePredicate(Pred); |
5270 | return new ICmpInst(NewPred, X, CmpC); |
5271 | } else if ((++ValToCheck).isPowerOf2()) { |
5272 | |
5273 | |
5274 | auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); |
5275 | auto NewPred = |
5276 | Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; |
5277 | return new ICmpInst(NewPred, X, CmpC); |
5278 | } |
5279 | } |
5280 | |
5281 | |
5282 | const APInt *CI; |
5283 | if (Op0KnownZeroInverted.isOneValue() && |
5284 | match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { |
5285 | |
5286 | |
5287 | unsigned CmpVal = CI->countTrailingZeros(); |
5288 | auto NewPred = ICmpInst::getInversePredicate(Pred); |
5289 | return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); |
5290 | } |
5291 | } |
5292 | break; |
5293 | } |
5294 | case ICmpInst::ICMP_ULT: { |
5295 | if (Op0Max.ult(Op1Min)) |
5296 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
5297 | if (Op0Min.uge(Op1Max)) |
5298 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
5299 | break; |
5300 | } |
5301 | case ICmpInst::ICMP_UGT: { |
5302 | if (Op0Min.ugt(Op1Max)) |
5303 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
5304 | if (Op0Max.ule(Op1Min)) |
5305 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
5306 | break; |
5307 | } |
5308 | case ICmpInst::ICMP_SLT: { |
5309 | if (Op0Max.slt(Op1Min)) |
5310 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
5311 | if (Op0Min.sge(Op1Max)) |
5312 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
5313 | break; |
5314 | } |
5315 | case ICmpInst::ICMP_SGT: { |
5316 | if (Op0Min.sgt(Op1Max)) |
5317 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
5318 | if (Op0Max.sle(Op1Min)) |
5319 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
5320 | break; |
5321 | } |
5322 | case ICmpInst::ICMP_SGE: |
5323 | assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); |
5324 | if (Op0Min.sge(Op1Max)) |
5325 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
5326 | if (Op0Max.slt(Op1Min)) |
5327 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
5328 | if (Op1Min == Op0Max) |
5329 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
5330 | break; |
5331 | case ICmpInst::ICMP_SLE: |
5332 | assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); |
5333 | if (Op0Max.sle(Op1Min)) |
5334 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
5335 | if (Op0Min.sgt(Op1Max)) |
5336 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
5337 | if (Op1Max == Op0Min) |
5338 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
5339 | break; |
5340 | case ICmpInst::ICMP_UGE: |
5341 | assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); |
5342 | if (Op0Min.uge(Op1Max)) |
5343 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
5344 | if (Op0Max.ult(Op1Min)) |
5345 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
5346 | if (Op1Min == Op0Max) |
5347 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
5348 | break; |
5349 | case ICmpInst::ICMP_ULE: |
5350 | assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); |
5351 | if (Op0Max.ule(Op1Min)) |
5352 | return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); |
5353 | if (Op0Min.ugt(Op1Max)) |
5354 | return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); |
5355 | if (Op1Max == Op0Min) |
5356 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); |
5357 | break; |
5358 | } |
5359 | |
5360 | |
5361 | |
5362 | if (I.isSigned() && |
5363 | ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || |
5364 | (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) |
5365 | return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); |
5366 | |
5367 | return nullptr; |
5368 | } |
5369 | |
5370 | llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> |
5371 | InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, |
5372 | Constant *C) { |
5373 | assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && |
5374 | "Only for relational integer predicates."); |
5375 | |
5376 | Type *Type = C->getType(); |
5377 | bool IsSigned = ICmpInst::isSigned(Pred); |
5378 | |
5379 | CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); |
5380 | bool WillIncrement = |
5381 | UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; |
5382 | |
5383 | |
5384 | |
5385 | auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { |
5386 | return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); |
5387 | }; |
5388 | |
5389 | Constant *SafeReplacementConstant = nullptr; |
5390 | if (auto *CI = dyn_cast<ConstantInt>(C)) { |
5391 | |
5392 | if (!ConstantIsOk(CI)) |
5393 | return llvm::None; |
5394 | } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { |
5395 | unsigned NumElts = FVTy->getNumElements(); |
5396 | for (unsigned i = 0; i != NumElts; ++i) { |
5397 | Constant *Elt = C->getAggregateElement(i); |
5398 | if (!Elt) |
5399 | return llvm::None; |
5400 | |
5401 | if (isa<UndefValue>(Elt)) |
5402 | continue; |
5403 | |
5404 | |
5405 | |
5406 | auto *CI = dyn_cast<ConstantInt>(Elt); |
5407 | if (!CI || !ConstantIsOk(CI)) |
5408 | return llvm::None; |
5409 | |
5410 | if (!SafeReplacementConstant) |
5411 | SafeReplacementConstant = CI; |
5412 | } |
5413 | } else { |
5414 | |
5415 | return llvm::None; |
5416 | } |
5417 | |
5418 | |
5419 | |
5420 | |
5421 | |
5422 | if (C->containsUndefOrPoisonElement()) { |
5423 | assert(SafeReplacementConstant && "Replacement constant not set"); |
5424 | C = Constant::replaceUndefsWith(C, SafeReplacementConstant); |
5425 | } |
5426 | |
5427 | CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); |
5428 | |
5429 | |
5430 | Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); |
5431 | Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); |
5432 | |
5433 | return std::make_pair(NewPred, NewC); |
5434 | } |
5435 | |
5436 | |
5437 | |
5438 | |
5439 | static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { |
5440 | ICmpInst::Predicate Pred = I.getPredicate(); |
5441 | if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || |
5442 | InstCombiner::isCanonicalPredicate(Pred)) |
5443 | return nullptr; |
5444 | |
5445 | Value *Op0 = I.getOperand(0); |
5446 | Value *Op1 = I.getOperand(1); |
5447 | auto *Op1C = dyn_cast<Constant>(Op1); |
5448 | if (!Op1C) |
5449 | return nullptr; |
5450 | |
5451 | auto FlippedStrictness = |
5452 | InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); |
5453 | if (!FlippedStrictness) |
5454 | return nullptr; |
5455 | |
5456 | return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); |
5457 | } |
5458 | |
5459 | |
5460 | |
5461 | CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { |
5462 | |
5463 | CmpInst::Predicate Pred = I.getPredicate(); |
5464 | if (InstCombiner::isCanonicalPredicate(Pred)) |
5465 | return nullptr; |
5466 | |
5467 | |
5468 | if (!InstCombiner::canFreelyInvertAllUsersOf(&I, nullptr)) |
5469 | return nullptr; |
5470 | |
5471 | |
5472 | |
5473 | I.setPredicate(CmpInst::getInversePredicate(Pred)); |
5474 | I.setName(I.getName() + ".not"); |
5475 | |
5476 | |
5477 | freelyInvertAllUsersOf(&I); |
5478 | |
5479 | return &I; |
5480 | } |
5481 | |
5482 | |
5483 | static Instruction *canonicalizeICmpBool(ICmpInst &I, |
5484 | InstCombiner::BuilderTy &Builder) { |
5485 | Value *A = I.getOperand(0), *B = I.getOperand(1); |
5486 | assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); |
5487 | |
5488 | |
5489 | |
5490 | |
5491 | if (match(B, m_Zero())) { |
5492 | switch (I.getPredicate()) { |
5493 | case CmpInst::ICMP_EQ: |
5494 | case CmpInst::ICMP_ULE: |
5495 | case CmpInst::ICMP_SGE: |
5496 | return BinaryOperator::CreateNot(A); |
5497 | default: |
5498 | llvm_unreachable("ICmp i1 X, C not simplified as expected."); |
5499 | } |
5500 | } else if (match(B, m_One())) { |
5501 | switch (I.getPredicate()) { |
5502 | case CmpInst::ICMP_NE: |
5503 | case CmpInst::ICMP_ULT: |
5504 | case CmpInst::ICMP_SGT: |
5505 | return BinaryOperator::CreateNot(A); |
5506 | default: |
5507 | llvm_unreachable("ICmp i1 X, C not simplified as expected."); |
5508 | } |
5509 | } |
5510 | |
5511 | switch (I.getPredicate()) { |
5512 | default: |
5513 | llvm_unreachable("Invalid icmp instruction!"); |
5514 | case ICmpInst::ICMP_EQ: |
5515 | |
5516 | return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); |
5517 | |
5518 | case ICmpInst::ICMP_NE: |
5519 | |
5520 | return BinaryOperator::CreateXor(A, B); |
5521 | |
5522 | case ICmpInst::ICMP_UGT: |
5523 | |
5524 | std::swap(A, B); |
5525 | LLVM_FALLTHROUGH; |
5526 | case ICmpInst::ICMP_ULT: |
5527 | |
5528 | return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); |
5529 | |
5530 | case ICmpInst::ICMP_SGT: |
5531 | |
5532 | std::swap(A, B); |
5533 | LLVM_FALLTHROUGH; |
5534 | case ICmpInst::ICMP_SLT: |
5535 | |
5536 | return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); |
5537 | |
5538 | case ICmpInst::ICMP_UGE: |
5539 | |
5540 | std::swap(A, B); |
5541 | LLVM_FALLTHROUGH; |
5542 | case ICmpInst::ICMP_ULE: |
5543 | |
5544 | return BinaryOperator::CreateOr(Builder.CreateNot(A), B); |
5545 | |
5546 | case ICmpInst::ICMP_SGE: |
5547 | |
5548 | std::swap(A, B); |
5549 | LLVM_FALLTHROUGH; |
5550 | case ICmpInst::ICMP_SLE: |
5551 | |
5552 | return BinaryOperator::CreateOr(Builder.CreateNot(B), A); |
5553 | } |
5554 | } |
5555 | |
5556 | |
5557 | |
5558 | |
5559 | |
5560 | |
5561 | |
5562 | static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, |
5563 | InstCombiner::BuilderTy &Builder) { |
5564 | ICmpInst::Predicate Pred, NewPred; |
5565 | Value *X, *Y; |
5566 | if (match(&Cmp, |
5567 | m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { |
5568 | switch (Pred) { |
5569 | case ICmpInst::ICMP_ULE: |
5570 | NewPred = ICmpInst::ICMP_NE; |
5571 | break; |
5572 | case ICmpInst::ICMP_UGT: |
5573 | NewPred = ICmpInst::ICMP_EQ; |
5574 | break; |
5575 | default: |
5576 | return nullptr; |
5577 | } |
5578 | } else if (match(&Cmp, m_c_ICmp(Pred, |
5579 | m_OneUse(m_CombineOr( |
5580 | m_Not(m_Shl(m_AllOnes(), m_Value(Y))), |
5581 | m_Add(m_Shl(m_One(), m_Value(Y)), |
5582 | m_AllOnes()))), |
5583 | m_Value(X)))) { |
5584 | |
5585 | |
5586 | |
5587 | switch (Pred) { |
5588 | case ICmpInst::ICMP_ULT: |
5589 | NewPred = ICmpInst::ICMP_NE; |
5590 | break; |
5591 | case ICmpInst::ICMP_UGE: |
5592 | NewPred = ICmpInst::ICMP_EQ; |
5593 | break; |
5594 | default: |
5595 | return nullptr; |
5596 | } |
5597 | } else |
5598 | return nullptr; |
5599 | |
5600 | Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); |
5601 | Constant *Zero = Constant::getNullValue(NewX->getType()); |
5602 | return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); |
5603 | } |
5604 | |
5605 | static Instruction *foldVectorCmp(CmpInst &Cmp, |
5606 | InstCombiner::BuilderTy &Builder) { |
5607 | const CmpInst::Predicate Pred = Cmp.getPredicate(); |
5608 | Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); |
5609 | Value *V1, *V2; |
5610 | ArrayRef<int> M; |
5611 | if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) |
5612 | return nullptr; |
5613 | |
5614 | |
5615 | |
5616 | |
5617 | Type *V1Ty = V1->getType(); |
5618 | if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && |
5619 | V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { |
5620 | Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); |
5621 | return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); |
5622 | } |
5623 | |
5624 | |
5625 | |
5626 | |
5627 | Constant *C; |
5628 | if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) |
5629 | return nullptr; |
5630 | |
5631 | |
5632 | |
5633 | Constant *ScalarC = C->getSplatValue( true); |
5634 | int MaskSplatIndex; |
5635 | if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { |
5636 | |
5637 | |
5638 | C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), |
5639 | ScalarC); |
5640 | SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); |
5641 | Value *NewCmp = Builder.CreateCmp(Pred, V1, C); |
5642 | return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), |
5643 | NewM); |
5644 | } |
5645 | |
5646 | return nullptr; |
5647 | } |
5648 | |
5649 | |
5650 | |
5651 | static Instruction *foldICmpOfUAddOv(ICmpInst &I) { |
5652 | CmpInst::Predicate Pred = I.getPredicate(); |
5653 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
5654 | |
5655 | Value *UAddOv; |
5656 | Value *A, *B; |
5657 | auto UAddOvResultPat = m_ExtractValue<0>( |
5658 | m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); |
5659 | if (match(Op0, UAddOvResultPat) && |
5660 | ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || |
5661 | (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && |
5662 | (match(A, m_One()) || match(B, m_One()))) || |
5663 | (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && |
5664 | (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) |
5665 | |
5666 | |
5667 | |
5668 | UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); |
5669 | else if (match(Op1, UAddOvResultPat) && |
5670 | Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) |
5671 | |
5672 | UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); |
5673 | else |
5674 | return nullptr; |
5675 | |
5676 | return ExtractValueInst::Create(UAddOv, 1); |
5677 | } |
5678 | |
5679 | Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { |
5680 | bool Changed = false; |
5681 | const SimplifyQuery Q = SQ.getWithInstruction(&I); |
5682 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
5683 | unsigned Op0Cplxity = getComplexity(Op0); |
5684 | unsigned Op1Cplxity = getComplexity(Op1); |
5685 | |
5686 | |
5687 | |
5688 | |
5689 | if (Op0Cplxity < Op1Cplxity || |
5690 | (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { |
5691 | I.swapOperands(); |
5692 | std::swap(Op0, Op1); |
5693 | Changed = true; |
5694 | } |
5695 | |
5696 | if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) |
5697 | return replaceInstUsesWith(I, V); |
5698 | |
5699 | |
5700 | |
5701 | if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { |
5702 | Value *Cond, *SelectTrue, *SelectFalse; |
5703 | if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), |
5704 | m_Value(SelectFalse)))) { |
5705 | if (Value *V = dyn_castNegVal(SelectTrue)) { |
5706 | if (V == SelectFalse) |
5707 | return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); |
5708 | } |
5709 | else if (Value *V = dyn_castNegVal(SelectFalse)) { |
5710 | if (V == SelectTrue) |
