File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaType.cpp |
Warning: | line 6069, column 43 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===// | ||||||||||
2 | // | ||||||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||||
6 | // | ||||||||||
7 | //===----------------------------------------------------------------------===// | ||||||||||
8 | // | ||||||||||
9 | // This file implements type-related semantic analysis. | ||||||||||
10 | // | ||||||||||
11 | //===----------------------------------------------------------------------===// | ||||||||||
12 | |||||||||||
13 | #include "TypeLocBuilder.h" | ||||||||||
14 | #include "clang/AST/ASTConsumer.h" | ||||||||||
15 | #include "clang/AST/ASTContext.h" | ||||||||||
16 | #include "clang/AST/ASTMutationListener.h" | ||||||||||
17 | #include "clang/AST/ASTStructuralEquivalence.h" | ||||||||||
18 | #include "clang/AST/CXXInheritance.h" | ||||||||||
19 | #include "clang/AST/DeclObjC.h" | ||||||||||
20 | #include "clang/AST/DeclTemplate.h" | ||||||||||
21 | #include "clang/AST/Expr.h" | ||||||||||
22 | #include "clang/AST/TypeLoc.h" | ||||||||||
23 | #include "clang/AST/TypeLocVisitor.h" | ||||||||||
24 | #include "clang/Basic/PartialDiagnostic.h" | ||||||||||
25 | #include "clang/Basic/TargetInfo.h" | ||||||||||
26 | #include "clang/Lex/Preprocessor.h" | ||||||||||
27 | #include "clang/Sema/DeclSpec.h" | ||||||||||
28 | #include "clang/Sema/DelayedDiagnostic.h" | ||||||||||
29 | #include "clang/Sema/Lookup.h" | ||||||||||
30 | #include "clang/Sema/ParsedTemplate.h" | ||||||||||
31 | #include "clang/Sema/ScopeInfo.h" | ||||||||||
32 | #include "clang/Sema/SemaInternal.h" | ||||||||||
33 | #include "clang/Sema/Template.h" | ||||||||||
34 | #include "clang/Sema/TemplateInstCallback.h" | ||||||||||
35 | #include "llvm/ADT/SmallPtrSet.h" | ||||||||||
36 | #include "llvm/ADT/SmallString.h" | ||||||||||
37 | #include "llvm/ADT/StringSwitch.h" | ||||||||||
38 | #include "llvm/IR/DerivedTypes.h" | ||||||||||
39 | #include "llvm/Support/ErrorHandling.h" | ||||||||||
40 | #include <bitset> | ||||||||||
41 | |||||||||||
42 | using namespace clang; | ||||||||||
43 | |||||||||||
44 | enum TypeDiagSelector { | ||||||||||
45 | TDS_Function, | ||||||||||
46 | TDS_Pointer, | ||||||||||
47 | TDS_ObjCObjOrBlock | ||||||||||
48 | }; | ||||||||||
49 | |||||||||||
50 | /// isOmittedBlockReturnType - Return true if this declarator is missing a | ||||||||||
51 | /// return type because this is a omitted return type on a block literal. | ||||||||||
52 | static bool isOmittedBlockReturnType(const Declarator &D) { | ||||||||||
53 | if (D.getContext() != DeclaratorContext::BlockLiteral || | ||||||||||
54 | D.getDeclSpec().hasTypeSpecifier()) | ||||||||||
55 | return false; | ||||||||||
56 | |||||||||||
57 | if (D.getNumTypeObjects() == 0) | ||||||||||
58 | return true; // ^{ ... } | ||||||||||
59 | |||||||||||
60 | if (D.getNumTypeObjects() == 1 && | ||||||||||
61 | D.getTypeObject(0).Kind == DeclaratorChunk::Function) | ||||||||||
62 | return true; // ^(int X, float Y) { ... } | ||||||||||
63 | |||||||||||
64 | return false; | ||||||||||
65 | } | ||||||||||
66 | |||||||||||
67 | /// diagnoseBadTypeAttribute - Diagnoses a type attribute which | ||||||||||
68 | /// doesn't apply to the given type. | ||||||||||
69 | static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr, | ||||||||||
70 | QualType type) { | ||||||||||
71 | TypeDiagSelector WhichType; | ||||||||||
72 | bool useExpansionLoc = true; | ||||||||||
73 | switch (attr.getKind()) { | ||||||||||
74 | case ParsedAttr::AT_ObjCGC: | ||||||||||
75 | WhichType = TDS_Pointer; | ||||||||||
76 | break; | ||||||||||
77 | case ParsedAttr::AT_ObjCOwnership: | ||||||||||
78 | WhichType = TDS_ObjCObjOrBlock; | ||||||||||
79 | break; | ||||||||||
80 | default: | ||||||||||
81 | // Assume everything else was a function attribute. | ||||||||||
82 | WhichType = TDS_Function; | ||||||||||
83 | useExpansionLoc = false; | ||||||||||
84 | break; | ||||||||||
85 | } | ||||||||||
86 | |||||||||||
87 | SourceLocation loc = attr.getLoc(); | ||||||||||
88 | StringRef name = attr.getAttrName()->getName(); | ||||||||||
89 | |||||||||||
90 | // The GC attributes are usually written with macros; special-case them. | ||||||||||
91 | IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident | ||||||||||
92 | : nullptr; | ||||||||||
93 | if (useExpansionLoc && loc.isMacroID() && II) { | ||||||||||
94 | if (II->isStr("strong")) { | ||||||||||
95 | if (S.findMacroSpelling(loc, "__strong")) name = "__strong"; | ||||||||||
96 | } else if (II->isStr("weak")) { | ||||||||||
97 | if (S.findMacroSpelling(loc, "__weak")) name = "__weak"; | ||||||||||
98 | } | ||||||||||
99 | } | ||||||||||
100 | |||||||||||
101 | S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType | ||||||||||
102 | << type; | ||||||||||
103 | } | ||||||||||
104 | |||||||||||
105 | // objc_gc applies to Objective-C pointers or, otherwise, to the | ||||||||||
106 | // smallest available pointer type (i.e. 'void*' in 'void**'). | ||||||||||
107 | #define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \ | ||||||||||
108 | case ParsedAttr::AT_ObjCGC: \ | ||||||||||
109 | case ParsedAttr::AT_ObjCOwnership | ||||||||||
110 | |||||||||||
111 | // Calling convention attributes. | ||||||||||
112 | #define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll \ | ||||||||||
113 | case ParsedAttr::AT_CDecl: \ | ||||||||||
114 | case ParsedAttr::AT_FastCall: \ | ||||||||||
115 | case ParsedAttr::AT_StdCall: \ | ||||||||||
116 | case ParsedAttr::AT_ThisCall: \ | ||||||||||
117 | case ParsedAttr::AT_RegCall: \ | ||||||||||
118 | case ParsedAttr::AT_Pascal: \ | ||||||||||
119 | case ParsedAttr::AT_SwiftCall: \ | ||||||||||
120 | case ParsedAttr::AT_SwiftAsyncCall: \ | ||||||||||
121 | case ParsedAttr::AT_VectorCall: \ | ||||||||||
122 | case ParsedAttr::AT_AArch64VectorPcs: \ | ||||||||||
123 | case ParsedAttr::AT_MSABI: \ | ||||||||||
124 | case ParsedAttr::AT_SysVABI: \ | ||||||||||
125 | case ParsedAttr::AT_Pcs: \ | ||||||||||
126 | case ParsedAttr::AT_IntelOclBicc: \ | ||||||||||
127 | case ParsedAttr::AT_PreserveMost: \ | ||||||||||
128 | case ParsedAttr::AT_PreserveAll | ||||||||||
129 | |||||||||||
130 | // Function type attributes. | ||||||||||
131 | #define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll \ | ||||||||||
132 | case ParsedAttr::AT_NSReturnsRetained: \ | ||||||||||
133 | case ParsedAttr::AT_NoReturn: \ | ||||||||||
134 | case ParsedAttr::AT_Regparm: \ | ||||||||||
135 | case ParsedAttr::AT_CmseNSCall: \ | ||||||||||
136 | case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \ | ||||||||||
137 | case ParsedAttr::AT_AnyX86NoCfCheck: \ | ||||||||||
138 | CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll | ||||||||||
139 | |||||||||||
140 | // Microsoft-specific type qualifiers. | ||||||||||
141 | #define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr \ | ||||||||||
142 | case ParsedAttr::AT_Ptr32: \ | ||||||||||
143 | case ParsedAttr::AT_Ptr64: \ | ||||||||||
144 | case ParsedAttr::AT_SPtr: \ | ||||||||||
145 | case ParsedAttr::AT_UPtr | ||||||||||
146 | |||||||||||
147 | // Nullability qualifiers. | ||||||||||
148 | #define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified \ | ||||||||||
149 | case ParsedAttr::AT_TypeNonNull: \ | ||||||||||
150 | case ParsedAttr::AT_TypeNullable: \ | ||||||||||
151 | case ParsedAttr::AT_TypeNullableResult: \ | ||||||||||
152 | case ParsedAttr::AT_TypeNullUnspecified | ||||||||||
153 | |||||||||||
154 | namespace { | ||||||||||
155 | /// An object which stores processing state for the entire | ||||||||||
156 | /// GetTypeForDeclarator process. | ||||||||||
157 | class TypeProcessingState { | ||||||||||
158 | Sema &sema; | ||||||||||
159 | |||||||||||
160 | /// The declarator being processed. | ||||||||||
161 | Declarator &declarator; | ||||||||||
162 | |||||||||||
163 | /// The index of the declarator chunk we're currently processing. | ||||||||||
164 | /// May be the total number of valid chunks, indicating the | ||||||||||
165 | /// DeclSpec. | ||||||||||
166 | unsigned chunkIndex; | ||||||||||
167 | |||||||||||
168 | /// Whether there are non-trivial modifications to the decl spec. | ||||||||||
169 | bool trivial; | ||||||||||
170 | |||||||||||
171 | /// Whether we saved the attributes in the decl spec. | ||||||||||
172 | bool hasSavedAttrs; | ||||||||||
173 | |||||||||||
174 | /// The original set of attributes on the DeclSpec. | ||||||||||
175 | SmallVector<ParsedAttr *, 2> savedAttrs; | ||||||||||
176 | |||||||||||
177 | /// A list of attributes to diagnose the uselessness of when the | ||||||||||
178 | /// processing is complete. | ||||||||||
179 | SmallVector<ParsedAttr *, 2> ignoredTypeAttrs; | ||||||||||
180 | |||||||||||
181 | /// Attributes corresponding to AttributedTypeLocs that we have not yet | ||||||||||
182 | /// populated. | ||||||||||
183 | // FIXME: The two-phase mechanism by which we construct Types and fill | ||||||||||
184 | // their TypeLocs makes it hard to correctly assign these. We keep the | ||||||||||
185 | // attributes in creation order as an attempt to make them line up | ||||||||||
186 | // properly. | ||||||||||
187 | using TypeAttrPair = std::pair<const AttributedType*, const Attr*>; | ||||||||||
188 | SmallVector<TypeAttrPair, 8> AttrsForTypes; | ||||||||||
189 | bool AttrsForTypesSorted = true; | ||||||||||
190 | |||||||||||
191 | /// MacroQualifiedTypes mapping to macro expansion locations that will be | ||||||||||
192 | /// stored in a MacroQualifiedTypeLoc. | ||||||||||
193 | llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros; | ||||||||||
194 | |||||||||||
195 | /// Flag to indicate we parsed a noderef attribute. This is used for | ||||||||||
196 | /// validating that noderef was used on a pointer or array. | ||||||||||
197 | bool parsedNoDeref; | ||||||||||
198 | |||||||||||
199 | public: | ||||||||||
200 | TypeProcessingState(Sema &sema, Declarator &declarator) | ||||||||||
201 | : sema(sema), declarator(declarator), | ||||||||||
202 | chunkIndex(declarator.getNumTypeObjects()), trivial(true), | ||||||||||
203 | hasSavedAttrs(false), parsedNoDeref(false) {} | ||||||||||
204 | |||||||||||
205 | Sema &getSema() const { | ||||||||||
206 | return sema; | ||||||||||
207 | } | ||||||||||
208 | |||||||||||
209 | Declarator &getDeclarator() const { | ||||||||||
210 | return declarator; | ||||||||||
211 | } | ||||||||||
212 | |||||||||||
213 | bool isProcessingDeclSpec() const { | ||||||||||
214 | return chunkIndex == declarator.getNumTypeObjects(); | ||||||||||
215 | } | ||||||||||
216 | |||||||||||
217 | unsigned getCurrentChunkIndex() const { | ||||||||||
218 | return chunkIndex; | ||||||||||
219 | } | ||||||||||
220 | |||||||||||
221 | void setCurrentChunkIndex(unsigned idx) { | ||||||||||
222 | assert(idx <= declarator.getNumTypeObjects())((void)0); | ||||||||||
223 | chunkIndex = idx; | ||||||||||
224 | } | ||||||||||
225 | |||||||||||
226 | ParsedAttributesView &getCurrentAttributes() const { | ||||||||||
227 | if (isProcessingDeclSpec()) | ||||||||||
228 | return getMutableDeclSpec().getAttributes(); | ||||||||||
229 | return declarator.getTypeObject(chunkIndex).getAttrs(); | ||||||||||
230 | } | ||||||||||
231 | |||||||||||
232 | /// Save the current set of attributes on the DeclSpec. | ||||||||||
233 | void saveDeclSpecAttrs() { | ||||||||||
234 | // Don't try to save them multiple times. | ||||||||||
235 | if (hasSavedAttrs) return; | ||||||||||
236 | |||||||||||
237 | DeclSpec &spec = getMutableDeclSpec(); | ||||||||||
238 | for (ParsedAttr &AL : spec.getAttributes()) | ||||||||||
239 | savedAttrs.push_back(&AL); | ||||||||||
240 | trivial &= savedAttrs.empty(); | ||||||||||
241 | hasSavedAttrs = true; | ||||||||||
242 | } | ||||||||||
243 | |||||||||||
244 | /// Record that we had nowhere to put the given type attribute. | ||||||||||
245 | /// We will diagnose such attributes later. | ||||||||||
246 | void addIgnoredTypeAttr(ParsedAttr &attr) { | ||||||||||
247 | ignoredTypeAttrs.push_back(&attr); | ||||||||||
248 | } | ||||||||||
249 | |||||||||||
250 | /// Diagnose all the ignored type attributes, given that the | ||||||||||
251 | /// declarator worked out to the given type. | ||||||||||
252 | void diagnoseIgnoredTypeAttrs(QualType type) const { | ||||||||||
253 | for (auto *Attr : ignoredTypeAttrs) | ||||||||||
254 | diagnoseBadTypeAttribute(getSema(), *Attr, type); | ||||||||||
255 | } | ||||||||||
256 | |||||||||||
257 | /// Get an attributed type for the given attribute, and remember the Attr | ||||||||||
258 | /// object so that we can attach it to the AttributedTypeLoc. | ||||||||||
259 | QualType getAttributedType(Attr *A, QualType ModifiedType, | ||||||||||
260 | QualType EquivType) { | ||||||||||
261 | QualType T = | ||||||||||
262 | sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType); | ||||||||||
263 | AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A}); | ||||||||||
264 | AttrsForTypesSorted = false; | ||||||||||
265 | return T; | ||||||||||
266 | } | ||||||||||
267 | |||||||||||
268 | /// Completely replace the \c auto in \p TypeWithAuto by | ||||||||||
269 | /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if | ||||||||||
270 | /// necessary. | ||||||||||
271 | QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) { | ||||||||||
272 | QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement); | ||||||||||
273 | if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) { | ||||||||||
274 | // Attributed type still should be an attributed type after replacement. | ||||||||||
275 | auto *NewAttrTy = cast<AttributedType>(T.getTypePtr()); | ||||||||||
276 | for (TypeAttrPair &A : AttrsForTypes) { | ||||||||||
277 | if (A.first == AttrTy) | ||||||||||
278 | A.first = NewAttrTy; | ||||||||||
279 | } | ||||||||||
280 | AttrsForTypesSorted = false; | ||||||||||
281 | } | ||||||||||
282 | return T; | ||||||||||
283 | } | ||||||||||
284 | |||||||||||
285 | /// Extract and remove the Attr* for a given attributed type. | ||||||||||
286 | const Attr *takeAttrForAttributedType(const AttributedType *AT) { | ||||||||||
287 | if (!AttrsForTypesSorted) { | ||||||||||
288 | llvm::stable_sort(AttrsForTypes, llvm::less_first()); | ||||||||||
289 | AttrsForTypesSorted = true; | ||||||||||
290 | } | ||||||||||
291 | |||||||||||
292 | // FIXME: This is quadratic if we have lots of reuses of the same | ||||||||||
293 | // attributed type. | ||||||||||
294 | for (auto It = std::partition_point( | ||||||||||
295 | AttrsForTypes.begin(), AttrsForTypes.end(), | ||||||||||
296 | [=](const TypeAttrPair &A) { return A.first < AT; }); | ||||||||||
297 | It != AttrsForTypes.end() && It->first == AT; ++It) { | ||||||||||
298 | if (It->second) { | ||||||||||
299 | const Attr *Result = It->second; | ||||||||||
300 | It->second = nullptr; | ||||||||||
301 | return Result; | ||||||||||
302 | } | ||||||||||
303 | } | ||||||||||
304 | |||||||||||
305 | llvm_unreachable("no Attr* for AttributedType*")__builtin_unreachable(); | ||||||||||
306 | } | ||||||||||
307 | |||||||||||
308 | SourceLocation | ||||||||||
309 | getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const { | ||||||||||
310 | auto FoundLoc = LocsForMacros.find(MQT); | ||||||||||
311 | assert(FoundLoc != LocsForMacros.end() &&((void)0) | ||||||||||
312 | "Unable to find macro expansion location for MacroQualifedType")((void)0); | ||||||||||
313 | return FoundLoc->second; | ||||||||||
314 | } | ||||||||||
315 | |||||||||||
316 | void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT, | ||||||||||
317 | SourceLocation Loc) { | ||||||||||
318 | LocsForMacros[MQT] = Loc; | ||||||||||
319 | } | ||||||||||
320 | |||||||||||
321 | void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; } | ||||||||||
322 | |||||||||||
323 | bool didParseNoDeref() const { return parsedNoDeref; } | ||||||||||
324 | |||||||||||
325 | ~TypeProcessingState() { | ||||||||||
326 | if (trivial) return; | ||||||||||
327 | |||||||||||
328 | restoreDeclSpecAttrs(); | ||||||||||
329 | } | ||||||||||
330 | |||||||||||
331 | private: | ||||||||||
332 | DeclSpec &getMutableDeclSpec() const { | ||||||||||
333 | return const_cast<DeclSpec&>(declarator.getDeclSpec()); | ||||||||||
334 | } | ||||||||||
335 | |||||||||||
336 | void restoreDeclSpecAttrs() { | ||||||||||
337 | assert(hasSavedAttrs)((void)0); | ||||||||||
338 | |||||||||||
339 | getMutableDeclSpec().getAttributes().clearListOnly(); | ||||||||||
340 | for (ParsedAttr *AL : savedAttrs) | ||||||||||
341 | getMutableDeclSpec().getAttributes().addAtEnd(AL); | ||||||||||
342 | } | ||||||||||
343 | }; | ||||||||||
344 | } // end anonymous namespace | ||||||||||
345 | |||||||||||
346 | static void moveAttrFromListToList(ParsedAttr &attr, | ||||||||||
347 | ParsedAttributesView &fromList, | ||||||||||
348 | ParsedAttributesView &toList) { | ||||||||||
349 | fromList.remove(&attr); | ||||||||||
350 | toList.addAtEnd(&attr); | ||||||||||
351 | } | ||||||||||
352 | |||||||||||
353 | /// The location of a type attribute. | ||||||||||
354 | enum TypeAttrLocation { | ||||||||||
355 | /// The attribute is in the decl-specifier-seq. | ||||||||||
356 | TAL_DeclSpec, | ||||||||||
357 | /// The attribute is part of a DeclaratorChunk. | ||||||||||
358 | TAL_DeclChunk, | ||||||||||
359 | /// The attribute is immediately after the declaration's name. | ||||||||||
360 | TAL_DeclName | ||||||||||
361 | }; | ||||||||||
362 | |||||||||||
363 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, | ||||||||||
364 | TypeAttrLocation TAL, ParsedAttributesView &attrs); | ||||||||||
365 | |||||||||||
366 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||||||||
367 | QualType &type); | ||||||||||
368 | |||||||||||
369 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, | ||||||||||
370 | ParsedAttr &attr, QualType &type); | ||||||||||
371 | |||||||||||
372 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||||||||
373 | QualType &type); | ||||||||||
374 | |||||||||||
375 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, | ||||||||||
376 | ParsedAttr &attr, QualType &type); | ||||||||||
377 | |||||||||||
378 | static bool handleObjCPointerTypeAttr(TypeProcessingState &state, | ||||||||||
379 | ParsedAttr &attr, QualType &type) { | ||||||||||
380 | if (attr.getKind() == ParsedAttr::AT_ObjCGC) | ||||||||||
381 | return handleObjCGCTypeAttr(state, attr, type); | ||||||||||
382 | assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((void)0); | ||||||||||
383 | return handleObjCOwnershipTypeAttr(state, attr, type); | ||||||||||
384 | } | ||||||||||
385 | |||||||||||
386 | /// Given the index of a declarator chunk, check whether that chunk | ||||||||||
387 | /// directly specifies the return type of a function and, if so, find | ||||||||||
388 | /// an appropriate place for it. | ||||||||||
389 | /// | ||||||||||
390 | /// \param i - a notional index which the search will start | ||||||||||
391 | /// immediately inside | ||||||||||
392 | /// | ||||||||||
393 | /// \param onlyBlockPointers Whether we should only look into block | ||||||||||
394 | /// pointer types (vs. all pointer types). | ||||||||||
395 | static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator, | ||||||||||
396 | unsigned i, | ||||||||||
397 | bool onlyBlockPointers) { | ||||||||||
398 | assert(i <= declarator.getNumTypeObjects())((void)0); | ||||||||||
399 | |||||||||||
400 | DeclaratorChunk *result = nullptr; | ||||||||||
401 | |||||||||||
402 | // First, look inwards past parens for a function declarator. | ||||||||||
403 | for (; i != 0; --i) { | ||||||||||
404 | DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1); | ||||||||||
405 | switch (fnChunk.Kind) { | ||||||||||
406 | case DeclaratorChunk::Paren: | ||||||||||
407 | continue; | ||||||||||
408 | |||||||||||
409 | // If we find anything except a function, bail out. | ||||||||||
410 | case DeclaratorChunk::Pointer: | ||||||||||
411 | case DeclaratorChunk::BlockPointer: | ||||||||||
412 | case DeclaratorChunk::Array: | ||||||||||
413 | case DeclaratorChunk::Reference: | ||||||||||
414 | case DeclaratorChunk::MemberPointer: | ||||||||||
415 | case DeclaratorChunk::Pipe: | ||||||||||
416 | return result; | ||||||||||
417 | |||||||||||
418 | // If we do find a function declarator, scan inwards from that, | ||||||||||
419 | // looking for a (block-)pointer declarator. | ||||||||||
420 | case DeclaratorChunk::Function: | ||||||||||
421 | for (--i; i != 0; --i) { | ||||||||||
422 | DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1); | ||||||||||
423 | switch (ptrChunk.Kind) { | ||||||||||
424 | case DeclaratorChunk::Paren: | ||||||||||
425 | case DeclaratorChunk::Array: | ||||||||||
426 | case DeclaratorChunk::Function: | ||||||||||
427 | case DeclaratorChunk::Reference: | ||||||||||
428 | case DeclaratorChunk::Pipe: | ||||||||||
429 | continue; | ||||||||||
430 | |||||||||||
431 | case DeclaratorChunk::MemberPointer: | ||||||||||
432 | case DeclaratorChunk::Pointer: | ||||||||||
433 | if (onlyBlockPointers) | ||||||||||
434 | continue; | ||||||||||
435 | |||||||||||
436 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
437 | |||||||||||
438 | case DeclaratorChunk::BlockPointer: | ||||||||||
439 | result = &ptrChunk; | ||||||||||
440 | goto continue_outer; | ||||||||||
441 | } | ||||||||||
442 | llvm_unreachable("bad declarator chunk kind")__builtin_unreachable(); | ||||||||||
443 | } | ||||||||||
444 | |||||||||||
445 | // If we run out of declarators doing that, we're done. | ||||||||||
446 | return result; | ||||||||||
447 | } | ||||||||||
448 | llvm_unreachable("bad declarator chunk kind")__builtin_unreachable(); | ||||||||||
449 | |||||||||||
450 | // Okay, reconsider from our new point. | ||||||||||
451 | continue_outer: ; | ||||||||||
452 | } | ||||||||||
453 | |||||||||||
454 | // Ran out of chunks, bail out. | ||||||||||
455 | return result; | ||||||||||
456 | } | ||||||||||
457 | |||||||||||
458 | /// Given that an objc_gc attribute was written somewhere on a | ||||||||||
459 | /// declaration *other* than on the declarator itself (for which, use | ||||||||||
460 | /// distributeObjCPointerTypeAttrFromDeclarator), and given that it | ||||||||||
461 | /// didn't apply in whatever position it was written in, try to move | ||||||||||
462 | /// it to a more appropriate position. | ||||||||||
463 | static void distributeObjCPointerTypeAttr(TypeProcessingState &state, | ||||||||||
464 | ParsedAttr &attr, QualType type) { | ||||||||||
465 | Declarator &declarator = state.getDeclarator(); | ||||||||||
466 | |||||||||||
467 | // Move it to the outermost normal or block pointer declarator. | ||||||||||
468 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | ||||||||||
469 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | ||||||||||
470 | switch (chunk.Kind) { | ||||||||||
471 | case DeclaratorChunk::Pointer: | ||||||||||
472 | case DeclaratorChunk::BlockPointer: { | ||||||||||
473 | // But don't move an ARC ownership attribute to the return type | ||||||||||
474 | // of a block. | ||||||||||
475 | DeclaratorChunk *destChunk = nullptr; | ||||||||||
476 | if (state.isProcessingDeclSpec() && | ||||||||||
477 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) | ||||||||||
478 | destChunk = maybeMovePastReturnType(declarator, i - 1, | ||||||||||
479 | /*onlyBlockPointers=*/true); | ||||||||||
480 | if (!destChunk) destChunk = &chunk; | ||||||||||
481 | |||||||||||
482 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||||||||
483 | destChunk->getAttrs()); | ||||||||||
484 | return; | ||||||||||
485 | } | ||||||||||
486 | |||||||||||
487 | case DeclaratorChunk::Paren: | ||||||||||
488 | case DeclaratorChunk::Array: | ||||||||||
489 | continue; | ||||||||||
490 | |||||||||||
491 | // We may be starting at the return type of a block. | ||||||||||
492 | case DeclaratorChunk::Function: | ||||||||||
493 | if (state.isProcessingDeclSpec() && | ||||||||||
494 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||||||||
495 | if (DeclaratorChunk *dest = maybeMovePastReturnType( | ||||||||||
496 | declarator, i, | ||||||||||
497 | /*onlyBlockPointers=*/true)) { | ||||||||||
498 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||||||||
499 | dest->getAttrs()); | ||||||||||
500 | return; | ||||||||||
501 | } | ||||||||||
502 | } | ||||||||||
503 | goto error; | ||||||||||
504 | |||||||||||
505 | // Don't walk through these. | ||||||||||
506 | case DeclaratorChunk::Reference: | ||||||||||
507 | case DeclaratorChunk::MemberPointer: | ||||||||||
508 | case DeclaratorChunk::Pipe: | ||||||||||
509 | goto error; | ||||||||||
510 | } | ||||||||||
511 | } | ||||||||||
512 | error: | ||||||||||
513 | |||||||||||
514 | diagnoseBadTypeAttribute(state.getSema(), attr, type); | ||||||||||
515 | } | ||||||||||
516 | |||||||||||
517 | /// Distribute an objc_gc type attribute that was written on the | ||||||||||
518 | /// declarator. | ||||||||||
519 | static void distributeObjCPointerTypeAttrFromDeclarator( | ||||||||||
520 | TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) { | ||||||||||
521 | Declarator &declarator = state.getDeclarator(); | ||||||||||
522 | |||||||||||
523 | // objc_gc goes on the innermost pointer to something that's not a | ||||||||||
524 | // pointer. | ||||||||||
525 | unsigned innermost = -1U; | ||||||||||
526 | bool considerDeclSpec = true; | ||||||||||
527 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||||||||
528 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||||||||
529 | switch (chunk.Kind) { | ||||||||||
530 | case DeclaratorChunk::Pointer: | ||||||||||
531 | case DeclaratorChunk::BlockPointer: | ||||||||||
532 | innermost = i; | ||||||||||
533 | continue; | ||||||||||
534 | |||||||||||
535 | case DeclaratorChunk::Reference: | ||||||||||
536 | case DeclaratorChunk::MemberPointer: | ||||||||||
537 | case DeclaratorChunk::Paren: | ||||||||||
538 | case DeclaratorChunk::Array: | ||||||||||
539 | case DeclaratorChunk::Pipe: | ||||||||||
540 | continue; | ||||||||||
541 | |||||||||||
542 | case DeclaratorChunk::Function: | ||||||||||
543 | considerDeclSpec = false; | ||||||||||
544 | goto done; | ||||||||||
545 | } | ||||||||||
546 | } | ||||||||||
547 | done: | ||||||||||
548 | |||||||||||
549 | // That might actually be the decl spec if we weren't blocked by | ||||||||||
550 | // anything in the declarator. | ||||||||||
551 | if (considerDeclSpec) { | ||||||||||
552 | if (handleObjCPointerTypeAttr(state, attr, declSpecType)) { | ||||||||||
553 | // Splice the attribute into the decl spec. Prevents the | ||||||||||
554 | // attribute from being applied multiple times and gives | ||||||||||
555 | // the source-location-filler something to work with. | ||||||||||
556 | state.saveDeclSpecAttrs(); | ||||||||||
557 | declarator.getMutableDeclSpec().getAttributes().takeOneFrom( | ||||||||||
558 | declarator.getAttributes(), &attr); | ||||||||||
559 | return; | ||||||||||
560 | } | ||||||||||
561 | } | ||||||||||
562 | |||||||||||
563 | // Otherwise, if we found an appropriate chunk, splice the attribute | ||||||||||
564 | // into it. | ||||||||||
565 | if (innermost != -1U) { | ||||||||||
566 | moveAttrFromListToList(attr, declarator.getAttributes(), | ||||||||||
567 | declarator.getTypeObject(innermost).getAttrs()); | ||||||||||
568 | return; | ||||||||||
569 | } | ||||||||||
570 | |||||||||||
571 | // Otherwise, diagnose when we're done building the type. | ||||||||||
572 | declarator.getAttributes().remove(&attr); | ||||||||||
573 | state.addIgnoredTypeAttr(attr); | ||||||||||
574 | } | ||||||||||
575 | |||||||||||
576 | /// A function type attribute was written somewhere in a declaration | ||||||||||
577 | /// *other* than on the declarator itself or in the decl spec. Given | ||||||||||
578 | /// that it didn't apply in whatever position it was written in, try | ||||||||||
579 | /// to move it to a more appropriate position. | ||||||||||
580 | static void distributeFunctionTypeAttr(TypeProcessingState &state, | ||||||||||
581 | ParsedAttr &attr, QualType type) { | ||||||||||
582 | Declarator &declarator = state.getDeclarator(); | ||||||||||
583 | |||||||||||
584 | // Try to push the attribute from the return type of a function to | ||||||||||
585 | // the function itself. | ||||||||||
586 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | ||||||||||
587 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | ||||||||||
588 | switch (chunk.Kind) { | ||||||||||
589 | case DeclaratorChunk::Function: | ||||||||||
590 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||||||||
591 | chunk.getAttrs()); | ||||||||||
592 | return; | ||||||||||
593 | |||||||||||
594 | case DeclaratorChunk::Paren: | ||||||||||
595 | case DeclaratorChunk::Pointer: | ||||||||||
596 | case DeclaratorChunk::BlockPointer: | ||||||||||
597 | case DeclaratorChunk::Array: | ||||||||||
598 | case DeclaratorChunk::Reference: | ||||||||||
599 | case DeclaratorChunk::MemberPointer: | ||||||||||
600 | case DeclaratorChunk::Pipe: | ||||||||||
601 | continue; | ||||||||||
602 | } | ||||||||||
603 | } | ||||||||||
604 | |||||||||||
605 | diagnoseBadTypeAttribute(state.getSema(), attr, type); | ||||||||||
606 | } | ||||||||||
607 | |||||||||||
608 | /// Try to distribute a function type attribute to the innermost | ||||||||||
609 | /// function chunk or type. Returns true if the attribute was | ||||||||||
610 | /// distributed, false if no location was found. | ||||||||||
611 | static bool distributeFunctionTypeAttrToInnermost( | ||||||||||
612 | TypeProcessingState &state, ParsedAttr &attr, | ||||||||||
613 | ParsedAttributesView &attrList, QualType &declSpecType) { | ||||||||||
614 | Declarator &declarator = state.getDeclarator(); | ||||||||||
615 | |||||||||||
616 | // Put it on the innermost function chunk, if there is one. | ||||||||||
617 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||||||||
618 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||||||||
619 | if (chunk.Kind != DeclaratorChunk::Function) continue; | ||||||||||
620 | |||||||||||
621 | moveAttrFromListToList(attr, attrList, chunk.getAttrs()); | ||||||||||
622 | return true; | ||||||||||
623 | } | ||||||||||
624 | |||||||||||
625 | return handleFunctionTypeAttr(state, attr, declSpecType); | ||||||||||
626 | } | ||||||||||
627 | |||||||||||
628 | /// A function type attribute was written in the decl spec. Try to | ||||||||||
629 | /// apply it somewhere. | ||||||||||
630 | static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, | ||||||||||
631 | ParsedAttr &attr, | ||||||||||
632 | QualType &declSpecType) { | ||||||||||
633 | state.saveDeclSpecAttrs(); | ||||||||||
634 | |||||||||||
635 | // C++11 attributes before the decl specifiers actually appertain to | ||||||||||
636 | // the declarators. Move them straight there. We don't support the | ||||||||||
637 | // 'put them wherever you like' semantics we allow for GNU attributes. | ||||||||||
638 | if (attr.isStandardAttributeSyntax()) { | ||||||||||
639 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||||||||
640 | state.getDeclarator().getAttributes()); | ||||||||||
641 | return; | ||||||||||
642 | } | ||||||||||
643 | |||||||||||
644 | // Try to distribute to the innermost. | ||||||||||
645 | if (distributeFunctionTypeAttrToInnermost( | ||||||||||
646 | state, attr, state.getCurrentAttributes(), declSpecType)) | ||||||||||
647 | return; | ||||||||||
648 | |||||||||||
649 | // If that failed, diagnose the bad attribute when the declarator is | ||||||||||
650 | // fully built. | ||||||||||
651 | state.addIgnoredTypeAttr(attr); | ||||||||||
652 | } | ||||||||||
653 | |||||||||||
654 | /// A function type attribute was written on the declarator. Try to | ||||||||||
655 | /// apply it somewhere. | ||||||||||
656 | static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, | ||||||||||
657 | ParsedAttr &attr, | ||||||||||
658 | QualType &declSpecType) { | ||||||||||
659 | Declarator &declarator = state.getDeclarator(); | ||||||||||
660 | |||||||||||
661 | // Try to distribute to the innermost. | ||||||||||
662 | if (distributeFunctionTypeAttrToInnermost( | ||||||||||
663 | state, attr, declarator.getAttributes(), declSpecType)) | ||||||||||
664 | return; | ||||||||||
665 | |||||||||||
666 | // If that failed, diagnose the bad attribute when the declarator is | ||||||||||
667 | // fully built. | ||||||||||
668 | declarator.getAttributes().remove(&attr); | ||||||||||
669 | state.addIgnoredTypeAttr(attr); | ||||||||||
670 | } | ||||||||||
671 | |||||||||||
672 | /// Given that there are attributes written on the declarator | ||||||||||
673 | /// itself, try to distribute any type attributes to the appropriate | ||||||||||
674 | /// declarator chunk. | ||||||||||
675 | /// | ||||||||||
676 | /// These are attributes like the following: | ||||||||||
677 | /// int f ATTR; | ||||||||||
678 | /// int (f ATTR)(); | ||||||||||
679 | /// but not necessarily this: | ||||||||||
680 | /// int f() ATTR; | ||||||||||
681 | static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, | ||||||||||
682 | QualType &declSpecType) { | ||||||||||
683 | // Collect all the type attributes from the declarator itself. | ||||||||||
684 | assert(!state.getDeclarator().getAttributes().empty() &&((void)0) | ||||||||||
685 | "declarator has no attrs!")((void)0); | ||||||||||
686 | // The called functions in this loop actually remove things from the current | ||||||||||
687 | // list, so iterating over the existing list isn't possible. Instead, make a | ||||||||||
688 | // non-owning copy and iterate over that. | ||||||||||
689 | ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()}; | ||||||||||
690 | for (ParsedAttr &attr : AttrsCopy) { | ||||||||||
691 | // Do not distribute [[]] attributes. They have strict rules for what | ||||||||||
692 | // they appertain to. | ||||||||||
693 | if (attr.isStandardAttributeSyntax()) | ||||||||||
694 | continue; | ||||||||||
695 | |||||||||||
696 | switch (attr.getKind()) { | ||||||||||
697 | OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership: | ||||||||||
698 | distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType); | ||||||||||
699 | break; | ||||||||||
700 | |||||||||||
701 | FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll: | ||||||||||
702 | distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType); | ||||||||||
703 | break; | ||||||||||
704 | |||||||||||
705 | MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr: | ||||||||||
706 | // Microsoft type attributes cannot go after the declarator-id. | ||||||||||
707 | continue; | ||||||||||
708 | |||||||||||
709 | NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified: | ||||||||||
710 | // Nullability specifiers cannot go after the declarator-id. | ||||||||||
711 | |||||||||||
712 | // Objective-C __kindof does not get distributed. | ||||||||||
713 | case ParsedAttr::AT_ObjCKindOf: | ||||||||||
714 | continue; | ||||||||||
715 | |||||||||||
716 | default: | ||||||||||
717 | break; | ||||||||||
718 | } | ||||||||||
719 | } | ||||||||||
720 | } | ||||||||||
721 | |||||||||||
722 | /// Add a synthetic '()' to a block-literal declarator if it is | ||||||||||
723 | /// required, given the return type. | ||||||||||
724 | static void maybeSynthesizeBlockSignature(TypeProcessingState &state, | ||||||||||
725 | QualType declSpecType) { | ||||||||||
726 | Declarator &declarator = state.getDeclarator(); | ||||||||||
727 | |||||||||||
728 | // First, check whether the declarator would produce a function, | ||||||||||
729 | // i.e. whether the innermost semantic chunk is a function. | ||||||||||
730 | if (declarator.isFunctionDeclarator()) { | ||||||||||
731 | // If so, make that declarator a prototyped declarator. | ||||||||||
732 | declarator.getFunctionTypeInfo().hasPrototype = true; | ||||||||||
733 | return; | ||||||||||
734 | } | ||||||||||
735 | |||||||||||
736 | // If there are any type objects, the type as written won't name a | ||||||||||
737 | // function, regardless of the decl spec type. This is because a | ||||||||||
738 | // block signature declarator is always an abstract-declarator, and | ||||||||||
739 | // abstract-declarators can't just be parentheses chunks. Therefore | ||||||||||
740 | // we need to build a function chunk unless there are no type | ||||||||||
741 | // objects and the decl spec type is a function. | ||||||||||
742 | if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType()) | ||||||||||
743 | return; | ||||||||||
744 | |||||||||||
745 | // Note that there *are* cases with invalid declarators where | ||||||||||
746 | // declarators consist solely of parentheses. In general, these | ||||||||||
747 | // occur only in failed efforts to make function declarators, so | ||||||||||
748 | // faking up the function chunk is still the right thing to do. | ||||||||||
749 | |||||||||||
750 | // Otherwise, we need to fake up a function declarator. | ||||||||||
751 | SourceLocation loc = declarator.getBeginLoc(); | ||||||||||
752 | |||||||||||
753 | // ...and *prepend* it to the declarator. | ||||||||||
754 | SourceLocation NoLoc; | ||||||||||
755 | declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction( | ||||||||||
756 | /*HasProto=*/true, | ||||||||||
757 | /*IsAmbiguous=*/false, | ||||||||||
758 | /*LParenLoc=*/NoLoc, | ||||||||||
759 | /*ArgInfo=*/nullptr, | ||||||||||
760 | /*NumParams=*/0, | ||||||||||
761 | /*EllipsisLoc=*/NoLoc, | ||||||||||
762 | /*RParenLoc=*/NoLoc, | ||||||||||
763 | /*RefQualifierIsLvalueRef=*/true, | ||||||||||
764 | /*RefQualifierLoc=*/NoLoc, | ||||||||||
765 | /*MutableLoc=*/NoLoc, EST_None, | ||||||||||
766 | /*ESpecRange=*/SourceRange(), | ||||||||||
767 | /*Exceptions=*/nullptr, | ||||||||||
768 | /*ExceptionRanges=*/nullptr, | ||||||||||
769 | /*NumExceptions=*/0, | ||||||||||
770 | /*NoexceptExpr=*/nullptr, | ||||||||||
771 | /*ExceptionSpecTokens=*/nullptr, | ||||||||||
772 | /*DeclsInPrototype=*/None, loc, loc, declarator)); | ||||||||||
773 | |||||||||||
774 | // For consistency, make sure the state still has us as processing | ||||||||||
775 | // the decl spec. | ||||||||||
776 | assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((void)0); | ||||||||||
777 | state.setCurrentChunkIndex(declarator.getNumTypeObjects()); | ||||||||||
778 | } | ||||||||||
779 | |||||||||||
780 | static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, | ||||||||||
781 | unsigned &TypeQuals, | ||||||||||
782 | QualType TypeSoFar, | ||||||||||
783 | unsigned RemoveTQs, | ||||||||||
784 | unsigned DiagID) { | ||||||||||
785 | // If this occurs outside a template instantiation, warn the user about | ||||||||||
786 | // it; they probably didn't mean to specify a redundant qualifier. | ||||||||||
787 | typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc; | ||||||||||
788 | for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()), | ||||||||||
789 | QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()), | ||||||||||
790 | QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()), | ||||||||||
791 | QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) { | ||||||||||
792 | if (!(RemoveTQs & Qual.first)) | ||||||||||
793 | continue; | ||||||||||
794 | |||||||||||
795 | if (!S.inTemplateInstantiation()) { | ||||||||||
796 | if (TypeQuals & Qual.first) | ||||||||||
797 | S.Diag(Qual.second, DiagID) | ||||||||||
798 | << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar | ||||||||||
799 | << FixItHint::CreateRemoval(Qual.second); | ||||||||||
800 | } | ||||||||||
801 | |||||||||||
802 | TypeQuals &= ~Qual.first; | ||||||||||
803 | } | ||||||||||
804 | } | ||||||||||
805 | |||||||||||
806 | /// Return true if this is omitted block return type. Also check type | ||||||||||
807 | /// attributes and type qualifiers when returning true. | ||||||||||
808 | static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, | ||||||||||
809 | QualType Result) { | ||||||||||
810 | if (!isOmittedBlockReturnType(declarator)) | ||||||||||
811 | return false; | ||||||||||
812 | |||||||||||
813 | // Warn if we see type attributes for omitted return type on a block literal. | ||||||||||
814 | SmallVector<ParsedAttr *, 2> ToBeRemoved; | ||||||||||
815 | for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) { | ||||||||||
816 | if (AL.isInvalid() || !AL.isTypeAttr()) | ||||||||||
817 | continue; | ||||||||||
818 | S.Diag(AL.getLoc(), | ||||||||||
819 | diag::warn_block_literal_attributes_on_omitted_return_type) | ||||||||||
820 | << AL; | ||||||||||
821 | ToBeRemoved.push_back(&AL); | ||||||||||
822 | } | ||||||||||
823 | // Remove bad attributes from the list. | ||||||||||
824 | for (ParsedAttr *AL : ToBeRemoved) | ||||||||||
825 | declarator.getMutableDeclSpec().getAttributes().remove(AL); | ||||||||||
826 | |||||||||||
827 | // Warn if we see type qualifiers for omitted return type on a block literal. | ||||||||||
828 | const DeclSpec &DS = declarator.getDeclSpec(); | ||||||||||
829 | unsigned TypeQuals = DS.getTypeQualifiers(); | ||||||||||
830 | diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1, | ||||||||||
831 | diag::warn_block_literal_qualifiers_on_omitted_return_type); | ||||||||||
832 | declarator.getMutableDeclSpec().ClearTypeQualifiers(); | ||||||||||
833 | |||||||||||
834 | return true; | ||||||||||
835 | } | ||||||||||
836 | |||||||||||
837 | /// Apply Objective-C type arguments to the given type. | ||||||||||
838 | static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type, | ||||||||||
839 | ArrayRef<TypeSourceInfo *> typeArgs, | ||||||||||
840 | SourceRange typeArgsRange, | ||||||||||
841 | bool failOnError = false) { | ||||||||||
842 | // We can only apply type arguments to an Objective-C class type. | ||||||||||
843 | const auto *objcObjectType = type->getAs<ObjCObjectType>(); | ||||||||||
844 | if (!objcObjectType || !objcObjectType->getInterface()) { | ||||||||||
845 | S.Diag(loc, diag::err_objc_type_args_non_class) | ||||||||||
846 | << type | ||||||||||
847 | << typeArgsRange; | ||||||||||
848 | |||||||||||
849 | if (failOnError) | ||||||||||
850 | return QualType(); | ||||||||||
851 | return type; | ||||||||||
852 | } | ||||||||||
853 | |||||||||||
854 | // The class type must be parameterized. | ||||||||||
855 | ObjCInterfaceDecl *objcClass = objcObjectType->getInterface(); | ||||||||||
856 | ObjCTypeParamList *typeParams = objcClass->getTypeParamList(); | ||||||||||
857 | if (!typeParams) { | ||||||||||
858 | S.Diag(loc, diag::err_objc_type_args_non_parameterized_class) | ||||||||||
859 | << objcClass->getDeclName() | ||||||||||
860 | << FixItHint::CreateRemoval(typeArgsRange); | ||||||||||
861 | |||||||||||
862 | if (failOnError) | ||||||||||
863 | return QualType(); | ||||||||||
864 | |||||||||||
865 | return type; | ||||||||||
866 | } | ||||||||||
867 | |||||||||||
868 | // The type must not already be specialized. | ||||||||||
869 | if (objcObjectType->isSpecialized()) { | ||||||||||
870 | S.Diag(loc, diag::err_objc_type_args_specialized_class) | ||||||||||
871 | << type | ||||||||||
872 | << FixItHint::CreateRemoval(typeArgsRange); | ||||||||||
873 | |||||||||||
874 | if (failOnError) | ||||||||||
875 | return QualType(); | ||||||||||
876 | |||||||||||
877 | return type; | ||||||||||
878 | } | ||||||||||
879 | |||||||||||
880 | // Check the type arguments. | ||||||||||
881 | SmallVector<QualType, 4> finalTypeArgs; | ||||||||||
882 | unsigned numTypeParams = typeParams->size(); | ||||||||||
883 | bool anyPackExpansions = false; | ||||||||||
884 | for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) { | ||||||||||
885 | TypeSourceInfo *typeArgInfo = typeArgs[i]; | ||||||||||
886 | QualType typeArg = typeArgInfo->getType(); | ||||||||||
887 | |||||||||||
888 | // Type arguments cannot have explicit qualifiers or nullability. | ||||||||||
889 | // We ignore indirect sources of these, e.g. behind typedefs or | ||||||||||
890 | // template arguments. | ||||||||||
891 | if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) { | ||||||||||
892 | bool diagnosed = false; | ||||||||||
893 | SourceRange rangeToRemove; | ||||||||||
894 | if (auto attr = qual.getAs<AttributedTypeLoc>()) { | ||||||||||
895 | rangeToRemove = attr.getLocalSourceRange(); | ||||||||||
896 | if (attr.getTypePtr()->getImmediateNullability()) { | ||||||||||
897 | typeArg = attr.getTypePtr()->getModifiedType(); | ||||||||||
898 | S.Diag(attr.getBeginLoc(), | ||||||||||
899 | diag::err_objc_type_arg_explicit_nullability) | ||||||||||
900 | << typeArg << FixItHint::CreateRemoval(rangeToRemove); | ||||||||||
901 | diagnosed = true; | ||||||||||
902 | } | ||||||||||
903 | } | ||||||||||
904 | |||||||||||
905 | if (!diagnosed) { | ||||||||||
906 | S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified) | ||||||||||
907 | << typeArg << typeArg.getQualifiers().getAsString() | ||||||||||
908 | << FixItHint::CreateRemoval(rangeToRemove); | ||||||||||
909 | } | ||||||||||
910 | } | ||||||||||
911 | |||||||||||
912 | // Remove qualifiers even if they're non-local. | ||||||||||
913 | typeArg = typeArg.getUnqualifiedType(); | ||||||||||
914 | |||||||||||
915 | finalTypeArgs.push_back(typeArg); | ||||||||||
916 | |||||||||||
917 | if (typeArg->getAs<PackExpansionType>()) | ||||||||||
918 | anyPackExpansions = true; | ||||||||||
919 | |||||||||||
920 | // Find the corresponding type parameter, if there is one. | ||||||||||
921 | ObjCTypeParamDecl *typeParam = nullptr; | ||||||||||
922 | if (!anyPackExpansions) { | ||||||||||
923 | if (i < numTypeParams) { | ||||||||||
924 | typeParam = typeParams->begin()[i]; | ||||||||||
925 | } else { | ||||||||||
926 | // Too many arguments. | ||||||||||
927 | S.Diag(loc, diag::err_objc_type_args_wrong_arity) | ||||||||||
928 | << false | ||||||||||
929 | << objcClass->getDeclName() | ||||||||||
930 | << (unsigned)typeArgs.size() | ||||||||||
931 | << numTypeParams; | ||||||||||
932 | S.Diag(objcClass->getLocation(), diag::note_previous_decl) | ||||||||||
933 | << objcClass; | ||||||||||
934 | |||||||||||
935 | if (failOnError) | ||||||||||
936 | return QualType(); | ||||||||||
937 | |||||||||||
938 | return type; | ||||||||||
939 | } | ||||||||||
940 | } | ||||||||||
941 | |||||||||||
942 | // Objective-C object pointer types must be substitutable for the bounds. | ||||||||||
943 | if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) { | ||||||||||
944 | // If we don't have a type parameter to match against, assume | ||||||||||
945 | // everything is fine. There was a prior pack expansion that | ||||||||||
946 | // means we won't be able to match anything. | ||||||||||
947 | if (!typeParam) { | ||||||||||
948 | assert(anyPackExpansions && "Too many arguments?")((void)0); | ||||||||||
949 | continue; | ||||||||||
950 | } | ||||||||||
951 | |||||||||||
952 | // Retrieve the bound. | ||||||||||
953 | QualType bound = typeParam->getUnderlyingType(); | ||||||||||
954 | const auto *boundObjC = bound->getAs<ObjCObjectPointerType>(); | ||||||||||
955 | |||||||||||
956 | // Determine whether the type argument is substitutable for the bound. | ||||||||||
957 | if (typeArgObjC->isObjCIdType()) { | ||||||||||
958 | // When the type argument is 'id', the only acceptable type | ||||||||||
959 | // parameter bound is 'id'. | ||||||||||
960 | if (boundObjC->isObjCIdType()) | ||||||||||
961 | continue; | ||||||||||
962 | } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) { | ||||||||||
963 | // Otherwise, we follow the assignability rules. | ||||||||||
964 | continue; | ||||||||||
965 | } | ||||||||||
966 | |||||||||||
967 | // Diagnose the mismatch. | ||||||||||
968 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||||||||
969 | diag::err_objc_type_arg_does_not_match_bound) | ||||||||||
970 | << typeArg << bound << typeParam->getDeclName(); | ||||||||||
971 | S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here) | ||||||||||
972 | << typeParam->getDeclName(); | ||||||||||
973 | |||||||||||
974 | if (failOnError) | ||||||||||
975 | return QualType(); | ||||||||||
976 | |||||||||||
977 | return type; | ||||||||||
978 | } | ||||||||||
979 | |||||||||||
980 | // Block pointer types are permitted for unqualified 'id' bounds. | ||||||||||
981 | if (typeArg->isBlockPointerType()) { | ||||||||||
982 | // If we don't have a type parameter to match against, assume | ||||||||||
983 | // everything is fine. There was a prior pack expansion that | ||||||||||
984 | // means we won't be able to match anything. | ||||||||||
985 | if (!typeParam) { | ||||||||||
986 | assert(anyPackExpansions && "Too many arguments?")((void)0); | ||||||||||
987 | continue; | ||||||||||
988 | } | ||||||||||
989 | |||||||||||
990 | // Retrieve the bound. | ||||||||||
991 | QualType bound = typeParam->getUnderlyingType(); | ||||||||||
992 | if (bound->isBlockCompatibleObjCPointerType(S.Context)) | ||||||||||
993 | continue; | ||||||||||
994 | |||||||||||
995 | // Diagnose the mismatch. | ||||||||||
996 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||||||||
997 | diag::err_objc_type_arg_does_not_match_bound) | ||||||||||
998 | << typeArg << bound << typeParam->getDeclName(); | ||||||||||
999 | S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here) | ||||||||||
1000 | << typeParam->getDeclName(); | ||||||||||
1001 | |||||||||||
1002 | if (failOnError) | ||||||||||
1003 | return QualType(); | ||||||||||
1004 | |||||||||||
1005 | return type; | ||||||||||
1006 | } | ||||||||||
1007 | |||||||||||
1008 | // Dependent types will be checked at instantiation time. | ||||||||||
1009 | if (typeArg->isDependentType()) { | ||||||||||
1010 | continue; | ||||||||||
1011 | } | ||||||||||
1012 | |||||||||||
1013 | // Diagnose non-id-compatible type arguments. | ||||||||||
1014 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | ||||||||||
1015 | diag::err_objc_type_arg_not_id_compatible) | ||||||||||
1016 | << typeArg << typeArgInfo->getTypeLoc().getSourceRange(); | ||||||||||
1017 | |||||||||||
1018 | if (failOnError) | ||||||||||
1019 | return QualType(); | ||||||||||
1020 | |||||||||||
1021 | return type; | ||||||||||
1022 | } | ||||||||||
1023 | |||||||||||
1024 | // Make sure we didn't have the wrong number of arguments. | ||||||||||
1025 | if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) { | ||||||||||
1026 | S.Diag(loc, diag::err_objc_type_args_wrong_arity) | ||||||||||
1027 | << (typeArgs.size() < typeParams->size()) | ||||||||||
1028 | << objcClass->getDeclName() | ||||||||||
1029 | << (unsigned)finalTypeArgs.size() | ||||||||||
1030 | << (unsigned)numTypeParams; | ||||||||||
1031 | S.Diag(objcClass->getLocation(), diag::note_previous_decl) | ||||||||||
1032 | << objcClass; | ||||||||||
1033 | |||||||||||
1034 | if (failOnError) | ||||||||||
1035 | return QualType(); | ||||||||||
1036 | |||||||||||
1037 | return type; | ||||||||||
1038 | } | ||||||||||
1039 | |||||||||||
1040 | // Success. Form the specialized type. | ||||||||||
1041 | return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false); | ||||||||||
1042 | } | ||||||||||
1043 | |||||||||||
1044 | QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, | ||||||||||
1045 | SourceLocation ProtocolLAngleLoc, | ||||||||||
1046 | ArrayRef<ObjCProtocolDecl *> Protocols, | ||||||||||
1047 | ArrayRef<SourceLocation> ProtocolLocs, | ||||||||||
1048 | SourceLocation ProtocolRAngleLoc, | ||||||||||
1049 | bool FailOnError) { | ||||||||||
1050 | QualType Result = QualType(Decl->getTypeForDecl(), 0); | ||||||||||
1051 | if (!Protocols.empty()) { | ||||||||||
1052 | bool HasError; | ||||||||||
1053 | Result = Context.applyObjCProtocolQualifiers(Result, Protocols, | ||||||||||
1054 | HasError); | ||||||||||
1055 | if (HasError) { | ||||||||||
1056 | Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers) | ||||||||||
1057 | << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc); | ||||||||||
1058 | if (FailOnError) Result = QualType(); | ||||||||||
1059 | } | ||||||||||
1060 | if (FailOnError && Result.isNull()) | ||||||||||
1061 | return QualType(); | ||||||||||
1062 | } | ||||||||||
1063 | |||||||||||
1064 | return Result; | ||||||||||
1065 | } | ||||||||||
1066 | |||||||||||
1067 | QualType Sema::BuildObjCObjectType(QualType BaseType, | ||||||||||
1068 | SourceLocation Loc, | ||||||||||
1069 | SourceLocation TypeArgsLAngleLoc, | ||||||||||
1070 | ArrayRef<TypeSourceInfo *> TypeArgs, | ||||||||||
1071 | SourceLocation TypeArgsRAngleLoc, | ||||||||||
1072 | SourceLocation ProtocolLAngleLoc, | ||||||||||
1073 | ArrayRef<ObjCProtocolDecl *> Protocols, | ||||||||||
1074 | ArrayRef<SourceLocation> ProtocolLocs, | ||||||||||
1075 | SourceLocation ProtocolRAngleLoc, | ||||||||||
1076 | bool FailOnError) { | ||||||||||
1077 | QualType Result = BaseType; | ||||||||||
1078 | if (!TypeArgs.empty()) { | ||||||||||
1079 | Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs, | ||||||||||
1080 | SourceRange(TypeArgsLAngleLoc, | ||||||||||
1081 | TypeArgsRAngleLoc), | ||||||||||
1082 | FailOnError); | ||||||||||
1083 | if (FailOnError && Result.isNull()) | ||||||||||
1084 | return QualType(); | ||||||||||
1085 | } | ||||||||||
1086 | |||||||||||
1087 | if (!Protocols.empty()) { | ||||||||||
1088 | bool HasError; | ||||||||||
1089 | Result = Context.applyObjCProtocolQualifiers(Result, Protocols, | ||||||||||
1090 | HasError); | ||||||||||
1091 | if (HasError) { | ||||||||||
1092 | Diag(Loc, diag::err_invalid_protocol_qualifiers) | ||||||||||
1093 | << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc); | ||||||||||
1094 | if (FailOnError) Result = QualType(); | ||||||||||
1095 | } | ||||||||||
1096 | if (FailOnError && Result.isNull()) | ||||||||||
1097 | return QualType(); | ||||||||||
1098 | } | ||||||||||
1099 | |||||||||||
1100 | return Result; | ||||||||||
1101 | } | ||||||||||
1102 | |||||||||||
1103 | TypeResult Sema::actOnObjCProtocolQualifierType( | ||||||||||
1104 | SourceLocation lAngleLoc, | ||||||||||
1105 | ArrayRef<Decl *> protocols, | ||||||||||
1106 | ArrayRef<SourceLocation> protocolLocs, | ||||||||||
1107 | SourceLocation rAngleLoc) { | ||||||||||
1108 | // Form id<protocol-list>. | ||||||||||
1109 | QualType Result = Context.getObjCObjectType( | ||||||||||
1110 | Context.ObjCBuiltinIdTy, { }, | ||||||||||
1111 | llvm::makeArrayRef( | ||||||||||
1112 | (ObjCProtocolDecl * const *)protocols.data(), | ||||||||||
1113 | protocols.size()), | ||||||||||
1114 | false); | ||||||||||
1115 | Result = Context.getObjCObjectPointerType(Result); | ||||||||||
1116 | |||||||||||
1117 | TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result); | ||||||||||
1118 | TypeLoc ResultTL = ResultTInfo->getTypeLoc(); | ||||||||||
1119 | |||||||||||
1120 | auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>(); | ||||||||||
1121 | ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit | ||||||||||
1122 | |||||||||||
1123 | auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc() | ||||||||||
1124 | .castAs<ObjCObjectTypeLoc>(); | ||||||||||
1125 | ObjCObjectTL.setHasBaseTypeAsWritten(false); | ||||||||||
1126 | ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation()); | ||||||||||
1127 | |||||||||||
1128 | // No type arguments. | ||||||||||
1129 | ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation()); | ||||||||||
1130 | ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation()); | ||||||||||
1131 | |||||||||||
1132 | // Fill in protocol qualifiers. | ||||||||||
1133 | ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc); | ||||||||||
1134 | ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc); | ||||||||||
1135 | for (unsigned i = 0, n = protocols.size(); i != n; ++i) | ||||||||||
1136 | ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]); | ||||||||||
1137 | |||||||||||
1138 | // We're done. Return the completed type to the parser. | ||||||||||
1139 | return CreateParsedType(Result, ResultTInfo); | ||||||||||
1140 | } | ||||||||||
1141 | |||||||||||
1142 | TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers( | ||||||||||
1143 | Scope *S, | ||||||||||
1144 | SourceLocation Loc, | ||||||||||
1145 | ParsedType BaseType, | ||||||||||
1146 | SourceLocation TypeArgsLAngleLoc, | ||||||||||
1147 | ArrayRef<ParsedType> TypeArgs, | ||||||||||
1148 | SourceLocation TypeArgsRAngleLoc, | ||||||||||
1149 | SourceLocation ProtocolLAngleLoc, | ||||||||||
1150 | ArrayRef<Decl *> Protocols, | ||||||||||
1151 | ArrayRef<SourceLocation> ProtocolLocs, | ||||||||||
1152 | SourceLocation ProtocolRAngleLoc) { | ||||||||||
1153 | TypeSourceInfo *BaseTypeInfo = nullptr; | ||||||||||
1154 | QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo); | ||||||||||
1155 | if (T.isNull()) | ||||||||||
1156 | return true; | ||||||||||
1157 | |||||||||||
1158 | // Handle missing type-source info. | ||||||||||
1159 | if (!BaseTypeInfo) | ||||||||||
1160 | BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc); | ||||||||||
1161 | |||||||||||
1162 | // Extract type arguments. | ||||||||||
1163 | SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos; | ||||||||||
1164 | for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) { | ||||||||||
1165 | TypeSourceInfo *TypeArgInfo = nullptr; | ||||||||||
1166 | QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo); | ||||||||||
1167 | if (TypeArg.isNull()) { | ||||||||||
1168 | ActualTypeArgInfos.clear(); | ||||||||||
1169 | break; | ||||||||||
1170 | } | ||||||||||
1171 | |||||||||||
1172 | assert(TypeArgInfo && "No type source info?")((void)0); | ||||||||||
1173 | ActualTypeArgInfos.push_back(TypeArgInfo); | ||||||||||
1174 | } | ||||||||||
1175 | |||||||||||
1176 | // Build the object type. | ||||||||||
1177 | QualType Result = BuildObjCObjectType( | ||||||||||
1178 | T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(), | ||||||||||
1179 | TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc, | ||||||||||
1180 | ProtocolLAngleLoc, | ||||||||||
1181 | llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(), | ||||||||||
1182 | Protocols.size()), | ||||||||||
1183 | ProtocolLocs, ProtocolRAngleLoc, | ||||||||||
1184 | /*FailOnError=*/false); | ||||||||||
1185 | |||||||||||
1186 | if (Result == T) | ||||||||||
1187 | return BaseType; | ||||||||||
1188 | |||||||||||
1189 | // Create source information for this type. | ||||||||||
1190 | TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result); | ||||||||||
1191 | TypeLoc ResultTL = ResultTInfo->getTypeLoc(); | ||||||||||
1192 | |||||||||||
1193 | // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an | ||||||||||
1194 | // object pointer type. Fill in source information for it. | ||||||||||
1195 | if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) { | ||||||||||
1196 | // The '*' is implicit. | ||||||||||
1197 | ObjCObjectPointerTL.setStarLoc(SourceLocation()); | ||||||||||
1198 | ResultTL = ObjCObjectPointerTL.getPointeeLoc(); | ||||||||||
1199 | } | ||||||||||
1200 | |||||||||||
1201 | if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) { | ||||||||||
1202 | // Protocol qualifier information. | ||||||||||
1203 | if (OTPTL.getNumProtocols() > 0) { | ||||||||||
1204 | assert(OTPTL.getNumProtocols() == Protocols.size())((void)0); | ||||||||||
1205 | OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc); | ||||||||||
1206 | OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc); | ||||||||||
1207 | for (unsigned i = 0, n = Protocols.size(); i != n; ++i) | ||||||||||
1208 | OTPTL.setProtocolLoc(i, ProtocolLocs[i]); | ||||||||||
1209 | } | ||||||||||
1210 | |||||||||||
1211 | // We're done. Return the completed type to the parser. | ||||||||||
1212 | return CreateParsedType(Result, ResultTInfo); | ||||||||||
1213 | } | ||||||||||
1214 | |||||||||||
1215 | auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>(); | ||||||||||
1216 | |||||||||||
1217 | // Type argument information. | ||||||||||
1218 | if (ObjCObjectTL.getNumTypeArgs() > 0) { | ||||||||||
1219 | assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((void)0); | ||||||||||
1220 | ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc); | ||||||||||
1221 | ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc); | ||||||||||
1222 | for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i) | ||||||||||
1223 | ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]); | ||||||||||
1224 | } else { | ||||||||||
1225 | ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation()); | ||||||||||
1226 | ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation()); | ||||||||||
1227 | } | ||||||||||
1228 | |||||||||||
1229 | // Protocol qualifier information. | ||||||||||
1230 | if (ObjCObjectTL.getNumProtocols() > 0) { | ||||||||||
1231 | assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((void)0); | ||||||||||
1232 | ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc); | ||||||||||
1233 | ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc); | ||||||||||
1234 | for (unsigned i = 0, n = Protocols.size(); i != n; ++i) | ||||||||||
1235 | ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]); | ||||||||||
1236 | } else { | ||||||||||
1237 | ObjCObjectTL.setProtocolLAngleLoc(SourceLocation()); | ||||||||||
1238 | ObjCObjectTL.setProtocolRAngleLoc(SourceLocation()); | ||||||||||
1239 | } | ||||||||||
1240 | |||||||||||
1241 | // Base type. | ||||||||||
1242 | ObjCObjectTL.setHasBaseTypeAsWritten(true); | ||||||||||
1243 | if (ObjCObjectTL.getType() == T) | ||||||||||
1244 | ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc()); | ||||||||||
1245 | else | ||||||||||
1246 | ObjCObjectTL.getBaseLoc().initialize(Context, Loc); | ||||||||||
1247 | |||||||||||
1248 | // We're done. Return the completed type to the parser. | ||||||||||
1249 | return CreateParsedType(Result, ResultTInfo); | ||||||||||
1250 | } | ||||||||||
1251 | |||||||||||
1252 | static OpenCLAccessAttr::Spelling | ||||||||||
1253 | getImageAccess(const ParsedAttributesView &Attrs) { | ||||||||||
1254 | for (const ParsedAttr &AL : Attrs) | ||||||||||
1255 | if (AL.getKind() == ParsedAttr::AT_OpenCLAccess) | ||||||||||
1256 | return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling()); | ||||||||||
1257 | return OpenCLAccessAttr::Keyword_read_only; | ||||||||||
1258 | } | ||||||||||
1259 | |||||||||||
1260 | /// Convert the specified declspec to the appropriate type | ||||||||||
1261 | /// object. | ||||||||||
1262 | /// \param state Specifies the declarator containing the declaration specifier | ||||||||||
1263 | /// to be converted, along with other associated processing state. | ||||||||||
1264 | /// \returns The type described by the declaration specifiers. This function | ||||||||||
1265 | /// never returns null. | ||||||||||
1266 | static QualType ConvertDeclSpecToType(TypeProcessingState &state) { | ||||||||||
1267 | // FIXME: Should move the logic from DeclSpec::Finish to here for validity | ||||||||||
1268 | // checking. | ||||||||||
1269 | |||||||||||
1270 | Sema &S = state.getSema(); | ||||||||||
1271 | Declarator &declarator = state.getDeclarator(); | ||||||||||
1272 | DeclSpec &DS = declarator.getMutableDeclSpec(); | ||||||||||
1273 | SourceLocation DeclLoc = declarator.getIdentifierLoc(); | ||||||||||
1274 | if (DeclLoc.isInvalid()) | ||||||||||
1275 | DeclLoc = DS.getBeginLoc(); | ||||||||||
1276 | |||||||||||
1277 | ASTContext &Context = S.Context; | ||||||||||
1278 | |||||||||||
1279 | QualType Result; | ||||||||||
1280 | switch (DS.getTypeSpecType()) { | ||||||||||
1281 | case DeclSpec::TST_void: | ||||||||||
1282 | Result = Context.VoidTy; | ||||||||||
1283 | break; | ||||||||||
1284 | case DeclSpec::TST_char: | ||||||||||
1285 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) | ||||||||||
1286 | Result = Context.CharTy; | ||||||||||
1287 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) | ||||||||||
1288 | Result = Context.SignedCharTy; | ||||||||||
1289 | else { | ||||||||||
1290 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((void)0) | ||||||||||
1291 | "Unknown TSS value")((void)0); | ||||||||||
1292 | Result = Context.UnsignedCharTy; | ||||||||||
1293 | } | ||||||||||
1294 | break; | ||||||||||
1295 | case DeclSpec::TST_wchar: | ||||||||||
1296 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) | ||||||||||
1297 | Result = Context.WCharTy; | ||||||||||
1298 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) { | ||||||||||
1299 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) | ||||||||||
1300 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||||||||
1301 | Context.getPrintingPolicy()); | ||||||||||
1302 | Result = Context.getSignedWCharType(); | ||||||||||
1303 | } else { | ||||||||||
1304 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((void)0) | ||||||||||
1305 | "Unknown TSS value")((void)0); | ||||||||||
1306 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) | ||||||||||
1307 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||||||||
1308 | Context.getPrintingPolicy()); | ||||||||||
1309 | Result = Context.getUnsignedWCharType(); | ||||||||||
1310 | } | ||||||||||
1311 | break; | ||||||||||
1312 | case DeclSpec::TST_char8: | ||||||||||
1313 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||||||||
1314 | "Unknown TSS value")((void)0); | ||||||||||
1315 | Result = Context.Char8Ty; | ||||||||||
1316 | break; | ||||||||||
1317 | case DeclSpec::TST_char16: | ||||||||||
1318 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||||||||
1319 | "Unknown TSS value")((void)0); | ||||||||||
1320 | Result = Context.Char16Ty; | ||||||||||
1321 | break; | ||||||||||
1322 | case DeclSpec::TST_char32: | ||||||||||
1323 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||||||||
1324 | "Unknown TSS value")((void)0); | ||||||||||
1325 | Result = Context.Char32Ty; | ||||||||||
1326 | break; | ||||||||||
1327 | case DeclSpec::TST_unspecified: | ||||||||||
1328 | // If this is a missing declspec in a block literal return context, then it | ||||||||||
1329 | // is inferred from the return statements inside the block. | ||||||||||
1330 | // The declspec is always missing in a lambda expr context; it is either | ||||||||||
1331 | // specified with a trailing return type or inferred. | ||||||||||
1332 | if (S.getLangOpts().CPlusPlus14 && | ||||||||||
1333 | declarator.getContext() == DeclaratorContext::LambdaExpr) { | ||||||||||
1334 | // In C++1y, a lambda's implicit return type is 'auto'. | ||||||||||
1335 | Result = Context.getAutoDeductType(); | ||||||||||
1336 | break; | ||||||||||
1337 | } else if (declarator.getContext() == DeclaratorContext::LambdaExpr || | ||||||||||
1338 | checkOmittedBlockReturnType(S, declarator, | ||||||||||
1339 | Context.DependentTy)) { | ||||||||||
1340 | Result = Context.DependentTy; | ||||||||||
1341 | break; | ||||||||||
1342 | } | ||||||||||
1343 | |||||||||||
1344 | // Unspecified typespec defaults to int in C90. However, the C90 grammar | ||||||||||
1345 | // [C90 6.5] only allows a decl-spec if there was *some* type-specifier, | ||||||||||
1346 | // type-qualifier, or storage-class-specifier. If not, emit an extwarn. | ||||||||||
1347 | // Note that the one exception to this is function definitions, which are | ||||||||||
1348 | // allowed to be completely missing a declspec. This is handled in the | ||||||||||
1349 | // parser already though by it pretending to have seen an 'int' in this | ||||||||||
1350 | // case. | ||||||||||
1351 | if (S.getLangOpts().ImplicitInt) { | ||||||||||
1352 | // In C89 mode, we only warn if there is a completely missing declspec | ||||||||||
1353 | // when one is not allowed. | ||||||||||
1354 | if (DS.isEmpty()) { | ||||||||||
1355 | S.Diag(DeclLoc, diag::ext_missing_declspec) | ||||||||||
1356 | << DS.getSourceRange() | ||||||||||
1357 | << FixItHint::CreateInsertion(DS.getBeginLoc(), "int"); | ||||||||||
1358 | } | ||||||||||
1359 | } else if (!DS.hasTypeSpecifier()) { | ||||||||||
1360 | // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says: | ||||||||||
1361 | // "At least one type specifier shall be given in the declaration | ||||||||||
1362 | // specifiers in each declaration, and in the specifier-qualifier list in | ||||||||||
1363 | // each struct declaration and type name." | ||||||||||
1364 | if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) { | ||||||||||
1365 | S.Diag(DeclLoc, diag::err_missing_type_specifier) | ||||||||||
1366 | << DS.getSourceRange(); | ||||||||||
1367 | |||||||||||
1368 | // When this occurs in C++ code, often something is very broken with the | ||||||||||
1369 | // value being declared, poison it as invalid so we don't get chains of | ||||||||||
1370 | // errors. | ||||||||||
1371 | declarator.setInvalidType(true); | ||||||||||
1372 | } else if ((S.getLangOpts().OpenCLVersion >= 200 || | ||||||||||
1373 | S.getLangOpts().OpenCLCPlusPlus) && | ||||||||||
1374 | DS.isTypeSpecPipe()) { | ||||||||||
1375 | S.Diag(DeclLoc, diag::err_missing_actual_pipe_type) | ||||||||||
1376 | << DS.getSourceRange(); | ||||||||||
1377 | declarator.setInvalidType(true); | ||||||||||
1378 | } else { | ||||||||||
1379 | S.Diag(DeclLoc, diag::ext_missing_type_specifier) | ||||||||||
1380 | << DS.getSourceRange(); | ||||||||||
1381 | } | ||||||||||
1382 | } | ||||||||||
1383 | |||||||||||
1384 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
1385 | case DeclSpec::TST_int: { | ||||||||||
1386 | if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) { | ||||||||||
1387 | switch (DS.getTypeSpecWidth()) { | ||||||||||
1388 | case TypeSpecifierWidth::Unspecified: | ||||||||||
1389 | Result = Context.IntTy; | ||||||||||
1390 | break; | ||||||||||
1391 | case TypeSpecifierWidth::Short: | ||||||||||
1392 | Result = Context.ShortTy; | ||||||||||
1393 | break; | ||||||||||
1394 | case TypeSpecifierWidth::Long: | ||||||||||
1395 | Result = Context.LongTy; | ||||||||||
1396 | break; | ||||||||||
1397 | case TypeSpecifierWidth::LongLong: | ||||||||||
1398 | Result = Context.LongLongTy; | ||||||||||
1399 | |||||||||||
1400 | // 'long long' is a C99 or C++11 feature. | ||||||||||
1401 | if (!S.getLangOpts().C99) { | ||||||||||
1402 | if (S.getLangOpts().CPlusPlus) | ||||||||||
1403 | S.Diag(DS.getTypeSpecWidthLoc(), | ||||||||||
1404 | S.getLangOpts().CPlusPlus11 ? | ||||||||||
1405 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | ||||||||||
1406 | else | ||||||||||
1407 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); | ||||||||||
1408 | } | ||||||||||
1409 | break; | ||||||||||
1410 | } | ||||||||||
1411 | } else { | ||||||||||
1412 | switch (DS.getTypeSpecWidth()) { | ||||||||||
1413 | case TypeSpecifierWidth::Unspecified: | ||||||||||
1414 | Result = Context.UnsignedIntTy; | ||||||||||
1415 | break; | ||||||||||
1416 | case TypeSpecifierWidth::Short: | ||||||||||
1417 | Result = Context.UnsignedShortTy; | ||||||||||
1418 | break; | ||||||||||
1419 | case TypeSpecifierWidth::Long: | ||||||||||
1420 | Result = Context.UnsignedLongTy; | ||||||||||
1421 | break; | ||||||||||
1422 | case TypeSpecifierWidth::LongLong: | ||||||||||
1423 | Result = Context.UnsignedLongLongTy; | ||||||||||
1424 | |||||||||||
1425 | // 'long long' is a C99 or C++11 feature. | ||||||||||
1426 | if (!S.getLangOpts().C99) { | ||||||||||
1427 | if (S.getLangOpts().CPlusPlus) | ||||||||||
1428 | S.Diag(DS.getTypeSpecWidthLoc(), | ||||||||||
1429 | S.getLangOpts().CPlusPlus11 ? | ||||||||||
1430 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | ||||||||||
1431 | else | ||||||||||
1432 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); | ||||||||||
1433 | } | ||||||||||
1434 | break; | ||||||||||
1435 | } | ||||||||||
1436 | } | ||||||||||
1437 | break; | ||||||||||
1438 | } | ||||||||||
1439 | case DeclSpec::TST_extint: { | ||||||||||
1440 | if (!S.Context.getTargetInfo().hasExtIntType()) | ||||||||||
1441 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||||||||
1442 | << "_ExtInt"; | ||||||||||
1443 | Result = | ||||||||||
1444 | S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned, | ||||||||||
1445 | DS.getRepAsExpr(), DS.getBeginLoc()); | ||||||||||
1446 | if (Result.isNull()) { | ||||||||||
1447 | Result = Context.IntTy; | ||||||||||
1448 | declarator.setInvalidType(true); | ||||||||||
1449 | } | ||||||||||
1450 | break; | ||||||||||
1451 | } | ||||||||||
1452 | case DeclSpec::TST_accum: { | ||||||||||
1453 | switch (DS.getTypeSpecWidth()) { | ||||||||||
1454 | case TypeSpecifierWidth::Short: | ||||||||||
1455 | Result = Context.ShortAccumTy; | ||||||||||
1456 | break; | ||||||||||
1457 | case TypeSpecifierWidth::Unspecified: | ||||||||||
1458 | Result = Context.AccumTy; | ||||||||||
1459 | break; | ||||||||||
1460 | case TypeSpecifierWidth::Long: | ||||||||||
1461 | Result = Context.LongAccumTy; | ||||||||||
1462 | break; | ||||||||||
1463 | case TypeSpecifierWidth::LongLong: | ||||||||||
1464 | llvm_unreachable("Unable to specify long long as _Accum width")__builtin_unreachable(); | ||||||||||
1465 | } | ||||||||||
1466 | |||||||||||
1467 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||||||||
1468 | Result = Context.getCorrespondingUnsignedType(Result); | ||||||||||
1469 | |||||||||||
1470 | if (DS.isTypeSpecSat()) | ||||||||||
1471 | Result = Context.getCorrespondingSaturatedType(Result); | ||||||||||
1472 | |||||||||||
1473 | break; | ||||||||||
1474 | } | ||||||||||
1475 | case DeclSpec::TST_fract: { | ||||||||||
1476 | switch (DS.getTypeSpecWidth()) { | ||||||||||
1477 | case TypeSpecifierWidth::Short: | ||||||||||
1478 | Result = Context.ShortFractTy; | ||||||||||
1479 | break; | ||||||||||
1480 | case TypeSpecifierWidth::Unspecified: | ||||||||||
1481 | Result = Context.FractTy; | ||||||||||
1482 | break; | ||||||||||
1483 | case TypeSpecifierWidth::Long: | ||||||||||
1484 | Result = Context.LongFractTy; | ||||||||||
1485 | break; | ||||||||||
1486 | case TypeSpecifierWidth::LongLong: | ||||||||||
1487 | llvm_unreachable("Unable to specify long long as _Fract width")__builtin_unreachable(); | ||||||||||
1488 | } | ||||||||||
1489 | |||||||||||
1490 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||||||||
1491 | Result = Context.getCorrespondingUnsignedType(Result); | ||||||||||
1492 | |||||||||||
1493 | if (DS.isTypeSpecSat()) | ||||||||||
1494 | Result = Context.getCorrespondingSaturatedType(Result); | ||||||||||
1495 | |||||||||||
1496 | break; | ||||||||||
1497 | } | ||||||||||
1498 | case DeclSpec::TST_int128: | ||||||||||
1499 | if (!S.Context.getTargetInfo().hasInt128Type() && | ||||||||||
1500 | !S.getLangOpts().SYCLIsDevice && | ||||||||||
1501 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||||||||
1502 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||||||||
1503 | << "__int128"; | ||||||||||
1504 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | ||||||||||
1505 | Result = Context.UnsignedInt128Ty; | ||||||||||
1506 | else | ||||||||||
1507 | Result = Context.Int128Ty; | ||||||||||
1508 | break; | ||||||||||
1509 | case DeclSpec::TST_float16: | ||||||||||
1510 | // CUDA host and device may have different _Float16 support, therefore | ||||||||||
1511 | // do not diagnose _Float16 usage to avoid false alarm. | ||||||||||
1512 | // ToDo: more precise diagnostics for CUDA. | ||||||||||
1513 | if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA && | ||||||||||
1514 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||||||||
1515 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||||||||
1516 | << "_Float16"; | ||||||||||
1517 | Result = Context.Float16Ty; | ||||||||||
1518 | break; | ||||||||||
1519 | case DeclSpec::TST_half: Result = Context.HalfTy; break; | ||||||||||
1520 | case DeclSpec::TST_BFloat16: | ||||||||||
1521 | if (!S.Context.getTargetInfo().hasBFloat16Type()) | ||||||||||
1522 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||||||||
1523 | << "__bf16"; | ||||||||||
1524 | Result = Context.BFloat16Ty; | ||||||||||
1525 | break; | ||||||||||
1526 | case DeclSpec::TST_float: Result = Context.FloatTy; break; | ||||||||||
1527 | case DeclSpec::TST_double: | ||||||||||
1528 | if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long) | ||||||||||
1529 | Result = Context.LongDoubleTy; | ||||||||||
1530 | else | ||||||||||
1531 | Result = Context.DoubleTy; | ||||||||||
1532 | if (S.getLangOpts().OpenCL) { | ||||||||||
1533 | if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts())) | ||||||||||
1534 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||||||||
1535 | << 0 << Result | ||||||||||
1536 | << (S.getLangOpts().OpenCLVersion == 300 | ||||||||||
1537 | ? "cl_khr_fp64 and __opencl_c_fp64" | ||||||||||
1538 | : "cl_khr_fp64"); | ||||||||||
1539 | else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts())) | ||||||||||
1540 | S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma); | ||||||||||
1541 | } | ||||||||||
1542 | break; | ||||||||||
1543 | case DeclSpec::TST_float128: | ||||||||||
1544 | if (!S.Context.getTargetInfo().hasFloat128Type() && | ||||||||||
1545 | !S.getLangOpts().SYCLIsDevice && | ||||||||||
1546 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | ||||||||||
1547 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | ||||||||||
1548 | << "__float128"; | ||||||||||
1549 | Result = Context.Float128Ty; | ||||||||||
1550 | break; | ||||||||||
1551 | case DeclSpec::TST_bool: | ||||||||||
1552 | Result = Context.BoolTy; // _Bool or bool | ||||||||||
1553 | break; | ||||||||||
1554 | case DeclSpec::TST_decimal32: // _Decimal32 | ||||||||||
1555 | case DeclSpec::TST_decimal64: // _Decimal64 | ||||||||||
1556 | case DeclSpec::TST_decimal128: // _Decimal128 | ||||||||||
1557 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported); | ||||||||||
1558 | Result = Context.IntTy; | ||||||||||
1559 | declarator.setInvalidType(true); | ||||||||||
1560 | break; | ||||||||||
1561 | case DeclSpec::TST_class: | ||||||||||
1562 | case DeclSpec::TST_enum: | ||||||||||
1563 | case DeclSpec::TST_union: | ||||||||||
1564 | case DeclSpec::TST_struct: | ||||||||||
1565 | case DeclSpec::TST_interface: { | ||||||||||
1566 | TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()); | ||||||||||
1567 | if (!D) { | ||||||||||
1568 | // This can happen in C++ with ambiguous lookups. | ||||||||||
1569 | Result = Context.IntTy; | ||||||||||
1570 | declarator.setInvalidType(true); | ||||||||||
1571 | break; | ||||||||||
1572 | } | ||||||||||
1573 | |||||||||||
1574 | // If the type is deprecated or unavailable, diagnose it. | ||||||||||
1575 | S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc()); | ||||||||||
1576 | |||||||||||
1577 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((void)0) | ||||||||||
1578 | DS.getTypeSpecComplex() == 0 &&((void)0) | ||||||||||
1579 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||||||||
1580 | "No qualifiers on tag names!")((void)0); | ||||||||||
1581 | |||||||||||
1582 | // TypeQuals handled by caller. | ||||||||||
1583 | Result = Context.getTypeDeclType(D); | ||||||||||
1584 | |||||||||||
1585 | // In both C and C++, make an ElaboratedType. | ||||||||||
1586 | ElaboratedTypeKeyword Keyword | ||||||||||
1587 | = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType()); | ||||||||||
1588 | Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result, | ||||||||||
1589 | DS.isTypeSpecOwned() ? D : nullptr); | ||||||||||
1590 | break; | ||||||||||
1591 | } | ||||||||||
1592 | case DeclSpec::TST_typename: { | ||||||||||
1593 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((void)0) | ||||||||||
1594 | DS.getTypeSpecComplex() == 0 &&((void)0) | ||||||||||
1595 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0) | ||||||||||
1596 | "Can't handle qualifiers on typedef names yet!")((void)0); | ||||||||||
1597 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||||||||
1598 | if (Result.isNull()) { | ||||||||||
1599 | declarator.setInvalidType(true); | ||||||||||
1600 | } | ||||||||||
1601 | |||||||||||
1602 | // TypeQuals handled by caller. | ||||||||||
1603 | break; | ||||||||||
1604 | } | ||||||||||
1605 | case DeclSpec::TST_typeofType: | ||||||||||
1606 | // FIXME: Preserve type source info. | ||||||||||
1607 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||||||||
1608 | assert(!Result.isNull() && "Didn't get a type for typeof?")((void)0); | ||||||||||
1609 | if (!Result->isDependentType()) | ||||||||||
1610 | if (const TagType *TT = Result->getAs<TagType>()) | ||||||||||
1611 | S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc()); | ||||||||||
1612 | // TypeQuals handled by caller. | ||||||||||
1613 | Result = Context.getTypeOfType(Result); | ||||||||||
1614 | break; | ||||||||||
1615 | case DeclSpec::TST_typeofExpr: { | ||||||||||
1616 | Expr *E = DS.getRepAsExpr(); | ||||||||||
1617 | assert(E && "Didn't get an expression for typeof?")((void)0); | ||||||||||
1618 | // TypeQuals handled by caller. | ||||||||||
1619 | Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc()); | ||||||||||
1620 | if (Result.isNull()) { | ||||||||||
1621 | Result = Context.IntTy; | ||||||||||
1622 | declarator.setInvalidType(true); | ||||||||||
1623 | } | ||||||||||
1624 | break; | ||||||||||
1625 | } | ||||||||||
1626 | case DeclSpec::TST_decltype: { | ||||||||||
1627 | Expr *E = DS.getRepAsExpr(); | ||||||||||
1628 | assert(E && "Didn't get an expression for decltype?")((void)0); | ||||||||||
1629 | // TypeQuals handled by caller. | ||||||||||
1630 | Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc()); | ||||||||||
1631 | if (Result.isNull()) { | ||||||||||
1632 | Result = Context.IntTy; | ||||||||||
1633 | declarator.setInvalidType(true); | ||||||||||
1634 | } | ||||||||||
1635 | break; | ||||||||||
1636 | } | ||||||||||
1637 | case DeclSpec::TST_underlyingType: | ||||||||||
1638 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||||||||
1639 | assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((void)0); | ||||||||||
1640 | Result = S.BuildUnaryTransformType(Result, | ||||||||||
1641 | UnaryTransformType::EnumUnderlyingType, | ||||||||||
1642 | DS.getTypeSpecTypeLoc()); | ||||||||||
1643 | if (Result.isNull()) { | ||||||||||
1644 | Result = Context.IntTy; | ||||||||||
1645 | declarator.setInvalidType(true); | ||||||||||
1646 | } | ||||||||||
1647 | break; | ||||||||||
1648 | |||||||||||
1649 | case DeclSpec::TST_auto: | ||||||||||
1650 | case DeclSpec::TST_decltype_auto: { | ||||||||||
1651 | auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto | ||||||||||
1652 | ? AutoTypeKeyword::DecltypeAuto | ||||||||||
1653 | : AutoTypeKeyword::Auto; | ||||||||||
1654 | |||||||||||
1655 | ConceptDecl *TypeConstraintConcept = nullptr; | ||||||||||
1656 | llvm::SmallVector<TemplateArgument, 8> TemplateArgs; | ||||||||||
1657 | if (DS.isConstrainedAuto()) { | ||||||||||
1658 | if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) { | ||||||||||
1659 | TypeConstraintConcept = | ||||||||||
1660 | cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()); | ||||||||||
1661 | TemplateArgumentListInfo TemplateArgsInfo; | ||||||||||
1662 | TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc); | ||||||||||
1663 | TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc); | ||||||||||
1664 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||||||||
1665 | TemplateId->NumArgs); | ||||||||||
1666 | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||||||||
1667 | for (const auto &ArgLoc : TemplateArgsInfo.arguments()) | ||||||||||
1668 | TemplateArgs.push_back(ArgLoc.getArgument()); | ||||||||||
1669 | } else { | ||||||||||
1670 | declarator.setInvalidType(true); | ||||||||||
1671 | } | ||||||||||
1672 | } | ||||||||||
1673 | Result = S.Context.getAutoType(QualType(), AutoKW, | ||||||||||
1674 | /*IsDependent*/ false, /*IsPack=*/false, | ||||||||||
1675 | TypeConstraintConcept, TemplateArgs); | ||||||||||
1676 | break; | ||||||||||
1677 | } | ||||||||||
1678 | |||||||||||
1679 | case DeclSpec::TST_auto_type: | ||||||||||
1680 | Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false); | ||||||||||
1681 | break; | ||||||||||
1682 | |||||||||||
1683 | case DeclSpec::TST_unknown_anytype: | ||||||||||
1684 | Result = Context.UnknownAnyTy; | ||||||||||
1685 | break; | ||||||||||
1686 | |||||||||||
1687 | case DeclSpec::TST_atomic: | ||||||||||
1688 | Result = S.GetTypeFromParser(DS.getRepAsType()); | ||||||||||
1689 | assert(!Result.isNull() && "Didn't get a type for _Atomic?")((void)0); | ||||||||||
1690 | Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc()); | ||||||||||
1691 | if (Result.isNull()) { | ||||||||||
1692 | Result = Context.IntTy; | ||||||||||
1693 | declarator.setInvalidType(true); | ||||||||||
1694 | } | ||||||||||
1695 | break; | ||||||||||
1696 | |||||||||||
1697 | #define GENERIC_IMAGE_TYPE(ImgType, Id) \ | ||||||||||
1698 | case DeclSpec::TST_##ImgType##_t: \ | ||||||||||
1699 | switch (getImageAccess(DS.getAttributes())) { \ | ||||||||||
1700 | case OpenCLAccessAttr::Keyword_write_only: \ | ||||||||||
1701 | Result = Context.Id##WOTy; \ | ||||||||||
1702 | break; \ | ||||||||||
1703 | case OpenCLAccessAttr::Keyword_read_write: \ | ||||||||||
1704 | Result = Context.Id##RWTy; \ | ||||||||||
1705 | break; \ | ||||||||||
1706 | case OpenCLAccessAttr::Keyword_read_only: \ | ||||||||||
1707 | Result = Context.Id##ROTy; \ | ||||||||||
1708 | break; \ | ||||||||||
1709 | case OpenCLAccessAttr::SpellingNotCalculated: \ | ||||||||||
1710 | llvm_unreachable("Spelling not yet calculated")__builtin_unreachable(); \ | ||||||||||
1711 | } \ | ||||||||||
1712 | break; | ||||||||||
1713 | #include "clang/Basic/OpenCLImageTypes.def" | ||||||||||
1714 | |||||||||||
1715 | case DeclSpec::TST_error: | ||||||||||
1716 | Result = Context.IntTy; | ||||||||||
1717 | declarator.setInvalidType(true); | ||||||||||
1718 | break; | ||||||||||
1719 | } | ||||||||||
1720 | |||||||||||
1721 | // FIXME: we want resulting declarations to be marked invalid, but claiming | ||||||||||
1722 | // the type is invalid is too strong - e.g. it causes ActOnTypeName to return | ||||||||||
1723 | // a null type. | ||||||||||
1724 | if (Result->containsErrors()) | ||||||||||
1725 | declarator.setInvalidType(); | ||||||||||
1726 | |||||||||||
1727 | if (S.getLangOpts().OpenCL) { | ||||||||||
1728 | const auto &OpenCLOptions = S.getOpenCLOptions(); | ||||||||||
1729 | bool IsOpenCLC30 = (S.getLangOpts().OpenCLVersion == 300); | ||||||||||
1730 | // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images | ||||||||||
1731 | // support. | ||||||||||
1732 | // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support | ||||||||||
1733 | // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the | ||||||||||
1734 | // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices | ||||||||||
1735 | // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and | ||||||||||
1736 | // only when the optional feature is supported | ||||||||||
1737 | if ((Result->isImageType() || Result->isSamplerT()) && | ||||||||||
1738 | (IsOpenCLC30 && | ||||||||||
1739 | !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) { | ||||||||||
1740 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||||||||
1741 | << 0 << Result << "__opencl_c_images"; | ||||||||||
1742 | declarator.setInvalidType(); | ||||||||||
1743 | } else if (Result->isOCLImage3dWOType() && | ||||||||||
1744 | !OpenCLOptions.isSupported("cl_khr_3d_image_writes", | ||||||||||
1745 | S.getLangOpts())) { | ||||||||||
1746 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) | ||||||||||
1747 | << 0 << Result | ||||||||||
1748 | << (IsOpenCLC30 | ||||||||||
1749 | ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes" | ||||||||||
1750 | : "cl_khr_3d_image_writes"); | ||||||||||
1751 | declarator.setInvalidType(); | ||||||||||
1752 | } | ||||||||||
1753 | } | ||||||||||
1754 | |||||||||||
1755 | bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum || | ||||||||||
1756 | DS.getTypeSpecType() == DeclSpec::TST_fract; | ||||||||||
1757 | |||||||||||
1758 | // Only fixed point types can be saturated | ||||||||||
1759 | if (DS.isTypeSpecSat() && !IsFixedPointType) | ||||||||||
1760 | S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec) | ||||||||||
1761 | << DS.getSpecifierName(DS.getTypeSpecType(), | ||||||||||
1762 | Context.getPrintingPolicy()); | ||||||||||
1763 | |||||||||||
1764 | // Handle complex types. | ||||||||||
1765 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) { | ||||||||||
1766 | if (S.getLangOpts().Freestanding) | ||||||||||
1767 | S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex); | ||||||||||
1768 | Result = Context.getComplexType(Result); | ||||||||||
1769 | } else if (DS.isTypeAltiVecVector()) { | ||||||||||
1770 | unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result)); | ||||||||||
1771 | assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((void)0); | ||||||||||
1772 | VectorType::VectorKind VecKind = VectorType::AltiVecVector; | ||||||||||
1773 | if (DS.isTypeAltiVecPixel()) | ||||||||||
1774 | VecKind = VectorType::AltiVecPixel; | ||||||||||
1775 | else if (DS.isTypeAltiVecBool()) | ||||||||||
1776 | VecKind = VectorType::AltiVecBool; | ||||||||||
1777 | Result = Context.getVectorType(Result, 128/typeSize, VecKind); | ||||||||||
1778 | } | ||||||||||
1779 | |||||||||||
1780 | // FIXME: Imaginary. | ||||||||||
1781 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary) | ||||||||||
1782 | S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported); | ||||||||||
1783 | |||||||||||
1784 | // Before we process any type attributes, synthesize a block literal | ||||||||||
1785 | // function declarator if necessary. | ||||||||||
1786 | if (declarator.getContext() == DeclaratorContext::BlockLiteral) | ||||||||||
1787 | maybeSynthesizeBlockSignature(state, Result); | ||||||||||
1788 | |||||||||||
1789 | // Apply any type attributes from the decl spec. This may cause the | ||||||||||
1790 | // list of type attributes to be temporarily saved while the type | ||||||||||
1791 | // attributes are pushed around. | ||||||||||
1792 | // pipe attributes will be handled later ( at GetFullTypeForDeclarator ) | ||||||||||
1793 | if (!DS.isTypeSpecPipe()) | ||||||||||
1794 | processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes()); | ||||||||||
1795 | |||||||||||
1796 | // Apply const/volatile/restrict qualifiers to T. | ||||||||||
1797 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { | ||||||||||
1798 | // Warn about CV qualifiers on function types. | ||||||||||
1799 | // C99 6.7.3p8: | ||||||||||
1800 | // If the specification of a function type includes any type qualifiers, | ||||||||||
1801 | // the behavior is undefined. | ||||||||||
1802 | // C++11 [dcl.fct]p7: | ||||||||||
1803 | // The effect of a cv-qualifier-seq in a function declarator is not the | ||||||||||
1804 | // same as adding cv-qualification on top of the function type. In the | ||||||||||
1805 | // latter case, the cv-qualifiers are ignored. | ||||||||||
1806 | if (Result->isFunctionType()) { | ||||||||||
1807 | diagnoseAndRemoveTypeQualifiers( | ||||||||||
1808 | S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile, | ||||||||||
1809 | S.getLangOpts().CPlusPlus | ||||||||||
1810 | ? diag::warn_typecheck_function_qualifiers_ignored | ||||||||||
1811 | : diag::warn_typecheck_function_qualifiers_unspecified); | ||||||||||
1812 | // No diagnostic for 'restrict' or '_Atomic' applied to a | ||||||||||
1813 | // function type; we'll diagnose those later, in BuildQualifiedType. | ||||||||||
1814 | } | ||||||||||
1815 | |||||||||||
1816 | // C++11 [dcl.ref]p1: | ||||||||||
1817 | // Cv-qualified references are ill-formed except when the | ||||||||||
1818 | // cv-qualifiers are introduced through the use of a typedef-name | ||||||||||
1819 | // or decltype-specifier, in which case the cv-qualifiers are ignored. | ||||||||||
1820 | // | ||||||||||
1821 | // There don't appear to be any other contexts in which a cv-qualified | ||||||||||
1822 | // reference type could be formed, so the 'ill-formed' clause here appears | ||||||||||
1823 | // to never happen. | ||||||||||
1824 | if (TypeQuals && Result->isReferenceType()) { | ||||||||||
1825 | diagnoseAndRemoveTypeQualifiers( | ||||||||||
1826 | S, DS, TypeQuals, Result, | ||||||||||
1827 | DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic, | ||||||||||
1828 | diag::warn_typecheck_reference_qualifiers); | ||||||||||
1829 | } | ||||||||||
1830 | |||||||||||
1831 | // C90 6.5.3 constraints: "The same type qualifier shall not appear more | ||||||||||
1832 | // than once in the same specifier-list or qualifier-list, either directly | ||||||||||
1833 | // or via one or more typedefs." | ||||||||||
1834 | if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus | ||||||||||
1835 | && TypeQuals & Result.getCVRQualifiers()) { | ||||||||||
1836 | if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) { | ||||||||||
1837 | S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec) | ||||||||||
1838 | << "const"; | ||||||||||
1839 | } | ||||||||||
1840 | |||||||||||
1841 | if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) { | ||||||||||
1842 | S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec) | ||||||||||
1843 | << "volatile"; | ||||||||||
1844 | } | ||||||||||
1845 | |||||||||||
1846 | // C90 doesn't have restrict nor _Atomic, so it doesn't force us to | ||||||||||
1847 | // produce a warning in this case. | ||||||||||
1848 | } | ||||||||||
1849 | |||||||||||
1850 | QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS); | ||||||||||
1851 | |||||||||||
1852 | // If adding qualifiers fails, just use the unqualified type. | ||||||||||
1853 | if (Qualified.isNull()) | ||||||||||
1854 | declarator.setInvalidType(true); | ||||||||||
1855 | else | ||||||||||
1856 | Result = Qualified; | ||||||||||
1857 | } | ||||||||||
1858 | |||||||||||
1859 | assert(!Result.isNull() && "This function should not return a null type")((void)0); | ||||||||||
1860 | return Result; | ||||||||||
1861 | } | ||||||||||
1862 | |||||||||||
1863 | static std::string getPrintableNameForEntity(DeclarationName Entity) { | ||||||||||
1864 | if (Entity) | ||||||||||
1865 | return Entity.getAsString(); | ||||||||||
1866 | |||||||||||
1867 | return "type name"; | ||||||||||
1868 | } | ||||||||||
1869 | |||||||||||
1870 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, | ||||||||||
1871 | Qualifiers Qs, const DeclSpec *DS) { | ||||||||||
1872 | if (T.isNull()) | ||||||||||
1873 | return QualType(); | ||||||||||
1874 | |||||||||||
1875 | // Ignore any attempt to form a cv-qualified reference. | ||||||||||
1876 | if (T->isReferenceType()) { | ||||||||||
1877 | Qs.removeConst(); | ||||||||||
1878 | Qs.removeVolatile(); | ||||||||||
1879 | } | ||||||||||
1880 | |||||||||||
1881 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from | ||||||||||
1882 | // object or incomplete types shall not be restrict-qualified." | ||||||||||
1883 | if (Qs.hasRestrict()) { | ||||||||||
1884 | unsigned DiagID = 0; | ||||||||||
1885 | QualType ProblemTy; | ||||||||||
1886 | |||||||||||
1887 | if (T->isAnyPointerType() || T->isReferenceType() || | ||||||||||
1888 | T->isMemberPointerType()) { | ||||||||||
1889 | QualType EltTy; | ||||||||||
1890 | if (T->isObjCObjectPointerType()) | ||||||||||
1891 | EltTy = T; | ||||||||||
1892 | else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>()) | ||||||||||
1893 | EltTy = PTy->getPointeeType(); | ||||||||||
1894 | else | ||||||||||
1895 | EltTy = T->getPointeeType(); | ||||||||||
1896 | |||||||||||
1897 | // If we have a pointer or reference, the pointee must have an object | ||||||||||
1898 | // incomplete type. | ||||||||||
1899 | if (!EltTy->isIncompleteOrObjectType()) { | ||||||||||
1900 | DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee; | ||||||||||
1901 | ProblemTy = EltTy; | ||||||||||
1902 | } | ||||||||||
1903 | } else if (!T->isDependentType()) { | ||||||||||
1904 | DiagID = diag::err_typecheck_invalid_restrict_not_pointer; | ||||||||||
1905 | ProblemTy = T; | ||||||||||
1906 | } | ||||||||||
1907 | |||||||||||
1908 | if (DiagID) { | ||||||||||
1909 | Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy; | ||||||||||
1910 | Qs.removeRestrict(); | ||||||||||
1911 | } | ||||||||||
1912 | } | ||||||||||
1913 | |||||||||||
1914 | return Context.getQualifiedType(T, Qs); | ||||||||||
1915 | } | ||||||||||
1916 | |||||||||||
1917 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, | ||||||||||
1918 | unsigned CVRAU, const DeclSpec *DS) { | ||||||||||
1919 | if (T.isNull()) | ||||||||||
1920 | return QualType(); | ||||||||||
1921 | |||||||||||
1922 | // Ignore any attempt to form a cv-qualified reference. | ||||||||||
1923 | if (T->isReferenceType()) | ||||||||||
1924 | CVRAU &= | ||||||||||
1925 | ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic); | ||||||||||
1926 | |||||||||||
1927 | // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and | ||||||||||
1928 | // TQ_unaligned; | ||||||||||
1929 | unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned); | ||||||||||
1930 | |||||||||||
1931 | // C11 6.7.3/5: | ||||||||||
1932 | // If the same qualifier appears more than once in the same | ||||||||||
1933 | // specifier-qualifier-list, either directly or via one or more typedefs, | ||||||||||
1934 | // the behavior is the same as if it appeared only once. | ||||||||||
1935 | // | ||||||||||
1936 | // It's not specified what happens when the _Atomic qualifier is applied to | ||||||||||
