File: | src/usr.sbin/dvmrpd/rde_mfc.c |
Warning: | line 440, column 7 Result of 'calloc' is converted to a pointer of type 'struct prune_node', which is incompatible with sizeof operand type 'struct prune' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: rde_mfc.c,v 1.10 2015/12/07 19:14:49 mmcc Exp $ */ |
2 | |
3 | /* |
4 | * Copyright (c) 2009 Michele Marchetto <michele@openbsd.org> |
5 | * Copyright (c) 2006 Esben Norby <norby@openbsd.org> |
6 | * |
7 | * Permission to use, copy, modify, and distribute this software for any |
8 | * purpose with or without fee is hereby granted, provided that the above |
9 | * copyright notice and this permission notice appear in all copies. |
10 | * |
11 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
12 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
13 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
14 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
15 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
16 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
17 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
18 | */ |
19 | |
20 | #include <sys/types.h> |
21 | #include <sys/socket.h> |
22 | #include <sys/tree.h> |
23 | #include <netinet/in.h> |
24 | #include <arpa/inet.h> |
25 | #include <err.h> |
26 | #include <stdlib.h> |
27 | #include <string.h> |
28 | |
29 | #include "igmp.h" |
30 | #include "dvmrp.h" |
31 | #include "dvmrpd.h" |
32 | #include "log.h" |
33 | #include "dvmrpe.h" |
34 | #include "rde.h" |
35 | |
36 | /* multicast forwarding cache */ |
37 | |
38 | void mfc_send_prune(struct rt_node *, struct mfc_node *); |
39 | void mfc_add_prune(struct mfc_node *, struct prune *); |
40 | struct prune_node *mfc_find_prune(struct mfc_node *, struct prune *); |
41 | void mfc_delete_prune(struct mfc_node *, |
42 | struct prune_node *); |
43 | |
44 | int prune_compare(struct mfc_node *, struct rt_node *, int); |
45 | void prune_expire_timer(int, short, void *); |
46 | int mfc_reset_prune_expire_timer(struct prune_node *); |
47 | |
48 | |
49 | void mfc_expire_timer(int, short, void *); |
50 | int mfc_start_expire_timer(struct mfc_node *); |
51 | int mfc_reset_expire_timer(struct mfc_node *); |
52 | void mfc_prune_timer(int, short, void *); |
53 | int mfc_start_prune_timer(struct mfc_node *); |
54 | int mfc_reset_prune_timer(struct mfc_node *); |
55 | |
56 | int mfc_compare(struct mfc_node *, struct mfc_node *); |
57 | void mfc_invalidate(void); |
58 | |
59 | RB_HEAD(mfc_tree, mfc_node)struct mfc_tree { struct mfc_node *rbh_root; } mfc; |
60 | RB_PROTOTYPE(mfc_tree, mfc_node, entry, mfc_compare)void mfc_tree_RB_INSERT_COLOR(struct mfc_tree *, struct mfc_node *); void mfc_tree_RB_REMOVE_COLOR(struct mfc_tree *, struct mfc_node *, struct mfc_node *); struct mfc_node *mfc_tree_RB_REMOVE(struct mfc_tree *, struct mfc_node *); struct mfc_node *mfc_tree_RB_INSERT (struct mfc_tree *, struct mfc_node *); struct mfc_node *mfc_tree_RB_FIND (struct mfc_tree *, struct mfc_node *); struct mfc_node *mfc_tree_RB_NFIND (struct mfc_tree *, struct mfc_node *); struct mfc_node *mfc_tree_RB_NEXT (struct mfc_node *); struct mfc_node *mfc_tree_RB_PREV(struct mfc_node *); struct mfc_node *mfc_tree_RB_MINMAX(struct mfc_tree *, int); |
61 | RB_GENERATE(mfc_tree, mfc_node, entry, mfc_compare)void mfc_tree_RB_INSERT_COLOR(struct mfc_tree *head, struct mfc_node *elm) { struct mfc_node *parent, *gparent, *tmp; while ((parent = (elm)->entry.rbe_parent) && (parent)->entry. rbe_color == 1) { gparent = (parent)->entry.rbe_parent; if (parent == (gparent)->entry.rbe_left) { tmp = (gparent)-> entry.rbe_right; if (tmp && (tmp)->entry.rbe_color == 1) { (tmp)->entry.rbe_color = 0; do { (parent)->entry .rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0 ); elm = gparent; continue; } if ((parent)->entry.rbe_right == elm) { do { (tmp) = (parent)->entry.rbe_right; if (((parent )->entry.rbe_right = (tmp)->entry.rbe_left)) { ((tmp)-> entry.rbe_left)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while ( 0); } while (0); tmp = parent; parent = elm; elm = tmp; } do { (parent)->entry.rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0); do { (tmp) = (gparent)->entry.rbe_left; if (((gparent)->entry.rbe_left = (tmp)->entry.rbe_right )) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (gparent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (gparent )->entry.rbe_parent)) { if ((gparent) == ((gparent)->entry .rbe_parent)->entry.rbe_left) ((gparent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((gparent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_right = (gparent); (gparent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); } else { tmp = (gparent)-> entry.rbe_left; if (tmp && (tmp)->entry.rbe_color == 1) { (tmp)->entry.rbe_color = 0; do { (parent)->entry. rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0) ; elm = gparent; continue; } if ((parent)->entry.rbe_left == elm) { do { (tmp) = (parent)->entry.rbe_left; if (((parent )->entry.rbe_left = (tmp)->entry.rbe_right)) { ((tmp)-> entry.rbe_right)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_right = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while (0); } while (0); tmp = parent; parent = elm; elm = tmp; } do { (parent)->entry.rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0); do { (tmp) = (gparent)->entry.rbe_right ; if (((gparent)->entry.rbe_right = (tmp)->entry.rbe_left )) { ((tmp)->entry.rbe_left)->entry.rbe_parent = (gparent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (gparent )->entry.rbe_parent)) { if ((gparent) == ((gparent)->entry .rbe_parent)->entry.rbe_left) ((gparent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((gparent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_left = (gparent); (gparent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); } } (head->rbh_root)-> entry.rbe_color = 0; } void mfc_tree_RB_REMOVE_COLOR(struct mfc_tree *head, struct mfc_node *parent, struct mfc_node *elm) { struct mfc_node *tmp; while ((elm == ((void *)0) || (elm)->entry .rbe_color == 0) && elm != (head)->rbh_root) { if ( (parent)->entry.rbe_left == elm) { tmp = (parent)->entry .rbe_right; if ((tmp)->entry.rbe_color == 1) { do { (tmp)-> entry.rbe_color = 0; (parent)->entry.rbe_color = 1; } while (0); do { (tmp) = (parent)->entry.rbe_right; if (((parent )->entry.rbe_right = (tmp)->entry.rbe_left)) { ((tmp)-> entry.rbe_left)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while ( 0); } while (0); tmp = (parent)->entry.rbe_right; } if ((( tmp)->entry.rbe_left == ((void *)0) || ((tmp)->entry.rbe_left )->entry.rbe_color == 0) && ((tmp)->entry.rbe_right == ((void *)0) || ((tmp)->entry.rbe_right)->entry.rbe_color == 0)) { (tmp)->entry.rbe_color = 1; elm = parent; parent = (elm)->entry.rbe_parent; } else { if ((tmp)->entry.rbe_right == ((void *)0) || ((tmp)->entry.rbe_right)->entry.rbe_color == 0) { struct mfc_node *oleft; if ((oleft = (tmp)->entry .rbe_left)) (oleft)->entry.rbe_color = 0; (tmp)->entry. rbe_color = 1; do { (oleft) = (tmp)->entry.rbe_left; if (( (tmp)->entry.rbe_left = (oleft)->entry.rbe_right)) { (( oleft)->entry.rbe_right)->entry.rbe_parent = (tmp); } do {} while (0); if (((oleft)->entry.rbe_parent = (tmp)-> entry.rbe_parent)) { if ((tmp) == ((tmp)->entry.rbe_parent )->entry.rbe_left) ((tmp)->entry.rbe_parent)->entry. rbe_left = (oleft); else ((tmp)->entry.rbe_parent)->entry .rbe_right = (oleft); } else (head)->rbh_root = (oleft); ( oleft)->entry.rbe_right = (tmp); (tmp)->entry.rbe_parent = (oleft); do {} while (0); if (((oleft)->entry.rbe_parent )) do {} while (0); } while (0); tmp = (parent)->entry.rbe_right ; } (tmp)->entry.rbe_color = (parent)->entry.rbe_color; (parent)->entry.rbe_color = 0; if ((tmp)->entry.rbe_right ) ((tmp)->entry.rbe_right)->entry.rbe_color = 0; do { ( tmp) = (parent)->entry.rbe_right; if (((parent)->entry. rbe_right = (tmp)->entry.rbe_left)) { ((tmp)->entry.rbe_left )->entry.rbe_parent = (parent); } do {} while (0); if (((tmp )->entry.rbe_parent = (parent)->entry.rbe_parent)) { if ((parent) == ((parent)->entry.rbe_parent)->entry.rbe_left ) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = ( tmp); } else (head)->rbh_root = (tmp); (tmp)->entry.rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while (0); } while (0); elm = (head)->rbh_root; break; } } else { tmp = (parent )->entry.rbe_left; if ((tmp)->entry.rbe_color == 1) { do { (tmp)->entry.rbe_color = 0; (parent)->entry.rbe_color = 1; } while (0); do { (tmp) = (parent)->entry.rbe_left; if (((parent)->entry.rbe_left = (tmp)->entry.rbe_right)) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent )->entry.rbe_parent)) { if ((parent) == ((parent)->entry .rbe_parent)->entry.rbe_left) ((parent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_right = (parent); (parent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); tmp = (parent)->entry.rbe_left ; } if (((tmp)->entry.rbe_left == ((void *)0) || ((tmp)-> entry.rbe_left)->entry.rbe_color == 0) && ((tmp)-> entry.rbe_right == ((void *)0) || ((tmp)->entry.rbe_right) ->entry.rbe_color == 0)) { (tmp)->entry.rbe_color = 1; elm = parent; parent = (elm)->entry.rbe_parent; } else { if ( (tmp)->entry.rbe_left == ((void *)0) || ((tmp)->entry.rbe_left )->entry.rbe_color == 0) { struct mfc_node *oright; if ((oright = (tmp)->entry.rbe_right)) (oright)->entry.rbe_color = 0; (tmp)->entry.rbe_color = 1; do { (oright) = (tmp)-> entry.rbe_right; if (((tmp)->entry.rbe_right = (oright)-> entry.rbe_left)) { ((oright)->entry.rbe_left)->entry.rbe_parent = (tmp); } do {} while (0); if (((oright)->entry.rbe_parent = (tmp)->entry.rbe_parent)) { if ((tmp) == ((tmp)->entry .rbe_parent)->entry.rbe_left) ((tmp)->entry.rbe_parent) ->entry.rbe_left = (oright); else ((tmp)->entry.rbe_parent )->entry.rbe_right = (oright); } else (head)->rbh_root = (oright); (oright)->entry.rbe_left = (tmp); (tmp)->entry .rbe_parent = (oright); do {} while (0); if (((oright)->entry .rbe_parent)) do {} while (0); } while (0); tmp = (parent)-> entry.rbe_left; } (tmp)->entry.rbe_color = (parent)->entry .rbe_color; (parent)->entry.rbe_color = 0; if ((tmp)->entry .rbe_left) ((tmp)->entry.rbe_left)->entry.rbe_color = 0 ; do { (tmp) = (parent)->entry.rbe_left; if (((parent)-> entry.rbe_left = (tmp)->entry.rbe_right)) { ((tmp)->entry .rbe_right)->entry.rbe_parent = (parent); } do {} while (0 ); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_right = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while (0); } while (0); elm = (head)->rbh_root; break; } } } if (elm) (elm)->entry.rbe_color = 0; } struct mfc_node * mfc_tree_RB_REMOVE (struct mfc_tree *head, struct mfc_node *elm) { struct mfc_node *child, *parent, *old = elm; int color; if ((elm)->entry. rbe_left == ((void *)0)) child = (elm)->entry.rbe_right; else if ((elm)->entry.rbe_right == ((void *)0)) child = (elm)-> entry.rbe_left; else { struct mfc_node *left; elm = (elm)-> entry.rbe_right; while ((left = (elm)->entry.rbe_left)) elm = left; child = (elm)->entry.rbe_right; parent = (elm)-> entry.rbe_parent; color = (elm)->entry.rbe_color; if (child ) (child)->entry.rbe_parent = parent; if (parent) { if ((parent )->entry.rbe_left == elm) (parent)->entry.rbe_left = child ; else (parent)->entry.rbe_right = child; do {} while (0); } else (head)->rbh_root = child; if ((elm)->entry.rbe_parent == old) parent = elm; (elm)->entry = (old)->entry; if ( (old)->entry.rbe_parent) { if (((old)->entry.rbe_parent )->entry.rbe_left == old) ((old)->entry.rbe_parent)-> entry.rbe_left = elm; else ((old)->entry.rbe_parent)->entry .rbe_right = elm; do {} while (0); } else (head)->rbh_root = elm; ((old)->entry.rbe_left)->entry.rbe_parent = elm ; if ((old)->entry.rbe_right) ((old)->entry.rbe_right)-> entry.rbe_parent = elm; if (parent) { left = parent; do { do { } while (0); } while ((left = (left)->entry.rbe_parent)); } goto color; } parent = (elm)->entry.rbe_parent; color = ( elm)->entry.rbe_color; if (child) (child)->entry.rbe_parent = parent; if (parent) { if ((parent)->entry.rbe_left == elm ) (parent)->entry.rbe_left = child; else (parent)->entry .rbe_right = child; do {} while (0); } else (head)->rbh_root = child; color: if (color == 0) mfc_tree_RB_REMOVE_COLOR(head , parent, child); return (old); } struct mfc_node * mfc_tree_RB_INSERT (struct mfc_tree *head, struct mfc_node *elm) { struct mfc_node *tmp; struct mfc_node *parent = ((void *)0); int comp = 0; tmp = (head)->rbh_root; while (tmp) { parent = tmp; comp = (mfc_compare )(elm, parent); if (comp < 0) tmp = (tmp)->entry.rbe_left ; else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } do { (elm)->entry.rbe_parent = parent; (elm )->entry.rbe_left = (elm)->entry.rbe_right = ((void *)0 ); (elm)->entry.rbe_color = 1; } while (0); if (parent != ( (void *)0)) { if (comp < 0) (parent)->entry.rbe_left = elm ; else (parent)->entry.rbe_right = elm; do {} while (0); } else (head)->rbh_root = elm; mfc_tree_RB_INSERT_COLOR(head , elm); return (((void *)0)); } struct mfc_node * mfc_tree_RB_FIND (struct mfc_tree *head, struct mfc_node *elm) { struct mfc_node *tmp = (head)->rbh_root; int comp; while (tmp) { comp = mfc_compare (elm, tmp); if (comp < 0) tmp = (tmp)->entry.rbe_left; else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } return (((void *)0)); } struct mfc_node * mfc_tree_RB_NFIND (struct mfc_tree *head, struct mfc_node *elm) { struct mfc_node *tmp = (head)->rbh_root; struct mfc_node *res = ((void *) 0); int comp; while (tmp) { comp = mfc_compare(elm, tmp); if ( comp < 0) { res = tmp; tmp = (tmp)->entry.rbe_left; } else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } return (res); } struct mfc_node * mfc_tree_RB_NEXT( struct mfc_node *elm) { if ((elm)->entry.rbe_right) { elm = (elm)->entry.rbe_right; while ((elm)->entry.rbe_left) elm = (elm)->entry.rbe_left; } else { if ((elm)->entry.rbe_parent && (elm == ((elm)->entry.rbe_parent)->entry.rbe_left )) elm = (elm)->entry.rbe_parent; else { while ((elm)-> entry.rbe_parent && (elm == ((elm)->entry.rbe_parent )->entry.rbe_right)) elm = (elm)->entry.rbe_parent; elm = (elm)->entry.rbe_parent; } } return (elm); } struct mfc_node * mfc_tree_RB_PREV(struct mfc_node *elm) { if ((elm)->entry .rbe_left) { elm = (elm)->entry.rbe_left; while ((elm)-> entry.rbe_right) elm = (elm)->entry.rbe_right; } else { if ((elm)->entry.rbe_parent && (elm == ((elm)->entry .rbe_parent)->entry.rbe_right)) elm = (elm)->entry.rbe_parent ; else { while ((elm)->entry.rbe_parent && (elm == ((elm)->entry.rbe_parent)->entry.rbe_left)) elm = (elm )->entry.rbe_parent; elm = (elm)->entry.rbe_parent; } } return (elm); } struct mfc_node * mfc_tree_RB_MINMAX(struct mfc_tree *head, int val) { struct mfc_node *tmp = (head)->rbh_root ; struct mfc_node *parent = ((void *)0); while (tmp) { parent = tmp; if (val < 0) tmp = (tmp)->entry.rbe_left; else tmp = (tmp)->entry.rbe_right; } return (parent); } |
62 | |
63 | extern struct dvmrpd_conf *rdeconf; |
64 | |
65 | /* timers */ |
66 | void |
67 | mfc_expire_timer(int fd, short event, void *arg) |
68 | { |
69 | struct mfc_node *mn = arg; |
70 | struct mfc nmfc; |
71 | |
72 | log_debug("mfc_expire_timer: group %s", inet_ntoa(mn->group)); |
73 | |
74 | /* remove route entry */ |
75 | nmfc.origin = mn->origin; |
76 | nmfc.group = mn->group; |
77 | rde_imsg_compose_parent(IMSG_MFC_DEL, 0, &nmfc, sizeof(nmfc)); |
78 | |
79 | event_del(&mn->expiration_timer); |
80 | mfc_remove(mn); |
81 | } |
82 | |
83 | int |
84 | mfc_reset_expire_timer(struct mfc_node *mn) |
85 | { |
86 | struct timeval tv; |
87 | |
88 | timerclear(&tv)(&tv)->tv_sec = (&tv)->tv_usec = 0; |
89 | tv.tv_sec = ROUTE_EXPIRATION_TIME140; |
90 | return (evtimer_add(&mn->expiration_timer, &tv)event_add(&mn->expiration_timer, &tv)); |
91 | } |
92 | |
93 | int |
94 | mfc_start_expire_timer(struct mfc_node *mn) |
95 | { |
96 | struct timeval tv; |
97 | |
98 | log_debug("mfc_start_expire_timer: group %s", inet_ntoa(mn->group)); |
99 | |
100 | timerclear(&tv)(&tv)->tv_sec = (&tv)->tv_usec = 0; |
101 | tv.tv_sec = ROUTE_EXPIRATION_TIME140; |
102 | return (evtimer_add(&mn->expiration_timer, &tv)event_add(&mn->expiration_timer, &tv)); |
103 | } |
104 | |
105 | void |
106 | mfc_prune_timer(int fd, short event, void *arg) |
107 | { |
108 | struct mfc_node *mn = arg; |
109 | |
110 | log_debug("mfc_prune_timer: group %s", inet_ntoa(mn->group)); |
111 | |
112 | event_del(&mn->prune_timer); |
113 | } |
114 | |
115 | int |
116 | mfc_start_prune_timer(struct mfc_node *mn) |
117 | { |
118 | struct timeval tv; |
