File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/DFAJumpThreading.cpp |
Warning: | line 579, column 28 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- DFAJumpThreading.cpp - Threads a switch statement inside a loop ----===// | |||
2 | // | |||
3 | // The LLVM Compiler Infrastructure | |||
4 | // | |||
5 | // This file is distributed under the University of Illinois Open Source | |||
6 | // License. See LICENSE.TXT for details. | |||
7 | // | |||
8 | //===----------------------------------------------------------------------===// | |||
9 | // | |||
10 | // Transform each threading path to effectively jump thread the DFA. For | |||
11 | // example, the CFG below could be transformed as follows, where the cloned | |||
12 | // blocks unconditionally branch to the next correct case based on what is | |||
13 | // identified in the analysis. | |||
14 | // | |||
15 | // sw.bb sw.bb | |||
16 | // / | \ / | \ | |||
17 | // case1 case2 case3 case1 case2 case3 | |||
18 | // \ | / | | | | |||
19 | // determinator det.2 det.3 det.1 | |||
20 | // br sw.bb / | \ | |||
21 | // sw.bb.2 sw.bb.3 sw.bb.1 | |||
22 | // br case2 br case3 br case1ยง | |||
23 | // | |||
24 | // Definitions and Terminology: | |||
25 | // | |||
26 | // * Threading path: | |||
27 | // a list of basic blocks, the exit state, and the block that determines | |||
28 | // the next state, for which the following notation will be used: | |||
29 | // < path of BBs that form a cycle > [ state, determinator ] | |||
30 | // | |||
31 | // * Predictable switch: | |||
32 | // The switch variable is always a known constant so that all conditional | |||
33 | // jumps based on switch variable can be converted to unconditional jump. | |||
34 | // | |||
35 | // * Determinator: | |||
36 | // The basic block that determines the next state of the DFA. | |||
37 | // | |||
38 | // Representing the optimization in C-like pseudocode: the code pattern on the | |||
39 | // left could functionally be transformed to the right pattern if the switch | |||
40 | // condition is predictable. | |||
41 | // | |||
42 | // X = A goto A | |||
43 | // for (...) A: | |||
44 | // switch (X) ... | |||
45 | // case A goto B | |||
46 | // X = B B: | |||
47 | // case B ... | |||
48 | // X = C goto C | |||
49 | // | |||
50 | // The pass first checks that switch variable X is decided by the control flow | |||
51 | // path taken in the loop; for example, in case B, the next value of X is | |||
52 | // decided to be C. It then enumerates through all paths in the loop and labels | |||
53 | // the basic blocks where the next state is decided. | |||
54 | // | |||
55 | // Using this information it creates new paths that unconditionally branch to | |||
56 | // the next case. This involves cloning code, so it only gets triggered if the | |||
57 | // amount of code duplicated is below a threshold. | |||
58 | // | |||
59 | //===----------------------------------------------------------------------===// | |||
60 | ||||
61 | #include "llvm/Transforms/Scalar/DFAJumpThreading.h" | |||
62 | #include "llvm/ADT/APInt.h" | |||
63 | #include "llvm/ADT/DenseMap.h" | |||
64 | #include "llvm/ADT/DepthFirstIterator.h" | |||
65 | #include "llvm/ADT/SmallSet.h" | |||
66 | #include "llvm/ADT/Statistic.h" | |||
67 | #include "llvm/Analysis/AssumptionCache.h" | |||
68 | #include "llvm/Analysis/CodeMetrics.h" | |||
69 | #include "llvm/Analysis/LoopIterator.h" | |||
70 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | |||
71 | #include "llvm/Analysis/TargetTransformInfo.h" | |||
72 | #include "llvm/IR/CFG.h" | |||
73 | #include "llvm/IR/Constants.h" | |||
74 | #include "llvm/IR/IntrinsicInst.h" | |||
75 | #include "llvm/IR/Verifier.h" | |||
76 | #include "llvm/InitializePasses.h" | |||
77 | #include "llvm/Pass.h" | |||
78 | #include "llvm/Support/CommandLine.h" | |||
79 | #include "llvm/Support/Debug.h" | |||
80 | #include "llvm/Transforms/Scalar.h" | |||
81 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | |||
82 | #include "llvm/Transforms/Utils/Cloning.h" | |||
83 | #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" | |||
84 | #include "llvm/Transforms/Utils/ValueMapper.h" | |||
85 | #include <algorithm> | |||
86 | #include <deque> | |||
87 | #include <unordered_map> | |||
88 | #include <unordered_set> | |||
89 | ||||
90 | using namespace llvm; | |||
91 | ||||
92 | #define DEBUG_TYPE"dfa-jump-threading" "dfa-jump-threading" | |||
93 | ||||
94 | STATISTIC(NumTransforms, "Number of transformations done")static llvm::Statistic NumTransforms = {"dfa-jump-threading", "NumTransforms", "Number of transformations done"}; | |||
95 | STATISTIC(NumCloned, "Number of blocks cloned")static llvm::Statistic NumCloned = {"dfa-jump-threading", "NumCloned" , "Number of blocks cloned"}; | |||
96 | STATISTIC(NumPaths, "Number of individual paths threaded")static llvm::Statistic NumPaths = {"dfa-jump-threading", "NumPaths" , "Number of individual paths threaded"}; | |||
97 | ||||
98 | static cl::opt<bool> | |||
99 | ClViewCfgBefore("dfa-jump-view-cfg-before", | |||
100 | cl::desc("View the CFG before DFA Jump Threading"), | |||
101 | cl::Hidden, cl::init(false)); | |||
102 | ||||
103 | static cl::opt<unsigned> MaxPathLength( | |||
104 | "dfa-max-path-length", | |||
105 | cl::desc("Max number of blocks searched to find a threading path"), | |||
106 | cl::Hidden, cl::init(20)); | |||
107 | ||||
108 | static cl::opt<unsigned> | |||
109 | CostThreshold("dfa-cost-threshold", | |||
110 | cl::desc("Maximum cost accepted for the transformation"), | |||
111 | cl::Hidden, cl::init(50)); | |||
112 | ||||
113 | namespace { | |||
114 | ||||
115 | class SelectInstToUnfold { | |||
116 | SelectInst *SI; | |||
117 | PHINode *SIUse; | |||
118 | ||||
119 | public: | |||
120 | SelectInstToUnfold(SelectInst *SI, PHINode *SIUse) : SI(SI), SIUse(SIUse) {} | |||
121 | ||||
122 | SelectInst *getInst() { return SI; } | |||
123 | PHINode *getUse() { return SIUse; } | |||
124 | ||||
125 | explicit operator bool() const { return SI && SIUse; } | |||
126 | }; | |||
127 | ||||
128 | void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold, | |||
129 | std::vector<SelectInstToUnfold> *NewSIsToUnfold, | |||
130 | std::vector<BasicBlock *> *NewBBs); | |||
131 | ||||
132 | class DFAJumpThreading { | |||
133 | public: | |||
134 | DFAJumpThreading(AssumptionCache *AC, DominatorTree *DT, | |||
135 | TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE) | |||
136 | : AC(AC), DT(DT), TTI(TTI), ORE(ORE) {} | |||
137 | ||||
138 | bool run(Function &F); | |||
139 | ||||
140 | private: | |||
141 | void | |||
142 | unfoldSelectInstrs(DominatorTree *DT, | |||
143 | const SmallVector<SelectInstToUnfold, 4> &SelectInsts) { | |||
144 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); | |||
145 | SmallVector<SelectInstToUnfold, 4> Stack; | |||
146 | for (SelectInstToUnfold SIToUnfold : SelectInsts) | |||
147 | Stack.push_back(SIToUnfold); | |||
148 | ||||
149 | while (!Stack.empty()) { | |||
150 | SelectInstToUnfold SIToUnfold = Stack.back(); | |||
151 | Stack.pop_back(); | |||
152 | ||||
153 | std::vector<SelectInstToUnfold> NewSIsToUnfold; | |||
154 | std::vector<BasicBlock *> NewBBs; | |||
155 | unfold(&DTU, SIToUnfold, &NewSIsToUnfold, &NewBBs); | |||
