File: | src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/clang/lib/CodeGen/CGBuiltin.cpp |
Warning: | line 15278, column 24 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This contains code to emit Builtin calls as LLVM code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CGCUDARuntime.h" |
14 | #include "CGCXXABI.h" |
15 | #include "CGObjCRuntime.h" |
16 | #include "CGOpenCLRuntime.h" |
17 | #include "CGRecordLayout.h" |
18 | #include "CodeGenFunction.h" |
19 | #include "CodeGenModule.h" |
20 | #include "ConstantEmitter.h" |
21 | #include "PatternInit.h" |
22 | #include "TargetInfo.h" |
23 | #include "clang/AST/ASTContext.h" |
24 | #include "clang/AST/Attr.h" |
25 | #include "clang/AST/Decl.h" |
26 | #include "clang/AST/OSLog.h" |
27 | #include "clang/Basic/TargetBuiltins.h" |
28 | #include "clang/Basic/TargetInfo.h" |
29 | #include "clang/CodeGen/CGFunctionInfo.h" |
30 | #include "llvm/ADT/APFloat.h" |
31 | #include "llvm/ADT/APInt.h" |
32 | #include "llvm/ADT/SmallPtrSet.h" |
33 | #include "llvm/ADT/StringExtras.h" |
34 | #include "llvm/Analysis/ValueTracking.h" |
35 | #include "llvm/IR/DataLayout.h" |
36 | #include "llvm/IR/InlineAsm.h" |
37 | #include "llvm/IR/Intrinsics.h" |
38 | #include "llvm/IR/IntrinsicsAArch64.h" |
39 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
40 | #include "llvm/IR/IntrinsicsARM.h" |
41 | #include "llvm/IR/IntrinsicsBPF.h" |
42 | #include "llvm/IR/IntrinsicsHexagon.h" |
43 | #include "llvm/IR/IntrinsicsNVPTX.h" |
44 | #include "llvm/IR/IntrinsicsPowerPC.h" |
45 | #include "llvm/IR/IntrinsicsR600.h" |
46 | #include "llvm/IR/IntrinsicsRISCV.h" |
47 | #include "llvm/IR/IntrinsicsS390.h" |
48 | #include "llvm/IR/IntrinsicsWebAssembly.h" |
49 | #include "llvm/IR/IntrinsicsX86.h" |
50 | #include "llvm/IR/MDBuilder.h" |
51 | #include "llvm/IR/MatrixBuilder.h" |
52 | #include "llvm/Support/ConvertUTF.h" |
53 | #include "llvm/Support/ScopedPrinter.h" |
54 | #include "llvm/Support/X86TargetParser.h" |
55 | #include <sstream> |
56 | |
57 | using namespace clang; |
58 | using namespace CodeGen; |
59 | using namespace llvm; |
60 | |
61 | static |
62 | int64_t clamp(int64_t Value, int64_t Low, int64_t High) { |
63 | return std::min(High, std::max(Low, Value)); |
64 | } |
65 | |
66 | static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, |
67 | Align AlignmentInBytes) { |
68 | ConstantInt *Byte; |
69 | switch (CGF.getLangOpts().getTrivialAutoVarInit()) { |
70 | case LangOptions::TrivialAutoVarInitKind::Uninitialized: |
71 | // Nothing to initialize. |
72 | return; |
73 | case LangOptions::TrivialAutoVarInitKind::Zero: |
74 | Byte = CGF.Builder.getInt8(0x00); |
75 | break; |
76 | case LangOptions::TrivialAutoVarInitKind::Pattern: { |
77 | llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); |
78 | Byte = llvm::dyn_cast<llvm::ConstantInt>( |
79 | initializationPatternFor(CGF.CGM, Int8)); |
80 | break; |
81 | } |
82 | } |
83 | if (CGF.CGM.stopAutoInit()) |
84 | return; |
85 | auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); |
86 | I->addAnnotationMetadata("auto-init"); |
87 | } |
88 | |
89 | /// getBuiltinLibFunction - Given a builtin id for a function like |
90 | /// "__builtin_fabsf", return a Function* for "fabsf". |
91 | llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
92 | unsigned BuiltinID) { |
93 | assert(Context.BuiltinInfo.isLibFunction(BuiltinID))((void)0); |
94 | |
95 | // Get the name, skip over the __builtin_ prefix (if necessary). |
96 | StringRef Name; |
97 | GlobalDecl D(FD); |
98 | |
99 | // If the builtin has been declared explicitly with an assembler label, |
100 | // use the mangled name. This differs from the plain label on platforms |
101 | // that prefix labels. |
102 | if (FD->hasAttr<AsmLabelAttr>()) |
103 | Name = getMangledName(D); |
104 | else |
105 | Name = Context.BuiltinInfo.getName(BuiltinID) + 10; |
106 | |
107 | llvm::FunctionType *Ty = |
108 | cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); |
109 | |
110 | return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); |
111 | } |
112 | |
113 | /// Emit the conversions required to turn the given value into an |
114 | /// integer of the given size. |
115 | static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, |
116 | QualType T, llvm::IntegerType *IntType) { |
117 | V = CGF.EmitToMemory(V, T); |
118 | |
119 | if (V->getType()->isPointerTy()) |
120 | return CGF.Builder.CreatePtrToInt(V, IntType); |
121 | |
122 | assert(V->getType() == IntType)((void)0); |
123 | return V; |
124 | } |
125 | |
126 | static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, |
127 | QualType T, llvm::Type *ResultType) { |
128 | V = CGF.EmitFromMemory(V, T); |
129 | |
130 | if (ResultType->isPointerTy()) |
131 | return CGF.Builder.CreateIntToPtr(V, ResultType); |
132 | |
133 | assert(V->getType() == ResultType)((void)0); |
134 | return V; |
135 | } |
136 | |
137 | /// Utility to insert an atomic instruction based on Intrinsic::ID |
138 | /// and the expression node. |
139 | static Value *MakeBinaryAtomicValue( |
140 | CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, |
141 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
142 | QualType T = E->getType(); |
143 | assert(E->getArg(0)->getType()->isPointerType())((void)0); |
144 | assert(CGF.getContext().hasSameUnqualifiedType(T,((void)0) |
145 | E->getArg(0)->getType()->getPointeeType()))((void)0); |
146 | assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))((void)0); |
147 | |
148 | llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
149 | unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
150 | |
151 | llvm::IntegerType *IntType = |
152 | llvm::IntegerType::get(CGF.getLLVMContext(), |
153 | CGF.getContext().getTypeSize(T)); |
154 | llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
155 | |
156 | llvm::Value *Args[2]; |
157 | Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
158 | Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
159 | llvm::Type *ValueType = Args[1]->getType(); |
160 | Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
161 | |
162 | llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
163 | Kind, Args[0], Args[1], Ordering); |
164 | return EmitFromInt(CGF, Result, T, ValueType); |
165 | } |
166 | |
167 | static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { |
168 | Value *Val = CGF.EmitScalarExpr(E->getArg(0)); |
169 | Value *Address = CGF.EmitScalarExpr(E->getArg(1)); |
170 | |
171 | // Convert the type of the pointer to a pointer to the stored type. |
172 | Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); |
173 | Value *BC = CGF.Builder.CreateBitCast( |
174 | Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); |
175 | LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); |
176 | LV.setNontemporal(true); |
177 | CGF.EmitStoreOfScalar(Val, LV, false); |
178 | return nullptr; |
179 | } |
180 | |
181 | static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { |
182 | Value *Address = CGF.EmitScalarExpr(E->getArg(0)); |
183 | |
184 | LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); |
185 | LV.setNontemporal(true); |
186 | return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); |
187 | } |
188 | |
189 | static RValue EmitBinaryAtomic(CodeGenFunction &CGF, |
190 | llvm::AtomicRMWInst::BinOp Kind, |
191 | const CallExpr *E) { |
192 | return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); |
193 | } |
194 | |
195 | /// Utility to insert an atomic instruction based Intrinsic::ID and |
196 | /// the expression node, where the return value is the result of the |
197 | /// operation. |
198 | static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, |
199 | llvm::AtomicRMWInst::BinOp Kind, |
200 | const CallExpr *E, |
201 | Instruction::BinaryOps Op, |
202 | bool Invert = false) { |
203 | QualType T = E->getType(); |
204 | assert(E->getArg(0)->getType()->isPointerType())((void)0); |
205 | assert(CGF.getContext().hasSameUnqualifiedType(T,((void)0) |
206 | E->getArg(0)->getType()->getPointeeType()))((void)0); |
207 | assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))((void)0); |
208 | |
209 | llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
210 | unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
211 | |
212 | llvm::IntegerType *IntType = |
213 | llvm::IntegerType::get(CGF.getLLVMContext(), |
214 | CGF.getContext().getTypeSize(T)); |
215 | llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
216 | |
217 | llvm::Value *Args[2]; |
218 | Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
219 | llvm::Type *ValueType = Args[1]->getType(); |
220 | Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
221 | Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
222 | |
223 | llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
224 | Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); |
225 | Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); |
226 | if (Invert) |
227 | Result = |
228 | CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, |
229 | llvm::ConstantInt::getAllOnesValue(IntType)); |
230 | Result = EmitFromInt(CGF, Result, T, ValueType); |
231 | return RValue::get(Result); |
232 | } |
233 | |
234 | /// Utility to insert an atomic cmpxchg instruction. |
235 | /// |
236 | /// @param CGF The current codegen function. |
237 | /// @param E Builtin call expression to convert to cmpxchg. |
238 | /// arg0 - address to operate on |
239 | /// arg1 - value to compare with |
240 | /// arg2 - new value |
241 | /// @param ReturnBool Specifies whether to return success flag of |
242 | /// cmpxchg result or the old value. |
243 | /// |
244 | /// @returns result of cmpxchg, according to ReturnBool |
245 | /// |
246 | /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics |
247 | /// invoke the function EmitAtomicCmpXchgForMSIntrin. |
248 | static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, |
249 | bool ReturnBool) { |
250 | QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); |
251 | llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
252 | unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
253 | |
254 | llvm::IntegerType *IntType = llvm::IntegerType::get( |
255 | CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); |
256 | llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
257 | |
258 | Value *Args[3]; |
259 | Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
260 | Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
261 | llvm::Type *ValueType = Args[1]->getType(); |
262 | Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
263 | Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); |
264 | |
265 | Value *Pair = CGF.Builder.CreateAtomicCmpXchg( |
266 | Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, |
267 | llvm::AtomicOrdering::SequentiallyConsistent); |
268 | if (ReturnBool) |
269 | // Extract boolean success flag and zext it to int. |
270 | return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), |
271 | CGF.ConvertType(E->getType())); |
272 | else |
273 | // Extract old value and emit it using the same type as compare value. |
274 | return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, |
275 | ValueType); |
276 | } |
277 | |
278 | /// This function should be invoked to emit atomic cmpxchg for Microsoft's |
279 | /// _InterlockedCompareExchange* intrinsics which have the following signature: |
280 | /// T _InterlockedCompareExchange(T volatile *Destination, |
281 | /// T Exchange, |
282 | /// T Comparand); |
283 | /// |
284 | /// Whereas the llvm 'cmpxchg' instruction has the following syntax: |
285 | /// cmpxchg *Destination, Comparand, Exchange. |
286 | /// So we need to swap Comparand and Exchange when invoking |
287 | /// CreateAtomicCmpXchg. That is the reason we could not use the above utility |
288 | /// function MakeAtomicCmpXchgValue since it expects the arguments to be |
289 | /// already swapped. |
290 | |
291 | static |
292 | Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, |
293 | AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { |
294 | assert(E->getArg(0)->getType()->isPointerType())((void)0); |
295 | assert(CGF.getContext().hasSameUnqualifiedType(((void)0) |
296 | E->getType(), E->getArg(0)->getType()->getPointeeType()))((void)0); |
297 | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),((void)0) |
298 | E->getArg(1)->getType()))((void)0); |
299 | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),((void)0) |
300 | E->getArg(2)->getType()))((void)0); |
301 | |
302 | auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); |
303 | auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); |
304 | auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); |
305 | |
306 | // For Release ordering, the failure ordering should be Monotonic. |
307 | auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? |
308 | AtomicOrdering::Monotonic : |
309 | SuccessOrdering; |
310 | |
311 | // The atomic instruction is marked volatile for consistency with MSVC. This |
312 | // blocks the few atomics optimizations that LLVM has. If we want to optimize |
313 | // _Interlocked* operations in the future, we will have to remove the volatile |
314 | // marker. |
315 | auto *Result = CGF.Builder.CreateAtomicCmpXchg( |
316 | Destination, Comparand, Exchange, |
317 | SuccessOrdering, FailureOrdering); |
318 | Result->setVolatile(true); |
319 | return CGF.Builder.CreateExtractValue(Result, 0); |
320 | } |
321 | |
322 | // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are |
323 | // prototyped like this: |
324 | // |
325 | // unsigned char _InterlockedCompareExchange128...( |
326 | // __int64 volatile * _Destination, |
327 | // __int64 _ExchangeHigh, |
328 | // __int64 _ExchangeLow, |
329 | // __int64 * _ComparandResult); |
330 | static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, |
331 | const CallExpr *E, |
332 | AtomicOrdering SuccessOrdering) { |
333 | assert(E->getNumArgs() == 4)((void)0); |
334 | llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0)); |
335 | llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1)); |
336 | llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2)); |
337 | llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3)); |
338 | |
339 | assert(Destination->getType()->isPointerTy())((void)0); |
340 | assert(!ExchangeHigh->getType()->isPointerTy())((void)0); |
341 | assert(!ExchangeLow->getType()->isPointerTy())((void)0); |
342 | assert(ComparandPtr->getType()->isPointerTy())((void)0); |
343 | |
344 | // For Release ordering, the failure ordering should be Monotonic. |
345 | auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release |
346 | ? AtomicOrdering::Monotonic |
347 | : SuccessOrdering; |
348 | |
349 | // Convert to i128 pointers and values. |
350 | llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128); |
351 | llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); |
352 | Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy); |
353 | Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy), |
354 | CGF.getContext().toCharUnitsFromBits(128)); |
355 | |
356 | // (((i128)hi) << 64) | ((i128)lo) |
357 | ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty); |
358 | ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty); |
359 | ExchangeHigh = |
360 | CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64)); |
361 | llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow); |
362 | |
363 | // Load the comparand for the instruction. |
364 | llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult); |
365 | |
366 | auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, |
367 | SuccessOrdering, FailureOrdering); |
368 | |
369 | // The atomic instruction is marked volatile for consistency with MSVC. This |
370 | // blocks the few atomics optimizations that LLVM has. If we want to optimize |
371 | // _Interlocked* operations in the future, we will have to remove the volatile |
372 | // marker. |
373 | CXI->setVolatile(true); |
374 | |
375 | // Store the result as an outparameter. |
376 | CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0), |
377 | ComparandResult); |
378 | |
379 | // Get the success boolean and zero extend it to i8. |
380 | Value *Success = CGF.Builder.CreateExtractValue(CXI, 1); |
381 | return CGF.Builder.CreateZExt(Success, CGF.Int8Ty); |
382 | } |
383 | |
384 | static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, |
385 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
386 | assert(E->getArg(0)->getType()->isPointerType())((void)0); |
387 | |
388 | auto *IntTy = CGF.ConvertType(E->getType()); |
389 | auto *Result = CGF.Builder.CreateAtomicRMW( |
390 | AtomicRMWInst::Add, |
391 | CGF.EmitScalarExpr(E->getArg(0)), |
392 | ConstantInt::get(IntTy, 1), |
393 | Ordering); |
394 | return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); |
395 | } |
396 | |
397 | static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, |
398 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
399 | assert(E->getArg(0)->getType()->isPointerType())((void)0); |
400 | |
401 | auto *IntTy = CGF.ConvertType(E->getType()); |
402 | auto *Result = CGF.Builder.CreateAtomicRMW( |
403 | AtomicRMWInst::Sub, |
404 | CGF.EmitScalarExpr(E->getArg(0)), |
405 | ConstantInt::get(IntTy, 1), |
406 | Ordering); |
407 | return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); |
408 | } |
409 | |
410 | // Build a plain volatile load. |
411 | static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { |
412 | Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
413 | QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
414 | CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); |
415 | llvm::Type *ITy = |
416 | llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); |
417 | Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
418 | llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize); |
419 | Load->setVolatile(true); |
420 | return Load; |
421 | } |
422 | |
423 | // Build a plain volatile store. |
424 | static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { |
425 | Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
426 | Value *Value = CGF.EmitScalarExpr(E->getArg(1)); |
427 | QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
428 | CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); |
429 | llvm::Type *ITy = |
430 | llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); |
431 | Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
432 | llvm::StoreInst *Store = |
433 | CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); |
434 | Store->setVolatile(true); |
435 | return Store; |
436 | } |
437 | |
438 | // Emit a simple mangled intrinsic that has 1 argument and a return type |
439 | // matching the argument type. Depending on mode, this may be a constrained |
440 | // floating-point intrinsic. |
441 | static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
442 | const CallExpr *E, unsigned IntrinsicID, |
443 | unsigned ConstrainedIntrinsicID) { |
444 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
445 | |
446 | if (CGF.Builder.getIsFPConstrained()) { |
447 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
448 | Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
449 | return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); |
450 | } else { |
451 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
452 | return CGF.Builder.CreateCall(F, Src0); |
453 | } |
454 | } |
455 | |
456 | // Emit an intrinsic that has 2 operands of the same type as its result. |
457 | // Depending on mode, this may be a constrained floating-point intrinsic. |
458 | static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
459 | const CallExpr *E, unsigned IntrinsicID, |
460 | unsigned ConstrainedIntrinsicID) { |
461 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
462 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
463 | |
464 | if (CGF.Builder.getIsFPConstrained()) { |
465 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
466 | Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
467 | return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); |
468 | } else { |
469 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
470 | return CGF.Builder.CreateCall(F, { Src0, Src1 }); |
471 | } |
472 | } |
473 | |
474 | // Emit an intrinsic that has 3 operands of the same type as its result. |
475 | // Depending on mode, this may be a constrained floating-point intrinsic. |
476 | static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
477 | const CallExpr *E, unsigned IntrinsicID, |
478 | unsigned ConstrainedIntrinsicID) { |
479 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
480 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
481 | llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); |
482 | |
483 | if (CGF.Builder.getIsFPConstrained()) { |
484 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
485 | Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
486 | return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); |
487 | } else { |
488 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
489 | return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); |
490 | } |
491 | } |
492 | |
493 | // Emit an intrinsic where all operands are of the same type as the result. |
494 | // Depending on mode, this may be a constrained floating-point intrinsic. |
495 | static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
496 | unsigned IntrinsicID, |
497 | unsigned ConstrainedIntrinsicID, |
498 | llvm::Type *Ty, |
499 | ArrayRef<Value *> Args) { |
500 | Function *F; |
501 | if (CGF.Builder.getIsFPConstrained()) |
502 | F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); |
503 | else |
504 | F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); |
505 | |
506 | if (CGF.Builder.getIsFPConstrained()) |
507 | return CGF.Builder.CreateConstrainedFPCall(F, Args); |
508 | else |
509 | return CGF.Builder.CreateCall(F, Args); |
510 | } |
511 | |
512 | // Emit a simple mangled intrinsic that has 1 argument and a return type |
513 | // matching the argument type. |
514 | static Value *emitUnaryBuiltin(CodeGenFunction &CGF, |
515 | const CallExpr *E, |
516 | unsigned IntrinsicID) { |
517 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
518 | |
519 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
520 | return CGF.Builder.CreateCall(F, Src0); |
521 | } |
522 | |
523 | // Emit an intrinsic that has 2 operands of the same type as its result. |
524 | static Value *emitBinaryBuiltin(CodeGenFunction &CGF, |
525 | const CallExpr *E, |
526 | unsigned IntrinsicID) { |
527 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
528 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
529 | |
530 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
531 | return CGF.Builder.CreateCall(F, { Src0, Src1 }); |
532 | } |
533 | |
534 | // Emit an intrinsic that has 3 operands of the same type as its result. |
535 | static Value *emitTernaryBuiltin(CodeGenFunction &CGF, |
536 | const CallExpr *E, |
537 | unsigned IntrinsicID) { |
538 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
539 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
540 | llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); |
541 | |
542 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
543 | return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); |
544 | } |
545 | |
546 | // Emit an intrinsic that has 1 float or double operand, and 1 integer. |
547 | static Value *emitFPIntBuiltin(CodeGenFunction &CGF, |
548 | const CallExpr *E, |
549 | unsigned IntrinsicID) { |
550 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
551 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
552 | |
553 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
554 | return CGF.Builder.CreateCall(F, {Src0, Src1}); |
555 | } |
556 | |
557 | // Emit an intrinsic that has overloaded integer result and fp operand. |
558 | static Value * |
559 | emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
560 | unsigned IntrinsicID, |
561 | unsigned ConstrainedIntrinsicID) { |
562 | llvm::Type *ResultType = CGF.ConvertType(E->getType()); |
563 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
564 | |
565 | if (CGF.Builder.getIsFPConstrained()) { |
566 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
567 | Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, |
568 | {ResultType, Src0->getType()}); |
569 | return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); |
570 | } else { |
571 | Function *F = |
572 | CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); |
573 | return CGF.Builder.CreateCall(F, Src0); |
574 | } |
575 | } |
576 | |
577 | /// EmitFAbs - Emit a call to @llvm.fabs(). |
578 | static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { |
579 | Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); |
580 | llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); |
581 | Call->setDoesNotAccessMemory(); |
582 | return Call; |
583 | } |
584 | |
585 | /// Emit the computation of the sign bit for a floating point value. Returns |
586 | /// the i1 sign bit value. |
587 | static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { |
588 | LLVMContext &C = CGF.CGM.getLLVMContext(); |
589 | |
590 | llvm::Type *Ty = V->getType(); |
591 | int Width = Ty->getPrimitiveSizeInBits(); |
592 | llvm::Type *IntTy = llvm::IntegerType::get(C, Width); |
593 | V = CGF.Builder.CreateBitCast(V, IntTy); |
594 | if (Ty->isPPC_FP128Ty()) { |
595 | // We want the sign bit of the higher-order double. The bitcast we just |
596 | // did works as if the double-double was stored to memory and then |
597 | // read as an i128. The "store" will put the higher-order double in the |
598 | // lower address in both little- and big-Endian modes, but the "load" |
599 | // will treat those bits as a different part of the i128: the low bits in |
600 | // little-Endian, the high bits in big-Endian. Therefore, on big-Endian |
601 | // we need to shift the high bits down to the low before truncating. |
602 | Width >>= 1; |
603 | if (CGF.getTarget().isBigEndian()) { |
604 | Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); |
605 | V = CGF.Builder.CreateLShr(V, ShiftCst); |
606 | } |
607 | // We are truncating value in order to extract the higher-order |
608 | // double, which we will be using to extract the sign from. |
609 | IntTy = llvm::IntegerType::get(C, Width); |
610 | V = CGF.Builder.CreateTrunc(V, IntTy); |
611 | } |
612 | Value *Zero = llvm::Constant::getNullValue(IntTy); |
613 | return CGF.Builder.CreateICmpSLT(V, Zero); |
614 | } |
615 | |
616 | static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, |
617 | const CallExpr *E, llvm::Constant *calleeValue) { |
618 | CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); |
619 | return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); |
620 | } |
621 | |
622 | /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* |
623 | /// depending on IntrinsicID. |
624 | /// |
625 | /// \arg CGF The current codegen function. |
626 | /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. |
627 | /// \arg X The first argument to the llvm.*.with.overflow.*. |
628 | /// \arg Y The second argument to the llvm.*.with.overflow.*. |
629 | /// \arg Carry The carry returned by the llvm.*.with.overflow.*. |
630 | /// \returns The result (i.e. sum/product) returned by the intrinsic. |
631 | static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, |
632 | const llvm::Intrinsic::ID IntrinsicID, |
633 | llvm::Value *X, llvm::Value *Y, |
634 | llvm::Value *&Carry) { |
635 | // Make sure we have integers of the same width. |
636 | assert(X->getType() == Y->getType() &&((void)0) |
637 | "Arguments must be the same type. (Did you forget to make sure both "((void)0) |
638 | "arguments have the same integer width?)")((void)0); |
639 | |
640 | Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); |
641 | llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); |
642 | Carry = CGF.Builder.CreateExtractValue(Tmp, 1); |
643 | return CGF.Builder.CreateExtractValue(Tmp, 0); |
644 | } |
645 | |
646 | static Value *emitRangedBuiltin(CodeGenFunction &CGF, |
647 | unsigned IntrinsicID, |
648 | int low, int high) { |
649 | llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
650 | llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); |
651 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); |
652 | llvm::Instruction *Call = CGF.Builder.CreateCall(F); |
653 | Call->setMetadata(llvm::LLVMContext::MD_range, RNode); |
654 | return Call; |
655 | } |
656 | |
657 | namespace { |
658 | struct WidthAndSignedness { |
659 | unsigned Width; |
660 | bool Signed; |
661 | }; |
662 | } |
663 | |
664 | static WidthAndSignedness |
665 | getIntegerWidthAndSignedness(const clang::ASTContext &context, |
666 | const clang::QualType Type) { |
667 | assert(Type->isIntegerType() && "Given type is not an integer.")((void)0); |
668 | unsigned Width = Type->isBooleanType() ? 1 |
669 | : Type->isExtIntType() ? context.getIntWidth(Type) |
670 | : context.getTypeInfo(Type).Width; |
671 | bool Signed = Type->isSignedIntegerType(); |
672 | return {Width, Signed}; |
673 | } |
674 | |
675 | // Given one or more integer types, this function produces an integer type that |
676 | // encompasses them: any value in one of the given types could be expressed in |
677 | // the encompassing type. |
678 | static struct WidthAndSignedness |
679 | EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { |
680 | assert(Types.size() > 0 && "Empty list of types.")((void)0); |
681 | |
682 | // If any of the given types is signed, we must return a signed type. |
683 | bool Signed = false; |
684 | for (const auto &Type : Types) { |
685 | Signed |= Type.Signed; |
686 | } |
687 | |
688 | // The encompassing type must have a width greater than or equal to the width |
689 | // of the specified types. Additionally, if the encompassing type is signed, |
690 | // its width must be strictly greater than the width of any unsigned types |
691 | // given. |
692 | unsigned Width = 0; |
693 | for (const auto &Type : Types) { |
694 | unsigned MinWidth = Type.Width + (Signed && !Type.Signed); |
695 | if (Width < MinWidth) { |
696 | Width = MinWidth; |
697 | } |
698 | } |
699 | |
700 | return {Width, Signed}; |
701 | } |
702 | |
703 | Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { |
704 | llvm::Type *DestType = Int8PtrTy; |
705 | if (ArgValue->getType() != DestType) |
706 | ArgValue = |
707 | Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); |
708 | |
709 | Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; |
710 | return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); |
711 | } |
712 | |
713 | /// Checks if using the result of __builtin_object_size(p, @p From) in place of |
714 | /// __builtin_object_size(p, @p To) is correct |
715 | static bool areBOSTypesCompatible(int From, int To) { |
716 | // Note: Our __builtin_object_size implementation currently treats Type=0 and |
717 | // Type=2 identically. Encoding this implementation detail here may make |
718 | // improving __builtin_object_size difficult in the future, so it's omitted. |
719 | return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); |
720 | } |
721 | |
722 | static llvm::Value * |
723 | getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { |
724 | return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); |
725 | } |
726 | |
727 | llvm::Value * |
728 | CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
729 | llvm::IntegerType *ResType, |
730 | llvm::Value *EmittedE, |
731 | bool IsDynamic) { |
732 | uint64_t ObjectSize; |
733 | if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) |
734 | return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); |
735 | return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); |
736 | } |
737 | |
738 | /// Returns a Value corresponding to the size of the given expression. |
739 | /// This Value may be either of the following: |
740 | /// - A llvm::Argument (if E is a param with the pass_object_size attribute on |
741 | /// it) |
742 | /// - A call to the @llvm.objectsize intrinsic |
743 | /// |
744 | /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null |
745 | /// and we wouldn't otherwise try to reference a pass_object_size parameter, |
746 | /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. |
747 | llvm::Value * |
748 | CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, |
749 | llvm::IntegerType *ResType, |
750 | llvm::Value *EmittedE, bool IsDynamic) { |
751 | // We need to reference an argument if the pointer is a parameter with the |
752 | // pass_object_size attribute. |
753 | if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { |
754 | auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); |
755 | auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); |
756 | if (Param != nullptr && PS != nullptr && |
757 | areBOSTypesCompatible(PS->getType(), Type)) { |
758 | auto Iter = SizeArguments.find(Param); |
759 | assert(Iter != SizeArguments.end())((void)0); |
760 | |
761 | const ImplicitParamDecl *D = Iter->second; |
762 | auto DIter = LocalDeclMap.find(D); |
763 | assert(DIter != LocalDeclMap.end())((void)0); |
764 | |
765 | return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, |
766 | getContext().getSizeType(), E->getBeginLoc()); |
767 | } |
768 | } |
769 | |
770 | // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't |
771 | // evaluate E for side-effects. In either case, we shouldn't lower to |
772 | // @llvm.objectsize. |
773 | if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) |
774 | return getDefaultBuiltinObjectSizeResult(Type, ResType); |
775 | |
776 | Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); |
777 | assert(Ptr->getType()->isPointerTy() &&((void)0) |
778 | "Non-pointer passed to __builtin_object_size?")((void)0); |
779 | |
780 | Function *F = |
781 | CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); |
782 | |
783 | // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. |
784 | Value *Min = Builder.getInt1((Type & 2) != 0); |
785 | // For GCC compatibility, __builtin_object_size treat NULL as unknown size. |
786 | Value *NullIsUnknown = Builder.getTrue(); |
787 | Value *Dynamic = Builder.getInt1(IsDynamic); |
788 | return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); |
789 | } |
790 | |
791 | namespace { |
792 | /// A struct to generically describe a bit test intrinsic. |
793 | struct BitTest { |
794 | enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; |
795 | enum InterlockingKind : uint8_t { |
796 | Unlocked, |
797 | Sequential, |
798 | Acquire, |
799 | Release, |
800 | NoFence |
801 | }; |
802 | |
803 | ActionKind Action; |
804 | InterlockingKind Interlocking; |
805 | bool Is64Bit; |
806 | |
807 | static BitTest decodeBitTestBuiltin(unsigned BuiltinID); |
808 | }; |