119 | |
120 | log_debug("mfc_start_prune_timer: group %s", inet_ntoa(mn->group)); |
121 | |
122 | timerclear(&tv)(&tv)->tv_sec = (&tv)->tv_usec = 0; |
123 | tv.tv_sec = MAX_PRUNE_LIFETIME2 * 3600; |
124 | return (evtimer_add(&mn->prune_timer, &tv)event_add(&mn->prune_timer, &tv)); |
125 | } |
126 | |
127 | int |
128 | mfc_reset_prune_timer(struct mfc_node *mn) |
129 | { |
130 | struct timeval tv; |
131 | |
132 | timerclear(&tv)(&tv)->tv_sec = (&tv)->tv_usec = 0; |
133 | tv.tv_sec = MAX_PRUNE_LIFETIME2 * 3600; |
134 | return (evtimer_add(&mn->prune_timer, &tv)event_add(&mn->prune_timer, &tv)); |
135 | } |
136 | |
137 | /* route table */ |
138 | void |
139 | mfc_init(void) |
140 | { |
141 | RB_INIT(&mfc)do { (&mfc)->rbh_root = ((void *)0); } while (0); |
142 | } |
143 | |
144 | int |
145 | mfc_compare(struct mfc_node *a, struct mfc_node *b) |
146 | { |
147 | if (ntohl(a->origin.s_addr)(__uint32_t)(__builtin_constant_p(a->origin.s_addr) ? (__uint32_t )(((__uint32_t)(a->origin.s_addr) & 0xff) << 24 | ((__uint32_t)(a->origin.s_addr) & 0xff00) << 8 | ((__uint32_t)(a->origin.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(a->origin.s_addr) & 0xff000000) >> 24) : __swap32md(a->origin.s_addr)) < ntohl(b->origin.s_addr)(__uint32_t)(__builtin_constant_p(b->origin.s_addr) ? (__uint32_t )(((__uint32_t)(b->origin.s_addr) & 0xff) << 24 | ((__uint32_t)(b->origin.s_addr) & 0xff00) << 8 | ((__uint32_t)(b->origin.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(b->origin.s_addr) & 0xff000000) >> 24) : __swap32md(b->origin.s_addr))) |
148 | return (-1); |
149 | if (ntohl(a->origin.s_addr)(__uint32_t)(__builtin_constant_p(a->origin.s_addr) ? (__uint32_t )(((__uint32_t)(a->origin.s_addr) & 0xff) << 24 | ((__uint32_t)(a->origin.s_addr) & 0xff00) << 8 | ((__uint32_t)(a->origin.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(a->origin.s_addr) & 0xff000000) >> 24) : __swap32md(a->origin.s_addr)) > ntohl(b->origin.s_addr)(__uint32_t)(__builtin_constant_p(b->origin.s_addr) ? (__uint32_t )(((__uint32_t)(b->origin.s_addr) & 0xff) << 24 | ((__uint32_t)(b->origin.s_addr) & 0xff00) << 8 | ((__uint32_t)(b->origin.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(b->origin.s_addr) & 0xff000000) >> 24) : __swap32md(b->origin.s_addr))) |
150 | return (1); |
151 | if (ntohl(a->group.s_addr)(__uint32_t)(__builtin_constant_p(a->group.s_addr) ? (__uint32_t )(((__uint32_t)(a->group.s_addr) & 0xff) << 24 | ((__uint32_t)(a->group.s_addr) & 0xff00) << 8 | ((__uint32_t)(a->group.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(a->group.s_addr) & 0xff000000) >> 24) : __swap32md(a->group.s_addr)) < ntohl(b->group.s_addr)(__uint32_t)(__builtin_constant_p(b->group.s_addr) ? (__uint32_t )(((__uint32_t)(b->group.s_addr) & 0xff) << 24 | ((__uint32_t)(b->group.s_addr) & 0xff00) << 8 | ((__uint32_t)(b->group.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(b->group.s_addr) & 0xff000000) >> 24) : __swap32md(b->group.s_addr))) |
152 | return (-1); |
153 | if (ntohl(a->group.s_addr)(__uint32_t)(__builtin_constant_p(a->group.s_addr) ? (__uint32_t )(((__uint32_t)(a->group.s_addr) & 0xff) << 24 | ((__uint32_t)(a->group.s_addr) & 0xff00) << 8 | ((__uint32_t)(a->group.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(a->group.s_addr) & 0xff000000) >> 24) : __swap32md(a->group.s_addr)) > ntohl(b->group.s_addr)(__uint32_t)(__builtin_constant_p(b->group.s_addr) ? (__uint32_t )(((__uint32_t)(b->group.s_addr) & 0xff) << 24 | ((__uint32_t)(b->group.s_addr) & 0xff00) << 8 | ((__uint32_t)(b->group.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(b->group.s_addr) & 0xff000000) >> 24) : __swap32md(b->group.s_addr))) |
154 | return (1); |
155 | return (0); |
156 | } |
157 | |
158 | struct mfc_node * |
159 | mfc_find(in_addr_t origin, in_addr_t group) |
160 | { |
161 | struct mfc_node s; |
162 | |
163 | s.origin.s_addr = origin; |
164 | s.group.s_addr = group; |
165 | |
166 | return (RB_FIND(mfc_tree, &mfc, &s)mfc_tree_RB_FIND(&mfc, &s)); |
167 | } |
168 | |
169 | int |
170 | mfc_insert(struct mfc_node *m) |
171 | { |
172 | if (RB_INSERT(mfc_tree, &mfc, m)mfc_tree_RB_INSERT(&mfc, m) != NULL((void *)0)) { |