156 | ||||
157 | // Put newly discovered select instructions into the work list. | |||
158 | for (const SelectInstToUnfold &NewSIToUnfold : NewSIsToUnfold) | |||
159 | Stack.push_back(NewSIToUnfold); | |||
160 | } | |||
161 | } | |||
162 | ||||
163 | AssumptionCache *AC; | |||
164 | DominatorTree *DT; | |||
165 | TargetTransformInfo *TTI; | |||
166 | OptimizationRemarkEmitter *ORE; | |||
167 | }; | |||
168 | ||||
169 | class DFAJumpThreadingLegacyPass : public FunctionPass { | |||
170 | public: | |||
171 | static char ID; // Pass identification | |||
172 | DFAJumpThreadingLegacyPass() : FunctionPass(ID) {} | |||
173 | ||||
174 | void getAnalysisUsage(AnalysisUsage &AU) const override { | |||
175 | AU.addRequired<AssumptionCacheTracker>(); | |||
176 | AU.addRequired<DominatorTreeWrapperPass>(); | |||
177 | AU.addRequired<TargetTransformInfoWrapperPass>(); | |||
178 | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); | |||
179 | } | |||
180 | ||||
181 | bool runOnFunction(Function &F) override { | |||
182 | if (skipFunction(F)) | |||
183 | return false; | |||
184 | ||||
185 | AssumptionCache *AC = | |||
186 | &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | |||
187 | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | |||
188 | TargetTransformInfo *TTI = | |||
189 | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | |||
190 | OptimizationRemarkEmitter *ORE = | |||
191 | &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); | |||
192 | ||||
193 | return DFAJumpThreading(AC, DT, TTI, ORE).run(F); | |||
194 | } | |||
195 | }; | |||
196 | } // end anonymous namespace | |||
197 | ||||
198 | char DFAJumpThreadingLegacyPass::ID = 0; | |||
199 | INITIALIZE_PASS_BEGIN(DFAJumpThreadingLegacyPass, "dfa-jump-threading",static void *initializeDFAJumpThreadingLegacyPassPassOnce(PassRegistry &Registry) { | |||
200 | "DFA Jump Threading", false, false)static void *initializeDFAJumpThreadingLegacyPassPassOnce(PassRegistry &Registry) { | |||
201 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | |||
202 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry); | |||
203 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry); | |||
204 | INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry); | |||
205 | INITIALIZE_PASS_END(DFAJumpThreadingLegacyPass, "dfa-jump-threading",PassInfo *PI = new PassInfo( "DFA Jump Threading", "dfa-jump-threading" , &DFAJumpThreadingLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<DFAJumpThreadingLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeDFAJumpThreadingLegacyPassPassFlag; void llvm::initializeDFAJumpThreadingLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeDFAJumpThreadingLegacyPassPassFlag , initializeDFAJumpThreadingLegacyPassPassOnce, std::ref(Registry )); } | |||
206 | "DFA Jump Threading", false, false)PassInfo *PI = new PassInfo( "DFA Jump Threading", "dfa-jump-threading" , &DFAJumpThreadingLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<DFAJumpThreadingLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeDFAJumpThreadingLegacyPassPassFlag; void llvm::initializeDFAJumpThreadingLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeDFAJumpThreadingLegacyPassPassFlag , initializeDFAJumpThreadingLegacyPassPassOnce, std::ref(Registry )); } | |||
207 | ||||
208 | // Public interface to the DFA Jump Threading pass | |||
209 | FunctionPass *llvm::createDFAJumpThreadingPass() { | |||
210 | return new DFAJumpThreadingLegacyPass(); | |||
211 | } | |||
212 | ||||
213 | namespace { | |||
214 | ||||
215 | /// Create a new basic block and sink \p SIToSink into it. | |||
216 | void createBasicBlockAndSinkSelectInst( | |||
217 | DomTreeUpdater *DTU, SelectInst *SI, PHINode *SIUse, SelectInst *SIToSink, | |||
218 | BasicBlock *EndBlock, StringRef NewBBName, BasicBlock **NewBlock, | |||
219 | BranchInst **NewBranch, std::vector<SelectInstToUnfold> *NewSIsToUnfold, | |||
220 | std::vector<BasicBlock *> *NewBBs) { | |||
221 | assert(SIToSink->hasOneUse())((void)0); | |||
222 | assert(NewBlock)((void)0); | |||
223 | assert(NewBranch)((void)0); | |||
224 | *NewBlock = BasicBlock::Create(SI->getContext(), NewBBName, | |||
225 | EndBlock->getParent(), EndBlock); | |||
226 | NewBBs->push_back(*NewBlock); | |||
227 | *NewBranch = BranchInst::Create(EndBlock, *NewBlock); | |||
228 | SIToSink->moveBefore(*NewBranch); | |||
229 | NewSIsToUnfold->push_back(SelectInstToUnfold(SIToSink, SIUse)); | |||
230 | DTU->applyUpdates({{DominatorTree::Insert, *NewBlock, EndBlock}}); | |||
231 | } | |||
232 | ||||
233 | /// Unfold the select instruction held in \p SIToUnfold by replacing it with | |||
234 | /// control flow. | |||
235 | /// | |||
236 | /// Put newly discovered select instructions into \p NewSIsToUnfold. Put newly | |||
237 | /// created basic blocks into \p NewBBs. | |||
238 | /// | |||
239 | /// TODO: merge it with CodeGenPrepare::optimizeSelectInst() if possible. | |||
240 | void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold, | |||
241 | std::vector<SelectInstToUnfold> *NewSIsToUnfold, | |||
242 | std::vector<BasicBlock *> *NewBBs) { | |||
243 | SelectInst *SI = SIToUnfold.getInst(); | |||
244 | PHINode *SIUse = SIToUnfold.getUse(); | |||
245 | BasicBlock *StartBlock = SI->getParent(); | |||
246 | BasicBlock *EndBlock = SIUse->getParent(); | |||
247 | BranchInst *StartBlockTerm = | |||
248 | dyn_cast<BranchInst>(StartBlock->getTerminator()); | |||
249 | ||||
250 | assert(StartBlockTerm && StartBlockTerm->isUnconditional())((void)0); | |||
251 | assert(SI->hasOneUse())((void)0); | |||
252 | ||||
253 | // These are the new basic blocks for the conditional branch. | |||
254 | // At least one will become an actual new basic block. | |||
255 | BasicBlock *TrueBlock = nullptr; | |||
256 | BasicBlock *FalseBlock = nullptr; | |||
257 | BranchInst *TrueBranch = nullptr; | |||
258 | BranchInst *FalseBranch = nullptr; | |||
259 | ||||
260 | // Sink select instructions to be able to unfold them later. | |||
261 | if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getTrueValue())) { | |||
262 | createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock, | |||
263 | "si.unfold.true", &TrueBlock, &TrueBranch, | |||
264 | NewSIsToUnfold, NewBBs); | |||
265 | } | |||
266 | if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getFalseValue())) { | |||
267 | createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock, | |||
268 | "si.unfold.false", &FalseBlock, | |||
269 | &FalseBranch, NewSIsToUnfold, NewBBs); | |||
270 | } | |||
271 | ||||
272 | // If there was nothing to sink, then arbitrarily choose the 'false' side | |||
273 | // for a new input value to the PHI. | |||
274 | if (!TrueBlock && !FalseBlock) { | |||
275 | FalseBlock = BasicBlock::Create(SI->getContext(), "si.unfold.false", | |||
276 | EndBlock->getParent(), EndBlock); | |||
277 | NewBBs->push_back(FalseBlock); | |||
278 | BranchInst::Create(EndBlock, FalseBlock); | |||
279 | DTU->applyUpdates({{DominatorTree::Insert, FalseBlock, EndBlock}}); | |||
280 | } | |||
281 | ||||
282 | // Insert the real conditional branch based on the original condition. | |||
283 | // If we did not create a new block for one of the 'true' or 'false' paths | |||