1937 | // a type specified with the _Atomic specifier, but we assume that this | ||||||||||
1938 | // should be treated as if the _Atomic qualifier appeared multiple times. | ||||||||||
1939 | if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) { | ||||||||||
1940 | // C11 6.7.3/5: | ||||||||||
1941 | // If other qualifiers appear along with the _Atomic qualifier in a | ||||||||||
1942 | // specifier-qualifier-list, the resulting type is the so-qualified | ||||||||||
1943 | // atomic type. | ||||||||||
1944 | // | ||||||||||
1945 | // Don't need to worry about array types here, since _Atomic can't be | ||||||||||
1946 | // applied to such types. | ||||||||||
1947 | SplitQualType Split = T.getSplitUnqualifiedType(); | ||||||||||
1948 | T = BuildAtomicType(QualType(Split.Ty, 0), | ||||||||||
1949 | DS ? DS->getAtomicSpecLoc() : Loc); | ||||||||||
1950 | if (T.isNull()) | ||||||||||
1951 | return T; | ||||||||||
1952 | Split.Quals.addCVRQualifiers(CVR); | ||||||||||
1953 | return BuildQualifiedType(T, Loc, Split.Quals); | ||||||||||
1954 | } | ||||||||||
1955 | |||||||||||
1956 | Qualifiers Q = Qualifiers::fromCVRMask(CVR); | ||||||||||
1957 | Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned); | ||||||||||
1958 | return BuildQualifiedType(T, Loc, Q, DS); | ||||||||||
1959 | } | ||||||||||
1960 | |||||||||||
1961 | /// Build a paren type including \p T. | ||||||||||
1962 | QualType Sema::BuildParenType(QualType T) { | ||||||||||
1963 | return Context.getParenType(T); | ||||||||||
1964 | } | ||||||||||
1965 | |||||||||||
1966 | /// Given that we're building a pointer or reference to the given | ||||||||||
1967 | static QualType inferARCLifetimeForPointee(Sema &S, QualType type, | ||||||||||
1968 | SourceLocation loc, | ||||||||||
1969 | bool isReference) { | ||||||||||
1970 | // Bail out if retention is unrequired or already specified. | ||||||||||
1971 | if (!type->isObjCLifetimeType() || | ||||||||||
1972 | type.getObjCLifetime() != Qualifiers::OCL_None) | ||||||||||
1973 | return type; | ||||||||||
1974 | |||||||||||
1975 | Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None; | ||||||||||
1976 | |||||||||||
1977 | // If the object type is const-qualified, we can safely use | ||||||||||
1978 | // __unsafe_unretained. This is safe (because there are no read | ||||||||||
1979 | // barriers), and it'll be safe to coerce anything but __weak* to | ||||||||||
1980 | // the resulting type. | ||||||||||
1981 | if (type.isConstQualified()) { | ||||||||||
1982 | implicitLifetime = Qualifiers::OCL_ExplicitNone; | ||||||||||
1983 | |||||||||||
1984 | // Otherwise, check whether the static type does not require | ||||||||||
1985 | // retaining. This currently only triggers for Class (possibly | ||||||||||
1986 | // protocol-qualifed, and arrays thereof). | ||||||||||
1987 | } else if (type->isObjCARCImplicitlyUnretainedType()) { | ||||||||||
1988 | implicitLifetime = Qualifiers::OCL_ExplicitNone; | ||||||||||
1989 | |||||||||||
1990 | // If we are in an unevaluated context, like sizeof, skip adding a | ||||||||||
1991 | // qualification. | ||||||||||
1992 | } else if (S.isUnevaluatedContext()) { | ||||||||||
1993 | return type; | ||||||||||
1994 | |||||||||||
1995 | // If that failed, give an error and recover using __strong. __strong | ||||||||||
1996 | // is the option most likely to prevent spurious second-order diagnostics, | ||||||||||
1997 | // like when binding a reference to a field. | ||||||||||
1998 | } else { | ||||||||||
1999 | // These types can show up in private ivars in system headers, so | ||||||||||
2000 | // we need this to not be an error in those cases. Instead we | ||||||||||
2001 | // want to delay. | ||||||||||
2002 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | ||||||||||
2003 | S.DelayedDiagnostics.add( | ||||||||||
2004 | sema::DelayedDiagnostic::makeForbiddenType(loc, | ||||||||||
2005 | diag::err_arc_indirect_no_ownership, type, isReference)); | ||||||||||
2006 | } else { | ||||||||||
2007 | S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference; | ||||||||||
2008 | } | ||||||||||
2009 | implicitLifetime = Qualifiers::OCL_Strong; | ||||||||||
2010 | } | ||||||||||
2011 | assert(implicitLifetime && "didn't infer any lifetime!")((void)0); | ||||||||||
2012 | |||||||||||
2013 | Qualifiers qs; | ||||||||||
2014 | qs.addObjCLifetime(implicitLifetime); | ||||||||||
2015 | return S.Context.getQualifiedType(type, qs); | ||||||||||
2016 | } | ||||||||||
2017 | |||||||||||
2018 | static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){ | ||||||||||
2019 | std::string Quals = FnTy->getMethodQuals().getAsString(); | ||||||||||
2020 | |||||||||||
2021 | switch (FnTy->getRefQualifier()) { | ||||||||||
2022 | case RQ_None: | ||||||||||
2023 | break; | ||||||||||
2024 | |||||||||||
2025 | case RQ_LValue: | ||||||||||
2026 | if (!Quals.empty()) | ||||||||||
2027 | Quals += ' '; | ||||||||||
2028 | Quals += '&'; | ||||||||||
2029 | break; | ||||||||||
2030 | |||||||||||
2031 | case RQ_RValue: | ||||||||||
2032 | if (!Quals.empty()) | ||||||||||
2033 | Quals += ' '; | ||||||||||
2034 | Quals += "&&"; | ||||||||||
2035 | break; | ||||||||||
2036 | } | ||||||||||
2037 | |||||||||||
2038 | return Quals; | ||||||||||
2039 | } | ||||||||||
2040 | |||||||||||
2041 | namespace { | ||||||||||
2042 | /// Kinds of declarator that cannot contain a qualified function type. | ||||||||||
2043 | /// | ||||||||||
2044 | /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: | ||||||||||
2045 | /// a function type with a cv-qualifier or a ref-qualifier can only appear | ||||||||||
2046 | /// at the topmost level of a type. | ||||||||||
2047 | /// | ||||||||||
2048 | /// Parens and member pointers are permitted. We don't diagnose array and | ||||||||||
2049 | /// function declarators, because they don't allow function types at all. | ||||||||||
2050 | /// | ||||||||||
2051 | /// The values of this enum are used in diagnostics. | ||||||||||
2052 | enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference }; | ||||||||||
2053 | } // end anonymous namespace | ||||||||||
2054 | |||||||||||
2055 | /// Check whether the type T is a qualified function type, and if it is, | ||||||||||
2056 | /// diagnose that it cannot be contained within the given kind of declarator. | ||||||||||
2057 | static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, | ||||||||||
2058 | QualifiedFunctionKind QFK) { | ||||||||||
2059 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? | ||||||||||
2060 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); | ||||||||||
2061 | if (!FPT || | ||||||||||
2062 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) | ||||||||||
2063 | return false; | ||||||||||
2064 | |||||||||||
2065 | S.Diag(Loc, diag::err_compound_qualified_function_type) | ||||||||||
2066 | << QFK << isa<FunctionType>(T.IgnoreParens()) << T | ||||||||||
2067 | << getFunctionQualifiersAsString(FPT); | ||||||||||
2068 | return true; | ||||||||||
2069 | } | ||||||||||
2070 | |||||||||||
2071 | bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) { | ||||||||||
2072 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); | ||||||||||
2073 | if (!FPT || | ||||||||||
2074 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) | ||||||||||
2075 | return false; | ||||||||||
2076 | |||||||||||
2077 | Diag(Loc, diag::err_qualified_function_typeid) | ||||||||||
2078 | << T << getFunctionQualifiersAsString(FPT); | ||||||||||
2079 | return true; | ||||||||||
2080 | } | ||||||||||
2081 | |||||||||||
2082 | // Helper to deduce addr space of a pointee type in OpenCL mode. | ||||||||||
2083 | static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) { | ||||||||||
2084 | if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() && | ||||||||||
2085 | !PointeeType->isSamplerT() && | ||||||||||
2086 | !PointeeType.hasAddressSpace()) | ||||||||||
2087 | PointeeType = S.getASTContext().getAddrSpaceQualType( | ||||||||||
2088 | PointeeType, S.getLangOpts().OpenCLGenericAddressSpace | ||||||||||
2089 | ? LangAS::opencl_generic | ||||||||||
2090 | : LangAS::opencl_private); | ||||||||||
2091 | return PointeeType; | ||||||||||
2092 | } | ||||||||||
2093 | |||||||||||
2094 | /// Build a pointer type. | ||||||||||
2095 | /// | ||||||||||
2096 | /// \param T The type to which we'll be building a pointer. | ||||||||||
2097 | /// | ||||||||||
2098 | /// \param Loc The location of the entity whose type involves this | ||||||||||
2099 | /// pointer type or, if there is no such entity, the location of the | ||||||||||
2100 | /// type that will have pointer type. | ||||||||||
2101 | /// | ||||||||||
2102 | /// \param Entity The name of the entity that involves the pointer | ||||||||||
2103 | /// type, if known. | ||||||||||
2104 | /// | ||||||||||
2105 | /// \returns A suitable pointer type, if there are no | ||||||||||
2106 | /// errors. Otherwise, returns a NULL type. | ||||||||||
2107 | QualType Sema::BuildPointerType(QualType T, | ||||||||||
2108 | SourceLocation Loc, DeclarationName Entity) { | ||||||||||
2109 | if (T->isReferenceType()) { | ||||||||||
2110 | // C++ 8.3.2p4: There shall be no ... pointers to references ... | ||||||||||
2111 | Diag(Loc, diag::err_illegal_decl_pointer_to_reference) | ||||||||||
2112 | << getPrintableNameForEntity(Entity) << T; | ||||||||||
2113 | return QualType(); | ||||||||||
2114 | } | ||||||||||
2115 | |||||||||||
2116 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||||||||
2117 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||||||||
2118 | getLangOpts())) { | ||||||||||
2119 | Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0; | ||||||||||
2120 | return QualType(); | ||||||||||
2121 | } | ||||||||||
2122 | |||||||||||
2123 | if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer)) | ||||||||||
2124 | return QualType(); | ||||||||||
2125 | |||||||||||
2126 | assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((void)0); | ||||||||||
2127 | |||||||||||
2128 | // In ARC, it is forbidden to build pointers to unqualified pointers. | ||||||||||
2129 | if (getLangOpts().ObjCAutoRefCount) | ||||||||||
2130 | T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false); | ||||||||||
2131 | |||||||||||
2132 | if (getLangOpts().OpenCL) | ||||||||||
2133 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||||||||
2134 | |||||||||||
2135 | // Build the pointer type. | ||||||||||
2136 | return Context.getPointerType(T); | ||||||||||
2137 | } | ||||||||||
2138 | |||||||||||
2139 | /// Build a reference type. | ||||||||||
2140 | /// | ||||||||||
2141 | /// \param T The type to which we'll be building a reference. | ||||||||||
2142 | /// | ||||||||||
2143 | /// \param Loc The location of the entity whose type involves this | ||||||||||
2144 | /// reference type or, if there is no such entity, the location of the | ||||||||||
2145 | /// type that will have reference type. | ||||||||||
2146 | /// | ||||||||||
2147 | /// \param Entity The name of the entity that involves the reference | ||||||||||
2148 | /// type, if known. | ||||||||||
2149 | /// | ||||||||||
2150 | /// \returns A suitable reference type, if there are no | ||||||||||
2151 | /// errors. Otherwise, returns a NULL type. | ||||||||||
2152 | QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue, | ||||||||||
2153 | SourceLocation Loc, | ||||||||||
2154 | DeclarationName Entity) { | ||||||||||
2155 | assert(Context.getCanonicalType(T) != Context.OverloadTy &&((void)0) | ||||||||||
2156 | "Unresolved overloaded function type")((void)0); | ||||||||||
2157 | |||||||||||
2158 | // C++0x [dcl.ref]p6: | ||||||||||
2159 | // If a typedef (7.1.3), a type template-parameter (14.3.1), or a | ||||||||||
2160 | // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a | ||||||||||
2161 | // type T, an attempt to create the type "lvalue reference to cv TR" creates | ||||||||||
2162 | // the type "lvalue reference to T", while an attempt to create the type | ||||||||||
2163 | // "rvalue reference to cv TR" creates the type TR. | ||||||||||
2164 | bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>(); | ||||||||||
2165 | |||||||||||
2166 | // C++ [dcl.ref]p4: There shall be no references to references. | ||||||||||
2167 | // | ||||||||||
2168 | // According to C++ DR 106, references to references are only | ||||||||||
2169 | // diagnosed when they are written directly (e.g., "int & &"), | ||||||||||
2170 | // but not when they happen via a typedef: | ||||||||||
2171 | // | ||||||||||
2172 | // typedef int& intref; | ||||||||||
2173 | // typedef intref& intref2; | ||||||||||
2174 | // | ||||||||||
2175 | // Parser::ParseDeclaratorInternal diagnoses the case where | ||||||||||
2176 | // references are written directly; here, we handle the | ||||||||||
2177 | // collapsing of references-to-references as described in C++0x. | ||||||||||
2178 | // DR 106 and 540 introduce reference-collapsing into C++98/03. | ||||||||||
2179 | |||||||||||
2180 | // C++ [dcl.ref]p1: | ||||||||||
2181 | // A declarator that specifies the type "reference to cv void" | ||||||||||
2182 | // is ill-formed. | ||||||||||
2183 | if (T->isVoidType()) { | ||||||||||
2184 | Diag(Loc, diag::err_reference_to_void); | ||||||||||
2185 | return QualType(); | ||||||||||
2186 | } | ||||||||||
2187 | |||||||||||
2188 | if (checkQualifiedFunction(*this, T, Loc, QFK_Reference)) | ||||||||||
2189 | return QualType(); | ||||||||||
2190 | |||||||||||
2191 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||||||||
2192 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||||||||
2193 | getLangOpts())) { | ||||||||||
2194 | Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1; | ||||||||||
2195 | return QualType(); | ||||||||||
2196 | } | ||||||||||
2197 | |||||||||||
2198 | // In ARC, it is forbidden to build references to unqualified pointers. | ||||||||||
2199 | if (getLangOpts().ObjCAutoRefCount) | ||||||||||
2200 | T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true); | ||||||||||
2201 | |||||||||||
2202 | if (getLangOpts().OpenCL) | ||||||||||
2203 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||||||||
2204 | |||||||||||
2205 | // Handle restrict on references. | ||||||||||
2206 | if (LValueRef) | ||||||||||
2207 | return Context.getLValueReferenceType(T, SpelledAsLValue); | ||||||||||
2208 | return Context.getRValueReferenceType(T); | ||||||||||
2209 | } | ||||||||||
2210 | |||||||||||
2211 | /// Build a Read-only Pipe type. | ||||||||||
2212 | /// | ||||||||||
2213 | /// \param T The type to which we'll be building a Pipe. | ||||||||||
2214 | /// | ||||||||||
2215 | /// \param Loc We do not use it for now. | ||||||||||
2216 | /// | ||||||||||
2217 | /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a | ||||||||||
2218 | /// NULL type. | ||||||||||
2219 | QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) { | ||||||||||
2220 | return Context.getReadPipeType(T); | ||||||||||
2221 | } | ||||||||||
2222 | |||||||||||
2223 | /// Build a Write-only Pipe type. | ||||||||||
2224 | /// | ||||||||||
2225 | /// \param T The type to which we'll be building a Pipe. | ||||||||||
2226 | /// | ||||||||||
2227 | /// \param Loc We do not use it for now. | ||||||||||
2228 | /// | ||||||||||
2229 | /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a | ||||||||||
2230 | /// NULL type. | ||||||||||
2231 | QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) { | ||||||||||
2232 | return Context.getWritePipeType(T); | ||||||||||
2233 | } | ||||||||||
2234 | |||||||||||
2235 | /// Build a extended int type. | ||||||||||
2236 | /// | ||||||||||
2237 | /// \param IsUnsigned Boolean representing the signedness of the type. | ||||||||||
2238 | /// | ||||||||||
2239 | /// \param BitWidth Size of this int type in bits, or an expression representing | ||||||||||
2240 | /// that. | ||||||||||
2241 | /// | ||||||||||
2242 | /// \param Loc Location of the keyword. | ||||||||||
2243 | QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth, | ||||||||||
2244 | SourceLocation Loc) { | ||||||||||
2245 | if (BitWidth->isInstantiationDependent()) | ||||||||||
2246 | return Context.getDependentExtIntType(IsUnsigned, BitWidth); | ||||||||||
2247 | |||||||||||
2248 | llvm::APSInt Bits(32); | ||||||||||
2249 | ExprResult ICE = | ||||||||||
2250 | VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold); | ||||||||||
2251 | |||||||||||
2252 | if (ICE.isInvalid()) | ||||||||||
2253 | return QualType(); | ||||||||||
2254 | |||||||||||
2255 | int64_t NumBits = Bits.getSExtValue(); | ||||||||||
2256 | if (!IsUnsigned && NumBits < 2) { | ||||||||||
2257 | Diag(Loc, diag::err_ext_int_bad_size) << 0; | ||||||||||
2258 | return QualType(); | ||||||||||
2259 | } | ||||||||||
2260 | |||||||||||
2261 | if (IsUnsigned && NumBits < 1) { | ||||||||||
2262 | Diag(Loc, diag::err_ext_int_bad_size) << 1; | ||||||||||
2263 | return QualType(); | ||||||||||
2264 | } | ||||||||||
2265 | |||||||||||
2266 | if (NumBits > llvm::IntegerType::MAX_INT_BITS) { | ||||||||||
2267 | Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned | ||||||||||
2268 | << llvm::IntegerType::MAX_INT_BITS; | ||||||||||
2269 | return QualType(); | ||||||||||
2270 | } | ||||||||||
2271 | |||||||||||
2272 | return Context.getExtIntType(IsUnsigned, NumBits); | ||||||||||
2273 | } | ||||||||||
2274 | |||||||||||
2275 | /// Check whether the specified array bound can be evaluated using the relevant | ||||||||||
2276 | /// language rules. If so, returns the possibly-converted expression and sets | ||||||||||
2277 | /// SizeVal to the size. If not, but the expression might be a VLA bound, | ||||||||||
2278 | /// returns ExprResult(). Otherwise, produces a diagnostic and returns | ||||||||||
2279 | /// ExprError(). | ||||||||||
2280 | static ExprResult checkArraySize(Sema &S, Expr *&ArraySize, | ||||||||||
2281 | llvm::APSInt &SizeVal, unsigned VLADiag, | ||||||||||
2282 | bool VLAIsError) { | ||||||||||
2283 | if (S.getLangOpts().CPlusPlus14 && | ||||||||||
2284 | (VLAIsError || | ||||||||||
2285 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) { | ||||||||||
2286 | // C++14 [dcl.array]p1: | ||||||||||
2287 | // The constant-expression shall be a converted constant expression of | ||||||||||
2288 | // type std::size_t. | ||||||||||
2289 | // | ||||||||||
2290 | // Don't apply this rule if we might be forming a VLA: in that case, we | ||||||||||
2291 | // allow non-constant expressions and constant-folding. We only need to use | ||||||||||
2292 | // the converted constant expression rules (to properly convert the source) | ||||||||||
2293 | // when the source expression is of class type. | ||||||||||
2294 | return S.CheckConvertedConstantExpression( | ||||||||||
2295 | ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound); | ||||||||||
2296 | } | ||||||||||
2297 | |||||||||||
2298 | // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode | ||||||||||
2299 | // (like gnu99, but not c99) accept any evaluatable value as an extension. | ||||||||||
2300 | class VLADiagnoser : public Sema::VerifyICEDiagnoser { | ||||||||||
2301 | public: | ||||||||||
2302 | unsigned VLADiag; | ||||||||||
2303 | bool VLAIsError; | ||||||||||
2304 | bool IsVLA = false; | ||||||||||
2305 | |||||||||||
2306 | VLADiagnoser(unsigned VLADiag, bool VLAIsError) | ||||||||||
2307 | : VLADiag(VLADiag), VLAIsError(VLAIsError) {} | ||||||||||
2308 | |||||||||||
2309 | Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, | ||||||||||
2310 | QualType T) override { | ||||||||||
2311 | return S.Diag(Loc, diag::err_array_size_non_int) << T; | ||||||||||
2312 | } | ||||||||||
2313 | |||||||||||
2314 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, | ||||||||||
2315 | SourceLocation Loc) override { | ||||||||||
2316 | IsVLA = !VLAIsError; | ||||||||||
2317 | return S.Diag(Loc, VLADiag); | ||||||||||
2318 | } | ||||||||||
2319 | |||||||||||
2320 | Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S, | ||||||||||
2321 | SourceLocation Loc) override { | ||||||||||
2322 | return S.Diag(Loc, diag::ext_vla_folded_to_constant); | ||||||||||
2323 | } | ||||||||||
2324 | } Diagnoser(VLADiag, VLAIsError); | ||||||||||
2325 | |||||||||||
2326 | ExprResult R = | ||||||||||
2327 | S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser); | ||||||||||
2328 | if (Diagnoser.IsVLA) | ||||||||||
2329 | return ExprResult(); | ||||||||||
2330 | return R; | ||||||||||
2331 | } | ||||||||||
2332 | |||||||||||
2333 | /// Build an array type. | ||||||||||
2334 | /// | ||||||||||
2335 | /// \param T The type of each element in the array. | ||||||||||
2336 | /// | ||||||||||
2337 | /// \param ASM C99 array size modifier (e.g., '*', 'static'). | ||||||||||
2338 | /// | ||||||||||
2339 | /// \param ArraySize Expression describing the size of the array. | ||||||||||
2340 | /// | ||||||||||
2341 | /// \param Brackets The range from the opening '[' to the closing ']'. | ||||||||||
2342 | /// | ||||||||||
2343 | /// \param Entity The name of the entity that involves the array | ||||||||||
2344 | /// type, if known. | ||||||||||
2345 | /// | ||||||||||
2346 | /// \returns A suitable array type, if there are no errors. Otherwise, | ||||||||||
2347 | /// returns a NULL type. | ||||||||||
2348 | QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, | ||||||||||
2349 | Expr *ArraySize, unsigned Quals, | ||||||||||
2350 | SourceRange Brackets, DeclarationName Entity) { | ||||||||||
2351 | |||||||||||
2352 | SourceLocation Loc = Brackets.getBegin(); | ||||||||||
2353 | if (getLangOpts().CPlusPlus) { | ||||||||||
2354 | // C++ [dcl.array]p1: | ||||||||||
2355 | // T is called the array element type; this type shall not be a reference | ||||||||||
2356 | // type, the (possibly cv-qualified) type void, a function type or an | ||||||||||
2357 | // abstract class type. | ||||||||||
2358 | // | ||||||||||
2359 | // C++ [dcl.array]p3: | ||||||||||
2360 | // When several "array of" specifications are adjacent, [...] only the | ||||||||||
2361 | // first of the constant expressions that specify the bounds of the arrays | ||||||||||
2362 | // may be omitted. | ||||||||||
2363 | // | ||||||||||
2364 | // Note: function types are handled in the common path with C. | ||||||||||
2365 | if (T->isReferenceType()) { | ||||||||||
2366 | Diag(Loc, diag::err_illegal_decl_array_of_references) | ||||||||||
2367 | << getPrintableNameForEntity(Entity) << T; | ||||||||||
2368 | return QualType(); | ||||||||||
2369 | } | ||||||||||
2370 | |||||||||||
2371 | if (T->isVoidType() || T->isIncompleteArrayType()) { | ||||||||||
2372 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T; | ||||||||||
2373 | return QualType(); | ||||||||||
2374 | } | ||||||||||
2375 | |||||||||||
2376 | if (RequireNonAbstractType(Brackets.getBegin(), T, | ||||||||||
2377 | diag::err_array_of_abstract_type)) | ||||||||||
2378 | return QualType(); | ||||||||||
2379 | |||||||||||
2380 | // Mentioning a member pointer type for an array type causes us to lock in | ||||||||||
2381 | // an inheritance model, even if it's inside an unused typedef. | ||||||||||
2382 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | ||||||||||
2383 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) | ||||||||||
2384 | if (!MPTy->getClass()->isDependentType()) | ||||||||||
2385 | (void)isCompleteType(Loc, T); | ||||||||||
2386 | |||||||||||
2387 | } else { | ||||||||||
2388 | // C99 6.7.5.2p1: If the element type is an incomplete or function type, | ||||||||||
2389 | // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]()) | ||||||||||
2390 | if (RequireCompleteSizedType(Loc, T, | ||||||||||
2391 | diag::err_array_incomplete_or_sizeless_type)) | ||||||||||
2392 | return QualType(); | ||||||||||
2393 | } | ||||||||||
2394 | |||||||||||
2395 | if (T->isSizelessType()) { | ||||||||||
2396 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T; | ||||||||||
2397 | return QualType(); | ||||||||||
2398 | } | ||||||||||
2399 | |||||||||||
2400 | if (T->isFunctionType()) { | ||||||||||
2401 | Diag(Loc, diag::err_illegal_decl_array_of_functions) | ||||||||||
2402 | << getPrintableNameForEntity(Entity) << T; | ||||||||||
2403 | return QualType(); | ||||||||||
2404 | } | ||||||||||
2405 | |||||||||||
2406 | if (const RecordType *EltTy = T->getAs<RecordType>()) { | ||||||||||
2407 | // If the element type is a struct or union that contains a variadic | ||||||||||
2408 | // array, accept it as a GNU extension: C99 6.7.2.1p2. | ||||||||||
2409 | if (EltTy->getDecl()->hasFlexibleArrayMember()) | ||||||||||
2410 | Diag(Loc, diag::ext_flexible_array_in_array) << T; | ||||||||||
2411 | } else if (T->isObjCObjectType()) { | ||||||||||
2412 | Diag(Loc, diag::err_objc_array_of_interfaces) << T; | ||||||||||
2413 | return QualType(); | ||||||||||
2414 | } | ||||||||||
2415 | |||||||||||
2416 | // Do placeholder conversions on the array size expression. | ||||||||||
2417 | if (ArraySize && ArraySize->hasPlaceholderType()) { | ||||||||||
2418 | ExprResult Result = CheckPlaceholderExpr(ArraySize); | ||||||||||
2419 | if (Result.isInvalid()) return QualType(); | ||||||||||
2420 | ArraySize = Result.get(); | ||||||||||
2421 | } | ||||||||||
2422 | |||||||||||
2423 | // Do lvalue-to-rvalue conversions on the array size expression. | ||||||||||
2424 | if (ArraySize && !ArraySize->isPRValue()) { | ||||||||||
2425 | ExprResult Result = DefaultLvalueConversion(ArraySize); | ||||||||||
2426 | if (Result.isInvalid()) | ||||||||||
2427 | return QualType(); | ||||||||||
2428 | |||||||||||
2429 | ArraySize = Result.get(); | ||||||||||
2430 | } | ||||||||||
2431 | |||||||||||
2432 | // C99 6.7.5.2p1: The size expression shall have integer type. | ||||||||||
2433 | // C++11 allows contextual conversions to such types. | ||||||||||
2434 | if (!getLangOpts().CPlusPlus11 && | ||||||||||
2435 | ArraySize && !ArraySize->isTypeDependent() && | ||||||||||
2436 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) { | ||||||||||
2437 | Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int) | ||||||||||
2438 | << ArraySize->getType() << ArraySize->getSourceRange(); | ||||||||||
2439 | return QualType(); | ||||||||||
2440 | } | ||||||||||
2441 | |||||||||||
2442 | // VLAs always produce at least a -Wvla diagnostic, sometimes an error. | ||||||||||
2443 | unsigned VLADiag; | ||||||||||
2444 | bool VLAIsError; | ||||||||||
2445 | if (getLangOpts().OpenCL) { | ||||||||||
2446 | // OpenCL v1.2 s6.9.d: variable length arrays are not supported. | ||||||||||
2447 | VLADiag = diag::err_opencl_vla; | ||||||||||
2448 | VLAIsError = true; | ||||||||||
2449 | } else if (getLangOpts().C99) { | ||||||||||
2450 | VLADiag = diag::warn_vla_used; | ||||||||||
2451 | VLAIsError = false; | ||||||||||
2452 | } else if (isSFINAEContext()) { | ||||||||||
2453 | VLADiag = diag::err_vla_in_sfinae; | ||||||||||
2454 | VLAIsError = true; | ||||||||||
2455 | } else { | ||||||||||
2456 | VLADiag = diag::ext_vla; | ||||||||||
2457 | VLAIsError = false; | ||||||||||
2458 | } | ||||||||||
2459 | |||||||||||
2460 | llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType())); | ||||||||||
2461 | if (!ArraySize) { | ||||||||||
2462 | if (ASM == ArrayType::Star) { | ||||||||||
2463 | Diag(Loc, VLADiag); | ||||||||||
2464 | if (VLAIsError) | ||||||||||
2465 | return QualType(); | ||||||||||
2466 | |||||||||||
2467 | T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets); | ||||||||||
2468 | } else { | ||||||||||
2469 | T = Context.getIncompleteArrayType(T, ASM, Quals); | ||||||||||
2470 | } | ||||||||||
2471 | } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) { | ||||||||||
2472 | T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||||||||
2473 | } else { | ||||||||||
2474 | ExprResult R = | ||||||||||
2475 | checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError); | ||||||||||
2476 | if (R.isInvalid()) | ||||||||||
2477 | return QualType(); | ||||||||||
2478 | |||||||||||
2479 | if (!R.isUsable()) { | ||||||||||
2480 | // C99: an array with a non-ICE size is a VLA. We accept any expression | ||||||||||
2481 | // that we can fold to a non-zero positive value as a non-VLA as an | ||||||||||
2482 | // extension. | ||||||||||
2483 | T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||||||||
2484 | } else if (!T->isDependentType() && !T->isIncompleteType() && | ||||||||||
2485 | !T->isConstantSizeType()) { | ||||||||||
2486 | // C99: an array with an element type that has a non-constant-size is a | ||||||||||
2487 | // VLA. | ||||||||||
2488 | // FIXME: Add a note to explain why this isn't a VLA. | ||||||||||
2489 | Diag(Loc, VLADiag); | ||||||||||
2490 | if (VLAIsError) | ||||||||||
2491 | return QualType(); | ||||||||||
2492 | T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); | ||||||||||
2493 | } else { | ||||||||||
2494 | // C99 6.7.5.2p1: If the expression is a constant expression, it shall | ||||||||||
2495 | // have a value greater than zero. | ||||||||||
2496 | // In C++, this follows from narrowing conversions being disallowed. | ||||||||||
2497 | if (ConstVal.isSigned() && ConstVal.isNegative()) { | ||||||||||
2498 | if (Entity) | ||||||||||
2499 | Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size) | ||||||||||
2500 | << getPrintableNameForEntity(Entity) | ||||||||||
2501 | << ArraySize->getSourceRange(); | ||||||||||
2502 | else | ||||||||||
2503 | Diag(ArraySize->getBeginLoc(), | ||||||||||
2504 | diag::err_typecheck_negative_array_size) | ||||||||||
2505 | << ArraySize->getSourceRange(); | ||||||||||
2506 | return QualType(); | ||||||||||
2507 | } | ||||||||||
2508 | if (ConstVal == 0) { | ||||||||||
2509 | // GCC accepts zero sized static arrays. We allow them when | ||||||||||
2510 | // we're not in a SFINAE context. | ||||||||||
2511 | Diag(ArraySize->getBeginLoc(), | ||||||||||
2512 | isSFINAEContext() ? diag::err_typecheck_zero_array_size | ||||||||||
2513 | : diag::ext_typecheck_zero_array_size) | ||||||||||
2514 | << ArraySize->getSourceRange(); | ||||||||||
2515 | } | ||||||||||
2516 | |||||||||||
2517 | // Is the array too large? | ||||||||||
2518 | unsigned ActiveSizeBits = | ||||||||||
2519 | (!T->isDependentType() && !T->isVariablyModifiedType() && | ||||||||||
2520 | !T->isIncompleteType() && !T->isUndeducedType()) | ||||||||||
2521 | ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal) | ||||||||||
2522 | : ConstVal.getActiveBits(); | ||||||||||
2523 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | ||||||||||
2524 | Diag(ArraySize->getBeginLoc(), diag::err_array_too_large) | ||||||||||
2525 | << toString(ConstVal, 10) << ArraySize->getSourceRange(); | ||||||||||
2526 | return QualType(); | ||||||||||
2527 | } | ||||||||||
2528 | |||||||||||
2529 | T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals); | ||||||||||
2530 | } | ||||||||||
2531 | } | ||||||||||
2532 | |||||||||||
2533 | if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) { | ||||||||||
2534 | // CUDA device code and some other targets don't support VLAs. | ||||||||||
2535 | targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) | ||||||||||
2536 | ? diag::err_cuda_vla | ||||||||||
2537 | : diag::err_vla_unsupported) | ||||||||||
2538 | << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice) | ||||||||||
2539 | ? CurrentCUDATarget() | ||||||||||
2540 | : CFT_InvalidTarget); | ||||||||||
2541 | } | ||||||||||
2542 | |||||||||||
2543 | // If this is not C99, diagnose array size modifiers on non-VLAs. | ||||||||||
2544 | if (!getLangOpts().C99 && !T->isVariableArrayType() && | ||||||||||
2545 | (ASM != ArrayType::Normal || Quals != 0)) { | ||||||||||
2546 | Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx | ||||||||||
2547 | : diag::ext_c99_array_usage) | ||||||||||
2548 | << ASM; | ||||||||||
2549 | } | ||||||||||
2550 | |||||||||||
2551 | // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported. | ||||||||||
2552 | // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported. | ||||||||||
2553 | // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported. | ||||||||||
2554 | if (getLangOpts().OpenCL) { | ||||||||||
2555 | const QualType ArrType = Context.getBaseElementType(T); | ||||||||||
2556 | if (ArrType->isBlockPointerType() || ArrType->isPipeType() || | ||||||||||
2557 | ArrType->isSamplerT() || ArrType->isImageType()) { | ||||||||||
2558 | Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType; | ||||||||||
2559 | return QualType(); | ||||||||||
2560 | } | ||||||||||
2561 | } | ||||||||||
2562 | |||||||||||
2563 | return T; | ||||||||||
2564 | } | ||||||||||
2565 | |||||||||||
2566 | QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr, | ||||||||||
2567 | SourceLocation AttrLoc) { | ||||||||||
2568 | // The base type must be integer (not Boolean or enumeration) or float, and | ||||||||||
2569 | // can't already be a vector. | ||||||||||
2570 | if ((!CurType->isDependentType() && | ||||||||||
2571 | (!CurType->isBuiltinType() || CurType->isBooleanType() || | ||||||||||
2572 | (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) || | ||||||||||
2573 | CurType->isArrayType()) { | ||||||||||
2574 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType; | ||||||||||
2575 | return QualType(); | ||||||||||
2576 | } | ||||||||||
2577 | |||||||||||
2578 | if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent()) | ||||||||||
2579 | return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc, | ||||||||||
2580 | VectorType::GenericVector); | ||||||||||
2581 | |||||||||||
2582 | Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context); | ||||||||||
2583 | if (!VecSize) { | ||||||||||
2584 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||||||||
2585 | << "vector_size" << AANT_ArgumentIntegerConstant | ||||||||||
2586 | << SizeExpr->getSourceRange(); | ||||||||||
2587 | return QualType(); | ||||||||||
2588 | } | ||||||||||
2589 | |||||||||||
2590 | if (CurType->isDependentType()) | ||||||||||
2591 | return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc, | ||||||||||
2592 | VectorType::GenericVector); | ||||||||||
2593 | |||||||||||
2594 | // vecSize is specified in bytes - convert to bits. | ||||||||||
2595 | if (!VecSize->isIntN(61)) { | ||||||||||
2596 | // Bit size will overflow uint64. | ||||||||||
2597 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||||||||
2598 | << SizeExpr->getSourceRange() << "vector"; | ||||||||||
2599 | return QualType(); | ||||||||||
2600 | } | ||||||||||
2601 | uint64_t VectorSizeBits = VecSize->getZExtValue() * 8; | ||||||||||
2602 | unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType)); | ||||||||||
2603 | |||||||||||
2604 | if (VectorSizeBits == 0) { | ||||||||||
2605 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||||||||
2606 | << SizeExpr->getSourceRange() << "vector"; | ||||||||||
2607 | return QualType(); | ||||||||||
2608 | } | ||||||||||
2609 | |||||||||||
2610 | if (VectorSizeBits % TypeSize) { | ||||||||||
2611 | Diag(AttrLoc, diag::err_attribute_invalid_size) | ||||||||||
2612 | << SizeExpr->getSourceRange(); | ||||||||||
2613 | return QualType(); | ||||||||||
2614 | } | ||||||||||
2615 | |||||||||||
2616 | if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) { | ||||||||||
2617 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||||||||
2618 | << SizeExpr->getSourceRange() << "vector"; | ||||||||||
2619 | return QualType(); | ||||||||||
2620 | } | ||||||||||
2621 | |||||||||||
2622 | return Context.getVectorType(CurType, VectorSizeBits / TypeSize, | ||||||||||
2623 | VectorType::GenericVector); | ||||||||||
2624 | } | ||||||||||
2625 | |||||||||||
2626 | /// Build an ext-vector type. | ||||||||||
2627 | /// | ||||||||||
2628 | /// Run the required checks for the extended vector type. | ||||||||||
2629 | QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize, | ||||||||||
2630 | SourceLocation AttrLoc) { | ||||||||||
2631 | // Unlike gcc's vector_size attribute, we do not allow vectors to be defined | ||||||||||
2632 | // in conjunction with complex types (pointers, arrays, functions, etc.). | ||||||||||
2633 | // | ||||||||||
2634 | // Additionally, OpenCL prohibits vectors of booleans (they're considered a | ||||||||||
2635 | // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects | ||||||||||
2636 | // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors | ||||||||||
2637 | // of bool aren't allowed. | ||||||||||
2638 | if ((!T->isDependentType() && !T->isIntegerType() && | ||||||||||
2639 | !T->isRealFloatingType()) || | ||||||||||
2640 | T->isBooleanType()) { | ||||||||||
2641 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T; | ||||||||||
2642 | return QualType(); | ||||||||||
2643 | } | ||||||||||
2644 | |||||||||||
2645 | if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) { | ||||||||||
2646 | Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context); | ||||||||||
2647 | if (!vecSize) { | ||||||||||
2648 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||||||||
2649 | << "ext_vector_type" << AANT_ArgumentIntegerConstant | ||||||||||
2650 | << ArraySize->getSourceRange(); | ||||||||||
2651 | return QualType(); | ||||||||||
2652 | } | ||||||||||
2653 | |||||||||||
2654 | if (!vecSize->isIntN(32)) { | ||||||||||
2655 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||||||||
2656 | << ArraySize->getSourceRange() << "vector"; | ||||||||||
2657 | return QualType(); | ||||||||||
2658 | } | ||||||||||
2659 | // Unlike gcc's vector_size attribute, the size is specified as the | ||||||||||
2660 | // number of elements, not the number of bytes. | ||||||||||
2661 | unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue()); | ||||||||||
2662 | |||||||||||
2663 | if (vectorSize == 0) { | ||||||||||
2664 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||||||||
2665 | << ArraySize->getSourceRange() << "vector"; | ||||||||||
2666 | return QualType(); | ||||||||||
2667 | } | ||||||||||
2668 | |||||||||||
2669 | return Context.getExtVectorType(T, vectorSize); | ||||||||||
2670 | } | ||||||||||
2671 | |||||||||||
2672 | return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc); | ||||||||||
2673 | } | ||||||||||
2674 | |||||||||||
2675 | QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols, | ||||||||||
2676 | SourceLocation AttrLoc) { | ||||||||||
2677 | assert(Context.getLangOpts().MatrixTypes &&((void)0) | ||||||||||
2678 | "Should never build a matrix type when it is disabled")((void)0); | ||||||||||
2679 | |||||||||||
2680 | // Check element type, if it is not dependent. | ||||||||||
2681 | if (!ElementTy->isDependentType() && | ||||||||||
2682 | !MatrixType::isValidElementType(ElementTy)) { | ||||||||||
2683 | Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy; | ||||||||||
2684 | return QualType(); | ||||||||||
2685 | } | ||||||||||
2686 | |||||||||||
2687 | if (NumRows->isTypeDependent() || NumCols->isTypeDependent() || | ||||||||||
2688 | NumRows->isValueDependent() || NumCols->isValueDependent()) | ||||||||||
2689 | return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols, | ||||||||||
2690 | AttrLoc); | ||||||||||
2691 | |||||||||||
2692 | Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context); | ||||||||||
2693 | Optional<llvm::APSInt> ValueColumns = | ||||||||||
2694 | NumCols->getIntegerConstantExpr(Context); | ||||||||||
2695 | |||||||||||
2696 | auto const RowRange = NumRows->getSourceRange(); | ||||||||||
2697 | auto const ColRange = NumCols->getSourceRange(); | ||||||||||
2698 | |||||||||||
2699 | // Both are row and column expressions are invalid. | ||||||||||
2700 | if (!ValueRows && !ValueColumns) { | ||||||||||
2701 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||||||||
2702 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange | ||||||||||
2703 | << ColRange; | ||||||||||
2704 | return QualType(); | ||||||||||
2705 | } | ||||||||||
2706 | |||||||||||
2707 | // Only the row expression is invalid. | ||||||||||
2708 | if (!ValueRows) { | ||||||||||
2709 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||||||||
2710 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange; | ||||||||||
2711 | return QualType(); | ||||||||||
2712 | } | ||||||||||
2713 | |||||||||||
2714 | // Only the column expression is invalid. | ||||||||||
2715 | if (!ValueColumns) { | ||||||||||
2716 | Diag(AttrLoc, diag::err_attribute_argument_type) | ||||||||||
2717 | << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange; | ||||||||||
2718 | return QualType(); | ||||||||||
2719 | } | ||||||||||
2720 | |||||||||||
2721 | // Check the matrix dimensions. | ||||||||||
2722 | unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue()); | ||||||||||
2723 | unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue()); | ||||||||||
2724 | if (MatrixRows == 0 && MatrixColumns == 0) { | ||||||||||
2725 | Diag(AttrLoc, diag::err_attribute_zero_size) | ||||||||||
2726 | << "matrix" << RowRange << ColRange; | ||||||||||
2727 | return QualType(); | ||||||||||
2728 | } | ||||||||||
2729 | if (MatrixRows == 0) { | ||||||||||
2730 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange; | ||||||||||
2731 | return QualType(); | ||||||||||
2732 | } | ||||||||||
2733 | if (MatrixColumns == 0) { | ||||||||||
2734 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange; | ||||||||||
2735 | return QualType(); | ||||||||||
2736 | } | ||||||||||
2737 | if (!ConstantMatrixType::isDimensionValid(MatrixRows)) { | ||||||||||
2738 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||||||||
2739 | << RowRange << "matrix row"; | ||||||||||
2740 | return QualType(); | ||||||||||
2741 | } | ||||||||||
2742 | if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) { | ||||||||||
2743 | Diag(AttrLoc, diag::err_attribute_size_too_large) | ||||||||||
2744 | << ColRange << "matrix column"; | ||||||||||
2745 | return QualType(); | ||||||||||
2746 | } | ||||||||||
2747 | return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns); | ||||||||||
2748 | } | ||||||||||
2749 | |||||||||||
2750 | bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) { | ||||||||||
2751 | if (T->isArrayType() || T->isFunctionType()) { | ||||||||||
2752 | Diag(Loc, diag::err_func_returning_array_function) | ||||||||||
2753 | << T->isFunctionType() << T; | ||||||||||
2754 | return true; | ||||||||||
2755 | } | ||||||||||
2756 | |||||||||||
2757 | // Functions cannot return half FP. | ||||||||||
2758 | if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) { | ||||||||||
2759 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 << | ||||||||||
2760 | FixItHint::CreateInsertion(Loc, "*"); | ||||||||||
2761 | return true; | ||||||||||
2762 | } | ||||||||||
2763 | |||||||||||
2764 | // Methods cannot return interface types. All ObjC objects are | ||||||||||
2765 | // passed by reference. | ||||||||||
2766 | if (T->isObjCObjectType()) { | ||||||||||
2767 | Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) | ||||||||||
2768 | << 0 << T << FixItHint::CreateInsertion(Loc, "*"); | ||||||||||
2769 | return true; | ||||||||||
2770 | } | ||||||||||
2771 | |||||||||||
2772 | if (T.hasNonTrivialToPrimitiveDestructCUnion() || | ||||||||||
2773 | T.hasNonTrivialToPrimitiveCopyCUnion()) | ||||||||||
2774 | checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn, | ||||||||||
2775 | NTCUK_Destruct|NTCUK_Copy); | ||||||||||
2776 | |||||||||||
2777 | // C++2a [dcl.fct]p12: | ||||||||||
2778 | // A volatile-qualified return type is deprecated | ||||||||||
2779 | if (T.isVolatileQualified() && getLangOpts().CPlusPlus20) | ||||||||||
2780 | Diag(Loc, diag::warn_deprecated_volatile_return) << T; | ||||||||||
2781 | |||||||||||
2782 | return false; | ||||||||||
2783 | } | ||||||||||
2784 | |||||||||||
2785 | /// Check the extended parameter information. Most of the necessary | ||||||||||
2786 | /// checking should occur when applying the parameter attribute; the | ||||||||||
2787 | /// only other checks required are positional restrictions. | ||||||||||
2788 | static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes, | ||||||||||
2789 | const FunctionProtoType::ExtProtoInfo &EPI, | ||||||||||
2790 | llvm::function_ref<SourceLocation(unsigned)> getParamLoc) { | ||||||||||
2791 | assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((void)0); | ||||||||||
2792 | |||||||||||
2793 | bool emittedError = false; | ||||||||||
2794 | auto actualCC = EPI.ExtInfo.getCC(); | ||||||||||
2795 | enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync }; | ||||||||||
2796 | auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) { | ||||||||||
2797 | bool isCompatible = | ||||||||||
2798 | (required == RequiredCC::OnlySwift) | ||||||||||
2799 | ? (actualCC == CC_Swift) | ||||||||||
2800 | : (actualCC == CC_Swift || actualCC == CC_SwiftAsync); | ||||||||||
2801 | if (isCompatible || emittedError) | ||||||||||
2802 | return; | ||||||||||
2803 | S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall) | ||||||||||
2804 | << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI()) | ||||||||||
2805 | << (required == RequiredCC::OnlySwift); | ||||||||||
2806 | emittedError = true; | ||||||||||
2807 | }; | ||||||||||
2808 | for (size_t paramIndex = 0, numParams = paramTypes.size(); | ||||||||||
2809 | paramIndex != numParams; ++paramIndex) { | ||||||||||
2810 | switch (EPI.ExtParameterInfos[paramIndex].getABI()) { | ||||||||||
2811 | // Nothing interesting to check for orindary-ABI parameters. | ||||||||||
2812 | case ParameterABI::Ordinary: | ||||||||||
2813 | continue; | ||||||||||
2814 | |||||||||||
2815 | // swift_indirect_result parameters must be a prefix of the function | ||||||||||
2816 | // arguments. | ||||||||||
2817 | case ParameterABI::SwiftIndirectResult: | ||||||||||
2818 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); | ||||||||||
2819 | if (paramIndex != 0 && | ||||||||||
2820 | EPI.ExtParameterInfos[paramIndex - 1].getABI() | ||||||||||
2821 | != ParameterABI::SwiftIndirectResult) { | ||||||||||
2822 | S.Diag(getParamLoc(paramIndex), | ||||||||||
2823 | diag::err_swift_indirect_result_not_first); | ||||||||||
2824 | } | ||||||||||
2825 | continue; | ||||||||||
2826 | |||||||||||
2827 | case ParameterABI::SwiftContext: | ||||||||||
2828 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); | ||||||||||
2829 | continue; | ||||||||||
2830 | |||||||||||
2831 | // SwiftAsyncContext is not limited to swiftasynccall functions. | ||||||||||
2832 | case ParameterABI::SwiftAsyncContext: | ||||||||||
2833 | continue; | ||||||||||
2834 | |||||||||||
2835 | // swift_error parameters must be preceded by a swift_context parameter. | ||||||||||
2836 | case ParameterABI::SwiftErrorResult: | ||||||||||
2837 | checkCompatible(paramIndex, RequiredCC::OnlySwift); | ||||||||||
2838 | if (paramIndex == 0 || | ||||||||||
2839 | EPI.ExtParameterInfos[paramIndex - 1].getABI() != | ||||||||||
2840 | ParameterABI::SwiftContext) { | ||||||||||
2841 | S.Diag(getParamLoc(paramIndex), | ||||||||||
2842 | diag::err_swift_error_result_not_after_swift_context); | ||||||||||
2843 | } | ||||||||||
2844 | continue; | ||||||||||
2845 | } | ||||||||||
2846 | llvm_unreachable("bad ABI kind")__builtin_unreachable(); | ||||||||||
2847 | } | ||||||||||
2848 | } | ||||||||||
2849 | |||||||||||
2850 | QualType Sema::BuildFunctionType(QualType T, | ||||||||||
2851 | MutableArrayRef<QualType> ParamTypes, | ||||||||||
2852 | SourceLocation Loc, DeclarationName Entity, | ||||||||||
2853 | const FunctionProtoType::ExtProtoInfo &EPI) { | ||||||||||
2854 | bool Invalid = false; | ||||||||||
2855 | |||||||||||
2856 | Invalid |= CheckFunctionReturnType(T, Loc); | ||||||||||
2857 | |||||||||||
2858 | for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) { | ||||||||||
2859 | // FIXME: Loc is too inprecise here, should use proper locations for args. | ||||||||||
2860 | QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]); | ||||||||||
2861 | if (ParamType->isVoidType()) { | ||||||||||
2862 | Diag(Loc, diag::err_param_with_void_type); | ||||||||||
2863 | Invalid = true; | ||||||||||
2864 | } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) { | ||||||||||
2865 | // Disallow half FP arguments. | ||||||||||
2866 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 << | ||||||||||
2867 | FixItHint::CreateInsertion(Loc, "*"); | ||||||||||
2868 | Invalid = true; | ||||||||||
2869 | } | ||||||||||
2870 | |||||||||||
2871 | // C++2a [dcl.fct]p4: | ||||||||||
2872 | // A parameter with volatile-qualified type is deprecated | ||||||||||
2873 | if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20) | ||||||||||
2874 | Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType; | ||||||||||
2875 | |||||||||||
2876 | ParamTypes[Idx] = ParamType; | ||||||||||
2877 | } | ||||||||||
2878 | |||||||||||
2879 | if (EPI.ExtParameterInfos) { | ||||||||||
2880 | checkExtParameterInfos(*this, ParamTypes, EPI, | ||||||||||
2881 | [=](unsigned i) { return Loc; }); | ||||||||||
2882 | } | ||||||||||
2883 | |||||||||||
2884 | if (EPI.ExtInfo.getProducesResult()) { | ||||||||||
2885 | // This is just a warning, so we can't fail to build if we see it. | ||||||||||
2886 | checkNSReturnsRetainedReturnType(Loc, T); | ||||||||||
2887 | } | ||||||||||
2888 | |||||||||||
2889 | if (Invalid) | ||||||||||
2890 | return QualType(); | ||||||||||
2891 | |||||||||||
2892 | return Context.getFunctionType(T, ParamTypes, EPI); | ||||||||||
2893 | } | ||||||||||
2894 | |||||||||||
2895 | /// Build a member pointer type \c T Class::*. | ||||||||||
2896 | /// | ||||||||||
2897 | /// \param T the type to which the member pointer refers. | ||||||||||
2898 | /// \param Class the class type into which the member pointer points. | ||||||||||
2899 | /// \param Loc the location where this type begins | ||||||||||
2900 | /// \param Entity the name of the entity that will have this member pointer type | ||||||||||
2901 | /// | ||||||||||
2902 | /// \returns a member pointer type, if successful, or a NULL type if there was | ||||||||||
2903 | /// an error. | ||||||||||
2904 | QualType Sema::BuildMemberPointerType(QualType T, QualType Class, | ||||||||||
2905 | SourceLocation Loc, | ||||||||||
2906 | DeclarationName Entity) { | ||||||||||
2907 | // Verify that we're not building a pointer to pointer to function with | ||||||||||
2908 | // exception specification. | ||||||||||
2909 | if (CheckDistantExceptionSpec(T)) { | ||||||||||
2910 | Diag(Loc, diag::err_distant_exception_spec); | ||||||||||
2911 | return QualType(); | ||||||||||
2912 | } | ||||||||||
2913 | |||||||||||
2914 | // C++ 8.3.3p3: A pointer to member shall not point to ... a member | ||||||||||
2915 | // with reference type, or "cv void." | ||||||||||
2916 | if (T->isReferenceType()) { | ||||||||||
2917 | Diag(Loc, diag::err_illegal_decl_mempointer_to_reference) | ||||||||||
2918 | << getPrintableNameForEntity(Entity) << T; | ||||||||||
2919 | return QualType(); | ||||||||||
2920 | } | ||||||||||
2921 | |||||||||||
2922 | if (T->isVoidType()) { | ||||||||||
2923 | Diag(Loc, diag::err_illegal_decl_mempointer_to_void) | ||||||||||
2924 | << getPrintableNameForEntity(Entity); | ||||||||||
2925 | return QualType(); | ||||||||||
2926 | } | ||||||||||
2927 | |||||||||||
2928 | if (!Class->isDependentType() && !Class->isRecordType()) { | ||||||||||
2929 | Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class; | ||||||||||
2930 | return QualType(); | ||||||||||
2931 | } | ||||||||||
2932 | |||||||||||
2933 | if (T->isFunctionType() && getLangOpts().OpenCL && | ||||||||||
2934 | !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | ||||||||||
2935 | getLangOpts())) { | ||||||||||
2936 | Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0; | ||||||||||
2937 | return QualType(); | ||||||||||
2938 | } | ||||||||||
2939 | |||||||||||
2940 | // Adjust the default free function calling convention to the default method | ||||||||||
2941 | // calling convention. | ||||||||||
2942 | bool IsCtorOrDtor = | ||||||||||
2943 | (Entity.getNameKind() == DeclarationName::CXXConstructorName) || | ||||||||||
2944 | (Entity.getNameKind() == DeclarationName::CXXDestructorName); | ||||||||||
2945 | if (T->isFunctionType()) | ||||||||||
2946 | adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc); | ||||||||||
2947 | |||||||||||
2948 | return Context.getMemberPointerType(T, Class.getTypePtr()); | ||||||||||
2949 | } | ||||||||||
2950 | |||||||||||
2951 | /// Build a block pointer type. | ||||||||||
2952 | /// | ||||||||||
2953 | /// \param T The type to which we'll be building a block pointer. | ||||||||||
2954 | /// | ||||||||||
2955 | /// \param Loc The source location, used for diagnostics. | ||||||||||
2956 | /// | ||||||||||
2957 | /// \param Entity The name of the entity that involves the block pointer | ||||||||||
2958 | /// type, if known. | ||||||||||
2959 | /// | ||||||||||
2960 | /// \returns A suitable block pointer type, if there are no | ||||||||||
2961 | /// errors. Otherwise, returns a NULL type. | ||||||||||
2962 | QualType Sema::BuildBlockPointerType(QualType T, | ||||||||||
2963 | SourceLocation Loc, | ||||||||||
2964 | DeclarationName Entity) { | ||||||||||
2965 | if (!T->isFunctionType()) { | ||||||||||
2966 | Diag(Loc, diag::err_nonfunction_block_type); | ||||||||||
2967 | return QualType(); | ||||||||||
2968 | } | ||||||||||
2969 | |||||||||||
2970 | if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer)) | ||||||||||
2971 | return QualType(); | ||||||||||
2972 | |||||||||||
2973 | if (getLangOpts().OpenCL) | ||||||||||
2974 | T = deduceOpenCLPointeeAddrSpace(*this, T); | ||||||||||
2975 | |||||||||||
2976 | return Context.getBlockPointerType(T); | ||||||||||
2977 | } | ||||||||||
2978 | |||||||||||
2979 | QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) { | ||||||||||
2980 | QualType QT = Ty.get(); | ||||||||||
2981 | if (QT.isNull()) { | ||||||||||
2982 | if (TInfo
| ||||||||||
2983 | return QualType(); | ||||||||||
2984 | } | ||||||||||
2985 | |||||||||||
2986 | TypeSourceInfo *DI = nullptr; | ||||||||||
2987 | if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) { | ||||||||||
2988 | QT = LIT->getType(); | ||||||||||
2989 | DI = LIT->getTypeSourceInfo(); | ||||||||||
2990 | } | ||||||||||
2991 | |||||||||||
2992 | if (TInfo) *TInfo = DI; | ||||||||||
2993 | return QT; | ||||||||||
2994 | } | ||||||||||
2995 | |||||||||||
2996 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, | ||||||||||
2997 | Qualifiers::ObjCLifetime ownership, | ||||||||||
2998 | unsigned chunkIndex); | ||||||||||
2999 | |||||||||||
3000 | /// Given that this is the declaration of a parameter under ARC, | ||||||||||
3001 | /// attempt to infer attributes and such for pointer-to-whatever | ||||||||||
3002 | /// types. | ||||||||||
3003 | static void inferARCWriteback(TypeProcessingState &state, | ||||||||||
3004 | QualType &declSpecType) { | ||||||||||
3005 | Sema &S = state.getSema(); | ||||||||||
3006 | Declarator &declarator = state.getDeclarator(); | ||||||||||
3007 | |||||||||||
3008 | // TODO: should we care about decl qualifiers? | ||||||||||
3009 | |||||||||||
3010 | // Check whether the declarator has the expected form. We walk | ||||||||||
3011 | // from the inside out in order to make the block logic work. | ||||||||||
3012 | unsigned outermostPointerIndex = 0; | ||||||||||
3013 | bool isBlockPointer = false; | ||||||||||
3014 | unsigned numPointers = 0; | ||||||||||
3015 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | ||||||||||
3016 | unsigned chunkIndex = i; | ||||||||||
3017 | DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex); | ||||||||||
3018 | switch (chunk.Kind) { | ||||||||||
3019 | case DeclaratorChunk::Paren: | ||||||||||
3020 | // Ignore parens. | ||||||||||
3021 | break; | ||||||||||
3022 | |||||||||||
3023 | case DeclaratorChunk::Reference: | ||||||||||
3024 | case DeclaratorChunk::Pointer: | ||||||||||
3025 | // Count the number of pointers. Treat references | ||||||||||
3026 | // interchangeably as pointers; if they're mis-ordered, normal | ||||||||||
3027 | // type building will discover that. | ||||||||||
3028 | outermostPointerIndex = chunkIndex; | ||||||||||
3029 | numPointers++; | ||||||||||
3030 | break; | ||||||||||
3031 | |||||||||||
3032 | case DeclaratorChunk::BlockPointer: | ||||||||||
3033 | // If we have a pointer to block pointer, that's an acceptable | ||||||||||
3034 | // indirect reference; anything else is not an application of | ||||||||||
3035 | // the rules. | ||||||||||
3036 | if (numPointers != 1) return; | ||||||||||
3037 | numPointers++; | ||||||||||
3038 | outermostPointerIndex = chunkIndex; | ||||||||||
3039 | isBlockPointer = true; | ||||||||||
3040 | |||||||||||
3041 | // We don't care about pointer structure in return values here. | ||||||||||
3042 | goto done; | ||||||||||
3043 | |||||||||||
3044 | case DeclaratorChunk::Array: // suppress if written (id[])? | ||||||||||
3045 | case DeclaratorChunk::Function: | ||||||||||
3046 | case DeclaratorChunk::MemberPointer: | ||||||||||
3047 | case DeclaratorChunk::Pipe: | ||||||||||
3048 | return; | ||||||||||
3049 | } | ||||||||||
3050 | } | ||||||||||
3051 | done: | ||||||||||
3052 | |||||||||||
3053 | // If we have *one* pointer, then we want to throw the qualifier on | ||||||||||
3054 | // the declaration-specifiers, which means that it needs to be a | ||||||||||
3055 | // retainable object type. | ||||||||||
3056 | if (numPointers == 1) { | ||||||||||
3057 | // If it's not a retainable object type, the rule doesn't apply. | ||||||||||
3058 | if (!declSpecType->isObjCRetainableType()) return; | ||||||||||
3059 | |||||||||||
3060 | // If it already has lifetime, don't do anything. | ||||||||||
3061 | if (declSpecType.getObjCLifetime()) return; | ||||||||||
3062 | |||||||||||
3063 | // Otherwise, modify the type in-place. | ||||||||||
3064 | Qualifiers qs; | ||||||||||
3065 | |||||||||||
3066 | if (declSpecType->isObjCARCImplicitlyUnretainedType()) | ||||||||||
3067 | qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone); | ||||||||||
3068 | else | ||||||||||
3069 | qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing); | ||||||||||
3070 | declSpecType = S.Context.getQualifiedType(declSpecType, qs); | ||||||||||
3071 | |||||||||||
3072 | // If we have *two* pointers, then we want to throw the qualifier on | ||||||||||
3073 | // the outermost pointer. | ||||||||||
3074 | } else if (numPointers == 2) { | ||||||||||
3075 | // If we don't have a block pointer, we need to check whether the | ||||||||||
3076 | // declaration-specifiers gave us something that will turn into a | ||||||||||
3077 | // retainable object pointer after we slap the first pointer on it. | ||||||||||
3078 | if (!isBlockPointer && !declSpecType->isObjCObjectType()) | ||||||||||
3079 | return; | ||||||||||
3080 | |||||||||||
3081 | // Look for an explicit lifetime attribute there. | ||||||||||
3082 | DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex); | ||||||||||
3083 | if (chunk.Kind != DeclaratorChunk::Pointer && | ||||||||||
3084 | chunk.Kind != DeclaratorChunk::BlockPointer) | ||||||||||
3085 | return; | ||||||||||
3086 | for (const ParsedAttr &AL : chunk.getAttrs()) | ||||||||||
3087 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) | ||||||||||
3088 | return; | ||||||||||
3089 | |||||||||||
3090 | transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing, | ||||||||||
3091 | outermostPointerIndex); | ||||||||||
3092 | |||||||||||
3093 | // Any other number of pointers/references does not trigger the rule. | ||||||||||
3094 | } else return; | ||||||||||
3095 | |||||||||||
3096 | // TODO: mark whether we did this inference? | ||||||||||
3097 | } | ||||||||||
3098 | |||||||||||
3099 | void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, | ||||||||||
3100 | SourceLocation FallbackLoc, | ||||||||||
3101 | SourceLocation ConstQualLoc, | ||||||||||
3102 | SourceLocation VolatileQualLoc, | ||||||||||
3103 | SourceLocation RestrictQualLoc, | ||||||||||
3104 | SourceLocation AtomicQualLoc, | ||||||||||
3105 | SourceLocation UnalignedQualLoc) { | ||||||||||
3106 | if (!Quals) | ||||||||||
3107 | return; | ||||||||||
3108 | |||||||||||
3109 | struct Qual { | ||||||||||
3110 | const char *Name; | ||||||||||
3111 | unsigned Mask; | ||||||||||
3112 | SourceLocation Loc; | ||||||||||
3113 | } const QualKinds[5] = { | ||||||||||
3114 | { "const", DeclSpec::TQ_const, ConstQualLoc }, | ||||||||||
3115 | { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc }, | ||||||||||
3116 | { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc }, | ||||||||||
3117 | { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc }, | ||||||||||
3118 | { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc } | ||||||||||
3119 | }; | ||||||||||
3120 | |||||||||||
3121 | SmallString<32> QualStr; | ||||||||||
3122 | unsigned NumQuals = 0; | ||||||||||
3123 | SourceLocation Loc; | ||||||||||
3124 | FixItHint FixIts[5]; | ||||||||||
3125 | |||||||||||
3126 | // Build a string naming the redundant qualifiers. | ||||||||||
3127 | for (auto &E : QualKinds) { | ||||||||||
3128 | if (Quals & E.Mask) { | ||||||||||
3129 | if (!QualStr.empty()) QualStr += ' '; | ||||||||||
3130 | QualStr += E.Name; | ||||||||||
3131 | |||||||||||
3132 | // If we have a location for the qualifier, offer a fixit. | ||||||||||
3133 | SourceLocation QualLoc = E.Loc; | ||||||||||
3134 | if (QualLoc.isValid()) { | ||||||||||
3135 | FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc); | ||||||||||
3136 | if (Loc.isInvalid() || | ||||||||||
3137 | getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc)) | ||||||||||
3138 | Loc = QualLoc; | ||||||||||
3139 | } | ||||||||||
3140 | |||||||||||
3141 | ++NumQuals; | ||||||||||
3142 | } | ||||||||||
3143 | } | ||||||||||
3144 | |||||||||||
3145 | Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID) | ||||||||||
3146 | << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3]; | ||||||||||
3147 | } | ||||||||||
3148 | |||||||||||
3149 | // Diagnose pointless type qualifiers on the return type of a function. | ||||||||||
3150 | static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, | ||||||||||
3151 | Declarator &D, | ||||||||||
3152 | unsigned FunctionChunkIndex) { | ||||||||||
3153 | const DeclaratorChunk::FunctionTypeInfo &FTI = | ||||||||||
3154 | D.getTypeObject(FunctionChunkIndex).Fun; | ||||||||||
3155 | if (FTI.hasTrailingReturnType()) { | ||||||||||
3156 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||||||||
3157 | RetTy.getLocalCVRQualifiers(), | ||||||||||
3158 | FTI.getTrailingReturnTypeLoc()); | ||||||||||
3159 | return; | ||||||||||
3160 | } | ||||||||||
3161 | |||||||||||
3162 | for (unsigned OuterChunkIndex = FunctionChunkIndex + 1, | ||||||||||
3163 | End = D.getNumTypeObjects(); | ||||||||||
3164 | OuterChunkIndex != End; ++OuterChunkIndex) { | ||||||||||
3165 | DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex); | ||||||||||
3166 | switch (OuterChunk.Kind) { | ||||||||||
3167 | case DeclaratorChunk::Paren: | ||||||||||
3168 | continue; | ||||||||||
3169 | |||||||||||
3170 | case DeclaratorChunk::Pointer: { | ||||||||||
3171 | DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr; | ||||||||||
3172 | S.diagnoseIgnoredQualifiers( | ||||||||||
3173 | diag::warn_qual_return_type, | ||||||||||
3174 | PTI.TypeQuals, | ||||||||||
3175 | SourceLocation(), | ||||||||||
3176 | PTI.ConstQualLoc, | ||||||||||
3177 | PTI.VolatileQualLoc, | ||||||||||
3178 | PTI.RestrictQualLoc, | ||||||||||
3179 | PTI.AtomicQualLoc, | ||||||||||
3180 | PTI.UnalignedQualLoc); | ||||||||||
3181 | return; | ||||||||||
3182 | } | ||||||||||
3183 | |||||||||||
3184 | case DeclaratorChunk::Function: | ||||||||||
3185 | case DeclaratorChunk::BlockPointer: | ||||||||||
3186 | case DeclaratorChunk::Reference: | ||||||||||
3187 | case DeclaratorChunk::Array: | ||||||||||
3188 | case DeclaratorChunk::MemberPointer: | ||||||||||
3189 | case DeclaratorChunk::Pipe: | ||||||||||
3190 | // FIXME: We can't currently provide an accurate source location and a | ||||||||||
3191 | // fix-it hint for these. | ||||||||||
3192 | unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0; | ||||||||||
3193 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||||||||
3194 | RetTy.getCVRQualifiers() | AtomicQual, | ||||||||||
3195 | D.getIdentifierLoc()); | ||||||||||
3196 | return; | ||||||||||
3197 | } | ||||||||||
3198 | |||||||||||
3199 | llvm_unreachable("unknown declarator chunk kind")__builtin_unreachable(); | ||||||||||
3200 | } | ||||||||||
3201 | |||||||||||
3202 | // If the qualifiers come from a conversion function type, don't diagnose | ||||||||||
3203 | // them -- they're not necessarily redundant, since such a conversion | ||||||||||
3204 | // operator can be explicitly called as "x.operator const int()". | ||||||||||
3205 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) | ||||||||||
3206 | return; | ||||||||||
3207 | |||||||||||
3208 | // Just parens all the way out to the decl specifiers. Diagnose any qualifiers | ||||||||||
3209 | // which are present there. | ||||||||||
3210 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | ||||||||||
3211 | D.getDeclSpec().getTypeQualifiers(), | ||||||||||
3212 | D.getIdentifierLoc(), | ||||||||||
3213 | D.getDeclSpec().getConstSpecLoc(), | ||||||||||
3214 | D.getDeclSpec().getVolatileSpecLoc(), | ||||||||||
3215 | D.getDeclSpec().getRestrictSpecLoc(), | ||||||||||
3216 | D.getDeclSpec().getAtomicSpecLoc(), | ||||||||||
3217 | D.getDeclSpec().getUnalignedSpecLoc()); | ||||||||||
3218 | } | ||||||||||
3219 | |||||||||||
3220 | static std::pair<QualType, TypeSourceInfo *> | ||||||||||
3221 | InventTemplateParameter(TypeProcessingState &state, QualType T, | ||||||||||
3222 | TypeSourceInfo *TrailingTSI, AutoType *Auto, | ||||||||||
3223 | InventedTemplateParameterInfo &Info) { | ||||||||||
3224 | Sema &S = state.getSema(); | ||||||||||
3225 | Declarator &D = state.getDeclarator(); | ||||||||||
3226 | |||||||||||
3227 | const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth; | ||||||||||
3228 | const unsigned AutoParameterPosition = Info.TemplateParams.size(); | ||||||||||
3229 | const bool IsParameterPack = D.hasEllipsis(); | ||||||||||
3230 | |||||||||||
3231 | // If auto is mentioned in a lambda parameter or abbreviated function | ||||||||||
3232 | // template context, convert it to a template parameter type. | ||||||||||
3233 | |||||||||||
3234 | // Create the TemplateTypeParmDecl here to retrieve the corresponding | ||||||||||
3235 | // template parameter type. Template parameters are temporarily added | ||||||||||
3236 | // to the TU until the associated TemplateDecl is created. | ||||||||||
3237 | TemplateTypeParmDecl *InventedTemplateParam = | ||||||||||
3238 | TemplateTypeParmDecl::Create( | ||||||||||
3239 | S.Context, S.Context.getTranslationUnitDecl(), | ||||||||||
3240 | /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(), | ||||||||||
3241 | /*NameLoc=*/D.getIdentifierLoc(), | ||||||||||
3242 | TemplateParameterDepth, AutoParameterPosition, | ||||||||||
3243 | S.InventAbbreviatedTemplateParameterTypeName( | ||||||||||
3244 | D.getIdentifier(), AutoParameterPosition), false, | ||||||||||
3245 | IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained()); | ||||||||||
3246 | InventedTemplateParam->setImplicit(); | ||||||||||
3247 | Info.TemplateParams.push_back(InventedTemplateParam); | ||||||||||
3248 | |||||||||||
3249 | // Attach type constraints to the new parameter. | ||||||||||
3250 | if (Auto->isConstrained()) { | ||||||||||
3251 | if (TrailingTSI) { | ||||||||||
3252 | // The 'auto' appears in a trailing return type we've already built; | ||||||||||
3253 | // extract its type constraints to attach to the template parameter. | ||||||||||
3254 | AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc(); | ||||||||||
3255 | TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc()); | ||||||||||
3256 | bool Invalid = false; | ||||||||||
3257 | for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) { | ||||||||||
3258 | if (D.getEllipsisLoc().isInvalid() && !Invalid && | ||||||||||
3259 | S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx), | ||||||||||
3260 | Sema::UPPC_TypeConstraint)) | ||||||||||
3261 | Invalid = true; | ||||||||||
3262 | TAL.addArgument(AutoLoc.getArgLoc(Idx)); | ||||||||||
3263 | } | ||||||||||
3264 | |||||||||||
3265 | if (!Invalid) { | ||||||||||
3266 | S.AttachTypeConstraint( | ||||||||||
3267 | AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(), | ||||||||||
3268 | AutoLoc.getNamedConcept(), | ||||||||||
3269 | AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr, | ||||||||||
3270 | InventedTemplateParam, D.getEllipsisLoc()); | ||||||||||
3271 | } | ||||||||||
3272 | } else { | ||||||||||
3273 | // The 'auto' appears in the decl-specifiers; we've not finished forming | ||||||||||
3274 | // TypeSourceInfo for it yet. | ||||||||||
3275 | TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId(); | ||||||||||
3276 | TemplateArgumentListInfo TemplateArgsInfo; | ||||||||||
3277 | bool Invalid = false; | ||||||||||
3278 | if (TemplateId->LAngleLoc.isValid()) { | ||||||||||
3279 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||||||||
3280 | TemplateId->NumArgs); | ||||||||||
3281 | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||||||||
3282 | |||||||||||
3283 | if (D.getEllipsisLoc().isInvalid()) { | ||||||||||
3284 | for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) { | ||||||||||
3285 | if (S.DiagnoseUnexpandedParameterPack(Arg, | ||||||||||
3286 | Sema::UPPC_TypeConstraint)) { | ||||||||||
3287 | Invalid = true; | ||||||||||
3288 | break; | ||||||||||
3289 | } | ||||||||||
3290 | } | ||||||||||
3291 | } | ||||||||||
3292 | } | ||||||||||
3293 | if (!Invalid) { | ||||||||||
3294 | S.AttachTypeConstraint( | ||||||||||
3295 | D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context), | ||||||||||
3296 | DeclarationNameInfo(DeclarationName(TemplateId->Name), | ||||||||||
3297 | TemplateId->TemplateNameLoc), | ||||||||||
3298 | cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()), | ||||||||||
3299 | TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr, | ||||||||||
3300 | InventedTemplateParam, D.getEllipsisLoc()); | ||||||||||
3301 | } | ||||||||||
3302 | } | ||||||||||
3303 | } | ||||||||||
3304 | |||||||||||
3305 | // Replace the 'auto' in the function parameter with this invented | ||||||||||
3306 | // template type parameter. | ||||||||||
3307 | // FIXME: Retain some type sugar to indicate that this was written | ||||||||||
3308 | // as 'auto'? | ||||||||||
3309 | QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0); | ||||||||||
3310 | QualType NewT = state.ReplaceAutoType(T, Replacement); | ||||||||||
3311 | TypeSourceInfo *NewTSI = | ||||||||||
3312 | TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement) | ||||||||||
3313 | : nullptr; | ||||||||||
3314 | return {NewT, NewTSI}; | ||||||||||
3315 | } | ||||||||||
3316 | |||||||||||
3317 | static TypeSourceInfo * | ||||||||||
3318 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, | ||||||||||
3319 | QualType T, TypeSourceInfo *ReturnTypeInfo); | ||||||||||
3320 | |||||||||||
3321 | static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, | ||||||||||
3322 | TypeSourceInfo *&ReturnTypeInfo) { | ||||||||||
3323 | Sema &SemaRef = state.getSema(); | ||||||||||
3324 | Declarator &D = state.getDeclarator(); | ||||||||||
3325 | QualType T; | ||||||||||
3326 | ReturnTypeInfo = nullptr; | ||||||||||
3327 | |||||||||||
3328 | // The TagDecl owned by the DeclSpec. | ||||||||||
3329 | TagDecl *OwnedTagDecl = nullptr; | ||||||||||
3330 | |||||||||||
3331 | switch (D.getName().getKind()) { | ||||||||||
3332 | case UnqualifiedIdKind::IK_ImplicitSelfParam: | ||||||||||
3333 | case UnqualifiedIdKind::IK_OperatorFunctionId: | ||||||||||
3334 | case UnqualifiedIdKind::IK_Identifier: | ||||||||||
3335 | case UnqualifiedIdKind::IK_LiteralOperatorId: | ||||||||||
3336 | case UnqualifiedIdKind::IK_TemplateId: | ||||||||||
3337 | T = ConvertDeclSpecToType(state); | ||||||||||
3338 | |||||||||||
3339 | if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) { | ||||||||||
3340 | OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | ||||||||||
3341 | // Owned declaration is embedded in declarator. | ||||||||||
3342 | OwnedTagDecl->setEmbeddedInDeclarator(true); | ||||||||||
3343 | } | ||||||||||
3344 | break; | ||||||||||
3345 | |||||||||||
3346 | case UnqualifiedIdKind::IK_ConstructorName: | ||||||||||
3347 | case UnqualifiedIdKind::IK_ConstructorTemplateId: | ||||||||||
3348 | case UnqualifiedIdKind::IK_DestructorName: | ||||||||||
3349 | // Constructors and destructors don't have return types. Use | ||||||||||
3350 | // "void" instead. | ||||||||||
3351 | T = SemaRef.Context.VoidTy; | ||||||||||
3352 | processTypeAttrs(state, T, TAL_DeclSpec, | ||||||||||
3353 | D.getMutableDeclSpec().getAttributes()); | ||||||||||
3354 | break; | ||||||||||
3355 | |||||||||||
3356 | case UnqualifiedIdKind::IK_DeductionGuideName: | ||||||||||
3357 | // Deduction guides have a trailing return type and no type in their | ||||||||||
3358 | // decl-specifier sequence. Use a placeholder return type for now. | ||||||||||
3359 | T = SemaRef.Context.DependentTy; | ||||||||||
3360 | break; | ||||||||||
3361 | |||||||||||
3362 | case UnqualifiedIdKind::IK_ConversionFunctionId: | ||||||||||
3363 | // The result type of a conversion function is the type that it | ||||||||||
3364 | // converts to. | ||||||||||
3365 | T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId, | ||||||||||
3366 | &ReturnTypeInfo); | ||||||||||
3367 | break; | ||||||||||
3368 | } | ||||||||||
3369 | |||||||||||
3370 | if (!D.getAttributes().empty()) | ||||||||||
3371 | distributeTypeAttrsFromDeclarator(state, T); | ||||||||||
3372 | |||||||||||
3373 | // Find the deduced type in this type. Look in the trailing return type if we | ||||||||||
3374 | // have one, otherwise in the DeclSpec type. | ||||||||||
3375 | // FIXME: The standard wording doesn't currently describe this. | ||||||||||
3376 | DeducedType *Deduced = T->getContainedDeducedType(); | ||||||||||
3377 | bool DeducedIsTrailingReturnType = false; | ||||||||||
3378 | if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) { | ||||||||||
3379 | QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType()); | ||||||||||
3380 | Deduced = T.isNull() ? nullptr : T->getContainedDeducedType(); | ||||||||||
3381 | DeducedIsTrailingReturnType = true; | ||||||||||
3382 | } | ||||||||||
3383 | |||||||||||
3384 | // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context. | ||||||||||
3385 | if (Deduced) { | ||||||||||
3386 | AutoType *Auto = dyn_cast<AutoType>(Deduced); | ||||||||||
3387 | int Error = -1; | ||||||||||
3388 | |||||||||||
3389 | // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or | ||||||||||
3390 | // class template argument deduction)? | ||||||||||
3391 | bool IsCXXAutoType = | ||||||||||
3392 | (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType); | ||||||||||
3393 | bool IsDeducedReturnType = false; | ||||||||||
3394 | |||||||||||
3395 | switch (D.getContext()) { | ||||||||||
3396 | case DeclaratorContext::LambdaExpr: | ||||||||||
3397 | // Declared return type of a lambda-declarator is implicit and is always | ||||||||||
3398 | // 'auto'. | ||||||||||
3399 | break; | ||||||||||
3400 | case DeclaratorContext::ObjCParameter: | ||||||||||
3401 | case DeclaratorContext::ObjCResult: | ||||||||||
3402 | Error = 0; | ||||||||||
3403 | break; | ||||||||||
3404 | case DeclaratorContext::RequiresExpr: | ||||||||||
3405 | Error = 22; | ||||||||||
3406 | break; | ||||||||||
3407 | case DeclaratorContext::Prototype: | ||||||||||
3408 | case DeclaratorContext::LambdaExprParameter: { | ||||||||||
3409 | InventedTemplateParameterInfo *Info = nullptr; | ||||||||||
3410 | if (D.getContext() == DeclaratorContext::Prototype) { | ||||||||||
3411 | // With concepts we allow 'auto' in function parameters. | ||||||||||
3412 | if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto || | ||||||||||
3413 | Auto->getKeyword() != AutoTypeKeyword::Auto) { | ||||||||||
3414 | Error = 0; | ||||||||||
3415 | break; | ||||||||||
3416 | } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) { | ||||||||||
3417 | Error = 21; | ||||||||||
3418 | break; | ||||||||||
3419 | } | ||||||||||
3420 | |||||||||||
3421 | Info = &SemaRef.InventedParameterInfos.back(); | ||||||||||
3422 | } else { | ||||||||||
3423 | // In C++14, generic lambdas allow 'auto' in their parameters. | ||||||||||
3424 | if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto || | ||||||||||
3425 | Auto->getKeyword() != AutoTypeKeyword::Auto) { | ||||||||||
3426 | Error = 16; | ||||||||||
3427 | break; | ||||||||||
3428 | } | ||||||||||
3429 | Info = SemaRef.getCurLambda(); | ||||||||||
3430 | assert(Info && "No LambdaScopeInfo on the stack!")((void)0); | ||||||||||
3431 | } | ||||||||||
3432 | |||||||||||
3433 | // We'll deal with inventing template parameters for 'auto' in trailing | ||||||||||
3434 | // return types when we pick up the trailing return type when processing | ||||||||||
3435 | // the function chunk. | ||||||||||
3436 | if (!DeducedIsTrailingReturnType) | ||||||||||
3437 | T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first; | ||||||||||
3438 | break; | ||||||||||
3439 | } | ||||||||||
3440 | case DeclaratorContext::Member: { | ||||||||||
3441 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || | ||||||||||
3442 | D.isFunctionDeclarator()) | ||||||||||
3443 | break; | ||||||||||
3444 | bool Cxx = SemaRef.getLangOpts().CPlusPlus; | ||||||||||
3445 | if (isa<ObjCContainerDecl>(SemaRef.CurContext)) { | ||||||||||
3446 | Error = 6; // Interface member. | ||||||||||
3447 | } else { | ||||||||||
3448 | switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) { | ||||||||||
3449 | case TTK_Enum: llvm_unreachable("unhandled tag kind")__builtin_unreachable(); | ||||||||||
3450 | case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break; | ||||||||||
3451 | case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break; | ||||||||||
3452 | case TTK_Class: Error = 5; /* Class member */ break; | ||||||||||
3453 | case TTK_Interface: Error = 6; /* Interface member */ break; | ||||||||||
3454 | } | ||||||||||
3455 | } | ||||||||||
3456 | if (D.getDeclSpec().isFriendSpecified()) | ||||||||||
3457 | Error = 20; // Friend type | ||||||||||
3458 | break; | ||||||||||
3459 | } | ||||||||||
3460 | case DeclaratorContext::CXXCatch: | ||||||||||
3461 | case DeclaratorContext::ObjCCatch: | ||||||||||
3462 | Error = 7; // Exception declaration | ||||||||||
3463 | break; | ||||||||||
3464 | case DeclaratorContext::TemplateParam: | ||||||||||
3465 | if (isa<DeducedTemplateSpecializationType>(Deduced) && | ||||||||||
3466 | !SemaRef.getLangOpts().CPlusPlus20) | ||||||||||
3467 | Error = 19; // Template parameter (until C++20) | ||||||||||
3468 | else if (!SemaRef.getLangOpts().CPlusPlus17) | ||||||||||
3469 | Error = 8; // Template parameter (until C++17) | ||||||||||
3470 | break; | ||||||||||
3471 | case DeclaratorContext::BlockLiteral: | ||||||||||
3472 | Error = 9; // Block literal | ||||||||||
3473 | break; | ||||||||||
3474 | case DeclaratorContext::TemplateArg: | ||||||||||
3475 | // Within a template argument list, a deduced template specialization | ||||||||||
3476 | // type will be reinterpreted as a template template argument. | ||||||||||
3477 | if (isa<DeducedTemplateSpecializationType>(Deduced) && | ||||||||||
3478 | !D.getNumTypeObjects() && | ||||||||||
3479 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier) | ||||||||||
3480 | break; | ||||||||||
3481 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
3482 | case DeclaratorContext::TemplateTypeArg: | ||||||||||
3483 | Error = 10; // Template type argument | ||||||||||
3484 | break; | ||||||||||
3485 | case DeclaratorContext::AliasDecl: | ||||||||||
3486 | case DeclaratorContext::AliasTemplate: | ||||||||||
3487 | Error = 12; // Type alias | ||||||||||
3488 | break; | ||||||||||
3489 | case DeclaratorContext::TrailingReturn: | ||||||||||
3490 | case DeclaratorContext::TrailingReturnVar: | ||||||||||
3491 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) | ||||||||||
3492 | Error = 13; // Function return type | ||||||||||
3493 | IsDeducedReturnType = true; | ||||||||||
3494 | break; | ||||||||||
3495 | case DeclaratorContext::ConversionId: | ||||||||||
3496 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) | ||||||||||
3497 | Error = 14; // conversion-type-id | ||||||||||
3498 | IsDeducedReturnType = true; | ||||||||||
3499 | break; | ||||||||||
3500 | case DeclaratorContext::FunctionalCast: | ||||||||||
3501 | if (isa<DeducedTemplateSpecializationType>(Deduced)) | ||||||||||
3502 | break; | ||||||||||
3503 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
3504 | case DeclaratorContext::TypeName: | ||||||||||
3505 | Error = 15; // Generic | ||||||||||
3506 | break; | ||||||||||
3507 | case DeclaratorContext::File: | ||||||||||
3508 | case DeclaratorContext::Block: | ||||||||||
3509 | case DeclaratorContext::ForInit: | ||||||||||
3510 | case DeclaratorContext::SelectionInit: | ||||||||||
3511 | case DeclaratorContext::Condition: | ||||||||||
3512 | // FIXME: P0091R3 (erroneously) does not permit class template argument | ||||||||||
3513 | // deduction in conditions, for-init-statements, and other declarations | ||||||||||
3514 | // that are not simple-declarations. | ||||||||||
3515 | break; | ||||||||||
3516 | case DeclaratorContext::CXXNew: | ||||||||||
3517 | // FIXME: P0091R3 does not permit class template argument deduction here, | ||||||||||
3518 | // but we follow GCC and allow it anyway. | ||||||||||
3519 | if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced)) | ||||||||||
3520 | Error = 17; // 'new' type | ||||||||||
3521 | break; | ||||||||||
3522 | case DeclaratorContext::KNRTypeList: | ||||||||||
3523 | Error = 18; // K&R function parameter | ||||||||||
3524 | break; | ||||||||||
3525 | } | ||||||||||
3526 | |||||||||||
3527 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | ||||||||||
3528 | Error = 11; | ||||||||||
3529 | |||||||||||
3530 | // In Objective-C it is an error to use 'auto' on a function declarator | ||||||||||
3531 | // (and everywhere for '__auto_type'). | ||||||||||
3532 | if (D.isFunctionDeclarator() && | ||||||||||
3533 | (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType)) | ||||||||||
3534 | Error = 13; | ||||||||||
3535 | |||||||||||
3536 | SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc(); | ||||||||||
3537 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) | ||||||||||
3538 | AutoRange = D.getName().getSourceRange(); | ||||||||||
3539 | |||||||||||
3540 | if (Error != -1) { | ||||||||||
3541 | unsigned Kind; | ||||||||||
3542 | if (Auto) { | ||||||||||
3543 | switch (Auto->getKeyword()) { | ||||||||||
3544 | case AutoTypeKeyword::Auto: Kind = 0; break; | ||||||||||
3545 | case AutoTypeKeyword::DecltypeAuto: Kind = 1; break; | ||||||||||
3546 | case AutoTypeKeyword::GNUAutoType: Kind = 2; break; | ||||||||||
3547 | } | ||||||||||
3548 | } else { | ||||||||||
3549 | assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((void)0) | ||||||||||
3550 | "unknown auto type")((void)0); | ||||||||||
3551 | Kind = 3; | ||||||||||
3552 | } | ||||||||||
3553 | |||||||||||
3554 | auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced); | ||||||||||
3555 | TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName(); | ||||||||||
3556 | |||||||||||
3557 | SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed) | ||||||||||
3558 | << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN) | ||||||||||
3559 | << QualType(Deduced, 0) << AutoRange; | ||||||||||
3560 | if (auto *TD = TN.getAsTemplateDecl()) | ||||||||||
3561 | SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here); | ||||||||||
3562 | |||||||||||
3563 | T = SemaRef.Context.IntTy; | ||||||||||
3564 | D.setInvalidType(true); | ||||||||||
3565 | } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) { | ||||||||||
3566 | // If there was a trailing return type, we already got | ||||||||||
3567 | // warn_cxx98_compat_trailing_return_type in the parser. | ||||||||||
3568 | SemaRef.Diag(AutoRange.getBegin(), | ||||||||||
3569 | D.getContext() == DeclaratorContext::LambdaExprParameter | ||||||||||
3570 | ? diag::warn_cxx11_compat_generic_lambda | ||||||||||
3571 | : IsDeducedReturnType | ||||||||||
3572 | ? diag::warn_cxx11_compat_deduced_return_type | ||||||||||
3573 | : diag::warn_cxx98_compat_auto_type_specifier) | ||||||||||
3574 | << AutoRange; | ||||||||||
3575 | } | ||||||||||
3576 | } | ||||||||||
3577 | |||||||||||
3578 | if (SemaRef.getLangOpts().CPlusPlus && | ||||||||||
3579 | OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) { | ||||||||||
3580 | // Check the contexts where C++ forbids the declaration of a new class | ||||||||||
3581 | // or enumeration in a type-specifier-seq. | ||||||||||
3582 | unsigned DiagID = 0; | ||||||||||
3583 | switch (D.getContext()) { | ||||||||||
3584 | case DeclaratorContext::TrailingReturn: | ||||||||||
3585 | case DeclaratorContext::TrailingReturnVar: | ||||||||||
3586 | // Class and enumeration definitions are syntactically not allowed in | ||||||||||
3587 | // trailing return types. | ||||||||||
3588 | llvm_unreachable("parser should not have allowed this")__builtin_unreachable(); | ||||||||||
3589 | break; | ||||||||||
3590 | case DeclaratorContext::File: | ||||||||||
3591 | case DeclaratorContext::Member: | ||||||||||
3592 | case DeclaratorContext::Block: | ||||||||||
3593 | case DeclaratorContext::ForInit: | ||||||||||
3594 | case DeclaratorContext::SelectionInit: | ||||||||||
3595 | case DeclaratorContext::BlockLiteral: | ||||||||||
3596 | case DeclaratorContext::LambdaExpr: | ||||||||||
3597 | // C++11 [dcl.type]p3: | ||||||||||
3598 | // A type-specifier-seq shall not define a class or enumeration unless | ||||||||||
3599 | // it appears in the type-id of an alias-declaration (7.1.3) that is not | ||||||||||
3600 | // the declaration of a template-declaration. | ||||||||||
3601 | case DeclaratorContext::AliasDecl: | ||||||||||
3602 | break; | ||||||||||
3603 | case DeclaratorContext::AliasTemplate: | ||||||||||
3604 | DiagID = diag::err_type_defined_in_alias_template; | ||||||||||
3605 | break; | ||||||||||
3606 | case DeclaratorContext::TypeName: | ||||||||||
3607 | case DeclaratorContext::FunctionalCast: | ||||||||||
3608 | case DeclaratorContext::ConversionId: | ||||||||||
3609 | case DeclaratorContext::TemplateParam: | ||||||||||
3610 | case DeclaratorContext::CXXNew: | ||||||||||
3611 | case DeclaratorContext::CXXCatch: | ||||||||||
3612 | case DeclaratorContext::ObjCCatch: | ||||||||||
3613 | case DeclaratorContext::TemplateArg: | ||||||||||
3614 | case DeclaratorContext::TemplateTypeArg: | ||||||||||
3615 | DiagID = diag::err_type_defined_in_type_specifier; | ||||||||||
3616 | break; | ||||||||||
3617 | case DeclaratorContext::Prototype: | ||||||||||
3618 | case DeclaratorContext::LambdaExprParameter: | ||||||||||
3619 | case DeclaratorContext::ObjCParameter: | ||||||||||
3620 | case DeclaratorContext::ObjCResult: | ||||||||||
3621 | case DeclaratorContext::KNRTypeList: | ||||||||||
3622 | case DeclaratorContext::RequiresExpr: | ||||||||||
3623 | // C++ [dcl.fct]p6: | ||||||||||
3624 | // Types shall not be defined in return or parameter types. | ||||||||||
3625 | DiagID = diag::err_type_defined_in_param_type; | ||||||||||
3626 | break; | ||||||||||
3627 | case DeclaratorContext::Condition: | ||||||||||
3628 | // C++ 6.4p2: | ||||||||||
3629 | // The type-specifier-seq shall not contain typedef and shall not declare | ||||||||||
3630 | // a new class or enumeration. | ||||||||||
3631 | DiagID = diag::err_type_defined_in_condition; | ||||||||||
3632 | break; | ||||||||||
3633 | } | ||||||||||
3634 | |||||||||||
3635 | if (DiagID != 0) { | ||||||||||
3636 | SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID) | ||||||||||
3637 | << SemaRef.Context.getTypeDeclType(OwnedTagDecl); | ||||||||||
3638 | D.setInvalidType(true); | ||||||||||
3639 | } | ||||||||||
3640 | } | ||||||||||
3641 | |||||||||||
3642 | assert(!T.isNull() && "This function should not return a null type")((void)0); | ||||||||||
3643 | return T; | ||||||||||
3644 | } | ||||||||||
3645 | |||||||||||
3646 | /// Produce an appropriate diagnostic for an ambiguity between a function | ||||||||||
3647 | /// declarator and a C++ direct-initializer. | ||||||||||
3648 | static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, | ||||||||||
3649 | DeclaratorChunk &DeclType, QualType RT) { | ||||||||||
3650 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||||||||
3651 | assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((void)0); | ||||||||||
3652 | |||||||||||
3653 | // If the return type is void there is no ambiguity. | ||||||||||
3654 | if (RT->isVoidType()) | ||||||||||
3655 | return; | ||||||||||
3656 | |||||||||||
3657 | // An initializer for a non-class type can have at most one argument. | ||||||||||
3658 | if (!RT->isRecordType() && FTI.NumParams > 1) | ||||||||||
3659 | return; | ||||||||||
3660 | |||||||||||
3661 | // An initializer for a reference must have exactly one argument. | ||||||||||
3662 | if (RT->isReferenceType() && FTI.NumParams != 1) | ||||||||||
3663 | return; | ||||||||||
3664 | |||||||||||
3665 | // Only warn if this declarator is declaring a function at block scope, and | ||||||||||
3666 | // doesn't have a storage class (such as 'extern') specified. | ||||||||||
3667 | if (!D.isFunctionDeclarator() || | ||||||||||
3668 | D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration || | ||||||||||
3669 | !S.CurContext->isFunctionOrMethod() || | ||||||||||
3670 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified) | ||||||||||
3671 | return; | ||||||||||
3672 | |||||||||||
3673 | // Inside a condition, a direct initializer is not permitted. We allow one to | ||||||||||
3674 | // be parsed in order to give better diagnostics in condition parsing. | ||||||||||
3675 | if (D.getContext() == DeclaratorContext::Condition) | ||||||||||
3676 | return; | ||||||||||
3677 | |||||||||||
3678 | SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc); | ||||||||||
3679 | |||||||||||
3680 | S.Diag(DeclType.Loc, | ||||||||||
3681 | FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration | ||||||||||
3682 | : diag::warn_empty_parens_are_function_decl) | ||||||||||
3683 | << ParenRange; | ||||||||||
3684 | |||||||||||
3685 | // If the declaration looks like: | ||||||||||
3686 | // T var1, | ||||||||||
3687 | // f(); | ||||||||||
3688 | // and name lookup finds a function named 'f', then the ',' was | ||||||||||
3689 | // probably intended to be a ';'. | ||||||||||
3690 | if (!D.isFirstDeclarator() && D.getIdentifier()) { | ||||||||||
3691 | FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr); | ||||||||||
3692 | FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr); | ||||||||||
3693 | if (Comma.getFileID() != Name.getFileID() || | ||||||||||
3694 | Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) { | ||||||||||
3695 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), | ||||||||||
3696 | Sema::LookupOrdinaryName); | ||||||||||
3697 | if (S.LookupName(Result, S.getCurScope())) | ||||||||||
3698 | S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call) | ||||||||||
3699 | << FixItHint::CreateReplacement(D.getCommaLoc(), ";") | ||||||||||
3700 | << D.getIdentifier(); | ||||||||||
3701 | Result.suppressDiagnostics(); | ||||||||||
3702 | } | ||||||||||
3703 | } | ||||||||||
3704 | |||||||||||
3705 | if (FTI.NumParams > 0) { | ||||||||||
3706 | // For a declaration with parameters, eg. "T var(T());", suggest adding | ||||||||||
3707 | // parens around the first parameter to turn the declaration into a | ||||||||||
3708 | // variable declaration. | ||||||||||
3709 | SourceRange Range = FTI.Params[0].Param->getSourceRange(); | ||||||||||
3710 | SourceLocation B = Range.getBegin(); | ||||||||||
3711 | SourceLocation E = S.getLocForEndOfToken(Range.getEnd()); | ||||||||||
3712 | // FIXME: Maybe we should suggest adding braces instead of parens | ||||||||||
3713 | // in C++11 for classes that don't have an initializer_list constructor. | ||||||||||
3714 | S.Diag(B, diag::note_additional_parens_for_variable_declaration) | ||||||||||
3715 | << FixItHint::CreateInsertion(B, "(") | ||||||||||
3716 | << FixItHint::CreateInsertion(E, ")"); | ||||||||||
3717 | } else { | ||||||||||
3718 | // For a declaration without parameters, eg. "T var();", suggest replacing | ||||||||||
3719 | // the parens with an initializer to turn the declaration into a variable | ||||||||||
3720 | // declaration. | ||||||||||
3721 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | ||||||||||
3722 | |||||||||||
3723 | // Empty parens mean value-initialization, and no parens mean | ||||||||||
3724 | // default initialization. These are equivalent if the default | ||||||||||
3725 | // constructor is user-provided or if zero-initialization is a | ||||||||||
3726 | // no-op. | ||||||||||
3727 | if (RD && RD->hasDefinition() && | ||||||||||
3728 | (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor())) | ||||||||||
3729 | S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor) | ||||||||||
3730 | << FixItHint::CreateRemoval(ParenRange); | ||||||||||
3731 | else { | ||||||||||
3732 | std::string Init = | ||||||||||
3733 | S.getFixItZeroInitializerForType(RT, ParenRange.getBegin()); | ||||||||||
3734 | if (Init.empty() && S.LangOpts.CPlusPlus11) | ||||||||||
3735 | Init = "{}"; | ||||||||||
3736 | if (!Init.empty()) | ||||||||||
3737 | S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize) | ||||||||||
3738 | << FixItHint::CreateReplacement(ParenRange, Init); | ||||||||||
3739 | } | ||||||||||
3740 | } | ||||||||||
3741 | } | ||||||||||
3742 | |||||||||||
3743 | /// Produce an appropriate diagnostic for a declarator with top-level | ||||||||||
3744 | /// parentheses. | ||||||||||
3745 | static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) { | ||||||||||
3746 | DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1); | ||||||||||
3747 | assert(Paren.Kind == DeclaratorChunk::Paren &&((void)0) | ||||||||||
3748 | "do not have redundant top-level parentheses")((void)0); | ||||||||||
3749 | |||||||||||
3750 | // This is a syntactic check; we're not interested in cases that arise | ||||||||||
3751 | // during template instantiation. | ||||||||||
3752 | if (S.inTemplateInstantiation()) | ||||||||||
3753 | return; | ||||||||||
3754 | |||||||||||
3755 | // Check whether this could be intended to be a construction of a temporary | ||||||||||
3756 | // object in C++ via a function-style cast. | ||||||||||
3757 | bool CouldBeTemporaryObject = | ||||||||||
3758 | S.getLangOpts().CPlusPlus && D.isExpressionContext() && | ||||||||||
3759 | !D.isInvalidType() && D.getIdentifier() && | ||||||||||
3760 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier && | ||||||||||
3761 | (T->isRecordType() || T->isDependentType()) && | ||||||||||
3762 | D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator(); | ||||||||||
3763 | |||||||||||
3764 | bool StartsWithDeclaratorId = true; | ||||||||||
3765 | for (auto &C : D.type_objects()) { | ||||||||||
3766 | switch (C.Kind) { | ||||||||||
3767 | case DeclaratorChunk::Paren: | ||||||||||
3768 | if (&C == &Paren) | ||||||||||
3769 | continue; | ||||||||||
3770 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
3771 | case DeclaratorChunk::Pointer: | ||||||||||
3772 | StartsWithDeclaratorId = false; | ||||||||||
3773 | continue; | ||||||||||
3774 | |||||||||||
3775 | case DeclaratorChunk::Array: | ||||||||||
3776 | if (!C.Arr.NumElts) | ||||||||||
3777 | CouldBeTemporaryObject = false; | ||||||||||
3778 | continue; | ||||||||||
3779 | |||||||||||
3780 | case DeclaratorChunk::Reference: | ||||||||||
3781 | // FIXME: Suppress the warning here if there is no initializer; we're | ||||||||||
3782 | // going to give an error anyway. | ||||||||||
3783 | // We assume that something like 'T (&x) = y;' is highly likely to not | ||||||||||
3784 | // be intended to be a temporary object. | ||||||||||
3785 | CouldBeTemporaryObject = false; | ||||||||||
3786 | StartsWithDeclaratorId = false; | ||||||||||
3787 | continue; | ||||||||||
3788 | |||||||||||
3789 | case DeclaratorChunk::Function: | ||||||||||
3790 | // In a new-type-id, function chunks require parentheses. | ||||||||||
3791 | if (D.getContext() == DeclaratorContext::CXXNew) | ||||||||||
3792 | return; | ||||||||||
3793 | // FIXME: "A(f())" deserves a vexing-parse warning, not just a | ||||||||||
3794 | // redundant-parens warning, but we don't know whether the function | ||||||||||
3795 | // chunk was syntactically valid as an expression here. | ||||||||||
3796 | CouldBeTemporaryObject = false; | ||||||||||
3797 | continue; | ||||||||||
3798 | |||||||||||
3799 | case DeclaratorChunk::BlockPointer: | ||||||||||
3800 | case DeclaratorChunk::MemberPointer: | ||||||||||
3801 | case DeclaratorChunk::Pipe: | ||||||||||
3802 | // These cannot appear in expressions. | ||||||||||
3803 | CouldBeTemporaryObject = false; | ||||||||||
3804 | StartsWithDeclaratorId = false; | ||||||||||
3805 | continue; | ||||||||||
3806 | } | ||||||||||
3807 | } | ||||||||||
3808 | |||||||||||