809 | } // namespace |
810 | |
811 | BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { |
812 | switch (BuiltinID) { |
813 | // Main portable variants. |
814 | case Builtin::BI_bittest: |
815 | return {TestOnly, Unlocked, false}; |
816 | case Builtin::BI_bittestandcomplement: |
817 | return {Complement, Unlocked, false}; |
818 | case Builtin::BI_bittestandreset: |
819 | return {Reset, Unlocked, false}; |
820 | case Builtin::BI_bittestandset: |
821 | return {Set, Unlocked, false}; |
822 | case Builtin::BI_interlockedbittestandreset: |
823 | return {Reset, Sequential, false}; |
824 | case Builtin::BI_interlockedbittestandset: |
825 | return {Set, Sequential, false}; |
826 | |
827 | // X86-specific 64-bit variants. |
828 | case Builtin::BI_bittest64: |
829 | return {TestOnly, Unlocked, true}; |
830 | case Builtin::BI_bittestandcomplement64: |
831 | return {Complement, Unlocked, true}; |
832 | case Builtin::BI_bittestandreset64: |
833 | return {Reset, Unlocked, true}; |
834 | case Builtin::BI_bittestandset64: |
835 | return {Set, Unlocked, true}; |
836 | case Builtin::BI_interlockedbittestandreset64: |
837 | return {Reset, Sequential, true}; |
838 | case Builtin::BI_interlockedbittestandset64: |
839 | return {Set, Sequential, true}; |
840 | |
841 | // ARM/AArch64-specific ordering variants. |
842 | case Builtin::BI_interlockedbittestandset_acq: |
843 | return {Set, Acquire, false}; |
844 | case Builtin::BI_interlockedbittestandset_rel: |
845 | return {Set, Release, false}; |
846 | case Builtin::BI_interlockedbittestandset_nf: |
847 | return {Set, NoFence, false}; |
848 | case Builtin::BI_interlockedbittestandreset_acq: |
849 | return {Reset, Acquire, false}; |
850 | case Builtin::BI_interlockedbittestandreset_rel: |
851 | return {Reset, Release, false}; |
852 | case Builtin::BI_interlockedbittestandreset_nf: |
853 | return {Reset, NoFence, false}; |
854 | } |
855 | llvm_unreachable("expected only bittest intrinsics")__builtin_unreachable(); |
856 | } |
857 | |
858 | static char bitActionToX86BTCode(BitTest::ActionKind A) { |
859 | switch (A) { |
860 | case BitTest::TestOnly: return '\0'; |
861 | case BitTest::Complement: return 'c'; |
862 | case BitTest::Reset: return 'r'; |
863 | case BitTest::Set: return 's'; |
864 | } |
865 | llvm_unreachable("invalid action")__builtin_unreachable(); |
866 | } |
867 | |
868 | static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, |
869 | BitTest BT, |
870 | const CallExpr *E, Value *BitBase, |
871 | Value *BitPos) { |
872 | char Action = bitActionToX86BTCode(BT.Action); |
873 | char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; |
874 | |
875 | // Build the assembly. |
876 | SmallString<64> Asm; |
877 | raw_svector_ostream AsmOS(Asm); |
878 | if (BT.Interlocking != BitTest::Unlocked) |
879 | AsmOS << "lock "; |
880 | AsmOS << "bt"; |
881 | if (Action) |
882 | AsmOS << Action; |
883 | AsmOS << SizeSuffix << " $2, ($1)"; |
884 | |
885 | // Build the constraints. FIXME: We should support immediates when possible. |
886 | std::string Constraints = "={@ccc},r,r,~{cc},~{memory}"; |
887 | std::string MachineClobbers = CGF.getTarget().getClobbers(); |
888 | if (!MachineClobbers.empty()) { |
889 | Constraints += ','; |
890 | Constraints += MachineClobbers; |
891 | } |
892 | llvm::IntegerType *IntType = llvm::IntegerType::get( |
893 | CGF.getLLVMContext(), |
894 | CGF.getContext().getTypeSize(E->getArg(1)->getType())); |
895 | llvm::Type *IntPtrType = IntType->getPointerTo(); |
896 | llvm::FunctionType *FTy = |
897 | llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); |
898 | |
899 | llvm::InlineAsm *IA = |
900 | llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
901 | return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); |
902 | } |
903 | |
904 | static llvm::AtomicOrdering |
905 | getBitTestAtomicOrdering(BitTest::InterlockingKind I) { |
906 | switch (I) { |
907 | case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; |
908 | case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; |
909 | case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; |
910 | case BitTest::Release: return llvm::AtomicOrdering::Release; |
911 | case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; |
912 | } |
913 | llvm_unreachable("invalid interlocking")__builtin_unreachable(); |
914 | } |
915 | |
916 | /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of |
917 | /// bits and a bit position and read and optionally modify the bit at that |
918 | /// position. The position index can be arbitrarily large, i.e. it can be larger |
919 | /// than 31 or 63, so we need an indexed load in the general case. |
920 | static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, |
921 | unsigned BuiltinID, |
922 | const CallExpr *E) { |
923 | Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); |
924 | Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); |
925 | |
926 | BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); |
927 | |
928 | // X86 has special BT, BTC, BTR, and BTS instructions that handle the array |
929 | // indexing operation internally. Use them if possible. |
930 | if (CGF.getTarget().getTriple().isX86()) |
931 | return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); |
932 | |
933 | // Otherwise, use generic code to load one byte and test the bit. Use all but |
934 | // the bottom three bits as the array index, and the bottom three bits to form |
935 | // a mask. |
936 | // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; |
937 | Value *ByteIndex = CGF.Builder.CreateAShr( |
938 | BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); |
939 | Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); |
940 | Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, |
941 | ByteIndex, "bittest.byteaddr"), |
942 | CharUnits::One()); |
943 | Value *PosLow = |
944 | CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), |
945 | llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); |
946 | |
947 | // The updating instructions will need a mask. |
948 | Value *Mask = nullptr; |
949 | if (BT.Action != BitTest::TestOnly) { |
950 | Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, |
951 | "bittest.mask"); |
952 | } |
953 | |
954 | // Check the action and ordering of the interlocked intrinsics. |
955 | llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); |
956 | |
957 | Value *OldByte = nullptr; |
958 | if (Ordering != llvm::AtomicOrdering::NotAtomic) { |
959 | // Emit a combined atomicrmw load/store operation for the interlocked |
960 | // intrinsics. |
961 | llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; |
962 | if (BT.Action == BitTest::Reset) { |
963 | Mask = CGF.Builder.CreateNot(Mask); |
964 | RMWOp = llvm::AtomicRMWInst::And; |
965 | } |
966 | OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, |
967 | Ordering); |
968 | } else { |
969 | // Emit a plain load for the non-interlocked intrinsics. |
970 | OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); |
971 | Value *NewByte = nullptr; |
972 | switch (BT.Action) { |
973 | case BitTest::TestOnly: |
974 | // Don't store anything. |
975 | break; |
976 | case BitTest::Complement: |
977 | NewByte = CGF.Builder.CreateXor(OldByte, Mask); |
978 | break; |
979 | case BitTest::Reset: |
980 | NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); |
981 | break; |
982 | case BitTest::Set: |
983 | NewByte = CGF.Builder.CreateOr(OldByte, Mask); |
984 | break; |
985 | } |
986 | if (NewByte) |
987 | CGF.Builder.CreateStore(NewByte, ByteAddr); |
988 | } |
989 | |
990 | // However we loaded the old byte, either by plain load or atomicrmw, shift |
991 | // the bit into the low position and mask it to 0 or 1. |
992 | Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); |
993 | return CGF.Builder.CreateAnd( |
994 | ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); |
995 | } |
996 | |
997 | static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF, |
998 | unsigned BuiltinID, |
999 | const CallExpr *E) { |
1000 | Value *Addr = CGF.EmitScalarExpr(E->getArg(0)); |
1001 | |
1002 | SmallString<64> Asm; |
1003 | raw_svector_ostream AsmOS(Asm); |
1004 | llvm::IntegerType *RetType = CGF.Int32Ty; |
1005 | |
1006 | switch (BuiltinID) { |
1007 | case clang::PPC::BI__builtin_ppc_ldarx: |
1008 | AsmOS << "ldarx "; |
1009 | RetType = CGF.Int64Ty; |
1010 | break; |
1011 | case clang::PPC::BI__builtin_ppc_lwarx: |
1012 | AsmOS << "lwarx "; |
1013 | RetType = CGF.Int32Ty; |
1014 | break; |
1015 | case clang::PPC::BI__builtin_ppc_lharx: |
1016 | AsmOS << "lharx "; |
1017 | RetType = CGF.Int16Ty; |
1018 | break; |
1019 | case clang::PPC::BI__builtin_ppc_lbarx: |
1020 | AsmOS << "lbarx "; |
1021 | RetType = CGF.Int8Ty; |
1022 | break; |
1023 | default: |
1024 | llvm_unreachable("Expected only PowerPC load reserve intrinsics")__builtin_unreachable(); |
1025 | } |
1026 | |
1027 | AsmOS << "$0, ${1:y}"; |
1028 | |
1029 | std::string Constraints = "=r,*Z,~{memory}"; |
1030 | std::string MachineClobbers = CGF.getTarget().getClobbers(); |
1031 | if (!MachineClobbers.empty()) { |
1032 | Constraints += ','; |
1033 | Constraints += MachineClobbers; |
1034 | } |
1035 | |
1036 | llvm::Type *IntPtrType = RetType->getPointerTo(); |
1037 | llvm::FunctionType *FTy = |
1038 | llvm::FunctionType::get(RetType, {IntPtrType}, false); |
1039 | |
1040 | llvm::InlineAsm *IA = |
1041 | llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
1042 | return CGF.Builder.CreateCall(IA, {Addr}); |
1043 | } |
1044 | |
1045 | namespace { |
1046 | enum class MSVCSetJmpKind { |
1047 | _setjmpex, |
1048 | _setjmp3, |
1049 | _setjmp |
1050 | }; |
1051 | } |
1052 | |
1053 | /// MSVC handles setjmp a bit differently on different platforms. On every |
1054 | /// architecture except 32-bit x86, the frame address is passed. On x86, extra |
1055 | /// parameters can be passed as variadic arguments, but we always pass none. |
1056 | static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, |
1057 | const CallExpr *E) { |
1058 | llvm::Value *Arg1 = nullptr; |
1059 | llvm::Type *Arg1Ty = nullptr; |
1060 | StringRef Name; |
1061 | bool IsVarArg = false; |
1062 | if (SJKind == MSVCSetJmpKind::_setjmp3) { |
1063 | Name = "_setjmp3"; |
1064 | Arg1Ty = CGF.Int32Ty; |
1065 | Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); |
1066 | IsVarArg = true; |
1067 | } else { |
1068 | Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; |
1069 | Arg1Ty = CGF.Int8PtrTy; |
1070 | if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { |
1071 | Arg1 = CGF.Builder.CreateCall( |
1072 | CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); |
1073 | } else |
1074 | Arg1 = CGF.Builder.CreateCall( |
1075 | CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), |
1076 | llvm::ConstantInt::get(CGF.Int32Ty, 0)); |
1077 | } |
1078 | |
1079 | // Mark the call site and declaration with ReturnsTwice. |
1080 | llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; |
1081 | llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( |
1082 | CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, |
1083 | llvm::Attribute::ReturnsTwice); |
1084 | llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( |
1085 | llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, |
1086 | ReturnsTwiceAttr, /*Local=*/true); |
1087 | |
1088 | llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( |
1089 | CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); |
1090 | llvm::Value *Args[] = {Buf, Arg1}; |
1091 | llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); |
1092 | CB->setAttributes(ReturnsTwiceAttr); |
1093 | return RValue::get(CB); |
1094 | } |
1095 | |
1096 | // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, |
1097 | // we handle them here. |
1098 | enum class CodeGenFunction::MSVCIntrin { |
1099 | _BitScanForward, |
1100 | _BitScanReverse, |
1101 | _InterlockedAnd, |
1102 | _InterlockedDecrement, |
1103 | _InterlockedExchange, |
1104 | _InterlockedExchangeAdd, |
1105 | _InterlockedExchangeSub, |
1106 | _InterlockedIncrement, |
1107 | _InterlockedOr, |
1108 | _InterlockedXor, |
1109 | _InterlockedExchangeAdd_acq, |
1110 | _InterlockedExchangeAdd_rel, |
1111 | _InterlockedExchangeAdd_nf, |
1112 | _InterlockedExchange_acq, |
1113 | _InterlockedExchange_rel, |
1114 | _InterlockedExchange_nf, |
1115 | _InterlockedCompareExchange_acq, |
1116 | _InterlockedCompareExchange_rel, |
1117 | _InterlockedCompareExchange_nf, |
1118 | _InterlockedCompareExchange128, |
1119 | _InterlockedCompareExchange128_acq, |
1120 | _InterlockedCompareExchange128_rel, |
1121 | _InterlockedCompareExchange128_nf, |
1122 | _InterlockedOr_acq, |
1123 | _InterlockedOr_rel, |
1124 | _InterlockedOr_nf, |
1125 | _InterlockedXor_acq, |
1126 | _InterlockedXor_rel, |
1127 | _InterlockedXor_nf, |
1128 | _InterlockedAnd_acq, |
1129 | _InterlockedAnd_rel, |
1130 | _InterlockedAnd_nf, |
1131 | _InterlockedIncrement_acq, |
1132 | _InterlockedIncrement_rel, |
1133 | _InterlockedIncrement_nf, |
1134 | _InterlockedDecrement_acq, |
1135 | _InterlockedDecrement_rel, |
1136 | _InterlockedDecrement_nf, |
1137 | __fastfail, |
1138 | }; |
1139 | |
1140 | static Optional<CodeGenFunction::MSVCIntrin> |
1141 | translateArmToMsvcIntrin(unsigned BuiltinID) { |
1142 | using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
1143 | switch (BuiltinID) { |
1144 | default: |
1145 | return None; |
1146 | case ARM::BI_BitScanForward: |
1147 | case ARM::BI_BitScanForward64: |
1148 | return MSVCIntrin::_BitScanForward; |
1149 | case ARM::BI_BitScanReverse: |
1150 | case ARM::BI_BitScanReverse64: |
1151 | return MSVCIntrin::_BitScanReverse; |
1152 | case ARM::BI_InterlockedAnd64: |
1153 | return MSVCIntrin::_InterlockedAnd; |
1154 | case ARM::BI_InterlockedExchange64: |
1155 | return MSVCIntrin::_InterlockedExchange; |
1156 | case ARM::BI_InterlockedExchangeAdd64: |
1157 | return MSVCIntrin::_InterlockedExchangeAdd; |
1158 | case ARM::BI_InterlockedExchangeSub64: |
1159 | return MSVCIntrin::_InterlockedExchangeSub; |
1160 | case ARM::BI_InterlockedOr64: |
1161 | return MSVCIntrin::_InterlockedOr; |
1162 | case ARM::BI_InterlockedXor64: |
1163 | return MSVCIntrin::_InterlockedXor; |
1164 | case ARM::BI_InterlockedDecrement64: |
1165 | return MSVCIntrin::_InterlockedDecrement; |
1166 | case ARM::BI_InterlockedIncrement64: |
1167 | return MSVCIntrin::_InterlockedIncrement; |
1168 | case ARM::BI_InterlockedExchangeAdd8_acq: |
1169 | case ARM::BI_InterlockedExchangeAdd16_acq: |
1170 | case ARM::BI_InterlockedExchangeAdd_acq: |
1171 | case ARM::BI_InterlockedExchangeAdd64_acq: |
1172 | return MSVCIntrin::_InterlockedExchangeAdd_acq; |
1173 | case ARM::BI_InterlockedExchangeAdd8_rel: |
1174 | case ARM::BI_InterlockedExchangeAdd16_rel: |
1175 | case ARM::BI_InterlockedExchangeAdd_rel: |
1176 | case ARM::BI_InterlockedExchangeAdd64_rel: |
1177 | return MSVCIntrin::_InterlockedExchangeAdd_rel; |
1178 | case ARM::BI_InterlockedExchangeAdd8_nf: |
1179 | case ARM::BI_InterlockedExchangeAdd16_nf: |
1180 | case ARM::BI_InterlockedExchangeAdd_nf: |
1181 | case ARM::BI_InterlockedExchangeAdd64_nf: |
1182 | return MSVCIntrin::_InterlockedExchangeAdd_nf; |
1183 | case ARM::BI_InterlockedExchange8_acq: |
1184 | case ARM::BI_InterlockedExchange16_acq: |
1185 | case ARM::BI_InterlockedExchange_acq: |
1186 | case ARM::BI_InterlockedExchange64_acq: |
1187 | return MSVCIntrin::_InterlockedExchange_acq; |
1188 | case ARM::BI_InterlockedExchange8_rel: |
1189 | case ARM::BI_InterlockedExchange16_rel: |
1190 | case ARM::BI_InterlockedExchange_rel: |
1191 | case ARM::BI_InterlockedExchange64_rel: |
1192 | return MSVCIntrin::_InterlockedExchange_rel; |
1193 | case ARM::BI_InterlockedExchange8_nf: |
1194 | case ARM::BI_InterlockedExchange16_nf: |
1195 | case ARM::BI_InterlockedExchange_nf: |
1196 | case ARM::BI_InterlockedExchange64_nf: |
1197 | return MSVCIntrin::_InterlockedExchange_nf; |
1198 | case ARM::BI_InterlockedCompareExchange8_acq: |
1199 | case ARM::BI_InterlockedCompareExchange16_acq: |
1200 | case ARM::BI_InterlockedCompareExchange_acq: |
1201 | case ARM::BI_InterlockedCompareExchange64_acq: |
1202 | return MSVCIntrin::_InterlockedCompareExchange_acq; |
1203 | case ARM::BI_InterlockedCompareExchange8_rel: |
1204 | case ARM::BI_InterlockedCompareExchange16_rel: |
1205 | case ARM::BI_InterlockedCompareExchange_rel: |
1206 | case ARM::BI_InterlockedCompareExchange64_rel: |
1207 | return MSVCIntrin::_InterlockedCompareExchange_rel; |
1208 | case ARM::BI_InterlockedCompareExchange8_nf: |
1209 | case ARM::BI_InterlockedCompareExchange16_nf: |
1210 | case ARM::BI_InterlockedCompareExchange_nf: |
1211 | case ARM::BI_InterlockedCompareExchange64_nf: |
1212 | return MSVCIntrin::_InterlockedCompareExchange_nf; |
1213 | case ARM::BI_InterlockedOr8_acq: |
1214 | case ARM::BI_InterlockedOr16_acq: |
1215 | case ARM::BI_InterlockedOr_acq: |
1216 | case ARM::BI_InterlockedOr64_acq: |
1217 | return MSVCIntrin::_InterlockedOr_acq; |
1218 | case ARM::BI_InterlockedOr8_rel: |
1219 | case ARM::BI_InterlockedOr16_rel: |
1220 | case ARM::BI_InterlockedOr_rel: |
1221 | case ARM::BI_InterlockedOr64_rel: |
1222 | return MSVCIntrin::_InterlockedOr_rel; |
1223 | case ARM::BI_InterlockedOr8_nf: |
1224 | case ARM::BI_InterlockedOr16_nf: |
1225 | case ARM::BI_InterlockedOr_nf: |
1226 | case ARM::BI_InterlockedOr64_nf: |
1227 | return MSVCIntrin::_InterlockedOr_nf; |
1228 | case ARM::BI_InterlockedXor8_acq: |
1229 | case ARM::BI_InterlockedXor16_acq: |
1230 | case ARM::BI_InterlockedXor_acq: |
1231 | case ARM::BI_InterlockedXor64_acq: |
1232 | return MSVCIntrin::_InterlockedXor_acq; |
1233 | case ARM::BI_InterlockedXor8_rel: |
1234 | case ARM::BI_InterlockedXor16_rel: |
1235 | case ARM::BI_InterlockedXor_rel: |
1236 | case ARM::BI_InterlockedXor64_rel: |
1237 | return MSVCIntrin::_InterlockedXor_rel; |
1238 | case ARM::BI_InterlockedXor8_nf: |
1239 | case ARM::BI_InterlockedXor16_nf: |
1240 | case ARM::BI_InterlockedXor_nf: |
1241 | case ARM::BI_InterlockedXor64_nf: |
1242 | return MSVCIntrin::_InterlockedXor_nf; |
1243 | case ARM::BI_InterlockedAnd8_acq: |
1244 | case ARM::BI_InterlockedAnd16_acq: |
1245 | case ARM::BI_InterlockedAnd_acq: |
1246 | case ARM::BI_InterlockedAnd64_acq: |
1247 | return MSVCIntrin::_InterlockedAnd_acq; |
1248 | case ARM::BI_InterlockedAnd8_rel: |
1249 | case ARM::BI_InterlockedAnd16_rel: |
1250 | case ARM::BI_InterlockedAnd_rel: |
1251 | case ARM::BI_InterlockedAnd64_rel: |
1252 | return MSVCIntrin::_InterlockedAnd_rel; |
1253 | case ARM::BI_InterlockedAnd8_nf: |
1254 | case ARM::BI_InterlockedAnd16_nf: |
1255 | case ARM::BI_InterlockedAnd_nf: |
1256 | case ARM::BI_InterlockedAnd64_nf: |
1257 | return MSVCIntrin::_InterlockedAnd_nf; |
1258 | case ARM::BI_InterlockedIncrement16_acq: |
1259 | case ARM::BI_InterlockedIncrement_acq: |
1260 | case ARM::BI_InterlockedIncrement64_acq: |
1261 | return MSVCIntrin::_InterlockedIncrement_acq; |
1262 | case ARM::BI_InterlockedIncrement16_rel: |
1263 | case ARM::BI_InterlockedIncrement_rel: |
1264 | case ARM::BI_InterlockedIncrement64_rel: |
1265 | return MSVCIntrin::_InterlockedIncrement_rel; |
1266 | case ARM::BI_InterlockedIncrement16_nf: |
1267 | case ARM::BI_InterlockedIncrement_nf: |
1268 | case ARM::BI_InterlockedIncrement64_nf: |
1269 | return MSVCIntrin::_InterlockedIncrement_nf; |
1270 | case ARM::BI_InterlockedDecrement16_acq: |
1271 | case ARM::BI_InterlockedDecrement_acq: |
1272 | case ARM::BI_InterlockedDecrement64_acq: |
1273 | return MSVCIntrin::_InterlockedDecrement_acq; |
1274 | case ARM::BI_InterlockedDecrement16_rel: |
1275 | case ARM::BI_InterlockedDecrement_rel: |
1276 | case ARM::BI_InterlockedDecrement64_rel: |
1277 | return MSVCIntrin::_InterlockedDecrement_rel; |
1278 | case ARM::BI_InterlockedDecrement16_nf: |
1279 | case ARM::BI_InterlockedDecrement_nf: |
1280 | case ARM::BI_InterlockedDecrement64_nf: |
1281 | return MSVCIntrin::_InterlockedDecrement_nf; |
1282 | } |
1283 | llvm_unreachable("must return from switch")__builtin_unreachable(); |
1284 | } |
1285 | |
1286 | static Optional<CodeGenFunction::MSVCIntrin> |
1287 | translateAarch64ToMsvcIntrin(unsigned BuiltinID) { |
1288 | using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
1289 | switch (BuiltinID) { |
1290 | default: |
1291 | return None; |
1292 | case AArch64::BI_BitScanForward: |
1293 | case AArch64::BI_BitScanForward64: |
1294 | return MSVCIntrin::_BitScanForward; |
1295 | case AArch64::BI_BitScanReverse: |
1296 | case AArch64::BI_BitScanReverse64: |
1297 | return MSVCIntrin::_BitScanReverse; |
1298 | case AArch64::BI_InterlockedAnd64: |
1299 | return MSVCIntrin::_InterlockedAnd; |
1300 | case AArch64::BI_InterlockedExchange64: |
1301 | return MSVCIntrin::_InterlockedExchange; |
1302 | case AArch64::BI_InterlockedExchangeAdd64: |
1303 | return MSVCIntrin::_InterlockedExchangeAdd; |
1304 | case AArch64::BI_InterlockedExchangeSub64: |
1305 | return MSVCIntrin::_InterlockedExchangeSub; |
1306 | case AArch64::BI_InterlockedOr64: |
1307 | return MSVCIntrin::_InterlockedOr; |
1308 | case AArch64::BI_InterlockedXor64: |
1309 | return MSVCIntrin::_InterlockedXor; |
1310 | case AArch64::BI_InterlockedDecrement64: |
1311 | return MSVCIntrin::_InterlockedDecrement; |
1312 | case AArch64::BI_InterlockedIncrement64: |
1313 | return MSVCIntrin::_InterlockedIncrement; |
1314 | case AArch64::BI_InterlockedExchangeAdd8_acq: |
1315 | case AArch64::BI_InterlockedExchangeAdd16_acq: |
1316 | case AArch64::BI_InterlockedExchangeAdd_acq: |
1317 | case AArch64::BI_InterlockedExchangeAdd64_acq: |
1318 | return MSVCIntrin::_InterlockedExchangeAdd_acq; |
1319 | case AArch64::BI_InterlockedExchangeAdd8_rel: |
1320 | case AArch64::BI_InterlockedExchangeAdd16_rel: |
1321 | case AArch64::BI_InterlockedExchangeAdd_rel: |
1322 | case AArch64::BI_InterlockedExchangeAdd64_rel: |
1323 | return MSVCIntrin::_InterlockedExchangeAdd_rel; |
1324 | case AArch64::BI_InterlockedExchangeAdd8_nf: |
1325 | case AArch64::BI_InterlockedExchangeAdd16_nf: |
1326 | case AArch64::BI_InterlockedExchangeAdd_nf: |
1327 | case AArch64::BI_InterlockedExchangeAdd64_nf: |
1328 | return MSVCIntrin::_InterlockedExchangeAdd_nf; |
1329 | case AArch64::BI_InterlockedExchange8_acq: |
1330 | case AArch64::BI_InterlockedExchange16_acq: |
1331 | case AArch64::BI_InterlockedExchange_acq: |
1332 | case AArch64::BI_InterlockedExchange64_acq: |
1333 | return MSVCIntrin::_InterlockedExchange_acq; |
1334 | case AArch64::BI_InterlockedExchange8_rel: |
1335 | case AArch64::BI_InterlockedExchange16_rel: |
1336 | case AArch64::BI_InterlockedExchange_rel: |
1337 | case AArch64::BI_InterlockedExchange64_rel: |
1338 | return MSVCIntrin::_InterlockedExchange_rel; |
1339 | case AArch64::BI_InterlockedExchange8_nf: |
1340 | case AArch64::BI_InterlockedExchange16_nf: |
1341 | case AArch64::BI_InterlockedExchange_nf: |
1342 | case AArch64::BI_InterlockedExchange64_nf: |
1343 | return MSVCIntrin::_InterlockedExchange_nf; |
1344 | case AArch64::BI_InterlockedCompareExchange8_acq: |
1345 | case AArch64::BI_InterlockedCompareExchange16_acq: |
1346 | case AArch64::BI_InterlockedCompareExchange_acq: |
1347 | case AArch64::BI_InterlockedCompareExchange64_acq: |
1348 | return MSVCIntrin::_InterlockedCompareExchange_acq; |
1349 | case AArch64::BI_InterlockedCompareExchange8_rel: |
1350 | case AArch64::BI_InterlockedCompareExchange16_rel: |
1351 | case AArch64::BI_InterlockedCompareExchange_rel: |
1352 | case AArch64::BI_InterlockedCompareExchange64_rel: |
1353 | return MSVCIntrin::_InterlockedCompareExchange_rel; |
1354 | case AArch64::BI_InterlockedCompareExchange8_nf: |
1355 | case AArch64::BI_InterlockedCompareExchange16_nf: |
1356 | case AArch64::BI_InterlockedCompareExchange_nf: |
1357 | case AArch64::BI_InterlockedCompareExchange64_nf: |
1358 | return MSVCIntrin::_InterlockedCompareExchange_nf; |
1359 | case AArch64::BI_InterlockedCompareExchange128: |
1360 | return MSVCIntrin::_InterlockedCompareExchange128; |
1361 | case AArch64::BI_InterlockedCompareExchange128_acq: |
1362 | return MSVCIntrin::_InterlockedCompareExchange128_acq; |
1363 | case AArch64::BI_InterlockedCompareExchange128_nf: |
1364 | return MSVCIntrin::_InterlockedCompareExchange128_nf; |
1365 | case AArch64::BI_InterlockedCompareExchange128_rel: |
1366 | return MSVCIntrin::_InterlockedCompareExchange128_rel; |
1367 | case AArch64::BI_InterlockedOr8_acq: |
1368 | case AArch64::BI_InterlockedOr16_acq: |
1369 | case AArch64::BI_InterlockedOr_acq: |
1370 | case AArch64::BI_InterlockedOr64_acq: |
1371 | return MSVCIntrin::_InterlockedOr_acq; |
1372 | case AArch64::BI_InterlockedOr8_rel: |
1373 | case AArch64::BI_InterlockedOr16_rel: |
1374 | case AArch64::BI_InterlockedOr_rel: |
1375 | case AArch64::BI_InterlockedOr64_rel: |
1376 | return MSVCIntrin::_InterlockedOr_rel; |
1377 | case AArch64::BI_InterlockedOr8_nf: |
1378 | case AArch64::BI_InterlockedOr16_nf: |
1379 | case AArch64::BI_InterlockedOr_nf: |
1380 | case AArch64::BI_InterlockedOr64_nf: |
1381 | return MSVCIntrin::_InterlockedOr_nf; |
1382 | case AArch64::BI_InterlockedXor8_acq: |
1383 | case AArch64::BI_InterlockedXor16_acq: |
1384 | case AArch64::BI_InterlockedXor_acq: |
1385 | case AArch64::BI_InterlockedXor64_acq: |
1386 | return MSVCIntrin::_InterlockedXor_acq; |
1387 | case AArch64::BI_InterlockedXor8_rel: |
1388 | case AArch64::BI_InterlockedXor16_rel: |
1389 | case AArch64::BI_InterlockedXor_rel: |
1390 | case AArch64::BI_InterlockedXor64_rel: |
1391 | return MSVCIntrin::_InterlockedXor_rel; |
1392 | case AArch64::BI_InterlockedXor8_nf: |
1393 | case AArch64::BI_InterlockedXor16_nf: |
1394 | case AArch64::BI_InterlockedXor_nf: |
1395 | case AArch64::BI_InterlockedXor64_nf: |
1396 | return MSVCIntrin::_InterlockedXor_nf; |
1397 | case AArch64::BI_InterlockedAnd8_acq: |
1398 | case AArch64::BI_InterlockedAnd16_acq: |
1399 | case AArch64::BI_InterlockedAnd_acq: |
1400 | case AArch64::BI_InterlockedAnd64_acq: |
1401 | return MSVCIntrin::_InterlockedAnd_acq; |
1402 | case AArch64::BI_InterlockedAnd8_rel: |
1403 | case AArch64::BI_InterlockedAnd16_rel: |
1404 | case AArch64::BI_InterlockedAnd_rel: |
1405 | case AArch64::BI_InterlockedAnd64_rel: |
1406 | return MSVCIntrin::_InterlockedAnd_rel; |
1407 | case AArch64::BI_InterlockedAnd8_nf: |
1408 | case AArch64::BI_InterlockedAnd16_nf: |
1409 | case AArch64::BI_InterlockedAnd_nf: |
1410 | case AArch64::BI_InterlockedAnd64_nf: |
1411 | return MSVCIntrin::_InterlockedAnd_nf; |
1412 | case AArch64::BI_InterlockedIncrement16_acq: |
1413 | case AArch64::BI_InterlockedIncrement_acq: |
1414 | case AArch64::BI_InterlockedIncrement64_acq: |
1415 | return MSVCIntrin::_InterlockedIncrement_acq; |
1416 | case AArch64::BI_InterlockedIncrement16_rel: |
1417 | case AArch64::BI_InterlockedIncrement_rel: |
1418 | case AArch64::BI_InterlockedIncrement64_rel: |
1419 | return MSVCIntrin::_InterlockedIncrement_rel; |
1420 | case AArch64::BI_InterlockedIncrement16_nf: |
1421 | case AArch64::BI_InterlockedIncrement_nf: |
1422 | case AArch64::BI_InterlockedIncrement64_nf: |
1423 | return MSVCIntrin::_InterlockedIncrement_nf; |
1424 | case AArch64::BI_InterlockedDecrement16_acq: |
1425 | case AArch64::BI_InterlockedDecrement_acq: |
1426 | case AArch64::BI_InterlockedDecrement64_acq: |
1427 | return MSVCIntrin::_InterlockedDecrement_acq; |
1428 | case AArch64::BI_InterlockedDecrement16_rel: |
1429 | case AArch64::BI_InterlockedDecrement_rel: |
1430 | case AArch64::BI_InterlockedDecrement64_rel: |
1431 | return MSVCIntrin::_InterlockedDecrement_rel; |
1432 | case AArch64::BI_InterlockedDecrement16_nf: |
1433 | case AArch64::BI_InterlockedDecrement_nf: |
1434 | case AArch64::BI_InterlockedDecrement64_nf: |
1435 | return MSVCIntrin::_InterlockedDecrement_nf; |
1436 | } |
1437 | llvm_unreachable("must return from switch")__builtin_unreachable(); |
1438 | } |
1439 | |
1440 | static Optional<CodeGenFunction::MSVCIntrin> |
1441 | translateX86ToMsvcIntrin(unsigned BuiltinID) { |
1442 | using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
1443 | switch (BuiltinID) { |
1444 | default: |
1445 | return None; |
1446 | case clang::X86::BI_BitScanForward: |
1447 | case clang::X86::BI_BitScanForward64: |
1448 | return MSVCIntrin::_BitScanForward; |
1449 | case clang::X86::BI_BitScanReverse: |
1450 | case clang::X86::BI_BitScanReverse64: |
1451 | return MSVCIntrin::_BitScanReverse; |
1452 | case clang::X86::BI_InterlockedAnd64: |
1453 | return MSVCIntrin::_InterlockedAnd; |
1454 | case clang::X86::BI_InterlockedCompareExchange128: |
1455 | return MSVCIntrin::_InterlockedCompareExchange128; |
1456 | case clang::X86::BI_InterlockedExchange64: |
1457 | return MSVCIntrin::_InterlockedExchange; |
1458 | case clang::X86::BI_InterlockedExchangeAdd64: |
1459 | return MSVCIntrin::_InterlockedExchangeAdd; |
1460 | case clang::X86::BI_InterlockedExchangeSub64: |
1461 | return MSVCIntrin::_InterlockedExchangeSub; |
1462 | case clang::X86::BI_InterlockedOr64: |
1463 | return MSVCIntrin::_InterlockedOr; |
1464 | case clang::X86::BI_InterlockedXor64: |
1465 | return MSVCIntrin::_InterlockedXor; |
1466 | case clang::X86::BI_InterlockedDecrement64: |
1467 | return MSVCIntrin::_InterlockedDecrement; |
1468 | case clang::X86::BI_InterlockedIncrement64: |
1469 | return MSVCIntrin::_InterlockedIncrement; |
1470 | } |
1471 | llvm_unreachable("must return from switch")__builtin_unreachable(); |
1472 | } |
1473 | |
1474 | // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. |
1475 | Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, |
1476 | const CallExpr *E) { |
1477 | switch (BuiltinID) { |
1478 | case MSVCIntrin::_BitScanForward: |
1479 | case MSVCIntrin::_BitScanReverse: { |
1480 | Address IndexAddress(EmitPointerWithAlignment(E->getArg(0))); |
1481 | Value *ArgValue = EmitScalarExpr(E->getArg(1)); |
1482 | |
1483 | llvm::Type *ArgType = ArgValue->getType(); |
1484 | llvm::Type *IndexType = |
1485 | IndexAddress.getPointer()->getType()->getPointerElementType(); |
1486 | llvm::Type *ResultType = ConvertType(E->getType()); |
1487 | |
1488 | Value *ArgZero = llvm::Constant::getNullValue(ArgType); |
1489 | Value *ResZero = llvm::Constant::getNullValue(ResultType); |
1490 | Value *ResOne = llvm::ConstantInt::get(ResultType, 1); |
1491 | |
1492 | BasicBlock *Begin = Builder.GetInsertBlock(); |
1493 | BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); |
1494 | Builder.SetInsertPoint(End); |
1495 | PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); |
1496 | |
1497 | Builder.SetInsertPoint(Begin); |
1498 | Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); |
1499 | BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); |
1500 | Builder.CreateCondBr(IsZero, End, NotZero); |
1501 | Result->addIncoming(ResZero, Begin); |
1502 | |
1503 | Builder.SetInsertPoint(NotZero); |
1504 | |
1505 | if (BuiltinID == MSVCIntrin::_BitScanForward) { |
1506 | Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
1507 | Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
1508 | ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
1509 | Builder.CreateStore(ZeroCount, IndexAddress, false); |
1510 | } else { |
1511 | unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); |
1512 | Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); |
1513 | |
1514 | Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
1515 | Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
1516 | ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
1517 | Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); |
1518 | Builder.CreateStore(Index, IndexAddress, false); |
1519 | } |
1520 | Builder.CreateBr(End); |
1521 | Result->addIncoming(ResOne, NotZero); |
1522 | |
1523 | Builder.SetInsertPoint(End); |
1524 | return Result; |
1525 | } |
1526 | case MSVCIntrin::_InterlockedAnd: |
1527 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); |
1528 | case MSVCIntrin::_InterlockedExchange: |
1529 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); |
1530 | case MSVCIntrin::_InterlockedExchangeAdd: |
1531 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); |
1532 | case MSVCIntrin::_InterlockedExchangeSub: |
1533 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); |
1534 | case MSVCIntrin::_InterlockedOr: |
1535 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); |
1536 | case MSVCIntrin::_InterlockedXor: |
1537 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); |
1538 | case MSVCIntrin::_InterlockedExchangeAdd_acq: |
1539 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
1540 | AtomicOrdering::Acquire); |
1541 | case MSVCIntrin::_InterlockedExchangeAdd_rel: |
1542 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
1543 | AtomicOrdering::Release); |
1544 | case MSVCIntrin::_InterlockedExchangeAdd_nf: |
1545 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
1546 | AtomicOrdering::Monotonic); |
1547 | case MSVCIntrin::_InterlockedExchange_acq: |
1548 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
1549 | AtomicOrdering::Acquire); |
1550 | case MSVCIntrin::_InterlockedExchange_rel: |
1551 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
1552 | AtomicOrdering::Release); |
1553 | case MSVCIntrin::_InterlockedExchange_nf: |
1554 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
1555 | AtomicOrdering::Monotonic); |
1556 | case MSVCIntrin::_InterlockedCompareExchange_acq: |
1557 | return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); |
1558 | case MSVCIntrin::_InterlockedCompareExchange_rel: |
1559 | return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); |
1560 | case MSVCIntrin::_InterlockedCompareExchange_nf: |
1561 | return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); |
1562 | case MSVCIntrin::_InterlockedCompareExchange128: |
1563 | return EmitAtomicCmpXchg128ForMSIntrin( |
1564 | *this, E, AtomicOrdering::SequentiallyConsistent); |
1565 | case MSVCIntrin::_InterlockedCompareExchange128_acq: |
1566 | return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire); |
1567 | case MSVCIntrin::_InterlockedCompareExchange128_rel: |
1568 | return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release); |
1569 | case MSVCIntrin::_InterlockedCompareExchange128_nf: |
1570 | return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic); |
1571 | case MSVCIntrin::_InterlockedOr_acq: |
1572 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
1573 | AtomicOrdering::Acquire); |
1574 | case MSVCIntrin::_InterlockedOr_rel: |
1575 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
1576 | AtomicOrdering::Release); |
1577 | case MSVCIntrin::_InterlockedOr_nf: |
1578 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
1579 | AtomicOrdering::Monotonic); |
1580 | case MSVCIntrin::_InterlockedXor_acq: |
1581 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
1582 | AtomicOrdering::Acquire); |
1583 | case MSVCIntrin::_InterlockedXor_rel: |
1584 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
1585 | AtomicOrdering::Release); |
1586 | case MSVCIntrin::_InterlockedXor_nf: |