5711 | return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); |
5712 | } |
5713 | } |
5714 | } |
5715 | |
5716 | if (Op0->getType()->isIntOrIntVectorTy(1)) |
5717 | if (Instruction *Res = canonicalizeICmpBool(I, Builder)) |
5718 | return Res; |
5719 | |
5720 | if (Instruction *Res = canonicalizeCmpWithConstant(I)) |
5721 | return Res; |
5722 | |
5723 | if (Instruction *Res = canonicalizeICmpPredicate(I)) |
5724 | return Res; |
5725 | |
5726 | if (Instruction *Res = foldICmpWithConstant(I)) |
5727 | return Res; |
5728 | |
5729 | if (Instruction *Res = foldICmpWithDominatingICmp(I)) |
5730 | return Res; |
5731 | |
5732 | if (Instruction *Res = foldICmpBinOp(I, Q)) |
5733 | return Res; |
5734 | |
5735 | if (Instruction *Res = foldICmpUsingKnownBits(I)) |
5736 | return Res; |
5737 | |
5738 | |
5739 | |
5740 | |
5741 | |
5742 | |
5743 | |
5744 | |
5745 | |
5746 | |
5747 | if (I.hasOneUse()) |
5748 | if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { |
5749 | Value *A, *B; |
5750 | SelectPatternResult SPR = matchSelectPattern(SI, A, B); |
5751 | if (SPR.Flavor != SPF_UNKNOWN) |
5752 | return nullptr; |
5753 | } |
5754 | |
5755 | |
5756 | if (Instruction *Res = foldICmpWithZero(I)) |
5757 | return Res; |
5758 | |
5759 | |
5760 | |
5761 | |
5762 | |
5763 | |
5764 | ICmpInst::Predicate Pred = I.getPredicate(); |
5765 | const APInt *C; |
5766 | if (match(Op1, m_APInt(C))) { |
5767 | |
5768 | if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { |
5769 | Constant *Zero = Constant::getNullValue(Op0->getType()); |
5770 | return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); |
5771 | } |
5772 | |
5773 | |
5774 | if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { |
5775 | Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); |
5776 | return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); |
5777 | } |
5778 | } |
5779 | |
5780 | if (Instruction *Res = foldICmpInstWithConstant(I)) |
5781 | return Res; |
5782 | |
5783 | |
5784 | |
5785 | if (Instruction *New = foldSignBitTest(I)) |
5786 | return New; |
5787 | |
5788 | if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) |
5789 | return Res; |
5790 | |
5791 | |
5792 | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) |
5793 | if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) |
5794 | return NI; |
5795 | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) |
5796 | if (Instruction *NI = foldGEPICmp(GEP, Op0, |
5797 | ICmpInst::getSwappedPredicate(I.getPredicate()), I)) |
5798 | return NI; |
5799 | |
5800 | |
5801 | if (Op0->getType()->isPointerTy() && I.isEquality()) { |
5802 | assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); |
5803 | if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) |
5804 | if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) |
5805 | return New; |
5806 | if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) |
5807 | if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) |
5808 | return New; |
5809 | } |
5810 | |
5811 | if (Instruction *Res = foldICmpBitCast(I, Builder)) |
5812 | return Res; |
5813 | |
5814 | |
5815 | if (Instruction *R = foldICmpWithCastOp(I)) |
5816 | return R; |
5817 | |
5818 | if (Instruction *Res = foldICmpWithMinMax(I)) |
5819 | return Res; |
5820 | |
5821 | { |
5822 | Value *A, *B; |
5823 | |
5824 | |
5825 | |
5826 | if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && |
5827 | match(Op1, m_Zero()) && |
5828 | isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) |
5829 | return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), |
5830 | Op1); |
5831 | |
5832 | |
5833 | |
5834 | if (match(Op0, m_Not(m_Value(A)))) { |
5835 | if (match(Op1, m_Not(m_Value(B)))) |
5836 | return new ICmpInst(I.getPredicate(), B, A); |
5837 | |
5838 | const APInt *C; |
5839 | if (match(Op1, m_APInt(C))) |
5840 | return new ICmpInst(I.getSwappedPredicate(), A, |
5841 | ConstantInt::get(Op1->getType(), ~(*C))); |
5842 | } |
5843 | |
5844 | Instruction *AddI = nullptr; |
5845 | if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), |
5846 | m_Instruction(AddI))) && |
5847 | isa<IntegerType>(A->getType())) { |
5848 | Value *Result; |
5849 | Constant *Overflow; |
5850 | |
5851 | |
5852 | if (AddI->getOpcode() == Instruction::Add && |
5853 | OptimizeOverflowCheck(Instruction::Add, false, A, B, *AddI, |
5854 | Result, Overflow)) { |
5855 | replaceInstUsesWith(*AddI, Result); |
5856 | eraseInstFromFunction(*AddI); |
5857 | return replaceInstUsesWith(I, Overflow); |
5858 | } |
5859 | } |
5860 | |
5861 | |
5862 | if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { |
5863 | if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) |
5864 | return R; |
5865 | } |
5866 | if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { |
5867 | if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) |
5868 | return R; |
5869 | } |
5870 | } |
5871 | |
5872 | if (Instruction *Res = foldICmpEquality(I)) |
5873 | return Res; |
5874 | |
5875 | if (Instruction *Res = foldICmpOfUAddOv(I)) |
5876 | return Res; |
5877 | |
5878 | |
5879 | |
5880 | |
5881 | |
5882 | |
5883 | |
5884 | |
5885 | |
5886 | |
5887 | if (I.getPredicate() == ICmpInst::ICMP_EQ) |
5888 | if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) |
5889 | if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) |
5890 | if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && |
5891 | !ACXI->isWeak()) |
5892 | return ExtractValueInst::Create(ACXI, 1); |
5893 | |
5894 | { |
5895 | Value *X; |
5896 | const APInt *C; |
5897 | |
5898 | if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) |
5899 | return foldICmpAddOpConst(X, *C, I.getPredicate()); |
5900 | |
5901 | |
5902 | if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) |
5903 | return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); |
5904 | } |
5905 | |
5906 | if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) |
5907 | return Res; |
5908 | |
5909 | if (I.getType()->isVectorTy()) |
5910 | if (Instruction *Res = foldVectorCmp(I, Builder)) |
5911 | return Res; |
5912 | |
5913 | return Changed ? &I : nullptr; |
5914 | } |
5915 | |
5916 | |
5917 | Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, |
5918 | Instruction *LHSI, |
5919 | Constant *RHSC) { |
5920 | if (!isa<ConstantFP>(RHSC)) return nullptr; |
5921 | const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); |
5922 | |
5923 | |
5924 | |
5925 | int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); |
5926 | if (MantissaWidth == -1) return nullptr; |
5927 | |
5928 | IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); |
5929 | |
5930 | bool LHSUnsigned = isa<UIToFPInst>(LHSI); |
5931 | |
5932 | if (I.isEquality()) { |
5933 | FCmpInst::Predicate P = I.getPredicate(); |
5934 | bool IsExact = false; |
5935 | APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); |
5936 | RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); |
5937 | |
5938 | |
5939 | |
5940 | if (!IsExact) { |
5941 | |
5942 | APFloat RHSRoundInt(RHS); |
5943 | RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); |
5944 | if (RHS != RHSRoundInt) { |
5945 | if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) |
5946 | return replaceInstUsesWith(I, Builder.getFalse()); |
5947 | |
5948 | assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); |
5949 | return replaceInstUsesWith(I, Builder.getTrue()); |
5950 | } |
5951 | } |
5952 | |
5953 | |
5954 | |
5955 | } |
5956 | |
5957 | |
5958 | |
5959 | |
5960 | unsigned InputSize = IntTy->getScalarSizeInBits(); |
5961 | |
5962 | |
5963 | |
5964 | |
5965 | if ((int)InputSize > MantissaWidth) { |
5966 | |
5967 | int Exp = ilogb(RHS); |
5968 | if (Exp == APFloat::IEK_Inf) { |
5969 | int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); |
5970 | if (MaxExponent < (int)InputSize - !LHSUnsigned) |
5971 | |
5972 | return nullptr; |
5973 | } else { |
5974 | |
5975 | |
5976 | if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) |
5977 | |
5978 | return nullptr; |
5979 | } |
5980 | } |
5981 | |
5982 | |
5983 | |
5984 | |
5985 | assert(!RHS.isNaN() && "NaN comparison not already folded!"); |
5986 | |
5987 | ICmpInst::Predicate Pred; |
5988 | switch (I.getPredicate()) { |
5989 | default: llvm_unreachable("Unexpected predicate!"); |
5990 | case FCmpInst::FCMP_UEQ: |
5991 | case FCmpInst::FCMP_OEQ: |
5992 | Pred = ICmpInst::ICMP_EQ; |
5993 | break; |
5994 | case FCmpInst::FCMP_UGT: |
5995 | case FCmpInst::FCMP_OGT: |
5996 | Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; |
5997 | break; |
5998 | case FCmpInst::FCMP_UGE: |
5999 | case FCmpInst::FCMP_OGE: |
6000 | Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; |
6001 | break; |
6002 | case FCmpInst::FCMP_ULT: |
6003 | case FCmpInst::FCMP_OLT: |
6004 | Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; |
6005 | break; |
6006 | case FCmpInst::FCMP_ULE: |
6007 | case FCmpInst::FCMP_OLE: |
6008 | Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; |
6009 | break; |
6010 | case FCmpInst::FCMP_UNE: |
6011 | case FCmpInst::FCMP_ONE: |
6012 | Pred = ICmpInst::ICMP_NE; |
6013 | break; |
6014 | case FCmpInst::FCMP_ORD: |
6015 | return replaceInstUsesWith(I, Builder.getTrue()); |
6016 | case FCmpInst::FCMP_UNO: |
6017 | return replaceInstUsesWith(I, Builder.getFalse()); |
6018 | } |
6019 | |
6020 | |
6021 | |
6022 | |
6023 | |
6024 | unsigned IntWidth = IntTy->getScalarSizeInBits(); |
6025 | |
6026 | if (!LHSUnsigned) { |
6027 | |
6028 | |
6029 | APFloat SMax(RHS.getSemantics()); |
6030 | SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, |
6031 | APFloat::rmNearestTiesToEven); |
6032 | if (SMax < RHS) { |
6033 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || |
6034 | Pred == ICmpInst::ICMP_SLE) |
6035 | return replaceInstUsesWith(I, Builder.getTrue()); |
6036 | return replaceInstUsesWith(I, Builder.getFalse()); |
6037 | } |
6038 | } else { |
6039 | |
6040 | |
6041 | APFloat UMax(RHS.getSemantics()); |
6042 | UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, |
6043 | APFloat::rmNearestTiesToEven); |
6044 | if (UMax < RHS) { |
6045 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || |
6046 | Pred == ICmpInst::ICMP_ULE) |
6047 | return replaceInstUsesWith(I, Builder.getTrue()); |
6048 | return replaceInstUsesWith(I, Builder.getFalse()); |
6049 | } |
6050 | } |
6051 | |
6052 | if (!LHSUnsigned) { |
6053 | |
6054 | APFloat SMin(RHS.getSemantics()); |
6055 | SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, |
6056 | APFloat::rmNearestTiesToEven); |
6057 | if (SMin > RHS) { |
6058 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || |
6059 | Pred == ICmpInst::ICMP_SGE) |
6060 | return replaceInstUsesWith(I, Builder.getTrue()); |
6061 | return replaceInstUsesWith(I, Builder.getFalse()); |
6062 | } |
6063 | } else { |
6064 | |
6065 | APFloat UMin(RHS.getSemantics()); |
6066 | UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, |
6067 | APFloat::rmNearestTiesToEven); |
6068 | if (UMin > RHS) { |
6069 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || |
6070 | Pred == ICmpInst::ICMP_UGE) |
6071 | return replaceInstUsesWith(I, Builder.getTrue()); |
6072 | return replaceInstUsesWith(I, Builder.getFalse()); |
6073 | } |
6074 | } |
6075 | |
6076 | |
6077 | |
6078 | |
6079 | |
6080 | Constant *RHSInt = LHSUnsigned |
6081 | ? ConstantExpr::getFPToUI(RHSC, IntTy) |
6082 | : ConstantExpr::getFPToSI(RHSC, IntTy); |
6083 | if (!RHS.isZero()) { |
6084 | bool Equal = LHSUnsigned |
6085 | ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC |
6086 | : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; |
6087 | if (!Equal) { |
6088 | |
6089 | |
6090 | |
6091 | switch (Pred) { |
6092 | default: llvm_unreachable("Unexpected integer comparison!"); |
6093 | case ICmpInst::ICMP_NE: |
6094 | return replaceInstUsesWith(I, Builder.getTrue()); |
6095 | case ICmpInst::ICMP_EQ: |
6096 | return replaceInstUsesWith(I, Builder.getFalse()); |
6097 | case ICmpInst::ICMP_ULE: |
6098 | |
6099 | |
6100 | if (RHS.isNegative()) |
6101 | return replaceInstUsesWith(I, Builder.getFalse()); |
6102 | break; |
6103 | case ICmpInst::ICMP_SLE: |
6104 | |
6105 | |
6106 | if (RHS.isNegative()) |
6107 | Pred = ICmpInst::ICMP_SLT; |
6108 | break; |
6109 | case ICmpInst::ICMP_ULT: |
6110 | |
6111 | |
6112 | if (RHS.isNegative()) |
6113 | return replaceInstUsesWith(I, Builder.getFalse()); |
6114 | Pred = ICmpInst::ICMP_ULE; |
6115 | break; |
6116 | case ICmpInst::ICMP_SLT: |
6117 | |
6118 | |
6119 | if (!RHS.isNegative()) |
6120 | Pred = ICmpInst::ICMP_SLE; |
6121 | break; |
6122 | case ICmpInst::ICMP_UGT: |
6123 | |
6124 | |
6125 | if (RHS.isNegative()) |
6126 | return replaceInstUsesWith(I, Builder.getTrue()); |
6127 | break; |
6128 | case ICmpInst::ICMP_SGT: |
6129 | |
6130 | |
6131 | if (RHS.isNegative()) |
6132 | Pred = ICmpInst::ICMP_SGE; |
6133 | break; |
6134 | case ICmpInst::ICMP_UGE: |
6135 | |
6136 | |
6137 | if (RHS.isNegative()) |
6138 | return replaceInstUsesWith(I, Builder.getTrue()); |
6139 | Pred = ICmpInst::ICMP_UGT; |
6140 | break; |
6141 | case ICmpInst::ICMP_SGE: |
6142 | |
6143 | |
6144 | if (!RHS.isNegative()) |
6145 | Pred = ICmpInst::ICMP_SGT; |
6146 | break; |
6147 | } |
6148 | } |
6149 | } |
6150 | |
6151 | |
6152 | |
6153 | return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); |
6154 | } |
6155 | |
6156 | |
6157 | static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, |
6158 | Constant *RHSC) { |
6159 | |
6160 | |
6161 | |
6162 | |
6163 | |
6164 | |
6165 | |
6166 | |
6167 | |
6168 | |
6169 | |
6170 | |
6171 | |
6172 | FCmpInst::Predicate Pred = I.getPredicate(); |
6173 | |
6174 | |
6175 | if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && |
6176 | (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) |
6177 | return nullptr; |
6178 | |
6179 | |
6180 | if (!match(RHSC, m_AnyZeroFP())) |
6181 | return nullptr; |
6182 | |
6183 | |
6184 | if (!LHSI->hasNoInfs() || !I.hasNoInfs()) |
6185 | return nullptr; |
6186 | |
6187 | |
6188 | |
6189 | const APFloat *C; |
6190 | if (!match(LHSI->getOperand(0), m_APFloat(C))) |
6191 | return nullptr; |
6192 | |
6193 | if (C->isZero()) |
6194 | return nullptr; |
6195 | |
6196 | |
6197 | if (C->isNegative()) |
6198 | Pred = I.getSwappedPredicate(); |
6199 | |
6200 | return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); |
6201 | } |
6202 | |
6203 | |