284 | // of the condition, it means that side of the branch goes to the end block | |||
285 | // directly and the path originates from the start block from the point of | |||
286 | // view of the new PHI. | |||
287 | BasicBlock *TT = EndBlock; | |||
288 | BasicBlock *FT = EndBlock; | |||
289 | if (TrueBlock && FalseBlock) { | |||
290 | // A diamond. | |||
291 | TT = TrueBlock; | |||
292 | FT = FalseBlock; | |||
293 | ||||
294 | // Update the phi node of SI. | |||
295 | SIUse->removeIncomingValue(StartBlock, /* DeletePHIIfEmpty = */ false); | |||
296 | SIUse->addIncoming(SI->getTrueValue(), TrueBlock); | |||
297 | SIUse->addIncoming(SI->getFalseValue(), FalseBlock); | |||
298 | ||||
299 | // Update any other PHI nodes in EndBlock. | |||
300 | for (PHINode &Phi : EndBlock->phis()) { | |||
301 | if (&Phi != SIUse) { | |||
302 | Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), TrueBlock); | |||
303 | Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), FalseBlock); | |||
304 | } | |||
305 | } | |||
306 | } else { | |||
307 | BasicBlock *NewBlock = nullptr; | |||
308 | Value *SIOp1 = SI->getTrueValue(); | |||
309 | Value *SIOp2 = SI->getFalseValue(); | |||
310 | ||||
311 | // A triangle pointing right. | |||
312 | if (!TrueBlock) { | |||
313 | NewBlock = FalseBlock; | |||
314 | FT = FalseBlock; | |||
315 | } | |||
316 | // A triangle pointing left. | |||
317 | else { | |||
318 | NewBlock = TrueBlock; | |||
319 | TT = TrueBlock; | |||
320 | std::swap(SIOp1, SIOp2); | |||
321 | } | |||
322 | ||||
323 | // Update the phi node of SI. | |||
324 | for (unsigned Idx = 0; Idx < SIUse->getNumIncomingValues(); ++Idx) { | |||
325 | if (SIUse->getIncomingBlock(Idx) == StartBlock) | |||
326 | SIUse->setIncomingValue(Idx, SIOp1); | |||
327 | } | |||
328 | SIUse->addIncoming(SIOp2, NewBlock); | |||
329 | ||||
330 | // Update any other PHI nodes in EndBlock. | |||
331 | for (auto II = EndBlock->begin(); PHINode *Phi = dyn_cast<PHINode>(II); | |||
332 | ++II) { | |||
333 | if (Phi != SIUse) | |||
334 | Phi->addIncoming(Phi->getIncomingValueForBlock(StartBlock), NewBlock); | |||
335 | } | |||
336 | } | |||
337 | StartBlockTerm->eraseFromParent(); | |||
338 | BranchInst::Create(TT, FT, SI->getCondition(), StartBlock); | |||
339 | DTU->applyUpdates({{DominatorTree::Insert, StartBlock, TT}, | |||
340 | {DominatorTree::Insert, StartBlock, FT}}); | |||
341 | ||||
342 | // The select is now dead. | |||
343 | SI->eraseFromParent(); | |||
344 | } | |||
345 | ||||
346 | struct ClonedBlock { | |||
347 | BasicBlock *BB; | |||
348 | uint64_t State; ///< \p State corresponds to the next value of a switch stmnt. | |||
349 | }; | |||
350 | ||||
351 | typedef std::deque<BasicBlock *> PathType; | |||
352 | typedef std::vector<PathType> PathsType; | |||
353 | typedef std::set<const BasicBlock *> VisitedBlocks; | |||
354 | typedef std::vector<ClonedBlock> CloneList; | |||
355 | ||||
356 | // This data structure keeps track of all blocks that have been cloned. If two | |||
357 | // different ThreadingPaths clone the same block for a certain state it should | |||
358 | // be reused, and it can be looked up in this map. | |||
359 | typedef DenseMap<BasicBlock *, CloneList> DuplicateBlockMap; | |||
360 | ||||
361 | // This map keeps track of all the new definitions for an instruction. This | |||
362 | // information is needed when restoring SSA form after cloning blocks. | |||
363 | typedef DenseMap<Instruction *, std::vector<Instruction *>> DefMap; | |||
364 | ||||
365 | inline raw_ostream &operator<<(raw_ostream &OS, const PathType &Path) { | |||
366 | OS << "< "; | |||
367 | for (const BasicBlock *BB : Path) { | |||
368 | std::string BBName; | |||
369 | if (BB->hasName()) | |||
370 | raw_string_ostream(BBName) << BB->getName(); | |||
371 | else | |||
372 | raw_string_ostream(BBName) << BB; | |||
373 | OS << BBName << " "; | |||
374 | } | |||
375 | OS << ">"; | |||
376 | return OS; | |||
377 | } | |||
378 | ||||
379 | /// ThreadingPath is a path in the control flow of a loop that can be threaded | |||
380 | /// by cloning necessary basic blocks and replacing conditional branches with | |||
381 | /// unconditional ones. A threading path includes a list of basic blocks, the | |||
382 | /// exit state, and the block that determines the next state. | |||
383 | struct ThreadingPath { | |||
384 | /// Exit value is DFA's exit state for the given path. | |||
385 | uint64_t getExitValue() const { return ExitVal; } | |||
386 | void setExitValue(const ConstantInt *V) { | |||
387 | ExitVal = V->getZExtValue(); | |||
388 | IsExitValSet = true; | |||
389 | } | |||
390 | bool isExitValueSet() const { return IsExitValSet; } | |||
391 | ||||
392 | /// Determinator is the basic block that determines the next state of the DFA. | |||
393 | const BasicBlock *getDeterminatorBB() const { return DBB; } | |||
394 | void setDeterminator(const BasicBlock *BB) { DBB = BB; } | |||
395 | ||||
396 | /// Path is a list of basic blocks. | |||
397 | const PathType &getPath() const { return Path; } | |||
398 | void setPath(const PathType &NewPath) { Path = NewPath; } | |||
399 | ||||
400 | void print(raw_ostream &OS) const { | |||
401 | OS << Path << " [ " << ExitVal << ", " << DBB->getName() << " ]"; | |||
402 | } | |||
403 | ||||
404 | private: | |||
405 | PathType Path; | |||
406 | uint64_t ExitVal; | |||
407 | const BasicBlock *DBB = nullptr; | |||
408 | bool IsExitValSet = false; | |||
409 | }; | |||
410 | ||||
411 | #ifndef NDEBUG1 | |||
412 | inline raw_ostream &operator<<(raw_ostream &OS, const ThreadingPath &TPath) { | |||
413 | TPath.print(OS); | |||
414 | return OS; | |||
415 | } | |||
416 | #endif | |||
417 | ||||
418 | struct MainSwitch { | |||
419 | MainSwitch(SwitchInst *SI, OptimizationRemarkEmitter *ORE) { | |||
420 | if (isPredictable(SI)) { | |||
421 | Instr = SI; | |||
422 | } else { | |||
423 | ORE->emit([&]() { | |||
424 | return OptimizationRemarkMissed(DEBUG_TYPE"dfa-jump-threading", "SwitchNotPredictable", SI) | |||
425 | << "Switch instruction is not predictable."; | |||
426 | }); | |||
427 | } | |||
428 | } | |||
429 | ||||
430 | virtual ~MainSwitch() = default; | |||
431 | ||||
432 | SwitchInst *getInstr() const { return Instr; } | |||
433 | const SmallVector<SelectInstToUnfold, 4> getSelectInsts() { | |||
434 | return SelectInsts; | |||
435 | } | |||
436 | ||||
437 | private: | |||
438 | /// Do a use-def chain traversal. Make sure the value of the switch variable | |||
439 | /// is always a known constant. This means that all conditional jumps based on | |||
440 | /// switch variable can be converted to unconditional jumps. | |||
441 | bool isPredictable(const SwitchInst *SI) { | |||
442 | std::deque<Instruction *> Q; | |||
443 | SmallSet<Value *, 16> SeenValues; | |||
444 | SelectInsts.clear(); | |||
445 | ||||
446 | Value *FirstDef = SI->getOperand(0); | |||
447 | auto *Inst = dyn_cast<Instruction>(FirstDef); | |||
448 | ||||
449 | // If this is a function argument or another non-instruction, then give up. | |||
450 | // We are interested in loop local variables. | |||
451 | if (!Inst) | |||
452 | return false; | |||
453 | ||||
454 | // Require the first definition to be a PHINode | |||
455 | if (!isa<PHINode>(Inst)) | |||
456 | return false; | |||
457 | ||||
