File: | src/gnu/usr.bin/binutils/gdb/dwarfread.c |
Warning: | line 2222, column 22 The left expression of the compound assignment is an uninitialized value. The computed value will also be garbage |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* DWARF debugging format support for GDB. | |||
2 | ||||
3 | Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, | |||
4 | 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. | |||
5 | ||||
6 | Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, | |||
7 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |||
8 | ||||
9 | This file is part of GDB. | |||
10 | ||||
11 | This program is free software; you can redistribute it and/or modify | |||
12 | it under the terms of the GNU General Public License as published by | |||
13 | the Free Software Foundation; either version 2 of the License, or | |||
14 | (at your option) any later version. | |||
15 | ||||
16 | This program is distributed in the hope that it will be useful, | |||
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||
19 | GNU General Public License for more details. | |||
20 | ||||
21 | You should have received a copy of the GNU General Public License | |||
22 | along with this program; if not, write to the Free Software | |||
23 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |||
24 | ||||
25 | /* | |||
26 | If you are looking for DWARF-2 support, you are in the wrong file. | |||
27 | Go look in dwarf2read.c. This file is for the original DWARF, | |||
28 | also known as DWARF-1. | |||
29 | ||||
30 | DWARF-1 is slowly headed for obsoletion. | |||
31 | ||||
32 | In gcc 3.4.0, support for dwarf-1 has been removed. | |||
33 | ||||
34 | In gcc 3.3.2, these targets prefer dwarf-1: | |||
35 | ||||
36 | i[34567]86-sequent-ptx4* | |||
37 | i[34567]86-sequent-sysv4* | |||
38 | mips-sni-sysv4 | |||
39 | sparc-hal-solaris2* | |||
40 | ||||
41 | In gcc 3.2.2, these targets prefer dwarf-1: | |||
42 | ||||
43 | i[34567]86-dg-dgux* | |||
44 | i[34567]86-sequent-ptx4* | |||
45 | i[34567]86-sequent-sysv4* | |||
46 | m88k-dg-dgux* | |||
47 | mips-sni-sysv4 | |||
48 | sparc-hal-solaris2* | |||
49 | ||||
50 | In gcc 2.95.3, these targets prefer dwarf-1: | |||
51 | ||||
52 | i[34567]86-dg-dgux* | |||
53 | i[34567]86-ncr-sysv4* | |||
54 | i[34567]86-sequent-ptx4* | |||
55 | i[34567]86-sequent-sysv4* | |||
56 | i[34567]86-*-osf1* | |||
57 | i[34567]86-*-sco3.2v5* | |||
58 | i[34567]86-*-sysv4* | |||
59 | i860-alliant-* | |||
60 | i860-*-sysv4* | |||
61 | m68k-atari-sysv4* | |||
62 | m68k-cbm-sysv4* | |||
63 | m68k-*-sysv4* | |||
64 | m88k-dg-dgux* | |||
65 | m88k-*-sysv4* | |||
66 | mips-sni-sysv4 | |||
67 | mips-*-gnu* | |||
68 | sh-*-elf* | |||
69 | sh-*-rtemself* | |||
70 | sparc-hal-solaris2* | |||
71 | sparc-*-sysv4* | |||
72 | ||||
73 | Some non-gcc compilers produce dwarf-1: | |||
74 | ||||
75 | PR gdb/1179 was from a user with Diab C++ 4.3. | |||
76 | On 2003-07-25 the gdb list received a report from a user | |||
77 | with Diab Compiler 4.4b. | |||
78 | Other users have also reported using Diab compilers with dwarf-1. | |||
79 | ||||
80 | Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++. | |||
81 | (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00, | |||
82 | Wind River Systems, 2002-07-31). | |||
83 | ||||
84 | On 2003-06-09 the gdb list received a report from a user | |||
85 | with Absoft ProFortran f77 which is dwarf-1. | |||
86 | ||||
87 | Absoft ProFortran Linux[sic] Fortran User Guide (no version, | |||
88 | but copyright dates are 1991-2001) says that Absoft ProFortran | |||
89 | supports -gdwarf1 and -gdwarf2. | |||
90 | ||||
91 | -- chastain 2004-04-24 | |||
92 | */ | |||
93 | ||||
94 | /* | |||
95 | ||||
96 | FIXME: Do we need to generate dependencies in partial symtabs? | |||
97 | (Perhaps we don't need to). | |||
98 | ||||
99 | FIXME: Resolve minor differences between what information we put in the | |||
100 | partial symbol table and what dbxread puts in. For example, we don't yet | |||
101 | put enum constants there. And dbxread seems to invent a lot of typedefs | |||
102 | we never see. Use the new printpsym command to see the partial symbol table | |||
103 | contents. | |||
104 | ||||
105 | FIXME: Figure out a better way to tell gdb about the name of the function | |||
106 | contain the user's entry point (I.E. main()) | |||
107 | ||||
108 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for | |||
109 | other things to work on, if you get bored. :-) | |||
110 | ||||
111 | */ | |||
112 | ||||
113 | #include "defs.h" | |||
114 | #include "symtab.h" | |||
115 | #include "gdbtypes.h" | |||
116 | #include "objfiles.h" | |||
117 | #include "elf/dwarf.h" | |||
118 | #include "buildsym.h" | |||
119 | #include "demangle.h" | |||
120 | #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ | |||
121 | #include "language.h" | |||
122 | #include "complaints.h" | |||
123 | ||||
124 | #include <fcntl.h> | |||
125 | #include "gdb_string.h" | |||
126 | ||||
127 | /* Some macros to provide DIE info for complaints. */ | |||
128 | ||||
129 | #define DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0) (curdie!=NULL((void*)0) ? curdie->die_ref : 0) | |||
130 | #define DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "" (curdie!=NULL((void*)0) && curdie->at_name!=NULL((void*)0)) ? curdie->at_name : "" | |||
131 | ||||
132 | /* Complaints that can be issued during DWARF debug info reading. */ | |||
133 | ||||
134 | static void | |||
135 | bad_die_ref_complaint (int arg1, const char *arg2, int arg3) | |||
136 | { | |||
137 | complaint (&symfile_complaints, | |||
138 | "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", | |||
139 | arg1, arg2, arg3); | |||
140 | } | |||
141 | ||||
142 | static void | |||
143 | unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3) | |||
144 | { | |||
145 | complaint (&symfile_complaints, | |||
146 | "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2, | |||
147 | arg3); | |||
148 | } | |||
149 | ||||
150 | static void | |||
151 | dup_user_type_definition_complaint (int arg1, const char *arg2) | |||
152 | { | |||
153 | complaint (&symfile_complaints, | |||
154 | "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", | |||
155 | arg1, arg2); | |||
156 | } | |||
157 | ||||
158 | static void | |||
159 | bad_array_element_type_complaint (int arg1, const char *arg2, int arg3) | |||
160 | { | |||
161 | complaint (&symfile_complaints, | |||
162 | "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1, | |||
163 | arg2, arg3); | |||
164 | } | |||
165 | ||||
166 | typedef unsigned int DIE_REF; /* Reference to a DIE */ | |||
167 | ||||
168 | #ifndef GCC_PRODUCER"GNU C " | |||
169 | #define GCC_PRODUCER"GNU C " "GNU C " | |||
170 | #endif | |||
171 | ||||
172 | #ifndef GPLUS_PRODUCER"GNU C++ " | |||
173 | #define GPLUS_PRODUCER"GNU C++ " "GNU C++ " | |||
174 | #endif | |||
175 | ||||
176 | #ifndef LCC_PRODUCER"NCR C/C++" | |||
177 | #define LCC_PRODUCER"NCR C/C++" "NCR C/C++" | |||
178 | #endif | |||
179 | ||||
180 | /* Flags to target_to_host() that tell whether or not the data object is | |||
181 | expected to be signed. Used, for example, when fetching a signed | |||
182 | integer in the target environment which is used as a signed integer | |||
183 | in the host environment, and the two environments have different sized | |||
184 | ints. In this case, *somebody* has to sign extend the smaller sized | |||
185 | int. */ | |||
186 | ||||
187 | #define GET_UNSIGNED0 0 /* No sign extension required */ | |||
188 | #define GET_SIGNED1 1 /* Sign extension required */ | |||
189 | ||||
190 | /* Defines for things which are specified in the document "DWARF Debugging | |||
191 | Information Format" published by UNIX International, Programming Languages | |||
192 | SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ | |||
193 | ||||
194 | #define SIZEOF_DIE_LENGTH4 4 | |||
195 | #define SIZEOF_DIE_TAG2 2 | |||
196 | #define SIZEOF_ATTRIBUTE2 2 | |||
197 | #define SIZEOF_FORMAT_SPECIFIER1 1 | |||
198 | #define SIZEOF_FMT_FT2 2 | |||
199 | #define SIZEOF_LINETBL_LENGTH4 4 | |||
200 | #define SIZEOF_LINETBL_LINENO4 4 | |||
201 | #define SIZEOF_LINETBL_STMT2 2 | |||
202 | #define SIZEOF_LINETBL_DELTA4 4 | |||
203 | #define SIZEOF_LOC_ATOM_CODE1 1 | |||
204 | ||||
205 | #define FORM_FROM_ATTR(attr)((attr) & 0xF) ((attr) & 0xF) /* Implicitly specified */ | |||
206 | ||||
207 | /* Macros that return the sizes of various types of data in the target | |||
208 | environment. | |||
209 | ||||
210 | FIXME: Currently these are just compile time constants (as they are in | |||
211 | other parts of gdb as well). They need to be able to get the right size | |||
212 | either from the bfd or possibly from the DWARF info. It would be nice if | |||
213 | the DWARF producer inserted DIES that describe the fundamental types in | |||
214 | the target environment into the DWARF info, similar to the way dbx stabs | |||
215 | producers produce information about their fundamental types. */ | |||
216 | ||||
217 | #define TARGET_FT_POINTER_SIZE(objfile)((gdbarch_ptr_bit (current_gdbarch)) / 8) (TARGET_PTR_BIT(gdbarch_ptr_bit (current_gdbarch)) / TARGET_CHAR_BIT8) | |||
218 | #define TARGET_FT_LONG_SIZE(objfile)((gdbarch_long_bit (current_gdbarch)) / 8) (TARGET_LONG_BIT(gdbarch_long_bit (current_gdbarch)) / TARGET_CHAR_BIT8) | |||
219 | ||||
220 | /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a | |||
221 | FORM_BLOCK2, and this is the value emitted by the AT&T compiler. | |||
222 | However, the Issue 2 DWARF specification from AT&T defines it as | |||
223 | a FORM_BLOCK4, as does the latest specification from UI/PLSIG. | |||
224 | For backwards compatibility with the AT&T compiler produced executables | |||
225 | we define AT_short_element_list for this variant. */ | |||
226 | ||||
227 | #define AT_short_element_list(0x00f0|FORM_BLOCK2) (0x00f0|FORM_BLOCK2) | |||
228 | ||||
229 | /* The DWARF debugging information consists of two major pieces, | |||
230 | one is a block of DWARF Information Entries (DIE's) and the other | |||
231 | is a line number table. The "struct dieinfo" structure contains | |||
232 | the information for a single DIE, the one currently being processed. | |||
233 | ||||
234 | In order to make it easier to randomly access the attribute fields | |||
235 | of the current DIE, which are specifically unordered within the DIE, | |||
236 | each DIE is scanned and an instance of the "struct dieinfo" | |||
237 | structure is initialized. | |||
238 | ||||
239 | Initialization is done in two levels. The first, done by basicdieinfo(), | |||
240 | just initializes those fields that are vital to deciding whether or not | |||
241 | to use this DIE, how to skip past it, etc. The second, done by the | |||
242 | function completedieinfo(), fills in the rest of the information. | |||
243 | ||||
244 | Attributes which have block forms are not interpreted at the time | |||
245 | the DIE is scanned, instead we just save pointers to the start | |||
246 | of their value fields. | |||
247 | ||||
248 | Some fields have a flag <name>_p that is set when the value of the | |||
249 | field is valid (I.E. we found a matching attribute in the DIE). Since | |||
250 | we may want to test for the presence of some attributes in the DIE, | |||
251 | such as AT_low_pc, without restricting the values of the field, | |||
252 | we need someway to note that we found such an attribute. | |||
253 | ||||
254 | */ | |||
255 | ||||
256 | typedef char BLOCK; | |||
257 | ||||
258 | struct dieinfo | |||
259 | { | |||
260 | char *die; /* Pointer to the raw DIE data */ | |||
261 | unsigned long die_length; /* Length of the raw DIE data */ | |||
262 | DIE_REF die_ref; /* Offset of this DIE */ | |||
263 | unsigned short die_tag; /* Tag for this DIE */ | |||
264 | unsigned long at_padding; | |||
265 | unsigned long at_sibling; | |||
266 | BLOCK *at_location; | |||
267 | char *at_name; | |||
268 | unsigned short at_fund_type; | |||
269 | BLOCK *at_mod_fund_type; | |||
270 | unsigned long at_user_def_type; | |||
271 | BLOCK *at_mod_u_d_type; | |||
272 | unsigned short at_ordering; | |||
273 | BLOCK *at_subscr_data; | |||
274 | unsigned long at_byte_size; | |||
275 | unsigned short at_bit_offset; | |||
276 | unsigned long at_bit_size; | |||
277 | BLOCK *at_element_list; | |||
278 | unsigned long at_stmt_list; | |||
279 | CORE_ADDR at_low_pc; | |||
280 | CORE_ADDR at_high_pc; | |||
281 | unsigned long at_language; | |||
282 | unsigned long at_member; | |||
283 | unsigned long at_discr; | |||
284 | BLOCK *at_discr_value; | |||
285 | BLOCK *at_string_length; | |||
286 | char *at_comp_dir; | |||
287 | char *at_producer; | |||
288 | unsigned long at_start_scope; | |||
289 | unsigned long at_stride_size; | |||
290 | unsigned long at_src_info; | |||
291 | char *at_prototyped; | |||
292 | unsigned int has_at_low_pc:1; | |||
293 | unsigned int has_at_stmt_list:1; | |||
294 | unsigned int has_at_byte_size:1; | |||
295 | unsigned int short_element_list:1; | |||
296 | ||||
297 | /* Kludge to identify register variables */ | |||
298 | ||||
299 | unsigned int isreg; | |||
300 | ||||
301 | /* Kludge to identify optimized out variables */ | |||
302 | ||||
303 | unsigned int optimized_out; | |||
304 | ||||
305 | /* Kludge to identify basereg references. | |||
306 | Nonzero if we have an offset relative to a basereg. */ | |||
307 | ||||
308 | unsigned int offreg; | |||
309 | ||||
310 | /* Kludge to identify which base register is it relative to. */ | |||
311 | ||||
312 | unsigned int basereg; | |||
313 | }; | |||
314 | ||||
315 | static int diecount; /* Approximate count of dies for compilation unit */ | |||
316 | static struct dieinfo *curdie; /* For warnings and such */ | |||
317 | ||||
318 | static char *dbbase; /* Base pointer to dwarf info */ | |||
319 | static int dbsize; /* Size of dwarf info in bytes */ | |||
320 | static int dbroff; /* Relative offset from start of .debug section */ | |||
321 | static char *lnbase; /* Base pointer to line section */ | |||
322 | ||||
323 | /* This value is added to each symbol value. FIXME: Generalize to | |||
324 | the section_offsets structure used by dbxread (once this is done, | |||
325 | pass the appropriate section number to end_symtab). */ | |||
326 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |||
327 | ||||
328 | /* The section offsets used in the current psymtab or symtab. FIXME, | |||
329 | only used to pass one value (baseaddr) at the moment. */ | |||
330 | static struct section_offsets *base_section_offsets; | |||
331 | ||||
332 | /* We put a pointer to this structure in the read_symtab_private field | |||
333 | of the psymtab. */ | |||
334 | ||||
335 | struct dwfinfo | |||
336 | { | |||
337 | /* Always the absolute file offset to the start of the ".debug" | |||
338 | section for the file containing the DIE's being accessed. */ | |||
339 | file_ptr dbfoff; | |||
340 | /* Relative offset from the start of the ".debug" section to the | |||
341 | first DIE to be accessed. When building the partial symbol | |||
342 | table, this value will be zero since we are accessing the | |||
343 | entire ".debug" section. When expanding a partial symbol | |||
344 | table entry, this value will be the offset to the first | |||
345 | DIE for the compilation unit containing the symbol that | |||
346 | triggers the expansion. */ | |||
347 | int dbroff; | |||
348 | /* The size of the chunk of DIE's being examined, in bytes. */ | |||
349 | int dblength; | |||
350 | /* The absolute file offset to the line table fragment. Ignored | |||
351 | when building partial symbol tables, but used when expanding | |||
352 | them, and contains the absolute file offset to the fragment | |||
353 | of the ".line" section containing the line numbers for the | |||
354 | current compilation unit. */ | |||
355 | file_ptr lnfoff; | |||
356 | }; | |||
357 | ||||
358 | #define DBFOFF(p)(((struct dwfinfo *)((p)->read_symtab_private))->dbfoff ) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |||
359 | #define DBROFF(p)(((struct dwfinfo *)((p)->read_symtab_private))->dbroff ) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |||
360 | #define DBLENGTH(p)(((struct dwfinfo *)((p)->read_symtab_private))->dblength ) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |||
361 | #define LNFOFF(p)(((struct dwfinfo *)((p)->read_symtab_private))->lnfoff ) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |||
362 | ||||
363 | /* The generic symbol table building routines have separate lists for | |||
364 | file scope symbols and all all other scopes (local scopes). So | |||
365 | we need to select the right one to pass to add_symbol_to_list(). | |||
366 | We do it by keeping a pointer to the correct list in list_in_scope. | |||
367 | ||||
368 | FIXME: The original dwarf code just treated the file scope as the first | |||
369 | local scope, and all other local scopes as nested local scopes, and worked | |||
370 | fine. Check to see if we really need to distinguish these in buildsym.c */ | |||
371 | ||||
372 | struct pending **list_in_scope = &file_symbols; | |||
373 | ||||
374 | /* DIES which have user defined types or modified user defined types refer to | |||
375 | other DIES for the type information. Thus we need to associate the offset | |||
376 | of a DIE for a user defined type with a pointer to the type information. | |||
377 | ||||
378 | Originally this was done using a simple but expensive algorithm, with an | |||
379 | array of unsorted structures, each containing an offset/type-pointer pair. | |||
380 | This array was scanned linearly each time a lookup was done. The result | |||
381 | was that gdb was spending over half it's startup time munging through this | |||
382 | array of pointers looking for a structure that had the right offset member. | |||
383 | ||||
384 | The second attempt used the same array of structures, but the array was | |||
385 | sorted using qsort each time a new offset/type was recorded, and a binary | |||
386 | search was used to find the type pointer for a given DIE offset. This was | |||
387 | even slower, due to the overhead of sorting the array each time a new | |||
388 | offset/type pair was entered. | |||
389 | ||||
390 | The third attempt uses a fixed size array of type pointers, indexed by a | |||
391 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |||
392 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |||
393 | size array. Since each element is a 4 byte pointer, it takes exactly as | |||
394 | much memory to hold this array as to hold the DWARF info for a given | |||
395 | compilation unit. But it gets freed as soon as we are done with it. | |||
396 | This has worked well in practice, as a reasonable tradeoff between memory | |||
397 | consumption and speed, without having to resort to much more complicated | |||
398 | algorithms. */ | |||
399 | ||||
400 | static struct type **utypes; /* Pointer to array of user type pointers */ | |||
401 | static int numutypes; /* Max number of user type pointers */ | |||
402 | ||||
403 | /* Maintain an array of referenced fundamental types for the current | |||
404 | compilation unit being read. For DWARF version 1, we have to construct | |||
405 | the fundamental types on the fly, since no information about the | |||
406 | fundamental types is supplied. Each such fundamental type is created by | |||
407 | calling a language dependent routine to create the type, and then a | |||
408 | pointer to that type is then placed in the array at the index specified | |||
409 | by it's FT_<TYPENAME> value. The array has a fixed size set by the | |||