1587 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
1588 | AtomicOrdering::Monotonic); |
1589 | case MSVCIntrin::_InterlockedAnd_acq: |
1590 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
1591 | AtomicOrdering::Acquire); |
1592 | case MSVCIntrin::_InterlockedAnd_rel: |
1593 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
1594 | AtomicOrdering::Release); |
1595 | case MSVCIntrin::_InterlockedAnd_nf: |
1596 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
1597 | AtomicOrdering::Monotonic); |
1598 | case MSVCIntrin::_InterlockedIncrement_acq: |
1599 | return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); |
1600 | case MSVCIntrin::_InterlockedIncrement_rel: |
1601 | return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); |
1602 | case MSVCIntrin::_InterlockedIncrement_nf: |
1603 | return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); |
1604 | case MSVCIntrin::_InterlockedDecrement_acq: |
1605 | return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); |
1606 | case MSVCIntrin::_InterlockedDecrement_rel: |
1607 | return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); |
1608 | case MSVCIntrin::_InterlockedDecrement_nf: |
1609 | return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); |
1610 | |
1611 | case MSVCIntrin::_InterlockedDecrement: |
1612 | return EmitAtomicDecrementValue(*this, E); |
1613 | case MSVCIntrin::_InterlockedIncrement: |
1614 | return EmitAtomicIncrementValue(*this, E); |
1615 | |
1616 | case MSVCIntrin::__fastfail: { |
1617 | // Request immediate process termination from the kernel. The instruction |
1618 | // sequences to do this are documented on MSDN: |
1619 | // https://msdn.microsoft.com/en-us/library/dn774154.aspx |
1620 | llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); |
1621 | StringRef Asm, Constraints; |
1622 | switch (ISA) { |
1623 | default: |
1624 | ErrorUnsupported(E, "__fastfail call for this architecture"); |
1625 | break; |
1626 | case llvm::Triple::x86: |
1627 | case llvm::Triple::x86_64: |
1628 | Asm = "int $$0x29"; |
1629 | Constraints = "{cx}"; |
1630 | break; |
1631 | case llvm::Triple::thumb: |
1632 | Asm = "udf #251"; |
1633 | Constraints = "{r0}"; |
1634 | break; |
1635 | case llvm::Triple::aarch64: |
1636 | Asm = "brk #0xF003"; |
1637 | Constraints = "{w0}"; |
1638 | } |
1639 | llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); |
1640 | llvm::InlineAsm *IA = |
1641 | llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
1642 | llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( |
1643 | getLLVMContext(), llvm::AttributeList::FunctionIndex, |
1644 | llvm::Attribute::NoReturn); |
1645 | llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); |
1646 | CI->setAttributes(NoReturnAttr); |
1647 | return CI; |
1648 | } |
1649 | } |
1650 | llvm_unreachable("Incorrect MSVC intrinsic!")__builtin_unreachable(); |
1651 | } |
1652 | |
1653 | namespace { |
1654 | // ARC cleanup for __builtin_os_log_format |
1655 | struct CallObjCArcUse final : EHScopeStack::Cleanup { |
1656 | CallObjCArcUse(llvm::Value *object) : object(object) {} |
1657 | llvm::Value *object; |
1658 | |
1659 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
1660 | CGF.EmitARCIntrinsicUse(object); |
1661 | } |
1662 | }; |
1663 | } |
1664 | |
1665 | Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, |
1666 | BuiltinCheckKind Kind) { |
1667 | assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)((void)0) |
1668 | && "Unsupported builtin check kind")((void)0); |
1669 | |
1670 | Value *ArgValue = EmitScalarExpr(E); |
1671 | if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) |
1672 | return ArgValue; |
1673 | |
1674 | SanitizerScope SanScope(this); |
1675 | Value *Cond = Builder.CreateICmpNE( |
1676 | ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); |
1677 | EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), |
1678 | SanitizerHandler::InvalidBuiltin, |
1679 | {EmitCheckSourceLocation(E->getExprLoc()), |
1680 | llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, |
1681 | None); |
1682 | return ArgValue; |
1683 | } |
1684 | |
1685 | /// Get the argument type for arguments to os_log_helper. |
1686 | static CanQualType getOSLogArgType(ASTContext &C, int Size) { |
1687 | QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); |
1688 | return C.getCanonicalType(UnsignedTy); |
1689 | } |
1690 | |
1691 | llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( |
1692 | const analyze_os_log::OSLogBufferLayout &Layout, |
1693 | CharUnits BufferAlignment) { |
1694 | ASTContext &Ctx = getContext(); |
1695 | |
1696 | llvm::SmallString<64> Name; |
1697 | { |
1698 | raw_svector_ostream OS(Name); |
1699 | OS << "__os_log_helper"; |
1700 | OS << "_" << BufferAlignment.getQuantity(); |
1701 | OS << "_" << int(Layout.getSummaryByte()); |
1702 | OS << "_" << int(Layout.getNumArgsByte()); |
1703 | for (const auto &Item : Layout.Items) |
1704 | OS << "_" << int(Item.getSizeByte()) << "_" |
1705 | << int(Item.getDescriptorByte()); |
1706 | } |
1707 | |
1708 | if (llvm::Function *F = CGM.getModule().getFunction(Name)) |
1709 | return F; |
1710 | |
1711 | llvm::SmallVector<QualType, 4> ArgTys; |
1712 | FunctionArgList Args; |
1713 | Args.push_back(ImplicitParamDecl::Create( |
1714 | Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, |
1715 | ImplicitParamDecl::Other)); |
1716 | ArgTys.emplace_back(Ctx.VoidPtrTy); |
1717 | |
1718 | for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { |
1719 | char Size = Layout.Items[I].getSizeByte(); |
1720 | if (!Size) |
1721 | continue; |
1722 | |
1723 | QualType ArgTy = getOSLogArgType(Ctx, Size); |
1724 | Args.push_back(ImplicitParamDecl::Create( |
1725 | Ctx, nullptr, SourceLocation(), |
1726 | &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, |
1727 | ImplicitParamDecl::Other)); |
1728 | ArgTys.emplace_back(ArgTy); |
1729 | } |
1730 | |
1731 | QualType ReturnTy = Ctx.VoidTy; |
1732 | |
1733 | // The helper function has linkonce_odr linkage to enable the linker to merge |
1734 | // identical functions. To ensure the merging always happens, 'noinline' is |
1735 | // attached to the function when compiling with -Oz. |
1736 | const CGFunctionInfo &FI = |
1737 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); |
1738 | llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); |
1739 | llvm::Function *Fn = llvm::Function::Create( |
1740 | FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); |
1741 | Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); |
1742 | CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false); |
1743 | CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); |
1744 | Fn->setDoesNotThrow(); |
1745 | |
1746 | // Attach 'noinline' at -Oz. |
1747 | if (CGM.getCodeGenOpts().OptimizeSize == 2) |
1748 | Fn->addFnAttr(llvm::Attribute::NoInline); |
1749 | |
1750 | auto NL = ApplyDebugLocation::CreateEmpty(*this); |
1751 | StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args); |
1752 | |
1753 | // Create a scope with an artificial location for the body of this function. |
1754 | auto AL = ApplyDebugLocation::CreateArtificial(*this); |
1755 | |
1756 | CharUnits Offset; |
1757 | Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), |
1758 | BufferAlignment); |
1759 | Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), |
1760 | Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); |
1761 | Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), |
1762 | Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); |
1763 | |
1764 | unsigned I = 1; |
1765 | for (const auto &Item : Layout.Items) { |
1766 | Builder.CreateStore( |
1767 | Builder.getInt8(Item.getDescriptorByte()), |
1768 | Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); |
1769 | Builder.CreateStore( |
1770 | Builder.getInt8(Item.getSizeByte()), |
1771 | Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); |
1772 | |
1773 | CharUnits Size = Item.size(); |
1774 | if (!Size.getQuantity()) |
1775 | continue; |
1776 | |
1777 | Address Arg = GetAddrOfLocalVar(Args[I]); |
1778 | Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); |
1779 | Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), |
1780 | "argDataCast"); |
1781 | Builder.CreateStore(Builder.CreateLoad(Arg), Addr); |
1782 | Offset += Size; |
1783 | ++I; |
1784 | } |
1785 | |
1786 | FinishFunction(); |
1787 | |
1788 | return Fn; |
1789 | } |
1790 | |
1791 | RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { |
1792 | assert(E.getNumArgs() >= 2 &&((void)0) |
1793 | "__builtin_os_log_format takes at least 2 arguments")((void)0); |
1794 | ASTContext &Ctx = getContext(); |
1795 | analyze_os_log::OSLogBufferLayout Layout; |
1796 | analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); |
1797 | Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); |
1798 | llvm::SmallVector<llvm::Value *, 4> RetainableOperands; |
1799 | |
1800 | // Ignore argument 1, the format string. It is not currently used. |
1801 | CallArgList Args; |
1802 | Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); |
1803 | |
1804 | for (const auto &Item : Layout.Items) { |
1805 | int Size = Item.getSizeByte(); |
1806 | if (!Size) |
1807 | continue; |
1808 | |
1809 | llvm::Value *ArgVal; |
1810 | |
1811 | if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { |
1812 | uint64_t Val = 0; |
1813 | for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) |
1814 | Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; |
1815 | ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); |
1816 | } else if (const Expr *TheExpr = Item.getExpr()) { |
1817 | ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); |
1818 | |
1819 | // If a temporary object that requires destruction after the full |
1820 | // expression is passed, push a lifetime-extended cleanup to extend its |
1821 | // lifetime to the end of the enclosing block scope. |
1822 | auto LifetimeExtendObject = [&](const Expr *E) { |
1823 | E = E->IgnoreParenCasts(); |
1824 | // Extend lifetimes of objects returned by function calls and message |
1825 | // sends. |
1826 | |
1827 | // FIXME: We should do this in other cases in which temporaries are |
1828 | // created including arguments of non-ARC types (e.g., C++ |
1829 | // temporaries). |
1830 | if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)) |
1831 | return true; |
1832 | return false; |
1833 | }; |
1834 | |
1835 | if (TheExpr->getType()->isObjCRetainableType() && |
1836 | getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { |
1837 | assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&((void)0) |
1838 | "Only scalar can be a ObjC retainable type")((void)0); |
1839 | if (!isa<Constant>(ArgVal)) { |
1840 | CleanupKind Cleanup = getARCCleanupKind(); |
1841 | QualType Ty = TheExpr->getType(); |
1842 | Address Alloca = Address::invalid(); |
1843 | Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); |
1844 | ArgVal = EmitARCRetain(Ty, ArgVal); |
1845 | Builder.CreateStore(ArgVal, Addr); |
1846 | pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, |
1847 | CodeGenFunction::destroyARCStrongPrecise, |
1848 | Cleanup & EHCleanup); |
1849 | |
1850 | // Push a clang.arc.use call to ensure ARC optimizer knows that the |
1851 | // argument has to be alive. |
1852 | if (CGM.getCodeGenOpts().OptimizationLevel != 0) |
1853 | pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal); |
1854 | } |
1855 | } |
1856 | } else { |
1857 | ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); |
1858 | } |
1859 | |
1860 | unsigned ArgValSize = |
1861 | CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); |
1862 | llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), |
1863 | ArgValSize); |
1864 | ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); |
1865 | CanQualType ArgTy = getOSLogArgType(Ctx, Size); |
1866 | // If ArgVal has type x86_fp80, zero-extend ArgVal. |
1867 | ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); |
1868 | Args.add(RValue::get(ArgVal), ArgTy); |
1869 | } |
1870 | |
1871 | const CGFunctionInfo &FI = |
1872 | CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); |
1873 | llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( |
1874 | Layout, BufAddr.getAlignment()); |
1875 | EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); |
1876 | return RValue::get(BufAddr.getPointer()); |
1877 | } |
1878 | |
1879 | static bool isSpecialUnsignedMultiplySignedResult( |
1880 | unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, |
1881 | WidthAndSignedness ResultInfo) { |
1882 | return BuiltinID == Builtin::BI__builtin_mul_overflow && |
1883 | Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width && |
1884 | !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed; |
1885 | } |
1886 | |
1887 | static RValue EmitCheckedUnsignedMultiplySignedResult( |
1888 | CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, |
1889 | const clang::Expr *Op2, WidthAndSignedness Op2Info, |
1890 | const clang::Expr *ResultArg, QualType ResultQTy, |
1891 | WidthAndSignedness ResultInfo) { |
1892 | assert(isSpecialUnsignedMultiplySignedResult(((void)0) |
1893 | Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&((void)0) |
1894 | "Cannot specialize this multiply")((void)0); |
1895 | |
1896 | llvm::Value *V1 = CGF.EmitScalarExpr(Op1); |
1897 | llvm::Value *V2 = CGF.EmitScalarExpr(Op2); |
1898 | |
1899 | llvm::Value *HasOverflow; |
1900 | llvm::Value *Result = EmitOverflowIntrinsic( |
1901 | CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow); |
1902 | |
1903 | // The intrinsic call will detect overflow when the value is > UINT_MAX, |
1904 | // however, since the original builtin had a signed result, we need to report |
1905 | // an overflow when the result is greater than INT_MAX. |
1906 | auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width); |
1907 | llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax); |
1908 | |
1909 | llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue); |
1910 | HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow); |
1911 | |
1912 | bool isVolatile = |
1913 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
1914 | Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
1915 | CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
1916 | isVolatile); |
1917 | return RValue::get(HasOverflow); |
1918 | } |
1919 | |
1920 | /// Determine if a binop is a checked mixed-sign multiply we can specialize. |
1921 | static bool isSpecialMixedSignMultiply(unsigned BuiltinID, |
1922 | WidthAndSignedness Op1Info, |
1923 | WidthAndSignedness Op2Info, |
1924 | WidthAndSignedness ResultInfo) { |
1925 | return BuiltinID == Builtin::BI__builtin_mul_overflow && |
1926 | std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && |
1927 | Op1Info.Signed != Op2Info.Signed; |
1928 | } |
1929 | |
1930 | /// Emit a checked mixed-sign multiply. This is a cheaper specialization of |
1931 | /// the generic checked-binop irgen. |
1932 | static RValue |
1933 | EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, |
1934 | WidthAndSignedness Op1Info, const clang::Expr *Op2, |
1935 | WidthAndSignedness Op2Info, |
1936 | const clang::Expr *ResultArg, QualType ResultQTy, |
1937 | WidthAndSignedness ResultInfo) { |
1938 | assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,((void)0) |
1939 | Op2Info, ResultInfo) &&((void)0) |
1940 | "Not a mixed-sign multipliction we can specialize")((void)0); |
1941 | |
1942 | // Emit the signed and unsigned operands. |
1943 | const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; |
1944 | const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; |
1945 | llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); |
1946 | llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); |
1947 | unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; |
1948 | unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; |
1949 | |
1950 | // One of the operands may be smaller than the other. If so, [s|z]ext it. |
1951 | if (SignedOpWidth < UnsignedOpWidth) |
1952 | Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); |
1953 | if (UnsignedOpWidth < SignedOpWidth) |
1954 | Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); |
1955 | |
1956 | llvm::Type *OpTy = Signed->getType(); |
1957 | llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); |
1958 | Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
1959 | llvm::Type *ResTy = ResultPtr.getElementType(); |
1960 | unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); |
1961 | |
1962 | // Take the absolute value of the signed operand. |
1963 | llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); |
1964 | llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); |
1965 | llvm::Value *AbsSigned = |
1966 | CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); |
1967 | |
1968 | // Perform a checked unsigned multiplication. |
1969 | llvm::Value *UnsignedOverflow; |
1970 | llvm::Value *UnsignedResult = |
1971 | EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, |
1972 | Unsigned, UnsignedOverflow); |
1973 | |
1974 | llvm::Value *Overflow, *Result; |
1975 | if (ResultInfo.Signed) { |
1976 | // Signed overflow occurs if the result is greater than INT_MAX or lesser |
1977 | // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). |
1978 | auto IntMax = |
1979 | llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); |
1980 | llvm::Value *MaxResult = |
1981 | CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), |
1982 | CGF.Builder.CreateZExt(IsNegative, OpTy)); |
1983 | llvm::Value *SignedOverflow = |
1984 | CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); |
1985 | Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); |
1986 | |
1987 | // Prepare the signed result (possibly by negating it). |
1988 | llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); |
1989 | llvm::Value *SignedResult = |
1990 | CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); |
1991 | Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); |
1992 | } else { |
1993 | // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. |
1994 | llvm::Value *Underflow = CGF.Builder.CreateAnd( |
1995 | IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); |
1996 | Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); |
1997 | if (ResultInfo.Width < OpWidth) { |
1998 | auto IntMax = |
1999 | llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); |
2000 | llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( |
2001 | UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); |
2002 | Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); |
2003 | } |
2004 | |
2005 | // Negate the product if it would be negative in infinite precision. |
2006 | Result = CGF.Builder.CreateSelect( |
2007 | IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); |
2008 | |
2009 | Result = CGF.Builder.CreateTrunc(Result, ResTy); |
2010 | } |
2011 | assert(Overflow && Result && "Missing overflow or result")((void)0); |
2012 | |
2013 | bool isVolatile = |
2014 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
2015 | CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
2016 | isVolatile); |
2017 | return RValue::get(Overflow); |
2018 | } |
2019 | |
2020 | static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, |
2021 | Value *&RecordPtr, CharUnits Align, |
2022 | llvm::FunctionCallee Func, int Lvl) { |
2023 | ASTContext &Context = CGF.getContext(); |
2024 | RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition(); |
2025 | std::string Pad = std::string(Lvl * 4, ' '); |
2026 | |
2027 | Value *GString = |
2028 | CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); |
2029 | Value *Res = CGF.Builder.CreateCall(Func, {GString}); |
2030 | |
2031 | static llvm::DenseMap<QualType, const char *> Types; |
2032 | if (Types.empty()) { |
2033 | Types[Context.CharTy] = "%c"; |
2034 | Types[Context.BoolTy] = "%d"; |
2035 | Types[Context.SignedCharTy] = "%hhd"; |
2036 | Types[Context.UnsignedCharTy] = "%hhu"; |
2037 | Types[Context.IntTy] = "%d"; |
2038 | Types[Context.UnsignedIntTy] = "%u"; |
2039 | Types[Context.LongTy] = "%ld"; |
2040 | Types[Context.UnsignedLongTy] = "%lu"; |
2041 | Types[Context.LongLongTy] = "%lld"; |
2042 | Types[Context.UnsignedLongLongTy] = "%llu"; |
2043 | Types[Context.ShortTy] = "%hd"; |
2044 | Types[Context.UnsignedShortTy] = "%hu"; |
2045 | Types[Context.VoidPtrTy] = "%p"; |
2046 | Types[Context.FloatTy] = "%f"; |
2047 | Types[Context.DoubleTy] = "%f"; |
2048 | Types[Context.LongDoubleTy] = "%Lf"; |
2049 | Types[Context.getPointerType(Context.CharTy)] = "%s"; |
2050 | Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; |
2051 | } |
2052 | |
2053 | for (const auto *FD : RD->fields()) { |
2054 | Value *FieldPtr = RecordPtr; |
2055 | if (RD->isUnion()) |
2056 | FieldPtr = CGF.Builder.CreatePointerCast( |
2057 | FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); |
2058 | else |
2059 | FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, |
2060 | FD->getFieldIndex()); |
2061 | |
2062 | GString = CGF.Builder.CreateGlobalStringPtr( |
2063 | llvm::Twine(Pad) |
2064 | .concat(FD->getType().getAsString()) |
2065 | .concat(llvm::Twine(' ')) |
2066 | .concat(FD->getNameAsString()) |
2067 | .concat(" : ") |
2068 | .str()); |
2069 | Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); |
2070 | Res = CGF.Builder.CreateAdd(Res, TmpRes); |
2071 | |
2072 | QualType CanonicalType = |
2073 | FD->getType().getUnqualifiedType().getCanonicalType(); |
2074 | |
2075 | // We check whether we are in a recursive type |
2076 | if (CanonicalType->isRecordType()) { |
2077 | TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); |
2078 | Res = CGF.Builder.CreateAdd(TmpRes, Res); |
2079 | continue; |
2080 | } |
2081 | |
2082 | // We try to determine the best format to print the current field |
2083 | llvm::Twine Format = Types.find(CanonicalType) == Types.end() |
2084 | ? Types[Context.VoidPtrTy] |
2085 | : Types[CanonicalType]; |
2086 | |
2087 | Address FieldAddress = Address(FieldPtr, Align); |
2088 | FieldPtr = CGF.Builder.CreateLoad(FieldAddress); |
2089 | |
2090 | // FIXME Need to handle bitfield here |
2091 | GString = CGF.Builder.CreateGlobalStringPtr( |
2092 | Format.concat(llvm::Twine('\n')).str()); |
2093 | TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); |
2094 | Res = CGF.Builder.CreateAdd(Res, TmpRes); |
2095 | } |
2096 | |
2097 | GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); |
2098 | Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); |
2099 | Res = CGF.Builder.CreateAdd(Res, TmpRes); |
2100 | return Res; |
2101 | } |
2102 | |
2103 | static bool |
2104 | TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, |
2105 | llvm::SmallPtrSetImpl<const Decl *> &Seen) { |
2106 | if (const auto *Arr = Ctx.getAsArrayType(Ty)) |
2107 | Ty = Ctx.getBaseElementType(Arr); |
2108 | |
2109 | const auto *Record = Ty->getAsCXXRecordDecl(); |
2110 | if (!Record) |
2111 | return false; |
2112 | |
2113 | // We've already checked this type, or are in the process of checking it. |
2114 | if (!Seen.insert(Record).second) |
2115 | return false; |
2116 | |
2117 | assert(Record->hasDefinition() &&((void)0) |
2118 | "Incomplete types should already be diagnosed")((void)0); |
2119 | |
2120 | if (Record->isDynamicClass()) |
2121 | return true; |
2122 | |
2123 | for (FieldDecl *F : Record->fields()) { |
2124 | if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) |
2125 | return true; |
2126 | } |
2127 | return false; |
2128 | } |
2129 | |
2130 | /// Determine if the specified type requires laundering by checking if it is a |
2131 | /// dynamic class type or contains a subobject which is a dynamic class type. |
2132 | static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { |
2133 | if (!CGM.getCodeGenOpts().StrictVTablePointers) |
2134 | return false; |
2135 | llvm::SmallPtrSet<const Decl *, 16> Seen; |
2136 | return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); |
2137 | } |
2138 | |
2139 | RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { |
2140 | llvm::Value *Src = EmitScalarExpr(E->getArg(0)); |
2141 | llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); |
2142 | |
2143 | // The builtin's shift arg may have a different type than the source arg and |
2144 | // result, but the LLVM intrinsic uses the same type for all values. |
2145 | llvm::Type *Ty = Src->getType(); |
2146 | ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); |
2147 | |
2148 | // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. |
2149 | unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; |
2150 | Function *F = CGM.getIntrinsic(IID, Ty); |
2151 | return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); |
2152 | } |
2153 | |
2154 | // Map math builtins for long-double to f128 version. |
2155 | static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { |
2156 | switch (BuiltinID) { |
2157 | #define MUTATE_LDBL(func) \ |
2158 | case Builtin::BI__builtin_##func##l: \ |
2159 | return Builtin::BI__builtin_##func##f128; |
2160 | MUTATE_LDBL(sqrt) |
2161 | MUTATE_LDBL(cbrt) |
2162 | MUTATE_LDBL(fabs) |
2163 | MUTATE_LDBL(log) |
2164 | MUTATE_LDBL(log2) |
2165 | MUTATE_LDBL(log10) |
2166 | MUTATE_LDBL(log1p) |
2167 | MUTATE_LDBL(logb) |
2168 | MUTATE_LDBL(exp) |
2169 | MUTATE_LDBL(exp2) |
2170 | MUTATE_LDBL(expm1) |
2171 | MUTATE_LDBL(fdim) |
2172 | MUTATE_LDBL(hypot) |
2173 | MUTATE_LDBL(ilogb) |
2174 | MUTATE_LDBL(pow) |
2175 | MUTATE_LDBL(fmin) |
2176 | MUTATE_LDBL(fmax) |
2177 | MUTATE_LDBL(ceil) |
2178 | MUTATE_LDBL(trunc) |
2179 | MUTATE_LDBL(rint) |
2180 | MUTATE_LDBL(nearbyint) |
2181 | MUTATE_LDBL(round) |
2182 | MUTATE_LDBL(floor) |
2183 | MUTATE_LDBL(lround) |
2184 | MUTATE_LDBL(llround) |
2185 | MUTATE_LDBL(lrint) |
2186 | MUTATE_LDBL(llrint) |
2187 | MUTATE_LDBL(fmod) |
2188 | MUTATE_LDBL(modf) |
2189 | MUTATE_LDBL(nan) |
2190 | MUTATE_LDBL(nans) |
2191 | MUTATE_LDBL(inf) |
2192 | MUTATE_LDBL(fma) |
2193 | MUTATE_LDBL(sin) |
2194 | MUTATE_LDBL(cos) |
2195 | MUTATE_LDBL(tan) |
2196 | MUTATE_LDBL(sinh) |
2197 | MUTATE_LDBL(cosh) |
2198 | MUTATE_LDBL(tanh) |
2199 | MUTATE_LDBL(asin) |
2200 | MUTATE_LDBL(acos) |
2201 | MUTATE_LDBL(atan) |
2202 | MUTATE_LDBL(asinh) |
2203 | MUTATE_LDBL(acosh) |
2204 | MUTATE_LDBL(atanh) |
2205 | MUTATE_LDBL(atan2) |
2206 | MUTATE_LDBL(erf) |
2207 | MUTATE_LDBL(erfc) |
2208 | MUTATE_LDBL(ldexp) |
2209 | MUTATE_LDBL(frexp) |
2210 | MUTATE_LDBL(huge_val) |
2211 | MUTATE_LDBL(copysign) |
2212 | MUTATE_LDBL(nextafter) |
2213 | MUTATE_LDBL(nexttoward) |
2214 | MUTATE_LDBL(remainder) |
2215 | MUTATE_LDBL(remquo) |
2216 | MUTATE_LDBL(scalbln) |
2217 | MUTATE_LDBL(scalbn) |
2218 | MUTATE_LDBL(tgamma) |
2219 | MUTATE_LDBL(lgamma) |
2220 | #undef MUTATE_LDBL |
2221 | default: |
2222 | return BuiltinID; |
2223 | } |
2224 | } |
2225 | |
2226 | RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
2227 | const CallExpr *E, |
2228 | ReturnValueSlot ReturnValue) { |
2229 | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
2230 | // See if we can constant fold this builtin. If so, don't emit it at all. |
2231 | Expr::EvalResult Result; |
2232 | if (E->EvaluateAsRValue(Result, CGM.getContext()) && |
2233 | !Result.hasSideEffects()) { |
2234 | if (Result.Val.isInt()) |
2235 | return RValue::get(llvm::ConstantInt::get(getLLVMContext(), |
2236 | Result.Val.getInt())); |
2237 | if (Result.Val.isFloat()) |
2238 | return RValue::get(llvm::ConstantFP::get(getLLVMContext(), |
2239 | Result.Val.getFloat())); |
2240 | } |
2241 | |
2242 | // If current long-double semantics is IEEE 128-bit, replace math builtins |
2243 | // of long-double with f128 equivalent. |
2244 | // TODO: This mutation should also be applied to other targets other than PPC, |
2245 | // after backend supports IEEE 128-bit style libcalls. |
2246 | if (getTarget().getTriple().isPPC64() && |
2247 | &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) |
2248 | BuiltinID = mutateLongDoubleBuiltin(BuiltinID); |
2249 | |
2250 | // If the builtin has been declared explicitly with an assembler label, |
2251 | // disable the specialized emitting below. Ideally we should communicate the |
2252 | // rename in IR, or at least avoid generating the intrinsic calls that are |
2253 | // likely to get lowered to the renamed library functions. |
2254 | const unsigned BuiltinIDIfNoAsmLabel = |
2255 | FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID; |
2256 | |
2257 | // There are LLVM math intrinsics/instructions corresponding to math library |
2258 | // functions except the LLVM op will never set errno while the math library |
2259 | // might. Also, math builtins have the same semantics as their math library |
2260 | // twins. Thus, we can transform math library and builtin calls to their |
2261 | // LLVM counterparts if the call is marked 'const' (known to never set errno). |
2262 | if (FD->hasAttr<ConstAttr>()) { |
2263 | switch (BuiltinIDIfNoAsmLabel) { |
2264 | case Builtin::BIceil: |
2265 | case Builtin::BIceilf: |
2266 | case Builtin::BIceill: |
2267 | case Builtin::BI__builtin_ceil: |
2268 | case Builtin::BI__builtin_ceilf: |
2269 | case Builtin::BI__builtin_ceilf16: |
2270 | case Builtin::BI__builtin_ceill: |
2271 | case Builtin::BI__builtin_ceilf128: |
2272 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2273 | Intrinsic::ceil, |
2274 | Intrinsic::experimental_constrained_ceil)); |
2275 | |
2276 | case Builtin::BIcopysign: |
2277 | case Builtin::BIcopysignf: |
2278 | case Builtin::BIcopysignl: |
2279 | case Builtin::BI__builtin_copysign: |
2280 | case Builtin::BI__builtin_copysignf: |
2281 | case Builtin::BI__builtin_copysignf16: |
2282 | case Builtin::BI__builtin_copysignl: |
2283 | case Builtin::BI__builtin_copysignf128: |
2284 | return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); |
2285 | |
2286 | case Builtin::BIcos: |
2287 | case Builtin::BIcosf: |
2288 | case Builtin::BIcosl: |
2289 | case Builtin::BI__builtin_cos: |
2290 | case Builtin::BI__builtin_cosf: |
2291 | case Builtin::BI__builtin_cosf16: |
2292 | case Builtin::BI__builtin_cosl: |
2293 | case Builtin::BI__builtin_cosf128: |
2294 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2295 | Intrinsic::cos, |
2296 | Intrinsic::experimental_constrained_cos)); |
2297 | |
2298 | case Builtin::BIexp: |
2299 | case Builtin::BIexpf: |
2300 | case Builtin::BIexpl: |
2301 | case Builtin::BI__builtin_exp: |
2302 | case Builtin::BI__builtin_expf: |
2303 | case Builtin::BI__builtin_expf16: |
2304 | case Builtin::BI__builtin_expl: |
2305 | case Builtin::BI__builtin_expf128: |
2306 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2307 | Intrinsic::exp, |
2308 | Intrinsic::experimental_constrained_exp)); |
2309 | |
2310 | case Builtin::BIexp2: |
2311 | case Builtin::BIexp2f: |
2312 | case Builtin::BIexp2l: |
2313 | case Builtin::BI__builtin_exp2: |
2314 | case Builtin::BI__builtin_exp2f: |
2315 | case Builtin::BI__builtin_exp2f16: |
2316 | case Builtin::BI__builtin_exp2l: |
2317 | case Builtin::BI__builtin_exp2f128: |
2318 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2319 | Intrinsic::exp2, |
2320 | Intrinsic::experimental_constrained_exp2)); |
2321 | |
2322 | case Builtin::BIfabs: |
2323 | case Builtin::BIfabsf: |
2324 | case Builtin::BIfabsl: |
2325 | case Builtin::BI__builtin_fabs: |
2326 | case Builtin::BI__builtin_fabsf: |
2327 | case Builtin::BI__builtin_fabsf16: |
2328 | case Builtin::BI__builtin_fabsl: |
2329 | case Builtin::BI__builtin_fabsf128: |
2330 | return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); |
2331 | |
2332 | case Builtin::BIfloor: |
2333 | case Builtin::BIfloorf: |
2334 | case Builtin::BIfloorl: |
2335 | case Builtin::BI__builtin_floor: |
2336 | case Builtin::BI__builtin_floorf: |
2337 | case Builtin::BI__builtin_floorf16: |
2338 | case Builtin::BI__builtin_floorl: |
2339 | case Builtin::BI__builtin_floorf128: |
2340 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2341 | Intrinsic::floor, |
2342 | Intrinsic::experimental_constrained_floor)); |
2343 | |
2344 | case Builtin::BIfma: |
2345 | case Builtin::BIfmaf: |
2346 | case Builtin::BIfmal: |
2347 | case Builtin::BI__builtin_fma: |
2348 | case Builtin::BI__builtin_fmaf: |
2349 | case Builtin::BI__builtin_fmaf16: |
2350 | case Builtin::BI__builtin_fmal: |
2351 | case Builtin::BI__builtin_fmaf128: |
2352 | return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, |
2353 | Intrinsic::fma, |
2354 | Intrinsic::experimental_constrained_fma)); |
2355 | |
2356 | case Builtin::BIfmax: |
2357 | case Builtin::BIfmaxf: |
2358 | case Builtin::BIfmaxl: |
2359 | case Builtin::BI__builtin_fmax: |
2360 | case Builtin::BI__builtin_fmaxf: |
2361 | case Builtin::BI__builtin_fmaxf16: |
2362 | case Builtin::BI__builtin_fmaxl: |
2363 | case Builtin::BI__builtin_fmaxf128: |
2364 | return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
2365 | Intrinsic::maxnum, |
2366 | Intrinsic::experimental_constrained_maxnum)); |
2367 | |
2368 | case Builtin::BIfmin: |
2369 | case Builtin::BIfminf: |
2370 | case Builtin::BIfminl: |
2371 | case Builtin::BI__builtin_fmin: |
2372 | case Builtin::BI__builtin_fminf: |
2373 | case Builtin::BI__builtin_fminf16: |
2374 | case Builtin::BI__builtin_fminl: |
2375 | case Builtin::BI__builtin_fminf128: |
2376 | return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
2377 | Intrinsic::minnum, |
2378 | Intrinsic::experimental_constrained_minnum)); |
2379 | |
2380 | // fmod() is a special-case. It maps to the frem instruction rather than an |
2381 | // LLVM intrinsic. |
2382 | case Builtin::BIfmod: |
2383 | case Builtin::BIfmodf: |
2384 | case Builtin::BIfmodl: |
2385 | case Builtin::BI__builtin_fmod: |
2386 | case Builtin::BI__builtin_fmodf: |
2387 | case Builtin::BI__builtin_fmodf16: |
2388 | case Builtin::BI__builtin_fmodl: |
2389 | case Builtin::BI__builtin_fmodf128: { |
2390 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
2391 | Value *Arg1 = EmitScalarExpr(E->getArg(0)); |
2392 | Value *Arg2 = EmitScalarExpr(E->getArg(1)); |
2393 | return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); |
2394 | } |
2395 | |
2396 | case Builtin::BIlog: |
2397 | case Builtin::BIlogf: |
2398 | case Builtin::BIlogl: |
2399 | case Builtin::BI__builtin_log: |
2400 | case Builtin::BI__builtin_logf: |
2401 | case Builtin::BI__builtin_logf16: |
2402 | case Builtin::BI__builtin_logl: |
2403 | case Builtin::BI__builtin_logf128: |
2404 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2405 | Intrinsic::log, |
2406 | Intrinsic::experimental_constrained_log)); |
2407 | |
2408 | case Builtin::BIlog10: |
2409 | case Builtin::BIlog10f: |
2410 | case Builtin::BIlog10l: |
2411 | case Builtin::BI__builtin_log10: |
2412 | case Builtin::BI__builtin_log10f: |
2413 | case Builtin::BI__builtin_log10f16: |
2414 | case Builtin::BI__builtin_log10l: |
2415 | case Builtin::BI__builtin_log10f128: |
2416 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2417 | Intrinsic::log10, |