458 | LLVM_DEBUG(dbgs() << "\tisPredictable() FirstDef: " << *Inst << "\n")do { } while (false); | |||
459 | ||||
460 | Q.push_back(Inst); | |||
461 | SeenValues.insert(FirstDef); | |||
462 | ||||
463 | while (!Q.empty()) { | |||
464 | Instruction *Current = Q.front(); | |||
465 | Q.pop_front(); | |||
466 | ||||
467 | if (auto *Phi = dyn_cast<PHINode>(Current)) { | |||
468 | for (Value *Incoming : Phi->incoming_values()) { | |||
469 | if (!isPredictableValue(Incoming, SeenValues)) | |||
470 | return false; | |||
471 | addInstToQueue(Incoming, Q, SeenValues); | |||
472 | } | |||
473 | LLVM_DEBUG(dbgs() << "\tisPredictable() phi: " << *Phi << "\n")do { } while (false); | |||
474 | } else if (SelectInst *SelI = dyn_cast<SelectInst>(Current)) { | |||
475 | if (!isValidSelectInst(SelI)) | |||
476 | return false; | |||
477 | if (!isPredictableValue(SelI->getTrueValue(), SeenValues) || | |||
478 | !isPredictableValue(SelI->getFalseValue(), SeenValues)) { | |||
479 | return false; | |||
480 | } | |||
481 | addInstToQueue(SelI->getTrueValue(), Q, SeenValues); | |||
482 | addInstToQueue(SelI->getFalseValue(), Q, SeenValues); | |||
483 | LLVM_DEBUG(dbgs() << "\tisPredictable() select: " << *SelI << "\n")do { } while (false); | |||
484 | if (auto *SelIUse = dyn_cast<PHINode>(SelI->user_back())) | |||
485 | SelectInsts.push_back(SelectInstToUnfold(SelI, SelIUse)); | |||
486 | } else { | |||
487 | // If it is neither a phi nor a select, then we give up. | |||
488 | return false; | |||
489 | } | |||
490 | } | |||
491 | ||||
492 | return true; | |||
493 | } | |||
494 | ||||
495 | bool isPredictableValue(Value *InpVal, SmallSet<Value *, 16> &SeenValues) { | |||
496 | if (SeenValues.find(InpVal) != SeenValues.end()) | |||
497 | return true; | |||
498 | ||||
499 | if (isa<ConstantInt>(InpVal)) | |||
500 | return true; | |||
501 | ||||
502 | // If this is a function argument or another non-instruction, then give up. | |||
503 | if (!isa<Instruction>(InpVal)) | |||
504 | return false; | |||
505 | ||||
506 | return true; | |||
507 | } | |||
508 | ||||
509 | void addInstToQueue(Value *Val, std::deque<Instruction *> &Q, | |||
510 | SmallSet<Value *, 16> &SeenValues) { | |||
511 | if (SeenValues.find(Val) != SeenValues.end()) | |||
512 | return; | |||
513 | if (Instruction *I = dyn_cast<Instruction>(Val)) | |||
514 | Q.push_back(I); | |||
515 | SeenValues.insert(Val); | |||
516 | } | |||
517 | ||||
518 | bool isValidSelectInst(SelectInst *SI) { | |||
519 | if (!SI->hasOneUse()) | |||
520 | return false; | |||
521 | ||||
522 | Instruction *SIUse = dyn_cast<Instruction>(SI->user_back()); | |||
523 | // The use of the select inst should be either a phi or another select. | |||
524 | if (!SIUse && !(isa<PHINode>(SIUse) || isa<SelectInst>(SIUse))) | |||
525 | return false; | |||
526 | ||||
527 | BasicBlock *SIBB = SI->getParent(); | |||
528 | ||||
529 | // Currently, we can only expand select instructions in basic blocks with | |||
530 | // one successor. | |||
531 | BranchInst *SITerm = dyn_cast<BranchInst>(SIBB->getTerminator()); | |||
532 | if (!SITerm || !SITerm->isUnconditional()) | |||
533 | return false; | |||
534 | ||||
535 | if (isa<PHINode>(SIUse) && | |||
536 | SIBB->getSingleSuccessor() != dyn_cast<Instruction>(SIUse)->getParent()) | |||
537 | return false; | |||
538 | ||||
539 | // If select will not be sunk during unfolding, and it is in the same basic | |||
540 | // block as another state defining select, then cannot unfold both. | |||
541 | for (SelectInstToUnfold SIToUnfold : SelectInsts) { | |||
542 | SelectInst *PrevSI = SIToUnfold.getInst(); | |||
543 | if (PrevSI->getTrueValue() != SI && PrevSI->getFalseValue() != SI && | |||
544 | PrevSI->getParent() == SI->getParent()) | |||
545 | return false; | |||
546 | } | |||
547 | ||||
548 | return true; | |||
549 | } | |||
550 | ||||
551 | SwitchInst *Instr = nullptr; | |||
552 | SmallVector<SelectInstToUnfold, 4> SelectInsts; | |||
553 | }; | |||
554 | ||||
555 | struct AllSwitchPaths { | |||
556 | AllSwitchPaths(const MainSwitch *MSwitch, OptimizationRemarkEmitter *ORE) | |||
557 | : Switch(MSwitch->getInstr()), SwitchBlock(Switch->getParent()), | |||
558 | ORE(ORE) {} | |||
559 | ||||
560 | std::vector<ThreadingPath> &getThreadingPaths() { return TPaths; } | |||
561 | unsigned getNumThreadingPaths() { return TPaths.size(); } | |||
562 | SwitchInst *getSwitchInst() { return Switch; } | |||
563 | BasicBlock *getSwitchBlock() { return SwitchBlock; } | |||
564 | ||||
565 | void run() { | |||
566 | VisitedBlocks Visited; | |||
567 | PathsType LoopPaths = paths(SwitchBlock, Visited, /* PathDepth = */ 1); | |||
568 | StateDefMap StateDef = getStateDefMap(); | |||
569 | ||||
570 | for (PathType Path : LoopPaths) { | |||
571 | ThreadingPath TPath; | |||
572 | ||||
573 | const BasicBlock *PrevBB = Path.back(); | |||
574 | for (const BasicBlock *BB : Path) { | |||
575 | if (StateDef.count(BB) != 0) { | |||
576 | const PHINode *Phi = dyn_cast<PHINode>(StateDef[BB]); | |||
577 | assert(Phi && "Expected a state-defining instr to be a phi node.")((void)0); | |||
578 | ||||
579 | const Value *V = Phi->getIncomingValueForBlock(PrevBB); | |||
| ||||
580 | if (const ConstantInt *C = dyn_cast<const ConstantInt>(V)) { | |||
581 | TPath.setExitValue(C); | |||
582 | TPath.setDeterminator(BB); | |||
583 | TPath.setPath(Path); | |||
584 | } | |||
585 | } | |||
586 | ||||
587 | // Switch block is the determinator, this is the final exit value. | |||
588 | if (TPath.isExitValueSet() && BB == Path.front()) | |||
589 | break; | |||
590 | ||||
591 | PrevBB = BB; | |||
592 | } | |||
593 | ||||
594 | if (TPath.isExitValueSet()) | |||
595 | TPaths.push_back(TPath); | |||
596 | } | |||
597 | } | |||
598 | ||||
599 | private: | |||
600 | // Value: an instruction that defines a switch state; | |||
601 | // Key: the parent basic block of that instruction. | |||
602 | typedef DenseMap<const BasicBlock *, const PHINode *> StateDefMap; | |||
603 | ||||
604 | PathsType paths(BasicBlock *BB, VisitedBlocks &Visited, | |||
605 | unsigned PathDepth) const { | |||
606 | PathsType Res; | |||
607 | ||||
608 | // Stop exploring paths after visiting MaxPathLength blocks | |||
609 | if (PathDepth > MaxPathLength) { | |||
610 | ORE->emit([&]() { | |||
611 | return OptimizationRemarkAnalysis(DEBUG_TYPE"dfa-jump-threading", "MaxPathLengthReached", | |||
612 | Switch) | |||
613 | << "Exploration stopped after visiting MaxPathLength=" | |||
614 | << ore::NV("MaxPathLength", MaxPathLength) << " blocks."; | |||
615 | }); | |||
616 | return Res; | |||
617 | } | |||
618 | ||||
619 | Visited.insert(BB); | |||
620 | ||||
621 | // Some blocks have multiple edges to the same successor, and this set | |||
622 | // is used to prevent a duplicate path from being generated | |||
623 | SmallSet<BasicBlock *, 4> Successors; | |||
624 | ||||
625 | for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { | |||
626 | BasicBlock *Succ = *SI; | |||
627 | ||||
628 | if (Successors.find(Succ) != Successors.end()) | |||
629 | continue; | |||
630 | Successors.insert(Succ); | |||
631 | ||||
632 | // Found a cycle through the SwitchBlock | |||
633 | if (Succ == SwitchBlock) { | |||
634 | Res.push_back({BB}); | |||
635 | continue; | |||
636 | } | |||
637 | ||||