410 | FT_NUM_MEMBERS compile time constant, which is the number of predefined | |||
411 | fundamental types gdb knows how to construct. */ | |||
412 | ||||
413 | static struct type *ftypes[FT_NUM_MEMBERS29]; /* Fundamental types */ | |||
414 | ||||
415 | /* Record the language for the compilation unit which is currently being | |||
416 | processed. We know it once we have seen the TAG_compile_unit DIE, | |||
417 | and we need it while processing the DIE's for that compilation unit. | |||
418 | It is eventually saved in the symtab structure, but we don't finalize | |||
419 | the symtab struct until we have processed all the DIE's for the | |||
420 | compilation unit. We also need to get and save a pointer to the | |||
421 | language struct for this language, so we can call the language | |||
422 | dependent routines for doing things such as creating fundamental | |||
423 | types. */ | |||
424 | ||||
425 | static enum language cu_language; | |||
426 | static const struct language_defn *cu_language_defn; | |||
427 | ||||
428 | /* Forward declarations of static functions so we don't have to worry | |||
429 | about ordering within this file. */ | |||
430 | ||||
431 | static void free_utypes (void *); | |||
432 | ||||
433 | static int attribute_size (unsigned int); | |||
434 | ||||
435 | static CORE_ADDR target_to_host (char *, int, int, struct objfile *); | |||
436 | ||||
437 | static void add_enum_psymbol (struct dieinfo *, struct objfile *); | |||
438 | ||||
439 | static void handle_producer (char *); | |||
440 | ||||
441 | static void read_file_scope (struct dieinfo *, char *, char *, | |||
442 | struct objfile *); | |||
443 | ||||
444 | static void read_func_scope (struct dieinfo *, char *, char *, | |||
445 | struct objfile *); | |||
446 | ||||
447 | static void read_lexical_block_scope (struct dieinfo *, char *, char *, | |||
448 | struct objfile *); | |||
449 | ||||
450 | static void scan_partial_symbols (char *, char *, struct objfile *); | |||
451 | ||||
452 | static void scan_compilation_units (char *, char *, file_ptr, file_ptr, | |||
453 | struct objfile *); | |||
454 | ||||
455 | static void add_partial_symbol (struct dieinfo *, struct objfile *); | |||
456 | ||||
457 | static void basicdieinfo (struct dieinfo *, char *, struct objfile *); | |||
458 | ||||
459 | static void completedieinfo (struct dieinfo *, struct objfile *); | |||
460 | ||||
461 | static void dwarf_psymtab_to_symtab (struct partial_symtab *); | |||
462 | ||||
463 | static void psymtab_to_symtab_1 (struct partial_symtab *); | |||
464 | ||||
465 | static void read_ofile_symtab (struct partial_symtab *); | |||
466 | ||||
467 | static void process_dies (char *, char *, struct objfile *); | |||
468 | ||||
469 | static void read_structure_scope (struct dieinfo *, char *, char *, | |||
470 | struct objfile *); | |||
471 | ||||
472 | static struct type *decode_array_element_type (char *); | |||
473 | ||||
474 | static struct type *decode_subscript_data_item (char *, char *); | |||
475 | ||||
476 | static void dwarf_read_array_type (struct dieinfo *); | |||
477 | ||||
478 | static void read_tag_pointer_type (struct dieinfo *dip); | |||
479 | ||||
480 | static void read_tag_string_type (struct dieinfo *dip); | |||
481 | ||||
482 | static void read_subroutine_type (struct dieinfo *, char *, char *); | |||
483 | ||||
484 | static void read_enumeration (struct dieinfo *, char *, char *, | |||
485 | struct objfile *); | |||
486 | ||||
487 | static struct type *struct_type (struct dieinfo *, char *, char *, | |||
488 | struct objfile *); | |||
489 | ||||
490 | static struct type *enum_type (struct dieinfo *, struct objfile *); | |||
491 | ||||
492 | static void decode_line_numbers (char *); | |||
493 | ||||
494 | static struct type *decode_die_type (struct dieinfo *); | |||
495 | ||||
496 | static struct type *decode_mod_fund_type (char *); | |||
497 | ||||
498 | static struct type *decode_mod_u_d_type (char *); | |||
499 | ||||
500 | static struct type *decode_modified_type (char *, unsigned int, int); | |||
501 | ||||
502 | static struct type *decode_fund_type (unsigned int); | |||
503 | ||||
504 | static char *create_name (char *, struct obstack *); | |||
505 | ||||
506 | static struct type *lookup_utype (DIE_REF); | |||
507 | ||||
508 | static struct type *alloc_utype (DIE_REF, struct type *); | |||
509 | ||||
510 | static struct symbol *new_symbol (struct dieinfo *, struct objfile *); | |||
511 | ||||
512 | static void synthesize_typedef (struct dieinfo *, struct objfile *, | |||
513 | struct type *); | |||
514 | ||||
515 | static int locval (struct dieinfo *); | |||
516 | ||||
517 | static void set_cu_language (struct dieinfo *); | |||
518 | ||||
519 | static struct type *dwarf_fundamental_type (struct objfile *, int); | |||
520 | ||||
521 | ||||
522 | /* | |||
523 | ||||
524 | LOCAL FUNCTION | |||
525 | ||||
526 | dwarf_fundamental_type -- lookup or create a fundamental type | |||
527 | ||||
528 | SYNOPSIS | |||
529 | ||||
530 | struct type * | |||
531 | dwarf_fundamental_type (struct objfile *objfile, int typeid) | |||
532 | ||||
533 | DESCRIPTION | |||
534 | ||||
535 | DWARF version 1 doesn't supply any fundamental type information, | |||
536 | so gdb has to construct such types. It has a fixed number of | |||
537 | fundamental types that it knows how to construct, which is the | |||
538 | union of all types that it knows how to construct for all languages | |||
539 | that it knows about. These are enumerated in gdbtypes.h. | |||
540 | ||||
541 | As an example, assume we find a DIE that references a DWARF | |||
542 | fundamental type of FT_integer. We first look in the ftypes | |||
543 | array to see if we already have such a type, indexed by the | |||
544 | gdb internal value of FT_INTEGER. If so, we simply return a | |||
545 | pointer to that type. If not, then we ask an appropriate | |||
546 | language dependent routine to create a type FT_INTEGER, using | |||
547 | defaults reasonable for the current target machine, and install | |||
548 | that type in ftypes for future reference. | |||
549 | ||||
550 | RETURNS | |||
551 | ||||
552 | Pointer to a fundamental type. | |||
553 | ||||
554 | */ | |||
555 | ||||
556 | static struct type * | |||
557 | dwarf_fundamental_type (struct objfile *objfile, int typeid) | |||
558 | { | |||
559 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS29) | |||
560 | { | |||
561 | error ("internal error - invalid fundamental type id %d", typeid); | |||
562 | } | |||
563 | ||||
564 | /* Look for this particular type in the fundamental type vector. If one is | |||
565 | not found, create and install one appropriate for the current language | |||
566 | and the current target machine. */ | |||
567 | ||||
568 | if (ftypes[typeid] == NULL((void*)0)) | |||
569 | { | |||
570 | ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid); | |||
571 | } | |||
572 | ||||
573 | return (ftypes[typeid]); | |||
574 | } | |||
575 | ||||
576 | /* | |||
577 | ||||
578 | LOCAL FUNCTION | |||
579 | ||||
580 | set_cu_language -- set local copy of language for compilation unit | |||
581 | ||||
582 | SYNOPSIS | |||
583 | ||||
584 | void | |||
585 | set_cu_language (struct dieinfo *dip) | |||
586 | ||||
587 | DESCRIPTION | |||
588 | ||||
589 | Decode the language attribute for a compilation unit DIE and | |||
590 | remember what the language was. We use this at various times | |||
591 | when processing DIE's for a given compilation unit. | |||
592 | ||||
593 | RETURNS | |||
594 | ||||
595 | No return value. | |||
596 | ||||
597 | */ | |||
598 | ||||
599 | static void | |||
600 | set_cu_language (struct dieinfo *dip) | |||
601 | { | |||
602 | switch (dip->at_language) | |||
603 | { | |||
604 | case LANG_C89: | |||
605 | case LANG_C: | |||
606 | cu_language = language_c; | |||
607 | break; | |||
608 | case LANG_C_PLUS_PLUS: | |||
609 | cu_language = language_cplus; | |||
610 | break; | |||
611 | case LANG_MODULA2: | |||
612 | cu_language = language_m2; | |||
613 | break; | |||
614 | case LANG_FORTRAN77: | |||
615 | case LANG_FORTRAN90: | |||
616 | cu_language = language_fortran; | |||
617 | break; | |||
618 | case LANG_ADA83: | |||
619 | case LANG_COBOL74: | |||
620 | case LANG_COBOL85: | |||
621 | case LANG_PASCAL83: | |||
622 | /* We don't know anything special about these yet. */ | |||
623 | cu_language = language_unknown; | |||
624 | break; | |||
625 | default: | |||
626 | /* If no at_language, try to deduce one from the filename */ | |||
627 | cu_language = deduce_language_from_filename (dip->at_name); | |||
628 | break; | |||
629 | } | |||
630 | cu_language_defn = language_def (cu_language); | |||
631 | } | |||
632 | ||||
633 | /* | |||
634 | ||||
635 | GLOBAL FUNCTION | |||
636 | ||||
637 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info | |||
638 | ||||
639 | SYNOPSIS | |||
640 | ||||
641 | void dwarf_build_psymtabs (struct objfile *objfile, | |||
642 | int mainline, file_ptr dbfoff, unsigned int dbfsize, | |||
643 | file_ptr lnoffset, unsigned int lnsize) | |||
644 | ||||
645 | DESCRIPTION | |||
646 | ||||
647 | This function is called upon to build partial symtabs from files | |||
648 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |||
649 | ||||
650 | It is passed a bfd* containing the DIES | |||
651 | and line number information, the corresponding filename for that | |||
652 | file, a base address for relocating the symbols, a flag indicating | |||
653 | whether or not this debugging information is from a "main symbol | |||
654 | table" rather than a shared library or dynamically linked file, | |||
655 | and file offset/size pairs for the DIE information and line number | |||
656 | information. | |||
657 | ||||
658 | RETURNS | |||
659 | ||||
660 | No return value. | |||
661 | ||||
662 | */ | |||
663 | ||||
664 | void | |||
665 | dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff, | |||
666 | unsigned int dbfsize, file_ptr lnoffset, | |||
667 | unsigned int lnsize) | |||
668 | { | |||
669 | bfd *abfd = objfile->obfd; | |||
670 | struct cleanup *back_to; | |||
671 | ||||
672 | current_objfile = objfile; | |||
673 | dbsize = dbfsize; | |||
674 | dbbase = xmalloc (dbsize); | |||
675 | dbroff = 0; | |||
676 | if ((bfd_seek (abfd, dbfoff, SEEK_SET0) != 0) || | |||
677 | (bfd_bread (dbbase, dbsize, abfd) != dbsize)) | |||
678 | { | |||
679 | xfree (dbbase); | |||
680 | error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)((char *) (abfd)->filename)); | |||
681 | } | |||
682 | back_to = make_cleanup (xfree, dbbase); | |||
683 | ||||
684 | /* If we are reinitializing, or if we have never loaded syms yet, init. | |||
685 | Since we have no idea how many DIES we are looking at, we just guess | |||
686 | some arbitrary value. */ | |||
687 | ||||
688 | if (mainline | |||
689 | || (objfile->global_psymbols.size == 0 | |||
690 | && objfile->static_psymbols.size == 0)) | |||
691 | { | |||
692 | init_psymbol_list (objfile, 1024); | |||
693 | } | |||
694 | ||||
695 | /* Save the relocation factor where everybody can see it. */ | |||
696 | ||||
697 | base_section_offsets = objfile->section_offsets; | |||
698 | baseaddr = ANOFFSET (objfile->section_offsets, 0)((0 == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarfread.c" , 698, "Section index is uninitialized"), -1) : objfile->section_offsets ->offsets[0]); | |||
699 | ||||
700 | /* Follow the compilation unit sibling chain, building a partial symbol | |||
701 | table entry for each one. Save enough information about each compilation | |||
702 | unit to locate the full DWARF information later. */ | |||
703 | ||||
704 | scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); | |||
705 | ||||
706 | do_cleanups (back_to); | |||
707 | current_objfile = NULL((void*)0); | |||
708 | } | |||
709 | ||||
710 | /* | |||
711 | ||||
712 | LOCAL FUNCTION | |||
713 | ||||
714 | read_lexical_block_scope -- process all dies in a lexical block | |||
715 | ||||
716 | SYNOPSIS | |||
717 | ||||
718 | static void read_lexical_block_scope (struct dieinfo *dip, | |||
719 | char *thisdie, char *enddie) | |||
720 | ||||
721 | DESCRIPTION | |||
722 | ||||
723 | Process all the DIES contained within a lexical block scope. | |||
724 | Start a new scope, process the dies, and then close the scope. | |||
725 | ||||
726 | */ | |||
727 | ||||
728 | static void | |||
729 | read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie, | |||
730 | struct objfile *objfile) | |||
731 | { | |||
732 | struct context_stack *new; | |||
733 | ||||
734 | push_context (0, dip->at_low_pc); | |||
735 | process_dies (thisdie + dip->die_length, enddie, objfile); | |||
| ||||
736 | new = pop_context (); | |||
737 | if (local_symbols != NULL((void*)0)) | |||
738 | { | |||
739 | finish_block (0, &local_symbols, new->old_blocks, new->start_addr, | |||
740 | dip->at_high_pc, objfile); | |||
741 | } | |||
742 | local_symbols = new->locals; | |||
743 | } | |||
744 | ||||
745 | /* | |||
746 | ||||
747 | LOCAL FUNCTION | |||
748 | ||||
749 | lookup_utype -- look up a user defined type from die reference | |||
750 | ||||
751 | SYNOPSIS | |||
752 | ||||
753 | static type *lookup_utype (DIE_REF die_ref) | |||
754 | ||||
755 | DESCRIPTION | |||
756 | ||||
757 | Given a DIE reference, lookup the user defined type associated with | |||
758 | that DIE, if it has been registered already. If not registered, then | |||
759 | return NULL. Alloc_utype() can be called to register an empty | |||
760 | type for this reference, which will be filled in later when the | |||
761 | actual referenced DIE is processed. | |||
762 | */ | |||
763 | ||||
764 | static struct type * | |||
765 | lookup_utype (DIE_REF die_ref) | |||
766 | { | |||
767 | struct type *type = NULL((void*)0); | |||
768 | int utypeidx; | |||
769 | ||||
770 | utypeidx = (die_ref - dbroff) / 4; | |||
771 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |||
772 | { | |||
773 | bad_die_ref_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", die_ref); | |||
774 | } | |||
775 | else | |||
776 | { | |||
777 | type = *(utypes + utypeidx); | |||
778 | } | |||
779 | return (type); | |||
780 | } | |||
781 | ||||
782 | ||||
783 | /* | |||
784 | ||||
785 | LOCAL FUNCTION | |||
786 | ||||
787 | alloc_utype -- add a user defined type for die reference | |||
788 | ||||
789 | SYNOPSIS | |||
790 | ||||
791 | static type *alloc_utype (DIE_REF die_ref, struct type *utypep) | |||
792 | ||||
793 | DESCRIPTION | |||
794 | ||||
795 | Given a die reference DIE_REF, and a possible pointer to a user | |||
796 | defined type UTYPEP, register that this reference has a user | |||
797 | defined type and either use the specified type in UTYPEP or | |||
798 | make a new empty type that will be filled in later. | |||
799 | ||||
800 | We should only be called after calling lookup_utype() to verify that | |||
801 | there is not currently a type registered for DIE_REF. | |||
802 | */ | |||
803 | ||||
804 | static struct type * | |||
805 | alloc_utype (DIE_REF die_ref, struct type *utypep) | |||
806 | { | |||
807 | struct type **typep; | |||
808 | int utypeidx; | |||
809 | ||||
810 | utypeidx = (die_ref - dbroff) / 4; | |||
811 | typep = utypes + utypeidx; | |||
812 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |||
813 | { | |||
814 | utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
815 | bad_die_ref_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", die_ref); | |||
816 | } | |||
817 | else if (*typep != NULL((void*)0)) | |||
818 | { | |||
819 | utypep = *typep; | |||
820 | complaint (&symfile_complaints, | |||
821 | "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", | |||
822 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); | |||
823 | } | |||
824 | else | |||
825 | { | |||
826 | if (utypep == NULL((void*)0)) | |||
827 | { | |||
828 | utypep = alloc_type (current_objfile); | |||
829 | } | |||
830 | *typep = utypep; | |||
831 | } | |||
832 | return (utypep); | |||
833 | } | |||
834 | ||||
835 | /* | |||
836 | ||||
837 | LOCAL FUNCTION | |||
838 | ||||
839 | free_utypes -- free the utypes array and reset pointer & count | |||
840 | ||||
841 | SYNOPSIS | |||
842 | ||||
843 | static void free_utypes (void *dummy) | |||
844 | ||||
845 | DESCRIPTION | |||
846 | ||||
847 | Called via do_cleanups to free the utypes array, reset the pointer to NULL, | |||
848 | and set numutypes back to zero. This ensures that the utypes does not get | |||
849 | referenced after being freed. | |||
850 | */ | |||
851 | ||||
852 | static void | |||
853 | free_utypes (void *dummy) | |||
854 | { | |||
855 | xfree (utypes); | |||
856 | utypes = NULL((void*)0); | |||
857 | numutypes = 0; | |||
858 | } | |||
859 | ||||
860 | ||||
861 | /* | |||
862 | ||||
863 | LOCAL FUNCTION | |||
864 | ||||
865 | decode_die_type -- return a type for a specified die | |||
866 | ||||
867 | SYNOPSIS | |||
868 | ||||
869 | static struct type *decode_die_type (struct dieinfo *dip) | |||
870 | ||||
871 | DESCRIPTION | |||
872 | ||||
873 | Given a pointer to a die information structure DIP, decode the | |||
874 | type of the die and return a pointer to the decoded type. All | |||
875 | dies without specific types default to type int. | |||
876 | */ | |||
877 | ||||
878 | static struct type * | |||
879 | decode_die_type (struct dieinfo *dip) | |||
880 | { | |||
881 | struct type *type = NULL((void*)0); | |||
882 | ||||
883 | if (dip->at_fund_type != 0) | |||
884 | { | |||
885 | type = decode_fund_type (dip->at_fund_type); | |||
886 | } | |||
887 | else if (dip->at_mod_fund_type != NULL((void*)0)) | |||
888 | { | |||
889 | type = decode_mod_fund_type (dip->at_mod_fund_type); | |||
890 | } | |||
891 | else if (dip->at_user_def_type) | |||
892 | { | |||
893 | type = lookup_utype (dip->at_user_def_type); | |||
894 | if (type == NULL((void*)0)) | |||
895 | { | |||
896 | type = alloc_utype (dip->at_user_def_type, NULL((void*)0)); | |||
897 | } | |||
898 | } | |||
899 | else if (dip->at_mod_u_d_type) | |||
900 | { | |||
901 | type = decode_mod_u_d_type (dip->at_mod_u_d_type); | |||
902 | } | |||
903 | else | |||
904 | { | |||
905 | type = dwarf_fundamental_type (current_objfile, FT_VOID0); | |||
906 | } | |||
907 | return (type); | |||
908 | } | |||
909 | ||||
910 | /* | |||
911 | ||||
912 | LOCAL FUNCTION | |||
913 | ||||
914 | struct_type -- compute and return the type for a struct or union | |||
915 | ||||
916 | SYNOPSIS | |||
917 | ||||
918 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, | |||
919 | char *enddie, struct objfile *objfile) | |||
920 | ||||
921 | DESCRIPTION | |||
922 | ||||
923 | Given pointer to a die information structure for a die which | |||
924 | defines a union or structure (and MUST define one or the other), | |||
925 | and pointers to the raw die data that define the range of dies which | |||
926 | define the members, compute and return the user defined type for the | |||
927 | structure or union. | |||
928 | */ | |||
929 | ||||
930 | static struct type * | |||
931 | struct_type (struct dieinfo *dip, char *thisdie, char *enddie, | |||
932 | struct objfile *objfile) | |||
933 | { | |||
934 | struct type *type; | |||
935 | struct nextfield | |||
936 | { | |||
937 | struct nextfield *next; | |||
938 | struct field field; | |||
939 | }; | |||
940 | struct nextfield *list = NULL((void*)0); | |||
941 | struct nextfield *new; | |||
942 | int nfields = 0; | |||
943 | int n; | |||
944 | struct dieinfo mbr; | |||
945 | char *nextdie; | |||
946 | int anonymous_size; | |||
947 | ||||
948 | type = lookup_utype (dip->die_ref); | |||
949 | if (type == NULL((void*)0)) | |||
950 | { | |||