6204 | static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { |
6205 | Value *X; |
6206 | if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || |
6207 | !match(I.getOperand(1), m_PosZeroFP())) |
6208 | return nullptr; |
6209 | |
6210 | auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { |
6211 | I->setPredicate(P); |
6212 | return IC.replaceOperand(*I, 0, X); |
6213 | }; |
6214 | |
6215 | switch (I.getPredicate()) { |
6216 | case FCmpInst::FCMP_UGE: |
6217 | case FCmpInst::FCMP_OLT: |
6218 | |
6219 | |
6220 | llvm_unreachable("fcmp should have simplified"); |
6221 | |
6222 | case FCmpInst::FCMP_OGT: |
6223 | |
6224 | return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); |
6225 | |
6226 | case FCmpInst::FCMP_UGT: |
6227 | |
6228 | return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); |
6229 | |
6230 | case FCmpInst::FCMP_OLE: |
6231 | |
6232 | return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); |
6233 | |
6234 | case FCmpInst::FCMP_ULE: |
6235 | |
6236 | return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); |
6237 | |
6238 | case FCmpInst::FCMP_OGE: |
6239 | |
6240 | assert(!I.hasNoNaNs() && "fcmp should have simplified"); |
6241 | return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); |
6242 | |
6243 | case FCmpInst::FCMP_ULT: |
6244 | |
6245 | assert(!I.hasNoNaNs() && "fcmp should have simplified"); |
6246 | return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); |
6247 | |
6248 | case FCmpInst::FCMP_OEQ: |
6249 | case FCmpInst::FCMP_UEQ: |
6250 | case FCmpInst::FCMP_ONE: |
6251 | case FCmpInst::FCMP_UNE: |
6252 | case FCmpInst::FCMP_ORD: |
6253 | case FCmpInst::FCMP_UNO: |
6254 | |
6255 | |
6256 | |
6257 | |
6258 | |
6259 | return replacePredAndOp0(&I, I.getPredicate(), X); |
6260 | |
6261 | default: |
6262 | return nullptr; |
6263 | } |
6264 | } |
6265 | |
6266 | Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { |
6267 | bool Changed = false; |
6268 | |
6269 | |
6270 | |
6271 | |
6272 | if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { |
6273 | I.swapOperands(); |
6274 | Changed = true; |
6275 | } |
6276 | |
6277 | const CmpInst::Predicate Pred = I.getPredicate(); |
6278 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
6279 | if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), |
6280 | SQ.getWithInstruction(&I))) |
6281 | return replaceInstUsesWith(I, V); |
6282 | |
6283 | |
6284 | Type *OpType = Op0->getType(); |
6285 | assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); |
6286 | if (Op0 == Op1) { |
6287 | switch (Pred) { |
6288 | default: break; |
6289 | case FCmpInst::FCMP_UNO: |
6290 | case FCmpInst::FCMP_ULT: |
6291 | case FCmpInst::FCMP_UGT: |
6292 | case FCmpInst::FCMP_UNE: |
6293 | |
6294 | I.setPredicate(FCmpInst::FCMP_UNO); |
6295 | I.setOperand(1, Constant::getNullValue(OpType)); |
6296 | return &I; |
6297 | |
6298 | case FCmpInst::FCMP_ORD: |
6299 | case FCmpInst::FCMP_OEQ: |
6300 | case FCmpInst::FCMP_OGE: |
6301 | case FCmpInst::FCMP_OLE: |
6302 | |
6303 | I.setPredicate(FCmpInst::FCMP_ORD); |
6304 | I.setOperand(1, Constant::getNullValue(OpType)); |
6305 | return &I; |
6306 | } |
6307 | } |
6308 | |
6309 | |
6310 | |
6311 | if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { |
6312 | if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) |
6313 | return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); |
6314 | |
6315 | if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) |
6316 | return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); |
6317 | } |
6318 | |
6319 | |
6320 | Value *X, *Y; |
6321 | if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) |
6322 | return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); |
6323 | |
6324 | |
6325 | |
6326 | |
6327 | |
6328 | |
6329 | |
6330 | |
6331 | if (I.hasOneUse()) |
6332 | if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { |
6333 | Value *A, *B; |
6334 | SelectPatternResult SPR = matchSelectPattern(SI, A, B); |
6335 | if (SPR.Flavor != SPF_UNKNOWN) |
6336 | return nullptr; |
6337 | } |
6338 | |
6339 | |
6340 | |
6341 | if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) |
6342 | return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); |
6343 | |
6344 | |
6345 | Instruction *LHSI; |
6346 | Constant *RHSC; |
6347 | if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { |
6348 | switch (LHSI->getOpcode()) { |
6349 | case Instruction::PHI: |
6350 | |
6351 | |
6352 | |
6353 | if (LHSI->getParent() == I.getParent()) |
6354 | if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) |
6355 | return NV; |
6356 | break; |
6357 | case Instruction::SIToFP: |
6358 | case Instruction::UIToFP: |
6359 | if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) |
6360 | return NV; |
6361 | break; |
6362 | case Instruction::FDiv: |
6363 | if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) |
6364 | return NV; |
6365 | break; |
6366 | case Instruction::Load: |
6367 | if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) |
6368 | if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) |
6369 | if (GV->isConstant() && GV->hasDefinitiveInitializer() && |
6370 | !cast<LoadInst>(LHSI)->isVolatile()) |
6371 | if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) |
6372 | return Res; |
6373 | break; |
6374 | } |
6375 | } |
6376 | |
6377 | if (Instruction *R = foldFabsWithFcmpZero(I, *this)) |
6378 | return R; |
6379 | |
6380 | if (match(Op0, m_FNeg(m_Value(X)))) { |
6381 | |
6382 | Constant *C; |
6383 | if (match(Op1, m_Constant(C))) { |
6384 | Constant *NegC = ConstantExpr::getFNeg(C); |
6385 | return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); |
6386 | } |
6387 | } |
6388 | |
6389 | if (match(Op0, m_FPExt(m_Value(X)))) { |
6390 | |
6391 | if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) |
6392 | return new FCmpInst(Pred, X, Y, "", &I); |
6393 | |
6394 | |
6395 | const APFloat *C; |
6396 | if (match(Op1, m_APFloat(C))) { |
6397 | const fltSemantics &FPSem = |
6398 | X->getType()->getScalarType()->getFltSemantics(); |
6399 | bool Lossy; |
6400 | APFloat TruncC = *C; |
6401 | TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); |
6402 | |
6403 | |
6404 | |
6405 | APFloat Fabs = TruncC; |
6406 | Fabs.clearSign(); |
6407 | if (!Lossy && |
6408 | (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { |
6409 | Constant *NewC = ConstantFP::get(X->getType(), TruncC); |
6410 | return new FCmpInst(Pred, X, NewC, "", &I); |
6411 | } |
6412 | } |
6413 | } |
6414 | |
6415 | |
6416 | |
6417 | |
6418 | |
6419 | const APFloat *C; |
6420 | if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), |
6421 | m_Value(X)))) && |
6422 | match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { |
6423 | Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); |
6424 | if (auto *VecTy = dyn_cast<VectorType>(OpType)) |
6425 | IntType = VectorType::get(IntType, VecTy->getElementCount()); |
6426 | |
6427 | |
6428 | if (Pred == FCmpInst::FCMP_OLT) { |
6429 | Value *IntX = Builder.CreateBitCast(X, IntType); |
6430 | return new ICmpInst(ICmpInst::ICMP_SLT, IntX, |
6431 | ConstantInt::getNullValue(IntType)); |
6432 | } |
6433 | } |
6434 | |
6435 | if (I.getType()->isVectorTy()) |
6436 | if (Instruction *Res = foldVectorCmp(I, Builder)) |
6437 | return Res; |
6438 | |
6439 | return Changed ? &I : nullptr; |
6440 | } |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 | |
15 | |
16 | |
17 | |
18 | |
19 | |
20 | |
21 | |
22 | |
23 | |
24 | |
25 | |
26 | |
27 | |
28 | #ifndef LLVM_IR_PATTERNMATCH_H |
29 | #define LLVM_IR_PATTERNMATCH_H |
30 | |
31 | #include "llvm/ADT/APFloat.h" |
32 | #include "llvm/ADT/APInt.h" |
33 | #include "llvm/IR/Constant.h" |
34 | #include "llvm/IR/Constants.h" |
35 | #include "llvm/IR/DataLayout.h" |
36 | #include "llvm/IR/InstrTypes.h" |
37 | #include "llvm/IR/Instruction.h" |
38 | #include "llvm/IR/Instructions.h" |
39 | #include "llvm/IR/IntrinsicInst.h" |
40 | #include "llvm/IR/Intrinsics.h" |
41 | #include "llvm/IR/Operator.h" |
42 | #include "llvm/IR/Value.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include <cstdint> |
45 | |
46 | namespace llvm { |
47 | namespace PatternMatch { |
48 | |
49 | template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
50 | return const_cast<Pattern &>(P).match(V); |
| 36 | | Calling 'BinaryOp_match::match' | |
|
| 41 | | Returning from 'BinaryOp_match::match' | |
|
| 42 | | Returning the value 1, which participates in a condition later | |
|
51 | } |
52 | |
53 | template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { |
54 | return const_cast<Pattern &>(P).match(Mask); |
55 | } |
56 | |
57 | template <typename SubPattern_t> struct OneUse_match { |
58 | SubPattern_t SubPattern; |
59 | |
60 | OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
61 | |
62 | template <typename OpTy> bool match(OpTy *V) { |
63 | return V->hasOneUse() && SubPattern.match(V); |
64 | } |
65 | }; |
66 | |
67 | template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
68 | return SubPattern; |
69 | } |
70 | |
71 | template <typename Class> struct class_match { |
72 | template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } |
73 | }; |
74 | |
75 | |
76 | inline class_match<Value> m_Value() { return class_match<Value>(); } |
77 | |
78 | |
79 | inline class_match<UnaryOperator> m_UnOp() { |
80 | return class_match<UnaryOperator>(); |
81 | } |
82 | |
83 | |
84 | inline class_match<BinaryOperator> m_BinOp() { |
85 | return class_match<BinaryOperator>(); |
86 | } |
87 | |
88 | |
89 | inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } |
90 | |
91 | struct undef_match { |
92 | static bool check(const Value *V) { |
93 | if (isa<UndefValue>(V)) |
94 | return true; |
95 | |
96 | const auto *CA = dyn_cast<ConstantAggregate>(V); |
97 | if (!CA) |
98 | return false; |
99 | |
100 | SmallPtrSet<const ConstantAggregate *, 8> Seen; |
101 | SmallVector<const ConstantAggregate *, 8> Worklist; |
102 | |
103 | |
104 | |
105 | |
106 | auto CheckValue = [&](const ConstantAggregate *CA) { |
107 | for (const Value *Op : CA->operand_values()) { |
108 | if (isa<UndefValue>(Op)) |
109 | continue; |
110 | |
111 | const auto *CA = dyn_cast<ConstantAggregate>(Op); |
112 | if (!CA) |
113 | return false; |
114 | if (Seen.insert(CA).second) |
115 | Worklist.emplace_back(CA); |
116 | } |
117 | |
118 | return true; |
119 | }; |
120 | |
121 | if (!CheckValue(CA)) |
122 | return false; |
123 | |
124 | while (!Worklist.empty()) { |
125 | if (!CheckValue(Worklist.pop_back_val())) |
126 | return false; |
127 | } |
128 | return true; |
129 | } |
130 | template <typename ITy> bool match(ITy *V) { return check(V); } |
131 | }; |
132 | |
133 | |
134 | |
135 | |
136 | inline auto m_Undef() { return undef_match(); } |
137 | |
138 | |
139 | inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); } |
140 | |
141 | |
142 | inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
143 | |
144 | |
145 | inline class_match<ConstantInt> m_ConstantInt() { |
146 | return class_match<ConstantInt>(); |
147 | } |
148 | |
149 | |
150 | inline class_match<ConstantFP> m_ConstantFP() { |
151 | return class_match<ConstantFP>(); |
152 | } |
153 | |
154 | |
155 | inline class_match<ConstantExpr> m_ConstantExpr() { |
156 | return class_match<ConstantExpr>(); |
157 | } |
158 | |
159 | |
160 | inline class_match<BasicBlock> m_BasicBlock() { |
161 | return class_match<BasicBlock>(); |
162 | } |
163 | |
164 | |
165 | template <typename Ty> struct match_unless { |
166 | Ty M; |
167 | |
168 | match_unless(const Ty &Matcher) : M(Matcher) {} |
169 | |
170 | template <typename ITy> bool match(ITy *V) { return !M.match(V); } |
171 | }; |
172 | |
173 | |
174 | template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { |
175 | return match_unless<Ty>(M); |
176 | } |
177 | |
178 | |
179 | template <typename LTy, typename RTy> struct match_combine_or { |
180 | LTy L; |
181 | RTy R; |
182 | |
183 | match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
184 | |
185 | template <typename ITy> bool match(ITy *V) { |
186 | if (L.match(V)) |
187 | return true; |
188 | if (R.match(V)) |
189 | return true; |
190 | return false; |
191 | } |
192 | }; |
193 | |
194 | template <typename LTy, typename RTy> struct match_combine_and { |
195 | LTy L; |
196 | RTy R; |
197 | |
198 | match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
199 | |
200 | template <typename ITy> bool match(ITy *V) { |
201 | if (L.match(V)) |
202 | if (R.match(V)) |
203 | return true; |
204 | return false; |
205 | } |
206 | }; |
207 | |
208 | |
209 | template <typename LTy, typename RTy> |
210 | inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
211 | return match_combine_or<LTy, RTy>(L, R); |
| 60 | | Returning without writing to 'L.Op.VR' | |
|
212 | } |
213 | |
214 | |
215 | template <typename LTy, typename RTy> |
216 | inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
217 | return match_combine_and<LTy, RTy>(L, R); |
218 | } |
219 | |
220 | struct apint_match { |
221 | const APInt *&Res; |
222 | bool AllowUndef; |
223 | |
224 | apint_match(const APInt *&Res, bool AllowUndef) |
225 | : Res(Res), AllowUndef(AllowUndef) {} |
226 | |
227 | template <typename ITy> bool match(ITy *V) { |
228 | if (auto *CI = dyn_cast<ConstantInt>(V)) { |
229 | Res = &CI->getValue(); |
230 | return true; |
231 | } |
232 | if (V->getType()->isVectorTy()) |
233 | if (const auto *C = dyn_cast<Constant>(V)) |
234 | if (auto *CI = dyn_cast_or_null<ConstantInt>( |
235 | C->getSplatValue(AllowUndef))) { |
236 | Res = &CI->getValue(); |
237 | return true; |
238 | } |
239 | return false; |
240 | } |
241 | }; |
242 | |
243 | |
244 | |
245 | struct apfloat_match { |
246 | const APFloat *&Res; |
247 | bool AllowUndef; |
248 | |
249 | apfloat_match(const APFloat *&Res, bool AllowUndef) |
250 | : Res(Res), AllowUndef(AllowUndef) {} |
251 | |
252 | template <typename ITy> bool match(ITy *V) { |
253 | if (auto *CI = dyn_cast<ConstantFP>(V)) { |
254 | Res = &CI->getValueAPF(); |
255 | return true; |
256 | } |
257 | if (V->getType()->isVectorTy()) |
258 | if (const auto *C = dyn_cast<Constant>(V)) |
259 | if (auto *CI = dyn_cast_or_null<ConstantFP>( |
260 | C->getSplatValue(AllowUndef))) { |
261 | Res = &CI->getValueAPF(); |
262 | return true; |
263 | } |
264 | return false; |
265 | } |
266 | }; |
267 | |
268 | |
269 | |
270 | inline apint_match m_APInt(const APInt *&Res) { |