173 | log_warnx("mfc_insert failed for group %s", |
174 | inet_ntoa(m->group)); |
175 | free(m); |
176 | return (-1); |
177 | } |
178 | |
179 | return (0); |
180 | } |
181 | |
182 | int |
183 | mfc_remove(struct mfc_node *m) |
184 | { |
185 | if (RB_REMOVE(mfc_tree, &mfc, m)mfc_tree_RB_REMOVE(&mfc, m) == NULL((void *)0)) { |
186 | log_warnx("mfc_remove failed for group %s", |
187 | inet_ntoa(m->group)); |
188 | return (-1); |
189 | } |
190 | |
191 | free(m); |
192 | return (0); |
193 | } |
194 | |
195 | void |
196 | mfc_clear(void) |
197 | { |
198 | struct mfc_node *m; |
199 | |
200 | while ((m = RB_MIN(mfc_tree, &mfc)mfc_tree_RB_MINMAX(&mfc, -1)) != NULL((void *)0)) |
201 | mfc_remove(m); |
202 | } |
203 | |
204 | void |
205 | mfc_dump(pid_t pid) |
206 | { |
207 | static struct ctl_mfc mfcctl; |
208 | struct timespec now; |
209 | struct timeval tv, now2, res; |
210 | struct mfc_node *mn; |
211 | int i; |
212 | |
213 | clock_gettime(CLOCK_MONOTONIC3, &now); |
214 | |
215 | RB_FOREACH(mn, mfc_tree, &mfc)for ((mn) = mfc_tree_RB_MINMAX(&mfc, -1); (mn) != ((void * )0); (mn) = mfc_tree_RB_NEXT(mn)) { |
216 | mfcctl.origin.s_addr = mn->origin.s_addr; |
217 | mfcctl.group.s_addr = mn->group.s_addr; |
218 | mfcctl.uptime = now.tv_sec - mn->uptime; |
219 | mfcctl.ifindex = mn->ifindex; |
220 | |
221 | for (i = 0; i < MAXVIFS32; i ++) { |
222 | mfcctl.ttls[i] = mn->ttls[i]; |
223 | } |
224 | |
225 | gettimeofday(&now2, NULL((void *)0)); |
226 | if (evtimer_pending(&mn->expiration_timer, &tv)event_pending(&mn->expiration_timer, 0x01, &tv)) { |
227 | timersub(&tv, &now2, &res)do { (&res)->tv_sec = (&tv)->tv_sec - (&now2 )->tv_sec; (&res)->tv_usec = (&tv)->tv_usec - (&now2)->tv_usec; if ((&res)->tv_usec < 0) { (&res)->tv_sec--; (&res)->tv_usec += 1000000; } } while (0); |
228 | mfcctl.expire = res.tv_sec; |
229 | } else |
230 | mfcctl.expire = -1; |
231 | |
232 | rde_imsg_compose_dvmrpe(IMSG_CTL_SHOW_MFC, 0, pid, &mfcctl, |
233 | sizeof(mfcctl)); |
234 | } |
235 | } |
236 | |
237 | struct rt_node * |
238 | mfc_find_origin(struct in_addr group) |
239 | { |
240 | struct mfc_node *mn; |
241 | |
242 | RB_FOREACH(mn, mfc_tree, &mfc)for ((mn) = mfc_tree_RB_MINMAX(&mfc, -1); (mn) != ((void * )0); (mn) = mfc_tree_RB_NEXT(mn)) |
243 | if (group.s_addr == mn->group.s_addr) |
244 | return (rt_match_origin(mn->origin.s_addr)); |
245 | |
246 | return (NULL((void *)0)); |
247 | } |
248 | |
249 | void |
250 | mfc_send_prune(struct rt_node *rn, struct mfc_node *mn) |
251 | { |
252 | struct prune p; |
253 | |
254 | memset(&p, 0, sizeof(p)); |
255 | |
256 | p.origin.s_addr = (mn->origin.s_addr & |
257 | htonl(prefixlen2mask(rn->prefixlen))(__uint32_t)(__builtin_constant_p(prefixlen2mask(rn->prefixlen )) ? (__uint32_t)(((__uint32_t)(prefixlen2mask(rn->prefixlen )) & 0xff) << 24 | ((__uint32_t)(prefixlen2mask(rn-> prefixlen)) & 0xff00) << 8 | ((__uint32_t)(prefixlen2mask (rn->prefixlen)) & 0xff0000) >> 8 | ((__uint32_t )(prefixlen2mask(rn->prefixlen)) & 0xff000000) >> 24) : __swap32md(prefixlen2mask(rn->prefixlen)))); |
258 | p.netmask.s_addr = htonl(prefixlen2mask(rn->prefixlen))(__uint32_t)(__builtin_constant_p(prefixlen2mask(rn->prefixlen )) ? (__uint32_t)(((__uint32_t)(prefixlen2mask(rn->prefixlen )) & 0xff) << 24 | ((__uint32_t)(prefixlen2mask(rn-> prefixlen)) & 0xff00) << 8 | ((__uint32_t)(prefixlen2mask (rn->prefixlen)) & 0xff0000) >> 8 | ((__uint32_t )(prefixlen2mask(rn->prefixlen)) & 0xff000000) >> 24) : __swap32md(prefixlen2mask(rn->prefixlen))); |
259 | p.group.s_addr = mn->group.s_addr; |
260 | p.nexthop.s_addr = rn->nexthop.s_addr; |
261 | p.ifindex = mn->ifindex; |
262 | |
263 | rde_imsg_compose_dvmrpe(IMSG_SEND_PRUNE, 0, 0, &p, sizeof(p)); |
264 | |
265 | mfc_start_prune_timer(mn); |
266 | } |
267 | |
268 | void |
269 | mfc_update_source(struct rt_node *rn) |
270 | { |
271 | struct mfc_node *mn; |
272 | struct mfc m; |
273 | int i; |
274 | u_int8_t found; |
275 | |
276 | RB_FOREACH(mn, mfc_tree, &mfc)for ((mn) = mfc_tree_RB_MINMAX(&mfc, -1); (mn) != ((void * )0); (mn) = mfc_tree_RB_NEXT(mn)) { |
