clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstCombineMulDivRem.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 | #include "InstCombineInternal.h" |
15 | #include "llvm/ADT/APFloat.h" |
16 | #include "llvm/ADT/APInt.h" |
17 | #include "llvm/ADT/SmallVector.h" |
18 | #include "llvm/Analysis/InstructionSimplify.h" |
19 | #include "llvm/IR/BasicBlock.h" |
20 | #include "llvm/IR/Constant.h" |
21 | #include "llvm/IR/Constants.h" |
22 | #include "llvm/IR/InstrTypes.h" |
23 | #include "llvm/IR/Instruction.h" |
24 | #include "llvm/IR/Instructions.h" |
25 | #include "llvm/IR/IntrinsicInst.h" |
26 | #include "llvm/IR/Intrinsics.h" |
27 | #include "llvm/IR/Operator.h" |
28 | #include "llvm/IR/PatternMatch.h" |
29 | #include "llvm/IR/Type.h" |
30 | #include "llvm/IR/Value.h" |
31 | #include "llvm/Support/Casting.h" |
32 | #include "llvm/Support/ErrorHandling.h" |
33 | #include "llvm/Support/KnownBits.h" |
34 | #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" |
35 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
36 | #include "llvm/Transforms/Utils/BuildLibCalls.h" |
37 | #include <cassert> |
38 | #include <cstddef> |
39 | #include <cstdint> |
40 | #include <utility> |
41 | |
42 | using namespace llvm; |
43 | using namespace PatternMatch; |
44 | |
45 | #define DEBUG_TYPE "instcombine" |
46 | |
47 | |
48 | |
49 | |
50 | static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, |
51 | Instruction &CxtI) { |
52 | |
53 | |
54 | |
55 | if (!V->hasOneUse()) return nullptr; |
56 | |
57 | bool MadeChange = false; |
58 | |
59 | |
60 | |
61 | Value *A = nullptr, *B = nullptr, *One = nullptr; |
62 | if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && |
63 | match(One, m_One())) { |
64 | A = IC.Builder.CreateSub(A, B); |
65 | return IC.Builder.CreateShl(One, A); |
66 | } |
67 | |
68 | |
69 | |
70 | BinaryOperator *I = dyn_cast<BinaryOperator>(V); |
71 | if (I && I->isLogicalShift() && |
72 | IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) { |
73 | |
74 | |
75 | if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { |
76 | IC.replaceOperand(*I, 0, V2); |
77 | MadeChange = true; |
78 | } |
79 | |
80 | if (I->getOpcode() == Instruction::LShr && !I->isExact()) { |
81 | I->setIsExact(); |
82 | MadeChange = true; |
83 | } |
84 | |
85 | if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { |
86 | I->setHasNoUnsignedWrap(); |
87 | MadeChange = true; |
88 | } |
89 | } |
90 | |
91 | |
92 | |
93 | |
94 | |
95 | return MadeChange ? V : nullptr; |
96 | } |
97 | |
98 | |
99 | |
100 | |
101 | |
102 | |
103 | static Value *foldMulSelectToNegate(BinaryOperator &I, |
104 | InstCombiner::BuilderTy &Builder) { |
105 | Value *Cond, *OtherOp; |
106 | |
107 | |
108 | |
109 | if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())), |
110 | m_Value(OtherOp)))) |
111 | return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp)); |
112 | |
113 | |
114 | |
115 | if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())), |
116 | m_Value(OtherOp)))) |
117 | return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp); |
118 | |
119 | |
120 | |
121 | if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0), |
122 | m_SpecificFP(-1.0))), |
123 | m_Value(OtherOp)))) { |
124 | IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
125 | Builder.setFastMathFlags(I.getFastMathFlags()); |
126 | return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp)); |
127 | } |
128 | |
129 | |
130 | |
131 | if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0), |
132 | m_SpecificFP(1.0))), |
133 | m_Value(OtherOp)))) { |
134 | IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
135 | Builder.setFastMathFlags(I.getFastMathFlags()); |
136 | return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp); |
137 | } |
138 | |
139 | return nullptr; |
140 | } |
141 | |
142 | Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) { |
143 | if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1), |
144 | SQ.getWithInstruction(&I))) |
145 | return replaceInstUsesWith(I, V); |
146 | |
147 | if (SimplifyAssociativeOrCommutative(I)) |
148 | return &I; |
149 | |
150 | if (Instruction *X = foldVectorBinop(I)) |
151 | return X; |
152 | |
153 | if (Value *V = SimplifyUsingDistributiveLaws(I)) |
154 | return replaceInstUsesWith(I, V); |
155 | |
156 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
157 | unsigned BitWidth = I.getType()->getScalarSizeInBits(); |
158 | |
159 | |
160 | if (match(Op1, m_AllOnes())) { |
161 | BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName()); |
162 | if (I.hasNoSignedWrap()) |
163 | BO->setHasNoSignedWrap(); |
164 | return BO; |
165 | } |
166 | |
167 | |
168 | { |
169 | Value *NewOp; |
170 | Constant *C1, *C2; |
171 | const APInt *IVal; |
172 | if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), |
173 | m_Constant(C1))) && |
174 | match(C1, m_APInt(IVal))) { |
175 | |
176 | Constant *Shl = ConstantExpr::getShl(C1, C2); |
177 | BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); |
178 | BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); |
179 | if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap()) |
180 | BO->setHasNoUnsignedWrap(); |
181 | if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() && |
182 | Shl->isNotMinSignedValue()) |
183 | BO->setHasNoSignedWrap(); |
184 | return BO; |
185 | } |
186 | |
187 | if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { |
188 | |
189 | if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) { |
190 | BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); |
191 | |
192 | if (I.hasNoUnsignedWrap()) |
193 | Shl->setHasNoUnsignedWrap(); |
194 | if (I.hasNoSignedWrap()) { |
195 | const APInt *V; |
196 | if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1) |
197 | Shl->setHasNoSignedWrap(); |
198 | } |
199 | |
200 | return Shl; |
201 | } |
202 | } |
203 | } |
204 | |
205 | if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) { |
206 | |
207 | |
208 | if (Value *NegOp0 = Negator::Negate( true, Op0, *this)) |
209 | return BinaryOperator::CreateMul( |
210 | NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName()); |
211 | } |
212 | |
213 | if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) |
214 | return FoldedMul; |
215 | |
216 | if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) |
217 | return replaceInstUsesWith(I, FoldedMul); |
218 | |
219 | |
220 | if (isa<Constant>(Op1)) { |
221 | |
222 | Value *X; |
223 | Constant *C1; |
224 | if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { |
225 | Value *Mul = Builder.CreateMul(C1, Op1); |
226 | |
227 | |
228 | if (!match(Mul, m_Mul(m_Value(), m_Value()))) |
229 | return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul); |
230 | } |
231 | } |
232 | |
233 | |
234 | |
235 | if (Op0 == Op1) { |
236 | Value *X, *Y; |
237 | SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; |
238 | if (SPF == SPF_ABS || SPF == SPF_NABS) |
239 | return BinaryOperator::CreateMul(X, X); |
240 | |
241 | if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) |
242 | return BinaryOperator::CreateMul(X, X); |
243 | } |
244 | |
245 | |
246 | Value *X, *Y; |
247 | Constant *Op1C; |
248 | if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C))) |
249 | return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C)); |
250 | |
251 | |
252 | if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) { |
253 | auto *NewMul = BinaryOperator::CreateMul(X, Y); |
254 | if (I.hasNoSignedWrap() && |
255 | cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() && |
256 | cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap()) |
257 | NewMul->setHasNoSignedWrap(); |
258 | return NewMul; |
259 | } |
260 | |
261 | |
262 | |
263 | if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y)))) |
264 | return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y)); |
265 | |
266 | |
267 | |
268 | { |
269 | Value *Y = Op1; |
270 | BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0); |
271 | if (!Div || (Div->getOpcode() != Instruction::UDiv && |
272 | Div->getOpcode() != Instruction::SDiv)) { |
273 | Y = Op0; |
274 | Div = dyn_cast<BinaryOperator>(Op1); |
275 | } |
276 | Value *Neg = dyn_castNegVal(Y); |
277 | if (Div && Div->hasOneUse() && |
278 | (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) && |
279 | (Div->getOpcode() == Instruction::UDiv || |
280 | Div->getOpcode() == Instruction::SDiv)) { |
281 | Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1); |
282 | |
283 | |
284 | if (Div->isExact()) { |
285 | if (DivOp1 == Y) |
286 | return replaceInstUsesWith(I, X); |
287 | return BinaryOperator::CreateNeg(X); |
288 | } |
289 | |
290 | auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem |
291 | : Instruction::SRem; |
292 | Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1); |
293 | if (DivOp1 == Y) |
294 | return BinaryOperator::CreateSub(X, Rem); |
295 | return BinaryOperator::CreateSub(Rem, X); |
296 | } |
297 | } |
298 | |
299 | |
300 | if (I.getType()->isIntOrIntVectorTy(1)) |
301 | return BinaryOperator::CreateAnd(Op0, Op1); |
302 | |
303 | |
304 | |
305 | { |
306 | Value *Y; |
307 | BinaryOperator *BO = nullptr; |
308 | bool ShlNSW = false; |
309 | if (match(Op0, m_Shl(m_One(), m_Value(Y)))) { |
310 | BO = BinaryOperator::CreateShl(Op1, Y); |
311 | ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap(); |
312 | } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) { |
313 | BO = BinaryOperator::CreateShl(Op0, Y); |
314 | ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap(); |
315 | } |
316 | if (BO) { |
317 | if (I.hasNoUnsignedWrap()) |
318 | BO->setHasNoUnsignedWrap(); |
319 | if (I.hasNoSignedWrap() && ShlNSW) |
320 | BO->setHasNoSignedWrap(); |
321 | return BO; |
322 | } |
323 | } |
324 | |
325 | |
326 | |
327 | |
328 | if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || |
329 | (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && |
330 | X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && |
331 | (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) { |
332 | Value *And = Builder.CreateAnd(X, Y, "mulbool"); |
333 | return CastInst::Create(Instruction::ZExt, And, I.getType()); |
334 | } |
335 | |
336 | |
337 | |
338 | if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) || |
339 | (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) && |
340 | X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() && |
341 | (Op0->hasOneUse() || Op1->hasOneUse())) { |
342 | Value *And = Builder.CreateAnd(X, Y, "mulbool"); |
343 | return CastInst::Create(Instruction::SExt, And, I.getType()); |
344 | } |
345 | |
346 | |
347 | |
348 | if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) |
349 | return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0)); |
350 | if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) |
351 | return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0)); |
352 | |
353 | |
354 | |
355 | |
356 | |
357 | |
358 | |
359 | const APInt *C; |
360 | if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) |
361 | return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1); |
362 | if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) |
363 | return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0); |
364 | |
365 | |
366 | |
367 | if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X), |
368 | m_SpecificIntAllowUndef(BitWidth - 1)), |
369 | m_One()), |
370 | m_Deferred(X)))) { |
371 | Value *Abs = Builder.CreateBinaryIntrinsic( |
372 | Intrinsic::abs, X, |
373 | ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap())); |
374 | Abs->takeName(&I); |
375 | return replaceInstUsesWith(I, Abs); |
376 | } |
377 | |
378 | if (Instruction *Ext = narrowMathIfNoOverflow(I)) |
379 | return Ext; |
380 | |
381 | bool Changed = false; |
382 | if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) { |
383 | Changed = true; |
384 | I.setHasNoSignedWrap(true); |
385 | } |
386 | |
387 | if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) { |
388 | Changed = true; |
389 | I.setHasNoUnsignedWrap(true); |
390 | } |
391 | |
392 | return Changed ? &I : nullptr; |
393 | } |
394 | |
395 | Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) { |
396 | BinaryOperator::BinaryOps Opcode = I.getOpcode(); |
397 | assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) && |
398 | "Expected fmul or fdiv"); |
399 | |
400 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
401 | Value *X, *Y; |
402 | |
403 | |
404 | |
405 | if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) |
406 | return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I); |
407 | |
408 | |
409 | |
410 | if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X)))) |
411 | return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I); |
412 | |
413 | |
414 | |
415 | if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) && |
416 | (Op0->hasOneUse() || Op1->hasOneUse())) { |
417 | IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
418 | Builder.setFastMathFlags(I.getFastMathFlags()); |
419 | Value *XY = Builder.CreateBinOp(Opcode, X, Y); |
420 | Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY); |
421 | Fabs->takeName(&I); |
422 | return replaceInstUsesWith(I, Fabs); |
423 | } |
424 | |
425 | return nullptr; |
426 | } |
427 | |
428 | Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) { |
429 | if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1), |
430 | I.getFastMathFlags(), |
431 | SQ.getWithInstruction(&I))) |
432 | return replaceInstUsesWith(I, V); |
433 | |
434 | if (SimplifyAssociativeOrCommutative(I)) |
435 | return &I; |
436 | |
437 | if (Instruction *X = foldVectorBinop(I)) |
438 | return X; |
439 | |
440 | if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) |
441 | return FoldedMul; |
442 | |
443 | if (Value *FoldedMul = foldMulSelectToNegate(I, Builder)) |
444 | return replaceInstUsesWith(I, FoldedMul); |
445 | |
446 | if (Instruction *R = foldFPSignBitOps(I)) |
447 | return R; |
448 | |
449 | |
450 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
451 | if (match(Op1, m_SpecificFP(-1.0))) |
452 | return UnaryOperator::CreateFNegFMF(Op0, &I); |
453 | |
454 | |
455 | Value *X, *Y; |
456 | Constant *C; |
457 | if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C))) |
458 | return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); |
459 | |
460 | |
461 | if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) |
462 | return replaceInstUsesWith(I, V); |
463 | |
464 | if (I.hasAllowReassoc()) { |
465 | |
466 | |
467 | if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) { |
468 | Constant *C1; |
469 | if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) { |
470 | |
471 | Constant *CC1 = ConstantExpr::getFMul(C, C1); |
472 | if (CC1->isNormalFP()) |
473 | return BinaryOperator::CreateFDivFMF(CC1, X, &I); |
474 | } |
475 | if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { |
476 | |
477 | Constant *CDivC1 = ConstantExpr::getFDiv(C, C1); |
478 | if (CDivC1->isNormalFP()) |
479 | return BinaryOperator::CreateFMulFMF(X, CDivC1, &I); |
480 | |
481 | |
482 | |
483 | Constant *C1DivC = ConstantExpr::getFDiv(C1, C); |
484 | if (Op0->hasOneUse() && C1DivC->isNormalFP()) |
485 | return BinaryOperator::CreateFDivFMF(X, C1DivC, &I); |
486 | } |
487 | |
488 | |
489 | |
490 | |
491 | if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) { |
492 | |
493 | Constant *CC1 = ConstantExpr::getFMul(C, C1); |
494 | Value *XC = Builder.CreateFMulFMF(X, C, &I); |
495 | return BinaryOperator::CreateFAddFMF(XC, CC1, &I); |
496 | } |
497 | if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) { |
498 | |
499 | Constant *CC1 = ConstantExpr::getFMul(C, C1); |
500 | Value *XC = Builder.CreateFMulFMF(X, C, &I); |
501 | return BinaryOperator::CreateFSubFMF(CC1, XC, &I); |
502 | } |
503 | } |
504 | |
505 | Value *Z; |
506 | if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), |
507 | m_Value(Z)))) { |
508 | |
509 | Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I); |
510 | return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I); |
511 | } |
512 | |
513 | |
514 | |
515 | |
516 | if (I.hasNoNaNs() && |
517 | match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) && |
518 | match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { |
519 | Value *XY = Builder.CreateFMulFMF(X, Y, &I); |
520 | Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I); |
521 | return replaceInstUsesWith(I, Sqrt); |
522 | } |
523 | |
524 | |
525 | |
526 | |
527 | |
528 | |
529 | |
530 | if (I.hasNoSignedZeros() && |
531 | match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && |
532 | match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X) |
533 | return BinaryOperator::CreateFDivFMF(X, Y, &I); |
534 | if (I.hasNoSignedZeros() && |
535 | match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) && |
536 | match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X) |
537 | return BinaryOperator::CreateFDivFMF(X, Y, &I); |
538 | |
539 | |
540 | |
541 | if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && |
542 | Op0->hasNUses(2)) { |
543 | |
544 | |
545 | if (match(Op0, m_FDiv(m_Value(X), |
546 | m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { |
547 | Value *XX = Builder.CreateFMulFMF(X, X, &I); |
548 | return BinaryOperator::CreateFDivFMF(XX, Y, &I); |
549 | } |
550 | |
551 | if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)), |
552 | m_Value(X)))) { |
553 | Value *XX = Builder.CreateFMulFMF(X, X, &I); |
554 | return BinaryOperator::CreateFDivFMF(Y, XX, &I); |
555 | } |
556 | } |
557 | |
558 | if (I.isOnlyUserOfAnyOperand()) { |
559 | |
560 | if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) && |
561 | match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) { |
562 | auto *YZ = Builder.CreateFAddFMF(Y, Z, &I); |
563 | auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I); |
564 | return replaceInstUsesWith(I, NewPow); |
565 | } |
566 | |
567 | |
568 | if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) && |
569 | match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) { |
570 | Value *XY = Builder.CreateFAddFMF(X, Y, &I); |
571 | Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I); |
572 | return replaceInstUsesWith(I, Exp); |
573 | } |
574 | |
575 | |
576 | if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) && |
577 | match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) { |
578 | Value *XY = Builder.CreateFAddFMF(X, Y, &I); |
579 | Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I); |
580 | return replaceInstUsesWith(I, Exp2); |
581 | } |
582 | } |
583 | |
584 | |
585 | |
586 | |
587 | |
588 | |
589 | |
590 | |
591 | if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && |
592 | Op1 != Y) { |
593 | Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I); |
594 | return BinaryOperator::CreateFMulFMF(XX, Y, &I); |
595 | } |
596 | if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && |
597 | Op0 != Y) { |
598 | Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I); |
599 | return BinaryOperator::CreateFMulFMF(XX, Y, &I); |
600 | } |
601 | } |
602 | |
603 | |
604 | if (I.isFast()) { |
605 | IntrinsicInst *Log2 = nullptr; |
606 | if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>( |