271 | |
272 | return apint_match(Res, false); |
273 | } |
274 | |
275 | |
276 | inline apint_match m_APIntAllowUndef(const APInt *&Res) { |
277 | return apint_match(Res, true); |
278 | } |
279 | |
280 | |
281 | inline apint_match m_APIntForbidUndef(const APInt *&Res) { |
282 | return apint_match(Res, false); |
283 | } |
284 | |
285 | |
286 | |
287 | inline apfloat_match m_APFloat(const APFloat *&Res) { |
288 | |
289 | return apfloat_match(Res, false); |
290 | } |
291 | |
292 | |
293 | inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) { |
294 | return apfloat_match(Res, true); |
295 | } |
296 | |
297 | |
298 | inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) { |
299 | return apfloat_match(Res, false); |
300 | } |
301 | |
302 | template <int64_t Val> struct constantint_match { |
303 | template <typename ITy> bool match(ITy *V) { |
304 | if (const auto *CI = dyn_cast<ConstantInt>(V)) { |
305 | const APInt &CIV = CI->getValue(); |
306 | if (Val >= 0) |
307 | return CIV == static_cast<uint64_t>(Val); |
308 | |
309 | |
310 | |
311 | return -CIV == -Val; |
312 | } |
313 | return false; |
314 | } |
315 | }; |
316 | |
317 | |
318 | template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { |
319 | return constantint_match<Val>(); |
320 | } |
321 | |
322 | |
323 | |
324 | |
325 | template <typename Predicate, typename ConstantVal> |
326 | struct cstval_pred_ty : public Predicate { |
327 | template <typename ITy> bool match(ITy *V) { |
328 | if (const auto *CV = dyn_cast<ConstantVal>(V)) |
329 | return this->isValue(CV->getValue()); |
330 | if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { |
331 | if (const auto *C = dyn_cast<Constant>(V)) { |
332 | if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) |
333 | return this->isValue(CV->getValue()); |
334 | |
335 | |
336 | auto *FVTy = dyn_cast<FixedVectorType>(VTy); |
337 | if (!FVTy) |
338 | return false; |
339 | |
340 | |
341 | unsigned NumElts = FVTy->getNumElements(); |
342 | assert(NumElts != 0 && "Constant vector with no elements?"); |
343 | bool HasNonUndefElements = false; |
344 | for (unsigned i = 0; i != NumElts; ++i) { |
345 | Constant *Elt = C->getAggregateElement(i); |
346 | if (!Elt) |
347 | return false; |
348 | if (isa<UndefValue>(Elt)) |
349 | continue; |
350 | auto *CV = dyn_cast<ConstantVal>(Elt); |
351 | if (!CV || !this->isValue(CV->getValue())) |
352 | return false; |
353 | HasNonUndefElements = true; |
354 | } |
355 | return HasNonUndefElements; |
356 | } |
357 | } |
358 | return false; |
359 | } |
360 | }; |
361 | |
362 | |
363 | template <typename Predicate> |
364 | using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>; |
365 | |
366 | |
367 | template <typename Predicate> |
368 | using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>; |
369 | |
370 | |
371 | |
372 | template <typename Predicate> struct api_pred_ty : public Predicate { |
373 | const APInt *&Res; |
374 | |
375 | api_pred_ty(const APInt *&R) : Res(R) {} |
376 | |
377 | template <typename ITy> bool match(ITy *V) { |
378 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
379 | if (this->isValue(CI->getValue())) { |
380 | Res = &CI->getValue(); |
381 | return true; |
382 | } |
383 | if (V->getType()->isVectorTy()) |
384 | if (const auto *C = dyn_cast<Constant>(V)) |
385 | if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
386 | if (this->isValue(CI->getValue())) { |
387 | Res = &CI->getValue(); |
388 | return true; |
389 | } |
390 | |
391 | return false; |
392 | } |
393 | }; |
394 | |
395 | |
396 | |
397 | |
398 | template <typename Predicate> struct apf_pred_ty : public Predicate { |
399 | const APFloat *&Res; |
400 | |
401 | apf_pred_ty(const APFloat *&R) : Res(R) {} |
402 | |
403 | template <typename ITy> bool match(ITy *V) { |
404 | if (const auto *CI = dyn_cast<ConstantFP>(V)) |
405 | if (this->isValue(CI->getValue())) { |
406 | Res = &CI->getValue(); |
407 | return true; |
408 | } |
409 | if (V->getType()->isVectorTy()) |
410 | if (const auto *C = dyn_cast<Constant>(V)) |
411 | if (auto *CI = dyn_cast_or_null<ConstantFP>( |
412 | C->getSplatValue( true))) |
413 | if (this->isValue(CI->getValue())) { |
414 | Res = &CI->getValue(); |
415 | return true; |
416 | } |
417 | |
418 | return false; |
419 | } |
420 | }; |
421 | |
422 | |
423 | |
424 | |
425 | |
426 | |
427 | |
428 | |
429 | |
430 | |
431 | struct is_any_apint { |
432 | bool isValue(const APInt &C) { return true; } |
433 | }; |
434 | |
435 | |
436 | inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { |
437 | return cst_pred_ty<is_any_apint>(); |
438 | } |
439 | |
440 | struct is_all_ones { |
441 | bool isValue(const APInt &C) { return C.isAllOnesValue(); } |
442 | }; |
443 | |
444 | |
445 | inline cst_pred_ty<is_all_ones> m_AllOnes() { |
446 | return cst_pred_ty<is_all_ones>(); |
447 | } |
448 | |
449 | struct is_maxsignedvalue { |
450 | bool isValue(const APInt &C) { return C.isMaxSignedValue(); } |
451 | }; |
452 | |
453 | |
454 | |
455 | inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { |
456 | return cst_pred_ty<is_maxsignedvalue>(); |
457 | } |
458 | inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { |
459 | return V; |
460 | } |
461 | |
462 | struct is_negative { |
463 | bool isValue(const APInt &C) { return C.isNegative(); } |
464 | }; |
465 | |
466 | |
467 | inline cst_pred_ty<is_negative> m_Negative() { |
468 | return cst_pred_ty<is_negative>(); |
469 | } |
470 | inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { |
471 | return V; |
472 | } |
473 | |
474 | struct is_nonnegative { |
475 | bool isValue(const APInt &C) { return C.isNonNegative(); } |
476 | }; |
477 | |
478 | |
479 | inline cst_pred_ty<is_nonnegative> m_NonNegative() { |
480 | return cst_pred_ty<is_nonnegative>(); |
481 | } |
482 | inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { |
483 | return V; |
484 | } |
485 | |
486 | struct is_strictlypositive { |
487 | bool isValue(const APInt &C) { return C.isStrictlyPositive(); } |
488 | }; |
489 | |
490 | |
491 | inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { |
492 | return cst_pred_ty<is_strictlypositive>(); |
493 | } |
494 | inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { |
495 | return V; |
496 | } |
497 | |
498 | struct is_nonpositive { |
499 | bool isValue(const APInt &C) { return C.isNonPositive(); } |
500 | }; |
501 | |
502 | |
503 | inline cst_pred_ty<is_nonpositive> m_NonPositive() { |
504 | return cst_pred_ty<is_nonpositive>(); |
505 | } |
506 | inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } |
507 | |
508 | struct is_one { |
509 | bool isValue(const APInt &C) { return C.isOneValue(); } |
510 | }; |
511 | |
512 | |
513 | inline cst_pred_ty<is_one> m_One() { |
514 | return cst_pred_ty<is_one>(); |
515 | } |
516 | |
517 | struct is_zero_int { |
518 | bool isValue(const APInt &C) { return C.isNullValue(); } |
519 | }; |
520 | |
521 | |
522 | inline cst_pred_ty<is_zero_int> m_ZeroInt() { |
523 | return cst_pred_ty<is_zero_int>(); |
524 | } |
525 | |
526 | struct is_zero { |
527 | template <typename ITy> bool match(ITy *V) { |
528 | auto *C = dyn_cast<Constant>(V); |
529 | |
530 | return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); |
531 | } |
532 | }; |
533 | |
534 | |
535 | inline is_zero m_Zero() { |
536 | return is_zero(); |
537 | } |
538 | |
539 | struct is_power2 { |
540 | bool isValue(const APInt &C) { return C.isPowerOf2(); } |
541 | }; |
542 | |
543 | |
544 | inline cst_pred_ty<is_power2> m_Power2() { |
545 | return cst_pred_ty<is_power2>(); |
546 | } |
547 | inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { |
548 | return V; |
549 | } |
550 | |
551 | struct is_negated_power2 { |
552 | bool isValue(const APInt &C) { return (-C).isPowerOf2(); } |
553 | }; |
554 | |
555 | |
556 | inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { |
557 | return cst_pred_ty<is_negated_power2>(); |
558 | } |
559 | inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { |
560 | return V; |
561 | } |
562 | |
563 | struct is_power2_or_zero { |
564 | bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } |
565 | }; |
566 | |
567 | |
568 | inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { |
569 | return cst_pred_ty<is_power2_or_zero>(); |
570 | } |
571 | inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { |
572 | return V; |
573 | } |
574 | |
575 | struct is_sign_mask { |
576 | bool isValue(const APInt &C) { return C.isSignMask(); } |
577 | }; |
578 | |
579 | |
580 | inline cst_pred_ty<is_sign_mask> m_SignMask() { |
581 | return cst_pred_ty<is_sign_mask>(); |
582 | } |
583 | |
584 | struct is_lowbit_mask { |
585 | bool isValue(const APInt &C) { return C.isMask(); } |
586 | }; |
587 | |
588 | |
589 | inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { |
590 | return cst_pred_ty<is_lowbit_mask>(); |
591 | } |
592 | |
593 | struct icmp_pred_with_threshold { |
594 | ICmpInst::Predicate Pred; |
595 | const APInt *Thr; |
596 | bool isValue(const APInt &C) { |
597 | switch (Pred) { |
598 | case ICmpInst::Predicate::ICMP_EQ: |
599 | return C.eq(*Thr); |
600 | case ICmpInst::Predicate::ICMP_NE: |
601 | return C.ne(*Thr); |
602 | case ICmpInst::Predicate::ICMP_UGT: |
603 | return C.ugt(*Thr); |
604 | case ICmpInst::Predicate::ICMP_UGE: |
605 | return C.uge(*Thr); |
606 | case ICmpInst::Predicate::ICMP_ULT: |
607 | return C.ult(*Thr); |
608 | case ICmpInst::Predicate::ICMP_ULE: |
609 | return C.ule(*Thr); |
610 | case ICmpInst::Predicate::ICMP_SGT: |
611 | return C.sgt(*Thr); |
612 | case ICmpInst::Predicate::ICMP_SGE: |
613 | return C.sge(*Thr); |
614 | case ICmpInst::Predicate::ICMP_SLT: |
615 | return C.slt(*Thr); |
616 | case ICmpInst::Predicate::ICMP_SLE: |
617 | return C.sle(*Thr); |
618 | default: |
619 | llvm_unreachable("Unhandled ICmp predicate"); |
620 | } |
621 | } |
622 | }; |
623 | |
624 | |
625 | inline cst_pred_ty<icmp_pred_with_threshold> |
626 | m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { |
627 | cst_pred_ty<icmp_pred_with_threshold> P; |
628 | P.Pred = Predicate; |
629 | P.Thr = &Threshold; |
630 | return P; |
631 | } |
632 | |
633 | struct is_nan { |
634 | bool isValue(const APFloat &C) { return C.isNaN(); } |
635 | }; |
636 | |
637 | |
638 | inline cstfp_pred_ty<is_nan> m_NaN() { |
639 | return cstfp_pred_ty<is_nan>(); |
640 | } |
641 | |
642 | struct is_nonnan { |
643 | bool isValue(const APFloat &C) { return !C.isNaN(); } |
644 | }; |
645 | |
646 | |
647 | inline cstfp_pred_ty<is_nonnan> m_NonNaN() { |
648 | return cstfp_pred_ty<is_nonnan>(); |
649 | } |
650 | |
651 | struct is_inf { |
652 | bool isValue(const APFloat &C) { return C.isInfinity(); } |
653 | }; |
654 | |
655 | |
656 | inline cstfp_pred_ty<is_inf> m_Inf() { |
657 | return cstfp_pred_ty<is_inf>(); |
658 | } |
659 | |
660 | struct is_noninf { |
661 | bool isValue(const APFloat &C) { return !C.isInfinity(); } |
662 | }; |
663 | |
664 | |
665 | inline cstfp_pred_ty<is_noninf> m_NonInf() { |
666 | return cstfp_pred_ty<is_noninf>(); |
667 | } |
668 | |
669 | struct is_finite { |
670 | bool isValue(const APFloat &C) { return C.isFinite(); } |
671 | }; |
672 | |
673 | |
674 | inline cstfp_pred_ty<is_finite> m_Finite() { |
675 | return cstfp_pred_ty<is_finite>(); |
676 | } |
677 | inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } |
678 | |
679 | struct is_finitenonzero { |
680 | bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } |
681 | }; |
682 | |
683 | |
684 | inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { |
685 | return cstfp_pred_ty<is_finitenonzero>(); |
686 | } |
687 | inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { |
688 | return V; |
689 | } |
690 | |
691 | struct is_any_zero_fp { |
692 | bool isValue(const APFloat &C) { return C.isZero(); } |
693 | }; |
694 | |
695 | |
696 | inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { |
697 | return cstfp_pred_ty<is_any_zero_fp>(); |
698 | } |
699 | |
700 | struct is_pos_zero_fp { |
701 | bool isValue(const APFloat &C) { return C.isPosZero(); } |
702 | }; |
703 | |
704 | |
705 | inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { |
706 | return cstfp_pred_ty<is_pos_zero_fp>(); |
707 | } |
708 | |
709 | struct is_neg_zero_fp { |
710 | bool isValue(const APFloat &C) { return C.isNegZero(); } |
711 | }; |
712 | |
713 | |
714 | inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { |
715 | return cstfp_pred_ty<is_neg_zero_fp>(); |
716 | } |
717 | |
718 | struct is_non_zero_fp { |
719 | bool isValue(const APFloat &C) { return C.isNonZero(); } |
720 | }; |
721 | |
722 | |
723 | inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { |
724 | return cstfp_pred_ty<is_non_zero_fp>(); |
725 | } |
726 | |
727 | |
728 | |
729 | template <typename Class> struct bind_ty { |
730 | Class *&VR; |
731 | |
732 | bind_ty(Class *&V) : VR(V) {} |
733 | |
734 | template <typename ITy> bool match(ITy *V) { |
735 | if (auto *CV = dyn_cast<Class>(V)) { |
736 | VR = CV; |
737 | return true; |
738 | } |
739 | return false; |
740 | } |
741 | }; |
742 | |
743 | |
744 | inline bind_ty<Value> m_Value(Value *&V) { return V; } |
| 51 | | Calling constructor for 'bind_ty<llvm::Value>' | |
|
| 52 | | Returning from constructor for 'bind_ty<llvm::Value>' | |
|
| 53 | | Returning without writing to 'V' | |
|
745 | inline bind_ty<const Value> m_Value(const Value *&V) { return V; } |
746 | |
747 | |
748 | inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } |
749 | |
750 | inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } |
751 | |
752 | inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } |
753 | |
754 | inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; } |
755 | inline bind_ty<const WithOverflowInst> |
756 | m_WithOverflowInst(const WithOverflowInst *&I) { |
757 | return I; |
758 | } |
759 | |
760 | |
761 | inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
762 | |
763 | |
764 | inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
765 | |
766 | |
767 | inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } |
768 | |
769 | |
770 | inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } |
771 | |
772 | |
773 | inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } |
774 | inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { |
775 | return V; |
776 | } |
777 | |
778 | |
779 | inline match_combine_and<class_match<Constant>, |