2418 | Intrinsic::experimental_constrained_log10)); |
2419 | |
2420 | case Builtin::BIlog2: |
2421 | case Builtin::BIlog2f: |
2422 | case Builtin::BIlog2l: |
2423 | case Builtin::BI__builtin_log2: |
2424 | case Builtin::BI__builtin_log2f: |
2425 | case Builtin::BI__builtin_log2f16: |
2426 | case Builtin::BI__builtin_log2l: |
2427 | case Builtin::BI__builtin_log2f128: |
2428 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2429 | Intrinsic::log2, |
2430 | Intrinsic::experimental_constrained_log2)); |
2431 | |
2432 | case Builtin::BInearbyint: |
2433 | case Builtin::BInearbyintf: |
2434 | case Builtin::BInearbyintl: |
2435 | case Builtin::BI__builtin_nearbyint: |
2436 | case Builtin::BI__builtin_nearbyintf: |
2437 | case Builtin::BI__builtin_nearbyintl: |
2438 | case Builtin::BI__builtin_nearbyintf128: |
2439 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2440 | Intrinsic::nearbyint, |
2441 | Intrinsic::experimental_constrained_nearbyint)); |
2442 | |
2443 | case Builtin::BIpow: |
2444 | case Builtin::BIpowf: |
2445 | case Builtin::BIpowl: |
2446 | case Builtin::BI__builtin_pow: |
2447 | case Builtin::BI__builtin_powf: |
2448 | case Builtin::BI__builtin_powf16: |
2449 | case Builtin::BI__builtin_powl: |
2450 | case Builtin::BI__builtin_powf128: |
2451 | return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
2452 | Intrinsic::pow, |
2453 | Intrinsic::experimental_constrained_pow)); |
2454 | |
2455 | case Builtin::BIrint: |
2456 | case Builtin::BIrintf: |
2457 | case Builtin::BIrintl: |
2458 | case Builtin::BI__builtin_rint: |
2459 | case Builtin::BI__builtin_rintf: |
2460 | case Builtin::BI__builtin_rintf16: |
2461 | case Builtin::BI__builtin_rintl: |
2462 | case Builtin::BI__builtin_rintf128: |
2463 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2464 | Intrinsic::rint, |
2465 | Intrinsic::experimental_constrained_rint)); |
2466 | |
2467 | case Builtin::BIround: |
2468 | case Builtin::BIroundf: |
2469 | case Builtin::BIroundl: |
2470 | case Builtin::BI__builtin_round: |
2471 | case Builtin::BI__builtin_roundf: |
2472 | case Builtin::BI__builtin_roundf16: |
2473 | case Builtin::BI__builtin_roundl: |
2474 | case Builtin::BI__builtin_roundf128: |
2475 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2476 | Intrinsic::round, |
2477 | Intrinsic::experimental_constrained_round)); |
2478 | |
2479 | case Builtin::BIsin: |
2480 | case Builtin::BIsinf: |
2481 | case Builtin::BIsinl: |
2482 | case Builtin::BI__builtin_sin: |
2483 | case Builtin::BI__builtin_sinf: |
2484 | case Builtin::BI__builtin_sinf16: |
2485 | case Builtin::BI__builtin_sinl: |
2486 | case Builtin::BI__builtin_sinf128: |
2487 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2488 | Intrinsic::sin, |
2489 | Intrinsic::experimental_constrained_sin)); |
2490 | |
2491 | case Builtin::BIsqrt: |
2492 | case Builtin::BIsqrtf: |
2493 | case Builtin::BIsqrtl: |
2494 | case Builtin::BI__builtin_sqrt: |
2495 | case Builtin::BI__builtin_sqrtf: |
2496 | case Builtin::BI__builtin_sqrtf16: |
2497 | case Builtin::BI__builtin_sqrtl: |
2498 | case Builtin::BI__builtin_sqrtf128: |
2499 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2500 | Intrinsic::sqrt, |
2501 | Intrinsic::experimental_constrained_sqrt)); |
2502 | |
2503 | case Builtin::BItrunc: |
2504 | case Builtin::BItruncf: |
2505 | case Builtin::BItruncl: |
2506 | case Builtin::BI__builtin_trunc: |
2507 | case Builtin::BI__builtin_truncf: |
2508 | case Builtin::BI__builtin_truncf16: |
2509 | case Builtin::BI__builtin_truncl: |
2510 | case Builtin::BI__builtin_truncf128: |
2511 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2512 | Intrinsic::trunc, |
2513 | Intrinsic::experimental_constrained_trunc)); |
2514 | |
2515 | case Builtin::BIlround: |
2516 | case Builtin::BIlroundf: |
2517 | case Builtin::BIlroundl: |
2518 | case Builtin::BI__builtin_lround: |
2519 | case Builtin::BI__builtin_lroundf: |
2520 | case Builtin::BI__builtin_lroundl: |
2521 | case Builtin::BI__builtin_lroundf128: |
2522 | return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
2523 | *this, E, Intrinsic::lround, |
2524 | Intrinsic::experimental_constrained_lround)); |
2525 | |
2526 | case Builtin::BIllround: |
2527 | case Builtin::BIllroundf: |
2528 | case Builtin::BIllroundl: |
2529 | case Builtin::BI__builtin_llround: |
2530 | case Builtin::BI__builtin_llroundf: |
2531 | case Builtin::BI__builtin_llroundl: |
2532 | case Builtin::BI__builtin_llroundf128: |
2533 | return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
2534 | *this, E, Intrinsic::llround, |
2535 | Intrinsic::experimental_constrained_llround)); |
2536 | |
2537 | case Builtin::BIlrint: |
2538 | case Builtin::BIlrintf: |
2539 | case Builtin::BIlrintl: |
2540 | case Builtin::BI__builtin_lrint: |
2541 | case Builtin::BI__builtin_lrintf: |
2542 | case Builtin::BI__builtin_lrintl: |
2543 | case Builtin::BI__builtin_lrintf128: |
2544 | return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
2545 | *this, E, Intrinsic::lrint, |
2546 | Intrinsic::experimental_constrained_lrint)); |
2547 | |
2548 | case Builtin::BIllrint: |
2549 | case Builtin::BIllrintf: |
2550 | case Builtin::BIllrintl: |
2551 | case Builtin::BI__builtin_llrint: |
2552 | case Builtin::BI__builtin_llrintf: |
2553 | case Builtin::BI__builtin_llrintl: |
2554 | case Builtin::BI__builtin_llrintf128: |
2555 | return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
2556 | *this, E, Intrinsic::llrint, |
2557 | Intrinsic::experimental_constrained_llrint)); |
2558 | |
2559 | default: |
2560 | break; |
2561 | } |
2562 | } |
2563 | |
2564 | switch (BuiltinIDIfNoAsmLabel) { |
2565 | default: break; |
2566 | case Builtin::BI__builtin___CFStringMakeConstantString: |
2567 | case Builtin::BI__builtin___NSStringMakeConstantString: |
2568 | return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); |
2569 | case Builtin::BI__builtin_stdarg_start: |
2570 | case Builtin::BI__builtin_va_start: |
2571 | case Builtin::BI__va_start: |
2572 | case Builtin::BI__builtin_va_end: |
2573 | return RValue::get( |
2574 | EmitVAStartEnd(BuiltinID == Builtin::BI__va_start |
2575 | ? EmitScalarExpr(E->getArg(0)) |
2576 | : EmitVAListRef(E->getArg(0)).getPointer(), |
2577 | BuiltinID != Builtin::BI__builtin_va_end)); |
2578 | case Builtin::BI__builtin_va_copy: { |
2579 | Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); |
2580 | Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); |
2581 | |
2582 | llvm::Type *Type = Int8PtrTy; |
2583 | |
2584 | DstPtr = Builder.CreateBitCast(DstPtr, Type); |
2585 | SrcPtr = Builder.CreateBitCast(SrcPtr, Type); |
2586 | return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), |
2587 | {DstPtr, SrcPtr})); |
2588 | } |
2589 | case Builtin::BI__builtin_abs: |
2590 | case Builtin::BI__builtin_labs: |
2591 | case Builtin::BI__builtin_llabs: { |
2592 | // X < 0 ? -X : X |
2593 | // The negation has 'nsw' because abs of INT_MIN is undefined. |
2594 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2595 | Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); |
2596 | Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); |
2597 | Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); |
2598 | Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); |
2599 | return RValue::get(Result); |
2600 | } |
2601 | case Builtin::BI__builtin_complex: { |
2602 | Value *Real = EmitScalarExpr(E->getArg(0)); |
2603 | Value *Imag = EmitScalarExpr(E->getArg(1)); |
2604 | return RValue::getComplex({Real, Imag}); |
2605 | } |
2606 | case Builtin::BI__builtin_conj: |
2607 | case Builtin::BI__builtin_conjf: |
2608 | case Builtin::BI__builtin_conjl: |
2609 | case Builtin::BIconj: |
2610 | case Builtin::BIconjf: |
2611 | case Builtin::BIconjl: { |
2612 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2613 | Value *Real = ComplexVal.first; |
2614 | Value *Imag = ComplexVal.second; |
2615 | Imag = Builder.CreateFNeg(Imag, "neg"); |
2616 | return RValue::getComplex(std::make_pair(Real, Imag)); |
2617 | } |
2618 | case Builtin::BI__builtin_creal: |
2619 | case Builtin::BI__builtin_crealf: |
2620 | case Builtin::BI__builtin_creall: |
2621 | case Builtin::BIcreal: |
2622 | case Builtin::BIcrealf: |
2623 | case Builtin::BIcreall: { |
2624 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2625 | return RValue::get(ComplexVal.first); |
2626 | } |
2627 | |
2628 | case Builtin::BI__builtin_dump_struct: { |
2629 | llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); |
2630 | llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( |
2631 | LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); |
2632 | |
2633 | Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); |
2634 | CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); |
2635 | |
2636 | const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); |
2637 | QualType Arg0Type = Arg0->getType()->getPointeeType(); |
2638 | |
2639 | Value *RecordPtr = EmitScalarExpr(Arg0); |
2640 | Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, |
2641 | {LLVMFuncType, Func}, 0); |
2642 | return RValue::get(Res); |
2643 | } |
2644 | |
2645 | case Builtin::BI__builtin_preserve_access_index: { |
2646 | // Only enabled preserved access index region when debuginfo |
2647 | // is available as debuginfo is needed to preserve user-level |
2648 | // access pattern. |
2649 | if (!getDebugInfo()) { |
2650 | CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); |
2651 | return RValue::get(EmitScalarExpr(E->getArg(0))); |
2652 | } |
2653 | |
2654 | // Nested builtin_preserve_access_index() not supported |
2655 | if (IsInPreservedAIRegion) { |
2656 | CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); |
2657 | return RValue::get(EmitScalarExpr(E->getArg(0))); |
2658 | } |
2659 | |
2660 | IsInPreservedAIRegion = true; |
2661 | Value *Res = EmitScalarExpr(E->getArg(0)); |
2662 | IsInPreservedAIRegion = false; |
2663 | return RValue::get(Res); |
2664 | } |
2665 | |
2666 | case Builtin::BI__builtin_cimag: |
2667 | case Builtin::BI__builtin_cimagf: |
2668 | case Builtin::BI__builtin_cimagl: |
2669 | case Builtin::BIcimag: |
2670 | case Builtin::BIcimagf: |
2671 | case Builtin::BIcimagl: { |
2672 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2673 | return RValue::get(ComplexVal.second); |
2674 | } |
2675 | |
2676 | case Builtin::BI__builtin_clrsb: |
2677 | case Builtin::BI__builtin_clrsbl: |
2678 | case Builtin::BI__builtin_clrsbll: { |
2679 | // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or |
2680 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2681 | |
2682 | llvm::Type *ArgType = ArgValue->getType(); |
2683 | Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
2684 | |
2685 | llvm::Type *ResultType = ConvertType(E->getType()); |
2686 | Value *Zero = llvm::Constant::getNullValue(ArgType); |
2687 | Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); |
2688 | Value *Inverse = Builder.CreateNot(ArgValue, "not"); |
2689 | Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); |
2690 | Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); |
2691 | Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); |
2692 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2693 | "cast"); |
2694 | return RValue::get(Result); |
2695 | } |
2696 | case Builtin::BI__builtin_ctzs: |
2697 | case Builtin::BI__builtin_ctz: |
2698 | case Builtin::BI__builtin_ctzl: |
2699 | case Builtin::BI__builtin_ctzll: { |
2700 | Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); |
2701 | |
2702 | llvm::Type *ArgType = ArgValue->getType(); |
2703 | Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
2704 | |
2705 | llvm::Type *ResultType = ConvertType(E->getType()); |
2706 | Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
2707 | Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
2708 | if (Result->getType() != ResultType) |
2709 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2710 | "cast"); |
2711 | return RValue::get(Result); |
2712 | } |
2713 | case Builtin::BI__builtin_clzs: |
2714 | case Builtin::BI__builtin_clz: |
2715 | case Builtin::BI__builtin_clzl: |
2716 | case Builtin::BI__builtin_clzll: { |
2717 | Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); |
2718 | |
2719 | llvm::Type *ArgType = ArgValue->getType(); |
2720 | Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
2721 | |
2722 | llvm::Type *ResultType = ConvertType(E->getType()); |
2723 | Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
2724 | Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
2725 | if (Result->getType() != ResultType) |
2726 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2727 | "cast"); |
2728 | return RValue::get(Result); |
2729 | } |
2730 | case Builtin::BI__builtin_ffs: |
2731 | case Builtin::BI__builtin_ffsl: |
2732 | case Builtin::BI__builtin_ffsll: { |
2733 | // ffs(x) -> x ? cttz(x) + 1 : 0 |
2734 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2735 | |
2736 | llvm::Type *ArgType = ArgValue->getType(); |
2737 | Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
2738 | |
2739 | llvm::Type *ResultType = ConvertType(E->getType()); |
2740 | Value *Tmp = |
2741 | Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), |
2742 | llvm::ConstantInt::get(ArgType, 1)); |
2743 | Value *Zero = llvm::Constant::getNullValue(ArgType); |
2744 | Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
2745 | Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); |
2746 | if (Result->getType() != ResultType) |
2747 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2748 | "cast"); |
2749 | return RValue::get(Result); |
2750 | } |
2751 | case Builtin::BI__builtin_parity: |
2752 | case Builtin::BI__builtin_parityl: |
2753 | case Builtin::BI__builtin_parityll: { |
2754 | // parity(x) -> ctpop(x) & 1 |
2755 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2756 | |
2757 | llvm::Type *ArgType = ArgValue->getType(); |
2758 | Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
2759 | |
2760 | llvm::Type *ResultType = ConvertType(E->getType()); |
2761 | Value *Tmp = Builder.CreateCall(F, ArgValue); |
2762 | Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); |
2763 | if (Result->getType() != ResultType) |
2764 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2765 | "cast"); |
2766 | return RValue::get(Result); |
2767 | } |
2768 | case Builtin::BI__lzcnt16: |
2769 | case Builtin::BI__lzcnt: |
2770 | case Builtin::BI__lzcnt64: { |
2771 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2772 | |
2773 | llvm::Type *ArgType = ArgValue->getType(); |
2774 | Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
2775 | |
2776 | llvm::Type *ResultType = ConvertType(E->getType()); |
2777 | Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); |
2778 | if (Result->getType() != ResultType) |
2779 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2780 | "cast"); |
2781 | return RValue::get(Result); |
2782 | } |
2783 | case Builtin::BI__popcnt16: |
2784 | case Builtin::BI__popcnt: |
2785 | case Builtin::BI__popcnt64: |
2786 | case Builtin::BI__builtin_popcount: |
2787 | case Builtin::BI__builtin_popcountl: |
2788 | case Builtin::BI__builtin_popcountll: { |
2789 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2790 | |
2791 | llvm::Type *ArgType = ArgValue->getType(); |
2792 | Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
2793 | |
2794 | llvm::Type *ResultType = ConvertType(E->getType()); |
2795 | Value *Result = Builder.CreateCall(F, ArgValue); |
2796 | if (Result->getType() != ResultType) |
2797 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2798 | "cast"); |
2799 | return RValue::get(Result); |
2800 | } |
2801 | case Builtin::BI__builtin_unpredictable: { |
2802 | // Always return the argument of __builtin_unpredictable. LLVM does not |
2803 | // handle this builtin. Metadata for this builtin should be added directly |
2804 | // to instructions such as branches or switches that use it. |
2805 | return RValue::get(EmitScalarExpr(E->getArg(0))); |
2806 | } |
2807 | case Builtin::BI__builtin_expect: { |
2808 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2809 | llvm::Type *ArgType = ArgValue->getType(); |
2810 | |
2811 | Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
2812 | // Don't generate llvm.expect on -O0 as the backend won't use it for |
2813 | // anything. |
2814 | // Note, we still IRGen ExpectedValue because it could have side-effects. |
2815 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
2816 | return RValue::get(ArgValue); |
2817 | |
2818 | Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); |
2819 | Value *Result = |
2820 | Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); |
2821 | return RValue::get(Result); |
2822 | } |
2823 | case Builtin::BI__builtin_expect_with_probability: { |
2824 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2825 | llvm::Type *ArgType = ArgValue->getType(); |
2826 | |
2827 | Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
2828 | llvm::APFloat Probability(0.0); |
2829 | const Expr *ProbArg = E->getArg(2); |
2830 | bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); |
2831 | assert(EvalSucceed && "probability should be able to evaluate as float")((void)0); |
2832 | (void)EvalSucceed; |
2833 | bool LoseInfo = false; |
2834 | Probability.convert(llvm::APFloat::IEEEdouble(), |
2835 | llvm::RoundingMode::Dynamic, &LoseInfo); |
2836 | llvm::Type *Ty = ConvertType(ProbArg->getType()); |
2837 | Constant *Confidence = ConstantFP::get(Ty, Probability); |
2838 | // Don't generate llvm.expect.with.probability on -O0 as the backend |
2839 | // won't use it for anything. |
2840 | // Note, we still IRGen ExpectedValue because it could have side-effects. |
2841 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
2842 | return RValue::get(ArgValue); |
2843 | |
2844 | Function *FnExpect = |
2845 | CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); |
2846 | Value *Result = Builder.CreateCall( |
2847 | FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); |
2848 | return RValue::get(Result); |
2849 | } |
2850 | case Builtin::BI__builtin_assume_aligned: { |
2851 | const Expr *Ptr = E->getArg(0); |
2852 | Value *PtrValue = EmitScalarExpr(Ptr); |
2853 | Value *OffsetValue = |
2854 | (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; |
2855 | |
2856 | Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); |
2857 | ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); |
2858 | if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) |
2859 | AlignmentCI = ConstantInt::get(AlignmentCI->getType(), |
2860 | llvm::Value::MaximumAlignment); |
2861 | |
2862 | emitAlignmentAssumption(PtrValue, Ptr, |
2863 | /*The expr loc is sufficient.*/ SourceLocation(), |
2864 | AlignmentCI, OffsetValue); |
2865 | return RValue::get(PtrValue); |
2866 | } |
2867 | case Builtin::BI__assume: |
2868 | case Builtin::BI__builtin_assume: { |
2869 | if (E->getArg(0)->HasSideEffects(getContext())) |
2870 | return RValue::get(nullptr); |
2871 | |
2872 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2873 | Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); |
2874 | return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); |
2875 | } |
2876 | case Builtin::BI__arithmetic_fence: { |
2877 | // Create the builtin call if FastMath is selected, and the target |
2878 | // supports the builtin, otherwise just return the argument. |
2879 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
2880 | llvm::FastMathFlags FMF = Builder.getFastMathFlags(); |
2881 | bool isArithmeticFenceEnabled = |
2882 | FMF.allowReassoc() && |
2883 | getContext().getTargetInfo().checkArithmeticFenceSupported(); |
2884 | QualType ArgType = E->getArg(0)->getType(); |
2885 | if (ArgType->isComplexType()) { |
2886 | if (isArithmeticFenceEnabled) { |
2887 | QualType ElementType = ArgType->castAs<ComplexType>()->getElementType(); |
2888 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2889 | Value *Real = Builder.CreateArithmeticFence(ComplexVal.first, |
2890 | ConvertType(ElementType)); |
2891 | Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second, |
2892 | ConvertType(ElementType)); |
2893 | return RValue::getComplex(std::make_pair(Real, Imag)); |
2894 | } |
2895 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2896 | Value *Real = ComplexVal.first; |
2897 | Value *Imag = ComplexVal.second; |
2898 | return RValue::getComplex(std::make_pair(Real, Imag)); |
2899 | } |
2900 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2901 | if (isArithmeticFenceEnabled) |
2902 | return RValue::get( |
2903 | Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType))); |
2904 | return RValue::get(ArgValue); |
2905 | } |
2906 | case Builtin::BI__builtin_bswap16: |
2907 | case Builtin::BI__builtin_bswap32: |
2908 | case Builtin::BI__builtin_bswap64: { |
2909 | return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); |
2910 | } |
2911 | case Builtin::BI__builtin_bitreverse8: |
2912 | case Builtin::BI__builtin_bitreverse16: |
2913 | case Builtin::BI__builtin_bitreverse32: |
2914 | case Builtin::BI__builtin_bitreverse64: { |
2915 | return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); |
2916 | } |
2917 | case Builtin::BI__builtin_rotateleft8: |
2918 | case Builtin::BI__builtin_rotateleft16: |
2919 | case Builtin::BI__builtin_rotateleft32: |
2920 | case Builtin::BI__builtin_rotateleft64: |
2921 | case Builtin::BI_rotl8: // Microsoft variants of rotate left |
2922 | case Builtin::BI_rotl16: |
2923 | case Builtin::BI_rotl: |
2924 | case Builtin::BI_lrotl: |
2925 | case Builtin::BI_rotl64: |
2926 | return emitRotate(E, false); |
2927 | |
2928 | case Builtin::BI__builtin_rotateright8: |
2929 | case Builtin::BI__builtin_rotateright16: |
2930 | case Builtin::BI__builtin_rotateright32: |
2931 | case Builtin::BI__builtin_rotateright64: |
2932 | case Builtin::BI_rotr8: // Microsoft variants of rotate right |
2933 | case Builtin::BI_rotr16: |
2934 | case Builtin::BI_rotr: |
2935 | case Builtin::BI_lrotr: |
2936 | case Builtin::BI_rotr64: |
2937 | return emitRotate(E, true); |
2938 | |
2939 | case Builtin::BI__builtin_constant_p: { |
2940 | llvm::Type *ResultType = ConvertType(E->getType()); |
2941 | |
2942 | const Expr *Arg = E->getArg(0); |
2943 | QualType ArgType = Arg->getType(); |
2944 | // FIXME: The allowance for Obj-C pointers and block pointers is historical |
2945 | // and likely a mistake. |
2946 | if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && |
2947 | !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) |
2948 | // Per the GCC documentation, only numeric constants are recognized after |
2949 | // inlining. |
2950 | return RValue::get(ConstantInt::get(ResultType, 0)); |
2951 | |
2952 | if (Arg->HasSideEffects(getContext())) |
2953 | // The argument is unevaluated, so be conservative if it might have |
2954 | // side-effects. |
2955 | return RValue::get(ConstantInt::get(ResultType, 0)); |
2956 | |
2957 | Value *ArgValue = EmitScalarExpr(Arg); |
2958 | if (ArgType->isObjCObjectPointerType()) { |
2959 | // Convert Objective-C objects to id because we cannot distinguish between |
2960 | // LLVM types for Obj-C classes as they are opaque. |
2961 | ArgType = CGM.getContext().getObjCIdType(); |
2962 | ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); |
2963 | } |
2964 | Function *F = |
2965 | CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); |
2966 | Value *Result = Builder.CreateCall(F, ArgValue); |
2967 | if (Result->getType() != ResultType) |
2968 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); |
2969 | return RValue::get(Result); |
2970 | } |
2971 | case Builtin::BI__builtin_dynamic_object_size: |
2972 | case Builtin::BI__builtin_object_size: { |
2973 | unsigned Type = |
2974 | E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
2975 | auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); |
2976 | |
2977 | // We pass this builtin onto the optimizer so that it can figure out the |
2978 | // object size in more complex cases. |
2979 | bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; |
2980 | return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, |
2981 | /*EmittedE=*/nullptr, IsDynamic)); |
2982 | } |
2983 | case Builtin::BI__builtin_prefetch: { |
2984 | Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); |
2985 | // FIXME: Technically these constants should of type 'int', yes? |
2986 | RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : |
2987 | llvm::ConstantInt::get(Int32Ty, 0); |
2988 | Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : |
2989 | llvm::ConstantInt::get(Int32Ty, 3); |
2990 | Value *Data = llvm::ConstantInt::get(Int32Ty, 1); |
2991 | Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
2992 | return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); |
2993 | } |
2994 | case Builtin::BI__builtin_readcyclecounter: { |
2995 | Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); |
2996 | return RValue::get(Builder.CreateCall(F)); |
2997 | } |
2998 | case Builtin::BI__builtin___clear_cache: { |
2999 | Value *Begin = EmitScalarExpr(E->getArg(0)); |
3000 | Value *End = EmitScalarExpr(E->getArg(1)); |
3001 | Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); |
3002 | return RValue::get(Builder.CreateCall(F, {Begin, End})); |
3003 | } |
3004 | case Builtin::BI__builtin_trap: |
3005 | return RValue::get(EmitTrapCall(Intrinsic::trap)); |
3006 | case Builtin::BI__debugbreak: |
3007 | return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); |
3008 | case Builtin::BI__builtin_unreachable: { |
3009 | EmitUnreachable(E->getExprLoc()); |
3010 | |
3011 | // We do need to preserve an insertion point. |
3012 | EmitBlock(createBasicBlock("unreachable.cont")); |
3013 | |
3014 | return RValue::get(nullptr); |
3015 | } |
3016 | |
3017 | case Builtin::BI__builtin_powi: |
3018 | case Builtin::BI__builtin_powif: |
3019 | case Builtin::BI__builtin_powil: { |
3020 | llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
3021 | llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
3022 | |
3023 | if (Builder.getIsFPConstrained()) { |
3024 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3025 | Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi, |
3026 | Src0->getType()); |
3027 | return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 })); |
3028 | } |
3029 | |
3030 | Function *F = CGM.getIntrinsic(Intrinsic::powi, |
3031 | { Src0->getType(), Src1->getType() }); |
3032 | return RValue::get(Builder.CreateCall(F, { Src0, Src1 })); |
3033 | } |
3034 | case Builtin::BI__builtin_isgreater: |
3035 | case Builtin::BI__builtin_isgreaterequal: |
3036 | case Builtin::BI__builtin_isless: |
3037 | case Builtin::BI__builtin_islessequal: |
3038 | case Builtin::BI__builtin_islessgreater: |
3039 | case Builtin::BI__builtin_isunordered: { |
3040 | // Ordered comparisons: we know the arguments to these are matching scalar |
3041 | // floating point values. |
3042 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3043 | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
3044 | Value *LHS = EmitScalarExpr(E->getArg(0)); |
3045 | Value *RHS = EmitScalarExpr(E->getArg(1)); |
3046 | |
3047 | switch (BuiltinID) { |
3048 | default: llvm_unreachable("Unknown ordered comparison")__builtin_unreachable(); |
3049 | case Builtin::BI__builtin_isgreater: |
3050 | LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); |
3051 | break; |
3052 | case Builtin::BI__builtin_isgreaterequal: |
3053 | LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); |
3054 | break; |
3055 | case Builtin::BI__builtin_isless: |
3056 | LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); |
3057 | break; |
3058 | case Builtin::BI__builtin_islessequal: |
3059 | LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); |
3060 | break; |
3061 | case Builtin::BI__builtin_islessgreater: |
3062 | LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); |
3063 | break; |
3064 | case Builtin::BI__builtin_isunordered: |
3065 | LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); |
3066 | break; |
3067 | } |
3068 | // ZExt bool to int type. |
3069 | return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); |
3070 | } |
3071 | case Builtin::BI__builtin_isnan: { |
3072 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3073 | Value *V = EmitScalarExpr(E->getArg(0)); |
3074 | llvm::Type *Ty = V->getType(); |
3075 | const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); |
3076 | if (!Builder.getIsFPConstrained() || |
3077 | Builder.getDefaultConstrainedExcept() == fp::ebIgnore || |
3078 | !Ty->isIEEE()) { |
3079 | V = Builder.CreateFCmpUNO(V, V, "cmp"); |
3080 | return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
3081 | } |
3082 | |
3083 | if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) |
3084 | return RValue::get(Result); |
3085 | |
3086 | // NaN has all exp bits set and a non zero significand. Therefore: |
3087 | // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0) |
3088 | unsigned bitsize = Ty->getScalarSizeInBits(); |
3089 | llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); |
3090 | Value *IntV = Builder.CreateBitCast(V, IntTy); |
3091 | APInt AndMask = APInt::getSignedMaxValue(bitsize); |
3092 | Value *AbsV = |
3093 | Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask)); |
3094 | APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); |
3095 | Value *Sub = |
3096 | Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV); |
3097 | // V = sign bit (Sub) <=> V = (Sub < 0) |
3098 | V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1)); |
3099 | if (bitsize > 32) |
3100 | V = Builder.CreateTrunc(V, ConvertType(E->getType())); |
3101 | return RValue::get(V); |
3102 | } |
3103 | |
3104 | case Builtin::BI__builtin_matrix_transpose: { |
3105 | const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); |
3106 | Value *MatValue = EmitScalarExpr(E->getArg(0)); |
3107 | MatrixBuilder<CGBuilderTy> MB(Builder); |
3108 | Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), |
3109 | MatrixTy->getNumColumns()); |
3110 | return RValue::get(Result); |
3111 | } |
3112 | |
3113 | case Builtin::BI__builtin_matrix_column_major_load: { |
3114 | MatrixBuilder<CGBuilderTy> MB(Builder); |
3115 | // Emit everything that isn't dependent on the first parameter type |
3116 | Value *Stride = EmitScalarExpr(E->getArg(3)); |
3117 | const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); |
3118 | auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>(); |
3119 | assert(PtrTy && "arg0 must be of pointer type")((void)0); |
3120 | bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
3121 | |
3122 | Address Src = EmitPointerWithAlignment(E->getArg(0)); |
3123 | EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(), |
3124 | E->getArg(0)->getExprLoc(), FD, 0); |
3125 | Value *Result = MB.CreateColumnMajorLoad( |
3126 | Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride, |
3127 | IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(), |
3128 | "matrix"); |
3129 | return RValue::get(Result); |
3130 | } |
3131 | |
3132 | case Builtin::BI__builtin_matrix_column_major_store: { |
3133 | MatrixBuilder<CGBuilderTy> MB(Builder); |
3134 | Value *Matrix = EmitScalarExpr(E->getArg(0)); |
3135 | Address Dst = EmitPointerWithAlignment(E->getArg(1)); |
3136 | Value *Stride = EmitScalarExpr(E->getArg(2)); |
3137 | |
3138 | const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); |
3139 | auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>(); |
3140 | assert(PtrTy && "arg1 must be of pointer type")((void)0); |
3141 | bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
3142 | |
3143 | EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(), |
3144 | E->getArg(1)->getExprLoc(), FD, 0); |
3145 | Value *Result = MB.CreateColumnMajorStore( |
3146 | Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()), |
3147 | Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); |
3148 | return RValue::get(Result); |
3149 | } |
3150 | |
3151 | case Builtin::BIfinite: |
3152 | case Builtin::BI__finite: |
3153 | case Builtin::BIfinitef: |
3154 | case Builtin::BI__finitef: |
3155 | case Builtin::BIfinitel: |
3156 | case Builtin::BI__finitel: |
3157 | case Builtin::BI__builtin_isinf: |
3158 | case Builtin::BI__builtin_isfinite: { |
3159 | // isinf(x) --> fabs(x) == infinity |
3160 | // isfinite(x) --> fabs(x) != infinity |
3161 | // x != NaN via the ordered compare in either case. |
3162 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3163 | Value *V = EmitScalarExpr(E->getArg(0)); |
3164 | llvm::Type *Ty = V->getType(); |
3165 | if (!Builder.getIsFPConstrained() || |
3166 | Builder.getDefaultConstrainedExcept() == fp::ebIgnore || |
3167 | !Ty->isIEEE()) { |
3168 | Value *Fabs = EmitFAbs(*this, V); |
3169 | Constant *Infinity = ConstantFP::getInfinity(V->getType()); |
3170 | CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) |
3171 | ? CmpInst::FCMP_OEQ |
3172 | : CmpInst::FCMP_ONE; |
3173 | Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); |
3174 | return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); |
3175 | } |
3176 | |
3177 | if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) |
3178 | return RValue::get(Result); |
3179 | |
3180 | // Inf values have all exp bits set and a zero significand. Therefore: |
3181 | // isinf(V) == ((V << 1) == ((exp mask) << 1)) |
3182 | // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison |
3183 | unsigned bitsize = Ty->getScalarSizeInBits(); |
3184 | llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); |
3185 | Value *IntV = Builder.CreateBitCast(V, IntTy); |
3186 | Value *Shl1 = Builder.CreateShl(IntV, 1); |
3187 | const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); |
3188 | APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); |
3189 | Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1)); |
3190 | if (BuiltinID == Builtin::BI__builtin_isinf) |
3191 | V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1); |
3192 | else |
3193 | V = Builder.CreateICmpULT(Shl1, ExpMaskShl1); |
3194 | return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
3195 | } |
3196 | |
3197 | case Builtin::BI__builtin_isinf_sign: { |
3198 | // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 |
3199 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3200 | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
3201 | Value *Arg = EmitScalarExpr(E->getArg(0)); |
3202 | Value *AbsArg = EmitFAbs(*this, Arg); |
3203 | Value *IsInf = Builder.CreateFCmpOEQ( |
3204 | AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); |
3205 | Value *IsNeg = EmitSignBit(*this, Arg); |
3206 | |
3207 | llvm::Type *IntTy = ConvertType(E->getType()); |
3208 | Value *Zero = Constant::getNullValue(IntTy); |
3209 | Value *One = ConstantInt::get(IntTy, 1); |
3210 | Value *NegativeOne = ConstantInt::get(IntTy, -1); |
3211 | Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); |
3212 | Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); |
3213 | return RValue::get(Result); |