951 | /* No forward references created an empty type, so install one now */ | |||
952 | type = alloc_utype (dip->die_ref, NULL((void*)0)); | |||
953 | } | |||
954 | INIT_CPLUS_SPECIFIC (type)((type)->main_type->type_specific.cplus_stuff=(struct cplus_struct_type *)&cplus_struct_default); | |||
955 | switch (dip->die_tag) | |||
956 | { | |||
957 | case TAG_class_type: | |||
958 | TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_CLASSTYPE_CODE_STRUCT; | |||
959 | break; | |||
960 | case TAG_structure_type: | |||
961 | TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_STRUCT; | |||
962 | break; | |||
963 | case TAG_union_type: | |||
964 | TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_UNION; | |||
965 | break; | |||
966 | default: | |||
967 | /* Should never happen */ | |||
968 | TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_UNDEF; | |||
969 | complaint (&symfile_complaints, | |||
970 | "DIE @ 0x%x \"%s\", missing class, structure, or union tag", | |||
971 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); | |||
972 | break; | |||
973 | } | |||
974 | /* Some compilers try to be helpful by inventing "fake" names for | |||
975 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |||
976 | Thanks, but no thanks... */ | |||
977 | if (dip->at_name != NULL((void*)0) | |||
978 | && *dip->at_name != '~' | |||
979 | && *dip->at_name != '.') | |||
980 | { | |||
981 | TYPE_TAG_NAME (type)(type)->main_type->tag_name = obconcat (&objfile->objfile_obstack, | |||
982 | "", "", dip->at_name); | |||
983 | } | |||
984 | /* Use whatever size is known. Zero is a valid size. We might however | |||
985 | wish to check has_at_byte_size to make sure that some byte size was | |||
986 | given explicitly, but DWARF doesn't specify that explicit sizes of | |||
987 | zero have to present, so complaining about missing sizes should | |||
988 | probably not be the default. */ | |||
989 | TYPE_LENGTH (type)(type)->length = dip->at_byte_size; | |||
990 | thisdie += dip->die_length; | |||
991 | while (thisdie < enddie) | |||
992 | { | |||
993 | basicdieinfo (&mbr, thisdie, objfile); | |||
994 | completedieinfo (&mbr, objfile); | |||
995 | if (mbr.die_length <= SIZEOF_DIE_LENGTH4) | |||
996 | { | |||
997 | break; | |||
998 | } | |||
999 | else if (mbr.at_sibling != 0) | |||
1000 | { | |||
1001 | nextdie = dbbase + mbr.at_sibling - dbroff; | |||
1002 | } | |||
1003 | else | |||
1004 | { | |||
1005 | nextdie = thisdie + mbr.die_length; | |||
1006 | } | |||
1007 | switch (mbr.die_tag) | |||
1008 | { | |||
1009 | case TAG_member: | |||
1010 | /* Static fields can be either TAG_global_variable (GCC) or else | |||
1011 | TAG_member with no location (Diab). We could treat the latter like | |||
1012 | the former... but since we don't support the former, just avoid | |||
1013 | crashing on the latter for now. */ | |||
1014 | if (mbr.at_location == NULL((void*)0)) | |||
1015 | break; | |||
1016 | ||||
1017 | /* Get space to record the next field's data. */ | |||
1018 | new = (struct nextfield *) alloca (sizeof (struct nextfield))__builtin_alloca(sizeof (struct nextfield)); | |||
1019 | new->next = list; | |||
1020 | list = new; | |||
1021 | /* Save the data. */ | |||
1022 | list->field.name = | |||
1023 | obsavestring (mbr.at_name, strlen (mbr.at_name), | |||
1024 | &objfile->objfile_obstack); | |||
1025 | FIELD_TYPE (list->field)((list->field).type) = decode_die_type (&mbr); | |||
1026 | FIELD_BITPOS (list->field)((list->field).loc.bitpos) = 8 * locval (&mbr); | |||
1027 | FIELD_STATIC_KIND (list->field)((list->field).static_kind) = 0; | |||
1028 | /* Handle bit fields. */ | |||
1029 | FIELD_BITSIZE (list->field)((list->field).bitsize) = mbr.at_bit_size; | |||
1030 | if (BITS_BIG_ENDIAN((gdbarch_byte_order (current_gdbarch)) == BFD_ENDIAN_BIG)) | |||
1031 | { | |||
1032 | /* For big endian bits, the at_bit_offset gives the | |||
1033 | additional bit offset from the MSB of the containing | |||
1034 | anonymous object to the MSB of the field. We don't | |||
1035 | have to do anything special since we don't need to | |||
1036 | know the size of the anonymous object. */ | |||
1037 | FIELD_BITPOS (list->field)((list->field).loc.bitpos) += mbr.at_bit_offset; | |||
1038 | } | |||
1039 | else | |||
1040 | { | |||
1041 | /* For little endian bits, we need to have a non-zero | |||
1042 | at_bit_size, so that we know we are in fact dealing | |||
1043 | with a bitfield. Compute the bit offset to the MSB | |||
1044 | of the anonymous object, subtract off the number of | |||
1045 | bits from the MSB of the field to the MSB of the | |||
1046 | object, and then subtract off the number of bits of | |||
1047 | the field itself. The result is the bit offset of | |||
1048 | the LSB of the field. */ | |||
1049 | if (mbr.at_bit_size > 0) | |||
1050 | { | |||
1051 | if (mbr.has_at_byte_size) | |||
1052 | { | |||
1053 | /* The size of the anonymous object containing | |||
1054 | the bit field is explicit, so use the | |||
1055 | indicated size (in bytes). */ | |||
1056 | anonymous_size = mbr.at_byte_size; | |||
1057 | } | |||
1058 | else | |||
1059 | { | |||
1060 | /* The size of the anonymous object containing | |||
1061 | the bit field matches the size of an object | |||
1062 | of the bit field's type. DWARF allows | |||
1063 | at_byte_size to be left out in such cases, as | |||
1064 | a debug information size optimization. */ | |||
1065 | anonymous_size = TYPE_LENGTH (list->field.type)(list->field.type)->length; | |||
1066 | } | |||
1067 | FIELD_BITPOS (list->field)((list->field).loc.bitpos) += | |||
1068 | anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; | |||
1069 | } | |||
1070 | } | |||
1071 | nfields++; | |||
1072 | break; | |||
1073 | default: | |||
1074 | process_dies (thisdie, nextdie, objfile); | |||
1075 | break; | |||
1076 | } | |||
1077 | thisdie = nextdie; | |||
1078 | } | |||
1079 | /* Now create the vector of fields, and record how big it is. We may | |||
1080 | not even have any fields, if this DIE was generated due to a reference | |||
1081 | to an anonymous structure or union. In this case, TYPE_FLAG_STUB is | |||
1082 | set, which clues gdb in to the fact that it needs to search elsewhere | |||
1083 | for the full structure definition. */ | |||
1084 | if (nfields == 0) | |||
1085 | { | |||
1086 | TYPE_FLAGS (type)(type)->main_type->flags |= TYPE_FLAG_STUB(1 << 2); | |||
1087 | } | |||
1088 | else | |||
1089 | { | |||
1090 | TYPE_NFIELDS (type)(type)->main_type->nfields = nfields; | |||
1091 | TYPE_FIELDS (type)(type)->main_type->fields = (struct field *) | |||
1092 | TYPE_ALLOC (type, sizeof (struct field) * nfields)((type)->main_type->objfile != ((void*)0) ? __extension__ ({ struct obstack *__h = (&(type)->main_type->objfile -> objfile_obstack); __extension__ ({ struct obstack *__o = (__h); int __len = ((sizeof (struct field) * nfields)); if (__o->chunk_limit - __o->next_free < __len) _obstack_newchunk (__o, __len); ((__o)->next_free += (__len)); (void) 0; }) ; __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask ) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1-> next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1->next_free = __o1->chunk_limit ; __o1->object_base = __o1->next_free; value; }); }) : xmalloc (sizeof (struct field) * nfields)); | |||
1093 | /* Copy the saved-up fields into the field vector. */ | |||
1094 | for (n = nfields; list; list = list->next) | |||
1095 | { | |||
1096 | TYPE_FIELD (type, --n)(type)->main_type->fields[--n] = list->field; | |||
1097 | } | |||
1098 | } | |||
1099 | return (type); | |||
1100 | } | |||
1101 | ||||
1102 | /* | |||
1103 | ||||
1104 | LOCAL FUNCTION | |||
1105 | ||||
1106 | read_structure_scope -- process all dies within struct or union | |||
1107 | ||||
1108 | SYNOPSIS | |||
1109 | ||||
1110 | static void read_structure_scope (struct dieinfo *dip, | |||
1111 | char *thisdie, char *enddie, struct objfile *objfile) | |||
1112 | ||||
1113 | DESCRIPTION | |||
1114 | ||||
1115 | Called when we find the DIE that starts a structure or union | |||
1116 | scope (definition) to process all dies that define the members | |||
1117 | of the structure or union. DIP is a pointer to the die info | |||
1118 | struct for the DIE that names the structure or union. | |||
1119 | ||||
1120 | NOTES | |||
1121 | ||||
1122 | Note that we need to call struct_type regardless of whether or not | |||
1123 | the DIE has an at_name attribute, since it might be an anonymous | |||
1124 | structure or union. This gets the type entered into our set of | |||
1125 | user defined types. | |||
1126 | ||||
1127 | However, if the structure is incomplete (an opaque struct/union) | |||
1128 | then suppress creating a symbol table entry for it since gdb only | |||
1129 | wants to find the one with the complete definition. Note that if | |||
1130 | it is complete, we just call new_symbol, which does it's own | |||
1131 | checking about whether the struct/union is anonymous or not (and | |||
1132 | suppresses creating a symbol table entry itself). | |||
1133 | ||||
1134 | */ | |||
1135 | ||||
1136 | static void | |||
1137 | read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie, | |||
1138 | struct objfile *objfile) | |||
1139 | { | |||
1140 | struct type *type; | |||
1141 | struct symbol *sym; | |||
1142 | ||||
1143 | type = struct_type (dip, thisdie, enddie, objfile); | |||
1144 | if (!TYPE_STUB (type)((type)->main_type->flags & (1 << 2))) | |||
1145 | { | |||
1146 | sym = new_symbol (dip, objfile); | |||
1147 | if (sym != NULL((void*)0)) | |||
1148 | { | |||
1149 | SYMBOL_TYPE (sym)(sym)->type = type; | |||
1150 | if (cu_language == language_cplus) | |||
1151 | { | |||
1152 | synthesize_typedef (dip, objfile, type); | |||
1153 | } | |||
1154 | } | |||
1155 | } | |||
1156 | } | |||
1157 | ||||
1158 | /* | |||
1159 | ||||
1160 | LOCAL FUNCTION | |||
1161 | ||||
1162 | decode_array_element_type -- decode type of the array elements | |||
1163 | ||||
1164 | SYNOPSIS | |||
1165 | ||||
1166 | static struct type *decode_array_element_type (char *scan, char *end) | |||
1167 | ||||
1168 | DESCRIPTION | |||
1169 | ||||
1170 | As the last step in decoding the array subscript information for an | |||
1171 | array DIE, we need to decode the type of the array elements. We are | |||
1172 | passed a pointer to this last part of the subscript information and | |||
1173 | must return the appropriate type. If the type attribute is not | |||
1174 | recognized, just warn about the problem and return type int. | |||
1175 | */ | |||
1176 | ||||
1177 | static struct type * | |||
1178 | decode_array_element_type (char *scan) | |||
1179 | { | |||
1180 | struct type *typep; | |||
1181 | DIE_REF die_ref; | |||
1182 | unsigned short attribute; | |||
1183 | unsigned short fundtype; | |||
1184 | int nbytes; | |||
1185 | ||||
1186 | attribute = target_to_host (scan, SIZEOF_ATTRIBUTE2, GET_UNSIGNED0, | |||
1187 | current_objfile); | |||
1188 | scan += SIZEOF_ATTRIBUTE2; | |||
1189 | nbytes = attribute_size (attribute); | |||
1190 | if (nbytes == -1) | |||
1191 | { | |||
1192 | bad_array_element_type_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", attribute); | |||
1193 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
1194 | } | |||
1195 | else | |||
1196 | { | |||
1197 | switch (attribute) | |||
1198 | { | |||
1199 | case AT_fund_type: | |||
1200 | fundtype = target_to_host (scan, nbytes, GET_UNSIGNED0, | |||
1201 | current_objfile); | |||
1202 | typep = decode_fund_type (fundtype); | |||
1203 | break; | |||
1204 | case AT_mod_fund_type: | |||
1205 | typep = decode_mod_fund_type (scan); | |||
1206 | break; | |||
1207 | case AT_user_def_type: | |||
1208 | die_ref = target_to_host (scan, nbytes, GET_UNSIGNED0, | |||
1209 | current_objfile); | |||
1210 | typep = lookup_utype (die_ref); | |||
1211 | if (typep == NULL((void*)0)) | |||
1212 | { | |||
1213 | typep = alloc_utype (die_ref, NULL((void*)0)); | |||
1214 | } | |||
1215 | break; | |||
1216 | case AT_mod_u_d_type: | |||
1217 | typep = decode_mod_u_d_type (scan); | |||
1218 | break; | |||
1219 | default: | |||
1220 | bad_array_element_type_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", attribute); | |||
1221 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
1222 | break; | |||
1223 | } | |||
1224 | } | |||
1225 | return (typep); | |||
1226 | } | |||
1227 | ||||
1228 | /* | |||
1229 | ||||
1230 | LOCAL FUNCTION | |||
1231 | ||||
1232 | decode_subscript_data_item -- decode array subscript item | |||
1233 | ||||
1234 | SYNOPSIS | |||
1235 | ||||
1236 | static struct type * | |||
1237 | decode_subscript_data_item (char *scan, char *end) | |||
1238 | ||||
1239 | DESCRIPTION | |||
1240 | ||||
1241 | The array subscripts and the data type of the elements of an | |||
1242 | array are described by a list of data items, stored as a block | |||
1243 | of contiguous bytes. There is a data item describing each array | |||
1244 | dimension, and a final data item describing the element type. | |||
1245 | The data items are ordered the same as their appearance in the | |||
1246 | source (I.E. leftmost dimension first, next to leftmost second, | |||
1247 | etc). | |||
1248 | ||||
1249 | The data items describing each array dimension consist of four | |||
1250 | parts: (1) a format specifier, (2) type type of the subscript | |||
1251 | index, (3) a description of the low bound of the array dimension, | |||
1252 | and (4) a description of the high bound of the array dimension. | |||
1253 | ||||
1254 | The last data item is the description of the type of each of | |||
1255 | the array elements. | |||
1256 | ||||
1257 | We are passed a pointer to the start of the block of bytes | |||
1258 | containing the remaining data items, and a pointer to the first | |||
1259 | byte past the data. This function recursively decodes the | |||
1260 | remaining data items and returns a type. | |||
1261 | ||||
1262 | If we somehow fail to decode some data, we complain about it | |||
1263 | and return a type "array of int". | |||
1264 | ||||
1265 | BUGS | |||
1266 | FIXME: This code only implements the forms currently used | |||
1267 | by the AT&T and GNU C compilers. | |||
1268 | ||||
1269 | The end pointer is supplied for error checking, maybe we should | |||
1270 | use it for that... | |||
1271 | */ | |||
1272 | ||||
1273 | static struct type * | |||
1274 | decode_subscript_data_item (char *scan, char *end) | |||
1275 | { | |||
1276 | struct type *typep = NULL((void*)0); /* Array type we are building */ | |||
1277 | struct type *nexttype; /* Type of each element (may be array) */ | |||
1278 | struct type *indextype; /* Type of this index */ | |||
1279 | struct type *rangetype; | |||
1280 | unsigned int format; | |||
1281 | unsigned short fundtype; | |||
1282 | unsigned long lowbound; | |||
1283 | unsigned long highbound; | |||
1284 | int nbytes; | |||
1285 | ||||
1286 | format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER1, GET_UNSIGNED0, | |||
1287 | current_objfile); | |||
1288 | scan += SIZEOF_FORMAT_SPECIFIER1; | |||
1289 | switch (format) | |||
1290 | { | |||
1291 | case FMT_ET: | |||
1292 | typep = decode_array_element_type (scan); | |||
1293 | break; | |||
1294 | case FMT_FT_C_C: | |||
1295 | fundtype = target_to_host (scan, SIZEOF_FMT_FT2, GET_UNSIGNED0, | |||
1296 | current_objfile); | |||
1297 | indextype = decode_fund_type (fundtype); | |||
1298 | scan += SIZEOF_FMT_FT2; | |||
1299 | nbytes = TARGET_FT_LONG_SIZE (current_objfile)((gdbarch_long_bit (current_gdbarch)) / 8); | |||
1300 | lowbound = target_to_host (scan, nbytes, GET_UNSIGNED0, current_objfile); | |||
1301 | scan += nbytes; | |||
1302 | highbound = target_to_host (scan, nbytes, GET_UNSIGNED0, current_objfile); | |||
1303 | scan += nbytes; | |||
1304 | nexttype = decode_subscript_data_item (scan, end); | |||
1305 | if (nexttype == NULL((void*)0)) | |||
1306 | { | |||
1307 | /* Munged subscript data or other problem, fake it. */ | |||
1308 | complaint (&symfile_complaints, | |||
1309 | "DIE @ 0x%x \"%s\", can't decode subscript data items", | |||
1310 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); | |||
1311 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
1312 | } | |||
1313 | rangetype = create_range_type ((struct type *) NULL((void*)0), indextype, | |||
1314 | lowbound, highbound); | |||
1315 | typep = create_array_type ((struct type *) NULL((void*)0), nexttype, rangetype); | |||
1316 | break; | |||
1317 | case FMT_FT_C_X: | |||
1318 | case FMT_FT_X_C: | |||
1319 | case FMT_FT_X_X: | |||
1320 | case FMT_UT_C_C: | |||
1321 | case FMT_UT_C_X: | |||
1322 | case FMT_UT_X_C: | |||
1323 | case FMT_UT_X_X: | |||
1324 | complaint (&symfile_complaints, | |||
1325 | "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", | |||
1326 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", format); | |||
1327 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
1328 | rangetype = create_range_type ((struct type *) NULL((void*)0), nexttype, 0, 0); | |||
1329 | typep = create_array_type ((struct type *) NULL((void*)0), nexttype, rangetype); | |||
1330 | break; | |||
1331 | default: | |||
1332 | complaint (&symfile_complaints, | |||
1333 | "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), | |||
1334 | DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", format); | |||
1335 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
1336 | rangetype = create_range_type ((struct type *) NULL((void*)0), nexttype, 0, 0); | |||
1337 | typep = create_array_type ((struct type *) NULL((void*)0), nexttype, rangetype); | |||
1338 | break; | |||
1339 | } | |||
1340 | return (typep); | |||
1341 | } | |||
1342 | ||||
1343 | /* | |||
1344 | ||||
1345 | LOCAL FUNCTION | |||
1346 | ||||
1347 | dwarf_read_array_type -- read TAG_array_type DIE | |||
1348 | ||||
1349 | SYNOPSIS | |||
1350 | ||||
1351 | static void dwarf_read_array_type (struct dieinfo *dip) | |||
1352 | ||||
1353 | DESCRIPTION | |||
1354 | ||||
1355 | Extract all information from a TAG_array_type DIE and add to | |||
1356 | the user defined type vector. | |||
1357 | */ | |||
1358 | ||||
1359 | static void | |||
1360 | dwarf_read_array_type (struct dieinfo *dip) | |||
1361 | { | |||
1362 | struct type *type; | |||
1363 | struct type *utype; | |||
1364 | char *sub; | |||
1365 | char *subend; | |||
1366 | unsigned short blocksz; | |||
1367 | int nbytes; | |||
1368 | ||||
1369 | if (dip->at_ordering != ORD_row_major) | |||
1370 | { | |||
1371 | /* FIXME: Can gdb even handle column major arrays? */ | |||
1372 | complaint (&symfile_complaints, | |||
1373 | "DIE @ 0x%x \"%s\", array not row major; not handled correctly", | |||
1374 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); | |||
1375 | } | |||
1376 | sub = dip->at_subscr_data; | |||
1377 | if (sub != NULL((void*)0)) | |||
1378 | { | |||
1379 | nbytes = attribute_size (AT_subscr_data); | |||
1380 | blocksz = target_to_host (sub, nbytes, GET_UNSIGNED0, current_objfile); | |||
1381 | subend = sub + nbytes + blocksz; | |||
1382 | sub += nbytes; | |||
1383 | type = decode_subscript_data_item (sub, subend); | |||
1384 | utype = lookup_utype (dip->die_ref); | |||
1385 | if (utype == NULL((void*)0)) | |||
1386 | { | |||
1387 | /* Install user defined type that has not been referenced yet. */ | |||
1388 | alloc_utype (dip->die_ref, type); | |||
1389 | } | |||
1390 | else if (TYPE_CODE (utype)(utype)->main_type->code == TYPE_CODE_UNDEF) | |||
1391 | { | |||
1392 | /* Ick! A forward ref has already generated a blank type in our | |||
1393 | slot, and this type probably already has things pointing to it | |||