3809 | // FIXME: If there is an initializer, assume that this is not intended to be | ||||||||||
3810 | // a construction of a temporary object. | ||||||||||
3811 | |||||||||||
3812 | // Check whether the name has already been declared; if not, this is not a | ||||||||||
3813 | // function-style cast. | ||||||||||
3814 | if (CouldBeTemporaryObject) { | ||||||||||
3815 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), | ||||||||||
3816 | Sema::LookupOrdinaryName); | ||||||||||
3817 | if (!S.LookupName(Result, S.getCurScope())) | ||||||||||
3818 | CouldBeTemporaryObject = false; | ||||||||||
3819 | Result.suppressDiagnostics(); | ||||||||||
3820 | } | ||||||||||
3821 | |||||||||||
3822 | SourceRange ParenRange(Paren.Loc, Paren.EndLoc); | ||||||||||
3823 | |||||||||||
3824 | if (!CouldBeTemporaryObject) { | ||||||||||
3825 | // If we have A (::B), the parentheses affect the meaning of the program. | ||||||||||
3826 | // Suppress the warning in that case. Don't bother looking at the DeclSpec | ||||||||||
3827 | // here: even (e.g.) "int ::x" is visually ambiguous even though it's | ||||||||||
3828 | // formally unambiguous. | ||||||||||
3829 | if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) { | ||||||||||
3830 | for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS; | ||||||||||
3831 | NNS = NNS->getPrefix()) { | ||||||||||
3832 | if (NNS->getKind() == NestedNameSpecifier::Global) | ||||||||||
3833 | return; | ||||||||||
3834 | } | ||||||||||
3835 | } | ||||||||||
3836 | |||||||||||
3837 | S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator) | ||||||||||
3838 | << ParenRange << FixItHint::CreateRemoval(Paren.Loc) | ||||||||||
3839 | << FixItHint::CreateRemoval(Paren.EndLoc); | ||||||||||
3840 | return; | ||||||||||
3841 | } | ||||||||||
3842 | |||||||||||
3843 | S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration) | ||||||||||
3844 | << ParenRange << D.getIdentifier(); | ||||||||||
3845 | auto *RD = T->getAsCXXRecordDecl(); | ||||||||||
3846 | if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor()) | ||||||||||
3847 | S.Diag(Paren.Loc, diag::note_raii_guard_add_name) | ||||||||||
3848 | << FixItHint::CreateInsertion(Paren.Loc, " varname") << T | ||||||||||
3849 | << D.getIdentifier(); | ||||||||||
3850 | // FIXME: A cast to void is probably a better suggestion in cases where it's | ||||||||||
3851 | // valid (when there is no initializer and we're not in a condition). | ||||||||||
3852 | S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses) | ||||||||||
3853 | << FixItHint::CreateInsertion(D.getBeginLoc(), "(") | ||||||||||
3854 | << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")"); | ||||||||||
3855 | S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration) | ||||||||||
3856 | << FixItHint::CreateRemoval(Paren.Loc) | ||||||||||
3857 | << FixItHint::CreateRemoval(Paren.EndLoc); | ||||||||||
3858 | } | ||||||||||
3859 | |||||||||||
3860 | /// Helper for figuring out the default CC for a function declarator type. If | ||||||||||
3861 | /// this is the outermost chunk, then we can determine the CC from the | ||||||||||
3862 | /// declarator context. If not, then this could be either a member function | ||||||||||
3863 | /// type or normal function type. | ||||||||||
3864 | static CallingConv getCCForDeclaratorChunk( | ||||||||||
3865 | Sema &S, Declarator &D, const ParsedAttributesView &AttrList, | ||||||||||
3866 | const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) { | ||||||||||
3867 | assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((void)0); | ||||||||||
3868 | |||||||||||
3869 | // Check for an explicit CC attribute. | ||||||||||
3870 | for (const ParsedAttr &AL : AttrList) { | ||||||||||
3871 | switch (AL.getKind()) { | ||||||||||
3872 | CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll : { | ||||||||||
3873 | // Ignore attributes that don't validate or can't apply to the | ||||||||||
3874 | // function type. We'll diagnose the failure to apply them in | ||||||||||
3875 | // handleFunctionTypeAttr. | ||||||||||
3876 | CallingConv CC; | ||||||||||
3877 | if (!S.CheckCallingConvAttr(AL, CC) && | ||||||||||
3878 | (!FTI.isVariadic || supportsVariadicCall(CC))) { | ||||||||||
3879 | return CC; | ||||||||||
3880 | } | ||||||||||
3881 | break; | ||||||||||
3882 | } | ||||||||||
3883 | |||||||||||
3884 | default: | ||||||||||
3885 | break; | ||||||||||
3886 | } | ||||||||||
3887 | } | ||||||||||
3888 | |||||||||||
3889 | bool IsCXXInstanceMethod = false; | ||||||||||
3890 | |||||||||||
3891 | if (S.getLangOpts().CPlusPlus) { | ||||||||||
3892 | // Look inwards through parentheses to see if this chunk will form a | ||||||||||
3893 | // member pointer type or if we're the declarator. Any type attributes | ||||||||||
3894 | // between here and there will override the CC we choose here. | ||||||||||
3895 | unsigned I = ChunkIndex; | ||||||||||
3896 | bool FoundNonParen = false; | ||||||||||
3897 | while (I && !FoundNonParen) { | ||||||||||
3898 | --I; | ||||||||||
3899 | if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren) | ||||||||||
3900 | FoundNonParen = true; | ||||||||||
3901 | } | ||||||||||
3902 | |||||||||||
3903 | if (FoundNonParen) { | ||||||||||
3904 | // If we're not the declarator, we're a regular function type unless we're | ||||||||||
3905 | // in a member pointer. | ||||||||||
3906 | IsCXXInstanceMethod = | ||||||||||
3907 | D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer; | ||||||||||
3908 | } else if (D.getContext() == DeclaratorContext::LambdaExpr) { | ||||||||||
3909 | // This can only be a call operator for a lambda, which is an instance | ||||||||||
3910 | // method. | ||||||||||
3911 | IsCXXInstanceMethod = true; | ||||||||||
3912 | } else { | ||||||||||
3913 | // We're the innermost decl chunk, so must be a function declarator. | ||||||||||
3914 | assert(D.isFunctionDeclarator())((void)0); | ||||||||||
3915 | |||||||||||
3916 | // If we're inside a record, we're declaring a method, but it could be | ||||||||||
3917 | // explicitly or implicitly static. | ||||||||||
3918 | IsCXXInstanceMethod = | ||||||||||
3919 | D.isFirstDeclarationOfMember() && | ||||||||||
3920 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | ||||||||||
3921 | !D.isStaticMember(); | ||||||||||
3922 | } | ||||||||||
3923 | } | ||||||||||
3924 | |||||||||||
3925 | CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic, | ||||||||||
3926 | IsCXXInstanceMethod); | ||||||||||
3927 | |||||||||||
3928 | // Attribute AT_OpenCLKernel affects the calling convention for SPIR | ||||||||||
3929 | // and AMDGPU targets, hence it cannot be treated as a calling | ||||||||||
3930 | // convention attribute. This is the simplest place to infer | ||||||||||
3931 | // calling convention for OpenCL kernels. | ||||||||||
3932 | if (S.getLangOpts().OpenCL) { | ||||||||||
3933 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { | ||||||||||
3934 | if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) { | ||||||||||
3935 | CC = CC_OpenCLKernel; | ||||||||||
3936 | break; | ||||||||||
3937 | } | ||||||||||
3938 | } | ||||||||||
3939 | } | ||||||||||
3940 | |||||||||||
3941 | return CC; | ||||||||||
3942 | } | ||||||||||
3943 | |||||||||||
3944 | namespace { | ||||||||||
3945 | /// A simple notion of pointer kinds, which matches up with the various | ||||||||||
3946 | /// pointer declarators. | ||||||||||
3947 | enum class SimplePointerKind { | ||||||||||
3948 | Pointer, | ||||||||||
3949 | BlockPointer, | ||||||||||
3950 | MemberPointer, | ||||||||||
3951 | Array, | ||||||||||
3952 | }; | ||||||||||
3953 | } // end anonymous namespace | ||||||||||
3954 | |||||||||||
3955 | IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) { | ||||||||||
3956 | switch (nullability) { | ||||||||||
3957 | case NullabilityKind::NonNull: | ||||||||||
3958 | if (!Ident__Nonnull) | ||||||||||
3959 | Ident__Nonnull = PP.getIdentifierInfo("_Nonnull"); | ||||||||||
3960 | return Ident__Nonnull; | ||||||||||
3961 | |||||||||||
3962 | case NullabilityKind::Nullable: | ||||||||||
3963 | if (!Ident__Nullable) | ||||||||||
3964 | Ident__Nullable = PP.getIdentifierInfo("_Nullable"); | ||||||||||
3965 | return Ident__Nullable; | ||||||||||
3966 | |||||||||||
3967 | case NullabilityKind::NullableResult: | ||||||||||
3968 | if (!Ident__Nullable_result) | ||||||||||
3969 | Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result"); | ||||||||||
3970 | return Ident__Nullable_result; | ||||||||||
3971 | |||||||||||
3972 | case NullabilityKind::Unspecified: | ||||||||||
3973 | if (!Ident__Null_unspecified) | ||||||||||
3974 | Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified"); | ||||||||||
3975 | return Ident__Null_unspecified; | ||||||||||
3976 | } | ||||||||||
3977 | llvm_unreachable("Unknown nullability kind.")__builtin_unreachable(); | ||||||||||
3978 | } | ||||||||||
3979 | |||||||||||
3980 | /// Retrieve the identifier "NSError". | ||||||||||
3981 | IdentifierInfo *Sema::getNSErrorIdent() { | ||||||||||
3982 | if (!Ident_NSError) | ||||||||||
3983 | Ident_NSError = PP.getIdentifierInfo("NSError"); | ||||||||||
3984 | |||||||||||
3985 | return Ident_NSError; | ||||||||||
3986 | } | ||||||||||
3987 | |||||||||||
3988 | /// Check whether there is a nullability attribute of any kind in the given | ||||||||||
3989 | /// attribute list. | ||||||||||
3990 | static bool hasNullabilityAttr(const ParsedAttributesView &attrs) { | ||||||||||
3991 | for (const ParsedAttr &AL : attrs) { | ||||||||||
3992 | if (AL.getKind() == ParsedAttr::AT_TypeNonNull || | ||||||||||
3993 | AL.getKind() == ParsedAttr::AT_TypeNullable || | ||||||||||
3994 | AL.getKind() == ParsedAttr::AT_TypeNullableResult || | ||||||||||
3995 | AL.getKind() == ParsedAttr::AT_TypeNullUnspecified) | ||||||||||
3996 | return true; | ||||||||||
3997 | } | ||||||||||
3998 | |||||||||||
3999 | return false; | ||||||||||
4000 | } | ||||||||||
4001 | |||||||||||
4002 | namespace { | ||||||||||
4003 | /// Describes the kind of a pointer a declarator describes. | ||||||||||
4004 | enum class PointerDeclaratorKind { | ||||||||||
4005 | // Not a pointer. | ||||||||||
4006 | NonPointer, | ||||||||||
4007 | // Single-level pointer. | ||||||||||
4008 | SingleLevelPointer, | ||||||||||
4009 | // Multi-level pointer (of any pointer kind). | ||||||||||
4010 | MultiLevelPointer, | ||||||||||
4011 | // CFFooRef* | ||||||||||
4012 | MaybePointerToCFRef, | ||||||||||
4013 | // CFErrorRef* | ||||||||||
4014 | CFErrorRefPointer, | ||||||||||
4015 | // NSError** | ||||||||||
4016 | NSErrorPointerPointer, | ||||||||||
4017 | }; | ||||||||||
4018 | |||||||||||
4019 | /// Describes a declarator chunk wrapping a pointer that marks inference as | ||||||||||
4020 | /// unexpected. | ||||||||||
4021 | // These values must be kept in sync with diagnostics. | ||||||||||
4022 | enum class PointerWrappingDeclaratorKind { | ||||||||||
4023 | /// Pointer is top-level. | ||||||||||
4024 | None = -1, | ||||||||||
4025 | /// Pointer is an array element. | ||||||||||
4026 | Array = 0, | ||||||||||
4027 | /// Pointer is the referent type of a C++ reference. | ||||||||||
4028 | Reference = 1 | ||||||||||
4029 | }; | ||||||||||
4030 | } // end anonymous namespace | ||||||||||
4031 | |||||||||||
4032 | /// Classify the given declarator, whose type-specified is \c type, based on | ||||||||||
4033 | /// what kind of pointer it refers to. | ||||||||||
4034 | /// | ||||||||||
4035 | /// This is used to determine the default nullability. | ||||||||||
4036 | static PointerDeclaratorKind | ||||||||||
4037 | classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, | ||||||||||
4038 | PointerWrappingDeclaratorKind &wrappingKind) { | ||||||||||
4039 | unsigned numNormalPointers = 0; | ||||||||||
4040 | |||||||||||
4041 | // For any dependent type, we consider it a non-pointer. | ||||||||||
4042 | if (type->isDependentType()) | ||||||||||
4043 | return PointerDeclaratorKind::NonPointer; | ||||||||||
4044 | |||||||||||
4045 | // Look through the declarator chunks to identify pointers. | ||||||||||
4046 | for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) { | ||||||||||
4047 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | ||||||||||
4048 | switch (chunk.Kind) { | ||||||||||
4049 | case DeclaratorChunk::Array: | ||||||||||
4050 | if (numNormalPointers == 0) | ||||||||||
4051 | wrappingKind = PointerWrappingDeclaratorKind::Array; | ||||||||||
4052 | break; | ||||||||||
4053 | |||||||||||
4054 | case DeclaratorChunk::Function: | ||||||||||
4055 | case DeclaratorChunk::Pipe: | ||||||||||
4056 | break; | ||||||||||
4057 | |||||||||||
4058 | case DeclaratorChunk::BlockPointer: | ||||||||||
4059 | case DeclaratorChunk::MemberPointer: | ||||||||||
4060 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||||||||
4061 | : PointerDeclaratorKind::SingleLevelPointer; | ||||||||||
4062 | |||||||||||
4063 | case DeclaratorChunk::Paren: | ||||||||||
4064 | break; | ||||||||||
4065 | |||||||||||
4066 | case DeclaratorChunk::Reference: | ||||||||||
4067 | if (numNormalPointers == 0) | ||||||||||
4068 | wrappingKind = PointerWrappingDeclaratorKind::Reference; | ||||||||||
4069 | break; | ||||||||||
4070 | |||||||||||
4071 | case DeclaratorChunk::Pointer: | ||||||||||
4072 | ++numNormalPointers; | ||||||||||
4073 | if (numNormalPointers > 2) | ||||||||||
4074 | return PointerDeclaratorKind::MultiLevelPointer; | ||||||||||
4075 | break; | ||||||||||
4076 | } | ||||||||||
4077 | } | ||||||||||
4078 | |||||||||||
4079 | // Then, dig into the type specifier itself. | ||||||||||
4080 | unsigned numTypeSpecifierPointers = 0; | ||||||||||
4081 | do { | ||||||||||
4082 | // Decompose normal pointers. | ||||||||||
4083 | if (auto ptrType = type->getAs<PointerType>()) { | ||||||||||
4084 | ++numNormalPointers; | ||||||||||
4085 | |||||||||||
4086 | if (numNormalPointers > 2) | ||||||||||
4087 | return PointerDeclaratorKind::MultiLevelPointer; | ||||||||||
4088 | |||||||||||
4089 | type = ptrType->getPointeeType(); | ||||||||||
4090 | ++numTypeSpecifierPointers; | ||||||||||
4091 | continue; | ||||||||||
4092 | } | ||||||||||
4093 | |||||||||||
4094 | // Decompose block pointers. | ||||||||||
4095 | if (type->getAs<BlockPointerType>()) { | ||||||||||
4096 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||||||||
4097 | : PointerDeclaratorKind::SingleLevelPointer; | ||||||||||
4098 | } | ||||||||||
4099 | |||||||||||
4100 | // Decompose member pointers. | ||||||||||
4101 | if (type->getAs<MemberPointerType>()) { | ||||||||||
4102 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | ||||||||||
4103 | : PointerDeclaratorKind::SingleLevelPointer; | ||||||||||
4104 | } | ||||||||||
4105 | |||||||||||
4106 | // Look at Objective-C object pointers. | ||||||||||
4107 | if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) { | ||||||||||
4108 | ++numNormalPointers; | ||||||||||
4109 | ++numTypeSpecifierPointers; | ||||||||||
4110 | |||||||||||
4111 | // If this is NSError**, report that. | ||||||||||
4112 | if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) { | ||||||||||
4113 | if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() && | ||||||||||
4114 | numNormalPointers == 2 && numTypeSpecifierPointers < 2) { | ||||||||||
4115 | return PointerDeclaratorKind::NSErrorPointerPointer; | ||||||||||
4116 | } | ||||||||||
4117 | } | ||||||||||
4118 | |||||||||||
4119 | break; | ||||||||||
4120 | } | ||||||||||
4121 | |||||||||||
4122 | // Look at Objective-C class types. | ||||||||||
4123 | if (auto objcClass = type->getAs<ObjCInterfaceType>()) { | ||||||||||
4124 | if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) { | ||||||||||
4125 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2) | ||||||||||
4126 | return PointerDeclaratorKind::NSErrorPointerPointer; | ||||||||||
4127 | } | ||||||||||
4128 | |||||||||||
4129 | break; | ||||||||||
4130 | } | ||||||||||
4131 | |||||||||||
4132 | // If at this point we haven't seen a pointer, we won't see one. | ||||||||||
4133 | if (numNormalPointers == 0) | ||||||||||
4134 | return PointerDeclaratorKind::NonPointer; | ||||||||||
4135 | |||||||||||
4136 | if (auto recordType = type->getAs<RecordType>()) { | ||||||||||
4137 | RecordDecl *recordDecl = recordType->getDecl(); | ||||||||||
4138 | |||||||||||
4139 | // If this is CFErrorRef*, report it as such. | ||||||||||
4140 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 && | ||||||||||
4141 | S.isCFError(recordDecl)) { | ||||||||||
4142 | return PointerDeclaratorKind::CFErrorRefPointer; | ||||||||||
4143 | } | ||||||||||
4144 | break; | ||||||||||
4145 | } | ||||||||||
4146 | |||||||||||
4147 | break; | ||||||||||
4148 | } while (true); | ||||||||||
4149 | |||||||||||
4150 | switch (numNormalPointers) { | ||||||||||
4151 | case 0: | ||||||||||
4152 | return PointerDeclaratorKind::NonPointer; | ||||||||||
4153 | |||||||||||
4154 | case 1: | ||||||||||
4155 | return PointerDeclaratorKind::SingleLevelPointer; | ||||||||||
4156 | |||||||||||
4157 | case 2: | ||||||||||
4158 | return PointerDeclaratorKind::MaybePointerToCFRef; | ||||||||||
4159 | |||||||||||
4160 | default: | ||||||||||
4161 | return PointerDeclaratorKind::MultiLevelPointer; | ||||||||||
4162 | } | ||||||||||
4163 | } | ||||||||||
4164 | |||||||||||
4165 | bool Sema::isCFError(RecordDecl *RD) { | ||||||||||
4166 | // If we already know about CFError, test it directly. | ||||||||||
4167 | if (CFError) | ||||||||||
4168 | return CFError == RD; | ||||||||||
4169 | |||||||||||
4170 | // Check whether this is CFError, which we identify based on its bridge to | ||||||||||
4171 | // NSError. CFErrorRef used to be declared with "objc_bridge" but is now | ||||||||||
4172 | // declared with "objc_bridge_mutable", so look for either one of the two | ||||||||||
4173 | // attributes. | ||||||||||
4174 | if (RD->getTagKind() == TTK_Struct) { | ||||||||||
4175 | IdentifierInfo *bridgedType = nullptr; | ||||||||||
4176 | if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>()) | ||||||||||
4177 | bridgedType = bridgeAttr->getBridgedType(); | ||||||||||
4178 | else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>()) | ||||||||||
4179 | bridgedType = bridgeAttr->getBridgedType(); | ||||||||||
4180 | |||||||||||
4181 | if (bridgedType == getNSErrorIdent()) { | ||||||||||
4182 | CFError = RD; | ||||||||||
4183 | return true; | ||||||||||
4184 | } | ||||||||||
4185 | } | ||||||||||
4186 | |||||||||||
4187 | return false; | ||||||||||
4188 | } | ||||||||||
4189 | |||||||||||
4190 | static FileID getNullabilityCompletenessCheckFileID(Sema &S, | ||||||||||
4191 | SourceLocation loc) { | ||||||||||
4192 | // If we're anywhere in a function, method, or closure context, don't perform | ||||||||||
4193 | // completeness checks. | ||||||||||
4194 | for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) { | ||||||||||
4195 | if (ctx->isFunctionOrMethod()) | ||||||||||
4196 | return FileID(); | ||||||||||
4197 | |||||||||||
4198 | if (ctx->isFileContext()) | ||||||||||
4199 | break; | ||||||||||
4200 | } | ||||||||||
4201 | |||||||||||
4202 | // We only care about the expansion location. | ||||||||||
4203 | loc = S.SourceMgr.getExpansionLoc(loc); | ||||||||||
4204 | FileID file = S.SourceMgr.getFileID(loc); | ||||||||||
4205 | if (file.isInvalid()) | ||||||||||
4206 | return FileID(); | ||||||||||
4207 | |||||||||||
4208 | // Retrieve file information. | ||||||||||
4209 | bool invalid = false; | ||||||||||
4210 | const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid); | ||||||||||
4211 | if (invalid || !sloc.isFile()) | ||||||||||
4212 | return FileID(); | ||||||||||
4213 | |||||||||||
4214 | // We don't want to perform completeness checks on the main file or in | ||||||||||
4215 | // system headers. | ||||||||||
4216 | const SrcMgr::FileInfo &fileInfo = sloc.getFile(); | ||||||||||
4217 | if (fileInfo.getIncludeLoc().isInvalid()) | ||||||||||
4218 | return FileID(); | ||||||||||
4219 | if (fileInfo.getFileCharacteristic() != SrcMgr::C_User && | ||||||||||
4220 | S.Diags.getSuppressSystemWarnings()) { | ||||||||||
4221 | return FileID(); | ||||||||||
4222 | } | ||||||||||
4223 | |||||||||||
4224 | return file; | ||||||||||
4225 | } | ||||||||||
4226 | |||||||||||
4227 | /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc, | ||||||||||
4228 | /// taking into account whitespace before and after. | ||||||||||
4229 | template <typename DiagBuilderT> | ||||||||||
4230 | static void fixItNullability(Sema &S, DiagBuilderT &Diag, | ||||||||||
4231 | SourceLocation PointerLoc, | ||||||||||
4232 | NullabilityKind Nullability) { | ||||||||||
4233 | assert(PointerLoc.isValid())((void)0); | ||||||||||
4234 | if (PointerLoc.isMacroID()) | ||||||||||
4235 | return; | ||||||||||
4236 | |||||||||||
4237 | SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc); | ||||||||||
4238 | if (!FixItLoc.isValid() || FixItLoc == PointerLoc) | ||||||||||
4239 | return; | ||||||||||
4240 | |||||||||||
4241 | const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc); | ||||||||||
4242 | if (!NextChar) | ||||||||||
4243 | return; | ||||||||||
4244 | |||||||||||
4245 | SmallString<32> InsertionTextBuf{" "}; | ||||||||||
4246 | InsertionTextBuf += getNullabilitySpelling(Nullability); | ||||||||||
4247 | InsertionTextBuf += " "; | ||||||||||
4248 | StringRef InsertionText = InsertionTextBuf.str(); | ||||||||||
4249 | |||||||||||
4250 | if (isWhitespace(*NextChar)) { | ||||||||||
4251 | InsertionText = InsertionText.drop_back(); | ||||||||||
4252 | } else if (NextChar[-1] == '[') { | ||||||||||
4253 | if (NextChar[0] == ']') | ||||||||||
4254 | InsertionText = InsertionText.drop_back().drop_front(); | ||||||||||
4255 | else | ||||||||||
4256 | InsertionText = InsertionText.drop_front(); | ||||||||||
4257 | } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) && | ||||||||||
4258 | !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) { | ||||||||||
4259 | InsertionText = InsertionText.drop_back().drop_front(); | ||||||||||
4260 | } | ||||||||||
4261 | |||||||||||
4262 | Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText); | ||||||||||
4263 | } | ||||||||||
4264 | |||||||||||
4265 | static void emitNullabilityConsistencyWarning(Sema &S, | ||||||||||
4266 | SimplePointerKind PointerKind, | ||||||||||
4267 | SourceLocation PointerLoc, | ||||||||||
4268 | SourceLocation PointerEndLoc) { | ||||||||||
4269 | assert(PointerLoc.isValid())((void)0); | ||||||||||
4270 | |||||||||||
4271 | if (PointerKind == SimplePointerKind::Array) { | ||||||||||
4272 | S.Diag(PointerLoc, diag::warn_nullability_missing_array); | ||||||||||
4273 | } else { | ||||||||||
4274 | S.Diag(PointerLoc, diag::warn_nullability_missing) | ||||||||||
4275 | << static_cast<unsigned>(PointerKind); | ||||||||||
4276 | } | ||||||||||
4277 | |||||||||||
4278 | auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc; | ||||||||||
4279 | if (FixItLoc.isMacroID()) | ||||||||||
4280 | return; | ||||||||||
4281 | |||||||||||
4282 | auto addFixIt = [&](NullabilityKind Nullability) { | ||||||||||
4283 | auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it); | ||||||||||
4284 | Diag << static_cast<unsigned>(Nullability); | ||||||||||
4285 | Diag << static_cast<unsigned>(PointerKind); | ||||||||||
4286 | fixItNullability(S, Diag, FixItLoc, Nullability); | ||||||||||
4287 | }; | ||||||||||
4288 | addFixIt(NullabilityKind::Nullable); | ||||||||||
4289 | addFixIt(NullabilityKind::NonNull); | ||||||||||
4290 | } | ||||||||||
4291 | |||||||||||
4292 | /// Complains about missing nullability if the file containing \p pointerLoc | ||||||||||
4293 | /// has other uses of nullability (either the keywords or the \c assume_nonnull | ||||||||||
4294 | /// pragma). | ||||||||||
4295 | /// | ||||||||||
4296 | /// If the file has \e not seen other uses of nullability, this particular | ||||||||||
4297 | /// pointer is saved for possible later diagnosis. See recordNullabilitySeen(). | ||||||||||
4298 | static void | ||||||||||
4299 | checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, | ||||||||||
4300 | SourceLocation pointerLoc, | ||||||||||
4301 | SourceLocation pointerEndLoc = SourceLocation()) { | ||||||||||
4302 | // Determine which file we're performing consistency checking for. | ||||||||||
4303 | FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc); | ||||||||||
4304 | if (file.isInvalid()) | ||||||||||
4305 | return; | ||||||||||
4306 | |||||||||||
4307 | // If we haven't seen any type nullability in this file, we won't warn now | ||||||||||
4308 | // about anything. | ||||||||||
4309 | FileNullability &fileNullability = S.NullabilityMap[file]; | ||||||||||
4310 | if (!fileNullability.SawTypeNullability) { | ||||||||||
4311 | // If this is the first pointer declarator in the file, and the appropriate | ||||||||||
4312 | // warning is on, record it in case we need to diagnose it retroactively. | ||||||||||
4313 | diag::kind diagKind; | ||||||||||
4314 | if (pointerKind == SimplePointerKind::Array) | ||||||||||
4315 | diagKind = diag::warn_nullability_missing_array; | ||||||||||
4316 | else | ||||||||||
4317 | diagKind = diag::warn_nullability_missing; | ||||||||||
4318 | |||||||||||
4319 | if (fileNullability.PointerLoc.isInvalid() && | ||||||||||
4320 | !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) { | ||||||||||
4321 | fileNullability.PointerLoc = pointerLoc; | ||||||||||
4322 | fileNullability.PointerEndLoc = pointerEndLoc; | ||||||||||
4323 | fileNullability.PointerKind = static_cast<unsigned>(pointerKind); | ||||||||||
4324 | } | ||||||||||
4325 | |||||||||||
4326 | return; | ||||||||||
4327 | } | ||||||||||
4328 | |||||||||||
4329 | // Complain about missing nullability. | ||||||||||
4330 | emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc); | ||||||||||
4331 | } | ||||||||||
4332 | |||||||||||
4333 | /// Marks that a nullability feature has been used in the file containing | ||||||||||
4334 | /// \p loc. | ||||||||||
4335 | /// | ||||||||||
4336 | /// If this file already had pointer types in it that were missing nullability, | ||||||||||
4337 | /// the first such instance is retroactively diagnosed. | ||||||||||
4338 | /// | ||||||||||
4339 | /// \sa checkNullabilityConsistency | ||||||||||
4340 | static void recordNullabilitySeen(Sema &S, SourceLocation loc) { | ||||||||||
4341 | FileID file = getNullabilityCompletenessCheckFileID(S, loc); | ||||||||||
4342 | if (file.isInvalid()) | ||||||||||
4343 | return; | ||||||||||
4344 | |||||||||||
4345 | FileNullability &fileNullability = S.NullabilityMap[file]; | ||||||||||
4346 | if (fileNullability.SawTypeNullability) | ||||||||||
4347 | return; | ||||||||||
4348 | fileNullability.SawTypeNullability = true; | ||||||||||
4349 | |||||||||||
4350 | // If we haven't seen any type nullability before, now we have. Retroactively | ||||||||||
4351 | // diagnose the first unannotated pointer, if there was one. | ||||||||||
4352 | if (fileNullability.PointerLoc.isInvalid()) | ||||||||||
4353 | return; | ||||||||||
4354 | |||||||||||
4355 | auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind); | ||||||||||
4356 | emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc, | ||||||||||
4357 | fileNullability.PointerEndLoc); | ||||||||||
4358 | } | ||||||||||
4359 | |||||||||||
4360 | /// Returns true if any of the declarator chunks before \p endIndex include a | ||||||||||
4361 | /// level of indirection: array, pointer, reference, or pointer-to-member. | ||||||||||
4362 | /// | ||||||||||
4363 | /// Because declarator chunks are stored in outer-to-inner order, testing | ||||||||||
4364 | /// every chunk before \p endIndex is testing all chunks that embed the current | ||||||||||
4365 | /// chunk as part of their type. | ||||||||||
4366 | /// | ||||||||||
4367 | /// It is legal to pass the result of Declarator::getNumTypeObjects() as the | ||||||||||
4368 | /// end index, in which case all chunks are tested. | ||||||||||
4369 | static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) { | ||||||||||
4370 | unsigned i = endIndex; | ||||||||||
4371 | while (i != 0) { | ||||||||||
4372 | // Walk outwards along the declarator chunks. | ||||||||||
4373 | --i; | ||||||||||
4374 | const DeclaratorChunk &DC = D.getTypeObject(i); | ||||||||||
4375 | switch (DC.Kind) { | ||||||||||
4376 | case DeclaratorChunk::Paren: | ||||||||||
4377 | break; | ||||||||||
4378 | case DeclaratorChunk::Array: | ||||||||||
4379 | case DeclaratorChunk::Pointer: | ||||||||||
4380 | case DeclaratorChunk::Reference: | ||||||||||
4381 | case DeclaratorChunk::MemberPointer: | ||||||||||
4382 | return true; | ||||||||||
4383 | case DeclaratorChunk::Function: | ||||||||||
4384 | case DeclaratorChunk::BlockPointer: | ||||||||||
4385 | case DeclaratorChunk::Pipe: | ||||||||||
4386 | // These are invalid anyway, so just ignore. | ||||||||||
4387 | break; | ||||||||||
4388 | } | ||||||||||
4389 | } | ||||||||||
4390 | return false; | ||||||||||
4391 | } | ||||||||||
4392 | |||||||||||
4393 | static bool IsNoDerefableChunk(DeclaratorChunk Chunk) { | ||||||||||
4394 | return (Chunk.Kind == DeclaratorChunk::Pointer || | ||||||||||
4395 | Chunk.Kind == DeclaratorChunk::Array); | ||||||||||
4396 | } | ||||||||||
4397 | |||||||||||
4398 | template<typename AttrT> | ||||||||||
4399 | static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) { | ||||||||||
4400 | AL.setUsedAsTypeAttr(); | ||||||||||
4401 | return ::new (Ctx) AttrT(Ctx, AL); | ||||||||||
4402 | } | ||||||||||
4403 | |||||||||||
4404 | static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr, | ||||||||||
4405 | NullabilityKind NK) { | ||||||||||
4406 | switch (NK) { | ||||||||||
4407 | case NullabilityKind::NonNull: | ||||||||||
4408 | return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr); | ||||||||||
4409 | |||||||||||
4410 | case NullabilityKind::Nullable: | ||||||||||
4411 | return createSimpleAttr<TypeNullableAttr>(Ctx, Attr); | ||||||||||
4412 | |||||||||||
4413 | case NullabilityKind::NullableResult: | ||||||||||
4414 | return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr); | ||||||||||
4415 | |||||||||||
4416 | case NullabilityKind::Unspecified: | ||||||||||
4417 | return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr); | ||||||||||
4418 | } | ||||||||||
4419 | llvm_unreachable("unknown NullabilityKind")__builtin_unreachable(); | ||||||||||
4420 | } | ||||||||||
4421 | |||||||||||
4422 | // Diagnose whether this is a case with the multiple addr spaces. | ||||||||||
4423 | // Returns true if this is an invalid case. | ||||||||||
4424 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified | ||||||||||
4425 | // by qualifiers for two or more different address spaces." | ||||||||||
4426 | static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld, | ||||||||||
4427 | LangAS ASNew, | ||||||||||
4428 | SourceLocation AttrLoc) { | ||||||||||
4429 | if (ASOld != LangAS::Default) { | ||||||||||
4430 | if (ASOld != ASNew) { | ||||||||||
4431 | S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); | ||||||||||
4432 | return true; | ||||||||||
4433 | } | ||||||||||
4434 | // Emit a warning if they are identical; it's likely unintended. | ||||||||||
4435 | S.Diag(AttrLoc, | ||||||||||
4436 | diag::warn_attribute_address_multiple_identical_qualifiers); | ||||||||||
4437 | } | ||||||||||
4438 | return false; | ||||||||||
4439 | } | ||||||||||
4440 | |||||||||||
4441 | static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state, | ||||||||||
4442 | QualType declSpecType, | ||||||||||
4443 | TypeSourceInfo *TInfo) { | ||||||||||
4444 | // The TypeSourceInfo that this function returns will not be a null type. | ||||||||||
4445 | // If there is an error, this function will fill in a dummy type as fallback. | ||||||||||
4446 | QualType T = declSpecType; | ||||||||||
4447 | Declarator &D = state.getDeclarator(); | ||||||||||
4448 | Sema &S = state.getSema(); | ||||||||||
4449 | ASTContext &Context = S.Context; | ||||||||||
4450 | const LangOptions &LangOpts = S.getLangOpts(); | ||||||||||
4451 | |||||||||||
4452 | // The name we're declaring, if any. | ||||||||||
4453 | DeclarationName Name; | ||||||||||
4454 | if (D.getIdentifier()) | ||||||||||
| |||||||||||
4455 | Name = D.getIdentifier(); | ||||||||||
4456 | |||||||||||
4457 | // Does this declaration declare a typedef-name? | ||||||||||
4458 | bool IsTypedefName = | ||||||||||
4459 | D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef || | ||||||||||
4460 | D.getContext() == DeclaratorContext::AliasDecl || | ||||||||||
4461 | D.getContext() == DeclaratorContext::AliasTemplate; | ||||||||||
4462 | |||||||||||
4463 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? | ||||||||||
4464 | bool IsQualifiedFunction = T->isFunctionProtoType() && | ||||||||||
4465 | (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() || | ||||||||||
4466 | T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None); | ||||||||||
4467 | |||||||||||
4468 | // If T is 'decltype(auto)', the only declarators we can have are parens | ||||||||||
4469 | // and at most one function declarator if this is a function declaration. | ||||||||||
4470 | // If T is a deduced class template specialization type, we can have no | ||||||||||
4471 | // declarator chunks at all. | ||||||||||
4472 | if (auto *DT
| ||||||||||
4473 | const AutoType *AT = T->getAs<AutoType>(); | ||||||||||
4474 | bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT); | ||||||||||
4475 | if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) { | ||||||||||
4476 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | ||||||||||
4477 | unsigned Index = E - I - 1; | ||||||||||
4478 | DeclaratorChunk &DeclChunk = D.getTypeObject(Index); | ||||||||||
4479 | unsigned DiagId = IsClassTemplateDeduction | ||||||||||
4480 | ? diag::err_deduced_class_template_compound_type | ||||||||||
4481 | : diag::err_decltype_auto_compound_type; | ||||||||||
4482 | unsigned DiagKind = 0; | ||||||||||
4483 | switch (DeclChunk.Kind) { | ||||||||||
4484 | case DeclaratorChunk::Paren: | ||||||||||
4485 | // FIXME: Rejecting this is a little silly. | ||||||||||
4486 | if (IsClassTemplateDeduction) { | ||||||||||
4487 | DiagKind = 4; | ||||||||||
4488 | break; | ||||||||||
4489 | } | ||||||||||
4490 | continue; | ||||||||||
4491 | case DeclaratorChunk::Function: { | ||||||||||
4492 | if (IsClassTemplateDeduction) { | ||||||||||
4493 | DiagKind = 3; | ||||||||||
4494 | break; | ||||||||||
4495 | } | ||||||||||
4496 | unsigned FnIndex; | ||||||||||
4497 | if (D.isFunctionDeclarationContext() && | ||||||||||
4498 | D.isFunctionDeclarator(FnIndex) && FnIndex == Index) | ||||||||||
4499 | continue; | ||||||||||
4500 | DiagId = diag::err_decltype_auto_function_declarator_not_declaration; | ||||||||||
4501 | break; | ||||||||||
4502 | } | ||||||||||
4503 | case DeclaratorChunk::Pointer: | ||||||||||
4504 | case DeclaratorChunk::BlockPointer: | ||||||||||
4505 | case DeclaratorChunk::MemberPointer: | ||||||||||
4506 | DiagKind = 0; | ||||||||||
4507 | break; | ||||||||||
4508 | case DeclaratorChunk::Reference: | ||||||||||
4509 | DiagKind = 1; | ||||||||||
4510 | break; | ||||||||||
4511 | case DeclaratorChunk::Array: | ||||||||||
4512 | DiagKind = 2; | ||||||||||
4513 | break; | ||||||||||
4514 | case DeclaratorChunk::Pipe: | ||||||||||
4515 | break; | ||||||||||
4516 | } | ||||||||||
4517 | |||||||||||
4518 | S.Diag(DeclChunk.Loc, DiagId) << DiagKind; | ||||||||||
4519 | D.setInvalidType(true); | ||||||||||
4520 | break; | ||||||||||
4521 | } | ||||||||||
4522 | } | ||||||||||
4523 | } | ||||||||||
4524 | |||||||||||
4525 | // Determine whether we should infer _Nonnull on pointer types. | ||||||||||
4526 | Optional<NullabilityKind> inferNullability; | ||||||||||
4527 | bool inferNullabilityCS = false; | ||||||||||
4528 | bool inferNullabilityInnerOnly = false; | ||||||||||
4529 | bool inferNullabilityInnerOnlyComplete = false; | ||||||||||
4530 | |||||||||||
4531 | // Are we in an assume-nonnull region? | ||||||||||
4532 | bool inAssumeNonNullRegion = false; | ||||||||||
4533 | SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc(); | ||||||||||
4534 | if (assumeNonNullLoc.isValid()) { | ||||||||||
4535 | inAssumeNonNullRegion = true; | ||||||||||
4536 | recordNullabilitySeen(S, assumeNonNullLoc); | ||||||||||
4537 | } | ||||||||||
4538 | |||||||||||
4539 | // Whether to complain about missing nullability specifiers or not. | ||||||||||
4540 | enum { | ||||||||||
4541 | /// Never complain. | ||||||||||
4542 | CAMN_No, | ||||||||||
4543 | /// Complain on the inner pointers (but not the outermost | ||||||||||
4544 | /// pointer). | ||||||||||
4545 | CAMN_InnerPointers, | ||||||||||
4546 | /// Complain about any pointers that don't have nullability | ||||||||||
4547 | /// specified or inferred. | ||||||||||
4548 | CAMN_Yes | ||||||||||
4549 | } complainAboutMissingNullability = CAMN_No; | ||||||||||
4550 | unsigned NumPointersRemaining = 0; | ||||||||||
4551 | auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None; | ||||||||||
4552 | |||||||||||
4553 | if (IsTypedefName
| ||||||||||
4554 | // For typedefs, we do not infer any nullability (the default), | ||||||||||
4555 | // and we only complain about missing nullability specifiers on | ||||||||||
4556 | // inner pointers. | ||||||||||
4557 | complainAboutMissingNullability = CAMN_InnerPointers; | ||||||||||
4558 | |||||||||||
4559 | if (T->canHaveNullability(/*ResultIfUnknown*/false) && | ||||||||||
4560 | !T->getNullability(S.Context)) { | ||||||||||
4561 | // Note that we allow but don't require nullability on dependent types. | ||||||||||
4562 | ++NumPointersRemaining; | ||||||||||
4563 | } | ||||||||||
4564 | |||||||||||
4565 | for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) { | ||||||||||
4566 | DeclaratorChunk &chunk = D.getTypeObject(i); | ||||||||||
4567 | switch (chunk.Kind) { | ||||||||||
4568 | case DeclaratorChunk::Array: | ||||||||||
4569 | case DeclaratorChunk::Function: | ||||||||||
4570 | case DeclaratorChunk::Pipe: | ||||||||||
4571 | break; | ||||||||||
4572 | |||||||||||
4573 | case DeclaratorChunk::BlockPointer: | ||||||||||
4574 | case DeclaratorChunk::MemberPointer: | ||||||||||
4575 | ++NumPointersRemaining; | ||||||||||
4576 | break; | ||||||||||
4577 | |||||||||||
4578 | case DeclaratorChunk::Paren: | ||||||||||
4579 | case DeclaratorChunk::Reference: | ||||||||||
4580 | continue; | ||||||||||
4581 | |||||||||||
4582 | case DeclaratorChunk::Pointer: | ||||||||||
4583 | ++NumPointersRemaining; | ||||||||||
4584 | continue; | ||||||||||
4585 | } | ||||||||||
4586 | } | ||||||||||
4587 | } else { | ||||||||||
4588 | bool isFunctionOrMethod = false; | ||||||||||
4589 | switch (auto context = state.getDeclarator().getContext()) { | ||||||||||
4590 | case DeclaratorContext::ObjCParameter: | ||||||||||
4591 | case DeclaratorContext::ObjCResult: | ||||||||||
4592 | case DeclaratorContext::Prototype: | ||||||||||
4593 | case DeclaratorContext::TrailingReturn: | ||||||||||
4594 | case DeclaratorContext::TrailingReturnVar: | ||||||||||
4595 | isFunctionOrMethod = true; | ||||||||||
4596 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
4597 | |||||||||||
4598 | case DeclaratorContext::Member: | ||||||||||
4599 | if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) { | ||||||||||
4600 | complainAboutMissingNullability = CAMN_No; | ||||||||||
4601 | break; | ||||||||||
4602 | } | ||||||||||
4603 | |||||||||||
4604 | // Weak properties are inferred to be nullable. | ||||||||||
4605 | if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) { | ||||||||||
4606 | inferNullability = NullabilityKind::Nullable; | ||||||||||
4607 | break; | ||||||||||
4608 | } | ||||||||||
4609 | |||||||||||
4610 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
4611 | |||||||||||
4612 | case DeclaratorContext::File: | ||||||||||
4613 | case DeclaratorContext::KNRTypeList: { | ||||||||||
4614 | complainAboutMissingNullability = CAMN_Yes; | ||||||||||
4615 | |||||||||||
4616 | // Nullability inference depends on the type and declarator. | ||||||||||
4617 | auto wrappingKind = PointerWrappingDeclaratorKind::None; | ||||||||||
4618 | switch (classifyPointerDeclarator(S, T, D, wrappingKind)) { | ||||||||||
4619 | case PointerDeclaratorKind::NonPointer: | ||||||||||
4620 | case PointerDeclaratorKind::MultiLevelPointer: | ||||||||||
4621 | // Cannot infer nullability. | ||||||||||
4622 | break; | ||||||||||
4623 | |||||||||||
4624 | case PointerDeclaratorKind::SingleLevelPointer: | ||||||||||
4625 | // Infer _Nonnull if we are in an assumes-nonnull region. | ||||||||||
4626 | if (inAssumeNonNullRegion) { | ||||||||||
4627 | complainAboutInferringWithinChunk = wrappingKind; | ||||||||||
4628 | inferNullability = NullabilityKind::NonNull; | ||||||||||
4629 | inferNullabilityCS = (context == DeclaratorContext::ObjCParameter || | ||||||||||
4630 | context == DeclaratorContext::ObjCResult); | ||||||||||
4631 | } | ||||||||||
4632 | break; | ||||||||||
4633 | |||||||||||
4634 | case PointerDeclaratorKind::CFErrorRefPointer: | ||||||||||
4635 | case PointerDeclaratorKind::NSErrorPointerPointer: | ||||||||||
4636 | // Within a function or method signature, infer _Nullable at both | ||||||||||
4637 | // levels. | ||||||||||
4638 | if (isFunctionOrMethod && inAssumeNonNullRegion) | ||||||||||
4639 | inferNullability = NullabilityKind::Nullable; | ||||||||||
4640 | break; | ||||||||||
4641 | |||||||||||
4642 | case PointerDeclaratorKind::MaybePointerToCFRef: | ||||||||||
4643 | if (isFunctionOrMethod) { | ||||||||||
4644 | // On pointer-to-pointer parameters marked cf_returns_retained or | ||||||||||
4645 | // cf_returns_not_retained, if the outer pointer is explicit then | ||||||||||
4646 | // infer the inner pointer as _Nullable. | ||||||||||
4647 | auto hasCFReturnsAttr = | ||||||||||
4648 | [](const ParsedAttributesView &AttrList) -> bool { | ||||||||||
4649 | return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) || | ||||||||||
4650 | AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained); | ||||||||||
4651 | }; | ||||||||||
4652 | if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) { | ||||||||||
4653 | if (hasCFReturnsAttr(D.getAttributes()) || | ||||||||||
4654 | hasCFReturnsAttr(InnermostChunk->getAttrs()) || | ||||||||||
4655 | hasCFReturnsAttr(D.getDeclSpec().getAttributes())) { | ||||||||||
4656 | inferNullability = NullabilityKind::Nullable; | ||||||||||
4657 | inferNullabilityInnerOnly = true; | ||||||||||
4658 | } | ||||||||||
4659 | } | ||||||||||
4660 | } | ||||||||||
4661 | break; | ||||||||||
4662 | } | ||||||||||
4663 | break; | ||||||||||
4664 | } | ||||||||||
4665 | |||||||||||
4666 | case DeclaratorContext::ConversionId: | ||||||||||
4667 | complainAboutMissingNullability = CAMN_Yes; | ||||||||||
4668 | break; | ||||||||||
4669 | |||||||||||
4670 | case DeclaratorContext::AliasDecl: | ||||||||||
4671 | case DeclaratorContext::AliasTemplate: | ||||||||||
4672 | case DeclaratorContext::Block: | ||||||||||
4673 | case DeclaratorContext::BlockLiteral: | ||||||||||
4674 | case DeclaratorContext::Condition: | ||||||||||
4675 | case DeclaratorContext::CXXCatch: | ||||||||||
4676 | case DeclaratorContext::CXXNew: | ||||||||||
4677 | case DeclaratorContext::ForInit: | ||||||||||
4678 | case DeclaratorContext::SelectionInit: | ||||||||||
4679 | case DeclaratorContext::LambdaExpr: | ||||||||||
4680 | case DeclaratorContext::LambdaExprParameter: | ||||||||||
4681 | case DeclaratorContext::ObjCCatch: | ||||||||||
4682 | case DeclaratorContext::TemplateParam: | ||||||||||
4683 | case DeclaratorContext::TemplateArg: | ||||||||||
4684 | case DeclaratorContext::TemplateTypeArg: | ||||||||||
4685 | case DeclaratorContext::TypeName: | ||||||||||
4686 | case DeclaratorContext::FunctionalCast: | ||||||||||
4687 | case DeclaratorContext::RequiresExpr: | ||||||||||
4688 | // Don't infer in these contexts. | ||||||||||
4689 | break; | ||||||||||
4690 | } | ||||||||||
4691 | } | ||||||||||
4692 | |||||||||||
4693 | // Local function that returns true if its argument looks like a va_list. | ||||||||||
4694 | auto isVaList = [&S](QualType T) -> bool { | ||||||||||
4695 | auto *typedefTy = T->getAs<TypedefType>(); | ||||||||||
4696 | if (!typedefTy) | ||||||||||
4697 | return false; | ||||||||||
4698 | TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl(); | ||||||||||
4699 | do { | ||||||||||
4700 | if (typedefTy->getDecl() == vaListTypedef) | ||||||||||
4701 | return true; | ||||||||||
4702 | if (auto *name = typedefTy->getDecl()->getIdentifier()) | ||||||||||
4703 | if (name->isStr("va_list")) | ||||||||||
4704 | return true; | ||||||||||
4705 | typedefTy = typedefTy->desugar()->getAs<TypedefType>(); | ||||||||||
4706 | } while (typedefTy); | ||||||||||
4707 | return false; | ||||||||||
4708 | }; | ||||||||||
4709 | |||||||||||
4710 | // Local function that checks the nullability for a given pointer declarator. | ||||||||||
4711 | // Returns true if _Nonnull was inferred. | ||||||||||
4712 | auto inferPointerNullability = | ||||||||||
4713 | [&](SimplePointerKind pointerKind, SourceLocation pointerLoc, | ||||||||||
4714 | SourceLocation pointerEndLoc, | ||||||||||
4715 | ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * { | ||||||||||
4716 | // We've seen a pointer. | ||||||||||
4717 | if (NumPointersRemaining > 0) | ||||||||||
4718 | --NumPointersRemaining; | ||||||||||
4719 | |||||||||||
4720 | // If a nullability attribute is present, there's nothing to do. | ||||||||||
4721 | if (hasNullabilityAttr(attrs)) | ||||||||||
4722 | return nullptr; | ||||||||||
4723 | |||||||||||
4724 | // If we're supposed to infer nullability, do so now. | ||||||||||
4725 | if (inferNullability && !inferNullabilityInnerOnlyComplete) { | ||||||||||
4726 | ParsedAttr::Syntax syntax = inferNullabilityCS | ||||||||||
4727 | ? ParsedAttr::AS_ContextSensitiveKeyword | ||||||||||
4728 | : ParsedAttr::AS_Keyword; | ||||||||||
4729 | ParsedAttr *nullabilityAttr = Pool.create( | ||||||||||
4730 | S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc), | ||||||||||
4731 | nullptr, SourceLocation(), nullptr, 0, syntax); | ||||||||||
4732 | |||||||||||
4733 | attrs.addAtEnd(nullabilityAttr); | ||||||||||
4734 | |||||||||||
4735 | if (inferNullabilityCS) { | ||||||||||
4736 | state.getDeclarator().getMutableDeclSpec().getObjCQualifiers() | ||||||||||
4737 | ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability); | ||||||||||
4738 | } | ||||||||||
4739 | |||||||||||
4740 | if (pointerLoc.isValid() && | ||||||||||
4741 | complainAboutInferringWithinChunk != | ||||||||||
4742 | PointerWrappingDeclaratorKind::None) { | ||||||||||
4743 | auto Diag = | ||||||||||
4744 | S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type); | ||||||||||
4745 | Diag << static_cast<int>(complainAboutInferringWithinChunk); | ||||||||||
4746 | fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull); | ||||||||||
4747 | } | ||||||||||
4748 | |||||||||||
4749 | if (inferNullabilityInnerOnly) | ||||||||||
4750 | inferNullabilityInnerOnlyComplete = true; | ||||||||||
4751 | return nullabilityAttr; | ||||||||||
4752 | } | ||||||||||
4753 | |||||||||||
4754 | // If we're supposed to complain about missing nullability, do so | ||||||||||
4755 | // now if it's truly missing. | ||||||||||
4756 | switch (complainAboutMissingNullability) { | ||||||||||
4757 | case CAMN_No: | ||||||||||
4758 | break; | ||||||||||
4759 | |||||||||||
4760 | case CAMN_InnerPointers: | ||||||||||
4761 | if (NumPointersRemaining == 0) | ||||||||||
4762 | break; | ||||||||||
4763 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
4764 | |||||||||||
4765 | case CAMN_Yes: | ||||||||||
4766 | checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc); | ||||||||||
4767 | } | ||||||||||
4768 | return nullptr; | ||||||||||
4769 | }; | ||||||||||
4770 | |||||||||||
4771 | // If the type itself could have nullability but does not, infer pointer | ||||||||||
4772 | // nullability and perform consistency checking. | ||||||||||
4773 | if (S.CodeSynthesisContexts.empty()) { | ||||||||||
4774 | if (T->canHaveNullability(/*ResultIfUnknown*/false) && | ||||||||||
4775 | !T->getNullability(S.Context)) { | ||||||||||
4776 | if (isVaList(T)) { | ||||||||||
4777 | // Record that we've seen a pointer, but do nothing else. | ||||||||||
4778 | if (NumPointersRemaining > 0) | ||||||||||
4779 | --NumPointersRemaining; | ||||||||||
4780 | } else { | ||||||||||
4781 | SimplePointerKind pointerKind = SimplePointerKind::Pointer; | ||||||||||
4782 | if (T->isBlockPointerType()) | ||||||||||
4783 | pointerKind = SimplePointerKind::BlockPointer; | ||||||||||
4784 | else if (T->isMemberPointerType()) | ||||||||||
4785 | pointerKind = SimplePointerKind::MemberPointer; | ||||||||||
4786 | |||||||||||
4787 | if (auto *attr = inferPointerNullability( | ||||||||||
4788 | pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(), | ||||||||||
4789 | D.getDeclSpec().getEndLoc(), | ||||||||||
4790 | D.getMutableDeclSpec().getAttributes(), | ||||||||||
4791 | D.getMutableDeclSpec().getAttributePool())) { | ||||||||||
4792 | T = state.getAttributedType( | ||||||||||
4793 | createNullabilityAttr(Context, *attr, *inferNullability), T, T); | ||||||||||
4794 | } | ||||||||||
4795 | } | ||||||||||
4796 | } | ||||||||||
4797 | |||||||||||
4798 | if (complainAboutMissingNullability == CAMN_Yes && | ||||||||||
4799 | T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) && | ||||||||||
4800 | D.isPrototypeContext() && | ||||||||||
4801 | !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) { | ||||||||||
4802 | checkNullabilityConsistency(S, SimplePointerKind::Array, | ||||||||||
4803 | D.getDeclSpec().getTypeSpecTypeLoc()); | ||||||||||
4804 | } | ||||||||||
4805 | } | ||||||||||
4806 | |||||||||||
4807 | bool ExpectNoDerefChunk = | ||||||||||
4808 | state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref); | ||||||||||
4809 | |||||||||||
4810 | // Walk the DeclTypeInfo, building the recursive type as we go. | ||||||||||
4811 | // DeclTypeInfos are ordered from the identifier out, which is | ||||||||||
4812 | // opposite of what we want :). | ||||||||||
4813 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||||||||
4814 | unsigned chunkIndex = e - i - 1; | ||||||||||
4815 | state.setCurrentChunkIndex(chunkIndex); | ||||||||||
4816 | DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex); | ||||||||||
4817 | IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren; | ||||||||||
4818 | switch (DeclType.Kind) { | ||||||||||
4819 | case DeclaratorChunk::Paren: | ||||||||||
4820 | if (i == 0) | ||||||||||
4821 | warnAboutRedundantParens(S, D, T); | ||||||||||
4822 | T = S.BuildParenType(T); | ||||||||||
4823 | break; | ||||||||||
4824 | case DeclaratorChunk::BlockPointer: | ||||||||||
4825 | // If blocks are disabled, emit an error. | ||||||||||
4826 | if (!LangOpts.Blocks) | ||||||||||
4827 | S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL; | ||||||||||
4828 | |||||||||||
4829 | // Handle pointer nullability. | ||||||||||
4830 | inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc, | ||||||||||
4831 | DeclType.EndLoc, DeclType.getAttrs(), | ||||||||||
4832 | state.getDeclarator().getAttributePool()); | ||||||||||
4833 | |||||||||||
4834 | T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name); | ||||||||||
4835 | if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) { | ||||||||||
4836 | // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly | ||||||||||
4837 | // qualified with const. | ||||||||||
4838 | if (LangOpts.OpenCL) | ||||||||||
4839 | DeclType.Cls.TypeQuals |= DeclSpec::TQ_const; | ||||||||||
4840 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals); | ||||||||||
4841 | } | ||||||||||
4842 | break; | ||||||||||
4843 | case DeclaratorChunk::Pointer: | ||||||||||
4844 | // Verify that we're not building a pointer to pointer to function with | ||||||||||
4845 | // exception specification. | ||||||||||
4846 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||||||||
4847 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||||||||
4848 | D.setInvalidType(true); | ||||||||||
4849 | // Build the type anyway. | ||||||||||
4850 | } | ||||||||||
4851 | |||||||||||
4852 | // Handle pointer nullability | ||||||||||
4853 | inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc, | ||||||||||
4854 | DeclType.EndLoc, DeclType.getAttrs(), | ||||||||||
4855 | state.getDeclarator().getAttributePool()); | ||||||||||
4856 | |||||||||||
4857 | if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) { | ||||||||||
4858 | T = Context.getObjCObjectPointerType(T); | ||||||||||
4859 | if (DeclType.Ptr.TypeQuals) | ||||||||||
4860 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals); | ||||||||||
4861 | break; | ||||||||||
4862 | } | ||||||||||
4863 | |||||||||||
4864 | // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used. | ||||||||||
4865 | // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used. | ||||||||||
4866 | // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed. | ||||||||||
4867 | if (LangOpts.OpenCL) { | ||||||||||
4868 | if (T->isImageType() || T->isSamplerT() || T->isPipeType() || | ||||||||||
4869 | T->isBlockPointerType()) { | ||||||||||
4870 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T; | ||||||||||
4871 | D.setInvalidType(true); | ||||||||||
4872 | } | ||||||||||
4873 | } | ||||||||||
4874 | |||||||||||
4875 | T = S.BuildPointerType(T, DeclType.Loc, Name); | ||||||||||
4876 | if (DeclType.Ptr.TypeQuals) | ||||||||||
4877 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals); | ||||||||||
4878 | break; | ||||||||||
4879 | case DeclaratorChunk::Reference: { | ||||||||||
4880 | // Verify that we're not building a reference to pointer to function with | ||||||||||
4881 | // exception specification. | ||||||||||
4882 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||||||||
4883 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||||||||
4884 | D.setInvalidType(true); | ||||||||||
4885 | // Build the type anyway. | ||||||||||
4886 | } | ||||||||||
4887 | T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name); | ||||||||||
4888 | |||||||||||
4889 | if (DeclType.Ref.HasRestrict) | ||||||||||
4890 | T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict); | ||||||||||
4891 | break; | ||||||||||
4892 | } | ||||||||||
4893 | case DeclaratorChunk::Array: { | ||||||||||
4894 | // Verify that we're not building an array of pointers to function with | ||||||||||
4895 | // exception specification. | ||||||||||
4896 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | ||||||||||
4897 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | ||||||||||
4898 | D.setInvalidType(true); | ||||||||||
4899 | // Build the type anyway. | ||||||||||
4900 | } | ||||||||||
4901 | DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr; | ||||||||||
4902 | Expr *ArraySize = static_cast<Expr*>(ATI.NumElts); | ||||||||||
4903 | ArrayType::ArraySizeModifier ASM; | ||||||||||
4904 | if (ATI.isStar) | ||||||||||
4905 | ASM = ArrayType::Star; | ||||||||||
4906 | else if (ATI.hasStatic) | ||||||||||
4907 | ASM = ArrayType::Static; | ||||||||||
4908 | else | ||||||||||
4909 | ASM = ArrayType::Normal; | ||||||||||
4910 | if (ASM == ArrayType::Star && !D.isPrototypeContext()) { | ||||||||||
4911 | // FIXME: This check isn't quite right: it allows star in prototypes | ||||||||||
4912 | // for function definitions, and disallows some edge cases detailed | ||||||||||
4913 | // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html | ||||||||||
4914 | S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype); | ||||||||||
4915 | ASM = ArrayType::Normal; | ||||||||||
4916 | D.setInvalidType(true); | ||||||||||
4917 | } | ||||||||||
4918 | |||||||||||
4919 | // C99 6.7.5.2p1: The optional type qualifiers and the keyword static | ||||||||||
4920 | // shall appear only in a declaration of a function parameter with an | ||||||||||
4921 | // array type, ... | ||||||||||
4922 | if (ASM == ArrayType::Static || ATI.TypeQuals) { | ||||||||||
4923 | if (!(D.isPrototypeContext() || | ||||||||||
4924 | D.getContext() == DeclaratorContext::KNRTypeList)) { | ||||||||||
4925 | S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) << | ||||||||||
4926 | (ASM == ArrayType::Static ? "'static'" : "type qualifier"); | ||||||||||
4927 | // Remove the 'static' and the type qualifiers. | ||||||||||
4928 | if (ASM == ArrayType::Static) | ||||||||||
4929 | ASM = ArrayType::Normal; | ||||||||||
4930 | ATI.TypeQuals = 0; | ||||||||||
4931 | D.setInvalidType(true); | ||||||||||
4932 | } | ||||||||||
4933 | |||||||||||
4934 | // C99 6.7.5.2p1: ... and then only in the outermost array type | ||||||||||
4935 | // derivation. | ||||||||||
4936 | if (hasOuterPointerLikeChunk(D, chunkIndex)) { | ||||||||||
4937 | S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) << | ||||||||||
4938 | (ASM == ArrayType::Static ? "'static'" : "type qualifier"); | ||||||||||
4939 | if (ASM == ArrayType::Static) | ||||||||||
4940 | ASM = ArrayType::Normal; | ||||||||||
4941 | ATI.TypeQuals = 0; | ||||||||||
4942 | D.setInvalidType(true); | ||||||||||
4943 | } | ||||||||||
4944 | } | ||||||||||
4945 | const AutoType *AT = T->getContainedAutoType(); | ||||||||||
4946 | // Allow arrays of auto if we are a generic lambda parameter. | ||||||||||
4947 | // i.e. [](auto (&array)[5]) { return array[0]; }; OK | ||||||||||
4948 | if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) { | ||||||||||
4949 | // We've already diagnosed this for decltype(auto). | ||||||||||
4950 | if (!AT->isDecltypeAuto()) | ||||||||||
4951 | S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto) | ||||||||||
4952 | << getPrintableNameForEntity(Name) << T; | ||||||||||
4953 | T = QualType(); | ||||||||||
4954 | break; | ||||||||||
4955 | } | ||||||||||
4956 | |||||||||||
4957 | // Array parameters can be marked nullable as well, although it's not | ||||||||||
4958 | // necessary if they're marked 'static'. | ||||||||||
4959 | if (complainAboutMissingNullability == CAMN_Yes && | ||||||||||
4960 | !hasNullabilityAttr(DeclType.getAttrs()) && | ||||||||||
4961 | ASM != ArrayType::Static && | ||||||||||
4962 | D.isPrototypeContext() && | ||||||||||
4963 | !hasOuterPointerLikeChunk(D, chunkIndex)) { | ||||||||||
4964 | checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc); | ||||||||||
4965 | } | ||||||||||
4966 | |||||||||||
4967 | T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, | ||||||||||
4968 | SourceRange(DeclType.Loc, DeclType.EndLoc), Name); | ||||||||||
4969 | break; | ||||||||||
4970 | } | ||||||||||
4971 | case DeclaratorChunk::Function: { | ||||||||||
4972 | // If the function declarator has a prototype (i.e. it is not () and | ||||||||||
4973 | // does not have a K&R-style identifier list), then the arguments are part | ||||||||||
4974 | // of the type, otherwise the argument list is (). | ||||||||||
4975 | DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||||||||
4976 | IsQualifiedFunction = | ||||||||||
4977 | FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier(); | ||||||||||
4978 | |||||||||||
4979 | // Check for auto functions and trailing return type and adjust the | ||||||||||
4980 | // return type accordingly. | ||||||||||
4981 | if (!D.isInvalidType()) { | ||||||||||
4982 | // trailing-return-type is only required if we're declaring a function, | ||||||||||
4983 | // and not, for instance, a pointer to a function. | ||||||||||
4984 | if (D.getDeclSpec().hasAutoTypeSpec() && | ||||||||||
4985 | !FTI.hasTrailingReturnType() && chunkIndex == 0) { | ||||||||||
4986 | if (!S.getLangOpts().CPlusPlus14) { | ||||||||||
4987 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||||||||
4988 | D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto | ||||||||||
4989 | ? diag::err_auto_missing_trailing_return | ||||||||||
4990 | : diag::err_deduced_return_type); | ||||||||||
4991 | T = Context.IntTy; | ||||||||||
4992 | D.setInvalidType(true); | ||||||||||
4993 | } else { | ||||||||||
4994 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||||||||
4995 | diag::warn_cxx11_compat_deduced_return_type); | ||||||||||
4996 | } | ||||||||||
4997 | } else if (FTI.hasTrailingReturnType()) { | ||||||||||
4998 | // T must be exactly 'auto' at this point. See CWG issue 681. | ||||||||||
4999 | if (isa<ParenType>(T)) { | ||||||||||
5000 | S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens) | ||||||||||
5001 | << T << D.getSourceRange(); | ||||||||||
5002 | D.setInvalidType(true); | ||||||||||
5003 | } else if (D.getName().getKind() == | ||||||||||
5004 | UnqualifiedIdKind::IK_DeductionGuideName) { | ||||||||||
5005 | if (T != Context.DependentTy) { | ||||||||||
5006 | S.Diag(D.getDeclSpec().getBeginLoc(), | ||||||||||
5007 | diag::err_deduction_guide_with_complex_decl) | ||||||||||
5008 | << D.getSourceRange(); | ||||||||||
5009 | D.setInvalidType(true); | ||||||||||
5010 | } | ||||||||||
5011 | } else if (D.getContext() != DeclaratorContext::LambdaExpr && | ||||||||||
5012 | (T.hasQualifiers() || !isa<AutoType>(T) || | ||||||||||
5013 | cast<AutoType>(T)->getKeyword() != | ||||||||||
5014 | AutoTypeKeyword::Auto || | ||||||||||
5015 | cast<AutoType>(T)->isConstrained())) { | ||||||||||
5016 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | ||||||||||
5017 | diag::err_trailing_return_without_auto) | ||||||||||
5018 | << T << D.getDeclSpec().getSourceRange(); | ||||||||||
5019 | D.setInvalidType(true); | ||||||||||
5020 | } | ||||||||||
5021 | T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo); | ||||||||||
5022 | if (T.isNull()) { | ||||||||||
5023 | // An error occurred parsing the trailing return type. | ||||||||||
5024 | T = Context.IntTy; | ||||||||||
5025 | D.setInvalidType(true); | ||||||||||
5026 | } else if (AutoType *Auto = T->getContainedAutoType()) { | ||||||||||
5027 | // If the trailing return type contains an `auto`, we may need to | ||||||||||
5028 | // invent a template parameter for it, for cases like | ||||||||||
5029 | // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`. | ||||||||||
5030 | InventedTemplateParameterInfo *InventedParamInfo = nullptr; | ||||||||||
5031 | if (D.getContext() == DeclaratorContext::Prototype) | ||||||||||
5032 | InventedParamInfo = &S.InventedParameterInfos.back(); | ||||||||||
5033 | else if (D.getContext() == DeclaratorContext::LambdaExprParameter) | ||||||||||
5034 | InventedParamInfo = S.getCurLambda(); | ||||||||||
5035 | if (InventedParamInfo) { | ||||||||||
5036 | std::tie(T, TInfo) = InventTemplateParameter( | ||||||||||
5037 | state, T, TInfo, Auto, *InventedParamInfo); | ||||||||||
5038 | } | ||||||||||
5039 | } | ||||||||||
5040 | } else { | ||||||||||
5041 | // This function type is not the type of the entity being declared, | ||||||||||
5042 | // so checking the 'auto' is not the responsibility of this chunk. | ||||||||||
5043 | } | ||||||||||
5044 | } | ||||||||||
5045 | |||||||||||
5046 | // C99 6.7.5.3p1: The return type may not be a function or array type. | ||||||||||
5047 | // For conversion functions, we'll diagnose this particular error later. | ||||||||||
5048 | if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) && | ||||||||||
5049 | (D.getName().getKind() != | ||||||||||
5050 | UnqualifiedIdKind::IK_ConversionFunctionId)) { | ||||||||||
5051 | unsigned diagID = diag::err_func_returning_array_function; | ||||||||||
5052 | // Last processing chunk in block context means this function chunk | ||||||||||
5053 | // represents the block. | ||||||||||
5054 | if (chunkIndex == 0 && | ||||||||||
5055 | D.getContext() == DeclaratorContext::BlockLiteral) | ||||||||||
5056 | diagID = diag::err_block_returning_array_function; | ||||||||||
5057 | S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T; | ||||||||||
5058 | T = Context.IntTy; | ||||||||||
5059 | D.setInvalidType(true); | ||||||||||
5060 | } | ||||||||||
5061 | |||||||||||
5062 | // Do not allow returning half FP value. | ||||||||||
5063 | // FIXME: This really should be in BuildFunctionType. | ||||||||||
5064 | if (T->isHalfType()) { | ||||||||||
5065 | if (S.getLangOpts().OpenCL) { | ||||||||||
5066 | if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", | ||||||||||
5067 | S.getLangOpts())) { | ||||||||||
5068 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) | ||||||||||
5069 | << T << 0 /*pointer hint*/; | ||||||||||
5070 | D.setInvalidType(true); | ||||||||||
5071 | } | ||||||||||
5072 | } else if (!S.getLangOpts().HalfArgsAndReturns) { | ||||||||||
5073 | S.Diag(D.getIdentifierLoc(), | ||||||||||
5074 | diag::err_parameters_retval_cannot_have_fp16_type) << 1; | ||||||||||
5075 | D.setInvalidType(true); | ||||||||||
5076 | } | ||||||||||
5077 | } | ||||||||||
5078 | |||||||||||
5079 | if (LangOpts.OpenCL) { | ||||||||||
5080 | // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a | ||||||||||
5081 | // function. | ||||||||||
5082 | if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() || | ||||||||||
5083 | T->isPipeType()) { | ||||||||||
5084 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) | ||||||||||
5085 | << T << 1 /*hint off*/; | ||||||||||
5086 | D.setInvalidType(true); | ||||||||||
5087 | } | ||||||||||
5088 | // OpenCL doesn't support variadic functions and blocks | ||||||||||
5089 | // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf. | ||||||||||
5090 | // We also allow here any toolchain reserved identifiers. | ||||||||||
5091 | if (FTI.isVariadic && | ||||||||||
5092 | !S.getOpenCLOptions().isAvailableOption( | ||||||||||
5093 | "__cl_clang_variadic_functions", S.getLangOpts()) && | ||||||||||
5094 | !(D.getIdentifier() && | ||||||||||
5095 | ((D.getIdentifier()->getName() == "printf" && | ||||||||||
5096 | (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) || | ||||||||||
5097 | D.getIdentifier()->getName().startswith("__")))) { | ||||||||||
5098 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function); | ||||||||||
5099 | D.setInvalidType(true); | ||||||||||
5100 | } | ||||||||||
5101 | } | ||||||||||
5102 | |||||||||||
5103 | // Methods cannot return interface types. All ObjC objects are | ||||||||||
5104 | // passed by reference. | ||||||||||
5105 | if (T->isObjCObjectType()) { | ||||||||||
5106 | SourceLocation DiagLoc, FixitLoc; | ||||||||||
5107 | if (TInfo) { | ||||||||||
5108 | DiagLoc = TInfo->getTypeLoc().getBeginLoc(); | ||||||||||
5109 | FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc()); | ||||||||||
5110 | } else { | ||||||||||
5111 | DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); | ||||||||||
5112 | FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc()); | ||||||||||
5113 | } | ||||||||||
5114 | S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value) | ||||||||||
5115 | << 0 << T | ||||||||||
5116 | << FixItHint::CreateInsertion(FixitLoc, "*"); | ||||||||||
5117 | |||||||||||
5118 | T = Context.getObjCObjectPointerType(T); | ||||||||||
5119 | if (TInfo) { | ||||||||||
5120 | TypeLocBuilder TLB; | ||||||||||
5121 | TLB.pushFullCopy(TInfo->getTypeLoc()); | ||||||||||
5122 | ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T); | ||||||||||
5123 | TLoc.setStarLoc(FixitLoc); | ||||||||||
5124 | TInfo = TLB.getTypeSourceInfo(Context, T); | ||||||||||
5125 | } | ||||||||||
5126 | |||||||||||
5127 | D.setInvalidType(true); | ||||||||||
5128 | } | ||||||||||
5129 | |||||||||||
5130 | // cv-qualifiers on return types are pointless except when the type is a | ||||||||||
5131 | // class type in C++. | ||||||||||
5132 | if ((T.getCVRQualifiers() || T->isAtomicType()) && | ||||||||||
5133 | !(S.getLangOpts().CPlusPlus && | ||||||||||
5134 | (T->isDependentType() || T->isRecordType()))) { | ||||||||||
5135 | if (T->isVoidType() && !S.getLangOpts().CPlusPlus && | ||||||||||
5136 | D.getFunctionDefinitionKind() == | ||||||||||
5137 | FunctionDefinitionKind::Definition) { | ||||||||||
5138 | // [6.9.1/3] qualified void return is invalid on a C | ||||||||||
5139 | // function definition. Apparently ok on declarations and | ||||||||||
5140 | // in C++ though (!) | ||||||||||
5141 | S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T; | ||||||||||
5142 | } else | ||||||||||
5143 | diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex); | ||||||||||
5144 | |||||||||||
5145 | // C++2a [dcl.fct]p12: | ||||||||||
5146 | // A volatile-qualified return type is deprecated | ||||||||||
5147 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20) | ||||||||||
5148 | S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T; | ||||||||||
5149 | } | ||||||||||
5150 | |||||||||||
5151 | // Objective-C ARC ownership qualifiers are ignored on the function | ||||||||||
5152 | // return type (by type canonicalization). Complain if this attribute | ||||||||||
5153 | // was written here. | ||||||||||
5154 | if (T.getQualifiers().hasObjCLifetime()) { | ||||||||||
5155 | SourceLocation AttrLoc; | ||||||||||
5156 | if (chunkIndex + 1 < D.getNumTypeObjects()) { | ||||||||||
5157 | DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1); | ||||||||||
5158 | for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) { | ||||||||||
5159 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||||||||
5160 | AttrLoc = AL.getLoc(); | ||||||||||
5161 | break; | ||||||||||
5162 | } | ||||||||||
5163 | } | ||||||||||
5164 | } | ||||||||||
5165 | if (AttrLoc.isInvalid()) { | ||||||||||
5166 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { | ||||||||||
5167 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { | ||||||||||
5168 | AttrLoc = AL.getLoc(); | ||||||||||
5169 | break; | ||||||||||
5170 | } | ||||||||||
5171 | } | ||||||||||
5172 | } | ||||||||||
5173 | |||||||||||
5174 | if (AttrLoc.isValid()) { | ||||||||||
5175 | // The ownership attributes are almost always written via | ||||||||||
5176 | // the predefined | ||||||||||
5177 | // __strong/__weak/__autoreleasing/__unsafe_unretained. | ||||||||||
5178 | if (AttrLoc.isMacroID()) | ||||||||||
5179 | AttrLoc = | ||||||||||
5180 | S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin(); | ||||||||||
5181 | |||||||||||
5182 | S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type) | ||||||||||
5183 | << T.getQualifiers().getObjCLifetime(); | ||||||||||
5184 | } | ||||||||||
5185 | } | ||||||||||
5186 | |||||||||||
5187 | if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) { | ||||||||||
5188 | // C++ [dcl.fct]p6: | ||||||||||
5189 | // Types shall not be defined in return or parameter types. | ||||||||||
5190 | TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | ||||||||||
5191 | S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type) | ||||||||||
5192 | << Context.getTypeDeclType(Tag); | ||||||||||
5193 | } | ||||||||||
5194 | |||||||||||
5195 | // Exception specs are not allowed in typedefs. Complain, but add it | ||||||||||
5196 | // anyway. | ||||||||||
5197 | if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17) | ||||||||||
5198 | S.Diag(FTI.getExceptionSpecLocBeg(), | ||||||||||
5199 | diag::err_exception_spec_in_typedef) | ||||||||||
5200 | << (D.getContext() == DeclaratorContext::AliasDecl || | ||||||||||
5201 | D.getContext() == DeclaratorContext::AliasTemplate); | ||||||||||
5202 | |||||||||||
5203 | // If we see "T var();" or "T var(T());" at block scope, it is probably | ||||||||||
5204 | // an attempt to initialize a variable, not a function declaration. | ||||||||||
5205 | if (FTI.isAmbiguous) | ||||||||||
5206 | warnAboutAmbiguousFunction(S, D, DeclType, T); | ||||||||||
5207 | |||||||||||
5208 | FunctionType::ExtInfo EI( | ||||||||||
5209 | getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex)); | ||||||||||
5210 | |||||||||||
5211 | if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus | ||||||||||
5212 | && !LangOpts.OpenCL) { | ||||||||||
5213 | // Simple void foo(), where the incoming T is the result type. | ||||||||||
5214 | T = Context.getFunctionNoProtoType(T, EI); | ||||||||||
5215 | } else { | ||||||||||
5216 | // We allow a zero-parameter variadic function in C if the | ||||||||||
5217 | // function is marked with the "overloadable" attribute. Scan | ||||||||||
5218 | // for this attribute now. | ||||||||||
5219 | if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) | ||||||||||
5220 | if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable)) | ||||||||||
5221 | S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param); | ||||||||||
5222 | |||||||||||
5223 | if (FTI.NumParams && FTI.Params[0].Param == nullptr) { | ||||||||||
5224 | // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function | ||||||||||
5225 | // definition. | ||||||||||
5226 | S.Diag(FTI.Params[0].IdentLoc, | ||||||||||
5227 | diag::err_ident_list_in_fn_declaration); | ||||||||||
5228 | D.setInvalidType(true); | ||||||||||
5229 | // Recover by creating a K&R-style function type. | ||||||||||
5230 | T = Context.getFunctionNoProtoType(T, EI); | ||||||||||
5231 | break; | ||||||||||
5232 | } | ||||||||||
5233 | |||||||||||
5234 | FunctionProtoType::ExtProtoInfo EPI; | ||||||||||
5235 | EPI.ExtInfo = EI; | ||||||||||
5236 | EPI.Variadic = FTI.isVariadic; | ||||||||||
5237 | EPI.EllipsisLoc = FTI.getEllipsisLoc(); | ||||||||||
5238 | EPI.HasTrailingReturn = FTI.hasTrailingReturnType(); | ||||||||||
5239 | EPI.TypeQuals.addCVRUQualifiers( | ||||||||||
5240 | FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers() | ||||||||||
5241 | : 0); | ||||||||||
5242 | EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None | ||||||||||
5243 | : FTI.RefQualifierIsLValueRef? RQ_LValue | ||||||||||
5244 | : RQ_RValue; | ||||||||||
5245 | |||||||||||
5246 | // Otherwise, we have a function with a parameter list that is | ||||||||||
5247 | // potentially variadic. | ||||||||||
5248 | SmallVector<QualType, 16> ParamTys; | ||||||||||
5249 | ParamTys.reserve(FTI.NumParams); | ||||||||||
5250 | |||||||||||
5251 | SmallVector<FunctionProtoType::ExtParameterInfo, 16> | ||||||||||
5252 | ExtParameterInfos(FTI.NumParams); | ||||||||||
5253 | bool HasAnyInterestingExtParameterInfos = false; | ||||||||||
5254 | |||||||||||
5255 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { | ||||||||||
5256 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | ||||||||||
5257 | QualType ParamTy = Param->getType(); | ||||||||||
5258 | assert(!ParamTy.isNull() && "Couldn't parse type?")((void)0); | ||||||||||
5259 | |||||||||||
5260 | // Look for 'void'. void is allowed only as a single parameter to a | ||||||||||
5261 | // function with no other parameters (C99 6.7.5.3p10). We record | ||||||||||
5262 | // int(void) as a FunctionProtoType with an empty parameter list. | ||||||||||
5263 | if (ParamTy->isVoidType()) { | ||||||||||
5264 | // If this is something like 'float(int, void)', reject it. 'void' | ||||||||||
5265 | // is an incomplete type (C99 6.2.5p19) and function decls cannot | ||||||||||
5266 | // have parameters of incomplete type. | ||||||||||
5267 | if (FTI.NumParams != 1 || FTI.isVariadic) { | ||||||||||
5268 | S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param); | ||||||||||
5269 | ParamTy = Context.IntTy; | ||||||||||
5270 | Param->setType(ParamTy); | ||||||||||
5271 | } else if (FTI.Params[i].Ident) { | ||||||||||
5272 | // Reject, but continue to parse 'int(void abc)'. | ||||||||||
5273 | S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type); | ||||||||||
5274 | ParamTy = Context.IntTy; | ||||||||||
5275 | Param->setType(ParamTy); | ||||||||||
5276 | } else { | ||||||||||
5277 | // Reject, but continue to parse 'float(const void)'. | ||||||||||
5278 | if (ParamTy.hasQualifiers()) | ||||||||||
5279 | S.Diag(DeclType.Loc, diag::err_void_param_qualified); | ||||||||||
5280 | |||||||||||
5281 | // Do not add 'void' to the list. | ||||||||||
5282 | break; | ||||||||||
5283 | } | ||||||||||
5284 | } else if (ParamTy->isHalfType()) { | ||||||||||
5285 | // Disallow half FP parameters. | ||||||||||
5286 | // FIXME: This really should be in BuildFunctionType. | ||||||||||
5287 | if (S.getLangOpts().OpenCL) { | ||||||||||
5288 | if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", | ||||||||||
5289 | S.getLangOpts())) { | ||||||||||
5290 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) | ||||||||||
5291 | << ParamTy << 0; | ||||||||||
5292 | D.setInvalidType(); | ||||||||||
5293 | Param->setInvalidDecl(); | ||||||||||
5294 | } | ||||||||||
5295 | } else if (!S.getLangOpts().HalfArgsAndReturns) { | ||||||||||
5296 | S.Diag(Param->getLocation(), | ||||||||||
5297 | diag::err_parameters_retval_cannot_have_fp16_type) << 0; | ||||||||||
5298 | D.setInvalidType(); | ||||||||||
5299 | } | ||||||||||
5300 | } else if (!FTI.hasPrototype) { | ||||||||||
5301 | if (ParamTy->isPromotableIntegerType()) { | ||||||||||
5302 | ParamTy = Context.getPromotedIntegerType(ParamTy); | ||||||||||
5303 | Param->setKNRPromoted(true); | ||||||||||
5304 | } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) { | ||||||||||
5305 | if (BTy->getKind() == BuiltinType::Float) { | ||||||||||
5306 | ParamTy = Context.DoubleTy; | ||||||||||
5307 | Param->setKNRPromoted(true); | ||||||||||
5308 | } | ||||||||||
5309 | } | ||||||||||
5310 | } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) { | ||||||||||
5311 | // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function. | ||||||||||
5312 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) | ||||||||||
5313 | << ParamTy << 1 /*hint off*/; | ||||||||||
5314 | D.setInvalidType(); | ||||||||||
5315 | } | ||||||||||
5316 | |||||||||||
5317 | if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) { | ||||||||||
5318 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true); | ||||||||||
5319 | HasAnyInterestingExtParameterInfos = true; | ||||||||||
5320 | } | ||||||||||
5321 | |||||||||||
5322 | if (auto attr = Param->getAttr<ParameterABIAttr>()) { | ||||||||||
5323 | ExtParameterInfos[i] = | ||||||||||
5324 | ExtParameterInfos[i].withABI(attr->getABI()); | ||||||||||
5325 | HasAnyInterestingExtParameterInfos = true; | ||||||||||
5326 | } | ||||||||||
5327 | |||||||||||
5328 | if (Param->hasAttr<PassObjectSizeAttr>()) { | ||||||||||
5329 | ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize(); | ||||||||||
5330 | HasAnyInterestingExtParameterInfos = true; | ||||||||||
5331 | } | ||||||||||
5332 | |||||||||||
5333 | if (Param->hasAttr<NoEscapeAttr>()) { | ||||||||||
5334 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true); | ||||||||||
5335 | HasAnyInterestingExtParameterInfos = true; | ||||||||||
5336 | } | ||||||||||
5337 | |||||||||||
5338 | ParamTys.push_back(ParamTy); | ||||||||||
5339 | } | ||||||||||
5340 | |||||||||||
5341 | if (HasAnyInterestingExtParameterInfos) { | ||||||||||
5342 | EPI.ExtParameterInfos = ExtParameterInfos.data(); | ||||||||||
5343 | checkExtParameterInfos(S, ParamTys, EPI, | ||||||||||
5344 | [&](unsigned i) { return FTI.Params[i].Param->getLocation(); }); | ||||||||||
5345 | } | ||||||||||
5346 | |||||||||||
5347 | SmallVector<QualType, 4> Exceptions; | ||||||||||
5348 | SmallVector<ParsedType, 2> DynamicExceptions; | ||||||||||
5349 | SmallVector<SourceRange, 2> DynamicExceptionRanges; | ||||||||||
5350 | Expr *NoexceptExpr = nullptr; | ||||||||||
5351 | |||||||||||
5352 | if (FTI.getExceptionSpecType() == EST_Dynamic) { | ||||||||||
5353 | // FIXME: It's rather inefficient to have to split into two vectors | ||||||||||
5354 | // here. | ||||||||||
5355 | unsigned N = FTI.getNumExceptions(); | ||||||||||
5356 | DynamicExceptions.reserve(N); | ||||||||||
5357 | DynamicExceptionRanges.reserve(N); | ||||||||||
5358 | for (unsigned I = 0; I != N; ++I) { | ||||||||||
5359 | DynamicExceptions.push_back(FTI.Exceptions[I].Ty); | ||||||||||
5360 | DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range); | ||||||||||
5361 | } | ||||||||||
5362 | } else if (isComputedNoexcept(FTI.getExceptionSpecType())) { | ||||||||||
5363 | NoexceptExpr = FTI.NoexceptExpr; | ||||||||||
5364 | } | ||||||||||
5365 | |||||||||||
5366 | S.checkExceptionSpecification(D.isFunctionDeclarationContext(), | ||||||||||
5367 | FTI.getExceptionSpecType(), | ||||||||||
5368 | DynamicExceptions, | ||||||||||
5369 | DynamicExceptionRanges, | ||||||||||
5370 | NoexceptExpr, | ||||||||||
5371 | Exceptions, | ||||||||||
5372 | EPI.ExceptionSpec); | ||||||||||
5373 | |||||||||||
5374 | // FIXME: Set address space from attrs for C++ mode here. | ||||||||||
5375 | // OpenCLCPlusPlus: A class member function has an address space. | ||||||||||
5376 | auto IsClassMember = [&]() { | ||||||||||
5377 | return (!state.getDeclarator().getCXXScopeSpec().isEmpty() && | ||||||||||
5378 | state.getDeclarator() | ||||||||||
5379 | .getCXXScopeSpec() | ||||||||||
5380 | .getScopeRep() | ||||||||||
5381 | ->getKind() == NestedNameSpecifier::TypeSpec) || | ||||||||||
5382 | state.getDeclarator().getContext() == | ||||||||||
5383 | DeclaratorContext::Member || | ||||||||||
5384 | state.getDeclarator().getContext() == | ||||||||||
5385 | DeclaratorContext::LambdaExpr; | ||||||||||
5386 | }; | ||||||||||
5387 | |||||||||||
5388 | if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) { | ||||||||||
5389 | LangAS ASIdx = LangAS::Default; | ||||||||||
5390 | // Take address space attr if any and mark as invalid to avoid adding | ||||||||||
5391 | // them later while creating QualType. | ||||||||||
5392 | if (FTI.MethodQualifiers) | ||||||||||
5393 | for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) { | ||||||||||
5394 | LangAS ASIdxNew = attr.asOpenCLLangAS(); | ||||||||||
5395 | if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew, | ||||||||||
5396 | attr.getLoc())) | ||||||||||
5397 | D.setInvalidType(true); | ||||||||||
5398 | else | ||||||||||
5399 | ASIdx = ASIdxNew; | ||||||||||
5400 | } | ||||||||||
5401 | // If a class member function's address space is not set, set it to | ||||||||||
5402 | // __generic. | ||||||||||
5403 | LangAS AS = | ||||||||||
5404 | (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace() | ||||||||||
5405 | : ASIdx); | ||||||||||
5406 | EPI.TypeQuals.addAddressSpace(AS); | ||||||||||
5407 | } | ||||||||||
5408 | T = Context.getFunctionType(T, ParamTys, EPI); | ||||||||||
5409 | } | ||||||||||
5410 | break; | ||||||||||
5411 | } | ||||||||||
5412 | case DeclaratorChunk::MemberPointer: { | ||||||||||
5413 | // The scope spec must refer to a class, or be dependent. | ||||||||||
5414 | CXXScopeSpec &SS = DeclType.Mem.Scope(); | ||||||||||
5415 | QualType ClsType; | ||||||||||
5416 | |||||||||||
5417 | // Handle pointer nullability. | ||||||||||
5418 | inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc, | ||||||||||
5419 | DeclType.EndLoc, DeclType.getAttrs(), | ||||||||||
5420 | state.getDeclarator().getAttributePool()); | ||||||||||
5421 | |||||||||||
5422 | if (SS.isInvalid()) { | ||||||||||
5423 | // Avoid emitting extra errors if we already errored on the scope. | ||||||||||
5424 | D.setInvalidType(true); | ||||||||||
5425 | } else if (S.isDependentScopeSpecifier(SS) || | ||||||||||
5426 | dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) { | ||||||||||
5427 | NestedNameSpecifier *NNS = SS.getScopeRep(); | ||||||||||
5428 | NestedNameSpecifier *NNSPrefix = NNS->getPrefix(); | ||||||||||
5429 | switch (NNS->getKind()) { | ||||||||||
5430 | case NestedNameSpecifier::Identifier: | ||||||||||
5431 | ClsType = Context.getDependentNameType(ETK_None, NNSPrefix, | ||||||||||
5432 | NNS->getAsIdentifier()); | ||||||||||
5433 | break; | ||||||||||
5434 | |||||||||||
5435 | case NestedNameSpecifier::Namespace: | ||||||||||
5436 | case NestedNameSpecifier::NamespaceAlias: | ||||||||||
5437 | case NestedNameSpecifier::Global: | ||||||||||
5438 | case NestedNameSpecifier::Super: | ||||||||||
5439 | llvm_unreachable("Nested-name-specifier must name a type")__builtin_unreachable(); | ||||||||||
5440 | |||||||||||
5441 | case NestedNameSpecifier::TypeSpec: | ||||||||||
5442 | case NestedNameSpecifier::TypeSpecWithTemplate: | ||||||||||
5443 | ClsType = QualType(NNS->getAsType(), 0); | ||||||||||
5444 | // Note: if the NNS has a prefix and ClsType is a nondependent | ||||||||||
5445 | // TemplateSpecializationType, then the NNS prefix is NOT included | ||||||||||
5446 | // in ClsType; hence we wrap ClsType into an ElaboratedType. | ||||||||||
5447 | // NOTE: in particular, no wrap occurs if ClsType already is an | ||||||||||
5448 | // Elaborated, DependentName, or DependentTemplateSpecialization. | ||||||||||
5449 | if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType())) | ||||||||||
5450 | ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType); | ||||||||||
5451 | break; | ||||||||||
5452 | } | ||||||||||
5453 | } else { | ||||||||||
5454 | S.Diag(DeclType.Mem.Scope().getBeginLoc(), | ||||||||||
5455 | diag::err_illegal_decl_mempointer_in_nonclass) | ||||||||||
5456 | << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name") | ||||||||||
5457 | << DeclType.Mem.Scope().getRange(); | ||||||||||
5458 | D.setInvalidType(true); | ||||||||||
5459 | } | ||||||||||
5460 | |||||||||||
5461 | if (!ClsType.isNull()) | ||||||||||
5462 | T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, | ||||||||||
5463 | D.getIdentifier()); | ||||||||||
5464 | if (T.isNull()) { | ||||||||||
5465 | T = Context.IntTy; | ||||||||||
5466 | D.setInvalidType(true); | ||||||||||
5467 | } else if (DeclType.Mem.TypeQuals) { | ||||||||||
5468 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals); | ||||||||||
5469 | } | ||||||||||
5470 | break; | ||||||||||
5471 | } | ||||||||||
5472 | |||||||||||
5473 | case DeclaratorChunk::Pipe: { | ||||||||||
5474 | T = S.BuildReadPipeType(T, DeclType.Loc); | ||||||||||
5475 | processTypeAttrs(state, T, TAL_DeclSpec, | ||||||||||
5476 | D.getMutableDeclSpec().getAttributes()); | ||||||||||
5477 | break; | ||||||||||
5478 | } | ||||||||||
5479 | } | ||||||||||
5480 | |||||||||||
5481 | if (T.isNull()) { | ||||||||||
5482 | D.setInvalidType(true); | ||||||||||
5483 | T = Context.IntTy; | ||||||||||
5484 | } | ||||||||||
5485 | |||||||||||
5486 | // See if there are any attributes on this declarator chunk. | ||||||||||
5487 | processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs()); | ||||||||||
5488 | |||||||||||
5489 | if (DeclType.Kind != DeclaratorChunk::Paren) { | ||||||||||
5490 | if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType)) | ||||||||||
5491 | S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array); | ||||||||||
5492 | |||||||||||
5493 | ExpectNoDerefChunk = state.didParseNoDeref(); | ||||||||||
5494 | } | ||||||||||
5495 | } | ||||||||||
5496 | |||||||||||
5497 | if (ExpectNoDerefChunk) | ||||||||||
5498 | S.Diag(state.getDeclarator().getBeginLoc(), | ||||||||||
5499 | diag::warn_noderef_on_non_pointer_or_array); | ||||||||||
5500 | |||||||||||
5501 | // GNU warning -Wstrict-prototypes | ||||||||||
5502 | // Warn if a function declaration is without a prototype. | ||||||||||
5503 | // This warning is issued for all kinds of unprototyped function | ||||||||||
5504 | // declarations (i.e. function type typedef, function pointer etc.) | ||||||||||
5505 | // C99 6.7.5.3p14: | ||||||||||
5506 | // The empty list in a function declarator that is not part of a definition | ||||||||||
5507 | // of that function specifies that no information about the number or types | ||||||||||
5508 | // of the parameters is supplied. | ||||||||||
5509 | if (!LangOpts.CPlusPlus && | ||||||||||
5510 | D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) { | ||||||||||
5511 | bool IsBlock = false; | ||||||||||
5512 | for (const DeclaratorChunk &DeclType : D.type_objects()) { | ||||||||||
5513 | switch (DeclType.Kind) { | ||||||||||
5514 | case DeclaratorChunk::BlockPointer: | ||||||||||
5515 | IsBlock = true; | ||||||||||
5516 | break; | ||||||||||
5517 | case DeclaratorChunk::Function: { | ||||||||||
5518 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | ||||||||||
5519 | // We supress the warning when there's no LParen location, as this | ||||||||||
5520 | // indicates the declaration was an implicit declaration, which gets | ||||||||||
5521 | // warned about separately via -Wimplicit-function-declaration. | ||||||||||
5522 | if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid()) | ||||||||||
5523 | S.Diag(DeclType.Loc, diag::warn_strict_prototypes) | ||||||||||
5524 | << IsBlock | ||||||||||
5525 | << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void"); | ||||||||||
5526 | IsBlock = false; | ||||||||||
5527 | break; | ||||||||||
5528 | } | ||||||||||
5529 | default: | ||||||||||
5530 | break; | ||||||||||
5531 | } | ||||||||||
5532 | } | ||||||||||
5533 | } | ||||||||||
5534 | |||||||||||
5535 | assert(!T.isNull() && "T must not be null after this point")((void)0); | ||||||||||
5536 | |||||||||||
5537 | if (LangOpts.CPlusPlus
| ||||||||||
5538 | const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>(); | ||||||||||
5539 | assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((void)0); | ||||||||||
5540 | |||||||||||
5541 | // C++ 8.3.5p4: | ||||||||||
5542 | // A cv-qualifier-seq shall only be part of the function type | ||||||||||
5543 | // for a nonstatic member function, the function type to which a pointer | ||||||||||
5544 | // to member refers, or the top-level function type of a function typedef | ||||||||||
5545 | // declaration. | ||||||||||
5546 | // | ||||||||||
5547 | // Core issue 547 also allows cv-qualifiers on function types that are | ||||||||||
5548 | // top-level template type arguments. | ||||||||||
5549 | enum { NonMember, Member, DeductionGuide } Kind = NonMember; | ||||||||||
5550 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) | ||||||||||
5551 | Kind = DeductionGuide; | ||||||||||
5552 | else if (!D.getCXXScopeSpec().isSet()) { | ||||||||||
5553 | if ((D.getContext() == DeclaratorContext::Member || | ||||||||||
5554 | D.getContext() == DeclaratorContext::LambdaExpr) && | ||||||||||
5555 | !D.getDeclSpec().isFriendSpecified()) | ||||||||||
5556 | Kind = Member; | ||||||||||
5557 | } else { | ||||||||||
5558 | DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec()); | ||||||||||
5559 | if (!DC || DC->isRecord()) | ||||||||||
5560 | Kind = Member; | ||||||||||
5561 | } | ||||||||||
5562 | |||||||||||
5563 | // C++11 [dcl.fct]p6 (w/DR1417): | ||||||||||
5564 | // An attempt to specify a function type with a cv-qualifier-seq or a | ||||||||||
5565 | // ref-qualifier (including by typedef-name) is ill-formed unless it is: | ||||||||||
5566 | // - the function type for a non-static member function, | ||||||||||
5567 | // - the function type to which a pointer to member refers, | ||||||||||
5568 | // - the top-level function type of a function typedef declaration or | ||||||||||
5569 | // alias-declaration, | ||||||||||
5570 | // - the type-id in the default argument of a type-parameter, or | ||||||||||
5571 | // - the type-id of a template-argument for a type-parameter | ||||||||||
5572 | // | ||||||||||
5573 | // FIXME: Checking this here is insufficient. We accept-invalid on: | ||||||||||
5574 | // | ||||||||||
5575 | // template<typename T> struct S { void f(T); }; | ||||||||||
5576 | // S<int() const> s; | ||||||||||
5577 | // | ||||||||||
5578 | // ... for instance. | ||||||||||
5579 | if (IsQualifiedFunction && | ||||||||||
5580 | !(Kind == Member && | ||||||||||
5581 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) && | ||||||||||
5582 | !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg && | ||||||||||
5583 | D.getContext() != DeclaratorContext::TemplateTypeArg) { | ||||||||||
5584 | SourceLocation Loc = D.getBeginLoc(); | ||||||||||
5585 | SourceRange RemovalRange; | ||||||||||
5586 | unsigned I; | ||||||||||
5587 | if (D.isFunctionDeclarator(I)) { | ||||||||||
5588 | SmallVector<SourceLocation, 4> RemovalLocs; | ||||||||||
5589 | const DeclaratorChunk &Chunk = D.getTypeObject(I); | ||||||||||
5590 | assert(Chunk.Kind == DeclaratorChunk::Function)((void)0); | ||||||||||
5591 | |||||||||||
5592 | if (Chunk.Fun.hasRefQualifier()) | ||||||||||
5593 | RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc()); | ||||||||||
5594 | |||||||||||
5595 | if (Chunk.Fun.hasMethodTypeQualifiers()) | ||||||||||
5596 | Chunk.Fun.MethodQualifiers->forEachQualifier( | ||||||||||
5597 | [&](DeclSpec::TQ TypeQual, StringRef QualName, | ||||||||||
5598 | SourceLocation SL) { RemovalLocs.push_back(SL); }); | ||||||||||
5599 | |||||||||||
5600 | if (!RemovalLocs.empty()) { | ||||||||||
5601 | llvm::sort(RemovalLocs, | ||||||||||
5602 | BeforeThanCompare<SourceLocation>(S.getSourceManager())); | ||||||||||
5603 | RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back()); | ||||||||||
5604 | Loc = RemovalLocs.front(); | ||||||||||
5605 | } | ||||||||||
5606 | } | ||||||||||
5607 | |||||||||||
5608 | S.Diag(Loc, diag::err_invalid_qualified_function_type) | ||||||||||
5609 | << Kind << D.isFunctionDeclarator() << T | ||||||||||
5610 | << getFunctionQualifiersAsString(FnTy) | ||||||||||
5611 | << FixItHint::CreateRemoval(RemovalRange); | ||||||||||
5612 | |||||||||||
5613 | // Strip the cv-qualifiers and ref-qualifiers from the type. | ||||||||||
5614 | FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo(); | ||||||||||
5615 | EPI.TypeQuals.removeCVRQualifiers(); | ||||||||||
5616 | EPI.RefQualifier = RQ_None; | ||||||||||
5617 | |||||||||||
5618 | T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(), | ||||||||||
5619 | EPI); | ||||||||||
5620 | // Rebuild any parens around the identifier in the function type. | ||||||||||
5621 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||||||||
5622 | if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren) | ||||||||||
5623 | break; | ||||||||||
5624 | T = S.BuildParenType(T); | ||||||||||
5625 | } | ||||||||||
5626 | } | ||||||||||
5627 | } | ||||||||||
5628 | |||||||||||
5629 | // Apply any undistributed attributes from the declarator. | ||||||||||
5630 | processTypeAttrs(state, T, TAL_DeclName, D.getAttributes()); | ||||||||||
5631 | |||||||||||
5632 | // Diagnose any ignored type attributes. | ||||||||||
5633 | state.diagnoseIgnoredTypeAttrs(T); | ||||||||||
5634 | |||||||||||
5635 | // C++0x [dcl.constexpr]p9: | ||||||||||
5636 | // A constexpr specifier used in an object declaration declares the object | ||||||||||
5637 | // as const. | ||||||||||
5638 | if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr && | ||||||||||
5639 | T->isObjectType()) | ||||||||||
5640 | T.addConst(); | ||||||||||
5641 | |||||||||||
5642 | // C++2a [dcl.fct]p4: | ||||||||||
5643 | // A parameter with volatile-qualified type is deprecated | ||||||||||
5644 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 && | ||||||||||
5645 | (D.getContext() == DeclaratorContext::Prototype || | ||||||||||
5646 | D.getContext() == DeclaratorContext::LambdaExprParameter)) | ||||||||||
5647 | S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T; | ||||||||||
5648 | |||||||||||
5649 | // If there was an ellipsis in the declarator, the declaration declares a | ||||||||||
5650 | // parameter pack whose type may be a pack expansion type. | ||||||||||
5651 | if (D.hasEllipsis()) { | ||||||||||
5652 | // C++0x [dcl.fct]p13: | ||||||||||
5653 | // A declarator-id or abstract-declarator containing an ellipsis shall | ||||||||||
5654 | // only be used in a parameter-declaration. Such a parameter-declaration | ||||||||||
5655 | // is a parameter pack (14.5.3). [...] | ||||||||||
5656 | switch (D.getContext()) { | ||||||||||
5657 | case DeclaratorContext::Prototype: | ||||||||||
5658 | case DeclaratorContext::LambdaExprParameter: | ||||||||||
5659 | case DeclaratorContext::RequiresExpr: | ||||||||||
5660 | // C++0x [dcl.fct]p13: | ||||||||||
5661 | // [...] When it is part of a parameter-declaration-clause, the | ||||||||||
5662 | // parameter pack is a function parameter pack (14.5.3). The type T | ||||||||||
5663 | // of the declarator-id of the function parameter pack shall contain | ||||||||||
5664 | // a template parameter pack; each template parameter pack in T is | ||||||||||
5665 | // expanded by the function parameter pack. | ||||||||||
5666 | // | ||||||||||
5667 | // We represent function parameter packs as function parameters whose | ||||||||||
5668 | // type is a pack expansion. | ||||||||||
5669 | if (!T->containsUnexpandedParameterPack() && | ||||||||||
5670 | (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) { | ||||||||||
5671 | S.Diag(D.getEllipsisLoc(), | ||||||||||
5672 | diag::err_function_parameter_pack_without_parameter_packs) | ||||||||||
5673 | << T << D.getSourceRange(); | ||||||||||
5674 | D.setEllipsisLoc(SourceLocation()); | ||||||||||
5675 | } else { | ||||||||||
5676 | T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false); | ||||||||||
5677 | } | ||||||||||
5678 | break; | ||||||||||
5679 | case DeclaratorContext::TemplateParam: | ||||||||||
5680 | // C++0x [temp.param]p15: | ||||||||||
5681 | // If a template-parameter is a [...] is a parameter-declaration that | ||||||||||
5682 | // declares a parameter pack (8.3.5), then the template-parameter is a | ||||||||||
5683 | // template parameter pack (14.5.3). | ||||||||||
5684 | // | ||||||||||
5685 | // Note: core issue 778 clarifies that, if there are any unexpanded | ||||||||||
5686 | // parameter packs in the type of the non-type template parameter, then | ||||||||||