3214 | } |
3215 | |
3216 | case Builtin::BI__builtin_isnormal: { |
3217 | // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min |
3218 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3219 | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
3220 | Value *V = EmitScalarExpr(E->getArg(0)); |
3221 | Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); |
3222 | |
3223 | Value *Abs = EmitFAbs(*this, V); |
3224 | Value *IsLessThanInf = |
3225 | Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); |
3226 | APFloat Smallest = APFloat::getSmallestNormalized( |
3227 | getContext().getFloatTypeSemantics(E->getArg(0)->getType())); |
3228 | Value *IsNormal = |
3229 | Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), |
3230 | "isnormal"); |
3231 | V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); |
3232 | V = Builder.CreateAnd(V, IsNormal, "and"); |
3233 | return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
3234 | } |
3235 | |
3236 | case Builtin::BI__builtin_flt_rounds: { |
3237 | Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); |
3238 | |
3239 | llvm::Type *ResultType = ConvertType(E->getType()); |
3240 | Value *Result = Builder.CreateCall(F); |
3241 | if (Result->getType() != ResultType) |
3242 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
3243 | "cast"); |
3244 | return RValue::get(Result); |
3245 | } |
3246 | |
3247 | case Builtin::BI__builtin_fpclassify: { |
3248 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3249 | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
3250 | Value *V = EmitScalarExpr(E->getArg(5)); |
3251 | llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); |
3252 | |
3253 | // Create Result |
3254 | BasicBlock *Begin = Builder.GetInsertBlock(); |
3255 | BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); |
3256 | Builder.SetInsertPoint(End); |
3257 | PHINode *Result = |
3258 | Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, |
3259 | "fpclassify_result"); |
3260 | |
3261 | // if (V==0) return FP_ZERO |
3262 | Builder.SetInsertPoint(Begin); |
3263 | Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), |
3264 | "iszero"); |
3265 | Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); |
3266 | BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); |
3267 | Builder.CreateCondBr(IsZero, End, NotZero); |
3268 | Result->addIncoming(ZeroLiteral, Begin); |
3269 | |
3270 | // if (V != V) return FP_NAN |
3271 | Builder.SetInsertPoint(NotZero); |
3272 | Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); |
3273 | Value *NanLiteral = EmitScalarExpr(E->getArg(0)); |
3274 | BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); |
3275 | Builder.CreateCondBr(IsNan, End, NotNan); |
3276 | Result->addIncoming(NanLiteral, NotZero); |
3277 | |
3278 | // if (fabs(V) == infinity) return FP_INFINITY |
3279 | Builder.SetInsertPoint(NotNan); |
3280 | Value *VAbs = EmitFAbs(*this, V); |
3281 | Value *IsInf = |
3282 | Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), |
3283 | "isinf"); |
3284 | Value *InfLiteral = EmitScalarExpr(E->getArg(1)); |
3285 | BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); |
3286 | Builder.CreateCondBr(IsInf, End, NotInf); |
3287 | Result->addIncoming(InfLiteral, NotNan); |
3288 | |
3289 | // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL |
3290 | Builder.SetInsertPoint(NotInf); |
3291 | APFloat Smallest = APFloat::getSmallestNormalized( |
3292 | getContext().getFloatTypeSemantics(E->getArg(5)->getType())); |
3293 | Value *IsNormal = |
3294 | Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), |
3295 | "isnormal"); |
3296 | Value *NormalResult = |
3297 | Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), |
3298 | EmitScalarExpr(E->getArg(3))); |
3299 | Builder.CreateBr(End); |
3300 | Result->addIncoming(NormalResult, NotInf); |
3301 | |
3302 | // return Result |
3303 | Builder.SetInsertPoint(End); |
3304 | return RValue::get(Result); |
3305 | } |
3306 | |
3307 | case Builtin::BIalloca: |
3308 | case Builtin::BI_alloca: |
3309 | case Builtin::BI__builtin_alloca: { |
3310 | Value *Size = EmitScalarExpr(E->getArg(0)); |
3311 | const TargetInfo &TI = getContext().getTargetInfo(); |
3312 | // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. |
3313 | const Align SuitableAlignmentInBytes = |
3314 | CGM.getContext() |
3315 | .toCharUnitsFromBits(TI.getSuitableAlign()) |
3316 | .getAsAlign(); |
3317 | AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
3318 | AI->setAlignment(SuitableAlignmentInBytes); |
3319 | initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); |
3320 | return RValue::get(AI); |
3321 | } |
3322 | |
3323 | case Builtin::BI__builtin_alloca_with_align: { |
3324 | Value *Size = EmitScalarExpr(E->getArg(0)); |
3325 | Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); |
3326 | auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); |
3327 | unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); |
3328 | const Align AlignmentInBytes = |
3329 | CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); |
3330 | AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
3331 | AI->setAlignment(AlignmentInBytes); |
3332 | initializeAlloca(*this, AI, Size, AlignmentInBytes); |
3333 | return RValue::get(AI); |
3334 | } |
3335 | |
3336 | case Builtin::BIbzero: |
3337 | case Builtin::BI__builtin_bzero: { |
3338 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3339 | Value *SizeVal = EmitScalarExpr(E->getArg(1)); |
3340 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3341 | E->getArg(0)->getExprLoc(), FD, 0); |
3342 | Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); |
3343 | return RValue::get(nullptr); |
3344 | } |
3345 | case Builtin::BImemcpy: |
3346 | case Builtin::BI__builtin_memcpy: |
3347 | case Builtin::BImempcpy: |
3348 | case Builtin::BI__builtin_mempcpy: { |
3349 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3350 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3351 | Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
3352 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3353 | E->getArg(0)->getExprLoc(), FD, 0); |
3354 | EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
3355 | E->getArg(1)->getExprLoc(), FD, 1); |
3356 | Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
3357 | if (BuiltinID == Builtin::BImempcpy || |
3358 | BuiltinID == Builtin::BI__builtin_mempcpy) |
3359 | return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(), |
3360 | Dest.getPointer(), SizeVal)); |
3361 | else |
3362 | return RValue::get(Dest.getPointer()); |
3363 | } |
3364 | |
3365 | case Builtin::BI__builtin_memcpy_inline: { |
3366 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3367 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3368 | uint64_t Size = |
3369 | E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
3370 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3371 | E->getArg(0)->getExprLoc(), FD, 0); |
3372 | EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
3373 | E->getArg(1)->getExprLoc(), FD, 1); |
3374 | Builder.CreateMemCpyInline(Dest, Src, Size); |
3375 | return RValue::get(nullptr); |
3376 | } |
3377 | |
3378 | case Builtin::BI__builtin_char_memchr: |
3379 | BuiltinID = Builtin::BI__builtin_memchr; |
3380 | break; |
3381 | |
3382 | case Builtin::BI__builtin___memcpy_chk: { |
3383 | // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. |
3384 | Expr::EvalResult SizeResult, DstSizeResult; |
3385 | if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
3386 | !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
3387 | break; |
3388 | llvm::APSInt Size = SizeResult.Val.getInt(); |
3389 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
3390 | if (Size.ugt(DstSize)) |
3391 | break; |
3392 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3393 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3394 | Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
3395 | Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
3396 | return RValue::get(Dest.getPointer()); |
3397 | } |
3398 | |
3399 | case Builtin::BI__builtin_objc_memmove_collectable: { |
3400 | Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); |
3401 | Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); |
3402 | Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
3403 | CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, |
3404 | DestAddr, SrcAddr, SizeVal); |
3405 | return RValue::get(DestAddr.getPointer()); |
3406 | } |
3407 | |
3408 | case Builtin::BI__builtin___memmove_chk: { |
3409 | // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. |
3410 | Expr::EvalResult SizeResult, DstSizeResult; |
3411 | if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
3412 | !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
3413 | break; |
3414 | llvm::APSInt Size = SizeResult.Val.getInt(); |
3415 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
3416 | if (Size.ugt(DstSize)) |
3417 | break; |
3418 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3419 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3420 | Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
3421 | Builder.CreateMemMove(Dest, Src, SizeVal, false); |
3422 | return RValue::get(Dest.getPointer()); |
3423 | } |
3424 | |
3425 | case Builtin::BImemmove: |
3426 | case Builtin::BI__builtin_memmove: { |
3427 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3428 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3429 | Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
3430 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3431 | E->getArg(0)->getExprLoc(), FD, 0); |
3432 | EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
3433 | E->getArg(1)->getExprLoc(), FD, 1); |
3434 | Builder.CreateMemMove(Dest, Src, SizeVal, false); |
3435 | return RValue::get(Dest.getPointer()); |
3436 | } |
3437 | case Builtin::BImemset: |
3438 | case Builtin::BI__builtin_memset: { |
3439 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3440 | Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
3441 | Builder.getInt8Ty()); |
3442 | Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
3443 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3444 | E->getArg(0)->getExprLoc(), FD, 0); |
3445 | Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
3446 | return RValue::get(Dest.getPointer()); |
3447 | } |
3448 | case Builtin::BI__builtin___memset_chk: { |
3449 | // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
3450 | Expr::EvalResult SizeResult, DstSizeResult; |
3451 | if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
3452 | !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
3453 | break; |
3454 | llvm::APSInt Size = SizeResult.Val.getInt(); |
3455 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
3456 | if (Size.ugt(DstSize)) |
3457 | break; |
3458 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3459 | Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
3460 | Builder.getInt8Ty()); |
3461 | Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
3462 | Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
3463 | return RValue::get(Dest.getPointer()); |
3464 | } |
3465 | case Builtin::BI__builtin_wmemchr: { |
3466 | // The MSVC runtime library does not provide a definition of wmemchr, so we |
3467 | // need an inline implementation. |
3468 | if (!getTarget().getTriple().isOSMSVCRT()) |
3469 | break; |
3470 | |
3471 | llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
3472 | Value *Str = EmitScalarExpr(E->getArg(0)); |
3473 | Value *Chr = EmitScalarExpr(E->getArg(1)); |
3474 | Value *Size = EmitScalarExpr(E->getArg(2)); |
3475 | |
3476 | BasicBlock *Entry = Builder.GetInsertBlock(); |
3477 | BasicBlock *CmpEq = createBasicBlock("wmemchr.eq"); |
3478 | BasicBlock *Next = createBasicBlock("wmemchr.next"); |
3479 | BasicBlock *Exit = createBasicBlock("wmemchr.exit"); |
3480 | Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
3481 | Builder.CreateCondBr(SizeEq0, Exit, CmpEq); |
3482 | |
3483 | EmitBlock(CmpEq); |
3484 | PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2); |
3485 | StrPhi->addIncoming(Str, Entry); |
3486 | PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
3487 | SizePhi->addIncoming(Size, Entry); |
3488 | CharUnits WCharAlign = |
3489 | getContext().getTypeAlignInChars(getContext().WCharTy); |
3490 | Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign); |
3491 | Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0); |
3492 | Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr); |
3493 | Builder.CreateCondBr(StrEqChr, Exit, Next); |
3494 | |
3495 | EmitBlock(Next); |
3496 | Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1); |
3497 | Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
3498 | Value *NextSizeEq0 = |
3499 | Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
3500 | Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq); |
3501 | StrPhi->addIncoming(NextStr, Next); |
3502 | SizePhi->addIncoming(NextSize, Next); |
3503 | |
3504 | EmitBlock(Exit); |
3505 | PHINode *Ret = Builder.CreatePHI(Str->getType(), 3); |
3506 | Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry); |
3507 | Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next); |
3508 | Ret->addIncoming(FoundChr, CmpEq); |
3509 | return RValue::get(Ret); |
3510 | } |
3511 | case Builtin::BI__builtin_wmemcmp: { |
3512 | // The MSVC runtime library does not provide a definition of wmemcmp, so we |
3513 | // need an inline implementation. |
3514 | if (!getTarget().getTriple().isOSMSVCRT()) |
3515 | break; |
3516 | |
3517 | llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
3518 | |
3519 | Value *Dst = EmitScalarExpr(E->getArg(0)); |
3520 | Value *Src = EmitScalarExpr(E->getArg(1)); |
3521 | Value *Size = EmitScalarExpr(E->getArg(2)); |
3522 | |
3523 | BasicBlock *Entry = Builder.GetInsertBlock(); |
3524 | BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); |
3525 | BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); |
3526 | BasicBlock *Next = createBasicBlock("wmemcmp.next"); |
3527 | BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); |
3528 | Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
3529 | Builder.CreateCondBr(SizeEq0, Exit, CmpGT); |
3530 | |
3531 | EmitBlock(CmpGT); |
3532 | PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); |
3533 | DstPhi->addIncoming(Dst, Entry); |
3534 | PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); |
3535 | SrcPhi->addIncoming(Src, Entry); |
3536 | PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
3537 | SizePhi->addIncoming(Size, Entry); |
3538 | CharUnits WCharAlign = |
3539 | getContext().getTypeAlignInChars(getContext().WCharTy); |
3540 | Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); |
3541 | Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); |
3542 | Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); |
3543 | Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); |
3544 | |
3545 | EmitBlock(CmpLT); |
3546 | Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); |
3547 | Builder.CreateCondBr(DstLtSrc, Exit, Next); |
3548 | |
3549 | EmitBlock(Next); |
3550 | Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); |
3551 | Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); |
3552 | Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
3553 | Value *NextSizeEq0 = |
3554 | Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
3555 | Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); |
3556 | DstPhi->addIncoming(NextDst, Next); |
3557 | SrcPhi->addIncoming(NextSrc, Next); |
3558 | SizePhi->addIncoming(NextSize, Next); |
3559 | |
3560 | EmitBlock(Exit); |
3561 | PHINode *Ret = Builder.CreatePHI(IntTy, 4); |
3562 | Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); |
3563 | Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); |
3564 | Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); |
3565 | Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); |
3566 | return RValue::get(Ret); |
3567 | } |
3568 | case Builtin::BI__builtin_dwarf_cfa: { |
3569 | // The offset in bytes from the first argument to the CFA. |
3570 | // |
3571 | // Why on earth is this in the frontend? Is there any reason at |
3572 | // all that the backend can't reasonably determine this while |
3573 | // lowering llvm.eh.dwarf.cfa()? |
3574 | // |
3575 | // TODO: If there's a satisfactory reason, add a target hook for |
3576 | // this instead of hard-coding 0, which is correct for most targets. |
3577 | int32_t Offset = 0; |
3578 | |
3579 | Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); |
3580 | return RValue::get(Builder.CreateCall(F, |
3581 | llvm::ConstantInt::get(Int32Ty, Offset))); |
3582 | } |
3583 | case Builtin::BI__builtin_return_address: { |
3584 | Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
3585 | getContext().UnsignedIntTy); |
3586 | Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
3587 | return RValue::get(Builder.CreateCall(F, Depth)); |
3588 | } |
3589 | case Builtin::BI_ReturnAddress: { |
3590 | Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
3591 | return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); |
3592 | } |
3593 | case Builtin::BI__builtin_frame_address: { |
3594 | Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
3595 | getContext().UnsignedIntTy); |
3596 | Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); |
3597 | return RValue::get(Builder.CreateCall(F, Depth)); |
3598 | } |
3599 | case Builtin::BI__builtin_extract_return_addr: { |
3600 | Value *Address = EmitScalarExpr(E->getArg(0)); |
3601 | Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); |
3602 | return RValue::get(Result); |
3603 | } |
3604 | case Builtin::BI__builtin_frob_return_addr: { |
3605 | Value *Address = EmitScalarExpr(E->getArg(0)); |
3606 | Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); |
3607 | return RValue::get(Result); |
3608 | } |
3609 | case Builtin::BI__builtin_dwarf_sp_column: { |
3610 | llvm::IntegerType *Ty |
3611 | = cast<llvm::IntegerType>(ConvertType(E->getType())); |
3612 | int Column = getTargetHooks().getDwarfEHStackPointer(CGM); |
3613 | if (Column == -1) { |
3614 | CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); |
3615 | return RValue::get(llvm::UndefValue::get(Ty)); |
3616 | } |
3617 | return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); |
3618 | } |
3619 | case Builtin::BI__builtin_init_dwarf_reg_size_table: { |
3620 | Value *Address = EmitScalarExpr(E->getArg(0)); |
3621 | if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) |
3622 | CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); |
3623 | return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); |
3624 | } |
3625 | case Builtin::BI__builtin_eh_return: { |
3626 | Value *Int = EmitScalarExpr(E->getArg(0)); |
3627 | Value *Ptr = EmitScalarExpr(E->getArg(1)); |
3628 | |
3629 | llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); |
3630 | assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&((void)0) |
3631 | "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")((void)0); |
3632 | Function *F = |
3633 | CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 |
3634 | : Intrinsic::eh_return_i64); |
3635 | Builder.CreateCall(F, {Int, Ptr}); |
3636 | Builder.CreateUnreachable(); |
3637 | |
3638 | // We do need to preserve an insertion point. |
3639 | EmitBlock(createBasicBlock("builtin_eh_return.cont")); |
3640 | |
3641 | return RValue::get(nullptr); |
3642 | } |
3643 | case Builtin::BI__builtin_unwind_init: { |
3644 | Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); |
3645 | return RValue::get(Builder.CreateCall(F)); |
3646 | } |
3647 | case Builtin::BI__builtin_extend_pointer: { |
3648 | // Extends a pointer to the size of an _Unwind_Word, which is |
3649 | // uint64_t on all platforms. Generally this gets poked into a |
3650 | // register and eventually used as an address, so if the |
3651 | // addressing registers are wider than pointers and the platform |
3652 | // doesn't implicitly ignore high-order bits when doing |
3653 | // addressing, we need to make sure we zext / sext based on |
3654 | // the platform's expectations. |
3655 | // |
3656 | // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html |
3657 | |
3658 | // Cast the pointer to intptr_t. |
3659 | Value *Ptr = EmitScalarExpr(E->getArg(0)); |
3660 | Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); |
3661 | |
3662 | // If that's 64 bits, we're done. |
3663 | if (IntPtrTy->getBitWidth() == 64) |
3664 | return RValue::get(Result); |
3665 | |
3666 | // Otherwise, ask the codegen data what to do. |
3667 | if (getTargetHooks().extendPointerWithSExt()) |
3668 | return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); |
3669 | else |
3670 | return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); |
3671 | } |
3672 | case Builtin::BI__builtin_setjmp: { |
3673 | // Buffer is a void**. |
3674 | Address Buf = EmitPointerWithAlignment(E->getArg(0)); |
3675 | |
3676 | // Store the frame pointer to the setjmp buffer. |
3677 | Value *FrameAddr = Builder.CreateCall( |
3678 | CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), |
3679 | ConstantInt::get(Int32Ty, 0)); |
3680 | Builder.CreateStore(FrameAddr, Buf); |
3681 | |
3682 | // Store the stack pointer to the setjmp buffer. |
3683 | Value *StackAddr = |
3684 | Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); |
3685 | Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); |
3686 | Builder.CreateStore(StackAddr, StackSaveSlot); |
3687 | |
3688 | // Call LLVM's EH setjmp, which is lightweight. |
3689 | Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); |
3690 | Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
3691 | return RValue::get(Builder.CreateCall(F, Buf.getPointer())); |
3692 | } |
3693 | case Builtin::BI__builtin_longjmp: { |
3694 | Value *Buf = EmitScalarExpr(E->getArg(0)); |
3695 | Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
3696 | |
3697 | // Call LLVM's EH longjmp, which is lightweight. |
3698 | Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); |
3699 | |
3700 | // longjmp doesn't return; mark this as unreachable. |
3701 | Builder.CreateUnreachable(); |
3702 | |
3703 | // We do need to preserve an insertion point. |
3704 | EmitBlock(createBasicBlock("longjmp.cont")); |
3705 | |
3706 | return RValue::get(nullptr); |
3707 | } |
3708 | case Builtin::BI__builtin_launder: { |
3709 | const Expr *Arg = E->getArg(0); |
3710 | QualType ArgTy = Arg->getType()->getPointeeType(); |
3711 | Value *Ptr = EmitScalarExpr(Arg); |
3712 | if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) |
3713 | Ptr = Builder.CreateLaunderInvariantGroup(Ptr); |
3714 | |
3715 | return RValue::get(Ptr); |
3716 | } |
3717 | case Builtin::BI__sync_fetch_and_add: |
3718 | case Builtin::BI__sync_fetch_and_sub: |
3719 | case Builtin::BI__sync_fetch_and_or: |
3720 | case Builtin::BI__sync_fetch_and_and: |
3721 | case Builtin::BI__sync_fetch_and_xor: |
3722 | case Builtin::BI__sync_fetch_and_nand: |
3723 | case Builtin::BI__sync_add_and_fetch: |
3724 | case Builtin::BI__sync_sub_and_fetch: |
3725 | case Builtin::BI__sync_and_and_fetch: |
3726 | case Builtin::BI__sync_or_and_fetch: |
3727 | case Builtin::BI__sync_xor_and_fetch: |
3728 | case Builtin::BI__sync_nand_and_fetch: |
3729 | case Builtin::BI__sync_val_compare_and_swap: |
3730 | case Builtin::BI__sync_bool_compare_and_swap: |
3731 | case Builtin::BI__sync_lock_test_and_set: |
3732 | case Builtin::BI__sync_lock_release: |
3733 | case Builtin::BI__sync_swap: |
3734 | llvm_unreachable("Shouldn't make it through sema")__builtin_unreachable(); |
3735 | case Builtin::BI__sync_fetch_and_add_1: |
3736 | case Builtin::BI__sync_fetch_and_add_2: |
3737 | case Builtin::BI__sync_fetch_and_add_4: |
3738 | case Builtin::BI__sync_fetch_and_add_8: |
3739 | case Builtin::BI__sync_fetch_and_add_16: |
3740 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); |
3741 | case Builtin::BI__sync_fetch_and_sub_1: |
3742 | case Builtin::BI__sync_fetch_and_sub_2: |
3743 | case Builtin::BI__sync_fetch_and_sub_4: |
3744 | case Builtin::BI__sync_fetch_and_sub_8: |
3745 | case Builtin::BI__sync_fetch_and_sub_16: |
3746 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); |
3747 | case Builtin::BI__sync_fetch_and_or_1: |
3748 | case Builtin::BI__sync_fetch_and_or_2: |
3749 | case Builtin::BI__sync_fetch_and_or_4: |
3750 | case Builtin::BI__sync_fetch_and_or_8: |
3751 | case Builtin::BI__sync_fetch_and_or_16: |
3752 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); |
3753 | case Builtin::BI__sync_fetch_and_and_1: |
3754 | case Builtin::BI__sync_fetch_and_and_2: |
3755 | case Builtin::BI__sync_fetch_and_and_4: |
3756 | case Builtin::BI__sync_fetch_and_and_8: |
3757 | case Builtin::BI__sync_fetch_and_and_16: |
3758 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); |
3759 | case Builtin::BI__sync_fetch_and_xor_1: |
3760 | case Builtin::BI__sync_fetch_and_xor_2: |
3761 | case Builtin::BI__sync_fetch_and_xor_4: |
3762 | case Builtin::BI__sync_fetch_and_xor_8: |
3763 | case Builtin::BI__sync_fetch_and_xor_16: |
3764 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); |
3765 | case Builtin::BI__sync_fetch_and_nand_1: |
3766 | case Builtin::BI__sync_fetch_and_nand_2: |
3767 | case Builtin::BI__sync_fetch_and_nand_4: |
3768 | case Builtin::BI__sync_fetch_and_nand_8: |
3769 | case Builtin::BI__sync_fetch_and_nand_16: |
3770 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); |
3771 | |
3772 | // Clang extensions: not overloaded yet. |
3773 | case Builtin::BI__sync_fetch_and_min: |
3774 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); |
3775 | case Builtin::BI__sync_fetch_and_max: |
3776 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); |
3777 | case Builtin::BI__sync_fetch_and_umin: |
3778 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); |
3779 | case Builtin::BI__sync_fetch_and_umax: |
3780 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); |
3781 | |
3782 | case Builtin::BI__sync_add_and_fetch_1: |
3783 | case Builtin::BI__sync_add_and_fetch_2: |
3784 | case Builtin::BI__sync_add_and_fetch_4: |
3785 | case Builtin::BI__sync_add_and_fetch_8: |
3786 | case Builtin::BI__sync_add_and_fetch_16: |
3787 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, |
3788 | llvm::Instruction::Add); |
3789 | case Builtin::BI__sync_sub_and_fetch_1: |
3790 | case Builtin::BI__sync_sub_and_fetch_2: |
3791 | case Builtin::BI__sync_sub_and_fetch_4: |
3792 | case Builtin::BI__sync_sub_and_fetch_8: |
3793 | case Builtin::BI__sync_sub_and_fetch_16: |
3794 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, |
3795 | llvm::Instruction::Sub); |
3796 | case Builtin::BI__sync_and_and_fetch_1: |
3797 | case Builtin::BI__sync_and_and_fetch_2: |
3798 | case Builtin::BI__sync_and_and_fetch_4: |
3799 | case Builtin::BI__sync_and_and_fetch_8: |
3800 | case Builtin::BI__sync_and_and_fetch_16: |
3801 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, |
3802 | llvm::Instruction::And); |
3803 | case Builtin::BI__sync_or_and_fetch_1: |
3804 | case Builtin::BI__sync_or_and_fetch_2: |
3805 | case Builtin::BI__sync_or_and_fetch_4: |
3806 | case Builtin::BI__sync_or_and_fetch_8: |
3807 | case Builtin::BI__sync_or_and_fetch_16: |
3808 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, |
3809 | llvm::Instruction::Or); |
3810 | case Builtin::BI__sync_xor_and_fetch_1: |
3811 | case Builtin::BI__sync_xor_and_fetch_2: |
3812 | case Builtin::BI__sync_xor_and_fetch_4: |
3813 | case Builtin::BI__sync_xor_and_fetch_8: |
3814 | case Builtin::BI__sync_xor_and_fetch_16: |
3815 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, |
3816 | llvm::Instruction::Xor); |
3817 | case Builtin::BI__sync_nand_and_fetch_1: |
3818 | case Builtin::BI__sync_nand_and_fetch_2: |
3819 | case Builtin::BI__sync_nand_and_fetch_4: |
3820 | case Builtin::BI__sync_nand_and_fetch_8: |
3821 | case Builtin::BI__sync_nand_and_fetch_16: |
3822 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, |
3823 | llvm::Instruction::And, true); |
3824 | |
3825 | case Builtin::BI__sync_val_compare_and_swap_1: |
3826 | case Builtin::BI__sync_val_compare_and_swap_2: |
3827 | case Builtin::BI__sync_val_compare_and_swap_4: |
3828 | case Builtin::BI__sync_val_compare_and_swap_8: |
3829 | case Builtin::BI__sync_val_compare_and_swap_16: |
3830 | return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); |
3831 | |
3832 | case Builtin::BI__sync_bool_compare_and_swap_1: |
3833 | case Builtin::BI__sync_bool_compare_and_swap_2: |
3834 | case Builtin::BI__sync_bool_compare_and_swap_4: |
3835 | case Builtin::BI__sync_bool_compare_and_swap_8: |
3836 | case Builtin::BI__sync_bool_compare_and_swap_16: |
3837 | return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); |
3838 | |
3839 | case Builtin::BI__sync_swap_1: |
3840 | case Builtin::BI__sync_swap_2: |
3841 | case Builtin::BI__sync_swap_4: |
3842 | case Builtin::BI__sync_swap_8: |
3843 | case Builtin::BI__sync_swap_16: |
3844 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
3845 | |
3846 | case Builtin::BI__sync_lock_test_and_set_1: |
3847 | case Builtin::BI__sync_lock_test_and_set_2: |
3848 | case Builtin::BI__sync_lock_test_and_set_4: |
3849 | case Builtin::BI__sync_lock_test_and_set_8: |
3850 | case Builtin::BI__sync_lock_test_and_set_16: |
3851 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
3852 | |
3853 | case Builtin::BI__sync_lock_release_1: |
3854 | case Builtin::BI__sync_lock_release_2: |
3855 | case Builtin::BI__sync_lock_release_4: |
3856 | case Builtin::BI__sync_lock_release_8: |
3857 | case Builtin::BI__sync_lock_release_16: { |
3858 | Value *Ptr = EmitScalarExpr(E->getArg(0)); |
3859 | QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
3860 | CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); |
3861 | llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
3862 | StoreSize.getQuantity() * 8); |
3863 | Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
3864 | llvm::StoreInst *Store = |
3865 | Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, |
3866 | StoreSize); |
3867 | Store->setAtomic(llvm::AtomicOrdering::Release); |
3868 | return RValue::get(nullptr); |
3869 | } |
3870 | |
3871 | case Builtin::BI__sync_synchronize: { |
3872 | // We assume this is supposed to correspond to a C++0x-style |
3873 | // sequentially-consistent fence (i.e. this is only usable for |
3874 | // synchronization, not device I/O or anything like that). This intrinsic |
3875 | // is really badly designed in the sense that in theory, there isn't |
3876 | // any way to safely use it... but in practice, it mostly works |
3877 | // to use it with non-atomic loads and stores to get acquire/release |
3878 | // semantics. |
3879 | Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); |
3880 | return RValue::get(nullptr); |
3881 | } |
3882 | |
3883 | case Builtin::BI__builtin_nontemporal_load: |
3884 | return RValue::get(EmitNontemporalLoad(*this, E)); |
3885 | case Builtin::BI__builtin_nontemporal_store: |
3886 | return RValue::get(EmitNontemporalStore(*this, E)); |
3887 | case Builtin::BI__c11_atomic_is_lock_free: |
3888 | case Builtin::BI__atomic_is_lock_free: { |
3889 | // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the |
3890 | // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since |
3891 | // _Atomic(T) is always properly-aligned. |
3892 | const char *LibCallName = "__atomic_is_lock_free"; |
3893 | CallArgList Args; |
3894 | Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), |
3895 | getContext().getSizeType()); |
3896 | if (BuiltinID == Builtin::BI__atomic_is_lock_free) |
3897 | Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), |
3898 | getContext().VoidPtrTy); |
3899 | else |
3900 | Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), |
3901 | getContext().VoidPtrTy); |
3902 | const CGFunctionInfo &FuncInfo = |
3903 | CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); |
3904 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); |
3905 | llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); |
3906 | return EmitCall(FuncInfo, CGCallee::forDirect(Func), |
3907 | ReturnValueSlot(), Args); |
3908 | } |
3909 | |
3910 | case Builtin::BI__atomic_test_and_set: { |
3911 | // Look at the argument type to determine whether this is a volatile |
3912 | // operation. The parameter type is always volatile. |
3913 | QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
3914 | bool Volatile = |
3915 | PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
3916 | |
3917 | Value *Ptr = EmitScalarExpr(E->getArg(0)); |
3918 | unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); |
3919 | Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
3920 | Value *NewVal = Builder.getInt8(1); |
3921 | Value *Order = EmitScalarExpr(E->getArg(1)); |
3922 | if (isa<llvm::ConstantInt>(Order)) { |
3923 | int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
3924 | AtomicRMWInst *Result = nullptr; |
3925 | switch (ord) { |
3926 | case 0: // memory_order_relaxed |
3927 | default: // invalid order |
3928 | Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
3929 | llvm::AtomicOrdering::Monotonic); |
3930 | break; |
3931 | case 1: // memory_order_consume |
3932 | case 2: // memory_order_acquire |
3933 | Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
3934 | llvm::AtomicOrdering::Acquire); |
3935 | break; |
3936 | case 3: // memory_order_release |
3937 | Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
3938 | llvm::AtomicOrdering::Release); |
3939 | break; |
3940 | case 4: // memory_order_acq_rel |
3941 | |
3942 | Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
3943 | llvm::AtomicOrdering::AcquireRelease); |
3944 | break; |
3945 | case 5: // memory_order_seq_cst |
3946 | Result = Builder.CreateAtomicRMW( |
3947 | llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
3948 | llvm::AtomicOrdering::SequentiallyConsistent); |
3949 | break; |
3950 | } |
3951 | Result->setVolatile(Volatile); |
3952 | return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
3953 | } |
3954 | |
3955 | llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
3956 | |
3957 | llvm::BasicBlock *BBs[5] = { |
3958 | createBasicBlock("monotonic", CurFn), |
3959 | createBasicBlock("acquire", CurFn), |
3960 | createBasicBlock("release", CurFn), |
3961 | createBasicBlock("acqrel", CurFn), |
3962 | createBasicBlock("seqcst", CurFn) |
3963 | }; |
3964 | llvm::AtomicOrdering Orders[5] = { |
3965 | llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, |
3966 | llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, |
3967 | llvm::AtomicOrdering::SequentiallyConsistent}; |
3968 | |
3969 | Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
3970 | llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
3971 | |
3972 | Builder.SetInsertPoint(ContBB); |
3973 | PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); |
3974 | |
3975 | for (unsigned i = 0; i < 5; ++i) { |