638 | // We have encountered a cycle, do not get caught in it | |||
639 | if (Visited.find(Succ) != Visited.end()) | |||
640 | continue; | |||
641 | ||||
642 | PathsType SuccPaths = paths(Succ, Visited, PathDepth + 1); | |||
643 | for (PathType Path : SuccPaths) { | |||
644 | PathType NewPath(Path); | |||
645 | NewPath.push_front(BB); | |||
646 | Res.push_back(NewPath); | |||
647 | } | |||
648 | } | |||
649 | // This block could now be visited again from a different predecessor. Note | |||
650 | // that this will result in exponential runtime. Subpaths could possibly be | |||
651 | // cached but it takes a lot of memory to store them. | |||
652 | Visited.erase(BB); | |||
653 | return Res; | |||
654 | } | |||
655 | ||||
656 | /// Walk the use-def chain and collect all the state-defining instructions. | |||
657 | StateDefMap getStateDefMap() const { | |||
658 | StateDefMap Res; | |||
659 | ||||
660 | Value *FirstDef = Switch->getOperand(0); | |||
661 | ||||
662 | assert(isa<PHINode>(FirstDef) && "After select unfolding, all state "((void)0) | |||
663 | "definitions are expected to be phi "((void)0) | |||
664 | "nodes.")((void)0); | |||
665 | ||||
666 | SmallVector<PHINode *, 8> Stack; | |||
667 | Stack.push_back(dyn_cast<PHINode>(FirstDef)); | |||
668 | SmallSet<Value *, 16> SeenValues; | |||
669 | ||||
670 | while (!Stack.empty()) { | |||
671 | PHINode *CurPhi = Stack.back(); | |||
672 | Stack.pop_back(); | |||
673 | ||||
674 | Res[CurPhi->getParent()] = CurPhi; | |||
675 | SeenValues.insert(CurPhi); | |||
676 | ||||
677 | for (Value *Incoming : CurPhi->incoming_values()) { | |||
678 | if (Incoming == FirstDef || isa<ConstantInt>(Incoming) || | |||
679 | SeenValues.find(Incoming) != SeenValues.end()) { | |||
680 | continue; | |||
681 | } | |||
682 | ||||
683 | assert(isa<PHINode>(Incoming) && "After select unfolding, all state "((void)0) | |||
684 | "definitions are expected to be phi "((void)0) | |||
685 | "nodes.")((void)0); | |||
686 | ||||
687 | Stack.push_back(cast<PHINode>(Incoming)); | |||
688 | } | |||
689 | } | |||
690 | ||||
691 | return Res; | |||
692 | } | |||
693 | ||||
694 | SwitchInst *Switch; | |||
695 | BasicBlock *SwitchBlock; | |||
696 | OptimizationRemarkEmitter *ORE; | |||
697 | std::vector<ThreadingPath> TPaths; | |||
698 | }; | |||
699 | ||||
700 | struct TransformDFA { | |||
701 | TransformDFA(AllSwitchPaths *SwitchPaths, DominatorTree *DT, | |||
702 | AssumptionCache *AC, TargetTransformInfo *TTI, | |||
703 | OptimizationRemarkEmitter *ORE, | |||
704 | SmallPtrSet<const Value *, 32> EphValues) | |||
705 | : SwitchPaths(SwitchPaths), DT(DT), AC(AC), TTI(TTI), ORE(ORE), | |||
706 | EphValues(EphValues) {} | |||
707 | ||||
708 | void run() { | |||
709 | if (isLegalAndProfitableToTransform()) { | |||
710 | createAllExitPaths(); | |||
711 | NumTransforms++; | |||
712 | } | |||
713 | } | |||
714 | ||||
715 | private: | |||
716 | /// This function performs both a legality check and profitability check at | |||
717 | /// the same time since it is convenient to do so. It iterates through all | |||
718 | /// blocks that will be cloned, and keeps track of the duplication cost. It | |||
719 | /// also returns false if it is illegal to clone some required block. | |||
720 | bool isLegalAndProfitableToTransform() { | |||
721 | CodeMetrics Metrics; | |||
722 | SwitchInst *Switch = SwitchPaths->getSwitchInst(); | |||
723 | ||||
724 | // Note that DuplicateBlockMap is not being used as intended here. It is | |||
725 | // just being used to ensure (BB, State) pairs are only counted once. | |||
726 | DuplicateBlockMap DuplicateMap; | |||
727 | ||||
728 | for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) { | |||
729 | PathType PathBBs = TPath.getPath(); | |||
730 | uint64_t NextState = TPath.getExitValue(); | |||
731 | const BasicBlock *Determinator = TPath.getDeterminatorBB(); | |||
732 | ||||
733 | // Update Metrics for the Switch block, this is always cloned | |||
734 | BasicBlock *BB = SwitchPaths->getSwitchBlock(); | |||
735 | BasicBlock *VisitedBB = getClonedBB(BB, NextState, DuplicateMap); | |||
736 | if (!VisitedBB) { | |||
737 | Metrics.analyzeBasicBlock(BB, *TTI, EphValues); | |||
738 | DuplicateMap[BB].push_back({BB, NextState}); | |||
739 | } | |||
740 | ||||
741 | // If the Switch block is the Determinator, then we can continue since | |||
742 | // this is the only block that is cloned and we already counted for it. | |||
743 | if (PathBBs.front() == Determinator) | |||
744 | continue; | |||
745 | ||||
746 | // Otherwise update Metrics for all blocks that will be cloned. If any | |||
747 | // block is already cloned and would be reused, don't double count it. | |||
748 | auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator); | |||
749 | for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) { | |||
750 | BB = *BBIt; | |||
751 | VisitedBB = getClonedBB(BB, NextState, DuplicateMap); | |||
752 | if (VisitedBB) | |||
753 | continue; | |||
754 | Metrics.analyzeBasicBlock(BB, *TTI, EphValues); | |||
755 | DuplicateMap[BB].push_back({BB, NextState}); | |||
756 | } | |||
757 | ||||
758 | if (Metrics.notDuplicatable) { | |||
759 | LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "do { } while (false) | |||
760 | << "non-duplicatable instructions.\n")do { } while (false); | |||
761 | ORE->emit([&]() { | |||
762 | return OptimizationRemarkMissed(DEBUG_TYPE"dfa-jump-threading", "NonDuplicatableInst", | |||
763 | Switch) | |||
764 | << "Contains non-duplicatable instructions."; | |||
765 | }); | |||
766 | return false; | |||
767 | } | |||
768 | ||||
769 | if (Metrics.convergent) { | |||
770 | LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "do { } while (false) | |||
771 | << "convergent instructions.\n")do { } while (false); | |||
772 | ORE->emit([&]() { | |||
773 | return OptimizationRemarkMissed(DEBUG_TYPE"dfa-jump-threading", "ConvergentInst", Switch) | |||
774 | << "Contains convergent instructions."; | |||
775 | }); | |||
776 | return false; | |||
777 | } | |||
778 | } | |||
779 | ||||
780 | unsigned DuplicationCost = 0; | |||
781 | ||||
782 | unsigned JumpTableSize = 0; | |||
783 | TTI->getEstimatedNumberOfCaseClusters(*Switch, JumpTableSize, nullptr, | |||
784 | nullptr); | |||
785 | if (JumpTableSize == 0) { | |||
786 | // Factor in the number of conditional branches reduced from jump | |||
787 | // threading. Assume that lowering the switch block is implemented by | |||
788 | // using binary search, hence the LogBase2(). | |||
789 | unsigned CondBranches = | |||
790 | APInt(32, Switch->getNumSuccessors()).ceilLogBase2(); | |||
791 | DuplicationCost = Metrics.NumInsts / CondBranches; | |||
792 | } else { | |||
793 | // Compared with jump tables, the DFA optimizer removes an indirect branch | |||
794 | // on each loop iteration, thus making branch prediction more precise. The | |||
795 | // more branch targets there are, the more likely it is for the branch | |||
796 | // predictor to make a mistake, and the more benefit there is in the DFA | |||
797 | // optimizer. Thus, the more branch targets there are, the lower is the | |||
798 | // cost of the DFA opt. | |||
799 | DuplicationCost = Metrics.NumInsts / JumpTableSize; | |||
800 | } | |||
801 | ||||