5687 | // it expands those parameter packs. | ||||||||||
5688 | if (T->containsUnexpandedParameterPack()) | ||||||||||
5689 | T = Context.getPackExpansionType(T, None); | ||||||||||
5690 | else | ||||||||||
5691 | S.Diag(D.getEllipsisLoc(), | ||||||||||
5692 | LangOpts.CPlusPlus11 | ||||||||||
5693 | ? diag::warn_cxx98_compat_variadic_templates | ||||||||||
5694 | : diag::ext_variadic_templates); | ||||||||||
5695 | break; | ||||||||||
5696 | |||||||||||
5697 | case DeclaratorContext::File: | ||||||||||
5698 | case DeclaratorContext::KNRTypeList: | ||||||||||
5699 | case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here? | ||||||||||
5700 | case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here? | ||||||||||
5701 | case DeclaratorContext::TypeName: | ||||||||||
5702 | case DeclaratorContext::FunctionalCast: | ||||||||||
5703 | case DeclaratorContext::CXXNew: | ||||||||||
5704 | case DeclaratorContext::AliasDecl: | ||||||||||
5705 | case DeclaratorContext::AliasTemplate: | ||||||||||
5706 | case DeclaratorContext::Member: | ||||||||||
5707 | case DeclaratorContext::Block: | ||||||||||
5708 | case DeclaratorContext::ForInit: | ||||||||||
5709 | case DeclaratorContext::SelectionInit: | ||||||||||
5710 | case DeclaratorContext::Condition: | ||||||||||
5711 | case DeclaratorContext::CXXCatch: | ||||||||||
5712 | case DeclaratorContext::ObjCCatch: | ||||||||||
5713 | case DeclaratorContext::BlockLiteral: | ||||||||||
5714 | case DeclaratorContext::LambdaExpr: | ||||||||||
5715 | case DeclaratorContext::ConversionId: | ||||||||||
5716 | case DeclaratorContext::TrailingReturn: | ||||||||||
5717 | case DeclaratorContext::TrailingReturnVar: | ||||||||||
5718 | case DeclaratorContext::TemplateArg: | ||||||||||
5719 | case DeclaratorContext::TemplateTypeArg: | ||||||||||
5720 | // FIXME: We may want to allow parameter packs in block-literal contexts | ||||||||||
5721 | // in the future. | ||||||||||
5722 | S.Diag(D.getEllipsisLoc(), | ||||||||||
5723 | diag::err_ellipsis_in_declarator_not_parameter); | ||||||||||
5724 | D.setEllipsisLoc(SourceLocation()); | ||||||||||
5725 | break; | ||||||||||
5726 | } | ||||||||||
5727 | } | ||||||||||
5728 | |||||||||||
5729 | assert(!T.isNull() && "T must not be null at the end of this function")((void)0); | ||||||||||
5730 | if (D.isInvalidType()) | ||||||||||
5731 | return Context.getTrivialTypeSourceInfo(T); | ||||||||||
5732 | |||||||||||
5733 | return GetTypeSourceInfoForDeclarator(state, T, TInfo); | ||||||||||
5734 | } | ||||||||||
5735 | |||||||||||
5736 | /// GetTypeForDeclarator - Convert the type for the specified | ||||||||||
5737 | /// declarator to Type instances. | ||||||||||
5738 | /// | ||||||||||
5739 | /// The result of this call will never be null, but the associated | ||||||||||
5740 | /// type may be a null type if there's an unrecoverable error. | ||||||||||
5741 | TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) { | ||||||||||
5742 | // Determine the type of the declarator. Not all forms of declarator | ||||||||||
5743 | // have a type. | ||||||||||
5744 | |||||||||||
5745 | TypeProcessingState state(*this, D); | ||||||||||
5746 | |||||||||||
5747 | TypeSourceInfo *ReturnTypeInfo = nullptr; | ||||||||||
5748 | QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); | ||||||||||
5749 | if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount) | ||||||||||
5750 | inferARCWriteback(state, T); | ||||||||||
5751 | |||||||||||
5752 | return GetFullTypeForDeclarator(state, T, ReturnTypeInfo); | ||||||||||
5753 | } | ||||||||||
5754 | |||||||||||
5755 | static void transferARCOwnershipToDeclSpec(Sema &S, | ||||||||||
5756 | QualType &declSpecTy, | ||||||||||
5757 | Qualifiers::ObjCLifetime ownership) { | ||||||||||
5758 | if (declSpecTy->isObjCRetainableType() && | ||||||||||
5759 | declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) { | ||||||||||
5760 | Qualifiers qs; | ||||||||||
5761 | qs.addObjCLifetime(ownership); | ||||||||||
5762 | declSpecTy = S.Context.getQualifiedType(declSpecTy, qs); | ||||||||||
5763 | } | ||||||||||
5764 | } | ||||||||||
5765 | |||||||||||
5766 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, | ||||||||||
5767 | Qualifiers::ObjCLifetime ownership, | ||||||||||
5768 | unsigned chunkIndex) { | ||||||||||
5769 | Sema &S = state.getSema(); | ||||||||||
5770 | Declarator &D = state.getDeclarator(); | ||||||||||
5771 | |||||||||||
5772 | // Look for an explicit lifetime attribute. | ||||||||||
5773 | DeclaratorChunk &chunk = D.getTypeObject(chunkIndex); | ||||||||||
5774 | if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership)) | ||||||||||
5775 | return; | ||||||||||
5776 | |||||||||||
5777 | const char *attrStr = nullptr; | ||||||||||
5778 | switch (ownership) { | ||||||||||
5779 | case Qualifiers::OCL_None: llvm_unreachable("no ownership!")__builtin_unreachable(); | ||||||||||
5780 | case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break; | ||||||||||
5781 | case Qualifiers::OCL_Strong: attrStr = "strong"; break; | ||||||||||
5782 | case Qualifiers::OCL_Weak: attrStr = "weak"; break; | ||||||||||
5783 | case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break; | ||||||||||
5784 | } | ||||||||||
5785 | |||||||||||
5786 | IdentifierLoc *Arg = new (S.Context) IdentifierLoc; | ||||||||||
5787 | Arg->Ident = &S.Context.Idents.get(attrStr); | ||||||||||
5788 | Arg->Loc = SourceLocation(); | ||||||||||
5789 | |||||||||||
5790 | ArgsUnion Args(Arg); | ||||||||||
5791 | |||||||||||
5792 | // If there wasn't one, add one (with an invalid source location | ||||||||||
5793 | // so that we don't make an AttributedType for it). | ||||||||||
5794 | ParsedAttr *attr = D.getAttributePool().create( | ||||||||||
5795 | &S.Context.Idents.get("objc_ownership"), SourceLocation(), | ||||||||||
5796 | /*scope*/ nullptr, SourceLocation(), | ||||||||||
5797 | /*args*/ &Args, 1, ParsedAttr::AS_GNU); | ||||||||||
5798 | chunk.getAttrs().addAtEnd(attr); | ||||||||||
5799 | // TODO: mark whether we did this inference? | ||||||||||
5800 | } | ||||||||||
5801 | |||||||||||
5802 | /// Used for transferring ownership in casts resulting in l-values. | ||||||||||
5803 | static void transferARCOwnership(TypeProcessingState &state, | ||||||||||
5804 | QualType &declSpecTy, | ||||||||||
5805 | Qualifiers::ObjCLifetime ownership) { | ||||||||||
5806 | Sema &S = state.getSema(); | ||||||||||
5807 | Declarator &D = state.getDeclarator(); | ||||||||||
5808 | |||||||||||
5809 | int inner = -1; | ||||||||||
5810 | bool hasIndirection = false; | ||||||||||
5811 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||||||||
5812 | DeclaratorChunk &chunk = D.getTypeObject(i); | ||||||||||
5813 | switch (chunk.Kind) { | ||||||||||
5814 | case DeclaratorChunk::Paren: | ||||||||||
5815 | // Ignore parens. | ||||||||||
5816 | break; | ||||||||||
5817 | |||||||||||
5818 | case DeclaratorChunk::Array: | ||||||||||
5819 | case DeclaratorChunk::Reference: | ||||||||||
5820 | case DeclaratorChunk::Pointer: | ||||||||||
5821 | if (inner != -1) | ||||||||||
5822 | hasIndirection = true; | ||||||||||
5823 | inner = i; | ||||||||||
5824 | break; | ||||||||||
5825 | |||||||||||
5826 | case DeclaratorChunk::BlockPointer: | ||||||||||
5827 | if (inner != -1) | ||||||||||
5828 | transferARCOwnershipToDeclaratorChunk(state, ownership, i); | ||||||||||
5829 | return; | ||||||||||
5830 | |||||||||||
5831 | case DeclaratorChunk::Function: | ||||||||||
5832 | case DeclaratorChunk::MemberPointer: | ||||||||||
5833 | case DeclaratorChunk::Pipe: | ||||||||||
5834 | return; | ||||||||||
5835 | } | ||||||||||
5836 | } | ||||||||||
5837 | |||||||||||
5838 | if (inner == -1) | ||||||||||
5839 | return; | ||||||||||
5840 | |||||||||||
5841 | DeclaratorChunk &chunk = D.getTypeObject(inner); | ||||||||||
5842 | if (chunk.Kind == DeclaratorChunk::Pointer) { | ||||||||||
5843 | if (declSpecTy->isObjCRetainableType()) | ||||||||||
5844 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); | ||||||||||
5845 | if (declSpecTy->isObjCObjectType() && hasIndirection) | ||||||||||
5846 | return transferARCOwnershipToDeclaratorChunk(state, ownership, inner); | ||||||||||
5847 | } else { | ||||||||||
5848 | assert(chunk.Kind == DeclaratorChunk::Array ||((void)0) | ||||||||||
5849 | chunk.Kind == DeclaratorChunk::Reference)((void)0); | ||||||||||
5850 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); | ||||||||||
5851 | } | ||||||||||
5852 | } | ||||||||||
5853 | |||||||||||
5854 | TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) { | ||||||||||
5855 | TypeProcessingState state(*this, D); | ||||||||||
5856 | |||||||||||
5857 | TypeSourceInfo *ReturnTypeInfo = nullptr; | ||||||||||
5858 | QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); | ||||||||||
5859 | |||||||||||
5860 | if (getLangOpts().ObjC) { | ||||||||||
5861 | Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy); | ||||||||||
5862 | if (ownership != Qualifiers::OCL_None) | ||||||||||
5863 | transferARCOwnership(state, declSpecTy, ownership); | ||||||||||
5864 | } | ||||||||||
5865 | |||||||||||
5866 | return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo); | ||||||||||
5867 | } | ||||||||||
5868 | |||||||||||
5869 | static void fillAttributedTypeLoc(AttributedTypeLoc TL, | ||||||||||
5870 | TypeProcessingState &State) { | ||||||||||
5871 | TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr())); | ||||||||||
5872 | } | ||||||||||
5873 | |||||||||||
5874 | namespace { | ||||||||||
5875 | class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> { | ||||||||||
5876 | Sema &SemaRef; | ||||||||||
5877 | ASTContext &Context; | ||||||||||
5878 | TypeProcessingState &State; | ||||||||||
5879 | const DeclSpec &DS; | ||||||||||
5880 | |||||||||||
5881 | public: | ||||||||||
5882 | TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State, | ||||||||||
5883 | const DeclSpec &DS) | ||||||||||
5884 | : SemaRef(S), Context(Context), State(State), DS(DS) {} | ||||||||||
5885 | |||||||||||
5886 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { | ||||||||||
5887 | Visit(TL.getModifiedLoc()); | ||||||||||
5888 | fillAttributedTypeLoc(TL, State); | ||||||||||
5889 | } | ||||||||||
5890 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { | ||||||||||
5891 | Visit(TL.getInnerLoc()); | ||||||||||
5892 | TL.setExpansionLoc( | ||||||||||
5893 | State.getExpansionLocForMacroQualifiedType(TL.getTypePtr())); | ||||||||||
5894 | } | ||||||||||
5895 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { | ||||||||||
5896 | Visit(TL.getUnqualifiedLoc()); | ||||||||||
5897 | } | ||||||||||
5898 | void VisitTypedefTypeLoc(TypedefTypeLoc TL) { | ||||||||||
5899 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
5900 | } | ||||||||||
5901 | void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { | ||||||||||
5902 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
5903 | // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires | ||||||||||
5904 | // addition field. What we have is good enough for dispay of location | ||||||||||
5905 | // of 'fixit' on interface name. | ||||||||||
5906 | TL.setNameEndLoc(DS.getEndLoc()); | ||||||||||
5907 | } | ||||||||||
5908 | void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { | ||||||||||
5909 | TypeSourceInfo *RepTInfo = nullptr; | ||||||||||
5910 | Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo); | ||||||||||
5911 | TL.copy(RepTInfo->getTypeLoc()); | ||||||||||
5912 | } | ||||||||||
5913 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { | ||||||||||
5914 | TypeSourceInfo *RepTInfo = nullptr; | ||||||||||
5915 | Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo); | ||||||||||
5916 | TL.copy(RepTInfo->getTypeLoc()); | ||||||||||
5917 | } | ||||||||||
5918 | void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) { | ||||||||||
5919 | TypeSourceInfo *TInfo = nullptr; | ||||||||||
5920 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||||||||
5921 | |||||||||||
5922 | // If we got no declarator info from previous Sema routines, | ||||||||||
5923 | // just fill with the typespec loc. | ||||||||||
5924 | if (!TInfo) { | ||||||||||
5925 | TL.initialize(Context, DS.getTypeSpecTypeNameLoc()); | ||||||||||
5926 | return; | ||||||||||
5927 | } | ||||||||||
5928 | |||||||||||
5929 | TypeLoc OldTL = TInfo->getTypeLoc(); | ||||||||||
5930 | if (TInfo->getType()->getAs<ElaboratedType>()) { | ||||||||||
5931 | ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>(); | ||||||||||
5932 | TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc() | ||||||||||
5933 | .castAs<TemplateSpecializationTypeLoc>(); | ||||||||||
5934 | TL.copy(NamedTL); | ||||||||||
5935 | } else { | ||||||||||
5936 | TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>()); | ||||||||||
5937 | assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((void)0); | ||||||||||
5938 | } | ||||||||||
5939 | |||||||||||
5940 | } | ||||||||||
5941 | void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { | ||||||||||
5942 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((void)0); | ||||||||||
5943 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
5944 | TL.setParensRange(DS.getTypeofParensRange()); | ||||||||||
5945 | } | ||||||||||
5946 | void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { | ||||||||||
5947 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((void)0); | ||||||||||
5948 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
5949 | TL.setParensRange(DS.getTypeofParensRange()); | ||||||||||
5950 | assert(DS.getRepAsType())((void)0); | ||||||||||
5951 | TypeSourceInfo *TInfo = nullptr; | ||||||||||
5952 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||||||||
5953 | TL.setUnderlyingTInfo(TInfo); | ||||||||||
5954 | } | ||||||||||
5955 | void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { | ||||||||||
5956 | // FIXME: This holds only because we only have one unary transform. | ||||||||||
5957 | assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((void)0); | ||||||||||
5958 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
5959 | TL.setParensRange(DS.getTypeofParensRange()); | ||||||||||
5960 | assert(DS.getRepAsType())((void)0); | ||||||||||
5961 | TypeSourceInfo *TInfo = nullptr; | ||||||||||
5962 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||||||||
5963 | TL.setUnderlyingTInfo(TInfo); | ||||||||||
5964 | } | ||||||||||
5965 | void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { | ||||||||||
5966 | // By default, use the source location of the type specifier. | ||||||||||
5967 | TL.setBuiltinLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
5968 | if (TL.needsExtraLocalData()) { | ||||||||||
5969 | // Set info for the written builtin specifiers. | ||||||||||
5970 | TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs(); | ||||||||||
5971 | // Try to have a meaningful source location. | ||||||||||
5972 | if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified) | ||||||||||
5973 | TL.expandBuiltinRange(DS.getTypeSpecSignLoc()); | ||||||||||
5974 | if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified) | ||||||||||
5975 | TL.expandBuiltinRange(DS.getTypeSpecWidthRange()); | ||||||||||
5976 | } | ||||||||||
5977 | } | ||||||||||
5978 | void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { | ||||||||||
5979 | ElaboratedTypeKeyword Keyword | ||||||||||
5980 | = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType()); | ||||||||||
5981 | if (DS.getTypeSpecType() == TST_typename) { | ||||||||||
5982 | TypeSourceInfo *TInfo = nullptr; | ||||||||||
5983 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||||||||
5984 | if (TInfo) { | ||||||||||
5985 | TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>()); | ||||||||||
5986 | return; | ||||||||||
5987 | } | ||||||||||
5988 | } | ||||||||||
5989 | TL.setElaboratedKeywordLoc(Keyword != ETK_None | ||||||||||
5990 | ? DS.getTypeSpecTypeLoc() | ||||||||||
5991 | : SourceLocation()); | ||||||||||
5992 | const CXXScopeSpec& SS = DS.getTypeSpecScope(); | ||||||||||
5993 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | ||||||||||
5994 | Visit(TL.getNextTypeLoc().getUnqualifiedLoc()); | ||||||||||
5995 | } | ||||||||||
5996 | void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { | ||||||||||
5997 | assert(DS.getTypeSpecType() == TST_typename)((void)0); | ||||||||||
5998 | TypeSourceInfo *TInfo = nullptr; | ||||||||||
5999 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||||||||
6000 | assert(TInfo)((void)0); | ||||||||||
6001 | TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>()); | ||||||||||
6002 | } | ||||||||||
6003 | void VisitDependentTemplateSpecializationTypeLoc( | ||||||||||
6004 | DependentTemplateSpecializationTypeLoc TL) { | ||||||||||
6005 | assert(DS.getTypeSpecType() == TST_typename)((void)0); | ||||||||||
6006 | TypeSourceInfo *TInfo = nullptr; | ||||||||||
6007 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||||||||
6008 | assert(TInfo)((void)0); | ||||||||||
6009 | TL.copy( | ||||||||||
6010 | TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>()); | ||||||||||
6011 | } | ||||||||||
6012 | void VisitAutoTypeLoc(AutoTypeLoc TL) { | ||||||||||
6013 | assert(DS.getTypeSpecType() == TST_auto ||((void)0) | ||||||||||
6014 | DS.getTypeSpecType() == TST_decltype_auto ||((void)0) | ||||||||||
6015 | DS.getTypeSpecType() == TST_auto_type ||((void)0) | ||||||||||
6016 | DS.getTypeSpecType() == TST_unspecified)((void)0); | ||||||||||
6017 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
6018 | if (!DS.isConstrainedAuto()) | ||||||||||
6019 | return; | ||||||||||
6020 | TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId(); | ||||||||||
6021 | if (!TemplateId) | ||||||||||
6022 | return; | ||||||||||
6023 | if (DS.getTypeSpecScope().isNotEmpty()) | ||||||||||
6024 | TL.setNestedNameSpecifierLoc( | ||||||||||
6025 | DS.getTypeSpecScope().getWithLocInContext(Context)); | ||||||||||
6026 | else | ||||||||||
6027 | TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc()); | ||||||||||
6028 | TL.setTemplateKWLoc(TemplateId->TemplateKWLoc); | ||||||||||
6029 | TL.setConceptNameLoc(TemplateId->TemplateNameLoc); | ||||||||||
6030 | TL.setFoundDecl(nullptr); | ||||||||||
6031 | TL.setLAngleLoc(TemplateId->LAngleLoc); | ||||||||||
6032 | TL.setRAngleLoc(TemplateId->RAngleLoc); | ||||||||||
6033 | if (TemplateId->NumArgs == 0) | ||||||||||
6034 | return; | ||||||||||
6035 | TemplateArgumentListInfo TemplateArgsInfo; | ||||||||||
6036 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | ||||||||||
6037 | TemplateId->NumArgs); | ||||||||||
6038 | SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | ||||||||||
6039 | for (unsigned I = 0; I < TemplateId->NumArgs; ++I) | ||||||||||
6040 | TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo()); | ||||||||||
6041 | } | ||||||||||
6042 | void VisitTagTypeLoc(TagTypeLoc TL) { | ||||||||||
6043 | TL.setNameLoc(DS.getTypeSpecTypeNameLoc()); | ||||||||||
6044 | } | ||||||||||
6045 | void VisitAtomicTypeLoc(AtomicTypeLoc TL) { | ||||||||||
6046 | // An AtomicTypeLoc can come from either an _Atomic(...) type specifier | ||||||||||
6047 | // or an _Atomic qualifier. | ||||||||||
6048 | if (DS.getTypeSpecType() == DeclSpec::TST_atomic) { | ||||||||||
6049 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
6050 | TL.setParensRange(DS.getTypeofParensRange()); | ||||||||||
6051 | |||||||||||
6052 | TypeSourceInfo *TInfo = nullptr; | ||||||||||
6053 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||||||||
6054 | assert(TInfo)((void)0); | ||||||||||
6055 | TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc()); | ||||||||||
6056 | } else { | ||||||||||
6057 | TL.setKWLoc(DS.getAtomicSpecLoc()); | ||||||||||
6058 | // No parens, to indicate this was spelled as an _Atomic qualifier. | ||||||||||
6059 | TL.setParensRange(SourceRange()); | ||||||||||
6060 | Visit(TL.getValueLoc()); | ||||||||||
6061 | } | ||||||||||
6062 | } | ||||||||||
6063 | |||||||||||
6064 | void VisitPipeTypeLoc(PipeTypeLoc TL) { | ||||||||||
6065 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
6066 | |||||||||||
6067 | TypeSourceInfo *TInfo = nullptr; | ||||||||||
6068 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | ||||||||||
6069 | TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc()); | ||||||||||
| |||||||||||
6070 | } | ||||||||||
6071 | |||||||||||
6072 | void VisitExtIntTypeLoc(ExtIntTypeLoc TL) { | ||||||||||
6073 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
6074 | } | ||||||||||
6075 | |||||||||||
6076 | void VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL) { | ||||||||||
6077 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | ||||||||||
6078 | } | ||||||||||
6079 | |||||||||||
6080 | void VisitTypeLoc(TypeLoc TL) { | ||||||||||
6081 | // FIXME: add other typespec types and change this to an assert. | ||||||||||
6082 | TL.initialize(Context, DS.getTypeSpecTypeLoc()); | ||||||||||
6083 | } | ||||||||||
6084 | }; | ||||||||||
6085 | |||||||||||
6086 | class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> { | ||||||||||
6087 | ASTContext &Context; | ||||||||||
6088 | TypeProcessingState &State; | ||||||||||
6089 | const DeclaratorChunk &Chunk; | ||||||||||
6090 | |||||||||||
6091 | public: | ||||||||||
6092 | DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State, | ||||||||||
6093 | const DeclaratorChunk &Chunk) | ||||||||||
6094 | : Context(Context), State(State), Chunk(Chunk) {} | ||||||||||
6095 | |||||||||||
6096 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { | ||||||||||
6097 | llvm_unreachable("qualified type locs not expected here!")__builtin_unreachable(); | ||||||||||
6098 | } | ||||||||||
6099 | void VisitDecayedTypeLoc(DecayedTypeLoc TL) { | ||||||||||
6100 | llvm_unreachable("decayed type locs not expected here!")__builtin_unreachable(); | ||||||||||
6101 | } | ||||||||||
6102 | |||||||||||
6103 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { | ||||||||||
6104 | fillAttributedTypeLoc(TL, State); | ||||||||||
6105 | } | ||||||||||
6106 | void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { | ||||||||||
6107 | // nothing | ||||||||||
6108 | } | ||||||||||
6109 | void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { | ||||||||||
6110 | assert(Chunk.Kind == DeclaratorChunk::BlockPointer)((void)0); | ||||||||||
6111 | TL.setCaretLoc(Chunk.Loc); | ||||||||||
6112 | } | ||||||||||
6113 | void VisitPointerTypeLoc(PointerTypeLoc TL) { | ||||||||||
6114 | assert(Chunk.Kind == DeclaratorChunk::Pointer)((void)0); | ||||||||||
6115 | TL.setStarLoc(Chunk.Loc); | ||||||||||
6116 | } | ||||||||||
6117 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { | ||||||||||
6118 | assert(Chunk.Kind == DeclaratorChunk::Pointer)((void)0); | ||||||||||
6119 | TL.setStarLoc(Chunk.Loc); | ||||||||||
6120 | } | ||||||||||
6121 | void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { | ||||||||||
6122 | assert(Chunk.Kind == DeclaratorChunk::MemberPointer)((void)0); | ||||||||||
6123 | const CXXScopeSpec& SS = Chunk.Mem.Scope(); | ||||||||||
6124 | NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context); | ||||||||||
6125 | |||||||||||
6126 | const Type* ClsTy = TL.getClass(); | ||||||||||
6127 | QualType ClsQT = QualType(ClsTy, 0); | ||||||||||
6128 | TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0); | ||||||||||
6129 | // Now copy source location info into the type loc component. | ||||||||||
6130 | TypeLoc ClsTL = ClsTInfo->getTypeLoc(); | ||||||||||
6131 | switch (NNSLoc.getNestedNameSpecifier()->getKind()) { | ||||||||||
6132 | case NestedNameSpecifier::Identifier: | ||||||||||
6133 | assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")((void)0); | ||||||||||
6134 | { | ||||||||||
6135 | DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>(); | ||||||||||
6136 | DNTLoc.setElaboratedKeywordLoc(SourceLocation()); | ||||||||||
6137 | DNTLoc.setQualifierLoc(NNSLoc.getPrefix()); | ||||||||||
6138 | DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc()); | ||||||||||
6139 | } | ||||||||||
6140 | break; | ||||||||||
6141 | |||||||||||
6142 | case NestedNameSpecifier::TypeSpec: | ||||||||||
6143 | case NestedNameSpecifier::TypeSpecWithTemplate: | ||||||||||
6144 | if (isa<ElaboratedType>(ClsTy)) { | ||||||||||
6145 | ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>(); | ||||||||||
6146 | ETLoc.setElaboratedKeywordLoc(SourceLocation()); | ||||||||||
6147 | ETLoc.setQualifierLoc(NNSLoc.getPrefix()); | ||||||||||
6148 | TypeLoc NamedTL = ETLoc.getNamedTypeLoc(); | ||||||||||
6149 | NamedTL.initializeFullCopy(NNSLoc.getTypeLoc()); | ||||||||||
6150 | } else { | ||||||||||
6151 | ClsTL.initializeFullCopy(NNSLoc.getTypeLoc()); | ||||||||||
6152 | } | ||||||||||
6153 | break; | ||||||||||
6154 | |||||||||||
6155 | case NestedNameSpecifier::Namespace: | ||||||||||
6156 | case NestedNameSpecifier::NamespaceAlias: | ||||||||||
6157 | case NestedNameSpecifier::Global: | ||||||||||
6158 | case NestedNameSpecifier::Super: | ||||||||||
6159 | llvm_unreachable("Nested-name-specifier must name a type")__builtin_unreachable(); | ||||||||||
6160 | } | ||||||||||
6161 | |||||||||||
6162 | // Finally fill in MemberPointerLocInfo fields. | ||||||||||
6163 | TL.setStarLoc(Chunk.Mem.StarLoc); | ||||||||||
6164 | TL.setClassTInfo(ClsTInfo); | ||||||||||
6165 | } | ||||||||||
6166 | void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { | ||||||||||
6167 | assert(Chunk.Kind == DeclaratorChunk::Reference)((void)0); | ||||||||||
6168 | // 'Amp' is misleading: this might have been originally | ||||||||||
6169 | /// spelled with AmpAmp. | ||||||||||
6170 | TL.setAmpLoc(Chunk.Loc); | ||||||||||
6171 | } | ||||||||||
6172 | void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { | ||||||||||
6173 | assert(Chunk.Kind == DeclaratorChunk::Reference)((void)0); | ||||||||||
6174 | assert(!Chunk.Ref.LValueRef)((void)0); | ||||||||||
6175 | TL.setAmpAmpLoc(Chunk.Loc); | ||||||||||
6176 | } | ||||||||||
6177 | void VisitArrayTypeLoc(ArrayTypeLoc TL) { | ||||||||||
6178 | assert(Chunk.Kind == DeclaratorChunk::Array)((void)0); | ||||||||||
6179 | TL.setLBracketLoc(Chunk.Loc); | ||||||||||
6180 | TL.setRBracketLoc(Chunk.EndLoc); | ||||||||||
6181 | TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts)); | ||||||||||
6182 | } | ||||||||||
6183 | void VisitFunctionTypeLoc(FunctionTypeLoc TL) { | ||||||||||
6184 | assert(Chunk.Kind == DeclaratorChunk::Function)((void)0); | ||||||||||
6185 | TL.setLocalRangeBegin(Chunk.Loc); | ||||||||||
6186 | TL.setLocalRangeEnd(Chunk.EndLoc); | ||||||||||
6187 | |||||||||||
6188 | const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun; | ||||||||||
6189 | TL.setLParenLoc(FTI.getLParenLoc()); | ||||||||||
6190 | TL.setRParenLoc(FTI.getRParenLoc()); | ||||||||||
6191 | for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) { | ||||||||||
6192 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | ||||||||||
6193 | TL.setParam(tpi++, Param); | ||||||||||
6194 | } | ||||||||||
6195 | TL.setExceptionSpecRange(FTI.getExceptionSpecRange()); | ||||||||||
6196 | } | ||||||||||
6197 | void VisitParenTypeLoc(ParenTypeLoc TL) { | ||||||||||
6198 | assert(Chunk.Kind == DeclaratorChunk::Paren)((void)0); | ||||||||||
6199 | TL.setLParenLoc(Chunk.Loc); | ||||||||||
6200 | TL.setRParenLoc(Chunk.EndLoc); | ||||||||||
6201 | } | ||||||||||
6202 | void VisitPipeTypeLoc(PipeTypeLoc TL) { | ||||||||||
6203 | assert(Chunk.Kind == DeclaratorChunk::Pipe)((void)0); | ||||||||||
6204 | TL.setKWLoc(Chunk.Loc); | ||||||||||
6205 | } | ||||||||||
6206 | void VisitExtIntTypeLoc(ExtIntTypeLoc TL) { | ||||||||||
6207 | TL.setNameLoc(Chunk.Loc); | ||||||||||
6208 | } | ||||||||||
6209 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { | ||||||||||
6210 | TL.setExpansionLoc(Chunk.Loc); | ||||||||||
6211 | } | ||||||||||
6212 | void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); } | ||||||||||
6213 | void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) { | ||||||||||
6214 | TL.setNameLoc(Chunk.Loc); | ||||||||||
6215 | } | ||||||||||
6216 | void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { | ||||||||||
6217 | TL.setNameLoc(Chunk.Loc); | ||||||||||
6218 | } | ||||||||||
6219 | void | ||||||||||
6220 | VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) { | ||||||||||
6221 | TL.setNameLoc(Chunk.Loc); | ||||||||||
6222 | } | ||||||||||
6223 | |||||||||||
6224 | void VisitTypeLoc(TypeLoc TL) { | ||||||||||
6225 | llvm_unreachable("unsupported TypeLoc kind in declarator!")__builtin_unreachable(); | ||||||||||
6226 | } | ||||||||||
6227 | }; | ||||||||||
6228 | } // end anonymous namespace | ||||||||||
6229 | |||||||||||
6230 | static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) { | ||||||||||
6231 | SourceLocation Loc; | ||||||||||
6232 | switch (Chunk.Kind) { | ||||||||||
6233 | case DeclaratorChunk::Function: | ||||||||||
6234 | case DeclaratorChunk::Array: | ||||||||||
6235 | case DeclaratorChunk::Paren: | ||||||||||
6236 | case DeclaratorChunk::Pipe: | ||||||||||
6237 | llvm_unreachable("cannot be _Atomic qualified")__builtin_unreachable(); | ||||||||||
6238 | |||||||||||
6239 | case DeclaratorChunk::Pointer: | ||||||||||
6240 | Loc = Chunk.Ptr.AtomicQualLoc; | ||||||||||
6241 | break; | ||||||||||
6242 | |||||||||||
6243 | case DeclaratorChunk::BlockPointer: | ||||||||||
6244 | case DeclaratorChunk::Reference: | ||||||||||
6245 | case DeclaratorChunk::MemberPointer: | ||||||||||
6246 | // FIXME: Provide a source location for the _Atomic keyword. | ||||||||||
6247 | break; | ||||||||||
6248 | } | ||||||||||
6249 | |||||||||||
6250 | ATL.setKWLoc(Loc); | ||||||||||
6251 | ATL.setParensRange(SourceRange()); | ||||||||||
6252 | } | ||||||||||
6253 | |||||||||||
6254 | static void | ||||||||||
6255 | fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL, | ||||||||||
6256 | const ParsedAttributesView &Attrs) { | ||||||||||
6257 | for (const ParsedAttr &AL : Attrs) { | ||||||||||
6258 | if (AL.getKind() == ParsedAttr::AT_AddressSpace) { | ||||||||||
6259 | DASTL.setAttrNameLoc(AL.getLoc()); | ||||||||||
6260 | DASTL.setAttrExprOperand(AL.getArgAsExpr(0)); | ||||||||||
6261 | DASTL.setAttrOperandParensRange(SourceRange()); | ||||||||||
6262 | return; | ||||||||||
6263 | } | ||||||||||
6264 | } | ||||||||||
6265 | |||||||||||
6266 | llvm_unreachable(__builtin_unreachable() | ||||||||||
6267 | "no address_space attribute found at the expected location!")__builtin_unreachable(); | ||||||||||
6268 | } | ||||||||||
6269 | |||||||||||
6270 | static void fillMatrixTypeLoc(MatrixTypeLoc MTL, | ||||||||||
6271 | const ParsedAttributesView &Attrs) { | ||||||||||
6272 | for (const ParsedAttr &AL : Attrs) { | ||||||||||
6273 | if (AL.getKind() == ParsedAttr::AT_MatrixType) { | ||||||||||
6274 | MTL.setAttrNameLoc(AL.getLoc()); | ||||||||||
6275 | MTL.setAttrRowOperand(AL.getArgAsExpr(0)); | ||||||||||
6276 | MTL.setAttrColumnOperand(AL.getArgAsExpr(1)); | ||||||||||
6277 | MTL.setAttrOperandParensRange(SourceRange()); | ||||||||||
6278 | return; | ||||||||||
6279 | } | ||||||||||
6280 | } | ||||||||||
6281 | |||||||||||
6282 | llvm_unreachable("no matrix_type attribute found at the expected location!")__builtin_unreachable(); | ||||||||||
6283 | } | ||||||||||
6284 | |||||||||||
6285 | /// Create and instantiate a TypeSourceInfo with type source information. | ||||||||||
6286 | /// | ||||||||||
6287 | /// \param T QualType referring to the type as written in source code. | ||||||||||
6288 | /// | ||||||||||
6289 | /// \param ReturnTypeInfo For declarators whose return type does not show | ||||||||||
6290 | /// up in the normal place in the declaration specifiers (such as a C++ | ||||||||||
6291 | /// conversion function), this pointer will refer to a type source information | ||||||||||
6292 | /// for that return type. | ||||||||||
6293 | static TypeSourceInfo * | ||||||||||
6294 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, | ||||||||||
6295 | QualType T, TypeSourceInfo *ReturnTypeInfo) { | ||||||||||
6296 | Sema &S = State.getSema(); | ||||||||||
6297 | Declarator &D = State.getDeclarator(); | ||||||||||
6298 | |||||||||||
6299 | TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T); | ||||||||||
6300 | UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc(); | ||||||||||
6301 | |||||||||||
6302 | // Handle parameter packs whose type is a pack expansion. | ||||||||||
6303 | if (isa<PackExpansionType>(T)) { | ||||||||||
6304 | CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc()); | ||||||||||
6305 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); | ||||||||||
6306 | } | ||||||||||
6307 | |||||||||||
6308 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | ||||||||||
6309 | // An AtomicTypeLoc might be produced by an atomic qualifier in this | ||||||||||
6310 | // declarator chunk. | ||||||||||
6311 | if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) { | ||||||||||
6312 | fillAtomicQualLoc(ATL, D.getTypeObject(i)); | ||||||||||
6313 | CurrTL = ATL.getValueLoc().getUnqualifiedLoc(); | ||||||||||
6314 | } | ||||||||||
6315 | |||||||||||
6316 | while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) { | ||||||||||
6317 | TL.setExpansionLoc( | ||||||||||
6318 | State.getExpansionLocForMacroQualifiedType(TL.getTypePtr())); | ||||||||||
6319 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | ||||||||||
6320 | } | ||||||||||
6321 | |||||||||||
6322 | while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) { | ||||||||||
6323 | fillAttributedTypeLoc(TL, State); | ||||||||||
6324 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | ||||||||||
6325 | } | ||||||||||
6326 | |||||||||||
6327 | while (DependentAddressSpaceTypeLoc TL = | ||||||||||
6328 | CurrTL.getAs<DependentAddressSpaceTypeLoc>()) { | ||||||||||
6329 | fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs()); | ||||||||||
6330 | CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc(); | ||||||||||
6331 | } | ||||||||||
6332 | |||||||||||
6333 | if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>()) | ||||||||||
6334 | fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs()); | ||||||||||
6335 | |||||||||||
6336 | // FIXME: Ordering here? | ||||||||||
6337 | while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>()) | ||||||||||
6338 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | ||||||||||
6339 | |||||||||||
6340 | DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL); | ||||||||||
6341 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); | ||||||||||
6342 | } | ||||||||||
6343 | |||||||||||
6344 | // If we have different source information for the return type, use | ||||||||||
6345 | // that. This really only applies to C++ conversion functions. | ||||||||||
6346 | if (ReturnTypeInfo) { | ||||||||||
6347 | TypeLoc TL = ReturnTypeInfo->getTypeLoc(); | ||||||||||
6348 | assert(TL.getFullDataSize() == CurrTL.getFullDataSize())((void)0); | ||||||||||
6349 | memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize()); | ||||||||||
6350 | } else { | ||||||||||
6351 | TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL); | ||||||||||
6352 | } | ||||||||||
6353 | |||||||||||
6354 | return TInfo; | ||||||||||
6355 | } | ||||||||||
6356 | |||||||||||
6357 | /// Create a LocInfoType to hold the given QualType and TypeSourceInfo. | ||||||||||
6358 | ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) { | ||||||||||
6359 | // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser | ||||||||||
6360 | // and Sema during declaration parsing. Try deallocating/caching them when | ||||||||||
6361 | // it's appropriate, instead of allocating them and keeping them around. | ||||||||||
6362 | LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), | ||||||||||
6363 | TypeAlignment); | ||||||||||
6364 | new (LocT) LocInfoType(T, TInfo); | ||||||||||
6365 | assert(LocT->getTypeClass() != T->getTypeClass() &&((void)0) | ||||||||||
6366 | "LocInfoType's TypeClass conflicts with an existing Type class")((void)0); | ||||||||||
6367 | return ParsedType::make(QualType(LocT, 0)); | ||||||||||
6368 | } | ||||||||||
6369 | |||||||||||
6370 | void LocInfoType::getAsStringInternal(std::string &Str, | ||||||||||
6371 | const PrintingPolicy &Policy) const { | ||||||||||
6372 | llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"__builtin_unreachable() | ||||||||||
6373 | " was used directly instead of getting the QualType through"__builtin_unreachable() | ||||||||||
6374 | " GetTypeFromParser")__builtin_unreachable(); | ||||||||||
6375 | } | ||||||||||
6376 | |||||||||||
6377 | TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) { | ||||||||||
6378 | // C99 6.7.6: Type names have no identifier. This is already validated by | ||||||||||
6379 | // the parser. | ||||||||||
6380 | assert(D.getIdentifier() == nullptr &&((void)0) | ||||||||||
6381 | "Type name should have no identifier!")((void)0); | ||||||||||
6382 | |||||||||||
6383 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | ||||||||||
6384 | QualType T = TInfo->getType(); | ||||||||||
6385 | if (D.isInvalidType()) | ||||||||||
6386 | return true; | ||||||||||
6387 | |||||||||||
6388 | // Make sure there are no unused decl attributes on the declarator. | ||||||||||
6389 | // We don't want to do this for ObjC parameters because we're going | ||||||||||
6390 | // to apply them to the actual parameter declaration. | ||||||||||
6391 | // Likewise, we don't want to do this for alias declarations, because | ||||||||||
6392 | // we are actually going to build a declaration from this eventually. | ||||||||||
6393 | if (D.getContext() != DeclaratorContext::ObjCParameter && | ||||||||||
6394 | D.getContext() != DeclaratorContext::AliasDecl && | ||||||||||
6395 | D.getContext() != DeclaratorContext::AliasTemplate) | ||||||||||
6396 | checkUnusedDeclAttributes(D); | ||||||||||
6397 | |||||||||||
6398 | if (getLangOpts().CPlusPlus) { | ||||||||||
6399 | // Check that there are no default arguments (C++ only). | ||||||||||
6400 | CheckExtraCXXDefaultArguments(D); | ||||||||||
6401 | } | ||||||||||
6402 | |||||||||||
6403 | return CreateParsedType(T, TInfo); | ||||||||||
6404 | } | ||||||||||
6405 | |||||||||||
6406 | ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) { | ||||||||||
6407 | QualType T = Context.getObjCInstanceType(); | ||||||||||
6408 | TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | ||||||||||
6409 | return CreateParsedType(T, TInfo); | ||||||||||
6410 | } | ||||||||||
6411 | |||||||||||
6412 | //===----------------------------------------------------------------------===// | ||||||||||
6413 | // Type Attribute Processing | ||||||||||
6414 | //===----------------------------------------------------------------------===// | ||||||||||
6415 | |||||||||||
6416 | /// Build an AddressSpace index from a constant expression and diagnose any | ||||||||||
6417 | /// errors related to invalid address_spaces. Returns true on successfully | ||||||||||
6418 | /// building an AddressSpace index. | ||||||||||
6419 | static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx, | ||||||||||
6420 | const Expr *AddrSpace, | ||||||||||
6421 | SourceLocation AttrLoc) { | ||||||||||
6422 | if (!AddrSpace->isValueDependent()) { | ||||||||||
6423 | Optional<llvm::APSInt> OptAddrSpace = | ||||||||||
6424 | AddrSpace->getIntegerConstantExpr(S.Context); | ||||||||||
6425 | if (!OptAddrSpace) { | ||||||||||
6426 | S.Diag(AttrLoc, diag::err_attribute_argument_type) | ||||||||||
6427 | << "'address_space'" << AANT_ArgumentIntegerConstant | ||||||||||
6428 | << AddrSpace->getSourceRange(); | ||||||||||
6429 | return false; | ||||||||||
6430 | } | ||||||||||
6431 | llvm::APSInt &addrSpace = *OptAddrSpace; | ||||||||||
6432 | |||||||||||
6433 | // Bounds checking. | ||||||||||
6434 | if (addrSpace.isSigned()) { | ||||||||||
6435 | if (addrSpace.isNegative()) { | ||||||||||
6436 | S.Diag(AttrLoc, diag::err_attribute_address_space_negative) | ||||||||||
6437 | << AddrSpace->getSourceRange(); | ||||||||||
6438 | return false; | ||||||||||
6439 | } | ||||||||||
6440 | addrSpace.setIsSigned(false); | ||||||||||
6441 | } | ||||||||||
6442 | |||||||||||
6443 | llvm::APSInt max(addrSpace.getBitWidth()); | ||||||||||
6444 | max = | ||||||||||
6445 | Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace; | ||||||||||
6446 | |||||||||||
6447 | if (addrSpace > max) { | ||||||||||
6448 | S.Diag(AttrLoc, diag::err_attribute_address_space_too_high) | ||||||||||
6449 | << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange(); | ||||||||||
6450 | return false; | ||||||||||
6451 | } | ||||||||||
6452 | |||||||||||
6453 | ASIdx = | ||||||||||
6454 | getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue())); | ||||||||||
6455 | return true; | ||||||||||
6456 | } | ||||||||||
6457 | |||||||||||
6458 | // Default value for DependentAddressSpaceTypes | ||||||||||
6459 | ASIdx = LangAS::Default; | ||||||||||
6460 | return true; | ||||||||||
6461 | } | ||||||||||
6462 | |||||||||||
6463 | /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression | ||||||||||
6464 | /// is uninstantiated. If instantiated it will apply the appropriate address | ||||||||||
6465 | /// space to the type. This function allows dependent template variables to be | ||||||||||
6466 | /// used in conjunction with the address_space attribute | ||||||||||
6467 | QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, | ||||||||||
6468 | SourceLocation AttrLoc) { | ||||||||||
6469 | if (!AddrSpace->isValueDependent()) { | ||||||||||
6470 | if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx, | ||||||||||
6471 | AttrLoc)) | ||||||||||
6472 | return QualType(); | ||||||||||
6473 | |||||||||||
6474 | return Context.getAddrSpaceQualType(T, ASIdx); | ||||||||||
6475 | } | ||||||||||
6476 | |||||||||||
6477 | // A check with similar intentions as checking if a type already has an | ||||||||||
6478 | // address space except for on a dependent types, basically if the | ||||||||||
6479 | // current type is already a DependentAddressSpaceType then its already | ||||||||||
6480 | // lined up to have another address space on it and we can't have | ||||||||||
6481 | // multiple address spaces on the one pointer indirection | ||||||||||
6482 | if (T->getAs<DependentAddressSpaceType>()) { | ||||||||||
6483 | Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); | ||||||||||
6484 | return QualType(); | ||||||||||
6485 | } | ||||||||||
6486 | |||||||||||
6487 | return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc); | ||||||||||
6488 | } | ||||||||||
6489 | |||||||||||
6490 | QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, | ||||||||||
6491 | SourceLocation AttrLoc) { | ||||||||||
6492 | LangAS ASIdx; | ||||||||||
6493 | if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc)) | ||||||||||
6494 | return QualType(); | ||||||||||
6495 | return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc); | ||||||||||
6496 | } | ||||||||||
6497 | |||||||||||
6498 | /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the | ||||||||||
6499 | /// specified type. The attribute contains 1 argument, the id of the address | ||||||||||
6500 | /// space for the type. | ||||||||||
6501 | static void HandleAddressSpaceTypeAttribute(QualType &Type, | ||||||||||
6502 | const ParsedAttr &Attr, | ||||||||||
6503 | TypeProcessingState &State) { | ||||||||||
6504 | Sema &S = State.getSema(); | ||||||||||
6505 | |||||||||||
6506 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be | ||||||||||
6507 | // qualified by an address-space qualifier." | ||||||||||
6508 | if (Type->isFunctionType()) { | ||||||||||
6509 | S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type); | ||||||||||
6510 | Attr.setInvalid(); | ||||||||||
6511 | return; | ||||||||||
6512 | } | ||||||||||
6513 | |||||||||||
6514 | LangAS ASIdx; | ||||||||||
6515 | if (Attr.getKind() == ParsedAttr::AT_AddressSpace) { | ||||||||||
6516 | |||||||||||
6517 | // Check the attribute arguments. | ||||||||||
6518 | if (Attr.getNumArgs() != 1) { | ||||||||||
6519 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | ||||||||||
6520 | << 1; | ||||||||||
6521 | Attr.setInvalid(); | ||||||||||
6522 | return; | ||||||||||
6523 | } | ||||||||||
6524 | |||||||||||
6525 | Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0)); | ||||||||||
6526 | LangAS ASIdx; | ||||||||||
6527 | if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) { | ||||||||||
6528 | Attr.setInvalid(); | ||||||||||
6529 | return; | ||||||||||
6530 | } | ||||||||||
6531 | |||||||||||
6532 | ASTContext &Ctx = S.Context; | ||||||||||
6533 | auto *ASAttr = | ||||||||||
6534 | ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx)); | ||||||||||
6535 | |||||||||||
6536 | // If the expression is not value dependent (not templated), then we can | ||||||||||
6537 | // apply the address space qualifiers just to the equivalent type. | ||||||||||
6538 | // Otherwise, we make an AttributedType with the modified and equivalent | ||||||||||
6539 | // type the same, and wrap it in a DependentAddressSpaceType. When this | ||||||||||
6540 | // dependent type is resolved, the qualifier is added to the equivalent type | ||||||||||
6541 | // later. | ||||||||||
6542 | QualType T; | ||||||||||
6543 | if (!ASArgExpr->isValueDependent()) { | ||||||||||
6544 | QualType EquivType = | ||||||||||
6545 | S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc()); | ||||||||||
6546 | if (EquivType.isNull()) { | ||||||||||
6547 | Attr.setInvalid(); | ||||||||||
6548 | return; | ||||||||||
6549 | } | ||||||||||
6550 | T = State.getAttributedType(ASAttr, Type, EquivType); | ||||||||||
6551 | } else { | ||||||||||
6552 | T = State.getAttributedType(ASAttr, Type, Type); | ||||||||||
6553 | T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc()); | ||||||||||
6554 | } | ||||||||||
6555 | |||||||||||
6556 | if (!T.isNull()) | ||||||||||
6557 | Type = T; | ||||||||||
6558 | else | ||||||||||
6559 | Attr.setInvalid(); | ||||||||||
6560 | } else { | ||||||||||
6561 | // The keyword-based type attributes imply which address space to use. | ||||||||||
6562 | ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS() | ||||||||||
6563 | : Attr.asOpenCLLangAS(); | ||||||||||
6564 | |||||||||||
6565 | if (ASIdx == LangAS::Default) | ||||||||||
6566 | llvm_unreachable("Invalid address space")__builtin_unreachable(); | ||||||||||
6567 | |||||||||||
6568 | if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx, | ||||||||||
6569 | Attr.getLoc())) { | ||||||||||
6570 | Attr.setInvalid(); | ||||||||||
6571 | return; | ||||||||||
6572 | } | ||||||||||
6573 | |||||||||||
6574 | Type = S.Context.getAddrSpaceQualType(Type, ASIdx); | ||||||||||
6575 | } | ||||||||||
6576 | } | ||||||||||
6577 | |||||||||||
6578 | /// handleObjCOwnershipTypeAttr - Process an objc_ownership | ||||||||||
6579 | /// attribute on the specified type. | ||||||||||
6580 | /// | ||||||||||
6581 | /// Returns 'true' if the attribute was handled. | ||||||||||
6582 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, | ||||||||||
6583 | ParsedAttr &attr, QualType &type) { | ||||||||||
6584 | bool NonObjCPointer = false; | ||||||||||
6585 | |||||||||||
6586 | if (!type->isDependentType() && !type->isUndeducedType()) { | ||||||||||
6587 | if (const PointerType *ptr = type->getAs<PointerType>()) { | ||||||||||
6588 | QualType pointee = ptr->getPointeeType(); | ||||||||||
6589 | if (pointee->isObjCRetainableType() || pointee->isPointerType()) | ||||||||||
6590 | return false; | ||||||||||
6591 | // It is important not to lose the source info that there was an attribute | ||||||||||
6592 | // applied to non-objc pointer. We will create an attributed type but | ||||||||||
6593 | // its type will be the same as the original type. | ||||||||||
6594 | NonObjCPointer = true; | ||||||||||
6595 | } else if (!type->isObjCRetainableType()) { | ||||||||||
6596 | return false; | ||||||||||
6597 | } | ||||||||||
6598 | |||||||||||
6599 | // Don't accept an ownership attribute in the declspec if it would | ||||||||||
6600 | // just be the return type of a block pointer. | ||||||||||
6601 | if (state.isProcessingDeclSpec()) { | ||||||||||
6602 | Declarator &D = state.getDeclarator(); | ||||||||||
6603 | if (maybeMovePastReturnType(D, D.getNumTypeObjects(), | ||||||||||
6604 | /*onlyBlockPointers=*/true)) | ||||||||||
6605 | return false; | ||||||||||
6606 | } | ||||||||||
6607 | } | ||||||||||
6608 | |||||||||||
6609 | Sema &S = state.getSema(); | ||||||||||
6610 | SourceLocation AttrLoc = attr.getLoc(); | ||||||||||
6611 | if (AttrLoc.isMacroID()) | ||||||||||
6612 | AttrLoc = | ||||||||||
6613 | S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin(); | ||||||||||
6614 | |||||||||||
6615 | if (!attr.isArgIdent(0)) { | ||||||||||
6616 | S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr | ||||||||||
6617 | << AANT_ArgumentString; | ||||||||||
6618 | attr.setInvalid(); | ||||||||||
6619 | return true; | ||||||||||
6620 | } | ||||||||||
6621 | |||||||||||
6622 | IdentifierInfo *II = attr.getArgAsIdent(0)->Ident; | ||||||||||
6623 | Qualifiers::ObjCLifetime lifetime; | ||||||||||
6624 | if (II->isStr("none")) | ||||||||||
6625 | lifetime = Qualifiers::OCL_ExplicitNone; | ||||||||||
6626 | else if (II->isStr("strong")) | ||||||||||
6627 | lifetime = Qualifiers::OCL_Strong; | ||||||||||
6628 | else if (II->isStr("weak")) | ||||||||||
6629 | lifetime = Qualifiers::OCL_Weak; | ||||||||||
6630 | else if (II->isStr("autoreleasing")) | ||||||||||
6631 | lifetime = Qualifiers::OCL_Autoreleasing; | ||||||||||
6632 | else { | ||||||||||
6633 | S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II; | ||||||||||
6634 | attr.setInvalid(); | ||||||||||
6635 | return true; | ||||||||||
6636 | } | ||||||||||
6637 | |||||||||||
6638 | // Just ignore lifetime attributes other than __weak and __unsafe_unretained | ||||||||||
6639 | // outside of ARC mode. | ||||||||||
6640 | if (!S.getLangOpts().ObjCAutoRefCount && | ||||||||||
6641 | lifetime != Qualifiers::OCL_Weak && | ||||||||||
6642 | lifetime != Qualifiers::OCL_ExplicitNone) { | ||||||||||
6643 | return true; | ||||||||||
6644 | } | ||||||||||
6645 | |||||||||||
6646 | SplitQualType underlyingType = type.split(); | ||||||||||
6647 | |||||||||||
6648 | // Check for redundant/conflicting ownership qualifiers. | ||||||||||
6649 | if (Qualifiers::ObjCLifetime previousLifetime | ||||||||||
6650 | = type.getQualifiers().getObjCLifetime()) { | ||||||||||
6651 | // If it's written directly, that's an error. | ||||||||||
6652 | if (S.Context.hasDirectOwnershipQualifier(type)) { | ||||||||||
6653 | S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant) | ||||||||||
6654 | << type; | ||||||||||
6655 | return true; | ||||||||||
6656 | } | ||||||||||
6657 | |||||||||||
6658 | // Otherwise, if the qualifiers actually conflict, pull sugar off | ||||||||||
6659 | // and remove the ObjCLifetime qualifiers. | ||||||||||
6660 | if (previousLifetime != lifetime) { | ||||||||||
6661 | // It's possible to have multiple local ObjCLifetime qualifiers. We | ||||||||||
6662 | // can't stop after we reach a type that is directly qualified. | ||||||||||
6663 | const Type *prevTy = nullptr; | ||||||||||
6664 | while (!prevTy || prevTy != underlyingType.Ty) { | ||||||||||
6665 | prevTy = underlyingType.Ty; | ||||||||||
6666 | underlyingType = underlyingType.getSingleStepDesugaredType(); | ||||||||||
6667 | } | ||||||||||
6668 | underlyingType.Quals.removeObjCLifetime(); | ||||||||||
6669 | } | ||||||||||
6670 | } | ||||||||||
6671 | |||||||||||
6672 | underlyingType.Quals.addObjCLifetime(lifetime); | ||||||||||
6673 | |||||||||||
6674 | if (NonObjCPointer) { | ||||||||||
6675 | StringRef name = attr.getAttrName()->getName(); | ||||||||||
6676 | switch (lifetime) { | ||||||||||
6677 | case Qualifiers::OCL_None: | ||||||||||
6678 | case Qualifiers::OCL_ExplicitNone: | ||||||||||
6679 | break; | ||||||||||
6680 | case Qualifiers::OCL_Strong: name = "__strong"; break; | ||||||||||
6681 | case Qualifiers::OCL_Weak: name = "__weak"; break; | ||||||||||
6682 | case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break; | ||||||||||
6683 | } | ||||||||||
6684 | S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name | ||||||||||
6685 | << TDS_ObjCObjOrBlock << type; | ||||||||||
6686 | } | ||||||||||
6687 | |||||||||||
6688 | // Don't actually add the __unsafe_unretained qualifier in non-ARC files, | ||||||||||
6689 | // because having both 'T' and '__unsafe_unretained T' exist in the type | ||||||||||
6690 | // system causes unfortunate widespread consistency problems. (For example, | ||||||||||
6691 | // they're not considered compatible types, and we mangle them identicially | ||||||||||
6692 | // as template arguments.) These problems are all individually fixable, | ||||||||||
6693 | // but it's easier to just not add the qualifier and instead sniff it out | ||||||||||
6694 | // in specific places using isObjCInertUnsafeUnretainedType(). | ||||||||||
6695 | // | ||||||||||
6696 | // Doing this does means we miss some trivial consistency checks that | ||||||||||
6697 | // would've triggered in ARC, but that's better than trying to solve all | ||||||||||
6698 | // the coexistence problems with __unsafe_unretained. | ||||||||||
6699 | if (!S.getLangOpts().ObjCAutoRefCount && | ||||||||||
6700 | lifetime == Qualifiers::OCL_ExplicitNone) { | ||||||||||
6701 | type = state.getAttributedType( | ||||||||||
6702 | createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr), | ||||||||||
6703 | type, type); | ||||||||||
6704 | return true; | ||||||||||
6705 | } | ||||||||||
6706 | |||||||||||
6707 | QualType origType = type; | ||||||||||
6708 | if (!NonObjCPointer) | ||||||||||
6709 | type = S.Context.getQualifiedType(underlyingType); | ||||||||||
6710 | |||||||||||
6711 | // If we have a valid source location for the attribute, use an | ||||||||||
6712 | // AttributedType instead. | ||||||||||
6713 | if (AttrLoc.isValid()) { | ||||||||||
6714 | type = state.getAttributedType(::new (S.Context) | ||||||||||
6715 | ObjCOwnershipAttr(S.Context, attr, II), | ||||||||||
6716 | origType, type); | ||||||||||
6717 | } | ||||||||||
6718 | |||||||||||
6719 | auto diagnoseOrDelay = [](Sema &S, SourceLocation loc, | ||||||||||
6720 | unsigned diagnostic, QualType type) { | ||||||||||
6721 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | ||||||||||
6722 | S.DelayedDiagnostics.add( | ||||||||||
6723 | sema::DelayedDiagnostic::makeForbiddenType( | ||||||||||
6724 | S.getSourceManager().getExpansionLoc(loc), | ||||||||||
6725 | diagnostic, type, /*ignored*/ 0)); | ||||||||||
6726 | } else { | ||||||||||
6727 | S.Diag(loc, diagnostic); | ||||||||||
6728 | } | ||||||||||
6729 | }; | ||||||||||
6730 | |||||||||||
6731 | // Sometimes, __weak isn't allowed. | ||||||||||
6732 | if (lifetime == Qualifiers::OCL_Weak && | ||||||||||
6733 | !S.getLangOpts().ObjCWeak && !NonObjCPointer) { | ||||||||||
6734 | |||||||||||
6735 | // Use a specialized diagnostic if the runtime just doesn't support them. | ||||||||||
6736 | unsigned diagnostic = | ||||||||||
6737 | (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled | ||||||||||
6738 | : diag::err_arc_weak_no_runtime); | ||||||||||
6739 | |||||||||||
6740 | // In any case, delay the diagnostic until we know what we're parsing. | ||||||||||
6741 | diagnoseOrDelay(S, AttrLoc, diagnostic, type); | ||||||||||
6742 | |||||||||||
6743 | attr.setInvalid(); | ||||||||||
6744 | return true; | ||||||||||
6745 | } | ||||||||||
6746 | |||||||||||
6747 | // Forbid __weak for class objects marked as | ||||||||||
6748 | // objc_arc_weak_reference_unavailable | ||||||||||
6749 | if (lifetime == Qualifiers::OCL_Weak) { | ||||||||||
6750 | if (const ObjCObjectPointerType *ObjT = | ||||||||||
6751 | type->getAs<ObjCObjectPointerType>()) { | ||||||||||
6752 | if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) { | ||||||||||
6753 | if (Class->isArcWeakrefUnavailable()) { | ||||||||||
6754 | S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class); | ||||||||||
6755 | S.Diag(ObjT->getInterfaceDecl()->getLocation(), | ||||||||||
6756 | diag::note_class_declared); | ||||||||||
6757 | } | ||||||||||
6758 | } | ||||||||||
6759 | } | ||||||||||
6760 | } | ||||||||||
6761 | |||||||||||
6762 | return true; | ||||||||||
6763 | } | ||||||||||
6764 | |||||||||||
6765 | /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type | ||||||||||
6766 | /// attribute on the specified type. Returns true to indicate that | ||||||||||
6767 | /// the attribute was handled, false to indicate that the type does | ||||||||||
6768 | /// not permit the attribute. | ||||||||||
6769 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||||||||
6770 | QualType &type) { | ||||||||||
6771 | Sema &S = state.getSema(); | ||||||||||
6772 | |||||||||||
6773 | // Delay if this isn't some kind of pointer. | ||||||||||
6774 | if (!type->isPointerType() && | ||||||||||
6775 | !type->isObjCObjectPointerType() && | ||||||||||
6776 | !type->isBlockPointerType()) | ||||||||||
6777 | return false; | ||||||||||
6778 | |||||||||||
6779 | if (type.getObjCGCAttr() != Qualifiers::GCNone) { | ||||||||||
6780 | S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc); | ||||||||||
6781 | attr.setInvalid(); | ||||||||||
6782 | return true; | ||||||||||
6783 | } | ||||||||||
6784 | |||||||||||
6785 | // Check the attribute arguments. | ||||||||||
6786 | if (!attr.isArgIdent(0)) { | ||||||||||
6787 | S.Diag(attr.getLoc(), diag::err_attribute_argument_type) | ||||||||||
6788 | << attr << AANT_ArgumentString; | ||||||||||
6789 | attr.setInvalid(); | ||||||||||
6790 | return true; | ||||||||||
6791 | } | ||||||||||
6792 | Qualifiers::GC GCAttr; | ||||||||||
6793 | if (attr.getNumArgs() > 1) { | ||||||||||
6794 | S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr | ||||||||||
6795 | << 1; | ||||||||||
6796 | attr.setInvalid(); | ||||||||||
6797 | return true; | ||||||||||
6798 | } | ||||||||||
6799 | |||||||||||
6800 | IdentifierInfo *II = attr.getArgAsIdent(0)->Ident; | ||||||||||
6801 | if (II->isStr("weak")) | ||||||||||
6802 | GCAttr = Qualifiers::Weak; | ||||||||||
6803 | else if (II->isStr("strong")) | ||||||||||
6804 | GCAttr = Qualifiers::Strong; | ||||||||||
6805 | else { | ||||||||||
6806 | S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported) | ||||||||||
6807 | << attr << II; | ||||||||||
6808 | attr.setInvalid(); | ||||||||||
6809 | return true; | ||||||||||
6810 | } | ||||||||||
6811 | |||||||||||
6812 | QualType origType = type; | ||||||||||
6813 | type = S.Context.getObjCGCQualType(origType, GCAttr); | ||||||||||
6814 | |||||||||||
6815 | // Make an attributed type to preserve the source information. | ||||||||||
6816 | if (attr.getLoc().isValid()) | ||||||||||
6817 | type = state.getAttributedType( | ||||||||||
6818 | ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type); | ||||||||||
6819 | |||||||||||
6820 | return true; | ||||||||||
6821 | } | ||||||||||
6822 | |||||||||||
6823 | namespace { | ||||||||||
6824 | /// A helper class to unwrap a type down to a function for the | ||||||||||
6825 | /// purposes of applying attributes there. | ||||||||||
6826 | /// | ||||||||||
6827 | /// Use: | ||||||||||
6828 | /// FunctionTypeUnwrapper unwrapped(SemaRef, T); | ||||||||||
6829 | /// if (unwrapped.isFunctionType()) { | ||||||||||
6830 | /// const FunctionType *fn = unwrapped.get(); | ||||||||||
6831 | /// // change fn somehow | ||||||||||
6832 | /// T = unwrapped.wrap(fn); | ||||||||||
6833 | /// } | ||||||||||
6834 | struct FunctionTypeUnwrapper { | ||||||||||
6835 | enum WrapKind { | ||||||||||
6836 | Desugar, | ||||||||||
6837 | Attributed, | ||||||||||
6838 | Parens, | ||||||||||
6839 | Array, | ||||||||||
6840 | Pointer, | ||||||||||
6841 | BlockPointer, | ||||||||||
6842 | Reference, | ||||||||||
6843 | MemberPointer, | ||||||||||
6844 | MacroQualified, | ||||||||||
6845 | }; | ||||||||||
6846 | |||||||||||
6847 | QualType Original; | ||||||||||
6848 | const FunctionType *Fn; | ||||||||||
6849 | SmallVector<unsigned char /*WrapKind*/, 8> Stack; | ||||||||||
6850 | |||||||||||
6851 | FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) { | ||||||||||
6852 | while (true) { | ||||||||||
6853 | const Type *Ty = T.getTypePtr(); | ||||||||||
6854 | if (isa<FunctionType>(Ty)) { | ||||||||||
6855 | Fn = cast<FunctionType>(Ty); | ||||||||||
6856 | return; | ||||||||||
6857 | } else if (isa<ParenType>(Ty)) { | ||||||||||
6858 | T = cast<ParenType>(Ty)->getInnerType(); | ||||||||||
6859 | Stack.push_back(Parens); | ||||||||||
6860 | } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) || | ||||||||||
6861 | isa<IncompleteArrayType>(Ty)) { | ||||||||||
6862 | T = cast<ArrayType>(Ty)->getElementType(); | ||||||||||
6863 | Stack.push_back(Array); | ||||||||||
6864 | } else if (isa<PointerType>(Ty)) { | ||||||||||
6865 | T = cast<PointerType>(Ty)->getPointeeType(); | ||||||||||
6866 | Stack.push_back(Pointer); | ||||||||||
6867 | } else if (isa<BlockPointerType>(Ty)) { | ||||||||||
6868 | T = cast<BlockPointerType>(Ty)->getPointeeType(); | ||||||||||
6869 | Stack.push_back(BlockPointer); | ||||||||||
6870 | } else if (isa<MemberPointerType>(Ty)) { | ||||||||||
6871 | T = cast<MemberPointerType>(Ty)->getPointeeType(); | ||||||||||
6872 | Stack.push_back(MemberPointer); | ||||||||||
6873 | } else if (isa<ReferenceType>(Ty)) { | ||||||||||
6874 | T = cast<ReferenceType>(Ty)->getPointeeType(); | ||||||||||
6875 | Stack.push_back(Reference); | ||||||||||
6876 | } else if (isa<AttributedType>(Ty)) { | ||||||||||
6877 | T = cast<AttributedType>(Ty)->getEquivalentType(); | ||||||||||
6878 | Stack.push_back(Attributed); | ||||||||||
6879 | } else if (isa<MacroQualifiedType>(Ty)) { | ||||||||||
6880 | T = cast<MacroQualifiedType>(Ty)->getUnderlyingType(); | ||||||||||
6881 | Stack.push_back(MacroQualified); | ||||||||||
6882 | } else { | ||||||||||
6883 | const Type *DTy = Ty->getUnqualifiedDesugaredType(); | ||||||||||
6884 | if (Ty == DTy) { | ||||||||||
6885 | Fn = nullptr; | ||||||||||
6886 | return; | ||||||||||
6887 | } | ||||||||||
6888 | |||||||||||
6889 | T = QualType(DTy, 0); | ||||||||||
6890 | Stack.push_back(Desugar); | ||||||||||
6891 | } | ||||||||||
6892 | } | ||||||||||
6893 | } | ||||||||||
6894 | |||||||||||
6895 | bool isFunctionType() const { return (Fn != nullptr); } | ||||||||||
6896 | const FunctionType *get() const { return Fn; } | ||||||||||
6897 | |||||||||||
6898 | QualType wrap(Sema &S, const FunctionType *New) { | ||||||||||
6899 | // If T wasn't modified from the unwrapped type, do nothing. | ||||||||||
6900 | if (New == get()) return Original; | ||||||||||
6901 | |||||||||||
6902 | Fn = New; | ||||||||||
6903 | return wrap(S.Context, Original, 0); | ||||||||||
6904 | } | ||||||||||
6905 | |||||||||||
6906 | private: | ||||||||||
6907 | QualType wrap(ASTContext &C, QualType Old, unsigned I) { | ||||||||||
6908 | if (I == Stack.size()) | ||||||||||
6909 | return C.getQualifiedType(Fn, Old.getQualifiers()); | ||||||||||
6910 | |||||||||||
6911 | // Build up the inner type, applying the qualifiers from the old | ||||||||||
6912 | // type to the new type. | ||||||||||
6913 | SplitQualType SplitOld = Old.split(); | ||||||||||
6914 | |||||||||||
6915 | // As a special case, tail-recurse if there are no qualifiers. | ||||||||||
6916 | if (SplitOld.Quals.empty()) | ||||||||||
6917 | return wrap(C, SplitOld.Ty, I); | ||||||||||
6918 | return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals); | ||||||||||
6919 | } | ||||||||||
6920 | |||||||||||
6921 | QualType wrap(ASTContext &C, const Type *Old, unsigned I) { | ||||||||||
6922 | if (I == Stack.size()) return QualType(Fn, 0); | ||||||||||
6923 | |||||||||||
6924 | switch (static_cast<WrapKind>(Stack[I++])) { | ||||||||||
6925 | case Desugar: | ||||||||||
6926 | // This is the point at which we potentially lose source | ||||||||||
6927 | // information. | ||||||||||
6928 | return wrap(C, Old->getUnqualifiedDesugaredType(), I); | ||||||||||
6929 | |||||||||||
6930 | case Attributed: | ||||||||||
6931 | return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I); | ||||||||||
6932 | |||||||||||
6933 | case Parens: { | ||||||||||
6934 | QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I); | ||||||||||
6935 | return C.getParenType(New); | ||||||||||
6936 | } | ||||||||||
6937 | |||||||||||
6938 | case MacroQualified: | ||||||||||
6939 | return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I); | ||||||||||
6940 | |||||||||||
6941 | case Array: { | ||||||||||
6942 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) { | ||||||||||
6943 | QualType New = wrap(C, CAT->getElementType(), I); | ||||||||||
6944 | return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(), | ||||||||||
6945 | CAT->getSizeModifier(), | ||||||||||
6946 | CAT->getIndexTypeCVRQualifiers()); | ||||||||||
6947 | } | ||||||||||
6948 | |||||||||||
6949 | if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) { | ||||||||||
6950 | QualType New = wrap(C, VAT->getElementType(), I); | ||||||||||
6951 | return C.getVariableArrayType( | ||||||||||
6952 | New, VAT->getSizeExpr(), VAT->getSizeModifier(), | ||||||||||
6953 | VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange()); | ||||||||||
6954 | } | ||||||||||
6955 | |||||||||||
6956 | const auto *IAT = cast<IncompleteArrayType>(Old); | ||||||||||
6957 | QualType New = wrap(C, IAT->getElementType(), I); | ||||||||||
6958 | return C.getIncompleteArrayType(New, IAT->getSizeModifier(), | ||||||||||
6959 | IAT->getIndexTypeCVRQualifiers()); | ||||||||||
6960 | } | ||||||||||
6961 | |||||||||||
6962 | case Pointer: { | ||||||||||
6963 | QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I); | ||||||||||
6964 | return C.getPointerType(New); | ||||||||||
6965 | } | ||||||||||
6966 | |||||||||||
6967 | case BlockPointer: { | ||||||||||
6968 | QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I); | ||||||||||
6969 | return C.getBlockPointerType(New); | ||||||||||
6970 | } | ||||||||||
6971 | |||||||||||
6972 | case MemberPointer: { | ||||||||||
6973 | const MemberPointerType *OldMPT = cast<MemberPointerType>(Old); | ||||||||||
6974 | QualType New = wrap(C, OldMPT->getPointeeType(), I); | ||||||||||
6975 | return C.getMemberPointerType(New, OldMPT->getClass()); | ||||||||||
6976 | } | ||||||||||
6977 | |||||||||||
6978 | case Reference: { | ||||||||||
6979 | const ReferenceType *OldRef = cast<ReferenceType>(Old); | ||||||||||
6980 | QualType New = wrap(C, OldRef->getPointeeType(), I); | ||||||||||
6981 | if (isa<LValueReferenceType>(OldRef)) | ||||||||||
6982 | return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue()); | ||||||||||
6983 | else | ||||||||||
6984 | return C.getRValueReferenceType(New); | ||||||||||
6985 | } | ||||||||||
6986 | } | ||||||||||
6987 | |||||||||||
6988 | llvm_unreachable("unknown wrapping kind")__builtin_unreachable(); | ||||||||||
6989 | } | ||||||||||
6990 | }; | ||||||||||
6991 | } // end anonymous namespace | ||||||||||
6992 | |||||||||||
6993 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State, | ||||||||||
6994 | ParsedAttr &PAttr, QualType &Type) { | ||||||||||
6995 | Sema &S = State.getSema(); | ||||||||||
6996 | |||||||||||
6997 | Attr *A; | ||||||||||
6998 | switch (PAttr.getKind()) { | ||||||||||
6999 | default: llvm_unreachable("Unknown attribute kind")__builtin_unreachable(); | ||||||||||
7000 | case ParsedAttr::AT_Ptr32: | ||||||||||
7001 | A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr); | ||||||||||
7002 | break; | ||||||||||
7003 | case ParsedAttr::AT_Ptr64: | ||||||||||
7004 | A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr); | ||||||||||
7005 | break; | ||||||||||
7006 | case ParsedAttr::AT_SPtr: | ||||||||||
7007 | A = createSimpleAttr<SPtrAttr>(S.Context, PAttr); | ||||||||||
7008 | break; | ||||||||||
7009 | case ParsedAttr::AT_UPtr: | ||||||||||
7010 | A = createSimpleAttr<UPtrAttr>(S.Context, PAttr); | ||||||||||
7011 | break; | ||||||||||
7012 | } | ||||||||||
7013 | |||||||||||
7014 | std::bitset<attr::LastAttr> Attrs; | ||||||||||
7015 | attr::Kind NewAttrKind = A->getKind(); | ||||||||||
7016 | QualType Desugared = Type; | ||||||||||
7017 | const AttributedType *AT = dyn_cast<AttributedType>(Type); | ||||||||||
7018 | while (AT) { | ||||||||||
7019 | Attrs[AT->getAttrKind()] = true; | ||||||||||
7020 | Desugared = AT->getModifiedType(); | ||||||||||
7021 | AT = dyn_cast<AttributedType>(Desugared); | ||||||||||
7022 | } | ||||||||||
7023 | |||||||||||
7024 | // You cannot specify duplicate type attributes, so if the attribute has | ||||||||||
7025 | // already been applied, flag it. | ||||||||||
7026 | if (Attrs[NewAttrKind]) { | ||||||||||
7027 | S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr; | ||||||||||
7028 | return true; | ||||||||||
7029 | } | ||||||||||
7030 | Attrs[NewAttrKind] = true; | ||||||||||
7031 | |||||||||||
7032 | // You cannot have both __sptr and __uptr on the same type, nor can you | ||||||||||
7033 | // have __ptr32 and __ptr64. | ||||||||||
7034 | if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) { | ||||||||||
7035 | S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible) | ||||||||||
7036 | << "'__ptr32'" | ||||||||||
7037 | << "'__ptr64'"; | ||||||||||
7038 | return true; | ||||||||||
7039 | } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) { | ||||||||||
7040 | S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible) | ||||||||||
7041 | << "'__sptr'" | ||||||||||
7042 | << "'__uptr'"; | ||||||||||
7043 | return true; | ||||||||||
7044 | } | ||||||||||
7045 | |||||||||||
7046 | // Pointer type qualifiers can only operate on pointer types, but not | ||||||||||
7047 | // pointer-to-member types. | ||||||||||
7048 | // | ||||||||||
7049 | // FIXME: Should we really be disallowing this attribute if there is any | ||||||||||
7050 | // type sugar between it and the pointer (other than attributes)? Eg, this | ||||||||||
7051 | // disallows the attribute on a parenthesized pointer. | ||||||||||
7052 | // And if so, should we really allow *any* type attribute? | ||||||||||
7053 | if (!isa<PointerType>(Desugared)) { | ||||||||||
7054 | if (Type->isMemberPointerType()) | ||||||||||
7055 | S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr; | ||||||||||
7056 | else | ||||||||||
7057 | S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0; | ||||||||||
7058 | return true; | ||||||||||
7059 | } | ||||||||||
7060 | |||||||||||
7061 | // Add address space to type based on its attributes. | ||||||||||
7062 | LangAS ASIdx = LangAS::Default; | ||||||||||
7063 | uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0); | ||||||||||
7064 | if (PtrWidth == 32) { | ||||||||||
7065 | if (Attrs[attr::Ptr64]) | ||||||||||
7066 | ASIdx = LangAS::ptr64; | ||||||||||
7067 | else if (Attrs[attr::UPtr]) | ||||||||||
7068 | ASIdx = LangAS::ptr32_uptr; | ||||||||||
7069 | } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) { | ||||||||||
7070 | if (Attrs[attr::UPtr]) | ||||||||||
7071 | ASIdx = LangAS::ptr32_uptr; | ||||||||||
7072 | else | ||||||||||
7073 | ASIdx = LangAS::ptr32_sptr; | ||||||||||
7074 | } | ||||||||||
7075 | |||||||||||
7076 | QualType Pointee = Type->getPointeeType(); | ||||||||||
7077 | if (ASIdx != LangAS::Default) | ||||||||||
7078 | Pointee = S.Context.getAddrSpaceQualType( | ||||||||||
7079 | S.Context.removeAddrSpaceQualType(Pointee), ASIdx); | ||||||||||
7080 | Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee)); | ||||||||||
7081 | return false; | ||||||||||
7082 | } | ||||||||||
7083 | |||||||||||
7084 | /// Map a nullability attribute kind to a nullability kind. | ||||||||||
7085 | static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) { | ||||||||||
7086 | switch (kind) { | ||||||||||
7087 | case ParsedAttr::AT_TypeNonNull: | ||||||||||
7088 | return NullabilityKind::NonNull; | ||||||||||
7089 | |||||||||||
7090 | case ParsedAttr::AT_TypeNullable: | ||||||||||
7091 | return NullabilityKind::Nullable; | ||||||||||
7092 | |||||||||||
7093 | case ParsedAttr::AT_TypeNullableResult: | ||||||||||
7094 | return NullabilityKind::NullableResult; | ||||||||||
7095 | |||||||||||
7096 | case ParsedAttr::AT_TypeNullUnspecified: | ||||||||||
7097 | return NullabilityKind::Unspecified; | ||||||||||
7098 | |||||||||||
7099 | default: | ||||||||||
7100 | llvm_unreachable("not a nullability attribute kind")__builtin_unreachable(); | ||||||||||
7101 | } | ||||||||||
7102 | } | ||||||||||
7103 | |||||||||||
7104 | /// Applies a nullability type specifier to the given type, if possible. | ||||||||||
7105 | /// | ||||||||||
7106 | /// \param state The type processing state. | ||||||||||
7107 | /// | ||||||||||
7108 | /// \param type The type to which the nullability specifier will be | ||||||||||
7109 | /// added. On success, this type will be updated appropriately. | ||||||||||
7110 | /// | ||||||||||
7111 | /// \param attr The attribute as written on the type. | ||||||||||
7112 | /// | ||||||||||
7113 | /// \param allowOnArrayType Whether to accept nullability specifiers on an | ||||||||||
7114 | /// array type (e.g., because it will decay to a pointer). | ||||||||||
7115 | /// | ||||||||||
7116 | /// \returns true if a problem has been diagnosed, false on success. | ||||||||||
7117 | static bool checkNullabilityTypeSpecifier(TypeProcessingState &state, | ||||||||||
7118 | QualType &type, | ||||||||||
7119 | ParsedAttr &attr, | ||||||||||
7120 | bool allowOnArrayType) { | ||||||||||
7121 | Sema &S = state.getSema(); | ||||||||||
7122 | |||||||||||
7123 | NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind()); | ||||||||||
7124 | SourceLocation nullabilityLoc = attr.getLoc(); | ||||||||||
7125 | bool isContextSensitive = attr.isContextSensitiveKeywordAttribute(); | ||||||||||
7126 | |||||||||||
7127 | recordNullabilitySeen(S, nullabilityLoc); | ||||||||||
7128 | |||||||||||
7129 | // Check for existing nullability attributes on the type. | ||||||||||
7130 | QualType desugared = type; | ||||||||||
7131 | while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) { | ||||||||||
7132 | // Check whether there is already a null | ||||||||||
7133 | if (auto existingNullability = attributed->getImmediateNullability()) { | ||||||||||
7134 | // Duplicated nullability. | ||||||||||
7135 | if (nullability == *existingNullability) { | ||||||||||
7136 | S.Diag(nullabilityLoc, diag::warn_nullability_duplicate) | ||||||||||
7137 | << DiagNullabilityKind(nullability, isContextSensitive) | ||||||||||
7138 | << FixItHint::CreateRemoval(nullabilityLoc); | ||||||||||
7139 | |||||||||||
7140 | break; | ||||||||||
7141 | } | ||||||||||
7142 | |||||||||||
7143 | // Conflicting nullability. | ||||||||||
7144 | S.Diag(nullabilityLoc, diag::err_nullability_conflicting) | ||||||||||
7145 | << DiagNullabilityKind(nullability, isContextSensitive) | ||||||||||
7146 | << DiagNullabilityKind(*existingNullability, false); | ||||||||||
7147 | return true; | ||||||||||
7148 | } | ||||||||||
7149 | |||||||||||
7150 | desugared = attributed->getModifiedType(); | ||||||||||
7151 | } | ||||||||||
7152 | |||||||||||
7153 | // If there is already a different nullability specifier, complain. | ||||||||||
7154 | // This (unlike the code above) looks through typedefs that might | ||||||||||
7155 | // have nullability specifiers on them, which means we cannot | ||||||||||
7156 | // provide a useful Fix-It. | ||||||||||
7157 | if (auto existingNullability = desugared->getNullability(S.Context)) { | ||||||||||
7158 | if (nullability != *existingNullability) { | ||||||||||
7159 | S.Diag(nullabilityLoc, diag::err_nullability_conflicting) | ||||||||||
7160 | << DiagNullabilityKind(nullability, isContextSensitive) | ||||||||||
7161 | << DiagNullabilityKind(*existingNullability, false); | ||||||||||
7162 | |||||||||||
7163 | // Try to find the typedef with the existing nullability specifier. | ||||||||||
7164 | if (auto typedefType = desugared->getAs<TypedefType>()) { | ||||||||||
7165 | TypedefNameDecl *typedefDecl = typedefType->getDecl(); | ||||||||||
7166 | QualType underlyingType = typedefDecl->getUnderlyingType(); | ||||||||||
7167 | if (auto typedefNullability | ||||||||||
7168 | = AttributedType::stripOuterNullability(underlyingType)) { | ||||||||||
7169 | if (*typedefNullability == *existingNullability) { | ||||||||||
7170 | S.Diag(typedefDecl->getLocation(), diag::note_nullability_here) | ||||||||||
7171 | << DiagNullabilityKind(*existingNullability, false); | ||||||||||
7172 | } | ||||||||||
7173 | } | ||||||||||
7174 | } | ||||||||||
7175 | |||||||||||
7176 | return true; | ||||||||||
7177 | } | ||||||||||
7178 | } | ||||||||||
7179 | |||||||||||
7180 | // If this definitely isn't a pointer type, reject the specifier. | ||||||||||
7181 | if (!desugared->canHaveNullability() && | ||||||||||
7182 | !(allowOnArrayType && desugared->isArrayType())) { | ||||||||||
7183 | S.Diag(nullabilityLoc, diag::err_nullability_nonpointer) | ||||||||||
7184 | << DiagNullabilityKind(nullability, isContextSensitive) << type; | ||||||||||
7185 | return true; | ||||||||||
7186 | } | ||||||||||
7187 | |||||||||||
7188 | // For the context-sensitive keywords/Objective-C property | ||||||||||
7189 | // attributes, require that the type be a single-level pointer. | ||||||||||
7190 | if (isContextSensitive) { | ||||||||||
7191 | // Make sure that the pointee isn't itself a pointer type. | ||||||||||
7192 | const Type *pointeeType = nullptr; | ||||||||||
7193 | if (desugared->isArrayType()) | ||||||||||
7194 | pointeeType = desugared->getArrayElementTypeNoTypeQual(); | ||||||||||
7195 | else if (desugared->isAnyPointerType()) | ||||||||||
7196 | pointeeType = desugared->getPointeeType().getTypePtr(); | ||||||||||
7197 | |||||||||||
7198 | if (pointeeType && (pointeeType->isAnyPointerType() || | ||||||||||
7199 | pointeeType->isObjCObjectPointerType() || | ||||||||||
7200 | pointeeType->isMemberPointerType())) { | ||||||||||
7201 | S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel) | ||||||||||
7202 | << DiagNullabilityKind(nullability, true) | ||||||||||
7203 | << type; | ||||||||||
7204 | S.Diag(nullabilityLoc, diag::note_nullability_type_specifier) | ||||||||||
7205 | << DiagNullabilityKind(nullability, false) | ||||||||||
7206 | << type | ||||||||||
7207 | << FixItHint::CreateReplacement(nullabilityLoc, | ||||||||||
7208 | getNullabilitySpelling(nullability)); | ||||||||||
7209 | return true; | ||||||||||
7210 | } | ||||||||||
7211 | } | ||||||||||
7212 | |||||||||||
7213 | // Form the attributed type. | ||||||||||
7214 | type = state.getAttributedType( | ||||||||||
7215 | createNullabilityAttr(S.Context, attr, nullability), type, type); | ||||||||||
7216 | return false; | ||||||||||
7217 | } | ||||||||||
7218 | |||||||||||
7219 | /// Check the application of the Objective-C '__kindof' qualifier to | ||||||||||
7220 | /// the given type. | ||||||||||
7221 | static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type, | ||||||||||
7222 | ParsedAttr &attr) { | ||||||||||
7223 | Sema &S = state.getSema(); | ||||||||||
7224 | |||||||||||
7225 | if (isa<ObjCTypeParamType>(type)) { | ||||||||||
7226 | // Build the attributed type to record where __kindof occurred. | ||||||||||
7227 | type = state.getAttributedType( | ||||||||||
7228 | createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type); | ||||||||||
7229 | return false; | ||||||||||
7230 | } | ||||||||||
7231 | |||||||||||
7232 | // Find out if it's an Objective-C object or object pointer type; | ||||||||||
7233 | const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>(); | ||||||||||
7234 | const ObjCObjectType *objType = ptrType ? ptrType->getObjectType() | ||||||||||
7235 | : type->getAs<ObjCObjectType>(); | ||||||||||
7236 | |||||||||||
7237 | // If not, we can't apply __kindof. | ||||||||||
7238 | if (!objType) { | ||||||||||
7239 | // FIXME: Handle dependent types that aren't yet object types. | ||||||||||
7240 | S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject) | ||||||||||
7241 | << type; | ||||||||||
7242 | return true; | ||||||||||
7243 | } | ||||||||||
7244 | |||||||||||
7245 | // Rebuild the "equivalent" type, which pushes __kindof down into | ||||||||||
7246 | // the object type. | ||||||||||
7247 | // There is no need to apply kindof on an unqualified id type. | ||||||||||
7248 | QualType equivType = S.Context.getObjCObjectType( | ||||||||||
7249 | objType->getBaseType(), objType->getTypeArgsAsWritten(), | ||||||||||
7250 | objType->getProtocols(), | ||||||||||
7251 | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); | ||||||||||
7252 | |||||||||||
7253 | // If we started with an object pointer type, rebuild it. | ||||||||||
7254 | if (ptrType) { | ||||||||||
7255 | equivType = S.Context.getObjCObjectPointerType(equivType); | ||||||||||
7256 | if (auto nullability = type->getNullability(S.Context)) { | ||||||||||
7257 | // We create a nullability attribute from the __kindof attribute. | ||||||||||
7258 | // Make sure that will make sense. | ||||||||||
7259 | assert(attr.getAttributeSpellingListIndex() == 0 &&((void)0) | ||||||||||
7260 | "multiple spellings for __kindof?")((void)0); | ||||||||||
7261 | Attr *A = createNullabilityAttr(S.Context, attr, *nullability); | ||||||||||
7262 | A->setImplicit(true); | ||||||||||
7263 | equivType = state.getAttributedType(A, equivType, equivType); | ||||||||||
7264 | } | ||||||||||
7265 | } | ||||||||||
7266 | |||||||||||
7267 | // Build the attributed type to record where __kindof occurred. | ||||||||||
7268 | type = state.getAttributedType( | ||||||||||
7269 | createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType); | ||||||||||
7270 | return false; | ||||||||||
7271 | } | ||||||||||
7272 | |||||||||||
7273 | /// Distribute a nullability type attribute that cannot be applied to | ||||||||||
7274 | /// the type specifier to a pointer, block pointer, or member pointer | ||||||||||
7275 | /// declarator, complaining if necessary. | ||||||||||
7276 | /// | ||||||||||
7277 | /// \returns true if the nullability annotation was distributed, false | ||||||||||
7278 | /// otherwise. | ||||||||||
7279 | static bool distributeNullabilityTypeAttr(TypeProcessingState &state, | ||||||||||
7280 | QualType type, ParsedAttr &attr) { | ||||||||||
7281 | Declarator &declarator = state.getDeclarator(); | ||||||||||
7282 | |||||||||||
7283 | /// Attempt to move the attribute to the specified chunk. | ||||||||||
7284 | auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool { | ||||||||||
7285 | // If there is already a nullability attribute there, don't add | ||||||||||
7286 | // one. | ||||||||||
7287 | if (hasNullabilityAttr(chunk.getAttrs())) | ||||||||||
7288 | return false; | ||||||||||
7289 | |||||||||||
7290 | // Complain about the nullability qualifier being in the wrong | ||||||||||
7291 | // place. | ||||||||||
7292 | enum { | ||||||||||
7293 | PK_Pointer, | ||||||||||
7294 | PK_BlockPointer, | ||||||||||
7295 | PK_MemberPointer, | ||||||||||
7296 | PK_FunctionPointer, | ||||||||||
7297 | PK_MemberFunctionPointer, | ||||||||||
7298 | } pointerKind | ||||||||||
7299 | = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer | ||||||||||
7300 | : PK_Pointer) | ||||||||||
7301 | : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer | ||||||||||
7302 | : inFunction? PK_MemberFunctionPointer : PK_MemberPointer; | ||||||||||
7303 | |||||||||||
7304 | auto diag = state.getSema().Diag(attr.getLoc(), | ||||||||||
7305 | diag::warn_nullability_declspec) | ||||||||||
7306 | << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()), | ||||||||||
7307 | attr.isContextSensitiveKeywordAttribute()) | ||||||||||
7308 | << type | ||||||||||
7309 | << static_cast<unsigned>(pointerKind); | ||||||||||
7310 | |||||||||||
7311 | // FIXME: MemberPointer chunks don't carry the location of the *. | ||||||||||
7312 | if (chunk.Kind != DeclaratorChunk::MemberPointer) { | ||||||||||
7313 | diag << FixItHint::CreateRemoval(attr.getLoc()) | ||||||||||
7314 | << FixItHint::CreateInsertion( | ||||||||||
7315 | state.getSema().getPreprocessor().getLocForEndOfToken( | ||||||||||
7316 | chunk.Loc), | ||||||||||
7317 | " " + attr.getAttrName()->getName().str() + " "); | ||||||||||
7318 | } | ||||||||||
7319 | |||||||||||
7320 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | ||||||||||
7321 | chunk.getAttrs()); | ||||||||||
7322 | return true; | ||||||||||
7323 | }; | ||||||||||
7324 | |||||||||||
7325 | // Move it to the outermost pointer, member pointer, or block | ||||||||||
7326 | // pointer declarator. | ||||||||||
7327 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | ||||||||||
7328 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | ||||||||||
7329 | switch (chunk.Kind) { | ||||||||||
7330 | case DeclaratorChunk::Pointer: | ||||||||||
7331 | case DeclaratorChunk::BlockPointer: | ||||||||||
7332 | case DeclaratorChunk::MemberPointer: | ||||||||||
7333 | return moveToChunk(chunk, false); | ||||||||||
7334 | |||||||||||
7335 | case DeclaratorChunk::Paren: | ||||||||||
7336 | case DeclaratorChunk::Array: | ||||||||||
7337 | continue; | ||||||||||
7338 | |||||||||||
7339 | case DeclaratorChunk::Function: | ||||||||||
7340 | // Try to move past the return type to a function/block/member | ||||||||||
7341 | // function pointer. | ||||||||||
7342 | if (DeclaratorChunk *dest = maybeMovePastReturnType( | ||||||||||
7343 | declarator, i, | ||||||||||
7344 | /*onlyBlockPointers=*/false)) { | ||||||||||
7345 | return moveToChunk(*dest, true); | ||||||||||
7346 | } | ||||||||||
7347 | |||||||||||
7348 | return false; | ||||||||||
7349 | |||||||||||
7350 | // Don't walk through these. | ||||||||||
7351 | case DeclaratorChunk::Reference: | ||||||||||
7352 | case DeclaratorChunk::Pipe: | ||||||||||
7353 | return false; | ||||||||||
7354 | } | ||||||||||
7355 | } | ||||||||||
7356 | |||||||||||
7357 | return false; | ||||||||||
7358 | } | ||||||||||
7359 | |||||||||||
7360 | static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) { | ||||||||||
7361 | assert(!Attr.isInvalid())((void)0); | ||||||||||
7362 | switch (Attr.getKind()) { | ||||||||||
7363 | default: | ||||||||||
7364 | llvm_unreachable("not a calling convention attribute")__builtin_unreachable(); | ||||||||||
7365 | case ParsedAttr::AT_CDecl: | ||||||||||
7366 | return createSimpleAttr<CDeclAttr>(Ctx, Attr); | ||||||||||
7367 | case ParsedAttr::AT_FastCall: | ||||||||||
7368 | return createSimpleAttr<FastCallAttr>(Ctx, Attr); | ||||||||||
7369 | case ParsedAttr::AT_StdCall: | ||||||||||
7370 | return createSimpleAttr<StdCallAttr>(Ctx, Attr); | ||||||||||
7371 | case ParsedAttr::AT_ThisCall: | ||||||||||
7372 | return createSimpleAttr<ThisCallAttr>(Ctx, Attr); | ||||||||||
7373 | case ParsedAttr::AT_RegCall: | ||||||||||
7374 | return createSimpleAttr<RegCallAttr>(Ctx, Attr); | ||||||||||
7375 | case ParsedAttr::AT_Pascal: | ||||||||||
7376 | return createSimpleAttr<PascalAttr>(Ctx, Attr); | ||||||||||
7377 | case ParsedAttr::AT_SwiftCall: | ||||||||||
7378 | return createSimpleAttr<SwiftCallAttr>(Ctx, Attr); | ||||||||||
7379 | case ParsedAttr::AT_SwiftAsyncCall: | ||||||||||
7380 | return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr); | ||||||||||
7381 | case ParsedAttr::AT_VectorCall: | ||||||||||
7382 | return createSimpleAttr<VectorCallAttr>(Ctx, Attr); | ||||||||||
7383 | case ParsedAttr::AT_AArch64VectorPcs: | ||||||||||
7384 | return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr); | ||||||||||
7385 | case ParsedAttr::AT_Pcs: { | ||||||||||
7386 | // The attribute may have had a fixit applied where we treated an | ||||||||||
7387 | // identifier as a string literal. The contents of the string are valid, | ||||||||||
7388 | // but the form may not be. | ||||||||||
7389 | StringRef Str; | ||||||||||
7390 | if (Attr.isArgExpr(0)) | ||||||||||
7391 | Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString(); | ||||||||||
7392 | else | ||||||||||
7393 | Str = Attr.getArgAsIdent(0)->Ident->getName(); | ||||||||||
7394 | PcsAttr::PCSType Type; | ||||||||||
7395 | if (!PcsAttr::ConvertStrToPCSType(Str, Type)) | ||||||||||
7396 | llvm_unreachable("already validated the attribute")__builtin_unreachable(); | ||||||||||
7397 | return ::new (Ctx) PcsAttr(Ctx, Attr, Type); | ||||||||||
7398 | } | ||||||||||
7399 | case ParsedAttr::AT_IntelOclBicc: | ||||||||||
7400 | return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr); | ||||||||||
7401 | case ParsedAttr::AT_MSABI: | ||||||||||
7402 | return createSimpleAttr<MSABIAttr>(Ctx, Attr); | ||||||||||
7403 | case ParsedAttr::AT_SysVABI: | ||||||||||
7404 | return createSimpleAttr<SysVABIAttr>(Ctx, Attr); | ||||||||||
7405 | case ParsedAttr::AT_PreserveMost: | ||||||||||
7406 | return createSimpleAttr<PreserveMostAttr>(Ctx, Attr); | ||||||||||
7407 | case ParsedAttr::AT_PreserveAll: | ||||||||||
7408 | return createSimpleAttr<PreserveAllAttr>(Ctx, Attr); | ||||||||||
7409 | } | ||||||||||
7410 | llvm_unreachable("unexpected attribute kind!")__builtin_unreachable(); | ||||||||||
7411 | } | ||||||||||
7412 | |||||||||||
7413 | /// Process an individual function attribute. Returns true to | ||||||||||
7414 | /// indicate that the attribute was handled, false if it wasn't. | ||||||||||
7415 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | ||||||||||
7416 | QualType &type) { | ||||||||||
7417 | Sema &S = state.getSema(); | ||||||||||
7418 | |||||||||||
7419 | FunctionTypeUnwrapper unwrapped(S, type); | ||||||||||
7420 | |||||||||||
7421 | if (attr.getKind() == ParsedAttr::AT_NoReturn) { | ||||||||||
7422 | if (S.CheckAttrNoArgs(attr)) | ||||||||||
7423 | return true; | ||||||||||
7424 | |||||||||||
7425 | // Delay if this is not a function type. | ||||||||||
7426 | if (!unwrapped.isFunctionType()) | ||||||||||
7427 | return false; | ||||||||||
7428 | |||||||||||
7429 | // Otherwise we can process right away. | ||||||||||
7430 | FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true); | ||||||||||
7431 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||||||||
7432 | return true; | ||||||||||
7433 | } | ||||||||||
7434 | |||||||||||
7435 | if (attr.getKind() == ParsedAttr::AT_CmseNSCall) { | ||||||||||
7436 | // Delay if this is not a function type. | ||||||||||
7437 | if (!unwrapped.isFunctionType()) | ||||||||||
7438 | return false; | ||||||||||
7439 | |||||||||||
7440 | // Ignore if we don't have CMSE enabled. | ||||||||||
7441 | if (!S.getLangOpts().Cmse) { | ||||||||||
7442 | S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr; | ||||||||||
7443 | attr.setInvalid(); | ||||||||||
7444 | return true; | ||||||||||
7445 | } | ||||||||||
7446 | |||||||||||
7447 | // Otherwise we can process right away. | ||||||||||
7448 | FunctionType::ExtInfo EI = | ||||||||||
7449 | unwrapped.get()->getExtInfo().withCmseNSCall(true); | ||||||||||
7450 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||||||||
7451 | return true; | ||||||||||
7452 | } | ||||||||||
7453 | |||||||||||
7454 | // ns_returns_retained is not always a type attribute, but if we got | ||||||||||
7455 | // here, we're treating it as one right now. | ||||||||||
7456 | if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) { | ||||||||||
7457 | if (attr.getNumArgs()) return true; | ||||||||||
7458 | |||||||||||
7459 | // Delay if this is not a function type. | ||||||||||
7460 | if (!unwrapped.isFunctionType()) | ||||||||||
7461 | return false; | ||||||||||
7462 | |||||||||||
7463 | // Check whether the return type is reasonable. | ||||||||||
7464 | if (S.checkNSReturnsRetainedReturnType(attr.getLoc(), | ||||||||||
7465 | unwrapped.get()->getReturnType())) | ||||||||||
7466 | return true; | ||||||||||
7467 | |||||||||||
7468 | // Only actually change the underlying type in ARC builds. | ||||||||||
7469 | QualType origType = type; | ||||||||||
7470 | if (state.getSema().getLangOpts().ObjCAutoRefCount) { | ||||||||||
7471 | FunctionType::ExtInfo EI | ||||||||||
7472 | = unwrapped.get()->getExtInfo().withProducesResult(true); | ||||||||||
7473 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||||||||
7474 | } | ||||||||||
7475 | type = state.getAttributedType( | ||||||||||
7476 | createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr), | ||||||||||
7477 | origType, type); | ||||||||||
7478 | return true; | ||||||||||
7479 | } | ||||||||||
7480 | |||||||||||
7481 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) { | ||||||||||
7482 | if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr)) | ||||||||||
7483 | return true; | ||||||||||
7484 | |||||||||||
7485 | // Delay if this is not a function type. | ||||||||||
7486 | if (!unwrapped.isFunctionType()) | ||||||||||
7487 | return false; | ||||||||||
7488 | |||||||||||
7489 | FunctionType::ExtInfo EI = | ||||||||||
7490 | unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true); | ||||||||||
7491 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||||||||
7492 | return true; | ||||||||||
7493 | } | ||||||||||
7494 | |||||||||||
7495 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) { | ||||||||||
7496 | if (!S.getLangOpts().CFProtectionBranch) { | ||||||||||
7497 | S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored); | ||||||||||
7498 | attr.setInvalid(); | ||||||||||
7499 | return true; | ||||||||||
7500 | } | ||||||||||
7501 | |||||||||||
7502 | if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr)) | ||||||||||
7503 | return true; | ||||||||||
7504 | |||||||||||
7505 | // If this is not a function type, warning will be asserted by subject | ||||||||||
7506 | // check. | ||||||||||
7507 | if (!unwrapped.isFunctionType()) | ||||||||||
7508 | return true; | ||||||||||
7509 | |||||||||||
7510 | FunctionType::ExtInfo EI = | ||||||||||
7511 | unwrapped.get()->getExtInfo().withNoCfCheck(true); | ||||||||||
7512 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||||||||
7513 | return true; | ||||||||||
7514 | } | ||||||||||
7515 | |||||||||||
7516 | if (attr.getKind() == ParsedAttr::AT_Regparm) { | ||||||||||
7517 | unsigned value; | ||||||||||
7518 | if (S.CheckRegparmAttr(attr, value)) | ||||||||||
7519 | return true; | ||||||||||
7520 | |||||||||||
7521 | // Delay if this is not a function type. | ||||||||||
7522 | if (!unwrapped.isFunctionType()) | ||||||||||
7523 | return false; | ||||||||||
7524 | |||||||||||
7525 | // Diagnose regparm with fastcall. | ||||||||||
7526 | const FunctionType *fn = unwrapped.get(); | ||||||||||
7527 | CallingConv CC = fn->getCallConv(); | ||||||||||
7528 | if (CC == CC_X86FastCall) { | ||||||||||
7529 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | ||||||||||
7530 | << FunctionType::getNameForCallConv(CC) | ||||||||||
7531 | << "regparm"; | ||||||||||
7532 | attr.setInvalid(); | ||||||||||
7533 | return true; | ||||||||||
7534 | } | ||||||||||
7535 | |||||||||||
7536 | FunctionType::ExtInfo EI = | ||||||||||
7537 | unwrapped.get()->getExtInfo().withRegParm(value); | ||||||||||
7538 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||||||||
7539 | return true; | ||||||||||
7540 | } | ||||||||||
7541 | |||||||||||
7542 | if (attr.getKind() == ParsedAttr::AT_NoThrow) { | ||||||||||
7543 | // Delay if this is not a function type. | ||||||||||
7544 | if (!unwrapped.isFunctionType()) | ||||||||||
7545 | return false; | ||||||||||
7546 | |||||||||||
7547 | if (S.CheckAttrNoArgs(attr)) { | ||||||||||
7548 | attr.setInvalid(); | ||||||||||
7549 | return true; | ||||||||||
7550 | } | ||||||||||
7551 | |||||||||||
7552 | // Otherwise we can process right away. | ||||||||||
7553 | auto *Proto = unwrapped.get()->castAs<FunctionProtoType>(); | ||||||||||
7554 | |||||||||||
7555 | // MSVC ignores nothrow if it is in conflict with an explicit exception | ||||||||||
7556 | // specification. | ||||||||||
7557 | if (Proto->hasExceptionSpec()) { | ||||||||||
7558 | switch (Proto->getExceptionSpecType()) { | ||||||||||
7559 | case EST_None: | ||||||||||
7560 | llvm_unreachable("This doesn't have an exception spec!")__builtin_unreachable(); | ||||||||||
7561 | |||||||||||
7562 | case EST_DynamicNone: | ||||||||||
7563 | case EST_BasicNoexcept: | ||||||||||
7564 | case EST_NoexceptTrue: | ||||||||||
7565 | case EST_NoThrow: | ||||||||||
7566 | // Exception spec doesn't conflict with nothrow, so don't warn. | ||||||||||
7567 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
7568 | case EST_Unparsed: | ||||||||||
7569 | case EST_Uninstantiated: | ||||||||||
7570 | case EST_DependentNoexcept: | ||||||||||
7571 | case EST_Unevaluated: | ||||||||||
7572 | // We don't have enough information to properly determine if there is a | ||||||||||
7573 | // conflict, so suppress the warning. | ||||||||||
7574 | break; | ||||||||||
7575 | case EST_Dynamic: | ||||||||||
7576 | case EST_MSAny: | ||||||||||
7577 | case EST_NoexceptFalse: | ||||||||||
7578 | S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored); | ||||||||||
7579 | break; | ||||||||||
7580 | } | ||||||||||
7581 | return true; | ||||||||||
7582 | } | ||||||||||
7583 | |||||||||||
7584 | type = unwrapped.wrap( | ||||||||||
7585 | S, S.Context | ||||||||||
7586 | .getFunctionTypeWithExceptionSpec( | ||||||||||
7587 | QualType{Proto, 0}, | ||||||||||
7588 | FunctionProtoType::ExceptionSpecInfo{EST_NoThrow}) | ||||||||||
7589 | ->getAs<FunctionType>()); | ||||||||||
7590 | return true; | ||||||||||
7591 | } | ||||||||||