3976 | Builder.SetInsertPoint(BBs[i]); |
3977 | AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
3978 | Ptr, NewVal, Orders[i]); |
3979 | RMW->setVolatile(Volatile); |
3980 | Result->addIncoming(RMW, BBs[i]); |
3981 | Builder.CreateBr(ContBB); |
3982 | } |
3983 | |
3984 | SI->addCase(Builder.getInt32(0), BBs[0]); |
3985 | SI->addCase(Builder.getInt32(1), BBs[1]); |
3986 | SI->addCase(Builder.getInt32(2), BBs[1]); |
3987 | SI->addCase(Builder.getInt32(3), BBs[2]); |
3988 | SI->addCase(Builder.getInt32(4), BBs[3]); |
3989 | SI->addCase(Builder.getInt32(5), BBs[4]); |
3990 | |
3991 | Builder.SetInsertPoint(ContBB); |
3992 | return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
3993 | } |
3994 | |
3995 | case Builtin::BI__atomic_clear: { |
3996 | QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
3997 | bool Volatile = |
3998 | PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
3999 | |
4000 | Address Ptr = EmitPointerWithAlignment(E->getArg(0)); |
4001 | unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); |
4002 | Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
4003 | Value *NewVal = Builder.getInt8(0); |
4004 | Value *Order = EmitScalarExpr(E->getArg(1)); |
4005 | if (isa<llvm::ConstantInt>(Order)) { |
4006 | int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
4007 | StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
4008 | switch (ord) { |
4009 | case 0: // memory_order_relaxed |
4010 | default: // invalid order |
4011 | Store->setOrdering(llvm::AtomicOrdering::Monotonic); |
4012 | break; |
4013 | case 3: // memory_order_release |
4014 | Store->setOrdering(llvm::AtomicOrdering::Release); |
4015 | break; |
4016 | case 5: // memory_order_seq_cst |
4017 | Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); |
4018 | break; |
4019 | } |
4020 | return RValue::get(nullptr); |
4021 | } |
4022 | |
4023 | llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
4024 | |
4025 | llvm::BasicBlock *BBs[3] = { |
4026 | createBasicBlock("monotonic", CurFn), |
4027 | createBasicBlock("release", CurFn), |
4028 | createBasicBlock("seqcst", CurFn) |
4029 | }; |
4030 | llvm::AtomicOrdering Orders[3] = { |
4031 | llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, |
4032 | llvm::AtomicOrdering::SequentiallyConsistent}; |
4033 | |
4034 | Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
4035 | llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
4036 | |
4037 | for (unsigned i = 0; i < 3; ++i) { |
4038 | Builder.SetInsertPoint(BBs[i]); |
4039 | StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
4040 | Store->setOrdering(Orders[i]); |
4041 | Builder.CreateBr(ContBB); |
4042 | } |
4043 | |
4044 | SI->addCase(Builder.getInt32(0), BBs[0]); |
4045 | SI->addCase(Builder.getInt32(3), BBs[1]); |
4046 | SI->addCase(Builder.getInt32(5), BBs[2]); |
4047 | |
4048 | Builder.SetInsertPoint(ContBB); |
4049 | return RValue::get(nullptr); |
4050 | } |
4051 | |
4052 | case Builtin::BI__atomic_thread_fence: |
4053 | case Builtin::BI__atomic_signal_fence: |
4054 | case Builtin::BI__c11_atomic_thread_fence: |
4055 | case Builtin::BI__c11_atomic_signal_fence: { |
4056 | llvm::SyncScope::ID SSID; |
4057 | if (BuiltinID == Builtin::BI__atomic_signal_fence || |
4058 | BuiltinID == Builtin::BI__c11_atomic_signal_fence) |
4059 | SSID = llvm::SyncScope::SingleThread; |
4060 | else |
4061 | SSID = llvm::SyncScope::System; |
4062 | Value *Order = EmitScalarExpr(E->getArg(0)); |
4063 | if (isa<llvm::ConstantInt>(Order)) { |
4064 | int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
4065 | switch (ord) { |
4066 | case 0: // memory_order_relaxed |
4067 | default: // invalid order |
4068 | break; |
4069 | case 1: // memory_order_consume |
4070 | case 2: // memory_order_acquire |
4071 | Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
4072 | break; |
4073 | case 3: // memory_order_release |
4074 | Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
4075 | break; |
4076 | case 4: // memory_order_acq_rel |
4077 | Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
4078 | break; |
4079 | case 5: // memory_order_seq_cst |
4080 | Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
4081 | break; |
4082 | } |
4083 | return RValue::get(nullptr); |
4084 | } |
4085 | |
4086 | llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; |
4087 | AcquireBB = createBasicBlock("acquire", CurFn); |
4088 | ReleaseBB = createBasicBlock("release", CurFn); |
4089 | AcqRelBB = createBasicBlock("acqrel", CurFn); |
4090 | SeqCstBB = createBasicBlock("seqcst", CurFn); |
4091 | llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
4092 | |
4093 | Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
4094 | llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); |
4095 | |
4096 | Builder.SetInsertPoint(AcquireBB); |
4097 | Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
4098 | Builder.CreateBr(ContBB); |
4099 | SI->addCase(Builder.getInt32(1), AcquireBB); |
4100 | SI->addCase(Builder.getInt32(2), AcquireBB); |
4101 | |
4102 | Builder.SetInsertPoint(ReleaseBB); |
4103 | Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
4104 | Builder.CreateBr(ContBB); |
4105 | SI->addCase(Builder.getInt32(3), ReleaseBB); |
4106 | |
4107 | Builder.SetInsertPoint(AcqRelBB); |
4108 | Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
4109 | Builder.CreateBr(ContBB); |
4110 | SI->addCase(Builder.getInt32(4), AcqRelBB); |
4111 | |
4112 | Builder.SetInsertPoint(SeqCstBB); |
4113 | Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
4114 | Builder.CreateBr(ContBB); |
4115 | SI->addCase(Builder.getInt32(5), SeqCstBB); |
4116 | |
4117 | Builder.SetInsertPoint(ContBB); |
4118 | return RValue::get(nullptr); |
4119 | } |
4120 | |
4121 | case Builtin::BI__builtin_signbit: |
4122 | case Builtin::BI__builtin_signbitf: |
4123 | case Builtin::BI__builtin_signbitl: { |
4124 | return RValue::get( |
4125 | Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), |
4126 | ConvertType(E->getType()))); |
4127 | } |
4128 | case Builtin::BI__warn_memset_zero_len: |
4129 | return RValue::getIgnored(); |
4130 | case Builtin::BI__annotation: { |
4131 | // Re-encode each wide string to UTF8 and make an MDString. |
4132 | SmallVector<Metadata *, 1> Strings; |
4133 | for (const Expr *Arg : E->arguments()) { |
4134 | const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); |
4135 | assert(Str->getCharByteWidth() == 2)((void)0); |
4136 | StringRef WideBytes = Str->getBytes(); |
4137 | std::string StrUtf8; |
4138 | if (!convertUTF16ToUTF8String( |
4139 | makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { |
4140 | CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); |
4141 | continue; |
4142 | } |
4143 | Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); |
4144 | } |
4145 | |
4146 | // Build and MDTuple of MDStrings and emit the intrinsic call. |
4147 | llvm::Function *F = |
4148 | CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); |
4149 | MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); |
4150 | Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); |
4151 | return RValue::getIgnored(); |
4152 | } |
4153 | case Builtin::BI__builtin_annotation: { |
4154 | llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); |
4155 | llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, |
4156 | AnnVal->getType()); |
4157 | |
4158 | // Get the annotation string, go through casts. Sema requires this to be a |
4159 | // non-wide string literal, potentially casted, so the cast<> is safe. |
4160 | const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); |
4161 | StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); |
4162 | return RValue::get( |
4163 | EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr)); |
4164 | } |
4165 | case Builtin::BI__builtin_addcb: |
4166 | case Builtin::BI__builtin_addcs: |
4167 | case Builtin::BI__builtin_addc: |
4168 | case Builtin::BI__builtin_addcl: |
4169 | case Builtin::BI__builtin_addcll: |
4170 | case Builtin::BI__builtin_subcb: |
4171 | case Builtin::BI__builtin_subcs: |
4172 | case Builtin::BI__builtin_subc: |
4173 | case Builtin::BI__builtin_subcl: |
4174 | case Builtin::BI__builtin_subcll: { |
4175 | |
4176 | // We translate all of these builtins from expressions of the form: |
4177 | // int x = ..., y = ..., carryin = ..., carryout, result; |
4178 | // result = __builtin_addc(x, y, carryin, &carryout); |
4179 | // |
4180 | // to LLVM IR of the form: |
4181 | // |
4182 | // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) |
4183 | // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 |
4184 | // %carry1 = extractvalue {i32, i1} %tmp1, 1 |
4185 | // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, |
4186 | // i32 %carryin) |
4187 | // %result = extractvalue {i32, i1} %tmp2, 0 |
4188 | // %carry2 = extractvalue {i32, i1} %tmp2, 1 |
4189 | // %tmp3 = or i1 %carry1, %carry2 |
4190 | // %tmp4 = zext i1 %tmp3 to i32 |
4191 | // store i32 %tmp4, i32* %carryout |
4192 | |
4193 | // Scalarize our inputs. |
4194 | llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
4195 | llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
4196 | llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); |
4197 | Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); |
4198 | |
4199 | // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. |
4200 | llvm::Intrinsic::ID IntrinsicId; |
4201 | switch (BuiltinID) { |
4202 | default: llvm_unreachable("Unknown multiprecision builtin id.")__builtin_unreachable(); |
4203 | case Builtin::BI__builtin_addcb: |
4204 | case Builtin::BI__builtin_addcs: |
4205 | case Builtin::BI__builtin_addc: |
4206 | case Builtin::BI__builtin_addcl: |
4207 | case Builtin::BI__builtin_addcll: |
4208 | IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
4209 | break; |
4210 | case Builtin::BI__builtin_subcb: |
4211 | case Builtin::BI__builtin_subcs: |
4212 | case Builtin::BI__builtin_subc: |
4213 | case Builtin::BI__builtin_subcl: |
4214 | case Builtin::BI__builtin_subcll: |
4215 | IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
4216 | break; |
4217 | } |
4218 | |
4219 | // Construct our resulting LLVM IR expression. |
4220 | llvm::Value *Carry1; |
4221 | llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, |
4222 | X, Y, Carry1); |
4223 | llvm::Value *Carry2; |
4224 | llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, |
4225 | Sum1, Carryin, Carry2); |
4226 | llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), |
4227 | X->getType()); |
4228 | Builder.CreateStore(CarryOut, CarryOutPtr); |
4229 | return RValue::get(Sum2); |
4230 | } |
4231 | |
4232 | case Builtin::BI__builtin_add_overflow: |
4233 | case Builtin::BI__builtin_sub_overflow: |
4234 | case Builtin::BI__builtin_mul_overflow: { |
4235 | const clang::Expr *LeftArg = E->getArg(0); |
4236 | const clang::Expr *RightArg = E->getArg(1); |
4237 | const clang::Expr *ResultArg = E->getArg(2); |
4238 | |
4239 | clang::QualType ResultQTy = |
4240 | ResultArg->getType()->castAs<PointerType>()->getPointeeType(); |
4241 | |
4242 | WidthAndSignedness LeftInfo = |
4243 | getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); |
4244 | WidthAndSignedness RightInfo = |
4245 | getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); |
4246 | WidthAndSignedness ResultInfo = |
4247 | getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); |
4248 | |
4249 | // Handle mixed-sign multiplication as a special case, because adding |
4250 | // runtime or backend support for our generic irgen would be too expensive. |
4251 | if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) |
4252 | return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, |
4253 | RightInfo, ResultArg, ResultQTy, |
4254 | ResultInfo); |
4255 | |
4256 | if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo, |
4257 | ResultInfo)) |
4258 | return EmitCheckedUnsignedMultiplySignedResult( |
4259 | *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, |
4260 | ResultInfo); |
4261 | |
4262 | WidthAndSignedness EncompassingInfo = |
4263 | EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); |
4264 | |
4265 | llvm::Type *EncompassingLLVMTy = |
4266 | llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); |
4267 | |
4268 | llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); |
4269 | |
4270 | llvm::Intrinsic::ID IntrinsicId; |
4271 | switch (BuiltinID) { |
4272 | default: |
4273 | llvm_unreachable("Unknown overflow builtin id.")__builtin_unreachable(); |
4274 | case Builtin::BI__builtin_add_overflow: |
4275 | IntrinsicId = EncompassingInfo.Signed |
4276 | ? llvm::Intrinsic::sadd_with_overflow |
4277 | : llvm::Intrinsic::uadd_with_overflow; |
4278 | break; |
4279 | case Builtin::BI__builtin_sub_overflow: |
4280 | IntrinsicId = EncompassingInfo.Signed |
4281 | ? llvm::Intrinsic::ssub_with_overflow |
4282 | : llvm::Intrinsic::usub_with_overflow; |
4283 | break; |
4284 | case Builtin::BI__builtin_mul_overflow: |
4285 | IntrinsicId = EncompassingInfo.Signed |
4286 | ? llvm::Intrinsic::smul_with_overflow |
4287 | : llvm::Intrinsic::umul_with_overflow; |
4288 | break; |
4289 | } |
4290 | |
4291 | llvm::Value *Left = EmitScalarExpr(LeftArg); |
4292 | llvm::Value *Right = EmitScalarExpr(RightArg); |
4293 | Address ResultPtr = EmitPointerWithAlignment(ResultArg); |
4294 | |
4295 | // Extend each operand to the encompassing type. |
4296 | Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); |
4297 | Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); |
4298 | |
4299 | // Perform the operation on the extended values. |
4300 | llvm::Value *Overflow, *Result; |
4301 | Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); |
4302 | |
4303 | if (EncompassingInfo.Width > ResultInfo.Width) { |
4304 | // The encompassing type is wider than the result type, so we need to |
4305 | // truncate it. |
4306 | llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); |
4307 | |
4308 | // To see if the truncation caused an overflow, we will extend |
4309 | // the result and then compare it to the original result. |
4310 | llvm::Value *ResultTruncExt = Builder.CreateIntCast( |
4311 | ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); |
4312 | llvm::Value *TruncationOverflow = |
4313 | Builder.CreateICmpNE(Result, ResultTruncExt); |
4314 | |
4315 | Overflow = Builder.CreateOr(Overflow, TruncationOverflow); |
4316 | Result = ResultTrunc; |
4317 | } |
4318 | |
4319 | // Finally, store the result using the pointer. |
4320 | bool isVolatile = |
4321 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
4322 | Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); |
4323 | |
4324 | return RValue::get(Overflow); |
4325 | } |
4326 | |
4327 | case Builtin::BI__builtin_uadd_overflow: |
4328 | case Builtin::BI__builtin_uaddl_overflow: |
4329 | case Builtin::BI__builtin_uaddll_overflow: |
4330 | case Builtin::BI__builtin_usub_overflow: |
4331 | case Builtin::BI__builtin_usubl_overflow: |
4332 | case Builtin::BI__builtin_usubll_overflow: |
4333 | case Builtin::BI__builtin_umul_overflow: |
4334 | case Builtin::BI__builtin_umull_overflow: |
4335 | case Builtin::BI__builtin_umulll_overflow: |
4336 | case Builtin::BI__builtin_sadd_overflow: |
4337 | case Builtin::BI__builtin_saddl_overflow: |
4338 | case Builtin::BI__builtin_saddll_overflow: |
4339 | case Builtin::BI__builtin_ssub_overflow: |
4340 | case Builtin::BI__builtin_ssubl_overflow: |
4341 | case Builtin::BI__builtin_ssubll_overflow: |
4342 | case Builtin::BI__builtin_smul_overflow: |
4343 | case Builtin::BI__builtin_smull_overflow: |
4344 | case Builtin::BI__builtin_smulll_overflow: { |
4345 | |
4346 | // We translate all of these builtins directly to the relevant llvm IR node. |
4347 | |
4348 | // Scalarize our inputs. |
4349 | llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
4350 | llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
4351 | Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); |
4352 | |
4353 | // Decide which of the overflow intrinsics we are lowering to: |
4354 | llvm::Intrinsic::ID IntrinsicId; |
4355 | switch (BuiltinID) { |
4356 | default: llvm_unreachable("Unknown overflow builtin id.")__builtin_unreachable(); |
4357 | case Builtin::BI__builtin_uadd_overflow: |
4358 | case Builtin::BI__builtin_uaddl_overflow: |
4359 | case Builtin::BI__builtin_uaddll_overflow: |
4360 | IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
4361 | break; |
4362 | case Builtin::BI__builtin_usub_overflow: |
4363 | case Builtin::BI__builtin_usubl_overflow: |
4364 | case Builtin::BI__builtin_usubll_overflow: |
4365 | IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
4366 | break; |
4367 | case Builtin::BI__builtin_umul_overflow: |
4368 | case Builtin::BI__builtin_umull_overflow: |
4369 | case Builtin::BI__builtin_umulll_overflow: |
4370 | IntrinsicId = llvm::Intrinsic::umul_with_overflow; |
4371 | break; |
4372 | case Builtin::BI__builtin_sadd_overflow: |
4373 | case Builtin::BI__builtin_saddl_overflow: |
4374 | case Builtin::BI__builtin_saddll_overflow: |
4375 | IntrinsicId = llvm::Intrinsic::sadd_with_overflow; |
4376 | break; |
4377 | case Builtin::BI__builtin_ssub_overflow: |
4378 | case Builtin::BI__builtin_ssubl_overflow: |
4379 | case Builtin::BI__builtin_ssubll_overflow: |
4380 | IntrinsicId = llvm::Intrinsic::ssub_with_overflow; |
4381 | break; |
4382 | case Builtin::BI__builtin_smul_overflow: |
4383 | case Builtin::BI__builtin_smull_overflow: |
4384 | case Builtin::BI__builtin_smulll_overflow: |
4385 | IntrinsicId = llvm::Intrinsic::smul_with_overflow; |
4386 | break; |
4387 | } |
4388 | |
4389 | |
4390 | llvm::Value *Carry; |
4391 | llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); |
4392 | Builder.CreateStore(Sum, SumOutPtr); |
4393 | |
4394 | return RValue::get(Carry); |
4395 | } |
4396 | case Builtin::BI__builtin_addressof: |
4397 | return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); |
4398 | case Builtin::BI__builtin_operator_new: |
4399 | return EmitBuiltinNewDeleteCall( |
4400 | E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); |
4401 | case Builtin::BI__builtin_operator_delete: |
4402 | return EmitBuiltinNewDeleteCall( |
4403 | E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); |
4404 | |
4405 | case Builtin::BI__builtin_is_aligned: |
4406 | return EmitBuiltinIsAligned(E); |
4407 | case Builtin::BI__builtin_align_up: |
4408 | return EmitBuiltinAlignTo(E, true); |
4409 | case Builtin::BI__builtin_align_down: |
4410 | return EmitBuiltinAlignTo(E, false); |
4411 | |
4412 | case Builtin::BI__noop: |
4413 | // __noop always evaluates to an integer literal zero. |
4414 | return RValue::get(ConstantInt::get(IntTy, 0)); |
4415 | case Builtin::BI__builtin_call_with_static_chain: { |
4416 | const CallExpr *Call = cast<CallExpr>(E->getArg(0)); |
4417 | const Expr *Chain = E->getArg(1); |
4418 | return EmitCall(Call->getCallee()->getType(), |
4419 | EmitCallee(Call->getCallee()), Call, ReturnValue, |
4420 | EmitScalarExpr(Chain)); |
4421 | } |
4422 | case Builtin::BI_InterlockedExchange8: |
4423 | case Builtin::BI_InterlockedExchange16: |
4424 | case Builtin::BI_InterlockedExchange: |
4425 | case Builtin::BI_InterlockedExchangePointer: |
4426 | return RValue::get( |
4427 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); |
4428 | case Builtin::BI_InterlockedCompareExchangePointer: |
4429 | case Builtin::BI_InterlockedCompareExchangePointer_nf: { |
4430 | llvm::Type *RTy; |
4431 | llvm::IntegerType *IntType = |
4432 | IntegerType::get(getLLVMContext(), |
4433 | getContext().getTypeSize(E->getType())); |
4434 | llvm::Type *IntPtrType = IntType->getPointerTo(); |
4435 | |
4436 | llvm::Value *Destination = |
4437 | Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); |
4438 | |
4439 | llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); |
4440 | RTy = Exchange->getType(); |
4441 | Exchange = Builder.CreatePtrToInt(Exchange, IntType); |
4442 | |
4443 | llvm::Value *Comparand = |
4444 | Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); |
4445 | |
4446 | auto Ordering = |
4447 | BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? |
4448 | AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; |
4449 | |
4450 | auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, |
4451 | Ordering, Ordering); |
4452 | Result->setVolatile(true); |
4453 | |
4454 | return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, |
4455 | 0), |
4456 | RTy)); |
4457 | } |
4458 | case Builtin::BI_InterlockedCompareExchange8: |
4459 | case Builtin::BI_InterlockedCompareExchange16: |
4460 | case Builtin::BI_InterlockedCompareExchange: |
4461 | case Builtin::BI_InterlockedCompareExchange64: |
4462 | return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); |
4463 | case Builtin::BI_InterlockedIncrement16: |
4464 | case Builtin::BI_InterlockedIncrement: |
4465 | return RValue::get( |
4466 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); |
4467 | case Builtin::BI_InterlockedDecrement16: |
4468 | case Builtin::BI_InterlockedDecrement: |
4469 | return RValue::get( |
4470 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); |
4471 | case Builtin::BI_InterlockedAnd8: |
4472 | case Builtin::BI_InterlockedAnd16: |
4473 | case Builtin::BI_InterlockedAnd: |
4474 | return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); |
4475 | case Builtin::BI_InterlockedExchangeAdd8: |
4476 | case Builtin::BI_InterlockedExchangeAdd16: |
4477 | case Builtin::BI_InterlockedExchangeAdd: |
4478 | return RValue::get( |
4479 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); |
4480 | case Builtin::BI_InterlockedExchangeSub8: |
4481 | case Builtin::BI_InterlockedExchangeSub16: |
4482 | case Builtin::BI_InterlockedExchangeSub: |
4483 | return RValue::get( |
4484 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); |
4485 | case Builtin::BI_InterlockedOr8: |
4486 | case Builtin::BI_InterlockedOr16: |
4487 | case Builtin::BI_InterlockedOr: |
4488 | return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); |
4489 | case Builtin::BI_InterlockedXor8: |
4490 | case Builtin::BI_InterlockedXor16: |
4491 | case Builtin::BI_InterlockedXor: |
4492 | return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); |
4493 | |
4494 | case Builtin::BI_bittest64: |
4495 | case Builtin::BI_bittest: |
4496 | case Builtin::BI_bittestandcomplement64: |
4497 | case Builtin::BI_bittestandcomplement: |
4498 | case Builtin::BI_bittestandreset64: |
4499 | case Builtin::BI_bittestandreset: |
4500 | case Builtin::BI_bittestandset64: |
4501 | case Builtin::BI_bittestandset: |
4502 | case Builtin::BI_interlockedbittestandreset: |
4503 | case Builtin::BI_interlockedbittestandreset64: |
4504 | case Builtin::BI_interlockedbittestandset64: |
4505 | case Builtin::BI_interlockedbittestandset: |
4506 | case Builtin::BI_interlockedbittestandset_acq: |
4507 | case Builtin::BI_interlockedbittestandset_rel: |
4508 | case Builtin::BI_interlockedbittestandset_nf: |
4509 | case Builtin::BI_interlockedbittestandreset_acq: |
4510 | case Builtin::BI_interlockedbittestandreset_rel: |
4511 | case Builtin::BI_interlockedbittestandreset_nf: |
4512 | return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); |
4513 | |
4514 | // These builtins exist to emit regular volatile loads and stores not |
4515 | // affected by the -fms-volatile setting. |
4516 | case Builtin::BI__iso_volatile_load8: |
4517 | case Builtin::BI__iso_volatile_load16: |
4518 | case Builtin::BI__iso_volatile_load32: |
4519 | case Builtin::BI__iso_volatile_load64: |
4520 | return RValue::get(EmitISOVolatileLoad(*this, E)); |
4521 | case Builtin::BI__iso_volatile_store8: |
4522 | case Builtin::BI__iso_volatile_store16: |
4523 | case Builtin::BI__iso_volatile_store32: |
4524 | case Builtin::BI__iso_volatile_store64: |
4525 | return RValue::get(EmitISOVolatileStore(*this, E)); |
4526 | |
4527 | case Builtin::BI__exception_code: |
4528 | case Builtin::BI_exception_code: |
4529 | return RValue::get(EmitSEHExceptionCode()); |
4530 | case Builtin::BI__exception_info: |
4531 | case Builtin::BI_exception_info: |
4532 | return RValue::get(EmitSEHExceptionInfo()); |
4533 | case Builtin::BI__abnormal_termination: |
4534 | case Builtin::BI_abnormal_termination: |
4535 | return RValue::get(EmitSEHAbnormalTermination()); |
4536 | case Builtin::BI_setjmpex: |
4537 | if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
4538 | E->getArg(0)->getType()->isPointerType()) |
4539 | return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
4540 | break; |
4541 | case Builtin::BI_setjmp: |
4542 | if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
4543 | E->getArg(0)->getType()->isPointerType()) { |
4544 | if (getTarget().getTriple().getArch() == llvm::Triple::x86) |
4545 | return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); |
4546 | else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) |
4547 | return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
4548 | return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); |
4549 | } |
4550 | break; |
4551 | |
4552 | case Builtin::BI__GetExceptionInfo: { |
4553 | if (llvm::GlobalVariable *GV = |
4554 | CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) |
4555 | return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); |
4556 | break; |
4557 | } |
4558 | |
4559 | case Builtin::BI__fastfail: |
4560 | return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); |
4561 | |
4562 | case Builtin::BI__builtin_coro_size: { |
4563 | auto & Context = getContext(); |
4564 | auto SizeTy = Context.getSizeType(); |
4565 | auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); |
4566 | Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); |
4567 | return RValue::get(Builder.CreateCall(F)); |
4568 | } |
4569 | |
4570 | case Builtin::BI__builtin_coro_id: |
4571 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); |
4572 | case Builtin::BI__builtin_coro_promise: |
4573 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); |
4574 | case Builtin::BI__builtin_coro_resume: |
4575 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); |
4576 | case Builtin::BI__builtin_coro_frame: |
4577 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); |
4578 | case Builtin::BI__builtin_coro_noop: |
4579 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); |
4580 | case Builtin::BI__builtin_coro_free: |
4581 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); |
4582 | case Builtin::BI__builtin_coro_destroy: |
4583 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); |
4584 | case Builtin::BI__builtin_coro_done: |
4585 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); |
4586 | case Builtin::BI__builtin_coro_alloc: |
4587 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); |
4588 | case Builtin::BI__builtin_coro_begin: |
4589 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); |
4590 | case Builtin::BI__builtin_coro_end: |
4591 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); |
4592 | case Builtin::BI__builtin_coro_suspend: |
4593 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); |
4594 | case Builtin::BI__builtin_coro_param: |
4595 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); |
4596 | |
4597 | // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions |
4598 | case Builtin::BIread_pipe: |
4599 | case Builtin::BIwrite_pipe: { |
4600 | Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
4601 | *Arg1 = EmitScalarExpr(E->getArg(1)); |
4602 | CGOpenCLRuntime OpenCLRT(CGM); |
4603 | Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
4604 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
4605 | |
4606 | // Type of the generic packet parameter. |
4607 | unsigned GenericAS = |
4608 | getContext().getTargetAddressSpace(LangAS::opencl_generic); |
4609 | llvm::Type *I8PTy = llvm::PointerType::get( |
4610 | llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); |
4611 | |
4612 | // Testing which overloaded version we should generate the call for. |
4613 | if (2U == E->getNumArgs()) { |
4614 | const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" |
4615 | : "__write_pipe_2"; |
4616 | // Creating a generic function type to be able to call with any builtin or |
4617 | // user defined type. |
4618 | llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; |
4619 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4620 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4621 | Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); |
4622 | return RValue::get( |
4623 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4624 | {Arg0, BCast, PacketSize, PacketAlign})); |
4625 | } else { |
4626 | assert(4 == E->getNumArgs() &&((void)0) |
4627 | "Illegal number of parameters to pipe function")((void)0); |
4628 | const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" |
4629 | : "__write_pipe_4"; |
4630 | |
4631 | llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, |
4632 | Int32Ty, Int32Ty}; |
4633 | Value *Arg2 = EmitScalarExpr(E->getArg(2)), |
4634 | *Arg3 = EmitScalarExpr(E->getArg(3)); |
4635 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4636 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4637 | Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); |
4638 | // We know the third argument is an integer type, but we may need to cast |
4639 | // it to i32. |
4640 | if (Arg2->getType() != Int32Ty) |
4641 | Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); |
4642 | return RValue::get( |
4643 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4644 | {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); |
4645 | } |
4646 | } |
4647 | // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write |
4648 | // functions |
4649 | case Builtin::BIreserve_read_pipe: |
4650 | case Builtin::BIreserve_write_pipe: |
4651 | case Builtin::BIwork_group_reserve_read_pipe: |
4652 | case Builtin::BIwork_group_reserve_write_pipe: |
4653 | case Builtin::BIsub_group_reserve_read_pipe: |
4654 | case Builtin::BIsub_group_reserve_write_pipe: { |
4655 | // Composing the mangled name for the function. |
4656 | const char *Name; |
4657 | if (BuiltinID == Builtin::BIreserve_read_pipe) |
4658 | Name = "__reserve_read_pipe"; |
4659 | else if (BuiltinID == Builtin::BIreserve_write_pipe) |
4660 | Name = "__reserve_write_pipe"; |
4661 | else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) |
4662 | Name = "__work_group_reserve_read_pipe"; |
4663 | else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) |
4664 | Name = "__work_group_reserve_write_pipe"; |
4665 | else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) |
4666 | Name = "__sub_group_reserve_read_pipe"; |
4667 | else |
4668 | Name = "__sub_group_reserve_write_pipe"; |
4669 | |
4670 | Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
4671 | *Arg1 = EmitScalarExpr(E->getArg(1)); |
4672 | llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); |
4673 | CGOpenCLRuntime OpenCLRT(CGM); |
4674 | Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
4675 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
4676 | |
4677 | // Building the generic function prototype. |
4678 | llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; |
4679 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4680 | ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4681 | // We know the second argument is an integer type, but we may need to cast |
4682 | // it to i32. |
4683 | if (Arg1->getType() != Int32Ty) |
4684 | Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); |
4685 | return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4686 | {Arg0, Arg1, PacketSize, PacketAlign})); |
4687 | } |
4688 | // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write |
4689 | // functions |
4690 | case Builtin::BIcommit_read_pipe: |
4691 | case Builtin::BIcommit_write_pipe: |
4692 | case Builtin::BIwork_group_commit_read_pipe: |
4693 | case Builtin::BIwork_group_commit_write_pipe: |
4694 | case Builtin::BIsub_group_commit_read_pipe: |
4695 | case Builtin::BIsub_group_commit_write_pipe: { |
4696 | const char *Name; |
4697 | if (BuiltinID == Builtin::BIcommit_read_pipe) |
4698 | Name = "__commit_read_pipe"; |
4699 | else if (BuiltinID == Builtin::BIcommit_write_pipe) |
4700 | Name = "__commit_write_pipe"; |
4701 | else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) |
4702 | Name = "__work_group_commit_read_pipe"; |
4703 | else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) |
4704 | Name = "__work_group_commit_write_pipe"; |
4705 | else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) |
4706 | Name = "__sub_group_commit_read_pipe"; |
4707 | else |
4708 | Name = "__sub_group_commit_write_pipe"; |
4709 | |
4710 | Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
4711 | *Arg1 = EmitScalarExpr(E->getArg(1)); |
4712 | CGOpenCLRuntime OpenCLRT(CGM); |
4713 | Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
4714 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
4715 | |
4716 | // Building the generic function prototype. |
4717 | llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; |
4718 | llvm::FunctionType *FTy = |
4719 | llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), |
4720 | llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4721 | |
4722 | return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4723 | {Arg0, Arg1, PacketSize, PacketAlign})); |
4724 | } |
4725 | // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions |
4726 | case Builtin::BIget_pipe_num_packets: |
4727 | case Builtin::BIget_pipe_max_packets: { |
4728 | const char *BaseName; |
4729 | const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); |
4730 | if (BuiltinID == Builtin::BIget_pipe_num_packets) |
4731 | BaseName = "__get_pipe_num_packets"; |
4732 | else |
4733 | BaseName = "__get_pipe_max_packets"; |
4734 | std::string Name = std::string(BaseName) + |
4735 | std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); |
4736 | |
4737 | // Building the generic function prototype. |
4738 | Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
4739 | CGOpenCLRuntime OpenCLRT(CGM); |
4740 | Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
4741 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
4742 | llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; |
4743 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4744 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4745 | |
4746 | return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4747 | {Arg0, PacketSize, PacketAlign})); |
4748 | } |
4749 | |
4750 | // OpenCL v2.0 s6.13.9 - Address space qualifier functions. |
4751 | case Builtin::BIto_global: |
4752 | case Builtin::BIto_local: |
4753 | case Builtin::BIto_private: { |
4754 | auto Arg0 = EmitScalarExpr(E->getArg(0)); |
4755 | auto NewArgT = llvm::PointerType::get(Int8Ty, |
4756 | CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4757 | auto NewRetT = llvm::PointerType::get(Int8Ty, |
4758 | CGM.getContext().getTargetAddressSpace( |