607 | m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { |
608 | Log2 = cast<IntrinsicInst>(Op0); |
609 | Y = Op1; |
610 | } |
611 | if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>( |
612 | m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { |
613 | Log2 = cast<IntrinsicInst>(Op1); |
614 | Y = Op0; |
615 | } |
616 | if (Log2) { |
617 | Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I); |
618 | Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I); |
619 | return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I); |
620 | } |
621 | } |
622 | |
623 | return nullptr; |
624 | } |
625 | |
626 | |
627 | |
628 | |
629 | bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) { |
630 | SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1)); |
631 | if (!SI) |
| 9 | | Assuming 'SI' is non-null | |
|
| |
632 | return false; |
633 | |
634 | int NonNullOperand; |
635 | if (match(SI->getTrueValue(), m_Zero())) |
| 11 | | Calling 'match<llvm::Value, llvm::PatternMatch::is_zero>' | |
|
| 18 | | Returning from 'match<llvm::Value, llvm::PatternMatch::is_zero>' | |
|
| 19 | | Assuming the condition is true | |
|
| |
636 | |
637 | NonNullOperand = 2; |
638 | else if (match(SI->getFalseValue(), m_Zero())) |
639 | |
640 | NonNullOperand = 1; |
641 | else |
642 | return false; |
643 | |
644 | |
645 | replaceOperand(I, 1, SI->getOperand(NonNullOperand)); |
646 | |
647 | |
648 | |
649 | |
650 | |
651 | |
652 | |
653 | |
654 | |
655 | Value *SelectCond = SI->getCondition(); |
656 | if (SI->use_empty() && SelectCond->hasOneUse()) |
| 21 | | Calling 'Value::use_empty' | |
|
| 24 | | Returning from 'Value::use_empty' | |
|
657 | return true; |
658 | |
659 | |
660 | BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); |
661 | Type *CondTy = SelectCond->getType(); |
662 | while (BBI != BBFront) { |
| |
| 28 | | Returning from 'operator!=' | |
|
| 29 | | Loop condition is true. Entering loop body | |
|
| |
| 41 | | Returning from 'operator!=' | |
|
| 42 | | Loop condition is true. Entering loop body | |
|
663 | --BBI; |
664 | |
665 | |
666 | if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) |
| 30 | | Assuming the condition is false | |
|
| |
| 43 | | Assuming the condition is false | |
|
| |
667 | break; |
668 | |
669 | |
670 | for (Use &Op : BBI->operands()) { |
| 32 | | Assuming '__begin2' is equal to '__end2' | |
|
| 45 | | Assuming '__begin2' is not equal to '__end2' | |
|
671 | if (Op == SI) { |
| 46 | | Assuming the condition is true | |
|
| |
672 | replaceUse(Op, SI->getOperand(NonNullOperand)); |
| 48 | | Called C++ object pointer is null |
|
673 | Worklist.push(&*BBI); |
674 | } else if (Op == SelectCond) { |
675 | replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy) |
676 | : ConstantInt::getFalse(CondTy)); |
677 | Worklist.push(&*BBI); |
678 | } |
679 | } |
680 | |
681 | |
682 | if (&*BBI == SI) |
| 33 | | Assuming the condition is true | |
|
| |
683 | SI = nullptr; |
| 35 | | Null pointer value stored to 'SI' | |
|
684 | if (&*BBI == SelectCond) |
| 36 | | Assuming the condition is false | |
|
| |
685 | SelectCond = nullptr; |
686 | |
687 | |
688 | if (!SelectCond && !SI) |
689 | break; |
690 | |
691 | } |
692 | return true; |
693 | } |
694 | |
695 | |
696 | static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, |
697 | bool IsSigned) { |
698 | bool Overflow; |
699 | Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow); |
700 | return Overflow; |
701 | } |
702 | |
703 | |
704 | static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, |
705 | bool IsSigned) { |
706 | assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal"); |
707 | |
708 | |
709 | if (C2.isNullValue()) |
710 | return false; |
711 | |
712 | |
713 | if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue()) |
714 | return false; |
715 | |
716 | APInt Remainder(C1.getBitWidth(), 0ULL, IsSigned); |
717 | if (IsSigned) |
718 | APInt::sdivrem(C1, C2, Quotient, Remainder); |
719 | else |
720 | APInt::udivrem(C1, C2, Quotient, Remainder); |
721 | |
722 | return Remainder.isMinValue(); |
723 | } |
724 | |
725 | |
726 | |
727 | |
728 | |
729 | Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) { |
730 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
731 | bool IsSigned = I.getOpcode() == Instruction::SDiv; |
732 | Type *Ty = I.getType(); |
733 | |
734 | |
735 | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) |
736 | return replaceOperand(I, 1, V); |
737 | |
738 | |
739 | |
740 | if (simplifyDivRemOfSelectWithZeroOp(I)) |
741 | return &I; |
742 | |
743 | const APInt *C2; |
744 | if (match(Op1, m_APInt(C2))) { |
745 | Value *X; |
746 | const APInt *C1; |
747 | |
748 | |
749 | if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) || |
750 | (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) { |
751 | APInt Product(C1->getBitWidth(), 0ULL, IsSigned); |
752 | if (!multiplyOverflows(*C1, *C2, Product, IsSigned)) |
753 | return BinaryOperator::Create(I.getOpcode(), X, |
754 | ConstantInt::get(Ty, Product)); |
755 | } |
756 | |
757 | if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) || |
758 | (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) { |
759 | APInt Quotient(C1->getBitWidth(), 0ULL, IsSigned); |
760 | |
761 | |
762 | if (isMultiple(*C2, *C1, Quotient, IsSigned)) { |
763 | auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X, |
764 | ConstantInt::get(Ty, Quotient)); |
765 | NewDiv->setIsExact(I.isExact()); |
766 | return NewDiv; |
767 | } |
768 | |
769 | |
770 | if (isMultiple(*C1, *C2, Quotient, IsSigned)) { |
771 | auto *Mul = BinaryOperator::Create(Instruction::Mul, X, |
772 | ConstantInt::get(Ty, Quotient)); |
773 | auto *OBO = cast<OverflowingBinaryOperator>(Op0); |
774 | Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); |
775 | Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); |
776 | return Mul; |
777 | } |
778 | } |
779 | |
780 | if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) && |
781 | *C1 != C1->getBitWidth() - 1) || |
782 | (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) { |
783 | APInt Quotient(C1->getBitWidth(), 0ULL, IsSigned); |
784 | APInt C1Shifted = APInt::getOneBitSet( |
785 | C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue())); |
786 | |
787 | |
788 | if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) { |
789 | auto *BO = BinaryOperator::Create(I.getOpcode(), X, |
790 | ConstantInt::get(Ty, Quotient)); |
791 | BO->setIsExact(I.isExact()); |
792 | return BO; |
793 | } |
794 | |
795 | |
796 | if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) { |
797 | auto *Mul = BinaryOperator::Create(Instruction::Mul, X, |
798 | ConstantInt::get(Ty, Quotient)); |
799 | auto *OBO = cast<OverflowingBinaryOperator>(Op0); |
800 | Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); |
801 | Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); |
802 | return Mul; |
803 | } |
804 | } |
805 | |
806 | if (!C2->isNullValue()) |
807 | if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I)) |
808 | return FoldedDiv; |
809 | } |
810 | |
811 | if (match(Op0, m_One())) { |
812 | assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?"); |
813 | if (IsSigned) { |
814 | |
815 | |
816 | |
817 | Value *Inc = Builder.CreateAdd(Op1, Op0); |
818 | Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3)); |
819 | return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0)); |
820 | } else { |
821 | |
822 | |
823 | return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty); |
824 | } |
825 | } |
826 | |
827 | |
828 | if (SimplifyDemandedInstructionBits(I)) |
829 | return &I; |
830 | |
831 | |
832 | Value *X, *Z; |
833 | if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) |
834 | if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || |
835 | (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) |
836 | return BinaryOperator::Create(I.getOpcode(), X, Op1); |
837 | |
838 | |
839 | Value *Y; |
840 | if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y)))) |
841 | return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y); |
842 | if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y)))) |
843 | return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y); |
844 | |
845 | |
846 | if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) { |
847 | bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); |
848 | bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); |
849 | if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) { |
850 | replaceOperand(I, 0, ConstantInt::get(Ty, 1)); |
851 | replaceOperand(I, 1, Y); |
852 | return &I; |
853 | } |
854 | } |
855 | |
856 | return nullptr; |
857 | } |
858 | |
859 | static const unsigned MaxDepth = 6; |
860 | |
861 | namespace { |
862 | |
863 | using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1, |
864 | const BinaryOperator &I, |
865 | InstCombinerImpl &IC); |
866 | |
867 | |
868 | struct UDivFoldAction { |
869 | |
870 | |
871 | FoldUDivOperandCb FoldAction; |
872 | |
873 | |
874 | Value *OperandToFold; |
875 | |
876 | union { |
877 | |
878 | Instruction *FoldResult; |
879 | |
880 | |
881 | size_t SelectLHSIdx; |
882 | }; |
883 | |
884 | UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) |
885 | : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} |
886 | UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) |
887 | : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} |
888 | }; |
889 | |
890 | } |
891 | |
892 | |
893 | static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, |
894 | const BinaryOperator &I, |
895 | InstCombinerImpl &IC) { |
896 | Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1)); |
897 | if (!C1) |
898 | llvm_unreachable("Failed to constant fold udiv -> logbase2"); |
899 | BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1); |
900 | if (I.isExact()) |
901 | LShr->setIsExact(); |
902 | return LShr; |
903 | } |
904 | |
905 | |
906 | |
907 | static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, |
908 | InstCombinerImpl &IC) { |
909 | Value *ShiftLeft; |
910 | if (!match(Op1, m_ZExt(m_Value(ShiftLeft)))) |
911 | ShiftLeft = Op1; |
912 | |
913 | Constant *CI; |
914 | Value *N; |
915 | if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N)))) |
916 | llvm_unreachable("match should never fail here!"); |
917 | Constant *Log2Base = ConstantExpr::getExactLogBase2(CI); |
918 | if (!Log2Base) |
919 | llvm_unreachable("getLogBase2 should never fail here!"); |
920 | N = IC.Builder.CreateAdd(N, Log2Base); |
921 | if (Op1 != ShiftLeft) |
922 | N = IC.Builder.CreateZExt(N, Op1->getType()); |
923 | BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); |
924 | if (I.isExact()) |
925 | LShr->setIsExact(); |
926 | return LShr; |
927 | } |
928 | |
929 | |
930 | |
931 | |
932 | |
933 | static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, |
934 | SmallVectorImpl<UDivFoldAction> &Actions, |
935 | unsigned Depth = 0) { |
936 | |
937 | |
938 | |
939 | |
940 | if (match(Op1, m_Power2())) { |
941 | Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); |
942 | return Actions.size(); |
943 | } |
944 | |
945 | |
946 | if (match(Op1, m_Shl(m_Power2(), m_Value())) || |
947 | match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { |
948 | Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); |
949 | return Actions.size(); |
950 | } |
951 | |
952 | |
953 | if (Depth++ == MaxDepth) |
954 | return 0; |
955 | |
956 | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
957 | |
958 | |
959 | |
960 | if (size_t LHSIdx = |
961 | visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth)) |
962 | if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) { |
963 | Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1)); |
964 | return Actions.size(); |
965 | } |
966 | |
967 | return 0; |
968 | } |
969 | |
970 | |
971 | |
972 | static Instruction *narrowUDivURem(BinaryOperator &I, |
973 | InstCombiner::BuilderTy &Builder) { |
974 | Instruction::BinaryOps Opcode = I.getOpcode(); |
975 | Value *N = I.getOperand(0); |
976 | Value *D = I.getOperand(1); |
977 | Type *Ty = I.getType(); |
978 | Value *X, *Y; |
979 | if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) && |
980 | X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) { |
981 | |
982 | |
983 | Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y); |
984 | return new ZExtInst(NarrowOp, Ty); |
985 | } |
986 | |
987 | Constant *C; |
988 | if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) || |
989 | (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) { |
990 | |
991 | Constant *TruncC = ConstantExpr::getTrunc(C, X->getType()); |
992 | if (ConstantExpr::getZExt(TruncC, Ty) != C) |
993 | return nullptr; |
994 | |
995 | |
996 | |
997 | |
998 | |
999 | Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC) |
1000 | : Builder.CreateBinOp(Opcode, TruncC, X); |
1001 | return new ZExtInst(NarrowOp, Ty); |
1002 | } |
1003 | |
1004 | return nullptr; |
1005 | } |
1006 | |
1007 | Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) { |
1008 | if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1), |
1009 | SQ.getWithInstruction(&I))) |
1010 | return replaceInstUsesWith(I, V); |
1011 | |
1012 | if (Instruction *X = foldVectorBinop(I)) |
1013 | return X; |
1014 | |
1015 | |
1016 | if (Instruction *Common = commonIDivTransforms(I)) |
1017 | return Common; |
1018 | |
1019 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
1020 | Value *X; |
1021 | const APInt *C1, *C2; |
1022 | if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) { |
1023 | |
1024 | bool Overflow; |
1025 | APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); |
1026 | if (!Overflow) { |
1027 | bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); |
1028 | BinaryOperator *BO = BinaryOperator::CreateUDiv( |
1029 | X, ConstantInt::get(X->getType(), C2ShlC1)); |
1030 | if (IsExact) |
1031 | BO->setIsExact(); |
1032 | return BO; |
1033 | } |
1034 | } |
1035 | |
1036 | |
1037 | |
1038 | Type *Ty = I.getType(); |
1039 | if (match(Op1, m_Negative())) { |
1040 | Value *Cmp = Builder.CreateICmpUGE(Op0, Op1); |
1041 | return CastInst::CreateZExtOrBitCast(Cmp, Ty); |
1042 | } |
1043 | |
1044 | if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { |
1045 | Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); |
1046 | return CastInst::CreateZExtOrBitCast(Cmp, Ty); |
1047 | } |
1048 | |
1049 | if (Instruction *NarrowDiv = narrowUDivURem(I, Builder)) |
1050 | return NarrowDiv; |
1051 | |
1052 | |
1053 | |
1054 | |
1055 | |
1056 | |
1057 | Value *A, *B; |
1058 | if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) { |
1059 | if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) || |
1060 | match(Op1, m_NUWMul(m_Value(X), m_Specific(A)))) |
1061 | return BinaryOperator::CreateUDiv(B, X); |
1062 | if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) || |
1063 | match(Op1, m_NUWMul(m_Value(X), m_Specific(B)))) |
1064 | return BinaryOperator::CreateUDiv(A, X); |
1065 | } |
1066 | |
1067 | |
1068 | SmallVector<UDivFoldAction, 6> UDivActions; |
1069 | if (visitUDivOperand(Op0, Op1, I, UDivActions)) |
1070 | for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { |
1071 | FoldUDivOperandCb Action = UDivActions[i].FoldAction; |
1072 | Value *ActionOp1 = UDivActions[i].OperandToFold; |
1073 | Instruction *Inst; |
1074 | if (Action) |
1075 | Inst = Action(Op0, ActionOp1, I, *this); |
1076 | else { |
1077 | |
1078 | |
1079 | |
1080 | size_t SelectRHSIdx = i - 1; |
1081 | Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; |
1082 | size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; |
1083 | Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; |
1084 | Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), |
1085 | SelectLHS, SelectRHS); |
1086 | } |
1087 | |
1088 | |
1089 | |
1090 | |
1091 | if (e - i != 1) { |
1092 | Inst->insertBefore(&I); |
1093 | UDivActions[i].FoldResult = Inst; |
1094 | } else |
1095 | return Inst; |
1096 | } |
1097 | |
1098 | return nullptr; |
1099 | } |
1100 | |
1101 | Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) { |
1102 | if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1), |
1103 | SQ.getWithInstruction(&I))) |
1104 | return replaceInstUsesWith(I, V); |
1105 | |
1106 | if (Instruction *X = foldVectorBinop(I)) |
1107 | return X; |
1108 | |
1109 | |
1110 | if (Instruction *Common = commonIDivTransforms(I)) |
1111 | return Common; |
1112 | |
1113 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
1114 | Type *Ty = I.getType(); |
1115 | Value *X; |
1116 | |
1117 | |
1118 | if (match(Op1, m_AllOnes()) || |
1119 | (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) |
1120 | return BinaryOperator::CreateNeg(Op0); |
1121 | |
1122 | |
1123 | if (match(Op1, m_SignMask())) |
1124 | return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty); |
1125 | |
1126 | |
1127 | |
1128 | if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) || |
1129 | match(Op1, m_NegatedPower2()))) { |
1130 | bool DivisorWasNegative = match(Op1, m_NegatedPower2()); |
1131 | if (DivisorWasNegative) |
1132 | Op1 = ConstantExpr::getNeg(cast<Constant>(Op1)); |
1133 | auto *AShr = BinaryOperator::CreateExactAShr( |
1134 | Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName()); |
1135 | if (!DivisorWasNegative) |
1136 | return AShr; |
1137 | Builder.Insert(AShr); |
1138 | AShr->setName(I.getName() + ".neg"); |
1139 | return BinaryOperator::CreateNeg(AShr, I.getName()); |
1140 | } |
1141 | |
1142 | const APInt *Op1C; |
1143 | if (match(Op1, m_APInt(Op1C))) { |
1144 | |
1145 | |
1146 | |
1147 | Value *Op0Src; |
1148 | if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && |
1149 | Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) { |
1150 | |
1151 | |
1152 | |
1153 | |
1154 | |
1155 | Constant *NarrowDivisor = |
1156 | ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); |
1157 | Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor); |
1158 | return new SExtInst(NarrowOp, Ty); |
1159 | } |
1160 | |
1161 | |
1162 | |
1163 | |
1164 | if (!Op1C->isMinSignedValue() && |
1165 | match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { |
1166 | Constant *NegC = ConstantInt::get(Ty, -(*Op1C)); |
1167 | Instruction *BO = BinaryOperator::CreateSDiv(X, NegC); |
1168 | BO->setIsExact(I.isExact()); |
1169 | return BO; |
1170 | } |
1171 | } |
1172 | |
1173 | |
1174 | Value *Y; |
1175 | if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) |
1176 | return BinaryOperator::CreateNSWNeg( |
1177 | Builder.CreateSDiv(X, Y, I.getName(), I.isExact())); |
1178 | |
1179 | |
1180 | |
1181 | if (match(&I, m_c_BinOp( |
1182 | m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())), |
1183 | m_Deferred(X)))) { |
1184 | Constant *NegOne = ConstantInt::getAllOnesValue(Ty); |
1185 | Value *Cond = Builder.CreateICmpSGT(X, NegOne); |
1186 | return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne); |
1187 | } |
1188 | |
1189 | |
1190 | |
1191 | APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits())); |
1192 | if (MaskedValueIsZero(Op0, Mask, 0, &I)) { |
1193 | if (MaskedValueIsZero(Op1, Mask, 0, &I)) { |
1194 | |
1195 | auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
1196 | BO->setIsExact(I.isExact()); |
1197 | return BO; |
1198 | } |
1199 | |