7592 | |||||||||||
7593 | // Delay if the type didn't work out to a function. | ||||||||||
7594 | if (!unwrapped.isFunctionType()) return false; | ||||||||||
7595 | |||||||||||
7596 | // Otherwise, a calling convention. | ||||||||||
7597 | CallingConv CC; | ||||||||||
7598 | if (S.CheckCallingConvAttr(attr, CC)) | ||||||||||
7599 | return true; | ||||||||||
7600 | |||||||||||
7601 | const FunctionType *fn = unwrapped.get(); | ||||||||||
7602 | CallingConv CCOld = fn->getCallConv(); | ||||||||||
7603 | Attr *CCAttr = getCCTypeAttr(S.Context, attr); | ||||||||||
7604 | |||||||||||
7605 | if (CCOld != CC) { | ||||||||||
7606 | // Error out on when there's already an attribute on the type | ||||||||||
7607 | // and the CCs don't match. | ||||||||||
7608 | if (S.getCallingConvAttributedType(type)) { | ||||||||||
7609 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | ||||||||||
7610 | << FunctionType::getNameForCallConv(CC) | ||||||||||
7611 | << FunctionType::getNameForCallConv(CCOld); | ||||||||||
7612 | attr.setInvalid(); | ||||||||||
7613 | return true; | ||||||||||
7614 | } | ||||||||||
7615 | } | ||||||||||
7616 | |||||||||||
7617 | // Diagnose use of variadic functions with calling conventions that | ||||||||||
7618 | // don't support them (e.g. because they're callee-cleanup). | ||||||||||
7619 | // We delay warning about this on unprototyped function declarations | ||||||||||
7620 | // until after redeclaration checking, just in case we pick up a | ||||||||||
7621 | // prototype that way. And apparently we also "delay" warning about | ||||||||||
7622 | // unprototyped function types in general, despite not necessarily having | ||||||||||
7623 | // much ability to diagnose it later. | ||||||||||
7624 | if (!supportsVariadicCall(CC)) { | ||||||||||
7625 | const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn); | ||||||||||
7626 | if (FnP && FnP->isVariadic()) { | ||||||||||
7627 | // stdcall and fastcall are ignored with a warning for GCC and MS | ||||||||||
7628 | // compatibility. | ||||||||||
7629 | if (CC == CC_X86StdCall || CC == CC_X86FastCall) | ||||||||||
7630 | return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported) | ||||||||||
7631 | << FunctionType::getNameForCallConv(CC) | ||||||||||
7632 | << (int)Sema::CallingConventionIgnoredReason::VariadicFunction; | ||||||||||
7633 | |||||||||||
7634 | attr.setInvalid(); | ||||||||||
7635 | return S.Diag(attr.getLoc(), diag::err_cconv_varargs) | ||||||||||
7636 | << FunctionType::getNameForCallConv(CC); | ||||||||||
7637 | } | ||||||||||
7638 | } | ||||||||||
7639 | |||||||||||
7640 | // Also diagnose fastcall with regparm. | ||||||||||
7641 | if (CC == CC_X86FastCall && fn->getHasRegParm()) { | ||||||||||
7642 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | ||||||||||
7643 | << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall); | ||||||||||
7644 | attr.setInvalid(); | ||||||||||
7645 | return true; | ||||||||||
7646 | } | ||||||||||
7647 | |||||||||||
7648 | // Modify the CC from the wrapped function type, wrap it all back, and then | ||||||||||
7649 | // wrap the whole thing in an AttributedType as written. The modified type | ||||||||||
7650 | // might have a different CC if we ignored the attribute. | ||||||||||
7651 | QualType Equivalent; | ||||||||||
7652 | if (CCOld == CC) { | ||||||||||
7653 | Equivalent = type; | ||||||||||
7654 | } else { | ||||||||||
7655 | auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC); | ||||||||||
7656 | Equivalent = | ||||||||||
7657 | unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | ||||||||||
7658 | } | ||||||||||
7659 | type = state.getAttributedType(CCAttr, type, Equivalent); | ||||||||||
7660 | return true; | ||||||||||
7661 | } | ||||||||||
7662 | |||||||||||
7663 | bool Sema::hasExplicitCallingConv(QualType T) { | ||||||||||
7664 | const AttributedType *AT; | ||||||||||
7665 | |||||||||||
7666 | // Stop if we'd be stripping off a typedef sugar node to reach the | ||||||||||
7667 | // AttributedType. | ||||||||||
7668 | while ((AT = T->getAs<AttributedType>()) && | ||||||||||
7669 | AT->getAs<TypedefType>() == T->getAs<TypedefType>()) { | ||||||||||
7670 | if (AT->isCallingConv()) | ||||||||||
7671 | return true; | ||||||||||
7672 | T = AT->getModifiedType(); | ||||||||||
7673 | } | ||||||||||
7674 | return false; | ||||||||||
7675 | } | ||||||||||
7676 | |||||||||||
7677 | void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, | ||||||||||
7678 | SourceLocation Loc) { | ||||||||||
7679 | FunctionTypeUnwrapper Unwrapped(*this, T); | ||||||||||
7680 | const FunctionType *FT = Unwrapped.get(); | ||||||||||
7681 | bool IsVariadic = (isa<FunctionProtoType>(FT) && | ||||||||||
7682 | cast<FunctionProtoType>(FT)->isVariadic()); | ||||||||||
7683 | CallingConv CurCC = FT->getCallConv(); | ||||||||||
7684 | CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic); | ||||||||||
7685 | |||||||||||
7686 | if (CurCC == ToCC) | ||||||||||
7687 | return; | ||||||||||
7688 | |||||||||||
7689 | // MS compiler ignores explicit calling convention attributes on structors. We | ||||||||||
7690 | // should do the same. | ||||||||||
7691 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) { | ||||||||||
7692 | // Issue a warning on ignored calling convention -- except of __stdcall. | ||||||||||
7693 | // Again, this is what MS compiler does. | ||||||||||
7694 | if (CurCC != CC_X86StdCall) | ||||||||||
7695 | Diag(Loc, diag::warn_cconv_unsupported) | ||||||||||
7696 | << FunctionType::getNameForCallConv(CurCC) | ||||||||||
7697 | << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor; | ||||||||||
7698 | // Default adjustment. | ||||||||||
7699 | } else { | ||||||||||
7700 | // Only adjust types with the default convention. For example, on Windows | ||||||||||
7701 | // we should adjust a __cdecl type to __thiscall for instance methods, and a | ||||||||||
7702 | // __thiscall type to __cdecl for static methods. | ||||||||||
7703 | CallingConv DefaultCC = | ||||||||||
7704 | Context.getDefaultCallingConvention(IsVariadic, IsStatic); | ||||||||||
7705 | |||||||||||
7706 | if (CurCC != DefaultCC || DefaultCC == ToCC) | ||||||||||
7707 | return; | ||||||||||
7708 | |||||||||||
7709 | if (hasExplicitCallingConv(T)) | ||||||||||
7710 | return; | ||||||||||
7711 | } | ||||||||||
7712 | |||||||||||
7713 | FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC)); | ||||||||||
7714 | QualType Wrapped = Unwrapped.wrap(*this, FT); | ||||||||||
7715 | T = Context.getAdjustedType(T, Wrapped); | ||||||||||
7716 | } | ||||||||||
7717 | |||||||||||
7718 | /// HandleVectorSizeAttribute - this attribute is only applicable to integral | ||||||||||
7719 | /// and float scalars, although arrays, pointers, and function return values are | ||||||||||
7720 | /// allowed in conjunction with this construct. Aggregates with this attribute | ||||||||||
7721 | /// are invalid, even if they are of the same size as a corresponding scalar. | ||||||||||
7722 | /// The raw attribute should contain precisely 1 argument, the vector size for | ||||||||||
7723 | /// the variable, measured in bytes. If curType and rawAttr are well formed, | ||||||||||
7724 | /// this routine will return a new vector type. | ||||||||||
7725 | static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr, | ||||||||||
7726 | Sema &S) { | ||||||||||
7727 | // Check the attribute arguments. | ||||||||||
7728 | if (Attr.getNumArgs() != 1) { | ||||||||||
7729 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | ||||||||||
7730 | << 1; | ||||||||||
7731 | Attr.setInvalid(); | ||||||||||
7732 | return; | ||||||||||
7733 | } | ||||||||||
7734 | |||||||||||
7735 | Expr *SizeExpr = Attr.getArgAsExpr(0); | ||||||||||
7736 | QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc()); | ||||||||||
7737 | if (!T.isNull()) | ||||||||||
7738 | CurType = T; | ||||||||||
7739 | else | ||||||||||
7740 | Attr.setInvalid(); | ||||||||||
7741 | } | ||||||||||
7742 | |||||||||||
7743 | /// Process the OpenCL-like ext_vector_type attribute when it occurs on | ||||||||||
7744 | /// a type. | ||||||||||
7745 | static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, | ||||||||||
7746 | Sema &S) { | ||||||||||
7747 | // check the attribute arguments. | ||||||||||
7748 | if (Attr.getNumArgs() != 1) { | ||||||||||
7749 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | ||||||||||
7750 | << 1; | ||||||||||
7751 | return; | ||||||||||
7752 | } | ||||||||||
7753 | |||||||||||
7754 | Expr *SizeExpr = Attr.getArgAsExpr(0); | ||||||||||
7755 | QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc()); | ||||||||||
7756 | if (!T.isNull()) | ||||||||||
7757 | CurType = T; | ||||||||||
7758 | } | ||||||||||
7759 | |||||||||||
7760 | static bool isPermittedNeonBaseType(QualType &Ty, | ||||||||||
7761 | VectorType::VectorKind VecKind, Sema &S) { | ||||||||||
7762 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | ||||||||||
7763 | if (!BTy) | ||||||||||
7764 | return false; | ||||||||||
7765 | |||||||||||
7766 | llvm::Triple Triple = S.Context.getTargetInfo().getTriple(); | ||||||||||
7767 | |||||||||||
7768 | // Signed poly is mathematically wrong, but has been baked into some ABIs by | ||||||||||
7769 | // now. | ||||||||||
7770 | bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 || | ||||||||||
7771 | Triple.getArch() == llvm::Triple::aarch64_32 || | ||||||||||
7772 | Triple.getArch() == llvm::Triple::aarch64_be; | ||||||||||
7773 | if (VecKind == VectorType::NeonPolyVector) { | ||||||||||
7774 | if (IsPolyUnsigned) { | ||||||||||
7775 | // AArch64 polynomial vectors are unsigned. | ||||||||||
7776 | return BTy->getKind() == BuiltinType::UChar || | ||||||||||
7777 | BTy->getKind() == BuiltinType::UShort || | ||||||||||
7778 | BTy->getKind() == BuiltinType::ULong || | ||||||||||
7779 | BTy->getKind() == BuiltinType::ULongLong; | ||||||||||
7780 | } else { | ||||||||||
7781 | // AArch32 polynomial vectors are signed. | ||||||||||
7782 | return BTy->getKind() == BuiltinType::SChar || | ||||||||||
7783 | BTy->getKind() == BuiltinType::Short || | ||||||||||
7784 | BTy->getKind() == BuiltinType::LongLong; | ||||||||||
7785 | } | ||||||||||
7786 | } | ||||||||||
7787 | |||||||||||
7788 | // Non-polynomial vector types: the usual suspects are allowed, as well as | ||||||||||
7789 | // float64_t on AArch64. | ||||||||||
7790 | if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) && | ||||||||||
7791 | BTy->getKind() == BuiltinType::Double) | ||||||||||
7792 | return true; | ||||||||||
7793 | |||||||||||
7794 | return BTy->getKind() == BuiltinType::SChar || | ||||||||||
7795 | BTy->getKind() == BuiltinType::UChar || | ||||||||||
7796 | BTy->getKind() == BuiltinType::Short || | ||||||||||
7797 | BTy->getKind() == BuiltinType::UShort || | ||||||||||
7798 | BTy->getKind() == BuiltinType::Int || | ||||||||||
7799 | BTy->getKind() == BuiltinType::UInt || | ||||||||||
7800 | BTy->getKind() == BuiltinType::Long || | ||||||||||
7801 | BTy->getKind() == BuiltinType::ULong || | ||||||||||
7802 | BTy->getKind() == BuiltinType::LongLong || | ||||||||||
7803 | BTy->getKind() == BuiltinType::ULongLong || | ||||||||||
7804 | BTy->getKind() == BuiltinType::Float || | ||||||||||
7805 | BTy->getKind() == BuiltinType::Half || | ||||||||||
7806 | BTy->getKind() == BuiltinType::BFloat16; | ||||||||||
7807 | } | ||||||||||
7808 | |||||||||||
7809 | static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr, | ||||||||||
7810 | llvm::APSInt &Result) { | ||||||||||
7811 | const auto *AttrExpr = Attr.getArgAsExpr(0); | ||||||||||
7812 | if (!AttrExpr->isTypeDependent() && !AttrExpr->isValueDependent()) { | ||||||||||
7813 | if (Optional<llvm::APSInt> Res = | ||||||||||
7814 | AttrExpr->getIntegerConstantExpr(S.Context)) { | ||||||||||
7815 | Result = *Res; | ||||||||||
7816 | return true; | ||||||||||
7817 | } | ||||||||||
7818 | } | ||||||||||
7819 | S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) | ||||||||||
7820 | << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange(); | ||||||||||
7821 | Attr.setInvalid(); | ||||||||||
7822 | return false; | ||||||||||
7823 | } | ||||||||||
7824 | |||||||||||
7825 | /// HandleNeonVectorTypeAttr - The "neon_vector_type" and | ||||||||||
7826 | /// "neon_polyvector_type" attributes are used to create vector types that | ||||||||||
7827 | /// are mangled according to ARM's ABI. Otherwise, these types are identical | ||||||||||
7828 | /// to those created with the "vector_size" attribute. Unlike "vector_size" | ||||||||||
7829 | /// the argument to these Neon attributes is the number of vector elements, | ||||||||||
7830 | /// not the vector size in bytes. The vector width and element type must | ||||||||||
7831 | /// match one of the standard Neon vector types. | ||||||||||
7832 | static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, | ||||||||||
7833 | Sema &S, VectorType::VectorKind VecKind) { | ||||||||||
7834 | // Target must have NEON (or MVE, whose vectors are similar enough | ||||||||||
7835 | // not to need a separate attribute) | ||||||||||
7836 | if (!S.Context.getTargetInfo().hasFeature("neon") && | ||||||||||
7837 | !S.Context.getTargetInfo().hasFeature("mve")) { | ||||||||||
7838 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) | ||||||||||
7839 | << Attr << "'neon' or 'mve'"; | ||||||||||
7840 | Attr.setInvalid(); | ||||||||||
7841 | return; | ||||||||||
7842 | } | ||||||||||
7843 | // Check the attribute arguments. | ||||||||||
7844 | if (Attr.getNumArgs() != 1) { | ||||||||||
7845 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | ||||||||||
7846 | << 1; | ||||||||||
7847 | Attr.setInvalid(); | ||||||||||
7848 | return; | ||||||||||
7849 | } | ||||||||||
7850 | // The number of elements must be an ICE. | ||||||||||
7851 | llvm::APSInt numEltsInt(32); | ||||||||||
7852 | if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt)) | ||||||||||
7853 | return; | ||||||||||
7854 | |||||||||||
7855 | // Only certain element types are supported for Neon vectors. | ||||||||||
7856 | if (!isPermittedNeonBaseType(CurType, VecKind, S)) { | ||||||||||
7857 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType; | ||||||||||
7858 | Attr.setInvalid(); | ||||||||||
7859 | return; | ||||||||||
7860 | } | ||||||||||
7861 | |||||||||||
7862 | // The total size of the vector must be 64 or 128 bits. | ||||||||||
7863 | unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType)); | ||||||||||
7864 | unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue()); | ||||||||||
7865 | unsigned vecSize = typeSize * numElts; | ||||||||||
7866 | if (vecSize != 64 && vecSize != 128) { | ||||||||||
7867 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType; | ||||||||||
7868 | Attr.setInvalid(); | ||||||||||
7869 | return; | ||||||||||
7870 | } | ||||||||||
7871 | |||||||||||
7872 | CurType = S.Context.getVectorType(CurType, numElts, VecKind); | ||||||||||
7873 | } | ||||||||||
7874 | |||||||||||
7875 | /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is | ||||||||||
7876 | /// used to create fixed-length versions of sizeless SVE types defined by | ||||||||||
7877 | /// the ACLE, such as svint32_t and svbool_t. | ||||||||||
7878 | static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr, | ||||||||||
7879 | Sema &S) { | ||||||||||
7880 | // Target must have SVE. | ||||||||||
7881 | if (!S.Context.getTargetInfo().hasFeature("sve")) { | ||||||||||
7882 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'"; | ||||||||||
7883 | Attr.setInvalid(); | ||||||||||
7884 | return; | ||||||||||
7885 | } | ||||||||||
7886 | |||||||||||
7887 | // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified. | ||||||||||
7888 | if (!S.getLangOpts().ArmSveVectorBits) { | ||||||||||
7889 | S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported) | ||||||||||
7890 | << Attr; | ||||||||||
7891 | Attr.setInvalid(); | ||||||||||
7892 | return; | ||||||||||
7893 | } | ||||||||||
7894 | |||||||||||
7895 | // Check the attribute arguments. | ||||||||||
7896 | if (Attr.getNumArgs() != 1) { | ||||||||||
7897 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | ||||||||||
7898 | << Attr << 1; | ||||||||||
7899 | Attr.setInvalid(); | ||||||||||
7900 | return; | ||||||||||
7901 | } | ||||||||||
7902 | |||||||||||
7903 | // The vector size must be an integer constant expression. | ||||||||||
7904 | llvm::APSInt SveVectorSizeInBits(32); | ||||||||||
7905 | if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits)) | ||||||||||
7906 | return; | ||||||||||
7907 | |||||||||||
7908 | unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue()); | ||||||||||
7909 | |||||||||||
7910 | // The attribute vector size must match -msve-vector-bits. | ||||||||||
7911 | if (VecSize != S.getLangOpts().ArmSveVectorBits) { | ||||||||||
7912 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size) | ||||||||||
7913 | << VecSize << S.getLangOpts().ArmSveVectorBits; | ||||||||||
7914 | Attr.setInvalid(); | ||||||||||
7915 | return; | ||||||||||
7916 | } | ||||||||||
7917 | |||||||||||
7918 | // Attribute can only be attached to a single SVE vector or predicate type. | ||||||||||
7919 | if (!CurType->isVLSTBuiltinType()) { | ||||||||||
7920 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type) | ||||||||||
7921 | << Attr << CurType; | ||||||||||
7922 | Attr.setInvalid(); | ||||||||||
7923 | return; | ||||||||||
7924 | } | ||||||||||
7925 | |||||||||||
7926 | const auto *BT = CurType->castAs<BuiltinType>(); | ||||||||||
7927 | |||||||||||
7928 | QualType EltType = CurType->getSveEltType(S.Context); | ||||||||||
7929 | unsigned TypeSize = S.Context.getTypeSize(EltType); | ||||||||||
7930 | VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector; | ||||||||||
7931 | if (BT->getKind() == BuiltinType::SveBool) { | ||||||||||
7932 | // Predicates are represented as i8. | ||||||||||
7933 | VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth(); | ||||||||||
7934 | VecKind = VectorType::SveFixedLengthPredicateVector; | ||||||||||
7935 | } else | ||||||||||
7936 | VecSize /= TypeSize; | ||||||||||
7937 | CurType = S.Context.getVectorType(EltType, VecSize, VecKind); | ||||||||||
7938 | } | ||||||||||
7939 | |||||||||||
7940 | static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State, | ||||||||||
7941 | QualType &CurType, | ||||||||||
7942 | ParsedAttr &Attr) { | ||||||||||
7943 | const VectorType *VT = dyn_cast<VectorType>(CurType); | ||||||||||
7944 | if (!VT || VT->getVectorKind() != VectorType::NeonVector) { | ||||||||||
7945 | State.getSema().Diag(Attr.getLoc(), | ||||||||||
7946 | diag::err_attribute_arm_mve_polymorphism); | ||||||||||
7947 | Attr.setInvalid(); | ||||||||||
7948 | return; | ||||||||||
7949 | } | ||||||||||
7950 | |||||||||||
7951 | CurType = | ||||||||||
7952 | State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>( | ||||||||||
7953 | State.getSema().Context, Attr), | ||||||||||
7954 | CurType, CurType); | ||||||||||
7955 | } | ||||||||||
7956 | |||||||||||
7957 | /// Handle OpenCL Access Qualifier Attribute. | ||||||||||
7958 | static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr, | ||||||||||
7959 | Sema &S) { | ||||||||||
7960 | // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type. | ||||||||||
7961 | if (!(CurType->isImageType() || CurType->isPipeType())) { | ||||||||||
7962 | S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier); | ||||||||||
7963 | Attr.setInvalid(); | ||||||||||
7964 | return; | ||||||||||
7965 | } | ||||||||||
7966 | |||||||||||
7967 | if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) { | ||||||||||
7968 | QualType BaseTy = TypedefTy->desugar(); | ||||||||||
7969 | |||||||||||
7970 | std::string PrevAccessQual; | ||||||||||
7971 | if (BaseTy->isPipeType()) { | ||||||||||
7972 | if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) { | ||||||||||
7973 | OpenCLAccessAttr *Attr = | ||||||||||
7974 | TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>(); | ||||||||||
7975 | PrevAccessQual = Attr->getSpelling(); | ||||||||||
7976 | } else { | ||||||||||
7977 | PrevAccessQual = "read_only"; | ||||||||||
7978 | } | ||||||||||
7979 | } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) { | ||||||||||
7980 | |||||||||||
7981 | switch (ImgType->getKind()) { | ||||||||||
7982 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | ||||||||||
7983 | case BuiltinType::Id: \ | ||||||||||
7984 | PrevAccessQual = #Access; \ | ||||||||||
7985 | break; | ||||||||||
7986 | #include "clang/Basic/OpenCLImageTypes.def" | ||||||||||
7987 | default: | ||||||||||
7988 | llvm_unreachable("Unable to find corresponding image type.")__builtin_unreachable(); | ||||||||||
7989 | } | ||||||||||
7990 | } else { | ||||||||||
7991 | llvm_unreachable("unexpected type")__builtin_unreachable(); | ||||||||||
7992 | } | ||||||||||
7993 | StringRef AttrName = Attr.getAttrName()->getName(); | ||||||||||
7994 | if (PrevAccessQual == AttrName.ltrim("_")) { | ||||||||||
7995 | // Duplicated qualifiers | ||||||||||
7996 | S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec) | ||||||||||
7997 | << AttrName << Attr.getRange(); | ||||||||||
7998 | } else { | ||||||||||
7999 | // Contradicting qualifiers | ||||||||||
8000 | S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers); | ||||||||||
8001 | } | ||||||||||
8002 | |||||||||||
8003 | S.Diag(TypedefTy->getDecl()->getBeginLoc(), | ||||||||||
8004 | diag::note_opencl_typedef_access_qualifier) << PrevAccessQual; | ||||||||||
8005 | } else if (CurType->isPipeType()) { | ||||||||||
8006 | if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) { | ||||||||||
8007 | QualType ElemType = CurType->castAs<PipeType>()->getElementType(); | ||||||||||
8008 | CurType = S.Context.getWritePipeType(ElemType); | ||||||||||
8009 | } | ||||||||||
8010 | } | ||||||||||
8011 | } | ||||||||||
8012 | |||||||||||
8013 | /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type | ||||||||||
8014 | static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr, | ||||||||||
8015 | Sema &S) { | ||||||||||
8016 | if (!S.getLangOpts().MatrixTypes) { | ||||||||||
8017 | S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled); | ||||||||||
8018 | return; | ||||||||||
8019 | } | ||||||||||
8020 | |||||||||||
8021 | if (Attr.getNumArgs() != 2) { | ||||||||||
8022 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | ||||||||||
8023 | << Attr << 2; | ||||||||||
8024 | return; | ||||||||||
8025 | } | ||||||||||
8026 | |||||||||||
8027 | Expr *RowsExpr = Attr.getArgAsExpr(0); | ||||||||||
8028 | Expr *ColsExpr = Attr.getArgAsExpr(1); | ||||||||||
8029 | QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc()); | ||||||||||
8030 | if (!T.isNull()) | ||||||||||
8031 | CurType = T; | ||||||||||
8032 | } | ||||||||||
8033 | |||||||||||
8034 | static void HandleLifetimeBoundAttr(TypeProcessingState &State, | ||||||||||
8035 | QualType &CurType, | ||||||||||
8036 | ParsedAttr &Attr) { | ||||||||||
8037 | if (State.getDeclarator().isDeclarationOfFunction()) { | ||||||||||
8038 | CurType = State.getAttributedType( | ||||||||||
8039 | createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr), | ||||||||||
8040 | CurType, CurType); | ||||||||||
8041 | } | ||||||||||
8042 | } | ||||||||||
8043 | |||||||||||
8044 | static bool isAddressSpaceKind(const ParsedAttr &attr) { | ||||||||||
8045 | auto attrKind = attr.getKind(); | ||||||||||
8046 | |||||||||||
8047 | return attrKind == ParsedAttr::AT_AddressSpace || | ||||||||||
8048 | attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace || | ||||||||||
8049 | attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace || | ||||||||||
8050 | attrKind == ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace || | ||||||||||
8051 | attrKind == ParsedAttr::AT_OpenCLGlobalHostAddressSpace || | ||||||||||
8052 | attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace || | ||||||||||
8053 | attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace || | ||||||||||
8054 | attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace; | ||||||||||
8055 | } | ||||||||||
8056 | |||||||||||
8057 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, | ||||||||||
8058 | TypeAttrLocation TAL, | ||||||||||
8059 | ParsedAttributesView &attrs) { | ||||||||||
8060 | // Scan through and apply attributes to this type where it makes sense. Some | ||||||||||
8061 | // attributes (such as __address_space__, __vector_size__, etc) apply to the | ||||||||||
8062 | // type, but others can be present in the type specifiers even though they | ||||||||||
8063 | // apply to the decl. Here we apply type attributes and ignore the rest. | ||||||||||
8064 | |||||||||||
8065 | // This loop modifies the list pretty frequently, but we still need to make | ||||||||||
8066 | // sure we visit every element once. Copy the attributes list, and iterate | ||||||||||
8067 | // over that. | ||||||||||
8068 | ParsedAttributesView AttrsCopy{attrs}; | ||||||||||
8069 | |||||||||||
8070 | state.setParsedNoDeref(false); | ||||||||||
8071 | |||||||||||
8072 | for (ParsedAttr &attr : AttrsCopy) { | ||||||||||
8073 | |||||||||||
8074 | // Skip attributes that were marked to be invalid. | ||||||||||
8075 | if (attr.isInvalid()) | ||||||||||
8076 | continue; | ||||||||||
8077 | |||||||||||
8078 | if (attr.isStandardAttributeSyntax()) { | ||||||||||
8079 | // [[gnu::...]] attributes are treated as declaration attributes, so may | ||||||||||
8080 | // not appertain to a DeclaratorChunk. If we handle them as type | ||||||||||
8081 | // attributes, accept them in that position and diagnose the GCC | ||||||||||
8082 | // incompatibility. | ||||||||||
8083 | if (attr.isGNUScope()) { | ||||||||||
8084 | bool IsTypeAttr = attr.isTypeAttr(); | ||||||||||
8085 | if (TAL == TAL_DeclChunk) { | ||||||||||
8086 | state.getSema().Diag(attr.getLoc(), | ||||||||||
8087 | IsTypeAttr | ||||||||||
8088 | ? diag::warn_gcc_ignores_type_attr | ||||||||||
8089 | : diag::warn_cxx11_gnu_attribute_on_type) | ||||||||||
8090 | << attr; | ||||||||||
8091 | if (!IsTypeAttr) | ||||||||||
8092 | continue; | ||||||||||
8093 | } | ||||||||||
8094 | } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) { | ||||||||||
8095 | // Otherwise, only consider type processing for a C++11 attribute if | ||||||||||
8096 | // it's actually been applied to a type. | ||||||||||
8097 | // We also allow C++11 address_space and | ||||||||||
8098 | // OpenCL language address space attributes to pass through. | ||||||||||
8099 | continue; | ||||||||||
8100 | } | ||||||||||
8101 | } | ||||||||||
8102 | |||||||||||
8103 | // If this is an attribute we can handle, do so now, | ||||||||||
8104 | // otherwise, add it to the FnAttrs list for rechaining. | ||||||||||
8105 | switch (attr.getKind()) { | ||||||||||
8106 | default: | ||||||||||
8107 | // A [[]] attribute on a declarator chunk must appertain to a type. | ||||||||||
8108 | if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) { | ||||||||||
8109 | state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr) | ||||||||||
8110 | << attr; | ||||||||||
8111 | attr.setUsedAsTypeAttr(); | ||||||||||
8112 | } | ||||||||||
8113 | break; | ||||||||||
8114 | |||||||||||
8115 | case ParsedAttr::UnknownAttribute: | ||||||||||
8116 | if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) | ||||||||||
8117 | state.getSema().Diag(attr.getLoc(), | ||||||||||
8118 | diag::warn_unknown_attribute_ignored) | ||||||||||
8119 | << attr << attr.getRange(); | ||||||||||
8120 | break; | ||||||||||
8121 | |||||||||||
8122 | case ParsedAttr::IgnoredAttribute: | ||||||||||
8123 | break; | ||||||||||
8124 | |||||||||||
8125 | case ParsedAttr::AT_MayAlias: | ||||||||||
8126 | // FIXME: This attribute needs to actually be handled, but if we ignore | ||||||||||
8127 | // it it breaks large amounts of Linux software. | ||||||||||
8128 | attr.setUsedAsTypeAttr(); | ||||||||||
8129 | break; | ||||||||||
8130 | case ParsedAttr::AT_OpenCLPrivateAddressSpace: | ||||||||||
8131 | case ParsedAttr::AT_OpenCLGlobalAddressSpace: | ||||||||||
8132 | case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace: | ||||||||||
8133 | case ParsedAttr::AT_OpenCLGlobalHostAddressSpace: | ||||||||||
8134 | case ParsedAttr::AT_OpenCLLocalAddressSpace: | ||||||||||
8135 | case ParsedAttr::AT_OpenCLConstantAddressSpace: | ||||||||||
8136 | case ParsedAttr::AT_OpenCLGenericAddressSpace: | ||||||||||
8137 | case ParsedAttr::AT_AddressSpace: | ||||||||||
8138 | HandleAddressSpaceTypeAttribute(type, attr, state); | ||||||||||
8139 | attr.setUsedAsTypeAttr(); | ||||||||||
8140 | break; | ||||||||||
8141 | OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership: | ||||||||||
8142 | if (!handleObjCPointerTypeAttr(state, attr, type)) | ||||||||||
8143 | distributeObjCPointerTypeAttr(state, attr, type); | ||||||||||
8144 | attr.setUsedAsTypeAttr(); | ||||||||||
8145 | break; | ||||||||||
8146 | case ParsedAttr::AT_VectorSize: | ||||||||||
8147 | HandleVectorSizeAttr(type, attr, state.getSema()); | ||||||||||
8148 | attr.setUsedAsTypeAttr(); | ||||||||||
8149 | break; | ||||||||||
8150 | case ParsedAttr::AT_ExtVectorType: | ||||||||||
8151 | HandleExtVectorTypeAttr(type, attr, state.getSema()); | ||||||||||
8152 | attr.setUsedAsTypeAttr(); | ||||||||||
8153 | break; | ||||||||||
8154 | case ParsedAttr::AT_NeonVectorType: | ||||||||||
8155 | HandleNeonVectorTypeAttr(type, attr, state.getSema(), | ||||||||||
8156 | VectorType::NeonVector); | ||||||||||
8157 | attr.setUsedAsTypeAttr(); | ||||||||||
8158 | break; | ||||||||||
8159 | case ParsedAttr::AT_NeonPolyVectorType: | ||||||||||
8160 | HandleNeonVectorTypeAttr(type, attr, state.getSema(), | ||||||||||
8161 | VectorType::NeonPolyVector); | ||||||||||
8162 | attr.setUsedAsTypeAttr(); | ||||||||||
8163 | break; | ||||||||||
8164 | case ParsedAttr::AT_ArmSveVectorBits: | ||||||||||
8165 | HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema()); | ||||||||||
8166 | attr.setUsedAsTypeAttr(); | ||||||||||
8167 | break; | ||||||||||
8168 | case ParsedAttr::AT_ArmMveStrictPolymorphism: { | ||||||||||
8169 | HandleArmMveStrictPolymorphismAttr(state, type, attr); | ||||||||||
8170 | attr.setUsedAsTypeAttr(); | ||||||||||
8171 | break; | ||||||||||
8172 | } | ||||||||||
8173 | case ParsedAttr::AT_OpenCLAccess: | ||||||||||
8174 | HandleOpenCLAccessAttr(type, attr, state.getSema()); | ||||||||||
8175 | attr.setUsedAsTypeAttr(); | ||||||||||
8176 | break; | ||||||||||
8177 | case ParsedAttr::AT_LifetimeBound: | ||||||||||
8178 | if (TAL == TAL_DeclChunk) | ||||||||||
8179 | HandleLifetimeBoundAttr(state, type, attr); | ||||||||||
8180 | break; | ||||||||||
8181 | |||||||||||
8182 | case ParsedAttr::AT_NoDeref: { | ||||||||||
8183 | ASTContext &Ctx = state.getSema().Context; | ||||||||||
8184 | type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr), | ||||||||||
8185 | type, type); | ||||||||||
8186 | attr.setUsedAsTypeAttr(); | ||||||||||
8187 | state.setParsedNoDeref(true); | ||||||||||
8188 | break; | ||||||||||
8189 | } | ||||||||||
8190 | |||||||||||
8191 | case ParsedAttr::AT_MatrixType: | ||||||||||
8192 | HandleMatrixTypeAttr(type, attr, state.getSema()); | ||||||||||
8193 | attr.setUsedAsTypeAttr(); | ||||||||||
8194 | break; | ||||||||||
8195 | |||||||||||
8196 | MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr: | ||||||||||
8197 | if (!handleMSPointerTypeQualifierAttr(state, attr, type)) | ||||||||||
8198 | attr.setUsedAsTypeAttr(); | ||||||||||
8199 | break; | ||||||||||
8200 | |||||||||||
8201 | |||||||||||
8202 | NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified: | ||||||||||
8203 | // Either add nullability here or try to distribute it. We | ||||||||||
8204 | // don't want to distribute the nullability specifier past any | ||||||||||
8205 | // dependent type, because that complicates the user model. | ||||||||||
8206 | if (type->canHaveNullability() || type->isDependentType() || | ||||||||||
8207 | type->isArrayType() || | ||||||||||
8208 | !distributeNullabilityTypeAttr(state, type, attr)) { | ||||||||||
8209 | unsigned endIndex; | ||||||||||
8210 | if (TAL == TAL_DeclChunk) | ||||||||||
8211 | endIndex = state.getCurrentChunkIndex(); | ||||||||||
8212 | else | ||||||||||
8213 | endIndex = state.getDeclarator().getNumTypeObjects(); | ||||||||||
8214 | bool allowOnArrayType = | ||||||||||
8215 | state.getDeclarator().isPrototypeContext() && | ||||||||||
8216 | !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex); | ||||||||||
8217 | if (checkNullabilityTypeSpecifier( | ||||||||||
8218 | state, | ||||||||||
8219 | type, | ||||||||||
8220 | attr, | ||||||||||
8221 | allowOnArrayType)) { | ||||||||||
8222 | attr.setInvalid(); | ||||||||||
8223 | } | ||||||||||
8224 | |||||||||||
8225 | attr.setUsedAsTypeAttr(); | ||||||||||
8226 | } | ||||||||||
8227 | break; | ||||||||||
8228 | |||||||||||
8229 | case ParsedAttr::AT_ObjCKindOf: | ||||||||||
8230 | // '__kindof' must be part of the decl-specifiers. | ||||||||||
8231 | switch (TAL) { | ||||||||||
8232 | case TAL_DeclSpec: | ||||||||||
8233 | break; | ||||||||||
8234 | |||||||||||
8235 | case TAL_DeclChunk: | ||||||||||
8236 | case TAL_DeclName: | ||||||||||
8237 | state.getSema().Diag(attr.getLoc(), | ||||||||||
8238 | diag::err_objc_kindof_wrong_position) | ||||||||||
8239 | << FixItHint::CreateRemoval(attr.getLoc()) | ||||||||||
8240 | << FixItHint::CreateInsertion( | ||||||||||
8241 | state.getDeclarator().getDeclSpec().getBeginLoc(), | ||||||||||
8242 | "__kindof "); | ||||||||||
8243 | break; | ||||||||||
8244 | } | ||||||||||
8245 | |||||||||||
8246 | // Apply it regardless. | ||||||||||
8247 | if (checkObjCKindOfType(state, type, attr)) | ||||||||||
8248 | attr.setInvalid(); | ||||||||||
8249 | break; | ||||||||||
8250 | |||||||||||
8251 | case ParsedAttr::AT_NoThrow: | ||||||||||
8252 | // Exception Specifications aren't generally supported in C mode throughout | ||||||||||
8253 | // clang, so revert to attribute-based handling for C. | ||||||||||
8254 | if (!state.getSema().getLangOpts().CPlusPlus) | ||||||||||
8255 | break; | ||||||||||
8256 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||||
8257 | FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll: | ||||||||||
8258 | attr.setUsedAsTypeAttr(); | ||||||||||
8259 | |||||||||||
8260 | // Never process function type attributes as part of the | ||||||||||
8261 | // declaration-specifiers. | ||||||||||
8262 | if (TAL == TAL_DeclSpec) | ||||||||||
8263 | distributeFunctionTypeAttrFromDeclSpec(state, attr, type); | ||||||||||
8264 | |||||||||||
8265 | // Otherwise, handle the possible delays. | ||||||||||
8266 | else if (!handleFunctionTypeAttr(state, attr, type)) | ||||||||||
8267 | distributeFunctionTypeAttr(state, attr, type); | ||||||||||
8268 | break; | ||||||||||
8269 | case ParsedAttr::AT_AcquireHandle: { | ||||||||||
8270 | if (!type->isFunctionType()) | ||||||||||
8271 | return; | ||||||||||
8272 | |||||||||||
8273 | if (attr.getNumArgs() != 1) { | ||||||||||
8274 | state.getSema().Diag(attr.getLoc(), | ||||||||||
8275 | diag::err_attribute_wrong_number_arguments) | ||||||||||
8276 | << attr << 1; | ||||||||||
8277 | attr.setInvalid(); | ||||||||||
8278 | return; | ||||||||||
8279 | } | ||||||||||
8280 | |||||||||||
8281 | StringRef HandleType; | ||||||||||
8282 | if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType)) | ||||||||||
8283 | return; | ||||||||||
8284 | type = state.getAttributedType( | ||||||||||
8285 | AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr), | ||||||||||
8286 | type, type); | ||||||||||
8287 | attr.setUsedAsTypeAttr(); | ||||||||||
8288 | break; | ||||||||||
8289 | } | ||||||||||
8290 | } | ||||||||||
8291 | |||||||||||
8292 | // Handle attributes that are defined in a macro. We do not want this to be | ||||||||||
8293 | // applied to ObjC builtin attributes. | ||||||||||
8294 | if (isa<AttributedType>(type) && attr.hasMacroIdentifier() && | ||||||||||
8295 | !type.getQualifiers().hasObjCLifetime() && | ||||||||||
8296 | !type.getQualifiers().hasObjCGCAttr() && | ||||||||||
8297 | attr.getKind() != ParsedAttr::AT_ObjCGC && | ||||||||||
8298 | attr.getKind() != ParsedAttr::AT_ObjCOwnership) { | ||||||||||
8299 | const IdentifierInfo *MacroII = attr.getMacroIdentifier(); | ||||||||||
8300 | type = state.getSema().Context.getMacroQualifiedType(type, MacroII); | ||||||||||
8301 | state.setExpansionLocForMacroQualifiedType( | ||||||||||
8302 | cast<MacroQualifiedType>(type.getTypePtr()), | ||||||||||
8303 | attr.getMacroExpansionLoc()); | ||||||||||
8304 | } | ||||||||||
8305 | } | ||||||||||
8306 | |||||||||||
8307 | if (!state.getSema().getLangOpts().OpenCL || | ||||||||||
8308 | type.getAddressSpace() != LangAS::Default) | ||||||||||
8309 | return; | ||||||||||
8310 | } | ||||||||||
8311 | |||||||||||
8312 | void Sema::completeExprArrayBound(Expr *E) { | ||||||||||
8313 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { | ||||||||||
8314 | if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { | ||||||||||
8315 | if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) { | ||||||||||
8316 | auto *Def = Var->getDefinition(); | ||||||||||
8317 | if (!Def) { | ||||||||||
8318 | SourceLocation PointOfInstantiation = E->getExprLoc(); | ||||||||||
8319 | runWithSufficientStackSpace(PointOfInstantiation, [&] { | ||||||||||
8320 | InstantiateVariableDefinition(PointOfInstantiation, Var); | ||||||||||
8321 | }); | ||||||||||
8322 | Def = Var->getDefinition(); | ||||||||||
8323 | |||||||||||
8324 | // If we don't already have a point of instantiation, and we managed | ||||||||||
8325 | // to instantiate a definition, this is the point of instantiation. | ||||||||||
8326 | // Otherwise, we don't request an end-of-TU instantiation, so this is | ||||||||||
8327 | // not a point of instantiation. | ||||||||||
8328 | // FIXME: Is this really the right behavior? | ||||||||||
8329 | if (Var->getPointOfInstantiation().isInvalid() && Def) { | ||||||||||
8330 | assert(Var->getTemplateSpecializationKind() ==((void)0) | ||||||||||
8331 | TSK_ImplicitInstantiation &&((void)0) | ||||||||||
8332 | "explicit instantiation with no point of instantiation")((void)0); | ||||||||||
8333 | Var->setTemplateSpecializationKind( | ||||||||||
8334 | Var->getTemplateSpecializationKind(), PointOfInstantiation); | ||||||||||
8335 | } | ||||||||||
8336 | } | ||||||||||
8337 | |||||||||||
8338 | // Update the type to the definition's type both here and within the | ||||||||||
8339 | // expression. | ||||||||||
8340 | if (Def) { | ||||||||||
8341 | DRE->setDecl(Def); | ||||||||||
8342 | QualType T = Def->getType(); | ||||||||||
8343 | DRE->setType(T); | ||||||||||
8344 | // FIXME: Update the type on all intervening expressions. | ||||||||||
8345 | E->setType(T); | ||||||||||
8346 | } | ||||||||||
8347 | |||||||||||
8348 | // We still go on to try to complete the type independently, as it | ||||||||||
8349 | // may also require instantiations or diagnostics if it remains | ||||||||||
8350 | // incomplete. | ||||||||||
8351 | } | ||||||||||
8352 | } | ||||||||||
8353 | } | ||||||||||
8354 | } | ||||||||||
8355 | |||||||||||
8356 | QualType Sema::getCompletedType(Expr *E) { | ||||||||||
8357 | // Incomplete array types may be completed by the initializer attached to | ||||||||||
8358 | // their definitions. For static data members of class templates and for | ||||||||||
8359 | // variable templates, we need to instantiate the definition to get this | ||||||||||
8360 | // initializer and complete the type. | ||||||||||
8361 | if (E->getType()->isIncompleteArrayType()) | ||||||||||
8362 | completeExprArrayBound(E); | ||||||||||
8363 | |||||||||||
8364 | // FIXME: Are there other cases which require instantiating something other | ||||||||||
8365 | // than the type to complete the type of an expression? | ||||||||||
8366 | |||||||||||
8367 | return E->getType(); | ||||||||||
8368 | } | ||||||||||
8369 | |||||||||||
8370 | /// Ensure that the type of the given expression is complete. | ||||||||||
8371 | /// | ||||||||||
8372 | /// This routine checks whether the expression \p E has a complete type. If the | ||||||||||
8373 | /// expression refers to an instantiable construct, that instantiation is | ||||||||||
8374 | /// performed as needed to complete its type. Furthermore | ||||||||||
8375 | /// Sema::RequireCompleteType is called for the expression's type (or in the | ||||||||||
8376 | /// case of a reference type, the referred-to type). | ||||||||||
8377 | /// | ||||||||||
8378 | /// \param E The expression whose type is required to be complete. | ||||||||||
8379 | /// \param Kind Selects which completeness rules should be applied. | ||||||||||
8380 | /// \param Diagnoser The object that will emit a diagnostic if the type is | ||||||||||
8381 | /// incomplete. | ||||||||||
8382 | /// | ||||||||||
8383 | /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false | ||||||||||
8384 | /// otherwise. | ||||||||||
8385 | bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind, | ||||||||||
8386 | TypeDiagnoser &Diagnoser) { | ||||||||||
8387 | return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind, | ||||||||||
8388 | Diagnoser); | ||||||||||
8389 | } | ||||||||||
8390 | |||||||||||
8391 | bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) { | ||||||||||
8392 | BoundTypeDiagnoser<> Diagnoser(DiagID); | ||||||||||
8393 | return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser); | ||||||||||
8394 | } | ||||||||||
8395 | |||||||||||
8396 | /// Ensure that the type T is a complete type. | ||||||||||
8397 | /// | ||||||||||
8398 | /// This routine checks whether the type @p T is complete in any | ||||||||||
8399 | /// context where a complete type is required. If @p T is a complete | ||||||||||
8400 | /// type, returns false. If @p T is a class template specialization, | ||||||||||
8401 | /// this routine then attempts to perform class template | ||||||||||
8402 | /// instantiation. If instantiation fails, or if @p T is incomplete | ||||||||||
8403 | /// and cannot be completed, issues the diagnostic @p diag (giving it | ||||||||||
8404 | /// the type @p T) and returns true. | ||||||||||
8405 | /// | ||||||||||
8406 | /// @param Loc The location in the source that the incomplete type | ||||||||||
8407 | /// diagnostic should refer to. | ||||||||||
8408 | /// | ||||||||||
8409 | /// @param T The type that this routine is examining for completeness. | ||||||||||
8410 | /// | ||||||||||
8411 | /// @param Kind Selects which completeness rules should be applied. | ||||||||||
8412 | /// | ||||||||||
8413 | /// @returns @c true if @p T is incomplete and a diagnostic was emitted, | ||||||||||
8414 | /// @c false otherwise. | ||||||||||
8415 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, | ||||||||||
8416 | CompleteTypeKind Kind, | ||||||||||
8417 | TypeDiagnoser &Diagnoser) { | ||||||||||
8418 | if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser)) | ||||||||||
8419 | return true; | ||||||||||
8420 | if (const TagType *Tag = T->getAs<TagType>()) { | ||||||||||
8421 | if (!Tag->getDecl()->isCompleteDefinitionRequired()) { | ||||||||||
8422 | Tag->getDecl()->setCompleteDefinitionRequired(); | ||||||||||
8423 | Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl()); | ||||||||||
8424 | } | ||||||||||
8425 | } | ||||||||||
8426 | return false; | ||||||||||
8427 | } | ||||||||||
8428 | |||||||||||
8429 | bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) { | ||||||||||
8430 | llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls; | ||||||||||
8431 | if (!Suggested) | ||||||||||
8432 | return false; | ||||||||||
8433 | |||||||||||
8434 | // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext | ||||||||||
8435 | // and isolate from other C++ specific checks. | ||||||||||
8436 | StructuralEquivalenceContext Ctx( | ||||||||||
8437 | D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls, | ||||||||||
8438 | StructuralEquivalenceKind::Default, | ||||||||||
8439 | false /*StrictTypeSpelling*/, true /*Complain*/, | ||||||||||
8440 | true /*ErrorOnTagTypeMismatch*/); | ||||||||||
8441 | return Ctx.IsEquivalent(D, Suggested); | ||||||||||
8442 | } | ||||||||||
8443 | |||||||||||
8444 | /// Determine whether there is any declaration of \p D that was ever a | ||||||||||
8445 | /// definition (perhaps before module merging) and is currently visible. | ||||||||||
8446 | /// \param D The definition of the entity. | ||||||||||
8447 | /// \param Suggested Filled in with the declaration that should be made visible | ||||||||||
8448 | /// in order to provide a definition of this entity. | ||||||||||
8449 | /// \param OnlyNeedComplete If \c true, we only need the type to be complete, | ||||||||||
8450 | /// not defined. This only matters for enums with a fixed underlying | ||||||||||
8451 | /// type, since in all other cases, a type is complete if and only if it | ||||||||||
8452 | /// is defined. | ||||||||||
8453 | bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, | ||||||||||
8454 | bool OnlyNeedComplete) { | ||||||||||
8455 | // Easy case: if we don't have modules, all declarations are visible. | ||||||||||
8456 | if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility) | ||||||||||
8457 | return true; | ||||||||||
8458 | |||||||||||
8459 | // If this definition was instantiated from a template, map back to the | ||||||||||
8460 | // pattern from which it was instantiated. | ||||||||||
8461 | if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) { | ||||||||||
8462 | // We're in the middle of defining it; this definition should be treated | ||||||||||
8463 | // as visible. | ||||||||||
8464 | return true; | ||||||||||
8465 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { | ||||||||||
8466 | if (auto *Pattern = RD->getTemplateInstantiationPattern()) | ||||||||||
8467 | RD = Pattern; | ||||||||||
8468 | D = RD->getDefinition(); | ||||||||||
8469 | } else if (auto *ED = dyn_cast<EnumDecl>(D)) { | ||||||||||
8470 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) | ||||||||||
8471 | ED = Pattern; | ||||||||||
8472 | if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) { | ||||||||||
8473 | // If the enum has a fixed underlying type, it may have been forward | ||||||||||
8474 | // declared. In -fms-compatibility, `enum Foo;` will also forward declare | ||||||||||
8475 | // the enum and assign it the underlying type of `int`. Since we're only | ||||||||||
8476 | // looking for a complete type (not a definition), any visible declaration | ||||||||||
8477 | // of it will do. | ||||||||||
8478 | *Suggested = nullptr; | ||||||||||
8479 | for (auto *Redecl : ED->redecls()) { | ||||||||||
8480 | if (isVisible(Redecl)) | ||||||||||
8481 | return true; | ||||||||||
8482 | if (Redecl->isThisDeclarationADefinition() || | ||||||||||
8483 | (Redecl->isCanonicalDecl() && !*Suggested)) | ||||||||||
8484 | *Suggested = Redecl; | ||||||||||
8485 | } | ||||||||||
8486 | return false; | ||||||||||
8487 | } | ||||||||||
8488 | D = ED->getDefinition(); | ||||||||||
8489 | } else if (auto *FD = dyn_cast<FunctionDecl>(D)) { | ||||||||||
8490 | if (auto *Pattern = FD->getTemplateInstantiationPattern()) | ||||||||||
8491 | FD = Pattern; | ||||||||||
8492 | D = FD->getDefinition(); | ||||||||||
8493 | } else if (auto *VD = dyn_cast<VarDecl>(D)) { | ||||||||||
8494 | if (auto *Pattern = VD->getTemplateInstantiationPattern()) | ||||||||||
8495 | VD = Pattern; | ||||||||||
8496 | D = VD->getDefinition(); | ||||||||||
8497 | } | ||||||||||
8498 | assert(D && "missing definition for pattern of instantiated definition")((void)0); | ||||||||||
8499 | |||||||||||
8500 | *Suggested = D; | ||||||||||
8501 | |||||||||||
8502 | auto DefinitionIsVisible = [&] { | ||||||||||
8503 | // The (primary) definition might be in a visible module. | ||||||||||
8504 | if (isVisible(D)) | ||||||||||
8505 | return true; | ||||||||||
8506 | |||||||||||
8507 | // A visible module might have a merged definition instead. | ||||||||||
8508 | if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D) | ||||||||||
8509 | : hasVisibleMergedDefinition(D)) { | ||||||||||
8510 | if (CodeSynthesisContexts.empty() && | ||||||||||
8511 | !getLangOpts().ModulesLocalVisibility) { | ||||||||||
8512 | // Cache the fact that this definition is implicitly visible because | ||||||||||
8513 | // there is a visible merged definition. | ||||||||||
8514 | D->setVisibleDespiteOwningModule(); | ||||||||||
8515 | } | ||||||||||
8516 | return true; | ||||||||||
8517 | } | ||||||||||
8518 | |||||||||||
8519 | return false; | ||||||||||
8520 | }; | ||||||||||
8521 | |||||||||||
8522 | if (DefinitionIsVisible()) | ||||||||||
8523 | return true; | ||||||||||
8524 | |||||||||||
8525 | // The external source may have additional definitions of this entity that are | ||||||||||
8526 | // visible, so complete the redeclaration chain now and ask again. | ||||||||||
8527 | if (auto *Source = Context.getExternalSource()) { | ||||||||||
8528 | Source->CompleteRedeclChain(D); | ||||||||||
8529 | return DefinitionIsVisible(); | ||||||||||
8530 | } | ||||||||||
8531 | |||||||||||
8532 | return false; | ||||||||||
8533 | } | ||||||||||
8534 | |||||||||||
8535 | /// Locks in the inheritance model for the given class and all of its bases. | ||||||||||
8536 | static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) { | ||||||||||
8537 | RD = RD->getMostRecentNonInjectedDecl(); | ||||||||||
8538 | if (!RD->hasAttr<MSInheritanceAttr>()) { | ||||||||||
8539 | MSInheritanceModel IM; | ||||||||||
8540 | bool BestCase = false; | ||||||||||
8541 | switch (S.MSPointerToMemberRepresentationMethod) { | ||||||||||
8542 | case LangOptions::PPTMK_BestCase: | ||||||||||
8543 | BestCase = true; | ||||||||||
8544 | IM = RD->calculateInheritanceModel(); | ||||||||||
8545 | break; | ||||||||||
8546 | case LangOptions::PPTMK_FullGeneralitySingleInheritance: | ||||||||||
8547 | IM = MSInheritanceModel::Single; | ||||||||||
8548 | break; | ||||||||||
8549 | case LangOptions::PPTMK_FullGeneralityMultipleInheritance: | ||||||||||
8550 | IM = MSInheritanceModel::Multiple; | ||||||||||
8551 | break; | ||||||||||
8552 | case LangOptions::PPTMK_FullGeneralityVirtualInheritance: | ||||||||||
8553 | IM = MSInheritanceModel::Unspecified; | ||||||||||
8554 | break; | ||||||||||
8555 | } | ||||||||||
8556 | |||||||||||
8557 | SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid() | ||||||||||
8558 | ? S.ImplicitMSInheritanceAttrLoc | ||||||||||
8559 | : RD->getSourceRange(); | ||||||||||
8560 | RD->addAttr(MSInheritanceAttr::CreateImplicit( | ||||||||||
8561 | S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft, | ||||||||||
8562 | MSInheritanceAttr::Spelling(IM))); | ||||||||||
8563 | S.Consumer.AssignInheritanceModel(RD); | ||||||||||
8564 | } | ||||||||||
8565 | } | ||||||||||
8566 | |||||||||||
8567 | /// The implementation of RequireCompleteType | ||||||||||
8568 | bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T, | ||||||||||
8569 | CompleteTypeKind Kind, | ||||||||||
8570 | TypeDiagnoser *Diagnoser) { | ||||||||||
8571 | // FIXME: Add this assertion to make sure we always get instantiation points. | ||||||||||
8572 | // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType"); | ||||||||||
8573 | // FIXME: Add this assertion to help us flush out problems with | ||||||||||
8574 | // checking for dependent types and type-dependent expressions. | ||||||||||
8575 | // | ||||||||||
8576 | // assert(!T->isDependentType() && | ||||||||||
8577 | // "Can't ask whether a dependent type is complete"); | ||||||||||
8578 | |||||||||||
8579 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) { | ||||||||||
8580 | if (!MPTy->getClass()->isDependentType()) { | ||||||||||
8581 | if (getLangOpts().CompleteMemberPointers && | ||||||||||
8582 | !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() && | ||||||||||
8583 | RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind, | ||||||||||
8584 | diag::err_memptr_incomplete)) | ||||||||||
8585 | return true; | ||||||||||
8586 | |||||||||||
8587 | // We lock in the inheritance model once somebody has asked us to ensure | ||||||||||
8588 | // that a pointer-to-member type is complete. | ||||||||||
8589 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | ||||||||||
8590 | (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0)); | ||||||||||
8591 | assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl()); | ||||||||||
8592 | } | ||||||||||
8593 | } | ||||||||||
8594 | } | ||||||||||
8595 | |||||||||||
8596 | NamedDecl *Def = nullptr; | ||||||||||
8597 | bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless); | ||||||||||
8598 | bool Incomplete = (T->isIncompleteType(&Def) || | ||||||||||
8599 | (!AcceptSizeless && T->isSizelessBuiltinType())); | ||||||||||
8600 | |||||||||||
8601 | // Check that any necessary explicit specializations are visible. For an | ||||||||||
8602 | // enum, we just need the declaration, so don't check this. | ||||||||||
8603 | if (Def && !isa<EnumDecl>(Def)) | ||||||||||
8604 | checkSpecializationVisibility(Loc, Def); | ||||||||||
8605 | |||||||||||
8606 | // If we have a complete type, we're done. | ||||||||||
8607 | if (!Incomplete) { | ||||||||||
8608 | // If we know about the definition but it is not visible, complain. | ||||||||||
8609 | NamedDecl *SuggestedDef = nullptr; | ||||||||||
8610 | if (Def && | ||||||||||
8611 | !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) { | ||||||||||
8612 | // If the user is going to see an error here, recover by making the | ||||||||||
8613 | // definition visible. | ||||||||||
8614 | bool TreatAsComplete = Diagnoser && !isSFINAEContext(); | ||||||||||
8615 | if (Diagnoser && SuggestedDef) | ||||||||||
8616 | diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition, | ||||||||||
8617 | /*Recover*/TreatAsComplete); | ||||||||||
8618 | return !TreatAsComplete; | ||||||||||
8619 | } else if (Def && !TemplateInstCallbacks.empty()) { | ||||||||||
8620 | CodeSynthesisContext TempInst; | ||||||||||
8621 | TempInst.Kind = CodeSynthesisContext::Memoization; | ||||||||||
8622 | TempInst.Template = Def; | ||||||||||
8623 | TempInst.Entity = Def; | ||||||||||
8624 | TempInst.PointOfInstantiation = Loc; | ||||||||||
8625 | atTemplateBegin(TemplateInstCallbacks, *this, TempInst); | ||||||||||
8626 | atTemplateEnd(TemplateInstCallbacks, *this, TempInst); | ||||||||||
8627 | } | ||||||||||
8628 | |||||||||||
8629 | return false; | ||||||||||
8630 | } | ||||||||||
8631 | |||||||||||
8632 | TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def); | ||||||||||
8633 | ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def); | ||||||||||
8634 | |||||||||||
8635 | // Give the external source a chance to provide a definition of the type. | ||||||||||
8636 | // This is kept separate from completing the redeclaration chain so that | ||||||||||
8637 | // external sources such as LLDB can avoid synthesizing a type definition | ||||||||||
8638 | // unless it's actually needed. | ||||||||||
8639 | if (Tag || IFace) { | ||||||||||
8640 | // Avoid diagnosing invalid decls as incomplete. | ||||||||||
8641 | if (Def->isInvalidDecl()) | ||||||||||
8642 | return true; | ||||||||||
8643 | |||||||||||
8644 | // Give the external AST source a chance to complete the type. | ||||||||||
8645 | if (auto *Source = Context.getExternalSource()) { | ||||||||||
8646 | if (Tag && Tag->hasExternalLexicalStorage()) | ||||||||||
8647 | Source->CompleteType(Tag); | ||||||||||
8648 | if (IFace && IFace->hasExternalLexicalStorage()) | ||||||||||
8649 | Source->CompleteType(IFace); | ||||||||||
8650 | // If the external source completed the type, go through the motions | ||||||||||
8651 | // again to ensure we're allowed to use the completed type. | ||||||||||
8652 | if (!T->isIncompleteType()) | ||||||||||
8653 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); | ||||||||||
8654 | } | ||||||||||
8655 | } | ||||||||||
8656 | |||||||||||
8657 | // If we have a class template specialization or a class member of a | ||||||||||
8658 | // class template specialization, or an array with known size of such, | ||||||||||
8659 | // try to instantiate it. | ||||||||||
8660 | if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) { | ||||||||||
8661 | bool Instantiated = false; | ||||||||||
8662 | bool Diagnosed = false; | ||||||||||
8663 | if (RD->isDependentContext()) { | ||||||||||
8664 | // Don't try to instantiate a dependent class (eg, a member template of | ||||||||||
8665 | // an instantiated class template specialization). | ||||||||||
8666 | // FIXME: Can this ever happen? | ||||||||||
8667 | } else if (auto *ClassTemplateSpec = | ||||||||||
8668 | dyn_cast<ClassTemplateSpecializationDecl>(RD)) { | ||||||||||
8669 | if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) { | ||||||||||
8670 | runWithSufficientStackSpace(Loc, [&] { | ||||||||||
8671 | Diagnosed = InstantiateClassTemplateSpecialization( | ||||||||||
8672 | Loc, ClassTemplateSpec, TSK_ImplicitInstantiation, | ||||||||||
8673 | /*Complain=*/Diagnoser); | ||||||||||
8674 | }); | ||||||||||
8675 | Instantiated = true; | ||||||||||
8676 | } | ||||||||||
8677 | } else { | ||||||||||
8678 | CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass(); | ||||||||||
8679 | if (!RD->isBeingDefined() && Pattern) { | ||||||||||
8680 | MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo(); | ||||||||||
8681 | assert(MSI && "Missing member specialization information?")((void)0); | ||||||||||
8682 | // This record was instantiated from a class within a template. | ||||||||||
8683 | if (MSI->getTemplateSpecializationKind() != | ||||||||||
8684 | TSK_ExplicitSpecialization) { | ||||||||||
8685 | runWithSufficientStackSpace(Loc, [&] { | ||||||||||
8686 | Diagnosed = InstantiateClass(Loc, RD, Pattern, | ||||||||||
8687 | getTemplateInstantiationArgs(RD), | ||||||||||
8688 | TSK_ImplicitInstantiation, | ||||||||||
8689 | /*Complain=*/Diagnoser); | ||||||||||
8690 | }); | ||||||||||
8691 | Instantiated = true; | ||||||||||
8692 | } | ||||||||||
8693 | } | ||||||||||
8694 | } | ||||||||||
8695 | |||||||||||
8696 | if (Instantiated) { | ||||||||||
8697 | // Instantiate* might have already complained that the template is not | ||||||||||
8698 | // defined, if we asked it to. | ||||||||||
8699 | if (Diagnoser && Diagnosed) | ||||||||||
8700 | return true; | ||||||||||
8701 | // If we instantiated a definition, check that it's usable, even if | ||||||||||
8702 | // instantiation produced an error, so that repeated calls to this | ||||||||||
8703 | // function give consistent answers. | ||||||||||
8704 | if (!T->isIncompleteType()) | ||||||||||
8705 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); | ||||||||||
8706 | } | ||||||||||
8707 | } | ||||||||||
8708 | |||||||||||
8709 | // FIXME: If we didn't instantiate a definition because of an explicit | ||||||||||
8710 | // specialization declaration, check that it's visible. | ||||||||||
8711 | |||||||||||
8712 | if (!Diagnoser) | ||||||||||
8713 | return true; | ||||||||||
8714 | |||||||||||
8715 | Diagnoser->diagnose(*this, Loc, T); | ||||||||||
8716 | |||||||||||
8717 | // If the type was a forward declaration of a class/struct/union | ||||||||||
8718 | // type, produce a note. | ||||||||||
8719 | if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid()) | ||||||||||
8720 | Diag(Tag->getLocation(), | ||||||||||
8721 | Tag->isBeingDefined() ? diag::note_type_being_defined | ||||||||||
8722 | : diag::note_forward_declaration) | ||||||||||
8723 | << Context.getTagDeclType(Tag); | ||||||||||
8724 | |||||||||||
8725 | // If the Objective-C class was a forward declaration, produce a note. | ||||||||||
8726 | if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid()) | ||||||||||
8727 | Diag(IFace->getLocation(), diag::note_forward_class); | ||||||||||
8728 | |||||||||||
8729 | // If we have external information that we can use to suggest a fix, | ||||||||||
8730 | // produce a note. | ||||||||||
8731 | if (ExternalSource) | ||||||||||
8732 | ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T); | ||||||||||
8733 | |||||||||||
8734 | return true; | ||||||||||
8735 | } | ||||||||||
8736 | |||||||||||
8737 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, | ||||||||||
8738 | CompleteTypeKind Kind, unsigned DiagID) { | ||||||||||
8739 | BoundTypeDiagnoser<> Diagnoser(DiagID); | ||||||||||
8740 | return RequireCompleteType(Loc, T, Kind, Diagnoser); | ||||||||||
8741 | } | ||||||||||
8742 | |||||||||||
8743 | /// Get diagnostic %select index for tag kind for | ||||||||||
8744 | /// literal type diagnostic message. | ||||||||||
8745 | /// WARNING: Indexes apply to particular diagnostics only! | ||||||||||
8746 | /// | ||||||||||
8747 | /// \returns diagnostic %select index. | ||||||||||
8748 | static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) { | ||||||||||
8749 | switch (Tag) { | ||||||||||
8750 | case TTK_Struct: return 0; | ||||||||||
8751 | case TTK_Interface: return 1; | ||||||||||
8752 | case TTK_Class: return 2; | ||||||||||
8753 | default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")__builtin_unreachable(); | ||||||||||
8754 | } | ||||||||||
8755 | } | ||||||||||
8756 | |||||||||||
8757 | /// Ensure that the type T is a literal type. | ||||||||||
8758 | /// | ||||||||||
8759 | /// This routine checks whether the type @p T is a literal type. If @p T is an | ||||||||||
8760 | /// incomplete type, an attempt is made to complete it. If @p T is a literal | ||||||||||
8761 | /// type, or @p AllowIncompleteType is true and @p T is an incomplete type, | ||||||||||
8762 | /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving | ||||||||||
8763 | /// it the type @p T), along with notes explaining why the type is not a | ||||||||||
8764 | /// literal type, and returns true. | ||||||||||
8765 | /// | ||||||||||
8766 | /// @param Loc The location in the source that the non-literal type | ||||||||||
8767 | /// diagnostic should refer to. | ||||||||||
8768 | /// | ||||||||||
8769 | /// @param T The type that this routine is examining for literalness. | ||||||||||
8770 | /// | ||||||||||
8771 | /// @param Diagnoser Emits a diagnostic if T is not a literal type. | ||||||||||
8772 | /// | ||||||||||
8773 | /// @returns @c true if @p T is not a literal type and a diagnostic was emitted, | ||||||||||
8774 | /// @c false otherwise. | ||||||||||
8775 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, | ||||||||||
8776 | TypeDiagnoser &Diagnoser) { | ||||||||||
8777 | assert(!T->isDependentType() && "type should not be dependent")((void)0); | ||||||||||
8778 | |||||||||||
8779 | QualType ElemType = Context.getBaseElementType(T); | ||||||||||
8780 | if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) && | ||||||||||
8781 | T->isLiteralType(Context)) | ||||||||||
8782 | return false; | ||||||||||
8783 | |||||||||||
8784 | Diagnoser.diagnose(*this, Loc, T); | ||||||||||
8785 | |||||||||||
8786 | if (T->isVariableArrayType()) | ||||||||||
8787 | return true; | ||||||||||
8788 | |||||||||||
8789 | const RecordType *RT = ElemType->getAs<RecordType>(); | ||||||||||
8790 | if (!RT) | ||||||||||
8791 | return true; | ||||||||||
8792 | |||||||||||
8793 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | ||||||||||
8794 | |||||||||||
8795 | // A partially-defined class type can't be a literal type, because a literal | ||||||||||
8796 | // class type must have a trivial destructor (which can't be checked until | ||||||||||
8797 | // the class definition is complete). | ||||||||||
8798 | if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T)) | ||||||||||
8799 | return true; | ||||||||||
8800 | |||||||||||
8801 | // [expr.prim.lambda]p3: | ||||||||||
8802 | // This class type is [not] a literal type. | ||||||||||
8803 | if (RD->isLambda() && !getLangOpts().CPlusPlus17) { | ||||||||||
8804 | Diag(RD->getLocation(), diag::note_non_literal_lambda); | ||||||||||
8805 | return true; | ||||||||||
8806 | } | ||||||||||
8807 | |||||||||||
8808 | // If the class has virtual base classes, then it's not an aggregate, and | ||||||||||
8809 | // cannot have any constexpr constructors or a trivial default constructor, | ||||||||||
8810 | // so is non-literal. This is better to diagnose than the resulting absence | ||||||||||
8811 | // of constexpr constructors. | ||||||||||
8812 | if (RD->getNumVBases()) { | ||||||||||
8813 | Diag(RD->getLocation(), diag::note_non_literal_virtual_base) | ||||||||||
8814 | << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); | ||||||||||
8815 | for (const auto &I : RD->vbases()) | ||||||||||
8816 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) | ||||||||||
8817 | << I.getSourceRange(); | ||||||||||
8818 | } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() && | ||||||||||
8819 | !RD->hasTrivialDefaultConstructor()) { | ||||||||||
8820 | Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD; | ||||||||||
8821 | } else if (RD->hasNonLiteralTypeFieldsOrBases()) { | ||||||||||
8822 | for (const auto &I : RD->bases()) { | ||||||||||
8823 | if (!I.getType()->isLiteralType(Context)) { | ||||||||||
8824 | Diag(I.getBeginLoc(), diag::note_non_literal_base_class) | ||||||||||
8825 | << RD << I.getType() << I.getSourceRange(); | ||||||||||
8826 | return true; | ||||||||||
8827 | } | ||||||||||
8828 | } | ||||||||||
8829 | for (const auto *I : RD->fields()) { | ||||||||||
8830 | if (!I->getType()->isLiteralType(Context) || | ||||||||||
8831 | I->getType().isVolatileQualified()) { | ||||||||||
8832 | Diag(I->getLocation(), diag::note_non_literal_field) | ||||||||||
8833 | << RD << I << I->getType() | ||||||||||
8834 | << I->getType().isVolatileQualified(); | ||||||||||
8835 | return true; | ||||||||||
8836 | } | ||||||||||
8837 | } | ||||||||||
8838 | } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor() | ||||||||||
8839 | : !RD->hasTrivialDestructor()) { | ||||||||||
8840 | // All fields and bases are of literal types, so have trivial or constexpr | ||||||||||
8841 | // destructors. If this class's destructor is non-trivial / non-constexpr, | ||||||||||
8842 | // it must be user-declared. | ||||||||||
8843 | CXXDestructorDecl *Dtor = RD->getDestructor(); | ||||||||||
8844 | assert(Dtor && "class has literal fields and bases but no dtor?")((void)0); | ||||||||||
8845 | if (!Dtor) | ||||||||||
8846 | return true; | ||||||||||
8847 | |||||||||||
8848 | if (getLangOpts().CPlusPlus20) { | ||||||||||
8849 | Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor) | ||||||||||
8850 | << RD; | ||||||||||
8851 | } else { | ||||||||||
8852 | Diag(Dtor->getLocation(), Dtor->isUserProvided() | ||||||||||
8853 | ? diag::note_non_literal_user_provided_dtor | ||||||||||
8854 | : diag::note_non_literal_nontrivial_dtor) | ||||||||||
8855 | << RD; | ||||||||||
8856 | if (!Dtor->isUserProvided()) | ||||||||||
8857 | SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI, | ||||||||||
8858 | /*Diagnose*/ true); | ||||||||||
8859 | } | ||||||||||
8860 | } | ||||||||||
8861 | |||||||||||
8862 | return true; | ||||||||||
8863 | } | ||||||||||
8864 | |||||||||||
8865 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) { | ||||||||||
8866 | BoundTypeDiagnoser<> Diagnoser(DiagID); | ||||||||||
8867 | return RequireLiteralType(Loc, T, Diagnoser); | ||||||||||
8868 | } | ||||||||||
8869 | |||||||||||
8870 | /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified | ||||||||||
8871 | /// by the nested-name-specifier contained in SS, and that is (re)declared by | ||||||||||
8872 | /// OwnedTagDecl, which is nullptr if this is not a (re)declaration. | ||||||||||
8873 | QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword, | ||||||||||
8874 | const CXXScopeSpec &SS, QualType T, | ||||||||||
8875 | TagDecl *OwnedTagDecl) { | ||||||||||
8876 | if (T.isNull()) | ||||||||||
8877 | return T; | ||||||||||
8878 | NestedNameSpecifier *NNS; | ||||||||||
8879 | if (SS.isValid()) | ||||||||||
8880 | NNS = SS.getScopeRep(); | ||||||||||
8881 | else { | ||||||||||
8882 | if (Keyword == ETK_None) | ||||||||||
8883 | return T; | ||||||||||
8884 | NNS = nullptr; | ||||||||||
8885 | } | ||||||||||
8886 | return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl); | ||||||||||
8887 | } | ||||||||||
8888 | |||||||||||
8889 | QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) { | ||||||||||
8890 | assert(!E->hasPlaceholderType() && "unexpected placeholder")((void)0); | ||||||||||
8891 | |||||||||||
8892 | if (!getLangOpts().CPlusPlus && E->refersToBitField()) | ||||||||||
8893 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2; | ||||||||||
8894 | |||||||||||
8895 | if (!E->isTypeDependent()) { | ||||||||||
8896 | QualType T = E->getType(); | ||||||||||
8897 | if (const TagType *TT = T->getAs<TagType>()) | ||||||||||
8898 | DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc()); | ||||||||||
8899 | } | ||||||||||
8900 | return Context.getTypeOfExprType(E); | ||||||||||
8901 | } | ||||||||||
8902 | |||||||||||
8903 | /// getDecltypeForParenthesizedExpr - Given an expr, will return the type for | ||||||||||
8904 | /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions | ||||||||||
8905 | /// and class member access into account. | ||||||||||
8906 | QualType Sema::getDecltypeForParenthesizedExpr(Expr *E) { | ||||||||||
8907 | // C++11 [dcl.type.simple]p4: | ||||||||||
8908 | // [...] | ||||||||||
8909 | QualType T = E->getType(); | ||||||||||
8910 | switch (E->getValueKind()) { | ||||||||||
8911 | // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the | ||||||||||
8912 | // type of e; | ||||||||||
8913 | case VK_XValue: | ||||||||||
8914 | return Context.getRValueReferenceType(T); | ||||||||||
8915 | // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the | ||||||||||
8916 | // type of e; | ||||||||||
8917 | case VK_LValue: | ||||||||||
8918 | return Context.getLValueReferenceType(T); | ||||||||||
8919 | // - otherwise, decltype(e) is the type of e. | ||||||||||
8920 | case VK_PRValue: | ||||||||||
8921 | return T; | ||||||||||
8922 | } | ||||||||||
8923 | llvm_unreachable("Unknown value kind")__builtin_unreachable(); | ||||||||||
8924 | } | ||||||||||
8925 | |||||||||||
8926 | /// getDecltypeForExpr - Given an expr, will return the decltype for | ||||||||||
8927 | /// that expression, according to the rules in C++11 | ||||||||||
8928 | /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18. | ||||||||||
8929 | static QualType getDecltypeForExpr(Sema &S, Expr *E) { | ||||||||||
8930 | if (E->isTypeDependent()) | ||||||||||
8931 | return S.Context.DependentTy; | ||||||||||
8932 | |||||||||||
8933 | Expr *IDExpr = E; | ||||||||||
8934 | if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E)) | ||||||||||
8935 | IDExpr = ImplCastExpr->getSubExpr(); | ||||||||||
8936 | |||||||||||
8937 | // C++11 [dcl.type.simple]p4: | ||||||||||
8938 | // The type denoted by decltype(e) is defined as follows: | ||||||||||
8939 | |||||||||||
8940 | // C++20: | ||||||||||
8941 | // - if E is an unparenthesized id-expression naming a non-type | ||||||||||
8942 | // template-parameter (13.2), decltype(E) is the type of the | ||||||||||
8943 | // template-parameter after performing any necessary type deduction | ||||||||||
8944 | // Note that this does not pick up the implicit 'const' for a template | ||||||||||
8945 | // parameter object. This rule makes no difference before C++20 so we apply | ||||||||||
8946 | // it unconditionally. | ||||||||||
8947 | if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr)) | ||||||||||
8948 | return SNTTPE->getParameterType(S.Context); | ||||||||||
8949 | |||||||||||
8950 | // - if e is an unparenthesized id-expression or an unparenthesized class | ||||||||||
8951 | // member access (5.2.5), decltype(e) is the type of the entity named | ||||||||||
8952 | // by e. If there is no such entity, or if e names a set of overloaded | ||||||||||
8953 | // functions, the program is ill-formed; | ||||||||||
8954 | // | ||||||||||
8955 | // We apply the same rules for Objective-C ivar and property references. | ||||||||||
8956 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(IDExpr)) { | ||||||||||
8957 | const ValueDecl *VD = DRE->getDecl(); | ||||||||||
8958 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(VD)) | ||||||||||
8959 | return TPO->getType().getUnqualifiedType(); | ||||||||||
8960 | return VD->getType(); | ||||||||||
8961 | } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(IDExpr)) { | ||||||||||
8962 | if (const ValueDecl *VD = ME->getMemberDecl()) | ||||||||||
8963 | if (isa<FieldDecl>(VD) || isa<VarDecl>(VD)) | ||||||||||
8964 | return VD->getType(); | ||||||||||
8965 | } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) { | ||||||||||
8966 | return IR->getDecl()->getType(); | ||||||||||
8967 | } else if (const ObjCPropertyRefExpr *PR = | ||||||||||
8968 | dyn_cast<ObjCPropertyRefExpr>(IDExpr)) { | ||||||||||
8969 | if (PR->isExplicitProperty()) | ||||||||||
8970 | return PR->getExplicitProperty()->getType(); | ||||||||||
8971 | } else if (auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) { | ||||||||||
8972 | return PE->getType(); | ||||||||||
8973 | } | ||||||||||
8974 | |||||||||||
8975 | // C++11 [expr.lambda.prim]p18: | ||||||||||
8976 | // Every occurrence of decltype((x)) where x is a possibly | ||||||||||
8977 | // parenthesized id-expression that names an entity of automatic | ||||||||||
8978 | // storage duration is treated as if x were transformed into an | ||||||||||
8979 | // access to a corresponding data member of the closure type that | ||||||||||
8980 | // would have been declared if x were an odr-use of the denoted | ||||||||||
8981 | // entity. | ||||||||||
8982 | using namespace sema; | ||||||||||
8983 | if (S.getCurLambda()) { | ||||||||||
8984 | if (isa<ParenExpr>(IDExpr)) { | ||||||||||
8985 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) { | ||||||||||
8986 | if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { | ||||||||||
8987 | QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation()); | ||||||||||
8988 | if (!T.isNull()) | ||||||||||
8989 | return S.Context.getLValueReferenceType(T); | ||||||||||
8990 | } | ||||||||||
8991 | } | ||||||||||
8992 | } | ||||||||||
8993 | } | ||||||||||
8994 | |||||||||||
8995 | return S.getDecltypeForParenthesizedExpr(E); | ||||||||||
8996 | } | ||||||||||
8997 | |||||||||||
8998 | QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc, | ||||||||||
8999 | bool AsUnevaluated) { | ||||||||||
9000 | assert(!E->hasPlaceholderType() && "unexpected placeholder")((void)0); | ||||||||||
9001 | |||||||||||
9002 | if (AsUnevaluated && CodeSynthesisContexts.empty() && | ||||||||||
9003 | !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) { | ||||||||||
9004 | // The expression operand for decltype is in an unevaluated expression | ||||||||||
9005 | // context, so side effects could result in unintended consequences. | ||||||||||
9006 | // Exclude instantiation-dependent expressions, because 'decltype' is often | ||||||||||
9007 | // used to build SFINAE gadgets. | ||||||||||
9008 | Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); | ||||||||||
9009 | } | ||||||||||
9010 | |||||||||||
9011 | return Context.getDecltypeType(E, getDecltypeForExpr(*this, E)); | ||||||||||
9012 | } | ||||||||||
9013 | |||||||||||
9014 | QualType Sema::BuildUnaryTransformType(QualType BaseType, | ||||||||||
9015 | UnaryTransformType::UTTKind UKind, | ||||||||||
9016 | SourceLocation Loc) { | ||||||||||
9017 | switch (UKind) { | ||||||||||
9018 | case UnaryTransformType::EnumUnderlyingType: | ||||||||||
9019 | if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) { | ||||||||||
9020 | Diag(Loc, diag::err_only_enums_have_underlying_types); | ||||||||||
9021 | return QualType(); | ||||||||||
9022 | } else { | ||||||||||
9023 | QualType Underlying = BaseType; | ||||||||||
9024 | if (!BaseType->isDependentType()) { | ||||||||||
9025 | // The enum could be incomplete if we're parsing its definition or | ||||||||||
9026 | // recovering from an error. | ||||||||||
9027 | NamedDecl *FwdDecl = nullptr; | ||||||||||
9028 | if (BaseType->isIncompleteType(&FwdDecl)) { | ||||||||||
9029 | Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType; | ||||||||||
9030 | Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl; | ||||||||||
9031 | return QualType(); | ||||||||||
9032 | } | ||||||||||
9033 | |||||||||||
9034 | EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl(); | ||||||||||
9035 | assert(ED && "EnumType has no EnumDecl")((void)0); | ||||||||||
9036 | |||||||||||
9037 | DiagnoseUseOfDecl(ED, Loc); | ||||||||||
9038 | |||||||||||
9039 | Underlying = ED->getIntegerType(); | ||||||||||
9040 | assert(!Underlying.isNull())((void)0); | ||||||||||
9041 | } | ||||||||||
9042 | return Context.getUnaryTransformType(BaseType, Underlying, | ||||||||||
9043 | UnaryTransformType::EnumUnderlyingType); | ||||||||||
9044 | } | ||||||||||
9045 | } | ||||||||||
9046 | llvm_unreachable("unknown unary transform type")__builtin_unreachable(); | ||||||||||
9047 | } | ||||||||||
9048 | |||||||||||
9049 | QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) { | ||||||||||
9050 | if (!T->isDependentType()) { | ||||||||||
9051 | // FIXME: It isn't entirely clear whether incomplete atomic types | ||||||||||
9052 | // are allowed or not; for simplicity, ban them for the moment. | ||||||||||
9053 | if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0)) | ||||||||||
9054 | return QualType(); | ||||||||||
9055 | |||||||||||
9056 | int DisallowedKind = -1; | ||||||||||
9057 | if (T->isArrayType()) | ||||||||||
9058 | DisallowedKind = 1; | ||||||||||
9059 | else if (T->isFunctionType()) | ||||||||||
9060 | DisallowedKind = 2; | ||||||||||
9061 | else if (T->isReferenceType()) | ||||||||||
9062 | DisallowedKind = 3; | ||||||||||
9063 | else if (T->isAtomicType()) | ||||||||||
9064 | DisallowedKind = 4; | ||||||||||
9065 | else if (T.hasQualifiers()) | ||||||||||
9066 | DisallowedKind = 5; | ||||||||||
9067 | else if (T->isSizelessType()) | ||||||||||
9068 | DisallowedKind = 6; | ||||||||||
9069 | else if (!T.isTriviallyCopyableType(Context)) | ||||||||||
9070 | // Some other non-trivially-copyable type (probably a C++ class) | ||||||||||
9071 | DisallowedKind = 7; | ||||||||||
9072 | else if (T->isExtIntType()) { | ||||||||||
9073 | DisallowedKind = 8; | ||||||||||
9074 | } | ||||||||||
9075 | |||||||||||
9076 | if (DisallowedKind != -1) { | ||||||||||
9077 | Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T; | ||||||||||
9078 | return QualType(); | ||||||||||
9079 | } | ||||||||||
9080 | |||||||||||
9081 | // FIXME: Do we need any handling for ARC here? | ||||||||||
9082 | } | ||||||||||
9083 | |||||||||||
9084 | // Build the pointer type. | ||||||||||
9085 | return Context.getAtomicType(T); | ||||||||||
9086 | } |
1 | //===--- TypeLocVisitor.h - Visitor for TypeLoc subclasses ------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the TypeLocVisitor interface. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | #ifndef LLVM_CLANG_AST_TYPELOCVISITOR_H |
13 | #define LLVM_CLANG_AST_TYPELOCVISITOR_H |
14 | |
15 | #include "clang/AST/TypeLoc.h" |
16 | #include "llvm/Support/ErrorHandling.h" |
17 | |
18 | namespace clang { |
19 | |
20 | #define DISPATCH(CLASSNAME) \ |
21 | return static_cast<ImplClass*>(this)-> \ |
22 | Visit##CLASSNAME(TyLoc.castAs<CLASSNAME>()) |
23 | |
24 | template<typename ImplClass, typename RetTy=void> |
25 | class TypeLocVisitor { |
26 | public: |
27 | RetTy Visit(TypeLoc TyLoc) { |
28 | switch (TyLoc.getTypeLocClass()) { |
29 | #define ABSTRACT_TYPELOC(CLASS, PARENT) |
30 | #define TYPELOC(CLASS, PARENT) \ |
31 | case TypeLoc::CLASS: DISPATCH(CLASS##TypeLoc); |
32 | #include "clang/AST/TypeLocNodes.def" |
33 | } |
34 | llvm_unreachable("unexpected type loc class!")__builtin_unreachable(); |
35 | } |
36 | |
37 | RetTy Visit(UnqualTypeLoc TyLoc) { |
38 | switch (TyLoc.getTypeLocClass()) { |
39 | #define ABSTRACT_TYPELOC(CLASS, PARENT) |
40 | #define TYPELOC(CLASS, PARENT) \ |
41 | case TypeLoc::CLASS: DISPATCH(CLASS##TypeLoc); |
42 | #include "clang/AST/TypeLocNodes.def" |
43 | } |
44 | llvm_unreachable("unexpected type loc class!")__builtin_unreachable(); |
45 | } |
46 | |
47 | #define TYPELOC(CLASS, PARENT) \ |
48 | RetTy Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \ |
49 | DISPATCH(PARENT); \ |
50 | } |
51 | #include "clang/AST/TypeLocNodes.def" |
52 | |
53 | RetTy VisitTypeLoc(TypeLoc TyLoc) { return RetTy(); } |
54 | }; |
55 | |
56 | #undef DISPATCH |
57 | |
58 | } // end namespace clang |
59 | |
60 | #endif // LLVM_CLANG_AST_TYPELOCVISITOR_H |
1 | /*===- TableGen'erated file -------------------------------------*- C++ -*-===*\ |
2 | |* *| |
3 | |* An x-macro database of Clang type nodes *| |
4 | |* *| |
5 | |* Automatically generated file, do not edit! *| |
6 | |* *| |
7 | \*===----------------------------------------------------------------------===*/ |
8 | |
9 | #ifndef ABSTRACT_TYPE |
10 | # define ABSTRACT_TYPE(Class, Base) TYPE(Class, Base) |
11 | #endif |
12 | #ifndef NON_CANONICAL_TYPE |
13 | # define NON_CANONICAL_TYPE(Class, Base) TYPE(Class, Base) |
14 | #endif |
15 | #ifndef DEPENDENT_TYPE |
16 | # define DEPENDENT_TYPE(Class, Base) TYPE(Class, Base) |
17 | #endif |
18 | #ifndef NON_CANONICAL_UNLESS_DEPENDENT_TYPE |
19 | # define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) TYPE(Class, Base) |
20 | #endif |
21 | NON_CANONICAL_TYPE(Adjusted, Type) |
22 | NON_CANONICAL_TYPE(Decayed, AdjustedType) |
23 | ABSTRACT_TYPE(Array, Type) |
24 | TYPE(ConstantArray, ArrayType) |
25 | DEPENDENT_TYPE(DependentSizedArray, ArrayType) |
26 | TYPE(IncompleteArray, ArrayType) |
27 | TYPE(VariableArray, ArrayType) |
28 | TYPE(Atomic, Type) |
29 | NON_CANONICAL_TYPE(Attributed, Type) |
30 | TYPE(BlockPointer, Type) |
31 | TYPE(Builtin, Type) |
32 | TYPE(Complex, Type) |
33 | NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Decltype, Type) |
34 | ABSTRACT_TYPE(Deduced, Type) |
35 | TYPE(Auto, DeducedType) |
36 | TYPE(DeducedTemplateSpecialization, DeducedType) |
37 | DEPENDENT_TYPE(DependentAddressSpace, Type) |
38 | DEPENDENT_TYPE(DependentExtInt, Type) |
39 | DEPENDENT_TYPE(DependentName, Type) |
40 | DEPENDENT_TYPE(DependentSizedExtVector, Type) |
41 | DEPENDENT_TYPE(DependentTemplateSpecialization, Type) |
42 | DEPENDENT_TYPE(DependentVector, Type) |
43 | NON_CANONICAL_TYPE(Elaborated, Type) |
44 | TYPE(ExtInt, Type) |
45 | ABSTRACT_TYPE(Function, Type) |
46 | TYPE(FunctionNoProto, FunctionType) |
47 | TYPE(FunctionProto, FunctionType) |
48 | DEPENDENT_TYPE(InjectedClassName, Type) |
49 | NON_CANONICAL_TYPE(MacroQualified, Type) |
50 | ABSTRACT_TYPE(Matrix, Type) |
51 | TYPE(ConstantMatrix, MatrixType) |
52 | DEPENDENT_TYPE(DependentSizedMatrix, MatrixType) |
53 | TYPE(MemberPointer, Type) |
54 | TYPE(ObjCObjectPointer, Type) |
55 | TYPE(ObjCObject, Type) |
56 | TYPE(ObjCInterface, ObjCObjectType) |
57 | NON_CANONICAL_TYPE(ObjCTypeParam, Type) |
58 | DEPENDENT_TYPE(PackExpansion, Type) |
59 | NON_CANONICAL_TYPE(Paren, Type) |
60 | TYPE(Pipe, Type) |
61 | TYPE(Pointer, Type) |
62 | ABSTRACT_TYPE(Reference, Type) |
63 | TYPE(LValueReference, ReferenceType) |
64 | TYPE(RValueReference, ReferenceType) |
65 | DEPENDENT_TYPE(SubstTemplateTypeParmPack, Type) |
66 | NON_CANONICAL_TYPE(SubstTemplateTypeParm, Type) |
67 | ABSTRACT_TYPE(Tag, Type) |
68 | TYPE(Enum, TagType) |
69 | TYPE(Record, TagType) |
70 | NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TemplateSpecialization, Type) |
71 | DEPENDENT_TYPE(TemplateTypeParm, Type) |
72 | NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOfExpr, Type) |
73 | NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOf, Type) |
74 | NON_CANONICAL_TYPE(Typedef, Type) |
75 | NON_CANONICAL_UNLESS_DEPENDENT_TYPE(UnaryTransform, Type) |
76 | DEPENDENT_TYPE(UnresolvedUsing, Type) |
77 | TYPE(Vector, Type) |
78 | TYPE(ExtVector, VectorType) |
79 | #ifdef LAST_TYPE |
80 | LAST_TYPE(ExtVector) |
81 | #undef LAST_TYPE |
82 | #endif |
83 | #ifdef LEAF_TYPE |
84 | LEAF_TYPE(Builtin) |
85 | LEAF_TYPE(Enum) |
86 | LEAF_TYPE(InjectedClassName) |
87 | LEAF_TYPE(ObjCInterface) |
88 | LEAF_TYPE(Record) |
89 | LEAF_TYPE(TemplateTypeParm) |
90 | #undef LEAF_TYPE |
91 | #endif |
92 | #undef TYPE |
93 | #undef ABSTRACT_TYPE |
94 | #undef ABSTRACT_TYPE |
95 | #undef NON_CANONICAL_TYPE |
96 | #undef DEPENDENT_TYPE |
97 | #undef NON_CANONICAL_UNLESS_DEPENDENT_TYPE |
1 | //===- Type.h - C Language Family Type Representation -----------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// C Language Family Type Representation |
11 | /// |
12 | /// This file defines the clang::Type interface and subclasses, used to |
13 | /// represent types for languages in the C family. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #ifndef LLVM_CLANG_AST_TYPE_H |
18 | #define LLVM_CLANG_AST_TYPE_H |
19 | |
20 | #include "clang/AST/DependenceFlags.h" |
21 | #include "clang/AST/NestedNameSpecifier.h" |
22 | #include "clang/AST/TemplateName.h" |
23 | #include "clang/Basic/AddressSpaces.h" |
24 | #include "clang/Basic/AttrKinds.h" |
25 | #include "clang/Basic/Diagnostic.h" |
26 | #include "clang/Basic/ExceptionSpecificationType.h" |
27 | #include "clang/Basic/LLVM.h" |
28 | #include "clang/Basic/Linkage.h" |
29 | #include "clang/Basic/PartialDiagnostic.h" |
30 | #include "clang/Basic/SourceLocation.h" |
31 | #include "clang/Basic/Specifiers.h" |
32 | #include "clang/Basic/Visibility.h" |
33 | #include "llvm/ADT/APInt.h" |
34 | #include "llvm/ADT/APSInt.h" |
35 | #include "llvm/ADT/ArrayRef.h" |
36 | #include "llvm/ADT/FoldingSet.h" |
37 | #include "llvm/ADT/None.h" |
38 | #include "llvm/ADT/Optional.h" |
39 | #include "llvm/ADT/PointerIntPair.h" |
40 | #include "llvm/ADT/PointerUnion.h" |
41 | #include "llvm/ADT/StringRef.h" |
42 | #include "llvm/ADT/Twine.h" |
43 | #include "llvm/ADT/iterator_range.h" |
44 | #include "llvm/Support/Casting.h" |
45 | #include "llvm/Support/Compiler.h" |
46 | #include "llvm/Support/ErrorHandling.h" |
47 | #include "llvm/Support/PointerLikeTypeTraits.h" |
48 | #include "llvm/Support/TrailingObjects.h" |
49 | #include "llvm/Support/type_traits.h" |
50 | #include <cassert> |
51 | #include <cstddef> |
52 | #include <cstdint> |
53 | #include <cstring> |
54 | #include <string> |
55 | #include <type_traits> |
56 | #include <utility> |
57 | |
58 | namespace clang { |
59 | |
60 | class ExtQuals; |
61 | class QualType; |
62 | class ConceptDecl; |
63 | class TagDecl; |
64 | class TemplateParameterList; |
65 | class Type; |
66 | |
67 | enum { |
68 | TypeAlignmentInBits = 4, |
69 | TypeAlignment = 1 << TypeAlignmentInBits |
70 | }; |
71 | |
72 | namespace serialization { |
73 | template <class T> class AbstractTypeReader; |
74 | template <class T> class AbstractTypeWriter; |
75 | } |
76 | |
77 | } // namespace clang |
78 | |
79 | namespace llvm { |
80 | |
81 | template <typename T> |
82 | struct PointerLikeTypeTraits; |
83 | template<> |
84 | struct PointerLikeTypeTraits< ::clang::Type*> { |
85 | static inline void *getAsVoidPointer(::clang::Type *P) { return P; } |
86 | |
87 | static inline ::clang::Type *getFromVoidPointer(void *P) { |
88 | return static_cast< ::clang::Type*>(P); |
89 | } |
90 | |
91 | static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits; |
92 | }; |
93 | |
94 | template<> |
95 | struct PointerLikeTypeTraits< ::clang::ExtQuals*> { |
96 | static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; } |
97 | |
98 | static inline ::clang::ExtQuals *getFromVoidPointer(void *P) { |
99 | return static_cast< ::clang::ExtQuals*>(P); |
100 | } |
101 | |
102 | static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits; |
103 | }; |
104 | |
105 | } // namespace llvm |
106 | |
107 | namespace clang { |
108 | |
109 | class ASTContext; |
110 | template <typename> class CanQual; |
111 | class CXXRecordDecl; |
112 | class DeclContext; |
113 | class EnumDecl; |
114 | class Expr; |
115 | class ExtQualsTypeCommonBase; |
116 | class FunctionDecl; |
117 | class IdentifierInfo; |
118 | class NamedDecl; |
119 | class ObjCInterfaceDecl; |
120 | class ObjCProtocolDecl; |
121 | class ObjCTypeParamDecl; |
122 | struct PrintingPolicy; |
123 | class RecordDecl; |
124 | class Stmt; |
125 | class TagDecl; |
126 | class TemplateArgument; |
127 | class TemplateArgumentListInfo; |
128 | class TemplateArgumentLoc; |
129 | class TemplateTypeParmDecl; |
130 | class TypedefNameDecl; |
131 | class UnresolvedUsingTypenameDecl; |
132 | |
133 | using CanQualType = CanQual<Type>; |
134 | |
135 | // Provide forward declarations for all of the *Type classes. |
136 | #define TYPE(Class, Base) class Class##Type; |
137 | #include "clang/AST/TypeNodes.inc" |
138 | |
139 | /// The collection of all-type qualifiers we support. |
140 | /// Clang supports five independent qualifiers: |
141 | /// * C99: const, volatile, and restrict |
142 | /// * MS: __unaligned |
143 | /// * Embedded C (TR18037): address spaces |
144 | /// * Objective C: the GC attributes (none, weak, or strong) |
145 | class Qualifiers { |
146 | public: |
147 | enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ. |
148 | Const = 0x1, |
149 | Restrict = 0x2, |
150 | Volatile = 0x4, |
151 | CVRMask = Const | Volatile | Restrict |
152 | }; |
153 | |
154 | enum GC { |
155 | GCNone = 0, |
156 | Weak, |
157 | Strong |
158 | }; |
159 | |
160 | enum ObjCLifetime { |
161 | /// There is no lifetime qualification on this type. |
162 | OCL_None, |
163 | |
164 | /// This object can be modified without requiring retains or |
165 | /// releases. |
166 | OCL_ExplicitNone, |
167 | |
168 | /// Assigning into this object requires the old value to be |
169 | /// released and the new value to be retained. The timing of the |
170 | /// release of the old value is inexact: it may be moved to |
171 | /// immediately after the last known point where the value is |
172 | /// live. |
173 | OCL_Strong, |
174 | |
175 | /// Reading or writing from this object requires a barrier call. |
176 | OCL_Weak, |
177 | |
178 | /// Assigning into this object requires a lifetime extension. |
179 | OCL_Autoreleasing |
180 | }; |
181 | |
182 | enum { |
183 | /// The maximum supported address space number. |
184 | /// 23 bits should be enough for anyone. |
185 | MaxAddressSpace = 0x7fffffu, |
186 | |
187 | /// The width of the "fast" qualifier mask. |
188 | FastWidth = 3, |
189 | |
190 | /// The fast qualifier mask. |
191 | FastMask = (1 << FastWidth) - 1 |
192 | }; |
193 | |
194 | /// Returns the common set of qualifiers while removing them from |
195 | /// the given sets. |
196 | static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) { |
197 | // If both are only CVR-qualified, bit operations are sufficient. |
198 | if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) { |
199 | Qualifiers Q; |
200 | Q.Mask = L.Mask & R.Mask; |
201 | L.Mask &= ~Q.Mask; |
202 | R.Mask &= ~Q.Mask; |
203 | return Q; |
204 | } |
205 | |
206 | Qualifiers Q; |
207 | unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers(); |
208 | Q.addCVRQualifiers(CommonCRV); |
209 | L.removeCVRQualifiers(CommonCRV); |
210 | R.removeCVRQualifiers(CommonCRV); |
211 | |
212 | if (L.getObjCGCAttr() == R.getObjCGCAttr()) { |
213 | Q.setObjCGCAttr(L.getObjCGCAttr()); |
214 | L.removeObjCGCAttr(); |
215 | R.removeObjCGCAttr(); |
216 | } |
217 | |
218 | if (L.getObjCLifetime() == R.getObjCLifetime()) { |
219 | Q.setObjCLifetime(L.getObjCLifetime()); |
220 | L.removeObjCLifetime(); |
221 | R.removeObjCLifetime(); |
222 | } |
223 | |
224 | if (L.getAddressSpace() == R.getAddressSpace()) { |
225 | Q.setAddressSpace(L.getAddressSpace()); |
226 | L.removeAddressSpace(); |
227 | R.removeAddressSpace(); |
228 | } |
229 | return Q; |
230 | } |
231 | |
232 | static Qualifiers fromFastMask(unsigned Mask) { |
233 | Qualifiers Qs; |
234 | Qs.addFastQualifiers(Mask); |
235 | return Qs; |
236 | } |
237 | |
238 | static Qualifiers fromCVRMask(unsigned CVR) { |
239 | Qualifiers Qs; |
240 | Qs.addCVRQualifiers(CVR); |
241 | return Qs; |
242 | } |
243 | |
244 | static Qualifiers fromCVRUMask(unsigned CVRU) { |
245 | Qualifiers Qs; |
246 | Qs.addCVRUQualifiers(CVRU); |
247 | return Qs; |
248 | } |
249 | |
250 | // Deserialize qualifiers from an opaque representation. |
251 | static Qualifiers fromOpaqueValue(unsigned opaque) { |
252 | Qualifiers Qs; |
253 | Qs.Mask = opaque; |
254 | return Qs; |
255 | } |
256 | |
257 | // Serialize these qualifiers into an opaque representation. |
258 | unsigned getAsOpaqueValue() const { |
259 | return Mask; |
260 | } |
261 | |
262 | bool hasConst() const { return Mask & Const; } |
263 | bool hasOnlyConst() const { return Mask == Const; } |
264 | void removeConst() { Mask &= ~Const; } |
265 | void addConst() { Mask |= Const; } |
266 | |
267 | bool hasVolatile() const { return Mask & Volatile; } |
268 | bool hasOnlyVolatile() const { return Mask == Volatile; } |
269 | void removeVolatile() { Mask &= ~Volatile; } |
270 | void addVolatile() { Mask |= Volatile; } |
271 | |
272 | bool hasRestrict() const { return Mask & Restrict; } |
273 | bool hasOnlyRestrict() const { return Mask == Restrict; } |
274 | void removeRestrict() { Mask &= ~Restrict; } |
275 | void addRestrict() { Mask |= Restrict; } |
276 | |
277 | bool hasCVRQualifiers() const { return getCVRQualifiers(); } |
278 | unsigned getCVRQualifiers() const { return Mask & CVRMask; } |
279 | unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); } |
280 | |
281 | void setCVRQualifiers(unsigned mask) { |
282 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); |
283 | Mask = (Mask & ~CVRMask) | mask; |
284 | } |
285 | void removeCVRQualifiers(unsigned mask) { |
286 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); |
287 | Mask &= ~mask; |
288 | } |
289 | void removeCVRQualifiers() { |
290 | removeCVRQualifiers(CVRMask); |
291 | } |
292 | void addCVRQualifiers(unsigned mask) { |
293 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); |
294 | Mask |= mask; |
295 | } |
296 | void addCVRUQualifiers(unsigned mask) { |
297 | assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((void)0); |
298 | Mask |= mask; |
299 | } |
300 | |
301 | bool hasUnaligned() const { return Mask & UMask; } |
302 | void setUnaligned(bool flag) { |
303 | Mask = (Mask & ~UMask) | (flag ? UMask : 0); |
304 | } |
305 | void removeUnaligned() { Mask &= ~UMask; } |
306 | void addUnaligned() { Mask |= UMask; } |
307 | |
308 | bool hasObjCGCAttr() const { return Mask & GCAttrMask; } |
309 | GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); } |
310 | void setObjCGCAttr(GC type) { |
311 | Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift); |
312 | } |
313 | void removeObjCGCAttr() { setObjCGCAttr(GCNone); } |
314 | void addObjCGCAttr(GC type) { |
315 | assert(type)((void)0); |
316 | setObjCGCAttr(type); |
317 | } |
318 | Qualifiers withoutObjCGCAttr() const { |
319 | Qualifiers qs = *this; |
320 | qs.removeObjCGCAttr(); |
321 | return qs; |
322 | } |
323 | Qualifiers withoutObjCLifetime() const { |
324 | Qualifiers qs = *this; |
325 | qs.removeObjCLifetime(); |
326 | return qs; |
327 | } |
328 | Qualifiers withoutAddressSpace() const { |
329 | Qualifiers qs = *this; |
330 | qs.removeAddressSpace(); |
331 | return qs; |
332 | } |
333 | |
334 | bool hasObjCLifetime() const { return Mask & LifetimeMask; } |
335 | ObjCLifetime getObjCLifetime() const { |
336 | return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift); |
337 | } |
338 | void setObjCLifetime(ObjCLifetime type) { |
339 | Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift); |
340 | } |
341 | void removeObjCLifetime() { setObjCLifetime(OCL_None); } |
342 | void addObjCLifetime(ObjCLifetime type) { |
343 | assert(type)((void)0); |
344 | assert(!hasObjCLifetime())((void)0); |
345 | Mask |= (type << LifetimeShift); |
346 | } |
347 | |
348 | /// True if the lifetime is neither None or ExplicitNone. |
349 | bool hasNonTrivialObjCLifetime() const { |
350 | ObjCLifetime lifetime = getObjCLifetime(); |
351 | return (lifetime > OCL_ExplicitNone); |
352 | } |
353 | |
354 | /// True if the lifetime is either strong or weak. |
355 | bool hasStrongOrWeakObjCLifetime() const { |
356 | ObjCLifetime lifetime = getObjCLifetime(); |
357 | return (lifetime == OCL_Strong || lifetime == OCL_Weak); |
358 | } |
359 | |
360 | bool hasAddressSpace() const { return Mask & AddressSpaceMask; } |
361 | LangAS getAddressSpace() const { |
362 | return static_cast<LangAS>(Mask >> AddressSpaceShift); |
363 | } |
364 | bool hasTargetSpecificAddressSpace() const { |
365 | return isTargetAddressSpace(getAddressSpace()); |
366 | } |
367 | /// Get the address space attribute value to be printed by diagnostics. |
368 | unsigned getAddressSpaceAttributePrintValue() const { |
369 | auto Addr = getAddressSpace(); |
370 | // This function is not supposed to be used with language specific |
371 | // address spaces. If that happens, the diagnostic message should consider |
372 | // printing the QualType instead of the address space value. |
373 | assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((void)0); |
374 | if (Addr != LangAS::Default) |
375 | return toTargetAddressSpace(Addr); |
376 | // TODO: The diagnostic messages where Addr may be 0 should be fixed |
377 | // since it cannot differentiate the situation where 0 denotes the default |