780 | match_unless<class_match<ConstantExpr>>> |
781 | m_ImmConstant() { |
782 | return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); |
783 | } |
784 | |
785 | |
786 | inline match_combine_and<bind_ty<Constant>, |
787 | match_unless<class_match<ConstantExpr>>> |
788 | m_ImmConstant(Constant *&C) { |
789 | return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); |
790 | } |
791 | |
792 | |
793 | struct specificval_ty { |
794 | const Value *Val; |
795 | |
796 | specificval_ty(const Value *V) : Val(V) {} |
797 | |
798 | template <typename ITy> bool match(ITy *V) { return V == Val; } |
799 | }; |
800 | |
801 | |
802 | inline specificval_ty m_Specific(const Value *V) { return V; } |
803 | |
804 | |
805 | |
806 | template <typename Class> struct deferredval_ty { |
807 | Class *const &Val; |
808 | |
809 | deferredval_ty(Class *const &V) : Val(V) {} |
810 | |
811 | template <typename ITy> bool match(ITy *const V) { return V == Val; } |
812 | }; |
813 | |
814 | |
815 | |
816 | |
817 | |
818 | |
819 | |
820 | inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } |
821 | inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { |
822 | return V; |
823 | } |
824 | |
825 | |
826 | |
827 | struct specific_fpval { |
828 | double Val; |
829 | |
830 | specific_fpval(double V) : Val(V) {} |
831 | |
832 | template <typename ITy> bool match(ITy *V) { |
833 | if (const auto *CFP = dyn_cast<ConstantFP>(V)) |
834 | return CFP->isExactlyValue(Val); |
835 | if (V->getType()->isVectorTy()) |
836 | if (const auto *C = dyn_cast<Constant>(V)) |
837 | if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
838 | return CFP->isExactlyValue(Val); |
839 | return false; |
840 | } |
841 | }; |
842 | |
843 | |
844 | |
845 | inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } |
846 | |
847 | |
848 | inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } |
849 | |
850 | struct bind_const_intval_ty { |
851 | uint64_t &VR; |
852 | |
853 | bind_const_intval_ty(uint64_t &V) : VR(V) {} |
854 | |
855 | template <typename ITy> bool match(ITy *V) { |
856 | if (const auto *CV = dyn_cast<ConstantInt>(V)) |
857 | if (CV->getValue().ule(UINT64_MAX)) { |
858 | VR = CV->getZExtValue(); |
859 | return true; |
860 | } |
861 | return false; |
862 | } |
863 | }; |
864 | |
865 | |
866 | |
867 | template <bool AllowUndefs> |
868 | struct specific_intval { |
869 | APInt Val; |
870 | |
871 | specific_intval(APInt V) : Val(std::move(V)) {} |
872 | |
873 | template <typename ITy> bool match(ITy *V) { |
874 | const auto *CI = dyn_cast<ConstantInt>(V); |
875 | if (!CI && V->getType()->isVectorTy()) |
876 | if (const auto *C = dyn_cast<Constant>(V)) |
877 | CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs)); |
878 | |
879 | return CI && APInt::isSameValue(CI->getValue(), Val); |
880 | } |
881 | }; |
882 | |
883 | |
884 | |
885 | inline specific_intval<false> m_SpecificInt(APInt V) { |
886 | return specific_intval<false>(std::move(V)); |
887 | } |
888 | |
889 | inline specific_intval<false> m_SpecificInt(uint64_t V) { |
890 | return m_SpecificInt(APInt(64, V)); |
891 | } |
892 | |
893 | inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) { |
894 | return specific_intval<true>(std::move(V)); |
895 | } |
896 | |
897 | inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) { |
898 | return m_SpecificIntAllowUndef(APInt(64, V)); |
899 | } |
900 | |
901 | |
902 | |
903 | inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
904 | |
905 | |
906 | struct specific_bbval { |
907 | BasicBlock *Val; |
908 | |
909 | specific_bbval(BasicBlock *Val) : Val(Val) {} |
910 | |
911 | template <typename ITy> bool match(ITy *V) { |
912 | const auto *BB = dyn_cast<BasicBlock>(V); |
913 | return BB && BB == Val; |
914 | } |
915 | }; |
916 | |
917 | |
918 | inline specific_bbval m_SpecificBB(BasicBlock *BB) { |
919 | return specific_bbval(BB); |
920 | } |
921 | |
922 | |
923 | inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { |
924 | return BB; |
925 | } |
926 | inline deferredval_ty<const BasicBlock> |
927 | m_Deferred(const BasicBlock *const &BB) { |
928 | return BB; |
929 | } |
930 | |
931 | |
932 | |
933 | |
934 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
935 | struct AnyBinaryOp_match { |
936 | LHS_t L; |
937 | RHS_t R; |
938 | |
939 | |
940 | |
941 | AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
942 | |
943 | template <typename OpTy> bool match(OpTy *V) { |
944 | if (auto *I = dyn_cast<BinaryOperator>(V)) |
945 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
946 | (Commutable && L.match(I->getOperand(1)) && |
947 | R.match(I->getOperand(0))); |
948 | return false; |
949 | } |
950 | }; |
951 | |
952 | template <typename LHS, typename RHS> |
953 | inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { |
954 | return AnyBinaryOp_match<LHS, RHS>(L, R); |
| 65 | | Returning without writing to 'R.R.VR' | |
|
955 | } |
956 | |
957 | |
958 | |
959 | |
960 | |
961 | template <typename OP_t> struct AnyUnaryOp_match { |
962 | OP_t X; |
963 | |
964 | AnyUnaryOp_match(const OP_t &X) : X(X) {} |
965 | |
966 | template <typename OpTy> bool match(OpTy *V) { |
967 | if (auto *I = dyn_cast<UnaryOperator>(V)) |
968 | return X.match(I->getOperand(0)); |
969 | return false; |
970 | } |
971 | }; |
972 | |
973 | template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { |
974 | return AnyUnaryOp_match<OP_t>(X); |
975 | } |
976 | |
977 | |
978 | |
979 | |
980 | |
981 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
982 | bool Commutable = false> |
983 | struct BinaryOp_match { |
984 | LHS_t L; |
985 | RHS_t R; |
986 | |
987 | |
988 | |
989 | BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
990 | |
991 | template <typename OpTy> bool match(OpTy *V) { |
992 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 37 | | Assuming the condition is true | |
|
| |
993 | auto *I = cast<BinaryOperator>(V); |
| 39 | | 'V' is a 'BinaryOperator' | |
|
994 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| 40 | | Returning the value 1, which participates in a condition later | |
|
995 | (Commutable && L.match(I->getOperand(1)) && |
996 | R.match(I->getOperand(0))); |
997 | } |
998 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
999 | return CE->getOpcode() == Opcode && |
1000 | ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || |
1001 | (Commutable && L.match(CE->getOperand(1)) && |
1002 | R.match(CE->getOperand(0)))); |
1003 | return false; |
1004 | } |
1005 | }; |
1006 | |
1007 | template <typename LHS, typename RHS> |
1008 | inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, |
1009 | const RHS &R) { |
1010 | return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
1011 | } |
1012 | |
1013 | template <typename LHS, typename RHS> |
1014 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, |
1015 | const RHS &R) { |
1016 | return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
1017 | } |
1018 | |
1019 | template <typename LHS, typename RHS> |
1020 | inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, |
1021 | const RHS &R) { |
1022 | return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
1023 | } |
1024 | |
1025 | template <typename LHS, typename RHS> |
1026 | inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, |
1027 | const RHS &R) { |
1028 | return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
1029 | } |
1030 | |
1031 | template <typename Op_t> struct FNeg_match { |
1032 | Op_t X; |
1033 | |
1034 | FNeg_match(const Op_t &Op) : X(Op) {} |
1035 | template <typename OpTy> bool match(OpTy *V) { |
1036 | auto *FPMO = dyn_cast<FPMathOperator>(V); |
1037 | if (!FPMO) return false; |
1038 | |
1039 | if (FPMO->getOpcode() == Instruction::FNeg) |
1040 | return X.match(FPMO->getOperand(0)); |
1041 | |
1042 | if (FPMO->getOpcode() == Instruction::FSub) { |
1043 | if (FPMO->hasNoSignedZeros()) { |
1044 | |
1045 | if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) |
1046 | return false; |
1047 | } else { |
1048 | |
1049 | if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) |
1050 | return false; |
1051 | } |
1052 | |
1053 | return X.match(FPMO->getOperand(1)); |
1054 | } |
1055 | |
1056 | return false; |
1057 | } |
1058 | }; |
1059 | |
1060 | |
1061 | template <typename OpTy> |
1062 | inline FNeg_match<OpTy> |
1063 | m_FNeg(const OpTy &X) { |
1064 | return FNeg_match<OpTy>(X); |
1065 | } |
1066 | |
1067 | |
1068 | template <typename RHS> |
1069 | inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> |
1070 | m_FNegNSZ(const RHS &X) { |
1071 | return m_FSub(m_AnyZeroFP(), X); |
1072 | } |
1073 | |
1074 | template <typename LHS, typename RHS> |
1075 | inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, |
1076 | const RHS &R) { |
1077 | return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
1078 | } |
1079 | |
1080 | template <typename LHS, typename RHS> |
1081 | inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, |
1082 | const RHS &R) { |
1083 | return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
1084 | } |
1085 | |
1086 | template <typename LHS, typename RHS> |
1087 | inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, |
1088 | const RHS &R) { |
1089 | return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
1090 | } |
1091 | |
1092 | template <typename LHS, typename RHS> |
1093 | inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, |
1094 | const RHS &R) { |
1095 | return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
1096 | } |
1097 | |
1098 | template <typename LHS, typename RHS> |
1099 | inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, |
1100 | const RHS &R) { |
1101 | return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
1102 | } |
1103 | |
1104 | template <typename LHS, typename RHS> |
1105 | inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, |
1106 | const RHS &R) { |
1107 | return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
1108 | } |
1109 | |
1110 | template <typename LHS, typename RHS> |
1111 | inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, |
1112 | const RHS &R) { |
1113 | return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
1114 | } |
1115 | |
1116 | template <typename LHS, typename RHS> |
1117 | inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, |
1118 | const RHS &R) { |
1119 | return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
1120 | } |
1121 | |
1122 | template <typename LHS, typename RHS> |
1123 | inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, |
1124 | const RHS &R) { |
1125 | return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
1126 | } |
1127 | |
1128 | template <typename LHS, typename RHS> |
1129 | inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, |
1130 | const RHS &R) { |
1131 | return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
1132 | } |
1133 | |
1134 | template <typename LHS, typename RHS> |
1135 | inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, |
1136 | const RHS &R) { |
1137 | return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
1138 | } |
1139 | |
1140 | template <typename LHS, typename RHS> |
1141 | inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, |
1142 | const RHS &R) { |
1143 | return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
1144 | } |
1145 | |
1146 | template <typename LHS, typename RHS> |
1147 | inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, |
1148 | const RHS &R) { |
1149 | return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
1150 | } |
1151 | |
1152 | template <typename LHS, typename RHS> |
1153 | inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, |
1154 | const RHS &R) { |
1155 | return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
1156 | } |
1157 | |
1158 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
1159 | unsigned WrapFlags = 0> |
1160 | struct OverflowingBinaryOp_match { |
1161 | LHS_t L; |
1162 | RHS_t R; |
1163 | |
1164 | OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) |
1165 | : L(LHS), R(RHS) {} |
1166 | |
1167 | template <typename OpTy> bool match(OpTy *V) { |
1168 | if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { |
1169 | if (Op->getOpcode() != Opcode) |
1170 | return false; |
1171 | if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && |
1172 | !Op->hasNoUnsignedWrap()) |
1173 | return false; |
1174 | if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && |
1175 | !Op->hasNoSignedWrap()) |
1176 | return false; |
1177 | return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); |
1178 | } |
1179 | return false; |
1180 | } |
1181 | }; |
1182 | |
1183 | template <typename LHS, typename RHS> |
1184 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
1185 | OverflowingBinaryOperator::NoSignedWrap> |
1186 | m_NSWAdd(const LHS &L, const RHS &R) { |
1187 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
1188 | OverflowingBinaryOperator::NoSignedWrap>( |
1189 | L, R); |
1190 | } |
1191 | template <typename LHS, typename RHS> |
1192 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
1193 | OverflowingBinaryOperator::NoSignedWrap> |
1194 | m_NSWSub(const LHS &L, const RHS &R) { |
1195 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
1196 | OverflowingBinaryOperator::NoSignedWrap>( |
1197 | L, R); |
1198 | } |
1199 | template <typename LHS, typename RHS> |
1200 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
1201 | OverflowingBinaryOperator::NoSignedWrap> |
1202 | m_NSWMul(const LHS &L, const RHS &R) { |
1203 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
1204 | OverflowingBinaryOperator::NoSignedWrap>( |
1205 | L, R); |
1206 | } |
1207 | template <typename LHS, typename RHS> |
1208 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
1209 | OverflowingBinaryOperator::NoSignedWrap> |
1210 | m_NSWShl(const LHS &L, const RHS &R) { |
1211 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
1212 | OverflowingBinaryOperator::NoSignedWrap>( |
1213 | L, R); |
1214 | } |
1215 | |
1216 | template <typename LHS, typename RHS> |
1217 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
1218 | OverflowingBinaryOperator::NoUnsignedWrap> |
1219 | m_NUWAdd(const LHS &L, const RHS &R) { |
1220 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
1221 | OverflowingBinaryOperator::NoUnsignedWrap>( |
1222 | L, R); |
1223 | } |