1394 | (which is what caused it to be created in the first place). | |||
1395 | If it's just a place holder we can plop our fully defined type | |||
1396 | on top of it. We can't recover the space allocated for our | |||
1397 | new type since it might be on an obstack, but we could reuse | |||
1398 | it if we kept a list of them, but it might not be worth it | |||
1399 | (FIXME). */ | |||
1400 | *utype = *type; | |||
1401 | } | |||
1402 | else | |||
1403 | { | |||
1404 | /* Double ick! Not only is a type already in our slot, but | |||
1405 | someone has decorated it. Complain and leave it alone. */ | |||
1406 | dup_user_type_definition_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); | |||
1407 | } | |||
1408 | } | |||
1409 | } | |||
1410 | ||||
1411 | /* | |||
1412 | ||||
1413 | LOCAL FUNCTION | |||
1414 | ||||
1415 | read_tag_pointer_type -- read TAG_pointer_type DIE | |||
1416 | ||||
1417 | SYNOPSIS | |||
1418 | ||||
1419 | static void read_tag_pointer_type (struct dieinfo *dip) | |||
1420 | ||||
1421 | DESCRIPTION | |||
1422 | ||||
1423 | Extract all information from a TAG_pointer_type DIE and add to | |||
1424 | the user defined type vector. | |||
1425 | */ | |||
1426 | ||||
1427 | static void | |||
1428 | read_tag_pointer_type (struct dieinfo *dip) | |||
1429 | { | |||
1430 | struct type *type; | |||
1431 | struct type *utype; | |||
1432 | ||||
1433 | type = decode_die_type (dip); | |||
1434 | utype = lookup_utype (dip->die_ref); | |||
1435 | if (utype == NULL((void*)0)) | |||
1436 | { | |||
1437 | utype = lookup_pointer_type (type); | |||
1438 | alloc_utype (dip->die_ref, utype); | |||
1439 | } | |||
1440 | else | |||
1441 | { | |||
1442 | TYPE_TARGET_TYPE (utype)(utype)->main_type->target_type = type; | |||
1443 | TYPE_POINTER_TYPE (type)(type)->pointer_type = utype; | |||
1444 | ||||
1445 | /* We assume the machine has only one representation for pointers! */ | |||
1446 | /* FIXME: Possably a poor assumption */ | |||
1447 | TYPE_LENGTH (utype)(utype)->length = TARGET_PTR_BIT(gdbarch_ptr_bit (current_gdbarch)) / TARGET_CHAR_BIT8; | |||
1448 | TYPE_CODE (utype)(utype)->main_type->code = TYPE_CODE_PTR; | |||
1449 | } | |||
1450 | } | |||
1451 | ||||
1452 | /* | |||
1453 | ||||
1454 | LOCAL FUNCTION | |||
1455 | ||||
1456 | read_tag_string_type -- read TAG_string_type DIE | |||
1457 | ||||
1458 | SYNOPSIS | |||
1459 | ||||
1460 | static void read_tag_string_type (struct dieinfo *dip) | |||
1461 | ||||
1462 | DESCRIPTION | |||
1463 | ||||
1464 | Extract all information from a TAG_string_type DIE and add to | |||
1465 | the user defined type vector. It isn't really a user defined | |||
1466 | type, but it behaves like one, with other DIE's using an | |||
1467 | AT_user_def_type attribute to reference it. | |||
1468 | */ | |||
1469 | ||||
1470 | static void | |||
1471 | read_tag_string_type (struct dieinfo *dip) | |||
1472 | { | |||
1473 | struct type *utype; | |||
1474 | struct type *indextype; | |||
1475 | struct type *rangetype; | |||
1476 | unsigned long lowbound = 0; | |||
1477 | unsigned long highbound; | |||
1478 | ||||
1479 | if (dip->has_at_byte_size) | |||
1480 | { | |||
1481 | /* A fixed bounds string */ | |||
1482 | highbound = dip->at_byte_size - 1; | |||
1483 | } | |||
1484 | else | |||
1485 | { | |||
1486 | /* A varying length string. Stub for now. (FIXME) */ | |||
1487 | highbound = 1; | |||
1488 | } | |||
1489 | indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
1490 | rangetype = create_range_type ((struct type *) NULL((void*)0), indextype, lowbound, | |||
1491 | highbound); | |||
1492 | ||||
1493 | utype = lookup_utype (dip->die_ref); | |||
1494 | if (utype == NULL((void*)0)) | |||
1495 | { | |||
1496 | /* No type defined, go ahead and create a blank one to use. */ | |||
1497 | utype = alloc_utype (dip->die_ref, (struct type *) NULL((void*)0)); | |||
1498 | } | |||
1499 | else | |||
1500 | { | |||
1501 | /* Already a type in our slot due to a forward reference. Make sure it | |||
1502 | is a blank one. If not, complain and leave it alone. */ | |||
1503 | if (TYPE_CODE (utype)(utype)->main_type->code != TYPE_CODE_UNDEF) | |||
1504 | { | |||
1505 | dup_user_type_definition_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); | |||
1506 | return; | |||
1507 | } | |||
1508 | } | |||
1509 | ||||
1510 | /* Create the string type using the blank type we either found or created. */ | |||
1511 | utype = create_string_type (utype, rangetype); | |||
1512 | } | |||
1513 | ||||
1514 | /* | |||
1515 | ||||
1516 | LOCAL FUNCTION | |||
1517 | ||||
1518 | read_subroutine_type -- process TAG_subroutine_type dies | |||
1519 | ||||
1520 | SYNOPSIS | |||
1521 | ||||
1522 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, | |||
1523 | char *enddie) | |||
1524 | ||||
1525 | DESCRIPTION | |||
1526 | ||||
1527 | Handle DIES due to C code like: | |||
1528 | ||||
1529 | struct foo { | |||
1530 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |||
1531 | int b; | |||
1532 | }; | |||
1533 | ||||
1534 | NOTES | |||
1535 | ||||
1536 | The parameter DIES are currently ignored. See if gdb has a way to | |||
1537 | include this info in it's type system, and decode them if so. Is | |||
1538 | this what the type structure's "arg_types" field is for? (FIXME) | |||
1539 | */ | |||
1540 | ||||
1541 | static void | |||
1542 | read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie) | |||
1543 | { | |||
1544 | struct type *type; /* Type that this function returns */ | |||
1545 | struct type *ftype; /* Function that returns above type */ | |||
1546 | ||||
1547 | /* Decode the type that this subroutine returns */ | |||
1548 | ||||
1549 | type = decode_die_type (dip); | |||
1550 | ||||
1551 | /* Check to see if we already have a partially constructed user | |||
1552 | defined type for this DIE, from a forward reference. */ | |||
1553 | ||||
1554 | ftype = lookup_utype (dip->die_ref); | |||
1555 | if (ftype == NULL((void*)0)) | |||
1556 | { | |||
1557 | /* This is the first reference to one of these types. Make | |||
1558 | a new one and place it in the user defined types. */ | |||
1559 | ftype = lookup_function_type (type); | |||
1560 | alloc_utype (dip->die_ref, ftype); | |||
1561 | } | |||
1562 | else if (TYPE_CODE (ftype)(ftype)->main_type->code == TYPE_CODE_UNDEF) | |||
1563 | { | |||
1564 | /* We have an existing partially constructed type, so bash it | |||
1565 | into the correct type. */ | |||
1566 | TYPE_TARGET_TYPE (ftype)(ftype)->main_type->target_type = type; | |||
1567 | TYPE_LENGTH (ftype)(ftype)->length = 1; | |||
1568 | TYPE_CODE (ftype)(ftype)->main_type->code = TYPE_CODE_FUNC; | |||
1569 | } | |||
1570 | else | |||
1571 | { | |||
1572 | dup_user_type_definition_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); | |||
1573 | } | |||
1574 | } | |||
1575 | ||||
1576 | /* | |||
1577 | ||||
1578 | LOCAL FUNCTION | |||
1579 | ||||
1580 | read_enumeration -- process dies which define an enumeration | |||
1581 | ||||
1582 | SYNOPSIS | |||
1583 | ||||
1584 | static void read_enumeration (struct dieinfo *dip, char *thisdie, | |||
1585 | char *enddie, struct objfile *objfile) | |||
1586 | ||||
1587 | DESCRIPTION | |||
1588 | ||||
1589 | Given a pointer to a die which begins an enumeration, process all | |||
1590 | the dies that define the members of the enumeration. | |||
1591 | ||||
1592 | NOTES | |||
1593 | ||||
1594 | Note that we need to call enum_type regardless of whether or not we | |||
1595 | have a symbol, since we might have an enum without a tag name (thus | |||
1596 | no symbol for the tagname). | |||
1597 | */ | |||
1598 | ||||
1599 | static void | |||
1600 | read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie, | |||
1601 | struct objfile *objfile) | |||
1602 | { | |||
1603 | struct type *type; | |||
1604 | struct symbol *sym; | |||
1605 | ||||
1606 | type = enum_type (dip, objfile); | |||
1607 | sym = new_symbol (dip, objfile); | |||
1608 | if (sym != NULL((void*)0)) | |||
1609 | { | |||
1610 | SYMBOL_TYPE (sym)(sym)->type = type; | |||
1611 | if (cu_language == language_cplus) | |||
1612 | { | |||
1613 | synthesize_typedef (dip, objfile, type); | |||
1614 | } | |||
1615 | } | |||
1616 | } | |||
1617 | ||||
1618 | /* | |||
1619 | ||||
1620 | LOCAL FUNCTION | |||
1621 | ||||
1622 | enum_type -- decode and return a type for an enumeration | |||
1623 | ||||
1624 | SYNOPSIS | |||
1625 | ||||
1626 | static type *enum_type (struct dieinfo *dip, struct objfile *objfile) | |||
1627 | ||||
1628 | DESCRIPTION | |||
1629 | ||||
1630 | Given a pointer to a die information structure for the die which | |||
1631 | starts an enumeration, process all the dies that define the members | |||
1632 | of the enumeration and return a type pointer for the enumeration. | |||
1633 | ||||
1634 | At the same time, for each member of the enumeration, create a | |||
1635 | symbol for it with domain VAR_DOMAIN and class LOC_CONST, | |||
1636 | and give it the type of the enumeration itself. | |||
1637 | ||||
1638 | NOTES | |||
1639 | ||||
1640 | Note that the DWARF specification explicitly mandates that enum | |||
1641 | constants occur in reverse order from the source program order, | |||
1642 | for "consistency" and because this ordering is easier for many | |||
1643 | compilers to generate. (Draft 6, sec 3.8.5, Enumeration type | |||
1644 | Entries). Because gdb wants to see the enum members in program | |||
1645 | source order, we have to ensure that the order gets reversed while | |||
1646 | we are processing them. | |||
1647 | */ | |||
1648 | ||||
1649 | static struct type * | |||
1650 | enum_type (struct dieinfo *dip, struct objfile *objfile) | |||
1651 | { | |||
1652 | struct type *type; | |||
1653 | struct nextfield | |||
1654 | { | |||
1655 | struct nextfield *next; | |||
1656 | struct field field; | |||
1657 | }; | |||
1658 | struct nextfield *list = NULL((void*)0); | |||
1659 | struct nextfield *new; | |||
1660 | int nfields = 0; | |||
1661 | int n; | |||
1662 | char *scan; | |||
1663 | char *listend; | |||
1664 | unsigned short blocksz; | |||
1665 | struct symbol *sym; | |||
1666 | int nbytes; | |||
1667 | int unsigned_enum = 1; | |||
1668 | ||||
1669 | type = lookup_utype (dip->die_ref); | |||
1670 | if (type == NULL((void*)0)) | |||
1671 | { | |||
1672 | /* No forward references created an empty type, so install one now */ | |||
1673 | type = alloc_utype (dip->die_ref, NULL((void*)0)); | |||
1674 | } | |||
1675 | TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_ENUM; | |||
1676 | /* Some compilers try to be helpful by inventing "fake" names for | |||
1677 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". | |||
1678 | Thanks, but no thanks... */ | |||
1679 | if (dip->at_name != NULL((void*)0) | |||
1680 | && *dip->at_name != '~' | |||
1681 | && *dip->at_name != '.') | |||
1682 | { | |||
1683 | TYPE_TAG_NAME (type)(type)->main_type->tag_name = obconcat (&objfile->objfile_obstack, | |||
1684 | "", "", dip->at_name); | |||
1685 | } | |||
1686 | if (dip->at_byte_size != 0) | |||
1687 | { | |||
1688 | TYPE_LENGTH (type)(type)->length = dip->at_byte_size; | |||
1689 | } | |||
1690 | scan = dip->at_element_list; | |||
1691 | if (scan != NULL((void*)0)) | |||
1692 | { | |||
1693 | if (dip->short_element_list) | |||
1694 | { | |||
1695 | nbytes = attribute_size (AT_short_element_list(0x00f0|FORM_BLOCK2)); | |||
1696 | } | |||
1697 | else | |||
1698 | { | |||
1699 | nbytes = attribute_size (AT_element_list); | |||
1700 | } | |||
1701 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED0, objfile); | |||
1702 | listend = scan + nbytes + blocksz; | |||
1703 | scan += nbytes; | |||
1704 | while (scan < listend) | |||
1705 | { | |||
1706 | new = (struct nextfield *) alloca (sizeof (struct nextfield))__builtin_alloca(sizeof (struct nextfield)); | |||
1707 | new->next = list; | |||
1708 | list = new; | |||
1709 | FIELD_TYPE (list->field)((list->field).type) = NULL((void*)0); | |||
1710 | FIELD_BITSIZE (list->field)((list->field).bitsize) = 0; | |||
1711 | FIELD_STATIC_KIND (list->field)((list->field).static_kind) = 0; | |||
1712 | FIELD_BITPOS (list->field)((list->field).loc.bitpos) = | |||
1713 | target_to_host (scan, TARGET_FT_LONG_SIZE (objfile)((gdbarch_long_bit (current_gdbarch)) / 8), GET_SIGNED1, | |||
1714 | objfile); | |||
1715 | scan += TARGET_FT_LONG_SIZE (objfile)((gdbarch_long_bit (current_gdbarch)) / 8); | |||
1716 | list->field.name = obsavestring (scan, strlen (scan), | |||
1717 | &objfile->objfile_obstack); | |||
1718 | scan += strlen (scan) + 1; | |||
1719 | nfields++; | |||
1720 | /* Handcraft a new symbol for this enum member. */ | |||
1721 | sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (sizeof (struct symbol))); if (__o->chunk_limit - __o-> next_free < __len) _obstack_newchunk (__o, __len); ((__o)-> next_free += (__len)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base ; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char * ) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }) | |||
1722 | sizeof (struct symbol))__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (sizeof (struct symbol))); if (__o->chunk_limit - __o-> next_free < __len) _obstack_newchunk (__o, __len); ((__o)-> next_free += (__len)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base ; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char * ) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }); | |||
1723 | memset (sym, 0, sizeof (struct symbol)); | |||
1724 | DEPRECATED_SYMBOL_NAME (sym)(sym)->ginfo.name = create_name (list->field.name, | |||
1725 | &objfile->objfile_obstack); | |||
1726 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language)(symbol_init_language_specific (&(sym)->ginfo, (cu_language ))); | |||
1727 | SYMBOL_DOMAIN (sym)(sym)->domain = VAR_DOMAIN; | |||
1728 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_CONST; | |||
1729 | SYMBOL_TYPE (sym)(sym)->type = type; | |||
1730 | SYMBOL_VALUE (sym)(sym)->ginfo.value.ivalue = FIELD_BITPOS (list->field)((list->field).loc.bitpos); | |||
1731 | if (SYMBOL_VALUE (sym)(sym)->ginfo.value.ivalue < 0) | |||
1732 | unsigned_enum = 0; | |||
1733 | add_symbol_to_list (sym, list_in_scope); | |||
1734 | } | |||
1735 | /* Now create the vector of fields, and record how big it is. This is | |||
1736 | where we reverse the order, by pulling the members off the list in | |||
1737 | reverse order from how they were inserted. If we have no fields | |||
1738 | (this is apparently possible in C++) then skip building a field | |||
1739 | vector. */ | |||
1740 | if (nfields > 0) | |||
1741 | { | |||
1742 | if (unsigned_enum) | |||
1743 | TYPE_FLAGS (type)(type)->main_type->flags |= TYPE_FLAG_UNSIGNED(1 << 0); | |||
1744 | TYPE_NFIELDS (type)(type)->main_type->nfields = nfields; | |||
1745 | TYPE_FIELDS (type)(type)->main_type->fields = (struct field *) | |||
1746 | obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields)__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (sizeof (struct field) * nfields)); if (__o->chunk_limit - __o->next_free < __len) _obstack_newchunk (__o, __len) ; ((__o)->next_free += (__len)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void * ) __o1->object_base; if (__o1->next_free == value) __o1 ->maybe_empty_object = 1; __o1->next_free = (((((__o1-> next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1 ->alignment_mask)) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1 ->chunk) __o1->next_free = __o1->chunk_limit; __o1-> object_base = __o1->next_free; value; }); }); | |||
1747 | /* Copy the saved-up fields into the field vector. */ | |||
1748 | for (n = 0; (n < nfields) && (list != NULL((void*)0)); list = list->next) | |||
1749 | { | |||
1750 | TYPE_FIELD (type, n++)(type)->main_type->fields[n++] = list->field; | |||
1751 | } | |||
1752 | } | |||
1753 | } | |||
1754 | return (type); | |||
1755 | } | |||
1756 | ||||
1757 | /* | |||
1758 | ||||
1759 | LOCAL FUNCTION | |||
1760 | ||||
1761 | read_func_scope -- process all dies within a function scope | |||
1762 | ||||
1763 | DESCRIPTION | |||
1764 | ||||
1765 | Process all dies within a given function scope. We are passed | |||
1766 | a die information structure pointer DIP for the die which | |||
1767 | starts the function scope, and pointers into the raw die data | |||
1768 | that define the dies within the function scope. | |||
1769 | ||||
1770 | For now, we ignore lexical block scopes within the function. | |||
1771 | The problem is that AT&T cc does not define a DWARF lexical | |||
1772 | block scope for the function itself, while gcc defines a | |||
1773 | lexical block scope for the function. We need to think about | |||
1774 | how to handle this difference, or if it is even a problem. | |||
1775 | (FIXME) | |||
1776 | */ | |||
1777 | ||||
1778 | static void | |||
1779 | read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie, | |||
1780 | struct objfile *objfile) | |||
1781 | { | |||
1782 | struct context_stack *new; | |||
1783 | ||||
1784 | /* AT_name is absent if the function is described with an | |||
1785 | AT_abstract_origin tag. | |||
1786 | Ignore the function description for now to avoid GDB core dumps. | |||
1787 | FIXME: Add code to handle AT_abstract_origin tags properly. */ | |||
1788 | if (dip->at_name == NULL((void*)0)) | |||
1789 | { | |||
1790 | complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing", | |||
1791 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0)); | |||
1792 | return; | |||
1793 | } | |||
1794 | ||||
1795 | new = push_context (0, dip->at_low_pc); | |||
1796 | new->name = new_symbol (dip, objfile); | |||
1797 | list_in_scope = &local_symbols; | |||
1798 | process_dies (thisdie + dip->die_length, enddie, objfile); | |||
1799 | new = pop_context (); | |||
1800 | /* Make a block for the local symbols within. */ | |||
1801 | finish_block (new->name, &local_symbols, new->old_blocks, | |||
1802 | new->start_addr, dip->at_high_pc, objfile); | |||
1803 | list_in_scope = &file_symbols; | |||
1804 | } | |||
1805 | ||||
1806 | ||||
1807 | /* | |||
1808 | ||||
1809 | LOCAL FUNCTION | |||
1810 | ||||
1811 | handle_producer -- process the AT_producer attribute | |||
1812 | ||||
1813 | DESCRIPTION | |||
1814 | ||||
1815 | Perform any operations that depend on finding a particular | |||
1816 | AT_producer attribute. | |||
1817 | ||||
1818 | */ | |||
1819 | ||||
1820 | static void | |||
1821 | handle_producer (char *producer) | |||
1822 | { | |||
1823 | ||||
1824 | /* If this compilation unit was compiled with g++ or gcc, then set the | |||
1825 | processing_gcc_compilation flag. */ | |||
1826 | ||||
1827 | if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))(strncmp ((producer), ("GNU C "), (strlen ("GNU C "))) == 0)) | |||
1828 | { | |||
1829 | char version = producer[strlen (GCC_PRODUCER"GNU C ")]; | |||
1830 | processing_gcc_compilation = (version == '2' ? 2 : 1); | |||
1831 | } | |||
1832 | else | |||
1833 | { | |||
1834 | processing_gcc_compilation = | |||
1835 | strncmp (producer, GPLUS_PRODUCER"GNU C++ ", strlen (GPLUS_PRODUCER"GNU C++ ")) == 0; | |||
1836 | } | |||
1837 | ||||
1838 | /* Select a demangling style if we can identify the producer and if | |||
1839 | the current style is auto. We leave the current style alone if it | |||
1840 | is not auto. We also leave the demangling style alone if we find a | |||
1841 | gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ | |||
1842 | ||||
1843 | if (AUTO_DEMANGLING(((int) current_demangling_style) & (1 << 8))) | |||
1844 | { | |||
1845 | if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))(strncmp ((producer), ("GNU C++ "), (strlen ("GNU C++ "))) == 0)) | |||