378 | // address space or user specified __attribute__((address_space(0))). |
379 | return 0; |
380 | } |
381 | void setAddressSpace(LangAS space) { |
382 | assert((unsigned)space <= MaxAddressSpace)((void)0); |
383 | Mask = (Mask & ~AddressSpaceMask) |
384 | | (((uint32_t) space) << AddressSpaceShift); |
385 | } |
386 | void removeAddressSpace() { setAddressSpace(LangAS::Default); } |
387 | void addAddressSpace(LangAS space) { |
388 | assert(space != LangAS::Default)((void)0); |
389 | setAddressSpace(space); |
390 | } |
391 | |
392 | // Fast qualifiers are those that can be allocated directly |
393 | // on a QualType object. |
394 | bool hasFastQualifiers() const { return getFastQualifiers(); } |
395 | unsigned getFastQualifiers() const { return Mask & FastMask; } |
396 | void setFastQualifiers(unsigned mask) { |
397 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); |
398 | Mask = (Mask & ~FastMask) | mask; |
399 | } |
400 | void removeFastQualifiers(unsigned mask) { |
401 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); |
402 | Mask &= ~mask; |
403 | } |
404 | void removeFastQualifiers() { |
405 | removeFastQualifiers(FastMask); |
406 | } |
407 | void addFastQualifiers(unsigned mask) { |
408 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); |
409 | Mask |= mask; |
410 | } |
411 | |
412 | /// Return true if the set contains any qualifiers which require an ExtQuals |
413 | /// node to be allocated. |
414 | bool hasNonFastQualifiers() const { return Mask & ~FastMask; } |
415 | Qualifiers getNonFastQualifiers() const { |
416 | Qualifiers Quals = *this; |
417 | Quals.setFastQualifiers(0); |
418 | return Quals; |
419 | } |
420 | |
421 | /// Return true if the set contains any qualifiers. |
422 | bool hasQualifiers() const { return Mask; } |
423 | bool empty() const { return !Mask; } |
424 | |
425 | /// Add the qualifiers from the given set to this set. |
426 | void addQualifiers(Qualifiers Q) { |
427 | // If the other set doesn't have any non-boolean qualifiers, just |
428 | // bit-or it in. |
429 | if (!(Q.Mask & ~CVRMask)) |
430 | Mask |= Q.Mask; |
431 | else { |
432 | Mask |= (Q.Mask & CVRMask); |
433 | if (Q.hasAddressSpace()) |
434 | addAddressSpace(Q.getAddressSpace()); |
435 | if (Q.hasObjCGCAttr()) |
436 | addObjCGCAttr(Q.getObjCGCAttr()); |
437 | if (Q.hasObjCLifetime()) |
438 | addObjCLifetime(Q.getObjCLifetime()); |
439 | } |
440 | } |
441 | |
442 | /// Remove the qualifiers from the given set from this set. |
443 | void removeQualifiers(Qualifiers Q) { |
444 | // If the other set doesn't have any non-boolean qualifiers, just |
445 | // bit-and the inverse in. |
446 | if (!(Q.Mask & ~CVRMask)) |
447 | Mask &= ~Q.Mask; |
448 | else { |
449 | Mask &= ~(Q.Mask & CVRMask); |
450 | if (getObjCGCAttr() == Q.getObjCGCAttr()) |
451 | removeObjCGCAttr(); |
452 | if (getObjCLifetime() == Q.getObjCLifetime()) |
453 | removeObjCLifetime(); |
454 | if (getAddressSpace() == Q.getAddressSpace()) |
455 | removeAddressSpace(); |
456 | } |
457 | } |
458 | |
459 | /// Add the qualifiers from the given set to this set, given that |
460 | /// they don't conflict. |
461 | void addConsistentQualifiers(Qualifiers qs) { |
462 | assert(getAddressSpace() == qs.getAddressSpace() ||((void)0) |
463 | !hasAddressSpace() || !qs.hasAddressSpace())((void)0); |
464 | assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((void)0) |
465 | !hasObjCGCAttr() || !qs.hasObjCGCAttr())((void)0); |
466 | assert(getObjCLifetime() == qs.getObjCLifetime() ||((void)0) |
467 | !hasObjCLifetime() || !qs.hasObjCLifetime())((void)0); |
468 | Mask |= qs.Mask; |
469 | } |
470 | |
471 | /// Returns true if address space A is equal to or a superset of B. |
472 | /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of |
473 | /// overlapping address spaces. |
474 | /// CL1.1 or CL1.2: |
475 | /// every address space is a superset of itself. |
476 | /// CL2.0 adds: |
477 | /// __generic is a superset of any address space except for __constant. |
478 | static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) { |
479 | // Address spaces must match exactly. |
480 | return A == B || |
481 | // Otherwise in OpenCLC v2.0 s6.5.5: every address space except |
482 | // for __constant can be used as __generic. |
483 | (A == LangAS::opencl_generic && B != LangAS::opencl_constant) || |
484 | // We also define global_device and global_host address spaces, |
485 | // to distinguish global pointers allocated on host from pointers |
486 | // allocated on device, which are a subset of __global. |
487 | (A == LangAS::opencl_global && (B == LangAS::opencl_global_device || |
488 | B == LangAS::opencl_global_host)) || |
489 | (A == LangAS::sycl_global && (B == LangAS::sycl_global_device || |
490 | B == LangAS::sycl_global_host)) || |
491 | // Consider pointer size address spaces to be equivalent to default. |
492 | ((isPtrSizeAddressSpace(A) || A == LangAS::Default) && |
493 | (isPtrSizeAddressSpace(B) || B == LangAS::Default)) || |
494 | // Default is a superset of SYCL address spaces. |
495 | (A == LangAS::Default && |
496 | (B == LangAS::sycl_private || B == LangAS::sycl_local || |
497 | B == LangAS::sycl_global || B == LangAS::sycl_global_device || |
498 | B == LangAS::sycl_global_host)); |
499 | } |
500 | |
501 | /// Returns true if the address space in these qualifiers is equal to or |
502 | /// a superset of the address space in the argument qualifiers. |
503 | bool isAddressSpaceSupersetOf(Qualifiers other) const { |
504 | return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace()); |
505 | } |
506 | |
507 | /// Determines if these qualifiers compatibly include another set. |
508 | /// Generally this answers the question of whether an object with the other |
509 | /// qualifiers can be safely used as an object with these qualifiers. |
510 | bool compatiblyIncludes(Qualifiers other) const { |
511 | return isAddressSpaceSupersetOf(other) && |
512 | // ObjC GC qualifiers can match, be added, or be removed, but can't |
513 | // be changed. |
514 | (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() || |
515 | !other.hasObjCGCAttr()) && |
516 | // ObjC lifetime qualifiers must match exactly. |
517 | getObjCLifetime() == other.getObjCLifetime() && |
518 | // CVR qualifiers may subset. |
519 | (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) && |
520 | // U qualifier may superset. |
521 | (!other.hasUnaligned() || hasUnaligned()); |
522 | } |
523 | |
524 | /// Determines if these qualifiers compatibly include another set of |
525 | /// qualifiers from the narrow perspective of Objective-C ARC lifetime. |
526 | /// |
527 | /// One set of Objective-C lifetime qualifiers compatibly includes the other |
528 | /// if the lifetime qualifiers match, or if both are non-__weak and the |
529 | /// including set also contains the 'const' qualifier, or both are non-__weak |
530 | /// and one is None (which can only happen in non-ARC modes). |
531 | bool compatiblyIncludesObjCLifetime(Qualifiers other) const { |
532 | if (getObjCLifetime() == other.getObjCLifetime()) |
533 | return true; |
534 | |
535 | if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak) |
536 | return false; |
537 | |
538 | if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None) |
539 | return true; |
540 | |
541 | return hasConst(); |
542 | } |
543 | |
544 | /// Determine whether this set of qualifiers is a strict superset of |
545 | /// another set of qualifiers, not considering qualifier compatibility. |
546 | bool isStrictSupersetOf(Qualifiers Other) const; |
547 | |
548 | bool operator==(Qualifiers Other) const { return Mask == Other.Mask; } |
549 | bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; } |
550 | |
551 | explicit operator bool() const { return hasQualifiers(); } |
552 | |
553 | Qualifiers &operator+=(Qualifiers R) { |
554 | addQualifiers(R); |
555 | return *this; |
556 | } |
557 | |
558 | // Union two qualifier sets. If an enumerated qualifier appears |
559 | // in both sets, use the one from the right. |
560 | friend Qualifiers operator+(Qualifiers L, Qualifiers R) { |
561 | L += R; |
562 | return L; |
563 | } |
564 | |
565 | Qualifiers &operator-=(Qualifiers R) { |
566 | removeQualifiers(R); |
567 | return *this; |
568 | } |
569 | |
570 | /// Compute the difference between two qualifier sets. |
571 | friend Qualifiers operator-(Qualifiers L, Qualifiers R) { |
572 | L -= R; |
573 | return L; |
574 | } |
575 | |
576 | std::string getAsString() const; |
577 | std::string getAsString(const PrintingPolicy &Policy) const; |
578 | |
579 | static std::string getAddrSpaceAsString(LangAS AS); |
580 | |
581 | bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const; |
582 | void print(raw_ostream &OS, const PrintingPolicy &Policy, |
583 | bool appendSpaceIfNonEmpty = false) const; |
584 | |
585 | void Profile(llvm::FoldingSetNodeID &ID) const { |
586 | ID.AddInteger(Mask); |
587 | } |
588 | |
589 | private: |
590 | // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31| |
591 | // |C R V|U|GCAttr|Lifetime|AddressSpace| |
592 | uint32_t Mask = 0; |
593 | |
594 | static const uint32_t UMask = 0x8; |
595 | static const uint32_t UShift = 3; |
596 | static const uint32_t GCAttrMask = 0x30; |
597 | static const uint32_t GCAttrShift = 4; |
598 | static const uint32_t LifetimeMask = 0x1C0; |
599 | static const uint32_t LifetimeShift = 6; |
600 | static const uint32_t AddressSpaceMask = |
601 | ~(CVRMask | UMask | GCAttrMask | LifetimeMask); |
602 | static const uint32_t AddressSpaceShift = 9; |
603 | }; |
604 | |
605 | /// A std::pair-like structure for storing a qualified type split |
606 | /// into its local qualifiers and its locally-unqualified type. |
607 | struct SplitQualType { |
608 | /// The locally-unqualified type. |
609 | const Type *Ty = nullptr; |
610 | |
611 | /// The local qualifiers. |
612 | Qualifiers Quals; |
613 | |
614 | SplitQualType() = default; |
615 | SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {} |
616 | |
617 | SplitQualType getSingleStepDesugaredType() const; // end of this file |
618 | |
619 | // Make std::tie work. |
620 | std::pair<const Type *,Qualifiers> asPair() const { |
621 | return std::pair<const Type *, Qualifiers>(Ty, Quals); |
622 | } |
623 | |
624 | friend bool operator==(SplitQualType a, SplitQualType b) { |
625 | return a.Ty == b.Ty && a.Quals == b.Quals; |
626 | } |
627 | friend bool operator!=(SplitQualType a, SplitQualType b) { |
628 | return a.Ty != b.Ty || a.Quals != b.Quals; |
629 | } |
630 | }; |
631 | |
632 | /// The kind of type we are substituting Objective-C type arguments into. |
633 | /// |
634 | /// The kind of substitution affects the replacement of type parameters when |
635 | /// no concrete type information is provided, e.g., when dealing with an |
636 | /// unspecialized type. |
637 | enum class ObjCSubstitutionContext { |
638 | /// An ordinary type. |
639 | Ordinary, |
640 | |
641 | /// The result type of a method or function. |
642 | Result, |
643 | |
644 | /// The parameter type of a method or function. |
645 | Parameter, |
646 | |
647 | /// The type of a property. |
648 | Property, |
649 | |
650 | /// The superclass of a type. |
651 | Superclass, |
652 | }; |
653 | |
654 | /// A (possibly-)qualified type. |
655 | /// |
656 | /// For efficiency, we don't store CV-qualified types as nodes on their |
657 | /// own: instead each reference to a type stores the qualifiers. This |
658 | /// greatly reduces the number of nodes we need to allocate for types (for |
659 | /// example we only need one for 'int', 'const int', 'volatile int', |
660 | /// 'const volatile int', etc). |
661 | /// |
662 | /// As an added efficiency bonus, instead of making this a pair, we |
663 | /// just store the two bits we care about in the low bits of the |
664 | /// pointer. To handle the packing/unpacking, we make QualType be a |
665 | /// simple wrapper class that acts like a smart pointer. A third bit |
666 | /// indicates whether there are extended qualifiers present, in which |
667 | /// case the pointer points to a special structure. |
668 | class QualType { |
669 | friend class QualifierCollector; |
670 | |
671 | // Thankfully, these are efficiently composable. |
672 | llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>, |
673 | Qualifiers::FastWidth> Value; |
674 | |
675 | const ExtQuals *getExtQualsUnsafe() const { |
676 | return Value.getPointer().get<const ExtQuals*>(); |
677 | } |
678 | |
679 | const Type *getTypePtrUnsafe() const { |
680 | return Value.getPointer().get<const Type*>(); |
681 | } |
682 | |
683 | const ExtQualsTypeCommonBase *getCommonPtr() const { |
684 | assert(!isNull() && "Cannot retrieve a NULL type pointer")((void)0); |
685 | auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue()); |
686 | CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1); |
687 | return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal); |
688 | } |
689 | |
690 | public: |
691 | QualType() = default; |
692 | QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {} |
693 | QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {} |
694 | |
695 | unsigned getLocalFastQualifiers() const { return Value.getInt(); } |
696 | void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); } |
697 | |
698 | /// Retrieves a pointer to the underlying (unqualified) type. |
699 | /// |
700 | /// This function requires that the type not be NULL. If the type might be |
701 | /// NULL, use the (slightly less efficient) \c getTypePtrOrNull(). |
702 | const Type *getTypePtr() const; |
703 | |
704 | const Type *getTypePtrOrNull() const; |
705 | |
706 | /// Retrieves a pointer to the name of the base type. |
707 | const IdentifierInfo *getBaseTypeIdentifier() const; |
708 | |
709 | /// Divides a QualType into its unqualified type and a set of local |
710 | /// qualifiers. |
711 | SplitQualType split() const; |
712 | |
713 | void *getAsOpaquePtr() const { return Value.getOpaqueValue(); } |
714 | |
715 | static QualType getFromOpaquePtr(const void *Ptr) { |
716 | QualType T; |
717 | T.Value.setFromOpaqueValue(const_cast<void*>(Ptr)); |
718 | return T; |
719 | } |
720 | |
721 | const Type &operator*() const { |
722 | return *getTypePtr(); |
723 | } |
724 | |
725 | const Type *operator->() const { |
726 | return getTypePtr(); |
727 | } |
728 | |
729 | bool isCanonical() const; |
730 | bool isCanonicalAsParam() const; |
731 | |
732 | /// Return true if this QualType doesn't point to a type yet. |
733 | bool isNull() const { |
734 | return Value.getPointer().isNull(); |
735 | } |
736 | |
737 | /// Determine whether this particular QualType instance has the |
738 | /// "const" qualifier set, without looking through typedefs that may have |
739 | /// added "const" at a different level. |
740 | bool isLocalConstQualified() const { |
741 | return (getLocalFastQualifiers() & Qualifiers::Const); |
742 | } |
743 | |
744 | /// Determine whether this type is const-qualified. |
745 | bool isConstQualified() const; |
746 | |
747 | /// Determine whether this particular QualType instance has the |
748 | /// "restrict" qualifier set, without looking through typedefs that may have |
749 | /// added "restrict" at a different level. |
750 | bool isLocalRestrictQualified() const { |
751 | return (getLocalFastQualifiers() & Qualifiers::Restrict); |
752 | } |
753 | |
754 | /// Determine whether this type is restrict-qualified. |
755 | bool isRestrictQualified() const; |
756 | |
757 | /// Determine whether this particular QualType instance has the |
758 | /// "volatile" qualifier set, without looking through typedefs that may have |
759 | /// added "volatile" at a different level. |
760 | bool isLocalVolatileQualified() const { |
761 | return (getLocalFastQualifiers() & Qualifiers::Volatile); |
762 | } |
763 | |
764 | /// Determine whether this type is volatile-qualified. |
765 | bool isVolatileQualified() const; |
766 | |
767 | /// Determine whether this particular QualType instance has any |
768 | /// qualifiers, without looking through any typedefs that might add |
769 | /// qualifiers at a different level. |
770 | bool hasLocalQualifiers() const { |
771 | return getLocalFastQualifiers() || hasLocalNonFastQualifiers(); |
772 | } |
773 | |
774 | /// Determine whether this type has any qualifiers. |
775 | bool hasQualifiers() const; |
776 | |
777 | /// Determine whether this particular QualType instance has any |
778 | /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType |
779 | /// instance. |
780 | bool hasLocalNonFastQualifiers() const { |
781 | return Value.getPointer().is<const ExtQuals*>(); |
782 | } |
783 | |
784 | /// Retrieve the set of qualifiers local to this particular QualType |
785 | /// instance, not including any qualifiers acquired through typedefs or |
786 | /// other sugar. |
787 | Qualifiers getLocalQualifiers() const; |
788 | |
789 | /// Retrieve the set of qualifiers applied to this type. |
790 | Qualifiers getQualifiers() const; |
791 | |
792 | /// Retrieve the set of CVR (const-volatile-restrict) qualifiers |
793 | /// local to this particular QualType instance, not including any qualifiers |
794 | /// acquired through typedefs or other sugar. |
795 | unsigned getLocalCVRQualifiers() const { |
796 | return getLocalFastQualifiers(); |
797 | } |
798 | |
799 | /// Retrieve the set of CVR (const-volatile-restrict) qualifiers |
800 | /// applied to this type. |
801 | unsigned getCVRQualifiers() const; |
802 | |
803 | bool isConstant(const ASTContext& Ctx) const { |
804 | return QualType::isConstant(*this, Ctx); |
805 | } |
806 | |
807 | /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10). |
808 | bool isPODType(const ASTContext &Context) const; |
809 | |
810 | /// Return true if this is a POD type according to the rules of the C++98 |
811 | /// standard, regardless of the current compilation's language. |
812 | bool isCXX98PODType(const ASTContext &Context) const; |
813 | |
814 | /// Return true if this is a POD type according to the more relaxed rules |
815 | /// of the C++11 standard, regardless of the current compilation's language. |
816 | /// (C++0x [basic.types]p9). Note that, unlike |
817 | /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account. |
818 | bool isCXX11PODType(const ASTContext &Context) const; |
819 | |
820 | /// Return true if this is a trivial type per (C++0x [basic.types]p9) |
821 | bool isTrivialType(const ASTContext &Context) const; |
822 | |
823 | /// Return true if this is a trivially copyable type (C++0x [basic.types]p9) |
824 | bool isTriviallyCopyableType(const ASTContext &Context) const; |
825 | |
826 | |
827 | /// Returns true if it is a class and it might be dynamic. |
828 | bool mayBeDynamicClass() const; |
829 | |
830 | /// Returns true if it is not a class or if the class might not be dynamic. |
831 | bool mayBeNotDynamicClass() const; |
832 | |
833 | // Don't promise in the API that anything besides 'const' can be |
834 | // easily added. |
835 | |
836 | /// Add the `const` type qualifier to this QualType. |
837 | void addConst() { |
838 | addFastQualifiers(Qualifiers::Const); |
839 | } |
840 | QualType withConst() const { |
841 | return withFastQualifiers(Qualifiers::Const); |
842 | } |
843 | |
844 | /// Add the `volatile` type qualifier to this QualType. |
845 | void addVolatile() { |
846 | addFastQualifiers(Qualifiers::Volatile); |
847 | } |
848 | QualType withVolatile() const { |
849 | return withFastQualifiers(Qualifiers::Volatile); |
850 | } |
851 | |
852 | /// Add the `restrict` qualifier to this QualType. |
853 | void addRestrict() { |
854 | addFastQualifiers(Qualifiers::Restrict); |
855 | } |
856 | QualType withRestrict() const { |
857 | return withFastQualifiers(Qualifiers::Restrict); |
858 | } |
859 | |
860 | QualType withCVRQualifiers(unsigned CVR) const { |
861 | return withFastQualifiers(CVR); |
862 | } |
863 | |
864 | void addFastQualifiers(unsigned TQs) { |
865 | assert(!(TQs & ~Qualifiers::FastMask)((void)0) |
866 | && "non-fast qualifier bits set in mask!")((void)0); |
867 | Value.setInt(Value.getInt() | TQs); |
868 | } |
869 | |
870 | void removeLocalConst(); |
871 | void removeLocalVolatile(); |
872 | void removeLocalRestrict(); |
873 | void removeLocalCVRQualifiers(unsigned Mask); |
874 | |
875 | void removeLocalFastQualifiers() { Value.setInt(0); } |
876 | void removeLocalFastQualifiers(unsigned Mask) { |
877 | assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((void)0); |
878 | Value.setInt(Value.getInt() & ~Mask); |
879 | } |
880 | |
881 | // Creates a type with the given qualifiers in addition to any |
882 | // qualifiers already on this type. |
883 | QualType withFastQualifiers(unsigned TQs) const { |
884 | QualType T = *this; |
885 | T.addFastQualifiers(TQs); |
886 | return T; |
887 | } |
888 | |
889 | // Creates a type with exactly the given fast qualifiers, removing |
890 | // any existing fast qualifiers. |
891 | QualType withExactLocalFastQualifiers(unsigned TQs) const { |
892 | return withoutLocalFastQualifiers().withFastQualifiers(TQs); |
893 | } |
894 | |
895 | // Removes fast qualifiers, but leaves any extended qualifiers in place. |
896 | QualType withoutLocalFastQualifiers() const { |
897 | QualType T = *this; |
898 | T.removeLocalFastQualifiers(); |
899 | return T; |
900 | } |
901 | |
902 | QualType getCanonicalType() const; |
903 | |
904 | /// Return this type with all of the instance-specific qualifiers |
905 | /// removed, but without removing any qualifiers that may have been applied |
906 | /// through typedefs. |
907 | QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); } |
908 | |
909 | /// Retrieve the unqualified variant of the given type, |
910 | /// removing as little sugar as possible. |
911 | /// |
912 | /// This routine looks through various kinds of sugar to find the |
913 | /// least-desugared type that is unqualified. For example, given: |
914 | /// |
915 | /// \code |
916 | /// typedef int Integer; |
917 | /// typedef const Integer CInteger; |
918 | /// typedef CInteger DifferenceType; |
919 | /// \endcode |
920 | /// |
921 | /// Executing \c getUnqualifiedType() on the type \c DifferenceType will |
922 | /// desugar until we hit the type \c Integer, which has no qualifiers on it. |
923 | /// |
924 | /// The resulting type might still be qualified if it's sugar for an array |
925 | /// type. To strip qualifiers even from within a sugared array type, use |
926 | /// ASTContext::getUnqualifiedArrayType. |
927 | inline QualType getUnqualifiedType() const; |
928 | |
929 | /// Retrieve the unqualified variant of the given type, removing as little |
930 | /// sugar as possible. |
931 | /// |
932 | /// Like getUnqualifiedType(), but also returns the set of |
933 | /// qualifiers that were built up. |
934 | /// |
935 | /// The resulting type might still be qualified if it's sugar for an array |
936 | /// type. To strip qualifiers even from within a sugared array type, use |
937 | /// ASTContext::getUnqualifiedArrayType. |
938 | inline SplitQualType getSplitUnqualifiedType() const; |
939 | |
940 | /// Determine whether this type is more qualified than the other |
941 | /// given type, requiring exact equality for non-CVR qualifiers. |
942 | bool isMoreQualifiedThan(QualType Other) const; |
943 | |
944 | /// Determine whether this type is at least as qualified as the other |
945 | /// given type, requiring exact equality for non-CVR qualifiers. |
946 | bool isAtLeastAsQualifiedAs(QualType Other) const; |
947 | |
948 | QualType getNonReferenceType() const; |
949 | |
950 | /// Determine the type of a (typically non-lvalue) expression with the |
951 | /// specified result type. |
952 | /// |
953 | /// This routine should be used for expressions for which the return type is |
954 | /// explicitly specified (e.g., in a cast or call) and isn't necessarily |
955 | /// an lvalue. It removes a top-level reference (since there are no |
956 | /// expressions of reference type) and deletes top-level cvr-qualifiers |
957 | /// from non-class types (in C++) or all types (in C). |
958 | QualType getNonLValueExprType(const ASTContext &Context) const; |
959 | |
960 | /// Remove an outer pack expansion type (if any) from this type. Used as part |
961 | /// of converting the type of a declaration to the type of an expression that |
962 | /// references that expression. It's meaningless for an expression to have a |
963 | /// pack expansion type. |
964 | QualType getNonPackExpansionType() const; |
965 | |
966 | /// Return the specified type with any "sugar" removed from |
967 | /// the type. This takes off typedefs, typeof's etc. If the outer level of |
968 | /// the type is already concrete, it returns it unmodified. This is similar |
969 | /// to getting the canonical type, but it doesn't remove *all* typedefs. For |
970 | /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is |
971 | /// concrete. |
972 | /// |
973 | /// Qualifiers are left in place. |
974 | QualType getDesugaredType(const ASTContext &Context) const { |
975 | return getDesugaredType(*this, Context); |
976 | } |
977 | |
978 | SplitQualType getSplitDesugaredType() const { |
979 | return getSplitDesugaredType(*this); |
980 | } |
981 | |
982 | /// Return the specified type with one level of "sugar" removed from |
983 | /// the type. |
984 | /// |
985 | /// This routine takes off the first typedef, typeof, etc. If the outer level |
986 | /// of the type is already concrete, it returns it unmodified. |
987 | QualType getSingleStepDesugaredType(const ASTContext &Context) const { |
988 | return getSingleStepDesugaredTypeImpl(*this, Context); |
989 | } |
990 | |
991 | /// Returns the specified type after dropping any |
992 | /// outer-level parentheses. |
993 | QualType IgnoreParens() const { |
994 | if (isa<ParenType>(*this)) |
995 | return QualType::IgnoreParens(*this); |
996 | return *this; |
997 | } |
998 | |
999 | /// Indicate whether the specified types and qualifiers are identical. |
1000 | friend bool operator==(const QualType &LHS, const QualType &RHS) { |
1001 | return LHS.Value == RHS.Value; |
1002 | } |
1003 | friend bool operator!=(const QualType &LHS, const QualType &RHS) { |
1004 | return LHS.Value != RHS.Value; |
1005 | } |
1006 | friend bool operator<(const QualType &LHS, const QualType &RHS) { |
1007 | return LHS.Value < RHS.Value; |
1008 | } |
1009 | |
1010 | static std::string getAsString(SplitQualType split, |
1011 | const PrintingPolicy &Policy) { |
1012 | return getAsString(split.Ty, split.Quals, Policy); |
1013 | } |
1014 | static std::string getAsString(const Type *ty, Qualifiers qs, |
1015 | const PrintingPolicy &Policy); |
1016 | |
1017 | std::string getAsString() const; |
1018 | std::string getAsString(const PrintingPolicy &Policy) const; |
1019 | |
1020 | void print(raw_ostream &OS, const PrintingPolicy &Policy, |
1021 | const Twine &PlaceHolder = Twine(), |
1022 | unsigned Indentation = 0) const; |
1023 | |
1024 | static void print(SplitQualType split, raw_ostream &OS, |
1025 | const PrintingPolicy &policy, const Twine &PlaceHolder, |
1026 | unsigned Indentation = 0) { |
1027 | return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation); |
1028 | } |
1029 | |
1030 | static void print(const Type *ty, Qualifiers qs, |
1031 | raw_ostream &OS, const PrintingPolicy &policy, |
1032 | const Twine &PlaceHolder, |
1033 | unsigned Indentation = 0); |
1034 | |
1035 | void getAsStringInternal(std::string &Str, |
1036 | const PrintingPolicy &Policy) const; |
1037 | |
1038 | static void getAsStringInternal(SplitQualType split, std::string &out, |
1039 | const PrintingPolicy &policy) { |
1040 | return getAsStringInternal(split.Ty, split.Quals, out, policy); |
1041 | } |
1042 | |
1043 | static void getAsStringInternal(const Type *ty, Qualifiers qs, |
1044 | std::string &out, |
1045 | const PrintingPolicy &policy); |
1046 | |
1047 | class StreamedQualTypeHelper { |
1048 | const QualType &T; |
1049 | const PrintingPolicy &Policy; |
1050 | const Twine &PlaceHolder; |
1051 | unsigned Indentation; |
1052 | |
1053 | public: |
1054 | StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy, |
1055 | const Twine &PlaceHolder, unsigned Indentation) |
1056 | : T(T), Policy(Policy), PlaceHolder(PlaceHolder), |
1057 | Indentation(Indentation) {} |
1058 | |
1059 | friend raw_ostream &operator<<(raw_ostream &OS, |
1060 | const StreamedQualTypeHelper &SQT) { |
1061 | SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation); |
1062 | return OS; |
1063 | } |
1064 | }; |
1065 | |
1066 | StreamedQualTypeHelper stream(const PrintingPolicy &Policy, |
1067 | const Twine &PlaceHolder = Twine(), |
1068 | unsigned Indentation = 0) const { |
1069 | return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation); |
1070 | } |
1071 | |
1072 | void dump(const char *s) const; |
1073 | void dump() const; |
1074 | void dump(llvm::raw_ostream &OS, const ASTContext &Context) const; |
1075 | |
1076 | void Profile(llvm::FoldingSetNodeID &ID) const { |
1077 | ID.AddPointer(getAsOpaquePtr()); |
1078 | } |
1079 | |
1080 | /// Check if this type has any address space qualifier. |
1081 | inline bool hasAddressSpace() const; |
1082 | |
1083 | /// Return the address space of this type. |
1084 | inline LangAS getAddressSpace() const; |
1085 | |
1086 | /// Returns true if address space qualifiers overlap with T address space |
1087 | /// qualifiers. |
1088 | /// OpenCL C defines conversion rules for pointers to different address spaces |
1089 | /// and notion of overlapping address spaces. |
1090 | /// CL1.1 or CL1.2: |
1091 | /// address spaces overlap iff they are they same. |
1092 | /// OpenCL C v2.0 s6.5.5 adds: |
1093 | /// __generic overlaps with any address space except for __constant. |
1094 | bool isAddressSpaceOverlapping(QualType T) const { |
1095 | Qualifiers Q = getQualifiers(); |
1096 | Qualifiers TQ = T.getQualifiers(); |
1097 | // Address spaces overlap if at least one of them is a superset of another |
1098 | return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q); |
1099 | } |
1100 | |
1101 | /// Returns gc attribute of this type. |
1102 | inline Qualifiers::GC getObjCGCAttr() const; |
1103 | |
1104 | /// true when Type is objc's weak. |
1105 | bool isObjCGCWeak() const { |
1106 | return getObjCGCAttr() == Qualifiers::Weak; |
1107 | } |
1108 | |
1109 | /// true when Type is objc's strong. |
1110 | bool isObjCGCStrong() const { |
1111 | return getObjCGCAttr() == Qualifiers::Strong; |
1112 | } |
1113 | |
1114 | /// Returns lifetime attribute of this type. |
1115 | Qualifiers::ObjCLifetime getObjCLifetime() const { |
1116 | return getQualifiers().getObjCLifetime(); |
1117 | } |
1118 | |
1119 | bool hasNonTrivialObjCLifetime() const { |
1120 | return getQualifiers().hasNonTrivialObjCLifetime(); |
1121 | } |
1122 | |
1123 | bool hasStrongOrWeakObjCLifetime() const { |
1124 | return getQualifiers().hasStrongOrWeakObjCLifetime(); |
1125 | } |
1126 | |
1127 | // true when Type is objc's weak and weak is enabled but ARC isn't. |
1128 | bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const; |
1129 | |
1130 | enum PrimitiveDefaultInitializeKind { |
1131 | /// The type does not fall into any of the following categories. Note that |
1132 | /// this case is zero-valued so that values of this enum can be used as a |
1133 | /// boolean condition for non-triviality. |
1134 | PDIK_Trivial, |
1135 | |
1136 | /// The type is an Objective-C retainable pointer type that is qualified |
1137 | /// with the ARC __strong qualifier. |
1138 | PDIK_ARCStrong, |
1139 | |
1140 | /// The type is an Objective-C retainable pointer type that is qualified |
1141 | /// with the ARC __weak qualifier. |
1142 | PDIK_ARCWeak, |
1143 | |
1144 | /// The type is a struct containing a field whose type is not PCK_Trivial. |
1145 | PDIK_Struct |
1146 | }; |
1147 | |
1148 | /// Functions to query basic properties of non-trivial C struct types. |
1149 | |
1150 | /// Check if this is a non-trivial type that would cause a C struct |
1151 | /// transitively containing this type to be non-trivial to default initialize |
1152 | /// and return the kind. |
1153 | PrimitiveDefaultInitializeKind |
1154 | isNonTrivialToPrimitiveDefaultInitialize() const; |
1155 | |
1156 | enum PrimitiveCopyKind { |
1157 | /// The type does not fall into any of the following categories. Note that |
1158 | /// this case is zero-valued so that values of this enum can be used as a |
1159 | /// boolean condition for non-triviality. |
1160 | PCK_Trivial, |
1161 | |
1162 | /// The type would be trivial except that it is volatile-qualified. Types |
1163 | /// that fall into one of the other non-trivial cases may additionally be |
1164 | /// volatile-qualified. |
1165 | PCK_VolatileTrivial, |
1166 | |
1167 | /// The type is an Objective-C retainable pointer type that is qualified |
1168 | /// with the ARC __strong qualifier. |
1169 | PCK_ARCStrong, |
1170 | |
1171 | /// The type is an Objective-C retainable pointer type that is qualified |
1172 | /// with the ARC __weak qualifier. |
1173 | PCK_ARCWeak, |
1174 | |
1175 | /// The type is a struct containing a field whose type is neither |
1176 | /// PCK_Trivial nor PCK_VolatileTrivial. |
1177 | /// Note that a C++ struct type does not necessarily match this; C++ copying |
1178 | /// semantics are too complex to express here, in part because they depend |
1179 | /// on the exact constructor or assignment operator that is chosen by |
1180 | /// overload resolution to do the copy. |
1181 | PCK_Struct |
1182 | }; |
1183 | |
1184 | /// Check if this is a non-trivial type that would cause a C struct |
1185 | /// transitively containing this type to be non-trivial to copy and return the |
1186 | /// kind. |
1187 | PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const; |
1188 | |
1189 | /// Check if this is a non-trivial type that would cause a C struct |
1190 | /// transitively containing this type to be non-trivial to destructively |
1191 | /// move and return the kind. Destructive move in this context is a C++-style |
1192 | /// move in which the source object is placed in a valid but unspecified state |
1193 | /// after it is moved, as opposed to a truly destructive move in which the |
1194 | /// source object is placed in an uninitialized state. |
1195 | PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const; |
1196 | |
1197 | enum DestructionKind { |
1198 | DK_none, |
1199 | DK_cxx_destructor, |
1200 | DK_objc_strong_lifetime, |
1201 | DK_objc_weak_lifetime, |
1202 | DK_nontrivial_c_struct |
1203 | }; |
1204 | |
1205 | /// Returns a nonzero value if objects of this type require |
1206 | /// non-trivial work to clean up after. Non-zero because it's |
1207 | /// conceivable that qualifiers (objc_gc(weak)?) could make |
1208 | /// something require destruction. |
1209 | DestructionKind isDestructedType() const { |
1210 | return isDestructedTypeImpl(*this); |
1211 | } |
1212 | |
1213 | /// Check if this is or contains a C union that is non-trivial to |
1214 | /// default-initialize, which is a union that has a member that is non-trivial |
1215 | /// to default-initialize. If this returns true, |
1216 | /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct. |
1217 | bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const; |
1218 | |
1219 | /// Check if this is or contains a C union that is non-trivial to destruct, |
1220 | /// which is a union that has a member that is non-trivial to destruct. If |
1221 | /// this returns true, isDestructedType returns DK_nontrivial_c_struct. |
1222 | bool hasNonTrivialToPrimitiveDestructCUnion() const; |
1223 | |
1224 | /// Check if this is or contains a C union that is non-trivial to copy, which |
1225 | /// is a union that has a member that is non-trivial to copy. If this returns |
1226 | /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct. |
1227 | bool hasNonTrivialToPrimitiveCopyCUnion() const; |
1228 | |
1229 | /// Determine whether expressions of the given type are forbidden |
1230 | /// from being lvalues in C. |
1231 | /// |
1232 | /// The expression types that are forbidden to be lvalues are: |
1233 | /// - 'void', but not qualified void |
1234 | /// - function types |
1235 | /// |
1236 | /// The exact rule here is C99 6.3.2.1: |
1237 | /// An lvalue is an expression with an object type or an incomplete |
1238 | /// type other than void. |
1239 | bool isCForbiddenLValueType() const; |
1240 | |
1241 | /// Substitute type arguments for the Objective-C type parameters used in the |
1242 | /// subject type. |
1243 | /// |
1244 | /// \param ctx ASTContext in which the type exists. |
1245 | /// |
1246 | /// \param typeArgs The type arguments that will be substituted for the |
1247 | /// Objective-C type parameters in the subject type, which are generally |
1248 | /// computed via \c Type::getObjCSubstitutions. If empty, the type |
1249 | /// parameters will be replaced with their bounds or id/Class, as appropriate |
1250 | /// for the context. |
1251 | /// |
1252 | /// \param context The context in which the subject type was written. |
1253 | /// |
1254 | /// \returns the resulting type. |
1255 | QualType substObjCTypeArgs(ASTContext &ctx, |
1256 | ArrayRef<QualType> typeArgs, |
1257 | ObjCSubstitutionContext context) const; |
1258 | |
1259 | /// Substitute type arguments from an object type for the Objective-C type |
1260 | /// parameters used in the subject type. |
1261 | /// |
1262 | /// This operation combines the computation of type arguments for |
1263 | /// substitution (\c Type::getObjCSubstitutions) with the actual process of |
1264 | /// substitution (\c QualType::substObjCTypeArgs) for the convenience of |
1265 | /// callers that need to perform a single substitution in isolation. |
1266 | /// |
1267 | /// \param objectType The type of the object whose member type we're |
1268 | /// substituting into. For example, this might be the receiver of a message |
1269 | /// or the base of a property access. |
1270 | /// |
1271 | /// \param dc The declaration context from which the subject type was |
1272 | /// retrieved, which indicates (for example) which type parameters should |
1273 | /// be substituted. |
1274 | /// |
1275 | /// \param context The context in which the subject type was written. |
1276 | /// |
1277 | /// \returns the subject type after replacing all of the Objective-C type |
1278 | /// parameters with their corresponding arguments. |
1279 | QualType substObjCMemberType(QualType objectType, |
1280 | const DeclContext *dc, |
1281 | ObjCSubstitutionContext context) const; |
1282 | |
1283 | /// Strip Objective-C "__kindof" types from the given type. |
1284 | QualType stripObjCKindOfType(const ASTContext &ctx) const; |
1285 | |
1286 | /// Remove all qualifiers including _Atomic. |
1287 | QualType getAtomicUnqualifiedType() const; |
1288 | |
1289 | private: |
1290 | // These methods are implemented in a separate translation unit; |
1291 | // "static"-ize them to avoid creating temporary QualTypes in the |
1292 | // caller. |
1293 | static bool isConstant(QualType T, const ASTContext& Ctx); |
1294 | static QualType getDesugaredType(QualType T, const ASTContext &Context); |
1295 | static SplitQualType getSplitDesugaredType(QualType T); |
1296 | static SplitQualType getSplitUnqualifiedTypeImpl(QualType type); |
1297 | static QualType getSingleStepDesugaredTypeImpl(QualType type, |
1298 | const ASTContext &C); |
1299 | static QualType IgnoreParens(QualType T); |
1300 | static DestructionKind isDestructedTypeImpl(QualType type); |
1301 | |
1302 | /// Check if \param RD is or contains a non-trivial C union. |
1303 | static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD); |
1304 | static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD); |
1305 | static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD); |
1306 | }; |
1307 | |
1308 | } // namespace clang |
1309 | |
1310 | namespace llvm { |
1311 | |
1312 | /// Implement simplify_type for QualType, so that we can dyn_cast from QualType |
1313 | /// to a specific Type class. |
1314 | template<> struct simplify_type< ::clang::QualType> { |
1315 | using SimpleType = const ::clang::Type *; |
1316 | |
1317 | static SimpleType getSimplifiedValue(::clang::QualType Val) { |
1318 | return Val.getTypePtr(); |
1319 | } |
1320 | }; |
1321 | |
1322 | // Teach SmallPtrSet that QualType is "basically a pointer". |
1323 | template<> |
1324 | struct PointerLikeTypeTraits<clang::QualType> { |
1325 | static inline void *getAsVoidPointer(clang::QualType P) { |
1326 | return P.getAsOpaquePtr(); |
1327 | } |
1328 | |
1329 | static inline clang::QualType getFromVoidPointer(void *P) { |
1330 | return clang::QualType::getFromOpaquePtr(P); |
1331 | } |
1332 | |
1333 | // Various qualifiers go in low bits. |
1334 | static constexpr int NumLowBitsAvailable = 0; |
1335 | }; |
1336 | |
1337 | } // namespace llvm |
1338 | |
1339 | namespace clang { |
1340 | |
1341 | /// Base class that is common to both the \c ExtQuals and \c Type |
1342 | /// classes, which allows \c QualType to access the common fields between the |
1343 | /// two. |
1344 | class ExtQualsTypeCommonBase { |
1345 | friend class ExtQuals; |
1346 | friend class QualType; |
1347 | friend class Type; |
1348 | |
1349 | /// The "base" type of an extended qualifiers type (\c ExtQuals) or |
1350 | /// a self-referential pointer (for \c Type). |
1351 | /// |
1352 | /// This pointer allows an efficient mapping from a QualType to its |
1353 | /// underlying type pointer. |
1354 | const Type *const BaseType; |
1355 | |
1356 | /// The canonical type of this type. A QualType. |
1357 | QualType CanonicalType; |
1358 | |
1359 | ExtQualsTypeCommonBase(const Type *baseType, QualType canon) |
1360 | : BaseType(baseType), CanonicalType(canon) {} |
1361 | }; |
1362 | |
1363 | /// We can encode up to four bits in the low bits of a |
1364 | /// type pointer, but there are many more type qualifiers that we want |
1365 | /// to be able to apply to an arbitrary type. Therefore we have this |
1366 | /// struct, intended to be heap-allocated and used by QualType to |
1367 | /// store qualifiers. |
1368 | /// |
1369 | /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers |
1370 | /// in three low bits on the QualType pointer; a fourth bit records whether |
1371 | /// the pointer is an ExtQuals node. The extended qualifiers (address spaces, |
1372 | /// Objective-C GC attributes) are much more rare. |
1373 | class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode { |
1374 | // NOTE: changing the fast qualifiers should be straightforward as |
1375 | // long as you don't make 'const' non-fast. |
1376 | // 1. Qualifiers: |
1377 | // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ). |
1378 | // Fast qualifiers must occupy the low-order bits. |
1379 | // b) Update Qualifiers::FastWidth and FastMask. |
1380 | // 2. QualType: |
1381 | // a) Update is{Volatile,Restrict}Qualified(), defined inline. |
1382 | // b) Update remove{Volatile,Restrict}, defined near the end of |
1383 | // this header. |
1384 | // 3. ASTContext: |
1385 | // a) Update get{Volatile,Restrict}Type. |
1386 | |
1387 | /// The immutable set of qualifiers applied by this node. Always contains |
1388 | /// extended qualifiers. |
1389 | Qualifiers Quals; |
1390 | |
1391 | ExtQuals *this_() { return this; } |
1392 | |
1393 | public: |
1394 | ExtQuals(const Type *baseType, QualType canon, Qualifiers quals) |
1395 | : ExtQualsTypeCommonBase(baseType, |
1396 | canon.isNull() ? QualType(this_(), 0) : canon), |
1397 | Quals(quals) { |
1398 | assert(Quals.hasNonFastQualifiers()((void)0) |
1399 | && "ExtQuals created with no fast qualifiers")((void)0); |
1400 | assert(!Quals.hasFastQualifiers()((void)0) |
1401 | && "ExtQuals created with fast qualifiers")((void)0); |
1402 | } |
1403 | |
1404 | Qualifiers getQualifiers() const { return Quals; } |
1405 | |
1406 | bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); } |
1407 | Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); } |
1408 | |
1409 | bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); } |
1410 | Qualifiers::ObjCLifetime getObjCLifetime() const { |
1411 | return Quals.getObjCLifetime(); |
1412 | } |
1413 | |
1414 | bool hasAddressSpace() const { return Quals.hasAddressSpace(); } |
1415 | LangAS getAddressSpace() const { return Quals.getAddressSpace(); } |
1416 | |
1417 | const Type *getBaseType() const { return BaseType; } |
1418 | |
1419 | public: |
1420 | void Profile(llvm::FoldingSetNodeID &ID) const { |
1421 | Profile(ID, getBaseType(), Quals); |
1422 | } |
1423 | |
1424 | static void Profile(llvm::FoldingSetNodeID &ID, |
1425 | const Type *BaseType, |
1426 | Qualifiers Quals) { |
1427 | assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((void)0); |
1428 | ID.AddPointer(BaseType); |
1429 | Quals.Profile(ID); |
1430 | } |
1431 | }; |
1432 | |
1433 | /// The kind of C++11 ref-qualifier associated with a function type. |
1434 | /// This determines whether a member function's "this" object can be an |
1435 | /// lvalue, rvalue, or neither. |
1436 | enum RefQualifierKind { |
1437 | /// No ref-qualifier was provided. |
1438 | RQ_None = 0, |
1439 | |
1440 | /// An lvalue ref-qualifier was provided (\c &). |
1441 | RQ_LValue, |
1442 | |
1443 | /// An rvalue ref-qualifier was provided (\c &&). |
1444 | RQ_RValue |
1445 | }; |
1446 | |
1447 | /// Which keyword(s) were used to create an AutoType. |
1448 | enum class AutoTypeKeyword { |
1449 | /// auto |
1450 | Auto, |
1451 | |
1452 | /// decltype(auto) |
1453 | DecltypeAuto, |
1454 | |
1455 | /// __auto_type (GNU extension) |
1456 | GNUAutoType |
1457 | }; |
1458 | |
1459 | /// The base class of the type hierarchy. |
1460 | /// |
1461 | /// A central concept with types is that each type always has a canonical |
1462 | /// type. A canonical type is the type with any typedef names stripped out |
1463 | /// of it or the types it references. For example, consider: |
1464 | /// |
1465 | /// typedef int foo; |
1466 | /// typedef foo* bar; |
1467 | /// 'int *' 'foo *' 'bar' |
1468 | /// |
1469 | /// There will be a Type object created for 'int'. Since int is canonical, its |
1470 | /// CanonicalType pointer points to itself. There is also a Type for 'foo' (a |
1471 | /// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next |
1472 | /// there is a PointerType that represents 'int*', which, like 'int', is |
1473 | /// canonical. Finally, there is a PointerType type for 'foo*' whose canonical |
1474 | /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type |
1475 | /// is also 'int*'. |
1476 | /// |
1477 | /// Non-canonical types are useful for emitting diagnostics, without losing |
1478 | /// information about typedefs being used. Canonical types are useful for type |
1479 | /// comparisons (they allow by-pointer equality tests) and useful for reasoning |
1480 | /// about whether something has a particular form (e.g. is a function type), |
1481 | /// because they implicitly, recursively, strip all typedefs out of a type. |
1482 | /// |
1483 | /// Types, once created, are immutable. |
1484 | /// |
1485 | class alignas(8) Type : public ExtQualsTypeCommonBase { |
1486 | public: |
1487 | enum TypeClass { |
1488 | #define TYPE(Class, Base) Class, |
1489 | #define LAST_TYPE(Class) TypeLast = Class |
1490 | #define ABSTRACT_TYPE(Class, Base) |
1491 | #include "clang/AST/TypeNodes.inc" |
1492 | }; |
1493 | |
1494 | private: |
1495 | /// Bitfields required by the Type class. |
1496 | class TypeBitfields { |
1497 | friend class Type; |
1498 | template <class T> friend class TypePropertyCache; |
1499 | |
1500 | /// TypeClass bitfield - Enum that specifies what subclass this belongs to. |
1501 | unsigned TC : 8; |
1502 | |
1503 | /// Store information on the type dependency. |
1504 | unsigned Dependence : llvm::BitWidth<TypeDependence>; |
1505 | |
1506 | /// True if the cache (i.e. the bitfields here starting with |
1507 | /// 'Cache') is valid. |
1508 | mutable unsigned CacheValid : 1; |
1509 | |
1510 | /// Linkage of this type. |
1511 | mutable unsigned CachedLinkage : 3; |
1512 | |
1513 | /// Whether this type involves and local or unnamed types. |
1514 | mutable unsigned CachedLocalOrUnnamed : 1; |
1515 | |
1516 | /// Whether this type comes from an AST file. |
1517 | mutable unsigned FromAST : 1; |
1518 | |
1519 | bool isCacheValid() const { |
1520 | return CacheValid; |
1521 | } |
1522 | |
1523 | Linkage getLinkage() const { |
1524 | assert(isCacheValid() && "getting linkage from invalid cache")((void)0); |
1525 | return static_cast<Linkage>(CachedLinkage); |
1526 | } |
1527 | |
1528 | bool hasLocalOrUnnamedType() const { |
1529 | assert(isCacheValid() && "getting linkage from invalid cache")((void)0); |
1530 | return CachedLocalOrUnnamed; |
1531 | } |
1532 | }; |
1533 | enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 }; |
1534 | |
1535 | protected: |
1536 | // These classes allow subclasses to somewhat cleanly pack bitfields |
1537 | // into Type. |
1538 | |
1539 | class ArrayTypeBitfields { |
1540 | friend class ArrayType; |
1541 | |
1542 | unsigned : NumTypeBits; |
1543 | |
1544 | /// CVR qualifiers from declarations like |
1545 | /// 'int X[static restrict 4]'. For function parameters only. |
1546 | unsigned IndexTypeQuals : 3; |
1547 | |
1548 | /// Storage class qualifiers from declarations like |
1549 | /// 'int X[static restrict 4]'. For function parameters only. |
1550 | /// Actually an ArrayType::ArraySizeModifier. |
1551 | unsigned SizeModifier : 3; |
1552 | }; |
1553 | |
1554 | class ConstantArrayTypeBitfields { |
1555 | friend class ConstantArrayType; |
1556 | |
1557 | unsigned : NumTypeBits + 3 + 3; |
1558 | |
1559 | /// Whether we have a stored size expression. |
1560 | unsigned HasStoredSizeExpr : 1; |
1561 | }; |
1562 | |
1563 | class BuiltinTypeBitfields { |
1564 | friend class BuiltinType; |
1565 | |
1566 | unsigned : NumTypeBits; |
1567 | |
1568 | /// The kind (BuiltinType::Kind) of builtin type this is. |
1569 | unsigned Kind : 8; |
1570 | }; |
1571 | |
1572 | /// FunctionTypeBitfields store various bits belonging to FunctionProtoType. |
1573 | /// Only common bits are stored here. Additional uncommon bits are stored |
1574 | /// in a trailing object after FunctionProtoType. |
1575 | class FunctionTypeBitfields { |
1576 | friend class FunctionProtoType; |
1577 | friend class FunctionType; |
1578 | |
1579 | unsigned : NumTypeBits; |
1580 | |
1581 | /// Extra information which affects how the function is called, like |
1582 | /// regparm and the calling convention. |
1583 | unsigned ExtInfo : 13; |
1584 | |
1585 | /// The ref-qualifier associated with a \c FunctionProtoType. |
1586 | /// |
1587 | /// This is a value of type \c RefQualifierKind. |
1588 | unsigned RefQualifier : 2; |
1589 | |
1590 | /// Used only by FunctionProtoType, put here to pack with the |
1591 | /// other bitfields. |
1592 | /// The qualifiers are part of FunctionProtoType because... |
1593 | /// |
1594 | /// C++ 8.3.5p4: The return type, the parameter type list and the |
1595 | /// cv-qualifier-seq, [...], are part of the function type. |
1596 | unsigned FastTypeQuals : Qualifiers::FastWidth; |
1597 | /// Whether this function has extended Qualifiers. |
1598 | unsigned HasExtQuals : 1; |
1599 | |
1600 | /// The number of parameters this function has, not counting '...'. |
1601 | /// According to [implimits] 8 bits should be enough here but this is |
1602 | /// somewhat easy to exceed with metaprogramming and so we would like to |
1603 | /// keep NumParams as wide as reasonably possible. |
1604 | unsigned NumParams : 16; |
1605 | |
1606 | /// The type of exception specification this function has. |
1607 | unsigned ExceptionSpecType : 4; |
1608 | |
1609 | /// Whether this function has extended parameter information. |
1610 | unsigned HasExtParameterInfos : 1; |
1611 | |
1612 | /// Whether the function is variadic. |
1613 | unsigned Variadic : 1; |
1614 | |
1615 | /// Whether this function has a trailing return type. |
1616 | unsigned HasTrailingReturn : 1; |
1617 | }; |
1618 | |
1619 | class ObjCObjectTypeBitfields { |
1620 | friend class ObjCObjectType; |
1621 | |
1622 | unsigned : NumTypeBits; |
1623 | |
1624 | /// The number of type arguments stored directly on this object type. |
1625 | unsigned NumTypeArgs : 7; |
1626 | |
1627 | /// The number of protocols stored directly on this object type. |
1628 | unsigned NumProtocols : 6; |
1629 | |
1630 | /// Whether this is a "kindof" type. |
1631 | unsigned IsKindOf : 1; |
1632 | }; |
1633 | |
1634 | class ReferenceTypeBitfields { |
1635 | friend class ReferenceType; |
1636 | |
1637 | unsigned : NumTypeBits; |
1638 | |
1639 | /// True if the type was originally spelled with an lvalue sigil. |
1640 | /// This is never true of rvalue references but can also be false |
1641 | /// on lvalue references because of C++0x [dcl.typedef]p9, |
1642 | /// as follows: |
1643 | /// |
1644 | /// typedef int &ref; // lvalue, spelled lvalue |
1645 | /// typedef int &&rvref; // rvalue |
1646 | /// ref &a; // lvalue, inner ref, spelled lvalue |
1647 | /// ref &&a; // lvalue, inner ref |
1648 | /// rvref &a; // lvalue, inner ref, spelled lvalue |
1649 | /// rvref &&a; // rvalue, inner ref |
1650 | unsigned SpelledAsLValue : 1; |
1651 | |
1652 | /// True if the inner type is a reference type. This only happens |
1653 | /// in non-canonical forms. |
1654 | unsigned InnerRef : 1; |
1655 | }; |
1656 | |
1657 | class TypeWithKeywordBitfields { |
1658 | friend class TypeWithKeyword; |
1659 | |
1660 | unsigned : NumTypeBits; |
1661 | |
1662 | /// An ElaboratedTypeKeyword. 8 bits for efficient access. |
1663 | unsigned Keyword : 8; |
1664 | }; |
1665 | |
1666 | enum { NumTypeWithKeywordBits = 8 }; |
1667 | |
1668 | class ElaboratedTypeBitfields { |
1669 | friend class ElaboratedType; |
1670 | |
1671 | unsigned : NumTypeBits; |
1672 | unsigned : NumTypeWithKeywordBits; |
1673 | |
1674 | /// Whether the ElaboratedType has a trailing OwnedTagDecl. |
1675 | unsigned HasOwnedTagDecl : 1; |
1676 | }; |
1677 | |
1678 | class VectorTypeBitfields { |
1679 | friend class VectorType; |
1680 | friend class DependentVectorType; |
1681 | |
1682 | unsigned : NumTypeBits; |
1683 | |
1684 | /// The kind of vector, either a generic vector type or some |
1685 | /// target-specific vector type such as for AltiVec or Neon. |
1686 | unsigned VecKind : 3; |
1687 | /// The number of elements in the vector. |
1688 | uint32_t NumElements; |
1689 | }; |
1690 | |
1691 | class AttributedTypeBitfields { |
1692 | friend class AttributedType; |
1693 | |
1694 | unsigned : NumTypeBits; |
1695 | |
1696 | /// An AttributedType::Kind |
1697 | unsigned AttrKind : 32 - NumTypeBits; |
1698 | }; |
1699 | |
1700 | class AutoTypeBitfields { |
1701 | friend class AutoType; |
1702 | |
1703 | unsigned : NumTypeBits; |
1704 | |
1705 | /// Was this placeholder type spelled as 'auto', 'decltype(auto)', |
1706 | /// or '__auto_type'? AutoTypeKeyword value. |
1707 | unsigned Keyword : 2; |
1708 | |
1709 | /// The number of template arguments in the type-constraints, which is |
1710 | /// expected to be able to hold at least 1024 according to [implimits]. |
1711 | /// However as this limit is somewhat easy to hit with template |
1712 | /// metaprogramming we'd prefer to keep it as large as possible. |
1713 | /// At the moment it has been left as a non-bitfield since this type |
1714 | /// safely fits in 64 bits as an unsigned, so there is no reason to |
1715 | /// introduce the performance impact of a bitfield. |
1716 | unsigned NumArgs; |
1717 | }; |
1718 | |
1719 | class SubstTemplateTypeParmPackTypeBitfields { |
1720 | friend class SubstTemplateTypeParmPackType; |
1721 | |
1722 | unsigned : NumTypeBits; |
1723 | |
1724 | /// The number of template arguments in \c Arguments, which is |
1725 | /// expected to be able to hold at least 1024 according to [implimits]. |
1726 | /// However as this limit is somewhat easy to hit with template |
1727 | /// metaprogramming we'd prefer to keep it as large as possible. |
1728 | /// At the moment it has been left as a non-bitfield since this type |
1729 | /// safely fits in 64 bits as an unsigned, so there is no reason to |
1730 | /// introduce the performance impact of a bitfield. |
1731 | unsigned NumArgs; |
1732 | }; |
1733 | |
1734 | class TemplateSpecializationTypeBitfields { |
1735 | friend class TemplateSpecializationType; |
1736 | |
1737 | unsigned : NumTypeBits; |
1738 | |
1739 | /// Whether this template specialization type is a substituted type alias. |
1740 | unsigned TypeAlias : 1; |
1741 | |
1742 | /// The number of template arguments named in this class template |
1743 | /// specialization, which is expected to be able to hold at least 1024 |
1744 | /// according to [implimits]. However, as this limit is somewhat easy to |
1745 | /// hit with template metaprogramming we'd prefer to keep it as large |
1746 | /// as possible. At the moment it has been left as a non-bitfield since |
1747 | /// this type safely fits in 64 bits as an unsigned, so there is no reason |
1748 | /// to introduce the performance impact of a bitfield. |
1749 | unsigned NumArgs; |
1750 | }; |
1751 | |
1752 | class DependentTemplateSpecializationTypeBitfields { |
1753 | friend class DependentTemplateSpecializationType; |
1754 | |
1755 | unsigned : NumTypeBits; |
1756 | unsigned : NumTypeWithKeywordBits; |
1757 | |
1758 | /// The number of template arguments named in this class template |
1759 | /// specialization, which is expected to be able to hold at least 1024 |
1760 | /// according to [implimits]. However, as this limit is somewhat easy to |
1761 | /// hit with template metaprogramming we'd prefer to keep it as large |
1762 | /// as possible. At the moment it has been left as a non-bitfield since |
1763 | /// this type safely fits in 64 bits as an unsigned, so there is no reason |
1764 | /// to introduce the performance impact of a bitfield. |
1765 | unsigned NumArgs; |
1766 | }; |
1767 | |
1768 | class PackExpansionTypeBitfields { |
1769 | friend class PackExpansionType; |
1770 | |
1771 | unsigned : NumTypeBits; |
1772 | |
1773 | /// The number of expansions that this pack expansion will |
1774 | /// generate when substituted (+1), which is expected to be able to |
1775 | /// hold at least 1024 according to [implimits]. However, as this limit |
1776 | /// is somewhat easy to hit with template metaprogramming we'd prefer to |
1777 | /// keep it as large as possible. At the moment it has been left as a |
1778 | /// non-bitfield since this type safely fits in 64 bits as an unsigned, so |
1779 | /// there is no reason to introduce the performance impact of a bitfield. |
1780 | /// |
1781 | /// This field will only have a non-zero value when some of the parameter |
1782 | /// packs that occur within the pattern have been substituted but others |
1783 | /// have not. |
1784 | unsigned NumExpansions; |
1785 | }; |
1786 | |
1787 | union { |
1788 | TypeBitfields TypeBits; |
1789 | ArrayTypeBitfields ArrayTypeBits; |
1790 | ConstantArrayTypeBitfields ConstantArrayTypeBits; |
1791 | AttributedTypeBitfields AttributedTypeBits; |
1792 | AutoTypeBitfields AutoTypeBits; |
1793 | BuiltinTypeBitfields BuiltinTypeBits; |
1794 | FunctionTypeBitfields FunctionTypeBits; |
1795 | ObjCObjectTypeBitfields ObjCObjectTypeBits; |
1796 | ReferenceTypeBitfields ReferenceTypeBits; |
1797 | TypeWithKeywordBitfields TypeWithKeywordBits; |
1798 | ElaboratedTypeBitfields ElaboratedTypeBits; |
1799 | VectorTypeBitfields VectorTypeBits; |
1800 | SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits; |
1801 | TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits; |
1802 | DependentTemplateSpecializationTypeBitfields |
1803 | DependentTemplateSpecializationTypeBits; |
1804 | PackExpansionTypeBitfields PackExpansionTypeBits; |
1805 | }; |
1806 | |
1807 | private: |
1808 | template <class T> friend class TypePropertyCache; |
1809 | |
1810 | /// Set whether this type comes from an AST file. |
1811 | void setFromAST(bool V = true) const { |
1812 | TypeBits.FromAST = V; |
1813 | } |
1814 | |
1815 | protected: |
1816 | friend class ASTContext; |
1817 | |
1818 | Type(TypeClass tc, QualType canon, TypeDependence Dependence) |
1819 | : ExtQualsTypeCommonBase(this, |
1820 | canon.isNull() ? QualType(this_(), 0) : canon) { |
1821 | static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase), |
1822 | "changing bitfields changed sizeof(Type)!"); |
1823 | static_assert(alignof(decltype(*this)) % sizeof(void *) == 0, |
1824 | "Insufficient alignment!"); |
1825 | TypeBits.TC = tc; |
1826 | TypeBits.Dependence = static_cast<unsigned>(Dependence); |
1827 | TypeBits.CacheValid = false; |
1828 | TypeBits.CachedLocalOrUnnamed = false; |
1829 | TypeBits.CachedLinkage = NoLinkage; |
1830 | TypeBits.FromAST = false; |
1831 | } |
1832 | |
1833 | // silence VC++ warning C4355: 'this' : used in base member initializer list |
1834 | Type *this_() { return this; } |
1835 | |
1836 | void setDependence(TypeDependence D) { |
1837 | TypeBits.Dependence = static_cast<unsigned>(D); |
1838 | } |
1839 | |
1840 | void addDependence(TypeDependence D) { setDependence(getDependence() | D); } |
1841 | |
1842 | public: |
1843 | friend class ASTReader; |
1844 | friend class ASTWriter; |
1845 | template <class T> friend class serialization::AbstractTypeReader; |
1846 | template <class T> friend class serialization::AbstractTypeWriter; |
1847 | |
1848 | Type(const Type &) = delete; |
1849 | Type(Type &&) = delete; |
1850 | Type &operator=(const Type &) = delete; |
1851 | Type &operator=(Type &&) = delete; |
1852 | |
1853 | TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); } |
1854 | |
1855 | /// Whether this type comes from an AST file. |
1856 | bool isFromAST() const { return TypeBits.FromAST; } |
1857 | |
1858 | /// Whether this type is or contains an unexpanded parameter |
1859 | /// pack, used to support C++0x variadic templates. |
1860 | /// |
1861 | /// A type that contains a parameter pack shall be expanded by the |
1862 | /// ellipsis operator at some point. For example, the typedef in the |
1863 | /// following example contains an unexpanded parameter pack 'T': |
1864 | /// |
1865 | /// \code |
1866 | /// template<typename ...T> |
1867 | /// struct X { |
1868 | /// typedef T* pointer_types; // ill-formed; T is a parameter pack. |
1869 | /// }; |
1870 | /// \endcode |
1871 | /// |
1872 | /// Note that this routine does not specify which |
1873 | bool containsUnexpandedParameterPack() const { |
1874 | return getDependence() & TypeDependence::UnexpandedPack; |
1875 | } |
1876 | |
1877 | /// Determines if this type would be canonical if it had no further |
1878 | /// qualification. |
1879 | bool isCanonicalUnqualified() const { |
1880 | return CanonicalType == QualType(this, 0); |
1881 | } |
1882 | |
1883 | /// Pull a single level of sugar off of this locally-unqualified type. |
1884 | /// Users should generally prefer SplitQualType::getSingleStepDesugaredType() |
1885 | /// or QualType::getSingleStepDesugaredType(const ASTContext&). |
1886 | QualType getLocallyUnqualifiedSingleStepDesugaredType() const; |
1887 | |
1888 | /// As an extension, we classify types as one of "sized" or "sizeless"; |
1889 | /// every type is one or the other. Standard types are all sized; |
1890 | /// sizeless types are purely an extension. |
1891 | /// |
1892 | /// Sizeless types contain data with no specified size, alignment, |
1893 | /// or layout. |
1894 | bool isSizelessType() const; |
1895 | bool isSizelessBuiltinType() const; |
1896 | |
1897 | /// Determines if this is a sizeless type supported by the |
1898 | /// 'arm_sve_vector_bits' type attribute, which can be applied to a single |
1899 | /// SVE vector or predicate, excluding tuple types such as svint32x4_t. |
1900 | bool isVLSTBuiltinType() const; |
1901 | |
1902 | /// Returns the representative type for the element of an SVE builtin type. |
1903 | /// This is used to represent fixed-length SVE vectors created with the |
1904 | /// 'arm_sve_vector_bits' type attribute as VectorType. |
1905 | QualType getSveEltType(const ASTContext &Ctx) const; |
1906 | |
1907 | /// Types are partitioned into 3 broad categories (C99 6.2.5p1): |
1908 | /// object types, function types, and incomplete types. |
1909 | |
1910 | /// Return true if this is an incomplete type. |
1911 | /// A type that can describe objects, but which lacks information needed to |
1912 | /// determine its size (e.g. void, or a fwd declared struct). Clients of this |
1913 | /// routine will need to determine if the size is actually required. |
1914 | /// |
1915 | /// Def If non-null, and the type refers to some kind of declaration |
1916 | /// that can be completed (such as a C struct, C++ class, or Objective-C |
1917 | /// class), will be set to the declaration. |
1918 | bool isIncompleteType(NamedDecl **Def = nullptr) const; |
1919 | |
1920 | /// Return true if this is an incomplete or object |
1921 | /// type, in other words, not a function type. |
1922 | bool isIncompleteOrObjectType() const { |
1923 | return !isFunctionType(); |
1924 | } |
1925 | |
1926 | /// Determine whether this type is an object type. |
1927 | bool isObjectType() const { |
1928 | // C++ [basic.types]p8: |
1929 | // An object type is a (possibly cv-qualified) type that is not a |
1930 | // function type, not a reference type, and not a void type. |
1931 | return !isReferenceType() && !isFunctionType() && !isVoidType(); |
1932 | } |
1933 | |
1934 | /// Return true if this is a literal type |
1935 | /// (C++11 [basic.types]p10) |
1936 | bool isLiteralType(const ASTContext &Ctx) const; |
1937 | |
1938 | /// Determine if this type is a structural type, per C++20 [temp.param]p7. |
1939 | bool isStructuralType() const; |
1940 | |
1941 | /// Test if this type is a standard-layout type. |
1942 | /// (C++0x [basic.type]p9) |
1943 | bool isStandardLayoutType() const; |
1944 | |
1945 | /// Helper methods to distinguish type categories. All type predicates |
1946 | /// operate on the canonical type, ignoring typedefs and qualifiers. |
1947 | |
1948 | /// Returns true if the type is a builtin type. |
1949 | bool isBuiltinType() const; |
1950 | |
1951 | /// Test for a particular builtin type. |
1952 | bool isSpecificBuiltinType(unsigned K) const; |
1953 | |
1954 | /// Test for a type which does not represent an actual type-system type but |
1955 | /// is instead used as a placeholder for various convenient purposes within |
1956 | /// Clang. All such types are BuiltinTypes. |
1957 | bool isPlaceholderType() const; |
1958 | const BuiltinType *getAsPlaceholderType() const; |
1959 | |
1960 | /// Test for a specific placeholder type. |
1961 | bool isSpecificPlaceholderType(unsigned K) const; |
1962 | |
1963 | /// Test for a placeholder type other than Overload; see |
1964 | /// BuiltinType::isNonOverloadPlaceholderType. |
1965 | bool isNonOverloadPlaceholderType() const; |
1966 | |
1967 | /// isIntegerType() does *not* include complex integers (a GCC extension). |
1968 | /// isComplexIntegerType() can be used to test for complex integers. |
1969 | bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum) |
1970 | bool isEnumeralType() const; |
1971 | |
1972 | /// Determine whether this type is a scoped enumeration type. |
1973 | bool isScopedEnumeralType() const; |
1974 | bool isBooleanType() const; |
1975 | bool isCharType() const; |
1976 | bool isWideCharType() const; |
1977 | bool isChar8Type() const; |
1978 | bool isChar16Type() const; |
1979 | bool isChar32Type() const; |
1980 | bool isAnyCharacterType() const; |
1981 | bool isIntegralType(const ASTContext &Ctx) const; |
1982 | |
1983 | /// Determine whether this type is an integral or enumeration type. |
1984 | bool isIntegralOrEnumerationType() const; |
1985 | |
1986 | /// Determine whether this type is an integral or unscoped enumeration type. |
1987 | bool isIntegralOrUnscopedEnumerationType() const; |
1988 | bool isUnscopedEnumerationType() const; |
1989 | |
1990 | /// Floating point categories. |
1991 | bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double) |
1992 | /// isComplexType() does *not* include complex integers (a GCC extension). |
1993 | /// isComplexIntegerType() can be used to test for complex integers. |
1994 | bool isComplexType() const; // C99 6.2.5p11 (complex) |
1995 | bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int. |
1996 | bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex) |
1997 | bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half) |
1998 | bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661 |
1999 | bool isBFloat16Type() const; |
2000 | bool isFloat128Type() const; |
2001 | bool isRealType() const; // C99 6.2.5p17 (real floating + integer) |
2002 | bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating) |
2003 | bool isVoidType() const; // C99 6.2.5p19 |
2004 | bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers) |
2005 | bool isAggregateType() const; |
2006 | bool isFundamentalType() const; |
2007 | bool isCompoundType() const; |
2008 | |
2009 | // Type Predicates: Check to see if this type is structurally the specified |
2010 | // type, ignoring typedefs and qualifiers. |
2011 | bool isFunctionType() const; |
2012 | bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); } |
2013 | bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); } |
2014 | bool isPointerType() const; |
2015 | bool isAnyPointerType() const; // Any C pointer or ObjC object pointer |
2016 | bool isBlockPointerType() const; |
2017 | bool isVoidPointerType() const; |
2018 | bool isReferenceType() const; |
2019 | bool isLValueReferenceType() const; |
2020 | bool isRValueReferenceType() const; |
2021 | bool isObjectPointerType() const; |
2022 | bool isFunctionPointerType() const; |
2023 | bool isFunctionReferenceType() const; |
2024 | bool isMemberPointerType() const; |
2025 | bool isMemberFunctionPointerType() const; |
2026 | bool isMemberDataPointerType() const; |
2027 | bool isArrayType() const; |
2028 | bool isConstantArrayType() const; |
2029 | bool isIncompleteArrayType() const; |
2030 | bool isVariableArrayType() const; |
2031 | bool isDependentSizedArrayType() const; |
2032 | bool isRecordType() const; |
2033 | bool isClassType() const; |
2034 | bool isStructureType() const; |
2035 | bool isObjCBoxableRecordType() const; |
2036 | bool isInterfaceType() const; |
2037 | bool isStructureOrClassType() const; |
2038 | bool isUnionType() const; |
2039 | bool isComplexIntegerType() const; // GCC _Complex integer type. |
2040 | bool isVectorType() const; // GCC vector type. |
2041 | bool isExtVectorType() const; // Extended vector type. |
2042 | bool isMatrixType() const; // Matrix type. |
2043 | bool isConstantMatrixType() const; // Constant matrix type. |
2044 | bool isDependentAddressSpaceType() const; // value-dependent address space qualifier |
2045 | bool isObjCObjectPointerType() const; // pointer to ObjC object |
2046 | bool isObjCRetainableType() const; // ObjC object or block pointer |
2047 | bool isObjCLifetimeType() const; // (array of)* retainable type |
2048 | bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type |
2049 | bool isObjCNSObjectType() const; // __attribute__((NSObject)) |
2050 | bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class)) |
2051 | // FIXME: change this to 'raw' interface type, so we can used 'interface' type |
2052 | // for the common case. |
2053 | bool isObjCObjectType() const; // NSString or typeof(*(id)0) |
2054 | bool isObjCQualifiedInterfaceType() const; // NSString<foo> |
2055 | bool isObjCQualifiedIdType() const; // id<foo> |
2056 | bool isObjCQualifiedClassType() const; // Class<foo> |
2057 | bool isObjCObjectOrInterfaceType() const; |
2058 | bool isObjCIdType() const; // id |
2059 | bool isDecltypeType() const; |
2060 | /// Was this type written with the special inert-in-ARC __unsafe_unretained |
2061 | /// qualifier? |
2062 | /// |
2063 | /// This approximates the answer to the following question: if this |
2064 | /// translation unit were compiled in ARC, would this type be qualified |
2065 | /// with __unsafe_unretained? |
2066 | bool isObjCInertUnsafeUnretainedType() const { |
2067 | return hasAttr(attr::ObjCInertUnsafeUnretained); |
2068 | } |
2069 | |
2070 | /// Whether the type is Objective-C 'id' or a __kindof type of an |
2071 | /// object type, e.g., __kindof NSView * or __kindof id |
2072 | /// <NSCopying>. |
2073 | /// |
2074 | /// \param bound Will be set to the bound on non-id subtype types, |
2075 | /// which will be (possibly specialized) Objective-C class type, or |
2076 | /// null for 'id. |
2077 | bool isObjCIdOrObjectKindOfType(const ASTContext &ctx, |
2078 | const ObjCObjectType *&bound) const; |
2079 | |
2080 | bool isObjCClassType() const; // Class |
2081 | |
2082 | /// Whether the type is Objective-C 'Class' or a __kindof type of an |
2083 | /// Class type, e.g., __kindof Class <NSCopying>. |
2084 | /// |
2085 | /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound |
2086 | /// here because Objective-C's type system cannot express "a class |
2087 | /// object for a subclass of NSFoo". |
2088 | bool isObjCClassOrClassKindOfType() const; |
2089 | |
2090 | bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const; |
2091 | bool isObjCSelType() const; // Class |
2092 | bool isObjCBuiltinType() const; // 'id' or 'Class' |
2093 | bool isObjCARCBridgableType() const; |
2094 | bool isCARCBridgableType() const; |
2095 | bool isTemplateTypeParmType() const; // C++ template type parameter |
2096 | bool isNullPtrType() const; // C++11 std::nullptr_t |
2097 | bool isNothrowT() const; // C++ std::nothrow_t |
2098 | bool isAlignValT() const; // C++17 std::align_val_t |
2099 | bool isStdByteType() const; // C++17 std::byte |
2100 | bool isAtomicType() const; // C11 _Atomic() |
2101 | bool isUndeducedAutoType() const; // C++11 auto or |
2102 | // C++14 decltype(auto) |
2103 | bool isTypedefNameType() const; // typedef or alias template |
2104 | |
2105 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
2106 | bool is##Id##Type() const; |
2107 | #include "clang/Basic/OpenCLImageTypes.def" |
2108 | |
2109 | bool isImageType() const; // Any OpenCL image type |
2110 | |
2111 | bool isSamplerT() const; // OpenCL sampler_t |
2112 | bool isEventT() const; // OpenCL event_t |
2113 | bool isClkEventT() const; // OpenCL clk_event_t |
2114 | bool isQueueT() const; // OpenCL queue_t |
2115 | bool isReserveIDT() const; // OpenCL reserve_id_t |
2116 | |
2117 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
2118 | bool is##Id##Type() const; |
2119 | #include "clang/Basic/OpenCLExtensionTypes.def" |
2120 | // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension |
2121 | bool isOCLIntelSubgroupAVCType() const; |
2122 | bool isOCLExtOpaqueType() const; // Any OpenCL extension type |
2123 | |
2124 | bool isPipeType() const; // OpenCL pipe type |
2125 | bool isExtIntType() const; // Extended Int Type |
2126 | bool isOpenCLSpecificType() const; // Any OpenCL specific type |
2127 | |
2128 | /// Determines if this type, which must satisfy |
2129 | /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather |
2130 | /// than implicitly __strong. |
2131 | bool isObjCARCImplicitlyUnretainedType() const; |
2132 | |
2133 | /// Check if the type is the CUDA device builtin surface type. |
2134 | bool isCUDADeviceBuiltinSurfaceType() const; |
2135 | /// Check if the type is the CUDA device builtin texture type. |
2136 | bool isCUDADeviceBuiltinTextureType() const; |
2137 | |
2138 | /// Return the implicit lifetime for this type, which must not be dependent. |
2139 | Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const; |
2140 | |
2141 | enum ScalarTypeKind { |
2142 | STK_CPointer, |
2143 | STK_BlockPointer, |
2144 | STK_ObjCObjectPointer, |
2145 | STK_MemberPointer, |
2146 | STK_Bool, |
2147 | STK_Integral, |
2148 | STK_Floating, |
2149 | STK_IntegralComplex, |
2150 | STK_FloatingComplex, |
2151 | STK_FixedPoint |
2152 | }; |
2153 | |
2154 | /// Given that this is a scalar type, classify it. |
2155 | ScalarTypeKind getScalarTypeKind() const; |
2156 | |
2157 | TypeDependence getDependence() const { |
2158 | return static_cast<TypeDependence>(TypeBits.Dependence); |
2159 | } |
2160 | |
2161 | /// Whether this type is an error type. |
2162 | bool containsErrors() const { |
2163 | return getDependence() & TypeDependence::Error; |
2164 | } |
2165 | |
2166 | /// Whether this type is a dependent type, meaning that its definition |
2167 | /// somehow depends on a template parameter (C++ [temp.dep.type]). |
2168 | bool isDependentType() const { |
2169 | return getDependence() & TypeDependence::Dependent; |
2170 | } |
2171 | |
2172 | /// Determine whether this type is an instantiation-dependent type, |
2173 | /// meaning that the type involves a template parameter (even if the |
2174 | /// definition does not actually depend on the type substituted for that |
2175 | /// template parameter). |
2176 | bool isInstantiationDependentType() const { |
2177 | return getDependence() & TypeDependence::Instantiation; |
2178 | } |
2179 | |
2180 | /// Determine whether this type is an undeduced type, meaning that |
2181 | /// it somehow involves a C++11 'auto' type or similar which has not yet been |
2182 | /// deduced. |
2183 | bool isUndeducedType() const; |
2184 | |
2185 | /// Whether this type is a variably-modified type (C99 6.7.5). |
2186 | bool isVariablyModifiedType() const { |
2187 | return getDependence() & TypeDependence::VariablyModified; |
2188 | } |
2189 | |
2190 | /// Whether this type involves a variable-length array type |
2191 | /// with a definite size. |
2192 | bool hasSizedVLAType() const; |
2193 | |
2194 | /// Whether this type is or contains a local or unnamed type. |
2195 | bool hasUnnamedOrLocalType() const; |
2196 | |
2197 | bool isOverloadableType() const; |
2198 | |
2199 | /// Determine wither this type is a C++ elaborated-type-specifier. |
2200 | bool isElaboratedTypeSpecifier() const; |
2201 | |
2202 | bool canDecayToPointerType() const; |
2203 | |
2204 | /// Whether this type is represented natively as a pointer. This includes |
2205 | /// pointers, references, block pointers, and Objective-C interface, |
2206 | /// qualified id, and qualified interface types, as well as nullptr_t. |
2207 | bool hasPointerRepresentation() const; |
2208 | |
2209 | /// Whether this type can represent an objective pointer type for the |
2210 | /// purpose of GC'ability |
2211 | bool hasObjCPointerRepresentation() const; |
2212 | |
2213 | /// Determine whether this type has an integer representation |
2214 | /// of some sort, e.g., it is an integer type or a vector. |
2215 | bool hasIntegerRepresentation() const; |
2216 | |
2217 | /// Determine whether this type has an signed integer representation |
2218 | /// of some sort, e.g., it is an signed integer type or a vector. |
2219 | bool hasSignedIntegerRepresentation() const; |
2220 | |
2221 | /// Determine whether this type has an unsigned integer representation |
2222 | /// of some sort, e.g., it is an unsigned integer type or a vector. |
2223 | bool hasUnsignedIntegerRepresentation() const; |
2224 | |
2225 | /// Determine whether this type has a floating-point representation |
2226 | /// of some sort, e.g., it is a floating-point type or a vector thereof. |
2227 | bool hasFloatingRepresentation() const; |
2228 | |
2229 | // Type Checking Functions: Check to see if this type is structurally the |
2230 | // specified type, ignoring typedefs and qualifiers, and return a pointer to |
2231 | // the best type we can. |
2232 | const RecordType *getAsStructureType() const; |
2233 | /// NOTE: getAs*ArrayType are methods on ASTContext. |
2234 | const RecordType *getAsUnionType() const; |
2235 | const ComplexType *getAsComplexIntegerType() const; // GCC complex int type. |
2236 | const ObjCObjectType *getAsObjCInterfaceType() const; |
2237 | |
2238 | // The following is a convenience method that returns an ObjCObjectPointerType |
2239 | // for object declared using an interface. |
2240 | const ObjCObjectPointerType *getAsObjCInterfacePointerType() const; |
2241 | const ObjCObjectPointerType *getAsObjCQualifiedIdType() const; |
2242 | const ObjCObjectPointerType *getAsObjCQualifiedClassType() const; |
2243 | const ObjCObjectType *getAsObjCQualifiedInterfaceType() const; |
2244 | |
2245 | /// Retrieves the CXXRecordDecl that this type refers to, either |
2246 | /// because the type is a RecordType or because it is the injected-class-name |
2247 | /// type of a class template or class template partial specialization. |
2248 | CXXRecordDecl *getAsCXXRecordDecl() const; |
2249 | |
2250 | /// Retrieves the RecordDecl this type refers to. |
2251 | RecordDecl *getAsRecordDecl() const; |
2252 | |
2253 | /// Retrieves the TagDecl that this type refers to, either |
2254 | /// because the type is a TagType or because it is the injected-class-name |
2255 | /// type of a class template or class template partial specialization. |
2256 | TagDecl *getAsTagDecl() const; |
2257 | |
2258 | /// If this is a pointer or reference to a RecordType, return the |
2259 | /// CXXRecordDecl that the type refers to. |
2260 | /// |
2261 | /// If this is not a pointer or reference, or the type being pointed to does |
2262 | /// not refer to a CXXRecordDecl, returns NULL. |
2263 | const CXXRecordDecl *getPointeeCXXRecordDecl() const; |
2264 | |
2265 | /// Get the DeducedType whose type will be deduced for a variable with |
2266 | /// an initializer of this type. This looks through declarators like pointer |
2267 | /// types, but not through decltype or typedefs. |
2268 | DeducedType *getContainedDeducedType() const; |
2269 | |
2270 | /// Get the AutoType whose type will be deduced for a variable with |
2271 | /// an initializer of this type. This looks through declarators like pointer |
2272 | /// types, but not through decltype or typedefs. |
2273 | AutoType *getContainedAutoType() const { |
2274 | return dyn_cast_or_null<AutoType>(getContainedDeducedType()); |
2275 | } |
2276 | |
2277 | /// Determine whether this type was written with a leading 'auto' |
2278 | /// corresponding to a trailing return type (possibly for a nested |
2279 | /// function type within a pointer to function type or similar). |
2280 | bool hasAutoForTrailingReturnType() const; |
2281 | |
2282 | /// Member-template getAs<specific type>'. Look through sugar for |
2283 | /// an instance of \<specific type>. This scheme will eventually |
2284 | /// replace the specific getAsXXXX methods above. |
2285 | /// |
2286 | /// There are some specializations of this member template listed |
2287 | /// immediately following this class. |
2288 | template <typename T> const T *getAs() const; |
2289 | |
2290 | /// Member-template getAsAdjusted<specific type>. Look through specific kinds |
2291 | /// of sugar (parens, attributes, etc) for an instance of \<specific type>. |
2292 | /// This is used when you need to walk over sugar nodes that represent some |
2293 | /// kind of type adjustment from a type that was written as a \<specific type> |
2294 | /// to another type that is still canonically a \<specific type>. |
2295 | template <typename T> const T *getAsAdjusted() const; |
2296 | |
2297 | /// A variant of getAs<> for array types which silently discards |
2298 | /// qualifiers from the outermost type. |
2299 | const ArrayType *getAsArrayTypeUnsafe() const; |
2300 | |
2301 | /// Member-template castAs<specific type>. Look through sugar for |
2302 | /// the underlying instance of \<specific type>. |
2303 | /// |
2304 | /// This method has the same relationship to getAs<T> as cast<T> has |
2305 | /// to dyn_cast<T>; which is to say, the underlying type *must* |
2306 | /// have the intended type, and this method will never return null. |
2307 | template <typename T> const T *castAs() const; |
2308 | |
2309 | /// A variant of castAs<> for array type which silently discards |
2310 | /// qualifiers from the outermost type. |
2311 | const ArrayType *castAsArrayTypeUnsafe() const; |
2312 | |
2313 | /// Determine whether this type had the specified attribute applied to it |
2314 | /// (looking through top-level type sugar). |
2315 | bool hasAttr(attr::Kind AK) const; |
2316 | |
2317 | /// Get the base element type of this type, potentially discarding type |
2318 | /// qualifiers. This should never be used when type qualifiers |
2319 | /// are meaningful. |
2320 | const Type *getBaseElementTypeUnsafe() const; |
2321 | |
2322 | /// If this is an array type, return the element type of the array, |
2323 | /// potentially with type qualifiers missing. |
2324 | /// This should never be used when type qualifiers are meaningful. |
2325 | const Type *getArrayElementTypeNoTypeQual() const; |
2326 | |
2327 | /// If this is a pointer type, return the pointee type. |
2328 | /// If this is an array type, return the array element type. |
2329 | /// This should never be used when type qualifiers are meaningful. |
2330 | const Type *getPointeeOrArrayElementType() const; |
2331 | |
2332 | /// If this is a pointer, ObjC object pointer, or block |
2333 | /// pointer, this returns the respective pointee. |
2334 | QualType getPointeeType() const; |
2335 | |
2336 | /// Return the specified type with any "sugar" removed from the type, |
2337 | /// removing any typedefs, typeofs, etc., as well as any qualifiers. |
2338 | const Type *getUnqualifiedDesugaredType() const; |
2339 | |
2340 | /// More type predicates useful for type checking/promotion |
2341 | bool isPromotableIntegerType() const; // C99 6.3.1.1p2 |
2342 | |
2343 | /// Return true if this is an integer type that is |
2344 | /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], |
2345 | /// or an enum decl which has a signed representation. |
2346 | bool isSignedIntegerType() const; |
2347 | |
2348 | /// Return true if this is an integer type that is |
2349 | /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], |
2350 | /// or an enum decl which has an unsigned representation. |
2351 | bool isUnsignedIntegerType() const; |
2352 | |
2353 | /// Determines whether this is an integer type that is signed or an |
2354 | /// enumeration types whose underlying type is a signed integer type. |
2355 | bool isSignedIntegerOrEnumerationType() const; |
2356 | |
2357 | /// Determines whether this is an integer type that is unsigned or an |
2358 | /// enumeration types whose underlying type is a unsigned integer type. |
2359 | bool isUnsignedIntegerOrEnumerationType() const; |
2360 | |
2361 | /// Return true if this is a fixed point type according to |
2362 | /// ISO/IEC JTC1 SC22 WG14 N1169. |
2363 | bool isFixedPointType() const; |
2364 | |
2365 | /// Return true if this is a fixed point or integer type. |
2366 | bool isFixedPointOrIntegerType() const; |
2367 | |
2368 | /// Return true if this is a saturated fixed point type according to |
2369 | /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned. |
2370 | bool isSaturatedFixedPointType() const; |
2371 | |
2372 | /// Return true if this is a saturated fixed point type according to |
2373 | /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned. |
2374 | bool isUnsaturatedFixedPointType() const; |
2375 | |
2376 | /// Return true if this is a fixed point type that is signed according |
2377 | /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated. |
2378 | bool isSignedFixedPointType() const; |
2379 | |
2380 | /// Return true if this is a fixed point type that is unsigned according |
2381 | /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated. |
2382 | bool isUnsignedFixedPointType() const; |
2383 | |
2384 | /// Return true if this is not a variable sized type, |
2385 | /// according to the rules of C99 6.7.5p3. It is not legal to call this on |
2386 | /// incomplete types. |
2387 | bool isConstantSizeType() const; |
2388 | |
2389 | /// Returns true if this type can be represented by some |
2390 | /// set of type specifiers. |
2391 | bool isSpecifierType() const; |
2392 | |
2393 | /// Determine the linkage of this type. |
2394 | Linkage getLinkage() const; |
2395 | |
2396 | /// Determine the visibility of this type. |
2397 | Visibility getVisibility() const { |
2398 | return getLinkageAndVisibility().getVisibility(); |
2399 | } |
2400 | |
2401 | /// Return true if the visibility was explicitly set is the code. |
2402 | bool isVisibilityExplicit() const { |
2403 | return getLinkageAndVisibility().isVisibilityExplicit(); |
2404 | } |
2405 | |
2406 | /// Determine the linkage and visibility of this type. |
2407 | LinkageInfo getLinkageAndVisibility() const; |
2408 | |
2409 | /// True if the computed linkage is valid. Used for consistency |
2410 | /// checking. Should always return true. |
2411 | bool isLinkageValid() const; |
2412 | |
2413 | /// Determine the nullability of the given type. |
2414 | /// |
2415 | /// Note that nullability is only captured as sugar within the type |
2416 | /// system, not as part of the canonical type, so nullability will |
2417 | /// be lost by canonicalization and desugaring. |
2418 | Optional<NullabilityKind> getNullability(const ASTContext &context) const; |
2419 | |
2420 | /// Determine whether the given type can have a nullability |
2421 | /// specifier applied to it, i.e., if it is any kind of pointer type. |
2422 | /// |
2423 | /// \param ResultIfUnknown The value to return if we don't yet know whether |
2424 | /// this type can have nullability because it is dependent. |
2425 | bool canHaveNullability(bool ResultIfUnknown = true) const; |
2426 | |
2427 | /// Retrieve the set of substitutions required when accessing a member |
2428 | /// of the Objective-C receiver type that is declared in the given context. |
2429 | /// |
2430 | /// \c *this is the type of the object we're operating on, e.g., the |
2431 | /// receiver for a message send or the base of a property access, and is |
2432 | /// expected to be of some object or object pointer type. |
2433 | /// |
2434 | /// \param dc The declaration context for which we are building up a |
2435 | /// substitution mapping, which should be an Objective-C class, extension, |
2436 | /// category, or method within. |
2437 | /// |
2438 | /// \returns an array of type arguments that can be substituted for |
2439 | /// the type parameters of the given declaration context in any type described |
2440 | /// within that context, or an empty optional to indicate that no |
2441 | /// substitution is required. |
2442 | Optional<ArrayRef<QualType>> |
2443 | getObjCSubstitutions(const DeclContext *dc) const; |
2444 | |
2445 | /// Determines if this is an ObjC interface type that may accept type |
2446 | /// parameters. |
2447 | bool acceptsObjCTypeParams() const; |
2448 | |
2449 | const char *getTypeClassName() const; |
2450 | |
2451 | QualType getCanonicalTypeInternal() const { |
2452 | return CanonicalType; |
2453 | } |
2454 | |
2455 | CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h |
2456 | void dump() const; |
2457 | void dump(llvm::raw_ostream &OS, const ASTContext &Context) const; |
2458 | }; |
2459 | |
2460 | /// This will check for a TypedefType by removing any existing sugar |
2461 | /// until it reaches a TypedefType or a non-sugared type. |
2462 | template <> const TypedefType *Type::getAs() const; |
2463 | |
2464 | /// This will check for a TemplateSpecializationType by removing any |
2465 | /// existing sugar until it reaches a TemplateSpecializationType or a |
2466 | /// non-sugared type. |
2467 | template <> const TemplateSpecializationType *Type::getAs() const; |
2468 | |
2469 | /// This will check for an AttributedType by removing any existing sugar |
2470 | /// until it reaches an AttributedType or a non-sugared type. |
2471 | template <> const AttributedType *Type::getAs() const; |
2472 | |
2473 | // We can do canonical leaf types faster, because we don't have to |
2474 | // worry about preserving child type decoration. |
2475 | #define TYPE(Class, Base) |
2476 | #define LEAF_TYPE(Class) \ |
2477 | template <> inline const Class##Type *Type::getAs() const { \ |
2478 | return dyn_cast<Class##Type>(CanonicalType); \ |
2479 | } \ |
2480 | template <> inline const Class##Type *Type::castAs() const { \ |
2481 | return cast<Class##Type>(CanonicalType); \ |
2482 | } |
2483 | #include "clang/AST/TypeNodes.inc" |
2484 | |
2485 | /// This class is used for builtin types like 'int'. Builtin |
2486 | /// types are always canonical and have a literal name field. |
2487 | class BuiltinType : public Type { |
2488 | public: |
2489 | enum Kind { |
2490 | // OpenCL image types |
2491 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id, |
2492 | #include "clang/Basic/OpenCLImageTypes.def" |
2493 | // OpenCL extension types |
2494 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id, |
2495 | #include "clang/Basic/OpenCLExtensionTypes.def" |
2496 | // SVE Types |
2497 | #define SVE_TYPE(Name, Id, SingletonId) Id, |
2498 | #include "clang/Basic/AArch64SVEACLETypes.def" |
2499 | // PPC MMA Types |
2500 | #define PPC_VECTOR_TYPE(Name, Id, Size) Id, |
2501 | #include "clang/Basic/PPCTypes.def" |
2502 | // RVV Types |
2503 | #define RVV_TYPE(Name, Id, SingletonId) Id, |
2504 | #include "clang/Basic/RISCVVTypes.def" |
2505 | // All other builtin types |
2506 | #define BUILTIN_TYPE(Id, SingletonId) Id, |
2507 | #define LAST_BUILTIN_TYPE(Id) LastKind = Id |
2508 | #include "clang/AST/BuiltinTypes.def" |
2509 | }; |
2510 | |
2511 | private: |
2512 | friend class ASTContext; // ASTContext creates these. |
2513 | |
2514 | BuiltinType(Kind K) |
2515 | : Type(Builtin, QualType(), |
2516 | K == Dependent ? TypeDependence::DependentInstantiation |
2517 | : TypeDependence::None) { |
2518 | BuiltinTypeBits.Kind = K; |
2519 | } |
2520 | |
2521 | public: |
2522 | Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); } |
2523 | StringRef getName(const PrintingPolicy &Policy) const; |
2524 | |
2525 | const char *getNameAsCString(const PrintingPolicy &Policy) const { |
2526 | // The StringRef is null-terminated. |
2527 | StringRef str = getName(Policy); |
2528 | assert(!str.empty() && str.data()[str.size()] == '\0')((void)0); |
2529 | return str.data(); |
2530 | } |
2531 | |
2532 | bool isSugared() const { return false; } |
2533 | QualType desugar() const { return QualType(this, 0); } |
2534 | |
2535 | bool isInteger() const { |
2536 | return getKind() >= Bool && getKind() <= Int128; |
2537 | } |
2538 | |
2539 | bool isSignedInteger() const { |
2540 | return getKind() >= Char_S && getKind() <= Int128; |
2541 | } |
2542 | |
2543 | bool isUnsignedInteger() const { |
2544 | return getKind() >= Bool && getKind() <= UInt128; |
2545 | } |
2546 | |
2547 | bool isFloatingPoint() const { |
2548 | return getKind() >= Half && getKind() <= Float128; |
2549 | } |
2550 | |
2551 | /// Determines whether the given kind corresponds to a placeholder type. |
2552 | static bool isPlaceholderTypeKind(Kind K) { |
2553 | return K >= Overload; |
2554 | } |
2555 | |
2556 | /// Determines whether this type is a placeholder type, i.e. a type |
2557 | /// which cannot appear in arbitrary positions in a fully-formed |
2558 | /// expression. |
2559 | bool isPlaceholderType() const { |
2560 | return isPlaceholderTypeKind(getKind()); |
2561 | } |
2562 | |
2563 | /// Determines whether this type is a placeholder type other than |
2564 | /// Overload. Most placeholder types require only syntactic |
2565 | /// information about their context in order to be resolved (e.g. |
2566 | /// whether it is a call expression), which means they can (and |
2567 | /// should) be resolved in an earlier "phase" of analysis. |
2568 | /// Overload expressions sometimes pick up further information |
2569 | /// from their context, like whether the context expects a |
2570 | /// specific function-pointer type, and so frequently need |
2571 | /// special treatment. |
2572 | bool isNonOverloadPlaceholderType() const { |
2573 | return getKind() > Overload; |
2574 | } |
2575 | |
2576 | static bool classof(const Type *T) { return T->getTypeClass() == Builtin; } |
2577 | }; |
2578 | |
2579 | /// Complex values, per C99 6.2.5p11. This supports the C99 complex |
2580 | /// types (_Complex float etc) as well as the GCC integer complex extensions. |
2581 | class ComplexType : public Type, public llvm::FoldingSetNode { |
2582 | friend class ASTContext; // ASTContext creates these. |
2583 | |
2584 | QualType ElementType; |
2585 | |
2586 | ComplexType(QualType Element, QualType CanonicalPtr) |
2587 | : Type(Complex, CanonicalPtr, Element->getDependence()), |
2588 | ElementType(Element) {} |
2589 | |
2590 | public: |
2591 | QualType getElementType() const { return ElementType; } |
2592 | |
2593 | bool isSugared() const { return false; } |
2594 | QualType desugar() const { return QualType(this, 0); } |
2595 | |
2596 | void Profile(llvm::FoldingSetNodeID &ID) { |
2597 | Profile(ID, getElementType()); |
2598 | } |
2599 | |
2600 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) { |
2601 | ID.AddPointer(Element.getAsOpaquePtr()); |
2602 | } |
2603 | |
2604 | static bool classof(const Type *T) { return T->getTypeClass() == Complex; } |
2605 | }; |
2606 | |
2607 | /// Sugar for parentheses used when specifying types. |
2608 | class ParenType : public Type, public llvm::FoldingSetNode { |
2609 | friend class ASTContext; // ASTContext creates these. |
2610 | |
2611 | QualType Inner; |
2612 | |
2613 | ParenType(QualType InnerType, QualType CanonType) |
2614 | : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {} |