1224 | template <typename LHS, typename RHS> |
1225 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
1226 | OverflowingBinaryOperator::NoUnsignedWrap> |
1227 | m_NUWSub(const LHS &L, const RHS &R) { |
1228 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
1229 | OverflowingBinaryOperator::NoUnsignedWrap>( |
1230 | L, R); |
1231 | } |
1232 | template <typename LHS, typename RHS> |
1233 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
1234 | OverflowingBinaryOperator::NoUnsignedWrap> |
1235 | m_NUWMul(const LHS &L, const RHS &R) { |
1236 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
1237 | OverflowingBinaryOperator::NoUnsignedWrap>( |
1238 | L, R); |
1239 | } |
1240 | template <typename LHS, typename RHS> |
1241 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
1242 | OverflowingBinaryOperator::NoUnsignedWrap> |
1243 | m_NUWShl(const LHS &L, const RHS &R) { |
1244 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
1245 | OverflowingBinaryOperator::NoUnsignedWrap>( |
1246 | L, R); |
1247 | } |
1248 | |
1249 | |
1250 | |
1251 | |
1252 | template <typename LHS_t, typename RHS_t, typename Predicate> |
1253 | struct BinOpPred_match : Predicate { |
1254 | LHS_t L; |
1255 | RHS_t R; |
1256 | |
1257 | BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
1258 | |
1259 | template <typename OpTy> bool match(OpTy *V) { |
1260 | if (auto *I = dyn_cast<Instruction>(V)) |
1261 | return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && |
1262 | R.match(I->getOperand(1)); |
1263 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
1264 | return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && |
1265 | R.match(CE->getOperand(1)); |
1266 | return false; |
1267 | } |
1268 | }; |
1269 | |
1270 | struct is_shift_op { |
1271 | bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } |
1272 | }; |
1273 | |
1274 | struct is_right_shift_op { |
1275 | bool isOpType(unsigned Opcode) { |
1276 | return Opcode == Instruction::LShr || Opcode == Instruction::AShr; |
1277 | } |
1278 | }; |
1279 | |
1280 | struct is_logical_shift_op { |
1281 | bool isOpType(unsigned Opcode) { |
1282 | return Opcode == Instruction::LShr || Opcode == Instruction::Shl; |
1283 | } |
1284 | }; |
1285 | |
1286 | struct is_bitwiselogic_op { |
1287 | bool isOpType(unsigned Opcode) { |
1288 | return Instruction::isBitwiseLogicOp(Opcode); |
1289 | } |
1290 | }; |
1291 | |
1292 | struct is_idiv_op { |
1293 | bool isOpType(unsigned Opcode) { |
1294 | return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; |
1295 | } |
1296 | }; |
1297 | |
1298 | struct is_irem_op { |
1299 | bool isOpType(unsigned Opcode) { |
1300 | return Opcode == Instruction::SRem || Opcode == Instruction::URem; |
1301 | } |
1302 | }; |
1303 | |
1304 | |
1305 | template <typename LHS, typename RHS> |
1306 | inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, |
1307 | const RHS &R) { |
1308 | return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); |
1309 | } |
1310 | |
1311 | |
1312 | template <typename LHS, typename RHS> |
1313 | inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, |
1314 | const RHS &R) { |
1315 | return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); |
1316 | } |
1317 | |
1318 | |
1319 | template <typename LHS, typename RHS> |
1320 | inline BinOpPred_match<LHS, RHS, is_logical_shift_op> |
1321 | m_LogicalShift(const LHS &L, const RHS &R) { |
1322 | return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); |
1323 | } |
1324 | |
1325 | |
1326 | template <typename LHS, typename RHS> |
1327 | inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> |
1328 | m_BitwiseLogic(const LHS &L, const RHS &R) { |
1329 | return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); |
1330 | } |
1331 | |
1332 | |
1333 | template <typename LHS, typename RHS> |
1334 | inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, |
1335 | const RHS &R) { |
1336 | return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); |
1337 | } |
1338 | |
1339 | |
1340 | template <typename LHS, typename RHS> |
1341 | inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, |
1342 | const RHS &R) { |
1343 | return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); |
1344 | } |
1345 | |
1346 | |
1347 | |
1348 | |
1349 | template <typename SubPattern_t> struct Exact_match { |
1350 | SubPattern_t SubPattern; |
1351 | |
1352 | Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} |
1353 | |
1354 | template <typename OpTy> bool match(OpTy *V) { |
1355 | if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) |
1356 | return PEO->isExact() && SubPattern.match(V); |
1357 | return false; |
1358 | } |
1359 | }; |
1360 | |
1361 | template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { |
1362 | return SubPattern; |
1363 | } |
1364 | |
1365 | |
1366 | |
1367 | |
1368 | |
1369 | template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, |
1370 | bool Commutable = false> |
1371 | struct CmpClass_match { |
1372 | PredicateTy &Predicate; |
1373 | LHS_t L; |
1374 | RHS_t R; |
1375 | |
1376 | |
1377 | |
1378 | CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) |
1379 | : Predicate(Pred), L(LHS), R(RHS) {} |
1380 | |
1381 | template <typename OpTy> bool match(OpTy *V) { |
1382 | if (auto *I = dyn_cast<Class>(V)) { |
1383 | if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { |
1384 | Predicate = I->getPredicate(); |
1385 | return true; |
1386 | } else if (Commutable && L.match(I->getOperand(1)) && |
1387 | R.match(I->getOperand(0))) { |
1388 | Predicate = I->getSwappedPredicate(); |
1389 | return true; |
1390 | } |
1391 | } |
1392 | return false; |
1393 | } |
1394 | }; |
1395 | |
1396 | template <typename LHS, typename RHS> |
1397 | inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> |
1398 | m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
1399 | return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); |
1400 | } |
1401 | |
1402 | template <typename LHS, typename RHS> |
1403 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> |
1404 | m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
1405 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); |
1406 | } |
1407 | |
1408 | template <typename LHS, typename RHS> |
1409 | inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> |
1410 | m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
1411 | return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); |
1412 | } |
1413 | |
1414 | |
1415 | |
1416 | |
1417 | |
1418 | |
1419 | template <typename T0, unsigned Opcode> struct OneOps_match { |
1420 | T0 Op1; |
1421 | |
1422 | OneOps_match(const T0 &Op1) : Op1(Op1) {} |
1423 | |
1424 | template <typename OpTy> bool match(OpTy *V) { |
1425 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
1426 | auto *I = cast<Instruction>(V); |
1427 | return Op1.match(I->getOperand(0)); |
1428 | } |
1429 | return false; |
1430 | } |
1431 | }; |
1432 | |
1433 | |
1434 | template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { |
1435 | T0 Op1; |
1436 | T1 Op2; |
1437 | |
1438 | TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} |
1439 | |
1440 | template <typename OpTy> bool match(OpTy *V) { |
1441 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
1442 | auto *I = cast<Instruction>(V); |
1443 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); |
1444 | } |
1445 | return false; |
1446 | } |
1447 | }; |
1448 | |
1449 | |
1450 | template <typename T0, typename T1, typename T2, unsigned Opcode> |
1451 | struct ThreeOps_match { |
1452 | T0 Op1; |
1453 | T1 Op2; |
1454 | T2 Op3; |
1455 | |
1456 | ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) |
1457 | : Op1(Op1), Op2(Op2), Op3(Op3) {} |
1458 | |
1459 | template <typename OpTy> bool match(OpTy *V) { |
1460 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
1461 | auto *I = cast<Instruction>(V); |
1462 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
1463 | Op3.match(I->getOperand(2)); |
1464 | } |
1465 | return false; |
1466 | } |
1467 | }; |
1468 | |
1469 | |
1470 | template <typename Cond, typename LHS, typename RHS> |
1471 | inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> |
1472 | m_Select(const Cond &C, const LHS &L, const RHS &R) { |
1473 | return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); |
1474 | } |
1475 | |
1476 | |
1477 | |
1478 | template <int64_t L, int64_t R, typename Cond> |
1479 | inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, |
1480 | Instruction::Select> |
1481 | m_SelectCst(const Cond &C) { |
1482 | return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
1483 | } |
1484 | |
1485 | |
1486 | template <typename OpTy> |
1487 | inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { |
1488 | return OneOps_match<OpTy, Instruction::Freeze>(Op); |
1489 | } |
1490 | |
1491 | |
1492 | template <typename Val_t, typename Elt_t, typename Idx_t> |
1493 | inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> |
1494 | m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { |
1495 | return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( |
1496 | Val, Elt, Idx); |
1497 | } |
1498 | |
1499 | |
1500 | template <typename Val_t, typename Idx_t> |
1501 | inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> |
1502 | m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { |
1503 | return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); |
1504 | } |
1505 | |
1506 | |
1507 | template <typename T0, typename T1, typename T2> struct Shuffle_match { |
1508 | T0 Op1; |
1509 | T1 Op2; |
1510 | T2 Mask; |
1511 | |
1512 | Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) |
1513 | : Op1(Op1), Op2(Op2), Mask(Mask) {} |
1514 | |
1515 | template <typename OpTy> bool match(OpTy *V) { |
1516 | if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { |
1517 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
1518 | Mask.match(I->getShuffleMask()); |
1519 | } |
1520 | return false; |
1521 | } |
1522 | }; |
1523 | |
1524 | struct m_Mask { |
1525 | ArrayRef<int> &MaskRef; |
1526 | m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
1527 | bool match(ArrayRef<int> Mask) { |
1528 | MaskRef = Mask; |
1529 | return true; |
1530 | } |
1531 | }; |
1532 | |
1533 | struct m_ZeroMask { |
1534 | bool match(ArrayRef<int> Mask) { |
1535 | return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); |
1536 | } |
1537 | }; |
1538 | |
1539 | struct m_SpecificMask { |
1540 | ArrayRef<int> &MaskRef; |
1541 | m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
1542 | bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } |
1543 | }; |
1544 | |
1545 | struct m_SplatOrUndefMask { |
1546 | int &SplatIndex; |
1547 | m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {} |
1548 | bool match(ArrayRef<int> Mask) { |
1549 | auto First = find_if(Mask, [](int Elem) { return Elem != -1; }); |
1550 | if (First == Mask.end()) |
1551 | return false; |
1552 | SplatIndex = *First; |
1553 | return all_of(Mask, |
1554 | [First](int Elem) { return Elem == *First || Elem == -1; }); |
1555 | } |
1556 | }; |
1557 | |
1558 | |
1559 | template <typename V1_t, typename V2_t> |
1560 | inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> |
1561 | m_Shuffle(const V1_t &v1, const V2_t &v2) { |
1562 | return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); |
1563 | } |
1564 | |
1565 | template <typename V1_t, typename V2_t, typename Mask_t> |
1566 | inline Shuffle_match<V1_t, V2_t, Mask_t> |
1567 | m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { |
1568 | return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); |
1569 | } |
1570 | |
1571 | |
1572 | template <typename OpTy> |
1573 | inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { |
1574 | return OneOps_match<OpTy, Instruction::Load>(Op); |
1575 | } |
1576 | |
1577 | |
1578 | template <typename ValueOpTy, typename PointerOpTy> |
1579 | inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> |
1580 | m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { |
1581 | return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, |
1582 | PointerOp); |
1583 | } |
1584 | |
1585 | |
1586 | |
1587 | |
1588 | |
1589 | template <typename Op_t, unsigned Opcode> struct CastClass_match { |
1590 | Op_t Op; |
1591 | |
1592 | CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
1593 | |
1594 | template <typename OpTy> bool match(OpTy *V) { |
1595 | if (auto *O = dyn_cast<Operator>(V)) |
1596 | return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); |
1597 | return false; |
1598 | } |
1599 | }; |
1600 | |
1601 | |
1602 | template <typename OpTy> |
1603 | inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { |
1604 | return CastClass_match<OpTy, Instruction::BitCast>(Op); |
1605 | } |
1606 | |
1607 | |
1608 | template <typename OpTy> |
1609 | inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { |
1610 | return CastClass_match<OpTy, Instruction::PtrToInt>(Op); |
1611 | } |
1612 | |
1613 | |
1614 | template <typename OpTy> |
1615 | inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) { |
1616 | return CastClass_match<OpTy, Instruction::IntToPtr>(Op); |
1617 | } |
1618 | |
1619 | |
1620 | template <typename OpTy> |
1621 | inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { |
1622 | return CastClass_match<OpTy, Instruction::Trunc>(Op); |
1623 | } |
1624 | |
1625 | template <typename OpTy> |
1626 | inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy> |
1627 | m_TruncOrSelf(const OpTy &Op) { |
1628 | return m_CombineOr(m_Trunc(Op), Op); |
1629 | } |
1630 | |
1631 | |
1632 | template <typename OpTy> |
1633 | inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { |
1634 | return CastClass_match<OpTy, Instruction::SExt>(Op); |
1635 | } |
1636 | |
1637 | |
1638 | template <typename OpTy> |
1639 | inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { |
1640 | return CastClass_match<OpTy, Instruction::ZExt>(Op); |
| 57 | | Returning without writing to 'Op.VR' | |
|
1641 | } |
1642 | |
1643 | template <typename OpTy> |
1644 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy> |
1645 | m_ZExtOrSelf(const OpTy &Op) { |
1646 | return m_CombineOr(m_ZExt(Op), Op); |
| 56 | | Calling 'm_ZExt<llvm::PatternMatch::bind_ty<llvm::Value>>' | |
|
| 58 | | Returning from 'm_ZExt<llvm::PatternMatch::bind_ty<llvm::Value>>' | |
|
| 59 | | Calling 'm_CombineOr<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>' | |