1200 | if (match(Op1, m_NegatedPower2())) { |
1201 | |
1202 | |
1203 | return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst( |
1204 | Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this))); |
1205 | } |
1206 | |
1207 | if (isKnownToBeAPowerOfTwo(Op1, true, 0, &I)) { |
1208 | |
1209 | |
1210 | |
1211 | |
1212 | auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
1213 | BO->setIsExact(I.isExact()); |
1214 | return BO; |
1215 | } |
1216 | } |
1217 | |
1218 | return nullptr; |
1219 | } |
1220 | |
1221 | |
1222 | static Instruction *foldFDivConstantDivisor(BinaryOperator &I) { |
1223 | Constant *C; |
1224 | if (!match(I.getOperand(1), m_Constant(C))) |
1225 | return nullptr; |
1226 | |
1227 | |
1228 | Value *X; |
1229 | if (match(I.getOperand(0), m_FNeg(m_Value(X)))) |
1230 | return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); |
1231 | |
1232 | |
1233 | |
1234 | |
1235 | if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP()))) |
1236 | return nullptr; |
1237 | |
1238 | |
1239 | |
1240 | |
1241 | |
1242 | auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C); |
1243 | if (!RecipC->isNormalFP()) |
1244 | return nullptr; |
1245 | |
1246 | |
1247 | return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I); |
1248 | } |
1249 | |
1250 | |
1251 | static Instruction *foldFDivConstantDividend(BinaryOperator &I) { |
1252 | Constant *C; |
1253 | if (!match(I.getOperand(0), m_Constant(C))) |
1254 | return nullptr; |
1255 | |
1256 | |
1257 | Value *X; |
1258 | if (match(I.getOperand(1), m_FNeg(m_Value(X)))) |
1259 | return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); |
1260 | |
1261 | if (!I.hasAllowReassoc() || !I.hasAllowReciprocal()) |
1262 | return nullptr; |
1263 | |
1264 | |
1265 | Constant *C2, *NewC = nullptr; |
1266 | if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) { |
1267 | |
1268 | NewC = ConstantExpr::getFDiv(C, C2); |
1269 | } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) { |
1270 | |
1271 | NewC = ConstantExpr::getFMul(C, C2); |
1272 | } |
1273 | |
1274 | |
1275 | |
1276 | |
1277 | if (!NewC || !NewC->isNormalFP()) |
1278 | return nullptr; |
1279 | |
1280 | return BinaryOperator::CreateFDivFMF(NewC, X, &I); |
1281 | } |
1282 | |
1283 | |
1284 | static Instruction *foldFDivPowDivisor(BinaryOperator &I, |
1285 | InstCombiner::BuilderTy &Builder) { |
1286 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
1287 | auto *II = dyn_cast<IntrinsicInst>(Op1); |
1288 | if (!II || !II->hasOneUse() || !I.hasAllowReassoc() || |
1289 | !I.hasAllowReciprocal()) |
1290 | return nullptr; |
1291 | |
1292 | |
1293 | |
1294 | |
1295 | |
1296 | Intrinsic::ID IID = II->getIntrinsicID(); |
1297 | SmallVector<Value *> Args; |
1298 | switch (IID) { |
1299 | case Intrinsic::pow: |
1300 | Args.push_back(II->getArgOperand(0)); |
1301 | Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I)); |
1302 | break; |
1303 | case Intrinsic::powi: { |
1304 | |
1305 | |
1306 | |
1307 | |
1308 | |
1309 | if (!I.hasNoInfs()) |
1310 | return nullptr; |
1311 | Args.push_back(II->getArgOperand(0)); |
1312 | Args.push_back(Builder.CreateNeg(II->getArgOperand(1))); |
1313 | Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()}; |
1314 | Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I); |
1315 | return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); |
1316 | } |
1317 | case Intrinsic::exp: |
1318 | case Intrinsic::exp2: |
1319 | Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I)); |
1320 | break; |
1321 | default: |
1322 | return nullptr; |
1323 | } |
1324 | Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I); |
1325 | return BinaryOperator::CreateFMulFMF(Op0, Pow, &I); |
1326 | } |
1327 | |
1328 | Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) { |
1329 | if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1), |
1330 | I.getFastMathFlags(), |
1331 | SQ.getWithInstruction(&I))) |
1332 | return replaceInstUsesWith(I, V); |
1333 | |
1334 | if (Instruction *X = foldVectorBinop(I)) |
1335 | return X; |
1336 | |
1337 | if (Instruction *R = foldFDivConstantDivisor(I)) |
1338 | return R; |
1339 | |
1340 | if (Instruction *R = foldFDivConstantDividend(I)) |
1341 | return R; |
1342 | |
1343 | if (Instruction *R = foldFPSignBitOps(I)) |
1344 | return R; |
1345 | |
1346 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
1347 | if (isa<Constant>(Op0)) |
1348 | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
1349 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
1350 | return R; |
1351 | |
1352 | if (isa<Constant>(Op1)) |
1353 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
1354 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
1355 | return R; |
1356 | |
1357 | if (I.hasAllowReassoc() && I.hasAllowReciprocal()) { |
1358 | Value *X, *Y; |
1359 | if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && |
1360 | (!isa<Constant>(Y) || !isa<Constant>(Op1))) { |
1361 | |
1362 | Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I); |
1363 | return BinaryOperator::CreateFDivFMF(X, YZ, &I); |
1364 | } |
1365 | if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && |
1366 | (!isa<Constant>(Y) || !isa<Constant>(Op0))) { |
1367 | |
1368 | Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I); |
1369 | return BinaryOperator::CreateFDivFMF(YZ, X, &I); |
1370 | } |
1371 | |
1372 | |
1373 | |
1374 | |
1375 | |
1376 | |
1377 | if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) |
1378 | return BinaryOperator::CreateFMulFMF(Y, Op0, &I); |
1379 | } |
1380 | |
1381 | if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) { |
1382 | |
1383 | |
1384 | Value *X; |
1385 | bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) && |
1386 | match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X))); |
1387 | bool IsCot = |
1388 | !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) && |
1389 | match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X))); |
1390 | |
1391 | if ((IsTan || IsCot) && |
1392 | hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) { |
1393 | IRBuilder<> B(&I); |
1394 | IRBuilder<>::FastMathFlagGuard FMFGuard(B); |
1395 | B.setFastMathFlags(I.getFastMathFlags()); |
1396 | AttributeList Attrs = |
1397 | cast<CallBase>(Op0)->getCalledFunction()->getAttributes(); |
1398 | Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf, |
1399 | LibFunc_tanl, B, Attrs); |
1400 | if (IsCot) |
1401 | Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res); |
1402 | return replaceInstUsesWith(I, Res); |
1403 | } |
1404 | } |
1405 | |
1406 | |
1407 | |
1408 | |
1409 | Value *X, *Y; |
1410 | if (I.hasNoNaNs() && I.hasAllowReassoc() && |
1411 | match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) { |
1412 | replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0)); |
1413 | replaceOperand(I, 1, Y); |
1414 | return &I; |
1415 | } |
1416 | |
1417 | |
1418 | |
1419 | if (I.hasNoNaNs() && I.hasNoInfs() && |
1420 | (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) || |
1421 | match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) { |
1422 | Value *V = Builder.CreateBinaryIntrinsic( |
1423 | Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I); |
1424 | return replaceInstUsesWith(I, V); |
1425 | } |
1426 | |
1427 | if (Instruction *Mul = foldFDivPowDivisor(I, Builder)) |
1428 | return Mul; |
1429 | |
1430 | return nullptr; |
1431 | } |
1432 | |
1433 | |
1434 | |
1435 | |
1436 | |
1437 | Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) { |
1438 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
1439 | |
1440 | |
1441 | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) |
| |
| |
1442 | return replaceOperand(I, 1, V); |
1443 | |
1444 | |
1445 | if (simplifyDivRemOfSelectWithZeroOp(I)) |
| 8 | | Calling 'InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp' | |
|
1446 | return &I; |
1447 | |
1448 | if (isa<Constant>(Op1)) { |
1449 | if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { |
1450 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { |
1451 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
1452 | return R; |
1453 | } else if (auto *PN = dyn_cast<PHINode>(Op0I)) { |
1454 | const APInt *Op1Int; |
1455 | if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && |
1456 | (I.getOpcode() == Instruction::URem || |
1457 | !Op1Int->isMinSignedValue())) { |
1458 | |
1459 | |
1460 | |
1461 | if (Instruction *NV = foldOpIntoPhi(I, PN)) |
1462 | return NV; |
1463 | } |
1464 | } |
1465 | |
1466 | |
1467 | if (SimplifyDemandedInstructionBits(I)) |
1468 | return &I; |
1469 | } |
1470 | } |
1471 | |
1472 | return nullptr; |
1473 | } |
1474 | |
1475 | Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) { |
1476 | if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1), |
| |
| |
1477 | SQ.getWithInstruction(&I))) |
1478 | return replaceInstUsesWith(I, V); |
1479 | |
1480 | if (Instruction *X = foldVectorBinop(I)) |
| |
| |
1481 | return X; |
1482 | |
1483 | if (Instruction *common = commonIRemTransforms(I)) |
| 5 | | Calling 'InstCombinerImpl::commonIRemTransforms' | |
|
1484 | return common; |
1485 | |
1486 | if (Instruction *NarrowRem = narrowUDivURem(I, Builder)) |
1487 | return NarrowRem; |
1488 | |
1489 | |
1490 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
1491 | Type *Ty = I.getType(); |
1492 | if (isKnownToBeAPowerOfTwo(Op1, true, 0, &I)) { |
1493 | |
1494 | |
1495 | Constant *N1 = Constant::getAllOnesValue(Ty); |
1496 | Value *Add = Builder.CreateAdd(Op1, N1); |
1497 | return BinaryOperator::CreateAnd(Op0, Add); |
1498 | } |
1499 | |
1500 | |
1501 | if (match(Op0, m_One())) { |
1502 | Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1)); |
1503 | return CastInst::CreateZExtOrBitCast(Cmp, Ty); |
1504 | } |
1505 | |
1506 | |
1507 | if (match(Op1, m_Negative())) { |
1508 | Value *Cmp = Builder.CreateICmpULT(Op0, Op1); |
1509 | Value *Sub = Builder.CreateSub(Op0, Op1); |
1510 | return SelectInst::Create(Cmp, Op0, Sub); |
1511 | } |
1512 | |
1513 | |
1514 | |
1515 | |
1516 | |
1517 | Value *X; |
1518 | if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { |
1519 | Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); |
1520 | return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0); |
1521 | } |
1522 | |
1523 | return nullptr; |
1524 | } |
1525 | |
1526 | Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) { |
1527 | if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1), |
1528 | SQ.getWithInstruction(&I))) |
1529 | return replaceInstUsesWith(I, V); |
1530 | |
1531 | if (Instruction *X = foldVectorBinop(I)) |
1532 | return X; |
1533 | |
1534 | |
1535 | if (Instruction *Common = commonIRemTransforms(I)) |
1536 | return Common; |
1537 | |
1538 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
1539 | { |
1540 | const APInt *Y; |
1541 | |
1542 | if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) |
1543 | return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y)); |
1544 | } |
1545 | |
1546 | |
1547 | Value *X, *Y; |
1548 | if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) |
1549 | return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y)); |
1550 | |
1551 | |
1552 | |
1553 | APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); |
1554 | if (MaskedValueIsZero(Op1, Mask, 0, &I) && |
1555 | MaskedValueIsZero(Op0, Mask, 0, &I)) { |
1556 | |
1557 | return BinaryOperator::CreateURem(Op0, Op1, I.getName()); |
1558 | } |
1559 | |
1560 | |
1561 | if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { |
1562 | Constant *C = cast<Constant>(Op1); |
1563 | unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements(); |
1564 | |
1565 | bool hasNegative = false; |
1566 | bool hasMissing = false; |
1567 | for (unsigned i = 0; i != VWidth; ++i) { |
1568 | Constant *Elt = C->getAggregateElement(i); |
1569 | if (!Elt) { |
1570 | hasMissing = true; |
1571 | break; |
1572 | } |
1573 | |
1574 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) |
1575 | if (RHS->isNegative()) |
1576 | hasNegative = true; |
1577 | } |
1578 | |
1579 | if (hasNegative && !hasMissing) { |
1580 | SmallVector<Constant *, 16> Elts(VWidth); |
1581 | for (unsigned i = 0; i != VWidth; ++i) { |
1582 | Elts[i] = C->getAggregateElement(i); |
1583 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { |
1584 | if (RHS->isNegative()) |
1585 | Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); |
1586 | } |
1587 | } |
1588 | |
1589 | Constant *NewRHSV = ConstantVector::get(Elts); |
1590 | if (NewRHSV != C) |
1591 | return replaceOperand(I, 1, NewRHSV); |
1592 | } |
1593 | } |
1594 | |
1595 | return nullptr; |
1596 | } |
1597 | |
1598 | Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) { |
1599 | if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1), |
1600 | I.getFastMathFlags(), |
1601 | SQ.getWithInstruction(&I))) |
1602 | return replaceInstUsesWith(I, V); |
1603 | |
1604 | if (Instruction *X = foldVectorBinop(I)) |
1605 | return X; |
1606 | |
1607 | return nullptr; |
1608 | } |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 | |
15 | |
16 | |
17 | |
18 | |
19 | |
20 | |
21 | |
22 | |
23 | |
24 | |
25 | |
26 | |
27 | |
28 | #ifndef LLVM_IR_PATTERNMATCH_H |
29 | #define LLVM_IR_PATTERNMATCH_H |
30 | |
31 | #include "llvm/ADT/APFloat.h" |
32 | #include "llvm/ADT/APInt.h" |
33 | #include "llvm/IR/Constant.h" |
34 | #include "llvm/IR/Constants.h" |
35 | #include "llvm/IR/DataLayout.h" |
36 | #include "llvm/IR/InstrTypes.h" |
37 | #include "llvm/IR/Instruction.h" |
38 | #include "llvm/IR/Instructions.h" |
39 | #include "llvm/IR/IntrinsicInst.h" |
40 | #include "llvm/IR/Intrinsics.h" |
41 | #include "llvm/IR/Operator.h" |
42 | #include "llvm/IR/Value.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include <cstdint> |
45 | |
46 | namespace llvm { |
47 | namespace PatternMatch { |
48 | |
49 | template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
50 | return const_cast<Pattern &>(P).match(V); |
| 12 | | Calling 'is_zero::match' | |
|
| 16 | | Returning from 'is_zero::match' | |
|
| 17 | | Returning value, which participates in a condition later | |
|
51 | } |
52 | |
53 | template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { |
54 | return const_cast<Pattern &>(P).match(Mask); |
55 | } |
56 | |
57 | template <typename SubPattern_t> struct OneUse_match { |
58 | SubPattern_t SubPattern; |
59 | |
60 | OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
61 | |
62 | template <typename OpTy> bool match(OpTy *V) { |
63 | return V->hasOneUse() && SubPattern.match(V); |
64 | } |
65 | }; |
66 | |
67 | template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
68 | return SubPattern; |
69 | } |
70 | |
71 | template <typename Class> struct class_match { |
72 | template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } |
73 | }; |
74 | |
75 | |
76 | inline class_match<Value> m_Value() { return class_match<Value>(); } |
77 | |
78 | |
79 | inline class_match<UnaryOperator> m_UnOp() { |
80 | return class_match<UnaryOperator>(); |
81 | } |
82 | |
83 | |
84 | inline class_match<BinaryOperator> m_BinOp() { |
85 | return class_match<BinaryOperator>(); |
86 | } |
87 | |
88 | |
89 | inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } |
90 | |
91 | struct undef_match { |
92 | static bool check(const Value *V) { |
93 | if (isa<UndefValue>(V)) |
94 | return true; |
95 | |
96 | const auto *CA = dyn_cast<ConstantAggregate>(V); |
97 | if (!CA) |
98 | return false; |
99 | |
100 | SmallPtrSet<const ConstantAggregate *, 8> Seen; |
101 | SmallVector<const ConstantAggregate *, 8> Worklist; |
102 | |
103 | |
104 | |
105 | |
106 | auto CheckValue = [&](const ConstantAggregate *CA) { |
107 | for (const Value *Op : CA->operand_values()) { |
108 | if (isa<UndefValue>(Op)) |
109 | continue; |
110 | |
111 | const auto *CA = dyn_cast<ConstantAggregate>(Op); |
112 | if (!CA) |
113 | return false; |
114 | if (Seen.insert(CA).second) |
115 | Worklist.emplace_back(CA); |
116 | } |
117 | |
118 | return true; |
119 | }; |
120 | |
121 | if (!CheckValue(CA)) |
122 | return false; |
123 | |
124 | while (!Worklist.empty()) { |
125 | if (!CheckValue(Worklist.pop_back_val())) |
126 | return false; |
127 | } |
128 | return true; |
129 | } |
130 | template <typename ITy> bool match(ITy *V) { return check(V); } |
131 | }; |
132 | |
133 | |
134 | |
135 | |
136 | inline auto m_Undef() { return undef_match(); } |
137 | |
138 | |
139 | inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); } |
140 | |
141 | |
142 | inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
143 | |
144 | |
145 | inline class_match<ConstantInt> m_ConstantInt() { |
146 | return class_match<ConstantInt>(); |
147 | } |
148 | |
149 | |
150 | inline class_match<ConstantFP> m_ConstantFP() { |
151 | return class_match<ConstantFP>(); |
152 | } |
153 | |
154 | |
155 | inline class_match<ConstantExpr> m_ConstantExpr() { |
156 | return class_match<ConstantExpr>(); |
157 | } |
158 | |
159 | |
160 | inline class_match<BasicBlock> m_BasicBlock() { |
161 | return class_match<BasicBlock>(); |
162 | } |
163 | |
164 | |
165 | template <typename Ty> struct match_unless { |
166 | Ty M; |
167 | |
168 | match_unless(const Ty &Matcher) : M(Matcher) {} |
169 | |
170 | template <typename ITy> bool match(ITy *V) { return !M.match(V); } |
171 | }; |
172 | |
173 | |
174 | template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { |
175 | return match_unless<Ty>(M); |
176 | } |
177 | |
178 | |
179 | template <typename LTy, typename RTy> struct match_combine_or { |
180 | LTy L; |
181 | RTy R; |
182 | |
183 | match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
184 | |
185 | template <typename ITy> bool match(ITy *V) { |
186 | if (L.match(V)) |
187 | return true; |
188 | if (R.match(V)) |
189 | return true; |
190 | return false; |
191 | } |
192 | }; |
193 | |
194 | template <typename LTy, typename RTy> struct match_combine_and { |
195 | LTy L; |
196 | RTy R; |
197 | |
198 | match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
199 | |
200 | template <typename ITy> bool match(ITy *V) { |
201 | if (L.match(V)) |
202 | if (R.match(V)) |
203 | return true; |
204 | return false; |
205 | } |
206 | }; |
207 | |
208 | |
209 | template <typename LTy, typename RTy> |
210 | inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
211 | return match_combine_or<LTy, RTy>(L, R); |
212 | } |
213 | |
214 | |
215 | template <typename LTy, typename RTy> |
216 | inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
217 | return match_combine_and<LTy, RTy>(L, R); |
218 | } |
219 | |
220 | struct apint_match { |
221 | const APInt *&Res; |
222 | bool AllowUndef; |
223 | |
224 | apint_match(const APInt *&Res, bool AllowUndef) |
225 | : Res(Res), AllowUndef(AllowUndef) {} |
226 | |
227 | template <typename ITy> bool match(ITy *V) { |
228 | if (auto *CI = dyn_cast<ConstantInt>(V)) { |
229 | Res = &CI->getValue(); |
230 | return true; |
231 | } |
232 | if (V->getType()->isVectorTy()) |
233 | if (const auto *C = dyn_cast<Constant>(V)) |
234 | if (auto *CI = dyn_cast_or_null<ConstantInt>( |
235 | C->getSplatValue(AllowUndef))) { |
236 | Res = &CI->getValue(); |
237 | return true; |
238 | } |
239 | return false; |
240 | } |
241 | }; |
242 | |
243 | |
244 | |
245 | struct apfloat_match { |
246 | const APFloat *&Res; |
247 | bool AllowUndef; |
248 | |
249 | apfloat_match(const APFloat *&Res, bool AllowUndef) |