277 | if (rn->prefix.s_addr == (mn->origin.s_addr & |
278 | htonl(prefixlen2mask(rn->prefixlen))(__uint32_t)(__builtin_constant_p(prefixlen2mask(rn->prefixlen )) ? (__uint32_t)(((__uint32_t)(prefixlen2mask(rn->prefixlen )) & 0xff) << 24 | ((__uint32_t)(prefixlen2mask(rn-> prefixlen)) & 0xff00) << 8 | ((__uint32_t)(prefixlen2mask (rn->prefixlen)) & 0xff0000) >> 8 | ((__uint32_t )(prefixlen2mask(rn->prefixlen)) & 0xff000000) >> 24) : __swap32md(prefixlen2mask(rn->prefixlen))))) { |
279 | mn->ifindex = rn->ifindex; |
280 | |
281 | found = 0; |
282 | |
283 | for (i = 0; i < MAXVIFS32; i++) { |
284 | mn->ttls[i] = rn->ttls[i]; |
285 | if (mn->ttls[i] != 0) |
286 | found = 1; |
287 | } |
288 | |
289 | m.origin.s_addr = mn->origin.s_addr; |
290 | m.group.s_addr = mn->group.s_addr; |
291 | m.ifindex = mn->ifindex; |
292 | |
293 | for (i = 0; i < MAXVIFS32; i++) |
294 | m.ttls[i] = mn->ttls[i]; |
295 | |
296 | rde_imsg_compose_parent(IMSG_MFC_ADD, 0, &m, sizeof(m)); |
297 | |
298 | mfc_reset_expire_timer(mn); |
299 | |
300 | if (!found && !rn->connected) |
301 | mfc_send_prune(rn, mn); |
302 | } |
303 | } |
304 | } |
305 | |
306 | void |
307 | mfc_update(struct mfc *nmfc) |
308 | { |
309 | struct mfc_node *mn; |
310 | struct rt_node *rn; |
311 | struct timespec now; |
312 | int i; |
313 | u_int8_t found = 0; |
314 | |
315 | clock_gettime(CLOCK_MONOTONIC3, &now); |
316 | |
317 | if ((mn = mfc_find(nmfc->origin.s_addr, nmfc->group.s_addr)) == NULL((void *)0)) { |
318 | if ((mn = calloc(1, sizeof(struct mfc_node))) == NULL((void *)0)) |
319 | fatalx("mfc_update"); |
320 | |
321 | mn->origin.s_addr = nmfc->origin.s_addr; |
322 | mn->group.s_addr = nmfc->group.s_addr; |
323 | mn->ifindex = nmfc->ifindex; |
324 | mn->uptime = now.tv_sec; |
325 | for (i = 0; i < MAXVIFS32; i++) { |
326 | mn->ttls[i] = nmfc->ttls[i]; |
327 | if (mn->ttls[i] != 0) |
328 | found = 1; |
329 | } |
330 | |
331 | if (mfc_insert(mn) == 0) { |
332 | rde_imsg_compose_parent(IMSG_MFC_ADD, 0, nmfc, |
333 | sizeof(*nmfc)); |
334 | } |
335 | |
336 | evtimer_set(&mn->expiration_timer, mfc_expire_timer, mn)event_set(&mn->expiration_timer, -1, 0, mfc_expire_timer , mn); |
337 | evtimer_set(&mn->prune_timer, mfc_expire_timer, mn)event_set(&mn->prune_timer, -1, 0, mfc_expire_timer, mn ); |
338 | mfc_start_expire_timer(mn); |
339 | |
340 | if (!found) { |
341 | /* We removed all downstream interfaces, |
342 | start the pruning process */ |
343 | rn = rt_match_origin(mn->origin.s_addr); |
344 | if (rn == NULL((void *)0)) { |
345 | fatal("mfc_update: cannot find information " |
346 | " about source"); |
347 | } |
348 | |
349 | mfc_send_prune(rn, mn); |
350 | } |
351 | } |
352 | } |
353 | |
354 | void |
355 | mfc_delete(struct mfc *nmfc) |
356 | { |
357 | struct mfc_node *mn; |
358 | |
359 | if ((mn = mfc_find(nmfc->origin.s_addr, nmfc->group.s_addr)) == NULL((void *)0)) |
360 | return; |
361 | |
362 | /* XXX decide if it should really be removed */ |
363 | mfc_remove(mn); |
364 | |
365 | /* XXX notify parent */ |
366 | } |
367 | |
368 | int |
369 | mfc_check_members(struct rt_node *rn, struct iface *iface) |
370 | { |
371 | struct mfc_node *mn; |
372 | |
373 | RB_FOREACH(mn, mfc_tree, &mfc)for ((mn) = mfc_tree_RB_MINMAX(&mfc, -1); (mn) != ((void * )0); (mn) = mfc_tree_RB_NEXT(mn)) { |
374 | if (mn->origin.s_addr == rn->prefix.s_addr) { |
375 | if (rde_group_list_find(iface, mn->group) != 0) |
376 | return (1); |
377 | } |
378 | } |
379 | |
380 | return (0); |
381 | } |
382 | |
383 | void |
384 | mfc_recv_prune(struct prune *p) |
385 | { |
386 | struct rt_node *rn; |
387 | struct mfc_node *mn; |
388 | struct prune_node *pn; |
389 | struct iface *iface; |
390 | struct mfc m; |
391 | |
392 | iface = if_find_index(p->ifindex); |
393 | if (iface == NULL((void *)0)) { |
394 | log_debug("mfc_recv_prune: unknown interface"); |
395 | return; |
396 | } |
397 | |
398 | rn = rt_match_origin(p->origin.s_addr); |
399 | if (rn == NULL((void *)0)) { |
400 | log_debug("mfc_recv_prune: no information for %s\n", |
401 | inet_ntoa(p->origin)); |
402 | return; |
403 | } |
404 | |
405 | if (srt_find_ds(rn, p->nexthop.s_addr) == NULL((void *)0)) { |