1846 | { | |||
1847 | #if 0 | |||
1848 | /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't | |||
1849 | know whether it will use the old style or v3 mangling. */ | |||
1850 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING"gnu"); | |||
1851 | #endif | |||
1852 | } | |||
1853 | else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))(strncmp ((producer), ("NCR C/C++"), (strlen ("NCR C/C++"))) == 0)) | |||
1854 | { | |||
1855 | set_demangling_style (LUCID_DEMANGLING_STYLE_STRING"lucid"); | |||
1856 | } | |||
1857 | } | |||
1858 | } | |||
1859 | ||||
1860 | ||||
1861 | /* | |||
1862 | ||||
1863 | LOCAL FUNCTION | |||
1864 | ||||
1865 | read_file_scope -- process all dies within a file scope | |||
1866 | ||||
1867 | DESCRIPTION | |||
1868 | ||||
1869 | Process all dies within a given file scope. We are passed a | |||
1870 | pointer to the die information structure for the die which | |||
1871 | starts the file scope, and pointers into the raw die data which | |||
1872 | mark the range of dies within the file scope. | |||
1873 | ||||
1874 | When the partial symbol table is built, the file offset for the line | |||
1875 | number table for each compilation unit is saved in the partial symbol | |||
1876 | table entry for that compilation unit. As the symbols for each | |||
1877 | compilation unit are read, the line number table is read into memory | |||
1878 | and the variable lnbase is set to point to it. Thus all we have to | |||
1879 | do is use lnbase to access the line number table for the current | |||
1880 | compilation unit. | |||
1881 | */ | |||
1882 | ||||
1883 | static void | |||
1884 | read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie, | |||
1885 | struct objfile *objfile) | |||
1886 | { | |||
1887 | struct cleanup *back_to; | |||
1888 | struct symtab *symtab; | |||
1889 | ||||
1890 | set_cu_language (dip); | |||
1891 | if (dip->at_producer != NULL((void*)0)) | |||
1892 | { | |||
1893 | handle_producer (dip->at_producer); | |||
1894 | } | |||
1895 | numutypes = (enddie - thisdie) / 4; | |||
1896 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |||
1897 | back_to = make_cleanup (free_utypes, NULL((void*)0)); | |||
1898 | memset (utypes, 0, numutypes * sizeof (struct type *)); | |||
1899 | memset (ftypes, 0, FT_NUM_MEMBERS29 * sizeof (struct type *)); | |||
1900 | start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc); | |||
1901 | record_debugformat ("DWARF 1"); | |||
1902 | decode_line_numbers (lnbase); | |||
1903 | process_dies (thisdie + dip->die_length, enddie, objfile); | |||
1904 | ||||
1905 | symtab = end_symtab (dip->at_high_pc, objfile, 0); | |||
1906 | if (symtab != NULL((void*)0)) | |||
1907 | { | |||
1908 | symtab->language = cu_language; | |||
1909 | } | |||
1910 | do_cleanups (back_to); | |||
1911 | } | |||
1912 | ||||
1913 | /* | |||
1914 | ||||
1915 | LOCAL FUNCTION | |||
1916 | ||||
1917 | process_dies -- process a range of DWARF Information Entries | |||
1918 | ||||
1919 | SYNOPSIS | |||
1920 | ||||
1921 | static void process_dies (char *thisdie, char *enddie, | |||
1922 | struct objfile *objfile) | |||
1923 | ||||
1924 | DESCRIPTION | |||
1925 | ||||
1926 | Process all DIE's in a specified range. May be (and almost | |||
1927 | certainly will be) called recursively. | |||
1928 | */ | |||
1929 | ||||
1930 | static void | |||
1931 | process_dies (char *thisdie, char *enddie, struct objfile *objfile) | |||
1932 | { | |||
1933 | char *nextdie; | |||
1934 | struct dieinfo di; | |||
1935 | ||||
1936 | while (thisdie < enddie) | |||
1937 | { | |||
1938 | basicdieinfo (&di, thisdie, objfile); | |||
1939 | if (di.die_length
| |||
1940 | { | |||
1941 | break; | |||
1942 | } | |||
1943 | else if (di.die_tag == TAG_padding) | |||
1944 | { | |||
1945 | nextdie = thisdie + di.die_length; | |||
1946 | } | |||
1947 | else | |||
1948 | { | |||
1949 | completedieinfo (&di, objfile); | |||
1950 | if (di.at_sibling != 0) | |||
1951 | { | |||
1952 | nextdie = dbbase + di.at_sibling - dbroff; | |||
1953 | } | |||
1954 | else | |||
1955 | { | |||
1956 | nextdie = thisdie + di.die_length; | |||
1957 | } | |||
1958 | /* I think that these are always text, not data, addresses. */ | |||
1959 | di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc)(gdbarch_smash_text_address (current_gdbarch, di.at_low_pc)); | |||
1960 | di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc)(gdbarch_smash_text_address (current_gdbarch, di.at_high_pc)); | |||
1961 | switch (di.die_tag) | |||
1962 | { | |||
1963 | case TAG_compile_unit: | |||
1964 | /* Skip Tag_compile_unit if we are already inside a compilation | |||
1965 | unit, we are unable to handle nested compilation units | |||
1966 | properly (FIXME). */ | |||
1967 | if (current_subfile == NULL((void*)0)) | |||
1968 | read_file_scope (&di, thisdie, nextdie, objfile); | |||
1969 | else | |||
1970 | nextdie = thisdie + di.die_length; | |||
1971 | break; | |||
1972 | case TAG_global_subroutine: | |||
1973 | case TAG_subroutine: | |||
1974 | if (di.has_at_low_pc) | |||
1975 | { | |||
1976 | read_func_scope (&di, thisdie, nextdie, objfile); | |||
1977 | } | |||
1978 | break; | |||
1979 | case TAG_lexical_block: | |||
1980 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); | |||
1981 | break; | |||
1982 | case TAG_class_type: | |||
1983 | case TAG_structure_type: | |||
1984 | case TAG_union_type: | |||
1985 | read_structure_scope (&di, thisdie, nextdie, objfile); | |||
1986 | break; | |||
1987 | case TAG_enumeration_type: | |||
1988 | read_enumeration (&di, thisdie, nextdie, objfile); | |||
1989 | break; | |||
1990 | case TAG_subroutine_type: | |||
1991 | read_subroutine_type (&di, thisdie, nextdie); | |||
1992 | break; | |||
1993 | case TAG_array_type: | |||
1994 | dwarf_read_array_type (&di); | |||
1995 | break; | |||
1996 | case TAG_pointer_type: | |||
1997 | read_tag_pointer_type (&di); | |||
1998 | break; | |||
1999 | case TAG_string_type: | |||
2000 | read_tag_string_type (&di); | |||
2001 | break; | |||
2002 | default: | |||
2003 | new_symbol (&di, objfile); | |||
2004 | break; | |||
2005 | } | |||
2006 | } | |||
2007 | thisdie = nextdie; | |||
2008 | } | |||
2009 | } | |||
2010 | ||||
2011 | /* | |||
2012 | ||||
2013 | LOCAL FUNCTION | |||
2014 | ||||
2015 | decode_line_numbers -- decode a line number table fragment | |||
2016 | ||||
2017 | SYNOPSIS | |||
2018 | ||||
2019 | static void decode_line_numbers (char *tblscan, char *tblend, | |||
2020 | long length, long base, long line, long pc) | |||
2021 | ||||
2022 | DESCRIPTION | |||
2023 | ||||
2024 | Translate the DWARF line number information to gdb form. | |||
2025 | ||||
2026 | The ".line" section contains one or more line number tables, one for | |||
2027 | each ".line" section from the objects that were linked. | |||
2028 | ||||
2029 | The AT_stmt_list attribute for each TAG_source_file entry in the | |||
2030 | ".debug" section contains the offset into the ".line" section for the | |||
2031 | start of the table for that file. | |||
2032 | ||||
2033 | The table itself has the following structure: | |||
2034 | ||||
2035 | <table length><base address><source statement entry> | |||
2036 | 4 bytes 4 bytes 10 bytes | |||
2037 | ||||
2038 | The table length is the total size of the table, including the 4 bytes | |||
2039 | for the length information. | |||
2040 | ||||
2041 | The base address is the address of the first instruction generated | |||
2042 | for the source file. | |||
2043 | ||||
2044 | Each source statement entry has the following structure: | |||
2045 | ||||
2046 | <line number><statement position><address delta> | |||
2047 | 4 bytes 2 bytes 4 bytes | |||
2048 | ||||
2049 | The line number is relative to the start of the file, starting with | |||
2050 | line 1. | |||
2051 | ||||
2052 | The statement position either -1 (0xFFFF) or the number of characters | |||
2053 | from the beginning of the line to the beginning of the statement. | |||
2054 | ||||
2055 | The address delta is the difference between the base address and | |||
2056 | the address of the first instruction for the statement. | |||
2057 | ||||
2058 | Note that we must copy the bytes from the packed table to our local | |||
2059 | variables before attempting to use them, to avoid alignment problems | |||
2060 | on some machines, particularly RISC processors. | |||
2061 | ||||
2062 | BUGS | |||
2063 | ||||
2064 | Does gdb expect the line numbers to be sorted? They are now by | |||
2065 | chance/luck, but are not required to be. (FIXME) | |||
2066 | ||||
2067 | The line with number 0 is unused, gdb apparently can discover the | |||
2068 | span of the last line some other way. How? (FIXME) | |||
2069 | */ | |||
2070 | ||||
2071 | static void | |||
2072 | decode_line_numbers (char *linetable) | |||
2073 | { | |||
2074 | char *tblscan; | |||
2075 | char *tblend; | |||
2076 | unsigned long length; | |||
2077 | unsigned long base; | |||
2078 | unsigned long line; | |||
2079 | unsigned long pc; | |||
2080 | ||||
2081 | if (linetable != NULL((void*)0)) | |||
2082 | { | |||
2083 | tblscan = tblend = linetable; | |||
2084 | length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH4, GET_UNSIGNED0, | |||
2085 | current_objfile); | |||
2086 | tblscan += SIZEOF_LINETBL_LENGTH4; | |||
2087 | tblend += length; | |||
2088 | base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile)((gdbarch_ptr_bit (current_gdbarch)) / 8), | |||
2089 | GET_UNSIGNED0, current_objfile); | |||
2090 | tblscan += TARGET_FT_POINTER_SIZE (objfile)((gdbarch_ptr_bit (current_gdbarch)) / 8); | |||
2091 | base += baseaddr; | |||
2092 | while (tblscan < tblend) | |||
2093 | { | |||
2094 | line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO4, GET_UNSIGNED0, | |||
2095 | current_objfile); | |||
2096 | tblscan += SIZEOF_LINETBL_LINENO4 + SIZEOF_LINETBL_STMT2; | |||
2097 | pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA4, GET_UNSIGNED0, | |||
2098 | current_objfile); | |||
2099 | tblscan += SIZEOF_LINETBL_DELTA4; | |||
2100 | pc += base; | |||
2101 | if (line != 0) | |||
2102 | { | |||
2103 | record_line (current_subfile, line, pc); | |||
2104 | } | |||
2105 | } | |||
2106 | } | |||
2107 | } | |||
2108 | ||||
2109 | /* | |||
2110 | ||||
2111 | LOCAL FUNCTION | |||
2112 | ||||
2113 | locval -- compute the value of a location attribute | |||
2114 | ||||
2115 | SYNOPSIS | |||
2116 | ||||
2117 | static int locval (struct dieinfo *dip) | |||
2118 | ||||
2119 | DESCRIPTION | |||
2120 | ||||
2121 | Given pointer to a string of bytes that define a location, compute | |||
2122 | the location and return the value. | |||
2123 | A location description containing no atoms indicates that the | |||
2124 | object is optimized out. The optimized_out flag is set for those, | |||
2125 | the return value is meaningless. | |||
2126 | ||||
2127 | When computing values involving the current value of the frame pointer, | |||
2128 | the value zero is used, which results in a value relative to the frame | |||
2129 | pointer, rather than the absolute value. This is what GDB wants | |||
2130 | anyway. | |||
2131 | ||||
2132 | When the result is a register number, the isreg flag is set, otherwise | |||
2133 | it is cleared. This is a kludge until we figure out a better | |||
2134 | way to handle the problem. Gdb's design does not mesh well with the | |||
2135 | DWARF notion of a location computing interpreter, which is a shame | |||
2136 | because the flexibility goes unused. | |||
2137 | ||||
2138 | NOTES | |||
2139 | ||||
2140 | Note that stack[0] is unused except as a default error return. | |||
2141 | Note that stack overflow is not yet handled. | |||
2142 | */ | |||
2143 | ||||
2144 | static int | |||
2145 | locval (struct dieinfo *dip) | |||
2146 | { | |||
2147 | unsigned short nbytes; | |||
2148 | unsigned short locsize; | |||
2149 | auto long stack[64]; | |||
2150 | int stacki; | |||
2151 | char *loc; | |||
2152 | char *end; | |||
2153 | int loc_atom_code; | |||
2154 | int loc_value_size; | |||
2155 | ||||
2156 | loc = dip->at_location; | |||
2157 | nbytes = attribute_size (AT_location); | |||
2158 | locsize = target_to_host (loc, nbytes, GET_UNSIGNED0, current_objfile); | |||
2159 | loc += nbytes; | |||
2160 | end = loc + locsize; | |||
2161 | stacki = 0; | |||
2162 | stack[stacki] = 0; | |||
2163 | dip->isreg = 0; | |||
2164 | dip->offreg = 0; | |||
2165 | dip->optimized_out = 1; | |||
2166 | loc_value_size = TARGET_FT_LONG_SIZE (current_objfile)((gdbarch_long_bit (current_gdbarch)) / 8); | |||
2167 | while (loc < end) | |||
2168 | { | |||
2169 | dip->optimized_out = 0; | |||
2170 | loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE1, GET_UNSIGNED0, | |||
2171 | current_objfile); | |||
2172 | loc += SIZEOF_LOC_ATOM_CODE1; | |||
2173 | switch (loc_atom_code) | |||
2174 | { | |||
2175 | case 0: | |||
2176 | /* error */ | |||
2177 | loc = end; | |||
2178 | break; | |||
2179 | case OP_REG: | |||
2180 | /* push register (number) */ | |||
2181 | stack[++stacki] | |||
2182 | = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,(gdbarch_dwarf_reg_to_regnum (current_gdbarch, target_to_host (loc, loc_value_size, 0, current_objfile))) | |||
2183 | GET_UNSIGNED,(gdbarch_dwarf_reg_to_regnum (current_gdbarch, target_to_host (loc, loc_value_size, 0, current_objfile))) | |||
2184 | current_objfile))(gdbarch_dwarf_reg_to_regnum (current_gdbarch, target_to_host (loc, loc_value_size, 0, current_objfile))); | |||
2185 | loc += loc_value_size; | |||
2186 | dip->isreg = 1; | |||
2187 | break; | |||
2188 | case OP_BASEREG: | |||
2189 | /* push value of register (number) */ | |||
2190 | /* Actually, we compute the value as if register has 0, so the | |||
2191 | value ends up being the offset from that register. */ | |||
2192 | dip->offreg = 1; | |||
2193 | dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED0, | |||
2194 | current_objfile); | |||
2195 | loc += loc_value_size; | |||
2196 | stack[++stacki] = 0; | |||
2197 | break; | |||
2198 | case OP_ADDR: | |||
2199 | /* push address (relocated address) */ | |||
2200 | stack[++stacki] = target_to_host (loc, loc_value_size, | |||
2201 | GET_UNSIGNED0, current_objfile); | |||
2202 | loc += loc_value_size; | |||
2203 | break; | |||
2204 | case OP_CONST: | |||
2205 | /* push constant (number) FIXME: signed or unsigned! */ | |||
2206 | stack[++stacki] = target_to_host (loc, loc_value_size, | |||
2207 | GET_SIGNED1, current_objfile); | |||
2208 | loc += loc_value_size; | |||
2209 | break; | |||
2210 | case OP_DEREF2: | |||
2211 | /* pop, deref and push 2 bytes (as a long) */ | |||
2212 | complaint (&symfile_complaints, | |||
2213 | "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled", | |||
2214 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", stack[stacki]); | |||
2215 | break; | |||
2216 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |||
2217 | complaint (&symfile_complaints, | |||
2218 | "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled", | |||
2219 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", stack[stacki]); | |||
2220 | break; | |||
2221 | case OP_ADD: /* pop top 2 items, add, push result */ | |||
2222 | stack[stacki - 1] += stack[stacki]; | |||
| ||||
2223 | stacki--; | |||
2224 | break; | |||
2225 | } | |||
2226 | } | |||
2227 | return (stack[stacki]); | |||
2228 | } | |||
2229 | ||||
2230 | /* | |||
2231 | ||||
2232 | LOCAL FUNCTION | |||
2233 | ||||
2234 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's | |||
2235 | ||||
2236 | SYNOPSIS | |||
2237 | ||||
2238 | static void read_ofile_symtab (struct partial_symtab *pst) | |||
2239 | ||||
2240 | DESCRIPTION | |||
2241 | ||||
2242 | When expanding a partial symbol table entry to a full symbol table | |||
2243 | entry, this is the function that gets called to read in the symbols | |||
2244 | for the compilation unit. A pointer to the newly constructed symtab, | |||
2245 | which is now the new first one on the objfile's symtab list, is | |||
2246 | stashed in the partial symbol table entry. | |||
2247 | */ | |||
2248 | ||||
2249 | static void | |||
2250 | read_ofile_symtab (struct partial_symtab *pst) | |||
2251 | { | |||
2252 | struct cleanup *back_to; | |||
2253 | unsigned long lnsize; | |||
2254 | file_ptr foffset; | |||
2255 | bfd *abfd; | |||
2256 | char lnsizedata[SIZEOF_LINETBL_LENGTH4]; | |||
2257 | ||||
2258 | abfd = pst->objfile->obfd; | |||
2259 | current_objfile = pst->objfile; | |||
2260 | ||||
2261 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |||
2262 | unit, seek to the location in the file, and read in all the DIE's. */ | |||
2263 | ||||
2264 | diecount = 0; | |||
2265 | dbsize = DBLENGTH (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->dblength ); | |||
2266 | dbbase = xmalloc (dbsize); | |||
2267 | dbroff = DBROFF (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->dbroff ); | |||
2268 | foffset = DBFOFF (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->dbfoff ) + dbroff; | |||
2269 | base_section_offsets = pst->section_offsets; | |||
2270 | baseaddr = ANOFFSET (pst->section_offsets, 0)((0 == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarfread.c" , 2270, "Section index is uninitialized"), -1) : pst->section_offsets ->offsets[0]); | |||
2271 | if (bfd_seek (abfd, foffset, SEEK_SET0) || | |||
2272 | (bfd_bread (dbbase, dbsize, abfd) != dbsize)) | |||
2273 | { | |||
2274 | xfree (dbbase); | |||
2275 | error ("can't read DWARF data"); | |||
2276 | } | |||
2277 | back_to = make_cleanup (xfree, dbbase); | |||
2278 | ||||
2279 | /* If there is a line number table associated with this compilation unit | |||
2280 | then read the size of this fragment in bytes, from the fragment itself. | |||
2281 | Allocate a buffer for the fragment and read it in for future | |||
2282 | processing. */ | |||
2283 | ||||
2284 | lnbase = NULL((void*)0); | |||
2285 | if (LNFOFF (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->lnfoff )) | |||
2286 | { | |||
2287 | if (bfd_seek (abfd, LNFOFF (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->lnfoff ), SEEK_SET0) || | |||
2288 | (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd) | |||
2289 | != sizeof (lnsizedata))) | |||
2290 | { | |||
2291 | error ("can't read DWARF line number table size"); | |||
2292 | } | |||
2293 | lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH4, | |||
2294 | GET_UNSIGNED0, pst->objfile); | |||
2295 | lnbase = xmalloc (lnsize); | |||
2296 | if (bfd_seek (abfd, LNFOFF (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->lnfoff ), SEEK_SET0) || | |||
2297 | (bfd_bread (lnbase, lnsize, abfd) != lnsize)) | |||
2298 | { | |||
2299 | xfree (lnbase); | |||
2300 | error ("can't read DWARF line numbers"); | |||
2301 | } | |||
2302 | make_cleanup (xfree, lnbase); | |||
2303 | } | |||
2304 | ||||
2305 | process_dies (dbbase, dbbase + dbsize, pst->objfile); | |||
2306 | do_cleanups (back_to); | |||
2307 | current_objfile = NULL((void*)0); | |||
2308 | pst->symtab = pst->objfile->symtabs; | |||
2309 | } | |||
2310 | ||||
2311 | /* | |||
2312 | ||||
2313 | LOCAL FUNCTION | |||
2314 | ||||
2315 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry | |||
2316 | ||||
2317 | SYNOPSIS | |||
2318 | ||||
2319 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) | |||
2320 | ||||
2321 | DESCRIPTION | |||
2322 | ||||
2323 | Called once for each partial symbol table entry that needs to be | |||
2324 | expanded into a full symbol table entry. | |||
2325 | ||||
2326 | */ | |||
2327 | ||||
2328 | static void | |||
2329 | psymtab_to_symtab_1 (struct partial_symtab *pst) | |||