802 | LLVM_DEBUG(dbgs() << "\nDFA Jump Threading: Cost to jump thread block "do { } while (false) | |||
803 | << SwitchPaths->getSwitchBlock()->getName()do { } while (false) | |||
804 | << " is: " << DuplicationCost << "\n\n")do { } while (false); | |||
805 | ||||
806 | if (DuplicationCost > CostThreshold) { | |||
807 | LLVM_DEBUG(dbgs() << "Not jump threading, duplication cost exceeds the "do { } while (false) | |||
808 | << "cost threshold.\n")do { } while (false); | |||
809 | ORE->emit([&]() { | |||
810 | return OptimizationRemarkMissed(DEBUG_TYPE"dfa-jump-threading", "NotProfitable", Switch) | |||
811 | << "Duplication cost exceeds the cost threshold (cost=" | |||
812 | << ore::NV("Cost", DuplicationCost) | |||
813 | << ", threshold=" << ore::NV("Threshold", CostThreshold) << ")."; | |||
814 | }); | |||
815 | return false; | |||
816 | } | |||
817 | ||||
818 | ORE->emit([&]() { | |||
819 | return OptimizationRemark(DEBUG_TYPE"dfa-jump-threading", "JumpThreaded", Switch) | |||
820 | << "Switch statement jump-threaded."; | |||
821 | }); | |||
822 | ||||
823 | return true; | |||
824 | } | |||
825 | ||||
826 | /// Transform each threading path to effectively jump thread the DFA. | |||
827 | void createAllExitPaths() { | |||
828 | DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager); | |||
829 | ||||
830 | // Move the switch block to the end of the path, since it will be duplicated | |||
831 | BasicBlock *SwitchBlock = SwitchPaths->getSwitchBlock(); | |||
832 | for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) { | |||
833 | LLVM_DEBUG(dbgs() << TPath << "\n")do { } while (false); | |||
834 | PathType NewPath(TPath.getPath()); | |||
835 | NewPath.push_back(SwitchBlock); | |||
836 | TPath.setPath(NewPath); | |||
837 | } | |||
838 | ||||
839 | // Transform the ThreadingPaths and keep track of the cloned values | |||
840 | DuplicateBlockMap DuplicateMap; | |||
841 | DefMap NewDefs; | |||
842 | ||||
843 | SmallSet<BasicBlock *, 16> BlocksToClean; | |||
844 | for (BasicBlock *BB : successors(SwitchBlock)) | |||
845 | BlocksToClean.insert(BB); | |||
846 | ||||
847 | for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) { | |||
848 | createExitPath(NewDefs, TPath, DuplicateMap, BlocksToClean, &DTU); | |||
849 | NumPaths++; | |||
850 | } | |||
851 | ||||
852 | // After all paths are cloned, now update the last successor of the cloned | |||
853 | // path so it skips over the switch statement | |||
854 | for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) | |||
855 | updateLastSuccessor(TPath, DuplicateMap, &DTU); | |||
856 | ||||
857 | // For each instruction that was cloned and used outside, update its uses | |||
858 | updateSSA(NewDefs); | |||
859 | ||||
860 | // Clean PHI Nodes for the newly created blocks | |||
861 | for (BasicBlock *BB : BlocksToClean) | |||
862 | cleanPhiNodes(BB); | |||
863 | } | |||
864 | ||||
865 | /// For a specific ThreadingPath \p Path, create an exit path starting from | |||
866 | /// the determinator block. | |||
867 | /// | |||
868 | /// To remember the correct destination, we have to duplicate blocks | |||
869 | /// corresponding to each state. Also update the terminating instruction of | |||
870 | /// the predecessors, and phis in the successor blocks. | |||
871 | void createExitPath(DefMap &NewDefs, ThreadingPath &Path, | |||
872 | DuplicateBlockMap &DuplicateMap, | |||
873 | SmallSet<BasicBlock *, 16> &BlocksToClean, | |||
874 | DomTreeUpdater *DTU) { | |||
875 | uint64_t NextState = Path.getExitValue(); | |||
876 | const BasicBlock *Determinator = Path.getDeterminatorBB(); | |||
877 | PathType PathBBs = Path.getPath(); | |||
878 | ||||
879 | // Don't select the placeholder block in front | |||
880 | if (PathBBs.front() == Determinator) | |||
881 | PathBBs.pop_front(); | |||
882 | ||||
883 | auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator); | |||
884 | auto Prev = std::prev(DetIt); | |||
885 | BasicBlock *PrevBB = *Prev; | |||
886 | for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) { | |||
887 | BasicBlock *BB = *BBIt; | |||
888 | BlocksToClean.insert(BB); | |||
889 | ||||
890 | // We already cloned BB for this NextState, now just update the branch | |||
891 | // and continue. | |||
892 | BasicBlock *NextBB = getClonedBB(BB, NextState, DuplicateMap); | |||
893 | if (NextBB) { | |||
894 | updatePredecessor(PrevBB, BB, NextBB, DTU); | |||
895 | PrevBB = NextBB; | |||
896 | continue; | |||
897 | } | |||
898 | ||||
899 | // Clone the BB and update the successor of Prev to jump to the new block | |||
900 | BasicBlock *NewBB = cloneBlockAndUpdatePredecessor( | |||
901 | BB, PrevBB, NextState, DuplicateMap, NewDefs, DTU); | |||
902 | DuplicateMap[BB].push_back({NewBB, NextState}); | |||
903 | BlocksToClean.insert(NewBB); | |||
904 | PrevBB = NewBB; | |||
905 | } | |||
906 | } | |||
907 | ||||
908 | /// Restore SSA form after cloning blocks. | |||
909 | /// | |||
910 | /// Each cloned block creates new defs for a variable, and the uses need to be | |||
911 | /// updated to reflect this. The uses may be replaced with a cloned value, or | |||
912 | /// some derived phi instruction. Note that all uses of a value defined in the | |||
913 | /// same block were already remapped when cloning the block. | |||
914 | void updateSSA(DefMap &NewDefs) { | |||
915 | SSAUpdaterBulk SSAUpdate; | |||
916 | SmallVector<Use *, 16> UsesToRename; | |||
917 | ||||
918 | for (auto KV : NewDefs) { | |||
919 | Instruction *I = KV.first; | |||
920 | BasicBlock *BB = I->getParent(); | |||
921 | std::vector<Instruction *> Cloned = KV.second; | |||
922 | ||||
923 | // Scan all uses of this instruction to see if it is used outside of its | |||
924 | // block, and if so, record them in UsesToRename. | |||
925 | for (Use &U : I->uses()) { | |||
926 | Instruction *User = cast<Instruction>(U.getUser()); | |||
927 | if (PHINode *UserPN = dyn_cast<PHINode>(User)) { | |||
928 | if (UserPN->getIncomingBlock(U) == BB) | |||
929 | continue; | |||
930 | } else if (User->getParent() == BB) { | |||
931 | continue; | |||
932 | } | |||
933 | ||||
934 | UsesToRename.push_back(&U); | |||
935 | } | |||
936 | ||||
937 | // If there are no uses outside the block, we're done with this | |||
938 | // instruction. | |||
939 | if (UsesToRename.empty()) | |||
940 | continue; | |||
941 | LLVM_DEBUG(dbgs() << "DFA-JT: Renaming non-local uses of: " << *Ido { } while (false) | |||
942 | << "\n")do { } while (false); | |||
943 | ||||
944 | // We found a use of I outside of BB. Rename all uses of I that are | |||
945 | // outside its block to be uses of the appropriate PHI node etc. See | |||
946 | // ValuesInBlocks with the values we know. | |||
947 | unsigned VarNum = SSAUpdate.AddVariable(I->getName(), I->getType()); | |||
948 | SSAUpdate.AddAvailableValue(VarNum, BB, I); | |||
949 | for (Instruction *New : Cloned) | |||
950 | SSAUpdate.AddAvailableValue(VarNum, New->getParent(), New); | |||
951 | ||||
952 | while (!UsesToRename.empty()) | |||
953 | SSAUpdate.AddUse(VarNum, UsesToRename.pop_back_val()); | |||
954 | ||||
955 | LLVM_DEBUG(dbgs() << "\n")do { } while (false); | |||
956 | } | |||
957 | // SSAUpdater handles phi placement and renaming uses with the appropriate | |||
958 | // value. | |||
959 | SSAUpdate.RewriteAllUses(DT); | |||