250 | : Res(Res), AllowUndef(AllowUndef) {} |
251 | |
252 | template <typename ITy> bool match(ITy *V) { |
253 | if (auto *CI = dyn_cast<ConstantFP>(V)) { |
254 | Res = &CI->getValueAPF(); |
255 | return true; |
256 | } |
257 | if (V->getType()->isVectorTy()) |
258 | if (const auto *C = dyn_cast<Constant>(V)) |
259 | if (auto *CI = dyn_cast_or_null<ConstantFP>( |
260 | C->getSplatValue(AllowUndef))) { |
261 | Res = &CI->getValueAPF(); |
262 | return true; |
263 | } |
264 | return false; |
265 | } |
266 | }; |
267 | |
268 | |
269 | |
270 | inline apint_match m_APInt(const APInt *&Res) { |
271 | |
272 | return apint_match(Res, false); |
273 | } |
274 | |
275 | |
276 | inline apint_match m_APIntAllowUndef(const APInt *&Res) { |
277 | return apint_match(Res, true); |
278 | } |
279 | |
280 | |
281 | inline apint_match m_APIntForbidUndef(const APInt *&Res) { |
282 | return apint_match(Res, false); |
283 | } |
284 | |
285 | |
286 | |
287 | inline apfloat_match m_APFloat(const APFloat *&Res) { |
288 | |
289 | return apfloat_match(Res, false); |
290 | } |
291 | |
292 | |
293 | inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) { |
294 | return apfloat_match(Res, true); |
295 | } |
296 | |
297 | |
298 | inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) { |
299 | return apfloat_match(Res, false); |
300 | } |
301 | |
302 | template <int64_t Val> struct constantint_match { |
303 | template <typename ITy> bool match(ITy *V) { |
304 | if (const auto *CI = dyn_cast<ConstantInt>(V)) { |
305 | const APInt &CIV = CI->getValue(); |
306 | if (Val >= 0) |
307 | return CIV == static_cast<uint64_t>(Val); |
308 | |
309 | |
310 | |
311 | return -CIV == -Val; |
312 | } |
313 | return false; |
314 | } |
315 | }; |
316 | |
317 | |
318 | template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { |
319 | return constantint_match<Val>(); |
320 | } |
321 | |
322 | |
323 | |
324 | |
325 | template <typename Predicate, typename ConstantVal> |
326 | struct cstval_pred_ty : public Predicate { |
327 | template <typename ITy> bool match(ITy *V) { |
328 | if (const auto *CV = dyn_cast<ConstantVal>(V)) |
329 | return this->isValue(CV->getValue()); |
330 | if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { |
331 | if (const auto *C = dyn_cast<Constant>(V)) { |
332 | if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) |
333 | return this->isValue(CV->getValue()); |
334 | |
335 | |
336 | auto *FVTy = dyn_cast<FixedVectorType>(VTy); |
337 | if (!FVTy) |
338 | return false; |
339 | |
340 | |
341 | unsigned NumElts = FVTy->getNumElements(); |
342 | assert(NumElts != 0 && "Constant vector with no elements?"); |
343 | bool HasNonUndefElements = false; |
344 | for (unsigned i = 0; i != NumElts; ++i) { |
345 | Constant *Elt = C->getAggregateElement(i); |
346 | if (!Elt) |
347 | return false; |
348 | if (isa<UndefValue>(Elt)) |
349 | continue; |
350 | auto *CV = dyn_cast<ConstantVal>(Elt); |
351 | if (!CV || !this->isValue(CV->getValue())) |
352 | return false; |
353 | HasNonUndefElements = true; |
354 | } |
355 | return HasNonUndefElements; |
356 | } |
357 | } |
358 | return false; |
359 | } |
360 | }; |
361 | |
362 | |
363 | template <typename Predicate> |
364 | using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>; |
365 | |
366 | |
367 | template <typename Predicate> |
368 | using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>; |
369 | |
370 | |
371 | |
372 | template <typename Predicate> struct api_pred_ty : public Predicate { |
373 | const APInt *&Res; |
374 | |
375 | api_pred_ty(const APInt *&R) : Res(R) {} |
376 | |
377 | template <typename ITy> bool match(ITy *V) { |
378 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
379 | if (this->isValue(CI->getValue())) { |
380 | Res = &CI->getValue(); |
381 | return true; |
382 | } |
383 | if (V->getType()->isVectorTy()) |
384 | if (const auto *C = dyn_cast<Constant>(V)) |
385 | if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
386 | if (this->isValue(CI->getValue())) { |
387 | Res = &CI->getValue(); |
388 | return true; |
389 | } |
390 | |
391 | return false; |
392 | } |
393 | }; |
394 | |
395 | |
396 | |
397 | |
398 | template <typename Predicate> struct apf_pred_ty : public Predicate { |
399 | const APFloat *&Res; |
400 | |
401 | apf_pred_ty(const APFloat *&R) : Res(R) {} |
402 | |
403 | template <typename ITy> bool match(ITy *V) { |
404 | if (const auto *CI = dyn_cast<ConstantFP>(V)) |
405 | if (this->isValue(CI->getValue())) { |
406 | Res = &CI->getValue(); |
407 | return true; |
408 | } |
409 | if (V->getType()->isVectorTy()) |
410 | if (const auto *C = dyn_cast<Constant>(V)) |
411 | if (auto *CI = dyn_cast_or_null<ConstantFP>( |
412 | C->getSplatValue( true))) |
413 | if (this->isValue(CI->getValue())) { |
414 | Res = &CI->getValue(); |
415 | return true; |
416 | } |
417 | |
418 | return false; |
419 | } |
420 | }; |
421 | |
422 | |
423 | |
424 | |
425 | |
426 | |
427 | |
428 | |
429 | |
430 | |
431 | struct is_any_apint { |
432 | bool isValue(const APInt &C) { return true; } |
433 | }; |
434 | |
435 | |
436 | inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { |
437 | return cst_pred_ty<is_any_apint>(); |
438 | } |
439 | |
440 | struct is_all_ones { |
441 | bool isValue(const APInt &C) { return C.isAllOnesValue(); } |
442 | }; |
443 | |
444 | |
445 | inline cst_pred_ty<is_all_ones> m_AllOnes() { |
446 | return cst_pred_ty<is_all_ones>(); |
447 | } |
448 | |
449 | struct is_maxsignedvalue { |
450 | bool isValue(const APInt &C) { return C.isMaxSignedValue(); } |
451 | }; |
452 | |
453 | |
454 | |
455 | inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { |
456 | return cst_pred_ty<is_maxsignedvalue>(); |
457 | } |
458 | inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { |
459 | return V; |
460 | } |
461 | |
462 | struct is_negative { |
463 | bool isValue(const APInt &C) { return C.isNegative(); } |
464 | }; |
465 | |
466 | |
467 | inline cst_pred_ty<is_negative> m_Negative() { |
468 | return cst_pred_ty<is_negative>(); |
469 | } |
470 | inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { |
471 | return V; |
472 | } |
473 | |
474 | struct is_nonnegative { |
475 | bool isValue(const APInt &C) { return C.isNonNegative(); } |
476 | }; |
477 | |
478 | |
479 | inline cst_pred_ty<is_nonnegative> m_NonNegative() { |
480 | return cst_pred_ty<is_nonnegative>(); |
481 | } |
482 | inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { |
483 | return V; |
484 | } |
485 | |
486 | struct is_strictlypositive { |
487 | bool isValue(const APInt &C) { return C.isStrictlyPositive(); } |
488 | }; |
489 | |
490 | |
491 | inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { |
492 | return cst_pred_ty<is_strictlypositive>(); |
493 | } |
494 | inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { |
495 | return V; |
496 | } |
497 | |
498 | struct is_nonpositive { |
499 | bool isValue(const APInt &C) { return C.isNonPositive(); } |
500 | }; |
501 | |
502 | |
503 | inline cst_pred_ty<is_nonpositive> m_NonPositive() { |
504 | return cst_pred_ty<is_nonpositive>(); |
505 | } |
506 | inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } |
507 | |
508 | struct is_one { |
509 | bool isValue(const APInt &C) { return C.isOneValue(); } |
510 | }; |
511 | |
512 | |
513 | inline cst_pred_ty<is_one> m_One() { |
514 | return cst_pred_ty<is_one>(); |
515 | } |
516 | |
517 | struct is_zero_int { |
518 | bool isValue(const APInt &C) { return C.isNullValue(); } |
519 | }; |
520 | |
521 | |
522 | inline cst_pred_ty<is_zero_int> m_ZeroInt() { |
523 | return cst_pred_ty<is_zero_int>(); |
524 | } |
525 | |
526 | struct is_zero { |
527 | template <typename ITy> bool match(ITy *V) { |
528 | auto *C = dyn_cast<Constant>(V); |
| 13 | | Assuming 'V' is a 'Constant' | |
|
529 | |
530 | return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); |
| 14 | | Assuming the condition is false | |
|
| 15 | | Returning value, which participates in a condition later | |
|
531 | } |
532 | }; |
533 | |
534 | |
535 | inline is_zero m_Zero() { |
536 | return is_zero(); |
537 | } |
538 | |
539 | struct is_power2 { |
540 | bool isValue(const APInt &C) { return C.isPowerOf2(); } |
541 | }; |
542 | |
543 | |
544 | inline cst_pred_ty<is_power2> m_Power2() { |
545 | return cst_pred_ty<is_power2>(); |
546 | } |
547 | inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { |
548 | return V; |
549 | } |
550 | |
551 | struct is_negated_power2 { |
552 | bool isValue(const APInt &C) { return (-C).isPowerOf2(); } |
553 | }; |
554 | |
555 | |
556 | inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { |
557 | return cst_pred_ty<is_negated_power2>(); |
558 | } |
559 | inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { |
560 | return V; |
561 | } |
562 | |
563 | struct is_power2_or_zero { |
564 | bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } |
565 | }; |
566 | |
567 | |
568 | inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { |
569 | return cst_pred_ty<is_power2_or_zero>(); |
570 | } |
571 | inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { |
572 | return V; |
573 | } |
574 | |
575 | struct is_sign_mask { |
576 | bool isValue(const APInt &C) { return C.isSignMask(); } |
577 | }; |
578 | |
579 | |
580 | inline cst_pred_ty<is_sign_mask> m_SignMask() { |
581 | return cst_pred_ty<is_sign_mask>(); |
582 | } |
583 | |
584 | struct is_lowbit_mask { |
585 | bool isValue(const APInt &C) { return C.isMask(); } |
586 | }; |
587 | |
588 | |
589 | inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { |
590 | return cst_pred_ty<is_lowbit_mask>(); |
591 | } |
592 | |
593 | struct icmp_pred_with_threshold { |
594 | ICmpInst::Predicate Pred; |
595 | const APInt *Thr; |
596 | bool isValue(const APInt &C) { |
597 | switch (Pred) { |
598 | case ICmpInst::Predicate::ICMP_EQ: |
599 | return C.eq(*Thr); |
600 | case ICmpInst::Predicate::ICMP_NE: |
601 | return C.ne(*Thr); |
602 | case ICmpInst::Predicate::ICMP_UGT: |
603 | return C.ugt(*Thr); |
604 | case ICmpInst::Predicate::ICMP_UGE: |
605 | return C.uge(*Thr); |
606 | case ICmpInst::Predicate::ICMP_ULT: |
607 | return C.ult(*Thr); |
608 | case ICmpInst::Predicate::ICMP_ULE: |
609 | return C.ule(*Thr); |
610 | case ICmpInst::Predicate::ICMP_SGT: |
611 | return C.sgt(*Thr); |
612 | case ICmpInst::Predicate::ICMP_SGE: |
613 | return C.sge(*Thr); |
614 | case ICmpInst::Predicate::ICMP_SLT: |
615 | return C.slt(*Thr); |
616 | case ICmpInst::Predicate::ICMP_SLE: |
617 | return C.sle(*Thr); |
618 | default: |
619 | llvm_unreachable("Unhandled ICmp predicate"); |
620 | } |
621 | } |
622 | }; |
623 | |
624 | |
625 | inline cst_pred_ty<icmp_pred_with_threshold> |
626 | m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { |
627 | cst_pred_ty<icmp_pred_with_threshold> P; |
628 | P.Pred = Predicate; |
629 | P.Thr = &Threshold; |
630 | return P; |
631 | } |
632 | |
633 | struct is_nan { |
634 | bool isValue(const APFloat &C) { return C.isNaN(); } |
635 | }; |
636 | |
637 | |
638 | inline cstfp_pred_ty<is_nan> m_NaN() { |
639 | return cstfp_pred_ty<is_nan>(); |
640 | } |
641 | |
642 | struct is_nonnan { |
643 | bool isValue(const APFloat &C) { return !C.isNaN(); } |
644 | }; |
645 | |
646 | |
647 | inline cstfp_pred_ty<is_nonnan> m_NonNaN() { |
648 | return cstfp_pred_ty<is_nonnan>(); |
649 | } |
650 | |
651 | struct is_inf { |
652 | bool isValue(const APFloat &C) { return C.isInfinity(); } |
653 | }; |
654 | |
655 | |
656 | inline cstfp_pred_ty<is_inf> m_Inf() { |
657 | return cstfp_pred_ty<is_inf>(); |
658 | } |
659 | |
660 | struct is_noninf { |
661 | bool isValue(const APFloat &C) { return !C.isInfinity(); } |
662 | }; |
663 | |
664 | |
665 | inline cstfp_pred_ty<is_noninf> m_NonInf() { |
666 | return cstfp_pred_ty<is_noninf>(); |
667 | } |
668 | |
669 | struct is_finite { |
670 | bool isValue(const APFloat &C) { return C.isFinite(); } |
671 | }; |
672 | |
673 | |
674 | inline cstfp_pred_ty<is_finite> m_Finite() { |
675 | return cstfp_pred_ty<is_finite>(); |
676 | } |
677 | inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } |
678 | |
679 | struct is_finitenonzero { |
680 | bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } |
681 | }; |
682 | |
683 | |
684 | inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { |
685 | return cstfp_pred_ty<is_finitenonzero>(); |
686 | } |
687 | inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { |
688 | return V; |
689 | } |
690 | |
691 | struct is_any_zero_fp { |
692 | bool isValue(const APFloat &C) { return C.isZero(); } |
693 | }; |
694 | |
695 | |
696 | inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { |
697 | return cstfp_pred_ty<is_any_zero_fp>(); |
698 | } |
699 | |
700 | struct is_pos_zero_fp { |
701 | bool isValue(const APFloat &C) { return C.isPosZero(); } |
702 | }; |
703 | |
704 | |
705 | inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { |
706 | return cstfp_pred_ty<is_pos_zero_fp>(); |
707 | } |
708 | |
709 | struct is_neg_zero_fp { |
710 | bool isValue(const APFloat &C) { return C.isNegZero(); } |
711 | }; |
712 | |
713 | |
714 | inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { |
715 | return cstfp_pred_ty<is_neg_zero_fp>(); |
716 | } |
717 | |
718 | struct is_non_zero_fp { |
719 | bool isValue(const APFloat &C) { return C.isNonZero(); } |
720 | }; |
721 | |
722 | |
723 | inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { |
724 | return cstfp_pred_ty<is_non_zero_fp>(); |
725 | } |
726 | |
727 | |
728 | |
729 | template <typename Class> struct bind_ty { |
730 | Class *&VR; |
731 | |
732 | bind_ty(Class *&V) : VR(V) {} |
733 | |
734 | template <typename ITy> bool match(ITy *V) { |
735 | if (auto *CV = dyn_cast<Class>(V)) { |
736 | VR = CV; |
737 | return true; |
738 | } |
739 | return false; |
740 | } |
741 | }; |
742 | |
743 | |
744 | inline bind_ty<Value> m_Value(Value *&V) { return V; } |
745 | inline bind_ty<const Value> m_Value(const Value *&V) { return V; } |
746 | |
747 | |
748 | inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } |
749 | |
750 | inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } |
751 | |
752 | inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } |
753 | |
754 | inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; } |
755 | inline bind_ty<const WithOverflowInst> |
756 | m_WithOverflowInst(const WithOverflowInst *&I) { |
757 | return I; |
758 | } |
759 | |
760 | |
761 | inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
762 | |
763 | |
764 | inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
765 | |
766 | |
767 | inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } |
768 | |
769 | |
770 | inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } |
771 | |
772 | |
773 | inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } |
774 | inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { |
775 | return V; |
776 | } |
777 | |
778 | |
779 | inline match_combine_and<class_match<Constant>, |
780 | match_unless<class_match<ConstantExpr>>> |
781 | m_ImmConstant() { |
782 | return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); |
783 | } |
784 | |
785 | |
786 | inline match_combine_and<bind_ty<Constant>, |
787 | match_unless<class_match<ConstantExpr>>> |
788 | m_ImmConstant(Constant *&C) { |
789 | return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); |
790 | } |
791 | |
792 | |
793 | struct specificval_ty { |
794 | const Value *Val; |
795 | |
796 | specificval_ty(const Value *V) : Val(V) {} |
797 | |
798 | template <typename ITy> bool match(ITy *V) { return V == Val; } |
799 | }; |
800 | |
801 | |
802 | inline specificval_ty m_Specific(const Value *V) { return V; } |
803 | |
804 | |
805 | |
806 | template <typename Class> struct deferredval_ty { |
807 | Class *const &Val; |
808 | |
809 | deferredval_ty(Class *const &V) : Val(V) {} |
810 | |
811 | template <typename ITy> bool match(ITy *const V) { return V == Val; } |
812 | }; |
813 | |
814 | |
815 | |
816 | |
817 | |
818 | |
819 | |
820 | inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } |
821 | inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { |
822 | return V; |
823 | } |
824 | |
825 | |
826 | |
827 | struct specific_fpval { |
828 | double Val; |
829 | |
830 | specific_fpval(double V) : Val(V) {} |
831 | |
832 | template <typename ITy> bool match(ITy *V) { |
833 | if (const auto *CFP = dyn_cast<ConstantFP>(V)) |
834 | return CFP->isExactlyValue(Val); |
835 | if (V->getType()->isVectorTy()) |
836 | if (const auto *C = dyn_cast<Constant>(V)) |
837 | if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
838 | return CFP->isExactlyValue(Val); |
839 | return false; |
840 | } |
841 | }; |
842 | |
843 | |
844 | |
845 | inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } |
846 | |
847 | |
848 | inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } |
849 | |
850 | struct bind_const_intval_ty { |
851 | uint64_t &VR; |
852 | |
853 | bind_const_intval_ty(uint64_t &V) : VR(V) {} |
854 | |
855 | template <typename ITy> bool match(ITy *V) { |
856 | if (const auto *CV = dyn_cast<ConstantInt>(V)) |
857 | if (CV->getValue().ule(UINT64_MAX)) { |
858 | VR = CV->getZExtValue(); |
859 | return true; |
860 | } |
861 | return false; |
862 | } |
863 | }; |
864 | |
865 | |
866 | |
867 | template <bool AllowUndefs> |
868 | struct specific_intval { |
869 | APInt Val; |
870 | |
871 | specific_intval(APInt V) : Val(std::move(V)) {} |
872 | |
873 | template <typename ITy> bool match(ITy *V) { |
874 | const auto *CI = dyn_cast<ConstantInt>(V); |
875 | if (!CI && V->getType()->isVectorTy()) |
876 | if (const auto *C = dyn_cast<Constant>(V)) |
877 | CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs)); |
878 | |
879 | return CI && APInt::isSameValue(CI->getValue(), Val); |
880 | } |
881 | }; |
882 | |
883 | |
884 | |
885 | inline specific_intval<false> m_SpecificInt(APInt V) { |
886 | return specific_intval<false>(std::move(V)); |
887 | } |
888 | |
889 | inline specific_intval<false> m_SpecificInt(uint64_t V) { |
890 | return m_SpecificInt(APInt(64, V)); |
891 | } |
892 | |
893 | inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) { |
894 | return specific_intval<true>(std::move(V)); |
895 | } |
896 | |
897 | inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) { |
898 | return m_SpecificIntAllowUndef(APInt(64, V)); |
899 | } |
900 | |
901 | |
902 | |
903 | inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
904 | |
905 | |
906 | struct specific_bbval { |
907 | BasicBlock *Val; |
908 | |
909 | specific_bbval(BasicBlock *Val) : Val(Val) {} |
910 | |
911 | template <typename ITy> bool match(ITy *V) { |
912 | const auto *BB = dyn_cast<BasicBlock>(V); |
913 | return BB && BB == Val; |
914 | } |
915 | }; |
916 | |
917 | |
918 | inline specific_bbval m_SpecificBB(BasicBlock *BB) { |
919 | return specific_bbval(BB); |
920 | } |
921 | |
922 | |
923 | inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { |
924 | return BB; |
925 | } |
926 | inline deferredval_ty<const BasicBlock> |
927 | m_Deferred(const BasicBlock *const &BB) { |
928 | return BB; |
929 | } |
930 | |
931 | |
932 | |
933 | |
934 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
935 | struct AnyBinaryOp_match { |
936 | LHS_t L; |
937 | RHS_t R; |
938 | |
939 | |
940 | |
941 | AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