2615 | |
2616 | public: |
2617 | QualType getInnerType() const { return Inner; } |
2618 | |
2619 | bool isSugared() const { return true; } |
2620 | QualType desugar() const { return getInnerType(); } |
2621 | |
2622 | void Profile(llvm::FoldingSetNodeID &ID) { |
2623 | Profile(ID, getInnerType()); |
2624 | } |
2625 | |
2626 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) { |
2627 | Inner.Profile(ID); |
2628 | } |
2629 | |
2630 | static bool classof(const Type *T) { return T->getTypeClass() == Paren; } |
2631 | }; |
2632 | |
2633 | /// PointerType - C99 6.7.5.1 - Pointer Declarators. |
2634 | class PointerType : public Type, public llvm::FoldingSetNode { |
2635 | friend class ASTContext; // ASTContext creates these. |
2636 | |
2637 | QualType PointeeType; |
2638 | |
2639 | PointerType(QualType Pointee, QualType CanonicalPtr) |
2640 | : Type(Pointer, CanonicalPtr, Pointee->getDependence()), |
2641 | PointeeType(Pointee) {} |
2642 | |
2643 | public: |
2644 | QualType getPointeeType() const { return PointeeType; } |
2645 | |
2646 | bool isSugared() const { return false; } |
2647 | QualType desugar() const { return QualType(this, 0); } |
2648 | |
2649 | void Profile(llvm::FoldingSetNodeID &ID) { |
2650 | Profile(ID, getPointeeType()); |
2651 | } |
2652 | |
2653 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) { |
2654 | ID.AddPointer(Pointee.getAsOpaquePtr()); |
2655 | } |
2656 | |
2657 | static bool classof(const Type *T) { return T->getTypeClass() == Pointer; } |
2658 | }; |
2659 | |
2660 | /// Represents a type which was implicitly adjusted by the semantic |
2661 | /// engine for arbitrary reasons. For example, array and function types can |
2662 | /// decay, and function types can have their calling conventions adjusted. |
2663 | class AdjustedType : public Type, public llvm::FoldingSetNode { |
2664 | QualType OriginalTy; |
2665 | QualType AdjustedTy; |
2666 | |
2667 | protected: |
2668 | friend class ASTContext; // ASTContext creates these. |
2669 | |
2670 | AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy, |
2671 | QualType CanonicalPtr) |
2672 | : Type(TC, CanonicalPtr, OriginalTy->getDependence()), |
2673 | OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {} |
2674 | |
2675 | public: |
2676 | QualType getOriginalType() const { return OriginalTy; } |
2677 | QualType getAdjustedType() const { return AdjustedTy; } |
2678 | |
2679 | bool isSugared() const { return true; } |
2680 | QualType desugar() const { return AdjustedTy; } |
2681 | |
2682 | void Profile(llvm::FoldingSetNodeID &ID) { |
2683 | Profile(ID, OriginalTy, AdjustedTy); |
2684 | } |
2685 | |
2686 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) { |
2687 | ID.AddPointer(Orig.getAsOpaquePtr()); |
2688 | ID.AddPointer(New.getAsOpaquePtr()); |
2689 | } |
2690 | |
2691 | static bool classof(const Type *T) { |
2692 | return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed; |
2693 | } |
2694 | }; |
2695 | |
2696 | /// Represents a pointer type decayed from an array or function type. |
2697 | class DecayedType : public AdjustedType { |
2698 | friend class ASTContext; // ASTContext creates these. |
2699 | |
2700 | inline |
2701 | DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical); |
2702 | |
2703 | public: |
2704 | QualType getDecayedType() const { return getAdjustedType(); } |
2705 | |
2706 | inline QualType getPointeeType() const; |
2707 | |
2708 | static bool classof(const Type *T) { return T->getTypeClass() == Decayed; } |
2709 | }; |
2710 | |
2711 | /// Pointer to a block type. |
2712 | /// This type is to represent types syntactically represented as |
2713 | /// "void (^)(int)", etc. Pointee is required to always be a function type. |
2714 | class BlockPointerType : public Type, public llvm::FoldingSetNode { |
2715 | friend class ASTContext; // ASTContext creates these. |
2716 | |
2717 | // Block is some kind of pointer type |
2718 | QualType PointeeType; |
2719 | |
2720 | BlockPointerType(QualType Pointee, QualType CanonicalCls) |
2721 | : Type(BlockPointer, CanonicalCls, Pointee->getDependence()), |
2722 | PointeeType(Pointee) {} |
2723 | |
2724 | public: |
2725 | // Get the pointee type. Pointee is required to always be a function type. |
2726 | QualType getPointeeType() const { return PointeeType; } |
2727 | |
2728 | bool isSugared() const { return false; } |
2729 | QualType desugar() const { return QualType(this, 0); } |
2730 | |
2731 | void Profile(llvm::FoldingSetNodeID &ID) { |
2732 | Profile(ID, getPointeeType()); |
2733 | } |
2734 | |
2735 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) { |
2736 | ID.AddPointer(Pointee.getAsOpaquePtr()); |
2737 | } |
2738 | |
2739 | static bool classof(const Type *T) { |
2740 | return T->getTypeClass() == BlockPointer; |
2741 | } |
2742 | }; |
2743 | |
2744 | /// Base for LValueReferenceType and RValueReferenceType |
2745 | class ReferenceType : public Type, public llvm::FoldingSetNode { |
2746 | QualType PointeeType; |
2747 | |
2748 | protected: |
2749 | ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef, |
2750 | bool SpelledAsLValue) |
2751 | : Type(tc, CanonicalRef, Referencee->getDependence()), |
2752 | PointeeType(Referencee) { |
2753 | ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue; |
2754 | ReferenceTypeBits.InnerRef = Referencee->isReferenceType(); |
2755 | } |
2756 | |
2757 | public: |
2758 | bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; } |
2759 | bool isInnerRef() const { return ReferenceTypeBits.InnerRef; } |
2760 | |
2761 | QualType getPointeeTypeAsWritten() const { return PointeeType; } |
2762 | |
2763 | QualType getPointeeType() const { |
2764 | // FIXME: this might strip inner qualifiers; okay? |
2765 | const ReferenceType *T = this; |
2766 | while (T->isInnerRef()) |
2767 | T = T->PointeeType->castAs<ReferenceType>(); |
2768 | return T->PointeeType; |
2769 | } |
2770 | |
2771 | void Profile(llvm::FoldingSetNodeID &ID) { |
2772 | Profile(ID, PointeeType, isSpelledAsLValue()); |
2773 | } |
2774 | |
2775 | static void Profile(llvm::FoldingSetNodeID &ID, |
2776 | QualType Referencee, |
2777 | bool SpelledAsLValue) { |
2778 | ID.AddPointer(Referencee.getAsOpaquePtr()); |
2779 | ID.AddBoolean(SpelledAsLValue); |
2780 | } |
2781 | |
2782 | static bool classof(const Type *T) { |
2783 | return T->getTypeClass() == LValueReference || |
2784 | T->getTypeClass() == RValueReference; |
2785 | } |
2786 | }; |
2787 | |
2788 | /// An lvalue reference type, per C++11 [dcl.ref]. |
2789 | class LValueReferenceType : public ReferenceType { |
2790 | friend class ASTContext; // ASTContext creates these |
2791 | |
2792 | LValueReferenceType(QualType Referencee, QualType CanonicalRef, |
2793 | bool SpelledAsLValue) |
2794 | : ReferenceType(LValueReference, Referencee, CanonicalRef, |
2795 | SpelledAsLValue) {} |
2796 | |
2797 | public: |
2798 | bool isSugared() const { return false; } |
2799 | QualType desugar() const { return QualType(this, 0); } |
2800 | |
2801 | static bool classof(const Type *T) { |
2802 | return T->getTypeClass() == LValueReference; |
2803 | } |
2804 | }; |
2805 | |
2806 | /// An rvalue reference type, per C++11 [dcl.ref]. |
2807 | class RValueReferenceType : public ReferenceType { |
2808 | friend class ASTContext; // ASTContext creates these |
2809 | |
2810 | RValueReferenceType(QualType Referencee, QualType CanonicalRef) |
2811 | : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {} |
2812 | |
2813 | public: |
2814 | bool isSugared() const { return false; } |
2815 | QualType desugar() const { return QualType(this, 0); } |
2816 | |
2817 | static bool classof(const Type *T) { |
2818 | return T->getTypeClass() == RValueReference; |
2819 | } |
2820 | }; |
2821 | |
2822 | /// A pointer to member type per C++ 8.3.3 - Pointers to members. |
2823 | /// |
2824 | /// This includes both pointers to data members and pointer to member functions. |
2825 | class MemberPointerType : public Type, public llvm::FoldingSetNode { |
2826 | friend class ASTContext; // ASTContext creates these. |
2827 | |
2828 | QualType PointeeType; |
2829 | |
2830 | /// The class of which the pointee is a member. Must ultimately be a |
2831 | /// RecordType, but could be a typedef or a template parameter too. |
2832 | const Type *Class; |
2833 | |
2834 | MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) |
2835 | : Type(MemberPointer, CanonicalPtr, |
2836 | (Cls->getDependence() & ~TypeDependence::VariablyModified) | |
2837 | Pointee->getDependence()), |
2838 | PointeeType(Pointee), Class(Cls) {} |
2839 | |
2840 | public: |
2841 | QualType getPointeeType() const { return PointeeType; } |
2842 | |
2843 | /// Returns true if the member type (i.e. the pointee type) is a |
2844 | /// function type rather than a data-member type. |
2845 | bool isMemberFunctionPointer() const { |
2846 | return PointeeType->isFunctionProtoType(); |
2847 | } |
2848 | |
2849 | /// Returns true if the member type (i.e. the pointee type) is a |
2850 | /// data type rather than a function type. |
2851 | bool isMemberDataPointer() const { |
2852 | return !PointeeType->isFunctionProtoType(); |
2853 | } |
2854 | |
2855 | const Type *getClass() const { return Class; } |
2856 | CXXRecordDecl *getMostRecentCXXRecordDecl() const; |
2857 | |
2858 | bool isSugared() const { return false; } |
2859 | QualType desugar() const { return QualType(this, 0); } |
2860 | |
2861 | void Profile(llvm::FoldingSetNodeID &ID) { |
2862 | Profile(ID, getPointeeType(), getClass()); |
2863 | } |
2864 | |
2865 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee, |
2866 | const Type *Class) { |
2867 | ID.AddPointer(Pointee.getAsOpaquePtr()); |
2868 | ID.AddPointer(Class); |
2869 | } |
2870 | |
2871 | static bool classof(const Type *T) { |
2872 | return T->getTypeClass() == MemberPointer; |
2873 | } |
2874 | }; |
2875 | |
2876 | /// Represents an array type, per C99 6.7.5.2 - Array Declarators. |
2877 | class ArrayType : public Type, public llvm::FoldingSetNode { |
2878 | public: |
2879 | /// Capture whether this is a normal array (e.g. int X[4]) |
2880 | /// an array with a static size (e.g. int X[static 4]), or an array |
2881 | /// with a star size (e.g. int X[*]). |
2882 | /// 'static' is only allowed on function parameters. |
2883 | enum ArraySizeModifier { |
2884 | Normal, Static, Star |
2885 | }; |
2886 | |
2887 | private: |
2888 | /// The element type of the array. |
2889 | QualType ElementType; |
2890 | |
2891 | protected: |
2892 | friend class ASTContext; // ASTContext creates these. |
2893 | |
2894 | ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm, |
2895 | unsigned tq, const Expr *sz = nullptr); |
2896 | |
2897 | public: |
2898 | QualType getElementType() const { return ElementType; } |
2899 | |
2900 | ArraySizeModifier getSizeModifier() const { |
2901 | return ArraySizeModifier(ArrayTypeBits.SizeModifier); |
2902 | } |
2903 | |
2904 | Qualifiers getIndexTypeQualifiers() const { |
2905 | return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers()); |
2906 | } |
2907 | |
2908 | unsigned getIndexTypeCVRQualifiers() const { |
2909 | return ArrayTypeBits.IndexTypeQuals; |
2910 | } |
2911 | |
2912 | static bool classof(const Type *T) { |
2913 | return T->getTypeClass() == ConstantArray || |
2914 | T->getTypeClass() == VariableArray || |
2915 | T->getTypeClass() == IncompleteArray || |
2916 | T->getTypeClass() == DependentSizedArray; |
2917 | } |
2918 | }; |
2919 | |
2920 | /// Represents the canonical version of C arrays with a specified constant size. |
2921 | /// For example, the canonical type for 'int A[4 + 4*100]' is a |
2922 | /// ConstantArrayType where the element type is 'int' and the size is 404. |
2923 | class ConstantArrayType final |
2924 | : public ArrayType, |
2925 | private llvm::TrailingObjects<ConstantArrayType, const Expr *> { |
2926 | friend class ASTContext; // ASTContext creates these. |
2927 | friend TrailingObjects; |
2928 | |
2929 | llvm::APInt Size; // Allows us to unique the type. |
2930 | |
2931 | ConstantArrayType(QualType et, QualType can, const llvm::APInt &size, |
2932 | const Expr *sz, ArraySizeModifier sm, unsigned tq) |
2933 | : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) { |
2934 | ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr; |
2935 | if (ConstantArrayTypeBits.HasStoredSizeExpr) { |
2936 | assert(!can.isNull() && "canonical constant array should not have size")((void)0); |
2937 | *getTrailingObjects<const Expr*>() = sz; |
2938 | } |
2939 | } |
2940 | |
2941 | unsigned numTrailingObjects(OverloadToken<const Expr*>) const { |
2942 | return ConstantArrayTypeBits.HasStoredSizeExpr; |
2943 | } |
2944 | |
2945 | public: |
2946 | const llvm::APInt &getSize() const { return Size; } |
2947 | const Expr *getSizeExpr() const { |
2948 | return ConstantArrayTypeBits.HasStoredSizeExpr |
2949 | ? *getTrailingObjects<const Expr *>() |
2950 | : nullptr; |
2951 | } |
2952 | bool isSugared() const { return false; } |
2953 | QualType desugar() const { return QualType(this, 0); } |
2954 | |
2955 | /// Determine the number of bits required to address a member of |
2956 | // an array with the given element type and number of elements. |
2957 | static unsigned getNumAddressingBits(const ASTContext &Context, |
2958 | QualType ElementType, |
2959 | const llvm::APInt &NumElements); |
2960 | |
2961 | /// Determine the maximum number of active bits that an array's size |
2962 | /// can require, which limits the maximum size of the array. |
2963 | static unsigned getMaxSizeBits(const ASTContext &Context); |
2964 | |
2965 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) { |
2966 | Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(), |
2967 | getSizeModifier(), getIndexTypeCVRQualifiers()); |
2968 | } |
2969 | |
2970 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx, |
2971 | QualType ET, const llvm::APInt &ArraySize, |
2972 | const Expr *SizeExpr, ArraySizeModifier SizeMod, |
2973 | unsigned TypeQuals); |
2974 | |
2975 | static bool classof(const Type *T) { |
2976 | return T->getTypeClass() == ConstantArray; |
2977 | } |
2978 | }; |
2979 | |
2980 | /// Represents a C array with an unspecified size. For example 'int A[]' has |
2981 | /// an IncompleteArrayType where the element type is 'int' and the size is |
2982 | /// unspecified. |
2983 | class IncompleteArrayType : public ArrayType { |
2984 | friend class ASTContext; // ASTContext creates these. |
2985 | |
2986 | IncompleteArrayType(QualType et, QualType can, |
2987 | ArraySizeModifier sm, unsigned tq) |
2988 | : ArrayType(IncompleteArray, et, can, sm, tq) {} |
2989 | |
2990 | public: |
2991 | friend class StmtIteratorBase; |
2992 | |
2993 | bool isSugared() const { return false; } |
2994 | QualType desugar() const { return QualType(this, 0); } |
2995 | |
2996 | static bool classof(const Type *T) { |
2997 | return T->getTypeClass() == IncompleteArray; |
2998 | } |
2999 | |
3000 | void Profile(llvm::FoldingSetNodeID &ID) { |
3001 | Profile(ID, getElementType(), getSizeModifier(), |
3002 | getIndexTypeCVRQualifiers()); |
3003 | } |
3004 | |
3005 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ET, |
3006 | ArraySizeModifier SizeMod, unsigned TypeQuals) { |
3007 | ID.AddPointer(ET.getAsOpaquePtr()); |
3008 | ID.AddInteger(SizeMod); |
3009 | ID.AddInteger(TypeQuals); |
3010 | } |
3011 | }; |
3012 | |
3013 | /// Represents a C array with a specified size that is not an |
3014 | /// integer-constant-expression. For example, 'int s[x+foo()]'. |
3015 | /// Since the size expression is an arbitrary expression, we store it as such. |
3016 | /// |
3017 | /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and |
3018 | /// should not be: two lexically equivalent variable array types could mean |
3019 | /// different things, for example, these variables do not have the same type |
3020 | /// dynamically: |
3021 | /// |
3022 | /// void foo(int x) { |
3023 | /// int Y[x]; |
3024 | /// ++x; |
3025 | /// int Z[x]; |
3026 | /// } |
3027 | class VariableArrayType : public ArrayType { |
3028 | friend class ASTContext; // ASTContext creates these. |
3029 | |
3030 | /// An assignment-expression. VLA's are only permitted within |
3031 | /// a function block. |
3032 | Stmt *SizeExpr; |
3033 | |
3034 | /// The range spanned by the left and right array brackets. |
3035 | SourceRange Brackets; |
3036 | |
3037 | VariableArrayType(QualType et, QualType can, Expr *e, |
3038 | ArraySizeModifier sm, unsigned tq, |
3039 | SourceRange brackets) |
3040 | : ArrayType(VariableArray, et, can, sm, tq, e), |
3041 | SizeExpr((Stmt*) e), Brackets(brackets) {} |
3042 | |
3043 | public: |
3044 | friend class StmtIteratorBase; |
3045 | |
3046 | Expr *getSizeExpr() const { |
3047 | // We use C-style casts instead of cast<> here because we do not wish |
3048 | // to have a dependency of Type.h on Stmt.h/Expr.h. |
3049 | return (Expr*) SizeExpr; |
3050 | } |
3051 | |
3052 | SourceRange getBracketsRange() const { return Brackets; } |
3053 | SourceLocation getLBracketLoc() const { return Brackets.getBegin(); } |
3054 | SourceLocation getRBracketLoc() const { return Brackets.getEnd(); } |
3055 | |
3056 | bool isSugared() const { return false; } |
3057 | QualType desugar() const { return QualType(this, 0); } |
3058 | |
3059 | static bool classof(const Type *T) { |
3060 | return T->getTypeClass() == VariableArray; |
3061 | } |
3062 | |
3063 | void Profile(llvm::FoldingSetNodeID &ID) { |
3064 | llvm_unreachable("Cannot unique VariableArrayTypes.")__builtin_unreachable(); |
3065 | } |
3066 | }; |
3067 | |
3068 | /// Represents an array type in C++ whose size is a value-dependent expression. |
3069 | /// |
3070 | /// For example: |
3071 | /// \code |
3072 | /// template<typename T, int Size> |
3073 | /// class array { |
3074 | /// T data[Size]; |
3075 | /// }; |
3076 | /// \endcode |
3077 | /// |
3078 | /// For these types, we won't actually know what the array bound is |
3079 | /// until template instantiation occurs, at which point this will |
3080 | /// become either a ConstantArrayType or a VariableArrayType. |
3081 | class DependentSizedArrayType : public ArrayType { |
3082 | friend class ASTContext; // ASTContext creates these. |
3083 | |
3084 | const ASTContext &Context; |
3085 | |
3086 | /// An assignment expression that will instantiate to the |
3087 | /// size of the array. |
3088 | /// |
3089 | /// The expression itself might be null, in which case the array |
3090 | /// type will have its size deduced from an initializer. |
3091 | Stmt *SizeExpr; |
3092 | |
3093 | /// The range spanned by the left and right array brackets. |
3094 | SourceRange Brackets; |
3095 | |
3096 | DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can, |
3097 | Expr *e, ArraySizeModifier sm, unsigned tq, |
3098 | SourceRange brackets); |
3099 | |
3100 | public: |
3101 | friend class StmtIteratorBase; |
3102 | |
3103 | Expr *getSizeExpr() const { |
3104 | // We use C-style casts instead of cast<> here because we do not wish |
3105 | // to have a dependency of Type.h on Stmt.h/Expr.h. |
3106 | return (Expr*) SizeExpr; |
3107 | } |
3108 | |
3109 | SourceRange getBracketsRange() const { return Brackets; } |
3110 | SourceLocation getLBracketLoc() const { return Brackets.getBegin(); } |
3111 | SourceLocation getRBracketLoc() const { return Brackets.getEnd(); } |
3112 | |
3113 | bool isSugared() const { return false; } |
3114 | QualType desugar() const { return QualType(this, 0); } |
3115 | |
3116 | static bool classof(const Type *T) { |
3117 | return T->getTypeClass() == DependentSizedArray; |
3118 | } |
3119 | |
3120 | void Profile(llvm::FoldingSetNodeID &ID) { |
3121 | Profile(ID, Context, getElementType(), |
3122 | getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr()); |
3123 | } |
3124 | |
3125 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
3126 | QualType ET, ArraySizeModifier SizeMod, |
3127 | unsigned TypeQuals, Expr *E); |
3128 | }; |
3129 | |
3130 | /// Represents an extended address space qualifier where the input address space |
3131 | /// value is dependent. Non-dependent address spaces are not represented with a |
3132 | /// special Type subclass; they are stored on an ExtQuals node as part of a QualType. |
3133 | /// |
3134 | /// For example: |
3135 | /// \code |
3136 | /// template<typename T, int AddrSpace> |
3137 | /// class AddressSpace { |
3138 | /// typedef T __attribute__((address_space(AddrSpace))) type; |
3139 | /// } |
3140 | /// \endcode |
3141 | class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode { |
3142 | friend class ASTContext; |
3143 | |
3144 | const ASTContext &Context; |
3145 | Expr *AddrSpaceExpr; |
3146 | QualType PointeeType; |
3147 | SourceLocation loc; |
3148 | |
3149 | DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType, |
3150 | QualType can, Expr *AddrSpaceExpr, |
3151 | SourceLocation loc); |
3152 | |
3153 | public: |
3154 | Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; } |
3155 | QualType getPointeeType() const { return PointeeType; } |
3156 | SourceLocation getAttributeLoc() const { return loc; } |
3157 | |
3158 | bool isSugared() const { return false; } |
3159 | QualType desugar() const { return QualType(this, 0); } |
3160 | |
3161 | static bool classof(const Type *T) { |
3162 | return T->getTypeClass() == DependentAddressSpace; |
3163 | } |
3164 | |
3165 | void Profile(llvm::FoldingSetNodeID &ID) { |
3166 | Profile(ID, Context, getPointeeType(), getAddrSpaceExpr()); |
3167 | } |
3168 | |
3169 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
3170 | QualType PointeeType, Expr *AddrSpaceExpr); |
3171 | }; |
3172 | |
3173 | /// Represents an extended vector type where either the type or size is |
3174 | /// dependent. |
3175 | /// |
3176 | /// For example: |
3177 | /// \code |
3178 | /// template<typename T, int Size> |
3179 | /// class vector { |
3180 | /// typedef T __attribute__((ext_vector_type(Size))) type; |
3181 | /// } |
3182 | /// \endcode |
3183 | class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode { |
3184 | friend class ASTContext; |
3185 | |
3186 | const ASTContext &Context; |
3187 | Expr *SizeExpr; |
3188 | |
3189 | /// The element type of the array. |
3190 | QualType ElementType; |
3191 | |
3192 | SourceLocation loc; |
3193 | |
3194 | DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType, |
3195 | QualType can, Expr *SizeExpr, SourceLocation loc); |
3196 | |
3197 | public: |
3198 | Expr *getSizeExpr() const { return SizeExpr; } |
3199 | QualType getElementType() const { return ElementType; } |
3200 | SourceLocation getAttributeLoc() const { return loc; } |
3201 | |
3202 | bool isSugared() const { return false; } |
3203 | QualType desugar() const { return QualType(this, 0); } |
3204 | |
3205 | static bool classof(const Type *T) { |
3206 | return T->getTypeClass() == DependentSizedExtVector; |
3207 | } |
3208 | |
3209 | void Profile(llvm::FoldingSetNodeID &ID) { |
3210 | Profile(ID, Context, getElementType(), getSizeExpr()); |
3211 | } |
3212 | |
3213 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
3214 | QualType ElementType, Expr *SizeExpr); |
3215 | }; |
3216 | |
3217 | |
3218 | /// Represents a GCC generic vector type. This type is created using |
3219 | /// __attribute__((vector_size(n)), where "n" specifies the vector size in |
3220 | /// bytes; or from an Altivec __vector or vector declaration. |
3221 | /// Since the constructor takes the number of vector elements, the |
3222 | /// client is responsible for converting the size into the number of elements. |
3223 | class VectorType : public Type, public llvm::FoldingSetNode { |
3224 | public: |
3225 | enum VectorKind { |
3226 | /// not a target-specific vector type |
3227 | GenericVector, |
3228 | |
3229 | /// is AltiVec vector |
3230 | AltiVecVector, |
3231 | |
3232 | /// is AltiVec 'vector Pixel' |
3233 | AltiVecPixel, |
3234 | |
3235 | /// is AltiVec 'vector bool ...' |
3236 | AltiVecBool, |
3237 | |
3238 | /// is ARM Neon vector |
3239 | NeonVector, |
3240 | |
3241 | /// is ARM Neon polynomial vector |
3242 | NeonPolyVector, |
3243 | |
3244 | /// is AArch64 SVE fixed-length data vector |
3245 | SveFixedLengthDataVector, |
3246 | |
3247 | /// is AArch64 SVE fixed-length predicate vector |
3248 | SveFixedLengthPredicateVector |
3249 | }; |
3250 | |
3251 | protected: |
3252 | friend class ASTContext; // ASTContext creates these. |
3253 | |
3254 | /// The element type of the vector. |
3255 | QualType ElementType; |
3256 | |
3257 | VectorType(QualType vecType, unsigned nElements, QualType canonType, |
3258 | VectorKind vecKind); |
3259 | |
3260 | VectorType(TypeClass tc, QualType vecType, unsigned nElements, |
3261 | QualType canonType, VectorKind vecKind); |
3262 | |
3263 | public: |
3264 | QualType getElementType() const { return ElementType; } |
3265 | unsigned getNumElements() const { return VectorTypeBits.NumElements; } |
3266 | |
3267 | bool isSugared() const { return false; } |
3268 | QualType desugar() const { return QualType(this, 0); } |
3269 | |
3270 | VectorKind getVectorKind() const { |
3271 | return VectorKind(VectorTypeBits.VecKind); |
3272 | } |
3273 | |
3274 | void Profile(llvm::FoldingSetNodeID &ID) { |
3275 | Profile(ID, getElementType(), getNumElements(), |
3276 | getTypeClass(), getVectorKind()); |
3277 | } |
3278 | |
3279 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType, |
3280 | unsigned NumElements, TypeClass TypeClass, |
3281 | VectorKind VecKind) { |
3282 | ID.AddPointer(ElementType.getAsOpaquePtr()); |
3283 | ID.AddInteger(NumElements); |
3284 | ID.AddInteger(TypeClass); |
3285 | ID.AddInteger(VecKind); |
3286 | } |
3287 | |
3288 | static bool classof(const Type *T) { |
3289 | return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector; |
3290 | } |
3291 | }; |
3292 | |
3293 | /// Represents a vector type where either the type or size is dependent. |
3294 | //// |
3295 | /// For example: |
3296 | /// \code |
3297 | /// template<typename T, int Size> |
3298 | /// class vector { |
3299 | /// typedef T __attribute__((vector_size(Size))) type; |
3300 | /// } |
3301 | /// \endcode |
3302 | class DependentVectorType : public Type, public llvm::FoldingSetNode { |
3303 | friend class ASTContext; |
3304 | |
3305 | const ASTContext &Context; |
3306 | QualType ElementType; |
3307 | Expr *SizeExpr; |
3308 | SourceLocation Loc; |
3309 | |
3310 | DependentVectorType(const ASTContext &Context, QualType ElementType, |
3311 | QualType CanonType, Expr *SizeExpr, |
3312 | SourceLocation Loc, VectorType::VectorKind vecKind); |
3313 | |
3314 | public: |
3315 | Expr *getSizeExpr() const { return SizeExpr; } |
3316 | QualType getElementType() const { return ElementType; } |
3317 | SourceLocation getAttributeLoc() const { return Loc; } |
3318 | VectorType::VectorKind getVectorKind() const { |
3319 | return VectorType::VectorKind(VectorTypeBits.VecKind); |
3320 | } |
3321 | |
3322 | bool isSugared() const { return false; } |
3323 | QualType desugar() const { return QualType(this, 0); } |
3324 | |
3325 | static bool classof(const Type *T) { |
3326 | return T->getTypeClass() == DependentVector; |
3327 | } |
3328 | |
3329 | void Profile(llvm::FoldingSetNodeID &ID) { |
3330 | Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind()); |
3331 | } |
3332 | |
3333 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
3334 | QualType ElementType, const Expr *SizeExpr, |
3335 | VectorType::VectorKind VecKind); |
3336 | }; |
3337 | |
3338 | /// ExtVectorType - Extended vector type. This type is created using |
3339 | /// __attribute__((ext_vector_type(n)), where "n" is the number of elements. |
3340 | /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This |
3341 | /// class enables syntactic extensions, like Vector Components for accessing |
3342 | /// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL |
3343 | /// Shading Language). |
3344 | class ExtVectorType : public VectorType { |
3345 | friend class ASTContext; // ASTContext creates these. |
3346 | |
3347 | ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) |
3348 | : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {} |
3349 | |
3350 | public: |
3351 | static int getPointAccessorIdx(char c) { |
3352 | switch (c) { |
3353 | default: return -1; |
3354 | case 'x': case 'r': return 0; |
3355 | case 'y': case 'g': return 1; |
3356 | case 'z': case 'b': return 2; |
3357 | case 'w': case 'a': return 3; |
3358 | } |
3359 | } |
3360 | |
3361 | static int getNumericAccessorIdx(char c) { |
3362 | switch (c) { |
3363 | default: return -1; |
3364 | case '0': return 0; |
3365 | case '1': return 1; |
3366 | case '2': return 2; |
3367 | case '3': return 3; |
3368 | case '4': return 4; |
3369 | case '5': return 5; |
3370 | case '6': return 6; |
3371 | case '7': return 7; |
3372 | case '8': return 8; |
3373 | case '9': return 9; |
3374 | case 'A': |
3375 | case 'a': return 10; |
3376 | case 'B': |
3377 | case 'b': return 11; |
3378 | case 'C': |
3379 | case 'c': return 12; |
3380 | case 'D': |
3381 | case 'd': return 13; |
3382 | case 'E': |
3383 | case 'e': return 14; |
3384 | case 'F': |
3385 | case 'f': return 15; |
3386 | } |
3387 | } |
3388 | |
3389 | static int getAccessorIdx(char c, bool isNumericAccessor) { |
3390 | if (isNumericAccessor) |
3391 | return getNumericAccessorIdx(c); |
3392 | else |
3393 | return getPointAccessorIdx(c); |
3394 | } |
3395 | |
3396 | bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const { |
3397 | if (int idx = getAccessorIdx(c, isNumericAccessor)+1) |
3398 | return unsigned(idx-1) < getNumElements(); |
3399 | return false; |
3400 | } |
3401 | |
3402 | bool isSugared() const { return false; } |
3403 | QualType desugar() const { return QualType(this, 0); } |
3404 | |
3405 | static bool classof(const Type *T) { |
3406 | return T->getTypeClass() == ExtVector; |
3407 | } |
3408 | }; |
3409 | |
3410 | /// Represents a matrix type, as defined in the Matrix Types clang extensions. |
3411 | /// __attribute__((matrix_type(rows, columns))), where "rows" specifies |
3412 | /// number of rows and "columns" specifies the number of columns. |
3413 | class MatrixType : public Type, public llvm::FoldingSetNode { |
3414 | protected: |
3415 | friend class ASTContext; |
3416 | |
3417 | /// The element type of the matrix. |
3418 | QualType ElementType; |
3419 | |
3420 | MatrixType(QualType ElementTy, QualType CanonElementTy); |
3421 | |
3422 | MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy, |
3423 | const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr); |
3424 | |
3425 | public: |
3426 | /// Returns type of the elements being stored in the matrix |
3427 | QualType getElementType() const { return ElementType; } |
3428 | |
3429 | /// Valid elements types are the following: |
3430 | /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types |
3431 | /// and _Bool |
3432 | /// * the standard floating types float or double |
3433 | /// * a half-precision floating point type, if one is supported on the target |
3434 | static bool isValidElementType(QualType T) { |
3435 | return T->isDependentType() || |
3436 | (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType()); |
3437 | } |
3438 | |
3439 | bool isSugared() const { return false; } |
3440 | QualType desugar() const { return QualType(this, 0); } |
3441 | |
3442 | static bool classof(const Type *T) { |
3443 | return T->getTypeClass() == ConstantMatrix || |
3444 | T->getTypeClass() == DependentSizedMatrix; |
3445 | } |
3446 | }; |
3447 | |
3448 | /// Represents a concrete matrix type with constant number of rows and columns |
3449 | class ConstantMatrixType final : public MatrixType { |
3450 | protected: |
3451 | friend class ASTContext; |
3452 | |
3453 | /// The element type of the matrix. |
3454 | // FIXME: Appears to be unused? There is also MatrixType::ElementType... |
3455 | QualType ElementType; |
3456 | |
3457 | /// Number of rows and columns. |
3458 | unsigned NumRows; |
3459 | unsigned NumColumns; |
3460 | |
3461 | static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1; |
3462 | |
3463 | ConstantMatrixType(QualType MatrixElementType, unsigned NRows, |
3464 | unsigned NColumns, QualType CanonElementType); |
3465 | |
3466 | ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows, |
3467 | unsigned NColumns, QualType CanonElementType); |
3468 | |
3469 | public: |
3470 | /// Returns the number of rows in the matrix. |
3471 | unsigned getNumRows() const { return NumRows; } |
3472 | |
3473 | /// Returns the number of columns in the matrix. |
3474 | unsigned getNumColumns() const { return NumColumns; } |
3475 | |
3476 | /// Returns the number of elements required to embed the matrix into a vector. |
3477 | unsigned getNumElementsFlattened() const { |
3478 | return getNumRows() * getNumColumns(); |
3479 | } |
3480 | |
3481 | /// Returns true if \p NumElements is a valid matrix dimension. |
3482 | static constexpr bool isDimensionValid(size_t NumElements) { |
3483 | return NumElements > 0 && NumElements <= MaxElementsPerDimension; |
3484 | } |
3485 | |
3486 | /// Returns the maximum number of elements per dimension. |
3487 | static constexpr unsigned getMaxElementsPerDimension() { |
3488 | return MaxElementsPerDimension; |
3489 | } |
3490 | |
3491 | void Profile(llvm::FoldingSetNodeID &ID) { |
3492 | Profile(ID, getElementType(), getNumRows(), getNumColumns(), |
3493 | getTypeClass()); |
3494 | } |
3495 | |
3496 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType, |
3497 | unsigned NumRows, unsigned NumColumns, |
3498 | TypeClass TypeClass) { |
3499 | ID.AddPointer(ElementType.getAsOpaquePtr()); |
3500 | ID.AddInteger(NumRows); |
3501 | ID.AddInteger(NumColumns); |
3502 | ID.AddInteger(TypeClass); |
3503 | } |
3504 | |
3505 | static bool classof(const Type *T) { |
3506 | return T->getTypeClass() == ConstantMatrix; |
3507 | } |
3508 | }; |
3509 | |
3510 | /// Represents a matrix type where the type and the number of rows and columns |
3511 | /// is dependent on a template. |
3512 | class DependentSizedMatrixType final : public MatrixType { |
3513 | friend class ASTContext; |
3514 | |
3515 | const ASTContext &Context; |
3516 | Expr *RowExpr; |
3517 | Expr *ColumnExpr; |
3518 | |
3519 | SourceLocation loc; |
3520 | |
3521 | DependentSizedMatrixType(const ASTContext &Context, QualType ElementType, |
3522 | QualType CanonicalType, Expr *RowExpr, |
3523 | Expr *ColumnExpr, SourceLocation loc); |
3524 | |
3525 | public: |
3526 | QualType getElementType() const { return ElementType; } |
3527 | Expr *getRowExpr() const { return RowExpr; } |
3528 | Expr *getColumnExpr() const { return ColumnExpr; } |
3529 | SourceLocation getAttributeLoc() const { return loc; } |
3530 | |
3531 | bool isSugared() const { return false; } |
3532 | QualType desugar() const { return QualType(this, 0); } |
3533 | |
3534 | static bool classof(const Type *T) { |
3535 | return T->getTypeClass() == DependentSizedMatrix; |
3536 | } |
3537 | |
3538 | void Profile(llvm::FoldingSetNodeID &ID) { |
3539 | Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr()); |
3540 | } |
3541 | |
3542 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
3543 | QualType ElementType, Expr *RowExpr, Expr *ColumnExpr); |
3544 | }; |
3545 | |
3546 | /// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base |
3547 | /// class of FunctionNoProtoType and FunctionProtoType. |
3548 | class FunctionType : public Type { |
3549 | // The type returned by the function. |
3550 | QualType ResultType; |
3551 | |
3552 | public: |
3553 | /// Interesting information about a specific parameter that can't simply |
3554 | /// be reflected in parameter's type. This is only used by FunctionProtoType |
3555 | /// but is in FunctionType to make this class available during the |
3556 | /// specification of the bases of FunctionProtoType. |
3557 | /// |
3558 | /// It makes sense to model language features this way when there's some |
3559 | /// sort of parameter-specific override (such as an attribute) that |
3560 | /// affects how the function is called. For example, the ARC ns_consumed |
3561 | /// attribute changes whether a parameter is passed at +0 (the default) |
3562 | /// or +1 (ns_consumed). This must be reflected in the function type, |
3563 | /// but isn't really a change to the parameter type. |
3564 | /// |
3565 | /// One serious disadvantage of modelling language features this way is |
3566 | /// that they generally do not work with language features that attempt |
3567 | /// to destructure types. For example, template argument deduction will |
3568 | /// not be able to match a parameter declared as |
3569 | /// T (*)(U) |
3570 | /// against an argument of type |
3571 | /// void (*)(__attribute__((ns_consumed)) id) |
3572 | /// because the substitution of T=void, U=id into the former will |
3573 | /// not produce the latter. |
3574 | class ExtParameterInfo { |
3575 | enum { |
3576 | ABIMask = 0x0F, |
3577 | IsConsumed = 0x10, |
3578 | HasPassObjSize = 0x20, |
3579 | IsNoEscape = 0x40, |
3580 | }; |
3581 | unsigned char Data = 0; |
3582 | |
3583 | public: |
3584 | ExtParameterInfo() = default; |
3585 | |
3586 | /// Return the ABI treatment of this parameter. |
3587 | ParameterABI getABI() const { return ParameterABI(Data & ABIMask); } |
3588 | ExtParameterInfo withABI(ParameterABI kind) const { |
3589 | ExtParameterInfo copy = *this; |
3590 | copy.Data = (copy.Data & ~ABIMask) | unsigned(kind); |
3591 | return copy; |
3592 | } |
3593 | |
3594 | /// Is this parameter considered "consumed" by Objective-C ARC? |
3595 | /// Consumed parameters must have retainable object type. |
3596 | bool isConsumed() const { return (Data & IsConsumed); } |
3597 | ExtParameterInfo withIsConsumed(bool consumed) const { |
3598 | ExtParameterInfo copy = *this; |
3599 | if (consumed) |
3600 | copy.Data |= IsConsumed; |
3601 | else |
3602 | copy.Data &= ~IsConsumed; |
3603 | return copy; |
3604 | } |
3605 | |
3606 | bool hasPassObjectSize() const { return Data & HasPassObjSize; } |
3607 | ExtParameterInfo withHasPassObjectSize() const { |
3608 | ExtParameterInfo Copy = *this; |
3609 | Copy.Data |= HasPassObjSize; |
3610 | return Copy; |
3611 | } |
3612 | |
3613 | bool isNoEscape() const { return Data & IsNoEscape; } |
3614 | ExtParameterInfo withIsNoEscape(bool NoEscape) const { |
3615 | ExtParameterInfo Copy = *this; |
3616 | if (NoEscape) |
3617 | Copy.Data |= IsNoEscape; |
3618 | else |
3619 | Copy.Data &= ~IsNoEscape; |
3620 | return Copy; |
3621 | } |
3622 | |
3623 | unsigned char getOpaqueValue() const { return Data; } |
3624 | static ExtParameterInfo getFromOpaqueValue(unsigned char data) { |
3625 | ExtParameterInfo result; |
3626 | result.Data = data; |
3627 | return result; |
3628 | } |
3629 | |
3630 | friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) { |
3631 | return lhs.Data == rhs.Data; |
3632 | } |
3633 | |
3634 | friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) { |
3635 | return lhs.Data != rhs.Data; |
3636 | } |
3637 | }; |
3638 | |
3639 | /// A class which abstracts out some details necessary for |
3640 | /// making a call. |
3641 | /// |
3642 | /// It is not actually used directly for storing this information in |
3643 | /// a FunctionType, although FunctionType does currently use the |
3644 | /// same bit-pattern. |
3645 | /// |
3646 | // If you add a field (say Foo), other than the obvious places (both, |
3647 | // constructors, compile failures), what you need to update is |
3648 | // * Operator== |
3649 | // * getFoo |
3650 | // * withFoo |
3651 | // * functionType. Add Foo, getFoo. |
3652 | // * ASTContext::getFooType |
3653 | // * ASTContext::mergeFunctionTypes |
3654 | // * FunctionNoProtoType::Profile |
3655 | // * FunctionProtoType::Profile |
3656 | // * TypePrinter::PrintFunctionProto |
3657 | // * AST read and write |
3658 | // * Codegen |
3659 | class ExtInfo { |
3660 | friend class FunctionType; |
3661 | |
3662 | // Feel free to rearrange or add bits, but if you go over 16, you'll need to |
3663 | // adjust the Bits field below, and if you add bits, you'll need to adjust |
3664 | // Type::FunctionTypeBitfields::ExtInfo as well. |
3665 | |
3666 | // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall| |
3667 | // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 | |
3668 | // |
3669 | // regparm is either 0 (no regparm attribute) or the regparm value+1. |
3670 | enum { CallConvMask = 0x1F }; |
3671 | enum { NoReturnMask = 0x20 }; |
3672 | enum { ProducesResultMask = 0x40 }; |
3673 | enum { NoCallerSavedRegsMask = 0x80 }; |
3674 | enum { |
3675 | RegParmMask = 0x700, |
3676 | RegParmOffset = 8 |
3677 | }; |
3678 | enum { NoCfCheckMask = 0x800 }; |
3679 | enum { CmseNSCallMask = 0x1000 }; |
3680 | uint16_t Bits = CC_C; |
3681 | |
3682 | ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {} |
3683 | |
3684 | public: |
3685 | // Constructor with no defaults. Use this when you know that you |
3686 | // have all the elements (when reading an AST file for example). |
3687 | ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc, |
3688 | bool producesResult, bool noCallerSavedRegs, bool NoCfCheck, |
3689 | bool cmseNSCall) { |
3690 | assert((!hasRegParm || regParm < 7) && "Invalid regparm value")((void)0); |
3691 | Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) | |
3692 | (producesResult ? ProducesResultMask : 0) | |
3693 | (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) | |
3694 | (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) | |
3695 | (NoCfCheck ? NoCfCheckMask : 0) | |
3696 | (cmseNSCall ? CmseNSCallMask : 0); |
3697 | } |
3698 | |
3699 | // Constructor with all defaults. Use when for example creating a |
3700 | // function known to use defaults. |
3701 | ExtInfo() = default; |
3702 | |
3703 | // Constructor with just the calling convention, which is an important part |
3704 | // of the canonical type. |
3705 | ExtInfo(CallingConv CC) : Bits(CC) {} |
3706 | |
3707 | bool getNoReturn() const { return Bits & NoReturnMask; } |
3708 | bool getProducesResult() const { return Bits & ProducesResultMask; } |
3709 | bool getCmseNSCall() const { return Bits & CmseNSCallMask; } |
3710 | bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; } |
3711 | bool getNoCfCheck() const { return Bits & NoCfCheckMask; } |
3712 | bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; } |
3713 | |
3714 | unsigned getRegParm() const { |
3715 | unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset; |
3716 | if (RegParm > 0) |
3717 | --RegParm; |
3718 | return RegParm; |
3719 | } |
3720 | |
3721 | CallingConv getCC() const { return CallingConv(Bits & CallConvMask); } |
3722 | |
3723 | bool operator==(ExtInfo Other) const { |
3724 | return Bits == Other.Bits; |
3725 | } |
3726 | bool operator!=(ExtInfo Other) const { |
3727 | return Bits != Other.Bits; |
3728 | } |
3729 | |
3730 | // Note that we don't have setters. That is by design, use |
3731 | // the following with methods instead of mutating these objects. |
3732 | |
3733 | ExtInfo withNoReturn(bool noReturn) const { |
3734 | if (noReturn) |
3735 | return ExtInfo(Bits | NoReturnMask); |
3736 | else |
3737 | return ExtInfo(Bits & ~NoReturnMask); |
3738 | } |
3739 | |
3740 | ExtInfo withProducesResult(bool producesResult) const { |
3741 | if (producesResult) |
3742 | return ExtInfo(Bits | ProducesResultMask); |
3743 | else |
3744 | return ExtInfo(Bits & ~ProducesResultMask); |
3745 | } |
3746 | |
3747 | ExtInfo withCmseNSCall(bool cmseNSCall) const { |
3748 | if (cmseNSCall) |
3749 | return ExtInfo(Bits | CmseNSCallMask); |
3750 | else |
3751 | return ExtInfo(Bits & ~CmseNSCallMask); |
3752 | } |
3753 | |
3754 | ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const { |
3755 | if (noCallerSavedRegs) |
3756 | return ExtInfo(Bits | NoCallerSavedRegsMask); |
3757 | else |
3758 | return ExtInfo(Bits & ~NoCallerSavedRegsMask); |
3759 | } |
3760 | |
3761 | ExtInfo withNoCfCheck(bool noCfCheck) const { |
3762 | if (noCfCheck) |
3763 | return ExtInfo(Bits | NoCfCheckMask); |
3764 | else |
3765 | return ExtInfo(Bits & ~NoCfCheckMask); |
3766 | } |
3767 | |
3768 | ExtInfo withRegParm(unsigned RegParm) const { |
3769 | assert(RegParm < 7 && "Invalid regparm value")((void)0); |
3770 | return ExtInfo((Bits & ~RegParmMask) | |
3771 | ((RegParm + 1) << RegParmOffset)); |
3772 | } |
3773 | |
3774 | ExtInfo withCallingConv(CallingConv cc) const { |
3775 | return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc); |
3776 | } |
3777 | |
3778 | void Profile(llvm::FoldingSetNodeID &ID) const { |
3779 | ID.AddInteger(Bits); |
3780 | } |
3781 | }; |
3782 | |
3783 | /// A simple holder for a QualType representing a type in an |
3784 | /// exception specification. Unfortunately needed by FunctionProtoType |
3785 | /// because TrailingObjects cannot handle repeated types. |
3786 | struct ExceptionType { QualType Type; }; |
3787 | |
3788 | /// A simple holder for various uncommon bits which do not fit in |
3789 | /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the |
3790 | /// alignment of subsequent objects in TrailingObjects. You must update |
3791 | /// hasExtraBitfields in FunctionProtoType after adding extra data here. |
3792 | struct alignas(void *) FunctionTypeExtraBitfields { |
3793 | /// The number of types in the exception specification. |
3794 | /// A whole unsigned is not needed here and according to |
3795 | /// [implimits] 8 bits would be enough here. |
3796 | unsigned NumExceptionType; |
3797 | }; |
3798 | |
3799 | protected: |
3800 | FunctionType(TypeClass tc, QualType res, QualType Canonical, |
3801 | TypeDependence Dependence, ExtInfo Info) |
3802 | : Type(tc, Canonical, Dependence), ResultType(res) { |
3803 | FunctionTypeBits.ExtInfo = Info.Bits; |
3804 | } |
3805 | |
3806 | Qualifiers getFastTypeQuals() const { |
3807 | return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals); |
3808 | } |
3809 | |
3810 | public: |
3811 | QualType getReturnType() const { return ResultType; } |
3812 | |
3813 | bool getHasRegParm() const { return getExtInfo().getHasRegParm(); } |
3814 | unsigned getRegParmType() const { return getExtInfo().getRegParm(); } |
3815 | |
3816 | /// Determine whether this function type includes the GNU noreturn |
3817 | /// attribute. The C++11 [[noreturn]] attribute does not affect the function |
3818 | /// type. |
3819 | bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); } |
3820 | |
3821 | bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); } |
3822 | CallingConv getCallConv() const { return getExtInfo().getCC(); } |
3823 | ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); } |
3824 | |
3825 | static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0, |
3826 | "Const, volatile and restrict are assumed to be a subset of " |
3827 | "the fast qualifiers."); |
3828 | |
3829 | bool isConst() const { return getFastTypeQuals().hasConst(); } |
3830 | bool isVolatile() const { return getFastTypeQuals().hasVolatile(); } |
3831 | bool isRestrict() const { return getFastTypeQuals().hasRestrict(); } |
3832 | |
3833 | /// Determine the type of an expression that calls a function of |
3834 | /// this type. |
3835 | QualType getCallResultType(const ASTContext &Context) const { |
3836 | return getReturnType().getNonLValueExprType(Context); |
3837 | } |
3838 | |
3839 | static StringRef getNameForCallConv(CallingConv CC); |
3840 | |
3841 | static bool classof(const Type *T) { |
3842 | return T->getTypeClass() == FunctionNoProto || |
3843 | T->getTypeClass() == FunctionProto; |
3844 | } |
3845 | }; |
3846 | |
3847 | /// Represents a K&R-style 'int foo()' function, which has |
3848 | /// no information available about its arguments. |
3849 | class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode { |
3850 | friend class ASTContext; // ASTContext creates these. |
3851 | |
3852 | FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info) |
3853 | : FunctionType(FunctionNoProto, Result, Canonical, |
3854 | Result->getDependence() & |
3855 | ~(TypeDependence::DependentInstantiation | |
3856 | TypeDependence::UnexpandedPack), |
3857 | Info) {} |
3858 | |
3859 | public: |
3860 | // No additional state past what FunctionType provides. |
3861 | |
3862 | bool isSugared() const { return false; } |
3863 | QualType desugar() const { return QualType(this, 0); } |
3864 | |
3865 | void Profile(llvm::FoldingSetNodeID &ID) { |
3866 | Profile(ID, getReturnType(), getExtInfo()); |
3867 | } |
3868 | |
3869 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType, |
3870 | ExtInfo Info) { |
3871 | Info.Profile(ID); |
3872 | ID.AddPointer(ResultType.getAsOpaquePtr()); |
3873 | } |
3874 | |
3875 | static bool classof(const Type *T) { |
3876 | return T->getTypeClass() == FunctionNoProto; |
3877 | } |
3878 | }; |
3879 | |
3880 | /// Represents a prototype with parameter type info, e.g. |
3881 | /// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no |
3882 | /// parameters, not as having a single void parameter. Such a type can have |
3883 | /// an exception specification, but this specification is not part of the |
3884 | /// canonical type. FunctionProtoType has several trailing objects, some of |
3885 | /// which optional. For more information about the trailing objects see |
3886 | /// the first comment inside FunctionProtoType. |
3887 | class FunctionProtoType final |
3888 | : public FunctionType, |
3889 | public llvm::FoldingSetNode, |
3890 | private llvm::TrailingObjects< |
3891 | FunctionProtoType, QualType, SourceLocation, |
3892 | FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType, |
3893 | Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> { |
3894 | friend class ASTContext; // ASTContext creates these. |
3895 | friend TrailingObjects; |
3896 | |
3897 | // FunctionProtoType is followed by several trailing objects, some of |
3898 | // which optional. They are in order: |
3899 | // |
3900 | // * An array of getNumParams() QualType holding the parameter types. |
3901 | // Always present. Note that for the vast majority of FunctionProtoType, |
3902 | // these will be the only trailing objects. |
3903 | // |
3904 | // * Optionally if the function is variadic, the SourceLocation of the |
3905 | // ellipsis. |
3906 | // |
3907 | // * Optionally if some extra data is stored in FunctionTypeExtraBitfields |
3908 | // (see FunctionTypeExtraBitfields and FunctionTypeBitfields): |
3909 | // a single FunctionTypeExtraBitfields. Present if and only if |
3910 | // hasExtraBitfields() is true. |
3911 | // |
3912 | // * Optionally exactly one of: |
3913 | // * an array of getNumExceptions() ExceptionType, |
3914 | // * a single Expr *, |
3915 | // * a pair of FunctionDecl *, |
3916 | // * a single FunctionDecl * |
3917 | // used to store information about the various types of exception |
3918 | // specification. See getExceptionSpecSize for the details. |
3919 | // |
3920 | // * Optionally an array of getNumParams() ExtParameterInfo holding |
3921 | // an ExtParameterInfo for each of the parameters. Present if and |
3922 | // only if hasExtParameterInfos() is true. |
3923 | // |
3924 | // * Optionally a Qualifiers object to represent extra qualifiers that can't |
3925 | // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only |
3926 | // if hasExtQualifiers() is true. |
3927 | // |
3928 | // The optional FunctionTypeExtraBitfields has to be before the data |
3929 | // related to the exception specification since it contains the number |
3930 | // of exception types. |
3931 | // |
3932 | // We put the ExtParameterInfos last. If all were equal, it would make |
3933 | // more sense to put these before the exception specification, because |
3934 | // it's much easier to skip past them compared to the elaborate switch |
3935 | // required to skip the exception specification. However, all is not |
3936 | // equal; ExtParameterInfos are used to model very uncommon features, |
3937 | // and it's better not to burden the more common paths. |
3938 | |
3939 | public: |
3940 | /// Holds information about the various types of exception specification. |
3941 | /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is |
3942 | /// used to group together the various bits of information about the |
3943 | /// exception specification. |
3944 | struct ExceptionSpecInfo { |
3945 | /// The kind of exception specification this is. |
3946 | ExceptionSpecificationType Type = EST_None; |
3947 | |
3948 | /// Explicitly-specified list of exception types. |
3949 | ArrayRef<QualType> Exceptions; |
3950 | |
3951 | /// Noexcept expression, if this is a computed noexcept specification. |
3952 | Expr *NoexceptExpr = nullptr; |
3953 | |
3954 | /// The function whose exception specification this is, for |
3955 | /// EST_Unevaluated and EST_Uninstantiated. |
3956 | FunctionDecl *SourceDecl = nullptr; |
3957 | |
3958 | /// The function template whose exception specification this is instantiated |
3959 | /// from, for EST_Uninstantiated. |
3960 | FunctionDecl *SourceTemplate = nullptr; |
3961 | |
3962 | ExceptionSpecInfo() = default; |
3963 | |
3964 | ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {} |
3965 | }; |
3966 | |
3967 | /// Extra information about a function prototype. ExtProtoInfo is not |
3968 | /// stored as such in FunctionProtoType but is used to group together |
3969 | /// the various bits of extra information about a function prototype. |
3970 | struct ExtProtoInfo { |
3971 | FunctionType::ExtInfo ExtInfo; |
3972 | bool Variadic : 1; |
3973 | bool HasTrailingReturn : 1; |
3974 | Qualifiers TypeQuals; |
3975 | RefQualifierKind RefQualifier = RQ_None; |
3976 | ExceptionSpecInfo ExceptionSpec; |
3977 | const ExtParameterInfo *ExtParameterInfos = nullptr; |
3978 | SourceLocation EllipsisLoc; |
3979 | |
3980 | ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {} |
3981 | |
3982 | ExtProtoInfo(CallingConv CC) |
3983 | : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {} |
3984 | |
3985 | ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) { |
3986 | ExtProtoInfo Result(*this); |
3987 | Result.ExceptionSpec = ESI; |
3988 | return Result; |
3989 | } |
3990 | }; |
3991 | |
3992 | private: |
3993 | unsigned numTrailingObjects(OverloadToken<QualType>) const { |
3994 | return getNumParams(); |
3995 | } |
3996 | |
3997 | unsigned numTrailingObjects(OverloadToken<SourceLocation>) const { |
3998 | return isVariadic(); |
3999 | } |
4000 | |
4001 | unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const { |
4002 | return hasExtraBitfields(); |
4003 | } |
4004 | |
4005 | unsigned numTrailingObjects(OverloadToken<ExceptionType>) const { |
4006 | return getExceptionSpecSize().NumExceptionType; |
4007 | } |
4008 | |
4009 | unsigned numTrailingObjects(OverloadToken<Expr *>) const { |
4010 | return getExceptionSpecSize().NumExprPtr; |
4011 | } |
4012 | |
4013 | unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const { |
4014 | return getExceptionSpecSize().NumFunctionDeclPtr; |
4015 | } |
4016 | |
4017 | unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const { |
4018 | return hasExtParameterInfos() ? getNumParams() : 0; |
4019 | } |
4020 | |
4021 | /// Determine whether there are any argument types that |
4022 | /// contain an unexpanded parameter pack. |
4023 | static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray, |
4024 | unsigned numArgs) { |
4025 | for (unsigned Idx = 0; Idx < numArgs; ++Idx) |
4026 | if (ArgArray[Idx]->containsUnexpandedParameterPack()) |
4027 | return true; |
4028 | |
4029 | return false; |
4030 | } |
4031 | |
4032 | FunctionProtoType(QualType result, ArrayRef<QualType> params, |
4033 | QualType canonical, const ExtProtoInfo &epi); |
4034 | |
4035 | /// This struct is returned by getExceptionSpecSize and is used to |
4036 | /// translate an ExceptionSpecificationType to the number and kind |
4037 | /// of trailing objects related to the exception specification. |
4038 | struct ExceptionSpecSizeHolder { |
4039 | unsigned NumExceptionType; |
4040 | unsigned NumExprPtr; |
4041 | unsigned NumFunctionDeclPtr; |
4042 | }; |
4043 | |
4044 | /// Return the number and kind of trailing objects |
4045 | /// related to the exception specification. |
4046 | static ExceptionSpecSizeHolder |
4047 | getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) { |
4048 | switch (EST) { |
4049 | case EST_None: |
4050 | case EST_DynamicNone: |
4051 | case EST_MSAny: |
4052 | case EST_BasicNoexcept: |
4053 | case EST_Unparsed: |
4054 | case EST_NoThrow: |
4055 | return {0, 0, 0}; |
4056 | |
4057 | case EST_Dynamic: |
4058 | return {NumExceptions, 0, 0}; |
4059 | |
4060 | case EST_DependentNoexcept: |
4061 | case EST_NoexceptFalse: |
4062 | case EST_NoexceptTrue: |
4063 | return {0, 1, 0}; |
4064 | |
4065 | case EST_Uninstantiated: |
4066 | return {0, 0, 2}; |
4067 | |
4068 | case EST_Unevaluated: |
4069 | return {0, 0, 1}; |
4070 | } |
4071 | llvm_unreachable("bad exception specification kind")__builtin_unreachable(); |
4072 | } |
4073 | |
4074 | /// Return the number and kind of trailing objects |
4075 | /// related to the exception specification. |
4076 | ExceptionSpecSizeHolder getExceptionSpecSize() const { |
4077 | return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions()); |
4078 | } |
4079 | |
4080 | /// Whether the trailing FunctionTypeExtraBitfields is present. |
4081 | static bool hasExtraBitfields(ExceptionSpecificationType EST) { |
4082 | // If the exception spec type is EST_Dynamic then we have > 0 exception |
4083 | // types and the exact number is stored in FunctionTypeExtraBitfields. |
4084 | return EST == EST_Dynamic; |
4085 | } |
4086 | |
4087 | /// Whether the trailing FunctionTypeExtraBitfields is present. |
4088 | bool hasExtraBitfields() const { |
4089 | return hasExtraBitfields(getExceptionSpecType()); |
4090 | } |
4091 | |
4092 | bool hasExtQualifiers() const { |
4093 | return FunctionTypeBits.HasExtQuals; |
4094 | } |
4095 | |
4096 | public: |
4097 | unsigned getNumParams() const { return FunctionTypeBits.NumParams; } |
4098 | |
4099 | QualType getParamType(unsigned i) const { |
4100 | assert(i < getNumParams() && "invalid parameter index")((void)0); |
4101 | return param_type_begin()[i]; |
4102 | } |
4103 | |
4104 | ArrayRef<QualType> getParamTypes() const { |
4105 | return llvm::makeArrayRef(param_type_begin(), param_type_end()); |
4106 | } |
4107 | |
4108 | ExtProtoInfo getExtProtoInfo() const { |
4109 | ExtProtoInfo EPI; |
4110 | EPI.ExtInfo = getExtInfo(); |
4111 | EPI.Variadic = isVariadic(); |
4112 | EPI.EllipsisLoc = getEllipsisLoc(); |
4113 | EPI.HasTrailingReturn = hasTrailingReturn(); |
4114 | EPI.ExceptionSpec = getExceptionSpecInfo(); |
4115 | EPI.TypeQuals = getMethodQuals(); |
4116 | EPI.RefQualifier = getRefQualifier(); |
4117 | EPI.ExtParameterInfos = getExtParameterInfosOrNull(); |
4118 | return EPI; |
4119 | } |
4120 | |
4121 | /// Get the kind of exception specification on this function. |
4122 | ExceptionSpecificationType getExceptionSpecType() const { |
4123 | return static_cast<ExceptionSpecificationType>( |
4124 | FunctionTypeBits.ExceptionSpecType); |
4125 | } |
4126 | |
4127 | /// Return whether this function has any kind of exception spec. |
4128 | bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; } |
4129 | |
4130 | /// Return whether this function has a dynamic (throw) exception spec. |
4131 | bool hasDynamicExceptionSpec() const { |
4132 | return isDynamicExceptionSpec(getExceptionSpecType()); |
4133 | } |
4134 | |
4135 | /// Return whether this function has a noexcept exception spec. |
4136 | bool hasNoexceptExceptionSpec() const { |
4137 | return isNoexceptExceptionSpec(getExceptionSpecType()); |
4138 | } |
4139 | |
4140 | /// Return whether this function has a dependent exception spec. |
4141 | bool hasDependentExceptionSpec() const; |
4142 | |
4143 | /// Return whether this function has an instantiation-dependent exception |
4144 | /// spec. |
4145 | bool hasInstantiationDependentExceptionSpec() const; |
4146 | |
4147 | /// Return all the available information about this type's exception spec. |
4148 | ExceptionSpecInfo getExceptionSpecInfo() const { |
4149 | ExceptionSpecInfo Result; |
4150 | Result.Type = getExceptionSpecType(); |
4151 | if (Result.Type == EST_Dynamic) { |
4152 | Result.Exceptions = exceptions(); |
4153 | } else if (isComputedNoexcept(Result.Type)) { |
4154 | Result.NoexceptExpr = getNoexceptExpr(); |
4155 | } else if (Result.Type == EST_Uninstantiated) { |
4156 | Result.SourceDecl = getExceptionSpecDecl(); |
4157 | Result.SourceTemplate = getExceptionSpecTemplate(); |
4158 | } else if (Result.Type == EST_Unevaluated) { |
4159 | Result.SourceDecl = getExceptionSpecDecl(); |
4160 | } |
4161 | return Result; |
4162 | } |
4163 | |
4164 | /// Return the number of types in the exception specification. |
4165 | unsigned getNumExceptions() const { |
4166 | return getExceptionSpecType() == EST_Dynamic |
4167 | ? getTrailingObjects<FunctionTypeExtraBitfields>() |
4168 | ->NumExceptionType |
4169 | : 0; |
4170 | } |
4171 | |
4172 | /// Return the ith exception type, where 0 <= i < getNumExceptions(). |
4173 | QualType getExceptionType(unsigned i) const { |
4174 | assert(i < getNumExceptions() && "Invalid exception number!")((void)0); |
4175 | return exception_begin()[i]; |
4176 | } |
4177 | |
4178 | /// Return the expression inside noexcept(expression), or a null pointer |
4179 | /// if there is none (because the exception spec is not of this form). |
4180 | Expr *getNoexceptExpr() const { |
4181 | if (!isComputedNoexcept(getExceptionSpecType())) |
4182 | return nullptr; |
4183 | return *getTrailingObjects<Expr *>(); |
4184 | } |
4185 | |
4186 | /// If this function type has an exception specification which hasn't |
4187 | /// been determined yet (either because it has not been evaluated or because |
4188 | /// it has not been instantiated), this is the function whose exception |
4189 | /// specification is represented by this type. |
4190 | FunctionDecl *getExceptionSpecDecl() const { |
4191 | if (getExceptionSpecType() != EST_Uninstantiated && |
4192 | getExceptionSpecType() != EST_Unevaluated) |
4193 | return nullptr; |
4194 | return getTrailingObjects<FunctionDecl *>()[0]; |
4195 | } |
4196 | |
4197 | /// If this function type has an uninstantiated exception |
4198 | /// specification, this is the function whose exception specification |
4199 | /// should be instantiated to find the exception specification for |
4200 | /// this type. |
4201 | FunctionDecl *getExceptionSpecTemplate() const { |
4202 | if (getExceptionSpecType() != EST_Uninstantiated) |
4203 | return nullptr; |
4204 | return getTrailingObjects<FunctionDecl *>()[1]; |
4205 | } |
4206 | |
4207 | /// Determine whether this function type has a non-throwing exception |
4208 | /// specification. |
4209 | CanThrowResult canThrow() const; |
4210 | |
4211 | /// Determine whether this function type has a non-throwing exception |
4212 | /// specification. If this depends on template arguments, returns |
4213 | /// \c ResultIfDependent. |
4214 | bool isNothrow(bool ResultIfDependent = false) const { |
4215 | return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot; |
4216 | } |
4217 | |
4218 | /// Whether this function prototype is variadic. |
4219 | bool isVariadic() const { return FunctionTypeBits.Variadic; } |
4220 | |
4221 | SourceLocation getEllipsisLoc() const { |
4222 | return isVariadic() ? *getTrailingObjects<SourceLocation>() |
4223 | : SourceLocation(); |
4224 | } |
4225 | |
4226 | /// Determines whether this function prototype contains a |
4227 | /// parameter pack at the end. |
4228 | /// |
4229 | /// A function template whose last parameter is a parameter pack can be |
4230 | /// called with an arbitrary number of arguments, much like a variadic |
4231 | /// function. |
4232 | bool isTemplateVariadic() const; |
4233 | |
4234 | /// Whether this function prototype has a trailing return type. |
4235 | bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; } |
4236 | |
4237 | Qualifiers getMethodQuals() const { |
4238 | if (hasExtQualifiers()) |
4239 | return *getTrailingObjects<Qualifiers>(); |
4240 | else |
4241 | return getFastTypeQuals(); |
4242 | } |
4243 | |
4244 | /// Retrieve the ref-qualifier associated with this function type. |
4245 | RefQualifierKind getRefQualifier() const { |
4246 | return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier); |
4247 | } |
4248 | |
4249 | using param_type_iterator = const QualType *; |
4250 | using param_type_range = llvm::iterator_range<param_type_iterator>; |
4251 | |
4252 | param_type_range param_types() const { |
4253 | return param_type_range(param_type_begin(), param_type_end()); |
4254 | } |
4255 | |
4256 | param_type_iterator param_type_begin() const { |
4257 | return getTrailingObjects<QualType>(); |
4258 | } |
4259 | |
4260 | param_type_iterator param_type_end() const { |
4261 | return param_type_begin() + getNumParams(); |
4262 | } |
4263 | |
4264 | using exception_iterator = const QualType *; |
4265 | |
4266 | ArrayRef<QualType> exceptions() const { |
4267 | return llvm::makeArrayRef(exception_begin(), exception_end()); |
4268 | } |
4269 | |
4270 | exception_iterator exception_begin() const { |
4271 | return reinterpret_cast<exception_iterator>( |
4272 | getTrailingObjects<ExceptionType>()); |
4273 | } |
4274 | |
4275 | exception_iterator exception_end() const { |
4276 | return exception_begin() + getNumExceptions(); |
4277 | } |
4278 | |
4279 | /// Is there any interesting extra information for any of the parameters |
4280 | /// of this function type? |
4281 | bool hasExtParameterInfos() const { |
4282 | return FunctionTypeBits.HasExtParameterInfos; |
4283 | } |
4284 | |
4285 | ArrayRef<ExtParameterInfo> getExtParameterInfos() const { |
4286 | assert(hasExtParameterInfos())((void)0); |
4287 | return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(), |
4288 | getNumParams()); |
4289 | } |
4290 | |
4291 | /// Return a pointer to the beginning of the array of extra parameter |
4292 | /// information, if present, or else null if none of the parameters |
4293 | /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos. |
4294 | const ExtParameterInfo *getExtParameterInfosOrNull() const { |
4295 | if (!hasExtParameterInfos()) |
4296 | return nullptr; |
4297 | return getTrailingObjects<ExtParameterInfo>(); |
4298 | } |
4299 | |
4300 | ExtParameterInfo getExtParameterInfo(unsigned I) const { |
4301 | assert(I < getNumParams() && "parameter index out of range")((void)0); |
4302 | if (hasExtParameterInfos()) |
4303 | return getTrailingObjects<ExtParameterInfo>()[I]; |
4304 | return ExtParameterInfo(); |
4305 | } |
4306 | |
4307 | ParameterABI getParameterABI(unsigned I) const { |
4308 | assert(I < getNumParams() && "parameter index out of range")((void)0); |
4309 | if (hasExtParameterInfos()) |
4310 | return getTrailingObjects<ExtParameterInfo>()[I].getABI(); |
4311 | return ParameterABI::Ordinary; |
4312 | } |
4313 | |
4314 | bool isParamConsumed(unsigned I) const { |
4315 | assert(I < getNumParams() && "parameter index out of range")((void)0); |
4316 | if (hasExtParameterInfos()) |
4317 | return getTrailingObjects<ExtParameterInfo>()[I].isConsumed(); |
4318 | return false; |
4319 | } |
4320 | |
4321 | bool isSugared() const { return false; } |
4322 | QualType desugar() const { return QualType(this, 0); } |
4323 | |
4324 | void printExceptionSpecification(raw_ostream &OS, |
4325 | const PrintingPolicy &Policy) const; |
4326 | |
4327 | static bool classof(const Type *T) { |
4328 | return T->getTypeClass() == FunctionProto; |
4329 | } |
4330 | |
4331 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx); |
4332 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Result, |
4333 | param_type_iterator ArgTys, unsigned NumArgs, |
4334 | const ExtProtoInfo &EPI, const ASTContext &Context, |
4335 | bool Canonical); |
4336 | }; |
4337 | |
4338 | /// Represents the dependent type named by a dependently-scoped |
4339 | /// typename using declaration, e.g. |
4340 | /// using typename Base<T>::foo; |
4341 | /// |
4342 | /// Template instantiation turns these into the underlying type. |
4343 | class UnresolvedUsingType : public Type { |
4344 | friend class ASTContext; // ASTContext creates these. |
4345 | |
4346 | UnresolvedUsingTypenameDecl *Decl; |
4347 | |
4348 | UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D) |
4349 | : Type(UnresolvedUsing, QualType(), |
4350 | TypeDependence::DependentInstantiation), |
4351 | Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {} |
4352 | |
4353 | public: |
4354 | UnresolvedUsingTypenameDecl *getDecl() const { return Decl; } |
4355 | |
4356 | bool isSugared() const { return false; } |
4357 | QualType desugar() const { return QualType(this, 0); } |
4358 | |
4359 | static bool classof(const Type *T) { |
4360 | return T->getTypeClass() == UnresolvedUsing; |
4361 | } |
4362 | |
4363 | void Profile(llvm::FoldingSetNodeID &ID) { |
4364 | return Profile(ID, Decl); |
4365 | } |
4366 | |
4367 | static void Profile(llvm::FoldingSetNodeID &ID, |
4368 | UnresolvedUsingTypenameDecl *D) { |
4369 | ID.AddPointer(D); |
4370 | } |
4371 | }; |
4372 | |
4373 | class TypedefType : public Type { |
4374 | TypedefNameDecl *Decl; |
4375 | |
4376 | private: |
4377 | friend class ASTContext; // ASTContext creates these. |
4378 | |
4379 | TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying, |
4380 | QualType can); |
4381 | |
4382 | public: |
4383 | TypedefNameDecl *getDecl() const { return Decl; } |
4384 | |
4385 | bool isSugared() const { return true; } |
4386 | QualType desugar() const; |
4387 | |
4388 | static bool classof(const Type *T) { return T->getTypeClass() == Typedef; } |
4389 | }; |
4390 | |
4391 | /// Sugar type that represents a type that was qualified by a qualifier written |
4392 | /// as a macro invocation. |
4393 | class MacroQualifiedType : public Type { |
4394 | friend class ASTContext; // ASTContext creates these. |
4395 | |
4396 | QualType UnderlyingTy; |
4397 | const IdentifierInfo *MacroII; |
4398 | |
4399 | MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy, |
4400 | const IdentifierInfo *MacroII) |
4401 | : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()), |
4402 | UnderlyingTy(UnderlyingTy), MacroII(MacroII) { |
4403 | assert(isa<AttributedType>(UnderlyingTy) &&((void)0) |
4404 | "Expected a macro qualified type to only wrap attributed types.")((void)0); |
4405 | } |
4406 | |
4407 | public: |
4408 | const IdentifierInfo *getMacroIdentifier() const { return MacroII; } |
4409 | QualType getUnderlyingType() const { return UnderlyingTy; } |
4410 | |
4411 | /// Return this attributed type's modified type with no qualifiers attached to |
4412 | /// it. |
4413 | QualType getModifiedType() const; |
4414 | |
4415 | bool isSugared() const { return true; } |
4416 | QualType desugar() const; |
4417 | |
4418 | static bool classof(const Type *T) { |
4419 | return T->getTypeClass() == MacroQualified; |
4420 | } |
4421 | }; |
4422 | |
4423 | /// Represents a `typeof` (or __typeof__) expression (a GCC extension). |
4424 | class TypeOfExprType : public Type { |
4425 | Expr *TOExpr; |
4426 | |
4427 | protected: |
4428 | friend class ASTContext; // ASTContext creates these. |
4429 | |
4430 | TypeOfExprType(Expr *E, QualType can = QualType()); |
4431 | |
4432 | public: |
4433 | Expr *getUnderlyingExpr() const { return TOExpr; } |
4434 | |
4435 | /// Remove a single level of sugar. |
4436 | QualType desugar() const; |
4437 | |
4438 | /// Returns whether this type directly provides sugar. |
4439 | bool isSugared() const; |
4440 | |
4441 | static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; } |
4442 | }; |
4443 | |
4444 | /// Internal representation of canonical, dependent |
4445 | /// `typeof(expr)` types. |
4446 | /// |
4447 | /// This class is used internally by the ASTContext to manage |
4448 | /// canonical, dependent types, only. Clients will only see instances |
4449 | /// of this class via TypeOfExprType nodes. |
4450 | class DependentTypeOfExprType |
4451 | : public TypeOfExprType, public llvm::FoldingSetNode { |
4452 | const ASTContext &Context; |
4453 | |
4454 | public: |
4455 | DependentTypeOfExprType(const ASTContext &Context, Expr *E) |
4456 | : TypeOfExprType(E), Context(Context) {} |
4457 | |
4458 | void Profile(llvm::FoldingSetNodeID &ID) { |
4459 | Profile(ID, Context, getUnderlyingExpr()); |
4460 | } |
4461 | |
4462 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
4463 | Expr *E); |
4464 | }; |
4465 | |
4466 | /// Represents `typeof(type)`, a GCC extension. |
4467 | class TypeOfType : public Type { |
4468 | friend class ASTContext; // ASTContext creates these. |
4469 | |
4470 | QualType TOType; |
4471 | |
4472 | TypeOfType(QualType T, QualType can) |
4473 | : Type(TypeOf, can, T->getDependence()), TOType(T) { |
4474 | assert(!isa<TypedefType>(can) && "Invalid canonical type")((void)0); |
4475 | } |
4476 | |
4477 | public: |
4478 | QualType getUnderlyingType() const { return TOType; } |
4479 | |
4480 | /// Remove a single level of sugar. |
4481 | QualType desugar() const { return getUnderlyingType(); } |
4482 | |
4483 | /// Returns whether this type directly provides sugar. |
4484 | bool isSugared() const { return true; } |
4485 | |
4486 | static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; } |
4487 | }; |
4488 | |
4489 | /// Represents the type `decltype(expr)` (C++11). |
4490 | class DecltypeType : public Type { |
4491 | Expr *E; |
4492 | QualType UnderlyingType; |
4493 | |
4494 | protected: |
4495 | friend class ASTContext; // ASTContext creates these. |
4496 | |
4497 | DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType()); |
4498 | |
4499 | public: |
4500 | Expr *getUnderlyingExpr() const { return E; } |
4501 | QualType getUnderlyingType() const { return UnderlyingType; } |
4502 | |
4503 | /// Remove a single level of sugar. |
4504 | QualType desugar() const; |
4505 | |
4506 | /// Returns whether this type directly provides sugar. |
4507 | bool isSugared() const; |
4508 | |
4509 | static bool classof(const Type *T) { return T->getTypeClass() == Decltype; } |
4510 | }; |
4511 | |
4512 | /// Internal representation of canonical, dependent |
4513 | /// decltype(expr) types. |
4514 | /// |
4515 | /// This class is used internally by the ASTContext to manage |
4516 | /// canonical, dependent types, only. Clients will only see instances |
4517 | /// of this class via DecltypeType nodes. |
4518 | class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode { |
4519 | const ASTContext &Context; |
4520 | |
4521 | public: |
4522 | DependentDecltypeType(const ASTContext &Context, Expr *E); |
4523 | |
4524 | void Profile(llvm::FoldingSetNodeID &ID) { |
4525 | Profile(ID, Context, getUnderlyingExpr()); |
4526 | } |
4527 | |
4528 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
4529 | Expr *E); |
4530 | }; |
4531 | |
4532 | /// A unary type transform, which is a type constructed from another. |
4533 | class UnaryTransformType : public Type { |
4534 | public: |
4535 | enum UTTKind { |
4536 | EnumUnderlyingType |
4537 | }; |
4538 | |
4539 | private: |
4540 | /// The untransformed type. |
4541 | QualType BaseType; |
4542 | |
4543 | /// The transformed type if not dependent, otherwise the same as BaseType. |
4544 | QualType UnderlyingType; |
4545 | |
4546 | UTTKind UKind; |
4547 | |
4548 | protected: |
4549 | friend class ASTContext; |
4550 | |
4551 | UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind, |
4552 | QualType CanonicalTy); |
4553 | |
4554 | public: |
4555 | bool isSugared() const { return !isDependentType(); } |
4556 | QualType desugar() const { return UnderlyingType; } |
4557 | |
4558 | QualType getUnderlyingType() const { return UnderlyingType; } |
4559 | QualType getBaseType() const { return BaseType; } |
4560 | |
4561 | UTTKind getUTTKind() const { return UKind; } |
4562 | |
4563 | static bool classof(const Type *T) { |
4564 | return T->getTypeClass() == UnaryTransform; |
4565 | } |
4566 | }; |
4567 | |
4568 | /// Internal representation of canonical, dependent |
4569 | /// __underlying_type(type) types. |
4570 | /// |
4571 | /// This class is used internally by the ASTContext to manage |
4572 | /// canonical, dependent types, only. Clients will only see instances |
4573 | /// of this class via UnaryTransformType nodes. |
4574 | class DependentUnaryTransformType : public UnaryTransformType, |
4575 | public llvm::FoldingSetNode { |
4576 | public: |
4577 | DependentUnaryTransformType(const ASTContext &C, QualType BaseType, |
4578 | UTTKind UKind); |
4579 | |
4580 | void Profile(llvm::FoldingSetNodeID &ID) { |
4581 | Profile(ID, getBaseType(), getUTTKind()); |
4582 | } |
4583 | |
4584 | static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType, |
4585 | UTTKind UKind) { |
4586 | ID.AddPointer(BaseType.getAsOpaquePtr()); |
4587 | ID.AddInteger((unsigned)UKind); |
4588 | } |
4589 | }; |
4590 | |
4591 | class TagType : public Type { |
4592 | friend class ASTReader; |
4593 | template <class T> friend class serialization::AbstractTypeReader; |
4594 | |
4595 | /// Stores the TagDecl associated with this type. The decl may point to any |
4596 | /// TagDecl that declares the entity. |
4597 | TagDecl *decl; |
4598 | |
4599 | protected: |
4600 | TagType(TypeClass TC, const TagDecl *D, QualType can); |
4601 | |
4602 | public: |
4603 | TagDecl *getDecl() const; |
4604 | |
4605 | /// Determines whether this type is in the process of being defined. |
4606 | bool isBeingDefined() const; |
4607 | |
4608 | static bool classof(const Type *T) { |
4609 | return T->getTypeClass() == Enum || T->getTypeClass() == Record; |
4610 | } |
4611 | }; |
4612 | |
4613 | /// A helper class that allows the use of isa/cast/dyncast |
4614 | /// to detect TagType objects of structs/unions/classes. |
4615 | class RecordType : public TagType { |
4616 | protected: |
4617 | friend class ASTContext; // ASTContext creates these. |
4618 | |
4619 | explicit RecordType(const RecordDecl *D) |
4620 | : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {} |
4621 | explicit RecordType(TypeClass TC, RecordDecl *D) |
4622 | : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {} |
4623 | |
4624 | public: |
4625 | RecordDecl *getDecl() const { |
4626 | return reinterpret_cast<RecordDecl*>(TagType::getDecl()); |
4627 | } |
4628 | |
4629 | /// Recursively check all fields in the record for const-ness. If any field |
4630 | /// is declared const, return true. Otherwise, return false. |
4631 | bool hasConstFields() const; |
4632 | |
4633 | bool isSugared() const { return false; } |
4634 | QualType desugar() const { return QualType(this, 0); } |
4635 | |
4636 | static bool classof(const Type *T) { return T->getTypeClass() == Record; } |
4637 | }; |
4638 | |
4639 | /// A helper class that allows the use of isa/cast/dyncast |
4640 | /// to detect TagType objects of enums. |
4641 | class EnumType : public TagType { |
4642 | friend class ASTContext; // ASTContext creates these. |
4643 | |
4644 | explicit EnumType(const EnumDecl *D) |
4645 | : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {} |
4646 | |
4647 | public: |
4648 | EnumDecl *getDecl() const { |
4649 | return reinterpret_cast<EnumDecl*>(TagType::getDecl()); |
4650 | } |
4651 | |
4652 | bool isSugared() const { return false; } |
4653 | QualType desugar() const { return QualType(this, 0); } |
4654 | |
4655 | static bool classof(const Type *T) { return T->getTypeClass() == Enum; } |
4656 | }; |
4657 | |
4658 | /// An attributed type is a type to which a type attribute has been applied. |
4659 | /// |
4660 | /// The "modified type" is the fully-sugared type to which the attributed |
4661 | /// type was applied; generally it is not canonically equivalent to the |
4662 | /// attributed type. The "equivalent type" is the minimally-desugared type |
4663 | /// which the type is canonically equivalent to. |
4664 | /// |
4665 | /// For example, in the following attributed type: |
4666 | /// int32_t __attribute__((vector_size(16))) |
4667 | /// - the modified type is the TypedefType for int32_t |
4668 | /// - the equivalent type is VectorType(16, int32_t) |
4669 | /// - the canonical type is VectorType(16, int) |
4670 | class AttributedType : public Type, public llvm::FoldingSetNode { |
4671 | public: |
4672 | using Kind = attr::Kind; |
4673 | |
4674 | private: |
4675 | friend class ASTContext; // ASTContext creates these |
4676 | |
4677 | QualType ModifiedType; |
4678 | QualType EquivalentType; |
4679 | |
4680 | AttributedType(QualType canon, attr::Kind attrKind, QualType modified, |
4681 | QualType equivalent) |
4682 | : Type(Attributed, canon, equivalent->getDependence()), |
4683 | ModifiedType(modified), EquivalentType(equivalent) { |
4684 | AttributedTypeBits.AttrKind = attrKind; |
4685 | } |
4686 | |
4687 | public: |
4688 | Kind getAttrKind() const { |
4689 | return static_cast<Kind>(AttributedTypeBits.AttrKind); |
4690 | } |
4691 | |
4692 | QualType getModifiedType() const { return ModifiedType; } |
4693 | QualType getEquivalentType() const { return EquivalentType; } |
4694 | |
4695 | bool isSugared() const { return true; } |
4696 | QualType desugar() const { return getEquivalentType(); } |
4697 | |
4698 | /// Does this attribute behave like a type qualifier? |
4699 | /// |
4700 | /// A type qualifier adjusts a type to provide specialized rules for |
4701 | /// a specific object, like the standard const and volatile qualifiers. |
4702 | /// This includes attributes controlling things like nullability, |
4703 | /// address spaces, and ARC ownership. The value of the object is still |
4704 | /// largely described by the modified type. |
4705 | /// |
4706 | /// In contrast, many type attributes "rewrite" their modified type to |
4707 | /// produce a fundamentally different type, not necessarily related in any |
4708 | /// formalizable way to the original type. For example, calling convention |
4709 | /// and vector attributes are not simple type qualifiers. |
4710 | /// |
4711 | /// Type qualifiers are often, but not always, reflected in the canonical |
4712 | /// type. |
4713 | bool isQualifier() const; |
4714 | |
4715 | bool isMSTypeSpec() const; |
4716 | |
4717 | bool isCallingConv() const; |
4718 | |
4719 | llvm::Optional<NullabilityKind> getImmediateNullability() const; |
4720 | |
4721 | /// Retrieve the attribute kind corresponding to the given |
4722 | /// nullability kind. |
4723 | static Kind getNullabilityAttrKind(NullabilityKind kind) { |
4724 | switch (kind) { |
4725 | case NullabilityKind::NonNull: |
4726 | return attr::TypeNonNull; |
4727 | |
4728 | case NullabilityKind::Nullable: |
4729 | return attr::TypeNullable; |
4730 | |
4731 | case NullabilityKind::NullableResult: |
4732 | return attr::TypeNullableResult; |
4733 | |
4734 | case NullabilityKind::Unspecified: |
4735 | return attr::TypeNullUnspecified; |
4736 | } |
4737 | llvm_unreachable("Unknown nullability kind.")__builtin_unreachable(); |
4738 | } |
4739 | |
4740 | /// Strip off the top-level nullability annotation on the given |
4741 | /// type, if it's there. |
4742 | /// |
4743 | /// \param T The type to strip. If the type is exactly an |
4744 | /// AttributedType specifying nullability (without looking through |
4745 | /// type sugar), the nullability is returned and this type changed |
4746 | /// to the underlying modified type. |
4747 | /// |
4748 | /// \returns the top-level nullability, if present. |
4749 | static Optional<NullabilityKind> stripOuterNullability(QualType &T); |
4750 | |
4751 | void Profile(llvm::FoldingSetNodeID &ID) { |
4752 | Profile(ID, getAttrKind(), ModifiedType, EquivalentType); |
4753 | } |
4754 | |
4755 | static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind, |
4756 | QualType modified, QualType equivalent) { |
4757 | ID.AddInteger(attrKind); |
4758 | ID.AddPointer(modified.getAsOpaquePtr()); |
4759 | ID.AddPointer(equivalent.getAsOpaquePtr()); |
4760 | } |
4761 | |
4762 | static bool classof(const Type *T) { |
4763 | return T->getTypeClass() == Attributed; |
4764 | } |
4765 | }; |
4766 | |
4767 | class TemplateTypeParmType : public Type, public llvm::FoldingSetNode { |
4768 | friend class ASTContext; // ASTContext creates these |
4769 | |
4770 | // Helper data collector for canonical types. |
4771 | struct CanonicalTTPTInfo { |
4772 | unsigned Depth : 15; |
4773 | unsigned ParameterPack : 1; |
4774 | unsigned Index : 16; |
4775 | }; |
4776 | |
4777 | union { |
4778 | // Info for the canonical type. |
4779 | CanonicalTTPTInfo CanTTPTInfo; |
4780 | |
4781 | // Info for the non-canonical type. |
4782 | TemplateTypeParmDecl *TTPDecl; |
4783 | }; |
4784 | |
4785 | /// Build a non-canonical type. |
4786 | TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon) |
4787 | : Type(TemplateTypeParm, Canon, |
4788 | TypeDependence::DependentInstantiation | |
4789 | (Canon->getDependence() & TypeDependence::UnexpandedPack)), |
4790 | TTPDecl(TTPDecl) {} |
4791 | |
4792 | /// Build the canonical type. |
4793 | TemplateTypeParmType(unsigned D, unsigned I, bool PP) |
4794 | : Type(TemplateTypeParm, QualType(this, 0), |
4795 | TypeDependence::DependentInstantiation | |
4796 | (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) { |
4797 | CanTTPTInfo.Depth = D; |
4798 | CanTTPTInfo.Index = I; |
4799 | CanTTPTInfo.ParameterPack = PP; |
4800 | } |
4801 | |
4802 | const CanonicalTTPTInfo& getCanTTPTInfo() const { |
4803 | QualType Can = getCanonicalTypeInternal(); |
4804 | return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo; |
4805 | } |
4806 | |
4807 | public: |
4808 | unsigned getDepth() const { return getCanTTPTInfo().Depth; } |
4809 | unsigned getIndex() const { return getCanTTPTInfo().Index; } |
4810 | bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; } |
4811 | |
4812 | TemplateTypeParmDecl *getDecl() const { |
4813 | return isCanonicalUnqualified() ? nullptr : TTPDecl; |
4814 | } |
4815 | |
4816 | IdentifierInfo *getIdentifier() const; |
4817 | |
4818 | bool isSugared() const { return false; } |
4819 | QualType desugar() const { return QualType(this, 0); } |
4820 | |
4821 | void Profile(llvm::FoldingSetNodeID &ID) { |
4822 | Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl()); |
4823 | } |
4824 | |
4825 | static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth, |
4826 | unsigned Index, bool ParameterPack, |
4827 | TemplateTypeParmDecl *TTPDecl) { |
4828 | ID.AddInteger(Depth); |
4829 | ID.AddInteger(Index); |
4830 | ID.AddBoolean(ParameterPack); |
4831 | ID.AddPointer(TTPDecl); |
4832 | } |
4833 | |
4834 | static bool classof(const Type *T) { |
4835 | return T->getTypeClass() == TemplateTypeParm; |
4836 | } |
4837 | }; |
4838 | |
4839 | /// Represents the result of substituting a type for a template |
4840 | /// type parameter. |
4841 | /// |
4842 | /// Within an instantiated template, all template type parameters have |
4843 | /// been replaced with these. They are used solely to record that a |
4844 | /// type was originally written as a template type parameter; |
4845 | /// therefore they are never canonical. |
4846 | class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode { |
4847 | friend class ASTContext; |
4848 | |
4849 | // The original type parameter. |
4850 | const TemplateTypeParmType *Replaced; |
4851 | |
4852 | SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon) |
4853 | : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()), |
4854 | Replaced(Param) {} |
4855 | |
4856 | public: |
4857 | /// Gets the template parameter that was substituted for. |
4858 | const TemplateTypeParmType *getReplacedParameter() const { |
4859 | return Replaced; |
4860 | } |
4861 | |
4862 | /// Gets the type that was substituted for the template |
4863 | /// parameter. |
4864 | QualType getReplacementType() const { |
4865 | return getCanonicalTypeInternal(); |
4866 | } |
4867 | |
4868 | bool isSugared() const { return true; } |
4869 | QualType desugar() const { return getReplacementType(); } |
4870 | |
4871 | void Profile(llvm::FoldingSetNodeID &ID) { |
4872 | Profile(ID, getReplacedParameter(), getReplacementType()); |
4873 | } |
4874 | |
4875 | static void Profile(llvm::FoldingSetNodeID &ID, |
4876 | const TemplateTypeParmType *Replaced, |
4877 | QualType Replacement) { |
4878 | ID.AddPointer(Replaced); |
4879 | ID.AddPointer(Replacement.getAsOpaquePtr()); |
4880 | } |
4881 | |
4882 | static bool classof(const Type *T) { |
4883 | return T->getTypeClass() == SubstTemplateTypeParm; |
4884 | } |
4885 | }; |
4886 | |
4887 | /// Represents the result of substituting a set of types for a template |
4888 | /// type parameter pack. |
4889 | /// |
4890 | /// When a pack expansion in the source code contains multiple parameter packs |
4891 | /// and those parameter packs correspond to different levels of template |
4892 | /// parameter lists, this type node is used to represent a template type |
4893 | /// parameter pack from an outer level, which has already had its argument pack |
4894 | /// substituted but that still lives within a pack expansion that itself |
4895 | /// could not be instantiated. When actually performing a substitution into |
4896 | /// that pack expansion (e.g., when all template parameters have corresponding |
4897 | /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType |
4898 | /// at the current pack substitution index. |
4899 | class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode { |
4900 | friend class ASTContext; |
4901 | |
4902 | /// The original type parameter. |
4903 | const TemplateTypeParmType *Replaced; |
4904 | |
4905 | /// A pointer to the set of template arguments that this |
4906 | /// parameter pack is instantiated with. |
4907 | const TemplateArgument *Arguments; |
4908 | |
4909 | SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param, |
4910 | QualType Canon, |
4911 | const TemplateArgument &ArgPack); |
4912 | |
4913 | public: |
4914 | IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); } |
4915 | |
4916 | /// Gets the template parameter that was substituted for. |
4917 | const TemplateTypeParmType *getReplacedParameter() const { |
4918 | return Replaced; |
4919 | } |
4920 | |
4921 | unsigned getNumArgs() const { |
4922 | return SubstTemplateTypeParmPackTypeBits.NumArgs; |
4923 | } |
4924 | |
4925 | bool isSugared() const { return false; } |
4926 | QualType desugar() const { return QualType(this, 0); } |
4927 | |
4928 | TemplateArgument getArgumentPack() const; |
4929 | |
4930 | void Profile(llvm::FoldingSetNodeID &ID); |
4931 | static void Profile(llvm::FoldingSetNodeID &ID, |
4932 | const TemplateTypeParmType *Replaced, |
4933 | const TemplateArgument &ArgPack); |
4934 | |
4935 | static bool classof(const Type *T) { |
4936 | return T->getTypeClass() == SubstTemplateTypeParmPack; |
4937 | } |
4938 | }; |
4939 | |
4940 | /// Common base class for placeholders for types that get replaced by |
4941 | /// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced |
4942 | /// class template types, and constrained type names. |
4943 | /// |
4944 | /// These types are usually a placeholder for a deduced type. However, before |
4945 | /// the initializer is attached, or (usually) if the initializer is |
4946 | /// type-dependent, there is no deduced type and the type is canonical. In |
4947 | /// the latter case, it is also a dependent type. |
4948 | class DeducedType : public Type { |
4949 | protected: |
4950 | DeducedType(TypeClass TC, QualType DeducedAsType, |
4951 | TypeDependence ExtraDependence) |
4952 | : Type(TC, |
4953 | // FIXME: Retain the sugared deduced type? |
4954 | DeducedAsType.isNull() ? QualType(this, 0) |
4955 | : DeducedAsType.getCanonicalType(), |
4956 | ExtraDependence | (DeducedAsType.isNull() |
4957 | ? TypeDependence::None |
4958 | : DeducedAsType->getDependence() & |
4959 | ~TypeDependence::VariablyModified)) {} |
4960 | |
4961 | public: |
4962 | bool isSugared() const { return !isCanonicalUnqualified(); } |
4963 | QualType desugar() const { return getCanonicalTypeInternal(); } |
4964 | |
4965 | /// Get the type deduced for this placeholder type, or null if it's |
4966 | /// either not been deduced or was deduced to a dependent type. |
4967 | QualType getDeducedType() const { |
4968 | return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType(); |
4969 | } |
4970 | bool isDeduced() const { |
4971 | return !isCanonicalUnqualified() || isDependentType(); |
4972 | } |
4973 | |
4974 | static bool classof(const Type *T) { |
4975 | return T->getTypeClass() == Auto || |
4976 | T->getTypeClass() == DeducedTemplateSpecialization; |
4977 | } |
4978 | }; |
4979 | |
4980 | /// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained |
4981 | /// by a type-constraint. |
4982 | class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode { |
4983 | friend class ASTContext; // ASTContext creates these |
4984 | |
4985 | ConceptDecl *TypeConstraintConcept; |
4986 | |
4987 | AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword, |
4988 | TypeDependence ExtraDependence, ConceptDecl *CD, |
4989 | ArrayRef<TemplateArgument> TypeConstraintArgs); |
4990 | |
4991 | const TemplateArgument *getArgBuffer() const { |
4992 | return reinterpret_cast<const TemplateArgument*>(this+1); |
4993 | } |
4994 | |
4995 | TemplateArgument *getArgBuffer() { |
4996 | return reinterpret_cast<TemplateArgument*>(this+1); |
4997 | } |
4998 | |
4999 | public: |
5000 | /// Retrieve the template arguments. |
5001 | const TemplateArgument *getArgs() const { |
5002 | return getArgBuffer(); |
5003 | } |
5004 | |
5005 | /// Retrieve the number of template arguments. |
5006 | unsigned getNumArgs() const { |
5007 | return AutoTypeBits.NumArgs; |
5008 | } |
5009 | |
5010 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h |
5011 | |
5012 | ArrayRef<TemplateArgument> getTypeConstraintArguments() const { |
5013 | return {getArgs(), getNumArgs()}; |
5014 | } |
5015 | |
5016 | ConceptDecl *getTypeConstraintConcept() const { |
5017 | return TypeConstraintConcept; |
5018 | } |
5019 | |
5020 | bool isConstrained() const { |
5021 | return TypeConstraintConcept != nullptr; |
5022 | } |
5023 | |
5024 | bool isDecltypeAuto() const { |
5025 | return getKeyword() == AutoTypeKeyword::DecltypeAuto; |
5026 | } |
5027 | |
5028 | AutoTypeKeyword getKeyword() const { |
5029 | return (AutoTypeKeyword)AutoTypeBits.Keyword; |
5030 | } |
5031 | |
5032 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { |
5033 | Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(), |
5034 | getTypeConstraintConcept(), getTypeConstraintArguments()); |
5035 | } |
5036 | |
5037 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
5038 | QualType Deduced, AutoTypeKeyword Keyword, |
5039 | bool IsDependent, ConceptDecl *CD, |
5040 | ArrayRef<TemplateArgument> Arguments); |
5041 | |
5042 | static bool classof(const Type *T) { |
5043 | return T->getTypeClass() == Auto; |
5044 | } |
5045 | }; |
5046 | |
5047 | /// Represents a C++17 deduced template specialization type. |
5048 | class DeducedTemplateSpecializationType : public DeducedType, |
5049 | public llvm::FoldingSetNode { |
5050 | friend class ASTContext; // ASTContext creates these |
5051 | |
5052 | /// The name of the template whose arguments will be deduced. |
5053 | TemplateName Template; |
5054 | |
5055 | DeducedTemplateSpecializationType(TemplateName Template, |
5056 | QualType DeducedAsType, |
5057 | bool IsDeducedAsDependent) |
5058 | : DeducedType(DeducedTemplateSpecialization, DeducedAsType, |
5059 | toTypeDependence(Template.getDependence()) | |
5060 | (IsDeducedAsDependent |
5061 | ? TypeDependence::DependentInstantiation |
5062 | : TypeDependence::None)), |
5063 | Template(Template) {} |
5064 | |
5065 | public: |
5066 | /// Retrieve the name of the template that we are deducing. |
5067 | TemplateName getTemplateName() const { return Template;} |
5068 | |
5069 | void Profile(llvm::FoldingSetNodeID &ID) { |
5070 | Profile(ID, getTemplateName(), getDeducedType(), isDependentType()); |
5071 | } |
5072 | |
5073 | static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template, |
5074 | QualType Deduced, bool IsDependent) { |
5075 | Template.Profile(ID); |
5076 | ID.AddPointer(Deduced.getAsOpaquePtr()); |
5077 | ID.AddBoolean(IsDependent); |
5078 | } |
5079 | |
5080 | static bool classof(const Type *T) { |
5081 | return T->getTypeClass() == DeducedTemplateSpecialization; |
5082 | } |
5083 | }; |
5084 | |
5085 | /// Represents a type template specialization; the template |
5086 | /// must be a class template, a type alias template, or a template |
5087 | /// template parameter. A template which cannot be resolved to one of |
5088 | /// these, e.g. because it is written with a dependent scope |
5089 | /// specifier, is instead represented as a |
5090 | /// @c DependentTemplateSpecializationType. |
5091 | /// |
5092 | /// A non-dependent template specialization type is always "sugar", |
5093 | /// typically for a \c RecordType. For example, a class template |
5094 | /// specialization type of \c vector<int> will refer to a tag type for |
5095 | /// the instantiation \c std::vector<int, std::allocator<int>> |
5096 | /// |
5097 | /// Template specializations are dependent if either the template or |
5098 | /// any of the template arguments are dependent, in which case the |
5099 | /// type may also be canonical. |
5100 | /// |
5101 | /// Instances of this type are allocated with a trailing array of |
5102 | /// TemplateArguments, followed by a QualType representing the |
5103 | /// non-canonical aliased type when the template is a type alias |
5104 | /// template. |