406 | log_debug("mfc_recv_prune: prune received from a " |
407 | "non downstream neighbor\n"); |
408 | return; |
409 | } |
410 | |
411 | mn = mfc_find(p->origin.s_addr, p->group.s_addr); |
412 | if (mn) { |
413 | log_debug("mfc_recv_prune: no information for %s\n", |
414 | inet_ntoa(p->origin)); |
415 | return; |
416 | } |
417 | |
418 | pn = mfc_find_prune(mn, p); |
419 | if (pn == NULL((void *)0)) { |
420 | mfc_add_prune(mn, p); |
421 | if (prune_compare(mn, rn, p->ifindex) && |
422 | !rde_group_list_find(iface, p->group)) { |
423 | mn->ttls[p->ifindex] = 0; |
424 | |
425 | m.ifindex = p->ifindex; |
426 | m.origin.s_addr = p->origin.s_addr; |
427 | m.group.s_addr = p->group.s_addr; |
428 | mfc_update(&m); |
429 | } |
430 | } else |
431 | mfc_reset_prune_expire_timer(pn); |
432 | } |
433 | |
434 | void |
435 | mfc_add_prune(struct mfc_node *mn, struct prune *p) |
436 | { |
437 | struct prune_node *pn; |
438 | struct timeval tv; |
439 | |
440 | pn = calloc(1, sizeof(struct prune)); |
Result of 'calloc' is converted to a pointer of type 'struct prune_node', which is incompatible with sizeof operand type 'struct prune' | |
441 | if (pn == NULL((void *)0)) |
442 | fatal("prune_add"); |
443 | |
444 | timerclear(&tv)(&tv)->tv_sec = (&tv)->tv_usec = 0; |
445 | tv.tv_sec = MAX_PRUNE_LIFETIME2 * 3600; |
446 | |
447 | pn->nbr.s_addr = p->nexthop.s_addr; |
448 | pn->ifindex = p->ifindex; |
449 | pn->parent = mn; |
450 | |
451 | evtimer_set(&pn->lifetime_timer, prune_expire_timer, pn)event_set(&pn->lifetime_timer, -1, 0, prune_expire_timer , pn); |
452 | evtimer_add(&pn->lifetime_timer, &tv)event_add(&pn->lifetime_timer, &tv); |
453 | |
454 | LIST_INSERT_HEAD(&mn->prune_list, pn, entry)do { if (((pn)->entry.le_next = (&mn->prune_list)-> lh_first) != ((void *)0)) (&mn->prune_list)->lh_first ->entry.le_prev = &(pn)->entry.le_next; (&mn-> prune_list)->lh_first = (pn); (pn)->entry.le_prev = & (&mn->prune_list)->lh_first; } while (0); |
455 | |
456 | mn->prune_cnt[p->ifindex]++; |
457 | } |
458 | |
459 | struct prune_node * |
460 | mfc_find_prune(struct mfc_node *mn, struct prune *p) |
461 | { |
462 | struct prune_node *pn; |
463 | |
464 | LIST_FOREACH(pn, &mn->prune_list, entry)for((pn) = ((&mn->prune_list)->lh_first); (pn)!= (( void *)0); (pn) = ((pn)->entry.le_next)) { |
465 | if (p->nexthop.s_addr == pn->nbr.s_addr) |
466 | return (pn); |
467 | } |
468 | |
469 | return (NULL((void *)0)); |
470 | } |
471 | |
472 | void |
473 | mfc_delete_prune(struct mfc_node *mn, struct prune_node *pn) |
474 | { |
475 | unsigned int ifindex = pn->ifindex; |
476 | |
477 | if (evtimer_pending(&pn->lifetime_timer, NULL)event_pending(&pn->lifetime_timer, 0x01, ((void *)0))) |
478 | if (evtimer_del(&pn->lifetime_timer)event_del(&pn->lifetime_timer) == -1) |
479 | fatal("mfc_delete_prune"); |
480 | |
481 | LIST_REMOVE(pn, entry)do { if ((pn)->entry.le_next != ((void *)0)) (pn)->entry .le_next->entry.le_prev = (pn)->entry.le_prev; *(pn)-> entry.le_prev = (pn)->entry.le_next; ; ; } while (0); |
482 | free(pn); |
483 | mn->prune_cnt[ifindex]--; |
484 | } |
485 | |
486 | int |
487 | prune_compare(struct mfc_node *mn, struct rt_node *rn, int ifindex) |
488 | { |
489 | if (mn->prune_cnt[ifindex] == rn->ds_cnt[ifindex]) |
490 | return (1); |
491 | |
492 | return (0); |
493 | } |
494 | |
495 | int |
496 | mfc_reset_prune_expire_timer(struct prune_node *pn) |
497 | { |
498 | struct timeval tv; |
499 | |
500 | timerclear(&tv)(&tv)->tv_sec = (&tv)->tv_usec = 0; |
501 | tv.tv_sec = MAX_PRUNE_LIFETIME2 * 3600; |
502 | |
503 | return (evtimer_add(&pn->lifetime_timer, &tv)event_add(&pn->lifetime_timer, &tv)); |
504 | } |
505 | |
506 | void |
507 | prune_expire_timer(int fd, short event, void *arg) |
508 | { |
509 | struct prune_node *pn = arg; |
510 | |
511 | LIST_REMOVE(pn, entry)do { if ((pn)->entry.le_next != ((void *)0)) (pn)->entry .le_next->entry.le_prev = (pn)->entry.le_prev; *(pn)-> entry.le_prev = (pn)->entry.le_next; ; ; } while (0); |
512 | |
513 | pn->parent->prune_cnt[pn->ifindex]--; |
514 | pn->parent->ttls[pn->ifindex] = 1; |
515 | |
516 | free(pn); |
517 | } |