942 | |
943 | template <typename OpTy> bool match(OpTy *V) { |
944 | if (auto *I = dyn_cast<BinaryOperator>(V)) |
945 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
946 | (Commutable && L.match(I->getOperand(1)) && |
947 | R.match(I->getOperand(0))); |
948 | return false; |
949 | } |
950 | }; |
951 | |
952 | template <typename LHS, typename RHS> |
953 | inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { |
954 | return AnyBinaryOp_match<LHS, RHS>(L, R); |
955 | } |
956 | |
957 | |
958 | |
959 | |
960 | |
961 | template <typename OP_t> struct AnyUnaryOp_match { |
962 | OP_t X; |
963 | |
964 | AnyUnaryOp_match(const OP_t &X) : X(X) {} |
965 | |
966 | template <typename OpTy> bool match(OpTy *V) { |
967 | if (auto *I = dyn_cast<UnaryOperator>(V)) |
968 | return X.match(I->getOperand(0)); |
969 | return false; |
970 | } |
971 | }; |
972 | |
973 | template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { |
974 | return AnyUnaryOp_match<OP_t>(X); |
975 | } |
976 | |
977 | |
978 | |
979 | |
980 | |
981 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
982 | bool Commutable = false> |
983 | struct BinaryOp_match { |
984 | LHS_t L; |
985 | RHS_t R; |
986 | |
987 | |
988 | |
989 | BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
990 | |
991 | template <typename OpTy> bool match(OpTy *V) { |
992 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
993 | auto *I = cast<BinaryOperator>(V); |
994 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
995 | (Commutable && L.match(I->getOperand(1)) && |
996 | R.match(I->getOperand(0))); |
997 | } |
998 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
999 | return CE->getOpcode() == Opcode && |
1000 | ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || |
1001 | (Commutable && L.match(CE->getOperand(1)) && |
1002 | R.match(CE->getOperand(0)))); |
1003 | return false; |
1004 | } |
1005 | }; |
1006 | |
1007 | template <typename LHS, typename RHS> |
1008 | inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, |
1009 | const RHS &R) { |
1010 | return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
1011 | } |
1012 | |
1013 | template <typename LHS, typename RHS> |
1014 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, |
1015 | const RHS &R) { |
1016 | return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
1017 | } |
1018 | |
1019 | template <typename LHS, typename RHS> |
1020 | inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, |
1021 | const RHS &R) { |
1022 | return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
1023 | } |
1024 | |
1025 | template <typename LHS, typename RHS> |
1026 | inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, |
1027 | const RHS &R) { |
1028 | return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
1029 | } |
1030 | |
1031 | template <typename Op_t> struct FNeg_match { |
1032 | Op_t X; |
1033 | |
1034 | FNeg_match(const Op_t &Op) : X(Op) {} |
1035 | template <typename OpTy> bool match(OpTy *V) { |
1036 | auto *FPMO = dyn_cast<FPMathOperator>(V); |
1037 | if (!FPMO) return false; |
1038 | |
1039 | if (FPMO->getOpcode() == Instruction::FNeg) |
1040 | return X.match(FPMO->getOperand(0)); |
1041 | |
1042 | if (FPMO->getOpcode() == Instruction::FSub) { |
1043 | if (FPMO->hasNoSignedZeros()) { |
1044 | |
1045 | if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) |
1046 | return false; |
1047 | } else { |
1048 | |
1049 | if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) |
1050 | return false; |
1051 | } |
1052 | |
1053 | return X.match(FPMO->getOperand(1)); |
1054 | } |
1055 | |
1056 | return false; |
1057 | } |
1058 | }; |
1059 | |
1060 | |
1061 | template <typename OpTy> |
1062 | inline FNeg_match<OpTy> |
1063 | m_FNeg(const OpTy &X) { |
1064 | return FNeg_match<OpTy>(X); |
1065 | } |
1066 | |
1067 | |
1068 | template <typename RHS> |
1069 | inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> |
1070 | m_FNegNSZ(const RHS &X) { |
1071 | return m_FSub(m_AnyZeroFP(), X); |
1072 | } |
1073 | |
1074 | template <typename LHS, typename RHS> |
1075 | inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, |
1076 | const RHS &R) { |
1077 | return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
1078 | } |
1079 | |
1080 | template <typename LHS, typename RHS> |
1081 | inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, |
1082 | const RHS &R) { |
1083 | return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
1084 | } |
1085 | |
1086 | template <typename LHS, typename RHS> |
1087 | inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, |
1088 | const RHS &R) { |
1089 | return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
1090 | } |
1091 | |
1092 | template <typename LHS, typename RHS> |
1093 | inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, |
1094 | const RHS &R) { |
1095 | return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
1096 | } |
1097 | |
1098 | template <typename LHS, typename RHS> |
1099 | inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, |
1100 | const RHS &R) { |
1101 | return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
1102 | } |
1103 | |
1104 | template <typename LHS, typename RHS> |
1105 | inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, |
1106 | const RHS &R) { |
1107 | return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
1108 | } |
1109 | |
1110 | template <typename LHS, typename RHS> |
1111 | inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, |
1112 | const RHS &R) { |
1113 | return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
1114 | } |
1115 | |
1116 | template <typename LHS, typename RHS> |
1117 | inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, |
1118 | const RHS &R) { |
1119 | return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
1120 | } |
1121 | |
1122 | template <typename LHS, typename RHS> |
1123 | inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, |
1124 | const RHS &R) { |
1125 | return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
1126 | } |
1127 | |
1128 | template <typename LHS, typename RHS> |
1129 | inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, |
1130 | const RHS &R) { |
1131 | return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
1132 | } |
1133 | |
1134 | template <typename LHS, typename RHS> |
1135 | inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, |
1136 | const RHS &R) { |
1137 | return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
1138 | } |
1139 | |
1140 | template <typename LHS, typename RHS> |
1141 | inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, |
1142 | const RHS &R) { |
1143 | return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
1144 | } |
1145 | |
1146 | template <typename LHS, typename RHS> |
1147 | inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, |
1148 | const RHS &R) { |
1149 | return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
1150 | } |
1151 | |
1152 | template <typename LHS, typename RHS> |
1153 | inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, |
1154 | const RHS &R) { |
1155 | return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
1156 | } |
1157 | |
1158 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
1159 | unsigned WrapFlags = 0> |
1160 | struct OverflowingBinaryOp_match { |
1161 | LHS_t L; |
1162 | RHS_t R; |
1163 | |
1164 | OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) |
1165 | : L(LHS), R(RHS) {} |
1166 | |
1167 | template <typename OpTy> bool match(OpTy *V) { |
1168 | if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { |
1169 | if (Op->getOpcode() != Opcode) |
1170 | return false; |
1171 | if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && |
1172 | !Op->hasNoUnsignedWrap()) |
1173 | return false; |
1174 | if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && |
1175 | !Op->hasNoSignedWrap()) |
1176 | return false; |
1177 | return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); |
1178 | } |
1179 | return false; |
1180 | } |
1181 | }; |
1182 | |
1183 | template <typename LHS, typename RHS> |
1184 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
1185 | OverflowingBinaryOperator::NoSignedWrap> |
1186 | m_NSWAdd(const LHS &L, const RHS &R) { |
1187 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
1188 | OverflowingBinaryOperator::NoSignedWrap>( |
1189 | L, R); |
1190 | } |
1191 | template <typename LHS, typename RHS> |
1192 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
1193 | OverflowingBinaryOperator::NoSignedWrap> |
1194 | m_NSWSub(const LHS &L, const RHS &R) { |
1195 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
1196 | OverflowingBinaryOperator::NoSignedWrap>( |
1197 | L, R); |
1198 | } |
1199 | template <typename LHS, typename RHS> |
1200 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
1201 | OverflowingBinaryOperator::NoSignedWrap> |
1202 | m_NSWMul(const LHS &L, const RHS &R) { |
1203 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
1204 | OverflowingBinaryOperator::NoSignedWrap>( |
1205 | L, R); |
1206 | } |
1207 | template <typename LHS, typename RHS> |
1208 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
1209 | OverflowingBinaryOperator::NoSignedWrap> |
1210 | m_NSWShl(const LHS &L, const RHS &R) { |
1211 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
1212 | OverflowingBinaryOperator::NoSignedWrap>( |
1213 | L, R); |
1214 | } |
1215 | |
1216 | template <typename LHS, typename RHS> |
1217 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
1218 | OverflowingBinaryOperator::NoUnsignedWrap> |
1219 | m_NUWAdd(const LHS &L, const RHS &R) { |
1220 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
1221 | OverflowingBinaryOperator::NoUnsignedWrap>( |
1222 | L, R); |
1223 | } |
1224 | template <typename LHS, typename RHS> |
1225 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
1226 | OverflowingBinaryOperator::NoUnsignedWrap> |
1227 | m_NUWSub(const LHS &L, const RHS &R) { |
1228 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
1229 | OverflowingBinaryOperator::NoUnsignedWrap>( |
1230 | L, R); |
1231 | } |
1232 | template <typename LHS, typename RHS> |
1233 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
1234 | OverflowingBinaryOperator::NoUnsignedWrap> |
1235 | m_NUWMul(const LHS &L, const RHS &R) { |
1236 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
1237 | OverflowingBinaryOperator::NoUnsignedWrap>( |
1238 | L, R); |
1239 | } |
1240 | template <typename LHS, typename RHS> |
1241 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
1242 | OverflowingBinaryOperator::NoUnsignedWrap> |
1243 | m_NUWShl(const LHS &L, const RHS &R) { |
1244 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
1245 | OverflowingBinaryOperator::NoUnsignedWrap>( |
1246 | L, R); |
1247 | } |
1248 | |
1249 | |
1250 | |
1251 | |
1252 | template <typename LHS_t, typename RHS_t, typename Predicate> |
1253 | struct BinOpPred_match : Predicate { |
1254 | LHS_t L; |
1255 | RHS_t R; |
1256 | |
1257 | BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
1258 | |
1259 | template <typename OpTy> bool match(OpTy *V) { |
1260 | if (auto *I = dyn_cast<Instruction>(V)) |
1261 | return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && |
1262 | R.match(I->getOperand(1)); |
1263 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
1264 | return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && |
1265 | R.match(CE->getOperand(1)); |
1266 | return false; |
1267 | } |
1268 | }; |
1269 | |
1270 | struct is_shift_op { |
1271 | bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } |
1272 | }; |
1273 | |
1274 | struct is_right_shift_op { |
1275 | bool isOpType(unsigned Opcode) { |
1276 | return Opcode == Instruction::LShr || Opcode == Instruction::AShr; |
1277 | } |
1278 | }; |
1279 | |
1280 | struct is_logical_shift_op { |
1281 | bool isOpType(unsigned Opcode) { |
1282 | return Opcode == Instruction::LShr || Opcode == Instruction::Shl; |
1283 | } |
1284 | }; |
1285 | |
1286 | struct is_bitwiselogic_op { |
1287 | bool isOpType(unsigned Opcode) { |
1288 | return Instruction::isBitwiseLogicOp(Opcode); |
1289 | } |
1290 | }; |
1291 | |
1292 | struct is_idiv_op { |
1293 | bool isOpType(unsigned Opcode) { |
1294 | return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; |
1295 | } |
1296 | }; |
1297 | |
1298 | struct is_irem_op { |
1299 | bool isOpType(unsigned Opcode) { |
1300 | return Opcode == Instruction::SRem || Opcode == Instruction::URem; |
1301 | } |
1302 | }; |
1303 | |
1304 | |
1305 | template <typename LHS, typename RHS> |
1306 | inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, |
1307 | const RHS &R) { |
1308 | return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); |
1309 | } |
1310 | |
1311 | |
1312 | template <typename LHS, typename RHS> |
1313 | inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, |
1314 | const RHS &R) { |
1315 | return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); |
1316 | } |
1317 | |
1318 | |
1319 | template <typename LHS, typename RHS> |
1320 | inline BinOpPred_match<LHS, RHS, is_logical_shift_op> |
1321 | m_LogicalShift(const LHS &L, const RHS &R) { |
1322 | return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); |
1323 | } |
1324 | |
1325 | |
1326 | template <typename LHS, typename RHS> |
1327 | inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> |
1328 | m_BitwiseLogic(const LHS &L, const RHS &R) { |
1329 | return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); |
1330 | } |
1331 | |
1332 | |
1333 | template <typename LHS, typename RHS> |
1334 | inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, |
1335 | const RHS &R) { |
1336 | return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); |
1337 | } |
1338 | |
1339 | |
1340 | template <typename LHS, typename RHS> |
1341 | inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, |
1342 | const RHS &R) { |
1343 | return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); |
1344 | } |
1345 | |
1346 | |
1347 | |
1348 | |
1349 | template <typename SubPattern_t> struct Exact_match { |
1350 | SubPattern_t SubPattern; |
1351 | |
1352 | Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} |
1353 | |
1354 | template <typename OpTy> bool match(OpTy *V) { |
1355 | if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) |
1356 | return PEO->isExact() && SubPattern.match(V); |
1357 | return false; |
1358 | } |
1359 | }; |
1360 | |
1361 | template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { |
1362 | return SubPattern; |
1363 | } |
1364 | |
1365 | |
1366 | |
1367 | |
1368 | |
1369 | template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, |
1370 | bool Commutable = false> |
1371 | struct CmpClass_match { |
1372 | PredicateTy &Predicate; |
1373 | LHS_t L; |
1374 | RHS_t R; |
1375 | |
1376 | |
1377 | |
1378 | CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) |
1379 | : Predicate(Pred), L(LHS), R(RHS) {} |
1380 | |
1381 | template <typename OpTy> bool match(OpTy *V) { |
1382 | if (auto *I = dyn_cast<Class>(V)) { |
1383 | if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { |
1384 | Predicate = I->getPredicate(); |
1385 | return true; |
1386 | } else if (Commutable && L.match(I->getOperand(1)) && |
1387 | R.match(I->getOperand(0))) { |
1388 | Predicate = I->getSwappedPredicate(); |
1389 | return true; |
1390 | } |
1391 | } |
1392 | return false; |
1393 | } |
1394 | }; |
1395 | |
1396 | template <typename LHS, typename RHS> |
1397 | inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> |
1398 | m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
1399 | return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); |
1400 | } |
1401 | |
1402 | template <typename LHS, typename RHS> |
1403 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> |
1404 | m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
1405 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); |
1406 | } |
1407 | |
1408 | template <typename LHS, typename RHS> |
1409 | inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> |
1410 | m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
1411 | return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); |
1412 | } |
1413 | |
1414 | |
1415 | |
1416 | |
1417 | |
1418 | |
1419 | template <typename T0, unsigned Opcode> struct OneOps_match { |
1420 | T0 Op1; |
1421 | |
1422 | OneOps_match(const T0 &Op1) : Op1(Op1) {} |
1423 | |
1424 | template <typename OpTy> bool match(OpTy *V) { |
1425 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
1426 | auto *I = cast<Instruction>(V); |
1427 | return Op1.match(I->getOperand(0)); |
1428 | } |
1429 | return false; |
1430 | } |
1431 | }; |
1432 | |
1433 | |
1434 | template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { |
1435 | T0 Op1; |
1436 | T1 Op2; |
1437 | |
1438 | TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} |
1439 | |
1440 | template <typename OpTy> bool match(OpTy *V) { |
1441 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
1442 | auto *I = cast<Instruction>(V); |
1443 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); |
1444 | } |
1445 | return false; |
1446 | } |
1447 | }; |
1448 | |
1449 | |
1450 | template <typename T0, typename T1, typename T2, unsigned Opcode> |
1451 | struct ThreeOps_match { |
1452 | T0 Op1; |
1453 | T1 Op2; |
1454 | T2 Op3; |
1455 | |
1456 | ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) |
1457 | : Op1(Op1), Op2(Op2), Op3(Op3) {} |
1458 | |
1459 | template <typename OpTy> bool match(OpTy *V) { |
1460 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
1461 | auto *I = cast<Instruction>(V); |
1462 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
1463 | Op3.match(I->getOperand(2)); |
1464 | } |
1465 | return false; |
1466 | } |
1467 | }; |
1468 | |
1469 | |
1470 | template <typename Cond, typename LHS, typename RHS> |
1471 | inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> |
1472 | m_Select(const Cond &C, const LHS &L, const RHS &R) { |
1473 | return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); |
1474 | } |
1475 | |
1476 | |
1477 | |
1478 | template <int64_t L, int64_t R, typename Cond> |
1479 | inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, |
1480 | Instruction::Select> |
1481 | m_SelectCst(const Cond &C) { |
1482 | return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
1483 | } |
1484 | |
1485 | |
1486 | template <typename OpTy> |
1487 | inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { |
1488 | return OneOps_match<OpTy, Instruction::Freeze>(Op); |
1489 | } |
1490 | |
1491 | |
1492 | template <typename Val_t, typename Elt_t, typename Idx_t> |
1493 | inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> |
1494 | m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { |
1495 | return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( |
1496 | Val, Elt, Idx); |
1497 | } |
1498 | |
1499 | |
1500 | template <typename Val_t, typename Idx_t> |
1501 | inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> |
1502 | m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { |
1503 | return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); |
1504 | } |
1505 | |
1506 | |
1507 | template <typename T0, typename T1, typename T2> struct Shuffle_match { |
1508 | T0 Op1; |
1509 | T1 Op2; |
1510 | T2 Mask; |
1511 | |