2330 | { | |||
2331 | int i; | |||
2332 | struct cleanup *old_chain; | |||
2333 | ||||
2334 | if (pst != NULL((void*)0)) | |||
2335 | { | |||
2336 | if (pst->readin) | |||
2337 | { | |||
2338 | warning ("psymtab for %s already read in. Shouldn't happen.", | |||
2339 | pst->filename); | |||
2340 | } | |||
2341 | else | |||
2342 | { | |||
2343 | /* Read in all partial symtabs on which this one is dependent */ | |||
2344 | for (i = 0; i < pst->number_of_dependencies; i++) | |||
2345 | { | |||
2346 | if (!pst->dependencies[i]->readin) | |||
2347 | { | |||
2348 | /* Inform about additional files that need to be read in. */ | |||
2349 | if (info_verbose) | |||
2350 | { | |||
2351 | fputs_filtered (" ", gdb_stdout); | |||
2352 | wrap_here (""); | |||
2353 | fputs_filtered ("and ", gdb_stdout); | |||
2354 | wrap_here (""); | |||
2355 | printf_filtered ("%s...", | |||
2356 | pst->dependencies[i]->filename); | |||
2357 | wrap_here (""); | |||
2358 | gdb_flush (gdb_stdout); /* Flush output */ | |||
2359 | } | |||
2360 | psymtab_to_symtab_1 (pst->dependencies[i]); | |||
2361 | } | |||
2362 | } | |||
2363 | if (DBLENGTH (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->dblength )) /* Otherwise it's a dummy */ | |||
2364 | { | |||
2365 | buildsym_init (); | |||
2366 | old_chain = make_cleanup (really_free_pendings, 0); | |||
2367 | read_ofile_symtab (pst); | |||
2368 | if (info_verbose) | |||
2369 | { | |||
2370 | printf_filtered ("%d DIE's, sorting...", diecount); | |||
2371 | wrap_here (""); | |||
2372 | gdb_flush (gdb_stdout); | |||
2373 | } | |||
2374 | do_cleanups (old_chain); | |||
2375 | } | |||
2376 | pst->readin = 1; | |||
2377 | } | |||
2378 | } | |||
2379 | } | |||
2380 | ||||
2381 | /* | |||
2382 | ||||
2383 | LOCAL FUNCTION | |||
2384 | ||||
2385 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one | |||
2386 | ||||
2387 | SYNOPSIS | |||
2388 | ||||
2389 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) | |||
2390 | ||||
2391 | DESCRIPTION | |||
2392 | ||||
2393 | This is the DWARF support entry point for building a full symbol | |||
2394 | table entry from a partial symbol table entry. We are passed a | |||
2395 | pointer to the partial symbol table entry that needs to be expanded. | |||
2396 | ||||
2397 | */ | |||
2398 | ||||
2399 | static void | |||
2400 | dwarf_psymtab_to_symtab (struct partial_symtab *pst) | |||
2401 | { | |||
2402 | ||||
2403 | if (pst != NULL((void*)0)) | |||
2404 | { | |||
2405 | if (pst->readin) | |||
2406 | { | |||
2407 | warning ("psymtab for %s already read in. Shouldn't happen.", | |||
2408 | pst->filename); | |||
2409 | } | |||
2410 | else | |||
2411 | { | |||
2412 | if (DBLENGTH (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->dblength ) || pst->number_of_dependencies) | |||
2413 | { | |||
2414 | /* Print the message now, before starting serious work, to avoid | |||
2415 | disconcerting pauses. */ | |||
2416 | if (info_verbose) | |||
2417 | { | |||
2418 | printf_filtered ("Reading in symbols for %s...", | |||
2419 | pst->filename); | |||
2420 | gdb_flush (gdb_stdout); | |||
2421 | } | |||
2422 | ||||
2423 | psymtab_to_symtab_1 (pst); | |||
2424 | ||||
2425 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |||
2426 | we need to do an equivalent or is this something peculiar to | |||
2427 | stabs/a.out format. | |||
2428 | Match with global symbols. This only needs to be done once, | |||
2429 | after all of the symtabs and dependencies have been read in. | |||
2430 | */ | |||
2431 | scan_file_globals (pst->objfile); | |||
2432 | #endif | |||
2433 | ||||
2434 | /* Finish up the verbose info message. */ | |||
2435 | if (info_verbose) | |||
2436 | { | |||
2437 | printf_filtered ("done.\n"); | |||
2438 | gdb_flush (gdb_stdout); | |||
2439 | } | |||
2440 | } | |||
2441 | } | |||
2442 | } | |||
2443 | } | |||
2444 | ||||
2445 | /* | |||
2446 | ||||
2447 | LOCAL FUNCTION | |||
2448 | ||||
2449 | add_enum_psymbol -- add enumeration members to partial symbol table | |||
2450 | ||||
2451 | DESCRIPTION | |||
2452 | ||||
2453 | Given pointer to a DIE that is known to be for an enumeration, | |||
2454 | extract the symbolic names of the enumeration members and add | |||
2455 | partial symbols for them. | |||
2456 | */ | |||
2457 | ||||
2458 | static void | |||
2459 | add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile) | |||
2460 | { | |||
2461 | char *scan; | |||
2462 | char *listend; | |||
2463 | unsigned short blocksz; | |||
2464 | int nbytes; | |||
2465 | ||||
2466 | scan = dip->at_element_list; | |||
2467 | if (scan != NULL((void*)0)) | |||
2468 | { | |||
2469 | if (dip->short_element_list) | |||
2470 | { | |||
2471 | nbytes = attribute_size (AT_short_element_list(0x00f0|FORM_BLOCK2)); | |||
2472 | } | |||
2473 | else | |||
2474 | { | |||
2475 | nbytes = attribute_size (AT_element_list); | |||
2476 | } | |||
2477 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED0, objfile); | |||
2478 | scan += nbytes; | |||
2479 | listend = scan + blocksz; | |||
2480 | while (scan < listend) | |||
2481 | { | |||
2482 | scan += TARGET_FT_LONG_SIZE (objfile)((gdbarch_long_bit (current_gdbarch)) / 8); | |||
2483 | add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST, | |||
2484 | &objfile->static_psymbols, 0, 0, cu_language, | |||
2485 | objfile); | |||
2486 | scan += strlen (scan) + 1; | |||
2487 | } | |||
2488 | } | |||
2489 | } | |||
2490 | ||||
2491 | /* | |||
2492 | ||||
2493 | LOCAL FUNCTION | |||
2494 | ||||
2495 | add_partial_symbol -- add symbol to partial symbol table | |||
2496 | ||||
2497 | DESCRIPTION | |||
2498 | ||||
2499 | Given a DIE, if it is one of the types that we want to | |||
2500 | add to a partial symbol table, finish filling in the die info | |||
2501 | and then add a partial symbol table entry for it. | |||
2502 | ||||
2503 | NOTES | |||
2504 | ||||
2505 | The caller must ensure that the DIE has a valid name attribute. | |||
2506 | */ | |||
2507 | ||||
2508 | static void | |||
2509 | add_partial_symbol (struct dieinfo *dip, struct objfile *objfile) | |||
2510 | { | |||
2511 | switch (dip->die_tag) | |||
2512 | { | |||
2513 | case TAG_global_subroutine: | |||
2514 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), | |||
2515 | VAR_DOMAIN, LOC_BLOCK, | |||
2516 | &objfile->global_psymbols, | |||
2517 | 0, dip->at_low_pc, cu_language, objfile); | |||
2518 | break; | |||
2519 | case TAG_global_variable: | |||
2520 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), | |||
2521 | VAR_DOMAIN, LOC_STATIC, | |||
2522 | &objfile->global_psymbols, | |||
2523 | 0, 0, cu_language, objfile); | |||
2524 | break; | |||
2525 | case TAG_subroutine: | |||
2526 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), | |||
2527 | VAR_DOMAIN, LOC_BLOCK, | |||
2528 | &objfile->static_psymbols, | |||
2529 | 0, dip->at_low_pc, cu_language, objfile); | |||
2530 | break; | |||
2531 | case TAG_local_variable: | |||
2532 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), | |||
2533 | VAR_DOMAIN, LOC_STATIC, | |||
2534 | &objfile->static_psymbols, | |||
2535 | 0, 0, cu_language, objfile); | |||
2536 | break; | |||
2537 | case TAG_typedef: | |||
2538 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), | |||
2539 | VAR_DOMAIN, LOC_TYPEDEF, | |||
2540 | &objfile->static_psymbols, | |||
2541 | 0, 0, cu_language, objfile); | |||
2542 | break; | |||
2543 | case TAG_class_type: | |||
2544 | case TAG_structure_type: | |||
2545 | case TAG_union_type: | |||
2546 | case TAG_enumeration_type: | |||
2547 | /* Do not add opaque aggregate definitions to the psymtab. */ | |||
2548 | if (!dip->has_at_byte_size) | |||
2549 | break; | |||
2550 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), | |||
2551 | STRUCT_DOMAIN, LOC_TYPEDEF, | |||
2552 | &objfile->static_psymbols, | |||
2553 | 0, 0, cu_language, objfile); | |||
2554 | if (cu_language == language_cplus) | |||
2555 | { | |||
2556 | /* For C++, these implicitly act as typedefs as well. */ | |||
2557 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), | |||
2558 | VAR_DOMAIN, LOC_TYPEDEF, | |||
2559 | &objfile->static_psymbols, | |||
2560 | 0, 0, cu_language, objfile); | |||
2561 | } | |||
2562 | break; | |||
2563 | } | |||
2564 | } | |||
2565 | /* *INDENT-OFF* */ | |||
2566 | /* | |||
2567 | ||||
2568 | LOCAL FUNCTION | |||
2569 | ||||
2570 | scan_partial_symbols -- scan DIE's within a single compilation unit | |||
2571 | ||||
2572 | DESCRIPTION | |||
2573 | ||||
2574 | Process the DIE's within a single compilation unit, looking for | |||
2575 | interesting DIE's that contribute to the partial symbol table entry | |||
2576 | for this compilation unit. | |||
2577 | ||||
2578 | NOTES | |||
2579 | ||||
2580 | There are some DIE's that may appear both at file scope and within | |||
2581 | the scope of a function. We are only interested in the ones at file | |||
2582 | scope, and the only way to tell them apart is to keep track of the | |||
2583 | scope. For example, consider the test case: | |||
2584 | ||||
2585 | static int i; | |||
2586 | main () { int j; } | |||
2587 | ||||
2588 | for which the relevant DWARF segment has the structure: | |||
2589 | ||||
2590 | 0x51: | |||
2591 | 0x23 global subrtn sibling 0x9b | |||
2592 | name main | |||
2593 | fund_type FT_integer | |||
2594 | low_pc 0x800004cc | |||
2595 | high_pc 0x800004d4 | |||
2596 | ||||
2597 | 0x74: | |||
2598 | 0x23 local var sibling 0x97 | |||
2599 | name j | |||
2600 | fund_type FT_integer | |||
2601 | location OP_BASEREG 0xe | |||
2602 | OP_CONST 0xfffffffc | |||
2603 | OP_ADD | |||
2604 | 0x97: | |||
2605 | 0x4 | |||
2606 | ||||
2607 | 0x9b: | |||
2608 | 0x1d local var sibling 0xb8 | |||
2609 | name i | |||
2610 | fund_type FT_integer | |||
2611 | location OP_ADDR 0x800025dc | |||
2612 | ||||
2613 | 0xb8: | |||
2614 | 0x4 | |||
2615 | ||||
2616 | We want to include the symbol 'i' in the partial symbol table, but | |||
2617 | not the symbol 'j'. In essence, we want to skip all the dies within | |||
2618 | the scope of a TAG_global_subroutine DIE. | |||
2619 | ||||
2620 | Don't attempt to add anonymous structures or unions since they have | |||
2621 | no name. Anonymous enumerations however are processed, because we | |||
2622 | want to extract their member names (the check for a tag name is | |||
2623 | done later). | |||
2624 | ||||
2625 | Also, for variables and subroutines, check that this is the place | |||
2626 | where the actual definition occurs, rather than just a reference | |||
2627 | to an external. | |||
2628 | */ | |||
2629 | /* *INDENT-ON* */ | |||
2630 | ||||
2631 | ||||
2632 | ||||
2633 | static void | |||
2634 | scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile) | |||
2635 | { | |||
2636 | char *nextdie; | |||
2637 | char *temp; | |||
2638 | struct dieinfo di; | |||
2639 | ||||
2640 | while (thisdie < enddie) | |||
2641 | { | |||
2642 | basicdieinfo (&di, thisdie, objfile); | |||
2643 | if (di.die_length < SIZEOF_DIE_LENGTH4) | |||
2644 | { | |||
2645 | break; | |||
2646 | } | |||
2647 | else | |||
2648 | { | |||
2649 | nextdie = thisdie + di.die_length; | |||
2650 | /* To avoid getting complete die information for every die, we | |||
2651 | only do it (below) for the cases we are interested in. */ | |||
2652 | switch (di.die_tag) | |||
2653 | { | |||
2654 | case TAG_global_subroutine: | |||
2655 | case TAG_subroutine: | |||
2656 | completedieinfo (&di, objfile); | |||
2657 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |||
2658 | { | |||
2659 | add_partial_symbol (&di, objfile); | |||
2660 | /* If there is a sibling attribute, adjust the nextdie | |||
2661 | pointer to skip the entire scope of the subroutine. | |||
2662 | Apply some sanity checking to make sure we don't | |||
2663 | overrun or underrun the range of remaining DIE's */ | |||
2664 | if (di.at_sibling != 0) | |||
2665 | { | |||
2666 | temp = dbbase + di.at_sibling - dbroff; | |||
2667 | if ((temp < thisdie) || (temp >= enddie)) | |||
2668 | { | |||
2669 | bad_die_ref_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", | |||
2670 | di.at_sibling); | |||
2671 | } | |||
2672 | else | |||
2673 | { | |||
2674 | nextdie = temp; | |||
2675 | } | |||
2676 | } | |||
2677 | } | |||
2678 | break; | |||
2679 | case TAG_global_variable: | |||
2680 | case TAG_local_variable: | |||
2681 | completedieinfo (&di, objfile); | |||
2682 | if (di.at_name && (di.has_at_low_pc || di.at_location)) | |||
2683 | { | |||
2684 | add_partial_symbol (&di, objfile); | |||
2685 | } | |||
2686 | break; | |||
2687 | case TAG_typedef: | |||
2688 | case TAG_class_type: | |||
2689 | case TAG_structure_type: | |||
2690 | case TAG_union_type: | |||
2691 | completedieinfo (&di, objfile); | |||
2692 | if (di.at_name) | |||
2693 | { | |||
2694 | add_partial_symbol (&di, objfile); | |||
2695 | } | |||
2696 | break; | |||
2697 | case TAG_enumeration_type: | |||
2698 | completedieinfo (&di, objfile); | |||
2699 | if (di.at_name) | |||
2700 | { | |||
2701 | add_partial_symbol (&di, objfile); | |||
2702 | } | |||
2703 | add_enum_psymbol (&di, objfile); | |||
2704 | break; | |||
2705 | } | |||
2706 | } | |||
2707 | thisdie = nextdie; | |||
2708 | } | |||
2709 | } | |||
2710 | ||||
2711 | /* | |||
2712 | ||||
2713 | LOCAL FUNCTION | |||
2714 | ||||
2715 | scan_compilation_units -- build a psymtab entry for each compilation | |||
2716 | ||||
2717 | DESCRIPTION | |||
2718 | ||||
2719 | This is the top level dwarf parsing routine for building partial | |||
2720 | symbol tables. | |||
2721 | ||||
2722 | It scans from the beginning of the DWARF table looking for the first | |||
2723 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |||
2724 | each additional TAG_compile_unit DIE. | |||
2725 | ||||
2726 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |||
2727 | calls a subordinate routine to collect all the compilation unit's | |||
2728 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |||
2729 | new partial symtab structure into the partial symbol table. It also | |||
2730 | records the appropriate information in the partial symbol table entry | |||
2731 | to allow the chunk of DIE's and line number table for this compilation | |||
2732 | unit to be located and re-read later, to generate a complete symbol | |||
2733 | table entry for the compilation unit. | |||
2734 | ||||
2735 | Thus it effectively partitions up a chunk of DIE's for multiple | |||
2736 | compilation units into smaller DIE chunks and line number tables, | |||
2737 | and associates them with a partial symbol table entry. | |||
2738 | ||||
2739 | NOTES | |||
2740 | ||||
2741 | If any compilation unit has no line number table associated with | |||
2742 | it for some reason (a missing at_stmt_list attribute, rather than | |||
2743 | just one with a value of zero, which is valid) then we ensure that | |||
2744 | the recorded file offset is zero so that the routine which later | |||
2745 | reads line number table fragments knows that there is no fragment | |||
2746 | to read. | |||
2747 | ||||
2748 | RETURNS | |||
2749 | ||||
2750 | Returns no value. | |||
2751 | ||||
2752 | */ | |||
2753 | ||||
2754 | static void | |||
2755 | scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff, | |||
2756 | file_ptr lnoffset, struct objfile *objfile) | |||
2757 | { | |||
2758 | char *nextdie; | |||
2759 | struct dieinfo di; | |||
2760 | struct partial_symtab *pst; | |||
2761 | int culength; | |||
2762 | int curoff; | |||
2763 | file_ptr curlnoffset; | |||
2764 | ||||
2765 | while (thisdie < enddie) | |||
2766 | { | |||
2767 | basicdieinfo (&di, thisdie, objfile); | |||
2768 | if (di.die_length < SIZEOF_DIE_LENGTH4) | |||
2769 | { | |||
2770 | break; | |||
2771 | } | |||
2772 | else if (di.die_tag != TAG_compile_unit) | |||
2773 | { | |||
2774 | nextdie = thisdie + di.die_length; | |||
2775 | } | |||
2776 | else | |||
2777 | { | |||
2778 | completedieinfo (&di, objfile); | |||
2779 | set_cu_language (&di); | |||
2780 | if (di.at_sibling != 0) | |||
2781 | { | |||
2782 | nextdie = dbbase + di.at_sibling - dbroff; | |||
2783 | } | |||
2784 | else | |||
2785 | { | |||
2786 | nextdie = thisdie + di.die_length; | |||
2787 | } | |||
2788 | curoff = thisdie - dbbase; | |||
2789 | culength = nextdie - thisdie; | |||
2790 | curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; | |||
2791 | ||||
2792 | /* First allocate a new partial symbol table structure */ | |||
2793 | ||||
2794 | pst = start_psymtab_common (objfile, base_section_offsets, | |||
2795 | di.at_name, di.at_low_pc, | |||
2796 | objfile->global_psymbols.next, | |||
2797 | objfile->static_psymbols.next); | |||
2798 | ||||
2799 | pst->texthigh = di.at_high_pc; | |||
2800 | pst->read_symtab_private = (char *) | |||
2801 | obstack_alloc (&objfile->objfile_obstack,__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (sizeof (struct dwfinfo))); if (__o->chunk_limit - __o-> next_free < __len) _obstack_newchunk (__o, __len); ((__o)-> next_free += (__len)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base ; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char * ) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }) | |||
2802 | sizeof (struct dwfinfo))__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (sizeof (struct dwfinfo))); if (__o->chunk_limit - __o-> next_free < __len) _obstack_newchunk (__o, __len); ((__o)-> next_free += (__len)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base ; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char * ) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }); | |||
2803 | DBFOFF (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->dbfoff ) = dbfoff; | |||
2804 | DBROFF (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->dbroff ) = curoff; | |||
2805 | DBLENGTH (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->dblength ) = culength; | |||
2806 | LNFOFF (pst)(((struct dwfinfo *)((pst)->read_symtab_private))->lnfoff ) = curlnoffset; | |||
2807 | pst->read_symtab = dwarf_psymtab_to_symtab; | |||
2808 | ||||
2809 | /* Now look for partial symbols */ | |||
2810 | ||||
2811 | scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); | |||
2812 | ||||
2813 | pst->n_global_syms = objfile->global_psymbols.next - | |||
2814 | (objfile->global_psymbols.list + pst->globals_offset); | |||
2815 | pst->n_static_syms = objfile->static_psymbols.next - | |||
2816 | (objfile->static_psymbols.list + pst->statics_offset); | |||
2817 | sort_pst_symbols (pst); | |||
2818 | /* If there is already a psymtab or symtab for a file of this name, | |||
2819 | remove it. (If there is a symtab, more drastic things also | |||
2820 | happen.) This happens in VxWorks. */ | |||
2821 | free_named_symtabs (pst->filename); | |||
2822 | } | |||
2823 | thisdie = nextdie; | |||
2824 | } | |||
2825 | } | |||
2826 | ||||
2827 | /* | |||
2828 | ||||
2829 | LOCAL FUNCTION | |||
2830 | ||||
2831 | new_symbol -- make a symbol table entry for a new symbol | |||
2832 | ||||
2833 | SYNOPSIS | |||
2834 | ||||
2835 | static struct symbol *new_symbol (struct dieinfo *dip, | |||
2836 | struct objfile *objfile) | |||
2837 | ||||
2838 | DESCRIPTION | |||
2839 | ||||
2840 | Given a pointer to a DWARF information entry, figure out if we need | |||
2841 | to make a symbol table entry for it, and if so, create a new entry | |||
2842 | and return a pointer to it. | |||
2843 | */ | |||
2844 | ||||
2845 | static struct symbol * | |||
2846 | new_symbol (struct dieinfo *dip, struct objfile *objfile) | |||
2847 | { | |||
2848 | struct symbol *sym = NULL((void*)0); | |||
2849 | ||||
2850 | if (dip->at_name != NULL((void*)0)) | |||
2851 | { | |||