4759 | E->getType()->getPointeeType().getAddressSpace())); |
4760 | auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); |
4761 | llvm::Value *NewArg; |
4762 | if (Arg0->getType()->getPointerAddressSpace() != |
4763 | NewArgT->getPointerAddressSpace()) |
4764 | NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); |
4765 | else |
4766 | NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); |
4767 | auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); |
4768 | auto NewCall = |
4769 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); |
4770 | return RValue::get(Builder.CreateBitOrPointerCast(NewCall, |
4771 | ConvertType(E->getType()))); |
4772 | } |
4773 | |
4774 | // OpenCL v2.0, s6.13.17 - Enqueue kernel function. |
4775 | // It contains four different overload formats specified in Table 6.13.17.1. |
4776 | case Builtin::BIenqueue_kernel: { |
4777 | StringRef Name; // Generated function call name |
4778 | unsigned NumArgs = E->getNumArgs(); |
4779 | |
4780 | llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); |
4781 | llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
4782 | getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4783 | |
4784 | llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); |
4785 | llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); |
4786 | LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); |
4787 | llvm::Value *Range = NDRangeL.getAddress(*this).getPointer(); |
4788 | llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType(); |
4789 | |
4790 | if (NumArgs == 4) { |
4791 | // The most basic form of the call with parameters: |
4792 | // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) |
4793 | Name = "__enqueue_kernel_basic"; |
4794 | llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, |
4795 | GenericVoidPtrTy}; |
4796 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4797 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4798 | |
4799 | auto Info = |
4800 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
4801 | llvm::Value *Kernel = |
4802 | Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4803 | llvm::Value *Block = |
4804 | Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4805 | |
4806 | AttrBuilder B; |
4807 | B.addByValAttr(NDRangeL.getAddress(*this).getElementType()); |
4808 | llvm::AttributeList ByValAttrSet = |
4809 | llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); |
4810 | |
4811 | auto RTCall = |
4812 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), |
4813 | {Queue, Flags, Range, Kernel, Block}); |
4814 | RTCall->setAttributes(ByValAttrSet); |
4815 | return RValue::get(RTCall); |
4816 | } |
4817 | assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")((void)0); |
4818 | |
4819 | // Create a temporary array to hold the sizes of local pointer arguments |
4820 | // for the block. \p First is the position of the first size argument. |
4821 | auto CreateArrayForSizeVar = [=](unsigned First) |
4822 | -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { |
4823 | llvm::APInt ArraySize(32, NumArgs - First); |
4824 | QualType SizeArrayTy = getContext().getConstantArrayType( |
4825 | getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, |
4826 | /*IndexTypeQuals=*/0); |
4827 | auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); |
4828 | llvm::Value *TmpPtr = Tmp.getPointer(); |
4829 | llvm::Value *TmpSize = EmitLifetimeStart( |
4830 | CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); |
4831 | llvm::Value *ElemPtr; |
4832 | // Each of the following arguments specifies the size of the corresponding |
4833 | // argument passed to the enqueued block. |
4834 | auto *Zero = llvm::ConstantInt::get(IntTy, 0); |
4835 | for (unsigned I = First; I < NumArgs; ++I) { |
4836 | auto *Index = llvm::ConstantInt::get(IntTy, I - First); |
4837 | auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr, |
4838 | {Zero, Index}); |
4839 | if (I == First) |
4840 | ElemPtr = GEP; |
4841 | auto *V = |
4842 | Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); |
4843 | Builder.CreateAlignedStore( |
4844 | V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); |
4845 | } |
4846 | return std::tie(ElemPtr, TmpSize, TmpPtr); |
4847 | }; |
4848 | |
4849 | // Could have events and/or varargs. |
4850 | if (E->getArg(3)->getType()->isBlockPointerType()) { |
4851 | // No events passed, but has variadic arguments. |
4852 | Name = "__enqueue_kernel_varargs"; |
4853 | auto Info = |
4854 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
4855 | llvm::Value *Kernel = |
4856 | Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4857 | auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4858 | llvm::Value *ElemPtr, *TmpSize, *TmpPtr; |
4859 | std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); |
4860 | |
4861 | // Create a vector of the arguments, as well as a constant value to |
4862 | // express to the runtime the number of variadic arguments. |
4863 | llvm::Value *const Args[] = {Queue, Flags, |
4864 | Range, Kernel, |
4865 | Block, ConstantInt::get(IntTy, NumArgs - 4), |
4866 | ElemPtr}; |
4867 | llvm::Type *const ArgTys[] = { |
4868 | QueueTy, IntTy, RangeTy, GenericVoidPtrTy, |
4869 | GenericVoidPtrTy, IntTy, ElemPtr->getType()}; |
4870 | |
4871 | llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); |
4872 | auto Call = RValue::get( |
4873 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); |
4874 | if (TmpSize) |
4875 | EmitLifetimeEnd(TmpSize, TmpPtr); |
4876 | return Call; |
4877 | } |
4878 | // Any calls now have event arguments passed. |
4879 | if (NumArgs >= 7) { |
4880 | llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); |
4881 | llvm::PointerType *EventPtrTy = EventTy->getPointerTo( |
4882 | CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4883 | |
4884 | llvm::Value *NumEvents = |
4885 | Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); |
4886 | |
4887 | // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments |
4888 | // to be a null pointer constant (including `0` literal), we can take it |
4889 | // into account and emit null pointer directly. |
4890 | llvm::Value *EventWaitList = nullptr; |
4891 | if (E->getArg(4)->isNullPointerConstant( |
4892 | getContext(), Expr::NPC_ValueDependentIsNotNull)) { |
4893 | EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); |
4894 | } else { |
4895 | EventWaitList = E->getArg(4)->getType()->isArrayType() |
4896 | ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() |
4897 | : EmitScalarExpr(E->getArg(4)); |
4898 | // Convert to generic address space. |
4899 | EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); |
4900 | } |
4901 | llvm::Value *EventRet = nullptr; |
4902 | if (E->getArg(5)->isNullPointerConstant( |
4903 | getContext(), Expr::NPC_ValueDependentIsNotNull)) { |
4904 | EventRet = llvm::ConstantPointerNull::get(EventPtrTy); |
4905 | } else { |
4906 | EventRet = |
4907 | Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); |
4908 | } |
4909 | |
4910 | auto Info = |
4911 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); |
4912 | llvm::Value *Kernel = |
4913 | Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4914 | llvm::Value *Block = |
4915 | Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4916 | |
4917 | std::vector<llvm::Type *> ArgTys = { |
4918 | QueueTy, Int32Ty, RangeTy, Int32Ty, |
4919 | EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; |
4920 | |
4921 | std::vector<llvm::Value *> Args = {Queue, Flags, Range, |
4922 | NumEvents, EventWaitList, EventRet, |
4923 | Kernel, Block}; |
4924 | |
4925 | if (NumArgs == 7) { |
4926 | // Has events but no variadics. |
4927 | Name = "__enqueue_kernel_basic_events"; |
4928 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4929 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4930 | return RValue::get( |
4931 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4932 | llvm::ArrayRef<llvm::Value *>(Args))); |
4933 | } |
4934 | // Has event info and variadics |
4935 | // Pass the number of variadics to the runtime function too. |
4936 | Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); |
4937 | ArgTys.push_back(Int32Ty); |
4938 | Name = "__enqueue_kernel_events_varargs"; |
4939 | |
4940 | llvm::Value *ElemPtr, *TmpSize, *TmpPtr; |
4941 | std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); |
4942 | Args.push_back(ElemPtr); |
4943 | ArgTys.push_back(ElemPtr->getType()); |
4944 | |
4945 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4946 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4947 | auto Call = |
4948 | RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4949 | llvm::ArrayRef<llvm::Value *>(Args))); |
4950 | if (TmpSize) |
4951 | EmitLifetimeEnd(TmpSize, TmpPtr); |
4952 | return Call; |
4953 | } |
4954 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
4955 | } |
4956 | // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block |
4957 | // parameter. |
4958 | case Builtin::BIget_kernel_work_group_size: { |
4959 | llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
4960 | getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4961 | auto Info = |
4962 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
4963 | Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4964 | Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4965 | return RValue::get(EmitRuntimeCall( |
4966 | CGM.CreateRuntimeFunction( |
4967 | llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
4968 | false), |
4969 | "__get_kernel_work_group_size_impl"), |
4970 | {Kernel, Arg})); |
4971 | } |
4972 | case Builtin::BIget_kernel_preferred_work_group_size_multiple: { |
4973 | llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
4974 | getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4975 | auto Info = |
4976 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
4977 | Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4978 | Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4979 | return RValue::get(EmitRuntimeCall( |
4980 | CGM.CreateRuntimeFunction( |
4981 | llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
4982 | false), |
4983 | "__get_kernel_preferred_work_group_size_multiple_impl"), |
4984 | {Kernel, Arg})); |
4985 | } |
4986 | case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
4987 | case Builtin::BIget_kernel_sub_group_count_for_ndrange: { |
4988 | llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
4989 | getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4990 | LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); |
4991 | llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer(); |
4992 | auto Info = |
4993 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); |
4994 | Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4995 | Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4996 | const char *Name = |
4997 | BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange |
4998 | ? "__get_kernel_max_sub_group_size_for_ndrange_impl" |
4999 | : "__get_kernel_sub_group_count_for_ndrange_impl"; |
5000 | return RValue::get(EmitRuntimeCall( |
5001 | CGM.CreateRuntimeFunction( |
5002 | llvm::FunctionType::get( |
5003 | IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, |
5004 | false), |
5005 | Name), |
5006 | {NDRange, Kernel, Block})); |
5007 | } |
5008 | |
5009 | case Builtin::BI__builtin_store_half: |
5010 | case Builtin::BI__builtin_store_halff: { |
5011 | Value *Val = EmitScalarExpr(E->getArg(0)); |
5012 | Address Address = EmitPointerWithAlignment(E->getArg(1)); |
5013 | Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); |
5014 | return RValue::get(Builder.CreateStore(HalfVal, Address)); |
5015 | } |
5016 | case Builtin::BI__builtin_load_half: { |
5017 | Address Address = EmitPointerWithAlignment(E->getArg(0)); |
5018 | Value *HalfVal = Builder.CreateLoad(Address); |
5019 | return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); |
5020 | } |
5021 | case Builtin::BI__builtin_load_halff: { |
5022 | Address Address = EmitPointerWithAlignment(E->getArg(0)); |
5023 | Value *HalfVal = Builder.CreateLoad(Address); |
5024 | return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); |
5025 | } |
5026 | case Builtin::BIprintf: |
5027 | if (getTarget().getTriple().isNVPTX()) |
5028 | return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); |
5029 | if (getTarget().getTriple().getArch() == Triple::amdgcn && |
5030 | getLangOpts().HIP) |
5031 | return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue); |
5032 | break; |
5033 | case Builtin::BI__builtin_canonicalize: |
5034 | case Builtin::BI__builtin_canonicalizef: |
5035 | case Builtin::BI__builtin_canonicalizef16: |
5036 | case Builtin::BI__builtin_canonicalizel: |
5037 | return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); |
5038 | |
5039 | case Builtin::BI__builtin_thread_pointer: { |
5040 | if (!getContext().getTargetInfo().isTLSSupported()) |
5041 | CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); |
5042 | // Fall through - it's already mapped to the intrinsic by GCCBuiltin. |
5043 | break; |
5044 | } |
5045 | case Builtin::BI__builtin_os_log_format: |
5046 | return emitBuiltinOSLogFormat(*E); |
5047 | |
5048 | case Builtin::BI__xray_customevent: { |
5049 | if (!ShouldXRayInstrumentFunction()) |
5050 | return RValue::getIgnored(); |
5051 | |
5052 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
5053 | XRayInstrKind::Custom)) |
5054 | return RValue::getIgnored(); |
5055 | |
5056 | if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
5057 | if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) |
5058 | return RValue::getIgnored(); |
5059 | |
5060 | Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); |
5061 | auto FTy = F->getFunctionType(); |
5062 | auto Arg0 = E->getArg(0); |
5063 | auto Arg0Val = EmitScalarExpr(Arg0); |
5064 | auto Arg0Ty = Arg0->getType(); |
5065 | auto PTy0 = FTy->getParamType(0); |
5066 | if (PTy0 != Arg0Val->getType()) { |
5067 | if (Arg0Ty->isArrayType()) |
5068 | Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); |
5069 | else |
5070 | Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); |
5071 | } |
5072 | auto Arg1 = EmitScalarExpr(E->getArg(1)); |
5073 | auto PTy1 = FTy->getParamType(1); |
5074 | if (PTy1 != Arg1->getType()) |
5075 | Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); |
5076 | return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); |
5077 | } |
5078 | |
5079 | case Builtin::BI__xray_typedevent: { |
5080 | // TODO: There should be a way to always emit events even if the current |
5081 | // function is not instrumented. Losing events in a stream can cripple |
5082 | // a trace. |
5083 | if (!ShouldXRayInstrumentFunction()) |
5084 | return RValue::getIgnored(); |
5085 | |
5086 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
5087 | XRayInstrKind::Typed)) |
5088 | return RValue::getIgnored(); |
5089 | |
5090 | if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
5091 | if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) |
5092 | return RValue::getIgnored(); |
5093 | |
5094 | Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); |
5095 | auto FTy = F->getFunctionType(); |
5096 | auto Arg0 = EmitScalarExpr(E->getArg(0)); |
5097 | auto PTy0 = FTy->getParamType(0); |
5098 | if (PTy0 != Arg0->getType()) |
5099 | Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); |
5100 | auto Arg1 = E->getArg(1); |
5101 | auto Arg1Val = EmitScalarExpr(Arg1); |
5102 | auto Arg1Ty = Arg1->getType(); |
5103 | auto PTy1 = FTy->getParamType(1); |
5104 | if (PTy1 != Arg1Val->getType()) { |
5105 | if (Arg1Ty->isArrayType()) |
5106 | Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); |
5107 | else |
5108 | Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); |
5109 | } |
5110 | auto Arg2 = EmitScalarExpr(E->getArg(2)); |
5111 | auto PTy2 = FTy->getParamType(2); |
5112 | if (PTy2 != Arg2->getType()) |
5113 | Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); |
5114 | return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); |
5115 | } |
5116 | |
5117 | case Builtin::BI__builtin_ms_va_start: |
5118 | case Builtin::BI__builtin_ms_va_end: |
5119 | return RValue::get( |
5120 | EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), |
5121 | BuiltinID == Builtin::BI__builtin_ms_va_start)); |
5122 | |
5123 | case Builtin::BI__builtin_ms_va_copy: { |
5124 | // Lower this manually. We can't reliably determine whether or not any |
5125 | // given va_copy() is for a Win64 va_list from the calling convention |
5126 | // alone, because it's legal to do this from a System V ABI function. |
5127 | // With opaque pointer types, we won't have enough information in LLVM |
5128 | // IR to determine this from the argument types, either. Best to do it |
5129 | // now, while we have enough information. |
5130 | Address DestAddr = EmitMSVAListRef(E->getArg(0)); |
5131 | Address SrcAddr = EmitMSVAListRef(E->getArg(1)); |
5132 | |
5133 | llvm::Type *BPP = Int8PtrPtrTy; |
5134 | |
5135 | DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), |
5136 | DestAddr.getAlignment()); |
5137 | SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), |
5138 | SrcAddr.getAlignment()); |
5139 | |
5140 | Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); |
5141 | return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); |
5142 | } |
5143 | |
5144 | case Builtin::BI__builtin_get_device_side_mangled_name: { |
5145 | auto Name = CGM.getCUDARuntime().getDeviceSideName( |
5146 | cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl()); |
5147 | auto Str = CGM.GetAddrOfConstantCString(Name, ""); |
5148 | llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), |
5149 | llvm::ConstantInt::get(SizeTy, 0)}; |
5150 | auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(), |
5151 | Str.getPointer(), Zeros); |
5152 | return RValue::get(Ptr); |
5153 | } |
5154 | } |
5155 | |
5156 | // If this is an alias for a lib function (e.g. __builtin_sin), emit |
5157 | // the call using the normal call path, but using the unmangled |
5158 | // version of the function name. |
5159 | if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) |
5160 | return emitLibraryCall(*this, FD, E, |
5161 | CGM.getBuiltinLibFunction(FD, BuiltinID)); |
5162 | |
5163 | // If this is a predefined lib function (e.g. malloc), emit the call |
5164 | // using exactly the normal call path. |
5165 | if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
5166 | return emitLibraryCall(*this, FD, E, |
5167 | cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); |
5168 | |
5169 | // Check that a call to a target specific builtin has the correct target |
5170 | // features. |
5171 | // This is down here to avoid non-target specific builtins, however, if |
5172 | // generic builtins start to require generic target features then we |
5173 | // can move this up to the beginning of the function. |
5174 | checkTargetFeatures(E, FD); |
5175 | |
5176 | if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) |
5177 | LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); |
5178 | |
5179 | // See if we have a target specific intrinsic. |
5180 | const char *Name = getContext().BuiltinInfo.getName(BuiltinID); |
5181 | Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; |
5182 | StringRef Prefix = |
5183 | llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); |
5184 | if (!Prefix.empty()) { |
5185 | IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); |
5186 | // NOTE we don't need to perform a compatibility flag check here since the |
5187 | // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the |
5188 | // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. |
5189 | if (IntrinsicID == Intrinsic::not_intrinsic) |
5190 | IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); |
5191 | } |
5192 | |
5193 | if (IntrinsicID != Intrinsic::not_intrinsic) { |
5194 | SmallVector<Value*, 16> Args; |
5195 | |
5196 | // Find out if any arguments are required to be integer constant |
5197 | // expressions. |
5198 | unsigned ICEArguments = 0; |
5199 | ASTContext::GetBuiltinTypeError Error; |
5200 | getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
5201 | assert(Error == ASTContext::GE_None && "Should not codegen an error")((void)0); |
5202 | |
5203 | Function *F = CGM.getIntrinsic(IntrinsicID); |
5204 | llvm::FunctionType *FTy = F->getFunctionType(); |
5205 | |
5206 | for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
5207 | Value *ArgValue; |
5208 | // If this is a normal argument, just emit it as a scalar. |
5209 | if ((ICEArguments & (1 << i)) == 0) { |
5210 | ArgValue = EmitScalarExpr(E->getArg(i)); |
5211 | } else { |
5212 | // If this is required to be a constant, constant fold it so that we |
5213 | // know that the generated intrinsic gets a ConstantInt. |
5214 | ArgValue = llvm::ConstantInt::get( |
5215 | getLLVMContext(), |
5216 | *E->getArg(i)->getIntegerConstantExpr(getContext())); |
5217 | } |
5218 | |
5219 | // If the intrinsic arg type is different from the builtin arg type |
5220 | // we need to do a bit cast. |
5221 | llvm::Type *PTy = FTy->getParamType(i); |
5222 | if (PTy != ArgValue->getType()) { |
5223 | // XXX - vector of pointers? |
5224 | if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { |
5225 | if (PtrTy->getAddressSpace() != |
5226 | ArgValue->getType()->getPointerAddressSpace()) { |
5227 | ArgValue = Builder.CreateAddrSpaceCast( |
5228 | ArgValue, |
5229 | ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); |
5230 | } |
5231 | } |
5232 | |
5233 | assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&((void)0) |
5234 | "Must be able to losslessly bit cast to param")((void)0); |
5235 | ArgValue = Builder.CreateBitCast(ArgValue, PTy); |
5236 | } |
5237 | |
5238 | Args.push_back(ArgValue); |
5239 | } |
5240 | |
5241 | Value *V = Builder.CreateCall(F, Args); |
5242 | QualType BuiltinRetType = E->getType(); |
5243 | |
5244 | llvm::Type *RetTy = VoidTy; |
5245 | if (!BuiltinRetType->isVoidType()) |
5246 | RetTy = ConvertType(BuiltinRetType); |
5247 | |
5248 | if (RetTy != V->getType()) { |
5249 | // XXX - vector of pointers? |
5250 | if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { |
5251 | if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { |
5252 | V = Builder.CreateAddrSpaceCast( |
5253 | V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); |
5254 | } |
5255 | } |
5256 | |
5257 | assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&((void)0) |
5258 | "Must be able to losslessly bit cast result type")((void)0); |
5259 | V = Builder.CreateBitCast(V, RetTy); |
5260 | } |
5261 | |
5262 | return RValue::get(V); |
5263 | } |
5264 | |
5265 | // Some target-specific builtins can have aggregate return values, e.g. |
5266 | // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force |
5267 | // ReturnValue to be non-null, so that the target-specific emission code can |
5268 | // always just emit into it. |
5269 | TypeEvaluationKind EvalKind = getEvaluationKind(E->getType()); |
5270 | if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { |
5271 | Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp"); |
5272 | ReturnValue = ReturnValueSlot(DestPtr, false); |
5273 | } |
5274 | |
5275 | // Now see if we can emit a target-specific builtin. |
5276 | if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { |
5277 | switch (EvalKind) { |
5278 | case TEK_Scalar: |
5279 | return RValue::get(V); |
5280 | case TEK_Aggregate: |
5281 | return RValue::getAggregate(ReturnValue.getValue(), |
5282 | ReturnValue.isVolatile()); |
5283 | case TEK_Complex: |
5284 | llvm_unreachable("No current target builtin returns complex")__builtin_unreachable(); |
5285 | } |
5286 | llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr")__builtin_unreachable(); |
5287 | } |
5288 | |
5289 | ErrorUnsupported(E, "builtin function"); |
5290 | |
5291 | // Unknown builtin, for now just dump it out and return undef. |
5292 | return GetUndefRValue(E->getType()); |
5293 | } |
5294 | |
5295 | static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, |
5296 | unsigned BuiltinID, const CallExpr *E, |
5297 | ReturnValueSlot ReturnValue, |
5298 | llvm::Triple::ArchType Arch) { |
5299 | switch (Arch) { |
5300 | case llvm::Triple::arm: |
5301 | case llvm::Triple::armeb: |
5302 | case llvm::Triple::thumb: |
5303 | case llvm::Triple::thumbeb: |
5304 | return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); |
5305 | case llvm::Triple::aarch64: |
5306 | case llvm::Triple::aarch64_32: |
5307 | case llvm::Triple::aarch64_be: |
5308 | return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); |
5309 | case llvm::Triple::bpfeb: |
5310 | case llvm::Triple::bpfel: |
5311 | return CGF->EmitBPFBuiltinExpr(BuiltinID, E); |
5312 | case llvm::Triple::x86: |
5313 | case llvm::Triple::x86_64: |
5314 | return CGF->EmitX86BuiltinExpr(BuiltinID, E); |
5315 | case llvm::Triple::ppc: |
5316 | case llvm::Triple::ppcle: |
5317 | case llvm::Triple::ppc64: |
5318 | case llvm::Triple::ppc64le: |
5319 | return CGF->EmitPPCBuiltinExpr(BuiltinID, E); |
5320 | case llvm::Triple::r600: |
5321 | case llvm::Triple::amdgcn: |
5322 | return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); |
5323 | case llvm::Triple::systemz: |
5324 | return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); |
5325 | case llvm::Triple::nvptx: |
5326 | case llvm::Triple::nvptx64: |
5327 | return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); |
5328 | case llvm::Triple::wasm32: |
5329 | case llvm::Triple::wasm64: |
5330 | return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); |
5331 | case llvm::Triple::hexagon: |
5332 | return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); |
5333 | case llvm::Triple::riscv32: |
5334 | case llvm::Triple::riscv64: |
5335 | return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue); |
5336 | default: |
5337 | return nullptr; |
5338 | } |
5339 | } |
5340 | |
5341 | Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, |
5342 | const CallExpr *E, |
5343 | ReturnValueSlot ReturnValue) { |
5344 | if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { |
5345 | assert(getContext().getAuxTargetInfo() && "Missing aux target info")((void)0); |
5346 | return EmitTargetArchBuiltinExpr( |
5347 | this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, |
5348 | ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); |
5349 | } |
5350 | |
5351 | return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, |
5352 | getTarget().getTriple().getArch()); |
5353 | } |
5354 | |
5355 | static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF, |
5356 | NeonTypeFlags TypeFlags, |
5357 | bool HasLegalHalfType = true, |
5358 | bool V1Ty = false, |
5359 | bool AllowBFloatArgsAndRet = true) { |
5360 | int IsQuad = TypeFlags.isQuad(); |
5361 | switch (TypeFlags.getEltType()) { |
5362 | case NeonTypeFlags::Int8: |
5363 | case NeonTypeFlags::Poly8: |
5364 | return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); |
5365 | case NeonTypeFlags::Int16: |
5366 | case NeonTypeFlags::Poly16: |
5367 | return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
5368 | case NeonTypeFlags::BFloat16: |
5369 | if (AllowBFloatArgsAndRet) |
5370 | return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad)); |
5371 | else |
5372 | return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
5373 | case NeonTypeFlags::Float16: |
5374 | if (HasLegalHalfType) |
5375 | return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); |
5376 | else |
5377 | return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
5378 | case NeonTypeFlags::Int32: |
5379 | return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); |
5380 | case NeonTypeFlags::Int64: |
5381 | case NeonTypeFlags::Poly64: |
5382 | return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); |
5383 | case NeonTypeFlags::Poly128: |
5384 | // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. |
5385 | // There is a lot of i128 and f128 API missing. |
5386 | // so we use v16i8 to represent poly128 and get pattern matched. |
5387 | return llvm::FixedVectorType::get(CGF->Int8Ty, 16); |
5388 | case NeonTypeFlags::Float32: |
5389 | return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); |
5390 | case NeonTypeFlags::Float64: |
5391 | return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); |
5392 | } |
5393 | llvm_unreachable("Unknown vector element type!")__builtin_unreachable(); |
5394 | } |
5395 | |
5396 | static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, |
5397 | NeonTypeFlags IntTypeFlags) { |
5398 | int IsQuad = IntTypeFlags.isQuad(); |
5399 | switch (IntTypeFlags.getEltType()) { |
5400 | case NeonTypeFlags::Int16: |
5401 | return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad)); |
5402 | case NeonTypeFlags::Int32: |
5403 | return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad)); |
5404 | case NeonTypeFlags::Int64: |
5405 | return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad)); |
5406 | default: |
5407 | llvm_unreachable("Type can't be converted to floating-point!")__builtin_unreachable(); |
5408 | } |
5409 | } |
5410 | |
5411 | Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C, |
5412 | const ElementCount &Count) { |
5413 | Value *SV = llvm::ConstantVector::getSplat(Count, C); |
5414 | return Builder.CreateShuffleVector(V, V, SV, "lane"); |
5415 | } |
5416 | |
5417 | Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { |
5418 | ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount(); |
5419 | return EmitNeonSplat(V, C, EC); |
5420 | } |
5421 | |
5422 | Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, |
5423 | const char *name, |
5424 | unsigned shift, bool rightshift) { |
5425 | unsigned j = 0; |
5426 | for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
5427 | ai != ae; ++ai, ++j) { |
5428 | if (F->isConstrainedFPIntrinsic()) |
5429 | if (ai->getType()->isMetadataTy()) |
5430 | continue; |
5431 | if (shift > 0 && shift == j) |
5432 | Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); |
5433 | else |
5434 | Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); |
5435 | } |
5436 | |
5437 | if (F->isConstrainedFPIntrinsic()) |
5438 | return Builder.CreateConstrainedFPCall(F, Ops, name); |
5439 | else |
5440 | return Builder.CreateCall(F, Ops, name); |
5441 | } |
5442 | |
5443 | Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, |
5444 | bool neg) { |
5445 | int SV = cast<ConstantInt>(V)->getSExtValue(); |
5446 | return ConstantInt::get(Ty, neg ? -SV : SV); |
5447 | } |
5448 | |
5449 | // Right-shift a vector by a constant. |
5450 | Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, |
5451 | llvm::Type *Ty, bool usgn, |
5452 | const char *name) { |
5453 | llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); |
5454 | |
5455 | int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); |
5456 | int EltSize = VTy->getScalarSizeInBits(); |
5457 | |
5458 | Vec = Builder.CreateBitCast(Vec, Ty); |
5459 | |
5460 | // lshr/ashr are undefined when the shift amount is equal to the vector |
5461 | // element size. |
5462 | if (ShiftAmt == EltSize) { |
5463 | if (usgn) { |
5464 | // Right-shifting an unsigned value by its size yields 0. |
5465 | return llvm::ConstantAggregateZero::get(VTy); |
5466 | } else { |
5467 | // Right-shifting a signed value by its size is equivalent |
5468 | // to a shift of size-1. |
5469 | --ShiftAmt; |
5470 | Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); |
5471 | } |
5472 | } |
5473 | |
5474 | Shift = EmitNeonShiftVector(Shift, Ty, false); |
5475 | if (usgn) |
5476 | return Builder.CreateLShr(Vec, Shift, name); |
5477 | else |
5478 | return Builder.CreateAShr(Vec, Shift, name); |
5479 | } |
5480 | |
5481 | enum { |
5482 | AddRetType = (1 << 0), |
5483 | Add1ArgType = (1 << 1), |
5484 | Add2ArgTypes = (1 << 2), |
5485 | |
5486 | VectorizeRetType = (1 << 3), |
5487 | VectorizeArgTypes = (1 << 4), |
5488 | |
5489 | InventFloatType = (1 << 5), |
5490 | UnsignedAlts = (1 << 6), |
5491 | |
5492 | Use64BitVectors = (1 << 7), |
5493 | Use128BitVectors = (1 << 8), |
5494 | |
5495 | Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, |
5496 | VectorRet = AddRetType | VectorizeRetType, |
5497 | VectorRetGetArgs01 = |
5498 | AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, |
5499 | FpCmpzModifiers = |
5500 | AddRetType | VectorizeRetType | Add1ArgType | InventFloatType |
5501 | }; |
5502 | |
5503 | namespace { |
5504 | struct ARMVectorIntrinsicInfo { |
5505 | const char *NameHint; |
5506 | unsigned BuiltinID; |
5507 | unsigned LLVMIntrinsic; |
5508 | unsigned AltLLVMIntrinsic; |
5509 | uint64_t TypeModifier; |
5510 | |
5511 | bool operator<(unsigned RHSBuiltinID) const { |
5512 | return BuiltinID < RHSBuiltinID; |
5513 | } |
5514 | bool operator<(const ARMVectorIntrinsicInfo &TE) const { |
5515 | return BuiltinID < TE.BuiltinID; |
5516 | } |
5517 | }; |
5518 | } // end anonymous namespace |
5519 | |
5520 | #define NEONMAP0(NameBase) \ |
5521 | { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } |
5522 | |
5523 | #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ |
5524 | { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ |
5525 | Intrinsic::LLVMIntrinsic, 0, TypeModifier } |
5526 | |
5527 | #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ |
5528 | { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ |
5529 | Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ |
5530 | TypeModifier } |
5531 | |
5532 | static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = { |
5533 | NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0), |
5534 | NEONMAP0(splat_lane_v), |
5535 | NEONMAP0(splat_laneq_v), |
5536 | NEONMAP0(splatq_lane_v), |
5537 | NEONMAP0(splatq_laneq_v), |
5538 | NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
5539 | NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
5540 | NEONMAP1(vabs_v, arm_neon_vabs, 0), |
5541 | NEONMAP1(vabsq_v, arm_neon_vabs, 0), |
5542 | NEONMAP0(vadd_v), |
5543 | NEONMAP0(vaddhn_v), |
5544 | NEONMAP0(vaddq_v), |
5545 | NEONMAP1(vaesdq_v, arm_neon_aesd, 0), |
5546 | NEONMAP1(vaeseq_v, arm_neon_aese, 0), |
5547 | NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), |
5548 | NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), |
5549 | NEONMAP1(vbfdot_v, arm_neon_bfdot, 0), |
5550 | NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0), |
5551 | NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0), |
5552 | NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0), |
5553 | NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0), |
5554 | NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), |
5555 | NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), |
5556 | NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), |
5557 | NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), |
5558 | NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), |