1512 | Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) |
1513 | : Op1(Op1), Op2(Op2), Mask(Mask) {} |
1514 | |
1515 | template <typename OpTy> bool match(OpTy *V) { |
1516 | if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { |
1517 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
1518 | Mask.match(I->getShuffleMask()); |
1519 | } |
1520 | return false; |
1521 | } |
1522 | }; |
1523 | |
1524 | struct m_Mask { |
1525 | ArrayRef<int> &MaskRef; |
1526 | m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
1527 | bool match(ArrayRef<int> Mask) { |
1528 | MaskRef = Mask; |
1529 | return true; |
1530 | } |
1531 | }; |
1532 | |
1533 | struct m_ZeroMask { |
1534 | bool match(ArrayRef<int> Mask) { |
1535 | return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); |
1536 | } |
1537 | }; |
1538 | |
1539 | struct m_SpecificMask { |
1540 | ArrayRef<int> &MaskRef; |
1541 | m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
1542 | bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } |
1543 | }; |
1544 | |
1545 | struct m_SplatOrUndefMask { |
1546 | int &SplatIndex; |
1547 | m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {} |
1548 | bool match(ArrayRef<int> Mask) { |
1549 | auto First = find_if(Mask, [](int Elem) { return Elem != -1; }); |
1550 | if (First == Mask.end()) |
1551 | return false; |
1552 | SplatIndex = *First; |
1553 | return all_of(Mask, |
1554 | [First](int Elem) { return Elem == *First || Elem == -1; }); |
1555 | } |
1556 | }; |
1557 | |
1558 | |
1559 | template <typename V1_t, typename V2_t> |
1560 | inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> |
1561 | m_Shuffle(const V1_t &v1, const V2_t &v2) { |
1562 | return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); |
1563 | } |
1564 | |
1565 | template <typename V1_t, typename V2_t, typename Mask_t> |
1566 | inline Shuffle_match<V1_t, V2_t, Mask_t> |
1567 | m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { |
1568 | return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); |
1569 | } |
1570 | |
1571 | |
1572 | template <typename OpTy> |
1573 | inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { |
1574 | return OneOps_match<OpTy, Instruction::Load>(Op); |
1575 | } |
1576 | |
1577 | |
1578 | template <typename ValueOpTy, typename PointerOpTy> |
1579 | inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> |
1580 | m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { |
1581 | return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, |
1582 | PointerOp); |
1583 | } |
1584 | |
1585 | |
1586 | |
1587 | |
1588 | |
1589 | template <typename Op_t, unsigned Opcode> struct CastClass_match { |
1590 | Op_t Op; |
1591 | |
1592 | CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
1593 | |
1594 | template <typename OpTy> bool match(OpTy *V) { |
1595 | if (auto *O = dyn_cast<Operator>(V)) |
1596 | return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); |
1597 | return false; |
1598 | } |
1599 | }; |
1600 | |
1601 | |
1602 | template <typename OpTy> |
1603 | inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { |
1604 | return CastClass_match<OpTy, Instruction::BitCast>(Op); |
1605 | } |
1606 | |
1607 | |
1608 | template <typename OpTy> |
1609 | inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { |
1610 | return CastClass_match<OpTy, Instruction::PtrToInt>(Op); |
1611 | } |
1612 | |
1613 | |
1614 | template <typename OpTy> |
1615 | inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) { |
1616 | return CastClass_match<OpTy, Instruction::IntToPtr>(Op); |
1617 | } |
1618 | |
1619 | |
1620 | template <typename OpTy> |
1621 | inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { |
1622 | return CastClass_match<OpTy, Instruction::Trunc>(Op); |
1623 | } |
1624 | |
1625 | template <typename OpTy> |
1626 | inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy> |
1627 | m_TruncOrSelf(const OpTy &Op) { |
1628 | return m_CombineOr(m_Trunc(Op), Op); |
1629 | } |
1630 | |
1631 | |
1632 | template <typename OpTy> |
1633 | inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { |
1634 | return CastClass_match<OpTy, Instruction::SExt>(Op); |
1635 | } |
1636 | |
1637 | |
1638 | template <typename OpTy> |
1639 | inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { |
1640 | return CastClass_match<OpTy, Instruction::ZExt>(Op); |
1641 | } |
1642 | |
1643 | template <typename OpTy> |
1644 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy> |
1645 | m_ZExtOrSelf(const OpTy &Op) { |
1646 | return m_CombineOr(m_ZExt(Op), Op); |
1647 | } |
1648 | |
1649 | template <typename OpTy> |
1650 | inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy> |
1651 | m_SExtOrSelf(const OpTy &Op) { |
1652 | return m_CombineOr(m_SExt(Op), Op); |
1653 | } |
1654 | |
1655 | template <typename OpTy> |
1656 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
1657 | CastClass_match<OpTy, Instruction::SExt>> |
1658 | m_ZExtOrSExt(const OpTy &Op) { |
1659 | return m_CombineOr(m_ZExt(Op), m_SExt(Op)); |
1660 | } |
1661 | |
1662 | template <typename OpTy> |
1663 | inline match_combine_or< |
1664 | match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
1665 | CastClass_match<OpTy, Instruction::SExt>>, |
1666 | OpTy> |
1667 | m_ZExtOrSExtOrSelf(const OpTy &Op) { |
1668 | return m_CombineOr(m_ZExtOrSExt(Op), Op); |
1669 | } |
1670 | |
1671 | template <typename OpTy> |
1672 | inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { |
1673 | return CastClass_match<OpTy, Instruction::UIToFP>(Op); |
1674 | } |
1675 | |
1676 | template <typename OpTy> |
1677 | inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { |
1678 | return CastClass_match<OpTy, Instruction::SIToFP>(Op); |
1679 | } |
1680 | |
1681 | template <typename OpTy> |
1682 | inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) { |
1683 | return CastClass_match<OpTy, Instruction::FPToUI>(Op); |
1684 | } |
1685 | |
1686 | template <typename OpTy> |
1687 | inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) { |
1688 | return CastClass_match<OpTy, Instruction::FPToSI>(Op); |
1689 | } |
1690 | |
1691 | template <typename OpTy> |
1692 | inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { |
1693 | return CastClass_match<OpTy, Instruction::FPTrunc>(Op); |
1694 | } |
1695 | |
1696 | template <typename OpTy> |
1697 | inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { |
1698 | return CastClass_match<OpTy, Instruction::FPExt>(Op); |
1699 | } |
1700 | |
1701 | |
1702 | |
1703 | |
1704 | |
1705 | struct br_match { |
1706 | BasicBlock *&Succ; |
1707 | |
1708 | br_match(BasicBlock *&Succ) : Succ(Succ) {} |
1709 | |
1710 | template <typename OpTy> bool match(OpTy *V) { |
1711 | if (auto *BI = dyn_cast<BranchInst>(V)) |
1712 | if (BI->isUnconditional()) { |
1713 | Succ = BI->getSuccessor(0); |
1714 | return true; |
1715 | } |
1716 | return false; |
1717 | } |
1718 | }; |
1719 | |
1720 | inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } |
1721 | |
1722 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
1723 | struct brc_match { |
1724 | Cond_t Cond; |
1725 | TrueBlock_t T; |
1726 | FalseBlock_t F; |
1727 | |
1728 | brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) |
1729 | : Cond(C), T(t), F(f) {} |
1730 | |
1731 | template <typename OpTy> bool match(OpTy *V) { |
1732 | if (auto *BI = dyn_cast<BranchInst>(V)) |
1733 | if (BI->isConditional() && Cond.match(BI->getCondition())) |
1734 | return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); |
1735 | return false; |
1736 | } |
1737 | }; |
1738 | |
1739 | template <typename Cond_t> |
1740 | inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> |
1741 | m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
1742 | return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( |
1743 | C, m_BasicBlock(T), m_BasicBlock(F)); |
1744 | } |
1745 | |
1746 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
1747 | inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> |
1748 | m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { |
1749 | return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); |
1750 | } |
1751 | |
1752 | |
1753 | |
1754 | |
1755 | |
1756 | template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, |
1757 | bool Commutable = false> |
1758 | struct MaxMin_match { |
1759 | using PredType = Pred_t; |
1760 | LHS_t L; |
1761 | RHS_t R; |
1762 | |
1763 | |
1764 | |
1765 | MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
1766 | |
1767 | template <typename OpTy> bool match(OpTy *V) { |
1768 | if (auto *II = dyn_cast<IntrinsicInst>(V)) { |
1769 | Intrinsic::ID IID = II->getIntrinsicID(); |
1770 | if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || |
1771 | (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || |
1772 | (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || |
1773 | (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { |
1774 | Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); |
1775 | return (L.match(LHS) && R.match(RHS)) || |
1776 | (Commutable && L.match(RHS) && R.match(LHS)); |
1777 | } |
1778 | } |
1779 | |
1780 | auto *SI = dyn_cast<SelectInst>(V); |
1781 | if (!SI) |
1782 | return false; |
1783 | auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); |
1784 | if (!Cmp) |
1785 | return false; |
1786 | |
1787 | |
1788 | auto *TrueVal = SI->getTrueValue(); |
1789 | auto *FalseVal = SI->getFalseValue(); |
1790 | auto *LHS = Cmp->getOperand(0); |
1791 | auto *RHS = Cmp->getOperand(1); |
1792 | if ((TrueVal != LHS || FalseVal != RHS) && |
1793 | (TrueVal != RHS || FalseVal != LHS)) |
1794 | return false; |
1795 | typename CmpInst_t::Predicate Pred = |
1796 | LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
1797 | |
1798 | if (!Pred_t::match(Pred)) |
1799 | return false; |
1800 | |
1801 | return (L.match(LHS) && R.match(RHS)) || |
1802 | (Commutable && L.match(RHS) && R.match(LHS)); |
1803 | } |
1804 | }; |
1805 | |
1806 | |
1807 | struct smax_pred_ty { |
1808 | static bool match(ICmpInst::Predicate Pred) { |
1809 | return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
1810 | } |
1811 | }; |
1812 | |
1813 | |
1814 | struct smin_pred_ty { |
1815 | static bool match(ICmpInst::Predicate Pred) { |
1816 | return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
1817 | } |
1818 | }; |
1819 | |
1820 | |
1821 | struct umax_pred_ty { |
1822 | static bool match(ICmpInst::Predicate Pred) { |
1823 | return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
1824 | } |
1825 | }; |
1826 | |
1827 | |
1828 | struct umin_pred_ty { |
1829 | static bool match(ICmpInst::Predicate Pred) { |
1830 | return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
1831 | } |
1832 | }; |
1833 | |
1834 | |
1835 | struct ofmax_pred_ty { |
1836 | static bool match(FCmpInst::Predicate Pred) { |
1837 | return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; |
1838 | } |
1839 | }; |
1840 | |
1841 | |
1842 | struct ofmin_pred_ty { |
1843 | static bool match(FCmpInst::Predicate Pred) { |
1844 | return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; |
1845 | } |
1846 | }; |
1847 | |
1848 | |
1849 | struct ufmax_pred_ty { |
1850 | static bool match(FCmpInst::Predicate Pred) { |
1851 | return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; |
1852 | } |
1853 | }; |
1854 | |
1855 | |
1856 | struct ufmin_pred_ty { |
1857 | static bool match(FCmpInst::Predicate Pred) { |
1858 | return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; |
1859 | } |
1860 | }; |
1861 | |
1862 | template <typename LHS, typename RHS> |
1863 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, |
1864 | const RHS &R) { |
1865 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); |
1866 | } |
1867 | |
1868 | template <typename LHS, typename RHS> |
1869 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, |
1870 | const RHS &R) { |
1871 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); |
1872 | } |
1873 | |
1874 | template <typename LHS, typename RHS> |
1875 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, |
1876 | const RHS &R) { |
1877 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); |
1878 | } |
1879 | |
1880 | template <typename LHS, typename RHS> |
1881 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, |
1882 | const RHS &R) { |
1883 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); |
1884 | } |
1885 | |
1886 | template <typename LHS, typename RHS> |
1887 | inline match_combine_or< |
1888 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, |
1889 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, |
1890 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, |
1891 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> |
1892 | m_MaxOrMin(const LHS &L, const RHS &R) { |
1893 | return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), |
1894 | m_CombineOr(m_UMax(L, R), m_UMin(L, R))); |
1895 | } |
1896 | |
1897 | |
1898 | |
1899 | |
1900 | |
1901 | |
1902 | |
1903 | |
1904 | |
1905 | |
1906 | template <typename LHS, typename RHS> |
1907 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, |
1908 | const RHS &R) { |
1909 | return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); |
1910 | } |
1911 | |
1912 | |
1913 | |
1914 | |
1915 | |
1916 | |
1917 | |
1918 | |
1919 | |
1920 | |
1921 | template <typename LHS, typename RHS> |
1922 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, |
1923 | const RHS &R) { |
1924 | return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); |
1925 | } |
1926 | |
1927 | |
1928 | |
1929 | |
1930 | |
1931 | |
1932 | |
1933 | |
1934 | |
1935 | |
1936 | template <typename LHS, typename RHS> |
1937 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> |
1938 | m_UnordFMax(const LHS &L, const RHS &R) { |
1939 | return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); |
1940 | } |
1941 | |
1942 | |
1943 | |
1944 | |
1945 | |
1946 | |
1947 | |
1948 | |
1949 | |
1950 | |
1951 | template <typename LHS, typename RHS> |
1952 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> |
1953 | m_UnordFMin(const LHS &L, const RHS &R) { |
1954 | return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); |
1955 | } |
1956 | |
1957 | |
1958 | |
1959 | |
1960 | |
1961 | |
1962 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
1963 | struct UAddWithOverflow_match { |
1964 | LHS_t L; |
1965 | RHS_t R; |
1966 | Sum_t S; |
1967 | |
1968 | UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) |
1969 | : L(L), R(R), S(S) {} |
1970 | |
1971 | template <typename OpTy> bool match(OpTy *V) { |
1972 | Value *ICmpLHS, *ICmpRHS; |
1973 | ICmpInst::Predicate Pred; |
1974 | if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) |
1975 | return false; |
1976 | |
1977 | Value *AddLHS, *AddRHS; |
1978 | auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); |
1979 | |
1980 | |
1981 | if (Pred == ICmpInst::ICMP_ULT) |
1982 | if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) |
1983 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
1984 | |
1985 | |
1986 | if (Pred == ICmpInst::ICMP_UGT) |
1987 | if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) |
1988 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
1989 | |
1990 | Value *Op1; |
1991 | auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes())); |
1992 | |
1993 | if (Pred == ICmpInst::ICMP_ULT) { |
1994 | if (XorExpr.match(ICmpLHS)) |
1995 | return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); |
1996 | } |
1997 | |
1998 | if (Pred == ICmpInst::ICMP_UGT) { |
1999 | if (XorExpr.match(ICmpRHS)) |
2000 | return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); |
2001 | } |
2002 | |
2003 | |
2004 | if (Pred == ICmpInst::ICMP_EQ) { |
2005 | |
2006 | |
2007 | if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && |
2008 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
2009 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
2010 | |
2011 | |
2012 | if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && |
2013 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
2014 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
2015 | } |
2016 | |
2017 | return false; |
2018 | } |
2019 | }; |
2020 | |
2021 | |
2022 | |
2023 | |
2024 | |
2025 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
2026 | UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> |
2027 | m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { |
2028 | return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); |
2029 | } |
2030 | |
2031 | template <typename Opnd_t> struct Argument_match { |
2032 | unsigned OpI; |
2033 | Opnd_t Val; |
2034 | |
2035 | Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
2036 | |
2037 | template <typename OpTy> bool match(OpTy *V) { |
2038 | |
2039 | if (const auto *CI = dyn_cast<CallInst>(V)) |
2040 | return Val.match(CI->getArgOperand(OpI)); |
2041 | return false; |
2042 | } |
2043 | }; |
2044 | |
2045 | |
2046 | template <unsigned OpI, typename Opnd_t> |
2047 | inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
2048 | return Argument_match<Opnd_t>(OpI, Op); |
2049 | } |
2050 | |
2051 | |
2052 | struct IntrinsicID_match { |
2053 | unsigned ID; |
2054 | |
2055 | IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
2056 | |
2057 | template <typename OpTy> bool match(OpTy *V) { |
2058 | if (const auto *CI = dyn_cast<CallInst>(V)) |
2059 | if (const auto *F = CI->getCalledFunction()) |
2060 | return F->getIntrinsicID() == ID; |
2061 | return false; |
2062 | } |
2063 | }; |
2064 | |
2065 | |
2066 | |
2067 | |
2068 | |
2069 | template <typename T0 = void, typename T1 = void, typename T2 = void, |
2070 | typename T3 = void, typename T4 = void, typename T5 = void, |
2071 | typename T6 = void, typename T7 = void, typename T8 = void, |
2072 | typename T9 = void, typename T10 = void> |
2073 | struct m_Intrinsic_Ty; |
2074 | template <typename T0> struct m_Intrinsic_Ty<T0> { |
2075 | using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
2076 | }; |
2077 | template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
2078 | using Ty = |
2079 | match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
2080 | }; |
2081 | template <typename T0, typename T1, typename T2> |
2082 | struct m_Intrinsic_Ty<T0, T1, T2> { |
2083 | using Ty = |
2084 | match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
2085 | Argument_match<T2>>; |
2086 | }; |
2087 | template <typename T0, typename T1, typename T2, typename T3> |
2088 | struct m_Intrinsic_Ty<T0, T1, T2, T3> { |
2089 | using Ty = |
2090 | match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
2091 | Argument_match<T3>>; |
2092 | }; |
2093 | |
2094 | template <typename T0, typename T1, typename T2, typename T3, typename T4> |
2095 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { |
2096 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, |
2097 | Argument_match<T4>>; |
2098 | }; |
2099 | |
2100 | template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5> |
2101 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { |
2102 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, |
2103 | Argument_match<T5>>; |
2104 | }; |
2105 | |
2106 | |
2107 | |
2108 | template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
2109 | return IntrinsicID_match(IntrID); |
2110 | } |
2111 | |
2112 | |