2852 | sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (sizeof (struct symbol))); if (__o->chunk_limit - __o-> next_free < __len) _obstack_newchunk (__o, __len); ((__o)-> next_free += (__len)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base ; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char * ) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }) | |||
2853 | sizeof (struct symbol))__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (sizeof (struct symbol))); if (__o->chunk_limit - __o-> next_free < __len) _obstack_newchunk (__o, __len); ((__o)-> next_free += (__len)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base ; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char * ) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }); | |||
2854 | OBJSTAT (objfile, n_syms++)(objfile -> stats.n_syms++); | |||
2855 | memset (sym, 0, sizeof (struct symbol)); | |||
2856 | /* default assumptions */ | |||
2857 | SYMBOL_DOMAIN (sym)(sym)->domain = VAR_DOMAIN; | |||
2858 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_STATIC; | |||
2859 | SYMBOL_TYPE (sym)(sym)->type = decode_die_type (dip); | |||
2860 | ||||
2861 | /* If this symbol is from a C++ compilation, then attempt to cache the | |||
2862 | demangled form for future reference. This is a typical time versus | |||
2863 | space tradeoff, that was decided in favor of time because it sped up | |||
2864 | C++ symbol lookups by a factor of about 20. */ | |||
2865 | ||||
2866 | SYMBOL_LANGUAGE (sym)(sym)->ginfo.language = cu_language; | |||
2867 | SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile)symbol_set_names (&(sym)->ginfo, dip->at_name, strlen (dip->at_name), objfile); | |||
2868 | switch (dip->die_tag) | |||
2869 | { | |||
2870 | case TAG_label: | |||
2871 | SYMBOL_VALUE_ADDRESS (sym)(sym)->ginfo.value.address = dip->at_low_pc; | |||
2872 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_LABEL; | |||
2873 | break; | |||
2874 | case TAG_global_subroutine: | |||
2875 | case TAG_subroutine: | |||
2876 | SYMBOL_VALUE_ADDRESS (sym)(sym)->ginfo.value.address = dip->at_low_pc; | |||
2877 | SYMBOL_TYPE (sym)(sym)->type = lookup_function_type (SYMBOL_TYPE (sym)(sym)->type); | |||
2878 | if (dip->at_prototyped) | |||
2879 | TYPE_FLAGS (SYMBOL_TYPE (sym))((sym)->type)->main_type->flags |= TYPE_FLAG_PROTOTYPED(1 << 7); | |||
2880 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_BLOCK; | |||
2881 | if (dip->die_tag == TAG_global_subroutine) | |||
2882 | { | |||
2883 | add_symbol_to_list (sym, &global_symbols); | |||
2884 | } | |||
2885 | else | |||
2886 | { | |||
2887 | add_symbol_to_list (sym, list_in_scope); | |||
2888 | } | |||
2889 | break; | |||
2890 | case TAG_global_variable: | |||
2891 | if (dip->at_location != NULL((void*)0)) | |||
2892 | { | |||
2893 | SYMBOL_VALUE_ADDRESS (sym)(sym)->ginfo.value.address = locval (dip); | |||
2894 | add_symbol_to_list (sym, &global_symbols); | |||
2895 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_STATIC; | |||
2896 | SYMBOL_VALUE (sym)(sym)->ginfo.value.ivalue += baseaddr; | |||
2897 | } | |||
2898 | break; | |||
2899 | case TAG_local_variable: | |||
2900 | if (dip->at_location != NULL((void*)0)) | |||
2901 | { | |||
2902 | int loc = locval (dip); | |||
2903 | if (dip->optimized_out) | |||
2904 | { | |||
2905 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_OPTIMIZED_OUT; | |||
2906 | } | |||
2907 | else if (dip->isreg) | |||
2908 | { | |||
2909 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_REGISTER; | |||
2910 | } | |||
2911 | else if (dip->offreg) | |||
2912 | { | |||
2913 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_BASEREG; | |||
2914 | SYMBOL_BASEREG (sym)(sym)->aux_value.basereg = dip->basereg; | |||
2915 | } | |||
2916 | else | |||
2917 | { | |||
2918 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_STATIC; | |||
2919 | SYMBOL_VALUE (sym)(sym)->ginfo.value.ivalue += baseaddr; | |||
2920 | } | |||
2921 | if (SYMBOL_CLASS (sym)(sym)->aclass == LOC_STATIC) | |||
2922 | { | |||
2923 | /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, | |||
2924 | which may store to a bigger location than SYMBOL_VALUE. */ | |||
2925 | SYMBOL_VALUE_ADDRESS (sym)(sym)->ginfo.value.address = loc; | |||
2926 | } | |||
2927 | else | |||
2928 | { | |||
2929 | SYMBOL_VALUE (sym)(sym)->ginfo.value.ivalue = loc; | |||
2930 | } | |||
2931 | add_symbol_to_list (sym, list_in_scope); | |||
2932 | } | |||
2933 | break; | |||
2934 | case TAG_formal_parameter: | |||
2935 | if (dip->at_location != NULL((void*)0)) | |||
2936 | { | |||
2937 | SYMBOL_VALUE (sym)(sym)->ginfo.value.ivalue = locval (dip); | |||
2938 | } | |||
2939 | add_symbol_to_list (sym, list_in_scope); | |||
2940 | if (dip->isreg) | |||
2941 | { | |||
2942 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_REGPARM; | |||
2943 | } | |||
2944 | else if (dip->offreg) | |||
2945 | { | |||
2946 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_BASEREG_ARG; | |||
2947 | SYMBOL_BASEREG (sym)(sym)->aux_value.basereg = dip->basereg; | |||
2948 | } | |||
2949 | else | |||
2950 | { | |||
2951 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_ARG; | |||
2952 | } | |||
2953 | break; | |||
2954 | case TAG_unspecified_parameters: | |||
2955 | /* From varargs functions; gdb doesn't seem to have any interest in | |||
2956 | this information, so just ignore it for now. (FIXME?) */ | |||
2957 | break; | |||
2958 | case TAG_class_type: | |||
2959 | case TAG_structure_type: | |||
2960 | case TAG_union_type: | |||
2961 | case TAG_enumeration_type: | |||
2962 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_TYPEDEF; | |||
2963 | SYMBOL_DOMAIN (sym)(sym)->domain = STRUCT_DOMAIN; | |||
2964 | add_symbol_to_list (sym, list_in_scope); | |||
2965 | break; | |||
2966 | case TAG_typedef: | |||
2967 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_TYPEDEF; | |||
2968 | SYMBOL_DOMAIN (sym)(sym)->domain = VAR_DOMAIN; | |||
2969 | add_symbol_to_list (sym, list_in_scope); | |||
2970 | break; | |||
2971 | default: | |||
2972 | /* Not a tag we recognize. Hopefully we aren't processing trash | |||
2973 | data, but since we must specifically ignore things we don't | |||
2974 | recognize, there is nothing else we should do at this point. */ | |||
2975 | break; | |||
2976 | } | |||
2977 | } | |||
2978 | return (sym); | |||
2979 | } | |||
2980 | ||||
2981 | /* | |||
2982 | ||||
2983 | LOCAL FUNCTION | |||
2984 | ||||
2985 | synthesize_typedef -- make a symbol table entry for a "fake" typedef | |||
2986 | ||||
2987 | SYNOPSIS | |||
2988 | ||||
2989 | static void synthesize_typedef (struct dieinfo *dip, | |||
2990 | struct objfile *objfile, | |||
2991 | struct type *type); | |||
2992 | ||||
2993 | DESCRIPTION | |||
2994 | ||||
2995 | Given a pointer to a DWARF information entry, synthesize a typedef | |||
2996 | for the name in the DIE, using the specified type. | |||
2997 | ||||
2998 | This is used for C++ class, structs, unions, and enumerations to | |||
2999 | set up the tag name as a type. | |||
3000 | ||||
3001 | */ | |||
3002 | ||||
3003 | static void | |||
3004 | synthesize_typedef (struct dieinfo *dip, struct objfile *objfile, | |||
3005 | struct type *type) | |||
3006 | { | |||
3007 | struct symbol *sym = NULL((void*)0); | |||
3008 | ||||
3009 | if (dip->at_name != NULL((void*)0)) | |||
3010 | { | |||
3011 | sym = (struct symbol *) | |||
3012 | obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol))__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (sizeof (struct symbol))); if (__o->chunk_limit - __o-> next_free < __len) _obstack_newchunk (__o, __len); ((__o)-> next_free += (__len)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base ; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char * ) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }); | |||
3013 | OBJSTAT (objfile, n_syms++)(objfile -> stats.n_syms++); | |||
3014 | memset (sym, 0, sizeof (struct symbol)); | |||
3015 | DEPRECATED_SYMBOL_NAME (sym)(sym)->ginfo.name = create_name (dip->at_name, | |||
3016 | &objfile->objfile_obstack); | |||
3017 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language)(symbol_init_language_specific (&(sym)->ginfo, (cu_language ))); | |||
3018 | SYMBOL_TYPE (sym)(sym)->type = type; | |||
3019 | SYMBOL_CLASS (sym)(sym)->aclass = LOC_TYPEDEF; | |||
3020 | SYMBOL_DOMAIN (sym)(sym)->domain = VAR_DOMAIN; | |||
3021 | add_symbol_to_list (sym, list_in_scope); | |||
3022 | } | |||
3023 | } | |||
3024 | ||||
3025 | /* | |||
3026 | ||||
3027 | LOCAL FUNCTION | |||
3028 | ||||
3029 | decode_mod_fund_type -- decode a modified fundamental type | |||
3030 | ||||
3031 | SYNOPSIS | |||
3032 | ||||
3033 | static struct type *decode_mod_fund_type (char *typedata) | |||
3034 | ||||
3035 | DESCRIPTION | |||
3036 | ||||
3037 | Decode a block of data containing a modified fundamental | |||
3038 | type specification. TYPEDATA is a pointer to the block, | |||
3039 | which starts with a length containing the size of the rest | |||
3040 | of the block. At the end of the block is a fundmental type | |||
3041 | code value that gives the fundamental type. Everything | |||
3042 | in between are type modifiers. | |||
3043 | ||||
3044 | We simply compute the number of modifiers and call the general | |||
3045 | function decode_modified_type to do the actual work. | |||
3046 | */ | |||
3047 | ||||
3048 | static struct type * | |||
3049 | decode_mod_fund_type (char *typedata) | |||
3050 | { | |||
3051 | struct type *typep = NULL((void*)0); | |||
3052 | unsigned short modcount; | |||
3053 | int nbytes; | |||
3054 | ||||
3055 | /* Get the total size of the block, exclusive of the size itself */ | |||
3056 | ||||
3057 | nbytes = attribute_size (AT_mod_fund_type); | |||
3058 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED0, current_objfile); | |||
3059 | typedata += nbytes; | |||
3060 | ||||
3061 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |||
3062 | ||||
3063 | modcount -= attribute_size (AT_fund_type); | |||
3064 | ||||
3065 | /* Now do the actual decoding */ | |||
3066 | ||||
3067 | typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); | |||
3068 | return (typep); | |||
3069 | } | |||
3070 | ||||
3071 | /* | |||
3072 | ||||
3073 | LOCAL FUNCTION | |||
3074 | ||||
3075 | decode_mod_u_d_type -- decode a modified user defined type | |||
3076 | ||||
3077 | SYNOPSIS | |||
3078 | ||||
3079 | static struct type *decode_mod_u_d_type (char *typedata) | |||
3080 | ||||
3081 | DESCRIPTION | |||
3082 | ||||
3083 | Decode a block of data containing a modified user defined | |||
3084 | type specification. TYPEDATA is a pointer to the block, | |||
3085 | which consists of a two byte length, containing the size | |||
3086 | of the rest of the block. At the end of the block is a | |||
3087 | four byte value that gives a reference to a user defined type. | |||
3088 | Everything in between are type modifiers. | |||
3089 | ||||
3090 | We simply compute the number of modifiers and call the general | |||
3091 | function decode_modified_type to do the actual work. | |||
3092 | */ | |||
3093 | ||||
3094 | static struct type * | |||
3095 | decode_mod_u_d_type (char *typedata) | |||
3096 | { | |||
3097 | struct type *typep = NULL((void*)0); | |||
3098 | unsigned short modcount; | |||
3099 | int nbytes; | |||
3100 | ||||
3101 | /* Get the total size of the block, exclusive of the size itself */ | |||
3102 | ||||
3103 | nbytes = attribute_size (AT_mod_u_d_type); | |||
3104 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED0, current_objfile); | |||
3105 | typedata += nbytes; | |||
3106 | ||||
3107 | /* Deduct the size of the reference type bytes at the end of the block. */ | |||
3108 | ||||
3109 | modcount -= attribute_size (AT_user_def_type); | |||
3110 | ||||
3111 | /* Now do the actual decoding */ | |||
3112 | ||||
3113 | typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); | |||
3114 | return (typep); | |||
3115 | } | |||
3116 | ||||
3117 | /* | |||
3118 | ||||
3119 | LOCAL FUNCTION | |||
3120 | ||||
3121 | decode_modified_type -- decode modified user or fundamental type | |||
3122 | ||||
3123 | SYNOPSIS | |||
3124 | ||||
3125 | static struct type *decode_modified_type (char *modifiers, | |||
3126 | unsigned short modcount, int mtype) | |||
3127 | ||||
3128 | DESCRIPTION | |||
3129 | ||||
3130 | Decode a modified type, either a modified fundamental type or | |||
3131 | a modified user defined type. MODIFIERS is a pointer to the | |||
3132 | block of bytes that define MODCOUNT modifiers. Immediately | |||
3133 | following the last modifier is a short containing the fundamental | |||
3134 | type or a long containing the reference to the user defined | |||
3135 | type. Which one is determined by MTYPE, which is either | |||
3136 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |||
3137 | type we are generating. | |||
3138 | ||||
3139 | We call ourself recursively to generate each modified type,` | |||
3140 | until MODCOUNT reaches zero, at which point we have consumed | |||
3141 | all the modifiers and generate either the fundamental type or | |||
3142 | user defined type. When the recursion unwinds, each modifier | |||
3143 | is applied in turn to generate the full modified type. | |||
3144 | ||||
3145 | NOTES | |||
3146 | ||||
3147 | If we find a modifier that we don't recognize, and it is not one | |||
3148 | of those reserved for application specific use, then we issue a | |||
3149 | warning and simply ignore the modifier. | |||
3150 | ||||
3151 | BUGS | |||
3152 | ||||
3153 | We currently ignore MOD_const and MOD_volatile. (FIXME) | |||
3154 | ||||
3155 | */ | |||
3156 | ||||
3157 | static struct type * | |||
3158 | decode_modified_type (char *modifiers, unsigned int modcount, int mtype) | |||
3159 | { | |||
3160 | struct type *typep = NULL((void*)0); | |||
3161 | unsigned short fundtype; | |||
3162 | DIE_REF die_ref; | |||
3163 | char modifier; | |||
3164 | int nbytes; | |||
3165 | ||||
3166 | if (modcount == 0) | |||
3167 | { | |||
3168 | switch (mtype) | |||
3169 | { | |||
3170 | case AT_mod_fund_type: | |||
3171 | nbytes = attribute_size (AT_fund_type); | |||
3172 | fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED0, | |||
3173 | current_objfile); | |||
3174 | typep = decode_fund_type (fundtype); | |||
3175 | break; | |||
3176 | case AT_mod_u_d_type: | |||
3177 | nbytes = attribute_size (AT_user_def_type); | |||
3178 | die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED0, | |||
3179 | current_objfile); | |||
3180 | typep = lookup_utype (die_ref); | |||
3181 | if (typep == NULL((void*)0)) | |||
3182 | { | |||
3183 | typep = alloc_utype (die_ref, NULL((void*)0)); | |||
3184 | } | |||
3185 | break; | |||
3186 | default: | |||
3187 | complaint (&symfile_complaints, | |||
3188 | "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", | |||
3189 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", mtype); | |||
3190 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
3191 | break; | |||
3192 | } | |||
3193 | } | |||
3194 | else | |||
3195 | { | |||
3196 | modifier = *modifiers++; | |||
3197 | typep = decode_modified_type (modifiers, --modcount, mtype); | |||
3198 | switch (modifier) | |||
3199 | { | |||
3200 | case MOD_pointer_to: | |||
3201 | typep = lookup_pointer_type (typep); | |||
3202 | break; | |||
3203 | case MOD_reference_to: | |||
3204 | typep = lookup_reference_type (typep); | |||
3205 | break; | |||
3206 | case MOD_const: | |||
3207 | complaint (&symfile_complaints, | |||
3208 | "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), | |||
3209 | DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); /* FIXME */ | |||
3210 | break; | |||
3211 | case MOD_volatile: | |||
3212 | complaint (&symfile_complaints, | |||
3213 | "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", | |||
3214 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); /* FIXME */ | |||
3215 | break; | |||
3216 | default: | |||
3217 | if (!(MOD_lo_user0x80 <= (unsigned char) modifier)) | |||
3218 | #if 0 | |||
3219 | /* This part of the test would always be true, and it triggers a compiler | |||
3220 | warning. */ | |||
3221 | && (unsigned char) modifier <= MOD_hi_user0xff)) | |||
3222 | #endif | |||
3223 | { | |||
3224 | complaint (&symfile_complaints, | |||
3225 | "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), | |||
3226 | DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", modifier); | |||
3227 | } | |||
3228 | break; | |||
3229 | } | |||
3230 | } | |||
3231 | return (typep); | |||
3232 | } | |||
3233 | ||||
3234 | /* | |||
3235 | ||||
3236 | LOCAL FUNCTION | |||
3237 | ||||
3238 | decode_fund_type -- translate basic DWARF type to gdb base type | |||
3239 | ||||
3240 | DESCRIPTION | |||
3241 | ||||
3242 | Given an integer that is one of the fundamental DWARF types, | |||
3243 | translate it to one of the basic internal gdb types and return | |||
3244 | a pointer to the appropriate gdb type (a "struct type *"). | |||
3245 | ||||
3246 | NOTES | |||
3247 | ||||
3248 | For robustness, if we are asked to translate a fundamental | |||
3249 | type that we are unprepared to deal with, we return int so | |||
3250 | callers can always depend upon a valid type being returned, | |||
3251 | and so gdb may at least do something reasonable by default. | |||
3252 | If the type is not in the range of those types defined as | |||
3253 | application specific types, we also issue a warning. | |||
3254 | */ | |||
3255 | ||||
3256 | static struct type * | |||
3257 | decode_fund_type (unsigned int fundtype) | |||
3258 | { | |||
3259 | struct type *typep = NULL((void*)0); | |||
3260 | ||||
3261 | switch (fundtype) | |||
3262 | { | |||
3263 | ||||
3264 | case FT_void: | |||
3265 | typep = dwarf_fundamental_type (current_objfile, FT_VOID0); | |||
3266 | break; | |||
3267 | ||||
3268 | case FT_boolean: /* Was FT_set in AT&T version */ | |||
3269 | typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN1); | |||
3270 | break; | |||
3271 | ||||
3272 | case FT_pointer: /* (void *) */ | |||
3273 | typep = dwarf_fundamental_type (current_objfile, FT_VOID0); | |||
3274 | typep = lookup_pointer_type (typep); | |||
3275 | break; | |||
3276 | ||||
3277 | case FT_char: | |||
3278 | typep = dwarf_fundamental_type (current_objfile, FT_CHAR2); | |||
3279 | break; | |||
3280 | ||||
3281 | case FT_signed_char: | |||
3282 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR3); | |||
3283 | break; | |||
3284 | ||||
3285 | case FT_unsigned_char: | |||
3286 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR4); | |||
3287 | break; | |||
3288 | ||||
3289 | case FT_short: | |||
3290 | typep = dwarf_fundamental_type (current_objfile, FT_SHORT5); | |||
3291 | break; | |||
3292 | ||||
3293 | case FT_signed_short: | |||
3294 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT6); | |||
3295 | break; | |||
3296 | ||||
3297 | case FT_unsigned_short: | |||
3298 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT7); | |||
3299 | break; | |||
3300 | ||||
3301 | case FT_integer: | |||
3302 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
3303 | break; | |||
3304 | ||||
3305 | case FT_signed_integer: | |||
3306 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER9); | |||
3307 | break; | |||
3308 | ||||
3309 | case FT_unsigned_integer: | |||
3310 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER10); | |||
3311 | break; | |||
3312 | ||||
3313 | case FT_long: | |||
3314 | typep = dwarf_fundamental_type (current_objfile, FT_LONG11); | |||
3315 | break; | |||
3316 | ||||
3317 | case FT_signed_long: | |||
3318 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG12); | |||