5559 | NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), |
5560 | NEONMAP1(vcage_v, arm_neon_vacge, 0), |
5561 | NEONMAP1(vcageq_v, arm_neon_vacge, 0), |
5562 | NEONMAP1(vcagt_v, arm_neon_vacgt, 0), |
5563 | NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), |
5564 | NEONMAP1(vcale_v, arm_neon_vacge, 0), |
5565 | NEONMAP1(vcaleq_v, arm_neon_vacge, 0), |
5566 | NEONMAP1(vcalt_v, arm_neon_vacgt, 0), |
5567 | NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), |
5568 | NEONMAP0(vceqz_v), |
5569 | NEONMAP0(vceqzq_v), |
5570 | NEONMAP0(vcgez_v), |
5571 | NEONMAP0(vcgezq_v), |
5572 | NEONMAP0(vcgtz_v), |
5573 | NEONMAP0(vcgtzq_v), |
5574 | NEONMAP0(vclez_v), |
5575 | NEONMAP0(vclezq_v), |
5576 | NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), |
5577 | NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), |
5578 | NEONMAP0(vcltz_v), |
5579 | NEONMAP0(vcltzq_v), |
5580 | NEONMAP1(vclz_v, ctlz, Add1ArgType), |
5581 | NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
5582 | NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
5583 | NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
5584 | NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), |
5585 | NEONMAP0(vcvt_f16_v), |
5586 | NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), |
5587 | NEONMAP0(vcvt_f32_v), |
5588 | NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
5589 | NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
5590 | NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), |
5591 | NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
5592 | NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
5593 | NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), |
5594 | NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
5595 | NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
5596 | NEONMAP0(vcvt_s16_v), |
5597 | NEONMAP0(vcvt_s32_v), |
5598 | NEONMAP0(vcvt_s64_v), |
5599 | NEONMAP0(vcvt_u16_v), |
5600 | NEONMAP0(vcvt_u32_v), |
5601 | NEONMAP0(vcvt_u64_v), |
5602 | NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), |
5603 | NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), |
5604 | NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), |
5605 | NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), |
5606 | NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), |
5607 | NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), |
5608 | NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), |
5609 | NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), |
5610 | NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), |
5611 | NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), |
5612 | NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), |
5613 | NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), |
5614 | NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0), |
5615 | NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), |
5616 | NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), |
5617 | NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), |
5618 | NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), |
5619 | NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), |
5620 | NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), |
5621 | NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), |
5622 | NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), |
5623 | NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), |
5624 | NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), |
5625 | NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), |
5626 | NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), |
5627 | NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), |
5628 | NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), |
5629 | NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), |
5630 | NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), |
5631 | NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), |
5632 | NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), |
5633 | NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), |
5634 | NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), |
5635 | NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), |
5636 | NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), |
5637 | NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), |
5638 | NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), |
5639 | NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), |
5640 | NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), |
5641 | NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), |
5642 | NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), |
5643 | NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), |
5644 | NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), |
5645 | NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), |
5646 | NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), |
5647 | NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), |
5648 | NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), |
5649 | NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), |
5650 | NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), |
5651 | NEONMAP0(vcvtq_f16_v), |
5652 | NEONMAP0(vcvtq_f32_v), |
5653 | NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
5654 | NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
5655 | NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), |
5656 | NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
5657 | NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
5658 | NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), |
5659 | NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
5660 | NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
5661 | NEONMAP0(vcvtq_s16_v), |
5662 | NEONMAP0(vcvtq_s32_v), |
5663 | NEONMAP0(vcvtq_s64_v), |
5664 | NEONMAP0(vcvtq_u16_v), |
5665 | NEONMAP0(vcvtq_u32_v), |
5666 | NEONMAP0(vcvtq_u64_v), |
5667 | NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), |
5668 | NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), |
5669 | NEONMAP0(vext_v), |
5670 | NEONMAP0(vextq_v), |
5671 | NEONMAP0(vfma_v), |
5672 | NEONMAP0(vfmaq_v), |
5673 | NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
5674 | NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
5675 | NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
5676 | NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
5677 | NEONMAP0(vld1_dup_v), |
5678 | NEONMAP1(vld1_v, arm_neon_vld1, 0), |
5679 | NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), |
5680 | NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), |
5681 | NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), |
5682 | NEONMAP0(vld1q_dup_v), |
5683 | NEONMAP1(vld1q_v, arm_neon_vld1, 0), |
5684 | NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), |
5685 | NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), |
5686 | NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), |
5687 | NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), |
5688 | NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), |
5689 | NEONMAP1(vld2_v, arm_neon_vld2, 0), |
5690 | NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), |
5691 | NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), |
5692 | NEONMAP1(vld2q_v, arm_neon_vld2, 0), |
5693 | NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), |
5694 | NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), |
5695 | NEONMAP1(vld3_v, arm_neon_vld3, 0), |
5696 | NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), |
5697 | NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), |
5698 | NEONMAP1(vld3q_v, arm_neon_vld3, 0), |
5699 | NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), |
5700 | NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), |
5701 | NEONMAP1(vld4_v, arm_neon_vld4, 0), |
5702 | NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), |
5703 | NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), |
5704 | NEONMAP1(vld4q_v, arm_neon_vld4, 0), |
5705 | NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
5706 | NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), |
5707 | NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), |
5708 | NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
5709 | NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
5710 | NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), |
5711 | NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), |
5712 | NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
5713 | NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0), |
5714 | NEONMAP0(vmovl_v), |
5715 | NEONMAP0(vmovn_v), |
5716 | NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), |
5717 | NEONMAP0(vmull_v), |
5718 | NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), |
5719 | NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
5720 | NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
5721 | NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), |
5722 | NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), |
5723 | NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), |
5724 | NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), |
5725 | NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), |
5726 | NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), |
5727 | NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), |
5728 | NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), |
5729 | NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), |
5730 | NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), |
5731 | NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0), |
5732 | NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0), |
5733 | NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), |
5734 | NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), |
5735 | NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), |
5736 | NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), |
5737 | NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), |
5738 | NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), |
5739 | NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), |
5740 | NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), |
5741 | NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), |
5742 | NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), |
5743 | NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), |
5744 | NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), |
5745 | NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), |
5746 | NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), |
5747 | NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), |
5748 | NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), |
5749 | NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), |
5750 | NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), |
5751 | NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), |
5752 | NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), |
5753 | NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), |
5754 | NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), |
5755 | NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), |
5756 | NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), |
5757 | NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), |
5758 | NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), |
5759 | NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), |
5760 | NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), |
5761 | NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), |
5762 | NEONMAP0(vrndi_v), |
5763 | NEONMAP0(vrndiq_v), |
5764 | NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), |
5765 | NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), |
5766 | NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), |
5767 | NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), |
5768 | NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), |
5769 | NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), |
5770 | NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), |
5771 | NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), |
5772 | NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), |
5773 | NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), |
5774 | NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), |
5775 | NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), |
5776 | NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), |
5777 | NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), |
5778 | NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), |
5779 | NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), |
5780 | NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), |
5781 | NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), |
5782 | NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), |
5783 | NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), |
5784 | NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), |
5785 | NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), |
5786 | NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), |
5787 | NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), |
5788 | NEONMAP0(vshl_n_v), |
5789 | NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), |
5790 | NEONMAP0(vshll_n_v), |
5791 | NEONMAP0(vshlq_n_v), |
5792 | NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), |
5793 | NEONMAP0(vshr_n_v), |
5794 | NEONMAP0(vshrn_n_v), |
5795 | NEONMAP0(vshrq_n_v), |
5796 | NEONMAP1(vst1_v, arm_neon_vst1, 0), |
5797 | NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), |
5798 | NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), |
5799 | NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), |
5800 | NEONMAP1(vst1q_v, arm_neon_vst1, 0), |
5801 | NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), |
5802 | NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), |
5803 | NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), |
5804 | NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), |
5805 | NEONMAP1(vst2_v, arm_neon_vst2, 0), |
5806 | NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), |
5807 | NEONMAP1(vst2q_v, arm_neon_vst2, 0), |
5808 | NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), |
5809 | NEONMAP1(vst3_v, arm_neon_vst3, 0), |
5810 | NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), |
5811 | NEONMAP1(vst3q_v, arm_neon_vst3, 0), |
5812 | NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), |
5813 | NEONMAP1(vst4_v, arm_neon_vst4, 0), |
5814 | NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), |
5815 | NEONMAP1(vst4q_v, arm_neon_vst4, 0), |
5816 | NEONMAP0(vsubhn_v), |
5817 | NEONMAP0(vtrn_v), |
5818 | NEONMAP0(vtrnq_v), |
5819 | NEONMAP0(vtst_v), |
5820 | NEONMAP0(vtstq_v), |
5821 | NEONMAP1(vusdot_v, arm_neon_usdot, 0), |
5822 | NEONMAP1(vusdotq_v, arm_neon_usdot, 0), |
5823 | NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0), |
5824 | NEONMAP0(vuzp_v), |
5825 | NEONMAP0(vuzpq_v), |
5826 | NEONMAP0(vzip_v), |
5827 | NEONMAP0(vzipq_v) |
5828 | }; |
5829 | |
5830 | static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = { |
5831 | NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0), |
5832 | NEONMAP0(splat_lane_v), |
5833 | NEONMAP0(splat_laneq_v), |
5834 | NEONMAP0(splatq_lane_v), |
5835 | NEONMAP0(splatq_laneq_v), |
5836 | NEONMAP1(vabs_v, aarch64_neon_abs, 0), |
5837 | NEONMAP1(vabsq_v, aarch64_neon_abs, 0), |
5838 | NEONMAP0(vadd_v), |
5839 | NEONMAP0(vaddhn_v), |
5840 | NEONMAP0(vaddq_p128), |
5841 | NEONMAP0(vaddq_v), |
5842 | NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), |
5843 | NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), |
5844 | NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), |
5845 | NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), |
5846 | NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
5847 | NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0), |
5848 | NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0), |
5849 | NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0), |
5850 | NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0), |
5851 | NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0), |
5852 | NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), |
5853 | NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), |
5854 | NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), |
5855 | NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), |
5856 | NEONMAP1(vcage_v, aarch64_neon_facge, 0), |
5857 | NEONMAP1(vcageq_v, aarch64_neon_facge, 0), |
5858 | NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), |
5859 | NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), |
5860 | NEONMAP1(vcale_v, aarch64_neon_facge, 0), |
5861 | NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), |
5862 | NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), |
5863 | NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), |
5864 | NEONMAP0(vceqz_v), |
5865 | NEONMAP0(vceqzq_v), |
5866 | NEONMAP0(vcgez_v), |
5867 | NEONMAP0(vcgezq_v), |
5868 | NEONMAP0(vcgtz_v), |
5869 | NEONMAP0(vcgtzq_v), |
5870 | NEONMAP0(vclez_v), |
5871 | NEONMAP0(vclezq_v), |
5872 | NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), |
5873 | NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), |
5874 | NEONMAP0(vcltz_v), |
5875 | NEONMAP0(vcltzq_v), |
5876 | NEONMAP1(vclz_v, ctlz, Add1ArgType), |
5877 | NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
5878 | NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), |
5879 | NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), |
5880 | NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), |
5881 | NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType), |
5882 | NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), |
5883 | NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), |
5884 | NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), |
5885 | NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType), |
5886 | NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
5887 | NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
5888 | NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), |
5889 | NEONMAP0(vcvt_f16_v), |
5890 | NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), |
5891 | NEONMAP0(vcvt_f32_v), |
5892 | NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
5893 | NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
5894 | NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
5895 | NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), |
5896 | NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), |
5897 | NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), |
5898 | NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), |
5899 | NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), |
5900 | NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), |
5901 | NEONMAP0(vcvtq_f16_v), |
5902 | NEONMAP0(vcvtq_f32_v), |
5903 | NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0), |
5904 | NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
5905 | NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
5906 | NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
5907 | NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), |
5908 | NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), |
5909 | NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), |
5910 | NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), |
5911 | NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), |
5912 | NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), |
5913 | NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), |
5914 | NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), |
5915 | NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), |
5916 | NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
5917 | NEONMAP0(vext_v), |
5918 | NEONMAP0(vextq_v), |
5919 | NEONMAP0(vfma_v), |
5920 | NEONMAP0(vfmaq_v), |
5921 | NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), |
5922 | NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), |
5923 | NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), |
5924 | NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), |
5925 | NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), |
5926 | NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), |
5927 | NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), |
5928 | NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), |
5929 | NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), |
5930 | NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), |
5931 | NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), |
5932 | NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), |
5933 | NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), |
5934 | NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), |
5935 | NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), |
5936 | NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), |
5937 | NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), |
5938 | NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), |
5939 | NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0), |
5940 | NEONMAP0(vmovl_v), |
5941 | NEONMAP0(vmovn_v), |
5942 | NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), |
5943 | NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), |
5944 | NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), |
5945 | NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), |
5946 | NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), |
5947 | NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), |
5948 | NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), |
5949 | NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), |
5950 | NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), |
5951 | NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), |
5952 | NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), |
5953 | NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), |
5954 | NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0), |
5955 | NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0), |
5956 | NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), |
5957 | NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0), |
5958 | NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0), |
5959 | NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), |
5960 | NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), |
5961 | NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), |
5962 | NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), |
5963 | NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), |
5964 | NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), |
5965 | NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0), |
5966 | NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), |
5967 | NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), |
5968 | NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0), |
5969 | NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), |
5970 | NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), |
5971 | NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), |
5972 | NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), |
5973 | NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), |
5974 | NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), |
5975 | NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), |
5976 | NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), |
5977 | NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), |
5978 | NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), |
5979 | NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), |
5980 | NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), |
5981 | NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), |
5982 | NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0), |
5983 | NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), |
5984 | NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), |
5985 | NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), |
5986 | NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), |
5987 | NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), |
5988 | NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), |
5989 | NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType), |
5990 | NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType), |
5991 | NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType), |
5992 | NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType), |
5993 | NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType), |
5994 | NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType), |
5995 | NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType), |
5996 | NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType), |
5997 | NEONMAP0(vrndi_v), |
5998 | NEONMAP0(vrndiq_v), |
5999 | NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), |
6000 | NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), |
6001 | NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), |
6002 | NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), |
6003 | NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), |
6004 | NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), |
6005 | NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), |
6006 | NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), |
6007 | NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), |
6008 | NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), |
6009 | NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), |
6010 | NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), |
6011 | NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), |
6012 | NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), |
6013 | NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), |
6014 | NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0), |
6015 | NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0), |
6016 | NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0), |
6017 | NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0), |
6018 | NEONMAP0(vshl_n_v), |
6019 | NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), |
6020 | NEONMAP0(vshll_n_v), |
6021 | NEONMAP0(vshlq_n_v), |
6022 | NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), |
6023 | NEONMAP0(vshr_n_v), |
6024 | NEONMAP0(vshrn_n_v), |
6025 | NEONMAP0(vshrq_n_v), |
6026 | NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0), |
6027 | NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0), |
6028 | NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0), |
6029 | NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0), |
6030 | NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0), |
6031 | NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0), |
6032 | NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0), |
6033 | NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0), |
6034 | NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0), |
6035 | NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), |
6036 | NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), |
6037 | NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), |
6038 | NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), |
6039 | NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), |
6040 | NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), |
6041 | NEONMAP0(vsubhn_v), |
6042 | NEONMAP0(vtst_v), |
6043 | NEONMAP0(vtstq_v), |
6044 | NEONMAP1(vusdot_v, aarch64_neon_usdot, 0), |
6045 | NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0), |
6046 | NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0), |
6047 | NEONMAP1(vxarq_v, aarch64_crypto_xar, 0), |
6048 | }; |
6049 | |
6050 | static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = { |
6051 | NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), |
6052 | NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), |
6053 | NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), |
6054 | NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), |
6055 | NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), |
6056 | NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), |
6057 | NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), |
6058 | NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), |
6059 | NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), |
6060 | NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
6061 | NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), |
6062 | NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), |
6063 | NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), |
6064 | NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), |
6065 | NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
6066 | NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
6067 | NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), |
6068 | NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), |
6069 | NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), |
6070 | NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), |
6071 | NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), |
6072 | NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), |
6073 | NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), |
6074 | NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), |
6075 | NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
6076 | NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
6077 | NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
6078 | NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
6079 | NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
6080 | NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
6081 | NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
6082 | NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
6083 | NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
6084 | NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
6085 | NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0), |
6086 | NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
6087 | NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
6088 | NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
6089 | NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
6090 | NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
6091 | NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
6092 | NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
6093 | NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
6094 | NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
6095 | NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
6096 | NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
6097 | NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
6098 | NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
6099 | NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
6100 | NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
6101 | NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
6102 | NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
6103 | NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
6104 | NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), |
6105 | NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
6106 | NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
6107 | NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
6108 | NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
6109 | NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), |
6110 | NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), |
6111 | NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
6112 | NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
6113 | NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), |
6114 | NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), |
6115 | NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
6116 | NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
6117 | NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
6118 | NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
6119 | NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), |
6120 | NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), |
6121 | NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
6122 | NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), |
6123 | NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), |
6124 | NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), |
6125 | NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), |
6126 | NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), |
6127 | NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), |
6128 | NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
6129 | NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
6130 | NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
6131 | NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
6132 | NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
6133 | NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
6134 | NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
6135 | NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
6136 | NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), |
6137 | NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
6138 | NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), |
6139 | NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), |
6140 | NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), |
6141 | NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), |
6142 | NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), |
6143 | NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), |
6144 | NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), |
6145 | NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), |
6146 | NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), |
6147 | NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), |
6148 | NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), |
6149 | NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), |
6150 | NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), |
6151 | NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), |
6152 | NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), |
6153 | NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), |
6154 | NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), |