2113 | template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> |
2114 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty |
2115 | m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, |
2116 | const Opnd3 &Op3) { |
2117 | return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); |
2118 | } |
2119 | |
2120 | template <Intrinsic::ID IntrID, typename T0> |
2121 | inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
2122 | return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
2123 | } |
2124 | |
2125 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
2126 | inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
2127 | const T1 &Op1) { |
2128 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
2129 | } |
2130 | |
2131 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
2132 | inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
2133 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
2134 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
2135 | } |
2136 | |
2137 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
2138 | typename T3> |
2139 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
2140 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
2141 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
2142 | } |
2143 | |
2144 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
2145 | typename T3, typename T4> |
2146 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty |
2147 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
2148 | const T4 &Op4) { |
2149 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), |
2150 | m_Argument<4>(Op4)); |
2151 | } |
2152 | |
2153 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
2154 | typename T3, typename T4, typename T5> |
2155 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty |
2156 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
2157 | const T4 &Op4, const T5 &Op5) { |
2158 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), |
2159 | m_Argument<5>(Op5)); |
2160 | } |
2161 | |
2162 | |
2163 | template <typename Opnd0> |
2164 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { |
2165 | return m_Intrinsic<Intrinsic::bitreverse>(Op0); |
2166 | } |
2167 | |
2168 | template <typename Opnd0> |
2169 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { |
2170 | return m_Intrinsic<Intrinsic::bswap>(Op0); |
2171 | } |
2172 | |
2173 | template <typename Opnd0> |
2174 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { |
2175 | return m_Intrinsic<Intrinsic::fabs>(Op0); |
2176 | } |
2177 | |
2178 | template <typename Opnd0> |
2179 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { |
2180 | return m_Intrinsic<Intrinsic::canonicalize>(Op0); |
2181 | } |
2182 | |
2183 | template <typename Opnd0, typename Opnd1> |
2184 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, |
2185 | const Opnd1 &Op1) { |
2186 | return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); |
2187 | } |
2188 | |
2189 | template <typename Opnd0, typename Opnd1> |
2190 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, |
2191 | const Opnd1 &Op1) { |
2192 | return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); |
2193 | } |
2194 | |
2195 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
2196 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
2197 | m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
2198 | return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); |
2199 | } |
2200 | |
2201 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
2202 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
2203 | m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
2204 | return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); |
2205 | } |
2206 | |
2207 | |
2208 | |
2209 | |
2210 | |
2211 | |
2212 | template <typename LHS, typename RHS> |
2213 | inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { |
2214 | return AnyBinaryOp_match<LHS, RHS, true>(L, R); |
2215 | } |
2216 | |
2217 | |
2218 | |
2219 | template <typename LHS, typename RHS> |
2220 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> |
2221 | m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
2222 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, |
2223 | R); |
2224 | } |
2225 | |
2226 | |
2227 | template <typename LHS, typename RHS> |
2228 | inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, |
2229 | const RHS &R) { |
2230 | return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); |
2231 | } |
2232 | |
2233 | |
2234 | template <typename LHS, typename RHS> |
2235 | inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, |
2236 | const RHS &R) { |
2237 | return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); |
2238 | } |
2239 | |
2240 | |
2241 | template <typename LHS, typename RHS> |
2242 | inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, |
2243 | const RHS &R) { |
2244 | return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); |
2245 | } |
2246 | |
2247 | |
2248 | template <typename LHS, typename RHS> |
2249 | inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, |
2250 | const RHS &R) { |
2251 | return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
2252 | } |
2253 | |
2254 | |
2255 | template <typename LHS, typename RHS> |
2256 | inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, |
2257 | const RHS &R) { |
2258 | return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); |
2259 | } |
2260 | |
2261 | |
2262 | template <typename ValTy> |
2263 | inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> |
2264 | m_Neg(const ValTy &V) { |
2265 | return m_Sub(m_ZeroInt(), V); |
2266 | } |
2267 | |
2268 | |
2269 | template <typename ValTy> |
2270 | inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, |
2271 | Instruction::Sub, |
2272 | OverflowingBinaryOperator::NoSignedWrap> |
2273 | m_NSWNeg(const ValTy &V) { |
2274 | return m_NSWSub(m_ZeroInt(), V); |
2275 | } |
2276 | |
2277 | |
2278 | template <typename ValTy> |
2279 | inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true> |
2280 | m_Not(const ValTy &V) { |
2281 | return m_c_Xor(V, m_AllOnes()); |
2282 | } |
2283 | |
2284 | |
2285 | template <typename LHS, typename RHS> |
2286 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> |
2287 | m_c_SMin(const LHS &L, const RHS &R) { |
2288 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); |
2289 | } |
2290 | |
2291 | template <typename LHS, typename RHS> |
2292 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> |
2293 | m_c_SMax(const LHS &L, const RHS &R) { |
2294 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); |
2295 | } |
2296 | |
2297 | template <typename LHS, typename RHS> |
2298 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> |
2299 | m_c_UMin(const LHS &L, const RHS &R) { |
2300 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); |
2301 | } |
2302 | |
2303 | template <typename LHS, typename RHS> |
2304 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> |
2305 | m_c_UMax(const LHS &L, const RHS &R) { |
2306 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); |
2307 | } |
2308 | |
2309 | template <typename LHS, typename RHS> |
2310 | inline match_combine_or< |
2311 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, |
2312 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, |
2313 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, |
2314 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> |
2315 | m_c_MaxOrMin(const LHS &L, const RHS &R) { |
2316 | return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), |
2317 | m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); |
2318 | } |
2319 | |
2320 | |
2321 | template <typename LHS, typename RHS> |
2322 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> |
2323 | m_c_FAdd(const LHS &L, const RHS &R) { |
2324 | return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); |
2325 | } |
2326 | |
2327 | |
2328 | template <typename LHS, typename RHS> |
2329 | inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> |
2330 | m_c_FMul(const LHS &L, const RHS &R) { |
2331 | return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); |
2332 | } |
2333 | |
2334 | template <typename Opnd_t> struct Signum_match { |
2335 | Opnd_t Val; |
2336 | Signum_match(const Opnd_t &V) : Val(V) {} |
2337 | |
2338 | template <typename OpTy> bool match(OpTy *V) { |
2339 | unsigned TypeSize = V->getType()->getScalarSizeInBits(); |
2340 | if (TypeSize == 0) |
2341 | return false; |
2342 | |
2343 | unsigned ShiftWidth = TypeSize - 1; |
2344 | Value *OpL = nullptr, *OpR = nullptr; |
2345 | |
2346 | |
2347 | |
2348 | |
2349 | |
2350 | |
2351 | |
2352 | |
2353 | |
2354 | |
2355 | |
2356 | auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); |
2357 | auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); |
2358 | auto Signum = m_Or(LHS, RHS); |
2359 | |
2360 | return Signum.match(V) && OpL == OpR && Val.match(OpL); |
2361 | } |
2362 | }; |
2363 | |
2364 | |
2365 | |
2366 | |
2367 | |
2368 | |
2369 | |
2370 | template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { |
2371 | return Signum_match<Val_t>(V); |
2372 | } |
2373 | |
2374 | template <int Ind, typename Opnd_t> struct ExtractValue_match { |
2375 | Opnd_t Val; |
2376 | ExtractValue_match(const Opnd_t &V) : Val(V) {} |
2377 | |
2378 | template <typename OpTy> bool match(OpTy *V) { |
2379 | if (auto *I = dyn_cast<ExtractValueInst>(V)) { |
2380 | |
2381 | if (Ind != -1 && |
2382 | !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) |
2383 | return false; |
2384 | return Val.match(I->getAggregateOperand()); |
2385 | } |
2386 | return false; |
2387 | } |
2388 | }; |
2389 | |
2390 | |
2391 | |
2392 | template <int Ind, typename Val_t> |
2393 | inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { |
2394 | return ExtractValue_match<Ind, Val_t>(V); |
2395 | } |
2396 | |
2397 | |
2398 | |
2399 | template <typename Val_t> |
2400 | inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { |
2401 | return ExtractValue_match<-1, Val_t>(V); |
2402 | } |
2403 | |
2404 | |
2405 | template <int Ind, typename T0, typename T1> struct InsertValue_match { |
2406 | T0 Op0; |
2407 | T1 Op1; |
2408 | |
2409 | InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} |
2410 | |
2411 | template <typename OpTy> bool match(OpTy *V) { |
2412 | if (auto *I = dyn_cast<InsertValueInst>(V)) { |
2413 | return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && |
2414 | I->getNumIndices() == 1 && Ind == I->getIndices()[0]; |
2415 | } |
2416 | return false; |
2417 | } |
2418 | }; |
2419 | |
2420 | |
2421 | template <int Ind, typename Val_t, typename Elt_t> |
2422 | inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, |
2423 | const Elt_t &Elt) { |
2424 | return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); |
2425 | } |
2426 | |
2427 | |
2428 | |
2429 | |
2430 | |
2431 | struct VScaleVal_match { |
2432 | const DataLayout &DL; |
2433 | VScaleVal_match(const DataLayout &DL) : DL(DL) {} |
2434 | |
2435 | template <typename ITy> bool match(ITy *V) { |
2436 | if (m_Intrinsic<Intrinsic::vscale>().match(V)) |
2437 | return true; |
2438 | |
2439 | Value *Ptr; |
2440 | if (m_PtrToInt(m_Value(Ptr)).match(V)) { |
2441 | if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { |
2442 | auto *DerefTy = GEP->getSourceElementType(); |
2443 | if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) && |
2444 | m_Zero().match(GEP->getPointerOperand()) && |
2445 | m_SpecificInt(1).match(GEP->idx_begin()->get()) && |
2446 | DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8) |
2447 | return true; |
2448 | } |
2449 | } |
2450 | |
2451 | return false; |
2452 | } |
2453 | }; |
2454 | |
2455 | inline VScaleVal_match m_VScale(const DataLayout &DL) { |
2456 | return VScaleVal_match(DL); |
2457 | } |
2458 | |
2459 | template <typename LHS, typename RHS, unsigned Opcode> |
2460 | struct LogicalOp_match { |
2461 | LHS L; |
2462 | RHS R; |
2463 | |
2464 | LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} |
2465 | |
2466 | template <typename T> bool match(T *V) { |
2467 | if (auto *I = dyn_cast<Instruction>(V)) { |
2468 | if (!I->getType()->isIntOrIntVectorTy(1)) |
2469 | return false; |
2470 | |
2471 | if (I->getOpcode() == Opcode && L.match(I->getOperand(0)) && |
2472 | R.match(I->getOperand(1))) |
2473 | return true; |
2474 | |
2475 | if (auto *SI = dyn_cast<SelectInst>(I)) { |
2476 | if (Opcode == Instruction::And) { |
2477 | if (const auto *C = dyn_cast<Constant>(SI->getFalseValue())) |
2478 | if (C->isNullValue() && L.match(SI->getCondition()) && |
2479 | R.match(SI->getTrueValue())) |
2480 | return true; |
2481 | } else { |
2482 | assert(Opcode == Instruction::Or); |
2483 | if (const auto *C = dyn_cast<Constant>(SI->getTrueValue())) |
2484 | if (C->isOneValue() && L.match(SI->getCondition()) && |
2485 | R.match(SI->getFalseValue())) |
2486 | return true; |
2487 | } |
2488 | } |
2489 | } |
2490 | |
2491 | return false; |
2492 | } |
2493 | }; |
2494 | |
2495 | |
2496 | |
2497 | template <typename LHS, typename RHS> |
2498 | inline LogicalOp_match<LHS, RHS, Instruction::And> |
2499 | m_LogicalAnd(const LHS &L, const RHS &R) { |
2500 | return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); |
2501 | } |
2502 | |
2503 | |
2504 | inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } |
2505 | |
2506 | |
2507 | |
2508 | template <typename LHS, typename RHS> |
2509 | inline LogicalOp_match<LHS, RHS, Instruction::Or> |
2510 | m_LogicalOr(const LHS &L, const RHS &R) { |
2511 | return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); |
2512 | } |
2513 | |
2514 | |
2515 | inline auto m_LogicalOr() { |
2516 | return m_LogicalOr(m_Value(), m_Value()); |
2517 | } |
2518 | |
2519 | } |
2520 | } |
2521 | |
2522 | #endif // LLVM_IR_PATTERNMATCH_H |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | #ifndef LLVM_IR_VALUE_H |
14 | #define LLVM_IR_VALUE_H |
15 | |
16 | #include "llvm-c/Types.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/StringRef.h" |
19 | #include "llvm/ADT/iterator_range.h" |
20 | #include "llvm/IR/Use.h" |
21 | #include "llvm/Support/Alignment.h" |
22 | #include "llvm/Support/CBindingWrapping.h" |
23 | #include "llvm/Support/Casting.h" |
24 | #include <cassert> |
25 | #include <iterator> |
26 | #include <memory> |
27 | |
28 | namespace llvm { |
29 | |
30 | class APInt; |
31 | class Argument; |
32 | class BasicBlock; |
33 | class Constant; |
34 | class ConstantData; |
35 | class ConstantAggregate; |
36 | class DataLayout; |
37 | class Function; |
38 | class GlobalAlias; |
39 | class GlobalIFunc; |
40 | class GlobalIndirectSymbol; |
41 | class GlobalObject; |
42 | class GlobalValue; |
43 | class GlobalVariable; |
44 | class InlineAsm; |
45 | class Instruction; |
46 | class LLVMContext; |
47 | class MDNode; |
48 | class Module; |
49 | class ModuleSlotTracker; |
50 | class raw_ostream; |
51 | template<typename ValueTy> class StringMapEntry; |
52 | class Twine; |
53 | class Type; |
54 | class User; |
55 | |
56 | using ValueName = StringMapEntry<Value *>; |
57 | |
58 | |
59 | |
60 | |
61 | |
62 | |
63 | |
64 | |
65 | |
66 | |
67 | |
68 | |
69 | |
70 | |
71 | |
72 | |
73 | |
74 | |
75 | class Value { |
76 | Type *VTy; |
77 | Use *UseList; |
78 | |
79 | friend class ValueAsMetadata; |
80 | friend class ValueHandleBase; |
81 | |
82 | const unsigned char SubclassID; |
83 | unsigned char HasValueHandle : 1; |
84 | |
85 | protected: |
86 | |
87 | |
88 | |
89 | |
90 | |
91 | unsigned char SubclassOptionalData : 7; |
92 | |
93 | private: |
94 | |
95 | |
96 | |
97 | |
98 | |
99 | unsigned short SubclassData; |
100 | |
101 | protected: |
102 | |
103 | |
104 | |
105 | |
106 | |
107 | |
108 | |
109 | |
110 | |
111 | |
112 | |
113 | |
114 | enum : unsigned { NumUserOperandsBits = 27 }; |
115 | unsigned NumUserOperands : NumUserOperandsBits; |
116 | |
117 | |
118 | unsigned IsUsedByMD : 1; |
119 | unsigned HasName : 1; |
120 | unsigned HasMetadata : 1; |
121 | unsigned HasHungOffUses : 1; |
122 | unsigned HasDescriptor : 1; |
123 | |
124 | private: |
125 | template <typename UseT> |
126 | class use_iterator_impl { |
127 | friend class Value; |
128 | |
129 | UseT *U; |
130 | |
131 | explicit use_iterator_impl(UseT *u) : U(u) {} |
132 | |
133 | public: |
134 | using iterator_category = std::forward_iterator_tag; |
135 | using value_type = UseT *; |
136 | using difference_type = std::ptrdiff_t; |
137 | using pointer = value_type *; |
138 | using reference = value_type &; |
139 | |
140 | use_iterator_impl() : U() {} |
141 | |
142 | bool operator==(const use_iterator_impl &x) const { return U == x.U; } |
143 | bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } |
144 | |
145 | use_iterator_impl &operator++() { |
146 | assert(U && "Cannot increment end iterator!"); |
147 | U = U->getNext(); |
148 | return *this; |
149 | } |
150 | |
151 | use_iterator_impl operator++(int) { |
152 | auto tmp = *this; |
153 | ++*this; |
154 | return tmp; |
155 | } |
156 | |
157 | UseT &operator*() const { |
158 | assert(U && "Cannot dereference end iterator!"); |
159 | return *U; |
160 | } |
161 | |
162 | UseT *operator->() const { return &operator*(); } |
163 | |
164 | operator use_iterator_impl<const UseT>() const { |
165 | return use_iterator_impl<const UseT>(U); |
166 | } |
167 | }; |
168 | |
169 | template <typename UserTy> |
170 | class user_iterator_impl { |
171 | use_iterator_impl<Use> UI; |
172 | explicit user_iterator_impl(Use *U) : UI(U) {} |
173 | friend class Value; |
174 | |
175 | public: |
176 | using iterator_category = std::forward_iterator_tag; |
177 | using value_type = UserTy *; |
178 | using difference_type = std::ptrdiff_t; |
179 | using pointer = value_type *; |
180 | using reference = value_type &; |
181 | |
182 | user_iterator_impl() = default; |
183 | |
184 | bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } |
185 | bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } |
186 | |
187 | |
188 | bool atEnd() const { return *this == user_iterator_impl(); } |
189 | |
190 | user_iterator_impl &operator++() { |
191 | ++UI; |
192 | return *this; |
193 | } |
194 | |
195 | user_iterator_impl operator++(int) { |
196 | auto tmp = *this; |
197 | ++*this; |
198 | return tmp; |
199 | } |
200 | |
201 | |
202 | UserTy *operator*() const { |
203 | return UI->getUser(); |
204 | } |
205 | |
206 | UserTy *operator->() const { return operator*(); } |
207 | |
208 | operator user_iterator_impl<const UserTy>() const { |
209 | return user_iterator_impl<const UserTy>(*UI); |
210 | } |
211 | |
212 | Use &getUse() const { return *UI; } |
213 | }; |
214 | |
215 | protected: |
216 | Value(Type *Ty, unsigned scid); |
217 | |
218 | |
219 | |
220 | |
221 | |
222 | |
223 | ~Value(); |
224 | |
225 | public: |
226 | Value(const Value &) = delete; |
227 | Value &operator=(const Value &) = delete; |
228 | |
229 | |
230 | void deleteValue(); |
231 | |
232 | |
233 | void dump() const; |
234 | |
235 | |
236 | |
237 | void print(raw_ostream &O, bool IsForDebug = false) const; |
238 | void print(raw_ostream &O, ModuleSlotTracker &MST, |
239 | bool IsForDebug = false) const; |
240 | |
241 | |
242 | |
243 | |
244 | |
245 | |
246 | |
247 | |
248 | |
249 | void printAsOperand(raw_ostream &O, bool PrintType = true, |
250 | const Module *M = nullptr) const; |
251 | void printAsOperand(raw_ostream &O, bool PrintType, |