3319 | break; | |||
3320 | ||||
3321 | case FT_unsigned_long: | |||
3322 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG13); | |||
3323 | break; | |||
3324 | ||||
3325 | case FT_long_long: | |||
3326 | typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG14); | |||
3327 | break; | |||
3328 | ||||
3329 | case FT_signed_long_long: | |||
3330 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG15); | |||
3331 | break; | |||
3332 | ||||
3333 | case FT_unsigned_long_long: | |||
3334 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG16); | |||
3335 | break; | |||
3336 | ||||
3337 | case FT_float: | |||
3338 | typep = dwarf_fundamental_type (current_objfile, FT_FLOAT17); | |||
3339 | break; | |||
3340 | ||||
3341 | case FT_dbl_prec_float: | |||
3342 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT18); | |||
3343 | break; | |||
3344 | ||||
3345 | case FT_ext_prec_float: | |||
3346 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT19); | |||
3347 | break; | |||
3348 | ||||
3349 | case FT_complex: | |||
3350 | typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX20); | |||
3351 | break; | |||
3352 | ||||
3353 | case FT_dbl_prec_complex: | |||
3354 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX21); | |||
3355 | break; | |||
3356 | ||||
3357 | case FT_ext_prec_complex: | |||
3358 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX22); | |||
3359 | break; | |||
3360 | ||||
3361 | } | |||
3362 | ||||
3363 | if (typep == NULL((void*)0)) | |||
3364 | { | |||
3365 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER8); | |||
3366 | if (!(FT_lo_user0x8000 <= fundtype && fundtype <= FT_hi_user0xffff)) | |||
3367 | { | |||
3368 | complaint (&symfile_complaints, | |||
3369 | "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", | |||
3370 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", fundtype); | |||
3371 | } | |||
3372 | } | |||
3373 | ||||
3374 | return (typep); | |||
3375 | } | |||
3376 | ||||
3377 | /* | |||
3378 | ||||
3379 | LOCAL FUNCTION | |||
3380 | ||||
3381 | create_name -- allocate a fresh copy of a string on an obstack | |||
3382 | ||||
3383 | DESCRIPTION | |||
3384 | ||||
3385 | Given a pointer to a string and a pointer to an obstack, allocates | |||
3386 | a fresh copy of the string on the specified obstack. | |||
3387 | ||||
3388 | */ | |||
3389 | ||||
3390 | static char * | |||
3391 | create_name (char *name, struct obstack *obstackp) | |||
3392 | { | |||
3393 | int length; | |||
3394 | char *newname; | |||
3395 | ||||
3396 | length = strlen (name) + 1; | |||
3397 | newname = (char *) obstack_alloc (obstackp, length)__extension__ ({ struct obstack *__h = (obstackp); __extension__ ({ struct obstack *__o = (__h); int __len = ((length)); if ( __o->chunk_limit - __o->next_free < __len) _obstack_newchunk (__o, __len); ((__o)->next_free += (__len)); (void) 0; }) ; __extension__ ({ struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base; if (__o1->next_free == value) __o1->maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask ) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1-> next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1->next_free = __o1->chunk_limit ; __o1->object_base = __o1->next_free; value; }); }); | |||
3398 | strcpy (newname, name); | |||
3399 | return (newname); | |||
3400 | } | |||
3401 | ||||
3402 | /* | |||
3403 | ||||
3404 | LOCAL FUNCTION | |||
3405 | ||||
3406 | basicdieinfo -- extract the minimal die info from raw die data | |||
3407 | ||||
3408 | SYNOPSIS | |||
3409 | ||||
3410 | void basicdieinfo (char *diep, struct dieinfo *dip, | |||
3411 | struct objfile *objfile) | |||
3412 | ||||
3413 | DESCRIPTION | |||
3414 | ||||
3415 | Given a pointer to raw DIE data, and a pointer to an instance of a | |||
3416 | die info structure, this function extracts the basic information | |||
3417 | from the DIE data required to continue processing this DIE, along | |||
3418 | with some bookkeeping information about the DIE. | |||
3419 | ||||
3420 | The information we absolutely must have includes the DIE tag, | |||
3421 | and the DIE length. If we need the sibling reference, then we | |||
3422 | will have to call completedieinfo() to process all the remaining | |||
3423 | DIE information. | |||
3424 | ||||
3425 | Note that since there is no guarantee that the data is properly | |||
3426 | aligned in memory for the type of access required (indirection | |||
3427 | through anything other than a char pointer), and there is no | |||
3428 | guarantee that it is in the same byte order as the gdb host, | |||
3429 | we call a function which deals with both alignment and byte | |||
3430 | swapping issues. Possibly inefficient, but quite portable. | |||
3431 | ||||
3432 | We also take care of some other basic things at this point, such | |||
3433 | as ensuring that the instance of the die info structure starts | |||
3434 | out completely zero'd and that curdie is initialized for use | |||
3435 | in error reporting if we have a problem with the current die. | |||
3436 | ||||
3437 | NOTES | |||
3438 | ||||
3439 | All DIE's must have at least a valid length, thus the minimum | |||
3440 | DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the | |||
3441 | DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they | |||
3442 | are forced to be TAG_padding DIES. | |||
3443 | ||||
3444 | Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying | |||
3445 | that if a padding DIE is used for alignment and the amount needed is | |||
3446 | less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big | |||
3447 | enough to align to the next alignment boundry. | |||
3448 | ||||
3449 | We do some basic sanity checking here, such as verifying that the | |||
3450 | length of the die would not cause it to overrun the recorded end of | |||
3451 | the buffer holding the DIE info. If we find a DIE that is either | |||
3452 | too small or too large, we force it's length to zero which should | |||
3453 | cause the caller to take appropriate action. | |||
3454 | */ | |||
3455 | ||||
3456 | static void | |||
3457 | basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile) | |||
3458 | { | |||
3459 | curdie = dip; | |||
3460 | memset (dip, 0, sizeof (struct dieinfo)); | |||
3461 | dip->die = diep; | |||
3462 | dip->die_ref = dbroff + (diep - dbbase); | |||
3463 | dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH4, GET_UNSIGNED0, | |||
3464 | objfile); | |||
3465 | if ((dip->die_length < SIZEOF_DIE_LENGTH4) || | |||
3466 | ((diep + dip->die_length) > (dbbase + dbsize))) | |||
3467 | { | |||
3468 | complaint (&symfile_complaints, | |||
3469 | "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)", | |||
3470 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", dip->die_length); | |||
3471 | dip->die_length = 0; | |||
3472 | } | |||
3473 | else if (dip->die_length < (SIZEOF_DIE_LENGTH4 + SIZEOF_DIE_TAG2)) | |||
3474 | { | |||
3475 | dip->die_tag = TAG_padding; | |||
3476 | } | |||
3477 | else | |||
3478 | { | |||
3479 | diep += SIZEOF_DIE_LENGTH4; | |||
3480 | dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG2, GET_UNSIGNED0, | |||
3481 | objfile); | |||
3482 | } | |||
3483 | } | |||
3484 | ||||
3485 | /* | |||
3486 | ||||
3487 | LOCAL FUNCTION | |||
3488 | ||||
3489 | completedieinfo -- finish reading the information for a given DIE | |||
3490 | ||||
3491 | SYNOPSIS | |||
3492 | ||||
3493 | void completedieinfo (struct dieinfo *dip, struct objfile *objfile) | |||
3494 | ||||
3495 | DESCRIPTION | |||
3496 | ||||
3497 | Given a pointer to an already partially initialized die info structure, | |||
3498 | scan the raw DIE data and finish filling in the die info structure | |||
3499 | from the various attributes found. | |||
3500 | ||||
3501 | Note that since there is no guarantee that the data is properly | |||
3502 | aligned in memory for the type of access required (indirection | |||
3503 | through anything other than a char pointer), and there is no | |||
3504 | guarantee that it is in the same byte order as the gdb host, | |||
3505 | we call a function which deals with both alignment and byte | |||
3506 | swapping issues. Possibly inefficient, but quite portable. | |||
3507 | ||||
3508 | NOTES | |||
3509 | ||||
3510 | Each time we are called, we increment the diecount variable, which | |||
3511 | keeps an approximate count of the number of dies processed for | |||
3512 | each compilation unit. This information is presented to the user | |||
3513 | if the info_verbose flag is set. | |||
3514 | ||||
3515 | */ | |||
3516 | ||||
3517 | static void | |||
3518 | completedieinfo (struct dieinfo *dip, struct objfile *objfile) | |||
3519 | { | |||
3520 | char *diep; /* Current pointer into raw DIE data */ | |||
3521 | char *end; /* Terminate DIE scan here */ | |||
3522 | unsigned short attr; /* Current attribute being scanned */ | |||
3523 | unsigned short form; /* Form of the attribute */ | |||
3524 | int nbytes; /* Size of next field to read */ | |||
3525 | ||||
3526 | diecount++; | |||
3527 | diep = dip->die; | |||
3528 | end = diep + dip->die_length; | |||
3529 | diep += SIZEOF_DIE_LENGTH4 + SIZEOF_DIE_TAG2; | |||
3530 | while (diep < end) | |||
3531 | { | |||
3532 | attr = target_to_host (diep, SIZEOF_ATTRIBUTE2, GET_UNSIGNED0, objfile); | |||
3533 | diep += SIZEOF_ATTRIBUTE2; | |||
3534 | nbytes = attribute_size (attr); | |||
3535 | if (nbytes == -1) | |||
3536 | { | |||
3537 | complaint (&symfile_complaints, | |||
3538 | "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", | |||
3539 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : ""); | |||
3540 | diep = end; | |||
3541 | continue; | |||
3542 | } | |||
3543 | switch (attr) | |||
3544 | { | |||
3545 | case AT_fund_type: | |||
3546 | dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3547 | objfile); | |||
3548 | break; | |||
3549 | case AT_ordering: | |||
3550 | dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3551 | objfile); | |||
3552 | break; | |||
3553 | case AT_bit_offset: | |||
3554 | dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3555 | objfile); | |||
3556 | break; | |||
3557 | case AT_sibling: | |||
3558 | dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3559 | objfile); | |||
3560 | break; | |||
3561 | case AT_stmt_list: | |||
3562 | dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3563 | objfile); | |||
3564 | dip->has_at_stmt_list = 1; | |||
3565 | break; | |||
3566 | case AT_low_pc: | |||
3567 | dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3568 | objfile); | |||
3569 | dip->at_low_pc += baseaddr; | |||
3570 | dip->has_at_low_pc = 1; | |||
3571 | break; | |||
3572 | case AT_high_pc: | |||
3573 | dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3574 | objfile); | |||
3575 | dip->at_high_pc += baseaddr; | |||
3576 | break; | |||
3577 | case AT_language: | |||
3578 | dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3579 | objfile); | |||
3580 | break; | |||
3581 | case AT_user_def_type: | |||
3582 | dip->at_user_def_type = target_to_host (diep, nbytes, | |||
3583 | GET_UNSIGNED0, objfile); | |||
3584 | break; | |||
3585 | case AT_byte_size: | |||
3586 | dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3587 | objfile); | |||
3588 | dip->has_at_byte_size = 1; | |||
3589 | break; | |||
3590 | case AT_bit_size: | |||
3591 | dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3592 | objfile); | |||
3593 | break; | |||
3594 | case AT_member: | |||
3595 | dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3596 | objfile); | |||
3597 | break; | |||
3598 | case AT_discr: | |||
3599 | dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3600 | objfile); | |||
3601 | break; | |||
3602 | case AT_location: | |||
3603 | dip->at_location = diep; | |||
3604 | break; | |||
3605 | case AT_mod_fund_type: | |||
3606 | dip->at_mod_fund_type = diep; | |||
3607 | break; | |||
3608 | case AT_subscr_data: | |||
3609 | dip->at_subscr_data = diep; | |||
3610 | break; | |||
3611 | case AT_mod_u_d_type: | |||
3612 | dip->at_mod_u_d_type = diep; | |||
3613 | break; | |||
3614 | case AT_element_list: | |||
3615 | dip->at_element_list = diep; | |||
3616 | dip->short_element_list = 0; | |||
3617 | break; | |||
3618 | case AT_short_element_list(0x00f0|FORM_BLOCK2): | |||
3619 | dip->at_element_list = diep; | |||
3620 | dip->short_element_list = 1; | |||
3621 | break; | |||
3622 | case AT_discr_value: | |||
3623 | dip->at_discr_value = diep; | |||
3624 | break; | |||
3625 | case AT_string_length: | |||
3626 | dip->at_string_length = diep; | |||
3627 | break; | |||
3628 | case AT_name: | |||
3629 | dip->at_name = diep; | |||
3630 | break; | |||
3631 | case AT_comp_dir: | |||
3632 | /* For now, ignore any "hostname:" portion, since gdb doesn't | |||
3633 | know how to deal with it. (FIXME). */ | |||
3634 | dip->at_comp_dir = strrchr (diep, ':'); | |||
3635 | if (dip->at_comp_dir != NULL((void*)0)) | |||
3636 | { | |||
3637 | dip->at_comp_dir++; | |||
3638 | } | |||
3639 | else | |||
3640 | { | |||
3641 | dip->at_comp_dir = diep; | |||
3642 | } | |||
3643 | break; | |||
3644 | case AT_producer: | |||
3645 | dip->at_producer = diep; | |||
3646 | break; | |||
3647 | case AT_start_scope: | |||
3648 | dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3649 | objfile); | |||
3650 | break; | |||
3651 | case AT_stride_size: | |||
3652 | dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3653 | objfile); | |||
3654 | break; | |||
3655 | case AT_src_info: | |||
3656 | dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED0, | |||
3657 | objfile); | |||
3658 | break; | |||
3659 | case AT_prototyped: | |||
3660 | dip->at_prototyped = diep; | |||
3661 | break; | |||
3662 | default: | |||
3663 | /* Found an attribute that we are unprepared to handle. However | |||
3664 | it is specifically one of the design goals of DWARF that | |||
3665 | consumers should ignore unknown attributes. As long as the | |||
3666 | form is one that we recognize (so we know how to skip it), | |||
3667 | we can just ignore the unknown attribute. */ | |||
3668 | break; | |||
3669 | } | |||
3670 | form = FORM_FROM_ATTR (attr)((attr) & 0xF); | |||
3671 | switch (form) | |||
3672 | { | |||
3673 | case FORM_DATA2: | |||
3674 | diep += 2; | |||
3675 | break; | |||
3676 | case FORM_DATA4: | |||
3677 | case FORM_REF: | |||
3678 | diep += 4; | |||
3679 | break; | |||
3680 | case FORM_DATA8: | |||
3681 | diep += 8; | |||
3682 | break; | |||
3683 | case FORM_ADDR: | |||
3684 | diep += TARGET_FT_POINTER_SIZE (objfile)((gdbarch_ptr_bit (current_gdbarch)) / 8); | |||
3685 | break; | |||
3686 | case FORM_BLOCK2: | |||
3687 | diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED0, objfile); | |||
3688 | break; | |||
3689 | case FORM_BLOCK4: | |||
3690 | diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED0, objfile); | |||
3691 | break; | |||
3692 | case FORM_STRING: | |||
3693 | diep += strlen (diep) + 1; | |||
3694 | break; | |||
3695 | default: | |||
3696 | unknown_attribute_form_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", form); | |||
3697 | diep = end; | |||
3698 | break; | |||
3699 | } | |||
3700 | } | |||
3701 | } | |||
3702 | ||||
3703 | /* | |||
3704 | ||||
3705 | LOCAL FUNCTION | |||
3706 | ||||
3707 | target_to_host -- swap in target data to host | |||
3708 | ||||
3709 | SYNOPSIS | |||
3710 | ||||
3711 | target_to_host (char *from, int nbytes, int signextend, | |||
3712 | struct objfile *objfile) | |||
3713 | ||||
3714 | DESCRIPTION | |||
3715 | ||||
3716 | Given pointer to data in target format in FROM, a byte count for | |||
3717 | the size of the data in NBYTES, a flag indicating whether or not | |||
3718 | the data is signed in SIGNEXTEND, and a pointer to the current | |||
3719 | objfile in OBJFILE, convert the data to host format and return | |||
3720 | the converted value. | |||
3721 | ||||
3722 | NOTES | |||
3723 | ||||
3724 | FIXME: If we read data that is known to be signed, and expect to | |||
3725 | use it as signed data, then we need to explicitly sign extend the | |||
3726 | result until the bfd library is able to do this for us. | |||
3727 | ||||
3728 | FIXME: Would a 32 bit target ever need an 8 byte result? | |||
3729 | ||||
3730 | */ | |||
3731 | ||||
3732 | static CORE_ADDR | |||
3733 | target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */ | |||
3734 | struct objfile *objfile) | |||
3735 | { | |||
3736 | CORE_ADDR rtnval; | |||
3737 | ||||
3738 | switch (nbytes) | |||
3739 | { | |||
3740 | case 8: | |||
3741 | rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from)((*((objfile->obfd)->xvec->bfd_getx64)) ((bfd_byte * ) from)); | |||
3742 | break; | |||
3743 | case 4: | |||
3744 | rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from)((*((objfile->obfd)->xvec->bfd_getx32)) ((bfd_byte * ) from)); | |||
3745 | break; | |||
3746 | case 2: | |||
3747 | rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from)((*((objfile->obfd)->xvec->bfd_getx16)) ((bfd_byte * ) from)); | |||
3748 | break; | |||
3749 | case 1: | |||
3750 | rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from)(*(unsigned char *) ((bfd_byte *) from) & 0xff); | |||
3751 | break; | |||
3752 | default: | |||
3753 | complaint (&symfile_complaints, | |||
3754 | "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", | |||
3755 | DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", nbytes); | |||
3756 | rtnval = 0; | |||
3757 | break; | |||
3758 | } | |||
3759 | return (rtnval); | |||
3760 | } | |||
3761 | ||||
3762 | /* | |||
3763 | ||||
3764 | LOCAL FUNCTION | |||
3765 | ||||
3766 | attribute_size -- compute size of data for a DWARF attribute | |||
3767 | ||||
3768 | SYNOPSIS | |||
3769 | ||||
3770 | static int attribute_size (unsigned int attr) | |||
3771 | ||||
3772 | DESCRIPTION | |||
3773 | ||||
3774 | Given a DWARF attribute in ATTR, compute the size of the first | |||
3775 | piece of data associated with this attribute and return that | |||
3776 | size. | |||
3777 | ||||
3778 | Returns -1 for unrecognized attributes. | |||
3779 | ||||
3780 | */ | |||
3781 | ||||
3782 | static int | |||
3783 | attribute_size (unsigned int attr) | |||
3784 | { | |||
3785 | int nbytes; /* Size of next data for this attribute */ | |||
3786 | unsigned short form; /* Form of the attribute */ | |||
3787 | ||||
3788 | form = FORM_FROM_ATTR (attr)((attr) & 0xF); | |||
3789 | switch (form) | |||
3790 | { | |||
3791 | case FORM_STRING: /* A variable length field is next */ | |||
3792 | nbytes = 0; | |||
3793 | break; | |||
3794 | case FORM_DATA2: /* Next 2 byte field is the data itself */ | |||
3795 | case FORM_BLOCK2: /* Next 2 byte field is a block length */ | |||
3796 | nbytes = 2; | |||
3797 | break; | |||
3798 | case FORM_DATA4: /* Next 4 byte field is the data itself */ | |||
3799 | case FORM_BLOCK4: /* Next 4 byte field is a block length */ | |||
3800 | case FORM_REF: /* Next 4 byte field is a DIE offset */ | |||
3801 | nbytes = 4; | |||
3802 | break; | |||
3803 | case FORM_DATA8: /* Next 8 byte field is the data itself */ | |||
3804 | nbytes = 8; | |||
3805 | break; | |||
3806 | case FORM_ADDR: /* Next field size is target sizeof(void *) */ | |||
3807 | nbytes = TARGET_FT_POINTER_SIZE (objfile)((gdbarch_ptr_bit (current_gdbarch)) / 8); | |||
3808 | break; | |||
3809 | default: | |||
3810 | unknown_attribute_form_complaint (DIE_ID(curdie!=((void*)0) ? curdie->die_ref : 0), DIE_NAME(curdie!=((void*)0) && curdie->at_name!=((void*)0) ) ? curdie->at_name : "", form); | |||
3811 | nbytes = -1; | |||
3812 | break; | |||
3813 | } | |||
3814 | return (nbytes); | |||
3815 | } |