|
| 61 | | Returning from 'm_CombineOr<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>' | |
|
| 62 | | Returning without writing to 'Op.VR' | |
|
1647 | } |
1648 | |
1649 | template <typename OpTy> |
1650 | inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy> |
1651 | m_SExtOrSelf(const OpTy &Op) { |
1652 | return m_CombineOr(m_SExt(Op), Op); |
1653 | } |
1654 | |
1655 | template <typename OpTy> |
1656 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
1657 | CastClass_match<OpTy, Instruction::SExt>> |
1658 | m_ZExtOrSExt(const OpTy &Op) { |
1659 | return m_CombineOr(m_ZExt(Op), m_SExt(Op)); |
1660 | } |
1661 | |
1662 | template <typename OpTy> |
1663 | inline match_combine_or< |
1664 | match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
1665 | CastClass_match<OpTy, Instruction::SExt>>, |
1666 | OpTy> |
1667 | m_ZExtOrSExtOrSelf(const OpTy &Op) { |
1668 | return m_CombineOr(m_ZExtOrSExt(Op), Op); |
1669 | } |
1670 | |
1671 | template <typename OpTy> |
1672 | inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { |
1673 | return CastClass_match<OpTy, Instruction::UIToFP>(Op); |
1674 | } |
1675 | |
1676 | template <typename OpTy> |
1677 | inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { |
1678 | return CastClass_match<OpTy, Instruction::SIToFP>(Op); |
1679 | } |
1680 | |
1681 | template <typename OpTy> |
1682 | inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) { |
1683 | return CastClass_match<OpTy, Instruction::FPToUI>(Op); |
1684 | } |
1685 | |
1686 | template <typename OpTy> |
1687 | inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) { |
1688 | return CastClass_match<OpTy, Instruction::FPToSI>(Op); |
1689 | } |
1690 | |
1691 | template <typename OpTy> |
1692 | inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { |
1693 | return CastClass_match<OpTy, Instruction::FPTrunc>(Op); |
1694 | } |
1695 | |
1696 | template <typename OpTy> |
1697 | inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { |
1698 | return CastClass_match<OpTy, Instruction::FPExt>(Op); |
1699 | } |
1700 | |
1701 | |
1702 | |
1703 | |
1704 | |
1705 | struct br_match { |
1706 | BasicBlock *&Succ; |
1707 | |
1708 | br_match(BasicBlock *&Succ) : Succ(Succ) {} |
1709 | |
1710 | template <typename OpTy> bool match(OpTy *V) { |
1711 | if (auto *BI = dyn_cast<BranchInst>(V)) |
1712 | if (BI->isUnconditional()) { |
1713 | Succ = BI->getSuccessor(0); |
1714 | return true; |
1715 | } |
1716 | return false; |
1717 | } |
1718 | }; |
1719 | |
1720 | inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } |
1721 | |
1722 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
1723 | struct brc_match { |
1724 | Cond_t Cond; |
1725 | TrueBlock_t T; |
1726 | FalseBlock_t F; |
1727 | |
1728 | brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) |
1729 | : Cond(C), T(t), F(f) {} |
1730 | |
1731 | template <typename OpTy> bool match(OpTy *V) { |
1732 | if (auto *BI = dyn_cast<BranchInst>(V)) |
1733 | if (BI->isConditional() && Cond.match(BI->getCondition())) |
1734 | return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); |
1735 | return false; |
1736 | } |
1737 | }; |
1738 | |
1739 | template <typename Cond_t> |
1740 | inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> |
1741 | m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
1742 | return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( |
1743 | C, m_BasicBlock(T), m_BasicBlock(F)); |
1744 | } |
1745 | |
1746 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
1747 | inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> |
1748 | m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { |
1749 | return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); |
1750 | } |
1751 | |
1752 | |
1753 | |
1754 | |
1755 | |
1756 | template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, |
1757 | bool Commutable = false> |
1758 | struct MaxMin_match { |
1759 | using PredType = Pred_t; |
1760 | LHS_t L; |
1761 | RHS_t R; |
1762 | |
1763 | |
1764 | |
1765 | MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
1766 | |
1767 | template <typename OpTy> bool match(OpTy *V) { |
1768 | if (auto *II = dyn_cast<IntrinsicInst>(V)) { |
1769 | Intrinsic::ID IID = II->getIntrinsicID(); |
1770 | if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || |
1771 | (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || |
1772 | (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || |
1773 | (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { |
1774 | Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); |
1775 | return (L.match(LHS) && R.match(RHS)) || |
1776 | (Commutable && L.match(RHS) && R.match(LHS)); |
1777 | } |
1778 | } |
1779 | |
1780 | auto *SI = dyn_cast<SelectInst>(V); |
1781 | if (!SI) |
1782 | return false; |
1783 | auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); |
1784 | if (!Cmp) |
1785 | return false; |
1786 | |
1787 | |
1788 | auto *TrueVal = SI->getTrueValue(); |
1789 | auto *FalseVal = SI->getFalseValue(); |
1790 | auto *LHS = Cmp->getOperand(0); |
1791 | auto *RHS = Cmp->getOperand(1); |
1792 | if ((TrueVal != LHS || FalseVal != RHS) && |
1793 | (TrueVal != RHS || FalseVal != LHS)) |
1794 | return false; |
1795 | typename CmpInst_t::Predicate Pred = |
1796 | LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
1797 | |
1798 | if (!Pred_t::match(Pred)) |
1799 | return false; |
1800 | |
1801 | return (L.match(LHS) && R.match(RHS)) || |
1802 | (Commutable && L.match(RHS) && R.match(LHS)); |
1803 | } |
1804 | }; |
1805 | |
1806 | |
1807 | struct smax_pred_ty { |
1808 | static bool match(ICmpInst::Predicate Pred) { |
1809 | return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
1810 | } |
1811 | }; |
1812 | |
1813 | |
1814 | struct smin_pred_ty { |
1815 | static bool match(ICmpInst::Predicate Pred) { |
1816 | return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
1817 | } |
1818 | }; |
1819 | |
1820 | |
1821 | struct umax_pred_ty { |
1822 | static bool match(ICmpInst::Predicate Pred) { |
1823 | return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
1824 | } |
1825 | }; |
1826 | |
1827 | |
1828 | struct umin_pred_ty { |
1829 | static bool match(ICmpInst::Predicate Pred) { |
1830 | return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
1831 | } |
1832 | }; |
1833 | |
1834 | |
1835 | struct ofmax_pred_ty { |
1836 | static bool match(FCmpInst::Predicate Pred) { |
1837 | return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; |
1838 | } |
1839 | }; |
1840 | |
1841 | |
1842 | struct ofmin_pred_ty { |
1843 | static bool match(FCmpInst::Predicate Pred) { |
1844 | return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; |
1845 | } |
1846 | }; |
1847 | |
1848 | |
1849 | struct ufmax_pred_ty { |
1850 | static bool match(FCmpInst::Predicate Pred) { |
1851 | return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; |
1852 | } |
1853 | }; |
1854 | |
1855 | |
1856 | struct ufmin_pred_ty { |
1857 | static bool match(FCmpInst::Predicate Pred) { |
1858 | return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; |
1859 | } |
1860 | }; |
1861 | |
1862 | template <typename LHS, typename RHS> |
1863 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, |
1864 | const RHS &R) { |
1865 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); |
1866 | } |
1867 | |
1868 | template <typename LHS, typename RHS> |
1869 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, |
1870 | const RHS &R) { |
1871 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); |
1872 | } |
1873 | |
1874 | template <typename LHS, typename RHS> |
1875 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, |
1876 | const RHS &R) { |
1877 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); |
1878 | } |
1879 | |
1880 | template <typename LHS, typename RHS> |
1881 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, |
1882 | const RHS &R) { |
1883 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); |
1884 | } |
1885 | |
1886 | template <typename LHS, typename RHS> |
1887 | inline match_combine_or< |
1888 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, |
1889 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, |
1890 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, |
1891 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> |
1892 | m_MaxOrMin(const LHS &L, const RHS &R) { |
1893 | return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), |
1894 | m_CombineOr(m_UMax(L, R), m_UMin(L, R))); |
1895 | } |
1896 | |
1897 | |
1898 | |
1899 | |
1900 | |
1901 | |
1902 | |
1903 | |
1904 | |
1905 | |
1906 | template <typename LHS, typename RHS> |
1907 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, |
1908 | const RHS &R) { |
1909 | return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); |
1910 | } |
1911 | |
1912 | |
1913 | |
1914 | |
1915 | |
1916 | |
1917 | |
1918 | |
1919 | |
1920 | |
1921 | template <typename LHS, typename RHS> |
1922 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, |
1923 | const RHS &R) { |
1924 | return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); |
1925 | } |
1926 | |
1927 | |
1928 | |
1929 | |
1930 | |
1931 | |
1932 | |
1933 | |
1934 | |
1935 | |
1936 | template <typename LHS, typename RHS> |
1937 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> |
1938 | m_UnordFMax(const LHS &L, const RHS &R) { |
1939 | return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); |
1940 | } |
1941 | |
1942 | |
1943 | |
1944 | |
1945 | |
1946 | |
1947 | |
1948 | |
1949 | |
1950 | |
1951 | template <typename LHS, typename RHS> |
1952 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> |
1953 | m_UnordFMin(const LHS &L, const RHS &R) { |
1954 | return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); |
1955 | } |
1956 | |
1957 | |
1958 | |
1959 | |
1960 | |
1961 | |
1962 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
1963 | struct UAddWithOverflow_match { |
1964 | LHS_t L; |
1965 | RHS_t R; |
1966 | Sum_t S; |
1967 | |
1968 | UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) |
1969 | : L(L), R(R), S(S) {} |
1970 | |
1971 | template <typename OpTy> bool match(OpTy *V) { |
1972 | Value *ICmpLHS, *ICmpRHS; |
1973 | ICmpInst::Predicate Pred; |
1974 | if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) |
1975 | return false; |
1976 | |
1977 | Value *AddLHS, *AddRHS; |
1978 | auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); |
1979 | |
1980 | |
1981 | if (Pred == ICmpInst::ICMP_ULT) |
1982 | if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) |
1983 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
1984 | |
1985 | |
1986 | if (Pred == ICmpInst::ICMP_UGT) |
1987 | if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) |
1988 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
1989 | |
1990 | Value *Op1; |
1991 | auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes())); |
1992 | |
1993 | if (Pred == ICmpInst::ICMP_ULT) { |
1994 | if (XorExpr.match(ICmpLHS)) |
1995 | return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); |
1996 | } |
1997 | |
1998 | if (Pred == ICmpInst::ICMP_UGT) { |
1999 | if (XorExpr.match(ICmpRHS)) |
2000 | return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); |
2001 | } |
2002 | |
2003 | |
2004 | if (Pred == ICmpInst::ICMP_EQ) { |
2005 | |
2006 | |
2007 | if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && |
2008 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
2009 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
2010 | |
2011 | |
2012 | if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && |
2013 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
2014 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
2015 | } |
2016 | |
2017 | return false; |
2018 | } |
2019 | }; |
2020 | |
2021 | |
2022 | |
2023 | |
2024 | |
2025 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
2026 | UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> |
2027 | m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { |
2028 | return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); |
2029 | } |
2030 | |
2031 | template <typename Opnd_t> struct Argument_match { |
2032 | unsigned OpI; |
2033 | Opnd_t Val; |
2034 | |
2035 | Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
2036 | |
2037 | template <typename OpTy> bool match(OpTy *V) { |
2038 | |
2039 | if (const auto *CI = dyn_cast<CallInst>(V)) |
2040 | return Val.match(CI->getArgOperand(OpI)); |
2041 | return false; |
2042 | } |
2043 | }; |
2044 | |
2045 | |
2046 | template <unsigned OpI, typename Opnd_t> |
2047 | inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
2048 | return Argument_match<Opnd_t>(OpI, Op); |
2049 | } |
2050 | |
2051 | |
2052 | struct IntrinsicID_match { |
2053 | unsigned ID; |
2054 | |
2055 | IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
2056 | |
2057 | template <typename OpTy> bool match(OpTy *V) { |
2058 | if (const auto *CI = dyn_cast<CallInst>(V)) |
2059 | if (const auto *F = CI->getCalledFunction()) |
2060 | return F->getIntrinsicID() == ID; |
2061 | return false; |
2062 | } |
2063 | }; |
2064 | |
2065 | |
2066 | |
2067 | |
2068 | |
2069 | template <typename T0 = void, typename T1 = void, typename T2 = void, |
2070 | typename T3 = void, typename T4 = void, typename T5 = void, |
2071 | typename T6 = void, typename T7 = void, typename T8 = void, |
2072 | typename T9 = void, typename T10 = void> |
2073 | struct m_Intrinsic_Ty; |
2074 | template <typename T0> struct m_Intrinsic_Ty<T0> { |
2075 | using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
2076 | }; |
2077 | template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
2078 | using Ty = |
2079 | match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
2080 | }; |
2081 | template <typename T0, typename T1, typename T2> |
2082 | struct m_Intrinsic_Ty<T0, T1, T2> { |
2083 | using Ty = |
2084 | match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
2085 | Argument_match<T2>>; |
2086 | }; |
2087 | template <typename T0, typename T1, typename T2, typename T3> |
2088 | struct m_Intrinsic_Ty<T0, T1, T2, T3> { |
2089 | using Ty = |
2090 | match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
2091 | Argument_match<T3>>; |
2092 | }; |
2093 | |
2094 | template <typename T0, typename T1, typename T2, typename T3, typename T4> |