252 | ModuleSlotTracker &MST) const; |
253 | |
254 | |
255 | |
256 | Type *getType() const { return VTy; } |
257 | |
258 | |
259 | LLVMContext &getContext() const; |
260 | |
261 | |
262 | bool hasName() const { return HasName; } |
263 | ValueName *getValueName() const; |
264 | void setValueName(ValueName *VN); |
265 | |
266 | private: |
267 | void destroyValueName(); |
268 | enum class ReplaceMetadataUses { No, Yes }; |
269 | void doRAUW(Value *New, ReplaceMetadataUses); |
270 | void setNameImpl(const Twine &Name); |
271 | |
272 | public: |
273 | |
274 | |
275 | |
276 | |
277 | |
278 | StringRef getName() const; |
279 | |
280 | |
281 | |
282 | |
283 | |
284 | |
285 | void setName(const Twine &Name); |
286 | |
287 | |
288 | |
289 | |
290 | |
291 | |
292 | void takeName(Value *V); |
293 | |
294 | #ifndef NDEBUG |
295 | std::string getNameOrAsOperand() const; |
296 | #endif |
297 | |
298 | |
299 | |
300 | |
301 | |
302 | |
303 | void replaceAllUsesWith(Value *V); |
304 | |
305 | |
306 | |
307 | |
308 | |
309 | void replaceNonMetadataUsesWith(Value *V); |
310 | |
311 | |
312 | |
313 | |
314 | |
315 | void replaceUsesWithIf(Value *New, |
316 | llvm::function_ref<bool(Use &U)> ShouldReplace); |
317 | |
318 | |
319 | |
320 | |
321 | |
322 | |
323 | void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); |
324 | |
325 | |
326 | |
327 | |
328 | |
329 | |
330 | |
331 | |
332 | |
333 | |
334 | |
335 | void assertModuleIsMaterializedImpl() const; |
336 | |
337 | |
338 | |
339 | void assertModuleIsMaterialized() const { |
340 | #ifndef NDEBUG |
341 | assertModuleIsMaterializedImpl(); |
342 | #endif |
343 | } |
344 | |
345 | bool use_empty() const { |
346 | assertModuleIsMaterialized(); |
347 | return UseList == nullptr; |
| 22 | | Assuming the condition is false | |
|
| 23 | | Returning zero, which participates in a condition later | |
|
348 | } |
349 | |
350 | bool materialized_use_empty() const { |
351 | return UseList == nullptr; |
352 | } |
353 | |
354 | using use_iterator = use_iterator_impl<Use>; |
355 | using const_use_iterator = use_iterator_impl<const Use>; |
356 | |
357 | use_iterator materialized_use_begin() { return use_iterator(UseList); } |
358 | const_use_iterator materialized_use_begin() const { |
359 | return const_use_iterator(UseList); |
360 | } |
361 | use_iterator use_begin() { |
362 | assertModuleIsMaterialized(); |
363 | return materialized_use_begin(); |
364 | } |
365 | const_use_iterator use_begin() const { |
366 | assertModuleIsMaterialized(); |
367 | return materialized_use_begin(); |
368 | } |
369 | use_iterator use_end() { return use_iterator(); } |
370 | const_use_iterator use_end() const { return const_use_iterator(); } |
371 | iterator_range<use_iterator> materialized_uses() { |
372 | return make_range(materialized_use_begin(), use_end()); |
373 | } |
374 | iterator_range<const_use_iterator> materialized_uses() const { |
375 | return make_range(materialized_use_begin(), use_end()); |
376 | } |
377 | iterator_range<use_iterator> uses() { |
378 | assertModuleIsMaterialized(); |
379 | return materialized_uses(); |
380 | } |
381 | iterator_range<const_use_iterator> uses() const { |
382 | assertModuleIsMaterialized(); |
383 | return materialized_uses(); |
384 | } |
385 | |
386 | bool user_empty() const { |
387 | assertModuleIsMaterialized(); |
388 | return UseList == nullptr; |
389 | } |
390 | |
391 | using user_iterator = user_iterator_impl<User>; |
392 | using const_user_iterator = user_iterator_impl<const User>; |
393 | |
394 | user_iterator materialized_user_begin() { return user_iterator(UseList); } |
395 | const_user_iterator materialized_user_begin() const { |
396 | return const_user_iterator(UseList); |
397 | } |
398 | user_iterator user_begin() { |
399 | assertModuleIsMaterialized(); |
400 | return materialized_user_begin(); |
401 | } |
402 | const_user_iterator user_begin() const { |
403 | assertModuleIsMaterialized(); |
404 | return materialized_user_begin(); |
405 | } |
406 | user_iterator user_end() { return user_iterator(); } |
407 | const_user_iterator user_end() const { return const_user_iterator(); } |
408 | User *user_back() { |
409 | assertModuleIsMaterialized(); |
410 | return *materialized_user_begin(); |
411 | } |
412 | const User *user_back() const { |
413 | assertModuleIsMaterialized(); |
414 | return *materialized_user_begin(); |
415 | } |
416 | iterator_range<user_iterator> materialized_users() { |
417 | return make_range(materialized_user_begin(), user_end()); |
418 | } |
419 | iterator_range<const_user_iterator> materialized_users() const { |
420 | return make_range(materialized_user_begin(), user_end()); |
421 | } |
422 | iterator_range<user_iterator> users() { |
423 | assertModuleIsMaterialized(); |
424 | return materialized_users(); |
425 | } |
426 | iterator_range<const_user_iterator> users() const { |
427 | assertModuleIsMaterialized(); |
428 | return materialized_users(); |
429 | } |
430 | |
431 | |
432 | |
433 | |
434 | |
435 | bool hasOneUse() const { return hasSingleElement(uses()); } |
436 | |
437 | |
438 | bool hasNUses(unsigned N) const; |
439 | |
440 | |
441 | |
442 | |
443 | bool hasNUsesOrMore(unsigned N) const; |
444 | |
445 | |
446 | |
447 | |
448 | |
449 | |
450 | |
451 | |
452 | |
453 | bool hasOneUser() const; |
454 | |
455 | |
456 | |
457 | |
458 | |
459 | |
460 | Use *getSingleUndroppableUse(); |
461 | const Use *getSingleUndroppableUse() const { |
462 | return const_cast<Value *>(this)->getSingleUndroppableUse(); |
463 | } |
464 | |
465 | |
466 | |
467 | |
468 | |
469 | bool hasNUndroppableUses(unsigned N) const; |
470 | |
471 | |
472 | |
473 | |
474 | bool hasNUndroppableUsesOrMore(unsigned N) const; |
475 | |
476 | |
477 | |
478 | |
479 | |
480 | |
481 | |
482 | |
483 | void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop = |
484 | [](const Use *) { return true; }); |
485 | |
486 | |
487 | void dropDroppableUsesIn(User &Usr); |
488 | |
489 | |
490 | static void dropDroppableUse(Use &U); |
491 | |
492 | |
493 | bool isUsedInBasicBlock(const BasicBlock *BB) const; |
494 | |
495 | |
496 | |
497 | |
498 | |
499 | unsigned getNumUses() const; |
500 | |
501 | |
502 | void addUse(Use &U) { U.addToList(&UseList); } |
503 | |
504 | |
505 | |
506 | |
507 | |
508 | |
509 | |
510 | enum ValueTy { |
511 | #define HANDLE_VALUE(Name) Name##Val, |
512 | #include "llvm/IR/Value.def" |
513 | |
514 | |
515 | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, |
516 | #include "llvm/IR/Value.def" |
517 | }; |
518 | |
519 | |
520 | |
521 | |
522 | |
523 | |
524 | |
525 | |
526 | |
527 | |
528 | |
529 | unsigned getValueID() const { |
530 | return SubclassID; |
531 | } |
532 | |
533 | |
534 | |
535 | |
536 | unsigned getRawSubclassOptionalData() const { |
537 | return SubclassOptionalData; |
538 | } |
539 | |
540 | |
541 | void clearSubclassOptionalData() { |
542 | SubclassOptionalData = 0; |
543 | } |
544 | |
545 | |
546 | bool hasSameSubclassOptionalData(const Value *V) const { |
547 | return SubclassOptionalData == V->SubclassOptionalData; |
548 | } |
549 | |
550 | |
551 | bool hasValueHandle() const { return HasValueHandle; } |
552 | |
553 | |
554 | bool isUsedByMetadata() const { return IsUsedByMD; } |
555 | |
556 | |
557 | bool isTransitiveUsedByMetadataOnly() const; |
558 | |
559 | protected: |
560 | |
561 | |
562 | |
563 | |
564 | |
565 | MDNode *getMetadata(unsigned KindID) const; |
566 | MDNode *getMetadata(StringRef Kind) const; |
567 | |
568 | |
569 | |
570 | |
571 | |
572 | |
573 | void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const; |
574 | void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const; |
575 | |
576 | |
577 | |
578 | |
579 | |
580 | |
581 | void |
582 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const; |
583 | |
584 | |
585 | bool hasMetadata() const { return (bool)HasMetadata; } |
586 | |
587 | |
588 | |
589 | bool hasMetadata(unsigned KindID) const { |
590 | return getMetadata(KindID) != nullptr; |
591 | } |
592 | bool hasMetadata(StringRef Kind) const { |
593 | return getMetadata(Kind) != nullptr; |
594 | } |
595 | |
596 | |
597 | |
598 | |
599 | |
600 | |
601 | |
602 | void setMetadata(unsigned KindID, MDNode *Node); |
603 | void setMetadata(StringRef Kind, MDNode *Node); |
604 | |
605 | |
606 | |
607 | |
608 | void addMetadata(unsigned KindID, MDNode &MD); |
609 | void addMetadata(StringRef Kind, MDNode &MD); |
610 | |
611 | |
612 | |
613 | |
614 | |
615 | bool eraseMetadata(unsigned KindID); |
616 | |
617 | |
618 | void clearMetadata(); |
619 | |
620 | public: |
621 | |
622 | |
623 | |
624 | |
625 | bool isSwiftError() const; |
626 | |
627 | |
628 | |
629 | |
630 | |
631 | const Value *stripPointerCasts() const; |
632 | Value *stripPointerCasts() { |
633 | return const_cast<Value *>( |
634 | static_cast<const Value *>(this)->stripPointerCasts()); |
635 | } |
636 | |
637 | |
638 | |
639 | |
640 | |
641 | const Value *stripPointerCastsAndAliases() const; |
642 | Value *stripPointerCastsAndAliases() { |
643 | return const_cast<Value *>( |
644 | static_cast<const Value *>(this)->stripPointerCastsAndAliases()); |
645 | } |
646 | |
647 | |
648 | |
649 | |
650 | |
651 | |
652 | const Value *stripPointerCastsSameRepresentation() const; |
653 | Value *stripPointerCastsSameRepresentation() { |
654 | return const_cast<Value *>(static_cast<const Value *>(this) |
655 | ->stripPointerCastsSameRepresentation()); |
656 | } |
657 | |
658 | |
659 | |
660 | |
661 | |
662 | |
663 | |
664 | const Value *stripPointerCastsForAliasAnalysis() const; |
665 | Value *stripPointerCastsForAliasAnalysis() { |
666 | return const_cast<Value *>(static_cast<const Value *>(this) |
667 | ->stripPointerCastsForAliasAnalysis()); |
668 | } |
669 | |
670 | |
671 | |
672 | |
673 | |
674 | const Value *stripInBoundsConstantOffsets() const; |
675 | Value *stripInBoundsConstantOffsets() { |
676 | return const_cast<Value *>( |
677 | static_cast<const Value *>(this)->stripInBoundsConstantOffsets()); |
678 | } |
679 | |
680 | |
681 | |
682 | |
683 | |
684 | |
685 | |
686 | |
687 | |
688 | |
689 | |
690 | |
691 | |
692 | |
693 | |
694 | |
695 | |
696 | |
697 | |
698 | |
699 | |
700 | |
701 | |
702 | |
703 | |
704 | |
705 | |
706 | const Value *stripAndAccumulateConstantOffsets( |
707 | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
708 | function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis = |
709 | nullptr) const; |
710 | Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, |
711 | bool AllowNonInbounds) { |
712 | return const_cast<Value *>( |
713 | static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets( |
714 | DL, Offset, AllowNonInbounds)); |
715 | } |
716 | |
717 | |
718 | |
719 | const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
720 | APInt &Offset) const { |
721 | return stripAndAccumulateConstantOffsets(DL, Offset, |
722 | false); |
723 | } |
724 | Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
725 | APInt &Offset) { |
726 | return stripAndAccumulateConstantOffsets(DL, Offset, |
727 | false); |
728 | } |
729 | |
730 | |
731 | |
732 | |
733 | |
734 | const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
735 | [](const Value *) {}) const; |
736 | inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
737 | [](const Value *) {}) { |
738 | return const_cast<Value *>( |
739 | static_cast<const Value *>(this)->stripInBoundsOffsets(Func)); |
740 | } |
741 | |
742 | |
743 | |
744 | |
745 | |
746 | bool canBeFreed() const; |
747 | |
748 | |
749 | |
750 | |
751 | |
752 | |
753 | |
754 | |
755 | |
756 | |
757 | uint64_t getPointerDereferenceableBytes(const DataLayout &DL, |
758 | bool &CanBeNull, |
759 | bool &CanBeFreed) const; |
760 | |
761 | |
762 | |
763 | |
764 | |
765 | Align getPointerAlignment(const DataLayout &DL) const; |
766 | |
767 | |
768 | |
769 | |
770 | |
771 | |
772 | |
773 | const Value *DoPHITranslation(const BasicBlock *CurBB, |
774 | const BasicBlock *PredBB) const; |
775 | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { |
776 | return const_cast<Value *>( |
777 | static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB)); |
778 | } |
779 | |
780 | |
781 | |
782 | |
783 | |
784 | static const unsigned MaxAlignmentExponent = 29; |
785 | static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; |
786 | |
787 | |
788 | |
789 | |
790 | |
791 | |
792 | |
793 | void mutateType(Type *Ty) { |
794 | VTy = Ty; |
795 | } |
796 | |
797 | |
798 | |
799 | |
800 | |
801 | template <class Compare> void sortUseList(Compare Cmp); |
802 | |
803 | |
804 | void reverseUseList(); |
805 | |
806 | private: |
807 | |
808 | |
809 | |
810 | |
811 | |
812 | |
813 | |
814 | |
815 | template <class Compare> |
816 | static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { |
817 | Use *Merged; |
818 | Use **Next = &Merged; |
819 | |
820 | while (true) { |
821 | if (!L) { |
822 | *Next = R; |
823 | break; |
824 | } |
825 | if (!R) { |
826 | *Next = L; |
827 | break; |
828 | } |
829 | if (Cmp(*R, *L)) { |
830 | *Next = R; |
831 | Next = &R->Next; |
832 | R = R->Next; |
833 | } else { |
834 | *Next = L; |
835 | Next = &L->Next; |
836 | L = L->Next; |
837 | } |
838 | } |
839 | |
840 | return Merged; |
841 | } |
842 | |
843 | protected: |
844 | unsigned short getSubclassDataFromValue() const { return SubclassData; } |
845 | void setValueSubclassData(unsigned short D) { SubclassData = D; } |
846 | }; |
847 | |
848 | struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; |
849 | |
850 | |
851 | |
852 | |
853 | using unique_value = std::unique_ptr<Value, ValueDeleter>; |
854 | |
855 | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { |
856 | V.print(OS); |
857 | return OS; |
858 | } |
859 | |
860 | void Use::set(Value *V) { |
861 | if (Val) removeFromList(); |
862 | Val = V; |
863 | if (V) V->addUse(*this); |
864 | } |
865 | |
866 | Value *Use::operator=(Value *RHS) { |
867 | set(RHS); |
868 | return RHS; |
869 | } |
870 | |
871 | const Use &Use::operator=(const Use &RHS) { |
872 | set(RHS.Val); |
873 | return *this; |
874 | } |
875 | |
876 | template <class Compare> void Value::sortUseList(Compare Cmp) { |
877 | if (!UseList || !UseList->Next) |
878 | |
879 | return; |
880 | |
881 | |
882 | |
883 | |
884 | |
885 | |
886 | const unsigned MaxSlots = 32; |
887 | Use *Slots[MaxSlots]; |
888 | |
889 | |
890 | Use *Next = UseList->Next; |
891 | UseList->Next = nullptr; |
892 | unsigned NumSlots = 1; |
893 | Slots[0] = UseList; |
894 | |
895 | |
896 | while (Next->Next) { |
897 | Use *Current = Next; |
898 | Next = Current->Next; |
899 | |
900 | |
901 | Current->Next = nullptr; |
902 | |
903 | |
904 | unsigned I; |
905 | for (I = 0; I < NumSlots; ++I) { |
906 | if (!Slots[I]) |
907 | break; |
908 | |
909 | |
910 | |
911 | |
912 | |
913 | Current = mergeUseLists(Slots[I], Current, Cmp); |
914 | Slots[I] = nullptr; |
915 | } |
916 | |
917 | if (I == NumSlots) { |
918 | ++NumSlots; |
919 | assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); |
920 | } |
921 | |
922 | |
923 | Slots[I] = Current; |
924 | } |
925 | |
926 | |
927 | assert(Next && "Expected one more Use"); |
928 | assert(!Next->Next && "Expected only one Use"); |
929 | UseList = Next; |
930 | for (unsigned I = 0; I < NumSlots; ++I) |
931 | if (Slots[I]) |
932 | |
933 | |
934 | UseList = mergeUseLists(Slots[I], UseList, Cmp); |
935 | |
936 | |
937 | for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { |
938 | I->Prev = Prev; |
939 | Prev = &I->Next; |
940 | } |
941 | } |
942 | |
943 | |
944 | |
945 | |
946 | template <> struct isa_impl<Constant, Value> { |
947 | static inline bool doit(const Value &Val) { |
948 | static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); |
949 | return Val.getValueID() <= Value::ConstantLastVal; |
950 | } |
951 | }; |
952 | |
953 | template <> struct isa_impl<ConstantData, Value> { |
954 | static inline bool doit(const Value &Val) { |
955 | return Val.getValueID() >= Value::ConstantDataFirstVal && |
956 | Val.getValueID() <= Value::ConstantDataLastVal; |
957 | } |
958 | }; |
959 | |
960 | template <> struct isa_impl<ConstantAggregate, Value> { |
961 | static inline bool doit(const Value &Val) { |
962 | return Val.getValueID() >= Value::ConstantAggregateFirstVal && |
963 | Val.getValueID() <= Value::ConstantAggregateLastVal; |
964 | } |
965 | }; |
966 | |
967 | template <> struct isa_impl<Argument, Value> { |
968 | static inline bool doit (const Value &Val) { |
969 | return Val.getValueID() == Value::ArgumentVal; |
970 | } |
971 | }; |
972 | |
973 | template <> struct isa_impl<InlineAsm, Value> { |
974 | static inline bool doit(const Value &Val) { |
975 | return Val.getValueID() == Value::InlineAsmVal; |
976 | } |
977 | }; |
978 | |
979 | template <> struct isa_impl<Instruction, Value> { |
980 | static inline bool doit(const Value &Val) { |
981 | return Val.getValueID() >= Value::InstructionVal; |
982 | } |
983 | }; |
984 | |
985 | template <> struct isa_impl<BasicBlock, Value> { |
986 | static inline bool doit(const Value &Val) { |
987 | return Val.getValueID() == Value::BasicBlockVal; |
988 | } |
989 | }; |
990 | |
991 | template <> struct isa_impl<Function, Value> { |
992 | static inline bool doit(const Value &Val) { |
993 | return Val.getValueID() == Value::FunctionVal; |
994 | } |
995 | }; |
996 | |
997 | template <> struct isa_impl<GlobalVariable, Value> { |
998 | static inline bool doit(const Value &Val) { |
999 | return Val.getValueID() == Value::GlobalVariableVal; |
1000 | } |
1001 | }; |
1002 | |
1003 | template <> struct isa_impl<GlobalAlias, Value> { |
1004 | static inline bool doit(const Value &Val) { |
1005 | return Val.getValueID() == Value::GlobalAliasVal; |
1006 | } |
1007 | }; |
1008 | |
1009 | template <> struct isa_impl<GlobalIFunc, Value> { |
1010 | static inline bool doit(const Value &Val) { |
1011 | return Val.getValueID() == Value::GlobalIFuncVal; |
1012 | } |
1013 | }; |
1014 | |
1015 | template <> struct isa_impl<GlobalIndirectSymbol, Value> { |
1016 | static inline bool doit(const Value &Val) { |
1017 | return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val); |
1018 | } |
1019 | }; |
1020 | |
1021 | template <> struct isa_impl<GlobalValue, Value> { |
1022 | static inline bool doit(const Value &Val) { |
1023 | return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val); |
1024 | } |
1025 | }; |
1026 | |
1027 | template <> struct isa_impl<GlobalObject, Value> { |
1028 | static inline bool doit(const Value &Val) { |
1029 | return isa<GlobalVariable>(Val) || isa<Function>(Val); |
1030 | } |
1031 | }; |
1032 | |
1033 | |
1034 | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) |
1035 | |
1036 | |
1037 | inline Value **unwrap(LLVMValueRef *Vals) { |
1038 | return reinterpret_cast<Value**>(Vals); |
1039 | } |
1040 | |
1041 | template<typename T> |
1042 | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { |
1043 | #ifndef NDEBUG |
1044 | for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) |
1045 | unwrap<T>(*I); |
1046 | #endif |
1047 | (void)Length; |
1048 | return reinterpret_cast<T**>(Vals); |
1049 | } |
1050 | |
1051 | inline LLVMValueRef *wrap(const Value **Vals) { |
1052 | return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); |
1053 | } |
1054 | |
1055 | } |
1056 | |
1057 | #endif // LLVM_IR_VALUE_H |