960 | } | |||
961 | ||||
962 | /// Clones a basic block, and adds it to the CFG. | |||
963 | /// | |||
964 | /// This function also includes updating phi nodes in the successors of the | |||
965 | /// BB, and remapping uses that were defined locally in the cloned BB. | |||
966 | BasicBlock *cloneBlockAndUpdatePredecessor(BasicBlock *BB, BasicBlock *PrevBB, | |||
967 | uint64_t NextState, | |||
968 | DuplicateBlockMap &DuplicateMap, | |||
969 | DefMap &NewDefs, | |||
970 | DomTreeUpdater *DTU) { | |||
971 | ValueToValueMapTy VMap; | |||
972 | BasicBlock *NewBB = CloneBasicBlock( | |||
973 | BB, VMap, ".jt" + std::to_string(NextState), BB->getParent()); | |||
974 | NewBB->moveAfter(BB); | |||
975 | NumCloned++; | |||
976 | ||||
977 | for (Instruction &I : *NewBB) { | |||
978 | // Do not remap operands of PHINode in case a definition in BB is an | |||
979 | // incoming value to a phi in the same block. This incoming value will | |||
980 | // be renamed later while restoring SSA. | |||
981 | if (isa<PHINode>(&I)) | |||
982 | continue; | |||
983 | RemapInstruction(&I, VMap, | |||
984 | RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); | |||
985 | if (AssumeInst *II = dyn_cast<AssumeInst>(&I)) | |||
986 | AC->registerAssumption(II); | |||
987 | } | |||
988 | ||||
989 | updateSuccessorPhis(BB, NewBB, NextState, VMap, DuplicateMap); | |||
990 | updatePredecessor(PrevBB, BB, NewBB, DTU); | |||
991 | updateDefMap(NewDefs, VMap); | |||
992 | ||||
993 | // Add all successors to the DominatorTree | |||
994 | SmallPtrSet<BasicBlock *, 4> SuccSet; | |||
995 | for (auto *SuccBB : successors(NewBB)) { | |||
996 | if (SuccSet.insert(SuccBB).second) | |||
997 | DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}}); | |||
998 | } | |||
999 | SuccSet.clear(); | |||
1000 | return NewBB; | |||
1001 | } | |||
1002 | ||||
1003 | /// Update the phi nodes in BB's successors. | |||
1004 | /// | |||
1005 | /// This means creating a new incoming value from NewBB with the new | |||
1006 | /// instruction wherever there is an incoming value from BB. | |||
1007 | void updateSuccessorPhis(BasicBlock *BB, BasicBlock *ClonedBB, | |||
1008 | uint64_t NextState, ValueToValueMapTy &VMap, | |||
1009 | DuplicateBlockMap &DuplicateMap) { | |||
1010 | std::vector<BasicBlock *> BlocksToUpdate; | |||
1011 | ||||
1012 | // If BB is the last block in the path, we can simply update the one case | |||
1013 | // successor that will be reached. | |||
1014 | if (BB == SwitchPaths->getSwitchBlock()) { | |||
1015 | SwitchInst *Switch = SwitchPaths->getSwitchInst(); | |||
1016 | BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState); | |||
1017 | BlocksToUpdate.push_back(NextCase); | |||
1018 | BasicBlock *ClonedSucc = getClonedBB(NextCase, NextState, DuplicateMap); | |||
1019 | if (ClonedSucc) | |||
1020 | BlocksToUpdate.push_back(ClonedSucc); | |||
1021 | } | |||
1022 | // Otherwise update phis in all successors. | |||
1023 | else { | |||
1024 | for (BasicBlock *Succ : successors(BB)) { | |||
1025 | BlocksToUpdate.push_back(Succ); | |||
1026 | ||||
1027 | // Check if a successor has already been cloned for the particular exit | |||
1028 | // value. In this case if a successor was already cloned, the phi nodes | |||
1029 | // in the cloned block should be updated directly. | |||
1030 | BasicBlock *ClonedSucc = getClonedBB(Succ, NextState, DuplicateMap); | |||
1031 | if (ClonedSucc) | |||
1032 | BlocksToUpdate.push_back(ClonedSucc); | |||
1033 | } | |||
1034 | } | |||
1035 | ||||
1036 | // If there is a phi with an incoming value from BB, create a new incoming | |||
1037 | // value for the new predecessor ClonedBB. The value will either be the same | |||
1038 | // value from BB or a cloned value. | |||
1039 | for (BasicBlock *Succ : BlocksToUpdate) { | |||
1040 | for (auto II = Succ->begin(); PHINode *Phi = dyn_cast<PHINode>(II); | |||
1041 | ++II) { | |||
1042 | Value *Incoming = Phi->getIncomingValueForBlock(BB); | |||
1043 | if (Incoming) { | |||
1044 | if (isa<Constant>(Incoming)) { | |||
1045 | Phi->addIncoming(Incoming, ClonedBB); | |||
1046 | continue; | |||
1047 | } | |||
1048 | Value *ClonedVal = VMap[Incoming]; | |||
1049 | if (ClonedVal) | |||
1050 | Phi->addIncoming(ClonedVal, ClonedBB); | |||
1051 | else | |||
1052 | Phi->addIncoming(Incoming, ClonedBB); | |||
1053 | } | |||
1054 | } | |||
1055 | } | |||
1056 | } | |||
1057 | ||||
1058 | /// Sets the successor of PrevBB to be NewBB instead of OldBB. Note that all | |||
1059 | /// other successors are kept as well. | |||
1060 | void updatePredecessor(BasicBlock *PrevBB, BasicBlock *OldBB, | |||
1061 | BasicBlock *NewBB, DomTreeUpdater *DTU) { | |||
1062 | // When a path is reused, there is a chance that predecessors were already | |||
1063 | // updated before. Check if the predecessor needs to be updated first. | |||
1064 | if (!isPredecessor(OldBB, PrevBB)) | |||
1065 | return; | |||
1066 | ||||
1067 | Instruction *PrevTerm = PrevBB->getTerminator(); | |||
1068 | for (unsigned Idx = 0; Idx < PrevTerm->getNumSuccessors(); Idx++) { | |||
1069 | if (PrevTerm->getSuccessor(Idx) == OldBB) { | |||
1070 | OldBB->removePredecessor(PrevBB, /* KeepOneInputPHIs = */ true); | |||
1071 | PrevTerm->setSuccessor(Idx, NewBB); | |||
1072 | } | |||
1073 | } | |||
1074 | DTU->applyUpdates({{DominatorTree::Delete, PrevBB, OldBB}, | |||
1075 | {DominatorTree::Insert, PrevBB, NewBB}}); | |||
1076 | } | |||
1077 | ||||
1078 | /// Add new value mappings to the DefMap to keep track of all new definitions | |||
1079 | /// for a particular instruction. These will be used while updating SSA form. | |||
1080 | void updateDefMap(DefMap &NewDefs, ValueToValueMapTy &VMap) { | |||
1081 | for (auto Entry : VMap) { | |||
1082 | Instruction *Inst = | |||
1083 | dyn_cast<Instruction>(const_cast<Value *>(Entry.first)); | |||
1084 | if (!Inst || !Entry.second || isa<BranchInst>(Inst) || | |||
1085 | isa<SwitchInst>(Inst)) { | |||
1086 | continue; | |||
1087 | } | |||
1088 | ||||
1089 | Instruction *Cloned = dyn_cast<Instruction>(Entry.second); | |||
1090 | if (!Cloned) | |||
1091 | continue; | |||
1092 | ||||
1093 | if (NewDefs.find(Inst) == NewDefs.end()) | |||
1094 | NewDefs[Inst] = {Cloned}; | |||
1095 | else | |||
1096 | NewDefs[Inst].push_back(Cloned); | |||
1097 | } | |||
1098 | } | |||
1099 | ||||
1100 | /// Update the last branch of a particular cloned path to point to the correct | |||
1101 | /// case successor. | |||
1102 | /// | |||
1103 | /// Note that this is an optional step and would have been done in later | |||
1104 | /// optimizations, but it makes the CFG significantly easier to work with. | |||
1105 | void updateLastSuccessor(ThreadingPath &TPath, | |||
1106 | DuplicateBlockMap &DuplicateMap, | |||
1107 | DomTreeUpdater *DTU) { | |||
1108 | uint64_t NextState = TPath.getExitValue(); | |||
1109 | BasicBlock *BB = TPath.getPath().back(); | |||
1110 | BasicBlock *LastBlock = getClonedBB(BB, NextState, DuplicateMap); | |||
1111 | ||||
1112 | // Note multiple paths can end at the same block so check that it is not | |||
1113 | // updated yet | |||
1114 | if (!isa<SwitchInst>(LastBlock->getTerminator())) | |||
1115 | return; | |||
1116 | SwitchInst *Switch = cast<SwitchInst>(LastBlock->getTerminator()); | |||