2095 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { |
2096 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, |
2097 | Argument_match<T4>>; |
2098 | }; |
2099 | |
2100 | template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5> |
2101 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { |
2102 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, |
2103 | Argument_match<T5>>; |
2104 | }; |
2105 | |
2106 | |
2107 | |
2108 | template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
2109 | return IntrinsicID_match(IntrID); |
2110 | } |
2111 | |
2112 | |
2113 | template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> |
2114 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty |
2115 | m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, |
2116 | const Opnd3 &Op3) { |
2117 | return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); |
2118 | } |
2119 | |
2120 | template <Intrinsic::ID IntrID, typename T0> |
2121 | inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
2122 | return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
2123 | } |
2124 | |
2125 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
2126 | inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
2127 | const T1 &Op1) { |
2128 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
2129 | } |
2130 | |
2131 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
2132 | inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
2133 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
2134 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
2135 | } |
2136 | |
2137 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
2138 | typename T3> |
2139 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
2140 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
2141 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
2142 | } |
2143 | |
2144 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
2145 | typename T3, typename T4> |
2146 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty |
2147 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
2148 | const T4 &Op4) { |
2149 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), |
2150 | m_Argument<4>(Op4)); |
2151 | } |
2152 | |
2153 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
2154 | typename T3, typename T4, typename T5> |
2155 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty |
2156 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
2157 | const T4 &Op4, const T5 &Op5) { |
2158 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), |
2159 | m_Argument<5>(Op5)); |
2160 | } |
2161 | |
2162 | |
2163 | template <typename Opnd0> |
2164 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { |
2165 | return m_Intrinsic<Intrinsic::bitreverse>(Op0); |
2166 | } |
2167 | |
2168 | template <typename Opnd0> |
2169 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { |
2170 | return m_Intrinsic<Intrinsic::bswap>(Op0); |
2171 | } |
2172 | |
2173 | template <typename Opnd0> |
2174 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { |
2175 | return m_Intrinsic<Intrinsic::fabs>(Op0); |
2176 | } |
2177 | |
2178 | template <typename Opnd0> |
2179 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { |
2180 | return m_Intrinsic<Intrinsic::canonicalize>(Op0); |
2181 | } |
2182 | |
2183 | template <typename Opnd0, typename Opnd1> |
2184 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, |
2185 | const Opnd1 &Op1) { |
2186 | return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); |
2187 | } |
2188 | |
2189 | template <typename Opnd0, typename Opnd1> |
2190 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, |
2191 | const Opnd1 &Op1) { |
2192 | return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); |
2193 | } |
2194 | |
2195 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
2196 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
2197 | m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
2198 | return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); |
2199 | } |
2200 | |
2201 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
2202 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
2203 | m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
2204 | return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); |
2205 | } |
2206 | |
2207 | |
2208 | |
2209 | |
2210 | |
2211 | |
2212 | template <typename LHS, typename RHS> |
2213 | inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { |
2214 | return AnyBinaryOp_match<LHS, RHS, true>(L, R); |
2215 | } |
2216 | |
2217 | |
2218 | |
2219 | template <typename LHS, typename RHS> |
2220 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> |
2221 | m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
2222 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, |
2223 | R); |
2224 | } |
2225 | |
2226 | |
2227 | template <typename LHS, typename RHS> |
2228 | inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, |
2229 | const RHS &R) { |
2230 | return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); |
2231 | } |
2232 | |
2233 | |
2234 | template <typename LHS, typename RHS> |
2235 | inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, |
2236 | const RHS &R) { |
2237 | return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); |
2238 | } |
2239 | |
2240 | |
2241 | template <typename LHS, typename RHS> |
2242 | inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, |
2243 | const RHS &R) { |
2244 | return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); |
2245 | } |
2246 | |
2247 | |
2248 | template <typename LHS, typename RHS> |
2249 | inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, |
2250 | const RHS &R) { |
2251 | return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
2252 | } |
2253 | |
2254 | |
2255 | template <typename LHS, typename RHS> |
2256 | inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, |
2257 | const RHS &R) { |
2258 | return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); |
2259 | } |
2260 | |
2261 | |
2262 | template <typename ValTy> |
2263 | inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> |
2264 | m_Neg(const ValTy &V) { |
2265 | return m_Sub(m_ZeroInt(), V); |
2266 | } |
2267 | |
2268 | |
2269 | template <typename ValTy> |
2270 | inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, |
2271 | Instruction::Sub, |
2272 | OverflowingBinaryOperator::NoSignedWrap> |
2273 | m_NSWNeg(const ValTy &V) { |
2274 | return m_NSWSub(m_ZeroInt(), V); |
2275 | } |
2276 | |
2277 | |
2278 | template <typename ValTy> |
2279 | inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true> |
2280 | m_Not(const ValTy &V) { |
2281 | return m_c_Xor(V, m_AllOnes()); |
2282 | } |
2283 | |
2284 | |
2285 | template <typename LHS, typename RHS> |
2286 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> |
2287 | m_c_SMin(const LHS &L, const RHS &R) { |
2288 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); |
2289 | } |
2290 | |
2291 | template <typename LHS, typename RHS> |
2292 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> |
2293 | m_c_SMax(const LHS &L, const RHS &R) { |
2294 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); |
2295 | } |
2296 | |
2297 | template <typename LHS, typename RHS> |
2298 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> |
2299 | m_c_UMin(const LHS &L, const RHS &R) { |
2300 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); |
2301 | } |
2302 | |
2303 | template <typename LHS, typename RHS> |
2304 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> |
2305 | m_c_UMax(const LHS &L, const RHS &R) { |
2306 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); |
2307 | } |
2308 | |
2309 | template <typename LHS, typename RHS> |
2310 | inline match_combine_or< |
2311 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, |
2312 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, |
2313 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, |
2314 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> |
2315 | m_c_MaxOrMin(const LHS &L, const RHS &R) { |
2316 | return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), |
2317 | m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); |
2318 | } |
2319 | |
2320 | |
2321 | template <typename LHS, typename RHS> |
2322 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> |
2323 | m_c_FAdd(const LHS &L, const RHS &R) { |
2324 | return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); |
2325 | } |
2326 | |
2327 | |
2328 | template <typename LHS, typename RHS> |
2329 | inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> |
2330 | m_c_FMul(const LHS &L, const RHS &R) { |
2331 | return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); |
2332 | } |
2333 | |
2334 | template <typename Opnd_t> struct Signum_match { |
2335 | Opnd_t Val; |
2336 | Signum_match(const Opnd_t &V) : Val(V) {} |
2337 | |
2338 | template <typename OpTy> bool match(OpTy *V) { |
2339 | unsigned TypeSize = V->getType()->getScalarSizeInBits(); |
2340 | if (TypeSize == 0) |
2341 | return false; |
2342 | |
2343 | unsigned ShiftWidth = TypeSize - 1; |
2344 | Value *OpL = nullptr, *OpR = nullptr; |
2345 | |
2346 | |
2347 | |
2348 | |
2349 | |
2350 | |
2351 | |
2352 | |
2353 | |
2354 | |
2355 | |
2356 | auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); |
2357 | auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); |
2358 | auto Signum = m_Or(LHS, RHS); |
2359 | |
2360 | return Signum.match(V) && OpL == OpR && Val.match(OpL); |
2361 | } |
2362 | }; |
2363 | |
2364 | |
2365 | |
2366 | |
2367 | |
2368 | |
2369 | |
2370 | template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { |
2371 | return Signum_match<Val_t>(V); |
2372 | } |
2373 | |
2374 | template <int Ind, typename Opnd_t> struct ExtractValue_match { |
2375 | Opnd_t Val; |
2376 | ExtractValue_match(const Opnd_t &V) : Val(V) {} |
2377 | |
2378 | template <typename OpTy> bool match(OpTy *V) { |
2379 | if (auto *I = dyn_cast<ExtractValueInst>(V)) { |
2380 | |
2381 | if (Ind != -1 && |
2382 | !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) |
2383 | return false; |
2384 | return Val.match(I->getAggregateOperand()); |
2385 | } |
2386 | return false; |
2387 | } |
2388 | }; |
2389 | |
2390 | |
2391 | |
2392 | template <int Ind, typename Val_t> |
2393 | inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { |
2394 | return ExtractValue_match<Ind, Val_t>(V); |
2395 | } |
2396 | |
2397 | |
2398 | |
2399 | template <typename Val_t> |
2400 | inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { |
2401 | return ExtractValue_match<-1, Val_t>(V); |
2402 | } |
2403 | |
2404 | |
2405 | template <int Ind, typename T0, typename T1> struct InsertValue_match { |
2406 | T0 Op0; |
2407 | T1 Op1; |
2408 | |
2409 | InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} |
2410 | |
2411 | template <typename OpTy> bool match(OpTy *V) { |
2412 | if (auto *I = dyn_cast<InsertValueInst>(V)) { |
2413 | return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && |
2414 | I->getNumIndices() == 1 && Ind == I->getIndices()[0]; |
2415 | } |
2416 | return false; |
2417 | } |
2418 | }; |
2419 | |
2420 | |
2421 | template <int Ind, typename Val_t, typename Elt_t> |
2422 | inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, |
2423 | const Elt_t &Elt) { |
2424 | return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); |
2425 | } |
2426 | |
2427 | |
2428 | |
2429 | |
2430 | |
2431 | struct VScaleVal_match { |
2432 | const DataLayout &DL; |
2433 | VScaleVal_match(const DataLayout &DL) : DL(DL) {} |
2434 | |
2435 | template <typename ITy> bool match(ITy *V) { |
2436 | if (m_Intrinsic<Intrinsic::vscale>().match(V)) |
2437 | return true; |
2438 | |
2439 | Value *Ptr; |
2440 | if (m_PtrToInt(m_Value(Ptr)).match(V)) { |
2441 | if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { |
2442 | auto *DerefTy = GEP->getSourceElementType(); |
2443 | if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) && |
2444 | m_Zero().match(GEP->getPointerOperand()) && |
2445 | m_SpecificInt(1).match(GEP->idx_begin()->get()) && |
2446 | DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8) |
2447 | return true; |
2448 | } |
2449 | } |
2450 | |
2451 | return false; |
2452 | } |
2453 | }; |
2454 | |
2455 | inline VScaleVal_match m_VScale(const DataLayout &DL) { |
2456 | return VScaleVal_match(DL); |
2457 | } |
2458 | |
2459 | template <typename LHS, typename RHS, unsigned Opcode> |
2460 | struct LogicalOp_match { |
2461 | LHS L; |
2462 | RHS R; |
2463 | |
2464 | LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} |
2465 | |
2466 | template <typename T> bool match(T *V) { |
2467 | if (auto *I = dyn_cast<Instruction>(V)) { |
2468 | if (!I->getType()->isIntOrIntVectorTy(1)) |
2469 | return false; |
2470 | |
2471 | if (I->getOpcode() == Opcode && L.match(I->getOperand(0)) && |
2472 | R.match(I->getOperand(1))) |
2473 | return true; |
2474 | |
2475 | if (auto *SI = dyn_cast<SelectInst>(I)) { |
2476 | if (Opcode == Instruction::And) { |
2477 | if (const auto *C = dyn_cast<Constant>(SI->getFalseValue())) |
2478 | if (C->isNullValue() && L.match(SI->getCondition()) && |
2479 | R.match(SI->getTrueValue())) |
2480 | return true; |
2481 | } else { |
2482 | assert(Opcode == Instruction::Or); |
2483 | if (const auto *C = dyn_cast<Constant>(SI->getTrueValue())) |
2484 | if (C->isOneValue() && L.match(SI->getCondition()) && |
2485 | R.match(SI->getFalseValue())) |
2486 | return true; |
2487 | } |
2488 | } |
2489 | } |
2490 | |
2491 | return false; |
2492 | } |
2493 | }; |
2494 | |
2495 | |
2496 | |
2497 | template <typename LHS, typename RHS> |
2498 | inline LogicalOp_match<LHS, RHS, Instruction::And> |
2499 | m_LogicalAnd(const LHS &L, const RHS &R) { |
2500 | return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); |
2501 | } |
2502 | |
2503 | |
2504 | inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } |
2505 | |
2506 | |
2507 | |
2508 | template <typename LHS, typename RHS> |
2509 | inline LogicalOp_match<LHS, RHS, Instruction::Or> |
2510 | m_LogicalOr(const LHS &L, const RHS &R) { |
2511 | return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); |
2512 | } |
2513 | |
2514 | |
2515 | inline auto m_LogicalOr() { |
2516 | return m_LogicalOr(m_Value(), m_Value()); |
2517 | } |
2518 | |
2519 | } |
2520 | } |
2521 | |
2522 | #endif // LLVM_IR_PATTERNMATCH_H |