5105 | class alignas(8) TemplateSpecializationType |
5106 | : public Type, |
5107 | public llvm::FoldingSetNode { |
5108 | friend class ASTContext; // ASTContext creates these |
5109 | |
5110 | /// The name of the template being specialized. This is |
5111 | /// either a TemplateName::Template (in which case it is a |
5112 | /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a |
5113 | /// TypeAliasTemplateDecl*), a |
5114 | /// TemplateName::SubstTemplateTemplateParmPack, or a |
5115 | /// TemplateName::SubstTemplateTemplateParm (in which case the |
5116 | /// replacement must, recursively, be one of these). |
5117 | TemplateName Template; |
5118 | |
5119 | TemplateSpecializationType(TemplateName T, |
5120 | ArrayRef<TemplateArgument> Args, |
5121 | QualType Canon, |
5122 | QualType Aliased); |
5123 | |
5124 | public: |
5125 | /// Determine whether any of the given template arguments are dependent. |
5126 | /// |
5127 | /// The converted arguments should be supplied when known; whether an |
5128 | /// argument is dependent can depend on the conversions performed on it |
5129 | /// (for example, a 'const int' passed as a template argument might be |
5130 | /// dependent if the parameter is a reference but non-dependent if the |
5131 | /// parameter is an int). |
5132 | /// |
5133 | /// Note that the \p Args parameter is unused: this is intentional, to remind |
5134 | /// the caller that they need to pass in the converted arguments, not the |
5135 | /// specified arguments. |
5136 | static bool |
5137 | anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args, |
5138 | ArrayRef<TemplateArgument> Converted); |
5139 | static bool |
5140 | anyDependentTemplateArguments(const TemplateArgumentListInfo &, |
5141 | ArrayRef<TemplateArgument> Converted); |
5142 | static bool anyInstantiationDependentTemplateArguments( |
5143 | ArrayRef<TemplateArgumentLoc> Args); |
5144 | |
5145 | /// True if this template specialization type matches a current |
5146 | /// instantiation in the context in which it is found. |
5147 | bool isCurrentInstantiation() const { |
5148 | return isa<InjectedClassNameType>(getCanonicalTypeInternal()); |
5149 | } |
5150 | |
5151 | /// Determine if this template specialization type is for a type alias |
5152 | /// template that has been substituted. |
5153 | /// |
5154 | /// Nearly every template specialization type whose template is an alias |
5155 | /// template will be substituted. However, this is not the case when |
5156 | /// the specialization contains a pack expansion but the template alias |
5157 | /// does not have a corresponding parameter pack, e.g., |
5158 | /// |
5159 | /// \code |
5160 | /// template<typename T, typename U, typename V> struct S; |
5161 | /// template<typename T, typename U> using A = S<T, int, U>; |
5162 | /// template<typename... Ts> struct X { |
5163 | /// typedef A<Ts...> type; // not a type alias |
5164 | /// }; |
5165 | /// \endcode |
5166 | bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; } |
5167 | |
5168 | /// Get the aliased type, if this is a specialization of a type alias |
5169 | /// template. |
5170 | QualType getAliasedType() const { |
5171 | assert(isTypeAlias() && "not a type alias template specialization")((void)0); |
5172 | return *reinterpret_cast<const QualType*>(end()); |
5173 | } |
5174 | |
5175 | using iterator = const TemplateArgument *; |
5176 | |
5177 | iterator begin() const { return getArgs(); } |
5178 | iterator end() const; // defined inline in TemplateBase.h |
5179 | |
5180 | /// Retrieve the name of the template that we are specializing. |
5181 | TemplateName getTemplateName() const { return Template; } |
5182 | |
5183 | /// Retrieve the template arguments. |
5184 | const TemplateArgument *getArgs() const { |
5185 | return reinterpret_cast<const TemplateArgument *>(this + 1); |
5186 | } |
5187 | |
5188 | /// Retrieve the number of template arguments. |
5189 | unsigned getNumArgs() const { |
5190 | return TemplateSpecializationTypeBits.NumArgs; |
5191 | } |
5192 | |
5193 | /// Retrieve a specific template argument as a type. |
5194 | /// \pre \c isArgType(Arg) |
5195 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h |
5196 | |
5197 | ArrayRef<TemplateArgument> template_arguments() const { |
5198 | return {getArgs(), getNumArgs()}; |
5199 | } |
5200 | |
5201 | bool isSugared() const { |
5202 | return !isDependentType() || isCurrentInstantiation() || isTypeAlias(); |
5203 | } |
5204 | |
5205 | QualType desugar() const { |
5206 | return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal(); |
5207 | } |
5208 | |
5209 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) { |
5210 | Profile(ID, Template, template_arguments(), Ctx); |
5211 | if (isTypeAlias()) |
5212 | getAliasedType().Profile(ID); |
5213 | } |
5214 | |
5215 | static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T, |
5216 | ArrayRef<TemplateArgument> Args, |
5217 | const ASTContext &Context); |
5218 | |
5219 | static bool classof(const Type *T) { |
5220 | return T->getTypeClass() == TemplateSpecialization; |
5221 | } |
5222 | }; |
5223 | |
5224 | /// Print a template argument list, including the '<' and '>' |
5225 | /// enclosing the template arguments. |
5226 | void printTemplateArgumentList(raw_ostream &OS, |
5227 | ArrayRef<TemplateArgument> Args, |
5228 | const PrintingPolicy &Policy, |
5229 | const TemplateParameterList *TPL = nullptr); |
5230 | |
5231 | void printTemplateArgumentList(raw_ostream &OS, |
5232 | ArrayRef<TemplateArgumentLoc> Args, |
5233 | const PrintingPolicy &Policy, |
5234 | const TemplateParameterList *TPL = nullptr); |
5235 | |
5236 | void printTemplateArgumentList(raw_ostream &OS, |
5237 | const TemplateArgumentListInfo &Args, |
5238 | const PrintingPolicy &Policy, |
5239 | const TemplateParameterList *TPL = nullptr); |
5240 | |
5241 | /// The injected class name of a C++ class template or class |
5242 | /// template partial specialization. Used to record that a type was |
5243 | /// spelled with a bare identifier rather than as a template-id; the |
5244 | /// equivalent for non-templated classes is just RecordType. |
5245 | /// |
5246 | /// Injected class name types are always dependent. Template |
5247 | /// instantiation turns these into RecordTypes. |
5248 | /// |
5249 | /// Injected class name types are always canonical. This works |
5250 | /// because it is impossible to compare an injected class name type |
5251 | /// with the corresponding non-injected template type, for the same |
5252 | /// reason that it is impossible to directly compare template |
5253 | /// parameters from different dependent contexts: injected class name |
5254 | /// types can only occur within the scope of a particular templated |
5255 | /// declaration, and within that scope every template specialization |
5256 | /// will canonicalize to the injected class name (when appropriate |
5257 | /// according to the rules of the language). |
5258 | class InjectedClassNameType : public Type { |
5259 | friend class ASTContext; // ASTContext creates these. |
5260 | friend class ASTNodeImporter; |
5261 | friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not |
5262 | // currently suitable for AST reading, too much |
5263 | // interdependencies. |
5264 | template <class T> friend class serialization::AbstractTypeReader; |
5265 | |
5266 | CXXRecordDecl *Decl; |
5267 | |
5268 | /// The template specialization which this type represents. |
5269 | /// For example, in |
5270 | /// template <class T> class A { ... }; |
5271 | /// this is A<T>, whereas in |
5272 | /// template <class X, class Y> class A<B<X,Y> > { ... }; |
5273 | /// this is A<B<X,Y> >. |
5274 | /// |
5275 | /// It is always unqualified, always a template specialization type, |
5276 | /// and always dependent. |
5277 | QualType InjectedType; |
5278 | |
5279 | InjectedClassNameType(CXXRecordDecl *D, QualType TST) |
5280 | : Type(InjectedClassName, QualType(), |
5281 | TypeDependence::DependentInstantiation), |
5282 | Decl(D), InjectedType(TST) { |
5283 | assert(isa<TemplateSpecializationType>(TST))((void)0); |
5284 | assert(!TST.hasQualifiers())((void)0); |
5285 | assert(TST->isDependentType())((void)0); |
5286 | } |
5287 | |
5288 | public: |
5289 | QualType getInjectedSpecializationType() const { return InjectedType; } |
5290 | |
5291 | const TemplateSpecializationType *getInjectedTST() const { |
5292 | return cast<TemplateSpecializationType>(InjectedType.getTypePtr()); |
5293 | } |
5294 | |
5295 | TemplateName getTemplateName() const { |
5296 | return getInjectedTST()->getTemplateName(); |
5297 | } |
5298 | |
5299 | CXXRecordDecl *getDecl() const; |
5300 | |
5301 | bool isSugared() const { return false; } |
5302 | QualType desugar() const { return QualType(this, 0); } |
5303 | |
5304 | static bool classof(const Type *T) { |
5305 | return T->getTypeClass() == InjectedClassName; |
5306 | } |
5307 | }; |
5308 | |
5309 | /// The kind of a tag type. |
5310 | enum TagTypeKind { |
5311 | /// The "struct" keyword. |
5312 | TTK_Struct, |
5313 | |
5314 | /// The "__interface" keyword. |
5315 | TTK_Interface, |
5316 | |
5317 | /// The "union" keyword. |
5318 | TTK_Union, |
5319 | |
5320 | /// The "class" keyword. |
5321 | TTK_Class, |
5322 | |
5323 | /// The "enum" keyword. |
5324 | TTK_Enum |
5325 | }; |
5326 | |
5327 | /// The elaboration keyword that precedes a qualified type name or |
5328 | /// introduces an elaborated-type-specifier. |
5329 | enum ElaboratedTypeKeyword { |
5330 | /// The "struct" keyword introduces the elaborated-type-specifier. |
5331 | ETK_Struct, |
5332 | |
5333 | /// The "__interface" keyword introduces the elaborated-type-specifier. |
5334 | ETK_Interface, |
5335 | |
5336 | /// The "union" keyword introduces the elaborated-type-specifier. |
5337 | ETK_Union, |
5338 | |
5339 | /// The "class" keyword introduces the elaborated-type-specifier. |
5340 | ETK_Class, |
5341 | |
5342 | /// The "enum" keyword introduces the elaborated-type-specifier. |
5343 | ETK_Enum, |
5344 | |
5345 | /// The "typename" keyword precedes the qualified type name, e.g., |
5346 | /// \c typename T::type. |
5347 | ETK_Typename, |
5348 | |
5349 | /// No keyword precedes the qualified type name. |
5350 | ETK_None |
5351 | }; |
5352 | |
5353 | /// A helper class for Type nodes having an ElaboratedTypeKeyword. |
5354 | /// The keyword in stored in the free bits of the base class. |
5355 | /// Also provides a few static helpers for converting and printing |
5356 | /// elaborated type keyword and tag type kind enumerations. |
5357 | class TypeWithKeyword : public Type { |
5358 | protected: |
5359 | TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc, |
5360 | QualType Canonical, TypeDependence Dependence) |
5361 | : Type(tc, Canonical, Dependence) { |
5362 | TypeWithKeywordBits.Keyword = Keyword; |
5363 | } |
5364 | |
5365 | public: |
5366 | ElaboratedTypeKeyword getKeyword() const { |
5367 | return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword); |
5368 | } |
5369 | |
5370 | /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword. |
5371 | static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec); |
5372 | |
5373 | /// Converts a type specifier (DeclSpec::TST) into a tag type kind. |
5374 | /// It is an error to provide a type specifier which *isn't* a tag kind here. |
5375 | static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec); |
5376 | |
5377 | /// Converts a TagTypeKind into an elaborated type keyword. |
5378 | static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag); |
5379 | |
5380 | /// Converts an elaborated type keyword into a TagTypeKind. |
5381 | /// It is an error to provide an elaborated type keyword |
5382 | /// which *isn't* a tag kind here. |
5383 | static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword); |
5384 | |
5385 | static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword); |
5386 | |
5387 | static StringRef getKeywordName(ElaboratedTypeKeyword Keyword); |
5388 | |
5389 | static StringRef getTagTypeKindName(TagTypeKind Kind) { |
5390 | return getKeywordName(getKeywordForTagTypeKind(Kind)); |
5391 | } |
5392 | |
5393 | class CannotCastToThisType {}; |
5394 | static CannotCastToThisType classof(const Type *); |
5395 | }; |
5396 | |
5397 | /// Represents a type that was referred to using an elaborated type |
5398 | /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type, |
5399 | /// or both. |
5400 | /// |
5401 | /// This type is used to keep track of a type name as written in the |
5402 | /// source code, including tag keywords and any nested-name-specifiers. |
5403 | /// The type itself is always "sugar", used to express what was written |
5404 | /// in the source code but containing no additional semantic information. |
5405 | class ElaboratedType final |
5406 | : public TypeWithKeyword, |
5407 | public llvm::FoldingSetNode, |
5408 | private llvm::TrailingObjects<ElaboratedType, TagDecl *> { |
5409 | friend class ASTContext; // ASTContext creates these |
5410 | friend TrailingObjects; |
5411 | |
5412 | /// The nested name specifier containing the qualifier. |
5413 | NestedNameSpecifier *NNS; |
5414 | |
5415 | /// The type that this qualified name refers to. |
5416 | QualType NamedType; |
5417 | |
5418 | /// The (re)declaration of this tag type owned by this occurrence is stored |
5419 | /// as a trailing object if there is one. Use getOwnedTagDecl to obtain |
5420 | /// it, or obtain a null pointer if there is none. |
5421 | |
5422 | ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, |
5423 | QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl) |
5424 | : TypeWithKeyword(Keyword, Elaborated, CanonType, |
5425 | // Any semantic dependence on the qualifier will have |
5426 | // been incorporated into NamedType. We still need to |
5427 | // track syntactic (instantiation / error / pack) |
5428 | // dependence on the qualifier. |
5429 | NamedType->getDependence() | |
5430 | (NNS ? toSyntacticDependence( |
5431 | toTypeDependence(NNS->getDependence())) |
5432 | : TypeDependence::None)), |
5433 | NNS(NNS), NamedType(NamedType) { |
5434 | ElaboratedTypeBits.HasOwnedTagDecl = false; |
5435 | if (OwnedTagDecl) { |
5436 | ElaboratedTypeBits.HasOwnedTagDecl = true; |
5437 | *getTrailingObjects<TagDecl *>() = OwnedTagDecl; |
5438 | } |
5439 | assert(!(Keyword == ETK_None && NNS == nullptr) &&((void)0) |
5440 | "ElaboratedType cannot have elaborated type keyword "((void)0) |
5441 | "and name qualifier both null.")((void)0); |
5442 | } |
5443 | |
5444 | public: |
5445 | /// Retrieve the qualification on this type. |
5446 | NestedNameSpecifier *getQualifier() const { return NNS; } |
5447 | |
5448 | /// Retrieve the type named by the qualified-id. |
5449 | QualType getNamedType() const { return NamedType; } |
5450 | |
5451 | /// Remove a single level of sugar. |
5452 | QualType desugar() const { return getNamedType(); } |
5453 | |
5454 | /// Returns whether this type directly provides sugar. |
5455 | bool isSugared() const { return true; } |
5456 | |
5457 | /// Return the (re)declaration of this type owned by this occurrence of this |
5458 | /// type, or nullptr if there is none. |
5459 | TagDecl *getOwnedTagDecl() const { |
5460 | return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>() |
5461 | : nullptr; |
5462 | } |
5463 | |
5464 | void Profile(llvm::FoldingSetNodeID &ID) { |
5465 | Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl()); |
5466 | } |
5467 | |
5468 | static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword, |
5469 | NestedNameSpecifier *NNS, QualType NamedType, |
5470 | TagDecl *OwnedTagDecl) { |
5471 | ID.AddInteger(Keyword); |
5472 | ID.AddPointer(NNS); |
5473 | NamedType.Profile(ID); |
5474 | ID.AddPointer(OwnedTagDecl); |
5475 | } |
5476 | |
5477 | static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; } |
5478 | }; |
5479 | |
5480 | /// Represents a qualified type name for which the type name is |
5481 | /// dependent. |
5482 | /// |
5483 | /// DependentNameType represents a class of dependent types that involve a |
5484 | /// possibly dependent nested-name-specifier (e.g., "T::") followed by a |
5485 | /// name of a type. The DependentNameType may start with a "typename" (for a |
5486 | /// typename-specifier), "class", "struct", "union", or "enum" (for a |
5487 | /// dependent elaborated-type-specifier), or nothing (in contexts where we |
5488 | /// know that we must be referring to a type, e.g., in a base class specifier). |
5489 | /// Typically the nested-name-specifier is dependent, but in MSVC compatibility |
5490 | /// mode, this type is used with non-dependent names to delay name lookup until |
5491 | /// instantiation. |
5492 | class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode { |
5493 | friend class ASTContext; // ASTContext creates these |
5494 | |
5495 | /// The nested name specifier containing the qualifier. |
5496 | NestedNameSpecifier *NNS; |
5497 | |
5498 | /// The type that this typename specifier refers to. |
5499 | const IdentifierInfo *Name; |
5500 | |
5501 | DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, |
5502 | const IdentifierInfo *Name, QualType CanonType) |
5503 | : TypeWithKeyword(Keyword, DependentName, CanonType, |
5504 | TypeDependence::DependentInstantiation | |
5505 | toTypeDependence(NNS->getDependence())), |
5506 | NNS(NNS), Name(Name) {} |
5507 | |
5508 | public: |
5509 | /// Retrieve the qualification on this type. |
5510 | NestedNameSpecifier *getQualifier() const { return NNS; } |
5511 | |
5512 | /// Retrieve the type named by the typename specifier as an identifier. |
5513 | /// |
5514 | /// This routine will return a non-NULL identifier pointer when the |
5515 | /// form of the original typename was terminated by an identifier, |
5516 | /// e.g., "typename T::type". |
5517 | const IdentifierInfo *getIdentifier() const { |
5518 | return Name; |
5519 | } |
5520 | |
5521 | bool isSugared() const { return false; } |
5522 | QualType desugar() const { return QualType(this, 0); } |
5523 | |
5524 | void Profile(llvm::FoldingSetNodeID &ID) { |
5525 | Profile(ID, getKeyword(), NNS, Name); |
5526 | } |
5527 | |
5528 | static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword, |
5529 | NestedNameSpecifier *NNS, const IdentifierInfo *Name) { |
5530 | ID.AddInteger(Keyword); |
5531 | ID.AddPointer(NNS); |
5532 | ID.AddPointer(Name); |
5533 | } |
5534 | |
5535 | static bool classof(const Type *T) { |
5536 | return T->getTypeClass() == DependentName; |
5537 | } |
5538 | }; |
5539 | |
5540 | /// Represents a template specialization type whose template cannot be |
5541 | /// resolved, e.g. |
5542 | /// A<T>::template B<T> |
5543 | class alignas(8) DependentTemplateSpecializationType |
5544 | : public TypeWithKeyword, |
5545 | public llvm::FoldingSetNode { |
5546 | friend class ASTContext; // ASTContext creates these |
5547 | |
5548 | /// The nested name specifier containing the qualifier. |
5549 | NestedNameSpecifier *NNS; |
5550 | |
5551 | /// The identifier of the template. |
5552 | const IdentifierInfo *Name; |
5553 | |
5554 | DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword, |
5555 | NestedNameSpecifier *NNS, |
5556 | const IdentifierInfo *Name, |
5557 | ArrayRef<TemplateArgument> Args, |
5558 | QualType Canon); |
5559 | |
5560 | const TemplateArgument *getArgBuffer() const { |
5561 | return reinterpret_cast<const TemplateArgument*>(this+1); |
5562 | } |
5563 | |
5564 | TemplateArgument *getArgBuffer() { |
5565 | return reinterpret_cast<TemplateArgument*>(this+1); |
5566 | } |
5567 | |
5568 | public: |
5569 | NestedNameSpecifier *getQualifier() const { return NNS; } |
5570 | const IdentifierInfo *getIdentifier() const { return Name; } |
5571 | |
5572 | /// Retrieve the template arguments. |
5573 | const TemplateArgument *getArgs() const { |
5574 | return getArgBuffer(); |
5575 | } |
5576 | |
5577 | /// Retrieve the number of template arguments. |
5578 | unsigned getNumArgs() const { |
5579 | return DependentTemplateSpecializationTypeBits.NumArgs; |
5580 | } |
5581 | |
5582 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h |
5583 | |
5584 | ArrayRef<TemplateArgument> template_arguments() const { |
5585 | return {getArgs(), getNumArgs()}; |
5586 | } |
5587 | |
5588 | using iterator = const TemplateArgument *; |
5589 | |
5590 | iterator begin() const { return getArgs(); } |
5591 | iterator end() const; // inline in TemplateBase.h |
5592 | |
5593 | bool isSugared() const { return false; } |
5594 | QualType desugar() const { return QualType(this, 0); } |
5595 | |
5596 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { |
5597 | Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()}); |
5598 | } |
5599 | |
5600 | static void Profile(llvm::FoldingSetNodeID &ID, |
5601 | const ASTContext &Context, |
5602 | ElaboratedTypeKeyword Keyword, |
5603 | NestedNameSpecifier *Qualifier, |
5604 | const IdentifierInfo *Name, |
5605 | ArrayRef<TemplateArgument> Args); |
5606 | |
5607 | static bool classof(const Type *T) { |
5608 | return T->getTypeClass() == DependentTemplateSpecialization; |
5609 | } |
5610 | }; |
5611 | |
5612 | /// Represents a pack expansion of types. |
5613 | /// |
5614 | /// Pack expansions are part of C++11 variadic templates. A pack |
5615 | /// expansion contains a pattern, which itself contains one or more |
5616 | /// "unexpanded" parameter packs. When instantiated, a pack expansion |
5617 | /// produces a series of types, each instantiated from the pattern of |
5618 | /// the expansion, where the Ith instantiation of the pattern uses the |
5619 | /// Ith arguments bound to each of the unexpanded parameter packs. The |
5620 | /// pack expansion is considered to "expand" these unexpanded |
5621 | /// parameter packs. |
5622 | /// |
5623 | /// \code |
5624 | /// template<typename ...Types> struct tuple; |
5625 | /// |
5626 | /// template<typename ...Types> |
5627 | /// struct tuple_of_references { |
5628 | /// typedef tuple<Types&...> type; |
5629 | /// }; |
5630 | /// \endcode |
5631 | /// |
5632 | /// Here, the pack expansion \c Types&... is represented via a |
5633 | /// PackExpansionType whose pattern is Types&. |
5634 | class PackExpansionType : public Type, public llvm::FoldingSetNode { |
5635 | friend class ASTContext; // ASTContext creates these |
5636 | |
5637 | /// The pattern of the pack expansion. |
5638 | QualType Pattern; |
5639 | |
5640 | PackExpansionType(QualType Pattern, QualType Canon, |
5641 | Optional<unsigned> NumExpansions) |
5642 | : Type(PackExpansion, Canon, |
5643 | (Pattern->getDependence() | TypeDependence::Dependent | |
5644 | TypeDependence::Instantiation) & |
5645 | ~TypeDependence::UnexpandedPack), |
5646 | Pattern(Pattern) { |
5647 | PackExpansionTypeBits.NumExpansions = |
5648 | NumExpansions ? *NumExpansions + 1 : 0; |
5649 | } |
5650 | |
5651 | public: |
5652 | /// Retrieve the pattern of this pack expansion, which is the |
5653 | /// type that will be repeatedly instantiated when instantiating the |
5654 | /// pack expansion itself. |
5655 | QualType getPattern() const { return Pattern; } |
5656 | |
5657 | /// Retrieve the number of expansions that this pack expansion will |
5658 | /// generate, if known. |
5659 | Optional<unsigned> getNumExpansions() const { |
5660 | if (PackExpansionTypeBits.NumExpansions) |
5661 | return PackExpansionTypeBits.NumExpansions - 1; |
5662 | return None; |
5663 | } |
5664 | |
5665 | bool isSugared() const { return false; } |
5666 | QualType desugar() const { return QualType(this, 0); } |
5667 | |
5668 | void Profile(llvm::FoldingSetNodeID &ID) { |
5669 | Profile(ID, getPattern(), getNumExpansions()); |
5670 | } |
5671 | |
5672 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern, |
5673 | Optional<unsigned> NumExpansions) { |
5674 | ID.AddPointer(Pattern.getAsOpaquePtr()); |
5675 | ID.AddBoolean(NumExpansions.hasValue()); |
5676 | if (NumExpansions) |
5677 | ID.AddInteger(*NumExpansions); |
5678 | } |
5679 | |
5680 | static bool classof(const Type *T) { |
5681 | return T->getTypeClass() == PackExpansion; |
5682 | } |
5683 | }; |
5684 | |
5685 | /// This class wraps the list of protocol qualifiers. For types that can |
5686 | /// take ObjC protocol qualifers, they can subclass this class. |
5687 | template <class T> |
5688 | class ObjCProtocolQualifiers { |
5689 | protected: |
5690 | ObjCProtocolQualifiers() = default; |
5691 | |
5692 | ObjCProtocolDecl * const *getProtocolStorage() const { |
5693 | return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage(); |
5694 | } |
5695 | |
5696 | ObjCProtocolDecl **getProtocolStorage() { |
5697 | return static_cast<T*>(this)->getProtocolStorageImpl(); |
5698 | } |
5699 | |
5700 | void setNumProtocols(unsigned N) { |
5701 | static_cast<T*>(this)->setNumProtocolsImpl(N); |
5702 | } |
5703 | |
5704 | void initialize(ArrayRef<ObjCProtocolDecl *> protocols) { |
5705 | setNumProtocols(protocols.size()); |
5706 | assert(getNumProtocols() == protocols.size() &&((void)0) |
5707 | "bitfield overflow in protocol count")((void)0); |
5708 | if (!protocols.empty()) |
5709 | memcpy(getProtocolStorage(), protocols.data(), |
5710 | protocols.size() * sizeof(ObjCProtocolDecl*)); |
5711 | } |
5712 | |
5713 | public: |
5714 | using qual_iterator = ObjCProtocolDecl * const *; |
5715 | using qual_range = llvm::iterator_range<qual_iterator>; |
5716 | |
5717 | qual_range quals() const { return qual_range(qual_begin(), qual_end()); } |
5718 | qual_iterator qual_begin() const { return getProtocolStorage(); } |
5719 | qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); } |
5720 | |
5721 | bool qual_empty() const { return getNumProtocols() == 0; } |
5722 | |
5723 | /// Return the number of qualifying protocols in this type, or 0 if |
5724 | /// there are none. |
5725 | unsigned getNumProtocols() const { |
5726 | return static_cast<const T*>(this)->getNumProtocolsImpl(); |
5727 | } |
5728 | |
5729 | /// Fetch a protocol by index. |
5730 | ObjCProtocolDecl *getProtocol(unsigned I) const { |
5731 | assert(I < getNumProtocols() && "Out-of-range protocol access")((void)0); |
5732 | return qual_begin()[I]; |
5733 | } |
5734 | |
5735 | /// Retrieve all of the protocol qualifiers. |
5736 | ArrayRef<ObjCProtocolDecl *> getProtocols() const { |
5737 | return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols()); |
5738 | } |
5739 | }; |
5740 | |
5741 | /// Represents a type parameter type in Objective C. It can take |
5742 | /// a list of protocols. |
5743 | class ObjCTypeParamType : public Type, |
5744 | public ObjCProtocolQualifiers<ObjCTypeParamType>, |
5745 | public llvm::FoldingSetNode { |
5746 | friend class ASTContext; |
5747 | friend class ObjCProtocolQualifiers<ObjCTypeParamType>; |
5748 | |
5749 | /// The number of protocols stored on this type. |
5750 | unsigned NumProtocols : 6; |
5751 | |
5752 | ObjCTypeParamDecl *OTPDecl; |
5753 | |
5754 | /// The protocols are stored after the ObjCTypeParamType node. In the |
5755 | /// canonical type, the list of protocols are sorted alphabetically |
5756 | /// and uniqued. |
5757 | ObjCProtocolDecl **getProtocolStorageImpl(); |
5758 | |
5759 | /// Return the number of qualifying protocols in this interface type, |
5760 | /// or 0 if there are none. |
5761 | unsigned getNumProtocolsImpl() const { |
5762 | return NumProtocols; |
5763 | } |
5764 | |
5765 | void setNumProtocolsImpl(unsigned N) { |
5766 | NumProtocols = N; |
5767 | } |
5768 | |
5769 | ObjCTypeParamType(const ObjCTypeParamDecl *D, |
5770 | QualType can, |
5771 | ArrayRef<ObjCProtocolDecl *> protocols); |
5772 | |
5773 | public: |
5774 | bool isSugared() const { return true; } |
5775 | QualType desugar() const { return getCanonicalTypeInternal(); } |
5776 | |
5777 | static bool classof(const Type *T) { |
5778 | return T->getTypeClass() == ObjCTypeParam; |
5779 | } |
5780 | |
5781 | void Profile(llvm::FoldingSetNodeID &ID); |
5782 | static void Profile(llvm::FoldingSetNodeID &ID, |
5783 | const ObjCTypeParamDecl *OTPDecl, |
5784 | QualType CanonicalType, |
5785 | ArrayRef<ObjCProtocolDecl *> protocols); |
5786 | |
5787 | ObjCTypeParamDecl *getDecl() const { return OTPDecl; } |
5788 | }; |
5789 | |
5790 | /// Represents a class type in Objective C. |
5791 | /// |
5792 | /// Every Objective C type is a combination of a base type, a set of |
5793 | /// type arguments (optional, for parameterized classes) and a list of |
5794 | /// protocols. |
5795 | /// |
5796 | /// Given the following declarations: |
5797 | /// \code |
5798 | /// \@class C<T>; |
5799 | /// \@protocol P; |
5800 | /// \endcode |
5801 | /// |
5802 | /// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType |
5803 | /// with base C and no protocols. |
5804 | /// |
5805 | /// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P]. |
5806 | /// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no |
5807 | /// protocol list. |
5808 | /// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*', |
5809 | /// and protocol list [P]. |
5810 | /// |
5811 | /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose |
5812 | /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType |
5813 | /// and no protocols. |
5814 | /// |
5815 | /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType |
5816 | /// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually |
5817 | /// this should get its own sugar class to better represent the source. |
5818 | class ObjCObjectType : public Type, |
5819 | public ObjCProtocolQualifiers<ObjCObjectType> { |
5820 | friend class ObjCProtocolQualifiers<ObjCObjectType>; |
5821 | |
5822 | // ObjCObjectType.NumTypeArgs - the number of type arguments stored |
5823 | // after the ObjCObjectPointerType node. |
5824 | // ObjCObjectType.NumProtocols - the number of protocols stored |
5825 | // after the type arguments of ObjCObjectPointerType node. |
5826 | // |
5827 | // These protocols are those written directly on the type. If |
5828 | // protocol qualifiers ever become additive, the iterators will need |
5829 | // to get kindof complicated. |
5830 | // |
5831 | // In the canonical object type, these are sorted alphabetically |
5832 | // and uniqued. |
5833 | |
5834 | /// Either a BuiltinType or an InterfaceType or sugar for either. |
5835 | QualType BaseType; |
5836 | |
5837 | /// Cached superclass type. |
5838 | mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool> |
5839 | CachedSuperClassType; |
5840 | |
5841 | QualType *getTypeArgStorage(); |
5842 | const QualType *getTypeArgStorage() const { |
5843 | return const_cast<ObjCObjectType *>(this)->getTypeArgStorage(); |
5844 | } |
5845 | |
5846 | ObjCProtocolDecl **getProtocolStorageImpl(); |
5847 | /// Return the number of qualifying protocols in this interface type, |
5848 | /// or 0 if there are none. |
5849 | unsigned getNumProtocolsImpl() const { |
5850 | return ObjCObjectTypeBits.NumProtocols; |
5851 | } |
5852 | void setNumProtocolsImpl(unsigned N) { |
5853 | ObjCObjectTypeBits.NumProtocols = N; |
5854 | } |
5855 | |
5856 | protected: |
5857 | enum Nonce_ObjCInterface { Nonce_ObjCInterface }; |
5858 | |
5859 | ObjCObjectType(QualType Canonical, QualType Base, |
5860 | ArrayRef<QualType> typeArgs, |
5861 | ArrayRef<ObjCProtocolDecl *> protocols, |
5862 | bool isKindOf); |
5863 | |
5864 | ObjCObjectType(enum Nonce_ObjCInterface) |
5865 | : Type(ObjCInterface, QualType(), TypeDependence::None), |
5866 | BaseType(QualType(this_(), 0)) { |
5867 | ObjCObjectTypeBits.NumProtocols = 0; |
5868 | ObjCObjectTypeBits.NumTypeArgs = 0; |
5869 | ObjCObjectTypeBits.IsKindOf = 0; |
5870 | } |
5871 | |
5872 | void computeSuperClassTypeSlow() const; |
5873 | |
5874 | public: |
5875 | /// Gets the base type of this object type. This is always (possibly |
5876 | /// sugar for) one of: |
5877 | /// - the 'id' builtin type (as opposed to the 'id' type visible to the |
5878 | /// user, which is a typedef for an ObjCObjectPointerType) |
5879 | /// - the 'Class' builtin type (same caveat) |
5880 | /// - an ObjCObjectType (currently always an ObjCInterfaceType) |
5881 | QualType getBaseType() const { return BaseType; } |
5882 | |
5883 | bool isObjCId() const { |
5884 | return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId); |
5885 | } |
5886 | |
5887 | bool isObjCClass() const { |
5888 | return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass); |
5889 | } |
5890 | |
5891 | bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); } |
5892 | bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); } |
5893 | bool isObjCUnqualifiedIdOrClass() const { |
5894 | if (!qual_empty()) return false; |
5895 | if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>()) |
5896 | return T->getKind() == BuiltinType::ObjCId || |
5897 | T->getKind() == BuiltinType::ObjCClass; |
5898 | return false; |
5899 | } |
5900 | bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); } |
5901 | bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); } |
5902 | |
5903 | /// Gets the interface declaration for this object type, if the base type |
5904 | /// really is an interface. |
5905 | ObjCInterfaceDecl *getInterface() const; |
5906 | |
5907 | /// Determine whether this object type is "specialized", meaning |
5908 | /// that it has type arguments. |
5909 | bool isSpecialized() const; |
5910 | |
5911 | /// Determine whether this object type was written with type arguments. |
5912 | bool isSpecializedAsWritten() const { |
5913 | return ObjCObjectTypeBits.NumTypeArgs > 0; |
5914 | } |
5915 | |
5916 | /// Determine whether this object type is "unspecialized", meaning |
5917 | /// that it has no type arguments. |
5918 | bool isUnspecialized() const { return !isSpecialized(); } |
5919 | |
5920 | /// Determine whether this object type is "unspecialized" as |
5921 | /// written, meaning that it has no type arguments. |
5922 | bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); } |
5923 | |
5924 | /// Retrieve the type arguments of this object type (semantically). |
5925 | ArrayRef<QualType> getTypeArgs() const; |
5926 | |
5927 | /// Retrieve the type arguments of this object type as they were |
5928 | /// written. |
5929 | ArrayRef<QualType> getTypeArgsAsWritten() const { |
5930 | return llvm::makeArrayRef(getTypeArgStorage(), |
5931 | ObjCObjectTypeBits.NumTypeArgs); |
5932 | } |
5933 | |
5934 | /// Whether this is a "__kindof" type as written. |
5935 | bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; } |
5936 | |
5937 | /// Whether this ia a "__kindof" type (semantically). |
5938 | bool isKindOfType() const; |
5939 | |
5940 | /// Retrieve the type of the superclass of this object type. |
5941 | /// |
5942 | /// This operation substitutes any type arguments into the |
5943 | /// superclass of the current class type, potentially producing a |
5944 | /// specialization of the superclass type. Produces a null type if |
5945 | /// there is no superclass. |
5946 | QualType getSuperClassType() const { |
5947 | if (!CachedSuperClassType.getInt()) |
5948 | computeSuperClassTypeSlow(); |
5949 | |
5950 | assert(CachedSuperClassType.getInt() && "Superclass not set?")((void)0); |
5951 | return QualType(CachedSuperClassType.getPointer(), 0); |
5952 | } |
5953 | |
5954 | /// Strip off the Objective-C "kindof" type and (with it) any |
5955 | /// protocol qualifiers. |
5956 | QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const; |
5957 | |
5958 | bool isSugared() const { return false; } |
5959 | QualType desugar() const { return QualType(this, 0); } |
5960 | |
5961 | static bool classof(const Type *T) { |
5962 | return T->getTypeClass() == ObjCObject || |
5963 | T->getTypeClass() == ObjCInterface; |
5964 | } |
5965 | }; |
5966 | |
5967 | /// A class providing a concrete implementation |
5968 | /// of ObjCObjectType, so as to not increase the footprint of |
5969 | /// ObjCInterfaceType. Code outside of ASTContext and the core type |
5970 | /// system should not reference this type. |
5971 | class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode { |
5972 | friend class ASTContext; |
5973 | |
5974 | // If anyone adds fields here, ObjCObjectType::getProtocolStorage() |
5975 | // will need to be modified. |
5976 | |
5977 | ObjCObjectTypeImpl(QualType Canonical, QualType Base, |
5978 | ArrayRef<QualType> typeArgs, |
5979 | ArrayRef<ObjCProtocolDecl *> protocols, |
5980 | bool isKindOf) |
5981 | : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {} |
5982 | |
5983 | public: |
5984 | void Profile(llvm::FoldingSetNodeID &ID); |
5985 | static void Profile(llvm::FoldingSetNodeID &ID, |
5986 | QualType Base, |
5987 | ArrayRef<QualType> typeArgs, |
5988 | ArrayRef<ObjCProtocolDecl *> protocols, |
5989 | bool isKindOf); |
5990 | }; |
5991 | |
5992 | inline QualType *ObjCObjectType::getTypeArgStorage() { |
5993 | return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1); |
5994 | } |
5995 | |
5996 | inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() { |
5997 | return reinterpret_cast<ObjCProtocolDecl**>( |
5998 | getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs); |
5999 | } |
6000 | |
6001 | inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() { |
6002 | return reinterpret_cast<ObjCProtocolDecl**>( |
6003 | static_cast<ObjCTypeParamType*>(this)+1); |
6004 | } |
6005 | |
6006 | /// Interfaces are the core concept in Objective-C for object oriented design. |
6007 | /// They basically correspond to C++ classes. There are two kinds of interface |
6008 | /// types: normal interfaces like `NSString`, and qualified interfaces, which |
6009 | /// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`. |
6010 | /// |
6011 | /// ObjCInterfaceType guarantees the following properties when considered |
6012 | /// as a subtype of its superclass, ObjCObjectType: |
6013 | /// - There are no protocol qualifiers. To reinforce this, code which |
6014 | /// tries to invoke the protocol methods via an ObjCInterfaceType will |
6015 | /// fail to compile. |
6016 | /// - It is its own base type. That is, if T is an ObjCInterfaceType*, |
6017 | /// T->getBaseType() == QualType(T, 0). |
6018 | class ObjCInterfaceType : public ObjCObjectType { |
6019 | friend class ASTContext; // ASTContext creates these. |
6020 | friend class ASTReader; |
6021 | friend class ObjCInterfaceDecl; |
6022 | template <class T> friend class serialization::AbstractTypeReader; |
6023 | |
6024 | mutable ObjCInterfaceDecl *Decl; |
6025 | |
6026 | ObjCInterfaceType(const ObjCInterfaceDecl *D) |
6027 | : ObjCObjectType(Nonce_ObjCInterface), |
6028 | Decl(const_cast<ObjCInterfaceDecl*>(D)) {} |
6029 | |
6030 | public: |
6031 | /// Get the declaration of this interface. |
6032 | ObjCInterfaceDecl *getDecl() const { return Decl; } |
6033 | |
6034 | bool isSugared() const { return false; } |
6035 | QualType desugar() const { return QualType(this, 0); } |
6036 | |
6037 | static bool classof(const Type *T) { |
6038 | return T->getTypeClass() == ObjCInterface; |
6039 | } |
6040 | |
6041 | // Nonsense to "hide" certain members of ObjCObjectType within this |
6042 | // class. People asking for protocols on an ObjCInterfaceType are |
6043 | // not going to get what they want: ObjCInterfaceTypes are |
6044 | // guaranteed to have no protocols. |
6045 | enum { |
6046 | qual_iterator, |
6047 | qual_begin, |
6048 | qual_end, |
6049 | getNumProtocols, |
6050 | getProtocol |
6051 | }; |
6052 | }; |
6053 | |
6054 | inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const { |
6055 | QualType baseType = getBaseType(); |
6056 | while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) { |
6057 | if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT)) |
6058 | return T->getDecl(); |
6059 | |
6060 | baseType = ObjT->getBaseType(); |
6061 | } |
6062 | |
6063 | return nullptr; |
6064 | } |
6065 | |
6066 | /// Represents a pointer to an Objective C object. |
6067 | /// |
6068 | /// These are constructed from pointer declarators when the pointee type is |
6069 | /// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class' |
6070 | /// types are typedefs for these, and the protocol-qualified types 'id<P>' |
6071 | /// and 'Class<P>' are translated into these. |
6072 | /// |
6073 | /// Pointers to pointers to Objective C objects are still PointerTypes; |
6074 | /// only the first level of pointer gets it own type implementation. |
6075 | class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode { |
6076 | friend class ASTContext; // ASTContext creates these. |
6077 | |
6078 | QualType PointeeType; |
6079 | |
6080 | ObjCObjectPointerType(QualType Canonical, QualType Pointee) |
6081 | : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()), |
6082 | PointeeType(Pointee) {} |
6083 | |
6084 | public: |
6085 | /// Gets the type pointed to by this ObjC pointer. |
6086 | /// The result will always be an ObjCObjectType or sugar thereof. |
6087 | QualType getPointeeType() const { return PointeeType; } |
6088 | |
6089 | /// Gets the type pointed to by this ObjC pointer. Always returns non-null. |
6090 | /// |
6091 | /// This method is equivalent to getPointeeType() except that |
6092 | /// it discards any typedefs (or other sugar) between this |
6093 | /// type and the "outermost" object type. So for: |
6094 | /// \code |
6095 | /// \@class A; \@protocol P; \@protocol Q; |
6096 | /// typedef A<P> AP; |
6097 | /// typedef A A1; |
6098 | /// typedef A1<P> A1P; |
6099 | /// typedef A1P<Q> A1PQ; |
6100 | /// \endcode |
6101 | /// For 'A*', getObjectType() will return 'A'. |
6102 | /// For 'A<P>*', getObjectType() will return 'A<P>'. |
6103 | /// For 'AP*', getObjectType() will return 'A<P>'. |
6104 | /// For 'A1*', getObjectType() will return 'A'. |
6105 | /// For 'A1<P>*', getObjectType() will return 'A1<P>'. |
6106 | /// For 'A1P*', getObjectType() will return 'A1<P>'. |
6107 | /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because |
6108 | /// adding protocols to a protocol-qualified base discards the |
6109 | /// old qualifiers (for now). But if it didn't, getObjectType() |
6110 | /// would return 'A1P<Q>' (and we'd have to make iterating over |
6111 | /// qualifiers more complicated). |
6112 | const ObjCObjectType *getObjectType() const { |
6113 | return PointeeType->castAs<ObjCObjectType>(); |
6114 | } |
6115 | |
6116 | /// If this pointer points to an Objective C |
6117 | /// \@interface type, gets the type for that interface. Any protocol |
6118 | /// qualifiers on the interface are ignored. |
6119 | /// |
6120 | /// \return null if the base type for this pointer is 'id' or 'Class' |
6121 | const ObjCInterfaceType *getInterfaceType() const; |
6122 | |
6123 | /// If this pointer points to an Objective \@interface |
6124 | /// type, gets the declaration for that interface. |
6125 | /// |
6126 | /// \return null if the base type for this pointer is 'id' or 'Class' |
6127 | ObjCInterfaceDecl *getInterfaceDecl() const { |
6128 | return getObjectType()->getInterface(); |
6129 | } |
6130 | |
6131 | /// True if this is equivalent to the 'id' type, i.e. if |
6132 | /// its object type is the primitive 'id' type with no protocols. |
6133 | bool isObjCIdType() const { |
6134 | return getObjectType()->isObjCUnqualifiedId(); |
6135 | } |
6136 | |
6137 | /// True if this is equivalent to the 'Class' type, |
6138 | /// i.e. if its object tive is the primitive 'Class' type with no protocols. |
6139 | bool isObjCClassType() const { |
6140 | return getObjectType()->isObjCUnqualifiedClass(); |
6141 | } |
6142 | |
6143 | /// True if this is equivalent to the 'id' or 'Class' type, |
6144 | bool isObjCIdOrClassType() const { |
6145 | return getObjectType()->isObjCUnqualifiedIdOrClass(); |
6146 | } |
6147 | |
6148 | /// True if this is equivalent to 'id<P>' for some non-empty set of |
6149 | /// protocols. |
6150 | bool isObjCQualifiedIdType() const { |
6151 | return getObjectType()->isObjCQualifiedId(); |
6152 | } |
6153 | |
6154 | /// True if this is equivalent to 'Class<P>' for some non-empty set of |
6155 | /// protocols. |
6156 | bool isObjCQualifiedClassType() const { |
6157 | return getObjectType()->isObjCQualifiedClass(); |
6158 | } |
6159 | |
6160 | /// Whether this is a "__kindof" type. |
6161 | bool isKindOfType() const { return getObjectType()->isKindOfType(); } |
6162 | |
6163 | /// Whether this type is specialized, meaning that it has type arguments. |
6164 | bool isSpecialized() const { return getObjectType()->isSpecialized(); } |
6165 | |
6166 | /// Whether this type is specialized, meaning that it has type arguments. |
6167 | bool isSpecializedAsWritten() const { |
6168 | return getObjectType()->isSpecializedAsWritten(); |
6169 | } |
6170 | |
6171 | /// Whether this type is unspecialized, meaning that is has no type arguments. |
6172 | bool isUnspecialized() const { return getObjectType()->isUnspecialized(); } |
6173 | |
6174 | /// Determine whether this object type is "unspecialized" as |
6175 | /// written, meaning that it has no type arguments. |
6176 | bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); } |
6177 | |
6178 | /// Retrieve the type arguments for this type. |
6179 | ArrayRef<QualType> getTypeArgs() const { |
6180 | return getObjectType()->getTypeArgs(); |
6181 | } |
6182 | |
6183 | /// Retrieve the type arguments for this type. |
6184 | ArrayRef<QualType> getTypeArgsAsWritten() const { |
6185 | return getObjectType()->getTypeArgsAsWritten(); |
6186 | } |
6187 | |
6188 | /// An iterator over the qualifiers on the object type. Provided |
6189 | /// for convenience. This will always iterate over the full set of |
6190 | /// protocols on a type, not just those provided directly. |
6191 | using qual_iterator = ObjCObjectType::qual_iterator; |
6192 | using qual_range = llvm::iterator_range<qual_iterator>; |
6193 | |
6194 | qual_range quals() const { return qual_range(qual_begin(), qual_end()); } |
6195 | |
6196 | qual_iterator qual_begin() const { |
6197 | return getObjectType()->qual_begin(); |
6198 | } |
6199 | |
6200 | qual_iterator qual_end() const { |
6201 | return getObjectType()->qual_end(); |
6202 | } |
6203 | |
6204 | bool qual_empty() const { return getObjectType()->qual_empty(); } |
6205 | |
6206 | /// Return the number of qualifying protocols on the object type. |
6207 | unsigned getNumProtocols() const { |
6208 | return getObjectType()->getNumProtocols(); |
6209 | } |
6210 | |
6211 | /// Retrieve a qualifying protocol by index on the object type. |
6212 | ObjCProtocolDecl *getProtocol(unsigned I) const { |
6213 | return getObjectType()->getProtocol(I); |
6214 | } |
6215 | |
6216 | bool isSugared() const { return false; } |
6217 | QualType desugar() const { return QualType(this, 0); } |
6218 | |
6219 | /// Retrieve the type of the superclass of this object pointer type. |
6220 | /// |
6221 | /// This operation substitutes any type arguments into the |
6222 | /// superclass of the current class type, potentially producing a |
6223 | /// pointer to a specialization of the superclass type. Produces a |
6224 | /// null type if there is no superclass. |
6225 | QualType getSuperClassType() const; |
6226 | |
6227 | /// Strip off the Objective-C "kindof" type and (with it) any |
6228 | /// protocol qualifiers. |
6229 | const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals( |
6230 | const ASTContext &ctx) const; |
6231 | |
6232 | void Profile(llvm::FoldingSetNodeID &ID) { |
6233 | Profile(ID, getPointeeType()); |
6234 | } |
6235 | |
6236 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T) { |
6237 | ID.AddPointer(T.getAsOpaquePtr()); |
6238 | } |
6239 | |
6240 | static bool classof(const Type *T) { |
6241 | return T->getTypeClass() == ObjCObjectPointer; |
6242 | } |
6243 | }; |
6244 | |
6245 | class AtomicType : public Type, public llvm::FoldingSetNode { |
6246 | friend class ASTContext; // ASTContext creates these. |
6247 | |
6248 | QualType ValueType; |
6249 | |
6250 | AtomicType(QualType ValTy, QualType Canonical) |
6251 | : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {} |
6252 | |
6253 | public: |
6254 | /// Gets the type contained by this atomic type, i.e. |
6255 | /// the type returned by performing an atomic load of this atomic type. |
6256 | QualType getValueType() const { return ValueType; } |
6257 | |
6258 | bool isSugared() const { return false; } |
6259 | QualType desugar() const { return QualType(this, 0); } |
6260 | |
6261 | void Profile(llvm::FoldingSetNodeID &ID) { |
6262 | Profile(ID, getValueType()); |
6263 | } |
6264 | |
6265 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T) { |
6266 | ID.AddPointer(T.getAsOpaquePtr()); |
6267 | } |
6268 | |
6269 | static bool classof(const Type *T) { |
6270 | return T->getTypeClass() == Atomic; |
6271 | } |
6272 | }; |
6273 | |
6274 | /// PipeType - OpenCL20. |
6275 | class PipeType : public Type, public llvm::FoldingSetNode { |
6276 | friend class ASTContext; // ASTContext creates these. |
6277 | |
6278 | QualType ElementType; |
6279 | bool isRead; |
6280 | |
6281 | PipeType(QualType elemType, QualType CanonicalPtr, bool isRead) |
6282 | : Type(Pipe, CanonicalPtr, elemType->getDependence()), |
6283 | ElementType(elemType), isRead(isRead) {} |
6284 | |
6285 | public: |
6286 | QualType getElementType() const { return ElementType; } |
6287 | |
6288 | bool isSugared() const { return false; } |
6289 | |
6290 | QualType desugar() const { return QualType(this, 0); } |
6291 | |
6292 | void Profile(llvm::FoldingSetNodeID &ID) { |
6293 | Profile(ID, getElementType(), isReadOnly()); |
6294 | } |
6295 | |
6296 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) { |
6297 | ID.AddPointer(T.getAsOpaquePtr()); |
6298 | ID.AddBoolean(isRead); |
6299 | } |
6300 | |
6301 | static bool classof(const Type *T) { |
6302 | return T->getTypeClass() == Pipe; |
6303 | } |
6304 | |
6305 | bool isReadOnly() const { return isRead; } |
6306 | }; |
6307 | |
6308 | /// A fixed int type of a specified bitwidth. |
6309 | class ExtIntType final : public Type, public llvm::FoldingSetNode { |
6310 | friend class ASTContext; |
6311 | unsigned IsUnsigned : 1; |
6312 | unsigned NumBits : 24; |
6313 | |
6314 | protected: |
6315 | ExtIntType(bool isUnsigned, unsigned NumBits); |
6316 | |
6317 | public: |
6318 | bool isUnsigned() const { return IsUnsigned; } |
6319 | bool isSigned() const { return !IsUnsigned; } |
6320 | unsigned getNumBits() const { return NumBits; } |
6321 | |
6322 | bool isSugared() const { return false; } |
6323 | QualType desugar() const { return QualType(this, 0); } |
6324 | |
6325 | void Profile(llvm::FoldingSetNodeID &ID) { |
6326 | Profile(ID, isUnsigned(), getNumBits()); |
6327 | } |
6328 | |
6329 | static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned, |
6330 | unsigned NumBits) { |
6331 | ID.AddBoolean(IsUnsigned); |
6332 | ID.AddInteger(NumBits); |
6333 | } |
6334 | |
6335 | static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; } |
6336 | }; |
6337 | |
6338 | class DependentExtIntType final : public Type, public llvm::FoldingSetNode { |
6339 | friend class ASTContext; |
6340 | const ASTContext &Context; |
6341 | llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned; |
6342 | |
6343 | protected: |
6344 | DependentExtIntType(const ASTContext &Context, bool IsUnsigned, |
6345 | Expr *NumBits); |
6346 | |
6347 | public: |
6348 | bool isUnsigned() const; |
6349 | bool isSigned() const { return !isUnsigned(); } |
6350 | Expr *getNumBitsExpr() const; |
6351 | |
6352 | bool isSugared() const { return false; } |
6353 | QualType desugar() const { return QualType(this, 0); } |
6354 | |
6355 | void Profile(llvm::FoldingSetNodeID &ID) { |
6356 | Profile(ID, Context, isUnsigned(), getNumBitsExpr()); |
6357 | } |
6358 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
6359 | bool IsUnsigned, Expr *NumBitsExpr); |
6360 | |
6361 | static bool classof(const Type *T) { |
6362 | return T->getTypeClass() == DependentExtInt; |
6363 | } |
6364 | }; |
6365 | |
6366 | /// A qualifier set is used to build a set of qualifiers. |
6367 | class QualifierCollector : public Qualifiers { |
6368 | public: |
6369 | QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {} |
6370 | |
6371 | /// Collect any qualifiers on the given type and return an |
6372 | /// unqualified type. The qualifiers are assumed to be consistent |
6373 | /// with those already in the type. |
6374 | const Type *strip(QualType type) { |
6375 | addFastQualifiers(type.getLocalFastQualifiers()); |
6376 | if (!type.hasLocalNonFastQualifiers()) |
6377 | return type.getTypePtrUnsafe(); |
6378 | |
6379 | const ExtQuals *extQuals = type.getExtQualsUnsafe(); |
6380 | addConsistentQualifiers(extQuals->getQualifiers()); |
6381 | return extQuals->getBaseType(); |
6382 | } |
6383 | |
6384 | /// Apply the collected qualifiers to the given type. |
6385 | QualType apply(const ASTContext &Context, QualType QT) const; |
6386 | |
6387 | /// Apply the collected qualifiers to the given type. |
6388 | QualType apply(const ASTContext &Context, const Type* T) const; |
6389 | }; |
6390 | |
6391 | /// A container of type source information. |
6392 | /// |
6393 | /// A client can read the relevant info using TypeLoc wrappers, e.g: |
6394 | /// @code |
6395 | /// TypeLoc TL = TypeSourceInfo->getTypeLoc(); |
6396 | /// TL.getBeginLoc().print(OS, SrcMgr); |
6397 | /// @endcode |
6398 | class alignas(8) TypeSourceInfo { |
6399 | // Contains a memory block after the class, used for type source information, |
6400 | // allocated by ASTContext. |
6401 | friend class ASTContext; |
6402 | |
6403 | QualType Ty; |
6404 | |
6405 | TypeSourceInfo(QualType ty) : Ty(ty) {} |
6406 | |
6407 | public: |
6408 | /// Return the type wrapped by this type source info. |
6409 | QualType getType() const { return Ty; } |
6410 | |
6411 | /// Return the TypeLoc wrapper for the type source info. |
6412 | TypeLoc getTypeLoc() const; // implemented in TypeLoc.h |
6413 | |
6414 | /// Override the type stored in this TypeSourceInfo. Use with caution! |
6415 | void overrideType(QualType T) { Ty = T; } |
6416 | }; |
6417 | |
6418 | // Inline function definitions. |
6419 | |
6420 | inline SplitQualType SplitQualType::getSingleStepDesugaredType() const { |
6421 | SplitQualType desugar = |
6422 | Ty->getLocallyUnqualifiedSingleStepDesugaredType().split(); |
6423 | desugar.Quals.addConsistentQualifiers(Quals); |
6424 | return desugar; |
6425 | } |
6426 | |
6427 | inline const Type *QualType::getTypePtr() const { |
6428 | return getCommonPtr()->BaseType; |
6429 | } |
6430 | |
6431 | inline const Type *QualType::getTypePtrOrNull() const { |
6432 | return (isNull() ? nullptr : getCommonPtr()->BaseType); |
6433 | } |
6434 | |
6435 | inline SplitQualType QualType::split() const { |
6436 | if (!hasLocalNonFastQualifiers()) |
6437 | return SplitQualType(getTypePtrUnsafe(), |
6438 | Qualifiers::fromFastMask(getLocalFastQualifiers())); |
6439 | |
6440 | const ExtQuals *eq = getExtQualsUnsafe(); |
6441 | Qualifiers qs = eq->getQualifiers(); |
6442 | qs.addFastQualifiers(getLocalFastQualifiers()); |
6443 | return SplitQualType(eq->getBaseType(), qs); |
6444 | } |
6445 | |
6446 | inline Qualifiers QualType::getLocalQualifiers() const { |
6447 | Qualifiers Quals; |
6448 | if (hasLocalNonFastQualifiers()) |
6449 | Quals = getExtQualsUnsafe()->getQualifiers(); |
6450 | Quals.addFastQualifiers(getLocalFastQualifiers()); |
6451 | return Quals; |
6452 | } |
6453 | |
6454 | inline Qualifiers QualType::getQualifiers() const { |
6455 | Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers(); |
6456 | quals.addFastQualifiers(getLocalFastQualifiers()); |
6457 | return quals; |
6458 | } |
6459 | |
6460 | inline unsigned QualType::getCVRQualifiers() const { |
6461 | unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers(); |
6462 | cvr |= getLocalCVRQualifiers(); |
6463 | return cvr; |
6464 | } |
6465 | |
6466 | inline QualType QualType::getCanonicalType() const { |
6467 | QualType canon = getCommonPtr()->CanonicalType; |
6468 | return canon.withFastQualifiers(getLocalFastQualifiers()); |
6469 | } |
6470 | |
6471 | inline bool QualType::isCanonical() const { |
6472 | return getTypePtr()->isCanonicalUnqualified(); |
6473 | } |
6474 | |
6475 | inline bool QualType::isCanonicalAsParam() const { |
6476 | if (!isCanonical()) return false; |
6477 | if (hasLocalQualifiers()) return false; |
6478 | |
6479 | const Type *T = getTypePtr(); |
6480 | if (T->isVariablyModifiedType() && T->hasSizedVLAType()) |
6481 | return false; |
6482 | |
6483 | return !isa<FunctionType>(T) && !isa<ArrayType>(T); |
6484 | } |
6485 | |
6486 | inline bool QualType::isConstQualified() const { |
6487 | return isLocalConstQualified() || |
6488 | getCommonPtr()->CanonicalType.isLocalConstQualified(); |
6489 | } |
6490 | |
6491 | inline bool QualType::isRestrictQualified() const { |
6492 | return isLocalRestrictQualified() || |
6493 | getCommonPtr()->CanonicalType.isLocalRestrictQualified(); |
6494 | } |
6495 | |
6496 | |
6497 | inline bool QualType::isVolatileQualified() const { |
6498 | return isLocalVolatileQualified() || |
6499 | getCommonPtr()->CanonicalType.isLocalVolatileQualified(); |
6500 | } |
6501 | |
6502 | inline bool QualType::hasQualifiers() const { |
6503 | return hasLocalQualifiers() || |
6504 | getCommonPtr()->CanonicalType.hasLocalQualifiers(); |
6505 | } |
6506 | |
6507 | inline QualType QualType::getUnqualifiedType() const { |
6508 | if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers()) |
6509 | return QualType(getTypePtr(), 0); |
6510 | |
6511 | return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0); |
6512 | } |
6513 | |
6514 | inline SplitQualType QualType::getSplitUnqualifiedType() const { |
6515 | if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers()) |
6516 | return split(); |
6517 | |
6518 | return getSplitUnqualifiedTypeImpl(*this); |
6519 | } |
6520 | |
6521 | inline void QualType::removeLocalConst() { |
6522 | removeLocalFastQualifiers(Qualifiers::Const); |
6523 | } |
6524 | |
6525 | inline void QualType::removeLocalRestrict() { |
6526 | removeLocalFastQualifiers(Qualifiers::Restrict); |
6527 | } |
6528 | |
6529 | inline void QualType::removeLocalVolatile() { |
6530 | removeLocalFastQualifiers(Qualifiers::Volatile); |
6531 | } |
6532 | |
6533 | inline void QualType::removeLocalCVRQualifiers(unsigned Mask) { |
6534 | assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((void)0); |
6535 | static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask, |
6536 | "Fast bits differ from CVR bits!"); |
6537 | |
6538 | // Fast path: we don't need to touch the slow qualifiers. |
6539 | removeLocalFastQualifiers(Mask); |
6540 | } |
6541 | |
6542 | /// Check if this type has any address space qualifier. |
6543 | inline bool QualType::hasAddressSpace() const { |
6544 | return getQualifiers().hasAddressSpace(); |
6545 | } |
6546 | |
6547 | /// Return the address space of this type. |
6548 | inline LangAS QualType::getAddressSpace() const { |
6549 | return getQualifiers().getAddressSpace(); |
6550 | } |
6551 | |
6552 | /// Return the gc attribute of this type. |
6553 | inline Qualifiers::GC QualType::getObjCGCAttr() const { |
6554 | return getQualifiers().getObjCGCAttr(); |
6555 | } |
6556 | |
6557 | inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const { |
6558 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) |
6559 | return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD); |
6560 | return false; |
6561 | } |
6562 | |
6563 | inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const { |
6564 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) |
6565 | return hasNonTrivialToPrimitiveDestructCUnion(RD); |
6566 | return false; |
6567 | } |
6568 | |
6569 | inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const { |
6570 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) |
6571 | return hasNonTrivialToPrimitiveCopyCUnion(RD); |
6572 | return false; |
6573 | } |
6574 | |
6575 | inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) { |
6576 | if (const auto *PT = t.getAs<PointerType>()) { |
6577 | if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>()) |
6578 | return FT->getExtInfo(); |
6579 | } else if (const auto *FT = t.getAs<FunctionType>()) |
6580 | return FT->getExtInfo(); |
6581 | |
6582 | return FunctionType::ExtInfo(); |
6583 | } |
6584 | |
6585 | inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) { |
6586 | return getFunctionExtInfo(*t); |
6587 | } |
6588 | |
6589 | /// Determine whether this type is more |
6590 | /// qualified than the Other type. For example, "const volatile int" |
6591 | /// is more qualified than "const int", "volatile int", and |
6592 | /// "int". However, it is not more qualified than "const volatile |
6593 | /// int". |
6594 | inline bool QualType::isMoreQualifiedThan(QualType other) const { |
6595 | Qualifiers MyQuals = getQualifiers(); |
6596 | Qualifiers OtherQuals = other.getQualifiers(); |
6597 | return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals)); |
6598 | } |
6599 | |
6600 | /// Determine whether this type is at last |
6601 | /// as qualified as the Other type. For example, "const volatile |
6602 | /// int" is at least as qualified as "const int", "volatile int", |
6603 | /// "int", and "const volatile int". |
6604 | inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const { |
6605 | Qualifiers OtherQuals = other.getQualifiers(); |
6606 | |
6607 | // Ignore __unaligned qualifier if this type is a void. |
6608 | if (getUnqualifiedType()->isVoidType()) |
6609 | OtherQuals.removeUnaligned(); |
6610 | |
6611 | return getQualifiers().compatiblyIncludes(OtherQuals); |
6612 | } |
6613 | |
6614 | /// If Type is a reference type (e.g., const |
6615 | /// int&), returns the type that the reference refers to ("const |
6616 | /// int"). Otherwise, returns the type itself. This routine is used |
6617 | /// throughout Sema to implement C++ 5p6: |
6618 | /// |
6619 | /// If an expression initially has the type "reference to T" (8.3.2, |
6620 | /// 8.5.3), the type is adjusted to "T" prior to any further |
6621 | /// analysis, the expression designates the object or function |
6622 | /// denoted by the reference, and the expression is an lvalue. |
6623 | inline QualType QualType::getNonReferenceType() const { |
6624 | if (const auto *RefType = (*this)->getAs<ReferenceType>()) |
6625 | return RefType->getPointeeType(); |
6626 | else |
6627 | return *this; |
6628 | } |
6629 | |
6630 | inline bool QualType::isCForbiddenLValueType() const { |
6631 | return ((getTypePtr()->isVoidType() && !hasQualifiers()) || |
6632 | getTypePtr()->isFunctionType()); |
6633 | } |
6634 | |
6635 | /// Tests whether the type is categorized as a fundamental type. |
6636 | /// |
6637 | /// \returns True for types specified in C++0x [basic.fundamental]. |
6638 | inline bool Type::isFundamentalType() const { |
6639 | return isVoidType() || |
6640 | isNullPtrType() || |
6641 | // FIXME: It's really annoying that we don't have an |
6642 | // 'isArithmeticType()' which agrees with the standard definition. |
6643 | (isArithmeticType() && !isEnumeralType()); |
6644 | } |
6645 | |
6646 | /// Tests whether the type is categorized as a compound type. |
6647 | /// |
6648 | /// \returns True for types specified in C++0x [basic.compound]. |
6649 | inline bool Type::isCompoundType() const { |
6650 | // C++0x [basic.compound]p1: |
6651 | // Compound types can be constructed in the following ways: |
6652 | // -- arrays of objects of a given type [...]; |
6653 | return isArrayType() || |
6654 | // -- functions, which have parameters of given types [...]; |
6655 | isFunctionType() || |
6656 | // -- pointers to void or objects or functions [...]; |
6657 | isPointerType() || |
6658 | // -- references to objects or functions of a given type. [...] |
6659 | isReferenceType() || |
6660 | // -- classes containing a sequence of objects of various types, [...]; |
6661 | isRecordType() || |
6662 | // -- unions, which are classes capable of containing objects of different |
6663 | // types at different times; |
6664 | isUnionType() || |
6665 | // -- enumerations, which comprise a set of named constant values. [...]; |
6666 | isEnumeralType() || |
6667 | // -- pointers to non-static class members, [...]. |
6668 | isMemberPointerType(); |
6669 | } |
6670 | |
6671 | inline bool Type::isFunctionType() const { |
6672 | return isa<FunctionType>(CanonicalType); |
6673 | } |
6674 | |
6675 | inline bool Type::isPointerType() const { |
6676 | return isa<PointerType>(CanonicalType); |
6677 | } |
6678 | |
6679 | inline bool Type::isAnyPointerType() const { |
6680 | return isPointerType() || isObjCObjectPointerType(); |
6681 | } |
6682 | |
6683 | inline bool Type::isBlockPointerType() const { |
6684 | return isa<BlockPointerType>(CanonicalType); |
6685 | } |
6686 | |
6687 | inline bool Type::isReferenceType() const { |
6688 | return isa<ReferenceType>(CanonicalType); |
6689 | } |
6690 | |
6691 | inline bool Type::isLValueReferenceType() const { |
6692 | return isa<LValueReferenceType>(CanonicalType); |
6693 | } |
6694 | |
6695 | inline bool Type::isRValueReferenceType() const { |
6696 | return isa<RValueReferenceType>(CanonicalType); |
6697 | } |
6698 | |
6699 | inline bool Type::isObjectPointerType() const { |
6700 | // Note: an "object pointer type" is not the same thing as a pointer to an |
6701 | // object type; rather, it is a pointer to an object type or a pointer to cv |
6702 | // void. |
6703 | if (const auto *T = getAs<PointerType>()) |
6704 | return !T->getPointeeType()->isFunctionType(); |
6705 | else |
6706 | return false; |
6707 | } |
6708 | |
6709 | inline bool Type::isFunctionPointerType() const { |
6710 | if (const auto *T = getAs<PointerType>()) |
6711 | return T->getPointeeType()->isFunctionType(); |
6712 | else |
6713 | return false; |
6714 | } |
6715 | |
6716 | inline bool Type::isFunctionReferenceType() const { |
6717 | if (const auto *T = getAs<ReferenceType>()) |
6718 | return T->getPointeeType()->isFunctionType(); |
6719 | else |
6720 | return false; |
6721 | } |
6722 | |
6723 | inline bool Type::isMemberPointerType() const { |
6724 | return isa<MemberPointerType>(CanonicalType); |
6725 | } |
6726 | |
6727 | inline bool Type::isMemberFunctionPointerType() const { |
6728 | if (const auto *T = getAs<MemberPointerType>()) |
6729 | return T->isMemberFunctionPointer(); |
6730 | else |
6731 | return false; |
6732 | } |
6733 | |
6734 | inline bool Type::isMemberDataPointerType() const { |
6735 | if (const auto *T = getAs<MemberPointerType>()) |
6736 | return T->isMemberDataPointer(); |
6737 | else |
6738 | return false; |
6739 | } |
6740 | |
6741 | inline bool Type::isArrayType() const { |
6742 | return isa<ArrayType>(CanonicalType); |
6743 | } |
6744 | |
6745 | inline bool Type::isConstantArrayType() const { |
6746 | return isa<ConstantArrayType>(CanonicalType); |
6747 | } |
6748 | |
6749 | inline bool Type::isIncompleteArrayType() const { |
6750 | return isa<IncompleteArrayType>(CanonicalType); |
6751 | } |
6752 | |
6753 | inline bool Type::isVariableArrayType() const { |
6754 | return isa<VariableArrayType>(CanonicalType); |
6755 | } |
6756 | |
6757 | inline bool Type::isDependentSizedArrayType() const { |
6758 | return isa<DependentSizedArrayType>(CanonicalType); |
6759 | } |
6760 | |
6761 | inline bool Type::isBuiltinType() const { |
6762 | return isa<BuiltinType>(CanonicalType); |
6763 | } |
6764 | |
6765 | inline bool Type::isRecordType() const { |
6766 | return isa<RecordType>(CanonicalType); |
6767 | } |
6768 | |
6769 | inline bool Type::isEnumeralType() const { |
6770 | return isa<EnumType>(CanonicalType); |
6771 | } |
6772 | |
6773 | inline bool Type::isAnyComplexType() const { |
6774 | return isa<ComplexType>(CanonicalType); |
6775 | } |
6776 | |
6777 | inline bool Type::isVectorType() const { |
6778 | return isa<VectorType>(CanonicalType); |
6779 | } |
6780 | |
6781 | inline bool Type::isExtVectorType() const { |
6782 | return isa<ExtVectorType>(CanonicalType); |
6783 | } |
6784 | |
6785 | inline bool Type::isMatrixType() const { |
6786 | return isa<MatrixType>(CanonicalType); |
6787 | } |
6788 | |
6789 | inline bool Type::isConstantMatrixType() const { |
6790 | return isa<ConstantMatrixType>(CanonicalType); |
6791 | } |
6792 | |
6793 | inline bool Type::isDependentAddressSpaceType() const { |
6794 | return isa<DependentAddressSpaceType>(CanonicalType); |
6795 | } |
6796 | |
6797 | inline bool Type::isObjCObjectPointerType() const { |
6798 | return isa<ObjCObjectPointerType>(CanonicalType); |
6799 | } |
6800 | |
6801 | inline bool Type::isObjCObjectType() const { |
6802 | return isa<ObjCObjectType>(CanonicalType); |
6803 | } |
6804 | |
6805 | inline bool Type::isObjCObjectOrInterfaceType() const { |
6806 | return isa<ObjCInterfaceType>(CanonicalType) || |
6807 | isa<ObjCObjectType>(CanonicalType); |
6808 | } |
6809 | |
6810 | inline bool Type::isAtomicType() const { |
6811 | return isa<AtomicType>(CanonicalType); |
6812 | } |
6813 | |
6814 | inline bool Type::isUndeducedAutoType() const { |
6815 | return isa<AutoType>(CanonicalType); |
6816 | } |
6817 | |
6818 | inline bool Type::isObjCQualifiedIdType() const { |
6819 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
6820 | return OPT->isObjCQualifiedIdType(); |
6821 | return false; |
6822 | } |
6823 | |
6824 | inline bool Type::isObjCQualifiedClassType() const { |
6825 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
6826 | return OPT->isObjCQualifiedClassType(); |
6827 | return false; |
6828 | } |
6829 | |
6830 | inline bool Type::isObjCIdType() const { |
6831 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
6832 | return OPT->isObjCIdType(); |
6833 | return false; |
6834 | } |
6835 | |
6836 | inline bool Type::isObjCClassType() const { |
6837 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
6838 | return OPT->isObjCClassType(); |
6839 | return false; |
6840 | } |
6841 | |
6842 | inline bool Type::isObjCSelType() const { |
6843 | if (const auto *OPT = getAs<PointerType>()) |
6844 | return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel); |
6845 | return false; |
6846 | } |
6847 | |
6848 | inline bool Type::isObjCBuiltinType() const { |
6849 | return isObjCIdType() || isObjCClassType() || isObjCSelType(); |
6850 | } |
6851 | |
6852 | inline bool Type::isDecltypeType() const { |
6853 | return isa<DecltypeType>(this); |
6854 | } |
6855 | |
6856 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
6857 | inline bool Type::is##Id##Type() const { \ |
6858 | return isSpecificBuiltinType(BuiltinType::Id); \ |
6859 | } |
6860 | #include "clang/Basic/OpenCLImageTypes.def" |
6861 | |
6862 | inline bool Type::isSamplerT() const { |
6863 | return isSpecificBuiltinType(BuiltinType::OCLSampler); |
6864 | } |
6865 | |
6866 | inline bool Type::isEventT() const { |
6867 | return isSpecificBuiltinType(BuiltinType::OCLEvent); |
6868 | } |
6869 | |
6870 | inline bool Type::isClkEventT() const { |
6871 | return isSpecificBuiltinType(BuiltinType::OCLClkEvent); |
6872 | } |
6873 | |
6874 | inline bool Type::isQueueT() const { |
6875 | return isSpecificBuiltinType(BuiltinType::OCLQueue); |
6876 | } |
6877 | |
6878 | inline bool Type::isReserveIDT() const { |
6879 | return isSpecificBuiltinType(BuiltinType::OCLReserveID); |
6880 | } |
6881 | |
6882 | inline bool Type::isImageType() const { |
6883 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() || |
6884 | return |
6885 | #include "clang/Basic/OpenCLImageTypes.def" |
6886 | false; // end boolean or operation |
6887 | } |
6888 | |
6889 | inline bool Type::isPipeType() const { |
6890 | return isa<PipeType>(CanonicalType); |
6891 | } |
6892 | |
6893 | inline bool Type::isExtIntType() const { |
6894 | return isa<ExtIntType>(CanonicalType); |
6895 | } |
6896 | |
6897 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
6898 | inline bool Type::is##Id##Type() const { \ |
6899 | return isSpecificBuiltinType(BuiltinType::Id); \ |
6900 | } |
6901 | #include "clang/Basic/OpenCLExtensionTypes.def" |
6902 | |
6903 | inline bool Type::isOCLIntelSubgroupAVCType() const { |
6904 | #define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \ |
6905 | isOCLIntelSubgroupAVC##Id##Type() || |
6906 | return |
6907 | #include "clang/Basic/OpenCLExtensionTypes.def" |
6908 | false; // end of boolean or operation |
6909 | } |
6910 | |
6911 | inline bool Type::isOCLExtOpaqueType() const { |
6912 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() || |
6913 | return |
6914 | #include "clang/Basic/OpenCLExtensionTypes.def" |
6915 | false; // end of boolean or operation |
6916 | } |
6917 | |
6918 | inline bool Type::isOpenCLSpecificType() const { |
6919 | return isSamplerT() || isEventT() || isImageType() || isClkEventT() || |
6920 | isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType(); |
6921 | } |
6922 | |
6923 | inline bool Type::isTemplateTypeParmType() const { |
6924 | return isa<TemplateTypeParmType>(CanonicalType); |
6925 | } |
6926 | |
6927 | inline bool Type::isSpecificBuiltinType(unsigned K) const { |
6928 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
6929 | return BT->getKind() == static_cast<BuiltinType::Kind>(K); |
6930 | } |
6931 | return false; |
6932 | } |
6933 | |
6934 | inline bool Type::isPlaceholderType() const { |
6935 | if (const auto *BT = dyn_cast<BuiltinType>(this)) |
6936 | return BT->isPlaceholderType(); |
6937 | return false; |
6938 | } |
6939 | |
6940 | inline const BuiltinType *Type::getAsPlaceholderType() const { |
6941 | if (const auto *BT = dyn_cast<BuiltinType>(this)) |
6942 | if (BT->isPlaceholderType()) |
6943 | return BT; |
6944 | return nullptr; |
6945 | } |
6946 | |
6947 | inline bool Type::isSpecificPlaceholderType(unsigned K) const { |
6948 | assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((void)0); |
6949 | return isSpecificBuiltinType(K); |
6950 | } |
6951 | |
6952 | inline bool Type::isNonOverloadPlaceholderType() const { |
6953 | if (const auto *BT = dyn_cast<BuiltinType>(this)) |
6954 | return BT->isNonOverloadPlaceholderType(); |
6955 | return false; |
6956 | } |
6957 | |
6958 | inline bool Type::isVoidType() const { |
6959 | return isSpecificBuiltinType(BuiltinType::Void); |
6960 | } |
6961 | |
6962 | inline bool Type::isHalfType() const { |
6963 | // FIXME: Should we allow complex __fp16? Probably not. |
6964 | return isSpecificBuiltinType(BuiltinType::Half); |
6965 | } |
6966 | |
6967 | inline bool Type::isFloat16Type() const { |
6968 | return isSpecificBuiltinType(BuiltinType::Float16); |
6969 | } |
6970 | |
6971 | inline bool Type::isBFloat16Type() const { |
6972 | return isSpecificBuiltinType(BuiltinType::BFloat16); |
6973 | } |
6974 | |
6975 | inline bool Type::isFloat128Type() const { |
6976 | return isSpecificBuiltinType(BuiltinType::Float128); |
6977 | } |
6978 | |
6979 | inline bool Type::isNullPtrType() const { |
6980 | return isSpecificBuiltinType(BuiltinType::NullPtr); |
6981 | } |
6982 | |
6983 | bool IsEnumDeclComplete(EnumDecl *); |
6984 | bool IsEnumDeclScoped(EnumDecl *); |
6985 | |
6986 | inline bool Type::isIntegerType() const { |
6987 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
6988 | return BT->getKind() >= BuiltinType::Bool && |
6989 | BT->getKind() <= BuiltinType::Int128; |
6990 | if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { |
6991 | // Incomplete enum types are not treated as integer types. |
6992 | // FIXME: In C++, enum types are never integer types. |
6993 | return IsEnumDeclComplete(ET->getDecl()) && |
6994 | !IsEnumDeclScoped(ET->getDecl()); |
6995 | } |
6996 | return isExtIntType(); |
6997 | } |
6998 | |
6999 | inline bool Type::isFixedPointType() const { |
7000 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
7001 | return BT->getKind() >= BuiltinType::ShortAccum && |
7002 | BT->getKind() <= BuiltinType::SatULongFract; |
7003 | } |
7004 | return false; |
7005 | } |
7006 | |
7007 | inline bool Type::isFixedPointOrIntegerType() const { |
7008 | return isFixedPointType() || isIntegerType(); |
7009 | } |
7010 | |
7011 | inline bool Type::isSaturatedFixedPointType() const { |
7012 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
7013 | return BT->getKind() >= BuiltinType::SatShortAccum && |
7014 | BT->getKind() <= BuiltinType::SatULongFract; |
7015 | } |
7016 | return false; |
7017 | } |
7018 | |
7019 | inline bool Type::isUnsaturatedFixedPointType() const { |
7020 | return isFixedPointType() && !isSaturatedFixedPointType(); |
7021 | } |
7022 | |
7023 | inline bool Type::isSignedFixedPointType() const { |
7024 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
7025 | return ((BT->getKind() >= BuiltinType::ShortAccum && |
7026 | BT->getKind() <= BuiltinType::LongAccum) || |
7027 | (BT->getKind() >= BuiltinType::ShortFract && |
7028 | BT->getKind() <= BuiltinType::LongFract) || |
7029 | (BT->getKind() >= BuiltinType::SatShortAccum && |
7030 | BT->getKind() <= BuiltinType::SatLongAccum) || |
7031 | (BT->getKind() >= BuiltinType::SatShortFract && |
7032 | BT->getKind() <= BuiltinType::SatLongFract)); |
7033 | } |
7034 | return false; |
7035 | } |
7036 | |
7037 | inline bool Type::isUnsignedFixedPointType() const { |
7038 | return isFixedPointType() && !isSignedFixedPointType(); |
7039 | } |
7040 | |
7041 | inline bool Type::isScalarType() const { |
7042 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
7043 | return BT->getKind() > BuiltinType::Void && |
7044 | BT->getKind() <= BuiltinType::NullPtr; |
7045 | if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) |
7046 | // Enums are scalar types, but only if they are defined. Incomplete enums |
7047 | // are not treated as scalar types. |
7048 | return IsEnumDeclComplete(ET->getDecl()); |
7049 | return isa<PointerType>(CanonicalType) || |
7050 | isa<BlockPointerType>(CanonicalType) || |
7051 | isa<MemberPointerType>(CanonicalType) || |
7052 | isa<ComplexType>(CanonicalType) || |
7053 | isa<ObjCObjectPointerType>(CanonicalType) || |
7054 | isExtIntType(); |
7055 | } |
7056 | |
7057 | inline bool Type::isIntegralOrEnumerationType() const { |
7058 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
7059 | return BT->getKind() >= BuiltinType::Bool && |
7060 | BT->getKind() <= BuiltinType::Int128; |
7061 | |
7062 | // Check for a complete enum type; incomplete enum types are not properly an |
7063 | // enumeration type in the sense required here. |
7064 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
7065 | return IsEnumDeclComplete(ET->getDecl()); |
7066 | |
7067 | return isExtIntType(); |
7068 | } |
7069 | |
7070 | inline bool Type::isBooleanType() const { |
7071 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
7072 | return BT->getKind() == BuiltinType::Bool; |
7073 | return false; |
7074 | } |
7075 | |
7076 | inline bool Type::isUndeducedType() const { |
7077 | auto *DT = getContainedDeducedType(); |
7078 | return DT && !DT->isDeduced(); |
7079 | } |
7080 | |
7081 | /// Determines whether this is a type for which one can define |
7082 | /// an overloaded operator. |
7083 | inline bool Type::isOverloadableType() const { |
7084 | return isDependentType() || isRecordType() || isEnumeralType(); |
7085 | } |
7086 | |
7087 | /// Determines whether this type is written as a typedef-name. |
7088 | inline bool Type::isTypedefNameType() const { |
7089 | if (getAs<TypedefType>()) |
7090 | return true; |
7091 | if (auto *TST = getAs<TemplateSpecializationType>()) |
7092 | return TST->isTypeAlias(); |
7093 | return false; |
7094 | } |
7095 | |
7096 | /// Determines whether this type can decay to a pointer type. |
7097 | inline bool Type::canDecayToPointerType() const { |
7098 | return isFunctionType() || isArrayType(); |
7099 | } |
7100 | |
7101 | inline bool Type::hasPointerRepresentation() const { |
7102 | return (isPointerType() || isReferenceType() || isBlockPointerType() || |
7103 | isObjCObjectPointerType() || isNullPtrType()); |
7104 | } |
7105 | |
7106 | inline bool Type::hasObjCPointerRepresentation() const { |
7107 | return isObjCObjectPointerType(); |
7108 | } |
7109 | |
7110 | inline const Type *Type::getBaseElementTypeUnsafe() const { |
7111 | const Type *type = this; |
7112 | while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe()) |
7113 | type = arrayType->getElementType().getTypePtr(); |
7114 | return type; |
7115 | } |
7116 | |
7117 | inline const Type *Type::getPointeeOrArrayElementType() const { |
7118 | const Type *type = this; |
7119 | if (type->isAnyPointerType()) |
7120 | return type->getPointeeType().getTypePtr(); |
7121 | else if (type->isArrayType()) |
7122 | return type->getBaseElementTypeUnsafe(); |
7123 | return type; |
7124 | } |
7125 | /// Insertion operator for partial diagnostics. This allows sending adress |
7126 | /// spaces into a diagnostic with <<. |
7127 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, |
7128 | LangAS AS) { |
7129 | PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS), |
7130 | DiagnosticsEngine::ArgumentKind::ak_addrspace); |
7131 | return PD; |
7132 | } |
7133 | |
7134 | /// Insertion operator for partial diagnostics. This allows sending Qualifiers |
7135 | /// into a diagnostic with <<. |
7136 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, |
7137 | Qualifiers Q) { |
7138 | PD.AddTaggedVal(Q.getAsOpaqueValue(), |
7139 | DiagnosticsEngine::ArgumentKind::ak_qual); |
7140 | return PD; |
7141 | } |
7142 | |
7143 | /// Insertion operator for partial diagnostics. This allows sending QualType's |
7144 | /// into a diagnostic with <<. |
7145 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, |
7146 | QualType T) { |
7147 | PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()), |
7148 | DiagnosticsEngine::ak_qualtype); |
7149 | return PD; |
7150 | } |
7151 | |
7152 | // Helper class template that is used by Type::getAs to ensure that one does |
7153 | // not try to look through a qualified type to get to an array type. |
7154 | template <typename T> |
7155 | using TypeIsArrayType = |
7156 | std::integral_constant<bool, std::is_same<T, ArrayType>::value || |
7157 | std::is_base_of<ArrayType, T>::value>; |
7158 | |
7159 | // Member-template getAs<specific type>'. |
7160 | template <typename T> const T *Type::getAs() const { |
7161 | static_assert(!TypeIsArrayType<T>::value, |
7162 | "ArrayType cannot be used with getAs!"); |
7163 | |
7164 | // If this is directly a T type, return it. |
7165 | if (const auto *Ty = dyn_cast<T>(this)) |
7166 | return Ty; |
7167 | |
7168 | // If the canonical form of this type isn't the right kind, reject it. |
7169 | if (!isa<T>(CanonicalType)) |
7170 | return nullptr; |
7171 | |
7172 | // If this is a typedef for the type, strip the typedef off without |
7173 | // losing all typedef information. |
7174 | return cast<T>(getUnqualifiedDesugaredType()); |
7175 | } |
7176 | |
7177 | template <typename T> const T *Type::getAsAdjusted() const { |
7178 | static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!"); |
7179 | |
7180 | // If this is directly a T type, return it. |
7181 | if (const auto *Ty = dyn_cast<T>(this)) |
7182 | return Ty; |
7183 | |
7184 | // If the canonical form of this type isn't the right kind, reject it. |
7185 | if (!isa<T>(CanonicalType)) |
7186 | return nullptr; |
7187 | |
7188 | // Strip off type adjustments that do not modify the underlying nature of the |
7189 | // type. |
7190 | const Type *Ty = this; |
7191 | while (Ty) { |
7192 | if (const auto *A = dyn_cast<AttributedType>(Ty)) |
7193 | Ty = A->getModifiedType().getTypePtr(); |
7194 | else if (const auto *E = dyn_cast<ElaboratedType>(Ty)) |
7195 | Ty = E->desugar().getTypePtr(); |
7196 | else if (const auto *P = dyn_cast<ParenType>(Ty)) |
7197 | Ty = P->desugar().getTypePtr(); |
7198 | else if (const auto *A = dyn_cast<AdjustedType>(Ty)) |
7199 | Ty = A->desugar().getTypePtr(); |
7200 | else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty)) |
7201 | Ty = M->desugar().getTypePtr(); |
7202 | else |
7203 | break; |
7204 | } |
7205 | |
7206 | // Just because the canonical type is correct does not mean we can use cast<>, |
7207 | // since we may not have stripped off all the sugar down to the base type. |
7208 | return dyn_cast<T>(Ty); |
7209 | } |
7210 | |
7211 | inline const ArrayType *Type::getAsArrayTypeUnsafe() const { |
7212 | // If this is directly an array type, return it. |
7213 | if (const auto *arr = dyn_cast<ArrayType>(this)) |
7214 | return arr; |
7215 | |
7216 | // If the canonical form of this type isn't the right kind, reject it. |
7217 | if (!isa<ArrayType>(CanonicalType)) |
7218 | return nullptr; |
7219 | |
7220 | // If this is a typedef for the type, strip the typedef off without |
7221 | // losing all typedef information. |
7222 | return cast<ArrayType>(getUnqualifiedDesugaredType()); |
7223 | } |
7224 | |
7225 | template <typename T> const T *Type::castAs() const { |
7226 | static_assert(!TypeIsArrayType<T>::value, |
7227 | "ArrayType cannot be used with castAs!"); |
7228 | |
7229 | if (const auto *ty = dyn_cast<T>(this)) return ty; |
7230 | assert(isa<T>(CanonicalType))((void)0); |
7231 | return cast<T>(getUnqualifiedDesugaredType()); |
7232 | } |
7233 | |
7234 | inline const ArrayType *Type::castAsArrayTypeUnsafe() const { |
7235 | assert(isa<ArrayType>(CanonicalType))((void)0); |
7236 | if (const auto *arr = dyn_cast<ArrayType>(this)) return arr; |
7237 | return cast<ArrayType>(getUnqualifiedDesugaredType()); |
7238 | } |
7239 | |
7240 | DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr, |
7241 | QualType CanonicalPtr) |
7242 | : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) { |
7243 | #ifndef NDEBUG1 |
7244 | QualType Adjusted = getAdjustedType(); |
7245 | (void)AttributedType::stripOuterNullability(Adjusted); |
7246 | assert(isa<PointerType>(Adjusted))((void)0); |
7247 | #endif |
7248 | } |
7249 | |
7250 | QualType DecayedType::getPointeeType() const { |
7251 | QualType Decayed = getDecayedType(); |
7252 | (void)AttributedType::stripOuterNullability(Decayed); |
7253 | return cast<PointerType>(Decayed)->getPointeeType(); |
7254 | } |
7255 | |
7256 | // Get the decimal string representation of a fixed point type, represented |
7257 | // as a scaled integer. |
7258 | // TODO: At some point, we should change the arguments to instead just accept an |
7259 | // APFixedPoint instead of APSInt and scale. |
7260 | void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val, |
7261 | unsigned Scale); |
7262 | |
7263 | } // namespace clang |
7264 | |
7265 | #endif // LLVM_CLANG_AST_TYPE_H |
1 | //===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the PointerUnion class, which is a discriminated union of |
10 | // pointer types. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_ADT_POINTERUNION_H |
15 | #define LLVM_ADT_POINTERUNION_H |
16 | |
17 | #include "llvm/ADT/DenseMapInfo.h" |
18 | #include "llvm/ADT/PointerIntPair.h" |
19 | #include "llvm/Support/PointerLikeTypeTraits.h" |
20 | #include <cassert> |
21 | #include <cstddef> |
22 | #include <cstdint> |
23 | |
24 | namespace llvm { |
25 | |
26 | template <typename T> struct PointerUnionTypeSelectorReturn { |
27 | using Return = T; |
28 | }; |
29 | |
30 | /// Get a type based on whether two types are the same or not. |
31 | /// |
32 | /// For: |
33 | /// |
34 | /// \code |
35 | /// using Ret = typename PointerUnionTypeSelector<T1, T2, EQ, NE>::Return; |
36 | /// \endcode |
37 | /// |
38 | /// Ret will be EQ type if T1 is same as T2 or NE type otherwise. |
39 | template <typename T1, typename T2, typename RET_EQ, typename RET_NE> |
40 | struct PointerUnionTypeSelector { |
41 | using Return = typename PointerUnionTypeSelectorReturn<RET_NE>::Return; |
42 | }; |
43 | |
44 | template <typename T, typename RET_EQ, typename RET_NE> |
45 | struct PointerUnionTypeSelector<T, T, RET_EQ, RET_NE> { |
46 | using Return = typename PointerUnionTypeSelectorReturn<RET_EQ>::Return; |
47 | }; |
48 | |
49 | template <typename T1, typename T2, typename RET_EQ, typename RET_NE> |
50 | struct PointerUnionTypeSelectorReturn< |
51 | PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>> { |
52 | using Return = |
53 | typename PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>::Return; |
54 | }; |
55 | |
56 | namespace pointer_union_detail { |
57 | /// Determine the number of bits required to store integers with values < n. |
58 | /// This is ceil(log2(n)). |
59 | constexpr int bitsRequired(unsigned n) { |
60 | return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0; |
61 | } |
62 | |
63 | template <typename... Ts> constexpr int lowBitsAvailable() { |
64 | return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...}); |
65 | } |
66 | |
67 | /// Find the index of a type in a list of types. TypeIndex<T, Us...>::Index |
68 | /// is the index of T in Us, or sizeof...(Us) if T does not appear in the |
69 | /// list. |
70 | template <typename T, typename ...Us> struct TypeIndex; |
71 | template <typename T, typename ...Us> struct TypeIndex<T, T, Us...> { |
72 | static constexpr int Index = 0; |
73 | }; |
74 | template <typename T, typename U, typename... Us> |
75 | struct TypeIndex<T, U, Us...> { |
76 | static constexpr int Index = 1 + TypeIndex<T, Us...>::Index; |
77 | }; |
78 | template <typename T> struct TypeIndex<T> { |
79 | static constexpr int Index = 0; |
80 | }; |
81 | |
82 | /// Find the first type in a list of types. |
83 | template <typename T, typename...> struct GetFirstType { |
84 | using type = T; |
85 | }; |
86 | |
87 | /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion |
88 | /// for the template arguments. |
89 | template <typename ...PTs> class PointerUnionUIntTraits { |
90 | public: |
91 | static inline void *getAsVoidPointer(void *P) { return P; } |
92 | static inline void *getFromVoidPointer(void *P) { return P; } |
93 | static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>(); |
94 | }; |
95 | |
96 | template <typename Derived, typename ValTy, int I, typename ...Types> |
97 | class PointerUnionMembers; |
98 | |
99 | template <typename Derived, typename ValTy, int I> |
100 | class PointerUnionMembers<Derived, ValTy, I> { |
101 | protected: |
102 | ValTy Val; |
103 | PointerUnionMembers() = default; |
104 | PointerUnionMembers(ValTy Val) : Val(Val) {} |
105 | |
106 | friend struct PointerLikeTypeTraits<Derived>; |
107 | }; |
108 | |
109 | template <typename Derived, typename ValTy, int I, typename Type, |
110 | typename ...Types> |
111 | class PointerUnionMembers<Derived, ValTy, I, Type, Types...> |
112 | : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> { |
113 | using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>; |
114 | public: |
115 | using Base::Base; |
116 | PointerUnionMembers() = default; |
117 | PointerUnionMembers(Type V) |
118 | : Base(ValTy(const_cast<void *>( |
119 | PointerLikeTypeTraits<Type>::getAsVoidPointer(V)), |
120 | I)) {} |
121 | |
122 | using Base::operator=; |
123 | Derived &operator=(Type V) { |
124 | this->Val = ValTy( |
125 | const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)), |
126 | I); |
127 | return static_cast<Derived &>(*this); |
128 | }; |
129 | }; |
130 | } |
131 | |
132 | /// A discriminated union of two or more pointer types, with the discriminator |
133 | /// in the low bit of the pointer. |
134 | /// |
135 | /// This implementation is extremely efficient in space due to leveraging the |
136 | /// low bits of the pointer, while exposing a natural and type-safe API. |
137 | /// |
138 | /// Common use patterns would be something like this: |
139 | /// PointerUnion<int*, float*> P; |
140 | /// P = (int*)0; |
141 | /// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0" |
142 | /// X = P.get<int*>(); // ok. |
143 | /// Y = P.get<float*>(); // runtime assertion failure. |
144 | /// Z = P.get<double*>(); // compile time failure. |
145 | /// P = (float*)0; |
146 | /// Y = P.get<float*>(); // ok. |
147 | /// X = P.get<int*>(); // runtime assertion failure. |
148 | template <typename... PTs> |
149 | class PointerUnion |
150 | : public pointer_union_detail::PointerUnionMembers< |
151 | PointerUnion<PTs...>, |
152 | PointerIntPair< |
153 | void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int, |
154 | pointer_union_detail::PointerUnionUIntTraits<PTs...>>, |
155 | 0, PTs...> { |
156 | // The first type is special because we want to directly cast a pointer to a |
157 | // default-initialized union to a pointer to the first type. But we don't |
158 | // want PointerUnion to be a 'template <typename First, typename ...Rest>' |
159 | // because it's much more convenient to have a name for the whole pack. So |
160 | // split off the first type here. |
161 | using First = typename pointer_union_detail::GetFirstType<PTs...>::type; |
162 | using Base = typename PointerUnion::PointerUnionMembers; |
163 | |
164 | public: |
165 | PointerUnion() = default; |
166 | |
167 | PointerUnion(std::nullptr_t) : PointerUnion() {} |
168 | using Base::Base; |
169 | |
170 | /// Test if the pointer held in the union is null, regardless of |
171 | /// which type it is. |
172 | bool isNull() const { return !this->Val.getPointer(); } |
173 | |
174 | explicit operator bool() const { return !isNull(); } |
175 | |
176 | /// Test if the Union currently holds the type matching T. |
177 | template <typename T> bool is() const { |
178 | constexpr int Index = pointer_union_detail::TypeIndex<T, PTs...>::Index; |
179 | static_assert(Index < sizeof...(PTs), |
180 | "PointerUnion::is<T> given type not in the union"); |
181 | return this->Val.getInt() == Index; |
182 | } |
183 | |
184 | /// Returns the value of the specified pointer type. |
185 | /// |
186 | /// If the specified pointer type is incorrect, assert. |
187 | template <typename T> T get() const { |
188 | assert(is<T>() && "Invalid accessor called")((void)0); |
189 | return PointerLikeTypeTraits<T>::getFromVoidPointer(this->Val.getPointer()); |
190 | } |
191 | |
192 | /// Returns the current pointer if it is of the specified pointer type, |
193 | /// otherwise returns null. |
194 | template <typename T> T dyn_cast() const { |
195 | if (is<T>()) |
196 | return get<T>(); |
197 | return T(); |
198 | } |
199 | |
200 | /// If the union is set to the first pointer type get an address pointing to |
201 | /// it. |
202 | First const *getAddrOfPtr1() const { |
203 | return const_cast<PointerUnion *>(this)->getAddrOfPtr1(); |
204 | } |
205 | |
206 | /// If the union is set to the first pointer type get an address pointing to |
207 | /// it. |
208 | First *getAddrOfPtr1() { |
209 | assert(is<First>() && "Val is not the first pointer")((void)0); |
210 | assert(((void)0) |
211 | PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==((void)0) |
212 | this->Val.getPointer() &&((void)0) |
213 | "Can't get the address because PointerLikeTypeTraits changes the ptr")((void)0); |
214 | return const_cast<First *>( |
215 | reinterpret_cast<const First *>(this->Val.getAddrOfPointer())); |
216 | } |
217 | |
218 | /// Assignment from nullptr which just clears the union. |
219 | const PointerUnion &operator=(std::nullptr_t) { |
220 | this->Val.initWithPointer(nullptr); |
221 | return *this; |
222 | } |
223 | |
224 | /// Assignment from elements of the union. |
225 | using Base::operator=; |
226 | |
227 | void *getOpaqueValue() const { return this->Val.getOpaqueValue(); } |
228 | static inline PointerUnion getFromOpaqueValue(void *VP) { |
229 | PointerUnion V; |
230 | V.Val = decltype(V.Val)::getFromOpaqueValue(VP); |
231 | return V; |
232 | } |
233 | }; |
234 | |
235 | template <typename ...PTs> |
236 | bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) { |
237 | return lhs.getOpaqueValue() == rhs.getOpaqueValue(); |
238 | } |
239 | |
240 | template <typename ...PTs> |
241 | bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) { |
242 | return lhs.getOpaqueValue() != rhs.getOpaqueValue(); |
243 | } |
244 | |
245 | template <typename ...PTs> |
246 | bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) { |
247 | return lhs.getOpaqueValue() < rhs.getOpaqueValue(); |
248 | } |
249 | |
250 | // Teach SmallPtrSet that PointerUnion is "basically a pointer", that has |
251 | // # low bits available = min(PT1bits,PT2bits)-1. |
252 | template <typename ...PTs> |
253 | struct PointerLikeTypeTraits<PointerUnion<PTs...>> { |
254 | static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) { |
255 | return P.getOpaqueValue(); |
256 | } |
257 | |
258 | static inline PointerUnion<PTs...> getFromVoidPointer(void *P) { |
259 | return PointerUnion<PTs...>::getFromOpaqueValue(P); |
260 | } |
261 | |
262 | // The number of bits available are the min of the pointer types minus the |
263 | // bits needed for the discriminator. |
264 | static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype( |
265 | PointerUnion<PTs...>::Val)>::NumLowBitsAvailable; |
266 | }; |
267 | |
268 | // Teach DenseMap how to use PointerUnions as keys. |
269 | template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> { |
270 | using Union = PointerUnion<PTs...>; |
271 | using FirstInfo = |
272 | DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>; |
273 | |
274 | static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); } |
275 | |
276 | static inline Union getTombstoneKey() { |
277 | return Union(FirstInfo::getTombstoneKey()); |
278 | } |
279 | |
280 | static unsigned getHashValue(const Union &UnionVal) { |
281 | intptr_t key = (intptr_t)UnionVal.getOpaqueValue(); |
282 | return DenseMapInfo<intptr_t>::getHashValue(key); |
283 | } |
284 | |
285 | static bool isEqual(const Union &LHS, const Union &RHS) { |
286 | return LHS == RHS; |
287 | } |
288 | }; |
289 | |
290 | } // end namespace llvm |
291 | |
292 | #endif // LLVM_ADT_POINTERUNION_H |