1117 | BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState); | |||
1118 | ||||
1119 | std::vector<DominatorTree::UpdateType> DTUpdates; | |||
1120 | SmallPtrSet<BasicBlock *, 4> SuccSet; | |||
1121 | for (BasicBlock *Succ : successors(LastBlock)) { | |||
1122 | if (Succ != NextCase && SuccSet.insert(Succ).second) | |||
1123 | DTUpdates.push_back({DominatorTree::Delete, LastBlock, Succ}); | |||
1124 | } | |||
1125 | ||||
1126 | Switch->eraseFromParent(); | |||
1127 | BranchInst::Create(NextCase, LastBlock); | |||
1128 | ||||
1129 | DTU->applyUpdates(DTUpdates); | |||
1130 | } | |||
1131 | ||||
1132 | /// After cloning blocks, some of the phi nodes have extra incoming values | |||
1133 | /// that are no longer used. This function removes them. | |||
1134 | void cleanPhiNodes(BasicBlock *BB) { | |||
1135 | // If BB is no longer reachable, remove any remaining phi nodes | |||
1136 | if (pred_empty(BB)) { | |||
1137 | std::vector<PHINode *> PhiToRemove; | |||
1138 | for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) { | |||
1139 | PhiToRemove.push_back(Phi); | |||
1140 | } | |||
1141 | for (PHINode *PN : PhiToRemove) { | |||
1142 | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | |||
1143 | PN->eraseFromParent(); | |||
1144 | } | |||
1145 | return; | |||
1146 | } | |||
1147 | ||||
1148 | // Remove any incoming values that come from an invalid predecessor | |||
1149 | for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) { | |||
1150 | std::vector<BasicBlock *> BlocksToRemove; | |||
1151 | for (BasicBlock *IncomingBB : Phi->blocks()) { | |||
1152 | if (!isPredecessor(BB, IncomingBB)) | |||
1153 | BlocksToRemove.push_back(IncomingBB); | |||
1154 | } | |||
1155 | for (BasicBlock *BB : BlocksToRemove) | |||
1156 | Phi->removeIncomingValue(BB); | |||
1157 | } | |||
1158 | } | |||
1159 | ||||
1160 | /// Checks if BB was already cloned for a particular next state value. If it | |||
1161 | /// was then it returns this cloned block, and otherwise null. | |||
1162 | BasicBlock *getClonedBB(BasicBlock *BB, uint64_t NextState, | |||
1163 | DuplicateBlockMap &DuplicateMap) { | |||
1164 | CloneList ClonedBBs = DuplicateMap[BB]; | |||
1165 | ||||
1166 | // Find an entry in the CloneList with this NextState. If it exists then | |||
1167 | // return the corresponding BB | |||
1168 | auto It = llvm::find_if(ClonedBBs, [NextState](const ClonedBlock &C) { | |||
1169 | return C.State == NextState; | |||
1170 | }); | |||
1171 | return It != ClonedBBs.end() ? (*It).BB : nullptr; | |||
1172 | } | |||
1173 | ||||
1174 | /// Helper to get the successor corresponding to a particular case value for | |||
1175 | /// a switch statement. | |||
1176 | BasicBlock *getNextCaseSuccessor(SwitchInst *Switch, uint64_t NextState) { | |||
1177 | BasicBlock *NextCase = nullptr; | |||
1178 | for (auto Case : Switch->cases()) { | |||
1179 | if (Case.getCaseValue()->getZExtValue() == NextState) { | |||
1180 | NextCase = Case.getCaseSuccessor(); | |||
1181 | break; | |||
1182 | } | |||
1183 | } | |||
1184 | if (!NextCase) | |||
1185 | NextCase = Switch->getDefaultDest(); | |||
1186 | return NextCase; | |||
1187 | } | |||
1188 | ||||
1189 | /// Returns true if IncomingBB is a predecessor of BB. | |||
1190 | bool isPredecessor(BasicBlock *BB, BasicBlock *IncomingBB) { | |||
1191 | return llvm::find(predecessors(BB), IncomingBB) != pred_end(BB); | |||
1192 | } | |||
1193 | ||||
1194 | AllSwitchPaths *SwitchPaths; | |||
1195 | DominatorTree *DT; | |||
1196 | AssumptionCache *AC; | |||
1197 | TargetTransformInfo *TTI; | |||
1198 | OptimizationRemarkEmitter *ORE; | |||
1199 | SmallPtrSet<const Value *, 32> EphValues; | |||
1200 | std::vector<ThreadingPath> TPaths; | |||
1201 | }; | |||
1202 | ||||
1203 | bool DFAJumpThreading::run(Function &F) { | |||
1204 | LLVM_DEBUG(dbgs() << "\nDFA Jump threading: " << F.getName() << "\n")do { } while (false); | |||
1205 | ||||
1206 | if (F.hasOptSize()) { | |||
1207 | LLVM_DEBUG(dbgs() << "Skipping due to the 'minsize' attribute\n")do { } while (false); | |||
1208 | return false; | |||
1209 | } | |||
1210 | ||||
1211 | if (ClViewCfgBefore) | |||
1212 | F.viewCFG(); | |||
1213 | ||||
1214 | SmallVector<AllSwitchPaths, 2> ThreadableLoops; | |||
1215 | bool MadeChanges = false; | |||
1216 | ||||
1217 | for (BasicBlock &BB : F) { | |||
1218 | auto *SI = dyn_cast<SwitchInst>(BB.getTerminator()); | |||
1219 | if (!SI
| |||
1220 | continue; | |||
1221 | ||||
1222 | LLVM_DEBUG(dbgs() << "\nCheck if SwitchInst in BB " << BB.getName()do { } while (false) | |||
1223 | << " is predictable\n")do { } while (false); | |||
1224 | MainSwitch Switch(SI, ORE); | |||
1225 | ||||
1226 | if (!Switch.getInstr()) | |||
1227 | continue; | |||
1228 | ||||
1229 | LLVM_DEBUG(dbgs() << "\nSwitchInst in BB " << BB.getName() << " is a "do { } while (false) | |||
1230 | << "candidate for jump threading\n")do { } while (false); | |||
1231 | LLVM_DEBUG(SI->dump())do { } while (false); | |||
1232 | ||||
1233 | unfoldSelectInstrs(DT, Switch.getSelectInsts()); | |||
1234 | if (!Switch.getSelectInsts().empty()) | |||
1235 | MadeChanges = true; | |||
1236 | ||||
1237 | AllSwitchPaths SwitchPaths(&Switch, ORE); | |||
1238 | SwitchPaths.run(); | |||
1239 | ||||
1240 | if (SwitchPaths.getNumThreadingPaths() > 0) { | |||
1241 | ThreadableLoops.push_back(SwitchPaths); | |||
1242 | ||||
1243 | // For the time being limit this optimization to occurring once in a | |||
1244 | // function since it can change the CFG significantly. This is not a | |||
1245 | // strict requirement but it can cause buggy behavior if there is an | |||
1246 | // overlap of blocks in different opportunities. There is a lot of room to | |||
1247 | // experiment with catching more opportunities here. | |||
1248 | break; | |||
1249 | } | |||
1250 | } | |||
1251 | ||||
1252 | SmallPtrSet<const Value *, 32> EphValues; | |||
1253 | if (ThreadableLoops.size() > 0) | |||
1254 | CodeMetrics::collectEphemeralValues(&F, AC, EphValues); | |||
1255 | ||||
1256 | for (AllSwitchPaths SwitchPaths : ThreadableLoops) { | |||
1257 | TransformDFA Transform(&SwitchPaths, DT, AC, TTI, ORE, EphValues); | |||
1258 | Transform.run(); | |||
1259 | MadeChanges = true; | |||
1260 | } | |||
1261 | ||||
1262 | #ifdef EXPENSIVE_CHECKS | |||
1263 | assert(DT->verify(DominatorTree::VerificationLevel::Full))((void)0); | |||
1264 | verifyFunction(F, &dbgs()); | |||
1265 | #endif | |||
1266 | ||||
1267 | return MadeChanges; | |||
1268 | } | |||
1269 | ||||
1270 | } // end anonymous namespace | |||
1271 | ||||
1272 | /// Integrate with the new Pass Manager | |||
1273 | PreservedAnalyses DFAJumpThreadingPass::run(Function &F, | |||
1274 | FunctionAnalysisManager &AM) { | |||
1275 | AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); | |||
1276 | DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); | |||
1277 | TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); | |||
1278 | OptimizationRemarkEmitter ORE(&F); | |||
1279 | ||||
1280 | if (!DFAJumpThreading(&AC, &DT, &TTI, &ORE).run(F)) | |||
| ||||
1281 | return PreservedAnalyses::all(); | |||
1282 | ||||
1283 | PreservedAnalyses PA; | |||
1284 | PA.preserve<DominatorTreeAnalysis>(); | |||
1285 | return PA; | |||
1286 | } |